1 //===-- tsan_platform_linux.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer (TSan), a race detector. 10 // 11 // Linux- and BSD-specific code. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_platform.h" 15 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD 16 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_libc.h" 19 #include "sanitizer_common/sanitizer_linux.h" 20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" 21 #include "sanitizer_common/sanitizer_platform_limits_posix.h" 22 #include "sanitizer_common/sanitizer_posix.h" 23 #include "sanitizer_common/sanitizer_procmaps.h" 24 #include "sanitizer_common/sanitizer_stackdepot.h" 25 #include "sanitizer_common/sanitizer_stoptheworld.h" 26 #include "tsan_flags.h" 27 #include "tsan_platform.h" 28 #include "tsan_rtl.h" 29 30 #include <fcntl.h> 31 #include <pthread.h> 32 #include <signal.h> 33 #include <stdio.h> 34 #include <stdlib.h> 35 #include <string.h> 36 #include <stdarg.h> 37 #include <sys/mman.h> 38 #if SANITIZER_LINUX 39 #include <sys/personality.h> 40 #include <setjmp.h> 41 #endif 42 #include <sys/syscall.h> 43 #include <sys/socket.h> 44 #include <sys/time.h> 45 #include <sys/types.h> 46 #include <sys/resource.h> 47 #include <sys/stat.h> 48 #include <unistd.h> 49 #include <sched.h> 50 #include <dlfcn.h> 51 #if SANITIZER_LINUX 52 #define __need_res_state 53 #include <resolv.h> 54 #endif 55 56 #ifdef sa_handler 57 # undef sa_handler 58 #endif 59 60 #ifdef sa_sigaction 61 # undef sa_sigaction 62 #endif 63 64 #if SANITIZER_FREEBSD 65 extern "C" void *__libc_stack_end; 66 void *__libc_stack_end = 0; 67 #endif 68 69 #if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64)) && \ 70 !SANITIZER_GO 71 # define INIT_LONGJMP_XOR_KEY 1 72 #else 73 # define INIT_LONGJMP_XOR_KEY 0 74 #endif 75 76 #if INIT_LONGJMP_XOR_KEY 77 #include "interception/interception.h" 78 // Must be declared outside of other namespaces. 79 DECLARE_REAL(int, _setjmp, void *env) 80 #endif 81 82 namespace __tsan { 83 84 #if INIT_LONGJMP_XOR_KEY 85 static void InitializeLongjmpXorKey(); 86 static uptr longjmp_xor_key; 87 #endif 88 89 // Runtime detected VMA size. 90 uptr vmaSize; 91 92 enum { 93 MemTotal, 94 MemShadow, 95 MemMeta, 96 MemFile, 97 MemMmap, 98 MemHeap, 99 MemOther, 100 MemCount, 101 }; 102 103 void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem) { 104 mem[MemTotal] += rss; 105 if (p >= ShadowBeg() && p < ShadowEnd()) 106 mem[MemShadow] += rss; 107 else if (p >= MetaShadowBeg() && p < MetaShadowEnd()) 108 mem[MemMeta] += rss; 109 else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) || 110 (p >= MidAppMemBeg() && p < MidAppMemEnd()) || 111 (p >= HiAppMemBeg() && p < HiAppMemEnd())) 112 mem[file ? MemFile : MemMmap] += rss; 113 else if (p >= HeapMemBeg() && p < HeapMemEnd()) 114 mem[MemHeap] += rss; 115 else 116 mem[MemOther] += rss; 117 } 118 119 void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) { 120 uptr mem[MemCount]; 121 internal_memset(mem, 0, sizeof(mem)); 122 GetMemoryProfile(FillProfileCallback, mem); 123 auto meta = ctx->metamap.GetMemoryStats(); 124 StackDepotStats stacks = StackDepotGetStats(); 125 uptr nthread, nlive; 126 ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive); 127 uptr trace_mem; 128 { 129 Lock l(&ctx->slot_mtx); 130 trace_mem = ctx->trace_part_total_allocated * sizeof(TracePart); 131 } 132 uptr internal_stats[AllocatorStatCount]; 133 internal_allocator()->GetStats(internal_stats); 134 // All these are allocated from the common mmap region. 135 mem[MemMmap] -= meta.mem_block + meta.sync_obj + trace_mem + 136 stacks.allocated + internal_stats[AllocatorStatMapped]; 137 if (s64(mem[MemMmap]) < 0) 138 mem[MemMmap] = 0; 139 internal_snprintf( 140 buf, buf_size, 141 "==%zu== %llus [%zu]: RSS %zd MB: shadow:%zd meta:%zd file:%zd" 142 " mmap:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu" 143 " trace:%zu stacks=%zd threads=%zu/%zu\n", 144 internal_getpid(), uptime_ns / (1000 * 1000 * 1000), ctx->global_epoch, 145 mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20, 146 mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemHeap] >> 20, 147 mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20, 148 meta.mem_block >> 20, meta.sync_obj >> 20, trace_mem >> 20, 149 stacks.allocated >> 20, nlive, nthread); 150 } 151 152 #if !SANITIZER_GO 153 // Mark shadow for .rodata sections with the special Shadow::kRodata marker. 154 // Accesses to .rodata can't race, so this saves time, memory and trace space. 155 static NOINLINE void MapRodata(char* buffer, uptr size) { 156 // First create temp file. 157 const char *tmpdir = GetEnv("TMPDIR"); 158 if (tmpdir == 0) 159 tmpdir = GetEnv("TEST_TMPDIR"); 160 #ifdef P_tmpdir 161 if (tmpdir == 0) 162 tmpdir = P_tmpdir; 163 #endif 164 if (tmpdir == 0) 165 return; 166 internal_snprintf(buffer, size, "%s/tsan.rodata.%d", 167 tmpdir, (int)internal_getpid()); 168 uptr openrv = internal_open(buffer, O_RDWR | O_CREAT | O_EXCL, 0600); 169 if (internal_iserror(openrv)) 170 return; 171 internal_unlink(buffer); // Unlink it now, so that we can reuse the buffer. 172 fd_t fd = openrv; 173 // Fill the file with Shadow::kRodata. 174 const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow); 175 InternalMmapVector<RawShadow> marker(kMarkerSize); 176 // volatile to prevent insertion of memset 177 for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize; 178 p++) 179 *p = Shadow::kRodata; 180 internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow)); 181 // Map the file into memory. 182 uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE, 183 MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); 184 if (internal_iserror(page)) { 185 internal_close(fd); 186 return; 187 } 188 // Map the file into shadow of .rodata sections. 189 MemoryMappingLayout proc_maps(/*cache_enabled*/true); 190 // Reusing the buffer 'buffer'. 191 MemoryMappedSegment segment(buffer, size); 192 while (proc_maps.Next(&segment)) { 193 if (segment.filename[0] != 0 && segment.filename[0] != '[' && 194 segment.IsReadable() && segment.IsExecutable() && 195 !segment.IsWritable() && IsAppMem(segment.start)) { 196 // Assume it's .rodata 197 char *shadow_start = (char *)MemToShadow(segment.start); 198 char *shadow_end = (char *)MemToShadow(segment.end); 199 for (char *p = shadow_start; p < shadow_end; 200 p += marker.size() * sizeof(RawShadow)) { 201 internal_mmap( 202 p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p), 203 PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); 204 } 205 } 206 } 207 internal_close(fd); 208 } 209 210 void InitializeShadowMemoryPlatform() { 211 char buffer[256]; // Keep in a different frame. 212 MapRodata(buffer, sizeof(buffer)); 213 } 214 215 #endif // #if !SANITIZER_GO 216 217 void InitializePlatformEarly() { 218 vmaSize = 219 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); 220 #if defined(__aarch64__) 221 # if !SANITIZER_GO 222 if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) { 223 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 224 Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize); 225 Die(); 226 } 227 #else 228 if (vmaSize != 48) { 229 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 230 Printf("FATAL: Found %zd - Supported 48\n", vmaSize); 231 Die(); 232 } 233 #endif 234 #elif SANITIZER_LOONGARCH64 235 # if !SANITIZER_GO 236 if (vmaSize != 47) { 237 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 238 Printf("FATAL: Found %zd - Supported 47\n", vmaSize); 239 Die(); 240 } 241 # endif 242 #elif defined(__powerpc64__) 243 # if !SANITIZER_GO 244 if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) { 245 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 246 Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize); 247 Die(); 248 } 249 # else 250 if (vmaSize != 46 && vmaSize != 47) { 251 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 252 Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize); 253 Die(); 254 } 255 # endif 256 #elif defined(__mips64) 257 # if !SANITIZER_GO 258 if (vmaSize != 40) { 259 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 260 Printf("FATAL: Found %zd - Supported 40\n", vmaSize); 261 Die(); 262 } 263 # else 264 if (vmaSize != 47) { 265 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 266 Printf("FATAL: Found %zd - Supported 47\n", vmaSize); 267 Die(); 268 } 269 # endif 270 # elif SANITIZER_RISCV64 271 // the bottom half of vma is allocated for userspace 272 vmaSize = vmaSize + 1; 273 # if !SANITIZER_GO 274 if (vmaSize != 39 && vmaSize != 48) { 275 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 276 Printf("FATAL: Found %zd - Supported 39 and 48\n", vmaSize); 277 Die(); 278 } 279 # endif 280 # endif 281 } 282 283 void InitializePlatform() { 284 DisableCoreDumperIfNecessary(); 285 286 // Go maps shadow memory lazily and works fine with limited address space. 287 // Unlimited stack is not a problem as well, because the executable 288 // is not compiled with -pie. 289 #if !SANITIZER_GO 290 { 291 bool reexec = false; 292 // TSan doesn't play well with unlimited stack size (as stack 293 // overlaps with shadow memory). If we detect unlimited stack size, 294 // we re-exec the program with limited stack size as a best effort. 295 if (StackSizeIsUnlimited()) { 296 const uptr kMaxStackSize = 32 * 1024 * 1024; 297 VReport(1, "Program is run with unlimited stack size, which wouldn't " 298 "work with ThreadSanitizer.\n" 299 "Re-execing with stack size limited to %zd bytes.\n", 300 kMaxStackSize); 301 SetStackSizeLimitInBytes(kMaxStackSize); 302 reexec = true; 303 } 304 305 if (!AddressSpaceIsUnlimited()) { 306 Report("WARNING: Program is run with limited virtual address space," 307 " which wouldn't work with ThreadSanitizer.\n"); 308 Report("Re-execing with unlimited virtual address space.\n"); 309 SetAddressSpaceUnlimited(); 310 reexec = true; 311 } 312 #if SANITIZER_ANDROID && (defined(__aarch64__) || defined(__x86_64__)) 313 // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in 314 // linux kernel, the random gap between stack and mapped area is increased 315 // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover 316 // this big range, we should disable randomized virtual space on aarch64. 317 // ASLR personality check. 318 int old_personality = personality(0xffffffff); 319 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { 320 VReport(1, "WARNING: Program is run with randomized virtual address " 321 "space, which wouldn't work with ThreadSanitizer.\n" 322 "Re-execing with fixed virtual address space.\n"); 323 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); 324 reexec = true; 325 } 326 327 #endif 328 #if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64)) 329 // Initialize the xor key used in {sig}{set,long}jump. 330 InitializeLongjmpXorKey(); 331 #endif 332 if (reexec) 333 ReExec(); 334 } 335 336 CheckAndProtect(); 337 InitTlsSize(); 338 #endif // !SANITIZER_GO 339 } 340 341 #if !SANITIZER_GO 342 // Extract file descriptors passed to glibc internal __res_iclose function. 343 // This is required to properly "close" the fds, because we do not see internal 344 // closes within glibc. The code is a pure hack. 345 int ExtractResolvFDs(void *state, int *fds, int nfd) { 346 #if SANITIZER_LINUX && !SANITIZER_ANDROID 347 int cnt = 0; 348 struct __res_state *statp = (struct __res_state*)state; 349 for (int i = 0; i < MAXNS && cnt < nfd; i++) { 350 if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) 351 fds[cnt++] = statp->_u._ext.nssocks[i]; 352 } 353 return cnt; 354 #else 355 return 0; 356 #endif 357 } 358 359 // Extract file descriptors passed via UNIX domain sockets. 360 // This is required to properly handle "open" of these fds. 361 // see 'man recvmsg' and 'man 3 cmsg'. 362 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { 363 int res = 0; 364 msghdr *msg = (msghdr*)msgp; 365 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); 366 for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { 367 if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) 368 continue; 369 int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); 370 for (int i = 0; i < n; i++) { 371 fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; 372 if (res == nfd) 373 return res; 374 } 375 } 376 return res; 377 } 378 379 // Reverse operation of libc stack pointer mangling 380 static uptr UnmangleLongJmpSp(uptr mangled_sp) { 381 #if defined(__x86_64__) 382 # if SANITIZER_LINUX 383 // Reverse of: 384 // xor %fs:0x30, %rsi 385 // rol $0x11, %rsi 386 uptr sp; 387 asm("ror $0x11, %0 \n" 388 "xor %%fs:0x30, %0 \n" 389 : "=r" (sp) 390 : "0" (mangled_sp)); 391 return sp; 392 # else 393 return mangled_sp; 394 # endif 395 #elif defined(__aarch64__) 396 # if SANITIZER_LINUX 397 return mangled_sp ^ longjmp_xor_key; 398 # else 399 return mangled_sp; 400 # endif 401 #elif defined(__loongarch_lp64) 402 return mangled_sp ^ longjmp_xor_key; 403 #elif defined(__powerpc64__) 404 // Reverse of: 405 // ld r4, -28696(r13) 406 // xor r4, r3, r4 407 uptr xor_key; 408 asm("ld %0, -28696(%%r13)" : "=r" (xor_key)); 409 return mangled_sp ^ xor_key; 410 #elif defined(__mips__) 411 return mangled_sp; 412 # elif SANITIZER_RISCV64 413 return mangled_sp; 414 # elif defined(__s390x__) 415 // tcbhead_t.stack_guard 416 uptr xor_key = ((uptr *)__builtin_thread_pointer())[5]; 417 return mangled_sp ^ xor_key; 418 # else 419 # error "Unknown platform" 420 # endif 421 } 422 423 #if SANITIZER_NETBSD 424 # ifdef __x86_64__ 425 # define LONG_JMP_SP_ENV_SLOT 6 426 # else 427 # error unsupported 428 # endif 429 #elif defined(__powerpc__) 430 # define LONG_JMP_SP_ENV_SLOT 0 431 #elif SANITIZER_FREEBSD 432 # ifdef __aarch64__ 433 # define LONG_JMP_SP_ENV_SLOT 1 434 # else 435 # define LONG_JMP_SP_ENV_SLOT 2 436 # endif 437 #elif SANITIZER_LINUX 438 # ifdef __aarch64__ 439 # define LONG_JMP_SP_ENV_SLOT 13 440 # elif defined(__loongarch__) 441 # define LONG_JMP_SP_ENV_SLOT 1 442 # elif defined(__mips64) 443 # define LONG_JMP_SP_ENV_SLOT 1 444 # elif SANITIZER_RISCV64 445 # define LONG_JMP_SP_ENV_SLOT 13 446 # elif defined(__s390x__) 447 # define LONG_JMP_SP_ENV_SLOT 9 448 # else 449 # define LONG_JMP_SP_ENV_SLOT 6 450 # endif 451 #endif 452 453 uptr ExtractLongJmpSp(uptr *env) { 454 uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT]; 455 return UnmangleLongJmpSp(mangled_sp); 456 } 457 458 #if INIT_LONGJMP_XOR_KEY 459 // GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp 460 // functions) by XORing them with a random key. For AArch64 it is a global 461 // variable rather than a TCB one (as for x86_64/powerpc). We obtain the key by 462 // issuing a setjmp and XORing the SP pointer values to derive the key. 463 static void InitializeLongjmpXorKey() { 464 // 1. Call REAL(setjmp), which stores the mangled SP in env. 465 jmp_buf env; 466 REAL(_setjmp)(env); 467 468 // 2. Retrieve vanilla/mangled SP. 469 uptr sp; 470 #ifdef __loongarch__ 471 asm("move %0, $sp" : "=r" (sp)); 472 #else 473 asm("mov %0, sp" : "=r" (sp)); 474 #endif 475 uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT]; 476 477 // 3. xor SPs to obtain key. 478 longjmp_xor_key = mangled_sp ^ sp; 479 } 480 #endif 481 482 extern "C" void __tsan_tls_initialization() {} 483 484 void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) { 485 // Check that the thr object is in tls; 486 const uptr thr_beg = (uptr)thr; 487 const uptr thr_end = (uptr)thr + sizeof(*thr); 488 CHECK_GE(thr_beg, tls_addr); 489 CHECK_LE(thr_beg, tls_addr + tls_size); 490 CHECK_GE(thr_end, tls_addr); 491 CHECK_LE(thr_end, tls_addr + tls_size); 492 // Since the thr object is huge, skip it. 493 const uptr pc = StackTrace::GetNextInstructionPc( 494 reinterpret_cast<uptr>(__tsan_tls_initialization)); 495 MemoryRangeImitateWrite(thr, pc, tls_addr, thr_beg - tls_addr); 496 MemoryRangeImitateWrite(thr, pc, thr_end, tls_addr + tls_size - thr_end); 497 } 498 499 // Note: this function runs with async signals enabled, 500 // so it must not touch any tsan state. 501 int call_pthread_cancel_with_cleanup(int (*fn)(void *arg), 502 void (*cleanup)(void *arg), void *arg) { 503 // pthread_cleanup_push/pop are hardcore macros mess. 504 // We can't intercept nor call them w/o including pthread.h. 505 int res; 506 pthread_cleanup_push(cleanup, arg); 507 res = fn(arg); 508 pthread_cleanup_pop(0); 509 return res; 510 } 511 #endif // !SANITIZER_GO 512 513 #if !SANITIZER_GO 514 void ReplaceSystemMalloc() { } 515 #endif 516 517 #if !SANITIZER_GO 518 #if SANITIZER_ANDROID 519 // On Android, one thread can call intercepted functions after 520 // DestroyThreadState(), so add a fake thread state for "dead" threads. 521 static ThreadState *dead_thread_state = nullptr; 522 523 ThreadState *cur_thread() { 524 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 525 if (thr == nullptr) { 526 __sanitizer_sigset_t emptyset; 527 internal_sigfillset(&emptyset); 528 __sanitizer_sigset_t oldset; 529 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); 530 thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 531 if (thr == nullptr) { 532 thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState), 533 "ThreadState")); 534 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); 535 if (dead_thread_state == nullptr) { 536 dead_thread_state = reinterpret_cast<ThreadState*>( 537 MmapOrDie(sizeof(ThreadState), "ThreadState")); 538 dead_thread_state->fast_state.SetIgnoreBit(); 539 dead_thread_state->ignore_interceptors = 1; 540 dead_thread_state->is_dead = true; 541 *const_cast<u32*>(&dead_thread_state->tid) = -1; 542 CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState), 543 PROT_READ)); 544 } 545 } 546 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); 547 } 548 return thr; 549 } 550 551 void set_cur_thread(ThreadState *thr) { 552 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); 553 } 554 555 void cur_thread_finalize() { 556 __sanitizer_sigset_t emptyset; 557 internal_sigfillset(&emptyset); 558 __sanitizer_sigset_t oldset; 559 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); 560 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 561 if (thr != dead_thread_state) { 562 *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state); 563 UnmapOrDie(thr, sizeof(ThreadState)); 564 } 565 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); 566 } 567 #endif // SANITIZER_ANDROID 568 #endif // if !SANITIZER_GO 569 570 } // namespace __tsan 571 572 #endif // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD 573