1fe6060f1SDimitry Andric //===- ICF.cpp ------------------------------------------------------------===// 2fe6060f1SDimitry Andric // 3fe6060f1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4fe6060f1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5fe6060f1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6fe6060f1SDimitry Andric // 7fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 8fe6060f1SDimitry Andric 9fe6060f1SDimitry Andric #include "ICF.h" 10fe6060f1SDimitry Andric #include "ConcatOutputSection.h" 1181ad6265SDimitry Andric #include "Config.h" 12fe6060f1SDimitry Andric #include "InputSection.h" 1381ad6265SDimitry Andric #include "SymbolTable.h" 14fe6060f1SDimitry Andric #include "Symbols.h" 15fe6060f1SDimitry Andric #include "UnwindInfoSection.h" 16fe6060f1SDimitry Andric 1781ad6265SDimitry Andric #include "lld/Common/CommonLinkerContext.h" 1881ad6265SDimitry Andric #include "llvm/Support/LEB128.h" 19fe6060f1SDimitry Andric #include "llvm/Support/Parallel.h" 20fe6060f1SDimitry Andric #include "llvm/Support/TimeProfiler.h" 2181ad6265SDimitry Andric #include "llvm/Support/xxhash.h" 22fe6060f1SDimitry Andric 23fe6060f1SDimitry Andric #include <atomic> 24fe6060f1SDimitry Andric 25fe6060f1SDimitry Andric using namespace llvm; 26fe6060f1SDimitry Andric using namespace lld; 27fe6060f1SDimitry Andric using namespace lld::macho; 28fe6060f1SDimitry Andric 2981ad6265SDimitry Andric static constexpr bool verboseDiagnostics = false; 3081ad6265SDimitry Andric 31fe6060f1SDimitry Andric class ICF { 32fe6060f1SDimitry Andric public: 33fe6060f1SDimitry Andric ICF(std::vector<ConcatInputSection *> &inputs); 34fe6060f1SDimitry Andric void run(); 3581ad6265SDimitry Andric 3681ad6265SDimitry Andric using EqualsFn = bool (ICF::*)(const ConcatInputSection *, 3781ad6265SDimitry Andric const ConcatInputSection *); 3881ad6265SDimitry Andric void segregate(size_t begin, size_t end, EqualsFn); 39fe6060f1SDimitry Andric size_t findBoundary(size_t begin, size_t end); 40fe6060f1SDimitry Andric void forEachClassRange(size_t begin, size_t end, 4181ad6265SDimitry Andric llvm::function_ref<void(size_t, size_t)> func); 4281ad6265SDimitry Andric void forEachClass(llvm::function_ref<void(size_t, size_t)> func); 4381ad6265SDimitry Andric 4481ad6265SDimitry Andric bool equalsConstant(const ConcatInputSection *ia, 4581ad6265SDimitry Andric const ConcatInputSection *ib); 4681ad6265SDimitry Andric bool equalsVariable(const ConcatInputSection *ia, 4781ad6265SDimitry Andric const ConcatInputSection *ib); 48fe6060f1SDimitry Andric 49fe6060f1SDimitry Andric // ICF needs a copy of the inputs vector because its equivalence-class 50fe6060f1SDimitry Andric // segregation algorithm destroys the proper sequence. 51fe6060f1SDimitry Andric std::vector<ConcatInputSection *> icfInputs; 5281ad6265SDimitry Andric 5381ad6265SDimitry Andric unsigned icfPass = 0; 5481ad6265SDimitry Andric std::atomic<bool> icfRepeat{false}; 5581ad6265SDimitry Andric std::atomic<uint64_t> equalsConstantCount{0}; 5681ad6265SDimitry Andric std::atomic<uint64_t> equalsVariableCount{0}; 57fe6060f1SDimitry Andric }; 58fe6060f1SDimitry Andric 59fe6060f1SDimitry Andric ICF::ICF(std::vector<ConcatInputSection *> &inputs) { 60fe6060f1SDimitry Andric icfInputs.assign(inputs.begin(), inputs.end()); 61fe6060f1SDimitry Andric } 62fe6060f1SDimitry Andric 63fe6060f1SDimitry Andric // ICF = Identical Code Folding 64fe6060f1SDimitry Andric // 65fe6060f1SDimitry Andric // We only fold __TEXT,__text, so this is really "code" folding, and not 66fe6060f1SDimitry Andric // "COMDAT" folding. String and scalar constant literals are deduplicated 67fe6060f1SDimitry Andric // elsewhere. 68fe6060f1SDimitry Andric // 69fe6060f1SDimitry Andric // Summary of segments & sections: 70fe6060f1SDimitry Andric // 71fe6060f1SDimitry Andric // The __TEXT segment is readonly at the MMU. Some sections are already 72fe6060f1SDimitry Andric // deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are 73fe6060f1SDimitry Andric // synthetic and inherently free of duplicates (__TEXT,__stubs & 74fe6060f1SDimitry Andric // __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const, 75fe6060f1SDimitry Andric // because doing so induces many test failures. 76fe6060f1SDimitry Andric // 77fe6060f1SDimitry Andric // The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and 78fe6060f1SDimitry Andric // thus ineligible for ICF. 79fe6060f1SDimitry Andric // 80fe6060f1SDimitry Andric // The __DATA_CONST segment is read/write at the MMU, but is logically const to 81fe6060f1SDimitry Andric // the application after dyld applies fixups to pointer data. We currently 82fe6060f1SDimitry Andric // fold only the __DATA_CONST,__cfstring section. 83fe6060f1SDimitry Andric // 84fe6060f1SDimitry Andric // The __DATA segment is read/write at the MMU, and as application-writeable 85fe6060f1SDimitry Andric // data, none of its sections are eligible for ICF. 86fe6060f1SDimitry Andric // 87fe6060f1SDimitry Andric // Please see the large block comment in lld/ELF/ICF.cpp for an explanation 88fe6060f1SDimitry Andric // of the segregation algorithm. 89fe6060f1SDimitry Andric // 90fe6060f1SDimitry Andric // FIXME(gkm): implement keep-unique attributes 91fe6060f1SDimitry Andric // FIXME(gkm): implement address-significance tables for MachO object files 92fe6060f1SDimitry Andric 93fe6060f1SDimitry Andric // Compare "non-moving" parts of two ConcatInputSections, namely everything 94fe6060f1SDimitry Andric // except references to other ConcatInputSections. 9581ad6265SDimitry Andric bool ICF::equalsConstant(const ConcatInputSection *ia, 96fe6060f1SDimitry Andric const ConcatInputSection *ib) { 9781ad6265SDimitry Andric if (verboseDiagnostics) 9881ad6265SDimitry Andric ++equalsConstantCount; 99fe6060f1SDimitry Andric // We can only fold within the same OutputSection. 100fe6060f1SDimitry Andric if (ia->parent != ib->parent) 101fe6060f1SDimitry Andric return false; 102fe6060f1SDimitry Andric if (ia->data.size() != ib->data.size()) 103fe6060f1SDimitry Andric return false; 104fe6060f1SDimitry Andric if (ia->data != ib->data) 105fe6060f1SDimitry Andric return false; 106fe6060f1SDimitry Andric if (ia->relocs.size() != ib->relocs.size()) 107fe6060f1SDimitry Andric return false; 108fe6060f1SDimitry Andric auto f = [](const Reloc &ra, const Reloc &rb) { 109fe6060f1SDimitry Andric if (ra.type != rb.type) 110fe6060f1SDimitry Andric return false; 111fe6060f1SDimitry Andric if (ra.pcrel != rb.pcrel) 112fe6060f1SDimitry Andric return false; 113fe6060f1SDimitry Andric if (ra.length != rb.length) 114fe6060f1SDimitry Andric return false; 115fe6060f1SDimitry Andric if (ra.offset != rb.offset) 116fe6060f1SDimitry Andric return false; 117fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>()) 118fe6060f1SDimitry Andric return false; 119fe6060f1SDimitry Andric 120fe6060f1SDimitry Andric InputSection *isecA, *isecB; 121349cc55cSDimitry Andric 122349cc55cSDimitry Andric uint64_t valueA = 0; 123349cc55cSDimitry Andric uint64_t valueB = 0; 124fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 125fe6060f1SDimitry Andric const auto *sa = ra.referent.get<Symbol *>(); 126fe6060f1SDimitry Andric const auto *sb = rb.referent.get<Symbol *>(); 127fe6060f1SDimitry Andric if (sa->kind() != sb->kind()) 128fe6060f1SDimitry Andric return false; 12981ad6265SDimitry Andric // ICF runs before Undefineds are treated (and potentially converted into 13081ad6265SDimitry Andric // DylibSymbols). 13181ad6265SDimitry Andric if (isa<DylibSymbol>(sa) || isa<Undefined>(sa)) 13281ad6265SDimitry Andric return sa == sb && ra.addend == rb.addend; 13381ad6265SDimitry Andric assert(isa<Defined>(sa)); 134fe6060f1SDimitry Andric const auto *da = cast<Defined>(sa); 135fe6060f1SDimitry Andric const auto *db = cast<Defined>(sb); 136*0fca6ea1SDimitry Andric if (!da->isec() || !db->isec()) { 137fe6060f1SDimitry Andric assert(da->isAbsolute() && db->isAbsolute()); 13881ad6265SDimitry Andric return da->value + ra.addend == db->value + rb.addend; 139fe6060f1SDimitry Andric } 140*0fca6ea1SDimitry Andric isecA = da->isec(); 141349cc55cSDimitry Andric valueA = da->value; 142*0fca6ea1SDimitry Andric isecB = db->isec(); 143349cc55cSDimitry Andric valueB = db->value; 144fe6060f1SDimitry Andric } else { 145fe6060f1SDimitry Andric isecA = ra.referent.get<InputSection *>(); 146fe6060f1SDimitry Andric isecB = rb.referent.get<InputSection *>(); 147fe6060f1SDimitry Andric } 148fe6060f1SDimitry Andric 149fe6060f1SDimitry Andric if (isecA->parent != isecB->parent) 150fe6060f1SDimitry Andric return false; 151fe6060f1SDimitry Andric // Sections with identical parents should be of the same kind. 152fe6060f1SDimitry Andric assert(isecA->kind() == isecB->kind()); 153fe6060f1SDimitry Andric // We will compare ConcatInputSection contents in equalsVariable. 154fe6060f1SDimitry Andric if (isa<ConcatInputSection>(isecA)) 15581ad6265SDimitry Andric return ra.addend == rb.addend; 156fe6060f1SDimitry Andric // Else we have two literal sections. References to them are equal iff their 157fe6060f1SDimitry Andric // offsets in the output section are equal. 15881ad6265SDimitry Andric if (ra.referent.is<Symbol *>()) 15981ad6265SDimitry Andric // For symbol relocs, we compare the contents at the symbol address. We 16081ad6265SDimitry Andric // don't do `getOffset(value + addend)` because value + addend may not be 16181ad6265SDimitry Andric // a valid offset in the literal section. 16281ad6265SDimitry Andric return isecA->getOffset(valueA) == isecB->getOffset(valueB) && 16381ad6265SDimitry Andric ra.addend == rb.addend; 16481ad6265SDimitry Andric else { 16581ad6265SDimitry Andric assert(valueA == 0 && valueB == 0); 16681ad6265SDimitry Andric // For section relocs, we compare the content at the section offset. 16781ad6265SDimitry Andric return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend); 16881ad6265SDimitry Andric } 169fe6060f1SDimitry Andric }; 170fe6060f1SDimitry Andric return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), 171fe6060f1SDimitry Andric f); 172fe6060f1SDimitry Andric } 173fe6060f1SDimitry Andric 174fe6060f1SDimitry Andric // Compare the "moving" parts of two ConcatInputSections -- i.e. everything not 175fe6060f1SDimitry Andric // handled by equalsConstant(). 17681ad6265SDimitry Andric bool ICF::equalsVariable(const ConcatInputSection *ia, 177fe6060f1SDimitry Andric const ConcatInputSection *ib) { 17881ad6265SDimitry Andric if (verboseDiagnostics) 17981ad6265SDimitry Andric ++equalsVariableCount; 180fe6060f1SDimitry Andric assert(ia->relocs.size() == ib->relocs.size()); 18181ad6265SDimitry Andric auto f = [this](const Reloc &ra, const Reloc &rb) { 182fe6060f1SDimitry Andric // We already filtered out mismatching values/addends in equalsConstant. 183fe6060f1SDimitry Andric if (ra.referent == rb.referent) 184fe6060f1SDimitry Andric return true; 185fe6060f1SDimitry Andric const ConcatInputSection *isecA, *isecB; 186fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 187fe6060f1SDimitry Andric // Matching DylibSymbols are already filtered out by the 188fe6060f1SDimitry Andric // identical-referent check above. Non-matching DylibSymbols were filtered 189fe6060f1SDimitry Andric // out in equalsConstant(). So we can safely cast to Defined here. 190fe6060f1SDimitry Andric const auto *da = cast<Defined>(ra.referent.get<Symbol *>()); 191fe6060f1SDimitry Andric const auto *db = cast<Defined>(rb.referent.get<Symbol *>()); 192fe6060f1SDimitry Andric if (da->isAbsolute()) 193fe6060f1SDimitry Andric return true; 194*0fca6ea1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(da->isec()); 195fe6060f1SDimitry Andric if (!isecA) 196fe6060f1SDimitry Andric return true; // literal sections were checked in equalsConstant. 197*0fca6ea1SDimitry Andric isecB = cast<ConcatInputSection>(db->isec()); 198fe6060f1SDimitry Andric } else { 199fe6060f1SDimitry Andric const auto *sa = ra.referent.get<InputSection *>(); 200fe6060f1SDimitry Andric const auto *sb = rb.referent.get<InputSection *>(); 201fe6060f1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(sa); 202fe6060f1SDimitry Andric if (!isecA) 203fe6060f1SDimitry Andric return true; 204fe6060f1SDimitry Andric isecB = cast<ConcatInputSection>(sb); 205fe6060f1SDimitry Andric } 206fe6060f1SDimitry Andric return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2]; 207fe6060f1SDimitry Andric }; 208349cc55cSDimitry Andric if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f)) 209349cc55cSDimitry Andric return false; 210349cc55cSDimitry Andric 211349cc55cSDimitry Andric // If there are symbols with associated unwind info, check that the unwind 212349cc55cSDimitry Andric // info matches. For simplicity, we only handle the case where there are only 213349cc55cSDimitry Andric // symbols at offset zero within the section (which is typically the case with 214349cc55cSDimitry Andric // .subsections_via_symbols.) 215*0fca6ea1SDimitry Andric auto hasUnwind = [](Defined *d) { return d->unwindEntry() != nullptr; }; 21606c3fb27SDimitry Andric const auto *itA = llvm::find_if(ia->symbols, hasUnwind); 21706c3fb27SDimitry Andric const auto *itB = llvm::find_if(ib->symbols, hasUnwind); 218349cc55cSDimitry Andric if (itA == ia->symbols.end()) 219349cc55cSDimitry Andric return itB == ib->symbols.end(); 220349cc55cSDimitry Andric if (itB == ib->symbols.end()) 221349cc55cSDimitry Andric return false; 222349cc55cSDimitry Andric const Defined *da = *itA; 223349cc55cSDimitry Andric const Defined *db = *itB; 224*0fca6ea1SDimitry Andric if (da->unwindEntry()->icfEqClass[icfPass % 2] != 225*0fca6ea1SDimitry Andric db->unwindEntry()->icfEqClass[icfPass % 2] || 226349cc55cSDimitry Andric da->value != 0 || db->value != 0) 227349cc55cSDimitry Andric return false; 228349cc55cSDimitry Andric auto isZero = [](Defined *d) { return d->value == 0; }; 229349cc55cSDimitry Andric return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) == 230349cc55cSDimitry Andric ia->symbols.end() && 231349cc55cSDimitry Andric std::find_if_not(std::next(itB), ib->symbols.end(), isZero) == 232349cc55cSDimitry Andric ib->symbols.end(); 233fe6060f1SDimitry Andric } 234fe6060f1SDimitry Andric 235fe6060f1SDimitry Andric // Find the first InputSection after BEGIN whose equivalence class differs 236fe6060f1SDimitry Andric size_t ICF::findBoundary(size_t begin, size_t end) { 237fe6060f1SDimitry Andric uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2]; 238fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 239fe6060f1SDimitry Andric if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2]) 240fe6060f1SDimitry Andric return i; 241fe6060f1SDimitry Andric return end; 242fe6060f1SDimitry Andric } 243fe6060f1SDimitry Andric 244fe6060f1SDimitry Andric // Invoke FUNC on subranges with matching equivalence class 245fe6060f1SDimitry Andric void ICF::forEachClassRange(size_t begin, size_t end, 24681ad6265SDimitry Andric llvm::function_ref<void(size_t, size_t)> func) { 247fe6060f1SDimitry Andric while (begin < end) { 248fe6060f1SDimitry Andric size_t mid = findBoundary(begin, end); 249fe6060f1SDimitry Andric func(begin, mid); 250fe6060f1SDimitry Andric begin = mid; 251fe6060f1SDimitry Andric } 252fe6060f1SDimitry Andric } 253fe6060f1SDimitry Andric 254fe6060f1SDimitry Andric // Split icfInputs into shards, then parallelize invocation of FUNC on subranges 255fe6060f1SDimitry Andric // with matching equivalence class 25681ad6265SDimitry Andric void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) { 257fe6060f1SDimitry Andric // Only use threads when the benefits outweigh the overhead. 258fe6060f1SDimitry Andric const size_t threadingThreshold = 1024; 259fe6060f1SDimitry Andric if (icfInputs.size() < threadingThreshold) { 260fe6060f1SDimitry Andric forEachClassRange(0, icfInputs.size(), func); 261fe6060f1SDimitry Andric ++icfPass; 262fe6060f1SDimitry Andric return; 263fe6060f1SDimitry Andric } 264fe6060f1SDimitry Andric 265fe6060f1SDimitry Andric // Shard into non-overlapping intervals, and call FUNC in parallel. The 266fe6060f1SDimitry Andric // sharding must be completed before any calls to FUNC are made so that FUNC 267fe6060f1SDimitry Andric // can modify the InputSection in its shard without causing data races. 268fe6060f1SDimitry Andric const size_t shards = 256; 269fe6060f1SDimitry Andric size_t step = icfInputs.size() / shards; 270fe6060f1SDimitry Andric size_t boundaries[shards + 1]; 271fe6060f1SDimitry Andric boundaries[0] = 0; 272fe6060f1SDimitry Andric boundaries[shards] = icfInputs.size(); 27381ad6265SDimitry Andric parallelFor(1, shards, [&](size_t i) { 274fe6060f1SDimitry Andric boundaries[i] = findBoundary((i - 1) * step, icfInputs.size()); 275fe6060f1SDimitry Andric }); 27681ad6265SDimitry Andric parallelFor(1, shards + 1, [&](size_t i) { 277fe6060f1SDimitry Andric if (boundaries[i - 1] < boundaries[i]) { 278fe6060f1SDimitry Andric forEachClassRange(boundaries[i - 1], boundaries[i], func); 279fe6060f1SDimitry Andric } 280fe6060f1SDimitry Andric }); 281fe6060f1SDimitry Andric ++icfPass; 282fe6060f1SDimitry Andric } 283fe6060f1SDimitry Andric 284fe6060f1SDimitry Andric void ICF::run() { 285fe6060f1SDimitry Andric // Into each origin-section hash, combine all reloc referent section hashes. 286fe6060f1SDimitry Andric for (icfPass = 0; icfPass < 2; ++icfPass) { 287fe6060f1SDimitry Andric parallelForEach(icfInputs, [&](ConcatInputSection *isec) { 28881ad6265SDimitry Andric uint32_t hash = isec->icfEqClass[icfPass % 2]; 289fe6060f1SDimitry Andric for (const Reloc &r : isec->relocs) { 290fe6060f1SDimitry Andric if (auto *sym = r.referent.dyn_cast<Symbol *>()) { 29181ad6265SDimitry Andric if (auto *defined = dyn_cast<Defined>(sym)) { 292*0fca6ea1SDimitry Andric if (defined->isec()) { 29306c3fb27SDimitry Andric if (auto *referentIsec = 294*0fca6ea1SDimitry Andric dyn_cast<ConcatInputSection>(defined->isec())) 29581ad6265SDimitry Andric hash += defined->value + referentIsec->icfEqClass[icfPass % 2]; 296fe6060f1SDimitry Andric else 297*0fca6ea1SDimitry Andric hash += defined->isec()->kind() + 298*0fca6ea1SDimitry Andric defined->isec()->getOffset(defined->value); 299fe6060f1SDimitry Andric } else { 300fe6060f1SDimitry Andric hash += defined->value; 301fe6060f1SDimitry Andric } 30281ad6265SDimitry Andric } else { 30381ad6265SDimitry Andric // ICF runs before Undefined diags 30481ad6265SDimitry Andric assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym)); 30581ad6265SDimitry Andric } 306fe6060f1SDimitry Andric } 307fe6060f1SDimitry Andric } 308fe6060f1SDimitry Andric // Set MSB to 1 to avoid collisions with non-hashed classes. 30981ad6265SDimitry Andric isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31); 310fe6060f1SDimitry Andric }); 311fe6060f1SDimitry Andric } 312fe6060f1SDimitry Andric 313fe6060f1SDimitry Andric llvm::stable_sort( 314fe6060f1SDimitry Andric icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) { 315fe6060f1SDimitry Andric return a->icfEqClass[0] < b->icfEqClass[0]; 316fe6060f1SDimitry Andric }); 31781ad6265SDimitry Andric forEachClass([&](size_t begin, size_t end) { 31881ad6265SDimitry Andric segregate(begin, end, &ICF::equalsConstant); 31981ad6265SDimitry Andric }); 320fe6060f1SDimitry Andric 321fe6060f1SDimitry Andric // Split equivalence groups by comparing relocations until convergence 322fe6060f1SDimitry Andric do { 323fe6060f1SDimitry Andric icfRepeat = false; 324fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 32581ad6265SDimitry Andric segregate(begin, end, &ICF::equalsVariable); 326fe6060f1SDimitry Andric }); 327fe6060f1SDimitry Andric } while (icfRepeat); 328fe6060f1SDimitry Andric log("ICF needed " + Twine(icfPass) + " iterations"); 32981ad6265SDimitry Andric if (verboseDiagnostics) { 33081ad6265SDimitry Andric log("equalsConstant() called " + Twine(equalsConstantCount) + " times"); 33181ad6265SDimitry Andric log("equalsVariable() called " + Twine(equalsVariableCount) + " times"); 33281ad6265SDimitry Andric } 333fe6060f1SDimitry Andric 334fe6060f1SDimitry Andric // Fold sections within equivalence classes 335fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 336fe6060f1SDimitry Andric if (end - begin < 2) 337fe6060f1SDimitry Andric return; 338fe6060f1SDimitry Andric ConcatInputSection *beginIsec = icfInputs[begin]; 339fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 340fe6060f1SDimitry Andric beginIsec->foldIdentical(icfInputs[i]); 341fe6060f1SDimitry Andric }); 342fe6060f1SDimitry Andric } 343fe6060f1SDimitry Andric 344fe6060f1SDimitry Andric // Split an equivalence class into smaller classes. 34581ad6265SDimitry Andric void ICF::segregate(size_t begin, size_t end, EqualsFn equals) { 346fe6060f1SDimitry Andric while (begin < end) { 347fe6060f1SDimitry Andric // Divide [begin, end) into two. Let mid be the start index of the 348fe6060f1SDimitry Andric // second group. 34981ad6265SDimitry Andric auto bound = std::stable_partition( 35081ad6265SDimitry Andric icfInputs.begin() + begin + 1, icfInputs.begin() + end, 351fe6060f1SDimitry Andric [&](ConcatInputSection *isec) { 35281ad6265SDimitry Andric return (this->*equals)(icfInputs[begin], isec); 353fe6060f1SDimitry Andric }); 354fe6060f1SDimitry Andric size_t mid = bound - icfInputs.begin(); 355fe6060f1SDimitry Andric 356fe6060f1SDimitry Andric // Split [begin, end) into [begin, mid) and [mid, end). We use mid as an 357fe6060f1SDimitry Andric // equivalence class ID because every group ends with a unique index. 358fe6060f1SDimitry Andric for (size_t i = begin; i < mid; ++i) 359fe6060f1SDimitry Andric icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid; 360fe6060f1SDimitry Andric 361fe6060f1SDimitry Andric // If we created a group, we need to iterate the main loop again. 362fe6060f1SDimitry Andric if (mid != end) 363fe6060f1SDimitry Andric icfRepeat = true; 364fe6060f1SDimitry Andric 365fe6060f1SDimitry Andric begin = mid; 366fe6060f1SDimitry Andric } 367fe6060f1SDimitry Andric } 368fe6060f1SDimitry Andric 36981ad6265SDimitry Andric void macho::markSymAsAddrSig(Symbol *s) { 37081ad6265SDimitry Andric if (auto *d = dyn_cast_or_null<Defined>(s)) 371*0fca6ea1SDimitry Andric if (d->isec()) 372*0fca6ea1SDimitry Andric d->isec()->keepUnique = true; 37381ad6265SDimitry Andric } 37481ad6265SDimitry Andric 37581ad6265SDimitry Andric void macho::markAddrSigSymbols() { 37681ad6265SDimitry Andric TimeTraceScope timeScope("Mark addrsig symbols"); 37781ad6265SDimitry Andric for (InputFile *file : inputFiles) { 37881ad6265SDimitry Andric ObjFile *obj = dyn_cast<ObjFile>(file); 37981ad6265SDimitry Andric if (!obj) 38081ad6265SDimitry Andric continue; 38181ad6265SDimitry Andric 38281ad6265SDimitry Andric Section *addrSigSection = obj->addrSigSection; 38381ad6265SDimitry Andric if (!addrSigSection) 38481ad6265SDimitry Andric continue; 38581ad6265SDimitry Andric assert(addrSigSection->subsections.size() == 1); 38681ad6265SDimitry Andric 387fcaf7f86SDimitry Andric const InputSection *isec = addrSigSection->subsections[0].isec; 38881ad6265SDimitry Andric 389fcaf7f86SDimitry Andric for (const Reloc &r : isec->relocs) { 390fcaf7f86SDimitry Andric if (auto *sym = r.referent.dyn_cast<Symbol *>()) 391fcaf7f86SDimitry Andric markSymAsAddrSig(sym); 392fcaf7f86SDimitry Andric else 393fcaf7f86SDimitry Andric error(toString(isec) + ": unexpected section relocation"); 39481ad6265SDimitry Andric } 39581ad6265SDimitry Andric } 39681ad6265SDimitry Andric } 39781ad6265SDimitry Andric 398fcaf7f86SDimitry Andric void macho::foldIdenticalSections(bool onlyCfStrings) { 399fe6060f1SDimitry Andric TimeTraceScope timeScope("Fold Identical Code Sections"); 400fe6060f1SDimitry Andric // The ICF equivalence-class segregation algorithm relies on pre-computed 401fe6060f1SDimitry Andric // hashes of InputSection::data for the ConcatOutputSection::inputs and all 402fe6060f1SDimitry Andric // sections referenced by their relocs. We could recursively traverse the 403fe6060f1SDimitry Andric // relocs to find every referenced InputSection, but that precludes easy 404fe6060f1SDimitry Andric // parallelization. Therefore, we hash every InputSection here where we have 405fe6060f1SDimitry Andric // them all accessible as simple vectors. 406fe6060f1SDimitry Andric 407fe6060f1SDimitry Andric // If an InputSection is ineligible for ICF, we give it a unique ID to force 408fe6060f1SDimitry Andric // it into an unfoldable singleton equivalence class. Begin the unique-ID 409fe6060f1SDimitry Andric // space at inputSections.size(), so that it will never intersect with 410fe6060f1SDimitry Andric // equivalence-class IDs which begin at 0. Since hashes & unique IDs never 411fe6060f1SDimitry Andric // coexist with equivalence-class IDs, this is not necessary, but might help 412fe6060f1SDimitry Andric // someone keep the numbers straight in case we ever need to debug the 413fe6060f1SDimitry Andric // ICF::segregate() 414bdd1243dSDimitry Andric std::vector<ConcatInputSection *> foldable; 415fe6060f1SDimitry Andric uint64_t icfUniqueID = inputSections.size(); 416fe6060f1SDimitry Andric for (ConcatInputSection *isec : inputSections) { 417bdd1243dSDimitry Andric bool isFoldableWithAddendsRemoved = isCfStringSection(isec) || 418bdd1243dSDimitry Andric isClassRefsSection(isec) || 419bdd1243dSDimitry Andric isSelRefsSection(isec); 420bdd1243dSDimitry Andric // NOTE: __objc_selrefs is typically marked as no_dead_strip by MC, but we 421bdd1243dSDimitry Andric // can still fold it. 422bdd1243dSDimitry Andric bool hasFoldableFlags = (isSelRefsSection(isec) || 423bdd1243dSDimitry Andric sectionType(isec->getFlags()) == MachO::S_REGULAR); 424bdd1243dSDimitry Andric // FIXME: consider non-code __text sections as foldable? 425bdd1243dSDimitry Andric bool isFoldable = (!onlyCfStrings || isCfStringSection(isec)) && 426bdd1243dSDimitry Andric (isCodeSection(isec) || isFoldableWithAddendsRemoved || 427bdd1243dSDimitry Andric isGccExceptTabSection(isec)) && 428bdd1243dSDimitry Andric !isec->keepUnique && !isec->hasAltEntry && 429bdd1243dSDimitry Andric !isec->shouldOmitFromOutput() && hasFoldableFlags; 430bdd1243dSDimitry Andric if (isFoldable) { 431bdd1243dSDimitry Andric foldable.push_back(isec); 432349cc55cSDimitry Andric for (Defined *d : isec->symbols) 433*0fca6ea1SDimitry Andric if (d->unwindEntry()) 434*0fca6ea1SDimitry Andric foldable.push_back(d->unwindEntry()); 43581ad6265SDimitry Andric 436bdd1243dSDimitry Andric // Some sections have embedded addends that foil ICF's hashing / equality 43781ad6265SDimitry Andric // checks. (We can ignore embedded addends when doing ICF because the same 43881ad6265SDimitry Andric // information gets recorded in our Reloc structs.) We therefore create a 439bdd1243dSDimitry Andric // mutable copy of the section data and zero out the embedded addends 440bdd1243dSDimitry Andric // before performing any hashing / equality checks. 441bdd1243dSDimitry Andric if (isFoldableWithAddendsRemoved) { 44281ad6265SDimitry Andric // We have to do this copying serially as the BumpPtrAllocator is not 44381ad6265SDimitry Andric // thread-safe. FIXME: Make a thread-safe allocator. 44481ad6265SDimitry Andric MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc()); 44581ad6265SDimitry Andric for (const Reloc &r : isec->relocs) 44681ad6265SDimitry Andric target->relocateOne(copy.data() + r.offset, r, /*va=*/0, 44781ad6265SDimitry Andric /*relocVA=*/0); 44881ad6265SDimitry Andric isec->data = copy; 44981ad6265SDimitry Andric } 45081ad6265SDimitry Andric } else if (!isEhFrameSection(isec)) { 451bdd1243dSDimitry Andric // EH frames are gathered as foldables from unwindEntry above; give a 45281ad6265SDimitry Andric // unique ID to everything else. 453fe6060f1SDimitry Andric isec->icfEqClass[0] = ++icfUniqueID; 454fe6060f1SDimitry Andric } 455349cc55cSDimitry Andric } 456bdd1243dSDimitry Andric parallelForEach(foldable, [](ConcatInputSection *isec) { 45781ad6265SDimitry Andric assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID! 45881ad6265SDimitry Andric // Turn-on the top bit to guarantee that valid hashes have no collisions 45981ad6265SDimitry Andric // with the small-integer unique IDs for ICF-ineligible sections 46006c3fb27SDimitry Andric isec->icfEqClass[0] = xxh3_64bits(isec->data) | (1ull << 31); 46181ad6265SDimitry Andric }); 462fe6060f1SDimitry Andric // Now that every input section is either hashed or marked as unique, run the 463fe6060f1SDimitry Andric // segregation algorithm to detect foldable subsections. 464bdd1243dSDimitry Andric ICF(foldable).run(); 465fe6060f1SDimitry Andric } 466