1 //===-- Disassembler.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/Support/Compiler.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <cassert> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 62 arch.GetArchitectureName(), plugin_name); 63 64 DisassemblerCreateInstance create_callback = nullptr; 65 66 if (plugin_name) { 67 create_callback = 68 PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name); 69 if (create_callback) { 70 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 71 72 if (disassembler_sp) 73 return disassembler_sp; 74 } 75 } else { 76 for (uint32_t idx = 0; 77 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 78 idx)) != nullptr; 79 ++idx) { 80 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 81 82 if (disassembler_sp) 83 return disassembler_sp; 84 } 85 } 86 return DisassemblerSP(); 87 } 88 89 DisassemblerSP Disassembler::FindPluginForTarget(const Target &target, 90 const ArchSpec &arch, 91 const char *flavor, 92 const char *plugin_name) { 93 if (flavor == nullptr) { 94 // FIXME - we don't have the mechanism in place to do per-architecture 95 // settings. But since we know that for now we only support flavors on x86 96 // & x86_64, 97 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 98 arch.GetTriple().getArch() == llvm::Triple::x86_64) 99 flavor = target.GetDisassemblyFlavor(); 100 } 101 return FindPlugin(arch, flavor, plugin_name); 102 } 103 104 static Address ResolveAddress(Target &target, const Address &addr) { 105 if (!addr.IsSectionOffset()) { 106 Address resolved_addr; 107 // If we weren't passed in a section offset address range, try and resolve 108 // it to something 109 bool is_resolved = target.GetSectionLoadList().IsEmpty() 110 ? target.GetImages().ResolveFileAddress( 111 addr.GetOffset(), resolved_addr) 112 : target.GetSectionLoadList().ResolveLoadAddress( 113 addr.GetOffset(), resolved_addr); 114 115 // We weren't able to resolve the address, just treat it as a raw address 116 if (is_resolved && resolved_addr.IsValid()) 117 return resolved_addr; 118 } 119 return addr; 120 } 121 122 lldb::DisassemblerSP Disassembler::DisassembleRange( 123 const ArchSpec &arch, const char *plugin_name, const char *flavor, 124 Target &target, const AddressRange &range, bool force_live_memory) { 125 if (range.GetByteSize() <= 0) 126 return {}; 127 128 if (!range.GetBaseAddress().IsValid()) 129 return {}; 130 131 lldb::DisassemblerSP disasm_sp = 132 Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name); 133 134 if (!disasm_sp) 135 return {}; 136 137 const size_t bytes_disassembled = disasm_sp->ParseInstructions( 138 target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()}, 139 nullptr, force_live_memory); 140 if (bytes_disassembled == 0) 141 return {}; 142 143 return disasm_sp; 144 } 145 146 lldb::DisassemblerSP 147 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 148 const char *flavor, const Address &start, 149 const void *src, size_t src_len, 150 uint32_t num_instructions, bool data_from_file) { 151 if (!src) 152 return {}; 153 154 lldb::DisassemblerSP disasm_sp = 155 Disassembler::FindPlugin(arch, flavor, plugin_name); 156 157 if (!disasm_sp) 158 return {}; 159 160 DataExtractor data(src, src_len, arch.GetByteOrder(), 161 arch.GetAddressByteSize()); 162 163 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false, 164 data_from_file); 165 return disasm_sp; 166 } 167 168 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 169 const char *plugin_name, const char *flavor, 170 const ExecutionContext &exe_ctx, 171 const Address &address, Limit limit, 172 bool mixed_source_and_assembly, 173 uint32_t num_mixed_context_lines, 174 uint32_t options, Stream &strm) { 175 if (!exe_ctx.GetTargetPtr()) 176 return false; 177 178 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 179 exe_ctx.GetTargetRef(), arch, flavor, plugin_name)); 180 if (!disasm_sp) 181 return false; 182 183 const bool force_live_memory = true; 184 size_t bytes_disassembled = disasm_sp->ParseInstructions( 185 exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory); 186 if (bytes_disassembled == 0) 187 return false; 188 189 disasm_sp->PrintInstructions(debugger, arch, exe_ctx, 190 mixed_source_and_assembly, 191 num_mixed_context_lines, options, strm); 192 return true; 193 } 194 195 Disassembler::SourceLine 196 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 197 if (!sc.function) 198 return {}; 199 200 if (!sc.line_entry.IsValid()) 201 return {}; 202 203 LineEntry prologue_end_line = sc.line_entry; 204 FileSpec func_decl_file; 205 uint32_t func_decl_line; 206 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 207 208 if (func_decl_file != prologue_end_line.file && 209 func_decl_file != prologue_end_line.original_file) 210 return {}; 211 212 SourceLine decl_line; 213 decl_line.file = func_decl_file; 214 decl_line.line = func_decl_line; 215 // TODO: Do we care about column on these entries? If so, we need to plumb 216 // that through GetStartLineSourceInfo. 217 decl_line.column = 0; 218 return decl_line; 219 } 220 221 void Disassembler::AddLineToSourceLineTables( 222 SourceLine &line, 223 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 224 if (line.IsValid()) { 225 auto source_lines_seen_pos = source_lines_seen.find(line.file); 226 if (source_lines_seen_pos == source_lines_seen.end()) { 227 std::set<uint32_t> lines; 228 lines.insert(line.line); 229 source_lines_seen.emplace(line.file, lines); 230 } else { 231 source_lines_seen_pos->second.insert(line.line); 232 } 233 } 234 } 235 236 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 237 const ExecutionContext &exe_ctx, const SymbolContext &sc, 238 SourceLine &line) { 239 240 // TODO: should we also check target.process.thread.step-avoid-libraries ? 241 242 const RegularExpression *avoid_regex = nullptr; 243 244 // Skip any line #0 entries - they are implementation details 245 if (line.line == 0) 246 return false; 247 248 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 249 if (thread_sp) { 250 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 251 } else { 252 TargetSP target_sp = exe_ctx.GetTargetSP(); 253 if (target_sp) { 254 Status error; 255 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 256 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 257 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 258 OptionValueRegex *re = value_sp->GetAsRegex(); 259 if (re) { 260 avoid_regex = re->GetCurrentValue(); 261 } 262 } 263 } 264 } 265 if (avoid_regex && sc.symbol != nullptr) { 266 const char *function_name = 267 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 268 .GetCString(); 269 if (function_name && avoid_regex->Execute(function_name)) { 270 // skip this source line 271 return true; 272 } 273 } 274 // don't skip this source line 275 return false; 276 } 277 278 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch, 279 const ExecutionContext &exe_ctx, 280 bool mixed_source_and_assembly, 281 uint32_t num_mixed_context_lines, 282 uint32_t options, Stream &strm) { 283 // We got some things disassembled... 284 size_t num_instructions_found = GetInstructionList().GetSize(); 285 286 const uint32_t max_opcode_byte_size = 287 GetInstructionList().GetMaxOpcocdeByteSize(); 288 SymbolContext sc; 289 SymbolContext prev_sc; 290 AddressRange current_source_line_range; 291 const Address *pc_addr_ptr = nullptr; 292 StackFrame *frame = exe_ctx.GetFramePtr(); 293 294 TargetSP target_sp(exe_ctx.GetTargetSP()); 295 SourceManager &source_manager = 296 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 297 298 if (frame) { 299 pc_addr_ptr = &frame->GetFrameCodeAddress(); 300 } 301 const uint32_t scope = 302 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 303 const bool use_inline_block_range = false; 304 305 const FormatEntity::Entry *disassembly_format = nullptr; 306 FormatEntity::Entry format; 307 if (exe_ctx.HasTargetScope()) { 308 disassembly_format = 309 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 310 } else { 311 FormatEntity::Parse("${addr}: ", format); 312 disassembly_format = &format; 313 } 314 315 // First pass: step through the list of instructions, find how long the 316 // initial addresses strings are, insert padding in the second pass so the 317 // opcodes all line up nicely. 318 319 // Also build up the source line mapping if this is mixed source & assembly 320 // mode. Calculate the source line for each assembly instruction (eliding 321 // inlined functions which the user wants to skip). 322 323 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 324 Symbol *previous_symbol = nullptr; 325 326 size_t address_text_size = 0; 327 for (size_t i = 0; i < num_instructions_found; ++i) { 328 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 329 if (inst) { 330 const Address &addr = inst->GetAddress(); 331 ModuleSP module_sp(addr.GetModule()); 332 if (module_sp) { 333 const SymbolContextItem resolve_mask = eSymbolContextFunction | 334 eSymbolContextSymbol | 335 eSymbolContextLineEntry; 336 uint32_t resolved_mask = 337 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 338 if (resolved_mask) { 339 StreamString strmstr; 340 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 341 &exe_ctx, &addr, strmstr); 342 size_t cur_line = strmstr.GetSizeOfLastLine(); 343 if (cur_line > address_text_size) 344 address_text_size = cur_line; 345 346 // Add entries to our "source_lines_seen" map+set which list which 347 // sources lines occur in this disassembly session. We will print 348 // lines of context around a source line, but we don't want to print 349 // a source line that has a line table entry of its own - we'll leave 350 // that source line to be printed when it actually occurs in the 351 // disassembly. 352 353 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 354 if (sc.symbol != previous_symbol) { 355 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 356 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 357 AddLineToSourceLineTables(decl_line, source_lines_seen); 358 } 359 if (sc.line_entry.IsValid()) { 360 SourceLine this_line; 361 this_line.file = sc.line_entry.file; 362 this_line.line = sc.line_entry.line; 363 this_line.column = sc.line_entry.column; 364 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 365 AddLineToSourceLineTables(this_line, source_lines_seen); 366 } 367 } 368 } 369 sc.Clear(false); 370 } 371 } 372 } 373 374 previous_symbol = nullptr; 375 SourceLine previous_line; 376 for (size_t i = 0; i < num_instructions_found; ++i) { 377 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 378 379 if (inst) { 380 const Address &addr = inst->GetAddress(); 381 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 382 SourceLinesToDisplay source_lines_to_display; 383 384 prev_sc = sc; 385 386 ModuleSP module_sp(addr.GetModule()); 387 if (module_sp) { 388 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 389 addr, eSymbolContextEverything, sc); 390 if (resolved_mask) { 391 if (mixed_source_and_assembly) { 392 393 // If we've started a new function (non-inlined), print all of the 394 // source lines from the function declaration until the first line 395 // table entry - typically the opening curly brace of the function. 396 if (previous_symbol != sc.symbol) { 397 // The default disassembly format puts an extra blank line 398 // between functions - so when we're displaying the source 399 // context for a function, we don't want to add a blank line 400 // after the source context or we'll end up with two of them. 401 if (previous_symbol != nullptr) 402 source_lines_to_display.print_source_context_end_eol = false; 403 404 previous_symbol = sc.symbol; 405 if (sc.function && sc.line_entry.IsValid()) { 406 LineEntry prologue_end_line = sc.line_entry; 407 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 408 prologue_end_line)) { 409 FileSpec func_decl_file; 410 uint32_t func_decl_line; 411 sc.function->GetStartLineSourceInfo(func_decl_file, 412 func_decl_line); 413 if (func_decl_file == prologue_end_line.file || 414 func_decl_file == prologue_end_line.original_file) { 415 // Add all the lines between the function declaration and 416 // the first non-prologue source line to the list of lines 417 // to print. 418 for (uint32_t lineno = func_decl_line; 419 lineno <= prologue_end_line.line; lineno++) { 420 SourceLine this_line; 421 this_line.file = func_decl_file; 422 this_line.line = lineno; 423 source_lines_to_display.lines.push_back(this_line); 424 } 425 // Mark the last line as the "current" one. Usually this 426 // is the open curly brace. 427 if (source_lines_to_display.lines.size() > 0) 428 source_lines_to_display.current_source_line = 429 source_lines_to_display.lines.size() - 1; 430 } 431 } 432 } 433 sc.GetAddressRange(scope, 0, use_inline_block_range, 434 current_source_line_range); 435 } 436 437 // If we've left a previous source line's address range, print a 438 // new source line 439 if (!current_source_line_range.ContainsFileAddress(addr)) { 440 sc.GetAddressRange(scope, 0, use_inline_block_range, 441 current_source_line_range); 442 443 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 444 SourceLine this_line; 445 this_line.file = sc.line_entry.file; 446 this_line.line = sc.line_entry.line; 447 448 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 449 this_line)) { 450 // Only print this source line if it is different from the 451 // last source line we printed. There may have been inlined 452 // functions between these lines that we elided, resulting in 453 // the same line being printed twice in a row for a 454 // contiguous block of assembly instructions. 455 if (this_line != previous_line) { 456 457 std::vector<uint32_t> previous_lines; 458 for (uint32_t i = 0; 459 i < num_mixed_context_lines && 460 (this_line.line - num_mixed_context_lines) > 0; 461 i++) { 462 uint32_t line = 463 this_line.line - num_mixed_context_lines + i; 464 auto pos = source_lines_seen.find(this_line.file); 465 if (pos != source_lines_seen.end()) { 466 if (pos->second.count(line) == 1) { 467 previous_lines.clear(); 468 } else { 469 previous_lines.push_back(line); 470 } 471 } 472 } 473 for (size_t i = 0; i < previous_lines.size(); i++) { 474 SourceLine previous_line; 475 previous_line.file = this_line.file; 476 previous_line.line = previous_lines[i]; 477 auto pos = source_lines_seen.find(previous_line.file); 478 if (pos != source_lines_seen.end()) { 479 pos->second.insert(previous_line.line); 480 } 481 source_lines_to_display.lines.push_back(previous_line); 482 } 483 484 source_lines_to_display.lines.push_back(this_line); 485 source_lines_to_display.current_source_line = 486 source_lines_to_display.lines.size() - 1; 487 488 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 489 SourceLine next_line; 490 next_line.file = this_line.file; 491 next_line.line = this_line.line + i + 1; 492 auto pos = source_lines_seen.find(next_line.file); 493 if (pos != source_lines_seen.end()) { 494 if (pos->second.count(next_line.line) == 1) 495 break; 496 pos->second.insert(next_line.line); 497 } 498 source_lines_to_display.lines.push_back(next_line); 499 } 500 } 501 previous_line = this_line; 502 } 503 } 504 } 505 } 506 } else { 507 sc.Clear(true); 508 } 509 } 510 511 if (source_lines_to_display.lines.size() > 0) { 512 strm.EOL(); 513 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 514 idx++) { 515 SourceLine ln = source_lines_to_display.lines[idx]; 516 const char *line_highlight = ""; 517 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 518 line_highlight = "->"; 519 } else if (idx == source_lines_to_display.current_source_line) { 520 line_highlight = "**"; 521 } 522 source_manager.DisplaySourceLinesWithLineNumbers( 523 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 524 } 525 if (source_lines_to_display.print_source_context_end_eol) 526 strm.EOL(); 527 } 528 529 const bool show_bytes = (options & eOptionShowBytes) != 0; 530 const bool show_control_flow_kind = 531 (options & eOptionShowControlFlowKind) != 0; 532 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, 533 show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr, 534 address_text_size); 535 strm.EOL(); 536 } else { 537 break; 538 } 539 } 540 } 541 542 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 543 StackFrame &frame, Stream &strm) { 544 AddressRange range; 545 SymbolContext sc( 546 frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 547 if (sc.function) { 548 range = sc.function->GetAddressRange(); 549 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 550 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 551 range.SetByteSize(sc.symbol->GetByteSize()); 552 } else { 553 range.GetBaseAddress() = frame.GetFrameCodeAddress(); 554 } 555 556 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 557 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 558 559 Disassembler::Limit limit = {Disassembler::Limit::Bytes, 560 range.GetByteSize()}; 561 if (limit.value == 0) 562 limit.value = DEFAULT_DISASM_BYTE_SIZE; 563 564 return Disassemble(debugger, arch, nullptr, nullptr, frame, 565 range.GetBaseAddress(), limit, false, 0, 0, strm); 566 } 567 568 Instruction::Instruction(const Address &address, AddressClass addr_class) 569 : m_address(address), m_address_class(addr_class), m_opcode(), 570 m_calculated_strings(false) {} 571 572 Instruction::~Instruction() = default; 573 574 AddressClass Instruction::GetAddressClass() { 575 if (m_address_class == AddressClass::eInvalid) 576 m_address_class = m_address.GetAddressClass(); 577 return m_address_class; 578 } 579 580 const char *Instruction::GetNameForInstructionControlFlowKind( 581 lldb::InstructionControlFlowKind instruction_control_flow_kind) { 582 switch (instruction_control_flow_kind) { 583 case eInstructionControlFlowKindUnknown: 584 return "unknown"; 585 case eInstructionControlFlowKindOther: 586 return "other"; 587 case eInstructionControlFlowKindCall: 588 return "call"; 589 case eInstructionControlFlowKindReturn: 590 return "return"; 591 case eInstructionControlFlowKindJump: 592 return "jump"; 593 case eInstructionControlFlowKindCondJump: 594 return "cond jump"; 595 case eInstructionControlFlowKindFarCall: 596 return "far call"; 597 case eInstructionControlFlowKindFarReturn: 598 return "far return"; 599 case eInstructionControlFlowKindFarJump: 600 return "far jump"; 601 } 602 } 603 604 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 605 bool show_address, bool show_bytes, 606 bool show_control_flow_kind, 607 const ExecutionContext *exe_ctx, 608 const SymbolContext *sym_ctx, 609 const SymbolContext *prev_sym_ctx, 610 const FormatEntity::Entry *disassembly_addr_format, 611 size_t max_address_text_size) { 612 size_t opcode_column_width = 7; 613 const size_t operand_column_width = 25; 614 615 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 616 617 StreamString ss; 618 619 if (show_address) { 620 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 621 prev_sym_ctx, exe_ctx, &m_address, ss); 622 ss.FillLastLineToColumn(max_address_text_size, ' '); 623 } 624 625 if (show_bytes) { 626 if (m_opcode.GetType() == Opcode::eTypeBytes) { 627 // x86_64 and i386 are the only ones that use bytes right now so pad out 628 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 629 // space 630 if (max_opcode_byte_size > 0) 631 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 632 else 633 m_opcode.Dump(&ss, 15 * 3 + 1); 634 } else { 635 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 636 // (10 spaces) plus two for padding... 637 if (max_opcode_byte_size > 0) 638 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 639 else 640 m_opcode.Dump(&ss, 12); 641 } 642 } 643 644 if (show_control_flow_kind) { 645 lldb::InstructionControlFlowKind instruction_control_flow_kind = 646 GetControlFlowKind(exe_ctx); 647 ss.Printf("%-12s", GetNameForInstructionControlFlowKind( 648 instruction_control_flow_kind)); 649 } 650 651 const size_t opcode_pos = ss.GetSizeOfLastLine(); 652 653 // The default opcode size of 7 characters is plenty for most architectures 654 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 655 // consistent column spacing in these cases, unfortunately. 656 if (m_opcode_name.length() >= opcode_column_width) { 657 opcode_column_width = m_opcode_name.length() + 1; 658 } 659 660 ss.PutCString(m_opcode_name); 661 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 662 ss.PutCString(m_mnemonics); 663 664 if (!m_comment.empty()) { 665 ss.FillLastLineToColumn( 666 opcode_pos + opcode_column_width + operand_column_width, ' '); 667 ss.PutCString(" ; "); 668 ss.PutCString(m_comment); 669 } 670 s->PutCString(ss.GetString()); 671 } 672 673 bool Instruction::DumpEmulation(const ArchSpec &arch) { 674 std::unique_ptr<EmulateInstruction> insn_emulator_up( 675 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 676 if (insn_emulator_up) { 677 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 678 return insn_emulator_up->EvaluateInstruction(0); 679 } 680 681 return false; 682 } 683 684 bool Instruction::CanSetBreakpoint () { 685 return !HasDelaySlot(); 686 } 687 688 bool Instruction::HasDelaySlot() { 689 // Default is false. 690 return false; 691 } 692 693 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 694 OptionValue::Type data_type) { 695 bool done = false; 696 char buffer[1024]; 697 698 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 699 700 int idx = 0; 701 while (!done) { 702 if (!fgets(buffer, 1023, in_file)) { 703 out_stream->Printf( 704 "Instruction::ReadArray: Error reading file (fgets).\n"); 705 option_value_sp.reset(); 706 return option_value_sp; 707 } 708 709 std::string line(buffer); 710 711 size_t len = line.size(); 712 if (line[len - 1] == '\n') { 713 line[len - 1] = '\0'; 714 line.resize(len - 1); 715 } 716 717 if ((line.size() == 1) && line[0] == ']') { 718 done = true; 719 line.clear(); 720 } 721 722 if (!line.empty()) { 723 std::string value; 724 static RegularExpression g_reg_exp( 725 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 726 llvm::SmallVector<llvm::StringRef, 2> matches; 727 if (g_reg_exp.Execute(line, &matches)) 728 value = matches[1].str(); 729 else 730 value = line; 731 732 OptionValueSP data_value_sp; 733 switch (data_type) { 734 case OptionValue::eTypeUInt64: 735 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 736 data_value_sp->SetValueFromString(value); 737 break; 738 // Other types can be added later as needed. 739 default: 740 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 741 break; 742 } 743 744 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 745 ++idx; 746 } 747 } 748 749 return option_value_sp; 750 } 751 752 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 753 bool done = false; 754 char buffer[1024]; 755 756 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 757 static ConstString encoding_key("data_encoding"); 758 OptionValue::Type data_type = OptionValue::eTypeInvalid; 759 760 while (!done) { 761 // Read the next line in the file 762 if (!fgets(buffer, 1023, in_file)) { 763 out_stream->Printf( 764 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 765 option_value_sp.reset(); 766 return option_value_sp; 767 } 768 769 // Check to see if the line contains the end-of-dictionary marker ("}") 770 std::string line(buffer); 771 772 size_t len = line.size(); 773 if (line[len - 1] == '\n') { 774 line[len - 1] = '\0'; 775 line.resize(len - 1); 776 } 777 778 if ((line.size() == 1) && (line[0] == '}')) { 779 done = true; 780 line.clear(); 781 } 782 783 // Try to find a key-value pair in the current line and add it to the 784 // dictionary. 785 if (!line.empty()) { 786 static RegularExpression g_reg_exp(llvm::StringRef( 787 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 788 789 llvm::SmallVector<llvm::StringRef, 3> matches; 790 791 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 792 std::string key; 793 std::string value; 794 if (reg_exp_success) { 795 key = matches[1].str(); 796 value = matches[2].str(); 797 } else { 798 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 799 "regular expression.\n"); 800 option_value_sp.reset(); 801 return option_value_sp; 802 } 803 804 ConstString const_key(key.c_str()); 805 // Check value to see if it's the start of an array or dictionary. 806 807 lldb::OptionValueSP value_sp; 808 assert(value.empty() == false); 809 assert(key.empty() == false); 810 811 if (value[0] == '{') { 812 assert(value.size() == 1); 813 // value is a dictionary 814 value_sp = ReadDictionary(in_file, out_stream); 815 if (!value_sp) { 816 option_value_sp.reset(); 817 return option_value_sp; 818 } 819 } else if (value[0] == '[') { 820 assert(value.size() == 1); 821 // value is an array 822 value_sp = ReadArray(in_file, out_stream, data_type); 823 if (!value_sp) { 824 option_value_sp.reset(); 825 return option_value_sp; 826 } 827 // We've used the data_type to read an array; re-set the type to 828 // Invalid 829 data_type = OptionValue::eTypeInvalid; 830 } else if ((value[0] == '0') && (value[1] == 'x')) { 831 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 832 value_sp->SetValueFromString(value); 833 } else { 834 size_t len = value.size(); 835 if ((value[0] == '"') && (value[len - 1] == '"')) 836 value = value.substr(1, len - 2); 837 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 838 } 839 840 if (const_key == encoding_key) { 841 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 842 // indicating the 843 // data type of an upcoming array (usually the next bit of data to be 844 // read in). 845 if (strcmp(value.c_str(), "uint32_t") == 0) 846 data_type = OptionValue::eTypeUInt64; 847 } else 848 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 849 false); 850 } 851 } 852 853 return option_value_sp; 854 } 855 856 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 857 if (!out_stream) 858 return false; 859 860 if (!file_name) { 861 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 862 return false; 863 } 864 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 865 if (!test_file) { 866 out_stream->Printf( 867 "Instruction::TestEmulation: Attempt to open test file failed."); 868 return false; 869 } 870 871 char buffer[256]; 872 if (!fgets(buffer, 255, test_file)) { 873 out_stream->Printf( 874 "Instruction::TestEmulation: Error reading first line of test file.\n"); 875 fclose(test_file); 876 return false; 877 } 878 879 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 880 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 881 "emulation state dictionary\n"); 882 fclose(test_file); 883 return false; 884 } 885 886 // Read all the test information from the test file into an 887 // OptionValueDictionary. 888 889 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 890 if (!data_dictionary_sp) { 891 out_stream->Printf( 892 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 893 fclose(test_file); 894 return false; 895 } 896 897 fclose(test_file); 898 899 OptionValueDictionary *data_dictionary = 900 data_dictionary_sp->GetAsDictionary(); 901 static ConstString description_key("assembly_string"); 902 static ConstString triple_key("triple"); 903 904 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 905 906 if (!value_sp) { 907 out_stream->Printf("Instruction::TestEmulation: Test file does not " 908 "contain description string.\n"); 909 return false; 910 } 911 912 SetDescription(value_sp->GetStringValue()); 913 914 value_sp = data_dictionary->GetValueForKey(triple_key); 915 if (!value_sp) { 916 out_stream->Printf( 917 "Instruction::TestEmulation: Test file does not contain triple.\n"); 918 return false; 919 } 920 921 ArchSpec arch; 922 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 923 924 bool success = false; 925 std::unique_ptr<EmulateInstruction> insn_emulator_up( 926 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 927 if (insn_emulator_up) 928 success = 929 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 930 931 if (success) 932 out_stream->Printf("Emulation test succeeded."); 933 else 934 out_stream->Printf("Emulation test failed."); 935 936 return success; 937 } 938 939 bool Instruction::Emulate( 940 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 941 EmulateInstruction::ReadMemoryCallback read_mem_callback, 942 EmulateInstruction::WriteMemoryCallback write_mem_callback, 943 EmulateInstruction::ReadRegisterCallback read_reg_callback, 944 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 945 std::unique_ptr<EmulateInstruction> insn_emulator_up( 946 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 947 if (insn_emulator_up) { 948 insn_emulator_up->SetBaton(baton); 949 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 950 read_reg_callback, write_reg_callback); 951 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 952 return insn_emulator_up->EvaluateInstruction(evaluate_options); 953 } 954 955 return false; 956 } 957 958 uint32_t Instruction::GetData(DataExtractor &data) { 959 return m_opcode.GetData(data); 960 } 961 962 InstructionList::InstructionList() : m_instructions() {} 963 964 InstructionList::~InstructionList() = default; 965 966 size_t InstructionList::GetSize() const { return m_instructions.size(); } 967 968 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 969 uint32_t max_inst_size = 0; 970 collection::const_iterator pos, end; 971 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 972 ++pos) { 973 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 974 if (max_inst_size < inst_size) 975 max_inst_size = inst_size; 976 } 977 return max_inst_size; 978 } 979 980 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 981 InstructionSP inst_sp; 982 if (idx < m_instructions.size()) 983 inst_sp = m_instructions[idx]; 984 return inst_sp; 985 } 986 987 InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) { 988 uint32_t index = GetIndexOfInstructionAtAddress(address); 989 if (index != UINT32_MAX) 990 return GetInstructionAtIndex(index); 991 return nullptr; 992 } 993 994 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 995 bool show_control_flow_kind, 996 const ExecutionContext *exe_ctx) { 997 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 998 collection::const_iterator pos, begin, end; 999 1000 const FormatEntity::Entry *disassembly_format = nullptr; 1001 FormatEntity::Entry format; 1002 if (exe_ctx && exe_ctx->HasTargetScope()) { 1003 disassembly_format = 1004 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1005 } else { 1006 FormatEntity::Parse("${addr}: ", format); 1007 disassembly_format = &format; 1008 } 1009 1010 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1011 pos != end; ++pos) { 1012 if (pos != begin) 1013 s->EOL(); 1014 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, 1015 show_control_flow_kind, exe_ctx, nullptr, nullptr, 1016 disassembly_format, 0); 1017 } 1018 } 1019 1020 void InstructionList::Clear() { m_instructions.clear(); } 1021 1022 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1023 if (inst_sp) 1024 m_instructions.push_back(inst_sp); 1025 } 1026 1027 uint32_t 1028 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1029 bool ignore_calls, 1030 bool *found_calls) const { 1031 size_t num_instructions = m_instructions.size(); 1032 1033 uint32_t next_branch = UINT32_MAX; 1034 1035 if (found_calls) 1036 *found_calls = false; 1037 for (size_t i = start; i < num_instructions; i++) { 1038 if (m_instructions[i]->DoesBranch()) { 1039 if (ignore_calls && m_instructions[i]->IsCall()) { 1040 if (found_calls) 1041 *found_calls = true; 1042 continue; 1043 } 1044 next_branch = i; 1045 break; 1046 } 1047 } 1048 1049 return next_branch; 1050 } 1051 1052 uint32_t 1053 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1054 size_t num_instructions = m_instructions.size(); 1055 uint32_t index = UINT32_MAX; 1056 for (size_t i = 0; i < num_instructions; i++) { 1057 if (m_instructions[i]->GetAddress() == address) { 1058 index = i; 1059 break; 1060 } 1061 } 1062 return index; 1063 } 1064 1065 uint32_t 1066 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1067 Target &target) { 1068 Address address; 1069 address.SetLoadAddress(load_addr, &target); 1070 return GetIndexOfInstructionAtAddress(address); 1071 } 1072 1073 size_t Disassembler::ParseInstructions(Target &target, Address start, 1074 Limit limit, Stream *error_strm_ptr, 1075 bool force_live_memory) { 1076 m_instruction_list.Clear(); 1077 1078 if (!start.IsValid()) 1079 return 0; 1080 1081 start = ResolveAddress(target, start); 1082 1083 addr_t byte_size = limit.value; 1084 if (limit.kind == Limit::Instructions) 1085 byte_size *= m_arch.GetMaximumOpcodeByteSize(); 1086 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1087 1088 Status error; 1089 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1090 const size_t bytes_read = 1091 target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(), 1092 error, force_live_memory, &load_addr); 1093 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1094 1095 if (bytes_read == 0) { 1096 if (error_strm_ptr) { 1097 if (const char *error_cstr = error.AsCString()) 1098 error_strm_ptr->Printf("error: %s\n", error_cstr); 1099 } 1100 return 0; 1101 } 1102 1103 if (bytes_read != data_sp->GetByteSize()) 1104 data_sp->SetByteSize(bytes_read); 1105 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1106 m_arch.GetAddressByteSize()); 1107 return DecodeInstructions(start, data, 0, 1108 limit.kind == Limit::Instructions ? limit.value 1109 : UINT32_MAX, 1110 false, data_from_file); 1111 } 1112 1113 // Disassembler copy constructor 1114 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1115 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1116 m_flavor() { 1117 if (flavor == nullptr) 1118 m_flavor.assign("default"); 1119 else 1120 m_flavor.assign(flavor); 1121 1122 // If this is an arm variant that can only include thumb (T16, T32) 1123 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1124 if (arch.IsAlwaysThumbInstructions()) { 1125 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1126 // Replace "arm" with "thumb" so we get all thumb variants correct 1127 if (thumb_arch_name.size() > 3) { 1128 thumb_arch_name.erase(0, 3); 1129 thumb_arch_name.insert(0, "thumb"); 1130 } 1131 m_arch.SetTriple(thumb_arch_name.c_str()); 1132 } 1133 } 1134 1135 Disassembler::~Disassembler() = default; 1136 1137 InstructionList &Disassembler::GetInstructionList() { 1138 return m_instruction_list; 1139 } 1140 1141 const InstructionList &Disassembler::GetInstructionList() const { 1142 return m_instruction_list; 1143 } 1144 1145 // Class PseudoInstruction 1146 1147 PseudoInstruction::PseudoInstruction() 1148 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1149 1150 PseudoInstruction::~PseudoInstruction() = default; 1151 1152 bool PseudoInstruction::DoesBranch() { 1153 // This is NOT a valid question for a pseudo instruction. 1154 return false; 1155 } 1156 1157 bool PseudoInstruction::HasDelaySlot() { 1158 // This is NOT a valid question for a pseudo instruction. 1159 return false; 1160 } 1161 1162 bool PseudoInstruction::IsLoad() { return false; } 1163 1164 bool PseudoInstruction::IsAuthenticated() { return false; } 1165 1166 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1167 const lldb_private::DataExtractor &data, 1168 lldb::offset_t data_offset) { 1169 return m_opcode.GetByteSize(); 1170 } 1171 1172 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1173 if (!opcode_data) 1174 return; 1175 1176 switch (opcode_size) { 1177 case 8: { 1178 uint8_t value8 = *((uint8_t *)opcode_data); 1179 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1180 break; 1181 } 1182 case 16: { 1183 uint16_t value16 = *((uint16_t *)opcode_data); 1184 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1185 break; 1186 } 1187 case 32: { 1188 uint32_t value32 = *((uint32_t *)opcode_data); 1189 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1190 break; 1191 } 1192 case 64: { 1193 uint64_t value64 = *((uint64_t *)opcode_data); 1194 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1195 break; 1196 } 1197 default: 1198 break; 1199 } 1200 } 1201 1202 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1203 m_description = std::string(description); 1204 } 1205 1206 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1207 Operand ret; 1208 ret.m_type = Type::Register; 1209 ret.m_register = r; 1210 return ret; 1211 } 1212 1213 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1214 bool neg) { 1215 Operand ret; 1216 ret.m_type = Type::Immediate; 1217 ret.m_immediate = imm; 1218 ret.m_negative = neg; 1219 return ret; 1220 } 1221 1222 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1223 Operand ret; 1224 ret.m_type = Type::Immediate; 1225 if (imm < 0) { 1226 ret.m_immediate = -imm; 1227 ret.m_negative = true; 1228 } else { 1229 ret.m_immediate = imm; 1230 ret.m_negative = false; 1231 } 1232 return ret; 1233 } 1234 1235 Instruction::Operand 1236 Instruction::Operand::BuildDereference(const Operand &ref) { 1237 Operand ret; 1238 ret.m_type = Type::Dereference; 1239 ret.m_children = {ref}; 1240 return ret; 1241 } 1242 1243 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1244 const Operand &rhs) { 1245 Operand ret; 1246 ret.m_type = Type::Sum; 1247 ret.m_children = {lhs, rhs}; 1248 return ret; 1249 } 1250 1251 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1252 const Operand &rhs) { 1253 Operand ret; 1254 ret.m_type = Type::Product; 1255 ret.m_children = {lhs, rhs}; 1256 return ret; 1257 } 1258 1259 std::function<bool(const Instruction::Operand &)> 1260 lldb_private::OperandMatchers::MatchBinaryOp( 1261 std::function<bool(const Instruction::Operand &)> base, 1262 std::function<bool(const Instruction::Operand &)> left, 1263 std::function<bool(const Instruction::Operand &)> right) { 1264 return [base, left, right](const Instruction::Operand &op) -> bool { 1265 return (base(op) && op.m_children.size() == 2 && 1266 ((left(op.m_children[0]) && right(op.m_children[1])) || 1267 (left(op.m_children[1]) && right(op.m_children[0])))); 1268 }; 1269 } 1270 1271 std::function<bool(const Instruction::Operand &)> 1272 lldb_private::OperandMatchers::MatchUnaryOp( 1273 std::function<bool(const Instruction::Operand &)> base, 1274 std::function<bool(const Instruction::Operand &)> child) { 1275 return [base, child](const Instruction::Operand &op) -> bool { 1276 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1277 }; 1278 } 1279 1280 std::function<bool(const Instruction::Operand &)> 1281 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1282 return [&info](const Instruction::Operand &op) { 1283 return (op.m_type == Instruction::Operand::Type::Register && 1284 (op.m_register == ConstString(info.name) || 1285 op.m_register == ConstString(info.alt_name))); 1286 }; 1287 } 1288 1289 std::function<bool(const Instruction::Operand &)> 1290 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1291 return [®](const Instruction::Operand &op) { 1292 if (op.m_type != Instruction::Operand::Type::Register) { 1293 return false; 1294 } 1295 reg = op.m_register; 1296 return true; 1297 }; 1298 } 1299 1300 std::function<bool(const Instruction::Operand &)> 1301 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1302 return [imm](const Instruction::Operand &op) { 1303 return (op.m_type == Instruction::Operand::Type::Immediate && 1304 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1305 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1306 }; 1307 } 1308 1309 std::function<bool(const Instruction::Operand &)> 1310 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1311 return [&imm](const Instruction::Operand &op) { 1312 if (op.m_type != Instruction::Operand::Type::Immediate) { 1313 return false; 1314 } 1315 if (op.m_negative) { 1316 imm = -((int64_t)op.m_immediate); 1317 } else { 1318 imm = ((int64_t)op.m_immediate); 1319 } 1320 return true; 1321 }; 1322 } 1323 1324 std::function<bool(const Instruction::Operand &)> 1325 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1326 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1327 } 1328