1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 std::unique_ptr<LinkerScript> elf::script; 51 52 static bool isSectionPrefix(StringRef prefix, StringRef name) { 53 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 54 } 55 56 static StringRef getOutputSectionName(const InputSectionBase *s) { 57 if (config->relocatable) 58 return s->name; 59 60 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 61 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 62 // technically required, but not doing it is odd). This code guarantees that. 63 if (auto *isec = dyn_cast<InputSection>(s)) { 64 if (InputSectionBase *rel = isec->getRelocatedSection()) { 65 OutputSection *out = rel->getOutputSection(); 66 if (s->type == SHT_RELA) 67 return saver.save(".rela" + out->name); 68 return saver.save(".rel" + out->name); 69 } 70 } 71 72 // A BssSection created for a common symbol is identified as "COMMON" in 73 // linker scripts. It should go to .bss section. 74 if (s->name == "COMMON") 75 return ".bss"; 76 77 if (script->hasSectionsCommand) 78 return s->name; 79 80 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 81 // by grouping sections with certain prefixes. 82 83 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 84 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 85 // We provide an option -z keep-text-section-prefix to group such sections 86 // into separate output sections. This is more flexible. See also 87 // sortISDBySectionOrder(). 88 // ".text.unknown" means the hotness of the section is unknown. When 89 // SampleFDO is used, if a function doesn't have sample, it could be very 90 // cold or it could be a new function never being sampled. Those functions 91 // will be kept in the ".text.unknown" section. 92 // ".text.split." holds symbols which are split out from functions in other 93 // input sections. For example, with -fsplit-machine-functions, placing the 94 // cold parts in .text.split instead of .text.unlikely mitigates against poor 95 // profile inaccuracy. Techniques such as hugepage remapping can make 96 // conservative decisions at the section granularity. 97 if (isSectionPrefix(".text", s->name)) { 98 if (config->zKeepTextSectionPrefix) 99 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 100 ".text.startup", ".text.exit", ".text.split"}) 101 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 102 return v; 103 return ".text"; 104 } 105 106 for (StringRef v : 107 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", 108 ".gcc_except_table", ".init_array", ".fini_array", ".tbss", ".tdata", 109 ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 110 if (isSectionPrefix(v, s->name)) 111 return v; 112 113 return s->name; 114 } 115 116 uint64_t ExprValue::getValue() const { 117 if (sec) 118 return alignTo(sec->getOutputSection()->addr + sec->getOffset(val), 119 alignment); 120 return alignTo(val, alignment); 121 } 122 123 uint64_t ExprValue::getSecAddr() const { 124 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 125 } 126 127 uint64_t ExprValue::getSectionOffset() const { 128 // If the alignment is trivial, we don't have to compute the full 129 // value to know the offset. This allows this function to succeed in 130 // cases where the output section is not yet known. 131 if (alignment == 1 && !sec) 132 return val; 133 return getValue() - getSecAddr(); 134 } 135 136 OutputSection *LinkerScript::createOutputSection(StringRef name, 137 StringRef location) { 138 OutputSection *&secRef = nameToOutputSection[name]; 139 OutputSection *sec; 140 if (secRef && secRef->location.empty()) { 141 // There was a forward reference. 142 sec = secRef; 143 } else { 144 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 145 if (!secRef) 146 secRef = sec; 147 } 148 sec->location = std::string(location); 149 return sec; 150 } 151 152 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 153 OutputSection *&cmdRef = nameToOutputSection[name]; 154 if (!cmdRef) 155 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 156 return cmdRef; 157 } 158 159 // Expands the memory region by the specified size. 160 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 161 StringRef secName) { 162 memRegion->curPos += size; 163 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 164 uint64_t length = (memRegion->length)().getValue(); 165 if (newSize > length) 166 error("section '" + secName + "' will not fit in region '" + 167 memRegion->name + "': overflowed by " + Twine(newSize - length) + 168 " bytes"); 169 } 170 171 void LinkerScript::expandMemoryRegions(uint64_t size) { 172 if (ctx->memRegion) 173 expandMemoryRegion(ctx->memRegion, size, ctx->outSec->name); 174 // Only expand the LMARegion if it is different from memRegion. 175 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 176 expandMemoryRegion(ctx->lmaRegion, size, ctx->outSec->name); 177 } 178 179 void LinkerScript::expandOutputSection(uint64_t size) { 180 ctx->outSec->size += size; 181 expandMemoryRegions(size); 182 } 183 184 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 185 uint64_t val = e().getValue(); 186 if (val < dot && inSec) 187 error(loc + ": unable to move location counter backward for: " + 188 ctx->outSec->name); 189 190 // Update to location counter means update to section size. 191 if (inSec) 192 expandOutputSection(val - dot); 193 194 dot = val; 195 } 196 197 // Used for handling linker symbol assignments, for both finalizing 198 // their values and doing early declarations. Returns true if symbol 199 // should be defined from linker script. 200 static bool shouldDefineSym(SymbolAssignment *cmd) { 201 if (cmd->name == ".") 202 return false; 203 204 if (!cmd->provide) 205 return true; 206 207 // If a symbol was in PROVIDE(), we need to define it only 208 // when it is a referenced undefined symbol. 209 Symbol *b = symtab->find(cmd->name); 210 if (b && !b->isDefined()) 211 return true; 212 return false; 213 } 214 215 // Called by processSymbolAssignments() to assign definitions to 216 // linker-script-defined symbols. 217 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 218 if (!shouldDefineSym(cmd)) 219 return; 220 221 // Define a symbol. 222 ExprValue value = cmd->expression(); 223 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 224 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 225 226 // When this function is called, section addresses have not been 227 // fixed yet. So, we may or may not know the value of the RHS 228 // expression. 229 // 230 // For example, if an expression is `x = 42`, we know x is always 42. 231 // However, if an expression is `x = .`, there's no way to know its 232 // value at the moment. 233 // 234 // We want to set symbol values early if we can. This allows us to 235 // use symbols as variables in linker scripts. Doing so allows us to 236 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 237 uint64_t symValue = value.sec ? 0 : value.getValue(); 238 239 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 240 symValue, 0, sec); 241 242 Symbol *sym = symtab->insert(cmd->name); 243 sym->mergeProperties(newSym); 244 sym->replace(newSym); 245 cmd->sym = cast<Defined>(sym); 246 } 247 248 // This function is called from LinkerScript::declareSymbols. 249 // It creates a placeholder symbol if needed. 250 static void declareSymbol(SymbolAssignment *cmd) { 251 if (!shouldDefineSym(cmd)) 252 return; 253 254 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 255 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 256 nullptr); 257 258 // We can't calculate final value right now. 259 Symbol *sym = symtab->insert(cmd->name); 260 sym->mergeProperties(newSym); 261 sym->replace(newSym); 262 263 cmd->sym = cast<Defined>(sym); 264 cmd->provide = false; 265 sym->scriptDefined = true; 266 } 267 268 using SymbolAssignmentMap = 269 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 270 271 // Collect section/value pairs of linker-script-defined symbols. This is used to 272 // check whether symbol values converge. 273 static SymbolAssignmentMap getSymbolAssignmentValues( 274 const std::vector<SectionCommand *> §ionCommands) { 275 SymbolAssignmentMap ret; 276 for (SectionCommand *cmd : sectionCommands) { 277 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 278 if (assign->sym) // sym is nullptr for dot. 279 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 280 assign->sym->value)); 281 continue; 282 } 283 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 284 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 285 if (assign->sym) 286 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 287 assign->sym->value)); 288 } 289 return ret; 290 } 291 292 // Returns the lexicographical smallest (for determinism) Defined whose 293 // section/value has changed. 294 static const Defined * 295 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 296 const Defined *changed = nullptr; 297 for (auto &it : oldValues) { 298 const Defined *sym = it.first; 299 if (std::make_pair(sym->section, sym->value) != it.second && 300 (!changed || sym->getName() < changed->getName())) 301 changed = sym; 302 } 303 return changed; 304 } 305 306 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 307 // specified output section to the designated place. 308 void LinkerScript::processInsertCommands() { 309 std::vector<OutputSection *> moves; 310 for (const InsertCommand &cmd : insertCommands) { 311 for (StringRef name : cmd.names) { 312 // If base is empty, it may have been discarded by 313 // adjustSectionsBeforeSorting(). We do not handle such output sections. 314 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 315 return isa<OutputSection>(subCmd) && 316 cast<OutputSection>(subCmd)->name == name; 317 }); 318 if (from == sectionCommands.end()) 319 continue; 320 moves.push_back(cast<OutputSection>(*from)); 321 sectionCommands.erase(from); 322 } 323 324 auto insertPos = 325 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 326 auto *to = dyn_cast<OutputSection>(subCmd); 327 return to != nullptr && to->name == cmd.where; 328 }); 329 if (insertPos == sectionCommands.end()) { 330 error("unable to insert " + cmd.names[0] + 331 (cmd.isAfter ? " after " : " before ") + cmd.where); 332 } else { 333 if (cmd.isAfter) 334 ++insertPos; 335 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 336 } 337 moves.clear(); 338 } 339 } 340 341 // Symbols defined in script should not be inlined by LTO. At the same time 342 // we don't know their final values until late stages of link. Here we scan 343 // over symbol assignment commands and create placeholder symbols if needed. 344 void LinkerScript::declareSymbols() { 345 assert(!ctx); 346 for (SectionCommand *cmd : sectionCommands) { 347 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 348 declareSymbol(assign); 349 continue; 350 } 351 352 // If the output section directive has constraints, 353 // we can't say for sure if it is going to be included or not. 354 // Skip such sections for now. Improve the checks if we ever 355 // need symbols from that sections to be declared early. 356 auto *sec = cast<OutputSection>(cmd); 357 if (sec->constraint != ConstraintKind::NoConstraint) 358 continue; 359 for (SectionCommand *cmd : sec->commands) 360 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 361 declareSymbol(assign); 362 } 363 } 364 365 // This function is called from assignAddresses, while we are 366 // fixing the output section addresses. This function is supposed 367 // to set the final value for a given symbol assignment. 368 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 369 if (cmd->name == ".") { 370 setDot(cmd->expression, cmd->location, inSec); 371 return; 372 } 373 374 if (!cmd->sym) 375 return; 376 377 ExprValue v = cmd->expression(); 378 if (v.isAbsolute()) { 379 cmd->sym->section = nullptr; 380 cmd->sym->value = v.getValue(); 381 } else { 382 cmd->sym->section = v.sec; 383 cmd->sym->value = v.getSectionOffset(); 384 } 385 cmd->sym->type = v.type; 386 } 387 388 static inline StringRef getFilename(const InputFile *file) { 389 return file ? file->getNameForScript() : StringRef(); 390 } 391 392 bool InputSectionDescription::matchesFile(const InputFile *file) const { 393 if (filePat.isTrivialMatchAll()) 394 return true; 395 396 if (!matchesFileCache || matchesFileCache->first != file) 397 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 398 399 return matchesFileCache->second; 400 } 401 402 bool SectionPattern::excludesFile(const InputFile *file) const { 403 if (excludedFilePat.empty()) 404 return false; 405 406 if (!excludesFileCache || excludesFileCache->first != file) 407 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 408 409 return excludesFileCache->second; 410 } 411 412 bool LinkerScript::shouldKeep(InputSectionBase *s) { 413 for (InputSectionDescription *id : keptSections) 414 if (id->matchesFile(s->file)) 415 for (SectionPattern &p : id->sectionPatterns) 416 if (p.sectionPat.match(s->name) && 417 (s->flags & id->withFlags) == id->withFlags && 418 (s->flags & id->withoutFlags) == 0) 419 return true; 420 return false; 421 } 422 423 // A helper function for the SORT() command. 424 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 425 ConstraintKind kind) { 426 if (kind == ConstraintKind::NoConstraint) 427 return true; 428 429 bool isRW = llvm::any_of( 430 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 431 432 return (isRW && kind == ConstraintKind::ReadWrite) || 433 (!isRW && kind == ConstraintKind::ReadOnly); 434 } 435 436 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 437 SortSectionPolicy k) { 438 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 439 // ">" is not a mistake. Sections with larger alignments are placed 440 // before sections with smaller alignments in order to reduce the 441 // amount of padding necessary. This is compatible with GNU. 442 return a->alignment > b->alignment; 443 }; 444 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 445 return a->name < b->name; 446 }; 447 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 448 return getPriority(a->name) < getPriority(b->name); 449 }; 450 451 switch (k) { 452 case SortSectionPolicy::Default: 453 case SortSectionPolicy::None: 454 return; 455 case SortSectionPolicy::Alignment: 456 return llvm::stable_sort(vec, alignmentComparator); 457 case SortSectionPolicy::Name: 458 return llvm::stable_sort(vec, nameComparator); 459 case SortSectionPolicy::Priority: 460 return llvm::stable_sort(vec, priorityComparator); 461 } 462 } 463 464 // Sort sections as instructed by SORT-family commands and --sort-section 465 // option. Because SORT-family commands can be nested at most two depth 466 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 467 // line option is respected even if a SORT command is given, the exact 468 // behavior we have here is a bit complicated. Here are the rules. 469 // 470 // 1. If two SORT commands are given, --sort-section is ignored. 471 // 2. If one SORT command is given, and if it is not SORT_NONE, 472 // --sort-section is handled as an inner SORT command. 473 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 474 // 4. If no SORT command is given, sort according to --sort-section. 475 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 476 SortSectionPolicy outer, 477 SortSectionPolicy inner) { 478 if (outer == SortSectionPolicy::None) 479 return; 480 481 if (inner == SortSectionPolicy::Default) 482 sortSections(vec, config->sortSection); 483 else 484 sortSections(vec, inner); 485 sortSections(vec, outer); 486 } 487 488 // Compute and remember which sections the InputSectionDescription matches. 489 std::vector<InputSectionBase *> 490 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 491 ArrayRef<InputSectionBase *> sections) { 492 std::vector<InputSectionBase *> ret; 493 std::vector<size_t> indexes; 494 DenseSet<size_t> seen; 495 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 496 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 497 for (size_t i = begin; i != end; ++i) 498 ret[i] = sections[indexes[i]]; 499 sortInputSections( 500 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 501 config->sortSection, SortSectionPolicy::None); 502 }; 503 504 // Collects all sections that satisfy constraints of Cmd. 505 size_t sizeAfterPrevSort = 0; 506 for (const SectionPattern &pat : cmd->sectionPatterns) { 507 size_t sizeBeforeCurrPat = ret.size(); 508 509 for (size_t i = 0, e = sections.size(); i != e; ++i) { 510 // Skip if the section is dead or has been matched by a previous input 511 // section description or a previous pattern. 512 InputSectionBase *sec = sections[i]; 513 if (!sec->isLive() || sec->parent || seen.contains(i)) 514 continue; 515 516 // For --emit-relocs we have to ignore entries like 517 // .rela.dyn : { *(.rela.data) } 518 // which are common because they are in the default bfd script. 519 // We do not ignore SHT_REL[A] linker-synthesized sections here because 520 // want to support scripts that do custom layout for them. 521 if (isa<InputSection>(sec) && 522 cast<InputSection>(sec)->getRelocatedSection()) 523 continue; 524 525 // Check the name early to improve performance in the common case. 526 if (!pat.sectionPat.match(sec->name)) 527 continue; 528 529 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 530 (sec->flags & cmd->withFlags) != cmd->withFlags || 531 (sec->flags & cmd->withoutFlags) != 0) 532 continue; 533 534 ret.push_back(sec); 535 indexes.push_back(i); 536 seen.insert(i); 537 } 538 539 if (pat.sortOuter == SortSectionPolicy::Default) 540 continue; 541 542 // Matched sections are ordered by radix sort with the keys being (SORT*, 543 // --sort-section, input order), where SORT* (if present) is most 544 // significant. 545 // 546 // Matched sections between the previous SORT* and this SORT* are sorted by 547 // (--sort-alignment, input order). 548 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 549 // Matched sections by this SORT* pattern are sorted using all 3 keys. 550 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 551 // just sort by sortOuter and sortInner. 552 sortInputSections( 553 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 554 pat.sortOuter, pat.sortInner); 555 sizeAfterPrevSort = ret.size(); 556 } 557 // Matched sections after the last SORT* are sorted by (--sort-alignment, 558 // input order). 559 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 560 return ret; 561 } 562 563 void LinkerScript::discard(InputSectionBase &s) { 564 if (&s == in.shStrTab || &s == mainPart->relrDyn) 565 error("discarding " + s.name + " section is not allowed"); 566 567 // You can discard .hash and .gnu.hash sections by linker scripts. Since 568 // they are synthesized sections, we need to handle them differently than 569 // other regular sections. 570 if (&s == mainPart->gnuHashTab) 571 mainPart->gnuHashTab = nullptr; 572 if (&s == mainPart->hashTab) 573 mainPart->hashTab = nullptr; 574 575 s.markDead(); 576 s.parent = nullptr; 577 for (InputSection *sec : s.dependentSections) 578 discard(*sec); 579 } 580 581 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 582 for (Partition &part : partitions) { 583 if (!part.armExidx || !part.armExidx->isLive()) 584 continue; 585 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 586 part.armExidx->exidxSections.end()); 587 for (SectionCommand *cmd : outCmd.commands) 588 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 589 std::vector<InputSectionBase *> matches = 590 computeInputSections(isd, secs); 591 for (InputSectionBase *s : matches) 592 discard(*s); 593 } 594 } 595 } 596 597 std::vector<InputSectionBase *> 598 LinkerScript::createInputSectionList(OutputSection &outCmd) { 599 std::vector<InputSectionBase *> ret; 600 601 for (SectionCommand *cmd : outCmd.commands) { 602 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 603 isd->sectionBases = computeInputSections(isd, inputSections); 604 for (InputSectionBase *s : isd->sectionBases) 605 s->parent = &outCmd; 606 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 607 } 608 } 609 return ret; 610 } 611 612 // Create output sections described by SECTIONS commands. 613 void LinkerScript::processSectionCommands() { 614 auto process = [this](OutputSection *osec) { 615 std::vector<InputSectionBase *> v = createInputSectionList(*osec); 616 617 // The output section name `/DISCARD/' is special. 618 // Any input section assigned to it is discarded. 619 if (osec->name == "/DISCARD/") { 620 for (InputSectionBase *s : v) 621 discard(*s); 622 discardSynthetic(*osec); 623 osec->commands.clear(); 624 return false; 625 } 626 627 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 628 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 629 // sections satisfy a given constraint. If not, a directive is handled 630 // as if it wasn't present from the beginning. 631 // 632 // Because we'll iterate over SectionCommands many more times, the easy 633 // way to "make it as if it wasn't present" is to make it empty. 634 if (!matchConstraints(v, osec->constraint)) { 635 for (InputSectionBase *s : v) 636 s->parent = nullptr; 637 osec->commands.clear(); 638 return false; 639 } 640 641 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 642 // is given, input sections are aligned to that value, whether the 643 // given value is larger or smaller than the original section alignment. 644 if (osec->subalignExpr) { 645 uint32_t subalign = osec->subalignExpr().getValue(); 646 for (InputSectionBase *s : v) 647 s->alignment = subalign; 648 } 649 650 // Set the partition field the same way OutputSection::recordSection() 651 // does. Partitions cannot be used with the SECTIONS command, so this is 652 // always 1. 653 osec->partition = 1; 654 return true; 655 }; 656 657 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 658 // or orphans. 659 DenseMap<StringRef, OutputSection *> map; 660 size_t i = 0; 661 for (OutputSection *osec : overwriteSections) 662 if (process(osec) && !map.try_emplace(osec->name, osec).second) 663 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 664 for (SectionCommand *&base : sectionCommands) 665 if (auto *osec = dyn_cast<OutputSection>(base)) { 666 if (OutputSection *overwrite = map.lookup(osec->name)) { 667 log(overwrite->location + " overwrites " + osec->name); 668 overwrite->sectionIndex = i++; 669 base = overwrite; 670 } else if (process(osec)) { 671 osec->sectionIndex = i++; 672 } 673 } 674 675 // If an OVERWRITE_SECTIONS specified output section is not in 676 // sectionCommands, append it to the end. The section will be inserted by 677 // orphan placement. 678 for (OutputSection *osec : overwriteSections) 679 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 680 sectionCommands.push_back(osec); 681 } 682 683 void LinkerScript::processSymbolAssignments() { 684 // Dot outside an output section still represents a relative address, whose 685 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 686 // that fills the void outside a section. It has an index of one, which is 687 // indistinguishable from any other regular section index. 688 aether = make<OutputSection>("", 0, SHF_ALLOC); 689 aether->sectionIndex = 1; 690 691 // ctx captures the local AddressState and makes it accessible deliberately. 692 // This is needed as there are some cases where we cannot just thread the 693 // current state through to a lambda function created by the script parser. 694 AddressState state; 695 ctx = &state; 696 ctx->outSec = aether; 697 698 for (SectionCommand *cmd : sectionCommands) { 699 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 700 addSymbol(assign); 701 else 702 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 703 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 704 addSymbol(assign); 705 } 706 707 ctx = nullptr; 708 } 709 710 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 711 StringRef name) { 712 for (SectionCommand *cmd : vec) 713 if (auto *sec = dyn_cast<OutputSection>(cmd)) 714 if (sec->name == name) 715 return sec; 716 return nullptr; 717 } 718 719 static OutputSection *createSection(InputSectionBase *isec, 720 StringRef outsecName) { 721 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 722 sec->recordSection(isec); 723 return sec; 724 } 725 726 static OutputSection * 727 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 728 InputSectionBase *isec, StringRef outsecName) { 729 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 730 // option is given. A section with SHT_GROUP defines a "section group", and 731 // its members have SHF_GROUP attribute. Usually these flags have already been 732 // stripped by InputFiles.cpp as section groups are processed and uniquified. 733 // However, for the -r option, we want to pass through all section groups 734 // as-is because adding/removing members or merging them with other groups 735 // change their semantics. 736 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 737 return createSection(isec, outsecName); 738 739 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 740 // relocation sections .rela.foo and .rela.bar for example. Most tools do 741 // not allow multiple REL[A] sections for output section. Hence we 742 // should combine these relocation sections into single output. 743 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 744 // other REL[A] sections created by linker itself. 745 if (!isa<SyntheticSection>(isec) && 746 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 747 auto *sec = cast<InputSection>(isec); 748 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 749 750 if (out->relocationSection) { 751 out->relocationSection->recordSection(sec); 752 return nullptr; 753 } 754 755 out->relocationSection = createSection(isec, outsecName); 756 return out->relocationSection; 757 } 758 759 // The ELF spec just says 760 // ---------------------------------------------------------------- 761 // In the first phase, input sections that match in name, type and 762 // attribute flags should be concatenated into single sections. 763 // ---------------------------------------------------------------- 764 // 765 // However, it is clear that at least some flags have to be ignored for 766 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 767 // ignored. We should not have two output .text sections just because one was 768 // in a group and another was not for example. 769 // 770 // It also seems that wording was a late addition and didn't get the 771 // necessary scrutiny. 772 // 773 // Merging sections with different flags is expected by some users. One 774 // reason is that if one file has 775 // 776 // int *const bar __attribute__((section(".foo"))) = (int *)0; 777 // 778 // gcc with -fPIC will produce a read only .foo section. But if another 779 // file has 780 // 781 // int zed; 782 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 783 // 784 // gcc with -fPIC will produce a read write section. 785 // 786 // Last but not least, when using linker script the merge rules are forced by 787 // the script. Unfortunately, linker scripts are name based. This means that 788 // expressions like *(.foo*) can refer to multiple input sections with 789 // different flags. We cannot put them in different output sections or we 790 // would produce wrong results for 791 // 792 // start = .; *(.foo.*) end = .; *(.bar) 793 // 794 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 795 // another. The problem is that there is no way to layout those output 796 // sections such that the .foo sections are the only thing between the start 797 // and end symbols. 798 // 799 // Given the above issues, we instead merge sections by name and error on 800 // incompatible types and flags. 801 TinyPtrVector<OutputSection *> &v = map[outsecName]; 802 for (OutputSection *sec : v) { 803 if (sec->partition != isec->partition) 804 continue; 805 806 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 807 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 808 // change their semantics, so we only merge them in -r links if they will 809 // end up being linked to the same output section. The casts are fine 810 // because everything in the map was created by the orphan placement code. 811 auto *firstIsec = cast<InputSectionBase>( 812 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 813 OutputSection *firstIsecOut = 814 firstIsec->flags & SHF_LINK_ORDER 815 ? firstIsec->getLinkOrderDep()->getOutputSection() 816 : nullptr; 817 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 818 continue; 819 } 820 821 sec->recordSection(isec); 822 return nullptr; 823 } 824 825 OutputSection *sec = createSection(isec, outsecName); 826 v.push_back(sec); 827 return sec; 828 } 829 830 // Add sections that didn't match any sections command. 831 void LinkerScript::addOrphanSections() { 832 StringMap<TinyPtrVector<OutputSection *>> map; 833 std::vector<OutputSection *> v; 834 835 std::function<void(InputSectionBase *)> add; 836 add = [&](InputSectionBase *s) { 837 if (s->isLive() && !s->parent) { 838 orphanSections.push_back(s); 839 840 StringRef name = getOutputSectionName(s); 841 if (config->unique) { 842 v.push_back(createSection(s, name)); 843 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 844 sec->recordSection(s); 845 } else { 846 if (OutputSection *os = addInputSec(map, s, name)) 847 v.push_back(os); 848 assert(isa<MergeInputSection>(s) || 849 s->getOutputSection()->sectionIndex == UINT32_MAX); 850 } 851 } 852 853 if (config->relocatable) 854 for (InputSectionBase *depSec : s->dependentSections) 855 if (depSec->flags & SHF_LINK_ORDER) 856 add(depSec); 857 }; 858 859 // For further --emit-reloc handling code we need target output section 860 // to be created before we create relocation output section, so we want 861 // to create target sections first. We do not want priority handling 862 // for synthetic sections because them are special. 863 for (InputSectionBase *isec : inputSections) { 864 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 865 // sections because we need to know the parent's output section before we 866 // can select an output section for the SHF_LINK_ORDER section. 867 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 868 continue; 869 870 if (auto *sec = dyn_cast<InputSection>(isec)) 871 if (InputSectionBase *rel = sec->getRelocatedSection()) 872 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 873 add(relIS); 874 add(isec); 875 } 876 877 // If no SECTIONS command was given, we should insert sections commands 878 // before others, so that we can handle scripts which refers them, 879 // for example: "foo = ABSOLUTE(ADDR(.text)));". 880 // When SECTIONS command is present we just add all orphans to the end. 881 if (hasSectionsCommand) 882 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 883 else 884 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 885 } 886 887 void LinkerScript::diagnoseOrphanHandling() const { 888 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 889 if (config->orphanHandling == OrphanHandlingPolicy::Place) 890 return; 891 for (const InputSectionBase *sec : orphanSections) { 892 // Input SHT_REL[A] retained by --emit-relocs are ignored by 893 // computeInputSections(). Don't warn/error. 894 if (isa<InputSection>(sec) && 895 cast<InputSection>(sec)->getRelocatedSection()) 896 continue; 897 898 StringRef name = getOutputSectionName(sec); 899 if (config->orphanHandling == OrphanHandlingPolicy::Error) 900 error(toString(sec) + " is being placed in '" + name + "'"); 901 else 902 warn(toString(sec) + " is being placed in '" + name + "'"); 903 } 904 } 905 906 // This function searches for a memory region to place the given output 907 // section in. If found, a pointer to the appropriate memory region is 908 // returned in the first member of the pair. Otherwise, a nullptr is returned. 909 // The second member of the pair is a hint that should be passed to the 910 // subsequent call of this method. 911 std::pair<MemoryRegion *, MemoryRegion *> 912 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 913 // Non-allocatable sections are not part of the process image. 914 if (!(sec->flags & SHF_ALLOC)) { 915 if (!sec->memoryRegionName.empty()) 916 warn("ignoring memory region assignment for non-allocatable section '" + 917 sec->name + "'"); 918 return {nullptr, nullptr}; 919 } 920 921 // If a memory region name was specified in the output section command, 922 // then try to find that region first. 923 if (!sec->memoryRegionName.empty()) { 924 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 925 return {m, m}; 926 error("memory region '" + sec->memoryRegionName + "' not declared"); 927 return {nullptr, nullptr}; 928 } 929 930 // If at least one memory region is defined, all sections must 931 // belong to some memory region. Otherwise, we don't need to do 932 // anything for memory regions. 933 if (memoryRegions.empty()) 934 return {nullptr, nullptr}; 935 936 // An orphan section should continue the previous memory region. 937 if (sec->sectionIndex == UINT32_MAX && hint) 938 return {hint, hint}; 939 940 // See if a region can be found by matching section flags. 941 for (auto &pair : memoryRegions) { 942 MemoryRegion *m = pair.second; 943 if (m->compatibleWith(sec->flags)) 944 return {m, nullptr}; 945 } 946 947 // Otherwise, no suitable region was found. 948 error("no memory region specified for section '" + sec->name + "'"); 949 return {nullptr, nullptr}; 950 } 951 952 static OutputSection *findFirstSection(PhdrEntry *load) { 953 for (OutputSection *sec : outputSections) 954 if (sec->ptLoad == load) 955 return sec; 956 return nullptr; 957 } 958 959 // This function assigns offsets to input sections and an output section 960 // for a single sections command (e.g. ".text { *(.text); }"). 961 void LinkerScript::assignOffsets(OutputSection *sec) { 962 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 963 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 964 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 965 const uint64_t savedDot = dot; 966 ctx->memRegion = sec->memRegion; 967 ctx->lmaRegion = sec->lmaRegion; 968 969 if (!(sec->flags & SHF_ALLOC)) { 970 // Non-SHF_ALLOC sections have zero addresses. 971 dot = 0; 972 } else if (isTbss) { 973 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 974 // starts from the end address of the previous tbss section. 975 if (ctx->tbssAddr == 0) 976 ctx->tbssAddr = dot; 977 else 978 dot = ctx->tbssAddr; 979 } else { 980 if (ctx->memRegion) 981 dot = ctx->memRegion->curPos; 982 if (sec->addrExpr) 983 setDot(sec->addrExpr, sec->location, false); 984 985 // If the address of the section has been moved forward by an explicit 986 // expression so that it now starts past the current curPos of the enclosing 987 // region, we need to expand the current region to account for the space 988 // between the previous section, if any, and the start of this section. 989 if (ctx->memRegion && ctx->memRegion->curPos < dot) 990 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 991 sec->name); 992 } 993 994 ctx->outSec = sec; 995 if (sec->addrExpr && script->hasSectionsCommand) { 996 // The alignment is ignored. 997 sec->addr = dot; 998 } else { 999 // sec->alignment is the max of ALIGN and the maximum of input 1000 // section alignments. 1001 const uint64_t pos = dot; 1002 dot = alignTo(dot, sec->alignment); 1003 sec->addr = dot; 1004 expandMemoryRegions(dot - pos); 1005 } 1006 1007 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 1008 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 1009 // region is the default, and the two sections are in the same memory region, 1010 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1011 // heuristics described in 1012 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1013 if (sec->lmaExpr) { 1014 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 1015 } else if (MemoryRegion *mr = sec->lmaRegion) { 1016 uint64_t lmaStart = alignTo(mr->curPos, sec->alignment); 1017 if (mr->curPos < lmaStart) 1018 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1019 ctx->lmaOffset = lmaStart - dot; 1020 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1021 ctx->lmaOffset = 0; 1022 } 1023 1024 // Propagate ctx->lmaOffset to the first "non-header" section. 1025 if (PhdrEntry *l = sec->ptLoad) 1026 if (sec == findFirstSection(l)) 1027 l->lmaOffset = ctx->lmaOffset; 1028 1029 // We can call this method multiple times during the creation of 1030 // thunks and want to start over calculation each time. 1031 sec->size = 0; 1032 1033 // We visited SectionsCommands from processSectionCommands to 1034 // layout sections. Now, we visit SectionsCommands again to fix 1035 // section offsets. 1036 for (SectionCommand *cmd : sec->commands) { 1037 // This handles the assignments to symbol or to the dot. 1038 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1039 assign->addr = dot; 1040 assignSymbol(assign, true); 1041 assign->size = dot - assign->addr; 1042 continue; 1043 } 1044 1045 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1046 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1047 data->offset = dot - sec->addr; 1048 dot += data->size; 1049 expandOutputSection(data->size); 1050 continue; 1051 } 1052 1053 // Handle a single input section description command. 1054 // It calculates and assigns the offsets for each section and also 1055 // updates the output section size. 1056 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1057 assert(isec->getParent() == sec); 1058 const uint64_t pos = dot; 1059 dot = alignTo(dot, isec->alignment); 1060 isec->outSecOff = dot - sec->addr; 1061 dot += isec->getSize(); 1062 1063 // Update output section size after adding each section. This is so that 1064 // SIZEOF works correctly in the case below: 1065 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1066 expandOutputSection(dot - pos); 1067 } 1068 } 1069 1070 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1071 // as they are not part of the process image. 1072 if (!(sec->flags & SHF_ALLOC)) { 1073 dot = savedDot; 1074 } else if (isTbss) { 1075 // NOBITS TLS sections are similar. Additionally save the end address. 1076 ctx->tbssAddr = dot; 1077 dot = savedDot; 1078 } 1079 } 1080 1081 static bool isDiscardable(const OutputSection &sec) { 1082 if (sec.name == "/DISCARD/") 1083 return true; 1084 1085 // We do not want to remove OutputSections with expressions that reference 1086 // symbols even if the OutputSection is empty. We want to ensure that the 1087 // expressions can be evaluated and report an error if they cannot. 1088 if (sec.expressionsUseSymbols) 1089 return false; 1090 1091 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1092 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1093 // to maintain the integrity of the other Expression. 1094 if (sec.usedInExpression) 1095 return false; 1096 1097 for (SectionCommand *cmd : sec.commands) { 1098 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1099 // Don't create empty output sections just for unreferenced PROVIDE 1100 // symbols. 1101 if (assign->name != "." && !assign->sym) 1102 continue; 1103 1104 if (!isa<InputSectionDescription>(*cmd)) 1105 return false; 1106 } 1107 return true; 1108 } 1109 1110 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1111 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1112 isDiscardable(*sec); 1113 } 1114 1115 static void maybePropagatePhdrs(OutputSection &sec, 1116 std::vector<StringRef> &phdrs) { 1117 if (sec.phdrs.empty()) { 1118 // To match the bfd linker script behaviour, only propagate program 1119 // headers to sections that are allocated. 1120 if (sec.flags & SHF_ALLOC) 1121 sec.phdrs = phdrs; 1122 } else { 1123 phdrs = sec.phdrs; 1124 } 1125 } 1126 1127 void LinkerScript::adjustSectionsBeforeSorting() { 1128 // If the output section contains only symbol assignments, create a 1129 // corresponding output section. The issue is what to do with linker script 1130 // like ".foo : { symbol = 42; }". One option would be to convert it to 1131 // "symbol = 42;". That is, move the symbol out of the empty section 1132 // description. That seems to be what bfd does for this simple case. The 1133 // problem is that this is not completely general. bfd will give up and 1134 // create a dummy section too if there is a ". = . + 1" inside the section 1135 // for example. 1136 // Given that we want to create the section, we have to worry what impact 1137 // it will have on the link. For example, if we just create a section with 1138 // 0 for flags, it would change which PT_LOADs are created. 1139 // We could remember that particular section is dummy and ignore it in 1140 // other parts of the linker, but unfortunately there are quite a few places 1141 // that would need to change: 1142 // * The program header creation. 1143 // * The orphan section placement. 1144 // * The address assignment. 1145 // The other option is to pick flags that minimize the impact the section 1146 // will have on the rest of the linker. That is why we copy the flags from 1147 // the previous sections. Only a few flags are needed to keep the impact low. 1148 uint64_t flags = SHF_ALLOC; 1149 1150 std::vector<StringRef> defPhdrs; 1151 for (SectionCommand *&cmd : sectionCommands) { 1152 auto *sec = dyn_cast<OutputSection>(cmd); 1153 if (!sec) 1154 continue; 1155 1156 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1157 if (sec->alignExpr) 1158 sec->alignment = 1159 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1160 1161 // The input section might have been removed (if it was an empty synthetic 1162 // section), but we at least know the flags. 1163 if (sec->hasInputSections) 1164 flags = sec->flags; 1165 1166 // We do not want to keep any special flags for output section 1167 // in case it is empty. 1168 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1169 if (isEmpty) 1170 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1171 SHF_WRITE | SHF_EXECINSTR); 1172 1173 // The code below may remove empty output sections. We should save the 1174 // specified program headers (if exist) and propagate them to subsequent 1175 // sections which do not specify program headers. 1176 // An example of such a linker script is: 1177 // SECTIONS { .empty : { *(.empty) } :rw 1178 // .foo : { *(.foo) } } 1179 // Note: at this point the order of output sections has not been finalized, 1180 // because orphans have not been inserted into their expected positions. We 1181 // will handle them in adjustSectionsAfterSorting(). 1182 if (sec->sectionIndex != UINT32_MAX) 1183 maybePropagatePhdrs(*sec, defPhdrs); 1184 1185 if (isEmpty && isDiscardable(*sec)) { 1186 sec->markDead(); 1187 cmd = nullptr; 1188 } 1189 } 1190 1191 // It is common practice to use very generic linker scripts. So for any 1192 // given run some of the output sections in the script will be empty. 1193 // We could create corresponding empty output sections, but that would 1194 // clutter the output. 1195 // We instead remove trivially empty sections. The bfd linker seems even 1196 // more aggressive at removing them. 1197 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1198 } 1199 1200 void LinkerScript::adjustSectionsAfterSorting() { 1201 // Try and find an appropriate memory region to assign offsets in. 1202 MemoryRegion *hint = nullptr; 1203 for (SectionCommand *cmd : sectionCommands) { 1204 if (auto *sec = dyn_cast<OutputSection>(cmd)) { 1205 if (!sec->lmaRegionName.empty()) { 1206 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1207 sec->lmaRegion = m; 1208 else 1209 error("memory region '" + sec->lmaRegionName + "' not declared"); 1210 } 1211 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1212 } 1213 } 1214 1215 // If output section command doesn't specify any segments, 1216 // and we haven't previously assigned any section to segment, 1217 // then we simply assign section to the very first load segment. 1218 // Below is an example of such linker script: 1219 // PHDRS { seg PT_LOAD; } 1220 // SECTIONS { .aaa : { *(.aaa) } } 1221 std::vector<StringRef> defPhdrs; 1222 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1223 return cmd.type == PT_LOAD; 1224 }); 1225 if (firstPtLoad != phdrsCommands.end()) 1226 defPhdrs.push_back(firstPtLoad->name); 1227 1228 // Walk the commands and propagate the program headers to commands that don't 1229 // explicitly specify them. 1230 for (SectionCommand *cmd : sectionCommands) 1231 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1232 maybePropagatePhdrs(*sec, defPhdrs); 1233 } 1234 1235 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1236 // If there is no SECTIONS or if the linkerscript is explicit about program 1237 // headers, do our best to allocate them. 1238 if (!script->hasSectionsCommand || allocateHeaders) 1239 return 0; 1240 // Otherwise only allocate program headers if that would not add a page. 1241 return alignDown(min, config->maxPageSize); 1242 } 1243 1244 // When the SECTIONS command is used, try to find an address for the file and 1245 // program headers output sections, which can be added to the first PT_LOAD 1246 // segment when program headers are created. 1247 // 1248 // We check if the headers fit below the first allocated section. If there isn't 1249 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1250 // and we'll also remove the PT_PHDR segment. 1251 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1252 uint64_t min = std::numeric_limits<uint64_t>::max(); 1253 for (OutputSection *sec : outputSections) 1254 if (sec->flags & SHF_ALLOC) 1255 min = std::min<uint64_t>(min, sec->addr); 1256 1257 auto it = llvm::find_if( 1258 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1259 if (it == phdrs.end()) 1260 return; 1261 PhdrEntry *firstPTLoad = *it; 1262 1263 bool hasExplicitHeaders = 1264 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1265 return cmd.hasPhdrs || cmd.hasFilehdr; 1266 }); 1267 bool paged = !config->omagic && !config->nmagic; 1268 uint64_t headerSize = getHeaderSize(); 1269 if ((paged || hasExplicitHeaders) && 1270 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1271 min = alignDown(min - headerSize, config->maxPageSize); 1272 Out::elfHeader->addr = min; 1273 Out::programHeaders->addr = min + Out::elfHeader->size; 1274 return; 1275 } 1276 1277 // Error if we were explicitly asked to allocate headers. 1278 if (hasExplicitHeaders) 1279 error("could not allocate headers"); 1280 1281 Out::elfHeader->ptLoad = nullptr; 1282 Out::programHeaders->ptLoad = nullptr; 1283 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1284 1285 llvm::erase_if(phdrs, 1286 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1287 } 1288 1289 LinkerScript::AddressState::AddressState() { 1290 for (auto &mri : script->memoryRegions) { 1291 MemoryRegion *mr = mri.second; 1292 mr->curPos = (mr->origin)().getValue(); 1293 } 1294 } 1295 1296 // Here we assign addresses as instructed by linker script SECTIONS 1297 // sub-commands. Doing that allows us to use final VA values, so here 1298 // we also handle rest commands like symbol assignments and ASSERTs. 1299 // Returns a symbol that has changed its section or value, or nullptr if no 1300 // symbol has changed. 1301 const Defined *LinkerScript::assignAddresses() { 1302 if (script->hasSectionsCommand) { 1303 // With a linker script, assignment of addresses to headers is covered by 1304 // allocateHeaders(). 1305 dot = config->imageBase.getValueOr(0); 1306 } else { 1307 // Assign addresses to headers right now. 1308 dot = target->getImageBase(); 1309 Out::elfHeader->addr = dot; 1310 Out::programHeaders->addr = dot + Out::elfHeader->size; 1311 dot += getHeaderSize(); 1312 } 1313 1314 AddressState state; 1315 ctx = &state; 1316 errorOnMissingSection = true; 1317 ctx->outSec = aether; 1318 1319 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1320 for (SectionCommand *cmd : sectionCommands) { 1321 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1322 assign->addr = dot; 1323 assignSymbol(assign, false); 1324 assign->size = dot - assign->addr; 1325 continue; 1326 } 1327 assignOffsets(cast<OutputSection>(cmd)); 1328 } 1329 1330 ctx = nullptr; 1331 return getChangedSymbolAssignment(oldValues); 1332 } 1333 1334 // Creates program headers as instructed by PHDRS linker script command. 1335 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1336 std::vector<PhdrEntry *> ret; 1337 1338 // Process PHDRS and FILEHDR keywords because they are not 1339 // real output sections and cannot be added in the following loop. 1340 for (const PhdrsCommand &cmd : phdrsCommands) { 1341 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.getValueOr(PF_R)); 1342 1343 if (cmd.hasFilehdr) 1344 phdr->add(Out::elfHeader); 1345 if (cmd.hasPhdrs) 1346 phdr->add(Out::programHeaders); 1347 1348 if (cmd.lmaExpr) { 1349 phdr->p_paddr = cmd.lmaExpr().getValue(); 1350 phdr->hasLMA = true; 1351 } 1352 ret.push_back(phdr); 1353 } 1354 1355 // Add output sections to program headers. 1356 for (OutputSection *sec : outputSections) { 1357 // Assign headers specified by linker script 1358 for (size_t id : getPhdrIndices(sec)) { 1359 ret[id]->add(sec); 1360 if (!phdrsCommands[id].flags.hasValue()) 1361 ret[id]->p_flags |= sec->getPhdrFlags(); 1362 } 1363 } 1364 return ret; 1365 } 1366 1367 // Returns true if we should emit an .interp section. 1368 // 1369 // We usually do. But if PHDRS commands are given, and 1370 // no PT_INTERP is there, there's no place to emit an 1371 // .interp, so we don't do that in that case. 1372 bool LinkerScript::needsInterpSection() { 1373 if (phdrsCommands.empty()) 1374 return true; 1375 for (PhdrsCommand &cmd : phdrsCommands) 1376 if (cmd.type == PT_INTERP) 1377 return true; 1378 return false; 1379 } 1380 1381 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1382 if (name == ".") { 1383 if (ctx) 1384 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1385 error(loc + ": unable to get location counter value"); 1386 return 0; 1387 } 1388 1389 if (Symbol *sym = symtab->find(name)) { 1390 if (auto *ds = dyn_cast<Defined>(sym)) { 1391 ExprValue v{ds->section, false, ds->value, loc}; 1392 // Retain the original st_type, so that the alias will get the same 1393 // behavior in relocation processing. Any operation will reset st_type to 1394 // STT_NOTYPE. 1395 v.type = ds->type; 1396 return v; 1397 } 1398 if (isa<SharedSymbol>(sym)) 1399 if (!errorOnMissingSection) 1400 return {nullptr, false, 0, loc}; 1401 } 1402 1403 error(loc + ": symbol not found: " + name); 1404 return 0; 1405 } 1406 1407 // Returns the index of the segment named Name. 1408 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1409 StringRef name) { 1410 for (size_t i = 0; i < vec.size(); ++i) 1411 if (vec[i].name == name) 1412 return i; 1413 return None; 1414 } 1415 1416 // Returns indices of ELF headers containing specific section. Each index is a 1417 // zero based number of ELF header listed within PHDRS {} script block. 1418 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1419 std::vector<size_t> ret; 1420 1421 for (StringRef s : cmd->phdrs) { 1422 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1423 ret.push_back(*idx); 1424 else if (s != "NONE") 1425 error(cmd->location + ": program header '" + s + 1426 "' is not listed in PHDRS"); 1427 } 1428 return ret; 1429 } 1430