xref: /freebsd-src/contrib/llvm-project/lld/ELF/InputFiles.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <optional>
35 
36 using namespace llvm;
37 using namespace llvm::ELF;
38 using namespace llvm::object;
39 using namespace llvm::sys;
40 using namespace llvm::sys::fs;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 // This function is explicitly instantiated in ARM.cpp, don't do it here to
46 // avoid warnings with MSVC.
47 extern template void ObjFile<ELF32LE>::importCmseSymbols();
48 extern template void ObjFile<ELF32BE>::importCmseSymbols();
49 extern template void ObjFile<ELF64LE>::importCmseSymbols();
50 extern template void ObjFile<ELF64BE>::importCmseSymbols();
51 
52 bool InputFile::isInGroup;
53 uint32_t InputFile::nextGroupId;
54 
55 std::unique_ptr<TarWriter> elf::tar;
56 
57 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
58 std::string lld::toString(const InputFile *f) {
59   static std::mutex mu;
60   if (!f)
61     return "<internal>";
62 
63   {
64     std::lock_guard<std::mutex> lock(mu);
65     if (f->toStringCache.empty()) {
66       if (f->archiveName.empty())
67         f->toStringCache = f->getName();
68       else
69         (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
70     }
71   }
72   return std::string(f->toStringCache);
73 }
74 
75 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
76   unsigned char size;
77   unsigned char endian;
78   std::tie(size, endian) = getElfArchType(mb.getBuffer());
79 
80   auto report = [&](StringRef msg) {
81     StringRef filename = mb.getBufferIdentifier();
82     if (archiveName.empty())
83       fatal(filename + ": " + msg);
84     else
85       fatal(archiveName + "(" + filename + "): " + msg);
86   };
87 
88   if (!mb.getBuffer().starts_with(ElfMagic))
89     report("not an ELF file");
90   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
91     report("corrupted ELF file: invalid data encoding");
92   if (size != ELFCLASS32 && size != ELFCLASS64)
93     report("corrupted ELF file: invalid file class");
94 
95   size_t bufSize = mb.getBuffer().size();
96   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
97       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
98     report("corrupted ELF file: file is too short");
99 
100   if (size == ELFCLASS32)
101     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
102   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
103 }
104 
105 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
106 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
107 // the input objects have been compiled.
108 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
109                              const InputFile *f) {
110   std::optional<unsigned> attr =
111       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
112   if (!attr)
113     // If an ABI tag isn't present then it is implicitly given the value of 0
114     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
115     // including some in glibc that don't use FP args (and should have value 3)
116     // don't have the attribute so we do not consider an implicit value of 0
117     // as a clash.
118     return;
119 
120   unsigned vfpArgs = *attr;
121   ARMVFPArgKind arg;
122   switch (vfpArgs) {
123   case ARMBuildAttrs::BaseAAPCS:
124     arg = ARMVFPArgKind::Base;
125     break;
126   case ARMBuildAttrs::HardFPAAPCS:
127     arg = ARMVFPArgKind::VFP;
128     break;
129   case ARMBuildAttrs::ToolChainFPPCS:
130     // Tool chain specific convention that conforms to neither AAPCS variant.
131     arg = ARMVFPArgKind::ToolChain;
132     break;
133   case ARMBuildAttrs::CompatibleFPAAPCS:
134     // Object compatible with all conventions.
135     return;
136   default:
137     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
138     return;
139   }
140   // Follow ld.bfd and error if there is a mix of calling conventions.
141   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
142     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
143   else
144     config->armVFPArgs = arg;
145 }
146 
147 // The ARM support in lld makes some use of instructions that are not available
148 // on all ARM architectures. Namely:
149 // - Use of BLX instruction for interworking between ARM and Thumb state.
150 // - Use of the extended Thumb branch encoding in relocation.
151 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
152 // The ARM Attributes section contains information about the architecture chosen
153 // at compile time. We follow the convention that if at least one input object
154 // is compiled with an architecture that supports these features then lld is
155 // permitted to use them.
156 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
157   std::optional<unsigned> attr =
158       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
159   if (!attr)
160     return;
161   auto arch = *attr;
162   switch (arch) {
163   case ARMBuildAttrs::Pre_v4:
164   case ARMBuildAttrs::v4:
165   case ARMBuildAttrs::v4T:
166     // Architectures prior to v5 do not support BLX instruction
167     break;
168   case ARMBuildAttrs::v5T:
169   case ARMBuildAttrs::v5TE:
170   case ARMBuildAttrs::v5TEJ:
171   case ARMBuildAttrs::v6:
172   case ARMBuildAttrs::v6KZ:
173   case ARMBuildAttrs::v6K:
174     config->armHasBlx = true;
175     // Architectures used in pre-Cortex processors do not support
176     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
177     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
178     break;
179   default:
180     // All other Architectures have BLX and extended branch encoding
181     config->armHasBlx = true;
182     config->armJ1J2BranchEncoding = true;
183     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
184       // All Architectures used in Cortex processors with the exception
185       // of v6-M and v6S-M have the MOVT and MOVW instructions.
186       config->armHasMovtMovw = true;
187     break;
188   }
189 
190   // Only ARMv8-M or later architectures have CMSE support.
191   std::optional<unsigned> profile =
192       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
193   if (!profile)
194     return;
195   if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base &&
196       profile == ARMBuildAttrs::MicroControllerProfile)
197     config->armCMSESupport = true;
198 
199   // The thumb PLT entries require Thumb2 which can be used on multiple archs.
200   // For now, let's limit it to ones where ARM isn't available and we know have
201   // Thumb2.
202   std::optional<unsigned> armISA =
203       attributes.getAttributeValue(ARMBuildAttrs::ARM_ISA_use);
204   std::optional<unsigned> thumb =
205       attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
206   bool noArmISA = !armISA || *armISA == ARMBuildAttrs::Not_Allowed;
207   bool hasThumb2 = thumb && *thumb >= ARMBuildAttrs::AllowThumb32;
208   if (noArmISA && hasThumb2)
209     config->armThumbPLTs = true;
210 }
211 
212 InputFile::InputFile(Kind k, MemoryBufferRef m)
213     : mb(m), groupId(nextGroupId), fileKind(k) {
214   // All files within the same --{start,end}-group get the same group ID.
215   // Otherwise, a new file will get a new group ID.
216   if (!isInGroup)
217     ++nextGroupId;
218 }
219 
220 std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
221   llvm::TimeTraceScope timeScope("Load input files", path);
222 
223   // The --chroot option changes our virtual root directory.
224   // This is useful when you are dealing with files created by --reproduce.
225   if (!config->chroot.empty() && path.starts_with("/"))
226     path = saver().save(config->chroot + path);
227 
228   bool remapped = false;
229   auto it = config->remapInputs.find(path);
230   if (it != config->remapInputs.end()) {
231     path = it->second;
232     remapped = true;
233   } else {
234     for (const auto &[pat, toFile] : config->remapInputsWildcards) {
235       if (pat.match(path)) {
236         path = toFile;
237         remapped = true;
238         break;
239       }
240     }
241   }
242   if (remapped) {
243     // Use /dev/null to indicate an input file that should be ignored. Change
244     // the path to NUL on Windows.
245 #ifdef _WIN32
246     if (path == "/dev/null")
247       path = "NUL";
248 #endif
249   }
250 
251   log(path);
252   config->dependencyFiles.insert(llvm::CachedHashString(path));
253 
254   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
255                                        /*RequiresNullTerminator=*/false);
256   if (auto ec = mbOrErr.getError()) {
257     error("cannot open " + path + ": " + ec.message());
258     return std::nullopt;
259   }
260 
261   MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
262   ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
263 
264   if (tar)
265     tar->append(relativeToRoot(path), mbref.getBuffer());
266   return mbref;
267 }
268 
269 // All input object files must be for the same architecture
270 // (e.g. it does not make sense to link x86 object files with
271 // MIPS object files.) This function checks for that error.
272 static bool isCompatible(InputFile *file) {
273   if (!file->isElf() && !isa<BitcodeFile>(file))
274     return true;
275 
276   if (file->ekind == config->ekind && file->emachine == config->emachine) {
277     if (config->emachine != EM_MIPS)
278       return true;
279     if (isMipsN32Abi(file) == config->mipsN32Abi)
280       return true;
281   }
282 
283   StringRef target =
284       !config->bfdname.empty() ? config->bfdname : config->emulation;
285   if (!target.empty()) {
286     error(toString(file) + " is incompatible with " + target);
287     return false;
288   }
289 
290   InputFile *existing = nullptr;
291   if (!ctx.objectFiles.empty())
292     existing = ctx.objectFiles[0];
293   else if (!ctx.sharedFiles.empty())
294     existing = ctx.sharedFiles[0];
295   else if (!ctx.bitcodeFiles.empty())
296     existing = ctx.bitcodeFiles[0];
297   std::string with;
298   if (existing)
299     with = " with " + toString(existing);
300   error(toString(file) + " is incompatible" + with);
301   return false;
302 }
303 
304 template <class ELFT> static void doParseFile(InputFile *file) {
305   if (!isCompatible(file))
306     return;
307 
308   // Lazy object file
309   if (file->lazy) {
310     if (auto *f = dyn_cast<BitcodeFile>(file)) {
311       ctx.lazyBitcodeFiles.push_back(f);
312       f->parseLazy();
313     } else {
314       cast<ObjFile<ELFT>>(file)->parseLazy();
315     }
316     return;
317   }
318 
319   if (config->trace)
320     message(toString(file));
321 
322   if (file->kind() == InputFile::ObjKind) {
323     ctx.objectFiles.push_back(cast<ELFFileBase>(file));
324     cast<ObjFile<ELFT>>(file)->parse();
325   } else if (auto *f = dyn_cast<SharedFile>(file)) {
326     f->parse<ELFT>();
327   } else if (auto *f = dyn_cast<BitcodeFile>(file)) {
328     ctx.bitcodeFiles.push_back(f);
329     f->parse();
330   } else {
331     ctx.binaryFiles.push_back(cast<BinaryFile>(file));
332     cast<BinaryFile>(file)->parse();
333   }
334 }
335 
336 // Add symbols in File to the symbol table.
337 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
338 
339 // This function is explicitly instantiated in ARM.cpp. Mark it extern here,
340 // to avoid warnings when building with MSVC.
341 extern template void ObjFile<ELF32LE>::importCmseSymbols();
342 extern template void ObjFile<ELF32BE>::importCmseSymbols();
343 extern template void ObjFile<ELF64LE>::importCmseSymbols();
344 extern template void ObjFile<ELF64BE>::importCmseSymbols();
345 
346 template <class ELFT>
347 static void doParseFiles(const std::vector<InputFile *> &files,
348                          InputFile *armCmseImpLib) {
349   // Add all files to the symbol table. This will add almost all symbols that we
350   // need to the symbol table. This process might add files to the link due to
351   // addDependentLibrary.
352   for (size_t i = 0; i < files.size(); ++i) {
353     llvm::TimeTraceScope timeScope("Parse input files", files[i]->getName());
354     doParseFile<ELFT>(files[i]);
355   }
356   if (armCmseImpLib)
357     cast<ObjFile<ELFT>>(*armCmseImpLib).importCmseSymbols();
358 }
359 
360 void elf::parseFiles(const std::vector<InputFile *> &files,
361                      InputFile *armCmseImpLib) {
362   llvm::TimeTraceScope timeScope("Parse input files");
363   invokeELFT(doParseFiles, files, armCmseImpLib);
364 }
365 
366 // Concatenates arguments to construct a string representing an error location.
367 static std::string createFileLineMsg(StringRef path, unsigned line) {
368   std::string filename = std::string(path::filename(path));
369   std::string lineno = ":" + std::to_string(line);
370   if (filename == path)
371     return filename + lineno;
372   return filename + lineno + " (" + path.str() + lineno + ")";
373 }
374 
375 template <class ELFT>
376 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
377                                 const InputSectionBase &sec, uint64_t offset) {
378   // In DWARF, functions and variables are stored to different places.
379   // First, look up a function for a given offset.
380   if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
381     return createFileLineMsg(info->FileName, info->Line);
382 
383   // If it failed, look up again as a variable.
384   if (std::optional<std::pair<std::string, unsigned>> fileLine =
385           file.getVariableLoc(sym.getName()))
386     return createFileLineMsg(fileLine->first, fileLine->second);
387 
388   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
389   return std::string(file.sourceFile);
390 }
391 
392 std::string InputFile::getSrcMsg(const Symbol &sym, const InputSectionBase &sec,
393                                  uint64_t offset) {
394   if (kind() != ObjKind)
395     return "";
396   switch (ekind) {
397   default:
398     llvm_unreachable("Invalid kind");
399   case ELF32LEKind:
400     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
401   case ELF32BEKind:
402     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
403   case ELF64LEKind:
404     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
405   case ELF64BEKind:
406     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
407   }
408 }
409 
410 StringRef InputFile::getNameForScript() const {
411   if (archiveName.empty())
412     return getName();
413 
414   if (nameForScriptCache.empty())
415     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
416 
417   return nameForScriptCache;
418 }
419 
420 // An ELF object file may contain a `.deplibs` section. If it exists, the
421 // section contains a list of library specifiers such as `m` for libm. This
422 // function resolves a given name by finding the first matching library checking
423 // the various ways that a library can be specified to LLD. This ELF extension
424 // is a form of autolinking and is called `dependent libraries`. It is currently
425 // unique to LLVM and lld.
426 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
427   if (!config->dependentLibraries)
428     return;
429   if (std::optional<std::string> s = searchLibraryBaseName(specifier))
430     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
431   else if (std::optional<std::string> s = findFromSearchPaths(specifier))
432     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
433   else if (fs::exists(specifier))
434     ctx.driver.addFile(specifier, /*withLOption=*/false);
435   else
436     error(toString(f) +
437           ": unable to find library from dependent library specifier: " +
438           specifier);
439 }
440 
441 // Record the membership of a section group so that in the garbage collection
442 // pass, section group members are kept or discarded as a unit.
443 template <class ELFT>
444 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
445                                ArrayRef<typename ELFT::Word> entries) {
446   bool hasAlloc = false;
447   for (uint32_t index : entries.slice(1)) {
448     if (index >= sections.size())
449       return;
450     if (InputSectionBase *s = sections[index])
451       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
452         hasAlloc = true;
453   }
454 
455   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
456   // collection. See the comment in markLive(). This rule retains .debug_types
457   // and .rela.debug_types.
458   if (!hasAlloc)
459     return;
460 
461   // Connect the members in a circular doubly-linked list via
462   // nextInSectionGroup.
463   InputSectionBase *head;
464   InputSectionBase *prev = nullptr;
465   for (uint32_t index : entries.slice(1)) {
466     InputSectionBase *s = sections[index];
467     if (!s || s == &InputSection::discarded)
468       continue;
469     if (prev)
470       prev->nextInSectionGroup = s;
471     else
472       head = s;
473     prev = s;
474   }
475   if (prev)
476     prev->nextInSectionGroup = head;
477 }
478 
479 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
480   llvm::call_once(initDwarf, [this]() {
481     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
482         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
483         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
484         [&](Error warning) {
485           warn(getName() + ": " + toString(std::move(warning)));
486         }));
487   });
488 
489   return dwarf.get();
490 }
491 
492 // Returns the pair of file name and line number describing location of data
493 // object (variable, array, etc) definition.
494 template <class ELFT>
495 std::optional<std::pair<std::string, unsigned>>
496 ObjFile<ELFT>::getVariableLoc(StringRef name) {
497   return getDwarf()->getVariableLoc(name);
498 }
499 
500 // Returns source line information for a given offset
501 // using DWARF debug info.
502 template <class ELFT>
503 std::optional<DILineInfo>
504 ObjFile<ELFT>::getDILineInfo(const InputSectionBase *s, uint64_t offset) {
505   // Detect SectionIndex for specified section.
506   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
507   ArrayRef<InputSectionBase *> sections = s->file->getSections();
508   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
509     if (s == sections[curIndex]) {
510       sectionIndex = curIndex;
511       break;
512     }
513   }
514 
515   return getDwarf()->getDILineInfo(offset, sectionIndex);
516 }
517 
518 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
519     : InputFile(k, mb) {
520   this->ekind = ekind;
521 }
522 
523 template <typename Elf_Shdr>
524 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
525   for (const Elf_Shdr &sec : sections)
526     if (sec.sh_type == type)
527       return &sec;
528   return nullptr;
529 }
530 
531 void ELFFileBase::init() {
532   switch (ekind) {
533   case ELF32LEKind:
534     init<ELF32LE>(fileKind);
535     break;
536   case ELF32BEKind:
537     init<ELF32BE>(fileKind);
538     break;
539   case ELF64LEKind:
540     init<ELF64LE>(fileKind);
541     break;
542   case ELF64BEKind:
543     init<ELF64BE>(fileKind);
544     break;
545   default:
546     llvm_unreachable("getELFKind");
547   }
548 }
549 
550 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
551   using Elf_Shdr = typename ELFT::Shdr;
552   using Elf_Sym = typename ELFT::Sym;
553 
554   // Initialize trivial attributes.
555   const ELFFile<ELFT> &obj = getObj<ELFT>();
556   emachine = obj.getHeader().e_machine;
557   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
558   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
559 
560   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
561   elfShdrs = sections.data();
562   numELFShdrs = sections.size();
563 
564   // Find a symbol table.
565   const Elf_Shdr *symtabSec =
566       findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
567 
568   if (!symtabSec)
569     return;
570 
571   // Initialize members corresponding to a symbol table.
572   firstGlobal = symtabSec->sh_info;
573 
574   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
575   if (firstGlobal == 0 || firstGlobal > eSyms.size())
576     fatal(toString(this) + ": invalid sh_info in symbol table");
577 
578   elfSyms = reinterpret_cast<const void *>(eSyms.data());
579   numELFSyms = uint32_t(eSyms.size());
580   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
581 }
582 
583 template <class ELFT>
584 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
585   return CHECK(
586       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
587       this);
588 }
589 
590 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
591   object::ELFFile<ELFT> obj = this->getObj();
592   // Read a section table. justSymbols is usually false.
593   if (this->justSymbols) {
594     initializeJustSymbols();
595     initializeSymbols(obj);
596     return;
597   }
598 
599   // Handle dependent libraries and selection of section groups as these are not
600   // done in parallel.
601   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
602   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
603   uint64_t size = objSections.size();
604   sections.resize(size);
605   for (size_t i = 0; i != size; ++i) {
606     const Elf_Shdr &sec = objSections[i];
607     if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
608       StringRef name = check(obj.getSectionName(sec, shstrtab));
609       ArrayRef<char> data = CHECK(
610           this->getObj().template getSectionContentsAsArray<char>(sec), this);
611       if (!data.empty() && data.back() != '\0') {
612         error(
613             toString(this) +
614             ": corrupted dependent libraries section (unterminated string): " +
615             name);
616       } else {
617         for (const char *d = data.begin(), *e = data.end(); d < e;) {
618           StringRef s(d);
619           addDependentLibrary(s, this);
620           d += s.size() + 1;
621         }
622       }
623       this->sections[i] = &InputSection::discarded;
624       continue;
625     }
626 
627     if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
628       ARMAttributeParser attributes;
629       ArrayRef<uint8_t> contents =
630           check(this->getObj().getSectionContents(sec));
631       StringRef name = check(obj.getSectionName(sec, shstrtab));
632       this->sections[i] = &InputSection::discarded;
633       if (Error e = attributes.parse(contents, ekind == ELF32LEKind
634                                                    ? llvm::endianness::little
635                                                    : llvm::endianness::big)) {
636         InputSection isec(*this, sec, name);
637         warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
638       } else {
639         updateSupportedARMFeatures(attributes);
640         updateARMVFPArgs(attributes, this);
641 
642         // FIXME: Retain the first attribute section we see. The eglibc ARM
643         // dynamic loaders require the presence of an attribute section for
644         // dlopen to work. In a full implementation we would merge all attribute
645         // sections.
646         if (in.attributes == nullptr) {
647           in.attributes = std::make_unique<InputSection>(*this, sec, name);
648           this->sections[i] = in.attributes.get();
649         }
650       }
651     }
652 
653     // Producing a static binary with MTE globals is not currently supported,
654     // remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused
655     // medatada, and we don't want them to end up in the output file for static
656     // executables.
657     if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC &&
658         !canHaveMemtagGlobals()) {
659       this->sections[i] = &InputSection::discarded;
660       continue;
661     }
662 
663     if (sec.sh_type != SHT_GROUP)
664       continue;
665     StringRef signature = getShtGroupSignature(objSections, sec);
666     ArrayRef<Elf_Word> entries =
667         CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
668     if (entries.empty())
669       fatal(toString(this) + ": empty SHT_GROUP");
670 
671     Elf_Word flag = entries[0];
672     if (flag && flag != GRP_COMDAT)
673       fatal(toString(this) + ": unsupported SHT_GROUP format");
674 
675     bool keepGroup =
676         (flag & GRP_COMDAT) == 0 || ignoreComdats ||
677         symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
678             .second;
679     if (keepGroup) {
680       if (!config->resolveGroups)
681         this->sections[i] = createInputSection(
682             i, sec, check(obj.getSectionName(sec, shstrtab)));
683       continue;
684     }
685 
686     // Otherwise, discard group members.
687     for (uint32_t secIndex : entries.slice(1)) {
688       if (secIndex >= size)
689         fatal(toString(this) +
690               ": invalid section index in group: " + Twine(secIndex));
691       this->sections[secIndex] = &InputSection::discarded;
692     }
693   }
694 
695   // Read a symbol table.
696   initializeSymbols(obj);
697 }
698 
699 // Sections with SHT_GROUP and comdat bits define comdat section groups.
700 // They are identified and deduplicated by group name. This function
701 // returns a group name.
702 template <class ELFT>
703 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
704                                               const Elf_Shdr &sec) {
705   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
706   if (sec.sh_info >= symbols.size())
707     fatal(toString(this) + ": invalid symbol index");
708   const typename ELFT::Sym &sym = symbols[sec.sh_info];
709   return CHECK(sym.getName(this->stringTable), this);
710 }
711 
712 template <class ELFT>
713 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
714   // On a regular link we don't merge sections if -O0 (default is -O1). This
715   // sometimes makes the linker significantly faster, although the output will
716   // be bigger.
717   //
718   // Doing the same for -r would create a problem as it would combine sections
719   // with different sh_entsize. One option would be to just copy every SHF_MERGE
720   // section as is to the output. While this would produce a valid ELF file with
721   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
722   // they see two .debug_str. We could have separate logic for combining
723   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
724   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
725   // logic for -r.
726   if (config->optimize == 0 && !config->relocatable)
727     return false;
728 
729   // A mergeable section with size 0 is useless because they don't have
730   // any data to merge. A mergeable string section with size 0 can be
731   // argued as invalid because it doesn't end with a null character.
732   // We'll avoid a mess by handling them as if they were non-mergeable.
733   if (sec.sh_size == 0)
734     return false;
735 
736   // Check for sh_entsize. The ELF spec is not clear about the zero
737   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
738   // the section does not hold a table of fixed-size entries". We know
739   // that Rust 1.13 produces a string mergeable section with a zero
740   // sh_entsize. Here we just accept it rather than being picky about it.
741   uint64_t entSize = sec.sh_entsize;
742   if (entSize == 0)
743     return false;
744   if (sec.sh_size % entSize)
745     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
746           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
747           Twine(entSize) + ")");
748 
749   if (sec.sh_flags & SHF_WRITE)
750     fatal(toString(this) + ":(" + name +
751           "): writable SHF_MERGE section is not supported");
752 
753   return true;
754 }
755 
756 // This is for --just-symbols.
757 //
758 // --just-symbols is a very minor feature that allows you to link your
759 // output against other existing program, so that if you load both your
760 // program and the other program into memory, your output can refer the
761 // other program's symbols.
762 //
763 // When the option is given, we link "just symbols". The section table is
764 // initialized with null pointers.
765 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
766   sections.resize(numELFShdrs);
767 }
768 
769 static bool isKnownSpecificSectionType(uint32_t t, uint32_t flags) {
770   if (SHT_LOUSER <= t && t <= SHT_HIUSER && !(flags & SHF_ALLOC))
771     return true;
772   if (SHT_LOOS <= t && t <= SHT_HIOS && !(flags & SHF_OS_NONCONFORMING))
773     return true;
774   // Allow all processor-specific types. This is different from GNU ld.
775   return SHT_LOPROC <= t && t <= SHT_HIPROC;
776 }
777 
778 template <class ELFT>
779 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
780                                        const llvm::object::ELFFile<ELFT> &obj) {
781   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
782   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
783   uint64_t size = objSections.size();
784   SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
785   for (size_t i = 0; i != size; ++i) {
786     if (this->sections[i] == &InputSection::discarded)
787       continue;
788     const Elf_Shdr &sec = objSections[i];
789     const uint32_t type = sec.sh_type;
790 
791     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
792     // if -r is given, we'll let the final link discard such sections.
793     // This is compatible with GNU.
794     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
795       if (type == SHT_LLVM_CALL_GRAPH_PROFILE)
796         cgProfileSectionIndex = i;
797       if (type == SHT_LLVM_ADDRSIG) {
798         // We ignore the address-significance table if we know that the object
799         // file was created by objcopy or ld -r. This is because these tools
800         // will reorder the symbols in the symbol table, invalidating the data
801         // in the address-significance table, which refers to symbols by index.
802         if (sec.sh_link != 0)
803           this->addrsigSec = &sec;
804         else if (config->icf == ICFLevel::Safe)
805           warn(toString(this) +
806                ": --icf=safe conservatively ignores "
807                "SHT_LLVM_ADDRSIG [index " +
808                Twine(i) +
809                "] with sh_link=0 "
810                "(likely created using objcopy or ld -r)");
811       }
812       this->sections[i] = &InputSection::discarded;
813       continue;
814     }
815 
816     switch (type) {
817     case SHT_GROUP: {
818       if (!config->relocatable)
819         sections[i] = &InputSection::discarded;
820       StringRef signature =
821           cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
822       ArrayRef<Elf_Word> entries =
823           cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
824       if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
825           symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
826               this)
827         selectedGroups.push_back(entries);
828       break;
829     }
830     case SHT_SYMTAB_SHNDX:
831       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
832       break;
833     case SHT_SYMTAB:
834     case SHT_STRTAB:
835     case SHT_REL:
836     case SHT_RELA:
837     case SHT_CREL:
838     case SHT_NULL:
839       break;
840     case SHT_PROGBITS:
841     case SHT_NOTE:
842     case SHT_NOBITS:
843     case SHT_INIT_ARRAY:
844     case SHT_FINI_ARRAY:
845     case SHT_PREINIT_ARRAY:
846       this->sections[i] =
847           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
848       break;
849     case SHT_LLVM_LTO:
850       // Discard .llvm.lto in a relocatable link that does not use the bitcode.
851       // The concatenated output does not properly reflect the linking
852       // semantics. In addition, since we do not use the bitcode wrapper format,
853       // the concatenated raw bitcode would be invalid.
854       if (config->relocatable && !config->fatLTOObjects) {
855         sections[i] = &InputSection::discarded;
856         break;
857       }
858       [[fallthrough]];
859     default:
860       this->sections[i] =
861           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
862       if (type == SHT_LLVM_SYMPART)
863         ctx.hasSympart.store(true, std::memory_order_relaxed);
864       else if (config->rejectMismatch &&
865                !isKnownSpecificSectionType(type, sec.sh_flags))
866         errorOrWarn(toString(this->sections[i]) + ": unknown section type 0x" +
867                     Twine::utohexstr(type));
868       break;
869     }
870   }
871 
872   // We have a second loop. It is used to:
873   // 1) handle SHF_LINK_ORDER sections.
874   // 2) create relocation sections. In some cases the section header index of a
875   //    relocation section may be smaller than that of the relocated section. In
876   //    such cases, the relocation section would attempt to reference a target
877   //    section that has not yet been created. For simplicity, delay creation of
878   //    relocation sections until now.
879   for (size_t i = 0; i != size; ++i) {
880     if (this->sections[i] == &InputSection::discarded)
881       continue;
882     const Elf_Shdr &sec = objSections[i];
883 
884     if (isStaticRelSecType(sec.sh_type)) {
885       // Find a relocation target section and associate this section with that.
886       // Target may have been discarded if it is in a different section group
887       // and the group is discarded, even though it's a violation of the spec.
888       // We handle that situation gracefully by discarding dangling relocation
889       // sections.
890       const uint32_t info = sec.sh_info;
891       InputSectionBase *s = getRelocTarget(i, info);
892       if (!s)
893         continue;
894 
895       // ELF spec allows mergeable sections with relocations, but they are rare,
896       // and it is in practice hard to merge such sections by contents, because
897       // applying relocations at end of linking changes section contents. So, we
898       // simply handle such sections as non-mergeable ones. Degrading like this
899       // is acceptable because section merging is optional.
900       if (auto *ms = dyn_cast<MergeInputSection>(s)) {
901         s = makeThreadLocal<InputSection>(
902             ms->file, ms->flags, ms->type, ms->addralign,
903             ms->contentMaybeDecompress(), ms->name);
904         sections[info] = s;
905       }
906 
907       if (s->relSecIdx != 0)
908         error(
909             toString(s) +
910             ": multiple relocation sections to one section are not supported");
911       s->relSecIdx = i;
912 
913       // Relocation sections are usually removed from the output, so return
914       // `nullptr` for the normal case. However, if -r or --emit-relocs is
915       // specified, we need to copy them to the output. (Some post link analysis
916       // tools specify --emit-relocs to obtain the information.)
917       if (config->copyRelocs) {
918         auto *isec = makeThreadLocal<InputSection>(
919             *this, sec, check(obj.getSectionName(sec, shstrtab)));
920         // If the relocated section is discarded (due to /DISCARD/ or
921         // --gc-sections), the relocation section should be discarded as well.
922         s->dependentSections.push_back(isec);
923         sections[i] = isec;
924       }
925       continue;
926     }
927 
928     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
929     // the flag.
930     if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
931       continue;
932 
933     InputSectionBase *linkSec = nullptr;
934     if (sec.sh_link < size)
935       linkSec = this->sections[sec.sh_link];
936     if (!linkSec)
937       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
938 
939     // A SHF_LINK_ORDER section is discarded if its linked-to section is
940     // discarded.
941     InputSection *isec = cast<InputSection>(this->sections[i]);
942     linkSec->dependentSections.push_back(isec);
943     if (!isa<InputSection>(linkSec))
944       error("a section " + isec->name +
945             " with SHF_LINK_ORDER should not refer a non-regular section: " +
946             toString(linkSec));
947   }
948 
949   for (ArrayRef<Elf_Word> entries : selectedGroups)
950     handleSectionGroup<ELFT>(this->sections, entries);
951 }
952 
953 // Read the following info from the .note.gnu.property section and write it to
954 // the corresponding fields in `ObjFile`:
955 // - Feature flags (32 bits) representing x86 or AArch64 features for
956 //   hardware-assisted call flow control;
957 // - AArch64 PAuth ABI core info (16 bytes).
958 template <class ELFT>
959 void readGnuProperty(const InputSection &sec, ObjFile<ELFT> &f) {
960   using Elf_Nhdr = typename ELFT::Nhdr;
961   using Elf_Note = typename ELFT::Note;
962 
963   ArrayRef<uint8_t> data = sec.content();
964   auto reportFatal = [&](const uint8_t *place, const Twine &msg) {
965     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
966           Twine::utohexstr(place - sec.content().data()) + "): " + msg);
967   };
968   while (!data.empty()) {
969     // Read one NOTE record.
970     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
971     if (data.size() < sizeof(Elf_Nhdr) ||
972         data.size() < nhdr->getSize(sec.addralign))
973       reportFatal(data.data(), "data is too short");
974 
975     Elf_Note note(*nhdr);
976     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
977       data = data.slice(nhdr->getSize(sec.addralign));
978       continue;
979     }
980 
981     uint32_t featureAndType = config->emachine == EM_AARCH64
982                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
983                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
984 
985     // Read a body of a NOTE record, which consists of type-length-value fields.
986     ArrayRef<uint8_t> desc = note.getDesc(sec.addralign);
987     while (!desc.empty()) {
988       const uint8_t *place = desc.data();
989       if (desc.size() < 8)
990         reportFatal(place, "program property is too short");
991       uint32_t type = read32<ELFT::Endianness>(desc.data());
992       uint32_t size = read32<ELFT::Endianness>(desc.data() + 4);
993       desc = desc.slice(8);
994       if (desc.size() < size)
995         reportFatal(place, "program property is too short");
996 
997       if (type == featureAndType) {
998         // We found a FEATURE_1_AND field. There may be more than one of these
999         // in a .note.gnu.property section, for a relocatable object we
1000         // accumulate the bits set.
1001         if (size < 4)
1002           reportFatal(place, "FEATURE_1_AND entry is too short");
1003         f.andFeatures |= read32<ELFT::Endianness>(desc.data());
1004       } else if (config->emachine == EM_AARCH64 &&
1005                  type == GNU_PROPERTY_AARCH64_FEATURE_PAUTH) {
1006         if (!f.aarch64PauthAbiCoreInfo.empty()) {
1007           reportFatal(data.data(),
1008                       "multiple GNU_PROPERTY_AARCH64_FEATURE_PAUTH entries are "
1009                       "not supported");
1010         } else if (size != 16) {
1011           reportFatal(data.data(), "GNU_PROPERTY_AARCH64_FEATURE_PAUTH entry "
1012                                    "is invalid: expected 16 bytes, but got " +
1013                                        Twine(size));
1014         }
1015         f.aarch64PauthAbiCoreInfo = desc;
1016       }
1017 
1018       // Padding is present in the note descriptor, if necessary.
1019       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
1020     }
1021 
1022     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
1023     data = data.slice(nhdr->getSize(sec.addralign));
1024   }
1025 }
1026 
1027 template <class ELFT>
1028 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, uint32_t info) {
1029   if (info < this->sections.size()) {
1030     InputSectionBase *target = this->sections[info];
1031 
1032     // Strictly speaking, a relocation section must be included in the
1033     // group of the section it relocates. However, LLVM 3.3 and earlier
1034     // would fail to do so, so we gracefully handle that case.
1035     if (target == &InputSection::discarded)
1036       return nullptr;
1037 
1038     if (target != nullptr)
1039       return target;
1040   }
1041 
1042   error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
1043         ") has invalid sh_info (" + Twine(info) + ")");
1044   return nullptr;
1045 }
1046 
1047 // The function may be called concurrently for different input files. For
1048 // allocation, prefer makeThreadLocal which does not require holding a lock.
1049 template <class ELFT>
1050 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
1051                                                     const Elf_Shdr &sec,
1052                                                     StringRef name) {
1053   if (name.starts_with(".n")) {
1054     // The GNU linker uses .note.GNU-stack section as a marker indicating
1055     // that the code in the object file does not expect that the stack is
1056     // executable (in terms of NX bit). If all input files have the marker,
1057     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1058     // make the stack non-executable. Most object files have this section as
1059     // of 2017.
1060     //
1061     // But making the stack non-executable is a norm today for security
1062     // reasons. Failure to do so may result in a serious security issue.
1063     // Therefore, we make LLD always add PT_GNU_STACK unless it is
1064     // explicitly told to do otherwise (by -z execstack). Because the stack
1065     // executable-ness is controlled solely by command line options,
1066     // .note.GNU-stack sections are simply ignored.
1067     if (name == ".note.GNU-stack")
1068       return &InputSection::discarded;
1069 
1070     // Object files that use processor features such as Intel Control-Flow
1071     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1072     // .note.gnu.property section containing a bitfield of feature bits like the
1073     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1074     //
1075     // Since we merge bitmaps from multiple object files to create a new
1076     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1077     // file's .note.gnu.property section.
1078     if (name == ".note.gnu.property") {
1079       readGnuProperty<ELFT>(InputSection(*this, sec, name), *this);
1080       return &InputSection::discarded;
1081     }
1082 
1083     // Split stacks is a feature to support a discontiguous stack,
1084     // commonly used in the programming language Go. For the details,
1085     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1086     // for split stack will include a .note.GNU-split-stack section.
1087     if (name == ".note.GNU-split-stack") {
1088       if (config->relocatable) {
1089         error(
1090             "cannot mix split-stack and non-split-stack in a relocatable link");
1091         return &InputSection::discarded;
1092       }
1093       this->splitStack = true;
1094       return &InputSection::discarded;
1095     }
1096 
1097     // An object file compiled for split stack, but where some of the
1098     // functions were compiled with the no_split_stack_attribute will
1099     // include a .note.GNU-no-split-stack section.
1100     if (name == ".note.GNU-no-split-stack") {
1101       this->someNoSplitStack = true;
1102       return &InputSection::discarded;
1103     }
1104 
1105     // Strip existing .note.gnu.build-id sections so that the output won't have
1106     // more than one build-id. This is not usually a problem because input
1107     // object files normally don't have .build-id sections, but you can create
1108     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1109     // against it.
1110     if (name == ".note.gnu.build-id")
1111       return &InputSection::discarded;
1112   }
1113 
1114   // The linker merges EH (exception handling) frames and creates a
1115   // .eh_frame_hdr section for runtime. So we handle them with a special
1116   // class. For relocatable outputs, they are just passed through.
1117   if (name == ".eh_frame" && !config->relocatable)
1118     return makeThreadLocal<EhInputSection>(*this, sec, name);
1119 
1120   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1121     return makeThreadLocal<MergeInputSection>(*this, sec, name);
1122   return makeThreadLocal<InputSection>(*this, sec, name);
1123 }
1124 
1125 // Initialize symbols. symbols is a parallel array to the corresponding ELF
1126 // symbol table.
1127 template <class ELFT>
1128 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1129   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1130   if (numSymbols == 0) {
1131     numSymbols = eSyms.size();
1132     symbols = std::make_unique<Symbol *[]>(numSymbols);
1133   }
1134 
1135   // Some entries have been filled by LazyObjFile.
1136   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1137     if (!symbols[i])
1138       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1139 
1140   // Perform symbol resolution on non-local symbols.
1141   SmallVector<unsigned, 32> undefineds;
1142   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1143     const Elf_Sym &eSym = eSyms[i];
1144     uint32_t secIdx = eSym.st_shndx;
1145     if (secIdx == SHN_UNDEF) {
1146       undefineds.push_back(i);
1147       continue;
1148     }
1149 
1150     uint8_t binding = eSym.getBinding();
1151     uint8_t stOther = eSym.st_other;
1152     uint8_t type = eSym.getType();
1153     uint64_t value = eSym.st_value;
1154     uint64_t size = eSym.st_size;
1155 
1156     Symbol *sym = symbols[i];
1157     sym->isUsedInRegularObj = true;
1158     if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1159       if (value == 0 || value >= UINT32_MAX)
1160         fatal(toString(this) + ": common symbol '" + sym->getName() +
1161               "' has invalid alignment: " + Twine(value));
1162       hasCommonSyms = true;
1163       sym->resolve(
1164           CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1165       continue;
1166     }
1167 
1168     // Handle global defined symbols. Defined::section will be set in postParse.
1169     sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1170                          nullptr});
1171   }
1172 
1173   // Undefined symbols (excluding those defined relative to non-prevailing
1174   // sections) can trigger recursive extract. Process defined symbols first so
1175   // that the relative order between a defined symbol and an undefined symbol
1176   // does not change the symbol resolution behavior. In addition, a set of
1177   // interconnected symbols will all be resolved to the same file, instead of
1178   // being resolved to different files.
1179   for (unsigned i : undefineds) {
1180     const Elf_Sym &eSym = eSyms[i];
1181     Symbol *sym = symbols[i];
1182     sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1183                            eSym.getType()});
1184     sym->isUsedInRegularObj = true;
1185     sym->referenced = true;
1186   }
1187 }
1188 
1189 template <class ELFT>
1190 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
1191   if (!justSymbols)
1192     initializeSections(ignoreComdats, getObj());
1193 
1194   if (!firstGlobal)
1195     return;
1196   SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
1197   memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
1198 
1199   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1200   for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1201     const Elf_Sym &eSym = eSyms[i];
1202     uint32_t secIdx = eSym.st_shndx;
1203     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1204       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1205     else if (secIdx >= SHN_LORESERVE)
1206       secIdx = 0;
1207     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1208       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1209     if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1210       error(toString(this) + ": non-local symbol (" + Twine(i) +
1211             ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1212 
1213     InputSectionBase *sec = sections[secIdx];
1214     uint8_t type = eSym.getType();
1215     if (type == STT_FILE)
1216       sourceFile = CHECK(eSym.getName(stringTable), this);
1217     if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1218       fatal(toString(this) + ": invalid symbol name offset");
1219     StringRef name(stringTable.data() + eSym.st_name);
1220 
1221     symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1222     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1223       new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1224                                  /*discardedSecIdx=*/secIdx);
1225     else
1226       new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1227                                eSym.st_value, eSym.st_size, sec);
1228     symbols[i]->partition = 1;
1229     symbols[i]->isUsedInRegularObj = true;
1230   }
1231 }
1232 
1233 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1234 // duplicate symbols and may do symbol property merge in the future.
1235 template <class ELFT> void ObjFile<ELFT>::postParse() {
1236   static std::mutex mu;
1237   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1238   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1239     const Elf_Sym &eSym = eSyms[i];
1240     Symbol &sym = *symbols[i];
1241     uint32_t secIdx = eSym.st_shndx;
1242     uint8_t binding = eSym.getBinding();
1243     if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1244                       binding != STB_GNU_UNIQUE))
1245       errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1246                   ") has invalid binding: " + Twine((int)binding));
1247 
1248     // st_value of STT_TLS represents the assigned offset, not the actual
1249     // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1250     // only be referenced by special TLS relocations. It is usually an error if
1251     // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1252     if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1253         eSym.getType() != STT_NOTYPE)
1254       errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1255                   toString(sym.file) + "\n>>> in " + toString(this));
1256 
1257     // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1258     // assignment to redefine a symbol without an error.
1259     if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1260         secIdx == SHN_COMMON)
1261       continue;
1262 
1263     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1264       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1265     else if (secIdx >= SHN_LORESERVE)
1266       secIdx = 0;
1267     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1268       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1269     InputSectionBase *sec = sections[secIdx];
1270     if (sec == &InputSection::discarded) {
1271       if (sym.traced) {
1272         printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1273                                    sym.stOther, sym.type, secIdx},
1274                          sym.getName());
1275       }
1276       if (sym.file == this) {
1277         std::lock_guard<std::mutex> lock(mu);
1278         ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
1279       }
1280       continue;
1281     }
1282 
1283     if (sym.file == this) {
1284       cast<Defined>(sym).section = sec;
1285       continue;
1286     }
1287 
1288     if (sym.binding == STB_WEAK || binding == STB_WEAK)
1289       continue;
1290     std::lock_guard<std::mutex> lock(mu);
1291     ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
1292   }
1293 }
1294 
1295 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1296 // A tentative definition will be promoted to a global definition if there are
1297 // no non-tentative definitions to dominate it. When we hold a tentative
1298 // definition to a symbol and are inspecting archive members for inclusion
1299 // there are 2 ways we can proceed:
1300 //
1301 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1302 //    tentative to real definition has already happened) and not inspect
1303 //    archive members for Global/Weak definitions to replace the tentative
1304 //    definition. An archive member would only be included if it satisfies some
1305 //    other undefined symbol. This is the behavior Gold uses.
1306 //
1307 // 2) Consider the tentative definition as still undefined (ie the promotion to
1308 //    a real definition happens only after all symbol resolution is done).
1309 //    The linker searches archive members for STB_GLOBAL definitions to
1310 //    replace the tentative definition with. This is the behavior used by
1311 //    GNU ld.
1312 //
1313 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1314 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1315 //  (pre F90) FORTRAN code that is packaged into an archive.
1316 //
1317 //  The following functions search archive members for definitions to replace
1318 //  tentative definitions (implementing behavior 2).
1319 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1320                                   StringRef archiveName) {
1321   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1322   for (const irsymtab::Reader::SymbolRef &sym :
1323        symtabFile.TheReader.symbols()) {
1324     if (sym.isGlobal() && sym.getName() == symName)
1325       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1326   }
1327   return false;
1328 }
1329 
1330 template <class ELFT>
1331 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
1332                            StringRef archiveName) {
1333   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
1334   obj->init();
1335   StringRef stringtable = obj->getStringTable();
1336 
1337   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1338     Expected<StringRef> name = sym.getName(stringtable);
1339     if (name && name.get() == symName)
1340       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1341              !sym.isCommon();
1342   }
1343   return false;
1344 }
1345 
1346 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1347                            StringRef archiveName) {
1348   switch (getELFKind(mb, archiveName)) {
1349   case ELF32LEKind:
1350     return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
1351   case ELF32BEKind:
1352     return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
1353   case ELF64LEKind:
1354     return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
1355   case ELF64BEKind:
1356     return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
1357   default:
1358     llvm_unreachable("getELFKind");
1359   }
1360 }
1361 
1362 unsigned SharedFile::vernauxNum;
1363 
1364 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
1365     : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
1366       isNeeded(!config->asNeeded) {}
1367 
1368 // Parse the version definitions in the object file if present, and return a
1369 // vector whose nth element contains a pointer to the Elf_Verdef for version
1370 // identifier n. Version identifiers that are not definitions map to nullptr.
1371 template <typename ELFT>
1372 static SmallVector<const void *, 0>
1373 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1374   if (!sec)
1375     return {};
1376 
1377   // Build the Verdefs array by following the chain of Elf_Verdef objects
1378   // from the start of the .gnu.version_d section.
1379   SmallVector<const void *, 0> verdefs;
1380   const uint8_t *verdef = base + sec->sh_offset;
1381   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1382     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1383     verdef += curVerdef->vd_next;
1384     unsigned verdefIndex = curVerdef->vd_ndx;
1385     if (verdefIndex >= verdefs.size())
1386       verdefs.resize(verdefIndex + 1);
1387     verdefs[verdefIndex] = curVerdef;
1388   }
1389   return verdefs;
1390 }
1391 
1392 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1393 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1394 // implement sophisticated error checking like in llvm-readobj because the value
1395 // of such diagnostics is low.
1396 template <typename ELFT>
1397 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1398                                                const typename ELFT::Shdr *sec) {
1399   if (!sec)
1400     return {};
1401   std::vector<uint32_t> verneeds;
1402   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1403   const uint8_t *verneedBuf = data.begin();
1404   for (unsigned i = 0; i != sec->sh_info; ++i) {
1405     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1406       fatal(toString(this) + " has an invalid Verneed");
1407     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1408     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1409     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1410       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1411         fatal(toString(this) + " has an invalid Vernaux");
1412       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1413       if (aux->vna_name >= this->stringTable.size())
1414         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1415       uint16_t version = aux->vna_other & VERSYM_VERSION;
1416       if (version >= verneeds.size())
1417         verneeds.resize(version + 1);
1418       verneeds[version] = aux->vna_name;
1419       vernauxBuf += aux->vna_next;
1420     }
1421     verneedBuf += vn->vn_next;
1422   }
1423   return verneeds;
1424 }
1425 
1426 // We do not usually care about alignments of data in shared object
1427 // files because the loader takes care of it. However, if we promote a
1428 // DSO symbol to point to .bss due to copy relocation, we need to keep
1429 // the original alignment requirements. We infer it in this function.
1430 template <typename ELFT>
1431 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1432                              const typename ELFT::Sym &sym) {
1433   uint64_t ret = UINT64_MAX;
1434   if (sym.st_value)
1435     ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value);
1436   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1437     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1438   return (ret > UINT32_MAX) ? 0 : ret;
1439 }
1440 
1441 // Fully parse the shared object file.
1442 //
1443 // This function parses symbol versions. If a DSO has version information,
1444 // the file has a ".gnu.version_d" section which contains symbol version
1445 // definitions. Each symbol is associated to one version through a table in
1446 // ".gnu.version" section. That table is a parallel array for the symbol
1447 // table, and each table entry contains an index in ".gnu.version_d".
1448 //
1449 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1450 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1451 // ".gnu.version_d".
1452 //
1453 // The file format for symbol versioning is perhaps a bit more complicated
1454 // than necessary, but you can easily understand the code if you wrap your
1455 // head around the data structure described above.
1456 template <class ELFT> void SharedFile::parse() {
1457   using Elf_Dyn = typename ELFT::Dyn;
1458   using Elf_Shdr = typename ELFT::Shdr;
1459   using Elf_Sym = typename ELFT::Sym;
1460   using Elf_Verdef = typename ELFT::Verdef;
1461   using Elf_Versym = typename ELFT::Versym;
1462 
1463   ArrayRef<Elf_Dyn> dynamicTags;
1464   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1465   ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1466 
1467   const Elf_Shdr *versymSec = nullptr;
1468   const Elf_Shdr *verdefSec = nullptr;
1469   const Elf_Shdr *verneedSec = nullptr;
1470 
1471   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1472   for (const Elf_Shdr &sec : sections) {
1473     switch (sec.sh_type) {
1474     default:
1475       continue;
1476     case SHT_DYNAMIC:
1477       dynamicTags =
1478           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1479       break;
1480     case SHT_GNU_versym:
1481       versymSec = &sec;
1482       break;
1483     case SHT_GNU_verdef:
1484       verdefSec = &sec;
1485       break;
1486     case SHT_GNU_verneed:
1487       verneedSec = &sec;
1488       break;
1489     }
1490   }
1491 
1492   if (versymSec && numELFSyms == 0) {
1493     error("SHT_GNU_versym should be associated with symbol table");
1494     return;
1495   }
1496 
1497   // Search for a DT_SONAME tag to initialize this->soName.
1498   for (const Elf_Dyn &dyn : dynamicTags) {
1499     if (dyn.d_tag == DT_NEEDED) {
1500       uint64_t val = dyn.getVal();
1501       if (val >= this->stringTable.size())
1502         fatal(toString(this) + ": invalid DT_NEEDED entry");
1503       dtNeeded.push_back(this->stringTable.data() + val);
1504     } else if (dyn.d_tag == DT_SONAME) {
1505       uint64_t val = dyn.getVal();
1506       if (val >= this->stringTable.size())
1507         fatal(toString(this) + ": invalid DT_SONAME entry");
1508       soName = this->stringTable.data() + val;
1509     }
1510   }
1511 
1512   // DSOs are uniquified not by filename but by soname.
1513   DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1514   bool wasInserted;
1515   std::tie(it, wasInserted) =
1516       symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
1517 
1518   // If a DSO appears more than once on the command line with and without
1519   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1520   // user can add an extra DSO with --no-as-needed to force it to be added to
1521   // the dependency list.
1522   it->second->isNeeded |= isNeeded;
1523   if (!wasInserted)
1524     return;
1525 
1526   ctx.sharedFiles.push_back(this);
1527 
1528   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1529   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1530 
1531   // Parse ".gnu.version" section which is a parallel array for the symbol
1532   // table. If a given file doesn't have a ".gnu.version" section, we use
1533   // VER_NDX_GLOBAL.
1534   size_t size = numELFSyms - firstGlobal;
1535   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1536   if (versymSec) {
1537     ArrayRef<Elf_Versym> versym =
1538         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1539               this)
1540             .slice(firstGlobal);
1541     for (size_t i = 0; i < size; ++i)
1542       versyms[i] = versym[i].vs_index;
1543   }
1544 
1545   // System libraries can have a lot of symbols with versions. Using a
1546   // fixed buffer for computing the versions name (foo@ver) can save a
1547   // lot of allocations.
1548   SmallString<0> versionedNameBuffer;
1549 
1550   // Add symbols to the symbol table.
1551   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1552   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1553     const Elf_Sym &sym = syms[i];
1554 
1555     // ELF spec requires that all local symbols precede weak or global
1556     // symbols in each symbol table, and the index of first non-local symbol
1557     // is stored to sh_info. If a local symbol appears after some non-local
1558     // symbol, that's a violation of the spec.
1559     StringRef name = CHECK(sym.getName(stringTable), this);
1560     if (sym.getBinding() == STB_LOCAL) {
1561       errorOrWarn(toString(this) + ": invalid local symbol '" + name +
1562                   "' in global part of symbol table");
1563       continue;
1564     }
1565 
1566     const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
1567     if (sym.isUndefined()) {
1568       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1569       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1570       if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
1571         if (idx >= verneeds.size()) {
1572           error("corrupt input file: version need index " + Twine(idx) +
1573                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1574                 toString(this));
1575           continue;
1576         }
1577         StringRef verName = stringTable.data() + verneeds[idx];
1578         versionedNameBuffer.clear();
1579         name = saver().save(
1580             (name + "@" + verName).toStringRef(versionedNameBuffer));
1581       }
1582       Symbol *s = symtab.addSymbol(
1583           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1584       s->exportDynamic = true;
1585       if (sym.getBinding() != STB_WEAK &&
1586           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1587         requiredSymbols.push_back(s);
1588       continue;
1589     }
1590 
1591     if (ver == VER_NDX_LOCAL ||
1592         (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
1593       // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
1594       // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
1595       // VER_NDX_LOCAL. Workaround this bug.
1596       if (config->emachine == EM_MIPS && name == "_gp_disp")
1597         continue;
1598       error("corrupt input file: version definition index " + Twine(idx) +
1599             " for symbol " + name + " is out of bounds\n>>> defined in " +
1600             toString(this));
1601       continue;
1602     }
1603 
1604     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1605     if (ver == idx) {
1606       auto *s = symtab.addSymbol(
1607           SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1608                        sym.getType(), sym.st_value, sym.st_size, alignment});
1609       s->dsoDefined = true;
1610       if (s->file == this)
1611         s->versionId = ver;
1612     }
1613 
1614     // Also add the symbol with the versioned name to handle undefined symbols
1615     // with explicit versions.
1616     if (ver == VER_NDX_GLOBAL)
1617       continue;
1618 
1619     StringRef verName =
1620         stringTable.data() +
1621         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1622     versionedNameBuffer.clear();
1623     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1624     auto *s = symtab.addSymbol(
1625         SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1626                      sym.getType(), sym.st_value, sym.st_size, alignment});
1627     s->dsoDefined = true;
1628     if (s->file == this)
1629       s->versionId = idx;
1630   }
1631 }
1632 
1633 static ELFKind getBitcodeELFKind(const Triple &t) {
1634   if (t.isLittleEndian())
1635     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1636   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1637 }
1638 
1639 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1640   switch (t.getArch()) {
1641   case Triple::aarch64:
1642   case Triple::aarch64_be:
1643     return EM_AARCH64;
1644   case Triple::amdgcn:
1645   case Triple::r600:
1646     return EM_AMDGPU;
1647   case Triple::arm:
1648   case Triple::armeb:
1649   case Triple::thumb:
1650   case Triple::thumbeb:
1651     return EM_ARM;
1652   case Triple::avr:
1653     return EM_AVR;
1654   case Triple::hexagon:
1655     return EM_HEXAGON;
1656   case Triple::loongarch32:
1657   case Triple::loongarch64:
1658     return EM_LOONGARCH;
1659   case Triple::mips:
1660   case Triple::mipsel:
1661   case Triple::mips64:
1662   case Triple::mips64el:
1663     return EM_MIPS;
1664   case Triple::msp430:
1665     return EM_MSP430;
1666   case Triple::ppc:
1667   case Triple::ppcle:
1668     return EM_PPC;
1669   case Triple::ppc64:
1670   case Triple::ppc64le:
1671     return EM_PPC64;
1672   case Triple::riscv32:
1673   case Triple::riscv64:
1674     return EM_RISCV;
1675   case Triple::sparcv9:
1676     return EM_SPARCV9;
1677   case Triple::systemz:
1678     return EM_S390;
1679   case Triple::x86:
1680     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1681   case Triple::x86_64:
1682     return EM_X86_64;
1683   default:
1684     error(path + ": could not infer e_machine from bitcode target triple " +
1685           t.str());
1686     return EM_NONE;
1687   }
1688 }
1689 
1690 static uint8_t getOsAbi(const Triple &t) {
1691   switch (t.getOS()) {
1692   case Triple::AMDHSA:
1693     return ELF::ELFOSABI_AMDGPU_HSA;
1694   case Triple::AMDPAL:
1695     return ELF::ELFOSABI_AMDGPU_PAL;
1696   case Triple::Mesa3D:
1697     return ELF::ELFOSABI_AMDGPU_MESA3D;
1698   default:
1699     return ELF::ELFOSABI_NONE;
1700   }
1701 }
1702 
1703 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1704                          uint64_t offsetInArchive, bool lazy)
1705     : InputFile(BitcodeKind, mb) {
1706   this->archiveName = archiveName;
1707   this->lazy = lazy;
1708 
1709   std::string path = mb.getBufferIdentifier().str();
1710   if (config->thinLTOIndexOnly)
1711     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1712 
1713   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1714   // name. If two archives define two members with the same name, this
1715   // causes a collision which result in only one of the objects being taken
1716   // into consideration at LTO time (which very likely causes undefined
1717   // symbols later in the link stage). So we append file offset to make
1718   // filename unique.
1719   StringRef name = archiveName.empty()
1720                        ? saver().save(path)
1721                        : saver().save(archiveName + "(" + path::filename(path) +
1722                                       " at " + utostr(offsetInArchive) + ")");
1723   MemoryBufferRef mbref(mb.getBuffer(), name);
1724 
1725   obj = CHECK(lto::InputFile::create(mbref), this);
1726 
1727   Triple t(obj->getTargetTriple());
1728   ekind = getBitcodeELFKind(t);
1729   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1730   osabi = getOsAbi(t);
1731 }
1732 
1733 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1734   switch (gvVisibility) {
1735   case GlobalValue::DefaultVisibility:
1736     return STV_DEFAULT;
1737   case GlobalValue::HiddenVisibility:
1738     return STV_HIDDEN;
1739   case GlobalValue::ProtectedVisibility:
1740     return STV_PROTECTED;
1741   }
1742   llvm_unreachable("unknown visibility");
1743 }
1744 
1745 static void
1746 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1747                     const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1748   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1749   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1750   uint8_t visibility = mapVisibility(objSym.getVisibility());
1751 
1752   if (!sym)
1753     sym = symtab.insert(saver().save(objSym.getName()));
1754 
1755   int c = objSym.getComdatIndex();
1756   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1757     Undefined newSym(&f, StringRef(), binding, visibility, type);
1758     sym->resolve(newSym);
1759     sym->referenced = true;
1760     return;
1761   }
1762 
1763   if (objSym.isCommon()) {
1764     sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1765                               objSym.getCommonAlignment(),
1766                               objSym.getCommonSize()});
1767   } else {
1768     Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1769     if (objSym.canBeOmittedFromSymbolTable())
1770       newSym.exportDynamic = false;
1771     sym->resolve(newSym);
1772   }
1773 }
1774 
1775 void BitcodeFile::parse() {
1776   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1777     keptComdats.push_back(
1778         s.second == Comdat::NoDeduplicate ||
1779         symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1780             .second);
1781   }
1782 
1783   if (numSymbols == 0) {
1784     numSymbols = obj->symbols().size();
1785     symbols = std::make_unique<Symbol *[]>(numSymbols);
1786   }
1787   // Process defined symbols first. See the comment in
1788   // ObjFile<ELFT>::initializeSymbols.
1789   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1790     if (!irSym.isUndefined())
1791       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1792   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1793     if (irSym.isUndefined())
1794       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1795 
1796   for (auto l : obj->getDependentLibraries())
1797     addDependentLibrary(l, this);
1798 }
1799 
1800 void BitcodeFile::parseLazy() {
1801   numSymbols = obj->symbols().size();
1802   symbols = std::make_unique<Symbol *[]>(numSymbols);
1803   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1804     if (!irSym.isUndefined()) {
1805       auto *sym = symtab.insert(saver().save(irSym.getName()));
1806       sym->resolve(LazySymbol{*this});
1807       symbols[i] = sym;
1808     }
1809 }
1810 
1811 void BitcodeFile::postParse() {
1812   for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
1813     const Symbol &sym = *symbols[i];
1814     if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
1815         irSym.isCommon() || irSym.isWeak())
1816       continue;
1817     int c = irSym.getComdatIndex();
1818     if (c != -1 && !keptComdats[c])
1819       continue;
1820     reportDuplicate(sym, this, nullptr, 0);
1821   }
1822 }
1823 
1824 void BinaryFile::parse() {
1825   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1826   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1827                                      8, data, ".data");
1828   sections.push_back(section);
1829 
1830   // For each input file foo that is embedded to a result as a binary
1831   // blob, we define _binary_foo_{start,end,size} symbols, so that
1832   // user programs can access blobs by name. Non-alphanumeric
1833   // characters in a filename are replaced with underscore.
1834   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1835   for (char &c : s)
1836     if (!isAlnum(c))
1837       c = '_';
1838 
1839   llvm::StringSaver &saver = lld::saver();
1840 
1841   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_start"),
1842                                       STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
1843                                       section});
1844   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_end"), STB_GLOBAL,
1845                                       STV_DEFAULT, STT_OBJECT, data.size(), 0,
1846                                       section});
1847   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_size"), STB_GLOBAL,
1848                                       STV_DEFAULT, STT_OBJECT, data.size(), 0,
1849                                       nullptr});
1850 }
1851 
1852 InputFile *elf::createInternalFile(StringRef name) {
1853   auto *file =
1854       make<InputFile>(InputFile::InternalKind, MemoryBufferRef("", name));
1855   // References from an internal file do not lead to --warn-backrefs
1856   // diagnostics.
1857   file->groupId = 0;
1858   return file;
1859 }
1860 
1861 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1862                                 bool lazy) {
1863   ELFFileBase *f;
1864   switch (getELFKind(mb, archiveName)) {
1865   case ELF32LEKind:
1866     f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
1867     break;
1868   case ELF32BEKind:
1869     f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
1870     break;
1871   case ELF64LEKind:
1872     f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
1873     break;
1874   case ELF64BEKind:
1875     f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
1876     break;
1877   default:
1878     llvm_unreachable("getELFKind");
1879   }
1880   f->init();
1881   f->lazy = lazy;
1882   return f;
1883 }
1884 
1885 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1886   const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1887   numSymbols = eSyms.size();
1888   symbols = std::make_unique<Symbol *[]>(numSymbols);
1889 
1890   // resolve() may trigger this->extract() if an existing symbol is an undefined
1891   // symbol. If that happens, this function has served its purpose, and we can
1892   // exit from the loop early.
1893   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1894     if (eSyms[i].st_shndx == SHN_UNDEF)
1895       continue;
1896     symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1897     symbols[i]->resolve(LazySymbol{*this});
1898     if (!lazy)
1899       break;
1900   }
1901 }
1902 
1903 bool InputFile::shouldExtractForCommon(StringRef name) const {
1904   if (isa<BitcodeFile>(this))
1905     return isBitcodeNonCommonDef(mb, name, archiveName);
1906 
1907   return isNonCommonDef(mb, name, archiveName);
1908 }
1909 
1910 std::string elf::replaceThinLTOSuffix(StringRef path) {
1911   auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
1912   if (path.consume_back(suffix))
1913     return (path + repl).str();
1914   return std::string(path);
1915 }
1916 
1917 template class elf::ObjFile<ELF32LE>;
1918 template class elf::ObjFile<ELF32BE>;
1919 template class elf::ObjFile<ELF64LE>;
1920 template class elf::ObjFile<ELF64BE>;
1921 
1922 template void SharedFile::parse<ELF32LE>();
1923 template void SharedFile::parse<ELF32BE>();
1924 template void SharedFile::parse<ELF64LE>();
1925 template void SharedFile::parse<ELF64BE>();
1926