1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/CommonLinkerContext.h" 26 #include "lld/Common/DWARF.h" 27 #include "lld/Common/Strings.h" 28 #include "lld/Common/Version.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 33 #include "llvm/Object/ELFObjectFile.h" 34 #include "llvm/Support/Compression.h" 35 #include "llvm/Support/Endian.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/MD5.h" 38 #include "llvm/Support/Parallel.h" 39 #include "llvm/Support/TimeProfiler.h" 40 #include <cstdlib> 41 #include <thread> 42 43 using namespace llvm; 44 using namespace llvm::dwarf; 45 using namespace llvm::ELF; 46 using namespace llvm::object; 47 using namespace llvm::support; 48 using namespace lld; 49 using namespace lld::elf; 50 51 using llvm::support::endian::read32le; 52 using llvm::support::endian::write32le; 53 using llvm::support::endian::write64le; 54 55 constexpr size_t MergeNoTailSection::numShards; 56 57 static uint64_t readUint(uint8_t *buf) { 58 return config->is64 ? read64(buf) : read32(buf); 59 } 60 61 static void writeUint(uint8_t *buf, uint64_t val) { 62 if (config->is64) 63 write64(buf, val); 64 else 65 write32(buf, val); 66 } 67 68 // Returns an LLD version string. 69 static ArrayRef<uint8_t> getVersion() { 70 // Check LLD_VERSION first for ease of testing. 71 // You can get consistent output by using the environment variable. 72 // This is only for testing. 73 StringRef s = getenv("LLD_VERSION"); 74 if (s.empty()) 75 s = saver().save(Twine("Linker: ") + getLLDVersion()); 76 77 // +1 to include the terminating '\0'. 78 return {(const uint8_t *)s.data(), s.size() + 1}; 79 } 80 81 // Creates a .comment section containing LLD version info. 82 // With this feature, you can identify LLD-generated binaries easily 83 // by "readelf --string-dump .comment <file>". 84 // The returned object is a mergeable string section. 85 MergeInputSection *elf::createCommentSection() { 86 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 87 getVersion(), ".comment"); 88 sec->splitIntoPieces(); 89 return sec; 90 } 91 92 // .MIPS.abiflags section. 93 template <class ELFT> 94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 95 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 96 flags(flags) { 97 this->entsize = sizeof(Elf_Mips_ABIFlags); 98 } 99 100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 101 memcpy(buf, &flags, sizeof(flags)); 102 } 103 104 template <class ELFT> 105 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 106 Elf_Mips_ABIFlags flags = {}; 107 bool create = false; 108 109 for (InputSectionBase *sec : inputSections) { 110 if (sec->type != SHT_MIPS_ABIFLAGS) 111 continue; 112 sec->markDead(); 113 create = true; 114 115 std::string filename = toString(sec->file); 116 const size_t size = sec->data().size(); 117 // Older version of BFD (such as the default FreeBSD linker) concatenate 118 // .MIPS.abiflags instead of merging. To allow for this case (or potential 119 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 120 if (size < sizeof(Elf_Mips_ABIFlags)) { 121 error(filename + ": invalid size of .MIPS.abiflags section: got " + 122 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 123 return nullptr; 124 } 125 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 126 if (s->version != 0) { 127 error(filename + ": unexpected .MIPS.abiflags version " + 128 Twine(s->version)); 129 return nullptr; 130 } 131 132 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 133 // select the highest number of ISA/Rev/Ext. 134 flags.isa_level = std::max(flags.isa_level, s->isa_level); 135 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 136 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 137 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 138 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 139 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 140 flags.ases |= s->ases; 141 flags.flags1 |= s->flags1; 142 flags.flags2 |= s->flags2; 143 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 144 }; 145 146 if (create) 147 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 148 return nullptr; 149 } 150 151 // .MIPS.options section. 152 template <class ELFT> 153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 154 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 155 reginfo(reginfo) { 156 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 157 } 158 159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 160 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 161 options->kind = ODK_REGINFO; 162 options->size = getSize(); 163 164 if (!config->relocatable) 165 reginfo.ri_gp_value = in.mipsGot->getGp(); 166 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 167 } 168 169 template <class ELFT> 170 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 171 // N64 ABI only. 172 if (!ELFT::Is64Bits) 173 return nullptr; 174 175 SmallVector<InputSectionBase *, 0> sections; 176 for (InputSectionBase *sec : inputSections) 177 if (sec->type == SHT_MIPS_OPTIONS) 178 sections.push_back(sec); 179 180 if (sections.empty()) 181 return nullptr; 182 183 Elf_Mips_RegInfo reginfo = {}; 184 for (InputSectionBase *sec : sections) { 185 sec->markDead(); 186 187 std::string filename = toString(sec->file); 188 ArrayRef<uint8_t> d = sec->data(); 189 190 while (!d.empty()) { 191 if (d.size() < sizeof(Elf_Mips_Options)) { 192 error(filename + ": invalid size of .MIPS.options section"); 193 break; 194 } 195 196 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 197 if (opt->kind == ODK_REGINFO) { 198 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 199 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 200 break; 201 } 202 203 if (!opt->size) 204 fatal(filename + ": zero option descriptor size"); 205 d = d.slice(opt->size); 206 } 207 }; 208 209 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 210 } 211 212 // MIPS .reginfo section. 213 template <class ELFT> 214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 215 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 216 reginfo(reginfo) { 217 this->entsize = sizeof(Elf_Mips_RegInfo); 218 } 219 220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 221 if (!config->relocatable) 222 reginfo.ri_gp_value = in.mipsGot->getGp(); 223 memcpy(buf, ®info, sizeof(reginfo)); 224 } 225 226 template <class ELFT> 227 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 228 // Section should be alive for O32 and N32 ABIs only. 229 if (ELFT::Is64Bits) 230 return nullptr; 231 232 SmallVector<InputSectionBase *, 0> sections; 233 for (InputSectionBase *sec : inputSections) 234 if (sec->type == SHT_MIPS_REGINFO) 235 sections.push_back(sec); 236 237 if (sections.empty()) 238 return nullptr; 239 240 Elf_Mips_RegInfo reginfo = {}; 241 for (InputSectionBase *sec : sections) { 242 sec->markDead(); 243 244 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 245 error(toString(sec->file) + ": invalid size of .reginfo section"); 246 return nullptr; 247 } 248 249 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 250 reginfo.ri_gprmask |= r->ri_gprmask; 251 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 252 }; 253 254 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 255 } 256 257 InputSection *elf::createInterpSection() { 258 // StringSaver guarantees that the returned string ends with '\0'. 259 StringRef s = saver().save(config->dynamicLinker); 260 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 261 262 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 263 ".interp"); 264 } 265 266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 267 uint64_t size, InputSectionBase §ion) { 268 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 269 value, size, §ion); 270 if (in.symTab) 271 in.symTab->addSymbol(s); 272 return s; 273 } 274 275 static size_t getHashSize() { 276 switch (config->buildId) { 277 case BuildIdKind::Fast: 278 return 8; 279 case BuildIdKind::Md5: 280 case BuildIdKind::Uuid: 281 return 16; 282 case BuildIdKind::Sha1: 283 return 20; 284 case BuildIdKind::Hexstring: 285 return config->buildIdVector.size(); 286 default: 287 llvm_unreachable("unknown BuildIdKind"); 288 } 289 } 290 291 // This class represents a linker-synthesized .note.gnu.property section. 292 // 293 // In x86 and AArch64, object files may contain feature flags indicating the 294 // features that they have used. The flags are stored in a .note.gnu.property 295 // section. 296 // 297 // lld reads the sections from input files and merges them by computing AND of 298 // the flags. The result is written as a new .note.gnu.property section. 299 // 300 // If the flag is zero (which indicates that the intersection of the feature 301 // sets is empty, or some input files didn't have .note.gnu.property sections), 302 // we don't create this section. 303 GnuPropertySection::GnuPropertySection() 304 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 305 config->wordsize, ".note.gnu.property") {} 306 307 void GnuPropertySection::writeTo(uint8_t *buf) { 308 uint32_t featureAndType = config->emachine == EM_AARCH64 309 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 310 : GNU_PROPERTY_X86_FEATURE_1_AND; 311 312 write32(buf, 4); // Name size 313 write32(buf + 4, config->is64 ? 16 : 12); // Content size 314 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 315 memcpy(buf + 12, "GNU", 4); // Name string 316 write32(buf + 16, featureAndType); // Feature type 317 write32(buf + 20, 4); // Feature size 318 write32(buf + 24, config->andFeatures); // Feature flags 319 if (config->is64) 320 write32(buf + 28, 0); // Padding 321 } 322 323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 324 325 BuildIdSection::BuildIdSection() 326 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 327 hashSize(getHashSize()) {} 328 329 void BuildIdSection::writeTo(uint8_t *buf) { 330 write32(buf, 4); // Name size 331 write32(buf + 4, hashSize); // Content size 332 write32(buf + 8, NT_GNU_BUILD_ID); // Type 333 memcpy(buf + 12, "GNU", 4); // Name string 334 hashBuf = buf + 16; 335 } 336 337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 338 assert(buf.size() == hashSize); 339 memcpy(hashBuf, buf.data(), hashSize); 340 } 341 342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 343 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 344 this->bss = true; 345 this->size = size; 346 } 347 348 EhFrameSection::EhFrameSection() 349 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 350 351 // Search for an existing CIE record or create a new one. 352 // CIE records from input object files are uniquified by their contents 353 // and where their relocations point to. 354 template <class ELFT, class RelTy> 355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 356 Symbol *personality = nullptr; 357 unsigned firstRelI = cie.firstRelocation; 358 if (firstRelI != (unsigned)-1) 359 personality = 360 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 361 362 // Search for an existing CIE by CIE contents/relocation target pair. 363 CieRecord *&rec = cieMap[{cie.data(), personality}]; 364 365 // If not found, create a new one. 366 if (!rec) { 367 rec = make<CieRecord>(); 368 rec->cie = &cie; 369 cieRecords.push_back(rec); 370 } 371 return rec; 372 } 373 374 // There is one FDE per function. Returns a non-null pointer to the function 375 // symbol if the given FDE points to a live function. 376 template <class ELFT, class RelTy> 377 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 378 auto *sec = cast<EhInputSection>(fde.sec); 379 unsigned firstRelI = fde.firstRelocation; 380 381 // An FDE should point to some function because FDEs are to describe 382 // functions. That's however not always the case due to an issue of 383 // ld.gold with -r. ld.gold may discard only functions and leave their 384 // corresponding FDEs, which results in creating bad .eh_frame sections. 385 // To deal with that, we ignore such FDEs. 386 if (firstRelI == (unsigned)-1) 387 return nullptr; 388 389 const RelTy &rel = rels[firstRelI]; 390 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 391 392 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 393 // another partition, are dead. 394 if (auto *d = dyn_cast<Defined>(&b)) 395 if (!d->folded && d->section && d->section->partition == partition) 396 return d; 397 return nullptr; 398 } 399 400 // .eh_frame is a sequence of CIE or FDE records. In general, there 401 // is one CIE record per input object file which is followed by 402 // a list of FDEs. This function searches an existing CIE or create a new 403 // one and associates FDEs to the CIE. 404 template <class ELFT, class RelTy> 405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 406 offsetToCie.clear(); 407 for (EhSectionPiece &piece : sec->pieces) { 408 // The empty record is the end marker. 409 if (piece.size == 4) 410 return; 411 412 size_t offset = piece.inputOff; 413 uint32_t id = read32(piece.data().data() + 4); 414 if (id == 0) { 415 offsetToCie[offset] = addCie<ELFT>(piece, rels); 416 continue; 417 } 418 419 uint32_t cieOffset = offset + 4 - id; 420 CieRecord *rec = offsetToCie[cieOffset]; 421 if (!rec) 422 fatal(toString(sec) + ": invalid CIE reference"); 423 424 if (!isFdeLive<ELFT>(piece, rels)) 425 continue; 426 rec->fdes.push_back(&piece); 427 numFdes++; 428 } 429 } 430 431 template <class ELFT> 432 void EhFrameSection::addSectionAux(EhInputSection *sec) { 433 if (!sec->isLive()) 434 return; 435 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 436 if (rels.areRelocsRel()) 437 addRecords<ELFT>(sec, rels.rels); 438 else 439 addRecords<ELFT>(sec, rels.relas); 440 } 441 442 void EhFrameSection::addSection(EhInputSection *sec) { 443 sec->parent = this; 444 445 alignment = std::max(alignment, sec->alignment); 446 sections.push_back(sec); 447 448 for (auto *ds : sec->dependentSections) 449 dependentSections.push_back(ds); 450 } 451 452 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 453 // EhFrameSection::addRecords(). 454 template <class ELFT, class RelTy> 455 void EhFrameSection::iterateFDEWithLSDAAux( 456 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 457 llvm::function_ref<void(InputSection &)> fn) { 458 for (EhSectionPiece &piece : sec.pieces) { 459 // Skip ZERO terminator. 460 if (piece.size == 4) 461 continue; 462 463 size_t offset = piece.inputOff; 464 uint32_t id = 465 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 466 if (id == 0) { 467 if (hasLSDA(piece)) 468 ciesWithLSDA.insert(offset); 469 continue; 470 } 471 uint32_t cieOffset = offset + 4 - id; 472 if (ciesWithLSDA.count(cieOffset) == 0) 473 continue; 474 475 // The CIE has a LSDA argument. Call fn with d's section. 476 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 477 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 478 fn(*s); 479 } 480 } 481 482 template <class ELFT> 483 void EhFrameSection::iterateFDEWithLSDA( 484 llvm::function_ref<void(InputSection &)> fn) { 485 DenseSet<size_t> ciesWithLSDA; 486 for (EhInputSection *sec : sections) { 487 ciesWithLSDA.clear(); 488 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 489 if (rels.areRelocsRel()) 490 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 491 else 492 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 493 } 494 } 495 496 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 497 memcpy(buf, d.data(), d.size()); 498 499 size_t aligned = alignTo(d.size(), config->wordsize); 500 assert(std::all_of(buf + d.size(), buf + aligned, 501 [](uint8_t c) { return c == 0; })); 502 503 // Fix the size field. -4 since size does not include the size field itself. 504 write32(buf, aligned - 4); 505 } 506 507 void EhFrameSection::finalizeContents() { 508 assert(!this->size); // Not finalized. 509 510 switch (config->ekind) { 511 case ELFNoneKind: 512 llvm_unreachable("invalid ekind"); 513 case ELF32LEKind: 514 for (EhInputSection *sec : sections) 515 addSectionAux<ELF32LE>(sec); 516 break; 517 case ELF32BEKind: 518 for (EhInputSection *sec : sections) 519 addSectionAux<ELF32BE>(sec); 520 break; 521 case ELF64LEKind: 522 for (EhInputSection *sec : sections) 523 addSectionAux<ELF64LE>(sec); 524 break; 525 case ELF64BEKind: 526 for (EhInputSection *sec : sections) 527 addSectionAux<ELF64BE>(sec); 528 break; 529 } 530 531 size_t off = 0; 532 for (CieRecord *rec : cieRecords) { 533 rec->cie->outputOff = off; 534 off += alignTo(rec->cie->size, config->wordsize); 535 536 for (EhSectionPiece *fde : rec->fdes) { 537 fde->outputOff = off; 538 off += alignTo(fde->size, config->wordsize); 539 } 540 } 541 542 // The LSB standard does not allow a .eh_frame section with zero 543 // Call Frame Information records. glibc unwind-dw2-fde.c 544 // classify_object_over_fdes expects there is a CIE record length 0 as a 545 // terminator. Thus we add one unconditionally. 546 off += 4; 547 548 this->size = off; 549 } 550 551 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 552 // to get an FDE from an address to which FDE is applied. This function 553 // returns a list of such pairs. 554 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 555 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 556 SmallVector<FdeData, 0> ret; 557 558 uint64_t va = getPartition().ehFrameHdr->getVA(); 559 for (CieRecord *rec : cieRecords) { 560 uint8_t enc = getFdeEncoding(rec->cie); 561 for (EhSectionPiece *fde : rec->fdes) { 562 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 563 uint64_t fdeVA = getParent()->addr + fde->outputOff; 564 if (!isInt<32>(pc - va)) 565 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 566 Twine::utohexstr(pc - va)); 567 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 568 } 569 } 570 571 // Sort the FDE list by their PC and uniqueify. Usually there is only 572 // one FDE for a PC (i.e. function), but if ICF merges two functions 573 // into one, there can be more than one FDEs pointing to the address. 574 auto less = [](const FdeData &a, const FdeData &b) { 575 return a.pcRel < b.pcRel; 576 }; 577 llvm::stable_sort(ret, less); 578 auto eq = [](const FdeData &a, const FdeData &b) { 579 return a.pcRel == b.pcRel; 580 }; 581 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 582 583 return ret; 584 } 585 586 static uint64_t readFdeAddr(uint8_t *buf, int size) { 587 switch (size) { 588 case DW_EH_PE_udata2: 589 return read16(buf); 590 case DW_EH_PE_sdata2: 591 return (int16_t)read16(buf); 592 case DW_EH_PE_udata4: 593 return read32(buf); 594 case DW_EH_PE_sdata4: 595 return (int32_t)read32(buf); 596 case DW_EH_PE_udata8: 597 case DW_EH_PE_sdata8: 598 return read64(buf); 599 case DW_EH_PE_absptr: 600 return readUint(buf); 601 } 602 fatal("unknown FDE size encoding"); 603 } 604 605 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 606 // We need it to create .eh_frame_hdr section. 607 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 608 uint8_t enc) const { 609 // The starting address to which this FDE applies is 610 // stored at FDE + 8 byte. 611 size_t off = fdeOff + 8; 612 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 613 if ((enc & 0x70) == DW_EH_PE_absptr) 614 return addr; 615 if ((enc & 0x70) == DW_EH_PE_pcrel) 616 return addr + getParent()->addr + off; 617 fatal("unknown FDE size relative encoding"); 618 } 619 620 void EhFrameSection::writeTo(uint8_t *buf) { 621 // Write CIE and FDE records. 622 for (CieRecord *rec : cieRecords) { 623 size_t cieOffset = rec->cie->outputOff; 624 writeCieFde(buf + cieOffset, rec->cie->data()); 625 626 for (EhSectionPiece *fde : rec->fdes) { 627 size_t off = fde->outputOff; 628 writeCieFde(buf + off, fde->data()); 629 630 // FDE's second word should have the offset to an associated CIE. 631 // Write it. 632 write32(buf + off + 4, off + 4 - cieOffset); 633 } 634 } 635 636 // Apply relocations. .eh_frame section contents are not contiguous 637 // in the output buffer, but relocateAlloc() still works because 638 // getOffset() takes care of discontiguous section pieces. 639 for (EhInputSection *s : sections) 640 s->relocateAlloc(buf, nullptr); 641 642 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 643 getPartition().ehFrameHdr->write(); 644 } 645 646 GotSection::GotSection() 647 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 648 target->gotEntrySize, ".got") { 649 numEntries = target->gotHeaderEntriesNum; 650 } 651 652 void GotSection::addEntry(Symbol &sym) { 653 assert(sym.auxIdx == symAux.size() - 1); 654 symAux.back().gotIdx = numEntries++; 655 } 656 657 bool GotSection::addTlsDescEntry(Symbol &sym) { 658 assert(sym.auxIdx == symAux.size() - 1); 659 symAux.back().tlsDescIdx = numEntries; 660 numEntries += 2; 661 return true; 662 } 663 664 bool GotSection::addDynTlsEntry(Symbol &sym) { 665 assert(sym.auxIdx == symAux.size() - 1); 666 symAux.back().tlsGdIdx = numEntries; 667 // Global Dynamic TLS entries take two GOT slots. 668 numEntries += 2; 669 return true; 670 } 671 672 // Reserves TLS entries for a TLS module ID and a TLS block offset. 673 // In total it takes two GOT slots. 674 bool GotSection::addTlsIndex() { 675 if (tlsIndexOff != uint32_t(-1)) 676 return false; 677 tlsIndexOff = numEntries * config->wordsize; 678 numEntries += 2; 679 return true; 680 } 681 682 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 683 return sym.getTlsDescIdx() * config->wordsize; 684 } 685 686 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 687 return getVA() + getTlsDescOffset(sym); 688 } 689 690 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 691 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 692 } 693 694 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 695 return b.getTlsGdIdx() * config->wordsize; 696 } 697 698 void GotSection::finalizeContents() { 699 if (config->emachine == EM_PPC64 && 700 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 701 size = 0; 702 else 703 size = numEntries * config->wordsize; 704 } 705 706 bool GotSection::isNeeded() const { 707 // Needed if the GOT symbol is used or the number of entries is more than just 708 // the header. A GOT with just the header may not be needed. 709 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 710 } 711 712 void GotSection::writeTo(uint8_t *buf) { 713 target->writeGotHeader(buf); 714 relocateAlloc(buf, buf + size); 715 } 716 717 static uint64_t getMipsPageAddr(uint64_t addr) { 718 return (addr + 0x8000) & ~0xffff; 719 } 720 721 static uint64_t getMipsPageCount(uint64_t size) { 722 return (size + 0xfffe) / 0xffff + 1; 723 } 724 725 MipsGotSection::MipsGotSection() 726 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 727 ".got") {} 728 729 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 730 RelExpr expr) { 731 FileGot &g = getGot(file); 732 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 733 if (const OutputSection *os = sym.getOutputSection()) 734 g.pagesMap.insert({os, {}}); 735 else 736 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 737 } else if (sym.isTls()) 738 g.tls.insert({&sym, 0}); 739 else if (sym.isPreemptible && expr == R_ABS) 740 g.relocs.insert({&sym, 0}); 741 else if (sym.isPreemptible) 742 g.global.insert({&sym, 0}); 743 else if (expr == R_MIPS_GOT_OFF32) 744 g.local32.insert({{&sym, addend}, 0}); 745 else 746 g.local16.insert({{&sym, addend}, 0}); 747 } 748 749 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 750 getGot(file).dynTlsSymbols.insert({&sym, 0}); 751 } 752 753 void MipsGotSection::addTlsIndex(InputFile &file) { 754 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 755 } 756 757 size_t MipsGotSection::FileGot::getEntriesNum() const { 758 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 759 tls.size() + dynTlsSymbols.size() * 2; 760 } 761 762 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 763 size_t num = 0; 764 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 765 num += p.second.count; 766 return num; 767 } 768 769 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 770 size_t count = getPageEntriesNum() + local16.size() + global.size(); 771 // If there are relocation-only entries in the GOT, TLS entries 772 // are allocated after them. TLS entries should be addressable 773 // by 16-bit index so count both reloc-only and TLS entries. 774 if (!tls.empty() || !dynTlsSymbols.empty()) 775 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 776 return count; 777 } 778 779 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 780 if (f.mipsGotIndex == uint32_t(-1)) { 781 gots.emplace_back(); 782 gots.back().file = &f; 783 f.mipsGotIndex = gots.size() - 1; 784 } 785 return gots[f.mipsGotIndex]; 786 } 787 788 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 789 const Symbol &sym, 790 int64_t addend) const { 791 const FileGot &g = gots[f->mipsGotIndex]; 792 uint64_t index = 0; 793 if (const OutputSection *outSec = sym.getOutputSection()) { 794 uint64_t secAddr = getMipsPageAddr(outSec->addr); 795 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 796 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 797 } else { 798 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 799 } 800 return index * config->wordsize; 801 } 802 803 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 804 int64_t addend) const { 805 const FileGot &g = gots[f->mipsGotIndex]; 806 Symbol *sym = const_cast<Symbol *>(&s); 807 if (sym->isTls()) 808 return g.tls.lookup(sym) * config->wordsize; 809 if (sym->isPreemptible) 810 return g.global.lookup(sym) * config->wordsize; 811 return g.local16.lookup({sym, addend}) * config->wordsize; 812 } 813 814 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 815 const FileGot &g = gots[f->mipsGotIndex]; 816 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 817 } 818 819 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 820 const Symbol &s) const { 821 const FileGot &g = gots[f->mipsGotIndex]; 822 Symbol *sym = const_cast<Symbol *>(&s); 823 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 824 } 825 826 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 827 if (gots.empty()) 828 return nullptr; 829 const FileGot &primGot = gots.front(); 830 if (!primGot.global.empty()) 831 return primGot.global.front().first; 832 if (!primGot.relocs.empty()) 833 return primGot.relocs.front().first; 834 return nullptr; 835 } 836 837 unsigned MipsGotSection::getLocalEntriesNum() const { 838 if (gots.empty()) 839 return headerEntriesNum; 840 return headerEntriesNum + gots.front().getPageEntriesNum() + 841 gots.front().local16.size(); 842 } 843 844 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 845 FileGot tmp = dst; 846 set_union(tmp.pagesMap, src.pagesMap); 847 set_union(tmp.local16, src.local16); 848 set_union(tmp.global, src.global); 849 set_union(tmp.relocs, src.relocs); 850 set_union(tmp.tls, src.tls); 851 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 852 853 size_t count = isPrimary ? headerEntriesNum : 0; 854 count += tmp.getIndexedEntriesNum(); 855 856 if (count * config->wordsize > config->mipsGotSize) 857 return false; 858 859 std::swap(tmp, dst); 860 return true; 861 } 862 863 void MipsGotSection::finalizeContents() { updateAllocSize(); } 864 865 bool MipsGotSection::updateAllocSize() { 866 size = headerEntriesNum * config->wordsize; 867 for (const FileGot &g : gots) 868 size += g.getEntriesNum() * config->wordsize; 869 return false; 870 } 871 872 void MipsGotSection::build() { 873 if (gots.empty()) 874 return; 875 876 std::vector<FileGot> mergedGots(1); 877 878 // For each GOT move non-preemptible symbols from the `Global` 879 // to `Local16` list. Preemptible symbol might become non-preemptible 880 // one if, for example, it gets a related copy relocation. 881 for (FileGot &got : gots) { 882 for (auto &p: got.global) 883 if (!p.first->isPreemptible) 884 got.local16.insert({{p.first, 0}, 0}); 885 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 886 return !p.first->isPreemptible; 887 }); 888 } 889 890 // For each GOT remove "reloc-only" entry if there is "global" 891 // entry for the same symbol. And add local entries which indexed 892 // using 32-bit value at the end of 16-bit entries. 893 for (FileGot &got : gots) { 894 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 895 return got.global.count(p.first); 896 }); 897 set_union(got.local16, got.local32); 898 got.local32.clear(); 899 } 900 901 // Evaluate number of "reloc-only" entries in the resulting GOT. 902 // To do that put all unique "reloc-only" and "global" entries 903 // from all GOTs to the future primary GOT. 904 FileGot *primGot = &mergedGots.front(); 905 for (FileGot &got : gots) { 906 set_union(primGot->relocs, got.global); 907 set_union(primGot->relocs, got.relocs); 908 got.relocs.clear(); 909 } 910 911 // Evaluate number of "page" entries in each GOT. 912 for (FileGot &got : gots) { 913 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 914 got.pagesMap) { 915 const OutputSection *os = p.first; 916 uint64_t secSize = 0; 917 for (SectionCommand *cmd : os->commands) { 918 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 919 for (InputSection *isec : isd->sections) { 920 uint64_t off = alignTo(secSize, isec->alignment); 921 secSize = off + isec->getSize(); 922 } 923 } 924 p.second.count = getMipsPageCount(secSize); 925 } 926 } 927 928 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 929 // maximum GOT size. At first, try to fill the primary GOT because 930 // the primary GOT can be accessed in the most effective way. If it 931 // is not possible, try to fill the last GOT in the list, and finally 932 // create a new GOT if both attempts failed. 933 for (FileGot &srcGot : gots) { 934 InputFile *file = srcGot.file; 935 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 936 file->mipsGotIndex = 0; 937 } else { 938 // If this is the first time we failed to merge with the primary GOT, 939 // MergedGots.back() will also be the primary GOT. We must make sure not 940 // to try to merge again with isPrimary=false, as otherwise, if the 941 // inputs are just right, we could allow the primary GOT to become 1 or 2 942 // words bigger due to ignoring the header size. 943 if (mergedGots.size() == 1 || 944 !tryMergeGots(mergedGots.back(), srcGot, false)) { 945 mergedGots.emplace_back(); 946 std::swap(mergedGots.back(), srcGot); 947 } 948 file->mipsGotIndex = mergedGots.size() - 1; 949 } 950 } 951 std::swap(gots, mergedGots); 952 953 // Reduce number of "reloc-only" entries in the primary GOT 954 // by subtracting "global" entries in the primary GOT. 955 primGot = &gots.front(); 956 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 957 return primGot->global.count(p.first); 958 }); 959 960 // Calculate indexes for each GOT entry. 961 size_t index = headerEntriesNum; 962 for (FileGot &got : gots) { 963 got.startIndex = &got == primGot ? 0 : index; 964 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 965 got.pagesMap) { 966 // For each output section referenced by GOT page relocations calculate 967 // and save into pagesMap an upper bound of MIPS GOT entries required 968 // to store page addresses of local symbols. We assume the worst case - 969 // each 64kb page of the output section has at least one GOT relocation 970 // against it. And take in account the case when the section intersects 971 // page boundaries. 972 p.second.firstIndex = index; 973 index += p.second.count; 974 } 975 for (auto &p: got.local16) 976 p.second = index++; 977 for (auto &p: got.global) 978 p.second = index++; 979 for (auto &p: got.relocs) 980 p.second = index++; 981 for (auto &p: got.tls) 982 p.second = index++; 983 for (auto &p: got.dynTlsSymbols) { 984 p.second = index; 985 index += 2; 986 } 987 } 988 989 // Update SymbolAux::gotIdx field to use this 990 // value later in the `sortMipsSymbols` function. 991 for (auto &p : primGot->global) { 992 if (p.first->auxIdx == uint32_t(-1)) 993 p.first->allocateAux(); 994 symAux.back().gotIdx = p.second; 995 } 996 for (auto &p : primGot->relocs) { 997 if (p.first->auxIdx == uint32_t(-1)) 998 p.first->allocateAux(); 999 symAux.back().gotIdx = p.second; 1000 } 1001 1002 // Create dynamic relocations. 1003 for (FileGot &got : gots) { 1004 // Create dynamic relocations for TLS entries. 1005 for (std::pair<Symbol *, size_t> &p : got.tls) { 1006 Symbol *s = p.first; 1007 uint64_t offset = p.second * config->wordsize; 1008 // When building a shared library we still need a dynamic relocation 1009 // for the TP-relative offset as we don't know how much other data will 1010 // be allocated before us in the static TLS block. 1011 if (s->isPreemptible || config->shared) 1012 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1013 DynamicReloc::AgainstSymbolWithTargetVA, 1014 *s, 0, R_ABS}); 1015 } 1016 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1017 Symbol *s = p.first; 1018 uint64_t offset = p.second * config->wordsize; 1019 if (s == nullptr) { 1020 if (!config->shared) 1021 continue; 1022 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1023 } else { 1024 // When building a shared library we still need a dynamic relocation 1025 // for the module index. Therefore only checking for 1026 // S->isPreemptible is not sufficient (this happens e.g. for 1027 // thread-locals that have been marked as local through a linker script) 1028 if (!s->isPreemptible && !config->shared) 1029 continue; 1030 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1031 offset, *s); 1032 // However, we can skip writing the TLS offset reloc for non-preemptible 1033 // symbols since it is known even in shared libraries 1034 if (!s->isPreemptible) 1035 continue; 1036 offset += config->wordsize; 1037 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1038 *s); 1039 } 1040 } 1041 1042 // Do not create dynamic relocations for non-TLS 1043 // entries in the primary GOT. 1044 if (&got == primGot) 1045 continue; 1046 1047 // Dynamic relocations for "global" entries. 1048 for (const std::pair<Symbol *, size_t> &p : got.global) { 1049 uint64_t offset = p.second * config->wordsize; 1050 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1051 *p.first); 1052 } 1053 if (!config->isPic) 1054 continue; 1055 // Dynamic relocations for "local" entries in case of PIC. 1056 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1057 got.pagesMap) { 1058 size_t pageCount = l.second.count; 1059 for (size_t pi = 0; pi < pageCount; ++pi) { 1060 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1061 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1062 int64_t(pi * 0x10000)}); 1063 } 1064 } 1065 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1066 uint64_t offset = p.second * config->wordsize; 1067 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1068 DynamicReloc::AddendOnlyWithTargetVA, 1069 *p.first.first, p.first.second, R_ABS}); 1070 } 1071 } 1072 } 1073 1074 bool MipsGotSection::isNeeded() const { 1075 // We add the .got section to the result for dynamic MIPS target because 1076 // its address and properties are mentioned in the .dynamic section. 1077 return !config->relocatable; 1078 } 1079 1080 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1081 // For files without related GOT or files refer a primary GOT 1082 // returns "common" _gp value. For secondary GOTs calculate 1083 // individual _gp values. 1084 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1085 return ElfSym::mipsGp->getVA(0); 1086 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1087 } 1088 1089 void MipsGotSection::writeTo(uint8_t *buf) { 1090 // Set the MSB of the second GOT slot. This is not required by any 1091 // MIPS ABI documentation, though. 1092 // 1093 // There is a comment in glibc saying that "The MSB of got[1] of a 1094 // gnu object is set to identify gnu objects," and in GNU gold it 1095 // says "the second entry will be used by some runtime loaders". 1096 // But how this field is being used is unclear. 1097 // 1098 // We are not really willing to mimic other linkers behaviors 1099 // without understanding why they do that, but because all files 1100 // generated by GNU tools have this special GOT value, and because 1101 // we've been doing this for years, it is probably a safe bet to 1102 // keep doing this for now. We really need to revisit this to see 1103 // if we had to do this. 1104 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1105 for (const FileGot &g : gots) { 1106 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1107 uint64_t va = a; 1108 if (s) 1109 va = s->getVA(a); 1110 writeUint(buf + i * config->wordsize, va); 1111 }; 1112 // Write 'page address' entries to the local part of the GOT. 1113 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1114 g.pagesMap) { 1115 size_t pageCount = l.second.count; 1116 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1117 for (size_t pi = 0; pi < pageCount; ++pi) 1118 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1119 } 1120 // Local, global, TLS, reloc-only entries. 1121 // If TLS entry has a corresponding dynamic relocations, leave it 1122 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1123 // To calculate the adjustments use offsets for thread-local storage. 1124 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1125 for (const std::pair<GotEntry, size_t> &p : g.local16) 1126 write(p.second, p.first.first, p.first.second); 1127 // Write VA to the primary GOT only. For secondary GOTs that 1128 // will be done by REL32 dynamic relocations. 1129 if (&g == &gots.front()) 1130 for (const std::pair<Symbol *, size_t> &p : g.global) 1131 write(p.second, p.first, 0); 1132 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1133 write(p.second, p.first, 0); 1134 for (const std::pair<Symbol *, size_t> &p : g.tls) 1135 write(p.second, p.first, 1136 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1137 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1138 if (p.first == nullptr && !config->shared) 1139 write(p.second, nullptr, 1); 1140 else if (p.first && !p.first->isPreemptible) { 1141 // If we are emitting a shared library with relocations we mustn't write 1142 // anything to the GOT here. When using Elf_Rel relocations the value 1143 // one will be treated as an addend and will cause crashes at runtime 1144 if (!config->shared) 1145 write(p.second, nullptr, 1); 1146 write(p.second + 1, p.first, -0x8000); 1147 } 1148 } 1149 } 1150 } 1151 1152 // On PowerPC the .plt section is used to hold the table of function addresses 1153 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1154 // section. I don't know why we have a BSS style type for the section but it is 1155 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1156 GotPltSection::GotPltSection() 1157 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1158 ".got.plt") { 1159 if (config->emachine == EM_PPC) { 1160 name = ".plt"; 1161 } else if (config->emachine == EM_PPC64) { 1162 type = SHT_NOBITS; 1163 name = ".plt"; 1164 } 1165 } 1166 1167 void GotPltSection::addEntry(Symbol &sym) { 1168 assert(sym.auxIdx == symAux.size() - 1 && 1169 symAux.back().pltIdx == entries.size()); 1170 entries.push_back(&sym); 1171 } 1172 1173 size_t GotPltSection::getSize() const { 1174 return (target->gotPltHeaderEntriesNum + entries.size()) * 1175 target->gotEntrySize; 1176 } 1177 1178 void GotPltSection::writeTo(uint8_t *buf) { 1179 target->writeGotPltHeader(buf); 1180 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1181 for (const Symbol *b : entries) { 1182 target->writeGotPlt(buf, *b); 1183 buf += target->gotEntrySize; 1184 } 1185 } 1186 1187 bool GotPltSection::isNeeded() const { 1188 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1189 // to it. 1190 return !entries.empty() || hasGotPltOffRel; 1191 } 1192 1193 static StringRef getIgotPltName() { 1194 // On ARM the IgotPltSection is part of the GotSection. 1195 if (config->emachine == EM_ARM) 1196 return ".got"; 1197 1198 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1199 // needs to be named the same. 1200 if (config->emachine == EM_PPC64) 1201 return ".plt"; 1202 1203 return ".got.plt"; 1204 } 1205 1206 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1207 // with the IgotPltSection. 1208 IgotPltSection::IgotPltSection() 1209 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1210 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1211 target->gotEntrySize, getIgotPltName()) {} 1212 1213 void IgotPltSection::addEntry(Symbol &sym) { 1214 assert(symAux.back().pltIdx == entries.size()); 1215 entries.push_back(&sym); 1216 } 1217 1218 size_t IgotPltSection::getSize() const { 1219 return entries.size() * target->gotEntrySize; 1220 } 1221 1222 void IgotPltSection::writeTo(uint8_t *buf) { 1223 for (const Symbol *b : entries) { 1224 target->writeIgotPlt(buf, *b); 1225 buf += target->gotEntrySize; 1226 } 1227 } 1228 1229 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1230 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1231 dynamic(dynamic) { 1232 // ELF string tables start with a NUL byte. 1233 strings.push_back(""); 1234 size = 1; 1235 } 1236 1237 // Adds a string to the string table. If `hashIt` is true we hash and check for 1238 // duplicates. It is optional because the name of global symbols are already 1239 // uniqued and hashing them again has a big cost for a small value: uniquing 1240 // them with some other string that happens to be the same. 1241 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1242 if (hashIt) { 1243 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1244 if (!r.second) 1245 return r.first->second; 1246 } 1247 if (s.empty()) 1248 return 0; 1249 unsigned ret = this->size; 1250 this->size = this->size + s.size() + 1; 1251 strings.push_back(s); 1252 return ret; 1253 } 1254 1255 void StringTableSection::writeTo(uint8_t *buf) { 1256 for (StringRef s : strings) { 1257 memcpy(buf, s.data(), s.size()); 1258 buf[s.size()] = '\0'; 1259 buf += s.size() + 1; 1260 } 1261 } 1262 1263 // Returns the number of entries in .gnu.version_d: the number of 1264 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1265 // Note that we don't support vd_cnt > 1 yet. 1266 static unsigned getVerDefNum() { 1267 return namedVersionDefs().size() + 1; 1268 } 1269 1270 template <class ELFT> 1271 DynamicSection<ELFT>::DynamicSection() 1272 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1273 ".dynamic") { 1274 this->entsize = ELFT::Is64Bits ? 16 : 8; 1275 1276 // .dynamic section is not writable on MIPS and on Fuchsia OS 1277 // which passes -z rodynamic. 1278 // See "Special Section" in Chapter 4 in the following document: 1279 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1280 if (config->emachine == EM_MIPS || config->zRodynamic) 1281 this->flags = SHF_ALLOC; 1282 } 1283 1284 // The output section .rela.dyn may include these synthetic sections: 1285 // 1286 // - part.relaDyn 1287 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1288 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1289 // .rela.dyn 1290 // 1291 // DT_RELASZ is the total size of the included sections. 1292 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1293 size_t size = relaDyn.getSize(); 1294 if (in.relaIplt->getParent() == relaDyn.getParent()) 1295 size += in.relaIplt->getSize(); 1296 if (in.relaPlt->getParent() == relaDyn.getParent()) 1297 size += in.relaPlt->getSize(); 1298 return size; 1299 } 1300 1301 // A Linker script may assign the RELA relocation sections to the same 1302 // output section. When this occurs we cannot just use the OutputSection 1303 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1304 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1305 static uint64_t addPltRelSz() { 1306 size_t size = in.relaPlt->getSize(); 1307 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1308 in.relaIplt->name == in.relaPlt->name) 1309 size += in.relaIplt->getSize(); 1310 return size; 1311 } 1312 1313 // Add remaining entries to complete .dynamic contents. 1314 template <class ELFT> 1315 std::vector<std::pair<int32_t, uint64_t>> 1316 DynamicSection<ELFT>::computeContents() { 1317 elf::Partition &part = getPartition(); 1318 bool isMain = part.name.empty(); 1319 std::vector<std::pair<int32_t, uint64_t>> entries; 1320 1321 auto addInt = [&](int32_t tag, uint64_t val) { 1322 entries.emplace_back(tag, val); 1323 }; 1324 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1325 entries.emplace_back(tag, sec.getVA()); 1326 }; 1327 1328 for (StringRef s : config->filterList) 1329 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1330 for (StringRef s : config->auxiliaryList) 1331 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1332 1333 if (!config->rpath.empty()) 1334 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1335 part.dynStrTab->addString(config->rpath)); 1336 1337 for (SharedFile *file : sharedFiles) 1338 if (file->isNeeded) 1339 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1340 1341 if (isMain) { 1342 if (!config->soName.empty()) 1343 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1344 } else { 1345 if (!config->soName.empty()) 1346 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1347 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1348 } 1349 1350 // Set DT_FLAGS and DT_FLAGS_1. 1351 uint32_t dtFlags = 0; 1352 uint32_t dtFlags1 = 0; 1353 if (config->bsymbolic == BsymbolicKind::All) 1354 dtFlags |= DF_SYMBOLIC; 1355 if (config->zGlobal) 1356 dtFlags1 |= DF_1_GLOBAL; 1357 if (config->zInitfirst) 1358 dtFlags1 |= DF_1_INITFIRST; 1359 if (config->zInterpose) 1360 dtFlags1 |= DF_1_INTERPOSE; 1361 if (config->zNodefaultlib) 1362 dtFlags1 |= DF_1_NODEFLIB; 1363 if (config->zNodelete) 1364 dtFlags1 |= DF_1_NODELETE; 1365 if (config->zNodlopen) 1366 dtFlags1 |= DF_1_NOOPEN; 1367 if (config->pie) 1368 dtFlags1 |= DF_1_PIE; 1369 if (config->zNow) { 1370 dtFlags |= DF_BIND_NOW; 1371 dtFlags1 |= DF_1_NOW; 1372 } 1373 if (config->zOrigin) { 1374 dtFlags |= DF_ORIGIN; 1375 dtFlags1 |= DF_1_ORIGIN; 1376 } 1377 if (!config->zText) 1378 dtFlags |= DF_TEXTREL; 1379 if (config->hasTlsIe && config->shared) 1380 dtFlags |= DF_STATIC_TLS; 1381 1382 if (dtFlags) 1383 addInt(DT_FLAGS, dtFlags); 1384 if (dtFlags1) 1385 addInt(DT_FLAGS_1, dtFlags1); 1386 1387 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1388 // need it for each process, so we don't write it for DSOs. The loader writes 1389 // the pointer into this entry. 1390 // 1391 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1392 // systems (currently only Fuchsia OS) provide other means to give the 1393 // debugger this information. Such systems may choose make .dynamic read-only. 1394 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1395 if (!config->shared && !config->relocatable && !config->zRodynamic) 1396 addInt(DT_DEBUG, 0); 1397 1398 if (part.relaDyn->isNeeded() || 1399 (in.relaIplt->isNeeded() && 1400 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1401 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1402 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1403 addRelaSz(*part.relaDyn)); 1404 1405 bool isRela = config->isRela; 1406 addInt(isRela ? DT_RELAENT : DT_RELENT, 1407 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1408 1409 // MIPS dynamic loader does not support RELCOUNT tag. 1410 // The problem is in the tight relation between dynamic 1411 // relocations and GOT. So do not emit this tag on MIPS. 1412 if (config->emachine != EM_MIPS) { 1413 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1414 if (config->zCombreloc && numRelativeRels) 1415 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1416 } 1417 } 1418 if (part.relrDyn && part.relrDyn->getParent() && 1419 !part.relrDyn->relocs.empty()) { 1420 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1421 *part.relrDyn); 1422 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1423 part.relrDyn->getParent()->size); 1424 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1425 sizeof(Elf_Relr)); 1426 } 1427 // .rel[a].plt section usually consists of two parts, containing plt and 1428 // iplt relocations. It is possible to have only iplt relocations in the 1429 // output. In that case relaPlt is empty and have zero offset, the same offset 1430 // as relaIplt has. And we still want to emit proper dynamic tags for that 1431 // case, so here we always use relaPlt as marker for the beginning of 1432 // .rel[a].plt section. 1433 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1434 addInSec(DT_JMPREL, *in.relaPlt); 1435 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1436 switch (config->emachine) { 1437 case EM_MIPS: 1438 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1439 break; 1440 case EM_SPARCV9: 1441 addInSec(DT_PLTGOT, *in.plt); 1442 break; 1443 case EM_AARCH64: 1444 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1445 return r.type == target->pltRel && 1446 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1447 }) != in.relaPlt->relocs.end()) 1448 addInt(DT_AARCH64_VARIANT_PCS, 0); 1449 LLVM_FALLTHROUGH; 1450 default: 1451 addInSec(DT_PLTGOT, *in.gotPlt); 1452 break; 1453 } 1454 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1455 } 1456 1457 if (config->emachine == EM_AARCH64) { 1458 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1459 addInt(DT_AARCH64_BTI_PLT, 0); 1460 if (config->zPacPlt) 1461 addInt(DT_AARCH64_PAC_PLT, 0); 1462 } 1463 1464 addInSec(DT_SYMTAB, *part.dynSymTab); 1465 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1466 addInSec(DT_STRTAB, *part.dynStrTab); 1467 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1468 if (!config->zText) 1469 addInt(DT_TEXTREL, 0); 1470 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1471 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1472 if (part.hashTab && part.hashTab->getParent()) 1473 addInSec(DT_HASH, *part.hashTab); 1474 1475 if (isMain) { 1476 if (Out::preinitArray) { 1477 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1478 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1479 } 1480 if (Out::initArray) { 1481 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1482 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1483 } 1484 if (Out::finiArray) { 1485 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1486 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1487 } 1488 1489 if (Symbol *b = symtab->find(config->init)) 1490 if (b->isDefined()) 1491 addInt(DT_INIT, b->getVA()); 1492 if (Symbol *b = symtab->find(config->fini)) 1493 if (b->isDefined()) 1494 addInt(DT_FINI, b->getVA()); 1495 } 1496 1497 if (part.verSym && part.verSym->isNeeded()) 1498 addInSec(DT_VERSYM, *part.verSym); 1499 if (part.verDef && part.verDef->isLive()) { 1500 addInSec(DT_VERDEF, *part.verDef); 1501 addInt(DT_VERDEFNUM, getVerDefNum()); 1502 } 1503 if (part.verNeed && part.verNeed->isNeeded()) { 1504 addInSec(DT_VERNEED, *part.verNeed); 1505 unsigned needNum = 0; 1506 for (SharedFile *f : sharedFiles) 1507 if (!f->vernauxs.empty()) 1508 ++needNum; 1509 addInt(DT_VERNEEDNUM, needNum); 1510 } 1511 1512 if (config->emachine == EM_MIPS) { 1513 addInt(DT_MIPS_RLD_VERSION, 1); 1514 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1515 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1516 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1517 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1518 1519 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1520 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1521 else 1522 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1523 addInSec(DT_PLTGOT, *in.mipsGot); 1524 if (in.mipsRldMap) { 1525 if (!config->pie) 1526 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1527 // Store the offset to the .rld_map section 1528 // relative to the address of the tag. 1529 addInt(DT_MIPS_RLD_MAP_REL, 1530 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1531 } 1532 } 1533 1534 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1535 // glibc assumes the old-style BSS PLT layout which we don't support. 1536 if (config->emachine == EM_PPC) 1537 addInSec(DT_PPC_GOT, *in.got); 1538 1539 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1540 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1541 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1542 // stub, which starts directly after the header. 1543 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1544 } 1545 1546 addInt(DT_NULL, 0); 1547 return entries; 1548 } 1549 1550 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1551 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1552 getParent()->link = sec->sectionIndex; 1553 this->size = computeContents().size() * this->entsize; 1554 } 1555 1556 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1557 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1558 1559 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1560 p->d_tag = kv.first; 1561 p->d_un.d_val = kv.second; 1562 ++p; 1563 } 1564 } 1565 1566 uint64_t DynamicReloc::getOffset() const { 1567 return inputSec->getVA(offsetInSec); 1568 } 1569 1570 int64_t DynamicReloc::computeAddend() const { 1571 switch (kind) { 1572 case AddendOnly: 1573 assert(sym == nullptr); 1574 return addend; 1575 case AgainstSymbol: 1576 assert(sym != nullptr); 1577 return addend; 1578 case AddendOnlyWithTargetVA: 1579 case AgainstSymbolWithTargetVA: 1580 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1581 getOffset(), *sym, expr); 1582 case MipsMultiGotPage: 1583 assert(sym == nullptr); 1584 return getMipsPageAddr(outputSec->addr) + addend; 1585 } 1586 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1587 } 1588 1589 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1590 if (needsDynSymIndex()) 1591 return symTab->getSymbolIndex(sym); 1592 return 0; 1593 } 1594 1595 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1596 int32_t dynamicTag, 1597 int32_t sizeDynamicTag, 1598 bool combreloc) 1599 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1600 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1601 combreloc(combreloc) {} 1602 1603 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1604 InputSectionBase &isec, 1605 uint64_t offsetInSec, Symbol &sym, 1606 int64_t addend, 1607 Optional<RelType> addendRelType) { 1608 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1609 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1610 } 1611 1612 void RelocationBaseSection::addRelativeReloc( 1613 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1614 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1615 // This function should only be called for non-preemptible symbols or 1616 // RelExpr values that refer to an address inside the output file (e.g. the 1617 // address of the GOT entry for a potentially preemptible symbol). 1618 assert((!sym.isPreemptible || expr == R_GOT) && 1619 "cannot add relative relocation against preemptible symbol"); 1620 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1621 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1622 sym, addend, expr, addendRelType); 1623 } 1624 1625 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1626 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1627 RelType addendRelType) { 1628 // No need to write an addend to the section for preemptible symbols. 1629 if (sym.isPreemptible) 1630 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1631 R_ABS}); 1632 else 1633 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1634 sym, 0, R_ABS, addendRelType); 1635 } 1636 1637 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1638 InputSectionBase &inputSec, 1639 uint64_t offsetInSec, Symbol &sym, 1640 int64_t addend, RelExpr expr, 1641 RelType addendRelType) { 1642 // Write the addends to the relocated address if required. We skip 1643 // it if the written value would be zero. 1644 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1645 inputSec.relocations.push_back( 1646 {expr, addendRelType, offsetInSec, addend, &sym}); 1647 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1648 } 1649 1650 void RelocationBaseSection::partitionRels() { 1651 if (!combreloc) 1652 return; 1653 const RelType relativeRel = target->relativeRel; 1654 numRelativeRelocs = 1655 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) - 1656 relocs.begin(); 1657 } 1658 1659 void RelocationBaseSection::finalizeContents() { 1660 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1661 1662 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1663 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1664 // case. 1665 if (symTab && symTab->getParent()) 1666 getParent()->link = symTab->getParent()->sectionIndex; 1667 else 1668 getParent()->link = 0; 1669 1670 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1671 getParent()->flags |= ELF::SHF_INFO_LINK; 1672 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1673 } 1674 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1675 getParent()->flags |= ELF::SHF_INFO_LINK; 1676 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1677 } 1678 } 1679 1680 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1681 r_offset = getOffset(); 1682 r_sym = getSymIndex(symtab); 1683 addend = computeAddend(); 1684 kind = AddendOnly; // Catch errors 1685 } 1686 1687 void RelocationBaseSection::computeRels() { 1688 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1689 parallelForEach(relocs, 1690 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1691 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1692 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1693 // is to make results easier to read. 1694 if (combreloc) { 1695 auto nonRelative = relocs.begin() + numRelativeRelocs; 1696 parallelSort(relocs.begin(), nonRelative, 1697 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1698 // Non-relative relocations are few, so don't bother with parallelSort. 1699 std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1700 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1701 }); 1702 } 1703 } 1704 1705 template <class ELFT> 1706 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc) 1707 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1708 config->isRela ? DT_RELA : DT_REL, 1709 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) { 1710 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1711 } 1712 1713 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1714 computeRels(); 1715 for (const DynamicReloc &rel : relocs) { 1716 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1717 p->r_offset = rel.r_offset; 1718 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1719 if (config->isRela) 1720 p->r_addend = rel.addend; 1721 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1722 } 1723 } 1724 1725 RelrBaseSection::RelrBaseSection() 1726 : SyntheticSection(SHF_ALLOC, 1727 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1728 config->wordsize, ".relr.dyn") {} 1729 1730 template <class ELFT> 1731 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1732 StringRef name) 1733 : RelocationBaseSection( 1734 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1735 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1736 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1737 /*combreloc=*/false) { 1738 this->entsize = 1; 1739 } 1740 1741 template <class ELFT> 1742 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1743 // This function computes the contents of an Android-format packed relocation 1744 // section. 1745 // 1746 // This format compresses relocations by using relocation groups to factor out 1747 // fields that are common between relocations and storing deltas from previous 1748 // relocations in SLEB128 format (which has a short representation for small 1749 // numbers). A good example of a relocation type with common fields is 1750 // R_*_RELATIVE, which is normally used to represent function pointers in 1751 // vtables. In the REL format, each relative relocation has the same r_info 1752 // field, and is only different from other relative relocations in terms of 1753 // the r_offset field. By sorting relocations by offset, grouping them by 1754 // r_info and representing each relocation with only the delta from the 1755 // previous offset, each 8-byte relocation can be compressed to as little as 1 1756 // byte (or less with run-length encoding). This relocation packer was able to 1757 // reduce the size of the relocation section in an Android Chromium DSO from 1758 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1759 // 1760 // A relocation section consists of a header containing the literal bytes 1761 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1762 // elements are the total number of relocations in the section and an initial 1763 // r_offset value. The remaining elements define a sequence of relocation 1764 // groups. Each relocation group starts with a header consisting of the 1765 // following elements: 1766 // 1767 // - the number of relocations in the relocation group 1768 // - flags for the relocation group 1769 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1770 // for each relocation in the group. 1771 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1772 // field for each relocation in the group. 1773 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1774 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1775 // each relocation in the group. 1776 // 1777 // Following the relocation group header are descriptions of each of the 1778 // relocations in the group. They consist of the following elements: 1779 // 1780 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1781 // delta for this relocation. 1782 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1783 // field for this relocation. 1784 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1785 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1786 // this relocation. 1787 1788 size_t oldSize = relocData.size(); 1789 1790 relocData = {'A', 'P', 'S', '2'}; 1791 raw_svector_ostream os(relocData); 1792 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1793 1794 // The format header includes the number of relocations and the initial 1795 // offset (we set this to zero because the first relocation group will 1796 // perform the initial adjustment). 1797 add(relocs.size()); 1798 add(0); 1799 1800 std::vector<Elf_Rela> relatives, nonRelatives; 1801 1802 for (const DynamicReloc &rel : relocs) { 1803 Elf_Rela r; 1804 r.r_offset = rel.getOffset(); 1805 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1806 rel.type, false); 1807 if (config->isRela) 1808 r.r_addend = rel.computeAddend(); 1809 1810 if (r.getType(config->isMips64EL) == target->relativeRel) 1811 relatives.push_back(r); 1812 else 1813 nonRelatives.push_back(r); 1814 } 1815 1816 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1817 return a.r_offset < b.r_offset; 1818 }); 1819 1820 // Try to find groups of relative relocations which are spaced one word 1821 // apart from one another. These generally correspond to vtable entries. The 1822 // format allows these groups to be encoded using a sort of run-length 1823 // encoding, but each group will cost 7 bytes in addition to the offset from 1824 // the previous group, so it is only profitable to do this for groups of 1825 // size 8 or larger. 1826 std::vector<Elf_Rela> ungroupedRelatives; 1827 std::vector<std::vector<Elf_Rela>> relativeGroups; 1828 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1829 std::vector<Elf_Rela> group; 1830 do { 1831 group.push_back(*i++); 1832 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1833 1834 if (group.size() < 8) 1835 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1836 group.end()); 1837 else 1838 relativeGroups.emplace_back(std::move(group)); 1839 } 1840 1841 // For non-relative relocations, we would like to: 1842 // 1. Have relocations with the same symbol offset to be consecutive, so 1843 // that the runtime linker can speed-up symbol lookup by implementing an 1844 // 1-entry cache. 1845 // 2. Group relocations by r_info to reduce the size of the relocation 1846 // section. 1847 // Since the symbol offset is the high bits in r_info, sorting by r_info 1848 // allows us to do both. 1849 // 1850 // For Rela, we also want to sort by r_addend when r_info is the same. This 1851 // enables us to group by r_addend as well. 1852 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1853 if (a.r_info != b.r_info) 1854 return a.r_info < b.r_info; 1855 if (config->isRela) 1856 return a.r_addend < b.r_addend; 1857 return false; 1858 }); 1859 1860 // Group relocations with the same r_info. Note that each group emits a group 1861 // header and that may make the relocation section larger. It is hard to 1862 // estimate the size of a group header as the encoded size of that varies 1863 // based on r_info. However, we can approximate this trade-off by the number 1864 // of values encoded. Each group header contains 3 values, and each relocation 1865 // in a group encodes one less value, as compared to when it is not grouped. 1866 // Therefore, we only group relocations if there are 3 or more of them with 1867 // the same r_info. 1868 // 1869 // For Rela, the addend for most non-relative relocations is zero, and thus we 1870 // can usually get a smaller relocation section if we group relocations with 0 1871 // addend as well. 1872 std::vector<Elf_Rela> ungroupedNonRelatives; 1873 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1874 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1875 auto j = i + 1; 1876 while (j != e && i->r_info == j->r_info && 1877 (!config->isRela || i->r_addend == j->r_addend)) 1878 ++j; 1879 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1880 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1881 else 1882 nonRelativeGroups.emplace_back(i, j); 1883 i = j; 1884 } 1885 1886 // Sort ungrouped relocations by offset to minimize the encoded length. 1887 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1888 return a.r_offset < b.r_offset; 1889 }); 1890 1891 unsigned hasAddendIfRela = 1892 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1893 1894 uint64_t offset = 0; 1895 uint64_t addend = 0; 1896 1897 // Emit the run-length encoding for the groups of adjacent relative 1898 // relocations. Each group is represented using two groups in the packed 1899 // format. The first is used to set the current offset to the start of the 1900 // group (and also encodes the first relocation), and the second encodes the 1901 // remaining relocations. 1902 for (std::vector<Elf_Rela> &g : relativeGroups) { 1903 // The first relocation in the group. 1904 add(1); 1905 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1906 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1907 add(g[0].r_offset - offset); 1908 add(target->relativeRel); 1909 if (config->isRela) { 1910 add(g[0].r_addend - addend); 1911 addend = g[0].r_addend; 1912 } 1913 1914 // The remaining relocations. 1915 add(g.size() - 1); 1916 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1917 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1918 add(config->wordsize); 1919 add(target->relativeRel); 1920 if (config->isRela) { 1921 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1922 add(i->r_addend - addend); 1923 addend = i->r_addend; 1924 } 1925 } 1926 1927 offset = g.back().r_offset; 1928 } 1929 1930 // Now the ungrouped relatives. 1931 if (!ungroupedRelatives.empty()) { 1932 add(ungroupedRelatives.size()); 1933 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1934 add(target->relativeRel); 1935 for (Elf_Rela &r : ungroupedRelatives) { 1936 add(r.r_offset - offset); 1937 offset = r.r_offset; 1938 if (config->isRela) { 1939 add(r.r_addend - addend); 1940 addend = r.r_addend; 1941 } 1942 } 1943 } 1944 1945 // Grouped non-relatives. 1946 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1947 add(g.size()); 1948 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1949 add(g[0].r_info); 1950 for (const Elf_Rela &r : g) { 1951 add(r.r_offset - offset); 1952 offset = r.r_offset; 1953 } 1954 addend = 0; 1955 } 1956 1957 // Finally the ungrouped non-relative relocations. 1958 if (!ungroupedNonRelatives.empty()) { 1959 add(ungroupedNonRelatives.size()); 1960 add(hasAddendIfRela); 1961 for (Elf_Rela &r : ungroupedNonRelatives) { 1962 add(r.r_offset - offset); 1963 offset = r.r_offset; 1964 add(r.r_info); 1965 if (config->isRela) { 1966 add(r.r_addend - addend); 1967 addend = r.r_addend; 1968 } 1969 } 1970 } 1971 1972 // Don't allow the section to shrink; otherwise the size of the section can 1973 // oscillate infinitely. 1974 if (relocData.size() < oldSize) 1975 relocData.append(oldSize - relocData.size(), 0); 1976 1977 // Returns whether the section size changed. We need to keep recomputing both 1978 // section layout and the contents of this section until the size converges 1979 // because changing this section's size can affect section layout, which in 1980 // turn can affect the sizes of the LEB-encoded integers stored in this 1981 // section. 1982 return relocData.size() != oldSize; 1983 } 1984 1985 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1986 this->entsize = config->wordsize; 1987 } 1988 1989 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1990 // This function computes the contents of an SHT_RELR packed relocation 1991 // section. 1992 // 1993 // Proposal for adding SHT_RELR sections to generic-abi is here: 1994 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1995 // 1996 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1997 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1998 // 1999 // i.e. start with an address, followed by any number of bitmaps. The address 2000 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2001 // relocations each, at subsequent offsets following the last address entry. 2002 // 2003 // The bitmap entries must have 1 in the least significant bit. The assumption 2004 // here is that an address cannot have 1 in lsb. Odd addresses are not 2005 // supported. 2006 // 2007 // Excluding the least significant bit in the bitmap, each non-zero bit in 2008 // the bitmap represents a relocation to be applied to a corresponding machine 2009 // word that follows the base address word. The second least significant bit 2010 // represents the machine word immediately following the initial address, and 2011 // each bit that follows represents the next word, in linear order. As such, 2012 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2013 // 63 relocations in a 64-bit object. 2014 // 2015 // This encoding has a couple of interesting properties: 2016 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2017 // even means address, odd means bitmap. 2018 // 2. Just a simple list of addresses is a valid encoding. 2019 2020 size_t oldSize = relrRelocs.size(); 2021 relrRelocs.clear(); 2022 2023 // Same as Config->Wordsize but faster because this is a compile-time 2024 // constant. 2025 const size_t wordsize = sizeof(typename ELFT::uint); 2026 2027 // Number of bits to use for the relocation offsets bitmap. 2028 // Must be either 63 or 31. 2029 const size_t nBits = wordsize * 8 - 1; 2030 2031 // Get offsets for all relative relocations and sort them. 2032 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2033 for (auto it : llvm::enumerate(relocs)) 2034 offsets[it.index()] = it.value().getOffset(); 2035 std::sort(offsets.get(), offsets.get() + relocs.size()); 2036 2037 // For each leading relocation, find following ones that can be folded 2038 // as a bitmap and fold them. 2039 for (size_t i = 0, e = relocs.size(); i != e;) { 2040 // Add a leading relocation. 2041 relrRelocs.push_back(Elf_Relr(offsets[i])); 2042 uint64_t base = offsets[i] + wordsize; 2043 ++i; 2044 2045 // Find foldable relocations to construct bitmaps. 2046 for (;;) { 2047 uint64_t bitmap = 0; 2048 for (; i != e; ++i) { 2049 uint64_t d = offsets[i] - base; 2050 if (d >= nBits * wordsize || d % wordsize) 2051 break; 2052 bitmap |= uint64_t(1) << (d / wordsize); 2053 } 2054 if (!bitmap) 2055 break; 2056 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2057 base += nBits * wordsize; 2058 } 2059 } 2060 2061 // Don't allow the section to shrink; otherwise the size of the section can 2062 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2063 if (relrRelocs.size() < oldSize) { 2064 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2065 " padding word(s)"); 2066 relrRelocs.resize(oldSize, Elf_Relr(1)); 2067 } 2068 2069 return relrRelocs.size() != oldSize; 2070 } 2071 2072 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2073 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2074 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2075 config->wordsize, 2076 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2077 strTabSec(strTabSec) {} 2078 2079 // Orders symbols according to their positions in the GOT, 2080 // in compliance with MIPS ABI rules. 2081 // See "Global Offset Table" in Chapter 5 in the following document 2082 // for detailed description: 2083 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2084 static bool sortMipsSymbols(const SymbolTableEntry &l, 2085 const SymbolTableEntry &r) { 2086 // Sort entries related to non-local preemptible symbols by GOT indexes. 2087 // All other entries go to the beginning of a dynsym in arbitrary order. 2088 if (l.sym->isInGot() && r.sym->isInGot()) 2089 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2090 if (!l.sym->isInGot() && !r.sym->isInGot()) 2091 return false; 2092 return !l.sym->isInGot(); 2093 } 2094 2095 void SymbolTableBaseSection::finalizeContents() { 2096 if (OutputSection *sec = strTabSec.getParent()) 2097 getParent()->link = sec->sectionIndex; 2098 2099 if (this->type != SHT_DYNSYM) { 2100 sortSymTabSymbols(); 2101 return; 2102 } 2103 2104 // If it is a .dynsym, there should be no local symbols, but we need 2105 // to do a few things for the dynamic linker. 2106 2107 // Section's Info field has the index of the first non-local symbol. 2108 // Because the first symbol entry is a null entry, 1 is the first. 2109 getParent()->info = 1; 2110 2111 if (getPartition().gnuHashTab) { 2112 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2113 getPartition().gnuHashTab->addSymbols(symbols); 2114 } else if (config->emachine == EM_MIPS) { 2115 llvm::stable_sort(symbols, sortMipsSymbols); 2116 } 2117 2118 // Only the main partition's dynsym indexes are stored in the symbols 2119 // themselves. All other partitions use a lookup table. 2120 if (this == mainPart->dynSymTab.get()) { 2121 size_t i = 0; 2122 for (const SymbolTableEntry &s : symbols) 2123 s.sym->dynsymIndex = ++i; 2124 } 2125 } 2126 2127 // The ELF spec requires that all local symbols precede global symbols, so we 2128 // sort symbol entries in this function. (For .dynsym, we don't do that because 2129 // symbols for dynamic linking are inherently all globals.) 2130 // 2131 // Aside from above, we put local symbols in groups starting with the STT_FILE 2132 // symbol. That is convenient for purpose of identifying where are local symbols 2133 // coming from. 2134 void SymbolTableBaseSection::sortSymTabSymbols() { 2135 // Move all local symbols before global symbols. 2136 auto e = std::stable_partition( 2137 symbols.begin(), symbols.end(), 2138 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2139 size_t numLocals = e - symbols.begin(); 2140 getParent()->info = numLocals + 1; 2141 2142 // We want to group the local symbols by file. For that we rebuild the local 2143 // part of the symbols vector. We do not need to care about the STT_FILE 2144 // symbols, they are already naturally placed first in each group. That 2145 // happens because STT_FILE is always the first symbol in the object and hence 2146 // precede all other local symbols we add for a file. 2147 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2148 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2149 arr[s.sym->file].push_back(s); 2150 2151 auto i = symbols.begin(); 2152 for (auto &p : arr) 2153 for (SymbolTableEntry &entry : p.second) 2154 *i++ = entry; 2155 } 2156 2157 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2158 // Adding a local symbol to a .dynsym is a bug. 2159 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2160 2161 bool hashIt = b->isLocal() && config->optimize >= 2; 2162 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2163 } 2164 2165 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2166 if (this == mainPart->dynSymTab.get()) 2167 return sym->dynsymIndex; 2168 2169 // Initializes symbol lookup tables lazily. This is used only for -r, 2170 // --emit-relocs and dynsyms in partitions other than the main one. 2171 llvm::call_once(onceFlag, [&] { 2172 symbolIndexMap.reserve(symbols.size()); 2173 size_t i = 0; 2174 for (const SymbolTableEntry &e : symbols) { 2175 if (e.sym->type == STT_SECTION) 2176 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2177 else 2178 symbolIndexMap[e.sym] = ++i; 2179 } 2180 }); 2181 2182 // Section symbols are mapped based on their output sections 2183 // to maintain their semantics. 2184 if (sym->type == STT_SECTION) 2185 return sectionIndexMap.lookup(sym->getOutputSection()); 2186 return symbolIndexMap.lookup(sym); 2187 } 2188 2189 template <class ELFT> 2190 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2191 : SymbolTableBaseSection(strTabSec) { 2192 this->entsize = sizeof(Elf_Sym); 2193 } 2194 2195 static BssSection *getCommonSec(Symbol *sym) { 2196 if (!config->defineCommon) 2197 if (auto *d = dyn_cast<Defined>(sym)) 2198 return dyn_cast_or_null<BssSection>(d->section); 2199 return nullptr; 2200 } 2201 2202 static uint32_t getSymSectionIndex(Symbol *sym) { 2203 assert(!(sym->needsCopy && sym->isObject())); 2204 if (!isa<Defined>(sym) || sym->needsCopy) 2205 return SHN_UNDEF; 2206 if (const OutputSection *os = sym->getOutputSection()) 2207 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2208 : os->sectionIndex; 2209 return SHN_ABS; 2210 } 2211 2212 // Write the internal symbol table contents to the output symbol table. 2213 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2214 // The first entry is a null entry as per the ELF spec. 2215 buf += sizeof(Elf_Sym); 2216 2217 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2218 2219 for (SymbolTableEntry &ent : symbols) { 2220 Symbol *sym = ent.sym; 2221 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2222 2223 // Set st_name, st_info and st_other. 2224 eSym->st_name = ent.strTabOffset; 2225 eSym->setBindingAndType(sym->binding, sym->type); 2226 eSym->st_other = sym->visibility; 2227 2228 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2229 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2230 if (config->emachine == EM_PPC64) 2231 eSym->st_other |= sym->stOther & 0xe0; 2232 // The most significant bit of st_other is used by AArch64 ABI for the 2233 // variant PCS. 2234 else if (config->emachine == EM_AARCH64) 2235 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2236 2237 if (BssSection *commonSec = getCommonSec(sym)) { 2238 // st_value is usually an address of a symbol, but that has a special 2239 // meaning for uninstantiated common symbols (--no-define-common). 2240 eSym->st_shndx = SHN_COMMON; 2241 eSym->st_value = commonSec->alignment; 2242 eSym->st_size = cast<Defined>(sym)->size; 2243 } else { 2244 const uint32_t shndx = getSymSectionIndex(sym); 2245 if (isDefinedHere) { 2246 eSym->st_shndx = shndx; 2247 eSym->st_value = sym->getVA(); 2248 // Copy symbol size if it is a defined symbol. st_size is not 2249 // significant for undefined symbols, so whether copying it or not is up 2250 // to us if that's the case. We'll leave it as zero because by not 2251 // setting a value, we can get the exact same outputs for two sets of 2252 // input files that differ only in undefined symbol size in DSOs. 2253 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2254 } else { 2255 eSym->st_shndx = 0; 2256 eSym->st_value = 0; 2257 eSym->st_size = 0; 2258 } 2259 } 2260 2261 ++eSym; 2262 } 2263 2264 // On MIPS we need to mark symbol which has a PLT entry and requires 2265 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2266 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2267 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2268 if (config->emachine == EM_MIPS) { 2269 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2270 2271 for (SymbolTableEntry &ent : symbols) { 2272 Symbol *sym = ent.sym; 2273 if (sym->isInPlt() && sym->needsCopy) 2274 eSym->st_other |= STO_MIPS_PLT; 2275 if (isMicroMips()) { 2276 // We already set the less-significant bit for symbols 2277 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2278 // records. That allows us to distinguish such symbols in 2279 // the `MIPS<ELFT>::relocate()` routine. Now we should 2280 // clear that bit for non-dynamic symbol table, so tools 2281 // like `objdump` will be able to deal with a correct 2282 // symbol position. 2283 if (sym->isDefined() && 2284 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2285 if (!strTabSec.isDynamic()) 2286 eSym->st_value &= ~1; 2287 eSym->st_other |= STO_MIPS_MICROMIPS; 2288 } 2289 } 2290 if (config->relocatable) 2291 if (auto *d = dyn_cast<Defined>(sym)) 2292 if (isMipsPIC<ELFT>(d)) 2293 eSym->st_other |= STO_MIPS_PIC; 2294 ++eSym; 2295 } 2296 } 2297 } 2298 2299 SymtabShndxSection::SymtabShndxSection() 2300 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2301 this->entsize = 4; 2302 } 2303 2304 void SymtabShndxSection::writeTo(uint8_t *buf) { 2305 // We write an array of 32 bit values, where each value has 1:1 association 2306 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2307 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2308 buf += 4; // Ignore .symtab[0] entry. 2309 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2310 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2311 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2312 buf += 4; 2313 } 2314 } 2315 2316 bool SymtabShndxSection::isNeeded() const { 2317 // SHT_SYMTAB can hold symbols with section indices values up to 2318 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2319 // section. Problem is that we reveal the final section indices a bit too 2320 // late, and we do not know them here. For simplicity, we just always create 2321 // a .symtab_shndx section when the amount of output sections is huge. 2322 size_t size = 0; 2323 for (SectionCommand *cmd : script->sectionCommands) 2324 if (isa<OutputSection>(cmd)) 2325 ++size; 2326 return size >= SHN_LORESERVE; 2327 } 2328 2329 void SymtabShndxSection::finalizeContents() { 2330 getParent()->link = in.symTab->getParent()->sectionIndex; 2331 } 2332 2333 size_t SymtabShndxSection::getSize() const { 2334 return in.symTab->getNumSymbols() * 4; 2335 } 2336 2337 // .hash and .gnu.hash sections contain on-disk hash tables that map 2338 // symbol names to their dynamic symbol table indices. Their purpose 2339 // is to help the dynamic linker resolve symbols quickly. If ELF files 2340 // don't have them, the dynamic linker has to do linear search on all 2341 // dynamic symbols, which makes programs slower. Therefore, a .hash 2342 // section is added to a DSO by default. 2343 // 2344 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2345 // Each ELF file has a list of DSOs that the ELF file depends on and a 2346 // list of dynamic symbols that need to be resolved from any of the 2347 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2348 // where m is the number of DSOs and n is the number of dynamic 2349 // symbols. For modern large programs, both m and n are large. So 2350 // making each step faster by using hash tables substantially 2351 // improves time to load programs. 2352 // 2353 // (Note that this is not the only way to design the shared library. 2354 // For instance, the Windows DLL takes a different approach. On 2355 // Windows, each dynamic symbol has a name of DLL from which the symbol 2356 // has to be resolved. That makes the cost of symbol resolution O(n). 2357 // This disables some hacky techniques you can use on Unix such as 2358 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2359 // 2360 // Due to historical reasons, we have two different hash tables, .hash 2361 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2362 // and better version of .hash. .hash is just an on-disk hash table, but 2363 // .gnu.hash has a bloom filter in addition to a hash table to skip 2364 // DSOs very quickly. If you are sure that your dynamic linker knows 2365 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2366 // safe bet is to specify --hash-style=both for backward compatibility. 2367 GnuHashTableSection::GnuHashTableSection() 2368 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2369 } 2370 2371 void GnuHashTableSection::finalizeContents() { 2372 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2373 getParent()->link = sec->sectionIndex; 2374 2375 // Computes bloom filter size in word size. We want to allocate 12 2376 // bits for each symbol. It must be a power of two. 2377 if (symbols.empty()) { 2378 maskWords = 1; 2379 } else { 2380 uint64_t numBits = symbols.size() * 12; 2381 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2382 } 2383 2384 size = 16; // Header 2385 size += config->wordsize * maskWords; // Bloom filter 2386 size += nBuckets * 4; // Hash buckets 2387 size += symbols.size() * 4; // Hash values 2388 } 2389 2390 void GnuHashTableSection::writeTo(uint8_t *buf) { 2391 // Write a header. 2392 write32(buf, nBuckets); 2393 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2394 write32(buf + 8, maskWords); 2395 write32(buf + 12, Shift2); 2396 buf += 16; 2397 2398 // Write the 2-bit bloom filter. 2399 const unsigned c = config->is64 ? 64 : 32; 2400 for (const Entry &sym : symbols) { 2401 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2402 // the word using bits [0:5] and [26:31]. 2403 size_t i = (sym.hash / c) & (maskWords - 1); 2404 uint64_t val = readUint(buf + i * config->wordsize); 2405 val |= uint64_t(1) << (sym.hash % c); 2406 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2407 writeUint(buf + i * config->wordsize, val); 2408 } 2409 buf += config->wordsize * maskWords; 2410 2411 // Write the hash table. 2412 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2413 uint32_t oldBucket = -1; 2414 uint32_t *values = buckets + nBuckets; 2415 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2416 // Write a hash value. It represents a sequence of chains that share the 2417 // same hash modulo value. The last element of each chain is terminated by 2418 // LSB 1. 2419 uint32_t hash = i->hash; 2420 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2421 hash = isLastInChain ? hash | 1 : hash & ~1; 2422 write32(values++, hash); 2423 2424 if (i->bucketIdx == oldBucket) 2425 continue; 2426 // Write a hash bucket. Hash buckets contain indices in the following hash 2427 // value table. 2428 write32(buckets + i->bucketIdx, 2429 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2430 oldBucket = i->bucketIdx; 2431 } 2432 } 2433 2434 static uint32_t hashGnu(StringRef name) { 2435 uint32_t h = 5381; 2436 for (uint8_t c : name) 2437 h = (h << 5) + h + c; 2438 return h; 2439 } 2440 2441 // Add symbols to this symbol hash table. Note that this function 2442 // destructively sort a given vector -- which is needed because 2443 // GNU-style hash table places some sorting requirements. 2444 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2445 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2446 // its type correctly. 2447 auto mid = 2448 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2449 return !s.sym->isDefined() || s.sym->partition != partition; 2450 }); 2451 2452 // We chose load factor 4 for the on-disk hash table. For each hash 2453 // collision, the dynamic linker will compare a uint32_t hash value. 2454 // Since the integer comparison is quite fast, we believe we can 2455 // make the load factor even larger. 4 is just a conservative choice. 2456 // 2457 // Note that we don't want to create a zero-sized hash table because 2458 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2459 // table. If that's the case, we create a hash table with one unused 2460 // dummy slot. 2461 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2462 2463 if (mid == v.end()) 2464 return; 2465 2466 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2467 Symbol *b = ent.sym; 2468 uint32_t hash = hashGnu(b->getName()); 2469 uint32_t bucketIdx = hash % nBuckets; 2470 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2471 } 2472 2473 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2474 return std::tie(l.bucketIdx, l.strTabOffset) < 2475 std::tie(r.bucketIdx, r.strTabOffset); 2476 }); 2477 2478 v.erase(mid, v.end()); 2479 for (const Entry &ent : symbols) 2480 v.push_back({ent.sym, ent.strTabOffset}); 2481 } 2482 2483 HashTableSection::HashTableSection() 2484 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2485 this->entsize = 4; 2486 } 2487 2488 void HashTableSection::finalizeContents() { 2489 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2490 2491 if (OutputSection *sec = symTab->getParent()) 2492 getParent()->link = sec->sectionIndex; 2493 2494 unsigned numEntries = 2; // nbucket and nchain. 2495 numEntries += symTab->getNumSymbols(); // The chain entries. 2496 2497 // Create as many buckets as there are symbols. 2498 numEntries += symTab->getNumSymbols(); 2499 this->size = numEntries * 4; 2500 } 2501 2502 void HashTableSection::writeTo(uint8_t *buf) { 2503 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2504 unsigned numSymbols = symTab->getNumSymbols(); 2505 2506 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2507 write32(p++, numSymbols); // nbucket 2508 write32(p++, numSymbols); // nchain 2509 2510 uint32_t *buckets = p; 2511 uint32_t *chains = p + numSymbols; 2512 2513 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2514 Symbol *sym = s.sym; 2515 StringRef name = sym->getName(); 2516 unsigned i = sym->dynsymIndex; 2517 uint32_t hash = hashSysV(name) % numSymbols; 2518 chains[i] = buckets[hash]; 2519 write32(buckets + hash, i); 2520 } 2521 } 2522 2523 PltSection::PltSection() 2524 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2525 headerSize(target->pltHeaderSize) { 2526 // On PowerPC, this section contains lazy symbol resolvers. 2527 if (config->emachine == EM_PPC64) { 2528 name = ".glink"; 2529 alignment = 4; 2530 } 2531 2532 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2533 // symbol resolvers). 2534 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2535 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2536 name = ".plt.sec"; 2537 2538 // The PLT needs to be writable on SPARC as the dynamic linker will 2539 // modify the instructions in the PLT entries. 2540 if (config->emachine == EM_SPARCV9) 2541 this->flags |= SHF_WRITE; 2542 } 2543 2544 void PltSection::writeTo(uint8_t *buf) { 2545 // At beginning of PLT, we have code to call the dynamic 2546 // linker to resolve dynsyms at runtime. Write such code. 2547 target->writePltHeader(buf); 2548 size_t off = headerSize; 2549 2550 for (const Symbol *sym : entries) { 2551 target->writePlt(buf + off, *sym, getVA() + off); 2552 off += target->pltEntrySize; 2553 } 2554 } 2555 2556 void PltSection::addEntry(Symbol &sym) { 2557 assert(sym.auxIdx == symAux.size() - 1); 2558 symAux.back().pltIdx = entries.size(); 2559 entries.push_back(&sym); 2560 } 2561 2562 size_t PltSection::getSize() const { 2563 return headerSize + entries.size() * target->pltEntrySize; 2564 } 2565 2566 bool PltSection::isNeeded() const { 2567 // For -z retpolineplt, .iplt needs the .plt header. 2568 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2569 } 2570 2571 // Used by ARM to add mapping symbols in the PLT section, which aid 2572 // disassembly. 2573 void PltSection::addSymbols() { 2574 target->addPltHeaderSymbols(*this); 2575 2576 size_t off = headerSize; 2577 for (size_t i = 0; i < entries.size(); ++i) { 2578 target->addPltSymbols(*this, off); 2579 off += target->pltEntrySize; 2580 } 2581 } 2582 2583 IpltSection::IpltSection() 2584 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2585 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2586 name = ".glink"; 2587 alignment = 4; 2588 } 2589 } 2590 2591 void IpltSection::writeTo(uint8_t *buf) { 2592 uint32_t off = 0; 2593 for (const Symbol *sym : entries) { 2594 target->writeIplt(buf + off, *sym, getVA() + off); 2595 off += target->ipltEntrySize; 2596 } 2597 } 2598 2599 size_t IpltSection::getSize() const { 2600 return entries.size() * target->ipltEntrySize; 2601 } 2602 2603 void IpltSection::addEntry(Symbol &sym) { 2604 assert(sym.auxIdx == symAux.size() - 1); 2605 symAux.back().pltIdx = entries.size(); 2606 entries.push_back(&sym); 2607 } 2608 2609 // ARM uses mapping symbols to aid disassembly. 2610 void IpltSection::addSymbols() { 2611 size_t off = 0; 2612 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2613 target->addPltSymbols(*this, off); 2614 off += target->pltEntrySize; 2615 } 2616 } 2617 2618 PPC32GlinkSection::PPC32GlinkSection() { 2619 name = ".glink"; 2620 alignment = 4; 2621 } 2622 2623 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2624 writePPC32GlinkSection(buf, entries.size()); 2625 } 2626 2627 size_t PPC32GlinkSection::getSize() const { 2628 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2629 } 2630 2631 // This is an x86-only extra PLT section and used only when a security 2632 // enhancement feature called CET is enabled. In this comment, I'll explain what 2633 // the feature is and why we have two PLT sections if CET is enabled. 2634 // 2635 // So, what does CET do? CET introduces a new restriction to indirect jump 2636 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2637 // execute an indirect jump instruction, the processor verifies that a special 2638 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2639 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2640 // does not start with that instruction, the processor raises an exception 2641 // instead of continuing executing code. 2642 // 2643 // If CET is enabled, the compiler emits endbr to all locations where indirect 2644 // jumps may jump to. 2645 // 2646 // This mechanism makes it extremely hard to transfer the control to a middle of 2647 // a function that is not supporsed to be a indirect jump target, preventing 2648 // certain types of attacks such as ROP or JOP. 2649 // 2650 // Note that the processors in the market as of 2019 don't actually support the 2651 // feature. Only the spec is available at the moment. 2652 // 2653 // Now, I'll explain why we have this extra PLT section for CET. 2654 // 2655 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2656 // start with endbr. The problem is there's no extra space for endbr (which is 4 2657 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2658 // used. 2659 // 2660 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2661 // Remember that each PLT entry contains code to jump to an address read from 2662 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2663 // the former code is written to .plt.sec, and the latter code is written to 2664 // .plt. 2665 // 2666 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2667 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2668 // contain only code for lazy symbol resolution. 2669 // 2670 // In other words, this is how the 2-PLT scheme works. Application code is 2671 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2672 // entry contains code to read an address from a corresponding .got.plt entry 2673 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2674 // when an application calls an external function for the first time, the 2675 // control is transferred to a function that resolves a symbol name from 2676 // external shared object files. That function then rewrites a .got.plt entry 2677 // with a resolved address, so that the subsequent function calls directly jump 2678 // to a desired location from .plt.sec. 2679 // 2680 // There is an open question as to whether the 2-PLT scheme was desirable or 2681 // not. We could have simply extended the PLT entry size to 32-bytes to 2682 // accommodate endbr, and that scheme would have been much simpler than the 2683 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2684 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2685 // that the optimization actually makes a difference. 2686 // 2687 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2688 // depend on it, so we implement the ABI. 2689 IBTPltSection::IBTPltSection() 2690 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2691 2692 void IBTPltSection::writeTo(uint8_t *buf) { 2693 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2694 } 2695 2696 size_t IBTPltSection::getSize() const { 2697 // 16 is the header size of .plt. 2698 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2699 } 2700 2701 // The string hash function for .gdb_index. 2702 static uint32_t computeGdbHash(StringRef s) { 2703 uint32_t h = 0; 2704 for (uint8_t c : s) 2705 h = h * 67 + toLower(c) - 113; 2706 return h; 2707 } 2708 2709 GdbIndexSection::GdbIndexSection() 2710 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2711 2712 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2713 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2714 size_t GdbIndexSection::computeSymtabSize() const { 2715 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2716 } 2717 2718 // Compute the output section size. 2719 void GdbIndexSection::initOutputSize() { 2720 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2721 2722 for (GdbChunk &chunk : chunks) 2723 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2724 2725 // Add the constant pool size if exists. 2726 if (!symbols.empty()) { 2727 GdbSymbol &sym = symbols.back(); 2728 size += sym.nameOff + sym.name.size() + 1; 2729 } 2730 } 2731 2732 static SmallVector<GdbIndexSection::CuEntry, 0> 2733 readCuList(DWARFContext &dwarf) { 2734 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2735 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2736 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2737 return ret; 2738 } 2739 2740 static SmallVector<GdbIndexSection::AddressEntry, 0> 2741 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2742 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2743 2744 uint32_t cuIdx = 0; 2745 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2746 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2747 warn(toString(sec) + ": " + toString(std::move(e))); 2748 return {}; 2749 } 2750 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2751 if (!ranges) { 2752 warn(toString(sec) + ": " + toString(ranges.takeError())); 2753 return {}; 2754 } 2755 2756 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2757 for (DWARFAddressRange &r : *ranges) { 2758 if (r.SectionIndex == -1ULL) 2759 continue; 2760 // Range list with zero size has no effect. 2761 InputSectionBase *s = sections[r.SectionIndex]; 2762 if (s && s != &InputSection::discarded && s->isLive()) 2763 if (r.LowPC != r.HighPC) 2764 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2765 } 2766 ++cuIdx; 2767 } 2768 2769 return ret; 2770 } 2771 2772 template <class ELFT> 2773 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 2774 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2775 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2776 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2777 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2778 2779 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 2780 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2781 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2782 DWARFDebugPubTable table; 2783 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2784 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2785 }); 2786 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2787 // The value written into the constant pool is kind << 24 | cuIndex. As we 2788 // don't know how many compilation units precede this object to compute 2789 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2790 // the number of preceding compilation units later. 2791 uint32_t i = llvm::partition_point(cus, 2792 [&](GdbIndexSection::CuEntry cu) { 2793 return cu.cuOffset < set.Offset; 2794 }) - 2795 cus.begin(); 2796 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2797 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2798 (ent.Descriptor.toBits() << 24) | i}); 2799 } 2800 } 2801 return ret; 2802 } 2803 2804 // Create a list of symbols from a given list of symbol names and types 2805 // by uniquifying them by name. 2806 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols( 2807 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 2808 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 2809 using GdbSymbol = GdbIndexSection::GdbSymbol; 2810 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2811 2812 // For each chunk, compute the number of compilation units preceding it. 2813 uint32_t cuIdx = 0; 2814 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2815 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2816 cuIdxs[i] = cuIdx; 2817 cuIdx += chunks[i].compilationUnits.size(); 2818 } 2819 2820 // The number of symbols we will handle in this function is of the order 2821 // of millions for very large executables, so we use multi-threading to 2822 // speed it up. 2823 constexpr size_t numShards = 32; 2824 size_t concurrency = PowerOf2Floor( 2825 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2826 .compute_thread_count(), 2827 numShards)); 2828 2829 // A sharded map to uniquify symbols by name. 2830 auto map = 2831 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2832 size_t shift = 32 - countTrailingZeros(numShards); 2833 2834 // Instantiate GdbSymbols while uniqufying them by name. 2835 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 2836 2837 parallelForEachN(0, concurrency, [&](size_t threadId) { 2838 uint32_t i = 0; 2839 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2840 for (const NameAttrEntry &ent : entries) { 2841 size_t shardId = ent.name.hash() >> shift; 2842 if ((shardId & (concurrency - 1)) != threadId) 2843 continue; 2844 2845 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2846 size_t &idx = map[shardId][ent.name]; 2847 if (idx) { 2848 symbols[shardId][idx - 1].cuVector.push_back(v); 2849 continue; 2850 } 2851 2852 idx = symbols[shardId].size() + 1; 2853 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2854 } 2855 ++i; 2856 } 2857 }); 2858 2859 size_t numSymbols = 0; 2860 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards)) 2861 numSymbols += v.size(); 2862 2863 // The return type is a flattened vector, so we'll copy each vector 2864 // contents to Ret. 2865 SmallVector<GdbSymbol, 0> ret; 2866 ret.reserve(numSymbols); 2867 for (SmallVector<GdbSymbol, 0> &vec : 2868 makeMutableArrayRef(symbols.get(), numShards)) 2869 for (GdbSymbol &sym : vec) 2870 ret.push_back(std::move(sym)); 2871 2872 // CU vectors and symbol names are adjacent in the output file. 2873 // We can compute their offsets in the output file now. 2874 size_t off = 0; 2875 for (GdbSymbol &sym : ret) { 2876 sym.cuVectorOff = off; 2877 off += (sym.cuVector.size() + 1) * 4; 2878 } 2879 for (GdbSymbol &sym : ret) { 2880 sym.nameOff = off; 2881 off += sym.name.size() + 1; 2882 } 2883 2884 return ret; 2885 } 2886 2887 // Returns a newly-created .gdb_index section. 2888 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2889 // Collect InputFiles with .debug_info. See the comment in 2890 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2891 // note that isec->data() may uncompress the full content, which should be 2892 // parallelized. 2893 SetVector<InputFile *> files; 2894 for (InputSectionBase *s : inputSections) { 2895 InputSection *isec = dyn_cast<InputSection>(s); 2896 if (!isec) 2897 continue; 2898 // .debug_gnu_pub{names,types} are useless in executables. 2899 // They are present in input object files solely for creating 2900 // a .gdb_index. So we can remove them from the output. 2901 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2902 s->markDead(); 2903 else if (isec->name == ".debug_info") 2904 files.insert(isec->file); 2905 } 2906 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2907 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2908 if (auto *isec = dyn_cast<InputSection>(s)) 2909 if (InputSectionBase *rel = isec->getRelocatedSection()) 2910 return !rel->isLive(); 2911 return !s->isLive(); 2912 }); 2913 2914 SmallVector<GdbChunk, 0> chunks(files.size()); 2915 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 2916 2917 parallelForEachN(0, files.size(), [&](size_t i) { 2918 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2919 // avoid getDwarf() here. 2920 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2921 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2922 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2923 2924 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2925 // this only picks the last one. Other address ranges are lost. 2926 chunks[i].sec = dobj.getInfoSection(); 2927 chunks[i].compilationUnits = readCuList(dwarf); 2928 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2929 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2930 }); 2931 2932 auto *ret = make<GdbIndexSection>(); 2933 ret->chunks = std::move(chunks); 2934 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2935 ret->initOutputSize(); 2936 return ret; 2937 } 2938 2939 void GdbIndexSection::writeTo(uint8_t *buf) { 2940 // Write the header. 2941 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2942 uint8_t *start = buf; 2943 hdr->version = 7; 2944 buf += sizeof(*hdr); 2945 2946 // Write the CU list. 2947 hdr->cuListOff = buf - start; 2948 for (GdbChunk &chunk : chunks) { 2949 for (CuEntry &cu : chunk.compilationUnits) { 2950 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2951 write64le(buf + 8, cu.cuLength); 2952 buf += 16; 2953 } 2954 } 2955 2956 // Write the address area. 2957 hdr->cuTypesOff = buf - start; 2958 hdr->addressAreaOff = buf - start; 2959 uint32_t cuOff = 0; 2960 for (GdbChunk &chunk : chunks) { 2961 for (AddressEntry &e : chunk.addressAreas) { 2962 // In the case of ICF there may be duplicate address range entries. 2963 const uint64_t baseAddr = e.section->repl->getVA(0); 2964 write64le(buf, baseAddr + e.lowAddress); 2965 write64le(buf + 8, baseAddr + e.highAddress); 2966 write32le(buf + 16, e.cuIndex + cuOff); 2967 buf += 20; 2968 } 2969 cuOff += chunk.compilationUnits.size(); 2970 } 2971 2972 // Write the on-disk open-addressing hash table containing symbols. 2973 hdr->symtabOff = buf - start; 2974 size_t symtabSize = computeSymtabSize(); 2975 uint32_t mask = symtabSize - 1; 2976 2977 for (GdbSymbol &sym : symbols) { 2978 uint32_t h = sym.name.hash(); 2979 uint32_t i = h & mask; 2980 uint32_t step = ((h * 17) & mask) | 1; 2981 2982 while (read32le(buf + i * 8)) 2983 i = (i + step) & mask; 2984 2985 write32le(buf + i * 8, sym.nameOff); 2986 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2987 } 2988 2989 buf += symtabSize * 8; 2990 2991 // Write the string pool. 2992 hdr->constantPoolOff = buf - start; 2993 parallelForEach(symbols, [&](GdbSymbol &sym) { 2994 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2995 }); 2996 2997 // Write the CU vectors. 2998 for (GdbSymbol &sym : symbols) { 2999 write32le(buf, sym.cuVector.size()); 3000 buf += 4; 3001 for (uint32_t val : sym.cuVector) { 3002 write32le(buf, val); 3003 buf += 4; 3004 } 3005 } 3006 } 3007 3008 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3009 3010 EhFrameHeader::EhFrameHeader() 3011 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3012 3013 void EhFrameHeader::writeTo(uint8_t *buf) { 3014 // Unlike most sections, the EhFrameHeader section is written while writing 3015 // another section, namely EhFrameSection, which calls the write() function 3016 // below from its writeTo() function. This is necessary because the contents 3017 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3018 // don't know which order the sections will be written in. 3019 } 3020 3021 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3022 // Each entry of the search table consists of two values, 3023 // the starting PC from where FDEs covers, and the FDE's address. 3024 // It is sorted by PC. 3025 void EhFrameHeader::write() { 3026 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3027 using FdeData = EhFrameSection::FdeData; 3028 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3029 3030 buf[0] = 1; 3031 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3032 buf[2] = DW_EH_PE_udata4; 3033 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3034 write32(buf + 4, 3035 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3036 write32(buf + 8, fdes.size()); 3037 buf += 12; 3038 3039 for (FdeData &fde : fdes) { 3040 write32(buf, fde.pcRel); 3041 write32(buf + 4, fde.fdeVARel); 3042 buf += 8; 3043 } 3044 } 3045 3046 size_t EhFrameHeader::getSize() const { 3047 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3048 return 12 + getPartition().ehFrame->numFdes * 8; 3049 } 3050 3051 bool EhFrameHeader::isNeeded() const { 3052 return isLive() && getPartition().ehFrame->isNeeded(); 3053 } 3054 3055 VersionDefinitionSection::VersionDefinitionSection() 3056 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3057 ".gnu.version_d") {} 3058 3059 StringRef VersionDefinitionSection::getFileDefName() { 3060 if (!getPartition().name.empty()) 3061 return getPartition().name; 3062 if (!config->soName.empty()) 3063 return config->soName; 3064 return config->outputFile; 3065 } 3066 3067 void VersionDefinitionSection::finalizeContents() { 3068 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3069 for (const VersionDefinition &v : namedVersionDefs()) 3070 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3071 3072 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3073 getParent()->link = sec->sectionIndex; 3074 3075 // sh_info should be set to the number of definitions. This fact is missed in 3076 // documentation, but confirmed by binutils community: 3077 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3078 getParent()->info = getVerDefNum(); 3079 } 3080 3081 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3082 StringRef name, size_t nameOff) { 3083 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3084 3085 // Write a verdef. 3086 write16(buf, 1); // vd_version 3087 write16(buf + 2, flags); // vd_flags 3088 write16(buf + 4, index); // vd_ndx 3089 write16(buf + 6, 1); // vd_cnt 3090 write32(buf + 8, hashSysV(name)); // vd_hash 3091 write32(buf + 12, 20); // vd_aux 3092 write32(buf + 16, 28); // vd_next 3093 3094 // Write a veraux. 3095 write32(buf + 20, nameOff); // vda_name 3096 write32(buf + 24, 0); // vda_next 3097 } 3098 3099 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3100 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3101 3102 auto nameOffIt = verDefNameOffs.begin(); 3103 for (const VersionDefinition &v : namedVersionDefs()) { 3104 buf += EntrySize; 3105 writeOne(buf, v.id, v.name, *nameOffIt++); 3106 } 3107 3108 // Need to terminate the last version definition. 3109 write32(buf + 16, 0); // vd_next 3110 } 3111 3112 size_t VersionDefinitionSection::getSize() const { 3113 return EntrySize * getVerDefNum(); 3114 } 3115 3116 // .gnu.version is a table where each entry is 2 byte long. 3117 VersionTableSection::VersionTableSection() 3118 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3119 ".gnu.version") { 3120 this->entsize = 2; 3121 } 3122 3123 void VersionTableSection::finalizeContents() { 3124 // At the moment of june 2016 GNU docs does not mention that sh_link field 3125 // should be set, but Sun docs do. Also readelf relies on this field. 3126 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3127 } 3128 3129 size_t VersionTableSection::getSize() const { 3130 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3131 } 3132 3133 void VersionTableSection::writeTo(uint8_t *buf) { 3134 buf += 2; 3135 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3136 // For an unextracted lazy symbol (undefined weak), it must have been 3137 // converted to Undefined and have VER_NDX_GLOBAL version here. 3138 assert(!s.sym->isLazy()); 3139 write16(buf, s.sym->versionId); 3140 buf += 2; 3141 } 3142 } 3143 3144 bool VersionTableSection::isNeeded() const { 3145 return isLive() && 3146 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3147 } 3148 3149 void elf::addVerneed(Symbol *ss) { 3150 auto &file = cast<SharedFile>(*ss->file); 3151 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3152 ss->versionId = VER_NDX_GLOBAL; 3153 return; 3154 } 3155 3156 if (file.vernauxs.empty()) 3157 file.vernauxs.resize(file.verdefs.size()); 3158 3159 // Select a version identifier for the vernaux data structure, if we haven't 3160 // already allocated one. The verdef identifiers cover the range 3161 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3162 // getVerDefNum()+1. 3163 if (file.vernauxs[ss->verdefIndex] == 0) 3164 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3165 3166 ss->versionId = file.vernauxs[ss->verdefIndex]; 3167 } 3168 3169 template <class ELFT> 3170 VersionNeedSection<ELFT>::VersionNeedSection() 3171 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3172 ".gnu.version_r") {} 3173 3174 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3175 for (SharedFile *f : sharedFiles) { 3176 if (f->vernauxs.empty()) 3177 continue; 3178 verneeds.emplace_back(); 3179 Verneed &vn = verneeds.back(); 3180 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3181 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3182 if (f->vernauxs[i] == 0) 3183 continue; 3184 auto *verdef = 3185 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3186 vn.vernauxs.push_back( 3187 {verdef->vd_hash, f->vernauxs[i], 3188 getPartition().dynStrTab->addString(f->getStringTable().data() + 3189 verdef->getAux()->vda_name)}); 3190 } 3191 } 3192 3193 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3194 getParent()->link = sec->sectionIndex; 3195 getParent()->info = verneeds.size(); 3196 } 3197 3198 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3199 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3200 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3201 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3202 3203 for (auto &vn : verneeds) { 3204 // Create an Elf_Verneed for this DSO. 3205 verneed->vn_version = 1; 3206 verneed->vn_cnt = vn.vernauxs.size(); 3207 verneed->vn_file = vn.nameStrTab; 3208 verneed->vn_aux = 3209 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3210 verneed->vn_next = sizeof(Elf_Verneed); 3211 ++verneed; 3212 3213 // Create the Elf_Vernauxs for this Elf_Verneed. 3214 for (auto &vna : vn.vernauxs) { 3215 vernaux->vna_hash = vna.hash; 3216 vernaux->vna_flags = 0; 3217 vernaux->vna_other = vna.verneedIndex; 3218 vernaux->vna_name = vna.nameStrTab; 3219 vernaux->vna_next = sizeof(Elf_Vernaux); 3220 ++vernaux; 3221 } 3222 3223 vernaux[-1].vna_next = 0; 3224 } 3225 verneed[-1].vn_next = 0; 3226 } 3227 3228 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3229 return verneeds.size() * sizeof(Elf_Verneed) + 3230 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3231 } 3232 3233 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3234 return isLive() && SharedFile::vernauxNum != 0; 3235 } 3236 3237 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3238 ms->parent = this; 3239 sections.push_back(ms); 3240 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3241 alignment = std::max(alignment, ms->alignment); 3242 } 3243 3244 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3245 uint64_t flags, uint32_t alignment) 3246 : MergeSyntheticSection(name, type, flags, alignment), 3247 builder(StringTableBuilder::RAW, alignment) {} 3248 3249 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3250 3251 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3252 3253 void MergeTailSection::finalizeContents() { 3254 // Add all string pieces to the string table builder to create section 3255 // contents. 3256 for (MergeInputSection *sec : sections) 3257 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3258 if (sec->pieces[i].live) 3259 builder.add(sec->getData(i)); 3260 3261 // Fix the string table content. After this, the contents will never change. 3262 builder.finalize(); 3263 3264 // finalize() fixed tail-optimized strings, so we can now get 3265 // offsets of strings. Get an offset for each string and save it 3266 // to a corresponding SectionPiece for easy access. 3267 for (MergeInputSection *sec : sections) 3268 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3269 if (sec->pieces[i].live) 3270 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3271 } 3272 3273 void MergeNoTailSection::writeTo(uint8_t *buf) { 3274 parallelForEachN(0, numShards, 3275 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3276 } 3277 3278 // This function is very hot (i.e. it can take several seconds to finish) 3279 // because sometimes the number of inputs is in an order of magnitude of 3280 // millions. So, we use multi-threading. 3281 // 3282 // For any strings S and T, we know S is not mergeable with T if S's hash 3283 // value is different from T's. If that's the case, we can safely put S and 3284 // T into different string builders without worrying about merge misses. 3285 // We do it in parallel. 3286 void MergeNoTailSection::finalizeContents() { 3287 // Initializes string table builders. 3288 for (size_t i = 0; i < numShards; ++i) 3289 shards.emplace_back(StringTableBuilder::RAW, alignment); 3290 3291 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3292 // operations in the following tight loop. 3293 size_t concurrency = PowerOf2Floor( 3294 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3295 .compute_thread_count(), 3296 numShards)); 3297 3298 // Add section pieces to the builders. 3299 parallelForEachN(0, concurrency, [&](size_t threadId) { 3300 for (MergeInputSection *sec : sections) { 3301 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3302 if (!sec->pieces[i].live) 3303 continue; 3304 size_t shardId = getShardId(sec->pieces[i].hash); 3305 if ((shardId & (concurrency - 1)) == threadId) 3306 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3307 } 3308 } 3309 }); 3310 3311 // Compute an in-section offset for each shard. 3312 size_t off = 0; 3313 for (size_t i = 0; i < numShards; ++i) { 3314 shards[i].finalizeInOrder(); 3315 if (shards[i].getSize() > 0) 3316 off = alignTo(off, alignment); 3317 shardOffsets[i] = off; 3318 off += shards[i].getSize(); 3319 } 3320 size = off; 3321 3322 // So far, section pieces have offsets from beginning of shards, but 3323 // we want offsets from beginning of the whole section. Fix them. 3324 parallelForEach(sections, [&](MergeInputSection *sec) { 3325 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3326 if (sec->pieces[i].live) 3327 sec->pieces[i].outputOff += 3328 shardOffsets[getShardId(sec->pieces[i].hash)]; 3329 }); 3330 } 3331 3332 template <class ELFT> void elf::splitSections() { 3333 llvm::TimeTraceScope timeScope("Split sections"); 3334 // splitIntoPieces needs to be called on each MergeInputSection 3335 // before calling finalizeContents(). 3336 parallelForEach(objectFiles, [](ELFFileBase *file) { 3337 for (InputSectionBase *sec : file->getSections()) { 3338 if (!sec) 3339 continue; 3340 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3341 s->splitIntoPieces(); 3342 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3343 eh->split<ELFT>(); 3344 } 3345 }); 3346 } 3347 3348 MipsRldMapSection::MipsRldMapSection() 3349 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3350 ".rld_map") {} 3351 3352 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3353 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3354 config->wordsize, ".ARM.exidx") {} 3355 3356 static InputSection *findExidxSection(InputSection *isec) { 3357 for (InputSection *d : isec->dependentSections) 3358 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3359 return d; 3360 return nullptr; 3361 } 3362 3363 static bool isValidExidxSectionDep(InputSection *isec) { 3364 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3365 isec->getSize() > 0; 3366 } 3367 3368 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3369 if (isec->type == SHT_ARM_EXIDX) { 3370 if (InputSection *dep = isec->getLinkOrderDep()) 3371 if (isValidExidxSectionDep(dep)) { 3372 exidxSections.push_back(isec); 3373 // Every exidxSection is 8 bytes, we need an estimate of 3374 // size before assignAddresses can be called. Final size 3375 // will only be known after finalize is called. 3376 size += 8; 3377 } 3378 return true; 3379 } 3380 3381 if (isValidExidxSectionDep(isec)) { 3382 executableSections.push_back(isec); 3383 return false; 3384 } 3385 3386 // FIXME: we do not output a relocation section when --emit-relocs is used 3387 // as we do not have relocation sections for linker generated table entries 3388 // and we would have to erase at a late stage relocations from merged entries. 3389 // Given that exception tables are already position independent and a binary 3390 // analyzer could derive the relocations we choose to erase the relocations. 3391 if (config->emitRelocs && isec->type == SHT_REL) 3392 if (InputSectionBase *ex = isec->getRelocatedSection()) 3393 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3394 return true; 3395 3396 return false; 3397 } 3398 3399 // References to .ARM.Extab Sections have bit 31 clear and are not the 3400 // special EXIDX_CANTUNWIND bit-pattern. 3401 static bool isExtabRef(uint32_t unwind) { 3402 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3403 } 3404 3405 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3406 // section Prev, where Cur follows Prev in the table. This can be done if the 3407 // unwinding instructions in Cur are identical to Prev. Linker generated 3408 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3409 // InputSection. 3410 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3411 3412 struct ExidxEntry { 3413 ulittle32_t fn; 3414 ulittle32_t unwind; 3415 }; 3416 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3417 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3418 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3419 if (prev) 3420 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3421 if (isExtabRef(prevEntry.unwind)) 3422 return false; 3423 3424 // We consider the unwind instructions of an .ARM.exidx table entry 3425 // a duplicate if the previous unwind instructions if: 3426 // - Both are the special EXIDX_CANTUNWIND. 3427 // - Both are the same inline unwind instructions. 3428 // We do not attempt to follow and check links into .ARM.extab tables as 3429 // consecutive identical entries are rare and the effort to check that they 3430 // are identical is high. 3431 3432 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3433 if (cur == nullptr) 3434 return prevEntry.unwind == 1; 3435 3436 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3437 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3438 return false; 3439 3440 // All table entries in this .ARM.exidx Section can be merged into the 3441 // previous Section. 3442 return true; 3443 } 3444 3445 // The .ARM.exidx table must be sorted in ascending order of the address of the 3446 // functions the table describes. Optionally duplicate adjacent table entries 3447 // can be removed. At the end of the function the executableSections must be 3448 // sorted in ascending order of address, Sentinel is set to the InputSection 3449 // with the highest address and any InputSections that have mergeable 3450 // .ARM.exidx table entries are removed from it. 3451 void ARMExidxSyntheticSection::finalizeContents() { 3452 // The executableSections and exidxSections that we use to derive the final 3453 // contents of this SyntheticSection are populated before 3454 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3455 // ICF may remove executable InputSections and their dependent .ARM.exidx 3456 // section that we recorded earlier. 3457 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3458 llvm::erase_if(exidxSections, isDiscarded); 3459 // We need to remove discarded InputSections and InputSections without 3460 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3461 // of range. 3462 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3463 if (!isec->isLive()) 3464 return true; 3465 if (findExidxSection(isec)) 3466 return false; 3467 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3468 return off != llvm::SignExtend64(off, 31); 3469 }; 3470 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3471 3472 // Sort the executable sections that may or may not have associated 3473 // .ARM.exidx sections by order of ascending address. This requires the 3474 // relative positions of InputSections and OutputSections to be known. 3475 auto compareByFilePosition = [](const InputSection *a, 3476 const InputSection *b) { 3477 OutputSection *aOut = a->getParent(); 3478 OutputSection *bOut = b->getParent(); 3479 3480 if (aOut != bOut) 3481 return aOut->addr < bOut->addr; 3482 return a->outSecOff < b->outSecOff; 3483 }; 3484 llvm::stable_sort(executableSections, compareByFilePosition); 3485 sentinel = executableSections.back(); 3486 // Optionally merge adjacent duplicate entries. 3487 if (config->mergeArmExidx) { 3488 SmallVector<InputSection *, 0> selectedSections; 3489 selectedSections.reserve(executableSections.size()); 3490 selectedSections.push_back(executableSections[0]); 3491 size_t prev = 0; 3492 for (size_t i = 1; i < executableSections.size(); ++i) { 3493 InputSection *ex1 = findExidxSection(executableSections[prev]); 3494 InputSection *ex2 = findExidxSection(executableSections[i]); 3495 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3496 selectedSections.push_back(executableSections[i]); 3497 prev = i; 3498 } 3499 } 3500 executableSections = std::move(selectedSections); 3501 } 3502 3503 size_t offset = 0; 3504 size = 0; 3505 for (InputSection *isec : executableSections) { 3506 if (InputSection *d = findExidxSection(isec)) { 3507 d->outSecOff = offset; 3508 d->parent = getParent(); 3509 offset += d->getSize(); 3510 } else { 3511 offset += 8; 3512 } 3513 } 3514 // Size includes Sentinel. 3515 size = offset + 8; 3516 } 3517 3518 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3519 return executableSections.front(); 3520 } 3521 3522 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3523 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3524 // We write the .ARM.exidx section contents and apply its relocations. 3525 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3526 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3527 // start of the InputSection as the purpose of the linker generated 3528 // section is to terminate the address range of the previous entry. 3529 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3530 // the table to terminate the address range of the final entry. 3531 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3532 3533 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3534 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3535 3536 uint64_t offset = 0; 3537 for (InputSection *isec : executableSections) { 3538 assert(isec->getParent() != nullptr); 3539 if (InputSection *d = findExidxSection(isec)) { 3540 memcpy(buf + offset, d->data().data(), d->data().size()); 3541 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3542 offset += d->getSize(); 3543 } else { 3544 // A Linker generated CANTUNWIND section. 3545 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3546 uint64_t s = isec->getVA(); 3547 uint64_t p = getVA() + offset; 3548 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3549 offset += 8; 3550 } 3551 } 3552 // Write Sentinel. 3553 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3554 uint64_t s = sentinel->getVA(sentinel->getSize()); 3555 uint64_t p = getVA() + offset; 3556 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3557 assert(size == offset + 8); 3558 } 3559 3560 bool ARMExidxSyntheticSection::isNeeded() const { 3561 return llvm::any_of(exidxSections, 3562 [](InputSection *isec) { return isec->isLive(); }); 3563 } 3564 3565 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3566 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3567 } 3568 3569 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3570 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3571 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3572 this->parent = os; 3573 this->outSecOff = off; 3574 } 3575 3576 size_t ThunkSection::getSize() const { 3577 if (roundUpSizeForErrata) 3578 return alignTo(size, 4096); 3579 return size; 3580 } 3581 3582 void ThunkSection::addThunk(Thunk *t) { 3583 thunks.push_back(t); 3584 t->addSymbols(*this); 3585 } 3586 3587 void ThunkSection::writeTo(uint8_t *buf) { 3588 for (Thunk *t : thunks) 3589 t->writeTo(buf + t->offset); 3590 } 3591 3592 InputSection *ThunkSection::getTargetInputSection() const { 3593 if (thunks.empty()) 3594 return nullptr; 3595 const Thunk *t = thunks.front(); 3596 return t->getTargetInputSection(); 3597 } 3598 3599 bool ThunkSection::assignOffsets() { 3600 uint64_t off = 0; 3601 for (Thunk *t : thunks) { 3602 off = alignTo(off, t->alignment); 3603 t->setOffset(off); 3604 uint32_t size = t->size(); 3605 t->getThunkTargetSym()->size = size; 3606 off += size; 3607 } 3608 bool changed = off != size; 3609 size = off; 3610 return changed; 3611 } 3612 3613 PPC32Got2Section::PPC32Got2Section() 3614 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3615 3616 bool PPC32Got2Section::isNeeded() const { 3617 // See the comment below. This is not needed if there is no other 3618 // InputSection. 3619 for (SectionCommand *cmd : getParent()->commands) 3620 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3621 for (InputSection *isec : isd->sections) 3622 if (isec != this) 3623 return true; 3624 return false; 3625 } 3626 3627 void PPC32Got2Section::finalizeContents() { 3628 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3629 // .got2 . This function computes outSecOff of each .got2 to be used in 3630 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3631 // to collect input sections named ".got2". 3632 for (SectionCommand *cmd : getParent()->commands) 3633 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3634 for (InputSection *isec : isd->sections) { 3635 // isec->file may be nullptr for MergeSyntheticSection. 3636 if (isec != this && isec->file) 3637 isec->file->ppc32Got2 = isec; 3638 } 3639 } 3640 } 3641 3642 // If linking position-dependent code then the table will store the addresses 3643 // directly in the binary so the section has type SHT_PROGBITS. If linking 3644 // position-independent code the section has type SHT_NOBITS since it will be 3645 // allocated and filled in by the dynamic linker. 3646 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3647 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3648 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3649 ".branch_lt") {} 3650 3651 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3652 int64_t addend) { 3653 return getVA() + entry_index.find({sym, addend})->second * 8; 3654 } 3655 3656 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3657 int64_t addend) { 3658 auto res = 3659 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3660 if (!res.second) 3661 return None; 3662 entries.emplace_back(sym, addend); 3663 return res.first->second; 3664 } 3665 3666 size_t PPC64LongBranchTargetSection::getSize() const { 3667 return entries.size() * 8; 3668 } 3669 3670 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3671 // If linking non-pic we have the final addresses of the targets and they get 3672 // written to the table directly. For pic the dynamic linker will allocate 3673 // the section and fill it it. 3674 if (config->isPic) 3675 return; 3676 3677 for (auto entry : entries) { 3678 const Symbol *sym = entry.first; 3679 int64_t addend = entry.second; 3680 assert(sym->getVA()); 3681 // Need calls to branch to the local entry-point since a long-branch 3682 // must be a local-call. 3683 write64(buf, sym->getVA(addend) + 3684 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3685 buf += 8; 3686 } 3687 } 3688 3689 bool PPC64LongBranchTargetSection::isNeeded() const { 3690 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3691 // is too early to determine if this section will be empty or not. We need 3692 // Finalized to keep the section alive until after thunk creation. Finalized 3693 // only gets set to true once `finalizeSections()` is called after thunk 3694 // creation. Because of this, if we don't create any long-branch thunks we end 3695 // up with an empty .branch_lt section in the binary. 3696 return !finalized || !entries.empty(); 3697 } 3698 3699 static uint8_t getAbiVersion() { 3700 // MIPS non-PIC executable gets ABI version 1. 3701 if (config->emachine == EM_MIPS) { 3702 if (!config->isPic && !config->relocatable && 3703 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3704 return 1; 3705 return 0; 3706 } 3707 3708 if (config->emachine == EM_AMDGPU) { 3709 uint8_t ver = objectFiles[0]->abiVersion; 3710 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3711 if (file->abiVersion != ver) 3712 error("incompatible ABI version: " + toString(file)); 3713 return ver; 3714 } 3715 3716 return 0; 3717 } 3718 3719 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3720 memcpy(buf, "\177ELF", 4); 3721 3722 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3723 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3724 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3725 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3726 eHdr->e_ident[EI_OSABI] = config->osabi; 3727 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3728 eHdr->e_machine = config->emachine; 3729 eHdr->e_version = EV_CURRENT; 3730 eHdr->e_flags = config->eflags; 3731 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3732 eHdr->e_phnum = part.phdrs.size(); 3733 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3734 3735 if (!config->relocatable) { 3736 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3737 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3738 } 3739 } 3740 3741 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3742 // Write the program header table. 3743 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3744 for (PhdrEntry *p : part.phdrs) { 3745 hBuf->p_type = p->p_type; 3746 hBuf->p_flags = p->p_flags; 3747 hBuf->p_offset = p->p_offset; 3748 hBuf->p_vaddr = p->p_vaddr; 3749 hBuf->p_paddr = p->p_paddr; 3750 hBuf->p_filesz = p->p_filesz; 3751 hBuf->p_memsz = p->p_memsz; 3752 hBuf->p_align = p->p_align; 3753 ++hBuf; 3754 } 3755 } 3756 3757 template <typename ELFT> 3758 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3759 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3760 3761 template <typename ELFT> 3762 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3763 return sizeof(typename ELFT::Ehdr); 3764 } 3765 3766 template <typename ELFT> 3767 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3768 writeEhdr<ELFT>(buf, getPartition()); 3769 3770 // Loadable partitions are always ET_DYN. 3771 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3772 eHdr->e_type = ET_DYN; 3773 } 3774 3775 template <typename ELFT> 3776 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3777 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3778 3779 template <typename ELFT> 3780 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3781 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3782 } 3783 3784 template <typename ELFT> 3785 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3786 writePhdrs<ELFT>(buf, getPartition()); 3787 } 3788 3789 PartitionIndexSection::PartitionIndexSection() 3790 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3791 3792 size_t PartitionIndexSection::getSize() const { 3793 return 12 * (partitions.size() - 1); 3794 } 3795 3796 void PartitionIndexSection::finalizeContents() { 3797 for (size_t i = 1; i != partitions.size(); ++i) 3798 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3799 } 3800 3801 void PartitionIndexSection::writeTo(uint8_t *buf) { 3802 uint64_t va = getVA(); 3803 for (size_t i = 1; i != partitions.size(); ++i) { 3804 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3805 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3806 3807 SyntheticSection *next = i == partitions.size() - 1 3808 ? in.partEnd.get() 3809 : partitions[i + 1].elfHeader.get(); 3810 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3811 3812 va += 12; 3813 buf += 12; 3814 } 3815 } 3816 3817 void InStruct::reset() { 3818 attributes.reset(); 3819 bss.reset(); 3820 bssRelRo.reset(); 3821 got.reset(); 3822 gotPlt.reset(); 3823 igotPlt.reset(); 3824 ppc64LongBranchTarget.reset(); 3825 mipsAbiFlags.reset(); 3826 mipsGot.reset(); 3827 mipsOptions.reset(); 3828 mipsReginfo.reset(); 3829 mipsRldMap.reset(); 3830 partEnd.reset(); 3831 partIndex.reset(); 3832 plt.reset(); 3833 iplt.reset(); 3834 ppc32Got2.reset(); 3835 ibtPlt.reset(); 3836 relaPlt.reset(); 3837 relaIplt.reset(); 3838 shStrTab.reset(); 3839 strTab.reset(); 3840 symTab.reset(); 3841 symTabShndx.reset(); 3842 } 3843 3844 InStruct elf::in; 3845 3846 std::vector<Partition> elf::partitions; 3847 Partition *elf::mainPart; 3848 3849 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3850 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3851 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3852 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3853 3854 template void elf::splitSections<ELF32LE>(); 3855 template void elf::splitSections<ELF32BE>(); 3856 template void elf::splitSections<ELF64LE>(); 3857 template void elf::splitSections<ELF64BE>(); 3858 3859 template class elf::MipsAbiFlagsSection<ELF32LE>; 3860 template class elf::MipsAbiFlagsSection<ELF32BE>; 3861 template class elf::MipsAbiFlagsSection<ELF64LE>; 3862 template class elf::MipsAbiFlagsSection<ELF64BE>; 3863 3864 template class elf::MipsOptionsSection<ELF32LE>; 3865 template class elf::MipsOptionsSection<ELF32BE>; 3866 template class elf::MipsOptionsSection<ELF64LE>; 3867 template class elf::MipsOptionsSection<ELF64BE>; 3868 3869 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3870 function_ref<void(InputSection &)>); 3871 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3872 function_ref<void(InputSection &)>); 3873 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3874 function_ref<void(InputSection &)>); 3875 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3876 function_ref<void(InputSection &)>); 3877 3878 template class elf::MipsReginfoSection<ELF32LE>; 3879 template class elf::MipsReginfoSection<ELF32BE>; 3880 template class elf::MipsReginfoSection<ELF64LE>; 3881 template class elf::MipsReginfoSection<ELF64BE>; 3882 3883 template class elf::DynamicSection<ELF32LE>; 3884 template class elf::DynamicSection<ELF32BE>; 3885 template class elf::DynamicSection<ELF64LE>; 3886 template class elf::DynamicSection<ELF64BE>; 3887 3888 template class elf::RelocationSection<ELF32LE>; 3889 template class elf::RelocationSection<ELF32BE>; 3890 template class elf::RelocationSection<ELF64LE>; 3891 template class elf::RelocationSection<ELF64BE>; 3892 3893 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3894 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3895 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3896 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3897 3898 template class elf::RelrSection<ELF32LE>; 3899 template class elf::RelrSection<ELF32BE>; 3900 template class elf::RelrSection<ELF64LE>; 3901 template class elf::RelrSection<ELF64BE>; 3902 3903 template class elf::SymbolTableSection<ELF32LE>; 3904 template class elf::SymbolTableSection<ELF32BE>; 3905 template class elf::SymbolTableSection<ELF64LE>; 3906 template class elf::SymbolTableSection<ELF64BE>; 3907 3908 template class elf::VersionNeedSection<ELF32LE>; 3909 template class elf::VersionNeedSection<ELF32BE>; 3910 template class elf::VersionNeedSection<ELF64LE>; 3911 template class elf::VersionNeedSection<ELF64BE>; 3912 3913 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3914 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3915 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3916 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3917 3918 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3919 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3920 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3921 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3922 3923 template class elf::PartitionElfHeaderSection<ELF32LE>; 3924 template class elf::PartitionElfHeaderSection<ELF32BE>; 3925 template class elf::PartitionElfHeaderSection<ELF64LE>; 3926 template class elf::PartitionElfHeaderSection<ELF64BE>; 3927 3928 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3929 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3930 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3931 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3932