1e8d8bef9SDimitry Andric //===-- memprof_allocator.cpp --------------------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This file is a part of MemProfiler, a memory profiler. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // Implementation of MemProf's memory allocator, which uses the allocator 12e8d8bef9SDimitry Andric // from sanitizer_common. 13e8d8bef9SDimitry Andric // 14e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 15e8d8bef9SDimitry Andric 16e8d8bef9SDimitry Andric #include "memprof_allocator.h" 17e8d8bef9SDimitry Andric #include "memprof_mapping.h" 18349cc55cSDimitry Andric #include "memprof_mibmap.h" 19349cc55cSDimitry Andric #include "memprof_rawprofile.h" 20e8d8bef9SDimitry Andric #include "memprof_stack.h" 21e8d8bef9SDimitry Andric #include "memprof_thread.h" 221fd87a68SDimitry Andric #include "profile/MemProfData.inc" 23e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_checks.h" 24e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_interface.h" 25e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_report.h" 26e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_errno.h" 27e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_file.h" 28e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_flags.h" 29e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_internal_defs.h" 30e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_list.h" 31349cc55cSDimitry Andric #include "sanitizer_common/sanitizer_procmaps.h" 32e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_stackdepot.h" 33349cc55cSDimitry Andric #include "sanitizer_common/sanitizer_vector.h" 34e8d8bef9SDimitry Andric 35e8d8bef9SDimitry Andric #include <sched.h> 36e8d8bef9SDimitry Andric #include <time.h> 37e8d8bef9SDimitry Andric 38e8d8bef9SDimitry Andric namespace __memprof { 391fd87a68SDimitry Andric namespace { 401fd87a68SDimitry Andric using ::llvm::memprof::MemInfoBlock; 411fd87a68SDimitry Andric 421fd87a68SDimitry Andric void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 431fd87a68SDimitry Andric u64 p; 441fd87a68SDimitry Andric 451fd87a68SDimitry Andric if (print_terse) { 46*81ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 47*81ad6265SDimitry Andric Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 48*81ad6265SDimitry Andric M.MinSize, M.MaxSize); 49*81ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 50*81ad6265SDimitry Andric Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 51*81ad6265SDimitry Andric M.MaxAccessCount); 52*81ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 53*81ad6265SDimitry Andric Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 54*81ad6265SDimitry Andric M.MaxLifetime); 55*81ad6265SDimitry Andric Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 56*81ad6265SDimitry Andric M.NumSameAllocCpu, M.NumSameDeallocCpu); 571fd87a68SDimitry Andric } else { 58*81ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 591fd87a68SDimitry Andric Printf("Memory allocation stack id = %llu\n", id); 601fd87a68SDimitry Andric Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 61*81ad6265SDimitry Andric M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 62*81ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 631fd87a68SDimitry Andric Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 64*81ad6265SDimitry Andric p % 100, M.MinAccessCount, M.MaxAccessCount); 65*81ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 661fd87a68SDimitry Andric Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 67*81ad6265SDimitry Andric p % 100, M.MinLifetime, M.MaxLifetime); 681fd87a68SDimitry Andric Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 691fd87a68SDimitry Andric "cpu: %u, num same dealloc_cpu: %u\n", 70*81ad6265SDimitry Andric M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 71*81ad6265SDimitry Andric M.NumSameDeallocCpu); 721fd87a68SDimitry Andric } 731fd87a68SDimitry Andric } 741fd87a68SDimitry Andric } // namespace 75e8d8bef9SDimitry Andric 76e8d8bef9SDimitry Andric static int GetCpuId(void) { 77e8d8bef9SDimitry Andric // _memprof_preinit is called via the preinit_array, which subsequently calls 78e8d8bef9SDimitry Andric // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 79e8d8bef9SDimitry Andric // will seg fault as the address of __vdso_getcpu will be null. 80e8d8bef9SDimitry Andric if (!memprof_init_done) 81e8d8bef9SDimitry Andric return -1; 82e8d8bef9SDimitry Andric return sched_getcpu(); 83e8d8bef9SDimitry Andric } 84e8d8bef9SDimitry Andric 85e8d8bef9SDimitry Andric // Compute the timestamp in ms. 86e8d8bef9SDimitry Andric static int GetTimestamp(void) { 87e8d8bef9SDimitry Andric // timespec_get will segfault if called from dl_init 88e8d8bef9SDimitry Andric if (!memprof_timestamp_inited) { 89e8d8bef9SDimitry Andric // By returning 0, this will be effectively treated as being 90e8d8bef9SDimitry Andric // timestamped at memprof init time (when memprof_init_timestamp_s 91e8d8bef9SDimitry Andric // is initialized). 92e8d8bef9SDimitry Andric return 0; 93e8d8bef9SDimitry Andric } 94e8d8bef9SDimitry Andric timespec ts; 95e8d8bef9SDimitry Andric clock_gettime(CLOCK_REALTIME, &ts); 96e8d8bef9SDimitry Andric return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 97e8d8bef9SDimitry Andric } 98e8d8bef9SDimitry Andric 99e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator(); 100e8d8bef9SDimitry Andric 101e8d8bef9SDimitry Andric // The memory chunk allocated from the underlying allocator looks like this: 102e8d8bef9SDimitry Andric // H H U U U U U U 103e8d8bef9SDimitry Andric // H -- ChunkHeader (32 bytes) 104e8d8bef9SDimitry Andric // U -- user memory. 105e8d8bef9SDimitry Andric 106e8d8bef9SDimitry Andric // If there is left padding before the ChunkHeader (due to use of memalign), 107e8d8bef9SDimitry Andric // we store a magic value in the first uptr word of the memory block and 108e8d8bef9SDimitry Andric // store the address of ChunkHeader in the next uptr. 109e8d8bef9SDimitry Andric // M B L L L L L L L L L H H U U U U U U 110e8d8bef9SDimitry Andric // | ^ 111e8d8bef9SDimitry Andric // ---------------------| 112e8d8bef9SDimitry Andric // M -- magic value kAllocBegMagic 113e8d8bef9SDimitry Andric // B -- address of ChunkHeader pointing to the first 'H' 114e8d8bef9SDimitry Andric 115e8d8bef9SDimitry Andric constexpr uptr kMaxAllowedMallocBits = 40; 116e8d8bef9SDimitry Andric 117e8d8bef9SDimitry Andric // Should be no more than 32-bytes 118e8d8bef9SDimitry Andric struct ChunkHeader { 119e8d8bef9SDimitry Andric // 1-st 4 bytes. 120e8d8bef9SDimitry Andric u32 alloc_context_id; 121e8d8bef9SDimitry Andric // 2-nd 4 bytes 122e8d8bef9SDimitry Andric u32 cpu_id; 123e8d8bef9SDimitry Andric // 3-rd 4 bytes 124e8d8bef9SDimitry Andric u32 timestamp_ms; 125e8d8bef9SDimitry Andric // 4-th 4 bytes 126e8d8bef9SDimitry Andric // Note only 1 bit is needed for this flag if we need space in the future for 127e8d8bef9SDimitry Andric // more fields. 128e8d8bef9SDimitry Andric u32 from_memalign; 129e8d8bef9SDimitry Andric // 5-th and 6-th 4 bytes 130e8d8bef9SDimitry Andric // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 131e8d8bef9SDimitry Andric // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 132e8d8bef9SDimitry Andric // more fields. 133e8d8bef9SDimitry Andric atomic_uint64_t user_requested_size; 134e8d8bef9SDimitry Andric // 23 bits available 135e8d8bef9SDimitry Andric // 7-th and 8-th 4 bytes 136e8d8bef9SDimitry Andric u64 data_type_id; // TODO: hash of type name 137e8d8bef9SDimitry Andric }; 138e8d8bef9SDimitry Andric 139e8d8bef9SDimitry Andric static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 140e8d8bef9SDimitry Andric COMPILER_CHECK(kChunkHeaderSize == 32); 141e8d8bef9SDimitry Andric 142e8d8bef9SDimitry Andric struct MemprofChunk : ChunkHeader { 143e8d8bef9SDimitry Andric uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 144e8d8bef9SDimitry Andric uptr UsedSize() { 145e8d8bef9SDimitry Andric return atomic_load(&user_requested_size, memory_order_relaxed); 146e8d8bef9SDimitry Andric } 147e8d8bef9SDimitry Andric void *AllocBeg() { 148e8d8bef9SDimitry Andric if (from_memalign) 149e8d8bef9SDimitry Andric return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 150e8d8bef9SDimitry Andric return reinterpret_cast<void *>(this); 151e8d8bef9SDimitry Andric } 152e8d8bef9SDimitry Andric }; 153e8d8bef9SDimitry Andric 154e8d8bef9SDimitry Andric class LargeChunkHeader { 155e8d8bef9SDimitry Andric static constexpr uptr kAllocBegMagic = 156e8d8bef9SDimitry Andric FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 157e8d8bef9SDimitry Andric atomic_uintptr_t magic; 158e8d8bef9SDimitry Andric MemprofChunk *chunk_header; 159e8d8bef9SDimitry Andric 160e8d8bef9SDimitry Andric public: 161e8d8bef9SDimitry Andric MemprofChunk *Get() const { 162e8d8bef9SDimitry Andric return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 163e8d8bef9SDimitry Andric ? chunk_header 164e8d8bef9SDimitry Andric : nullptr; 165e8d8bef9SDimitry Andric } 166e8d8bef9SDimitry Andric 167e8d8bef9SDimitry Andric void Set(MemprofChunk *p) { 168e8d8bef9SDimitry Andric if (p) { 169e8d8bef9SDimitry Andric chunk_header = p; 170e8d8bef9SDimitry Andric atomic_store(&magic, kAllocBegMagic, memory_order_release); 171e8d8bef9SDimitry Andric return; 172e8d8bef9SDimitry Andric } 173e8d8bef9SDimitry Andric 174e8d8bef9SDimitry Andric uptr old = kAllocBegMagic; 175e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&magic, &old, 0, 176e8d8bef9SDimitry Andric memory_order_release)) { 177e8d8bef9SDimitry Andric CHECK_EQ(old, kAllocBegMagic); 178e8d8bef9SDimitry Andric } 179e8d8bef9SDimitry Andric } 180e8d8bef9SDimitry Andric }; 181e8d8bef9SDimitry Andric 182e8d8bef9SDimitry Andric void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 183e8d8bef9SDimitry Andric // Since memprof's mapping is compacting, the shadow chunk may be 184e8d8bef9SDimitry Andric // not page-aligned, so we only flush the page-aligned portion. 185e8d8bef9SDimitry Andric ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 186e8d8bef9SDimitry Andric } 187e8d8bef9SDimitry Andric 188e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 189e8d8bef9SDimitry Andric // Statistics. 190e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 191e8d8bef9SDimitry Andric thread_stats.mmaps++; 192e8d8bef9SDimitry Andric thread_stats.mmaped += size; 193e8d8bef9SDimitry Andric } 194e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195e8d8bef9SDimitry Andric // We are about to unmap a chunk of user memory. 196e8d8bef9SDimitry Andric // Mark the corresponding shadow memory as not needed. 197e8d8bef9SDimitry Andric FlushUnneededMemProfShadowMemory(p, size); 198e8d8bef9SDimitry Andric // Statistics. 199e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 200e8d8bef9SDimitry Andric thread_stats.munmaps++; 201e8d8bef9SDimitry Andric thread_stats.munmaped += size; 202e8d8bef9SDimitry Andric } 203e8d8bef9SDimitry Andric 204e8d8bef9SDimitry Andric AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 205e8d8bef9SDimitry Andric CHECK(ms); 206e8d8bef9SDimitry Andric return &ms->allocator_cache; 207e8d8bef9SDimitry Andric } 208e8d8bef9SDimitry Andric 209e8d8bef9SDimitry Andric // Accumulates the access count from the shadow for the given pointer and size. 210e8d8bef9SDimitry Andric u64 GetShadowCount(uptr p, u32 size) { 211e8d8bef9SDimitry Andric u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 212e8d8bef9SDimitry Andric u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 213e8d8bef9SDimitry Andric u64 count = 0; 214e8d8bef9SDimitry Andric for (; shadow <= shadow_end; shadow++) 215e8d8bef9SDimitry Andric count += *shadow; 216e8d8bef9SDimitry Andric return count; 217e8d8bef9SDimitry Andric } 218e8d8bef9SDimitry Andric 219e8d8bef9SDimitry Andric // Clears the shadow counters (when memory is allocated). 220e8d8bef9SDimitry Andric void ClearShadow(uptr addr, uptr size) { 221e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr)); 222e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr)); 223e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr + size)); 224e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 225e8d8bef9SDimitry Andric CHECK(REAL(memset)); 226e8d8bef9SDimitry Andric uptr shadow_beg = MEM_TO_SHADOW(addr); 227e8d8bef9SDimitry Andric uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 228e8d8bef9SDimitry Andric if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 229e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 230e8d8bef9SDimitry Andric } else { 231e8d8bef9SDimitry Andric uptr page_size = GetPageSizeCached(); 232e8d8bef9SDimitry Andric uptr page_beg = RoundUpTo(shadow_beg, page_size); 233e8d8bef9SDimitry Andric uptr page_end = RoundDownTo(shadow_end, page_size); 234e8d8bef9SDimitry Andric 235e8d8bef9SDimitry Andric if (page_beg >= page_end) { 236e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 237e8d8bef9SDimitry Andric } else { 238e8d8bef9SDimitry Andric if (page_beg != shadow_beg) { 239e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 240e8d8bef9SDimitry Andric } 241e8d8bef9SDimitry Andric if (page_end != shadow_end) { 242e8d8bef9SDimitry Andric REAL(memset)((void *)page_end, 0, shadow_end - page_end); 243e8d8bef9SDimitry Andric } 244e8d8bef9SDimitry Andric ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 245e8d8bef9SDimitry Andric } 246e8d8bef9SDimitry Andric } 247e8d8bef9SDimitry Andric } 248e8d8bef9SDimitry Andric 249e8d8bef9SDimitry Andric struct Allocator { 250e8d8bef9SDimitry Andric static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 251e8d8bef9SDimitry Andric 252e8d8bef9SDimitry Andric MemprofAllocator allocator; 253e8d8bef9SDimitry Andric StaticSpinMutex fallback_mutex; 254e8d8bef9SDimitry Andric AllocatorCache fallback_allocator_cache; 255e8d8bef9SDimitry Andric 256e8d8bef9SDimitry Andric uptr max_user_defined_malloc_size; 257e8d8bef9SDimitry Andric 258349cc55cSDimitry Andric // Holds the mapping of stack ids to MemInfoBlocks. 259349cc55cSDimitry Andric MIBMapTy MIBMap; 260349cc55cSDimitry Andric 261349cc55cSDimitry Andric atomic_uint8_t destructing; 262349cc55cSDimitry Andric atomic_uint8_t constructed; 263349cc55cSDimitry Andric bool print_text; 264e8d8bef9SDimitry Andric 265e8d8bef9SDimitry Andric // ------------------- Initialization ------------------------ 266349cc55cSDimitry Andric explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 267349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 0); 268349cc55cSDimitry Andric atomic_store_relaxed(&constructed, 1); 269349cc55cSDimitry Andric } 270e8d8bef9SDimitry Andric 271349cc55cSDimitry Andric ~Allocator() { 272349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 1); 273349cc55cSDimitry Andric FinishAndWrite(); 274349cc55cSDimitry Andric } 275e8d8bef9SDimitry Andric 276349cc55cSDimitry Andric static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 277349cc55cSDimitry Andric void *Arg) { 278349cc55cSDimitry Andric SpinMutexLock(&Value->mutex); 2791fd87a68SDimitry Andric Print(Value->mib, Key, bool(Arg)); 280349cc55cSDimitry Andric } 281349cc55cSDimitry Andric 282349cc55cSDimitry Andric void FinishAndWrite() { 283349cc55cSDimitry Andric if (print_text && common_flags()->print_module_map) 284349cc55cSDimitry Andric DumpProcessMap(); 285349cc55cSDimitry Andric 286e8d8bef9SDimitry Andric allocator.ForceLock(); 287349cc55cSDimitry Andric 288349cc55cSDimitry Andric InsertLiveBlocks(); 289349cc55cSDimitry Andric if (print_text) { 2904824e7fdSDimitry Andric if (!flags()->print_terse) 2914824e7fdSDimitry Andric Printf("Recorded MIBs (incl. live on exit):\n"); 292349cc55cSDimitry Andric MIBMap.ForEach(PrintCallback, 293349cc55cSDimitry Andric reinterpret_cast<void *>(flags()->print_terse)); 294349cc55cSDimitry Andric StackDepotPrintAll(); 295349cc55cSDimitry Andric } else { 296349cc55cSDimitry Andric // Serialize the contents to a raw profile. Format documented in 297349cc55cSDimitry Andric // memprof_rawprofile.h. 298349cc55cSDimitry Andric char *Buffer = nullptr; 299349cc55cSDimitry Andric 300349cc55cSDimitry Andric MemoryMappingLayout Layout(/*cache_enabled=*/true); 301349cc55cSDimitry Andric u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer); 302349cc55cSDimitry Andric CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 303349cc55cSDimitry Andric report_file.Write(Buffer, BytesSerialized); 304349cc55cSDimitry Andric } 305349cc55cSDimitry Andric 306349cc55cSDimitry Andric allocator.ForceUnlock(); 307349cc55cSDimitry Andric } 308349cc55cSDimitry Andric 309349cc55cSDimitry Andric // Inserts any blocks which have been allocated but not yet deallocated. 310349cc55cSDimitry Andric void InsertLiveBlocks() { 311e8d8bef9SDimitry Andric allocator.ForEachChunk( 312e8d8bef9SDimitry Andric [](uptr chunk, void *alloc) { 313e8d8bef9SDimitry Andric u64 user_requested_size; 314349cc55cSDimitry Andric Allocator *A = (Allocator *)alloc; 315e8d8bef9SDimitry Andric MemprofChunk *m = 316349cc55cSDimitry Andric A->GetMemprofChunk((void *)chunk, user_requested_size); 317e8d8bef9SDimitry Andric if (!m) 318e8d8bef9SDimitry Andric return; 319e8d8bef9SDimitry Andric uptr user_beg = ((uptr)m) + kChunkHeaderSize; 320e8d8bef9SDimitry Andric u64 c = GetShadowCount(user_beg, user_requested_size); 321e8d8bef9SDimitry Andric long curtime = GetTimestamp(); 322e8d8bef9SDimitry Andric MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 323e8d8bef9SDimitry Andric m->cpu_id, GetCpuId()); 324349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 325e8d8bef9SDimitry Andric }, 326e8d8bef9SDimitry Andric this); 327e8d8bef9SDimitry Andric } 328e8d8bef9SDimitry Andric 329e8d8bef9SDimitry Andric void InitLinkerInitialized() { 330e8d8bef9SDimitry Andric SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 331e8d8bef9SDimitry Andric allocator.InitLinkerInitialized( 332e8d8bef9SDimitry Andric common_flags()->allocator_release_to_os_interval_ms); 333e8d8bef9SDimitry Andric max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 334e8d8bef9SDimitry Andric ? common_flags()->max_allocation_size_mb 335e8d8bef9SDimitry Andric << 20 336e8d8bef9SDimitry Andric : kMaxAllowedMallocSize; 337e8d8bef9SDimitry Andric } 338e8d8bef9SDimitry Andric 339e8d8bef9SDimitry Andric // -------------------- Allocation/Deallocation routines --------------- 340e8d8bef9SDimitry Andric void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 341e8d8bef9SDimitry Andric AllocType alloc_type) { 342e8d8bef9SDimitry Andric if (UNLIKELY(!memprof_inited)) 343e8d8bef9SDimitry Andric MemprofInitFromRtl(); 3440eae32dcSDimitry Andric if (UNLIKELY(IsRssLimitExceeded())) { 345e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 346e8d8bef9SDimitry Andric return nullptr; 347e8d8bef9SDimitry Andric ReportRssLimitExceeded(stack); 348e8d8bef9SDimitry Andric } 349e8d8bef9SDimitry Andric CHECK(stack); 350e8d8bef9SDimitry Andric const uptr min_alignment = MEMPROF_ALIGNMENT; 351e8d8bef9SDimitry Andric if (alignment < min_alignment) 352e8d8bef9SDimitry Andric alignment = min_alignment; 353e8d8bef9SDimitry Andric if (size == 0) { 354e8d8bef9SDimitry Andric // We'd be happy to avoid allocating memory for zero-size requests, but 355e8d8bef9SDimitry Andric // some programs/tests depend on this behavior and assume that malloc 356e8d8bef9SDimitry Andric // would not return NULL even for zero-size allocations. Moreover, it 357e8d8bef9SDimitry Andric // looks like operator new should never return NULL, and results of 358e8d8bef9SDimitry Andric // consecutive "new" calls must be different even if the allocated size 359e8d8bef9SDimitry Andric // is zero. 360e8d8bef9SDimitry Andric size = 1; 361e8d8bef9SDimitry Andric } 362e8d8bef9SDimitry Andric CHECK(IsPowerOfTwo(alignment)); 363e8d8bef9SDimitry Andric uptr rounded_size = RoundUpTo(size, alignment); 364e8d8bef9SDimitry Andric uptr needed_size = rounded_size + kChunkHeaderSize; 365e8d8bef9SDimitry Andric if (alignment > min_alignment) 366e8d8bef9SDimitry Andric needed_size += alignment; 367e8d8bef9SDimitry Andric CHECK(IsAligned(needed_size, min_alignment)); 368e8d8bef9SDimitry Andric if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 369e8d8bef9SDimitry Andric size > max_user_defined_malloc_size) { 370e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) { 371349cc55cSDimitry Andric Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 372e8d8bef9SDimitry Andric return nullptr; 373e8d8bef9SDimitry Andric } 374e8d8bef9SDimitry Andric uptr malloc_limit = 375e8d8bef9SDimitry Andric Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 376e8d8bef9SDimitry Andric ReportAllocationSizeTooBig(size, malloc_limit, stack); 377e8d8bef9SDimitry Andric } 378e8d8bef9SDimitry Andric 379e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 380e8d8bef9SDimitry Andric void *allocated; 381e8d8bef9SDimitry Andric if (t) { 382e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 383e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 384e8d8bef9SDimitry Andric } else { 385e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 386e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 387e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 388e8d8bef9SDimitry Andric } 389e8d8bef9SDimitry Andric if (UNLIKELY(!allocated)) { 390e8d8bef9SDimitry Andric SetAllocatorOutOfMemory(); 391e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 392e8d8bef9SDimitry Andric return nullptr; 393e8d8bef9SDimitry Andric ReportOutOfMemory(size, stack); 394e8d8bef9SDimitry Andric } 395e8d8bef9SDimitry Andric 396e8d8bef9SDimitry Andric uptr alloc_beg = reinterpret_cast<uptr>(allocated); 397e8d8bef9SDimitry Andric uptr alloc_end = alloc_beg + needed_size; 398e8d8bef9SDimitry Andric uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 399e8d8bef9SDimitry Andric uptr user_beg = beg_plus_header; 400e8d8bef9SDimitry Andric if (!IsAligned(user_beg, alignment)) 401e8d8bef9SDimitry Andric user_beg = RoundUpTo(user_beg, alignment); 402e8d8bef9SDimitry Andric uptr user_end = user_beg + size; 403e8d8bef9SDimitry Andric CHECK_LE(user_end, alloc_end); 404e8d8bef9SDimitry Andric uptr chunk_beg = user_beg - kChunkHeaderSize; 405e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 406e8d8bef9SDimitry Andric m->from_memalign = alloc_beg != chunk_beg; 407e8d8bef9SDimitry Andric CHECK(size); 408e8d8bef9SDimitry Andric 409e8d8bef9SDimitry Andric m->cpu_id = GetCpuId(); 410e8d8bef9SDimitry Andric m->timestamp_ms = GetTimestamp(); 411e8d8bef9SDimitry Andric m->alloc_context_id = StackDepotPut(*stack); 412e8d8bef9SDimitry Andric 413e8d8bef9SDimitry Andric uptr size_rounded_down_to_granularity = 414e8d8bef9SDimitry Andric RoundDownTo(size, SHADOW_GRANULARITY); 415e8d8bef9SDimitry Andric if (size_rounded_down_to_granularity) 416e8d8bef9SDimitry Andric ClearShadow(user_beg, size_rounded_down_to_granularity); 417e8d8bef9SDimitry Andric 418e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 419e8d8bef9SDimitry Andric thread_stats.mallocs++; 420e8d8bef9SDimitry Andric thread_stats.malloced += size; 421e8d8bef9SDimitry Andric thread_stats.malloced_overhead += needed_size - size; 422e8d8bef9SDimitry Andric if (needed_size > SizeClassMap::kMaxSize) 423e8d8bef9SDimitry Andric thread_stats.malloc_large++; 424e8d8bef9SDimitry Andric else 425e8d8bef9SDimitry Andric thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 426e8d8bef9SDimitry Andric 427e8d8bef9SDimitry Andric void *res = reinterpret_cast<void *>(user_beg); 428e8d8bef9SDimitry Andric atomic_store(&m->user_requested_size, size, memory_order_release); 429e8d8bef9SDimitry Andric if (alloc_beg != chunk_beg) { 430e8d8bef9SDimitry Andric CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 431e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 432e8d8bef9SDimitry Andric } 433*81ad6265SDimitry Andric RunMallocHooks(res, size); 434e8d8bef9SDimitry Andric return res; 435e8d8bef9SDimitry Andric } 436e8d8bef9SDimitry Andric 437e8d8bef9SDimitry Andric void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 438e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 439e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(ptr); 440e8d8bef9SDimitry Andric if (p == 0) 441e8d8bef9SDimitry Andric return; 442e8d8bef9SDimitry Andric 443*81ad6265SDimitry Andric RunFreeHooks(ptr); 444e8d8bef9SDimitry Andric 445e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 446e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 447e8d8bef9SDimitry Andric 448e8d8bef9SDimitry Andric u64 user_requested_size = 449e8d8bef9SDimitry Andric atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 450349cc55cSDimitry Andric if (memprof_inited && memprof_init_done && 451349cc55cSDimitry Andric atomic_load_relaxed(&constructed) && 452349cc55cSDimitry Andric !atomic_load_relaxed(&destructing)) { 453e8d8bef9SDimitry Andric u64 c = GetShadowCount(p, user_requested_size); 454e8d8bef9SDimitry Andric long curtime = GetTimestamp(); 455e8d8bef9SDimitry Andric 456e8d8bef9SDimitry Andric MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 457e8d8bef9SDimitry Andric m->cpu_id, GetCpuId()); 458349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 459e8d8bef9SDimitry Andric } 460e8d8bef9SDimitry Andric 461e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 462e8d8bef9SDimitry Andric thread_stats.frees++; 463e8d8bef9SDimitry Andric thread_stats.freed += user_requested_size; 464e8d8bef9SDimitry Andric 465e8d8bef9SDimitry Andric void *alloc_beg = m->AllocBeg(); 466e8d8bef9SDimitry Andric if (alloc_beg != m) { 467e8d8bef9SDimitry Andric // Clear the magic value, as allocator internals may overwrite the 468e8d8bef9SDimitry Andric // contents of deallocated chunk, confusing GetMemprofChunk lookup. 469e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 470e8d8bef9SDimitry Andric } 471e8d8bef9SDimitry Andric 472e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 473e8d8bef9SDimitry Andric if (t) { 474e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 475e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 476e8d8bef9SDimitry Andric } else { 477e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 478e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 479e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 480e8d8bef9SDimitry Andric } 481e8d8bef9SDimitry Andric } 482e8d8bef9SDimitry Andric 483e8d8bef9SDimitry Andric void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 484e8d8bef9SDimitry Andric CHECK(old_ptr && new_size); 485e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(old_ptr); 486e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 487e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 488e8d8bef9SDimitry Andric 489e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 490e8d8bef9SDimitry Andric thread_stats.reallocs++; 491e8d8bef9SDimitry Andric thread_stats.realloced += new_size; 492e8d8bef9SDimitry Andric 493e8d8bef9SDimitry Andric void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 494e8d8bef9SDimitry Andric if (new_ptr) { 495e8d8bef9SDimitry Andric CHECK_NE(REAL(memcpy), nullptr); 496e8d8bef9SDimitry Andric uptr memcpy_size = Min(new_size, m->UsedSize()); 497e8d8bef9SDimitry Andric REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 498e8d8bef9SDimitry Andric Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 499e8d8bef9SDimitry Andric } 500e8d8bef9SDimitry Andric return new_ptr; 501e8d8bef9SDimitry Andric } 502e8d8bef9SDimitry Andric 503e8d8bef9SDimitry Andric void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 504e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 505e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 506e8d8bef9SDimitry Andric return nullptr; 507e8d8bef9SDimitry Andric ReportCallocOverflow(nmemb, size, stack); 508e8d8bef9SDimitry Andric } 509e8d8bef9SDimitry Andric void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 510e8d8bef9SDimitry Andric // If the memory comes from the secondary allocator no need to clear it 511e8d8bef9SDimitry Andric // as it comes directly from mmap. 512e8d8bef9SDimitry Andric if (ptr && allocator.FromPrimary(ptr)) 513e8d8bef9SDimitry Andric REAL(memset)(ptr, 0, nmemb * size); 514e8d8bef9SDimitry Andric return ptr; 515e8d8bef9SDimitry Andric } 516e8d8bef9SDimitry Andric 517e8d8bef9SDimitry Andric void CommitBack(MemprofThreadLocalMallocStorage *ms, 518e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 519e8d8bef9SDimitry Andric AllocatorCache *ac = GetAllocatorCache(ms); 520e8d8bef9SDimitry Andric allocator.SwallowCache(ac); 521e8d8bef9SDimitry Andric } 522e8d8bef9SDimitry Andric 523e8d8bef9SDimitry Andric // -------------------------- Chunk lookup ---------------------- 524e8d8bef9SDimitry Andric 525e8d8bef9SDimitry Andric // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 526e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 527e8d8bef9SDimitry Andric if (!alloc_beg) 528e8d8bef9SDimitry Andric return nullptr; 529e8d8bef9SDimitry Andric MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 530e8d8bef9SDimitry Andric if (!p) { 531e8d8bef9SDimitry Andric if (!allocator.FromPrimary(alloc_beg)) 532e8d8bef9SDimitry Andric return nullptr; 533e8d8bef9SDimitry Andric p = reinterpret_cast<MemprofChunk *>(alloc_beg); 534e8d8bef9SDimitry Andric } 535e8d8bef9SDimitry Andric // The size is reset to 0 on deallocation (and a min of 1 on 536e8d8bef9SDimitry Andric // allocation). 537e8d8bef9SDimitry Andric user_requested_size = 538e8d8bef9SDimitry Andric atomic_load(&p->user_requested_size, memory_order_acquire); 539e8d8bef9SDimitry Andric if (user_requested_size) 540e8d8bef9SDimitry Andric return p; 541e8d8bef9SDimitry Andric return nullptr; 542e8d8bef9SDimitry Andric } 543e8d8bef9SDimitry Andric 544e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 545e8d8bef9SDimitry Andric void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 546e8d8bef9SDimitry Andric return GetMemprofChunk(alloc_beg, user_requested_size); 547e8d8bef9SDimitry Andric } 548e8d8bef9SDimitry Andric 549e8d8bef9SDimitry Andric uptr AllocationSize(uptr p) { 550e8d8bef9SDimitry Andric u64 user_requested_size; 551e8d8bef9SDimitry Andric MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 552e8d8bef9SDimitry Andric if (!m) 553e8d8bef9SDimitry Andric return 0; 554e8d8bef9SDimitry Andric if (m->Beg() != p) 555e8d8bef9SDimitry Andric return 0; 556e8d8bef9SDimitry Andric return user_requested_size; 557e8d8bef9SDimitry Andric } 558e8d8bef9SDimitry Andric 559e8d8bef9SDimitry Andric void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 560e8d8bef9SDimitry Andric 561e8d8bef9SDimitry Andric void PrintStats() { allocator.PrintStats(); } 562e8d8bef9SDimitry Andric 56304eeddc0SDimitry Andric void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 564e8d8bef9SDimitry Andric allocator.ForceLock(); 565e8d8bef9SDimitry Andric fallback_mutex.Lock(); 566e8d8bef9SDimitry Andric } 567e8d8bef9SDimitry Andric 56804eeddc0SDimitry Andric void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 569e8d8bef9SDimitry Andric fallback_mutex.Unlock(); 570e8d8bef9SDimitry Andric allocator.ForceUnlock(); 571e8d8bef9SDimitry Andric } 572e8d8bef9SDimitry Andric }; 573e8d8bef9SDimitry Andric 574e8d8bef9SDimitry Andric static Allocator instance(LINKER_INITIALIZED); 575e8d8bef9SDimitry Andric 576e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator() { return instance.allocator; } 577e8d8bef9SDimitry Andric 578e8d8bef9SDimitry Andric void InitializeAllocator() { instance.InitLinkerInitialized(); } 579e8d8bef9SDimitry Andric 580e8d8bef9SDimitry Andric void MemprofThreadLocalMallocStorage::CommitBack() { 581e8d8bef9SDimitry Andric GET_STACK_TRACE_MALLOC; 582e8d8bef9SDimitry Andric instance.CommitBack(this, &stack); 583e8d8bef9SDimitry Andric } 584e8d8bef9SDimitry Andric 585e8d8bef9SDimitry Andric void PrintInternalAllocatorStats() { instance.PrintStats(); } 586e8d8bef9SDimitry Andric 587e8d8bef9SDimitry Andric void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 588e8d8bef9SDimitry Andric instance.Deallocate(ptr, 0, 0, stack, alloc_type); 589e8d8bef9SDimitry Andric } 590e8d8bef9SDimitry Andric 591e8d8bef9SDimitry Andric void memprof_delete(void *ptr, uptr size, uptr alignment, 592e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 593e8d8bef9SDimitry Andric instance.Deallocate(ptr, size, alignment, stack, alloc_type); 594e8d8bef9SDimitry Andric } 595e8d8bef9SDimitry Andric 596e8d8bef9SDimitry Andric void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 597e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 598e8d8bef9SDimitry Andric } 599e8d8bef9SDimitry Andric 600e8d8bef9SDimitry Andric void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 601e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 602e8d8bef9SDimitry Andric } 603e8d8bef9SDimitry Andric 604e8d8bef9SDimitry Andric void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 605e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 606e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 607e8d8bef9SDimitry Andric errno = errno_ENOMEM; 608e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 609e8d8bef9SDimitry Andric return nullptr; 610e8d8bef9SDimitry Andric ReportReallocArrayOverflow(nmemb, size, stack); 611e8d8bef9SDimitry Andric } 612e8d8bef9SDimitry Andric return memprof_realloc(p, nmemb * size, stack); 613e8d8bef9SDimitry Andric } 614e8d8bef9SDimitry Andric 615e8d8bef9SDimitry Andric void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 616e8d8bef9SDimitry Andric if (!p) 617e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 618e8d8bef9SDimitry Andric if (size == 0) { 619e8d8bef9SDimitry Andric if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 620e8d8bef9SDimitry Andric instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 621e8d8bef9SDimitry Andric return nullptr; 622e8d8bef9SDimitry Andric } 623e8d8bef9SDimitry Andric // Allocate a size of 1 if we shouldn't free() on Realloc to 0 624e8d8bef9SDimitry Andric size = 1; 625e8d8bef9SDimitry Andric } 626e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 627e8d8bef9SDimitry Andric } 628e8d8bef9SDimitry Andric 629e8d8bef9SDimitry Andric void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 630e8d8bef9SDimitry Andric return SetErrnoOnNull( 631e8d8bef9SDimitry Andric instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 632e8d8bef9SDimitry Andric } 633e8d8bef9SDimitry Andric 634e8d8bef9SDimitry Andric void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 635e8d8bef9SDimitry Andric uptr PageSize = GetPageSizeCached(); 636e8d8bef9SDimitry Andric if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 637e8d8bef9SDimitry Andric errno = errno_ENOMEM; 638e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 639e8d8bef9SDimitry Andric return nullptr; 640e8d8bef9SDimitry Andric ReportPvallocOverflow(size, stack); 641e8d8bef9SDimitry Andric } 642e8d8bef9SDimitry Andric // pvalloc(0) should allocate one page. 643e8d8bef9SDimitry Andric size = size ? RoundUpTo(size, PageSize) : PageSize; 644e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 645e8d8bef9SDimitry Andric } 646e8d8bef9SDimitry Andric 647e8d8bef9SDimitry Andric void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 648e8d8bef9SDimitry Andric AllocType alloc_type) { 649e8d8bef9SDimitry Andric if (UNLIKELY(!IsPowerOfTwo(alignment))) { 650e8d8bef9SDimitry Andric errno = errno_EINVAL; 651e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 652e8d8bef9SDimitry Andric return nullptr; 653e8d8bef9SDimitry Andric ReportInvalidAllocationAlignment(alignment, stack); 654e8d8bef9SDimitry Andric } 655e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 656e8d8bef9SDimitry Andric } 657e8d8bef9SDimitry Andric 658e8d8bef9SDimitry Andric void *memprof_aligned_alloc(uptr alignment, uptr size, 659e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 660e8d8bef9SDimitry Andric if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 661e8d8bef9SDimitry Andric errno = errno_EINVAL; 662e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 663e8d8bef9SDimitry Andric return nullptr; 664e8d8bef9SDimitry Andric ReportInvalidAlignedAllocAlignment(size, alignment, stack); 665e8d8bef9SDimitry Andric } 666e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 667e8d8bef9SDimitry Andric } 668e8d8bef9SDimitry Andric 669e8d8bef9SDimitry Andric int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 670e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 671e8d8bef9SDimitry Andric if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 672e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 673e8d8bef9SDimitry Andric return errno_EINVAL; 674e8d8bef9SDimitry Andric ReportInvalidPosixMemalignAlignment(alignment, stack); 675e8d8bef9SDimitry Andric } 676e8d8bef9SDimitry Andric void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 677e8d8bef9SDimitry Andric if (UNLIKELY(!ptr)) 678e8d8bef9SDimitry Andric // OOM error is already taken care of by Allocate. 679e8d8bef9SDimitry Andric return errno_ENOMEM; 680e8d8bef9SDimitry Andric CHECK(IsAligned((uptr)ptr, alignment)); 681e8d8bef9SDimitry Andric *memptr = ptr; 682e8d8bef9SDimitry Andric return 0; 683e8d8bef9SDimitry Andric } 684e8d8bef9SDimitry Andric 685e8d8bef9SDimitry Andric uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 686e8d8bef9SDimitry Andric if (!ptr) 687e8d8bef9SDimitry Andric return 0; 688e8d8bef9SDimitry Andric uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 689e8d8bef9SDimitry Andric return usable_size; 690e8d8bef9SDimitry Andric } 691e8d8bef9SDimitry Andric 692e8d8bef9SDimitry Andric } // namespace __memprof 693e8d8bef9SDimitry Andric 694e8d8bef9SDimitry Andric // ---------------------- Interface ---------------- {{{1 695e8d8bef9SDimitry Andric using namespace __memprof; 696e8d8bef9SDimitry Andric 697e8d8bef9SDimitry Andric uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 698e8d8bef9SDimitry Andric 699e8d8bef9SDimitry Andric int __sanitizer_get_ownership(const void *p) { 700e8d8bef9SDimitry Andric return memprof_malloc_usable_size(p, 0, 0) != 0; 701e8d8bef9SDimitry Andric } 702e8d8bef9SDimitry Andric 703e8d8bef9SDimitry Andric uptr __sanitizer_get_allocated_size(const void *p) { 704e8d8bef9SDimitry Andric return memprof_malloc_usable_size(p, 0, 0); 705e8d8bef9SDimitry Andric } 706e8d8bef9SDimitry Andric 707e8d8bef9SDimitry Andric int __memprof_profile_dump() { 708349cc55cSDimitry Andric instance.FinishAndWrite(); 709e8d8bef9SDimitry Andric // In the future we may want to return non-zero if there are any errors 710e8d8bef9SDimitry Andric // detected during the dumping process. 711e8d8bef9SDimitry Andric return 0; 712e8d8bef9SDimitry Andric } 713