1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "Target.h" 17 #include "lld/Common/CommonLinkerContext.h" 18 #include "lld/Common/DWARF.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 SmallVector<std::unique_ptr<MemoryBuffer>> elf::memoryBuffers; 47 SmallVector<ArchiveFile *, 0> elf::archiveFiles; 48 SmallVector<BinaryFile *, 0> elf::binaryFiles; 49 SmallVector<BitcodeFile *, 0> elf::bitcodeFiles; 50 SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles; 51 SmallVector<ELFFileBase *, 0> elf::objectFiles; 52 SmallVector<SharedFile *, 0> elf::sharedFiles; 53 54 std::unique_ptr<TarWriter> elf::tar; 55 56 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 57 std::string lld::toString(const InputFile *f) { 58 if (!f) 59 return "<internal>"; 60 61 if (f->toStringCache.empty()) { 62 if (f->archiveName.empty()) 63 f->toStringCache = f->getName(); 64 else 65 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 66 } 67 return std::string(f->toStringCache); 68 } 69 70 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 71 unsigned char size; 72 unsigned char endian; 73 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 74 75 auto report = [&](StringRef msg) { 76 StringRef filename = mb.getBufferIdentifier(); 77 if (archiveName.empty()) 78 fatal(filename + ": " + msg); 79 else 80 fatal(archiveName + "(" + filename + "): " + msg); 81 }; 82 83 if (!mb.getBuffer().startswith(ElfMagic)) 84 report("not an ELF file"); 85 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 86 report("corrupted ELF file: invalid data encoding"); 87 if (size != ELFCLASS32 && size != ELFCLASS64) 88 report("corrupted ELF file: invalid file class"); 89 90 size_t bufSize = mb.getBuffer().size(); 91 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 92 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 93 report("corrupted ELF file: file is too short"); 94 95 if (size == ELFCLASS32) 96 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 97 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 98 } 99 100 InputFile::InputFile(Kind k, MemoryBufferRef m) 101 : mb(m), groupId(nextGroupId), fileKind(k) { 102 // All files within the same --{start,end}-group get the same group ID. 103 // Otherwise, a new file will get a new group ID. 104 if (!isInGroup) 105 ++nextGroupId; 106 } 107 108 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 109 llvm::TimeTraceScope timeScope("Load input files", path); 110 111 // The --chroot option changes our virtual root directory. 112 // This is useful when you are dealing with files created by --reproduce. 113 if (!config->chroot.empty() && path.startswith("/")) 114 path = saver().save(config->chroot + path); 115 116 log(path); 117 config->dependencyFiles.insert(llvm::CachedHashString(path)); 118 119 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 120 /*RequiresNullTerminator=*/false); 121 if (auto ec = mbOrErr.getError()) { 122 error("cannot open " + path + ": " + ec.message()); 123 return None; 124 } 125 126 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 127 memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (file->lazy) { 190 if (auto *f = dyn_cast<BitcodeFile>(file)) { 191 lazyBitcodeFiles.push_back(f); 192 f->parseLazy(); 193 } else { 194 cast<ObjFile<ELFT>>(file)->parseLazy(); 195 } 196 return; 197 } 198 199 if (config->trace) 200 message(toString(file)); 201 202 // .so file 203 if (auto *f = dyn_cast<SharedFile>(file)) { 204 f->parse<ELFT>(); 205 return; 206 } 207 208 // LLVM bitcode file 209 if (auto *f = dyn_cast<BitcodeFile>(file)) { 210 bitcodeFiles.push_back(f); 211 f->parse<ELFT>(); 212 return; 213 } 214 215 // Regular object file 216 objectFiles.push_back(cast<ELFFileBase>(file)); 217 cast<ObjFile<ELFT>>(file)->parse(); 218 } 219 220 // Add symbols in File to the symbol table. 221 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); } 222 223 // Concatenates arguments to construct a string representing an error location. 224 static std::string createFileLineMsg(StringRef path, unsigned line) { 225 std::string filename = std::string(path::filename(path)); 226 std::string lineno = ":" + std::to_string(line); 227 if (filename == path) 228 return filename + lineno; 229 return filename + lineno + " (" + path.str() + lineno + ")"; 230 } 231 232 template <class ELFT> 233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 234 InputSectionBase &sec, uint64_t offset) { 235 // In DWARF, functions and variables are stored to different places. 236 // First, lookup a function for a given offset. 237 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 238 return createFileLineMsg(info->FileName, info->Line); 239 240 // If it failed, lookup again as a variable. 241 if (Optional<std::pair<std::string, unsigned>> fileLine = 242 file.getVariableLoc(sym.getName())) 243 return createFileLineMsg(fileLine->first, fileLine->second); 244 245 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 246 return std::string(file.sourceFile); 247 } 248 249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 250 uint64_t offset) { 251 if (kind() != ObjKind) 252 return ""; 253 switch (config->ekind) { 254 default: 255 llvm_unreachable("Invalid kind"); 256 case ELF32LEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 258 case ELF32BEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 260 case ELF64LEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 262 case ELF64BEKind: 263 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 264 } 265 } 266 267 StringRef InputFile::getNameForScript() const { 268 if (archiveName.empty()) 269 return getName(); 270 271 if (nameForScriptCache.empty()) 272 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 273 274 return nameForScriptCache; 275 } 276 277 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 278 llvm::call_once(initDwarf, [this]() { 279 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 280 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 281 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 282 [&](Error warning) { 283 warn(getName() + ": " + toString(std::move(warning))); 284 })); 285 }); 286 287 return dwarf.get(); 288 } 289 290 // Returns the pair of file name and line number describing location of data 291 // object (variable, array, etc) definition. 292 template <class ELFT> 293 Optional<std::pair<std::string, unsigned>> 294 ObjFile<ELFT>::getVariableLoc(StringRef name) { 295 return getDwarf()->getVariableLoc(name); 296 } 297 298 // Returns source line information for a given offset 299 // using DWARF debug info. 300 template <class ELFT> 301 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 302 uint64_t offset) { 303 // Detect SectionIndex for specified section. 304 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 305 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 306 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 307 if (s == sections[curIndex]) { 308 sectionIndex = curIndex; 309 break; 310 } 311 } 312 313 return getDwarf()->getDILineInfo(offset, sectionIndex); 314 } 315 316 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 317 ekind = getELFKind(mb, ""); 318 319 switch (ekind) { 320 case ELF32LEKind: 321 init<ELF32LE>(); 322 break; 323 case ELF32BEKind: 324 init<ELF32BE>(); 325 break; 326 case ELF64LEKind: 327 init<ELF64LE>(); 328 break; 329 case ELF64BEKind: 330 init<ELF64BE>(); 331 break; 332 default: 333 llvm_unreachable("getELFKind"); 334 } 335 } 336 337 template <typename Elf_Shdr> 338 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 339 for (const Elf_Shdr &sec : sections) 340 if (sec.sh_type == type) 341 return &sec; 342 return nullptr; 343 } 344 345 template <class ELFT> void ELFFileBase::init() { 346 using Elf_Shdr = typename ELFT::Shdr; 347 using Elf_Sym = typename ELFT::Sym; 348 349 // Initialize trivial attributes. 350 const ELFFile<ELFT> &obj = getObj<ELFT>(); 351 emachine = obj.getHeader().e_machine; 352 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 353 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 354 355 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 356 elfShdrs = sections.data(); 357 numELFShdrs = sections.size(); 358 359 // Find a symbol table. 360 bool isDSO = 361 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 362 const Elf_Shdr *symtabSec = 363 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 364 365 if (!symtabSec) 366 return; 367 368 // Initialize members corresponding to a symbol table. 369 firstGlobal = symtabSec->sh_info; 370 371 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 372 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 373 fatal(toString(this) + ": invalid sh_info in symbol table"); 374 375 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 376 numELFSyms = uint32_t(eSyms.size()); 377 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 378 } 379 380 template <class ELFT> 381 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 382 return CHECK( 383 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 384 this); 385 } 386 387 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 388 object::ELFFile<ELFT> obj = this->getObj(); 389 // Read a section table. justSymbols is usually false. 390 if (this->justSymbols) 391 initializeJustSymbols(); 392 else 393 initializeSections(ignoreComdats, obj); 394 395 // Read a symbol table. 396 initializeSymbols(obj); 397 } 398 399 // Sections with SHT_GROUP and comdat bits define comdat section groups. 400 // They are identified and deduplicated by group name. This function 401 // returns a group name. 402 template <class ELFT> 403 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 404 const Elf_Shdr &sec) { 405 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 406 if (sec.sh_info >= symbols.size()) 407 fatal(toString(this) + ": invalid symbol index"); 408 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 409 return CHECK(sym.getName(this->stringTable), this); 410 } 411 412 template <class ELFT> 413 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 414 // On a regular link we don't merge sections if -O0 (default is -O1). This 415 // sometimes makes the linker significantly faster, although the output will 416 // be bigger. 417 // 418 // Doing the same for -r would create a problem as it would combine sections 419 // with different sh_entsize. One option would be to just copy every SHF_MERGE 420 // section as is to the output. While this would produce a valid ELF file with 421 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 422 // they see two .debug_str. We could have separate logic for combining 423 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 424 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 425 // logic for -r. 426 if (config->optimize == 0 && !config->relocatable) 427 return false; 428 429 // A mergeable section with size 0 is useless because they don't have 430 // any data to merge. A mergeable string section with size 0 can be 431 // argued as invalid because it doesn't end with a null character. 432 // We'll avoid a mess by handling them as if they were non-mergeable. 433 if (sec.sh_size == 0) 434 return false; 435 436 // Check for sh_entsize. The ELF spec is not clear about the zero 437 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 438 // the section does not hold a table of fixed-size entries". We know 439 // that Rust 1.13 produces a string mergeable section with a zero 440 // sh_entsize. Here we just accept it rather than being picky about it. 441 uint64_t entSize = sec.sh_entsize; 442 if (entSize == 0) 443 return false; 444 if (sec.sh_size % entSize) 445 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 446 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 447 Twine(entSize) + ")"); 448 449 if (sec.sh_flags & SHF_WRITE) 450 fatal(toString(this) + ":(" + name + 451 "): writable SHF_MERGE section is not supported"); 452 453 return true; 454 } 455 456 // This is for --just-symbols. 457 // 458 // --just-symbols is a very minor feature that allows you to link your 459 // output against other existing program, so that if you load both your 460 // program and the other program into memory, your output can refer the 461 // other program's symbols. 462 // 463 // When the option is given, we link "just symbols". The section table is 464 // initialized with null pointers. 465 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 466 sections.resize(numELFShdrs); 467 } 468 469 // An ELF object file may contain a `.deplibs` section. If it exists, the 470 // section contains a list of library specifiers such as `m` for libm. This 471 // function resolves a given name by finding the first matching library checking 472 // the various ways that a library can be specified to LLD. This ELF extension 473 // is a form of autolinking and is called `dependent libraries`. It is currently 474 // unique to LLVM and lld. 475 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 476 if (!config->dependentLibraries) 477 return; 478 if (Optional<std::string> s = searchLibraryBaseName(specifier)) 479 driver->addFile(*s, /*withLOption=*/true); 480 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 481 driver->addFile(*s, /*withLOption=*/true); 482 else if (fs::exists(specifier)) 483 driver->addFile(specifier, /*withLOption=*/false); 484 else 485 error(toString(f) + 486 ": unable to find library from dependent library specifier: " + 487 specifier); 488 } 489 490 // Record the membership of a section group so that in the garbage collection 491 // pass, section group members are kept or discarded as a unit. 492 template <class ELFT> 493 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 494 ArrayRef<typename ELFT::Word> entries) { 495 bool hasAlloc = false; 496 for (uint32_t index : entries.slice(1)) { 497 if (index >= sections.size()) 498 return; 499 if (InputSectionBase *s = sections[index]) 500 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 501 hasAlloc = true; 502 } 503 504 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 505 // collection. See the comment in markLive(). This rule retains .debug_types 506 // and .rela.debug_types. 507 if (!hasAlloc) 508 return; 509 510 // Connect the members in a circular doubly-linked list via 511 // nextInSectionGroup. 512 InputSectionBase *head; 513 InputSectionBase *prev = nullptr; 514 for (uint32_t index : entries.slice(1)) { 515 InputSectionBase *s = sections[index]; 516 if (!s || s == &InputSection::discarded) 517 continue; 518 if (prev) 519 prev->nextInSectionGroup = s; 520 else 521 head = s; 522 prev = s; 523 } 524 if (prev) 525 prev->nextInSectionGroup = head; 526 } 527 528 template <class ELFT> 529 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 530 const llvm::object::ELFFile<ELFT> &obj) { 531 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 532 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 533 uint64_t size = objSections.size(); 534 this->sections.resize(size); 535 536 std::vector<ArrayRef<Elf_Word>> selectedGroups; 537 538 for (size_t i = 0; i != size; ++i) { 539 if (this->sections[i] == &InputSection::discarded) 540 continue; 541 const Elf_Shdr &sec = objSections[i]; 542 543 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 544 // if -r is given, we'll let the final link discard such sections. 545 // This is compatible with GNU. 546 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 547 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 548 cgProfileSectionIndex = i; 549 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 550 // We ignore the address-significance table if we know that the object 551 // file was created by objcopy or ld -r. This is because these tools 552 // will reorder the symbols in the symbol table, invalidating the data 553 // in the address-significance table, which refers to symbols by index. 554 if (sec.sh_link != 0) 555 this->addrsigSec = &sec; 556 else if (config->icf == ICFLevel::Safe) 557 warn(toString(this) + 558 ": --icf=safe conservatively ignores " 559 "SHT_LLVM_ADDRSIG [index " + 560 Twine(i) + 561 "] with sh_link=0 " 562 "(likely created using objcopy or ld -r)"); 563 } 564 this->sections[i] = &InputSection::discarded; 565 continue; 566 } 567 568 switch (sec.sh_type) { 569 case SHT_GROUP: { 570 // De-duplicate section groups by their signatures. 571 StringRef signature = getShtGroupSignature(objSections, sec); 572 this->sections[i] = &InputSection::discarded; 573 574 ArrayRef<Elf_Word> entries = 575 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 576 if (entries.empty()) 577 fatal(toString(this) + ": empty SHT_GROUP"); 578 579 Elf_Word flag = entries[0]; 580 if (flag && flag != GRP_COMDAT) 581 fatal(toString(this) + ": unsupported SHT_GROUP format"); 582 583 bool keepGroup = 584 (flag & GRP_COMDAT) == 0 || ignoreComdats || 585 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 586 .second; 587 if (keepGroup) { 588 if (config->relocatable) 589 this->sections[i] = createInputSection( 590 i, sec, check(obj.getSectionName(sec, shstrtab))); 591 selectedGroups.push_back(entries); 592 continue; 593 } 594 595 // Otherwise, discard group members. 596 for (uint32_t secIndex : entries.slice(1)) { 597 if (secIndex >= size) 598 fatal(toString(this) + 599 ": invalid section index in group: " + Twine(secIndex)); 600 this->sections[secIndex] = &InputSection::discarded; 601 } 602 break; 603 } 604 case SHT_SYMTAB_SHNDX: 605 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 606 break; 607 case SHT_SYMTAB: 608 case SHT_STRTAB: 609 case SHT_REL: 610 case SHT_RELA: 611 case SHT_NULL: 612 break; 613 default: 614 this->sections[i] = 615 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 616 } 617 } 618 619 // We have a second loop. It is used to: 620 // 1) handle SHF_LINK_ORDER sections. 621 // 2) create SHT_REL[A] sections. In some cases the section header index of a 622 // relocation section may be smaller than that of the relocated section. In 623 // such cases, the relocation section would attempt to reference a target 624 // section that has not yet been created. For simplicity, delay creation of 625 // relocation sections until now. 626 for (size_t i = 0; i != size; ++i) { 627 if (this->sections[i] == &InputSection::discarded) 628 continue; 629 const Elf_Shdr &sec = objSections[i]; 630 631 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) { 632 // Find a relocation target section and associate this section with that. 633 // Target may have been discarded if it is in a different section group 634 // and the group is discarded, even though it's a violation of the spec. 635 // We handle that situation gracefully by discarding dangling relocation 636 // sections. 637 const uint32_t info = sec.sh_info; 638 InputSectionBase *s = getRelocTarget(i, sec, info); 639 if (!s) 640 continue; 641 642 // ELF spec allows mergeable sections with relocations, but they are rare, 643 // and it is in practice hard to merge such sections by contents, because 644 // applying relocations at end of linking changes section contents. So, we 645 // simply handle such sections as non-mergeable ones. Degrading like this 646 // is acceptable because section merging is optional. 647 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 648 s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment, 649 ms->data(), ms->name); 650 sections[info] = s; 651 } 652 653 if (s->relSecIdx != 0) 654 error( 655 toString(s) + 656 ": multiple relocation sections to one section are not supported"); 657 s->relSecIdx = i; 658 659 // Relocation sections are usually removed from the output, so return 660 // `nullptr` for the normal case. However, if -r or --emit-relocs is 661 // specified, we need to copy them to the output. (Some post link analysis 662 // tools specify --emit-relocs to obtain the information.) 663 if (config->copyRelocs) { 664 auto *isec = make<InputSection>( 665 *this, sec, check(obj.getSectionName(sec, shstrtab))); 666 // If the relocated section is discarded (due to /DISCARD/ or 667 // --gc-sections), the relocation section should be discarded as well. 668 s->dependentSections.push_back(isec); 669 sections[i] = isec; 670 } 671 continue; 672 } 673 674 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 675 // the flag. 676 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 677 continue; 678 679 InputSectionBase *linkSec = nullptr; 680 if (sec.sh_link < size) 681 linkSec = this->sections[sec.sh_link]; 682 if (!linkSec) 683 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 684 685 // A SHF_LINK_ORDER section is discarded if its linked-to section is 686 // discarded. 687 InputSection *isec = cast<InputSection>(this->sections[i]); 688 linkSec->dependentSections.push_back(isec); 689 if (!isa<InputSection>(linkSec)) 690 error("a section " + isec->name + 691 " with SHF_LINK_ORDER should not refer a non-regular section: " + 692 toString(linkSec)); 693 } 694 695 for (ArrayRef<Elf_Word> entries : selectedGroups) 696 handleSectionGroup<ELFT>(this->sections, entries); 697 } 698 699 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 700 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 701 // the input objects have been compiled. 702 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 703 const InputFile *f) { 704 Optional<unsigned> attr = 705 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 706 if (!attr.hasValue()) 707 // If an ABI tag isn't present then it is implicitly given the value of 0 708 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 709 // including some in glibc that don't use FP args (and should have value 3) 710 // don't have the attribute so we do not consider an implicit value of 0 711 // as a clash. 712 return; 713 714 unsigned vfpArgs = attr.getValue(); 715 ARMVFPArgKind arg; 716 switch (vfpArgs) { 717 case ARMBuildAttrs::BaseAAPCS: 718 arg = ARMVFPArgKind::Base; 719 break; 720 case ARMBuildAttrs::HardFPAAPCS: 721 arg = ARMVFPArgKind::VFP; 722 break; 723 case ARMBuildAttrs::ToolChainFPPCS: 724 // Tool chain specific convention that conforms to neither AAPCS variant. 725 arg = ARMVFPArgKind::ToolChain; 726 break; 727 case ARMBuildAttrs::CompatibleFPAAPCS: 728 // Object compatible with all conventions. 729 return; 730 default: 731 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 732 return; 733 } 734 // Follow ld.bfd and error if there is a mix of calling conventions. 735 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 736 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 737 else 738 config->armVFPArgs = arg; 739 } 740 741 // The ARM support in lld makes some use of instructions that are not available 742 // on all ARM architectures. Namely: 743 // - Use of BLX instruction for interworking between ARM and Thumb state. 744 // - Use of the extended Thumb branch encoding in relocation. 745 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 746 // The ARM Attributes section contains information about the architecture chosen 747 // at compile time. We follow the convention that if at least one input object 748 // is compiled with an architecture that supports these features then lld is 749 // permitted to use them. 750 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 751 Optional<unsigned> attr = 752 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 753 if (!attr.hasValue()) 754 return; 755 auto arch = attr.getValue(); 756 switch (arch) { 757 case ARMBuildAttrs::Pre_v4: 758 case ARMBuildAttrs::v4: 759 case ARMBuildAttrs::v4T: 760 // Architectures prior to v5 do not support BLX instruction 761 break; 762 case ARMBuildAttrs::v5T: 763 case ARMBuildAttrs::v5TE: 764 case ARMBuildAttrs::v5TEJ: 765 case ARMBuildAttrs::v6: 766 case ARMBuildAttrs::v6KZ: 767 case ARMBuildAttrs::v6K: 768 config->armHasBlx = true; 769 // Architectures used in pre-Cortex processors do not support 770 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 771 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 772 break; 773 default: 774 // All other Architectures have BLX and extended branch encoding 775 config->armHasBlx = true; 776 config->armJ1J2BranchEncoding = true; 777 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 778 // All Architectures used in Cortex processors with the exception 779 // of v6-M and v6S-M have the MOVT and MOVW instructions. 780 config->armHasMovtMovw = true; 781 break; 782 } 783 } 784 785 // If a source file is compiled with x86 hardware-assisted call flow control 786 // enabled, the generated object file contains feature flags indicating that 787 // fact. This function reads the feature flags and returns it. 788 // 789 // Essentially we want to read a single 32-bit value in this function, but this 790 // function is rather complicated because the value is buried deep inside a 791 // .note.gnu.property section. 792 // 793 // The section consists of one or more NOTE records. Each NOTE record consists 794 // of zero or more type-length-value fields. We want to find a field of a 795 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 796 // the ABI is unnecessarily complicated. 797 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 798 using Elf_Nhdr = typename ELFT::Nhdr; 799 using Elf_Note = typename ELFT::Note; 800 801 uint32_t featuresSet = 0; 802 ArrayRef<uint8_t> data = sec.data(); 803 auto reportFatal = [&](const uint8_t *place, const char *msg) { 804 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 805 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 806 }; 807 while (!data.empty()) { 808 // Read one NOTE record. 809 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 810 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 811 reportFatal(data.data(), "data is too short"); 812 813 Elf_Note note(*nhdr); 814 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 815 data = data.slice(nhdr->getSize()); 816 continue; 817 } 818 819 uint32_t featureAndType = config->emachine == EM_AARCH64 820 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 821 : GNU_PROPERTY_X86_FEATURE_1_AND; 822 823 // Read a body of a NOTE record, which consists of type-length-value fields. 824 ArrayRef<uint8_t> desc = note.getDesc(); 825 while (!desc.empty()) { 826 const uint8_t *place = desc.data(); 827 if (desc.size() < 8) 828 reportFatal(place, "program property is too short"); 829 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 830 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 831 desc = desc.slice(8); 832 if (desc.size() < size) 833 reportFatal(place, "program property is too short"); 834 835 if (type == featureAndType) { 836 // We found a FEATURE_1_AND field. There may be more than one of these 837 // in a .note.gnu.property section, for a relocatable object we 838 // accumulate the bits set. 839 if (size < 4) 840 reportFatal(place, "FEATURE_1_AND entry is too short"); 841 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 842 } 843 844 // Padding is present in the note descriptor, if necessary. 845 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 846 } 847 848 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 849 data = data.slice(nhdr->getSize()); 850 } 851 852 return featuresSet; 853 } 854 855 template <class ELFT> 856 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, 857 const Elf_Shdr &sec, 858 uint32_t info) { 859 if (info < this->sections.size()) { 860 InputSectionBase *target = this->sections[info]; 861 862 // Strictly speaking, a relocation section must be included in the 863 // group of the section it relocates. However, LLVM 3.3 and earlier 864 // would fail to do so, so we gracefully handle that case. 865 if (target == &InputSection::discarded) 866 return nullptr; 867 868 if (target != nullptr) 869 return target; 870 } 871 872 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) + 873 ") has invalid sh_info (" + Twine(info) + ")"); 874 return nullptr; 875 } 876 877 template <class ELFT> 878 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 879 const Elf_Shdr &sec, 880 StringRef name) { 881 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) { 882 ARMAttributeParser attributes; 883 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 884 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 885 ? support::little 886 : support::big)) { 887 auto *isec = make<InputSection>(*this, sec, name); 888 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 889 } else { 890 updateSupportedARMFeatures(attributes); 891 updateARMVFPArgs(attributes, this); 892 893 // FIXME: Retain the first attribute section we see. The eglibc ARM 894 // dynamic loaders require the presence of an attribute section for dlopen 895 // to work. In a full implementation we would merge all attribute 896 // sections. 897 if (in.attributes == nullptr) { 898 in.attributes = std::make_unique<InputSection>(*this, sec, name); 899 return in.attributes.get(); 900 } 901 return &InputSection::discarded; 902 } 903 } 904 905 if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) { 906 RISCVAttributeParser attributes; 907 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 908 if (Error e = attributes.parse(contents, support::little)) { 909 auto *isec = make<InputSection>(*this, sec, name); 910 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 911 } else { 912 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 913 // present. 914 915 // FIXME: Retain the first attribute section we see. Tools such as 916 // llvm-objdump make use of the attribute section to determine which 917 // standard extensions to enable. In a full implementation we would merge 918 // all attribute sections. 919 if (in.attributes == nullptr) { 920 in.attributes = std::make_unique<InputSection>(*this, sec, name); 921 return in.attributes.get(); 922 } 923 return &InputSection::discarded; 924 } 925 } 926 927 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) { 928 ArrayRef<char> data = 929 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 930 if (!data.empty() && data.back() != '\0') { 931 error(toString(this) + 932 ": corrupted dependent libraries section (unterminated string): " + 933 name); 934 return &InputSection::discarded; 935 } 936 for (const char *d = data.begin(), *e = data.end(); d < e;) { 937 StringRef s(d); 938 addDependentLibrary(s, this); 939 d += s.size() + 1; 940 } 941 return &InputSection::discarded; 942 } 943 944 if (name.startswith(".n")) { 945 // The GNU linker uses .note.GNU-stack section as a marker indicating 946 // that the code in the object file does not expect that the stack is 947 // executable (in terms of NX bit). If all input files have the marker, 948 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 949 // make the stack non-executable. Most object files have this section as 950 // of 2017. 951 // 952 // But making the stack non-executable is a norm today for security 953 // reasons. Failure to do so may result in a serious security issue. 954 // Therefore, we make LLD always add PT_GNU_STACK unless it is 955 // explicitly told to do otherwise (by -z execstack). Because the stack 956 // executable-ness is controlled solely by command line options, 957 // .note.GNU-stack sections are simply ignored. 958 if (name == ".note.GNU-stack") 959 return &InputSection::discarded; 960 961 // Object files that use processor features such as Intel Control-Flow 962 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 963 // .note.gnu.property section containing a bitfield of feature bits like the 964 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 965 // 966 // Since we merge bitmaps from multiple object files to create a new 967 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 968 // file's .note.gnu.property section. 969 if (name == ".note.gnu.property") { 970 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 971 return &InputSection::discarded; 972 } 973 974 // Split stacks is a feature to support a discontiguous stack, 975 // commonly used in the programming language Go. For the details, 976 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 977 // for split stack will include a .note.GNU-split-stack section. 978 if (name == ".note.GNU-split-stack") { 979 if (config->relocatable) { 980 error( 981 "cannot mix split-stack and non-split-stack in a relocatable link"); 982 return &InputSection::discarded; 983 } 984 this->splitStack = true; 985 return &InputSection::discarded; 986 } 987 988 // An object file cmpiled for split stack, but where some of the 989 // functions were compiled with the no_split_stack_attribute will 990 // include a .note.GNU-no-split-stack section. 991 if (name == ".note.GNU-no-split-stack") { 992 this->someNoSplitStack = true; 993 return &InputSection::discarded; 994 } 995 996 // Strip existing .note.gnu.build-id sections so that the output won't have 997 // more than one build-id. This is not usually a problem because input 998 // object files normally don't have .build-id sections, but you can create 999 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1000 // against it. 1001 if (name == ".note.gnu.build-id") 1002 return &InputSection::discarded; 1003 } 1004 1005 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1006 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1007 // sections. Drop those sections to avoid duplicate symbol errors. 1008 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1009 // fixed for a while. 1010 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1011 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1012 return &InputSection::discarded; 1013 1014 // The linker merges EH (exception handling) frames and creates a 1015 // .eh_frame_hdr section for runtime. So we handle them with a special 1016 // class. For relocatable outputs, they are just passed through. 1017 if (name == ".eh_frame" && !config->relocatable) 1018 return make<EhInputSection>(*this, sec, name); 1019 1020 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1021 return make<MergeInputSection>(*this, sec, name); 1022 return make<InputSection>(*this, sec, name); 1023 } 1024 1025 // Initialize this->Symbols. this->Symbols is a parallel array as 1026 // its corresponding ELF symbol table. 1027 template <class ELFT> 1028 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1029 ArrayRef<InputSectionBase *> sections(this->sections); 1030 SymbolTable &symtab = *elf::symtab; 1031 1032 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1033 symbols.resize(eSyms.size()); 1034 SymbolUnion *locals = 1035 firstGlobal == 0 1036 ? nullptr 1037 : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal); 1038 1039 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1040 const Elf_Sym &eSym = eSyms[i]; 1041 uint32_t secIdx = eSym.st_shndx; 1042 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1043 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1044 else if (secIdx >= SHN_LORESERVE) 1045 secIdx = 0; 1046 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1047 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1048 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1049 error(toString(this) + ": non-local symbol (" + Twine(i) + 1050 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1051 1052 InputSectionBase *sec = sections[secIdx]; 1053 uint8_t type = eSym.getType(); 1054 if (type == STT_FILE) 1055 sourceFile = CHECK(eSym.getName(stringTable), this); 1056 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1057 fatal(toString(this) + ": invalid symbol name offset"); 1058 StringRef name(stringTable.data() + eSym.st_name); 1059 1060 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1061 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1062 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1063 /*discardedSecIdx=*/secIdx); 1064 else 1065 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1066 eSym.st_value, eSym.st_size, sec); 1067 } 1068 1069 // Some entries have been filled by LazyObjFile. 1070 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1071 if (!symbols[i]) 1072 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1073 1074 // Perform symbol resolution on non-local symbols. 1075 SmallVector<unsigned, 32> undefineds; 1076 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1077 const Elf_Sym &eSym = eSyms[i]; 1078 uint8_t binding = eSym.getBinding(); 1079 if (LLVM_UNLIKELY(binding == STB_LOCAL)) { 1080 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1081 ") found at index >= .symtab's sh_info (" + 1082 Twine(firstGlobal) + ")"); 1083 continue; 1084 } 1085 uint32_t secIdx = eSym.st_shndx; 1086 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1087 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1088 else if (secIdx >= SHN_LORESERVE) 1089 secIdx = 0; 1090 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1091 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1092 InputSectionBase *sec = sections[secIdx]; 1093 uint8_t stOther = eSym.st_other; 1094 uint8_t type = eSym.getType(); 1095 uint64_t value = eSym.st_value; 1096 uint64_t size = eSym.st_size; 1097 1098 if (eSym.st_shndx == SHN_UNDEF) { 1099 undefineds.push_back(i); 1100 continue; 1101 } 1102 1103 Symbol *sym = symbols[i]; 1104 const StringRef name = sym->getName(); 1105 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1106 if (value == 0 || value >= UINT32_MAX) 1107 fatal(toString(this) + ": common symbol '" + name + 1108 "' has invalid alignment: " + Twine(value)); 1109 hasCommonSyms = true; 1110 sym->resolve( 1111 CommonSymbol{this, name, binding, stOther, type, value, size}); 1112 continue; 1113 } 1114 1115 // If a defined symbol is in a discarded section, handle it as if it 1116 // were an undefined symbol. Such symbol doesn't comply with the 1117 // standard, but in practice, a .eh_frame often directly refer 1118 // COMDAT member sections, and if a comdat group is discarded, some 1119 // defined symbol in a .eh_frame becomes dangling symbols. 1120 if (sec == &InputSection::discarded) { 1121 Undefined und{this, name, binding, stOther, type, secIdx}; 1122 // !ArchiveFile::parsed or !LazyObjFile::lazy means that the file 1123 // containing this object has not finished processing, i.e. this symbol is 1124 // a result of a lazy symbol extract. We should demote the lazy symbol to 1125 // an Undefined so that any relocations outside of the group to it will 1126 // trigger a discarded section error. 1127 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1128 !cast<ArchiveFile>(sym->file)->parsed) || 1129 (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)) { 1130 sym->replace(und); 1131 // Prevent LTO from internalizing the symbol in case there is a 1132 // reference to this symbol from this file. 1133 sym->isUsedInRegularObj = true; 1134 } else 1135 sym->resolve(und); 1136 continue; 1137 } 1138 1139 // Handle global defined symbols. 1140 if (binding == STB_GLOBAL || binding == STB_WEAK || 1141 binding == STB_GNU_UNIQUE) { 1142 sym->resolve( 1143 Defined{this, name, binding, stOther, type, value, size, sec}); 1144 continue; 1145 } 1146 1147 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1148 } 1149 1150 // Undefined symbols (excluding those defined relative to non-prevailing 1151 // sections) can trigger recursive extract. Process defined symbols first so 1152 // that the relative order between a defined symbol and an undefined symbol 1153 // does not change the symbol resolution behavior. In addition, a set of 1154 // interconnected symbols will all be resolved to the same file, instead of 1155 // being resolved to different files. 1156 for (unsigned i : undefineds) { 1157 const Elf_Sym &eSym = eSyms[i]; 1158 Symbol *sym = symbols[i]; 1159 sym->resolve(Undefined{this, sym->getName(), eSym.getBinding(), 1160 eSym.st_other, eSym.getType()}); 1161 sym->referenced = true; 1162 } 1163 } 1164 1165 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1166 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1167 file(std::move(file)) {} 1168 1169 void ArchiveFile::parse() { 1170 SymbolTable &symtab = *elf::symtab; 1171 for (const Archive::Symbol &sym : file->symbols()) 1172 symtab.addSymbol(LazyArchive{*this, sym}); 1173 1174 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1175 // archive has been processed. 1176 parsed = true; 1177 } 1178 1179 // Returns a buffer pointing to a member file containing a given symbol. 1180 void ArchiveFile::extract(const Archive::Symbol &sym) { 1181 Archive::Child c = 1182 CHECK(sym.getMember(), toString(this) + 1183 ": could not get the member for symbol " + 1184 toELFString(sym)); 1185 1186 if (!seen.insert(c.getChildOffset()).second) 1187 return; 1188 1189 MemoryBufferRef mb = 1190 CHECK(c.getMemoryBufferRef(), 1191 toString(this) + 1192 ": could not get the buffer for the member defining symbol " + 1193 toELFString(sym)); 1194 1195 if (tar && c.getParent()->isThin()) 1196 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1197 1198 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1199 file->groupId = groupId; 1200 parseFile(file); 1201 } 1202 1203 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1204 // A tentative definition will be promoted to a global definition if there are 1205 // no non-tentative definitions to dominate it. When we hold a tentative 1206 // definition to a symbol and are inspecting archive members for inclusion 1207 // there are 2 ways we can proceed: 1208 // 1209 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1210 // tentative to real definition has already happened) and not inspect 1211 // archive members for Global/Weak definitions to replace the tentative 1212 // definition. An archive member would only be included if it satisfies some 1213 // other undefined symbol. This is the behavior Gold uses. 1214 // 1215 // 2) Consider the tentative definition as still undefined (ie the promotion to 1216 // a real definition happens only after all symbol resolution is done). 1217 // The linker searches archive members for STB_GLOBAL definitions to 1218 // replace the tentative definition with. This is the behavior used by 1219 // GNU ld. 1220 // 1221 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1222 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1223 // (pre F90) FORTRAN code that is packaged into an archive. 1224 // 1225 // The following functions search archive members for definitions to replace 1226 // tentative definitions (implementing behavior 2). 1227 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1228 StringRef archiveName) { 1229 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1230 for (const irsymtab::Reader::SymbolRef &sym : 1231 symtabFile.TheReader.symbols()) { 1232 if (sym.isGlobal() && sym.getName() == symName) 1233 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1234 } 1235 return false; 1236 } 1237 1238 template <class ELFT> 1239 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1240 StringRef archiveName) { 1241 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1242 StringRef stringtable = obj->getStringTable(); 1243 1244 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1245 Expected<StringRef> name = sym.getName(stringtable); 1246 if (name && name.get() == symName) 1247 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1248 !sym.isCommon(); 1249 } 1250 return false; 1251 } 1252 1253 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1254 StringRef archiveName) { 1255 switch (getELFKind(mb, archiveName)) { 1256 case ELF32LEKind: 1257 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1258 case ELF32BEKind: 1259 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1260 case ELF64LEKind: 1261 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1262 case ELF64BEKind: 1263 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1264 default: 1265 llvm_unreachable("getELFKind"); 1266 } 1267 } 1268 1269 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1270 Archive::Child c = 1271 CHECK(sym.getMember(), toString(this) + 1272 ": could not get the member for symbol " + 1273 toELFString(sym)); 1274 MemoryBufferRef mb = 1275 CHECK(c.getMemoryBufferRef(), 1276 toString(this) + 1277 ": could not get the buffer for the member defining symbol " + 1278 toELFString(sym)); 1279 1280 if (isBitcode(mb)) 1281 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1282 1283 return isNonCommonDef(mb, sym.getName(), getName()); 1284 } 1285 1286 size_t ArchiveFile::getMemberCount() const { 1287 size_t count = 0; 1288 Error err = Error::success(); 1289 for (const Archive::Child &c : file->children(err)) { 1290 (void)c; 1291 ++count; 1292 } 1293 // This function is used by --print-archive-stats=, where an error does not 1294 // really matter. 1295 consumeError(std::move(err)); 1296 return count; 1297 } 1298 1299 unsigned SharedFile::vernauxNum; 1300 1301 // Parse the version definitions in the object file if present, and return a 1302 // vector whose nth element contains a pointer to the Elf_Verdef for version 1303 // identifier n. Version identifiers that are not definitions map to nullptr. 1304 template <typename ELFT> 1305 static SmallVector<const void *, 0> 1306 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1307 if (!sec) 1308 return {}; 1309 1310 // Build the Verdefs array by following the chain of Elf_Verdef objects 1311 // from the start of the .gnu.version_d section. 1312 SmallVector<const void *, 0> verdefs; 1313 const uint8_t *verdef = base + sec->sh_offset; 1314 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1315 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1316 verdef += curVerdef->vd_next; 1317 unsigned verdefIndex = curVerdef->vd_ndx; 1318 if (verdefIndex >= verdefs.size()) 1319 verdefs.resize(verdefIndex + 1); 1320 verdefs[verdefIndex] = curVerdef; 1321 } 1322 return verdefs; 1323 } 1324 1325 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1326 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1327 // implement sophisticated error checking like in llvm-readobj because the value 1328 // of such diagnostics is low. 1329 template <typename ELFT> 1330 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1331 const typename ELFT::Shdr *sec) { 1332 if (!sec) 1333 return {}; 1334 std::vector<uint32_t> verneeds; 1335 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1336 const uint8_t *verneedBuf = data.begin(); 1337 for (unsigned i = 0; i != sec->sh_info; ++i) { 1338 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1339 fatal(toString(this) + " has an invalid Verneed"); 1340 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1341 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1342 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1343 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1344 fatal(toString(this) + " has an invalid Vernaux"); 1345 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1346 if (aux->vna_name >= this->stringTable.size()) 1347 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1348 uint16_t version = aux->vna_other & VERSYM_VERSION; 1349 if (version >= verneeds.size()) 1350 verneeds.resize(version + 1); 1351 verneeds[version] = aux->vna_name; 1352 vernauxBuf += aux->vna_next; 1353 } 1354 verneedBuf += vn->vn_next; 1355 } 1356 return verneeds; 1357 } 1358 1359 // We do not usually care about alignments of data in shared object 1360 // files because the loader takes care of it. However, if we promote a 1361 // DSO symbol to point to .bss due to copy relocation, we need to keep 1362 // the original alignment requirements. We infer it in this function. 1363 template <typename ELFT> 1364 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1365 const typename ELFT::Sym &sym) { 1366 uint64_t ret = UINT64_MAX; 1367 if (sym.st_value) 1368 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1369 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1370 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1371 return (ret > UINT32_MAX) ? 0 : ret; 1372 } 1373 1374 // Fully parse the shared object file. 1375 // 1376 // This function parses symbol versions. If a DSO has version information, 1377 // the file has a ".gnu.version_d" section which contains symbol version 1378 // definitions. Each symbol is associated to one version through a table in 1379 // ".gnu.version" section. That table is a parallel array for the symbol 1380 // table, and each table entry contains an index in ".gnu.version_d". 1381 // 1382 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1383 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1384 // ".gnu.version_d". 1385 // 1386 // The file format for symbol versioning is perhaps a bit more complicated 1387 // than necessary, but you can easily understand the code if you wrap your 1388 // head around the data structure described above. 1389 template <class ELFT> void SharedFile::parse() { 1390 using Elf_Dyn = typename ELFT::Dyn; 1391 using Elf_Shdr = typename ELFT::Shdr; 1392 using Elf_Sym = typename ELFT::Sym; 1393 using Elf_Verdef = typename ELFT::Verdef; 1394 using Elf_Versym = typename ELFT::Versym; 1395 1396 ArrayRef<Elf_Dyn> dynamicTags; 1397 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1398 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1399 1400 const Elf_Shdr *versymSec = nullptr; 1401 const Elf_Shdr *verdefSec = nullptr; 1402 const Elf_Shdr *verneedSec = nullptr; 1403 1404 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1405 for (const Elf_Shdr &sec : sections) { 1406 switch (sec.sh_type) { 1407 default: 1408 continue; 1409 case SHT_DYNAMIC: 1410 dynamicTags = 1411 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1412 break; 1413 case SHT_GNU_versym: 1414 versymSec = &sec; 1415 break; 1416 case SHT_GNU_verdef: 1417 verdefSec = &sec; 1418 break; 1419 case SHT_GNU_verneed: 1420 verneedSec = &sec; 1421 break; 1422 } 1423 } 1424 1425 if (versymSec && numELFSyms == 0) { 1426 error("SHT_GNU_versym should be associated with symbol table"); 1427 return; 1428 } 1429 1430 // Search for a DT_SONAME tag to initialize this->soName. 1431 for (const Elf_Dyn &dyn : dynamicTags) { 1432 if (dyn.d_tag == DT_NEEDED) { 1433 uint64_t val = dyn.getVal(); 1434 if (val >= this->stringTable.size()) 1435 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1436 dtNeeded.push_back(this->stringTable.data() + val); 1437 } else if (dyn.d_tag == DT_SONAME) { 1438 uint64_t val = dyn.getVal(); 1439 if (val >= this->stringTable.size()) 1440 fatal(toString(this) + ": invalid DT_SONAME entry"); 1441 soName = this->stringTable.data() + val; 1442 } 1443 } 1444 1445 // DSOs are uniquified not by filename but by soname. 1446 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1447 bool wasInserted; 1448 std::tie(it, wasInserted) = 1449 symtab->soNames.try_emplace(CachedHashStringRef(soName), this); 1450 1451 // If a DSO appears more than once on the command line with and without 1452 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1453 // user can add an extra DSO with --no-as-needed to force it to be added to 1454 // the dependency list. 1455 it->second->isNeeded |= isNeeded; 1456 if (!wasInserted) 1457 return; 1458 1459 sharedFiles.push_back(this); 1460 1461 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1462 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1463 1464 // Parse ".gnu.version" section which is a parallel array for the symbol 1465 // table. If a given file doesn't have a ".gnu.version" section, we use 1466 // VER_NDX_GLOBAL. 1467 size_t size = numELFSyms - firstGlobal; 1468 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1469 if (versymSec) { 1470 ArrayRef<Elf_Versym> versym = 1471 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1472 this) 1473 .slice(firstGlobal); 1474 for (size_t i = 0; i < size; ++i) 1475 versyms[i] = versym[i].vs_index; 1476 } 1477 1478 // System libraries can have a lot of symbols with versions. Using a 1479 // fixed buffer for computing the versions name (foo@ver) can save a 1480 // lot of allocations. 1481 SmallString<0> versionedNameBuffer; 1482 1483 // Add symbols to the symbol table. 1484 SymbolTable &symtab = *elf::symtab; 1485 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1486 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1487 const Elf_Sym &sym = syms[i]; 1488 1489 // ELF spec requires that all local symbols precede weak or global 1490 // symbols in each symbol table, and the index of first non-local symbol 1491 // is stored to sh_info. If a local symbol appears after some non-local 1492 // symbol, that's a violation of the spec. 1493 StringRef name = CHECK(sym.getName(stringTable), this); 1494 if (sym.getBinding() == STB_LOCAL) { 1495 warn("found local symbol '" + name + 1496 "' in global part of symbol table in file " + toString(this)); 1497 continue; 1498 } 1499 1500 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1501 if (sym.isUndefined()) { 1502 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1503 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1504 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1505 if (idx >= verneeds.size()) { 1506 error("corrupt input file: version need index " + Twine(idx) + 1507 " for symbol " + name + " is out of bounds\n>>> defined in " + 1508 toString(this)); 1509 continue; 1510 } 1511 StringRef verName = stringTable.data() + verneeds[idx]; 1512 versionedNameBuffer.clear(); 1513 name = saver().save( 1514 (name + "@" + verName).toStringRef(versionedNameBuffer)); 1515 } 1516 Symbol *s = symtab.addSymbol( 1517 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1518 s->exportDynamic = true; 1519 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1520 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1521 requiredSymbols.push_back(s); 1522 continue; 1523 } 1524 1525 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1526 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1527 // workaround for this bug. 1528 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1529 name == "_gp_disp") 1530 continue; 1531 1532 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1533 if (!(versyms[i] & VERSYM_HIDDEN)) { 1534 symtab.addSymbol(SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1535 sym.getType(), sym.st_value, sym.st_size, 1536 alignment, idx}); 1537 } 1538 1539 // Also add the symbol with the versioned name to handle undefined symbols 1540 // with explicit versions. 1541 if (idx == VER_NDX_GLOBAL) 1542 continue; 1543 1544 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1545 error("corrupt input file: version definition index " + Twine(idx) + 1546 " for symbol " + name + " is out of bounds\n>>> defined in " + 1547 toString(this)); 1548 continue; 1549 } 1550 1551 StringRef verName = 1552 stringTable.data() + 1553 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1554 versionedNameBuffer.clear(); 1555 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1556 symtab.addSymbol(SharedSymbol{*this, saver().save(name), sym.getBinding(), 1557 sym.st_other, sym.getType(), sym.st_value, 1558 sym.st_size, alignment, idx}); 1559 } 1560 } 1561 1562 static ELFKind getBitcodeELFKind(const Triple &t) { 1563 if (t.isLittleEndian()) 1564 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1565 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1566 } 1567 1568 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1569 switch (t.getArch()) { 1570 case Triple::aarch64: 1571 case Triple::aarch64_be: 1572 return EM_AARCH64; 1573 case Triple::amdgcn: 1574 case Triple::r600: 1575 return EM_AMDGPU; 1576 case Triple::arm: 1577 case Triple::thumb: 1578 return EM_ARM; 1579 case Triple::avr: 1580 return EM_AVR; 1581 case Triple::hexagon: 1582 return EM_HEXAGON; 1583 case Triple::mips: 1584 case Triple::mipsel: 1585 case Triple::mips64: 1586 case Triple::mips64el: 1587 return EM_MIPS; 1588 case Triple::msp430: 1589 return EM_MSP430; 1590 case Triple::ppc: 1591 case Triple::ppcle: 1592 return EM_PPC; 1593 case Triple::ppc64: 1594 case Triple::ppc64le: 1595 return EM_PPC64; 1596 case Triple::riscv32: 1597 case Triple::riscv64: 1598 return EM_RISCV; 1599 case Triple::x86: 1600 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1601 case Triple::x86_64: 1602 return EM_X86_64; 1603 default: 1604 error(path + ": could not infer e_machine from bitcode target triple " + 1605 t.str()); 1606 return EM_NONE; 1607 } 1608 } 1609 1610 static uint8_t getOsAbi(const Triple &t) { 1611 switch (t.getOS()) { 1612 case Triple::AMDHSA: 1613 return ELF::ELFOSABI_AMDGPU_HSA; 1614 case Triple::AMDPAL: 1615 return ELF::ELFOSABI_AMDGPU_PAL; 1616 case Triple::Mesa3D: 1617 return ELF::ELFOSABI_AMDGPU_MESA3D; 1618 default: 1619 return ELF::ELFOSABI_NONE; 1620 } 1621 } 1622 1623 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1624 uint64_t offsetInArchive, bool lazy) 1625 : InputFile(BitcodeKind, mb) { 1626 this->archiveName = archiveName; 1627 this->lazy = lazy; 1628 1629 std::string path = mb.getBufferIdentifier().str(); 1630 if (config->thinLTOIndexOnly) 1631 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1632 1633 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1634 // name. If two archives define two members with the same name, this 1635 // causes a collision which result in only one of the objects being taken 1636 // into consideration at LTO time (which very likely causes undefined 1637 // symbols later in the link stage). So we append file offset to make 1638 // filename unique. 1639 StringRef name = archiveName.empty() 1640 ? saver().save(path) 1641 : saver().save(archiveName + "(" + path::filename(path) + 1642 " at " + utostr(offsetInArchive) + ")"); 1643 MemoryBufferRef mbref(mb.getBuffer(), name); 1644 1645 obj = CHECK(lto::InputFile::create(mbref), this); 1646 1647 Triple t(obj->getTargetTriple()); 1648 ekind = getBitcodeELFKind(t); 1649 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1650 osabi = getOsAbi(t); 1651 } 1652 1653 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1654 switch (gvVisibility) { 1655 case GlobalValue::DefaultVisibility: 1656 return STV_DEFAULT; 1657 case GlobalValue::HiddenVisibility: 1658 return STV_HIDDEN; 1659 case GlobalValue::ProtectedVisibility: 1660 return STV_PROTECTED; 1661 } 1662 llvm_unreachable("unknown visibility"); 1663 } 1664 1665 template <class ELFT> 1666 static void 1667 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats, 1668 const lto::InputFile::Symbol &objSym, BitcodeFile &f) { 1669 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1670 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1671 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1672 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1673 1674 StringRef name; 1675 if (sym) { 1676 name = sym->getName(); 1677 } else { 1678 name = saver().save(objSym.getName()); 1679 sym = symtab->insert(name); 1680 } 1681 1682 int c = objSym.getComdatIndex(); 1683 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1684 Undefined newSym(&f, name, binding, visibility, type); 1685 if (canOmitFromDynSym) 1686 newSym.exportDynamic = false; 1687 sym->resolve(newSym); 1688 sym->referenced = true; 1689 return; 1690 } 1691 1692 if (objSym.isCommon()) { 1693 sym->resolve(CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1694 objSym.getCommonAlignment(), 1695 objSym.getCommonSize()}); 1696 } else { 1697 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1698 if (canOmitFromDynSym) 1699 newSym.exportDynamic = false; 1700 sym->resolve(newSym); 1701 } 1702 } 1703 1704 template <class ELFT> void BitcodeFile::parse() { 1705 std::vector<bool> keptComdats; 1706 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1707 keptComdats.push_back( 1708 s.second == Comdat::NoDeduplicate || 1709 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1710 .second); 1711 } 1712 1713 symbols.resize(obj->symbols().size()); 1714 for (auto it : llvm::enumerate(obj->symbols())) { 1715 Symbol *&sym = symbols[it.index()]; 1716 createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this); 1717 } 1718 1719 for (auto l : obj->getDependentLibraries()) 1720 addDependentLibrary(l, this); 1721 } 1722 1723 void BitcodeFile::parseLazy() { 1724 SymbolTable &symtab = *elf::symtab; 1725 symbols.resize(obj->symbols().size()); 1726 for (auto it : llvm::enumerate(obj->symbols())) 1727 if (!it.value().isUndefined()) 1728 symbols[it.index()] = symtab.addSymbol( 1729 LazyObject{*this, saver().save(it.value().getName())}); 1730 } 1731 1732 void BinaryFile::parse() { 1733 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1734 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1735 8, data, ".data"); 1736 sections.push_back(section); 1737 1738 // For each input file foo that is embedded to a result as a binary 1739 // blob, we define _binary_foo_{start,end,size} symbols, so that 1740 // user programs can access blobs by name. Non-alphanumeric 1741 // characters in a filename are replaced with underscore. 1742 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1743 for (size_t i = 0; i < s.size(); ++i) 1744 if (!isAlnum(s[i])) 1745 s[i] = '_'; 1746 1747 llvm::StringSaver &saver = lld::saver(); 1748 1749 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1750 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1751 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1752 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1753 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1754 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1755 } 1756 1757 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1758 uint64_t offsetInArchive) { 1759 if (isBitcode(mb)) 1760 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false); 1761 1762 switch (getELFKind(mb, archiveName)) { 1763 case ELF32LEKind: 1764 return make<ObjFile<ELF32LE>>(mb, archiveName); 1765 case ELF32BEKind: 1766 return make<ObjFile<ELF32BE>>(mb, archiveName); 1767 case ELF64LEKind: 1768 return make<ObjFile<ELF64LE>>(mb, archiveName); 1769 case ELF64BEKind: 1770 return make<ObjFile<ELF64BE>>(mb, archiveName); 1771 default: 1772 llvm_unreachable("getELFKind"); 1773 } 1774 } 1775 1776 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName, 1777 uint64_t offsetInArchive) { 1778 if (isBitcode(mb)) 1779 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true); 1780 1781 auto *file = 1782 cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive)); 1783 file->lazy = true; 1784 return file; 1785 } 1786 1787 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1788 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1789 SymbolTable &symtab = *elf::symtab; 1790 1791 symbols.resize(eSyms.size()); 1792 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1793 if (eSyms[i].st_shndx != SHN_UNDEF) 1794 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1795 1796 // Replace existing symbols with LazyObject symbols. 1797 // 1798 // resolve() may trigger this->extract() if an existing symbol is an undefined 1799 // symbol. If that happens, this function has served its purpose, and we can 1800 // exit from the loop early. 1801 for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal)) 1802 if (sym) { 1803 sym->resolve(LazyObject{*this, sym->getName()}); 1804 if (!lazy) 1805 return; 1806 } 1807 } 1808 1809 bool InputFile::shouldExtractForCommon(StringRef name) { 1810 if (isBitcode(mb)) 1811 return isBitcodeNonCommonDef(mb, name, archiveName); 1812 1813 return isNonCommonDef(mb, name, archiveName); 1814 } 1815 1816 std::string elf::replaceThinLTOSuffix(StringRef path) { 1817 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1818 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1819 1820 if (path.consume_back(suffix)) 1821 return (path + repl).str(); 1822 return std::string(path); 1823 } 1824 1825 template void BitcodeFile::parse<ELF32LE>(); 1826 template void BitcodeFile::parse<ELF32BE>(); 1827 template void BitcodeFile::parse<ELF64LE>(); 1828 template void BitcodeFile::parse<ELF64BE>(); 1829 1830 template class elf::ObjFile<ELF32LE>; 1831 template class elf::ObjFile<ELF32BE>; 1832 template class elf::ObjFile<ELF64LE>; 1833 template class elf::ObjFile<ELF64BE>; 1834 1835 template void SharedFile::parse<ELF32LE>(); 1836 template void SharedFile::parse<ELF32BE>(); 1837 template void SharedFile::parse<ELF64LE>(); 1838 template void SharedFile::parse<ELF64BE>(); 1839