xref: /freebsd-src/contrib/llvm-project/libcxx/src/ryu/f2s.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1*0eae32dcSDimitry Andric //===----------------------------------------------------------------------===//
2*0eae32dcSDimitry Andric //
3*0eae32dcSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0eae32dcSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0eae32dcSDimitry Andric //
7*0eae32dcSDimitry Andric //===----------------------------------------------------------------------===//
8*0eae32dcSDimitry Andric 
9*0eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation.
10*0eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11*0eae32dcSDimitry Andric 
12*0eae32dcSDimitry Andric // Copyright 2018 Ulf Adams
13*0eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation. All rights reserved.
14*0eae32dcSDimitry Andric 
15*0eae32dcSDimitry Andric // Boost Software License - Version 1.0 - August 17th, 2003
16*0eae32dcSDimitry Andric 
17*0eae32dcSDimitry Andric // Permission is hereby granted, free of charge, to any person or organization
18*0eae32dcSDimitry Andric // obtaining a copy of the software and accompanying documentation covered by
19*0eae32dcSDimitry Andric // this license (the "Software") to use, reproduce, display, distribute,
20*0eae32dcSDimitry Andric // execute, and transmit the Software, and to prepare derivative works of the
21*0eae32dcSDimitry Andric // Software, and to permit third-parties to whom the Software is furnished to
22*0eae32dcSDimitry Andric // do so, all subject to the following:
23*0eae32dcSDimitry Andric 
24*0eae32dcSDimitry Andric // The copyright notices in the Software and this entire statement, including
25*0eae32dcSDimitry Andric // the above license grant, this restriction and the following disclaimer,
26*0eae32dcSDimitry Andric // must be included in all copies of the Software, in whole or in part, and
27*0eae32dcSDimitry Andric // all derivative works of the Software, unless such copies or derivative
28*0eae32dcSDimitry Andric // works are solely in the form of machine-executable object code generated by
29*0eae32dcSDimitry Andric // a source language processor.
30*0eae32dcSDimitry Andric 
31*0eae32dcSDimitry Andric // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32*0eae32dcSDimitry Andric // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33*0eae32dcSDimitry Andric // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34*0eae32dcSDimitry Andric // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35*0eae32dcSDimitry Andric // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36*0eae32dcSDimitry Andric // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37*0eae32dcSDimitry Andric // DEALINGS IN THE SOFTWARE.
38*0eae32dcSDimitry Andric 
39*0eae32dcSDimitry Andric // Avoid formatting to keep the changes with the original code minimal.
40*0eae32dcSDimitry Andric // clang-format off
41*0eae32dcSDimitry Andric 
42*0eae32dcSDimitry Andric #include "__config"
43*0eae32dcSDimitry Andric #include "charconv"
44*0eae32dcSDimitry Andric 
45*0eae32dcSDimitry Andric #include "include/ryu/common.h"
46*0eae32dcSDimitry Andric #include "include/ryu/d2fixed.h"
47*0eae32dcSDimitry Andric #include "include/ryu/d2s_intrinsics.h"
48*0eae32dcSDimitry Andric #include "include/ryu/digit_table.h"
49*0eae32dcSDimitry Andric #include "include/ryu/f2s.h"
50*0eae32dcSDimitry Andric #include "include/ryu/ryu.h"
51*0eae32dcSDimitry Andric 
52*0eae32dcSDimitry Andric _LIBCPP_BEGIN_NAMESPACE_STD
53*0eae32dcSDimitry Andric 
54*0eae32dcSDimitry Andric inline constexpr int __FLOAT_MANTISSA_BITS = 23;
55*0eae32dcSDimitry Andric inline constexpr int __FLOAT_EXPONENT_BITS = 8;
56*0eae32dcSDimitry Andric inline constexpr int __FLOAT_BIAS = 127;
57*0eae32dcSDimitry Andric 
58*0eae32dcSDimitry Andric inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
59*0eae32dcSDimitry Andric inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
60*0eae32dcSDimitry Andric   576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
61*0eae32dcSDimitry Andric   472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
62*0eae32dcSDimitry Andric   386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
63*0eae32dcSDimitry Andric   316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
64*0eae32dcSDimitry Andric   519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
65*0eae32dcSDimitry Andric   425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
66*0eae32dcSDimitry Andric   348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
67*0eae32dcSDimitry Andric   570899077082383953u, 456719261665907162u, 365375409332725730u
68*0eae32dcSDimitry Andric };
69*0eae32dcSDimitry Andric inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
70*0eae32dcSDimitry Andric inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
71*0eae32dcSDimitry Andric   1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
72*0eae32dcSDimitry Andric   1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
73*0eae32dcSDimitry Andric   1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
74*0eae32dcSDimitry Andric   2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
75*0eae32dcSDimitry Andric   1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
76*0eae32dcSDimitry Andric   1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
77*0eae32dcSDimitry Andric   1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
78*0eae32dcSDimitry Andric   1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
79*0eae32dcSDimitry Andric   1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
80*0eae32dcSDimitry Andric   1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
81*0eae32dcSDimitry Andric   2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
82*0eae32dcSDimitry Andric   1292469707114105741u, 1615587133892632177u, 2019483917365790221u
83*0eae32dcSDimitry Andric };
84*0eae32dcSDimitry Andric 
85*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
86*0eae32dcSDimitry Andric   uint32_t __count = 0;
87*0eae32dcSDimitry Andric   for (;;) {
88*0eae32dcSDimitry Andric     _LIBCPP_ASSERT(__value != 0, "");
89*0eae32dcSDimitry Andric     const uint32_t __q = __value / 5;
90*0eae32dcSDimitry Andric     const uint32_t __r = __value % 5;
91*0eae32dcSDimitry Andric     if (__r != 0) {
92*0eae32dcSDimitry Andric       break;
93*0eae32dcSDimitry Andric     }
94*0eae32dcSDimitry Andric     __value = __q;
95*0eae32dcSDimitry Andric     ++__count;
96*0eae32dcSDimitry Andric   }
97*0eae32dcSDimitry Andric   return __count;
98*0eae32dcSDimitry Andric }
99*0eae32dcSDimitry Andric 
100*0eae32dcSDimitry Andric // Returns true if __value is divisible by 5^__p.
101*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
102*0eae32dcSDimitry Andric   return __pow5Factor(__value) >= __p;
103*0eae32dcSDimitry Andric }
104*0eae32dcSDimitry Andric 
105*0eae32dcSDimitry Andric // Returns true if __value is divisible by 2^__p.
106*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
107*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(__value != 0, "");
108*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(__p < 32, "");
109*0eae32dcSDimitry Andric   // __builtin_ctz doesn't appear to be faster here.
110*0eae32dcSDimitry Andric   return (__value & ((1u << __p) - 1)) == 0;
111*0eae32dcSDimitry Andric }
112*0eae32dcSDimitry Andric 
113*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
114*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(__shift > 32, "");
115*0eae32dcSDimitry Andric 
116*0eae32dcSDimitry Andric   // The casts here help MSVC to avoid calls to the __allmul library
117*0eae32dcSDimitry Andric   // function.
118*0eae32dcSDimitry Andric   const uint32_t __factorLo = static_cast<uint32_t>(__factor);
119*0eae32dcSDimitry Andric   const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
120*0eae32dcSDimitry Andric   const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
121*0eae32dcSDimitry Andric   const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
122*0eae32dcSDimitry Andric 
123*0eae32dcSDimitry Andric #ifndef _LIBCPP_64_BIT
124*0eae32dcSDimitry Andric   // On 32-bit platforms we can avoid a 64-bit shift-right since we only
125*0eae32dcSDimitry Andric   // need the upper 32 bits of the result and the shift value is > 32.
126*0eae32dcSDimitry Andric   const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
127*0eae32dcSDimitry Andric   uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
128*0eae32dcSDimitry Andric   uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
129*0eae32dcSDimitry Andric   __bits1Lo += __bits0Hi;
130*0eae32dcSDimitry Andric   __bits1Hi += (__bits1Lo < __bits0Hi);
131*0eae32dcSDimitry Andric   const int32_t __s = __shift - 32;
132*0eae32dcSDimitry Andric   return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
133*0eae32dcSDimitry Andric #else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
134*0eae32dcSDimitry Andric   const uint64_t __sum = (__bits0 >> 32) + __bits1;
135*0eae32dcSDimitry Andric   const uint64_t __shiftedSum = __sum >> (__shift - 32);
136*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(__shiftedSum <= UINT32_MAX, "");
137*0eae32dcSDimitry Andric   return static_cast<uint32_t>(__shiftedSum);
138*0eae32dcSDimitry Andric #endif // ^^^ 64-bit ^^^
139*0eae32dcSDimitry Andric }
140*0eae32dcSDimitry Andric 
141*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
142*0eae32dcSDimitry Andric   return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
143*0eae32dcSDimitry Andric }
144*0eae32dcSDimitry Andric 
145*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
146*0eae32dcSDimitry Andric   return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
147*0eae32dcSDimitry Andric }
148*0eae32dcSDimitry Andric 
149*0eae32dcSDimitry Andric // A floating decimal representing m * 10^e.
150*0eae32dcSDimitry Andric struct __floating_decimal_32 {
151*0eae32dcSDimitry Andric   uint32_t __mantissa;
152*0eae32dcSDimitry Andric   int32_t __exponent;
153*0eae32dcSDimitry Andric };
154*0eae32dcSDimitry Andric 
155*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
156*0eae32dcSDimitry Andric   int32_t __e2;
157*0eae32dcSDimitry Andric   uint32_t __m2;
158*0eae32dcSDimitry Andric   if (__ieeeExponent == 0) {
159*0eae32dcSDimitry Andric     // We subtract 2 so that the bounds computation has 2 additional bits.
160*0eae32dcSDimitry Andric     __e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
161*0eae32dcSDimitry Andric     __m2 = __ieeeMantissa;
162*0eae32dcSDimitry Andric   } else {
163*0eae32dcSDimitry Andric     __e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
164*0eae32dcSDimitry Andric     __m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
165*0eae32dcSDimitry Andric   }
166*0eae32dcSDimitry Andric   const bool __even = (__m2 & 1) == 0;
167*0eae32dcSDimitry Andric   const bool __acceptBounds = __even;
168*0eae32dcSDimitry Andric 
169*0eae32dcSDimitry Andric   // Step 2: Determine the interval of valid decimal representations.
170*0eae32dcSDimitry Andric   const uint32_t __mv = 4 * __m2;
171*0eae32dcSDimitry Andric   const uint32_t __mp = 4 * __m2 + 2;
172*0eae32dcSDimitry Andric   // Implicit bool -> int conversion. True is 1, false is 0.
173*0eae32dcSDimitry Andric   const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
174*0eae32dcSDimitry Andric   const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
175*0eae32dcSDimitry Andric 
176*0eae32dcSDimitry Andric   // Step 3: Convert to a decimal power base using 64-bit arithmetic.
177*0eae32dcSDimitry Andric   uint32_t __vr, __vp, __vm;
178*0eae32dcSDimitry Andric   int32_t __e10;
179*0eae32dcSDimitry Andric   bool __vmIsTrailingZeros = false;
180*0eae32dcSDimitry Andric   bool __vrIsTrailingZeros = false;
181*0eae32dcSDimitry Andric   uint8_t __lastRemovedDigit = 0;
182*0eae32dcSDimitry Andric   if (__e2 >= 0) {
183*0eae32dcSDimitry Andric     const uint32_t __q = __log10Pow2(__e2);
184*0eae32dcSDimitry Andric     __e10 = static_cast<int32_t>(__q);
185*0eae32dcSDimitry Andric     const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
186*0eae32dcSDimitry Andric     const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
187*0eae32dcSDimitry Andric     __vr = __mulPow5InvDivPow2(__mv, __q, __i);
188*0eae32dcSDimitry Andric     __vp = __mulPow5InvDivPow2(__mp, __q, __i);
189*0eae32dcSDimitry Andric     __vm = __mulPow5InvDivPow2(__mm, __q, __i);
190*0eae32dcSDimitry Andric     if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
191*0eae32dcSDimitry Andric       // We need to know one removed digit even if we are not going to loop below. We could use
192*0eae32dcSDimitry Andric       // __q = X - 1 above, except that would require 33 bits for the result, and we've found that
193*0eae32dcSDimitry Andric       // 32-bit arithmetic is faster even on 64-bit machines.
194*0eae32dcSDimitry Andric       const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
195*0eae32dcSDimitry Andric       __lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
196*0eae32dcSDimitry Andric         -__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
197*0eae32dcSDimitry Andric     }
198*0eae32dcSDimitry Andric     if (__q <= 9) {
199*0eae32dcSDimitry Andric       // The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
200*0eae32dcSDimitry Andric       // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
201*0eae32dcSDimitry Andric       if (__mv % 5 == 0) {
202*0eae32dcSDimitry Andric         __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
203*0eae32dcSDimitry Andric       } else if (__acceptBounds) {
204*0eae32dcSDimitry Andric         __vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
205*0eae32dcSDimitry Andric       } else {
206*0eae32dcSDimitry Andric         __vp -= __multipleOfPowerOf5(__mp, __q);
207*0eae32dcSDimitry Andric       }
208*0eae32dcSDimitry Andric     }
209*0eae32dcSDimitry Andric   } else {
210*0eae32dcSDimitry Andric     const uint32_t __q = __log10Pow5(-__e2);
211*0eae32dcSDimitry Andric     __e10 = static_cast<int32_t>(__q) + __e2;
212*0eae32dcSDimitry Andric     const int32_t __i = -__e2 - static_cast<int32_t>(__q);
213*0eae32dcSDimitry Andric     const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
214*0eae32dcSDimitry Andric     int32_t __j = static_cast<int32_t>(__q) - __k;
215*0eae32dcSDimitry Andric     __vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
216*0eae32dcSDimitry Andric     __vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
217*0eae32dcSDimitry Andric     __vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
218*0eae32dcSDimitry Andric     if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
219*0eae32dcSDimitry Andric       __j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
220*0eae32dcSDimitry Andric       __lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
221*0eae32dcSDimitry Andric     }
222*0eae32dcSDimitry Andric     if (__q <= 1) {
223*0eae32dcSDimitry Andric       // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
224*0eae32dcSDimitry Andric       // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
225*0eae32dcSDimitry Andric       __vrIsTrailingZeros = true;
226*0eae32dcSDimitry Andric       if (__acceptBounds) {
227*0eae32dcSDimitry Andric         // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
228*0eae32dcSDimitry Andric         __vmIsTrailingZeros = __mmShift == 1;
229*0eae32dcSDimitry Andric       } else {
230*0eae32dcSDimitry Andric         // __mp = __mv + 2, so it always has at least one trailing 0 bit.
231*0eae32dcSDimitry Andric         --__vp;
232*0eae32dcSDimitry Andric       }
233*0eae32dcSDimitry Andric     } else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
234*0eae32dcSDimitry Andric       __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
235*0eae32dcSDimitry Andric     }
236*0eae32dcSDimitry Andric   }
237*0eae32dcSDimitry Andric 
238*0eae32dcSDimitry Andric   // Step 4: Find the shortest decimal representation in the interval of valid representations.
239*0eae32dcSDimitry Andric   int32_t __removed = 0;
240*0eae32dcSDimitry Andric   uint32_t _Output;
241*0eae32dcSDimitry Andric   if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
242*0eae32dcSDimitry Andric     // General case, which happens rarely (~4.0%).
243*0eae32dcSDimitry Andric     while (__vp / 10 > __vm / 10) {
244*0eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-23106
245*0eae32dcSDimitry Andric       __vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
246*0eae32dcSDimitry Andric #else
247*0eae32dcSDimitry Andric       __vmIsTrailingZeros &= __vm % 10 == 0;
248*0eae32dcSDimitry Andric #endif
249*0eae32dcSDimitry Andric       __vrIsTrailingZeros &= __lastRemovedDigit == 0;
250*0eae32dcSDimitry Andric       __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
251*0eae32dcSDimitry Andric       __vr /= 10;
252*0eae32dcSDimitry Andric       __vp /= 10;
253*0eae32dcSDimitry Andric       __vm /= 10;
254*0eae32dcSDimitry Andric       ++__removed;
255*0eae32dcSDimitry Andric     }
256*0eae32dcSDimitry Andric     if (__vmIsTrailingZeros) {
257*0eae32dcSDimitry Andric       while (__vm % 10 == 0) {
258*0eae32dcSDimitry Andric         __vrIsTrailingZeros &= __lastRemovedDigit == 0;
259*0eae32dcSDimitry Andric         __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
260*0eae32dcSDimitry Andric         __vr /= 10;
261*0eae32dcSDimitry Andric         __vp /= 10;
262*0eae32dcSDimitry Andric         __vm /= 10;
263*0eae32dcSDimitry Andric         ++__removed;
264*0eae32dcSDimitry Andric       }
265*0eae32dcSDimitry Andric     }
266*0eae32dcSDimitry Andric     if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
267*0eae32dcSDimitry Andric       // Round even if the exact number is .....50..0.
268*0eae32dcSDimitry Andric       __lastRemovedDigit = 4;
269*0eae32dcSDimitry Andric     }
270*0eae32dcSDimitry Andric     // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
271*0eae32dcSDimitry Andric     _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
272*0eae32dcSDimitry Andric   } else {
273*0eae32dcSDimitry Andric     // Specialized for the common case (~96.0%). Percentages below are relative to this.
274*0eae32dcSDimitry Andric     // Loop iterations below (approximately):
275*0eae32dcSDimitry Andric     // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
276*0eae32dcSDimitry Andric     while (__vp / 10 > __vm / 10) {
277*0eae32dcSDimitry Andric       __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
278*0eae32dcSDimitry Andric       __vr /= 10;
279*0eae32dcSDimitry Andric       __vp /= 10;
280*0eae32dcSDimitry Andric       __vm /= 10;
281*0eae32dcSDimitry Andric       ++__removed;
282*0eae32dcSDimitry Andric     }
283*0eae32dcSDimitry Andric     // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
284*0eae32dcSDimitry Andric     _Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
285*0eae32dcSDimitry Andric   }
286*0eae32dcSDimitry Andric   const int32_t __exp = __e10 + __removed;
287*0eae32dcSDimitry Andric 
288*0eae32dcSDimitry Andric   __floating_decimal_32 __fd;
289*0eae32dcSDimitry Andric   __fd.__exponent = __exp;
290*0eae32dcSDimitry Andric   __fd.__mantissa = _Output;
291*0eae32dcSDimitry Andric   return __fd;
292*0eae32dcSDimitry Andric }
293*0eae32dcSDimitry Andric 
294*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
295*0eae32dcSDimitry Andric   const uint32_t _Mantissa2, const int32_t _Exponent2) {
296*0eae32dcSDimitry Andric 
297*0eae32dcSDimitry Andric   // Print the integer _Mantissa2 * 2^_Exponent2 exactly.
298*0eae32dcSDimitry Andric 
299*0eae32dcSDimitry Andric   // For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
300*0eae32dcSDimitry Andric   // In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
301*0eae32dcSDimitry Andric   // the zeros.) The dense range of exactly representable integers has negative or zero exponents
302*0eae32dcSDimitry Andric   // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
303*0eae32dcSDimitry Andric   // every digit is necessary to uniquely identify the value, so Ryu must print them all.
304*0eae32dcSDimitry Andric 
305*0eae32dcSDimitry Andric   // Positive exponents are the non-dense range of exactly representable integers.
306*0eae32dcSDimitry Andric   // This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
307*0eae32dcSDimitry Andric 
308*0eae32dcSDimitry Andric   // Performance note: Long division appears to be faster than losslessly widening float to double and calling
309*0eae32dcSDimitry Andric   // __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
310*0eae32dcSDimitry Andric 
311*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(_Exponent2 > 0, "");
312*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
313*0eae32dcSDimitry Andric 
314*0eae32dcSDimitry Andric   // Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
315*0eae32dcSDimitry Andric   // (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
316*0eae32dcSDimitry Andric   // 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
317*0eae32dcSDimitry Andric   // We use a little-endian representation, visualized like this:
318*0eae32dcSDimitry Andric 
319*0eae32dcSDimitry Andric   // << left shift <<
320*0eae32dcSDimitry Andric   // most significant
321*0eae32dcSDimitry Andric   // _Data[3] _Data[2] _Data[1] _Data[0]
322*0eae32dcSDimitry Andric   //                   least significant
323*0eae32dcSDimitry Andric   //                   >> right shift >>
324*0eae32dcSDimitry Andric 
325*0eae32dcSDimitry Andric   constexpr uint32_t _Data_size = 4;
326*0eae32dcSDimitry Andric   uint32_t _Data[_Data_size]{};
327*0eae32dcSDimitry Andric 
328*0eae32dcSDimitry Andric   // _Maxidx is the index of the most significant nonzero element.
329*0eae32dcSDimitry Andric   uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
330*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(_Maxidx < _Data_size, "");
331*0eae32dcSDimitry Andric 
332*0eae32dcSDimitry Andric   const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
333*0eae32dcSDimitry Andric   if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
334*0eae32dcSDimitry Andric     _Data[_Maxidx] = _Mantissa2 << _Bit_shift;
335*0eae32dcSDimitry Andric   } else { // _Mantissa2's 24 bits cross an element boundary
336*0eae32dcSDimitry Andric     _Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
337*0eae32dcSDimitry Andric     _Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
338*0eae32dcSDimitry Andric   }
339*0eae32dcSDimitry Andric 
340*0eae32dcSDimitry Andric   // If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
341*0eae32dcSDimitry Andric   // by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
342*0eae32dcSDimitry Andric   uint32_t _Blocks[4];
343*0eae32dcSDimitry Andric   int32_t _Filled_blocks = 0;
344*0eae32dcSDimitry Andric   // From left to right, we're going to print:
345*0eae32dcSDimitry Andric   // _Data[0] will be [1, 10] digits.
346*0eae32dcSDimitry Andric   // Then if _Filled_blocks > 0:
347*0eae32dcSDimitry Andric   // _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
348*0eae32dcSDimitry Andric 
349*0eae32dcSDimitry Andric   if (_Maxidx != 0) { // If the integer is actually large, perform long division.
350*0eae32dcSDimitry Andric                       // Otherwise, skip to printing _Data[0].
351*0eae32dcSDimitry Andric     for (;;) {
352*0eae32dcSDimitry Andric       // Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
353*0eae32dcSDimitry Andric 
354*0eae32dcSDimitry Andric       const uint32_t _Most_significant_elem = _Data[_Maxidx];
355*0eae32dcSDimitry Andric       const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
356*0eae32dcSDimitry Andric       const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
357*0eae32dcSDimitry Andric       _Data[_Maxidx] = _Initial_quotient;
358*0eae32dcSDimitry Andric       uint64_t _Remainder = _Initial_remainder;
359*0eae32dcSDimitry Andric 
360*0eae32dcSDimitry Andric       // Process less significant elements.
361*0eae32dcSDimitry Andric       uint32_t _Idx = _Maxidx;
362*0eae32dcSDimitry Andric       do {
363*0eae32dcSDimitry Andric         --_Idx; // Initially, _Remainder is at most 10^9 - 1.
364*0eae32dcSDimitry Andric 
365*0eae32dcSDimitry Andric         // Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
366*0eae32dcSDimitry Andric         _Remainder = (_Remainder << 32) | _Data[_Idx];
367*0eae32dcSDimitry Andric 
368*0eae32dcSDimitry Andric         // floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
369*0eae32dcSDimitry Andric         const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
370*0eae32dcSDimitry Andric 
371*0eae32dcSDimitry Andric         // _Remainder is at most 10^9 - 1 again.
372*0eae32dcSDimitry Andric         // For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
373*0eae32dcSDimitry Andric         _Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
374*0eae32dcSDimitry Andric 
375*0eae32dcSDimitry Andric         _Data[_Idx] = _Quotient;
376*0eae32dcSDimitry Andric       } while (_Idx != 0);
377*0eae32dcSDimitry Andric 
378*0eae32dcSDimitry Andric       // Store a 0-filled 9-digit block.
379*0eae32dcSDimitry Andric       _Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
380*0eae32dcSDimitry Andric 
381*0eae32dcSDimitry Andric       if (_Initial_quotient == 0) { // Is the large integer shrinking?
382*0eae32dcSDimitry Andric         --_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
383*0eae32dcSDimitry Andric         if (_Maxidx == 0) {
384*0eae32dcSDimitry Andric           break; // We've finished long division. Now we need to print _Data[0].
385*0eae32dcSDimitry Andric         }
386*0eae32dcSDimitry Andric       }
387*0eae32dcSDimitry Andric     }
388*0eae32dcSDimitry Andric   }
389*0eae32dcSDimitry Andric 
390*0eae32dcSDimitry Andric   _LIBCPP_ASSERT(_Data[0] != 0, "");
391*0eae32dcSDimitry Andric   for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
392*0eae32dcSDimitry Andric     _LIBCPP_ASSERT(_Data[_Idx] == 0, "");
393*0eae32dcSDimitry Andric   }
394*0eae32dcSDimitry Andric 
395*0eae32dcSDimitry Andric   const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
396*0eae32dcSDimitry Andric   const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
397*0eae32dcSDimitry Andric 
398*0eae32dcSDimitry Andric   if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
399*0eae32dcSDimitry Andric     return { _Last, errc::value_too_large };
400*0eae32dcSDimitry Andric   }
401*0eae32dcSDimitry Andric 
402*0eae32dcSDimitry Andric   char* _Result = _First;
403*0eae32dcSDimitry Andric 
404*0eae32dcSDimitry Andric   // Print _Data[0]. While it's up to 10 digits,
405*0eae32dcSDimitry Andric   // which is more than Ryu generates, the code below can handle this.
406*0eae32dcSDimitry Andric   __append_n_digits(_Data_olength, _Data[0], _Result);
407*0eae32dcSDimitry Andric   _Result += _Data_olength;
408*0eae32dcSDimitry Andric 
409*0eae32dcSDimitry Andric   // Print 0-filled 9-digit blocks.
410*0eae32dcSDimitry Andric   for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
411*0eae32dcSDimitry Andric     __append_nine_digits(_Blocks[_Idx], _Result);
412*0eae32dcSDimitry Andric     _Result += 9;
413*0eae32dcSDimitry Andric   }
414*0eae32dcSDimitry Andric 
415*0eae32dcSDimitry Andric   return { _Result, errc{} };
416*0eae32dcSDimitry Andric }
417*0eae32dcSDimitry Andric 
418*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
419*0eae32dcSDimitry Andric   chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
420*0eae32dcSDimitry Andric   // Step 5: Print the decimal representation.
421*0eae32dcSDimitry Andric   uint32_t _Output = __v.__mantissa;
422*0eae32dcSDimitry Andric   int32_t _Ryu_exponent = __v.__exponent;
423*0eae32dcSDimitry Andric   const uint32_t __olength = __decimalLength9(_Output);
424*0eae32dcSDimitry Andric   int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
425*0eae32dcSDimitry Andric 
426*0eae32dcSDimitry Andric   if (_Fmt == chars_format{}) {
427*0eae32dcSDimitry Andric     int32_t _Lower;
428*0eae32dcSDimitry Andric     int32_t _Upper;
429*0eae32dcSDimitry Andric 
430*0eae32dcSDimitry Andric     if (__olength == 1) {
431*0eae32dcSDimitry Andric       // Value | Fixed   | Scientific
432*0eae32dcSDimitry Andric       // 1e-3  | "0.001" | "1e-03"
433*0eae32dcSDimitry Andric       // 1e4   | "10000" | "1e+04"
434*0eae32dcSDimitry Andric       _Lower = -3;
435*0eae32dcSDimitry Andric       _Upper = 4;
436*0eae32dcSDimitry Andric     } else {
437*0eae32dcSDimitry Andric       // Value   | Fixed       | Scientific
438*0eae32dcSDimitry Andric       // 1234e-7 | "0.0001234" | "1.234e-04"
439*0eae32dcSDimitry Andric       // 1234e5  | "123400000" | "1.234e+08"
440*0eae32dcSDimitry Andric       _Lower = -static_cast<int32_t>(__olength + 3);
441*0eae32dcSDimitry Andric       _Upper = 5;
442*0eae32dcSDimitry Andric     }
443*0eae32dcSDimitry Andric 
444*0eae32dcSDimitry Andric     if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
445*0eae32dcSDimitry Andric       _Fmt = chars_format::fixed;
446*0eae32dcSDimitry Andric     } else {
447*0eae32dcSDimitry Andric       _Fmt = chars_format::scientific;
448*0eae32dcSDimitry Andric     }
449*0eae32dcSDimitry Andric   } else if (_Fmt == chars_format::general) {
450*0eae32dcSDimitry Andric     // C11 7.21.6.1 "The fprintf function"/8:
451*0eae32dcSDimitry Andric     // "Let P equal [...] 6 if the precision is omitted [...].
452*0eae32dcSDimitry Andric     // Then, if a conversion with style E would have an exponent of X:
453*0eae32dcSDimitry Andric     // - if P > X >= -4, the conversion is with style f [...].
454*0eae32dcSDimitry Andric     // - otherwise, the conversion is with style e [...]."
455*0eae32dcSDimitry Andric     if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
456*0eae32dcSDimitry Andric       _Fmt = chars_format::fixed;
457*0eae32dcSDimitry Andric     } else {
458*0eae32dcSDimitry Andric       _Fmt = chars_format::scientific;
459*0eae32dcSDimitry Andric     }
460*0eae32dcSDimitry Andric   }
461*0eae32dcSDimitry Andric 
462*0eae32dcSDimitry Andric   if (_Fmt == chars_format::fixed) {
463*0eae32dcSDimitry Andric     // Example: _Output == 1729, __olength == 4
464*0eae32dcSDimitry Andric 
465*0eae32dcSDimitry Andric     // _Ryu_exponent | Printed  | _Whole_digits | _Total_fixed_length  | Notes
466*0eae32dcSDimitry Andric     // --------------|----------|---------------|----------------------|---------------------------------------
467*0eae32dcSDimitry Andric     //             2 | 172900   |  6            | _Whole_digits        | Ryu can't be used for printing
468*0eae32dcSDimitry Andric     //             1 | 17290    |  5            | (sometimes adjusted) | when the trimmed digits are nonzero.
469*0eae32dcSDimitry Andric     // --------------|----------|---------------|----------------------|---------------------------------------
470*0eae32dcSDimitry Andric     //             0 | 1729     |  4            | _Whole_digits        | Unified length cases.
471*0eae32dcSDimitry Andric     // --------------|----------|---------------|----------------------|---------------------------------------
472*0eae32dcSDimitry Andric     //            -1 | 172.9    |  3            | __olength + 1        | This case can't happen for
473*0eae32dcSDimitry Andric     //            -2 | 17.29    |  2            |                      | __olength == 1, but no additional
474*0eae32dcSDimitry Andric     //            -3 | 1.729    |  1            |                      | code is needed to avoid it.
475*0eae32dcSDimitry Andric     // --------------|----------|---------------|----------------------|---------------------------------------
476*0eae32dcSDimitry Andric     //            -4 | 0.1729   |  0            | 2 - _Ryu_exponent    | C11 7.21.6.1 "The fprintf function"/8:
477*0eae32dcSDimitry Andric     //            -5 | 0.01729  | -1            |                      | "If a decimal-point character appears,
478*0eae32dcSDimitry Andric     //            -6 | 0.001729 | -2            |                      | at least one digit appears before it."
479*0eae32dcSDimitry Andric 
480*0eae32dcSDimitry Andric     const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
481*0eae32dcSDimitry Andric 
482*0eae32dcSDimitry Andric     uint32_t _Total_fixed_length;
483*0eae32dcSDimitry Andric     if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
484*0eae32dcSDimitry Andric       _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
485*0eae32dcSDimitry Andric       if (_Output == 1) {
486*0eae32dcSDimitry Andric         // Rounding can affect the number of digits.
487*0eae32dcSDimitry Andric         // For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
488*0eae32dcSDimitry Andric         // We can use a lookup table to detect this and adjust the total length.
489*0eae32dcSDimitry Andric         static constexpr uint8_t _Adjustment[39] = {
490*0eae32dcSDimitry Andric           0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
491*0eae32dcSDimitry Andric         _Total_fixed_length -= _Adjustment[_Ryu_exponent];
492*0eae32dcSDimitry Andric         // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
493*0eae32dcSDimitry Andric       }
494*0eae32dcSDimitry Andric     } else if (_Whole_digits > 0) { // case "17.29"
495*0eae32dcSDimitry Andric       _Total_fixed_length = __olength + 1;
496*0eae32dcSDimitry Andric     } else { // case "0.001729"
497*0eae32dcSDimitry Andric       _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
498*0eae32dcSDimitry Andric     }
499*0eae32dcSDimitry Andric 
500*0eae32dcSDimitry Andric     if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
501*0eae32dcSDimitry Andric       return { _Last, errc::value_too_large };
502*0eae32dcSDimitry Andric     }
503*0eae32dcSDimitry Andric 
504*0eae32dcSDimitry Andric     char* _Mid;
505*0eae32dcSDimitry Andric     if (_Ryu_exponent > 0) { // case "172900"
506*0eae32dcSDimitry Andric       bool _Can_use_ryu;
507*0eae32dcSDimitry Andric 
508*0eae32dcSDimitry Andric       if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
509*0eae32dcSDimitry Andric         _Can_use_ryu = false;
510*0eae32dcSDimitry Andric       } else {
511*0eae32dcSDimitry Andric         // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
512*0eae32dcSDimitry Andric         // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
513*0eae32dcSDimitry Andric         // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
514*0eae32dcSDimitry Andric 
515*0eae32dcSDimitry Andric         // _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
516*0eae32dcSDimitry Andric         // with 9 decimal digits, which is float's round-trip limit.)
517*0eae32dcSDimitry Andric         // _Ryu_exponent is [1, 10].
518*0eae32dcSDimitry Andric         // Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
519*0eae32dcSDimitry Andric         // This adds up to [3, 62], which is well below float's maximum binary exponent 127.
520*0eae32dcSDimitry Andric 
521*0eae32dcSDimitry Andric         // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
522*0eae32dcSDimitry Andric 
523*0eae32dcSDimitry Andric         // If that product would exceed 24 bits, then X can't be exactly represented as a float.
524*0eae32dcSDimitry Andric         // (That's not a problem for round-tripping, because X is close enough to the original float,
525*0eae32dcSDimitry Andric         // but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
526*0eae32dcSDimitry Andric 
527*0eae32dcSDimitry Andric         // If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
528*0eae32dcSDimitry Andric         // need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
529*0eae32dcSDimitry Andric         // same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
530*0eae32dcSDimitry Andric 
531*0eae32dcSDimitry Andric         // (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
532*0eae32dcSDimitry Andric         static constexpr uint32_t _Max_shifted_mantissa[11] = {
533*0eae32dcSDimitry Andric           16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
534*0eae32dcSDimitry Andric 
535*0eae32dcSDimitry Andric         unsigned long _Trailing_zero_bits;
536*0eae32dcSDimitry Andric         (void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
537*0eae32dcSDimitry Andric         const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
538*0eae32dcSDimitry Andric         _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
539*0eae32dcSDimitry Andric       }
540*0eae32dcSDimitry Andric 
541*0eae32dcSDimitry Andric       if (!_Can_use_ryu) {
542*0eae32dcSDimitry Andric         const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
543*0eae32dcSDimitry Andric         const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
544*0eae32dcSDimitry Andric           - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
545*0eae32dcSDimitry Andric 
546*0eae32dcSDimitry Andric         // Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
547*0eae32dcSDimitry Andric         return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
548*0eae32dcSDimitry Andric       }
549*0eae32dcSDimitry Andric 
550*0eae32dcSDimitry Andric       // _Can_use_ryu
551*0eae32dcSDimitry Andric       // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
552*0eae32dcSDimitry Andric       _Mid = _First + __olength;
553*0eae32dcSDimitry Andric     } else { // cases "1729", "17.29", and "0.001729"
554*0eae32dcSDimitry Andric       // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
555*0eae32dcSDimitry Andric       _Mid = _First + _Total_fixed_length;
556*0eae32dcSDimitry Andric     }
557*0eae32dcSDimitry Andric 
558*0eae32dcSDimitry Andric     while (_Output >= 10000) {
559*0eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217
560*0eae32dcSDimitry Andric       const uint32_t __c = _Output - 10000 * (_Output / 10000);
561*0eae32dcSDimitry Andric #else
562*0eae32dcSDimitry Andric       const uint32_t __c = _Output % 10000;
563*0eae32dcSDimitry Andric #endif
564*0eae32dcSDimitry Andric       _Output /= 10000;
565*0eae32dcSDimitry Andric       const uint32_t __c0 = (__c % 100) << 1;
566*0eae32dcSDimitry Andric       const uint32_t __c1 = (__c / 100) << 1;
567*0eae32dcSDimitry Andric       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
568*0eae32dcSDimitry Andric       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
569*0eae32dcSDimitry Andric     }
570*0eae32dcSDimitry Andric     if (_Output >= 100) {
571*0eae32dcSDimitry Andric       const uint32_t __c = (_Output % 100) << 1;
572*0eae32dcSDimitry Andric       _Output /= 100;
573*0eae32dcSDimitry Andric       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
574*0eae32dcSDimitry Andric     }
575*0eae32dcSDimitry Andric     if (_Output >= 10) {
576*0eae32dcSDimitry Andric       const uint32_t __c = _Output << 1;
577*0eae32dcSDimitry Andric       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
578*0eae32dcSDimitry Andric     } else {
579*0eae32dcSDimitry Andric       *--_Mid = static_cast<char>('0' + _Output);
580*0eae32dcSDimitry Andric     }
581*0eae32dcSDimitry Andric 
582*0eae32dcSDimitry Andric     if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
583*0eae32dcSDimitry Andric       // Performance note: it might be more efficient to do this immediately after setting _Mid.
584*0eae32dcSDimitry Andric       _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
585*0eae32dcSDimitry Andric     } else if (_Ryu_exponent == 0) { // case "1729"
586*0eae32dcSDimitry Andric       // Done!
587*0eae32dcSDimitry Andric     } else if (_Whole_digits > 0) { // case "17.29"
588*0eae32dcSDimitry Andric       // Performance note: moving digits might not be optimal.
589*0eae32dcSDimitry Andric       _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
590*0eae32dcSDimitry Andric       _First[_Whole_digits] = '.';
591*0eae32dcSDimitry Andric     } else { // case "0.001729"
592*0eae32dcSDimitry Andric       // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
593*0eae32dcSDimitry Andric       _First[0] = '0';
594*0eae32dcSDimitry Andric       _First[1] = '.';
595*0eae32dcSDimitry Andric       _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
596*0eae32dcSDimitry Andric     }
597*0eae32dcSDimitry Andric 
598*0eae32dcSDimitry Andric     return { _First + _Total_fixed_length, errc{} };
599*0eae32dcSDimitry Andric   }
600*0eae32dcSDimitry Andric 
601*0eae32dcSDimitry Andric   const uint32_t _Total_scientific_length =
602*0eae32dcSDimitry Andric     __olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
603*0eae32dcSDimitry Andric   if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
604*0eae32dcSDimitry Andric     return { _Last, errc::value_too_large };
605*0eae32dcSDimitry Andric   }
606*0eae32dcSDimitry Andric   char* const __result = _First;
607*0eae32dcSDimitry Andric 
608*0eae32dcSDimitry Andric   // Print the decimal digits.
609*0eae32dcSDimitry Andric   uint32_t __i = 0;
610*0eae32dcSDimitry Andric   while (_Output >= 10000) {
611*0eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217
612*0eae32dcSDimitry Andric     const uint32_t __c = _Output - 10000 * (_Output / 10000);
613*0eae32dcSDimitry Andric #else
614*0eae32dcSDimitry Andric     const uint32_t __c = _Output % 10000;
615*0eae32dcSDimitry Andric #endif
616*0eae32dcSDimitry Andric     _Output /= 10000;
617*0eae32dcSDimitry Andric     const uint32_t __c0 = (__c % 100) << 1;
618*0eae32dcSDimitry Andric     const uint32_t __c1 = (__c / 100) << 1;
619*0eae32dcSDimitry Andric     _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
620*0eae32dcSDimitry Andric     _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
621*0eae32dcSDimitry Andric     __i += 4;
622*0eae32dcSDimitry Andric   }
623*0eae32dcSDimitry Andric   if (_Output >= 100) {
624*0eae32dcSDimitry Andric     const uint32_t __c = (_Output % 100) << 1;
625*0eae32dcSDimitry Andric     _Output /= 100;
626*0eae32dcSDimitry Andric     _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
627*0eae32dcSDimitry Andric     __i += 2;
628*0eae32dcSDimitry Andric   }
629*0eae32dcSDimitry Andric   if (_Output >= 10) {
630*0eae32dcSDimitry Andric     const uint32_t __c = _Output << 1;
631*0eae32dcSDimitry Andric     // We can't use memcpy here: the decimal dot goes between these two digits.
632*0eae32dcSDimitry Andric     __result[2] = __DIGIT_TABLE[__c + 1];
633*0eae32dcSDimitry Andric     __result[0] = __DIGIT_TABLE[__c];
634*0eae32dcSDimitry Andric   } else {
635*0eae32dcSDimitry Andric     __result[0] = static_cast<char>('0' + _Output);
636*0eae32dcSDimitry Andric   }
637*0eae32dcSDimitry Andric 
638*0eae32dcSDimitry Andric   // Print decimal point if needed.
639*0eae32dcSDimitry Andric   uint32_t __index;
640*0eae32dcSDimitry Andric   if (__olength > 1) {
641*0eae32dcSDimitry Andric     __result[1] = '.';
642*0eae32dcSDimitry Andric     __index = __olength + 1;
643*0eae32dcSDimitry Andric   } else {
644*0eae32dcSDimitry Andric     __index = 1;
645*0eae32dcSDimitry Andric   }
646*0eae32dcSDimitry Andric 
647*0eae32dcSDimitry Andric   // Print the exponent.
648*0eae32dcSDimitry Andric   __result[__index++] = 'e';
649*0eae32dcSDimitry Andric   if (_Scientific_exponent < 0) {
650*0eae32dcSDimitry Andric     __result[__index++] = '-';
651*0eae32dcSDimitry Andric     _Scientific_exponent = -_Scientific_exponent;
652*0eae32dcSDimitry Andric   } else {
653*0eae32dcSDimitry Andric     __result[__index++] = '+';
654*0eae32dcSDimitry Andric   }
655*0eae32dcSDimitry Andric 
656*0eae32dcSDimitry Andric   _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
657*0eae32dcSDimitry Andric   __index += 2;
658*0eae32dcSDimitry Andric 
659*0eae32dcSDimitry Andric   return { _First + _Total_scientific_length, errc{} };
660*0eae32dcSDimitry Andric }
661*0eae32dcSDimitry Andric 
662*0eae32dcSDimitry Andric [[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
663*0eae32dcSDimitry Andric   const chars_format _Fmt) {
664*0eae32dcSDimitry Andric 
665*0eae32dcSDimitry Andric   // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
666*0eae32dcSDimitry Andric   const uint32_t __bits = __float_to_bits(__f);
667*0eae32dcSDimitry Andric 
668*0eae32dcSDimitry Andric   // Case distinction; exit early for the easy cases.
669*0eae32dcSDimitry Andric   if (__bits == 0) {
670*0eae32dcSDimitry Andric     if (_Fmt == chars_format::scientific) {
671*0eae32dcSDimitry Andric       if (_Last - _First < 5) {
672*0eae32dcSDimitry Andric         return { _Last, errc::value_too_large };
673*0eae32dcSDimitry Andric       }
674*0eae32dcSDimitry Andric 
675*0eae32dcSDimitry Andric       _VSTD::memcpy(_First, "0e+00", 5);
676*0eae32dcSDimitry Andric 
677*0eae32dcSDimitry Andric       return { _First + 5, errc{} };
678*0eae32dcSDimitry Andric     }
679*0eae32dcSDimitry Andric 
680*0eae32dcSDimitry Andric     // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
681*0eae32dcSDimitry Andric     if (_First == _Last) {
682*0eae32dcSDimitry Andric       return { _Last, errc::value_too_large };
683*0eae32dcSDimitry Andric     }
684*0eae32dcSDimitry Andric 
685*0eae32dcSDimitry Andric     *_First = '0';
686*0eae32dcSDimitry Andric 
687*0eae32dcSDimitry Andric     return { _First + 1, errc{} };
688*0eae32dcSDimitry Andric   }
689*0eae32dcSDimitry Andric 
690*0eae32dcSDimitry Andric   // Decode __bits into mantissa and exponent.
691*0eae32dcSDimitry Andric   const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
692*0eae32dcSDimitry Andric   const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
693*0eae32dcSDimitry Andric 
694*0eae32dcSDimitry Andric   // When _Fmt == chars_format::fixed and the floating-point number is a large integer,
695*0eae32dcSDimitry Andric   // it's faster to skip Ryu and immediately print the integer exactly.
696*0eae32dcSDimitry Andric   if (_Fmt == chars_format::fixed) {
697*0eae32dcSDimitry Andric     const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
698*0eae32dcSDimitry Andric     const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
699*0eae32dcSDimitry Andric       - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
700*0eae32dcSDimitry Andric 
701*0eae32dcSDimitry Andric     // Normal values are equal to _Mantissa2 * 2^_Exponent2.
702*0eae32dcSDimitry Andric     // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
703*0eae32dcSDimitry Andric 
704*0eae32dcSDimitry Andric     if (_Exponent2 > 0) {
705*0eae32dcSDimitry Andric       return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
706*0eae32dcSDimitry Andric     }
707*0eae32dcSDimitry Andric   }
708*0eae32dcSDimitry Andric 
709*0eae32dcSDimitry Andric   const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
710*0eae32dcSDimitry Andric   return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
711*0eae32dcSDimitry Andric }
712*0eae32dcSDimitry Andric 
713*0eae32dcSDimitry Andric _LIBCPP_END_NAMESPACE_STD
714*0eae32dcSDimitry Andric 
715*0eae32dcSDimitry Andric // clang-format on
716