1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/xxhash.h" 31 #include <climits> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 39 namespace lld { 40 namespace elf { 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : buffer(errorHandler().outputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &part); 65 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 66 unsigned pFlags); 67 void assignFileOffsets(); 68 void assignFileOffsetsBinary(); 69 void setPhdrs(Partition &part); 70 void checkSections(); 71 void fixSectionAlignments(); 72 void openFile(); 73 void writeTrapInstr(); 74 void writeHeader(); 75 void writeSections(); 76 void writeSectionsBinary(); 77 void writeBuildId(); 78 79 std::unique_ptr<FileOutputBuffer> &buffer; 80 81 void addRelIpltSymbols(); 82 void addStartEndSymbols(); 83 void addStartStopSymbols(OutputSection *sec); 84 85 uint64_t fileSize; 86 uint64_t sectionHeaderOff; 87 }; 88 } // anonymous namespace 89 90 static bool isSectionPrefix(StringRef prefix, StringRef name) { 91 return name.startswith(prefix) || name == prefix.drop_back(); 92 } 93 94 StringRef getOutputSectionName(const InputSectionBase *s) { 95 if (config->relocatable) 96 return s->name; 97 98 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 99 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 100 // technically required, but not doing it is odd). This code guarantees that. 101 if (auto *isec = dyn_cast<InputSection>(s)) { 102 if (InputSectionBase *rel = isec->getRelocatedSection()) { 103 OutputSection *out = rel->getOutputSection(); 104 if (s->type == SHT_RELA) 105 return saver.save(".rela" + out->name); 106 return saver.save(".rel" + out->name); 107 } 108 } 109 110 // This check is for -z keep-text-section-prefix. This option separates text 111 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 112 // ".text.exit". 113 // When enabled, this allows identifying the hot code region (.text.hot) in 114 // the final binary which can be selectively mapped to huge pages or mlocked, 115 // for instance. 116 if (config->zKeepTextSectionPrefix) 117 for (StringRef v : 118 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 119 if (isSectionPrefix(v, s->name)) 120 return v.drop_back(); 121 122 for (StringRef v : 123 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 124 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 125 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 126 if (isSectionPrefix(v, s->name)) 127 return v.drop_back(); 128 129 // CommonSection is identified as "COMMON" in linker scripts. 130 // By default, it should go to .bss section. 131 if (s->name == "COMMON") 132 return ".bss"; 133 134 return s->name; 135 } 136 137 static bool needsInterpSection() { 138 return !config->relocatable && !config->shared && 139 !config->dynamicLinker.empty() && script->needsInterpSection(); 140 } 141 142 template <class ELFT> void writeResult() { Writer<ELFT>().run(); } 143 144 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 145 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 146 if (p->p_type != PT_LOAD) 147 return false; 148 if (!p->firstSec) 149 return true; 150 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 151 return size == 0; 152 }); 153 } 154 155 void copySectionsIntoPartitions() { 156 std::vector<InputSectionBase *> newSections; 157 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 158 for (InputSectionBase *s : inputSections) { 159 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 160 continue; 161 InputSectionBase *copy; 162 if (s->type == SHT_NOTE) 163 copy = make<InputSection>(cast<InputSection>(*s)); 164 else if (auto *es = dyn_cast<EhInputSection>(s)) 165 copy = make<EhInputSection>(*es); 166 else 167 continue; 168 copy->partition = part; 169 newSections.push_back(copy); 170 } 171 } 172 173 inputSections.insert(inputSections.end(), newSections.begin(), 174 newSections.end()); 175 } 176 177 void combineEhSections() { 178 for (InputSectionBase *&s : inputSections) { 179 // Ignore dead sections and the partition end marker (.part.end), 180 // whose partition number is out of bounds. 181 if (!s->isLive() || s->partition == 255) 182 continue; 183 184 Partition &part = s->getPartition(); 185 if (auto *es = dyn_cast<EhInputSection>(s)) { 186 part.ehFrame->addSection(es); 187 s = nullptr; 188 } else if (s->kind() == SectionBase::Regular && part.armExidx && 189 part.armExidx->addSection(cast<InputSection>(s))) { 190 s = nullptr; 191 } 192 } 193 194 std::vector<InputSectionBase *> &v = inputSections; 195 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 196 } 197 198 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 199 uint64_t val, uint8_t stOther = STV_HIDDEN, 200 uint8_t binding = STB_GLOBAL) { 201 Symbol *s = symtab->find(name); 202 if (!s || s->isDefined()) 203 return nullptr; 204 205 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 206 /*size=*/0, sec}); 207 return cast<Defined>(s); 208 } 209 210 static Defined *addAbsolute(StringRef name) { 211 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 212 STT_NOTYPE, 0, 0, nullptr}); 213 return cast<Defined>(sym); 214 } 215 216 // The linker is expected to define some symbols depending on 217 // the linking result. This function defines such symbols. 218 void addReservedSymbols() { 219 if (config->emachine == EM_MIPS) { 220 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 221 // so that it points to an absolute address which by default is relative 222 // to GOT. Default offset is 0x7ff0. 223 // See "Global Data Symbols" in Chapter 6 in the following document: 224 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 225 ElfSym::mipsGp = addAbsolute("_gp"); 226 227 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 228 // start of function and 'gp' pointer into GOT. 229 if (symtab->find("_gp_disp")) 230 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 231 232 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 233 // pointer. This symbol is used in the code generated by .cpload pseudo-op 234 // in case of using -mno-shared option. 235 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 236 if (symtab->find("__gnu_local_gp")) 237 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 238 } else if (config->emachine == EM_PPC) { 239 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 240 // support Small Data Area, define it arbitrarily as 0. 241 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 242 } 243 244 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 245 // combines the typical ELF GOT with the small data sections. It commonly 246 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 247 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 248 // represent the TOC base which is offset by 0x8000 bytes from the start of 249 // the .got section. 250 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 251 // correctness of some relocations depends on its value. 252 StringRef gotSymName = 253 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 254 255 if (Symbol *s = symtab->find(gotSymName)) { 256 if (s->isDefined()) { 257 error(toString(s->file) + " cannot redefine linker defined symbol '" + 258 gotSymName + "'"); 259 return; 260 } 261 262 uint64_t gotOff = 0; 263 if (config->emachine == EM_PPC64) 264 gotOff = 0x8000; 265 266 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 267 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 268 ElfSym::globalOffsetTable = cast<Defined>(s); 269 } 270 271 // __ehdr_start is the location of ELF file headers. Note that we define 272 // this symbol unconditionally even when using a linker script, which 273 // differs from the behavior implemented by GNU linker which only define 274 // this symbol if ELF headers are in the memory mapped segment. 275 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 276 277 // __executable_start is not documented, but the expectation of at 278 // least the Android libc is that it points to the ELF header. 279 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 282 // each DSO. The address of the symbol doesn't matter as long as they are 283 // different in different DSOs, so we chose the start address of the DSO. 284 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 285 286 // If linker script do layout we do not need to create any standard symbols. 287 if (script->hasSectionsCommand) 288 return; 289 290 auto add = [](StringRef s, int64_t pos) { 291 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 292 }; 293 294 ElfSym::bss = add("__bss_start", 0); 295 ElfSym::end1 = add("end", -1); 296 ElfSym::end2 = add("_end", -1); 297 ElfSym::etext1 = add("etext", -1); 298 ElfSym::etext2 = add("_etext", -1); 299 ElfSym::edata1 = add("edata", -1); 300 ElfSym::edata2 = add("_edata", -1); 301 } 302 303 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 304 for (BaseCommand *base : script->sectionCommands) 305 if (auto *sec = dyn_cast<OutputSection>(base)) 306 if (sec->name == name && sec->partition == partition) 307 return sec; 308 return nullptr; 309 } 310 311 template <class ELFT> void createSyntheticSections() { 312 // Initialize all pointers with NULL. This is needed because 313 // you can call lld::elf::main more than once as a library. 314 memset(&Out::first, 0, sizeof(Out)); 315 316 // Add the .interp section first because it is not a SyntheticSection. 317 // The removeUnusedSyntheticSections() function relies on the 318 // SyntheticSections coming last. 319 if (needsInterpSection()) { 320 for (size_t i = 1; i <= partitions.size(); ++i) { 321 InputSection *sec = createInterpSection(); 322 sec->partition = i; 323 inputSections.push_back(sec); 324 } 325 } 326 327 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 328 329 in.shStrTab = make<StringTableSection>(".shstrtab", false); 330 331 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 332 Out::programHeaders->alignment = config->wordsize; 333 334 if (config->strip != StripPolicy::All) { 335 in.strTab = make<StringTableSection>(".strtab", false); 336 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 337 in.symTabShndx = make<SymtabShndxSection>(); 338 } 339 340 in.bss = make<BssSection>(".bss", 0, 1); 341 add(in.bss); 342 343 // If there is a SECTIONS command and a .data.rel.ro section name use name 344 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 345 // This makes sure our relro is contiguous. 346 bool hasDataRelRo = 347 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 348 in.bssRelRo = 349 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 350 add(in.bssRelRo); 351 352 // Add MIPS-specific sections. 353 if (config->emachine == EM_MIPS) { 354 if (!config->shared && config->hasDynSymTab) { 355 in.mipsRldMap = make<MipsRldMapSection>(); 356 add(in.mipsRldMap); 357 } 358 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 359 add(sec); 360 if (auto *sec = MipsOptionsSection<ELFT>::create()) 361 add(sec); 362 if (auto *sec = MipsReginfoSection<ELFT>::create()) 363 add(sec); 364 } 365 366 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 367 368 for (Partition &part : partitions) { 369 auto add = [&](SyntheticSection *sec) { 370 sec->partition = part.getNumber(); 371 inputSections.push_back(sec); 372 }; 373 374 if (!part.name.empty()) { 375 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 376 part.elfHeader->name = part.name; 377 add(part.elfHeader); 378 379 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 380 add(part.programHeaders); 381 } 382 383 if (config->buildId != BuildIdKind::None) { 384 part.buildId = make<BuildIdSection>(); 385 add(part.buildId); 386 } 387 388 part.dynStrTab = make<StringTableSection>(".dynstr", true); 389 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 390 part.dynamic = make<DynamicSection<ELFT>>(); 391 if (config->androidPackDynRelocs) 392 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 393 else 394 part.relaDyn = 395 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 396 397 if (config->hasDynSymTab) { 398 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 399 add(part.dynSymTab); 400 401 part.verSym = make<VersionTableSection>(); 402 add(part.verSym); 403 404 if (!namedVersionDefs().empty()) { 405 part.verDef = make<VersionDefinitionSection>(); 406 add(part.verDef); 407 } 408 409 part.verNeed = make<VersionNeedSection<ELFT>>(); 410 add(part.verNeed); 411 412 if (config->gnuHash) { 413 part.gnuHashTab = make<GnuHashTableSection>(); 414 add(part.gnuHashTab); 415 } 416 417 if (config->sysvHash) { 418 part.hashTab = make<HashTableSection>(); 419 add(part.hashTab); 420 } 421 422 add(part.dynamic); 423 add(part.dynStrTab); 424 add(part.relaDyn); 425 } 426 427 if (config->relrPackDynRelocs) { 428 part.relrDyn = make<RelrSection<ELFT>>(); 429 add(part.relrDyn); 430 } 431 432 if (!config->relocatable) { 433 if (config->ehFrameHdr) { 434 part.ehFrameHdr = make<EhFrameHeader>(); 435 add(part.ehFrameHdr); 436 } 437 part.ehFrame = make<EhFrameSection>(); 438 add(part.ehFrame); 439 } 440 441 if (config->emachine == EM_ARM && !config->relocatable) { 442 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 443 // InputSections. 444 part.armExidx = make<ARMExidxSyntheticSection>(); 445 add(part.armExidx); 446 } 447 } 448 449 if (partitions.size() != 1) { 450 // Create the partition end marker. This needs to be in partition number 255 451 // so that it is sorted after all other partitions. It also has other 452 // special handling (see createPhdrs() and combineEhSections()). 453 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 454 in.partEnd->partition = 255; 455 add(in.partEnd); 456 457 in.partIndex = make<PartitionIndexSection>(); 458 addOptionalRegular("__part_index_begin", in.partIndex, 0); 459 addOptionalRegular("__part_index_end", in.partIndex, 460 in.partIndex->getSize()); 461 add(in.partIndex); 462 } 463 464 // Add .got. MIPS' .got is so different from the other archs, 465 // it has its own class. 466 if (config->emachine == EM_MIPS) { 467 in.mipsGot = make<MipsGotSection>(); 468 add(in.mipsGot); 469 } else { 470 in.got = make<GotSection>(); 471 add(in.got); 472 } 473 474 if (config->emachine == EM_PPC) { 475 in.ppc32Got2 = make<PPC32Got2Section>(); 476 add(in.ppc32Got2); 477 } 478 479 if (config->emachine == EM_PPC64) { 480 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 481 add(in.ppc64LongBranchTarget); 482 } 483 484 in.gotPlt = make<GotPltSection>(); 485 add(in.gotPlt); 486 in.igotPlt = make<IgotPltSection>(); 487 add(in.igotPlt); 488 489 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 490 // it as a relocation and ensure the referenced section is created. 491 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 492 if (target->gotBaseSymInGotPlt) 493 in.gotPlt->hasGotPltOffRel = true; 494 else 495 in.got->hasGotOffRel = true; 496 } 497 498 if (config->gdbIndex) 499 add(GdbIndexSection::create<ELFT>()); 500 501 // We always need to add rel[a].plt to output if it has entries. 502 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 503 in.relaPlt = make<RelocationSection<ELFT>>( 504 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 505 add(in.relaPlt); 506 507 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 508 // relocations are processed last by the dynamic loader. We cannot place the 509 // iplt section in .rel.dyn when Android relocation packing is enabled because 510 // that would cause a section type mismatch. However, because the Android 511 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 512 // behaviour by placing the iplt section in .rel.plt. 513 in.relaIplt = make<RelocationSection<ELFT>>( 514 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 515 /*sort=*/false); 516 add(in.relaIplt); 517 518 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 519 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 520 in.ibtPlt = make<IBTPltSection>(); 521 add(in.ibtPlt); 522 } 523 524 in.plt = make<PltSection>(); 525 add(in.plt); 526 in.iplt = make<IpltSection>(); 527 add(in.iplt); 528 529 if (config->andFeatures) 530 add(make<GnuPropertySection>()); 531 532 // .note.GNU-stack is always added when we are creating a re-linkable 533 // object file. Other linkers are using the presence of this marker 534 // section to control the executable-ness of the stack area, but that 535 // is irrelevant these days. Stack area should always be non-executable 536 // by default. So we emit this section unconditionally. 537 if (config->relocatable) 538 add(make<GnuStackSection>()); 539 540 if (in.symTab) 541 add(in.symTab); 542 if (in.symTabShndx) 543 add(in.symTabShndx); 544 add(in.shStrTab); 545 if (in.strTab) 546 add(in.strTab); 547 } 548 549 // The main function of the writer. 550 template <class ELFT> void Writer<ELFT>::run() { 551 if (config->discard != DiscardPolicy::All) 552 copyLocalSymbols(); 553 554 if (config->copyRelocs) 555 addSectionSymbols(); 556 557 // Now that we have a complete set of output sections. This function 558 // completes section contents. For example, we need to add strings 559 // to the string table, and add entries to .got and .plt. 560 // finalizeSections does that. 561 finalizeSections(); 562 checkExecuteOnly(); 563 if (errorCount()) 564 return; 565 566 // If -compressed-debug-sections is specified, we need to compress 567 // .debug_* sections. Do it right now because it changes the size of 568 // output sections. 569 for (OutputSection *sec : outputSections) 570 sec->maybeCompress<ELFT>(); 571 572 if (script->hasSectionsCommand) 573 script->allocateHeaders(mainPart->phdrs); 574 575 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 576 // 0 sized region. This has to be done late since only after assignAddresses 577 // we know the size of the sections. 578 for (Partition &part : partitions) 579 removeEmptyPTLoad(part.phdrs); 580 581 if (!config->oFormatBinary) 582 assignFileOffsets(); 583 else 584 assignFileOffsetsBinary(); 585 586 for (Partition &part : partitions) 587 setPhdrs(part); 588 589 if (config->relocatable) 590 for (OutputSection *sec : outputSections) 591 sec->addr = 0; 592 593 if (config->checkSections) 594 checkSections(); 595 596 // It does not make sense try to open the file if we have error already. 597 if (errorCount()) 598 return; 599 // Write the result down to a file. 600 openFile(); 601 if (errorCount()) 602 return; 603 604 if (!config->oFormatBinary) { 605 if (config->zSeparate != SeparateSegmentKind::None) 606 writeTrapInstr(); 607 writeHeader(); 608 writeSections(); 609 } else { 610 writeSectionsBinary(); 611 } 612 613 // Backfill .note.gnu.build-id section content. This is done at last 614 // because the content is usually a hash value of the entire output file. 615 writeBuildId(); 616 if (errorCount()) 617 return; 618 619 // Handle -Map and -cref options. 620 writeMapFile(); 621 writeCrossReferenceTable(); 622 if (errorCount()) 623 return; 624 625 if (auto e = buffer->commit()) 626 error("failed to write to the output file: " + toString(std::move(e))); 627 } 628 629 static bool shouldKeepInSymtab(const Defined &sym) { 630 if (sym.isSection()) 631 return false; 632 633 if (config->discard == DiscardPolicy::None) 634 return true; 635 636 // If -emit-reloc is given, all symbols including local ones need to be 637 // copied because they may be referenced by relocations. 638 if (config->emitRelocs) 639 return true; 640 641 // In ELF assembly .L symbols are normally discarded by the assembler. 642 // If the assembler fails to do so, the linker discards them if 643 // * --discard-locals is used. 644 // * The symbol is in a SHF_MERGE section, which is normally the reason for 645 // the assembler keeping the .L symbol. 646 StringRef name = sym.getName(); 647 bool isLocal = name.startswith(".L") || name.empty(); 648 if (!isLocal) 649 return true; 650 651 if (config->discard == DiscardPolicy::Locals) 652 return false; 653 654 SectionBase *sec = sym.section; 655 return !sec || !(sec->flags & SHF_MERGE); 656 } 657 658 static bool includeInSymtab(const Symbol &b) { 659 if (!b.isLocal() && !b.isUsedInRegularObj) 660 return false; 661 662 if (auto *d = dyn_cast<Defined>(&b)) { 663 // Always include absolute symbols. 664 SectionBase *sec = d->section; 665 if (!sec) 666 return true; 667 sec = sec->repl; 668 669 // Exclude symbols pointing to garbage-collected sections. 670 if (isa<InputSectionBase>(sec) && !sec->isLive()) 671 return false; 672 673 if (auto *s = dyn_cast<MergeInputSection>(sec)) 674 if (!s->getSectionPiece(d->value)->live) 675 return false; 676 return true; 677 } 678 return b.used; 679 } 680 681 // Local symbols are not in the linker's symbol table. This function scans 682 // each object file's symbol table to copy local symbols to the output. 683 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 684 if (!in.symTab) 685 return; 686 for (InputFile *file : objectFiles) { 687 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 688 for (Symbol *b : f->getLocalSymbols()) { 689 if (!b->isLocal()) 690 fatal(toString(f) + 691 ": broken object: getLocalSymbols returns a non-local symbol"); 692 auto *dr = dyn_cast<Defined>(b); 693 694 // No reason to keep local undefined symbol in symtab. 695 if (!dr) 696 continue; 697 if (!includeInSymtab(*b)) 698 continue; 699 if (!shouldKeepInSymtab(*dr)) 700 continue; 701 in.symTab->addSymbol(b); 702 } 703 } 704 } 705 706 // Create a section symbol for each output section so that we can represent 707 // relocations that point to the section. If we know that no relocation is 708 // referring to a section (that happens if the section is a synthetic one), we 709 // don't create a section symbol for that section. 710 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 711 for (BaseCommand *base : script->sectionCommands) { 712 auto *sec = dyn_cast<OutputSection>(base); 713 if (!sec) 714 continue; 715 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 716 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 717 return !isd->sections.empty(); 718 return false; 719 }); 720 if (i == sec->sectionCommands.end()) 721 continue; 722 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 723 724 // Relocations are not using REL[A] section symbols. 725 if (isec->type == SHT_REL || isec->type == SHT_RELA) 726 continue; 727 728 // Unlike other synthetic sections, mergeable output sections contain data 729 // copied from input sections, and there may be a relocation pointing to its 730 // contents if -r or -emit-reloc are given. 731 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 732 continue; 733 734 auto *sym = 735 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 736 /*value=*/0, /*size=*/0, isec); 737 in.symTab->addSymbol(sym); 738 } 739 } 740 741 // Today's loaders have a feature to make segments read-only after 742 // processing dynamic relocations to enhance security. PT_GNU_RELRO 743 // is defined for that. 744 // 745 // This function returns true if a section needs to be put into a 746 // PT_GNU_RELRO segment. 747 static bool isRelroSection(const OutputSection *sec) { 748 if (!config->zRelro) 749 return false; 750 751 uint64_t flags = sec->flags; 752 753 // Non-allocatable or non-writable sections don't need RELRO because 754 // they are not writable or not even mapped to memory in the first place. 755 // RELRO is for sections that are essentially read-only but need to 756 // be writable only at process startup to allow dynamic linker to 757 // apply relocations. 758 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 759 return false; 760 761 // Once initialized, TLS data segments are used as data templates 762 // for a thread-local storage. For each new thread, runtime 763 // allocates memory for a TLS and copy templates there. No thread 764 // are supposed to use templates directly. Thus, it can be in RELRO. 765 if (flags & SHF_TLS) 766 return true; 767 768 // .init_array, .preinit_array and .fini_array contain pointers to 769 // functions that are executed on process startup or exit. These 770 // pointers are set by the static linker, and they are not expected 771 // to change at runtime. But if you are an attacker, you could do 772 // interesting things by manipulating pointers in .fini_array, for 773 // example. So they are put into RELRO. 774 uint32_t type = sec->type; 775 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 776 type == SHT_PREINIT_ARRAY) 777 return true; 778 779 // .got contains pointers to external symbols. They are resolved by 780 // the dynamic linker when a module is loaded into memory, and after 781 // that they are not expected to change. So, it can be in RELRO. 782 if (in.got && sec == in.got->getParent()) 783 return true; 784 785 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 786 // through r2 register, which is reserved for that purpose. Since r2 is used 787 // for accessing .got as well, .got and .toc need to be close enough in the 788 // virtual address space. Usually, .toc comes just after .got. Since we place 789 // .got into RELRO, .toc needs to be placed into RELRO too. 790 if (sec->name.equals(".toc")) 791 return true; 792 793 // .got.plt contains pointers to external function symbols. They are 794 // by default resolved lazily, so we usually cannot put it into RELRO. 795 // However, if "-z now" is given, the lazy symbol resolution is 796 // disabled, which enables us to put it into RELRO. 797 if (sec == in.gotPlt->getParent()) 798 return config->zNow; 799 800 // .dynamic section contains data for the dynamic linker, and 801 // there's no need to write to it at runtime, so it's better to put 802 // it into RELRO. 803 if (sec->name == ".dynamic") 804 return true; 805 806 // Sections with some special names are put into RELRO. This is a 807 // bit unfortunate because section names shouldn't be significant in 808 // ELF in spirit. But in reality many linker features depend on 809 // magic section names. 810 StringRef s = sec->name; 811 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 812 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 813 s == ".openbsd.randomdata"; 814 } 815 816 // We compute a rank for each section. The rank indicates where the 817 // section should be placed in the file. Instead of using simple 818 // numbers (0,1,2...), we use a series of flags. One for each decision 819 // point when placing the section. 820 // Using flags has two key properties: 821 // * It is easy to check if a give branch was taken. 822 // * It is easy two see how similar two ranks are (see getRankProximity). 823 enum RankFlags { 824 RF_NOT_ADDR_SET = 1 << 27, 825 RF_NOT_ALLOC = 1 << 26, 826 RF_PARTITION = 1 << 18, // Partition number (8 bits) 827 RF_NOT_PART_EHDR = 1 << 17, 828 RF_NOT_PART_PHDR = 1 << 16, 829 RF_NOT_INTERP = 1 << 15, 830 RF_NOT_NOTE = 1 << 14, 831 RF_WRITE = 1 << 13, 832 RF_EXEC_WRITE = 1 << 12, 833 RF_EXEC = 1 << 11, 834 RF_RODATA = 1 << 10, 835 RF_NOT_RELRO = 1 << 9, 836 RF_NOT_TLS = 1 << 8, 837 RF_BSS = 1 << 7, 838 RF_PPC_NOT_TOCBSS = 1 << 6, 839 RF_PPC_TOCL = 1 << 5, 840 RF_PPC_TOC = 1 << 4, 841 RF_PPC_GOT = 1 << 3, 842 RF_PPC_BRANCH_LT = 1 << 2, 843 RF_MIPS_GPREL = 1 << 1, 844 RF_MIPS_NOT_GOT = 1 << 0 845 }; 846 847 static unsigned getSectionRank(const OutputSection *sec) { 848 unsigned rank = sec->partition * RF_PARTITION; 849 850 // We want to put section specified by -T option first, so we 851 // can start assigning VA starting from them later. 852 if (config->sectionStartMap.count(sec->name)) 853 return rank; 854 rank |= RF_NOT_ADDR_SET; 855 856 // Allocatable sections go first to reduce the total PT_LOAD size and 857 // so debug info doesn't change addresses in actual code. 858 if (!(sec->flags & SHF_ALLOC)) 859 return rank | RF_NOT_ALLOC; 860 861 if (sec->type == SHT_LLVM_PART_EHDR) 862 return rank; 863 rank |= RF_NOT_PART_EHDR; 864 865 if (sec->type == SHT_LLVM_PART_PHDR) 866 return rank; 867 rank |= RF_NOT_PART_PHDR; 868 869 // Put .interp first because some loaders want to see that section 870 // on the first page of the executable file when loaded into memory. 871 if (sec->name == ".interp") 872 return rank; 873 rank |= RF_NOT_INTERP; 874 875 // Put .note sections (which make up one PT_NOTE) at the beginning so that 876 // they are likely to be included in a core file even if core file size is 877 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 878 // included in a core to match core files with executables. 879 if (sec->type == SHT_NOTE) 880 return rank; 881 rank |= RF_NOT_NOTE; 882 883 // Sort sections based on their access permission in the following 884 // order: R, RX, RWX, RW. This order is based on the following 885 // considerations: 886 // * Read-only sections come first such that they go in the 887 // PT_LOAD covering the program headers at the start of the file. 888 // * Read-only, executable sections come next. 889 // * Writable, executable sections follow such that .plt on 890 // architectures where it needs to be writable will be placed 891 // between .text and .data. 892 // * Writable sections come last, such that .bss lands at the very 893 // end of the last PT_LOAD. 894 bool isExec = sec->flags & SHF_EXECINSTR; 895 bool isWrite = sec->flags & SHF_WRITE; 896 897 if (isExec) { 898 if (isWrite) 899 rank |= RF_EXEC_WRITE; 900 else 901 rank |= RF_EXEC; 902 } else if (isWrite) { 903 rank |= RF_WRITE; 904 } else if (sec->type == SHT_PROGBITS) { 905 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 906 // .eh_frame) closer to .text. They likely contain PC or GOT relative 907 // relocations and there could be relocation overflow if other huge sections 908 // (.dynstr .dynsym) were placed in between. 909 rank |= RF_RODATA; 910 } 911 912 // Place RelRo sections first. After considering SHT_NOBITS below, the 913 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 914 // where | marks where page alignment happens. An alternative ordering is 915 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 916 // waste more bytes due to 2 alignment places. 917 if (!isRelroSection(sec)) 918 rank |= RF_NOT_RELRO; 919 920 // If we got here we know that both A and B are in the same PT_LOAD. 921 922 // The TLS initialization block needs to be a single contiguous block in a R/W 923 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 924 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 925 // after PROGBITS. 926 if (!(sec->flags & SHF_TLS)) 927 rank |= RF_NOT_TLS; 928 929 // Within TLS sections, or within other RelRo sections, or within non-RelRo 930 // sections, place non-NOBITS sections first. 931 if (sec->type == SHT_NOBITS) 932 rank |= RF_BSS; 933 934 // Some architectures have additional ordering restrictions for sections 935 // within the same PT_LOAD. 936 if (config->emachine == EM_PPC64) { 937 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 938 // that we would like to make sure appear is a specific order to maximize 939 // their coverage by a single signed 16-bit offset from the TOC base 940 // pointer. Conversely, the special .tocbss section should be first among 941 // all SHT_NOBITS sections. This will put it next to the loaded special 942 // PPC64 sections (and, thus, within reach of the TOC base pointer). 943 StringRef name = sec->name; 944 if (name != ".tocbss") 945 rank |= RF_PPC_NOT_TOCBSS; 946 947 if (name == ".toc1") 948 rank |= RF_PPC_TOCL; 949 950 if (name == ".toc") 951 rank |= RF_PPC_TOC; 952 953 if (name == ".got") 954 rank |= RF_PPC_GOT; 955 956 if (name == ".branch_lt") 957 rank |= RF_PPC_BRANCH_LT; 958 } 959 960 if (config->emachine == EM_MIPS) { 961 // All sections with SHF_MIPS_GPREL flag should be grouped together 962 // because data in these sections is addressable with a gp relative address. 963 if (sec->flags & SHF_MIPS_GPREL) 964 rank |= RF_MIPS_GPREL; 965 966 if (sec->name != ".got") 967 rank |= RF_MIPS_NOT_GOT; 968 } 969 970 return rank; 971 } 972 973 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 974 const OutputSection *a = cast<OutputSection>(aCmd); 975 const OutputSection *b = cast<OutputSection>(bCmd); 976 977 if (a->sortRank != b->sortRank) 978 return a->sortRank < b->sortRank; 979 980 if (!(a->sortRank & RF_NOT_ADDR_SET)) 981 return config->sectionStartMap.lookup(a->name) < 982 config->sectionStartMap.lookup(b->name); 983 return false; 984 } 985 986 void PhdrEntry::add(OutputSection *sec) { 987 lastSec = sec; 988 if (!firstSec) 989 firstSec = sec; 990 p_align = std::max(p_align, sec->alignment); 991 if (p_type == PT_LOAD) 992 sec->ptLoad = this; 993 } 994 995 // The beginning and the ending of .rel[a].plt section are marked 996 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 997 // executable. The runtime needs these symbols in order to resolve 998 // all IRELATIVE relocs on startup. For dynamic executables, we don't 999 // need these symbols, since IRELATIVE relocs are resolved through GOT 1000 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1001 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1002 if (config->relocatable || needsInterpSection()) 1003 return; 1004 1005 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1006 // because .rela.plt might be empty and thus removed from output. 1007 // We'll override Out::elfHeader with In.relaIplt later when we are 1008 // sure that .rela.plt exists in output. 1009 ElfSym::relaIpltStart = addOptionalRegular( 1010 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1011 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1012 1013 ElfSym::relaIpltEnd = addOptionalRegular( 1014 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1015 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1016 } 1017 1018 template <class ELFT> 1019 void Writer<ELFT>::forEachRelSec( 1020 llvm::function_ref<void(InputSectionBase &)> fn) { 1021 // Scan all relocations. Each relocation goes through a series 1022 // of tests to determine if it needs special treatment, such as 1023 // creating GOT, PLT, copy relocations, etc. 1024 // Note that relocations for non-alloc sections are directly 1025 // processed by InputSection::relocateNonAlloc. 1026 for (InputSectionBase *isec : inputSections) 1027 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1028 fn(*isec); 1029 for (Partition &part : partitions) { 1030 for (EhInputSection *es : part.ehFrame->sections) 1031 fn(*es); 1032 if (part.armExidx && part.armExidx->isLive()) 1033 for (InputSection *ex : part.armExidx->exidxSections) 1034 fn(*ex); 1035 } 1036 } 1037 1038 // This function generates assignments for predefined symbols (e.g. _end or 1039 // _etext) and inserts them into the commands sequence to be processed at the 1040 // appropriate time. This ensures that the value is going to be correct by the 1041 // time any references to these symbols are processed and is equivalent to 1042 // defining these symbols explicitly in the linker script. 1043 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1044 if (ElfSym::globalOffsetTable) { 1045 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1046 // to the start of the .got or .got.plt section. 1047 InputSection *gotSection = in.gotPlt; 1048 if (!target->gotBaseSymInGotPlt) 1049 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1050 : cast<InputSection>(in.got); 1051 ElfSym::globalOffsetTable->section = gotSection; 1052 } 1053 1054 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1055 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1056 ElfSym::relaIpltStart->section = in.relaIplt; 1057 ElfSym::relaIpltEnd->section = in.relaIplt; 1058 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1059 } 1060 1061 PhdrEntry *last = nullptr; 1062 PhdrEntry *lastRO = nullptr; 1063 1064 for (Partition &part : partitions) { 1065 for (PhdrEntry *p : part.phdrs) { 1066 if (p->p_type != PT_LOAD) 1067 continue; 1068 last = p; 1069 if (!(p->p_flags & PF_W)) 1070 lastRO = p; 1071 } 1072 } 1073 1074 if (lastRO) { 1075 // _etext is the first location after the last read-only loadable segment. 1076 if (ElfSym::etext1) 1077 ElfSym::etext1->section = lastRO->lastSec; 1078 if (ElfSym::etext2) 1079 ElfSym::etext2->section = lastRO->lastSec; 1080 } 1081 1082 if (last) { 1083 // _edata points to the end of the last mapped initialized section. 1084 OutputSection *edata = nullptr; 1085 for (OutputSection *os : outputSections) { 1086 if (os->type != SHT_NOBITS) 1087 edata = os; 1088 if (os == last->lastSec) 1089 break; 1090 } 1091 1092 if (ElfSym::edata1) 1093 ElfSym::edata1->section = edata; 1094 if (ElfSym::edata2) 1095 ElfSym::edata2->section = edata; 1096 1097 // _end is the first location after the uninitialized data region. 1098 if (ElfSym::end1) 1099 ElfSym::end1->section = last->lastSec; 1100 if (ElfSym::end2) 1101 ElfSym::end2->section = last->lastSec; 1102 } 1103 1104 if (ElfSym::bss) 1105 ElfSym::bss->section = findSection(".bss"); 1106 1107 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1108 // be equal to the _gp symbol's value. 1109 if (ElfSym::mipsGp) { 1110 // Find GP-relative section with the lowest address 1111 // and use this address to calculate default _gp value. 1112 for (OutputSection *os : outputSections) { 1113 if (os->flags & SHF_MIPS_GPREL) { 1114 ElfSym::mipsGp->section = os; 1115 ElfSym::mipsGp->value = 0x7ff0; 1116 break; 1117 } 1118 } 1119 } 1120 } 1121 1122 // We want to find how similar two ranks are. 1123 // The more branches in getSectionRank that match, the more similar they are. 1124 // Since each branch corresponds to a bit flag, we can just use 1125 // countLeadingZeros. 1126 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1127 return countLeadingZeros(a->sortRank ^ b->sortRank); 1128 } 1129 1130 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1131 auto *sec = dyn_cast<OutputSection>(b); 1132 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1133 } 1134 1135 // When placing orphan sections, we want to place them after symbol assignments 1136 // so that an orphan after 1137 // begin_foo = .; 1138 // foo : { *(foo) } 1139 // end_foo = .; 1140 // doesn't break the intended meaning of the begin/end symbols. 1141 // We don't want to go over sections since findOrphanPos is the 1142 // one in charge of deciding the order of the sections. 1143 // We don't want to go over changes to '.', since doing so in 1144 // rx_sec : { *(rx_sec) } 1145 // . = ALIGN(0x1000); 1146 // /* The RW PT_LOAD starts here*/ 1147 // rw_sec : { *(rw_sec) } 1148 // would mean that the RW PT_LOAD would become unaligned. 1149 static bool shouldSkip(BaseCommand *cmd) { 1150 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1151 return assign->name != "."; 1152 return false; 1153 } 1154 1155 // We want to place orphan sections so that they share as much 1156 // characteristics with their neighbors as possible. For example, if 1157 // both are rw, or both are tls. 1158 static std::vector<BaseCommand *>::iterator 1159 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1160 std::vector<BaseCommand *>::iterator e) { 1161 OutputSection *sec = cast<OutputSection>(*e); 1162 1163 // Find the first element that has as close a rank as possible. 1164 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1165 return getRankProximity(sec, a) < getRankProximity(sec, b); 1166 }); 1167 if (i == e) 1168 return e; 1169 1170 // Consider all existing sections with the same proximity. 1171 int proximity = getRankProximity(sec, *i); 1172 for (; i != e; ++i) { 1173 auto *curSec = dyn_cast<OutputSection>(*i); 1174 if (!curSec || !curSec->hasInputSections) 1175 continue; 1176 if (getRankProximity(sec, curSec) != proximity || 1177 sec->sortRank < curSec->sortRank) 1178 break; 1179 } 1180 1181 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1182 auto *os = dyn_cast<OutputSection>(cmd); 1183 return os && os->hasInputSections; 1184 }; 1185 auto j = std::find_if(llvm::make_reverse_iterator(i), 1186 llvm::make_reverse_iterator(b), 1187 isOutputSecWithInputSections); 1188 i = j.base(); 1189 1190 // As a special case, if the orphan section is the last section, put 1191 // it at the very end, past any other commands. 1192 // This matches bfd's behavior and is convenient when the linker script fully 1193 // specifies the start of the file, but doesn't care about the end (the non 1194 // alloc sections for example). 1195 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1196 if (nextSec == e) 1197 return e; 1198 1199 while (i != e && shouldSkip(*i)) 1200 ++i; 1201 return i; 1202 } 1203 1204 // Builds section order for handling --symbol-ordering-file. 1205 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1206 DenseMap<const InputSectionBase *, int> sectionOrder; 1207 // Use the rarely used option -call-graph-ordering-file to sort sections. 1208 if (!config->callGraphProfile.empty()) 1209 return computeCallGraphProfileOrder(); 1210 1211 if (config->symbolOrderingFile.empty()) 1212 return sectionOrder; 1213 1214 struct SymbolOrderEntry { 1215 int priority; 1216 bool present; 1217 }; 1218 1219 // Build a map from symbols to their priorities. Symbols that didn't 1220 // appear in the symbol ordering file have the lowest priority 0. 1221 // All explicitly mentioned symbols have negative (higher) priorities. 1222 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1223 int priority = -config->symbolOrderingFile.size(); 1224 for (StringRef s : config->symbolOrderingFile) 1225 symbolOrder.insert({s, {priority++, false}}); 1226 1227 // Build a map from sections to their priorities. 1228 auto addSym = [&](Symbol &sym) { 1229 auto it = symbolOrder.find(sym.getName()); 1230 if (it == symbolOrder.end()) 1231 return; 1232 SymbolOrderEntry &ent = it->second; 1233 ent.present = true; 1234 1235 maybeWarnUnorderableSymbol(&sym); 1236 1237 if (auto *d = dyn_cast<Defined>(&sym)) { 1238 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1239 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1240 priority = std::min(priority, ent.priority); 1241 } 1242 } 1243 }; 1244 1245 // We want both global and local symbols. We get the global ones from the 1246 // symbol table and iterate the object files for the local ones. 1247 for (Symbol *sym : symtab->symbols()) 1248 if (!sym->isLazy()) 1249 addSym(*sym); 1250 1251 for (InputFile *file : objectFiles) 1252 for (Symbol *sym : file->getSymbols()) 1253 if (sym->isLocal()) 1254 addSym(*sym); 1255 1256 if (config->warnSymbolOrdering) 1257 for (auto orderEntry : symbolOrder) 1258 if (!orderEntry.second.present) 1259 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1260 1261 return sectionOrder; 1262 } 1263 1264 // Sorts the sections in ISD according to the provided section order. 1265 static void 1266 sortISDBySectionOrder(InputSectionDescription *isd, 1267 const DenseMap<const InputSectionBase *, int> &order) { 1268 std::vector<InputSection *> unorderedSections; 1269 std::vector<std::pair<InputSection *, int>> orderedSections; 1270 uint64_t unorderedSize = 0; 1271 1272 for (InputSection *isec : isd->sections) { 1273 auto i = order.find(isec); 1274 if (i == order.end()) { 1275 unorderedSections.push_back(isec); 1276 unorderedSize += isec->getSize(); 1277 continue; 1278 } 1279 orderedSections.push_back({isec, i->second}); 1280 } 1281 llvm::sort(orderedSections, llvm::less_second()); 1282 1283 // Find an insertion point for the ordered section list in the unordered 1284 // section list. On targets with limited-range branches, this is the mid-point 1285 // of the unordered section list. This decreases the likelihood that a range 1286 // extension thunk will be needed to enter or exit the ordered region. If the 1287 // ordered section list is a list of hot functions, we can generally expect 1288 // the ordered functions to be called more often than the unordered functions, 1289 // making it more likely that any particular call will be within range, and 1290 // therefore reducing the number of thunks required. 1291 // 1292 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1293 // If the layout is: 1294 // 1295 // 8MB hot 1296 // 32MB cold 1297 // 1298 // only the first 8-16MB of the cold code (depending on which hot function it 1299 // is actually calling) can call the hot code without a range extension thunk. 1300 // However, if we use this layout: 1301 // 1302 // 16MB cold 1303 // 8MB hot 1304 // 16MB cold 1305 // 1306 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1307 // of the second block of cold code can call the hot code without a thunk. So 1308 // we effectively double the amount of code that could potentially call into 1309 // the hot code without a thunk. 1310 size_t insPt = 0; 1311 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1312 uint64_t unorderedPos = 0; 1313 for (; insPt != unorderedSections.size(); ++insPt) { 1314 unorderedPos += unorderedSections[insPt]->getSize(); 1315 if (unorderedPos > unorderedSize / 2) 1316 break; 1317 } 1318 } 1319 1320 isd->sections.clear(); 1321 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1322 isd->sections.push_back(isec); 1323 for (std::pair<InputSection *, int> p : orderedSections) 1324 isd->sections.push_back(p.first); 1325 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1326 isd->sections.push_back(isec); 1327 } 1328 1329 static void sortSection(OutputSection *sec, 1330 const DenseMap<const InputSectionBase *, int> &order) { 1331 StringRef name = sec->name; 1332 1333 // Sort input sections by section name suffixes for 1334 // __attribute__((init_priority(N))). 1335 if (name == ".init_array" || name == ".fini_array") { 1336 if (!script->hasSectionsCommand) 1337 sec->sortInitFini(); 1338 return; 1339 } 1340 1341 // Sort input sections by the special rule for .ctors and .dtors. 1342 if (name == ".ctors" || name == ".dtors") { 1343 if (!script->hasSectionsCommand) 1344 sec->sortCtorsDtors(); 1345 return; 1346 } 1347 1348 // Never sort these. 1349 if (name == ".init" || name == ".fini") 1350 return; 1351 1352 // .toc is allocated just after .got and is accessed using GOT-relative 1353 // relocations. Object files compiled with small code model have an 1354 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1355 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1356 // sections having smaller relocation offsets are at beginning of .toc 1357 if (config->emachine == EM_PPC64 && name == ".toc") { 1358 if (script->hasSectionsCommand) 1359 return; 1360 assert(sec->sectionCommands.size() == 1); 1361 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1362 llvm::stable_sort(isd->sections, 1363 [](const InputSection *a, const InputSection *b) -> bool { 1364 return a->file->ppc64SmallCodeModelTocRelocs && 1365 !b->file->ppc64SmallCodeModelTocRelocs; 1366 }); 1367 return; 1368 } 1369 1370 // Sort input sections by priority using the list provided 1371 // by --symbol-ordering-file. 1372 if (!order.empty()) 1373 for (BaseCommand *b : sec->sectionCommands) 1374 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1375 sortISDBySectionOrder(isd, order); 1376 } 1377 1378 // If no layout was provided by linker script, we want to apply default 1379 // sorting for special input sections. This also handles --symbol-ordering-file. 1380 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1381 // Build the order once since it is expensive. 1382 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1383 for (BaseCommand *base : script->sectionCommands) 1384 if (auto *sec = dyn_cast<OutputSection>(base)) 1385 sortSection(sec, order); 1386 } 1387 1388 template <class ELFT> void Writer<ELFT>::sortSections() { 1389 script->adjustSectionsBeforeSorting(); 1390 1391 // Don't sort if using -r. It is not necessary and we want to preserve the 1392 // relative order for SHF_LINK_ORDER sections. 1393 if (config->relocatable) 1394 return; 1395 1396 sortInputSections(); 1397 1398 for (BaseCommand *base : script->sectionCommands) { 1399 auto *os = dyn_cast<OutputSection>(base); 1400 if (!os) 1401 continue; 1402 os->sortRank = getSectionRank(os); 1403 1404 // We want to assign rude approximation values to outSecOff fields 1405 // to know the relative order of the input sections. We use it for 1406 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1407 uint64_t i = 0; 1408 for (InputSection *sec : getInputSections(os)) 1409 sec->outSecOff = i++; 1410 } 1411 1412 if (!script->hasSectionsCommand) { 1413 // We know that all the OutputSections are contiguous in this case. 1414 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1415 std::stable_sort( 1416 llvm::find_if(script->sectionCommands, isSection), 1417 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1418 compareSections); 1419 return; 1420 } 1421 1422 // Orphan sections are sections present in the input files which are 1423 // not explicitly placed into the output file by the linker script. 1424 // 1425 // The sections in the linker script are already in the correct 1426 // order. We have to figuere out where to insert the orphan 1427 // sections. 1428 // 1429 // The order of the sections in the script is arbitrary and may not agree with 1430 // compareSections. This means that we cannot easily define a strict weak 1431 // ordering. To see why, consider a comparison of a section in the script and 1432 // one not in the script. We have a two simple options: 1433 // * Make them equivalent (a is not less than b, and b is not less than a). 1434 // The problem is then that equivalence has to be transitive and we can 1435 // have sections a, b and c with only b in a script and a less than c 1436 // which breaks this property. 1437 // * Use compareSectionsNonScript. Given that the script order doesn't have 1438 // to match, we can end up with sections a, b, c, d where b and c are in the 1439 // script and c is compareSectionsNonScript less than b. In which case d 1440 // can be equivalent to c, a to b and d < a. As a concrete example: 1441 // .a (rx) # not in script 1442 // .b (rx) # in script 1443 // .c (ro) # in script 1444 // .d (ro) # not in script 1445 // 1446 // The way we define an order then is: 1447 // * Sort only the orphan sections. They are in the end right now. 1448 // * Move each orphan section to its preferred position. We try 1449 // to put each section in the last position where it can share 1450 // a PT_LOAD. 1451 // 1452 // There is some ambiguity as to where exactly a new entry should be 1453 // inserted, because Commands contains not only output section 1454 // commands but also other types of commands such as symbol assignment 1455 // expressions. There's no correct answer here due to the lack of the 1456 // formal specification of the linker script. We use heuristics to 1457 // determine whether a new output command should be added before or 1458 // after another commands. For the details, look at shouldSkip 1459 // function. 1460 1461 auto i = script->sectionCommands.begin(); 1462 auto e = script->sectionCommands.end(); 1463 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1464 if (auto *sec = dyn_cast<OutputSection>(base)) 1465 return sec->sectionIndex == UINT32_MAX; 1466 return false; 1467 }); 1468 1469 // Sort the orphan sections. 1470 std::stable_sort(nonScriptI, e, compareSections); 1471 1472 // As a horrible special case, skip the first . assignment if it is before any 1473 // section. We do this because it is common to set a load address by starting 1474 // the script with ". = 0xabcd" and the expectation is that every section is 1475 // after that. 1476 auto firstSectionOrDotAssignment = 1477 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1478 if (firstSectionOrDotAssignment != e && 1479 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1480 ++firstSectionOrDotAssignment; 1481 i = firstSectionOrDotAssignment; 1482 1483 while (nonScriptI != e) { 1484 auto pos = findOrphanPos(i, nonScriptI); 1485 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1486 1487 // As an optimization, find all sections with the same sort rank 1488 // and insert them with one rotate. 1489 unsigned rank = orphan->sortRank; 1490 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1491 return cast<OutputSection>(cmd)->sortRank != rank; 1492 }); 1493 std::rotate(pos, nonScriptI, end); 1494 nonScriptI = end; 1495 } 1496 1497 script->adjustSectionsAfterSorting(); 1498 } 1499 1500 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1501 InputSection *la = a->getLinkOrderDep(); 1502 InputSection *lb = b->getLinkOrderDep(); 1503 OutputSection *aOut = la->getParent(); 1504 OutputSection *bOut = lb->getParent(); 1505 1506 if (aOut != bOut) 1507 return aOut->sectionIndex < bOut->sectionIndex; 1508 return la->outSecOff < lb->outSecOff; 1509 } 1510 1511 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1512 for (OutputSection *sec : outputSections) { 1513 if (!(sec->flags & SHF_LINK_ORDER)) 1514 continue; 1515 1516 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1517 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1518 if (!config->relocatable && config->emachine == EM_ARM && 1519 sec->type == SHT_ARM_EXIDX) 1520 continue; 1521 1522 // Link order may be distributed across several InputSectionDescriptions 1523 // but sort must consider them all at once. 1524 std::vector<InputSection **> scriptSections; 1525 std::vector<InputSection *> sections; 1526 for (BaseCommand *base : sec->sectionCommands) { 1527 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1528 for (InputSection *&isec : isd->sections) { 1529 scriptSections.push_back(&isec); 1530 sections.push_back(isec); 1531 1532 InputSection *link = isec->getLinkOrderDep(); 1533 if (!link->getParent()) 1534 error(toString(isec) + ": sh_link points to discarded section " + 1535 toString(link)); 1536 } 1537 } 1538 } 1539 1540 if (errorCount()) 1541 continue; 1542 1543 llvm::stable_sort(sections, compareByFilePosition); 1544 1545 for (int i = 0, n = sections.size(); i < n; ++i) 1546 *scriptSections[i] = sections[i]; 1547 } 1548 } 1549 1550 // We need to generate and finalize the content that depends on the address of 1551 // InputSections. As the generation of the content may also alter InputSection 1552 // addresses we must converge to a fixed point. We do that here. See the comment 1553 // in Writer<ELFT>::finalizeSections(). 1554 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1555 ThunkCreator tc; 1556 AArch64Err843419Patcher a64p; 1557 ARMErr657417Patcher a32p; 1558 script->assignAddresses(); 1559 1560 int assignPasses = 0; 1561 for (;;) { 1562 bool changed = target->needsThunks && tc.createThunks(outputSections); 1563 1564 // With Thunk Size much smaller than branch range we expect to 1565 // converge quickly; if we get to 10 something has gone wrong. 1566 if (changed && tc.pass >= 10) { 1567 error("thunk creation not converged"); 1568 break; 1569 } 1570 1571 if (config->fixCortexA53Errata843419) { 1572 if (changed) 1573 script->assignAddresses(); 1574 changed |= a64p.createFixes(); 1575 } 1576 if (config->fixCortexA8) { 1577 if (changed) 1578 script->assignAddresses(); 1579 changed |= a32p.createFixes(); 1580 } 1581 1582 if (in.mipsGot) 1583 in.mipsGot->updateAllocSize(); 1584 1585 for (Partition &part : partitions) { 1586 changed |= part.relaDyn->updateAllocSize(); 1587 if (part.relrDyn) 1588 changed |= part.relrDyn->updateAllocSize(); 1589 } 1590 1591 const Defined *changedSym = script->assignAddresses(); 1592 if (!changed) { 1593 // Some symbols may be dependent on section addresses. When we break the 1594 // loop, the symbol values are finalized because a previous 1595 // assignAddresses() finalized section addresses. 1596 if (!changedSym) 1597 break; 1598 if (++assignPasses == 5) { 1599 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1600 " does not converge"); 1601 break; 1602 } 1603 } 1604 } 1605 } 1606 1607 static void finalizeSynthetic(SyntheticSection *sec) { 1608 if (sec && sec->isNeeded() && sec->getParent()) 1609 sec->finalizeContents(); 1610 } 1611 1612 // In order to allow users to manipulate linker-synthesized sections, 1613 // we had to add synthetic sections to the input section list early, 1614 // even before we make decisions whether they are needed. This allows 1615 // users to write scripts like this: ".mygot : { .got }". 1616 // 1617 // Doing it has an unintended side effects. If it turns out that we 1618 // don't need a .got (for example) at all because there's no 1619 // relocation that needs a .got, we don't want to emit .got. 1620 // 1621 // To deal with the above problem, this function is called after 1622 // scanRelocations is called to remove synthetic sections that turn 1623 // out to be empty. 1624 static void removeUnusedSyntheticSections() { 1625 // All input synthetic sections that can be empty are placed after 1626 // all regular ones. We iterate over them all and exit at first 1627 // non-synthetic. 1628 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1629 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1630 if (!ss) 1631 return; 1632 OutputSection *os = ss->getParent(); 1633 if (!os || ss->isNeeded()) 1634 continue; 1635 1636 // If we reach here, then SS is an unused synthetic section and we want to 1637 // remove it from corresponding input section description of output section. 1638 for (BaseCommand *b : os->sectionCommands) 1639 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1640 llvm::erase_if(isd->sections, 1641 [=](InputSection *isec) { return isec == ss; }); 1642 } 1643 } 1644 1645 // Create output section objects and add them to OutputSections. 1646 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1647 Out::preinitArray = findSection(".preinit_array"); 1648 Out::initArray = findSection(".init_array"); 1649 Out::finiArray = findSection(".fini_array"); 1650 1651 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1652 // symbols for sections, so that the runtime can get the start and end 1653 // addresses of each section by section name. Add such symbols. 1654 if (!config->relocatable) { 1655 addStartEndSymbols(); 1656 for (BaseCommand *base : script->sectionCommands) 1657 if (auto *sec = dyn_cast<OutputSection>(base)) 1658 addStartStopSymbols(sec); 1659 } 1660 1661 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1662 // It should be okay as no one seems to care about the type. 1663 // Even the author of gold doesn't remember why gold behaves that way. 1664 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1665 if (mainPart->dynamic->parent) 1666 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1667 STV_HIDDEN, STT_NOTYPE, 1668 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1669 1670 // Define __rel[a]_iplt_{start,end} symbols if needed. 1671 addRelIpltSymbols(); 1672 1673 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1674 // should only be defined in an executable. If .sdata does not exist, its 1675 // value/section does not matter but it has to be relative, so set its 1676 // st_shndx arbitrarily to 1 (Out::elfHeader). 1677 if (config->emachine == EM_RISCV && !config->shared) { 1678 OutputSection *sec = findSection(".sdata"); 1679 ElfSym::riscvGlobalPointer = 1680 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1681 0x800, STV_DEFAULT, STB_GLOBAL); 1682 } 1683 1684 if (config->emachine == EM_X86_64) { 1685 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1686 // way that: 1687 // 1688 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1689 // computes 0. 1690 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1691 // the TLS block). 1692 // 1693 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1694 // an absolute symbol of zero. This is different from GNU linkers which 1695 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1696 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1697 if (s && s->isUndefined()) { 1698 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1699 STT_TLS, /*value=*/0, 0, 1700 /*section=*/nullptr}); 1701 ElfSym::tlsModuleBase = cast<Defined>(s); 1702 } 1703 } 1704 1705 // This responsible for splitting up .eh_frame section into 1706 // pieces. The relocation scan uses those pieces, so this has to be 1707 // earlier. 1708 for (Partition &part : partitions) 1709 finalizeSynthetic(part.ehFrame); 1710 1711 for (Symbol *sym : symtab->symbols()) 1712 sym->isPreemptible = computeIsPreemptible(*sym); 1713 1714 // Change values of linker-script-defined symbols from placeholders (assigned 1715 // by declareSymbols) to actual definitions. 1716 script->processSymbolAssignments(); 1717 1718 // Scan relocations. This must be done after every symbol is declared so that 1719 // we can correctly decide if a dynamic relocation is needed. This is called 1720 // after processSymbolAssignments() because it needs to know whether a 1721 // linker-script-defined symbol is absolute. 1722 if (!config->relocatable) { 1723 forEachRelSec(scanRelocations<ELFT>); 1724 reportUndefinedSymbols<ELFT>(); 1725 } 1726 1727 if (in.plt && in.plt->isNeeded()) 1728 in.plt->addSymbols(); 1729 if (in.iplt && in.iplt->isNeeded()) 1730 in.iplt->addSymbols(); 1731 1732 if (!config->allowShlibUndefined) { 1733 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1734 // entries are seen. These cases would otherwise lead to runtime errors 1735 // reported by the dynamic linker. 1736 // 1737 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1738 // catch more cases. That is too much for us. Our approach resembles the one 1739 // used in ld.gold, achieves a good balance to be useful but not too smart. 1740 for (SharedFile *file : sharedFiles) 1741 file->allNeededIsKnown = 1742 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1743 return symtab->soNames.count(needed); 1744 }); 1745 1746 for (Symbol *sym : symtab->symbols()) 1747 if (sym->isUndefined() && !sym->isWeak()) 1748 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1749 if (f->allNeededIsKnown) 1750 error(toString(f) + ": undefined reference to " + toString(*sym)); 1751 } 1752 1753 // Now that we have defined all possible global symbols including linker- 1754 // synthesized ones. Visit all symbols to give the finishing touches. 1755 for (Symbol *sym : symtab->symbols()) { 1756 if (!includeInSymtab(*sym)) 1757 continue; 1758 if (in.symTab) 1759 in.symTab->addSymbol(sym); 1760 1761 if (sym->includeInDynsym()) { 1762 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1763 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1764 if (file->isNeeded && !sym->isUndefined()) 1765 addVerneed(sym); 1766 } 1767 } 1768 1769 // We also need to scan the dynamic relocation tables of the other partitions 1770 // and add any referenced symbols to the partition's dynsym. 1771 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1772 DenseSet<Symbol *> syms; 1773 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1774 syms.insert(e.sym); 1775 for (DynamicReloc &reloc : part.relaDyn->relocs) 1776 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1777 part.dynSymTab->addSymbol(reloc.sym); 1778 } 1779 1780 // Do not proceed if there was an undefined symbol. 1781 if (errorCount()) 1782 return; 1783 1784 if (in.mipsGot) 1785 in.mipsGot->build(); 1786 1787 removeUnusedSyntheticSections(); 1788 1789 sortSections(); 1790 1791 // Now that we have the final list, create a list of all the 1792 // OutputSections for convenience. 1793 for (BaseCommand *base : script->sectionCommands) 1794 if (auto *sec = dyn_cast<OutputSection>(base)) 1795 outputSections.push_back(sec); 1796 1797 // Prefer command line supplied address over other constraints. 1798 for (OutputSection *sec : outputSections) { 1799 auto i = config->sectionStartMap.find(sec->name); 1800 if (i != config->sectionStartMap.end()) 1801 sec->addrExpr = [=] { return i->second; }; 1802 } 1803 1804 // This is a bit of a hack. A value of 0 means undef, so we set it 1805 // to 1 to make __ehdr_start defined. The section number is not 1806 // particularly relevant. 1807 Out::elfHeader->sectionIndex = 1; 1808 1809 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1810 OutputSection *sec = outputSections[i]; 1811 sec->sectionIndex = i + 1; 1812 sec->shName = in.shStrTab->addString(sec->name); 1813 } 1814 1815 // Binary and relocatable output does not have PHDRS. 1816 // The headers have to be created before finalize as that can influence the 1817 // image base and the dynamic section on mips includes the image base. 1818 if (!config->relocatable && !config->oFormatBinary) { 1819 for (Partition &part : partitions) { 1820 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1821 : createPhdrs(part); 1822 if (config->emachine == EM_ARM) { 1823 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1824 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1825 } 1826 if (config->emachine == EM_MIPS) { 1827 // Add separate segments for MIPS-specific sections. 1828 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1829 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1830 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1831 } 1832 } 1833 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1834 1835 // Find the TLS segment. This happens before the section layout loop so that 1836 // Android relocation packing can look up TLS symbol addresses. We only need 1837 // to care about the main partition here because all TLS symbols were moved 1838 // to the main partition (see MarkLive.cpp). 1839 for (PhdrEntry *p : mainPart->phdrs) 1840 if (p->p_type == PT_TLS) 1841 Out::tlsPhdr = p; 1842 } 1843 1844 // Some symbols are defined in term of program headers. Now that we 1845 // have the headers, we can find out which sections they point to. 1846 setReservedSymbolSections(); 1847 1848 finalizeSynthetic(in.bss); 1849 finalizeSynthetic(in.bssRelRo); 1850 finalizeSynthetic(in.symTabShndx); 1851 finalizeSynthetic(in.shStrTab); 1852 finalizeSynthetic(in.strTab); 1853 finalizeSynthetic(in.got); 1854 finalizeSynthetic(in.mipsGot); 1855 finalizeSynthetic(in.igotPlt); 1856 finalizeSynthetic(in.gotPlt); 1857 finalizeSynthetic(in.relaIplt); 1858 finalizeSynthetic(in.relaPlt); 1859 finalizeSynthetic(in.plt); 1860 finalizeSynthetic(in.iplt); 1861 finalizeSynthetic(in.ppc32Got2); 1862 finalizeSynthetic(in.partIndex); 1863 1864 // Dynamic section must be the last one in this list and dynamic 1865 // symbol table section (dynSymTab) must be the first one. 1866 for (Partition &part : partitions) { 1867 finalizeSynthetic(part.armExidx); 1868 finalizeSynthetic(part.dynSymTab); 1869 finalizeSynthetic(part.gnuHashTab); 1870 finalizeSynthetic(part.hashTab); 1871 finalizeSynthetic(part.verDef); 1872 finalizeSynthetic(part.relaDyn); 1873 finalizeSynthetic(part.relrDyn); 1874 finalizeSynthetic(part.ehFrameHdr); 1875 finalizeSynthetic(part.verSym); 1876 finalizeSynthetic(part.verNeed); 1877 finalizeSynthetic(part.dynamic); 1878 } 1879 1880 if (!script->hasSectionsCommand && !config->relocatable) 1881 fixSectionAlignments(); 1882 1883 // SHFLinkOrder processing must be processed after relative section placements are 1884 // known but before addresses are allocated. 1885 resolveShfLinkOrder(); 1886 if (errorCount()) 1887 return; 1888 1889 // This is used to: 1890 // 1) Create "thunks": 1891 // Jump instructions in many ISAs have small displacements, and therefore 1892 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1893 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1894 // responsibility to create and insert small pieces of code between 1895 // sections to extend the ranges if jump targets are out of range. Such 1896 // code pieces are called "thunks". 1897 // 1898 // We add thunks at this stage. We couldn't do this before this point 1899 // because this is the earliest point where we know sizes of sections and 1900 // their layouts (that are needed to determine if jump targets are in 1901 // range). 1902 // 1903 // 2) Update the sections. We need to generate content that depends on the 1904 // address of InputSections. For example, MIPS GOT section content or 1905 // android packed relocations sections content. 1906 // 1907 // 3) Assign the final values for the linker script symbols. Linker scripts 1908 // sometimes using forward symbol declarations. We want to set the correct 1909 // values. They also might change after adding the thunks. 1910 finalizeAddressDependentContent(); 1911 1912 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1913 finalizeSynthetic(in.symTab); 1914 finalizeSynthetic(in.ppc64LongBranchTarget); 1915 1916 // Fill other section headers. The dynamic table is finalized 1917 // at the end because some tags like RELSZ depend on result 1918 // of finalizing other sections. 1919 for (OutputSection *sec : outputSections) 1920 sec->finalize(); 1921 } 1922 1923 // Ensure data sections are not mixed with executable sections when 1924 // -execute-only is used. -execute-only is a feature to make pages executable 1925 // but not readable, and the feature is currently supported only on AArch64. 1926 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1927 if (!config->executeOnly) 1928 return; 1929 1930 for (OutputSection *os : outputSections) 1931 if (os->flags & SHF_EXECINSTR) 1932 for (InputSection *isec : getInputSections(os)) 1933 if (!(isec->flags & SHF_EXECINSTR)) 1934 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1935 ": -execute-only does not support intermingling data and code"); 1936 } 1937 1938 // The linker is expected to define SECNAME_start and SECNAME_end 1939 // symbols for a few sections. This function defines them. 1940 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1941 // If a section does not exist, there's ambiguity as to how we 1942 // define _start and _end symbols for an init/fini section. Since 1943 // the loader assume that the symbols are always defined, we need to 1944 // always define them. But what value? The loader iterates over all 1945 // pointers between _start and _end to run global ctors/dtors, so if 1946 // the section is empty, their symbol values don't actually matter 1947 // as long as _start and _end point to the same location. 1948 // 1949 // That said, we don't want to set the symbols to 0 (which is 1950 // probably the simplest value) because that could cause some 1951 // program to fail to link due to relocation overflow, if their 1952 // program text is above 2 GiB. We use the address of the .text 1953 // section instead to prevent that failure. 1954 // 1955 // In rare situations, the .text section may not exist. If that's the 1956 // case, use the image base address as a last resort. 1957 OutputSection *Default = findSection(".text"); 1958 if (!Default) 1959 Default = Out::elfHeader; 1960 1961 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1962 if (os) { 1963 addOptionalRegular(start, os, 0); 1964 addOptionalRegular(end, os, -1); 1965 } else { 1966 addOptionalRegular(start, Default, 0); 1967 addOptionalRegular(end, Default, 0); 1968 } 1969 }; 1970 1971 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1972 define("__init_array_start", "__init_array_end", Out::initArray); 1973 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1974 1975 if (OutputSection *sec = findSection(".ARM.exidx")) 1976 define("__exidx_start", "__exidx_end", sec); 1977 } 1978 1979 // If a section name is valid as a C identifier (which is rare because of 1980 // the leading '.'), linkers are expected to define __start_<secname> and 1981 // __stop_<secname> symbols. They are at beginning and end of the section, 1982 // respectively. This is not requested by the ELF standard, but GNU ld and 1983 // gold provide the feature, and used by many programs. 1984 template <class ELFT> 1985 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 1986 StringRef s = sec->name; 1987 if (!isValidCIdentifier(s)) 1988 return; 1989 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 1990 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 1991 } 1992 1993 static bool needsPtLoad(OutputSection *sec) { 1994 if (!(sec->flags & SHF_ALLOC) || sec->noload) 1995 return false; 1996 1997 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1998 // responsible for allocating space for them, not the PT_LOAD that 1999 // contains the TLS initialization image. 2000 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2001 return false; 2002 return true; 2003 } 2004 2005 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2006 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2007 // RW. This means that there is no alignment in the RO to RX transition and we 2008 // cannot create a PT_LOAD there. 2009 static uint64_t computeFlags(uint64_t flags) { 2010 if (config->omagic) 2011 return PF_R | PF_W | PF_X; 2012 if (config->executeOnly && (flags & PF_X)) 2013 return flags & ~PF_R; 2014 if (config->singleRoRx && !(flags & PF_W)) 2015 return flags | PF_X; 2016 return flags; 2017 } 2018 2019 // Decide which program headers to create and which sections to include in each 2020 // one. 2021 template <class ELFT> 2022 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2023 std::vector<PhdrEntry *> ret; 2024 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2025 ret.push_back(make<PhdrEntry>(type, flags)); 2026 return ret.back(); 2027 }; 2028 2029 unsigned partNo = part.getNumber(); 2030 bool isMain = partNo == 1; 2031 2032 // Add the first PT_LOAD segment for regular output sections. 2033 uint64_t flags = computeFlags(PF_R); 2034 PhdrEntry *load = nullptr; 2035 2036 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2037 // PT_LOAD. 2038 if (!config->nmagic && !config->omagic) { 2039 // The first phdr entry is PT_PHDR which describes the program header 2040 // itself. 2041 if (isMain) 2042 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2043 else 2044 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2045 2046 // PT_INTERP must be the second entry if exists. 2047 if (OutputSection *cmd = findSection(".interp", partNo)) 2048 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2049 2050 // Add the headers. We will remove them if they don't fit. 2051 // In the other partitions the headers are ordinary sections, so they don't 2052 // need to be added here. 2053 if (isMain) { 2054 load = addHdr(PT_LOAD, flags); 2055 load->add(Out::elfHeader); 2056 load->add(Out::programHeaders); 2057 } 2058 } 2059 2060 // PT_GNU_RELRO includes all sections that should be marked as 2061 // read-only by dynamic linker after processing relocations. 2062 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2063 // an error message if more than one PT_GNU_RELRO PHDR is required. 2064 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2065 bool inRelroPhdr = false; 2066 OutputSection *relroEnd = nullptr; 2067 for (OutputSection *sec : outputSections) { 2068 if (sec->partition != partNo || !needsPtLoad(sec)) 2069 continue; 2070 if (isRelroSection(sec)) { 2071 inRelroPhdr = true; 2072 if (!relroEnd) 2073 relRo->add(sec); 2074 else 2075 error("section: " + sec->name + " is not contiguous with other relro" + 2076 " sections"); 2077 } else if (inRelroPhdr) { 2078 inRelroPhdr = false; 2079 relroEnd = sec; 2080 } 2081 } 2082 2083 for (OutputSection *sec : outputSections) { 2084 if (!(sec->flags & SHF_ALLOC)) 2085 break; 2086 if (!needsPtLoad(sec)) 2087 continue; 2088 2089 // Normally, sections in partitions other than the current partition are 2090 // ignored. But partition number 255 is a special case: it contains the 2091 // partition end marker (.part.end). It needs to be added to the main 2092 // partition so that a segment is created for it in the main partition, 2093 // which will cause the dynamic loader to reserve space for the other 2094 // partitions. 2095 if (sec->partition != partNo) { 2096 if (isMain && sec->partition == 255) 2097 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2098 continue; 2099 } 2100 2101 // Segments are contiguous memory regions that has the same attributes 2102 // (e.g. executable or writable). There is one phdr for each segment. 2103 // Therefore, we need to create a new phdr when the next section has 2104 // different flags or is loaded at a discontiguous address or memory 2105 // region using AT or AT> linker script command, respectively. At the same 2106 // time, we don't want to create a separate load segment for the headers, 2107 // even if the first output section has an AT or AT> attribute. 2108 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2109 if (!load || 2110 ((sec->lmaExpr || 2111 (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && 2112 load->lastSec != Out::programHeaders) || 2113 sec->memRegion != load->firstSec->memRegion || flags != newFlags || 2114 sec == relroEnd) { 2115 load = addHdr(PT_LOAD, newFlags); 2116 flags = newFlags; 2117 } 2118 2119 load->add(sec); 2120 } 2121 2122 // Add a TLS segment if any. 2123 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2124 for (OutputSection *sec : outputSections) 2125 if (sec->partition == partNo && sec->flags & SHF_TLS) 2126 tlsHdr->add(sec); 2127 if (tlsHdr->firstSec) 2128 ret.push_back(tlsHdr); 2129 2130 // Add an entry for .dynamic. 2131 if (OutputSection *sec = part.dynamic->getParent()) 2132 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2133 2134 if (relRo->firstSec) 2135 ret.push_back(relRo); 2136 2137 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2138 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2139 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2140 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2141 ->add(part.ehFrameHdr->getParent()); 2142 2143 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2144 // the dynamic linker fill the segment with random data. 2145 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2146 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2147 2148 if (config->zGnustack != GnuStackKind::None) { 2149 // PT_GNU_STACK is a special section to tell the loader to make the 2150 // pages for the stack non-executable. If you really want an executable 2151 // stack, you can pass -z execstack, but that's not recommended for 2152 // security reasons. 2153 unsigned perm = PF_R | PF_W; 2154 if (config->zGnustack == GnuStackKind::Exec) 2155 perm |= PF_X; 2156 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2157 } 2158 2159 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2160 // is expected to perform W^X violations, such as calling mprotect(2) or 2161 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2162 // OpenBSD. 2163 if (config->zWxneeded) 2164 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2165 2166 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2167 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2168 2169 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2170 // same alignment. 2171 PhdrEntry *note = nullptr; 2172 for (OutputSection *sec : outputSections) { 2173 if (sec->partition != partNo) 2174 continue; 2175 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2176 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2177 note = addHdr(PT_NOTE, PF_R); 2178 note->add(sec); 2179 } else { 2180 note = nullptr; 2181 } 2182 } 2183 return ret; 2184 } 2185 2186 template <class ELFT> 2187 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2188 unsigned pType, unsigned pFlags) { 2189 unsigned partNo = part.getNumber(); 2190 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2191 return cmd->partition == partNo && cmd->type == shType; 2192 }); 2193 if (i == outputSections.end()) 2194 return; 2195 2196 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2197 entry->add(*i); 2198 part.phdrs.push_back(entry); 2199 } 2200 2201 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2202 // This is achieved by assigning an alignment expression to addrExpr of each 2203 // such section. 2204 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2205 const PhdrEntry *prev; 2206 auto pageAlign = [&](const PhdrEntry *p) { 2207 OutputSection *cmd = p->firstSec; 2208 if (cmd && !cmd->addrExpr) { 2209 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2210 // padding in the file contents. 2211 // 2212 // When -z separate-code is used we must not have any overlap in pages 2213 // between an executable segment and a non-executable segment. We align to 2214 // the next maximum page size boundary on transitions between executable 2215 // and non-executable segments. 2216 // 2217 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2218 // sections will be extracted to a separate file. Align to the next 2219 // maximum page size boundary so that we can find the ELF header at the 2220 // start. We cannot benefit from overlapping p_offset ranges with the 2221 // previous segment anyway. 2222 if (config->zSeparate == SeparateSegmentKind::Loadable || 2223 (config->zSeparate == SeparateSegmentKind::Code && prev && 2224 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2225 cmd->type == SHT_LLVM_PART_EHDR) 2226 cmd->addrExpr = [] { 2227 return alignTo(script->getDot(), config->maxPageSize); 2228 }; 2229 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2230 // it must be the RW. Align to p_align(PT_TLS) to make sure 2231 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2232 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2233 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2234 // be congruent to 0 modulo p_align(PT_TLS). 2235 // 2236 // Technically this is not required, but as of 2019, some dynamic loaders 2237 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2238 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2239 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2240 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2241 // blocks correctly. We need to keep the workaround for a while. 2242 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2243 cmd->addrExpr = [] { 2244 return alignTo(script->getDot(), config->maxPageSize) + 2245 alignTo(script->getDot() % config->maxPageSize, 2246 Out::tlsPhdr->p_align); 2247 }; 2248 else 2249 cmd->addrExpr = [] { 2250 return alignTo(script->getDot(), config->maxPageSize) + 2251 script->getDot() % config->maxPageSize; 2252 }; 2253 } 2254 }; 2255 2256 for (Partition &part : partitions) { 2257 prev = nullptr; 2258 for (const PhdrEntry *p : part.phdrs) 2259 if (p->p_type == PT_LOAD && p->firstSec) { 2260 pageAlign(p); 2261 prev = p; 2262 } 2263 } 2264 } 2265 2266 // Compute an in-file position for a given section. The file offset must be the 2267 // same with its virtual address modulo the page size, so that the loader can 2268 // load executables without any address adjustment. 2269 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2270 // The first section in a PT_LOAD has to have congruent offset and address 2271 // modulo the maximum page size. 2272 if (os->ptLoad && os->ptLoad->firstSec == os) 2273 return alignTo(off, os->ptLoad->p_align, os->addr); 2274 2275 // File offsets are not significant for .bss sections other than the first one 2276 // in a PT_LOAD. By convention, we keep section offsets monotonically 2277 // increasing rather than setting to zero. 2278 if (os->type == SHT_NOBITS) 2279 return off; 2280 2281 // If the section is not in a PT_LOAD, we just have to align it. 2282 if (!os->ptLoad) 2283 return alignTo(off, os->alignment); 2284 2285 // If two sections share the same PT_LOAD the file offset is calculated 2286 // using this formula: Off2 = Off1 + (VA2 - VA1). 2287 OutputSection *first = os->ptLoad->firstSec; 2288 return first->offset + os->addr - first->addr; 2289 } 2290 2291 // Set an in-file position to a given section and returns the end position of 2292 // the section. 2293 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2294 off = computeFileOffset(os, off); 2295 os->offset = off; 2296 2297 if (os->type == SHT_NOBITS) 2298 return off; 2299 return off + os->size; 2300 } 2301 2302 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2303 uint64_t off = 0; 2304 for (OutputSection *sec : outputSections) 2305 if (sec->flags & SHF_ALLOC) 2306 off = setFileOffset(sec, off); 2307 fileSize = alignTo(off, config->wordsize); 2308 } 2309 2310 static std::string rangeToString(uint64_t addr, uint64_t len) { 2311 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2312 } 2313 2314 // Assign file offsets to output sections. 2315 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2316 uint64_t off = 0; 2317 off = setFileOffset(Out::elfHeader, off); 2318 off = setFileOffset(Out::programHeaders, off); 2319 2320 PhdrEntry *lastRX = nullptr; 2321 for (Partition &part : partitions) 2322 for (PhdrEntry *p : part.phdrs) 2323 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2324 lastRX = p; 2325 2326 for (OutputSection *sec : outputSections) { 2327 off = setFileOffset(sec, off); 2328 2329 // If this is a last section of the last executable segment and that 2330 // segment is the last loadable segment, align the offset of the 2331 // following section to avoid loading non-segments parts of the file. 2332 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2333 lastRX->lastSec == sec) 2334 off = alignTo(off, config->commonPageSize); 2335 } 2336 2337 sectionHeaderOff = alignTo(off, config->wordsize); 2338 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2339 2340 // Our logic assumes that sections have rising VA within the same segment. 2341 // With use of linker scripts it is possible to violate this rule and get file 2342 // offset overlaps or overflows. That should never happen with a valid script 2343 // which does not move the location counter backwards and usually scripts do 2344 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2345 // kernel, which control segment distribution explicitly and move the counter 2346 // backwards, so we have to allow doing that to support linking them. We 2347 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2348 // we want to prevent file size overflows because it would crash the linker. 2349 for (OutputSection *sec : outputSections) { 2350 if (sec->type == SHT_NOBITS) 2351 continue; 2352 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2353 error("unable to place section " + sec->name + " at file offset " + 2354 rangeToString(sec->offset, sec->size) + 2355 "; check your linker script for overflows"); 2356 } 2357 } 2358 2359 // Finalize the program headers. We call this function after we assign 2360 // file offsets and VAs to all sections. 2361 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2362 for (PhdrEntry *p : part.phdrs) { 2363 OutputSection *first = p->firstSec; 2364 OutputSection *last = p->lastSec; 2365 2366 if (first) { 2367 p->p_filesz = last->offset - first->offset; 2368 if (last->type != SHT_NOBITS) 2369 p->p_filesz += last->size; 2370 2371 p->p_memsz = last->addr + last->size - first->addr; 2372 p->p_offset = first->offset; 2373 p->p_vaddr = first->addr; 2374 2375 // File offsets in partitions other than the main partition are relative 2376 // to the offset of the ELF headers. Perform that adjustment now. 2377 if (part.elfHeader) 2378 p->p_offset -= part.elfHeader->getParent()->offset; 2379 2380 if (!p->hasLMA) 2381 p->p_paddr = first->getLMA(); 2382 } 2383 2384 if (p->p_type == PT_GNU_RELRO) { 2385 p->p_align = 1; 2386 // musl/glibc ld.so rounds the size down, so we need to round up 2387 // to protect the last page. This is a no-op on FreeBSD which always 2388 // rounds up. 2389 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2390 p->p_offset; 2391 } 2392 } 2393 } 2394 2395 // A helper struct for checkSectionOverlap. 2396 namespace { 2397 struct SectionOffset { 2398 OutputSection *sec; 2399 uint64_t offset; 2400 }; 2401 } // namespace 2402 2403 // Check whether sections overlap for a specific address range (file offsets, 2404 // load and virtual addresses). 2405 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2406 bool isVirtualAddr) { 2407 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2408 return a.offset < b.offset; 2409 }); 2410 2411 // Finding overlap is easy given a vector is sorted by start position. 2412 // If an element starts before the end of the previous element, they overlap. 2413 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2414 SectionOffset a = sections[i - 1]; 2415 SectionOffset b = sections[i]; 2416 if (b.offset >= a.offset + a.sec->size) 2417 continue; 2418 2419 // If both sections are in OVERLAY we allow the overlapping of virtual 2420 // addresses, because it is what OVERLAY was designed for. 2421 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2422 continue; 2423 2424 errorOrWarn("section " + a.sec->name + " " + name + 2425 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2426 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2427 b.sec->name + " range is " + 2428 rangeToString(b.offset, b.sec->size)); 2429 } 2430 } 2431 2432 // Check for overlapping sections and address overflows. 2433 // 2434 // In this function we check that none of the output sections have overlapping 2435 // file offsets. For SHF_ALLOC sections we also check that the load address 2436 // ranges and the virtual address ranges don't overlap 2437 template <class ELFT> void Writer<ELFT>::checkSections() { 2438 // First, check that section's VAs fit in available address space for target. 2439 for (OutputSection *os : outputSections) 2440 if ((os->addr + os->size < os->addr) || 2441 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2442 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2443 " of size 0x" + utohexstr(os->size) + 2444 " exceeds available address space"); 2445 2446 // Check for overlapping file offsets. In this case we need to skip any 2447 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2448 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2449 // binary is specified only add SHF_ALLOC sections are added to the output 2450 // file so we skip any non-allocated sections in that case. 2451 std::vector<SectionOffset> fileOffs; 2452 for (OutputSection *sec : outputSections) 2453 if (sec->size > 0 && sec->type != SHT_NOBITS && 2454 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2455 fileOffs.push_back({sec, sec->offset}); 2456 checkOverlap("file", fileOffs, false); 2457 2458 // When linking with -r there is no need to check for overlapping virtual/load 2459 // addresses since those addresses will only be assigned when the final 2460 // executable/shared object is created. 2461 if (config->relocatable) 2462 return; 2463 2464 // Checking for overlapping virtual and load addresses only needs to take 2465 // into account SHF_ALLOC sections since others will not be loaded. 2466 // Furthermore, we also need to skip SHF_TLS sections since these will be 2467 // mapped to other addresses at runtime and can therefore have overlapping 2468 // ranges in the file. 2469 std::vector<SectionOffset> vmas; 2470 for (OutputSection *sec : outputSections) 2471 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2472 vmas.push_back({sec, sec->addr}); 2473 checkOverlap("virtual address", vmas, true); 2474 2475 // Finally, check that the load addresses don't overlap. This will usually be 2476 // the same as the virtual addresses but can be different when using a linker 2477 // script with AT(). 2478 std::vector<SectionOffset> lmas; 2479 for (OutputSection *sec : outputSections) 2480 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2481 lmas.push_back({sec, sec->getLMA()}); 2482 checkOverlap("load address", lmas, false); 2483 } 2484 2485 // The entry point address is chosen in the following ways. 2486 // 2487 // 1. the '-e' entry command-line option; 2488 // 2. the ENTRY(symbol) command in a linker control script; 2489 // 3. the value of the symbol _start, if present; 2490 // 4. the number represented by the entry symbol, if it is a number; 2491 // 5. the address of the first byte of the .text section, if present; 2492 // 6. the address 0. 2493 static uint64_t getEntryAddr() { 2494 // Case 1, 2 or 3 2495 if (Symbol *b = symtab->find(config->entry)) 2496 return b->getVA(); 2497 2498 // Case 4 2499 uint64_t addr; 2500 if (to_integer(config->entry, addr)) 2501 return addr; 2502 2503 // Case 5 2504 if (OutputSection *sec = findSection(".text")) { 2505 if (config->warnMissingEntry) 2506 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2507 utohexstr(sec->addr)); 2508 return sec->addr; 2509 } 2510 2511 // Case 6 2512 if (config->warnMissingEntry) 2513 warn("cannot find entry symbol " + config->entry + 2514 "; not setting start address"); 2515 return 0; 2516 } 2517 2518 static uint16_t getELFType() { 2519 if (config->isPic) 2520 return ET_DYN; 2521 if (config->relocatable) 2522 return ET_REL; 2523 return ET_EXEC; 2524 } 2525 2526 template <class ELFT> void Writer<ELFT>::writeHeader() { 2527 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2528 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2529 2530 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2531 eHdr->e_type = getELFType(); 2532 eHdr->e_entry = getEntryAddr(); 2533 eHdr->e_shoff = sectionHeaderOff; 2534 2535 // Write the section header table. 2536 // 2537 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2538 // and e_shstrndx fields. When the value of one of these fields exceeds 2539 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2540 // use fields in the section header at index 0 to store 2541 // the value. The sentinel values and fields are: 2542 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2543 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2544 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2545 size_t num = outputSections.size() + 1; 2546 if (num >= SHN_LORESERVE) 2547 sHdrs->sh_size = num; 2548 else 2549 eHdr->e_shnum = num; 2550 2551 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2552 if (strTabIndex >= SHN_LORESERVE) { 2553 sHdrs->sh_link = strTabIndex; 2554 eHdr->e_shstrndx = SHN_XINDEX; 2555 } else { 2556 eHdr->e_shstrndx = strTabIndex; 2557 } 2558 2559 for (OutputSection *sec : outputSections) 2560 sec->writeHeaderTo<ELFT>(++sHdrs); 2561 } 2562 2563 // Open a result file. 2564 template <class ELFT> void Writer<ELFT>::openFile() { 2565 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2566 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2567 error("output file too large: " + Twine(fileSize) + " bytes"); 2568 return; 2569 } 2570 2571 unlinkAsync(config->outputFile); 2572 unsigned flags = 0; 2573 if (!config->relocatable) 2574 flags |= FileOutputBuffer::F_executable; 2575 if (!config->mmapOutputFile) 2576 flags |= FileOutputBuffer::F_no_mmap; 2577 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2578 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2579 2580 if (!bufferOrErr) { 2581 error("failed to open " + config->outputFile + ": " + 2582 llvm::toString(bufferOrErr.takeError())); 2583 return; 2584 } 2585 buffer = std::move(*bufferOrErr); 2586 Out::bufferStart = buffer->getBufferStart(); 2587 } 2588 2589 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2590 for (OutputSection *sec : outputSections) 2591 if (sec->flags & SHF_ALLOC) 2592 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2593 } 2594 2595 static void fillTrap(uint8_t *i, uint8_t *end) { 2596 for (; i + 4 <= end; i += 4) 2597 memcpy(i, &target->trapInstr, 4); 2598 } 2599 2600 // Fill the last page of executable segments with trap instructions 2601 // instead of leaving them as zero. Even though it is not required by any 2602 // standard, it is in general a good thing to do for security reasons. 2603 // 2604 // We'll leave other pages in segments as-is because the rest will be 2605 // overwritten by output sections. 2606 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2607 for (Partition &part : partitions) { 2608 // Fill the last page. 2609 for (PhdrEntry *p : part.phdrs) 2610 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2611 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2612 config->commonPageSize), 2613 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2614 config->commonPageSize)); 2615 2616 // Round up the file size of the last segment to the page boundary iff it is 2617 // an executable segment to ensure that other tools don't accidentally 2618 // trim the instruction padding (e.g. when stripping the file). 2619 PhdrEntry *last = nullptr; 2620 for (PhdrEntry *p : part.phdrs) 2621 if (p->p_type == PT_LOAD) 2622 last = p; 2623 2624 if (last && (last->p_flags & PF_X)) 2625 last->p_memsz = last->p_filesz = 2626 alignTo(last->p_filesz, config->commonPageSize); 2627 } 2628 } 2629 2630 // Write section contents to a mmap'ed file. 2631 template <class ELFT> void Writer<ELFT>::writeSections() { 2632 // In -r or -emit-relocs mode, write the relocation sections first as in 2633 // ELf_Rel targets we might find out that we need to modify the relocated 2634 // section while doing it. 2635 for (OutputSection *sec : outputSections) 2636 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2637 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2638 2639 for (OutputSection *sec : outputSections) 2640 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2641 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2642 } 2643 2644 // Split one uint8 array into small pieces of uint8 arrays. 2645 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2646 size_t chunkSize) { 2647 std::vector<ArrayRef<uint8_t>> ret; 2648 while (arr.size() > chunkSize) { 2649 ret.push_back(arr.take_front(chunkSize)); 2650 arr = arr.drop_front(chunkSize); 2651 } 2652 if (!arr.empty()) 2653 ret.push_back(arr); 2654 return ret; 2655 } 2656 2657 // Computes a hash value of Data using a given hash function. 2658 // In order to utilize multiple cores, we first split data into 1MB 2659 // chunks, compute a hash for each chunk, and then compute a hash value 2660 // of the hash values. 2661 static void 2662 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2663 llvm::ArrayRef<uint8_t> data, 2664 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2665 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2666 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2667 2668 // Compute hash values. 2669 parallelForEachN(0, chunks.size(), [&](size_t i) { 2670 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2671 }); 2672 2673 // Write to the final output buffer. 2674 hashFn(hashBuf.data(), hashes); 2675 } 2676 2677 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2678 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2679 return; 2680 2681 if (config->buildId == BuildIdKind::Hexstring) { 2682 for (Partition &part : partitions) 2683 part.buildId->writeBuildId(config->buildIdVector); 2684 return; 2685 } 2686 2687 // Compute a hash of all sections of the output file. 2688 size_t hashSize = mainPart->buildId->hashSize; 2689 std::vector<uint8_t> buildId(hashSize); 2690 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2691 2692 switch (config->buildId) { 2693 case BuildIdKind::Fast: 2694 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2695 write64le(dest, xxHash64(arr)); 2696 }); 2697 break; 2698 case BuildIdKind::Md5: 2699 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2700 memcpy(dest, MD5::hash(arr).data(), hashSize); 2701 }); 2702 break; 2703 case BuildIdKind::Sha1: 2704 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2705 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2706 }); 2707 break; 2708 case BuildIdKind::Uuid: 2709 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2710 error("entropy source failure: " + ec.message()); 2711 break; 2712 default: 2713 llvm_unreachable("unknown BuildIdKind"); 2714 } 2715 for (Partition &part : partitions) 2716 part.buildId->writeBuildId(buildId); 2717 } 2718 2719 template void createSyntheticSections<ELF32LE>(); 2720 template void createSyntheticSections<ELF32BE>(); 2721 template void createSyntheticSections<ELF64LE>(); 2722 template void createSyntheticSections<ELF64BE>(); 2723 2724 template void writeResult<ELF32LE>(); 2725 template void writeResult<ELF32BE>(); 2726 template void writeResult<ELF64LE>(); 2727 template void writeResult<ELF64BE>(); 2728 2729 } // namespace elf 2730 } // namespace lld 2731