1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t flags) { 99 flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!config->relocatable) 101 flags &= ~(uint64_t)SHF_GROUP; 102 return flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t type, StringRef name) { 116 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 125 const typename ELFT::Shdr &hdr, 126 StringRef name, Kind sectionKind) 127 : InputSectionBase(&file, getFlags(hdr.sh_flags), 128 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 129 hdr.sh_info, hdr.sh_addralign, 130 getSectionContents(file, hdr), name, sectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&file) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *s = dyn_cast<SyntheticSection>(this)) 140 return s->getSize(); 141 if (uncompressedSize >= 0) 142 return uncompressedSize; 143 return rawData.size() - bytesDropped; 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t size = uncompressedSize; 148 char *uncompressedBuf; 149 { 150 static std::mutex mu; 151 std::lock_guard<std::mutex> lock(mu); 152 uncompressedBuf = bAlloc.Allocate<char>(size); 153 } 154 155 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(e))); 158 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 159 uncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 164 const uint8_t *secStart = data().begin(); 165 return secStart - fileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *os = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return offset == uint64_t(-1) ? os->size : offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return offset; 183 case Merge: 184 const MergeInputSection *ms = cast<MergeInputSection>(this); 185 if (InputSection *isec = ms->getParent()) 186 return isec->getOffset(ms->getParentOffset(offset)); 187 return ms->getParentOffset(offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t offset) const { 193 const OutputSection *out = getOutputSection(); 194 return (out ? out->addr : 0) + getOffset(offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *sec; 199 if (auto *isec = dyn_cast<InputSection>(this)) 200 sec = isec; 201 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 202 sec = ms->getParent(); 203 else if (auto *eh = dyn_cast<EhInputSection>(this)) 204 sec = eh->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return sec ? sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `rawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `uncompressedSize` member and remove the header from `rawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (name.startswith(".zdebug")) { 219 if (!toStringRef(rawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 rawData = rawData.slice(4); 224 225 if (rawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 uncompressedSize = read64be(rawData.data()); 231 rawData = rawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 name = saver.save("." + name.substr(2)); 236 return; 237 } 238 239 assert(flags & SHF_COMPRESSED); 240 flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (config->is64) { 244 if (rawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 250 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 uncompressedSize = hdr->ch_size; 256 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 257 rawData = rawData.slice(sizeof(*hdr)); 258 return; 259 } 260 261 // New-style 32-bit header 262 if (rawData.size() < sizeof(Chdr32)) { 263 error(toString(this) + ": corrupted compressed section"); 264 return; 265 } 266 267 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 268 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 269 error(toString(this) + ": unsupported compression type"); 270 return; 271 } 272 273 uncompressedSize = hdr->ch_size; 274 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 275 rawData = rawData.slice(sizeof(*hdr)); 276 } 277 278 InputSection *InputSectionBase::getLinkOrderDep() const { 279 assert(flags & SHF_LINK_ORDER); 280 if (!link) 281 return nullptr; 282 return cast<InputSection>(file->getSections()[link]); 283 } 284 285 // Find a function symbol that encloses a given location. 286 template <class ELFT> 287 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 288 for (Symbol *b : file->getSymbols()) 289 if (Defined *d = dyn_cast<Defined>(b)) 290 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 291 offset < d->value + d->size) 292 return d; 293 return nullptr; 294 } 295 296 // Returns a source location string. Used to construct an error message. 297 template <class ELFT> 298 std::string InputSectionBase::getLocation(uint64_t offset) { 299 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 300 301 // We don't have file for synthetic sections. 302 if (getFile<ELFT>() == nullptr) 303 return (config->outputFile + ":(" + secAndOffset + ")") 304 .str(); 305 306 // First check if we can get desired values from debugging information. 307 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 308 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 309 secAndOffset + ")"; 310 311 // File->sourceFile contains STT_FILE symbol that contains a 312 // source file name. If it's missing, we use an object file name. 313 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 314 if (srcFile.empty()) 315 srcFile = toString(file); 316 317 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 318 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 319 320 // If there's no symbol, print out the offset in the section. 321 return (srcFile + ":(" + secAndOffset + ")"); 322 } 323 324 // This function is intended to be used for constructing an error message. 325 // The returned message looks like this: 326 // 327 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 328 // 329 // Returns an empty string if there's no way to get line info. 330 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 331 return file->getSrcMsg(sym, *this, offset); 332 } 333 334 // Returns a filename string along with an optional section name. This 335 // function is intended to be used for constructing an error 336 // message. The returned message looks like this: 337 // 338 // path/to/foo.o:(function bar) 339 // 340 // or 341 // 342 // path/to/foo.o:(function bar) in archive path/to/bar.a 343 std::string InputSectionBase::getObjMsg(uint64_t off) { 344 std::string filename = std::string(file->getName()); 345 346 std::string archive; 347 if (!file->archiveName.empty()) 348 archive = " in archive " + file->archiveName; 349 350 // Find a symbol that encloses a given location. 351 for (Symbol *b : file->getSymbols()) 352 if (auto *d = dyn_cast<Defined>(b)) 353 if (d->section == this && d->value <= off && off < d->value + d->size) 354 return filename + ":(" + toString(*d) + ")" + archive; 355 356 // If there's no symbol, print out the offset in the section. 357 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 358 .str(); 359 } 360 361 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 362 363 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 364 uint32_t alignment, ArrayRef<uint8_t> data, 365 StringRef name, Kind k) 366 : InputSectionBase(f, flags, type, 367 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 368 name, k) {} 369 370 template <class ELFT> 371 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 372 StringRef name) 373 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 374 375 bool InputSection::classof(const SectionBase *s) { 376 return s->kind() == SectionBase::Regular || 377 s->kind() == SectionBase::Synthetic; 378 } 379 380 OutputSection *InputSection::getParent() const { 381 return cast_or_null<OutputSection>(parent); 382 } 383 384 // Copy SHT_GROUP section contents. Used only for the -r option. 385 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 386 // ELFT::Word is the 32-bit integral type in the target endianness. 387 using u32 = typename ELFT::Word; 388 ArrayRef<u32> from = getDataAs<u32>(); 389 auto *to = reinterpret_cast<u32 *>(buf); 390 391 // The first entry is not a section number but a flag. 392 *to++ = from[0]; 393 394 // Adjust section numbers because section numbers in an input object files are 395 // different in the output. We also need to handle combined or discarded 396 // members. 397 ArrayRef<InputSectionBase *> sections = file->getSections(); 398 std::unordered_set<uint32_t> seen; 399 for (uint32_t idx : from.slice(1)) { 400 OutputSection *osec = sections[idx]->getOutputSection(); 401 if (osec && seen.insert(osec->sectionIndex).second) 402 *to++ = osec->sectionIndex; 403 } 404 } 405 406 InputSectionBase *InputSection::getRelocatedSection() const { 407 if (!file || (type != SHT_RELA && type != SHT_REL)) 408 return nullptr; 409 ArrayRef<InputSectionBase *> sections = file->getSections(); 410 return sections[info]; 411 } 412 413 // This is used for -r and --emit-relocs. We can't use memcpy to copy 414 // relocations because we need to update symbol table offset and section index 415 // for each relocation. So we copy relocations one by one. 416 template <class ELFT, class RelTy> 417 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 418 InputSectionBase *sec = getRelocatedSection(); 419 420 for (const RelTy &rel : rels) { 421 RelType type = rel.getType(config->isMips64EL); 422 const ObjFile<ELFT> *file = getFile<ELFT>(); 423 Symbol &sym = file->getRelocTargetSym(rel); 424 425 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 426 buf += sizeof(RelTy); 427 428 if (RelTy::IsRela) 429 p->r_addend = getAddend<ELFT>(rel); 430 431 // Output section VA is zero for -r, so r_offset is an offset within the 432 // section, but for --emit-relocs it is a virtual address. 433 p->r_offset = sec->getVA(rel.r_offset); 434 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 435 config->isMips64EL); 436 437 if (sym.type == STT_SECTION) { 438 // We combine multiple section symbols into only one per 439 // section. This means we have to update the addend. That is 440 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 441 // section data. We do that by adding to the Relocation vector. 442 443 // .eh_frame is horribly special and can reference discarded sections. To 444 // avoid having to parse and recreate .eh_frame, we just replace any 445 // relocation in it pointing to discarded sections with R_*_NONE, which 446 // hopefully creates a frame that is ignored at runtime. Also, don't warn 447 // on .gcc_except_table and debug sections. 448 // 449 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 450 auto *d = dyn_cast<Defined>(&sym); 451 if (!d) { 452 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 453 sec->name != ".gcc_except_table" && sec->name != ".got2" && 454 sec->name != ".toc") { 455 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 456 Elf_Shdr_Impl<ELFT> sec = 457 CHECK(file->getObj().sections(), file)[secIdx]; 458 warn("relocation refers to a discarded section: " + 459 CHECK(file->getObj().getSectionName(sec), file) + 460 "\n>>> referenced by " + getObjMsg(p->r_offset)); 461 } 462 p->setSymbolAndType(0, 0, false); 463 continue; 464 } 465 SectionBase *section = d->section->repl; 466 if (!section->isLive()) { 467 p->setSymbolAndType(0, 0, false); 468 continue; 469 } 470 471 int64_t addend = getAddend<ELFT>(rel); 472 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 473 if (!RelTy::IsRela) 474 addend = target->getImplicitAddend(bufLoc, type); 475 476 if (config->emachine == EM_MIPS && 477 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 478 // Some MIPS relocations depend on "gp" value. By default, 479 // this value has 0x7ff0 offset from a .got section. But 480 // relocatable files produced by a compiler or a linker 481 // might redefine this default value and we must use it 482 // for a calculation of the relocation result. When we 483 // generate EXE or DSO it's trivial. Generating a relocatable 484 // output is more difficult case because the linker does 485 // not calculate relocations in this mode and loses 486 // individual "gp" values used by each input object file. 487 // As a workaround we add the "gp" value to the relocation 488 // addend and save it back to the file. 489 addend += sec->getFile<ELFT>()->mipsGp0; 490 } 491 492 if (RelTy::IsRela) 493 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 494 else if (config->relocatable && type != target->noneRel) 495 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 496 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 497 p->r_addend >= 0x8000) { 498 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 499 // indicates that r30 is relative to the input section .got2 500 // (r_addend>=0x8000), after linking, r30 should be relative to the output 501 // section .got2 . To compensate for the shift, adjust r_addend by 502 // ppc32Got2OutSecOff. 503 p->r_addend += sec->file->ppc32Got2OutSecOff; 504 } 505 } 506 } 507 508 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 509 // references specially. The general rule is that the value of the symbol in 510 // this context is the address of the place P. A further special case is that 511 // branch relocations to an undefined weak reference resolve to the next 512 // instruction. 513 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 514 uint32_t p) { 515 switch (type) { 516 // Unresolved branch relocations to weak references resolve to next 517 // instruction, this will be either 2 or 4 bytes on from P. 518 case R_ARM_THM_JUMP11: 519 return p + 2 + a; 520 case R_ARM_CALL: 521 case R_ARM_JUMP24: 522 case R_ARM_PC24: 523 case R_ARM_PLT32: 524 case R_ARM_PREL31: 525 case R_ARM_THM_JUMP19: 526 case R_ARM_THM_JUMP24: 527 return p + 4 + a; 528 case R_ARM_THM_CALL: 529 // We don't want an interworking BLX to ARM 530 return p + 5 + a; 531 // Unresolved non branch pc-relative relocations 532 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 533 // targets a weak-reference. 534 case R_ARM_MOVW_PREL_NC: 535 case R_ARM_MOVT_PREL: 536 case R_ARM_REL32: 537 case R_ARM_THM_ALU_PREL_11_0: 538 case R_ARM_THM_MOVW_PREL_NC: 539 case R_ARM_THM_MOVT_PREL: 540 case R_ARM_THM_PC12: 541 return p + a; 542 // p + a is unrepresentable as negative immediates can't be encoded. 543 case R_ARM_THM_PC8: 544 return p; 545 } 546 llvm_unreachable("ARM pc-relative relocation expected\n"); 547 } 548 549 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 550 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 551 uint64_t p) { 552 switch (type) { 553 // Unresolved branch relocations to weak references resolve to next 554 // instruction, this is 4 bytes on from P. 555 case R_AARCH64_CALL26: 556 case R_AARCH64_CONDBR19: 557 case R_AARCH64_JUMP26: 558 case R_AARCH64_TSTBR14: 559 return p + 4 + a; 560 // Unresolved non branch pc-relative relocations 561 case R_AARCH64_PREL16: 562 case R_AARCH64_PREL32: 563 case R_AARCH64_PREL64: 564 case R_AARCH64_ADR_PREL_LO21: 565 case R_AARCH64_LD_PREL_LO19: 566 case R_AARCH64_PLT32: 567 return p + a; 568 } 569 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 570 } 571 572 // ARM SBREL relocations are of the form S + A - B where B is the static base 573 // The ARM ABI defines base to be "addressing origin of the output segment 574 // defining the symbol S". We defined the "addressing origin"/static base to be 575 // the base of the PT_LOAD segment containing the Sym. 576 // The procedure call standard only defines a Read Write Position Independent 577 // RWPI variant so in practice we should expect the static base to be the base 578 // of the RW segment. 579 static uint64_t getARMStaticBase(const Symbol &sym) { 580 OutputSection *os = sym.getOutputSection(); 581 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 582 fatal("SBREL relocation to " + sym.getName() + " without static base"); 583 return os->ptLoad->firstSec->addr; 584 } 585 586 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 587 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 588 // is calculated using PCREL_HI20's symbol. 589 // 590 // This function returns the R_RISCV_PCREL_HI20 relocation from 591 // R_RISCV_PCREL_LO12's symbol and addend. 592 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 593 const Defined *d = cast<Defined>(sym); 594 if (!d->section) { 595 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 596 sym->getName()); 597 return nullptr; 598 } 599 InputSection *isec = cast<InputSection>(d->section); 600 601 if (addend != 0) 602 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 603 isec->getObjMsg(d->value) + " is ignored"); 604 605 // Relocations are sorted by offset, so we can use std::equal_range to do 606 // binary search. 607 Relocation r; 608 r.offset = d->value; 609 auto range = 610 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 611 [](const Relocation &lhs, const Relocation &rhs) { 612 return lhs.offset < rhs.offset; 613 }); 614 615 for (auto it = range.first; it != range.second; ++it) 616 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 617 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 618 return &*it; 619 620 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 621 " without an associated R_RISCV_PCREL_HI20 relocation"); 622 return nullptr; 623 } 624 625 // A TLS symbol's virtual address is relative to the TLS segment. Add a 626 // target-specific adjustment to produce a thread-pointer-relative offset. 627 static int64_t getTlsTpOffset(const Symbol &s) { 628 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 629 if (&s == ElfSym::tlsModuleBase) 630 return 0; 631 632 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 633 // while most others use Variant 1. At run time TP will be aligned to p_align. 634 635 // Variant 1. TP will be followed by an optional gap (which is the size of 2 636 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 637 // padding, then the static TLS blocks. The alignment padding is added so that 638 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 639 // 640 // Variant 2. Static TLS blocks, followed by alignment padding are placed 641 // before TP. The alignment padding is added so that (TP - padding - 642 // p_memsz) is congruent to p_vaddr modulo p_align. 643 PhdrEntry *tls = Out::tlsPhdr; 644 switch (config->emachine) { 645 // Variant 1. 646 case EM_ARM: 647 case EM_AARCH64: 648 return s.getVA(0) + config->wordsize * 2 + 649 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 650 case EM_MIPS: 651 case EM_PPC: 652 case EM_PPC64: 653 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 654 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 655 // data and 0xf000 of the program's TLS segment. 656 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 657 case EM_RISCV: 658 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 659 660 // Variant 2. 661 case EM_HEXAGON: 662 case EM_SPARCV9: 663 case EM_386: 664 case EM_X86_64: 665 return s.getVA(0) - tls->p_memsz - 666 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 667 default: 668 llvm_unreachable("unhandled Config->EMachine"); 669 } 670 } 671 672 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 673 int64_t a, uint64_t p, 674 const Symbol &sym, RelExpr expr) { 675 switch (expr) { 676 case R_ABS: 677 case R_DTPREL: 678 case R_RELAX_TLS_LD_TO_LE_ABS: 679 case R_RELAX_GOT_PC_NOPIC: 680 case R_RISCV_ADD: 681 return sym.getVA(a); 682 case R_ADDEND: 683 return a; 684 case R_ARM_SBREL: 685 return sym.getVA(a) - getARMStaticBase(sym); 686 case R_GOT: 687 case R_RELAX_TLS_GD_TO_IE_ABS: 688 return sym.getGotVA() + a; 689 case R_GOTONLY_PC: 690 return in.got->getVA() + a - p; 691 case R_GOTPLTONLY_PC: 692 return in.gotPlt->getVA() + a - p; 693 case R_GOTREL: 694 case R_PPC64_RELAX_TOC: 695 return sym.getVA(a) - in.got->getVA(); 696 case R_GOTPLTREL: 697 return sym.getVA(a) - in.gotPlt->getVA(); 698 case R_GOTPLT: 699 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 700 return sym.getGotVA() + a - in.gotPlt->getVA(); 701 case R_TLSLD_GOT_OFF: 702 case R_GOT_OFF: 703 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 704 return sym.getGotOffset() + a; 705 case R_AARCH64_GOT_PAGE_PC: 706 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 707 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 708 case R_AARCH64_GOT_PAGE: 709 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 710 case R_GOT_PC: 711 case R_RELAX_TLS_GD_TO_IE: 712 return sym.getGotVA() + a - p; 713 case R_MIPS_GOTREL: 714 return sym.getVA(a) - in.mipsGot->getGp(file); 715 case R_MIPS_GOT_GP: 716 return in.mipsGot->getGp(file) + a; 717 case R_MIPS_GOT_GP_PC: { 718 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 719 // is _gp_disp symbol. In that case we should use the following 720 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 721 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 722 // microMIPS variants of these relocations use slightly different 723 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 724 // to correctly handle less-significant bit of the microMIPS symbol. 725 uint64_t v = in.mipsGot->getGp(file) + a - p; 726 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 727 v += 4; 728 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 729 v -= 1; 730 return v; 731 } 732 case R_MIPS_GOT_LOCAL_PAGE: 733 // If relocation against MIPS local symbol requires GOT entry, this entry 734 // should be initialized by 'page address'. This address is high 16-bits 735 // of sum the symbol's value and the addend. 736 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 737 in.mipsGot->getGp(file); 738 case R_MIPS_GOT_OFF: 739 case R_MIPS_GOT_OFF32: 740 // In case of MIPS if a GOT relocation has non-zero addend this addend 741 // should be applied to the GOT entry content not to the GOT entry offset. 742 // That is why we use separate expression type. 743 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 744 in.mipsGot->getGp(file); 745 case R_MIPS_TLSGD: 746 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 747 in.mipsGot->getGp(file); 748 case R_MIPS_TLSLD: 749 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 750 in.mipsGot->getGp(file); 751 case R_AARCH64_PAGE_PC: { 752 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 753 return getAArch64Page(val) - getAArch64Page(p); 754 } 755 case R_RISCV_PC_INDIRECT: { 756 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 757 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 758 *hiRel->sym, hiRel->expr); 759 return 0; 760 } 761 case R_PC: 762 case R_ARM_PCA: { 763 uint64_t dest; 764 if (expr == R_ARM_PCA) 765 // Some PC relative ARM (Thumb) relocations align down the place. 766 p = p & 0xfffffffc; 767 if (sym.isUndefWeak()) { 768 // On ARM and AArch64 a branch to an undefined weak resolves to the 769 // next instruction, otherwise the place. 770 if (config->emachine == EM_ARM) 771 dest = getARMUndefinedRelativeWeakVA(type, a, p); 772 else if (config->emachine == EM_AARCH64) 773 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 774 else if (config->emachine == EM_PPC) 775 dest = p; 776 else 777 dest = sym.getVA(a); 778 } else { 779 dest = sym.getVA(a); 780 } 781 return dest - p; 782 } 783 case R_PLT: 784 return sym.getPltVA() + a; 785 case R_PLT_PC: 786 case R_PPC64_CALL_PLT: 787 return sym.getPltVA() + a - p; 788 case R_PPC32_PLTREL: 789 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 790 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 791 // target VA computation. 792 return sym.getPltVA() - p; 793 case R_PPC64_CALL: { 794 uint64_t symVA = sym.getVA(a); 795 // If we have an undefined weak symbol, we might get here with a symbol 796 // address of zero. That could overflow, but the code must be unreachable, 797 // so don't bother doing anything at all. 798 if (!symVA) 799 return 0; 800 801 // PPC64 V2 ABI describes two entry points to a function. The global entry 802 // point is used for calls where the caller and callee (may) have different 803 // TOC base pointers and r2 needs to be modified to hold the TOC base for 804 // the callee. For local calls the caller and callee share the same 805 // TOC base and so the TOC pointer initialization code should be skipped by 806 // branching to the local entry point. 807 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 808 } 809 case R_PPC64_TOCBASE: 810 return getPPC64TocBase() + a; 811 case R_RELAX_GOT_PC: 812 case R_PPC64_RELAX_GOT_PC: 813 return sym.getVA(a) - p; 814 case R_RELAX_TLS_GD_TO_LE: 815 case R_RELAX_TLS_IE_TO_LE: 816 case R_RELAX_TLS_LD_TO_LE: 817 case R_TPREL: 818 // It is not very clear what to return if the symbol is undefined. With 819 // --noinhibit-exec, even a non-weak undefined reference may reach here. 820 // Just return A, which matches R_ABS, and the behavior of some dynamic 821 // loaders. 822 if (sym.isUndefined() || sym.isLazy()) 823 return a; 824 return getTlsTpOffset(sym) + a; 825 case R_RELAX_TLS_GD_TO_LE_NEG: 826 case R_TPREL_NEG: 827 if (sym.isUndefined()) 828 return a; 829 return -getTlsTpOffset(sym) + a; 830 case R_SIZE: 831 return sym.getSize() + a; 832 case R_TLSDESC: 833 return in.got->getGlobalDynAddr(sym) + a; 834 case R_TLSDESC_PC: 835 return in.got->getGlobalDynAddr(sym) + a - p; 836 case R_AARCH64_TLSDESC_PAGE: 837 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 838 getAArch64Page(p); 839 case R_TLSGD_GOT: 840 return in.got->getGlobalDynOffset(sym) + a; 841 case R_TLSGD_GOTPLT: 842 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 843 case R_TLSGD_PC: 844 return in.got->getGlobalDynAddr(sym) + a - p; 845 case R_TLSLD_GOTPLT: 846 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 847 case R_TLSLD_GOT: 848 return in.got->getTlsIndexOff() + a; 849 case R_TLSLD_PC: 850 return in.got->getTlsIndexVA() + a - p; 851 default: 852 llvm_unreachable("invalid expression"); 853 } 854 } 855 856 // This function applies relocations to sections without SHF_ALLOC bit. 857 // Such sections are never mapped to memory at runtime. Debug sections are 858 // an example. Relocations in non-alloc sections are much easier to 859 // handle than in allocated sections because it will never need complex 860 // treatment such as GOT or PLT (because at runtime no one refers them). 861 // So, we handle relocations for non-alloc sections directly in this 862 // function as a performance optimization. 863 template <class ELFT, class RelTy> 864 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 865 const unsigned bits = sizeof(typename ELFT::uint) * 8; 866 const bool isDebug = isDebugSection(*this); 867 const bool isDebugLocOrRanges = 868 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 869 const bool isDebugLine = isDebug && name == ".debug_line"; 870 Optional<uint64_t> tombstone; 871 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 872 if (patAndValue.first.match(this->name)) { 873 tombstone = patAndValue.second; 874 break; 875 } 876 877 for (const RelTy &rel : rels) { 878 RelType type = rel.getType(config->isMips64EL); 879 880 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 881 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 882 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 883 // need to keep this bug-compatible code for a while. 884 if (config->emachine == EM_386 && type == R_386_GOTPC) 885 continue; 886 887 uint64_t offset = rel.r_offset; 888 uint8_t *bufLoc = buf + offset; 889 int64_t addend = getAddend<ELFT>(rel); 890 if (!RelTy::IsRela) 891 addend += target->getImplicitAddend(bufLoc, type); 892 893 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 894 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 895 if (expr == R_NONE) 896 continue; 897 898 if (expr == R_SIZE) { 899 target->relocateNoSym(bufLoc, type, 900 SignExtend64<bits>(sym.getSize() + addend)); 901 continue; 902 } 903 904 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { 905 std::string msg = getLocation<ELFT>(offset) + 906 ": has non-ABS relocation " + toString(type) + 907 " against symbol '" + toString(sym) + "'"; 908 if (expr != R_PC && expr != R_ARM_PCA) { 909 error(msg); 910 return; 911 } 912 913 // If the control reaches here, we found a PC-relative relocation in a 914 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 915 // at runtime, the notion of PC-relative doesn't make sense here. So, 916 // this is a usage error. However, GNU linkers historically accept such 917 // relocations without any errors and relocate them as if they were at 918 // address 0. For bug-compatibilty, we accept them with warnings. We 919 // know Steel Bank Common Lisp as of 2018 have this bug. 920 warn(msg); 921 target->relocateNoSym( 922 bufLoc, type, 923 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 924 continue; 925 } 926 927 if (tombstone || 928 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 929 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 930 // folded section symbols) to a tombstone value. Resolving to addend is 931 // unsatisfactory because the result address range may collide with a 932 // valid range of low address, or leave multiple CUs claiming ownership of 933 // the same range of code, which may confuse consumers. 934 // 935 // To address the problems, we use -1 as a tombstone value for most 936 // .debug_* sections. We have to ignore the addend because we don't want 937 // to resolve an address attribute (which may have a non-zero addend) to 938 // -1+addend (wrap around to a low address). 939 // 940 // R_DTPREL type relocations represent an offset into the dynamic thread 941 // vector. The computed value is st_value plus a non-negative offset. 942 // Negative values are invalid, so -1 can be used as the tombstone value. 943 // 944 // If the referenced symbol is discarded (made Undefined), or the 945 // section defining the referenced symbol is garbage collected, 946 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 947 // catches the ICF folded case. However, resolving a relocation in 948 // .debug_line to -1 would stop debugger users from setting breakpoints on 949 // the folded-in function, so exclude .debug_line. 950 // 951 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 952 // (base address selection entry), use 1 (which is used by GNU ld for 953 // .debug_ranges). 954 // 955 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 956 // value. Enable -1 in a future release. 957 auto *ds = dyn_cast<Defined>(&sym); 958 if (!sym.getOutputSection() || 959 (ds && ds->section->repl != ds->section && !isDebugLine)) { 960 // If -z dead-reloc-in-nonalloc= is specified, respect it. 961 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 962 : (isDebugLocOrRanges ? 1 : 0); 963 target->relocateNoSym(bufLoc, type, value); 964 continue; 965 } 966 } 967 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 968 } 969 } 970 971 // This is used when '-r' is given. 972 // For REL targets, InputSection::copyRelocations() may store artificial 973 // relocations aimed to update addends. They are handled in relocateAlloc() 974 // for allocatable sections, and this function does the same for 975 // non-allocatable sections, such as sections with debug information. 976 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 977 const unsigned bits = config->is64 ? 64 : 32; 978 979 for (const Relocation &rel : sec->relocations) { 980 // InputSection::copyRelocations() adds only R_ABS relocations. 981 assert(rel.expr == R_ABS); 982 uint8_t *bufLoc = buf + rel.offset; 983 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 984 target->relocate(bufLoc, rel, targetVA); 985 } 986 } 987 988 template <class ELFT> 989 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 990 if (flags & SHF_EXECINSTR) 991 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 992 993 if (flags & SHF_ALLOC) { 994 relocateAlloc(buf, bufEnd); 995 return; 996 } 997 998 auto *sec = cast<InputSection>(this); 999 if (config->relocatable) 1000 relocateNonAllocForRelocatable(sec, buf); 1001 else if (sec->areRelocsRela) 1002 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 1003 else 1004 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 1005 } 1006 1007 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1008 assert(flags & SHF_ALLOC); 1009 const unsigned bits = config->wordsize * 8; 1010 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1011 1012 for (const Relocation &rel : relocations) { 1013 if (rel.expr == R_NONE) 1014 continue; 1015 uint64_t offset = rel.offset; 1016 uint8_t *bufLoc = buf + offset; 1017 RelType type = rel.type; 1018 1019 uint64_t addrLoc = getOutputSection()->addr + offset; 1020 if (auto *sec = dyn_cast<InputSection>(this)) 1021 addrLoc += sec->outSecOff; 1022 RelExpr expr = rel.expr; 1023 uint64_t targetVA = SignExtend64( 1024 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1025 bits); 1026 1027 switch (expr) { 1028 case R_RELAX_GOT_PC: 1029 case R_RELAX_GOT_PC_NOPIC: 1030 target->relaxGot(bufLoc, rel, targetVA); 1031 break; 1032 case R_PPC64_RELAX_GOT_PC: { 1033 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1034 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1035 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1036 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1037 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1038 // and only relax the other if the saved offset matches. 1039 if (type == R_PPC64_GOT_PCREL34) 1040 lastPPCRelaxedRelocOff = offset; 1041 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1042 break; 1043 target->relaxGot(bufLoc, rel, targetVA); 1044 break; 1045 } 1046 case R_PPC64_RELAX_TOC: 1047 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1048 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1049 // entry, there may be R_PPC64_TOC16_HA not paired with 1050 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1051 // opportunities but is safe. 1052 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1053 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1054 target->relocate(bufLoc, rel, targetVA); 1055 break; 1056 case R_RELAX_TLS_IE_TO_LE: 1057 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1058 break; 1059 case R_RELAX_TLS_LD_TO_LE: 1060 case R_RELAX_TLS_LD_TO_LE_ABS: 1061 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1062 break; 1063 case R_RELAX_TLS_GD_TO_LE: 1064 case R_RELAX_TLS_GD_TO_LE_NEG: 1065 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1066 break; 1067 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1068 case R_RELAX_TLS_GD_TO_IE: 1069 case R_RELAX_TLS_GD_TO_IE_ABS: 1070 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1071 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1072 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1073 break; 1074 case R_PPC64_CALL: 1075 // If this is a call to __tls_get_addr, it may be part of a TLS 1076 // sequence that has been relaxed and turned into a nop. In this 1077 // case, we don't want to handle it as a call. 1078 if (read32(bufLoc) == 0x60000000) // nop 1079 break; 1080 1081 // Patch a nop (0x60000000) to a ld. 1082 if (rel.sym->needsTocRestore) { 1083 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1084 // recursive calls even if the function is preemptible. This is not 1085 // wrong in the common case where the function is not preempted at 1086 // runtime. Just ignore. 1087 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1088 rel.sym->file != file) { 1089 // Use substr(6) to remove the "__plt_" prefix. 1090 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1091 lld::toString(*rel.sym).substr(6) + 1092 " lacks nop, can't restore toc"); 1093 break; 1094 } 1095 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1096 } 1097 target->relocate(bufLoc, rel, targetVA); 1098 break; 1099 default: 1100 target->relocate(bufLoc, rel, targetVA); 1101 break; 1102 } 1103 } 1104 1105 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1106 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1107 // insn. This is primarily used to relax and optimize jumps created with 1108 // basic block sections. 1109 if (isa<InputSection>(this)) { 1110 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1111 uint64_t offset = jumpMod.offset; 1112 uint8_t *bufLoc = buf + offset; 1113 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1114 } 1115 } 1116 } 1117 1118 // For each function-defining prologue, find any calls to __morestack, 1119 // and replace them with calls to __morestack_non_split. 1120 static void switchMorestackCallsToMorestackNonSplit( 1121 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1122 1123 // If the target adjusted a function's prologue, all calls to 1124 // __morestack inside that function should be switched to 1125 // __morestack_non_split. 1126 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1127 if (!moreStackNonSplit) { 1128 error("Mixing split-stack objects requires a definition of " 1129 "__morestack_non_split"); 1130 return; 1131 } 1132 1133 // Sort both collections to compare addresses efficiently. 1134 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1135 return l->offset < r->offset; 1136 }); 1137 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1138 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1139 return l->value < r->value; 1140 }); 1141 1142 auto it = morestackCalls.begin(); 1143 for (Defined *f : functions) { 1144 // Find the first call to __morestack within the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value) 1146 ++it; 1147 // Adjust all calls inside the function. 1148 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1149 (*it)->sym = moreStackNonSplit; 1150 ++it; 1151 } 1152 } 1153 } 1154 1155 static bool enclosingPrologueAttempted(uint64_t offset, 1156 const DenseSet<Defined *> &prologues) { 1157 for (Defined *f : prologues) 1158 if (f->value <= offset && offset < f->value + f->size) 1159 return true; 1160 return false; 1161 } 1162 1163 // If a function compiled for split stack calls a function not 1164 // compiled for split stack, then the caller needs its prologue 1165 // adjusted to ensure that the called function will have enough stack 1166 // available. Find those functions, and adjust their prologues. 1167 template <class ELFT> 1168 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1169 uint8_t *end) { 1170 if (!getFile<ELFT>()->splitStack) 1171 return; 1172 DenseSet<Defined *> prologues; 1173 std::vector<Relocation *> morestackCalls; 1174 1175 for (Relocation &rel : relocations) { 1176 // Local symbols can't possibly be cross-calls, and should have been 1177 // resolved long before this line. 1178 if (rel.sym->isLocal()) 1179 continue; 1180 1181 // Ignore calls into the split-stack api. 1182 if (rel.sym->getName().startswith("__morestack")) { 1183 if (rel.sym->getName().equals("__morestack")) 1184 morestackCalls.push_back(&rel); 1185 continue; 1186 } 1187 1188 // A relocation to non-function isn't relevant. Sometimes 1189 // __morestack is not marked as a function, so this check comes 1190 // after the name check. 1191 if (rel.sym->type != STT_FUNC) 1192 continue; 1193 1194 // If the callee's-file was compiled with split stack, nothing to do. In 1195 // this context, a "Defined" symbol is one "defined by the binary currently 1196 // being produced". So an "undefined" symbol might be provided by a shared 1197 // library. It is not possible to tell how such symbols were compiled, so be 1198 // conservative. 1199 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1200 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1201 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1202 continue; 1203 1204 if (enclosingPrologueAttempted(rel.offset, prologues)) 1205 continue; 1206 1207 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1208 prologues.insert(f); 1209 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1210 f->stOther)) 1211 continue; 1212 if (!getFile<ELFT>()->someNoSplitStack) 1213 error(lld::toString(this) + ": " + f->getName() + 1214 " (with -fsplit-stack) calls " + rel.sym->getName() + 1215 " (without -fsplit-stack), but couldn't adjust its prologue"); 1216 } 1217 } 1218 1219 if (target->needsMoreStackNonSplit) 1220 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1221 } 1222 1223 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1224 if (type == SHT_NOBITS) 1225 return; 1226 1227 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1228 s->writeTo(buf + outSecOff); 1229 return; 1230 } 1231 1232 // If -r or --emit-relocs is given, then an InputSection 1233 // may be a relocation section. 1234 if (type == SHT_RELA) { 1235 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1236 return; 1237 } 1238 if (type == SHT_REL) { 1239 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1240 return; 1241 } 1242 1243 // If -r is given, we may have a SHT_GROUP section. 1244 if (type == SHT_GROUP) { 1245 copyShtGroup<ELFT>(buf + outSecOff); 1246 return; 1247 } 1248 1249 // If this is a compressed section, uncompress section contents directly 1250 // to the buffer. 1251 if (uncompressedSize >= 0) { 1252 size_t size = uncompressedSize; 1253 if (Error e = zlib::uncompress(toStringRef(rawData), 1254 (char *)(buf + outSecOff), size)) 1255 fatal(toString(this) + 1256 ": uncompress failed: " + llvm::toString(std::move(e))); 1257 uint8_t *bufEnd = buf + outSecOff + size; 1258 relocate<ELFT>(buf + outSecOff, bufEnd); 1259 return; 1260 } 1261 1262 // Copy section contents from source object file to output file 1263 // and then apply relocations. 1264 memcpy(buf + outSecOff, data().data(), data().size()); 1265 uint8_t *bufEnd = buf + outSecOff + data().size(); 1266 relocate<ELFT>(buf + outSecOff, bufEnd); 1267 } 1268 1269 void InputSection::replace(InputSection *other) { 1270 alignment = std::max(alignment, other->alignment); 1271 1272 // When a section is replaced with another section that was allocated to 1273 // another partition, the replacement section (and its associated sections) 1274 // need to be placed in the main partition so that both partitions will be 1275 // able to access it. 1276 if (partition != other->partition) { 1277 partition = 1; 1278 for (InputSection *isec : dependentSections) 1279 isec->partition = 1; 1280 } 1281 1282 other->repl = repl; 1283 other->markDead(); 1284 } 1285 1286 template <class ELFT> 1287 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1288 const typename ELFT::Shdr &header, 1289 StringRef name) 1290 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1291 1292 SyntheticSection *EhInputSection::getParent() const { 1293 return cast_or_null<SyntheticSection>(parent); 1294 } 1295 1296 // Returns the index of the first relocation that points to a region between 1297 // Begin and Begin+Size. 1298 template <class IntTy, class RelTy> 1299 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1300 unsigned &relocI) { 1301 // Start search from RelocI for fast access. That works because the 1302 // relocations are sorted in .eh_frame. 1303 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1304 const RelTy &rel = rels[relocI]; 1305 if (rel.r_offset < begin) 1306 continue; 1307 1308 if (rel.r_offset < begin + size) 1309 return relocI; 1310 return -1; 1311 } 1312 return -1; 1313 } 1314 1315 // .eh_frame is a sequence of CIE or FDE records. 1316 // This function splits an input section into records and returns them. 1317 template <class ELFT> void EhInputSection::split() { 1318 if (areRelocsRela) 1319 split<ELFT>(relas<ELFT>()); 1320 else 1321 split<ELFT>(rels<ELFT>()); 1322 } 1323 1324 template <class ELFT, class RelTy> 1325 void EhInputSection::split(ArrayRef<RelTy> rels) { 1326 unsigned relI = 0; 1327 for (size_t off = 0, end = data().size(); off != end;) { 1328 size_t size = readEhRecordSize(this, off); 1329 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1330 // The empty record is the end marker. 1331 if (size == 4) 1332 break; 1333 off += size; 1334 } 1335 } 1336 1337 static size_t findNull(StringRef s, size_t entSize) { 1338 // Optimize the common case. 1339 if (entSize == 1) 1340 return s.find(0); 1341 1342 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1343 const char *b = s.begin() + i; 1344 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1345 return i; 1346 } 1347 return StringRef::npos; 1348 } 1349 1350 SyntheticSection *MergeInputSection::getParent() const { 1351 return cast_or_null<SyntheticSection>(parent); 1352 } 1353 1354 // Split SHF_STRINGS section. Such section is a sequence of 1355 // null-terminated strings. 1356 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1357 size_t off = 0; 1358 bool isAlloc = flags & SHF_ALLOC; 1359 StringRef s = toStringRef(data); 1360 1361 while (!s.empty()) { 1362 size_t end = findNull(s, entSize); 1363 if (end == StringRef::npos) 1364 fatal(toString(this) + ": string is not null terminated"); 1365 size_t size = end + entSize; 1366 1367 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1368 s = s.substr(size); 1369 off += size; 1370 } 1371 } 1372 1373 // Split non-SHF_STRINGS section. Such section is a sequence of 1374 // fixed size records. 1375 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1376 size_t entSize) { 1377 size_t size = data.size(); 1378 assert((size % entSize) == 0); 1379 bool isAlloc = flags & SHF_ALLOC; 1380 1381 for (size_t i = 0; i != size; i += entSize) 1382 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1383 } 1384 1385 template <class ELFT> 1386 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1387 const typename ELFT::Shdr &header, 1388 StringRef name) 1389 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1390 1391 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1392 uint64_t entsize, ArrayRef<uint8_t> data, 1393 StringRef name) 1394 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1395 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1396 1397 // This function is called after we obtain a complete list of input sections 1398 // that need to be linked. This is responsible to split section contents 1399 // into small chunks for further processing. 1400 // 1401 // Note that this function is called from parallelForEach. This must be 1402 // thread-safe (i.e. no memory allocation from the pools). 1403 void MergeInputSection::splitIntoPieces() { 1404 assert(pieces.empty()); 1405 1406 if (flags & SHF_STRINGS) 1407 splitStrings(data(), entsize); 1408 else 1409 splitNonStrings(data(), entsize); 1410 } 1411 1412 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1413 if (this->data().size() <= offset) 1414 fatal(toString(this) + ": offset is outside the section"); 1415 1416 // If Offset is not at beginning of a section piece, it is not in the map. 1417 // In that case we need to do a binary search of the original section piece vector. 1418 auto it = partition_point( 1419 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1420 return &it[-1]; 1421 } 1422 1423 // Returns the offset in an output section for a given input offset. 1424 // Because contents of a mergeable section is not contiguous in output, 1425 // it is not just an addition to a base output offset. 1426 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1427 // If Offset is not at beginning of a section piece, it is not in the map. 1428 // In that case we need to search from the original section piece vector. 1429 const SectionPiece &piece = 1430 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1431 uint64_t addend = offset - piece.inputOff; 1432 return piece.outputOff + addend; 1433 } 1434 1435 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1436 StringRef); 1437 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1438 StringRef); 1439 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1440 StringRef); 1441 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1442 StringRef); 1443 1444 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1445 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1446 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1447 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1448 1449 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1450 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1451 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1452 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1453 1454 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1455 const ELF32LE::Shdr &, StringRef); 1456 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1457 const ELF32BE::Shdr &, StringRef); 1458 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1459 const ELF64LE::Shdr &, StringRef); 1460 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1461 const ELF64BE::Shdr &, StringRef); 1462 1463 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1464 const ELF32LE::Shdr &, StringRef); 1465 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1466 const ELF32BE::Shdr &, StringRef); 1467 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1468 const ELF64LE::Shdr &, StringRef); 1469 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1470 const ELF64BE::Shdr &, StringRef); 1471 1472 template void EhInputSection::split<ELF32LE>(); 1473 template void EhInputSection::split<ELF32BE>(); 1474 template void EhInputSection::split<ELF64LE>(); 1475 template void EhInputSection::split<ELF64BE>(); 1476