1e8d8bef9SDimitry Andric //===-- memprof_allocator.cpp --------------------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This file is a part of MemProfiler, a memory profiler. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // Implementation of MemProf's memory allocator, which uses the allocator 12e8d8bef9SDimitry Andric // from sanitizer_common. 13e8d8bef9SDimitry Andric // 14e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 15e8d8bef9SDimitry Andric 16e8d8bef9SDimitry Andric #include "memprof_allocator.h" 17e8d8bef9SDimitry Andric #include "memprof_mapping.h" 18349cc55cSDimitry Andric #include "memprof_mibmap.h" 19349cc55cSDimitry Andric #include "memprof_rawprofile.h" 20e8d8bef9SDimitry Andric #include "memprof_stack.h" 21e8d8bef9SDimitry Andric #include "memprof_thread.h" 221fd87a68SDimitry Andric #include "profile/MemProfData.inc" 23e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_checks.h" 24e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_interface.h" 25e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_report.h" 26*06c3fb27SDimitry Andric #include "sanitizer_common/sanitizer_array_ref.h" 27*06c3fb27SDimitry Andric #include "sanitizer_common/sanitizer_common.h" 28e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_errno.h" 29e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_file.h" 30e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_flags.h" 31e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_internal_defs.h" 32e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_stackdepot.h" 33e8d8bef9SDimitry Andric 34e8d8bef9SDimitry Andric #include <sched.h> 35e8d8bef9SDimitry Andric #include <time.h> 36e8d8bef9SDimitry Andric 37e8d8bef9SDimitry Andric namespace __memprof { 381fd87a68SDimitry Andric namespace { 391fd87a68SDimitry Andric using ::llvm::memprof::MemInfoBlock; 401fd87a68SDimitry Andric 411fd87a68SDimitry Andric void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 421fd87a68SDimitry Andric u64 p; 431fd87a68SDimitry Andric 441fd87a68SDimitry Andric if (print_terse) { 4581ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 4681ad6265SDimitry Andric Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 4781ad6265SDimitry Andric M.MinSize, M.MaxSize); 4881ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 4981ad6265SDimitry Andric Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 5081ad6265SDimitry Andric M.MaxAccessCount); 5181ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 5281ad6265SDimitry Andric Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 5381ad6265SDimitry Andric M.MaxLifetime); 5481ad6265SDimitry Andric Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 5581ad6265SDimitry Andric M.NumSameAllocCpu, M.NumSameDeallocCpu); 561fd87a68SDimitry Andric } else { 5781ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 581fd87a68SDimitry Andric Printf("Memory allocation stack id = %llu\n", id); 591fd87a68SDimitry Andric Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 6081ad6265SDimitry Andric M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 6181ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 621fd87a68SDimitry Andric Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 6381ad6265SDimitry Andric p % 100, M.MinAccessCount, M.MaxAccessCount); 6481ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 651fd87a68SDimitry Andric Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 6681ad6265SDimitry Andric p % 100, M.MinLifetime, M.MaxLifetime); 671fd87a68SDimitry Andric Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 681fd87a68SDimitry Andric "cpu: %u, num same dealloc_cpu: %u\n", 6981ad6265SDimitry Andric M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 7081ad6265SDimitry Andric M.NumSameDeallocCpu); 711fd87a68SDimitry Andric } 721fd87a68SDimitry Andric } 731fd87a68SDimitry Andric } // namespace 74e8d8bef9SDimitry Andric 75e8d8bef9SDimitry Andric static int GetCpuId(void) { 76e8d8bef9SDimitry Andric // _memprof_preinit is called via the preinit_array, which subsequently calls 77e8d8bef9SDimitry Andric // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 78e8d8bef9SDimitry Andric // will seg fault as the address of __vdso_getcpu will be null. 79*06c3fb27SDimitry Andric if (!memprof_inited) 80e8d8bef9SDimitry Andric return -1; 81e8d8bef9SDimitry Andric return sched_getcpu(); 82e8d8bef9SDimitry Andric } 83e8d8bef9SDimitry Andric 84e8d8bef9SDimitry Andric // Compute the timestamp in ms. 85e8d8bef9SDimitry Andric static int GetTimestamp(void) { 86e8d8bef9SDimitry Andric // timespec_get will segfault if called from dl_init 87e8d8bef9SDimitry Andric if (!memprof_timestamp_inited) { 88e8d8bef9SDimitry Andric // By returning 0, this will be effectively treated as being 89e8d8bef9SDimitry Andric // timestamped at memprof init time (when memprof_init_timestamp_s 90e8d8bef9SDimitry Andric // is initialized). 91e8d8bef9SDimitry Andric return 0; 92e8d8bef9SDimitry Andric } 93e8d8bef9SDimitry Andric timespec ts; 94e8d8bef9SDimitry Andric clock_gettime(CLOCK_REALTIME, &ts); 95e8d8bef9SDimitry Andric return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 96e8d8bef9SDimitry Andric } 97e8d8bef9SDimitry Andric 98e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator(); 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric // The memory chunk allocated from the underlying allocator looks like this: 101e8d8bef9SDimitry Andric // H H U U U U U U 102e8d8bef9SDimitry Andric // H -- ChunkHeader (32 bytes) 103e8d8bef9SDimitry Andric // U -- user memory. 104e8d8bef9SDimitry Andric 105e8d8bef9SDimitry Andric // If there is left padding before the ChunkHeader (due to use of memalign), 106e8d8bef9SDimitry Andric // we store a magic value in the first uptr word of the memory block and 107e8d8bef9SDimitry Andric // store the address of ChunkHeader in the next uptr. 108e8d8bef9SDimitry Andric // M B L L L L L L L L L H H U U U U U U 109e8d8bef9SDimitry Andric // | ^ 110e8d8bef9SDimitry Andric // ---------------------| 111e8d8bef9SDimitry Andric // M -- magic value kAllocBegMagic 112e8d8bef9SDimitry Andric // B -- address of ChunkHeader pointing to the first 'H' 113e8d8bef9SDimitry Andric 114e8d8bef9SDimitry Andric constexpr uptr kMaxAllowedMallocBits = 40; 115e8d8bef9SDimitry Andric 116e8d8bef9SDimitry Andric // Should be no more than 32-bytes 117e8d8bef9SDimitry Andric struct ChunkHeader { 118e8d8bef9SDimitry Andric // 1-st 4 bytes. 119e8d8bef9SDimitry Andric u32 alloc_context_id; 120e8d8bef9SDimitry Andric // 2-nd 4 bytes 121e8d8bef9SDimitry Andric u32 cpu_id; 122e8d8bef9SDimitry Andric // 3-rd 4 bytes 123e8d8bef9SDimitry Andric u32 timestamp_ms; 124e8d8bef9SDimitry Andric // 4-th 4 bytes 125e8d8bef9SDimitry Andric // Note only 1 bit is needed for this flag if we need space in the future for 126e8d8bef9SDimitry Andric // more fields. 127e8d8bef9SDimitry Andric u32 from_memalign; 128e8d8bef9SDimitry Andric // 5-th and 6-th 4 bytes 129e8d8bef9SDimitry Andric // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 130e8d8bef9SDimitry Andric // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 131e8d8bef9SDimitry Andric // more fields. 132e8d8bef9SDimitry Andric atomic_uint64_t user_requested_size; 133e8d8bef9SDimitry Andric // 23 bits available 134e8d8bef9SDimitry Andric // 7-th and 8-th 4 bytes 135e8d8bef9SDimitry Andric u64 data_type_id; // TODO: hash of type name 136e8d8bef9SDimitry Andric }; 137e8d8bef9SDimitry Andric 138e8d8bef9SDimitry Andric static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 139e8d8bef9SDimitry Andric COMPILER_CHECK(kChunkHeaderSize == 32); 140e8d8bef9SDimitry Andric 141e8d8bef9SDimitry Andric struct MemprofChunk : ChunkHeader { 142e8d8bef9SDimitry Andric uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 143e8d8bef9SDimitry Andric uptr UsedSize() { 144e8d8bef9SDimitry Andric return atomic_load(&user_requested_size, memory_order_relaxed); 145e8d8bef9SDimitry Andric } 146e8d8bef9SDimitry Andric void *AllocBeg() { 147e8d8bef9SDimitry Andric if (from_memalign) 148e8d8bef9SDimitry Andric return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 149e8d8bef9SDimitry Andric return reinterpret_cast<void *>(this); 150e8d8bef9SDimitry Andric } 151e8d8bef9SDimitry Andric }; 152e8d8bef9SDimitry Andric 153e8d8bef9SDimitry Andric class LargeChunkHeader { 154e8d8bef9SDimitry Andric static constexpr uptr kAllocBegMagic = 155e8d8bef9SDimitry Andric FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 156e8d8bef9SDimitry Andric atomic_uintptr_t magic; 157e8d8bef9SDimitry Andric MemprofChunk *chunk_header; 158e8d8bef9SDimitry Andric 159e8d8bef9SDimitry Andric public: 160e8d8bef9SDimitry Andric MemprofChunk *Get() const { 161e8d8bef9SDimitry Andric return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 162e8d8bef9SDimitry Andric ? chunk_header 163e8d8bef9SDimitry Andric : nullptr; 164e8d8bef9SDimitry Andric } 165e8d8bef9SDimitry Andric 166e8d8bef9SDimitry Andric void Set(MemprofChunk *p) { 167e8d8bef9SDimitry Andric if (p) { 168e8d8bef9SDimitry Andric chunk_header = p; 169e8d8bef9SDimitry Andric atomic_store(&magic, kAllocBegMagic, memory_order_release); 170e8d8bef9SDimitry Andric return; 171e8d8bef9SDimitry Andric } 172e8d8bef9SDimitry Andric 173e8d8bef9SDimitry Andric uptr old = kAllocBegMagic; 174e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&magic, &old, 0, 175e8d8bef9SDimitry Andric memory_order_release)) { 176e8d8bef9SDimitry Andric CHECK_EQ(old, kAllocBegMagic); 177e8d8bef9SDimitry Andric } 178e8d8bef9SDimitry Andric } 179e8d8bef9SDimitry Andric }; 180e8d8bef9SDimitry Andric 181e8d8bef9SDimitry Andric void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 182e8d8bef9SDimitry Andric // Since memprof's mapping is compacting, the shadow chunk may be 183e8d8bef9SDimitry Andric // not page-aligned, so we only flush the page-aligned portion. 184e8d8bef9SDimitry Andric ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 185e8d8bef9SDimitry Andric } 186e8d8bef9SDimitry Andric 187e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 188e8d8bef9SDimitry Andric // Statistics. 189e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 190e8d8bef9SDimitry Andric thread_stats.mmaps++; 191e8d8bef9SDimitry Andric thread_stats.mmaped += size; 192e8d8bef9SDimitry Andric } 193*06c3fb27SDimitry Andric 194e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195e8d8bef9SDimitry Andric // We are about to unmap a chunk of user memory. 196e8d8bef9SDimitry Andric // Mark the corresponding shadow memory as not needed. 197e8d8bef9SDimitry Andric FlushUnneededMemProfShadowMemory(p, size); 198e8d8bef9SDimitry Andric // Statistics. 199e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 200e8d8bef9SDimitry Andric thread_stats.munmaps++; 201e8d8bef9SDimitry Andric thread_stats.munmaped += size; 202e8d8bef9SDimitry Andric } 203e8d8bef9SDimitry Andric 204e8d8bef9SDimitry Andric AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 205e8d8bef9SDimitry Andric CHECK(ms); 206e8d8bef9SDimitry Andric return &ms->allocator_cache; 207e8d8bef9SDimitry Andric } 208e8d8bef9SDimitry Andric 209e8d8bef9SDimitry Andric // Accumulates the access count from the shadow for the given pointer and size. 210e8d8bef9SDimitry Andric u64 GetShadowCount(uptr p, u32 size) { 211e8d8bef9SDimitry Andric u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 212e8d8bef9SDimitry Andric u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 213e8d8bef9SDimitry Andric u64 count = 0; 214e8d8bef9SDimitry Andric for (; shadow <= shadow_end; shadow++) 215e8d8bef9SDimitry Andric count += *shadow; 216e8d8bef9SDimitry Andric return count; 217e8d8bef9SDimitry Andric } 218e8d8bef9SDimitry Andric 219e8d8bef9SDimitry Andric // Clears the shadow counters (when memory is allocated). 220e8d8bef9SDimitry Andric void ClearShadow(uptr addr, uptr size) { 221e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr)); 222e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr)); 223e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr + size)); 224e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 225e8d8bef9SDimitry Andric CHECK(REAL(memset)); 226e8d8bef9SDimitry Andric uptr shadow_beg = MEM_TO_SHADOW(addr); 227e8d8bef9SDimitry Andric uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 228e8d8bef9SDimitry Andric if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 229e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 230e8d8bef9SDimitry Andric } else { 231e8d8bef9SDimitry Andric uptr page_size = GetPageSizeCached(); 232e8d8bef9SDimitry Andric uptr page_beg = RoundUpTo(shadow_beg, page_size); 233e8d8bef9SDimitry Andric uptr page_end = RoundDownTo(shadow_end, page_size); 234e8d8bef9SDimitry Andric 235e8d8bef9SDimitry Andric if (page_beg >= page_end) { 236e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 237e8d8bef9SDimitry Andric } else { 238e8d8bef9SDimitry Andric if (page_beg != shadow_beg) { 239e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 240e8d8bef9SDimitry Andric } 241e8d8bef9SDimitry Andric if (page_end != shadow_end) { 242e8d8bef9SDimitry Andric REAL(memset)((void *)page_end, 0, shadow_end - page_end); 243e8d8bef9SDimitry Andric } 244e8d8bef9SDimitry Andric ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 245e8d8bef9SDimitry Andric } 246e8d8bef9SDimitry Andric } 247e8d8bef9SDimitry Andric } 248e8d8bef9SDimitry Andric 249e8d8bef9SDimitry Andric struct Allocator { 250e8d8bef9SDimitry Andric static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 251e8d8bef9SDimitry Andric 252e8d8bef9SDimitry Andric MemprofAllocator allocator; 253e8d8bef9SDimitry Andric StaticSpinMutex fallback_mutex; 254e8d8bef9SDimitry Andric AllocatorCache fallback_allocator_cache; 255e8d8bef9SDimitry Andric 256e8d8bef9SDimitry Andric uptr max_user_defined_malloc_size; 257e8d8bef9SDimitry Andric 258349cc55cSDimitry Andric // Holds the mapping of stack ids to MemInfoBlocks. 259349cc55cSDimitry Andric MIBMapTy MIBMap; 260349cc55cSDimitry Andric 261349cc55cSDimitry Andric atomic_uint8_t destructing; 262349cc55cSDimitry Andric atomic_uint8_t constructed; 263349cc55cSDimitry Andric bool print_text; 264e8d8bef9SDimitry Andric 265e8d8bef9SDimitry Andric // ------------------- Initialization ------------------------ 266349cc55cSDimitry Andric explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 267349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 0); 268349cc55cSDimitry Andric atomic_store_relaxed(&constructed, 1); 269349cc55cSDimitry Andric } 270e8d8bef9SDimitry Andric 271349cc55cSDimitry Andric ~Allocator() { 272349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 1); 273349cc55cSDimitry Andric FinishAndWrite(); 274349cc55cSDimitry Andric } 275e8d8bef9SDimitry Andric 276349cc55cSDimitry Andric static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 277349cc55cSDimitry Andric void *Arg) { 278bdd1243dSDimitry Andric SpinMutexLock l(&Value->mutex); 2791fd87a68SDimitry Andric Print(Value->mib, Key, bool(Arg)); 280349cc55cSDimitry Andric } 281349cc55cSDimitry Andric 282349cc55cSDimitry Andric void FinishAndWrite() { 283349cc55cSDimitry Andric if (print_text && common_flags()->print_module_map) 284349cc55cSDimitry Andric DumpProcessMap(); 285349cc55cSDimitry Andric 286e8d8bef9SDimitry Andric allocator.ForceLock(); 287349cc55cSDimitry Andric 288349cc55cSDimitry Andric InsertLiveBlocks(); 289349cc55cSDimitry Andric if (print_text) { 2904824e7fdSDimitry Andric if (!flags()->print_terse) 2914824e7fdSDimitry Andric Printf("Recorded MIBs (incl. live on exit):\n"); 292349cc55cSDimitry Andric MIBMap.ForEach(PrintCallback, 293349cc55cSDimitry Andric reinterpret_cast<void *>(flags()->print_terse)); 294349cc55cSDimitry Andric StackDepotPrintAll(); 295349cc55cSDimitry Andric } else { 296349cc55cSDimitry Andric // Serialize the contents to a raw profile. Format documented in 297349cc55cSDimitry Andric // memprof_rawprofile.h. 298349cc55cSDimitry Andric char *Buffer = nullptr; 299349cc55cSDimitry Andric 300*06c3fb27SDimitry Andric __sanitizer::ListOfModules List; 301*06c3fb27SDimitry Andric List.init(); 302*06c3fb27SDimitry Andric ArrayRef<LoadedModule> Modules(List.begin(), List.end()); 303*06c3fb27SDimitry Andric u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer); 304349cc55cSDimitry Andric CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 305349cc55cSDimitry Andric report_file.Write(Buffer, BytesSerialized); 306349cc55cSDimitry Andric } 307349cc55cSDimitry Andric 308349cc55cSDimitry Andric allocator.ForceUnlock(); 309349cc55cSDimitry Andric } 310349cc55cSDimitry Andric 311349cc55cSDimitry Andric // Inserts any blocks which have been allocated but not yet deallocated. 312349cc55cSDimitry Andric void InsertLiveBlocks() { 313e8d8bef9SDimitry Andric allocator.ForEachChunk( 314e8d8bef9SDimitry Andric [](uptr chunk, void *alloc) { 315e8d8bef9SDimitry Andric u64 user_requested_size; 316349cc55cSDimitry Andric Allocator *A = (Allocator *)alloc; 317e8d8bef9SDimitry Andric MemprofChunk *m = 318349cc55cSDimitry Andric A->GetMemprofChunk((void *)chunk, user_requested_size); 319e8d8bef9SDimitry Andric if (!m) 320e8d8bef9SDimitry Andric return; 321e8d8bef9SDimitry Andric uptr user_beg = ((uptr)m) + kChunkHeaderSize; 322e8d8bef9SDimitry Andric u64 c = GetShadowCount(user_beg, user_requested_size); 323e8d8bef9SDimitry Andric long curtime = GetTimestamp(); 324e8d8bef9SDimitry Andric MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 325e8d8bef9SDimitry Andric m->cpu_id, GetCpuId()); 326349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 327e8d8bef9SDimitry Andric }, 328e8d8bef9SDimitry Andric this); 329e8d8bef9SDimitry Andric } 330e8d8bef9SDimitry Andric 331e8d8bef9SDimitry Andric void InitLinkerInitialized() { 332e8d8bef9SDimitry Andric SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 333e8d8bef9SDimitry Andric allocator.InitLinkerInitialized( 334e8d8bef9SDimitry Andric common_flags()->allocator_release_to_os_interval_ms); 335e8d8bef9SDimitry Andric max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 336e8d8bef9SDimitry Andric ? common_flags()->max_allocation_size_mb 337e8d8bef9SDimitry Andric << 20 338e8d8bef9SDimitry Andric : kMaxAllowedMallocSize; 339e8d8bef9SDimitry Andric } 340e8d8bef9SDimitry Andric 341e8d8bef9SDimitry Andric // -------------------- Allocation/Deallocation routines --------------- 342e8d8bef9SDimitry Andric void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 343e8d8bef9SDimitry Andric AllocType alloc_type) { 344e8d8bef9SDimitry Andric if (UNLIKELY(!memprof_inited)) 345e8d8bef9SDimitry Andric MemprofInitFromRtl(); 3460eae32dcSDimitry Andric if (UNLIKELY(IsRssLimitExceeded())) { 347e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 348e8d8bef9SDimitry Andric return nullptr; 349e8d8bef9SDimitry Andric ReportRssLimitExceeded(stack); 350e8d8bef9SDimitry Andric } 351e8d8bef9SDimitry Andric CHECK(stack); 352e8d8bef9SDimitry Andric const uptr min_alignment = MEMPROF_ALIGNMENT; 353e8d8bef9SDimitry Andric if (alignment < min_alignment) 354e8d8bef9SDimitry Andric alignment = min_alignment; 355e8d8bef9SDimitry Andric if (size == 0) { 356e8d8bef9SDimitry Andric // We'd be happy to avoid allocating memory for zero-size requests, but 357e8d8bef9SDimitry Andric // some programs/tests depend on this behavior and assume that malloc 358e8d8bef9SDimitry Andric // would not return NULL even for zero-size allocations. Moreover, it 359e8d8bef9SDimitry Andric // looks like operator new should never return NULL, and results of 360e8d8bef9SDimitry Andric // consecutive "new" calls must be different even if the allocated size 361e8d8bef9SDimitry Andric // is zero. 362e8d8bef9SDimitry Andric size = 1; 363e8d8bef9SDimitry Andric } 364e8d8bef9SDimitry Andric CHECK(IsPowerOfTwo(alignment)); 365e8d8bef9SDimitry Andric uptr rounded_size = RoundUpTo(size, alignment); 366e8d8bef9SDimitry Andric uptr needed_size = rounded_size + kChunkHeaderSize; 367e8d8bef9SDimitry Andric if (alignment > min_alignment) 368e8d8bef9SDimitry Andric needed_size += alignment; 369e8d8bef9SDimitry Andric CHECK(IsAligned(needed_size, min_alignment)); 370e8d8bef9SDimitry Andric if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 371e8d8bef9SDimitry Andric size > max_user_defined_malloc_size) { 372e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) { 373349cc55cSDimitry Andric Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 374e8d8bef9SDimitry Andric return nullptr; 375e8d8bef9SDimitry Andric } 376e8d8bef9SDimitry Andric uptr malloc_limit = 377e8d8bef9SDimitry Andric Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 378e8d8bef9SDimitry Andric ReportAllocationSizeTooBig(size, malloc_limit, stack); 379e8d8bef9SDimitry Andric } 380e8d8bef9SDimitry Andric 381e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 382e8d8bef9SDimitry Andric void *allocated; 383e8d8bef9SDimitry Andric if (t) { 384e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 385e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 386e8d8bef9SDimitry Andric } else { 387e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 388e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 389e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 390e8d8bef9SDimitry Andric } 391e8d8bef9SDimitry Andric if (UNLIKELY(!allocated)) { 392e8d8bef9SDimitry Andric SetAllocatorOutOfMemory(); 393e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 394e8d8bef9SDimitry Andric return nullptr; 395e8d8bef9SDimitry Andric ReportOutOfMemory(size, stack); 396e8d8bef9SDimitry Andric } 397e8d8bef9SDimitry Andric 398e8d8bef9SDimitry Andric uptr alloc_beg = reinterpret_cast<uptr>(allocated); 399e8d8bef9SDimitry Andric uptr alloc_end = alloc_beg + needed_size; 400e8d8bef9SDimitry Andric uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 401e8d8bef9SDimitry Andric uptr user_beg = beg_plus_header; 402e8d8bef9SDimitry Andric if (!IsAligned(user_beg, alignment)) 403e8d8bef9SDimitry Andric user_beg = RoundUpTo(user_beg, alignment); 404e8d8bef9SDimitry Andric uptr user_end = user_beg + size; 405e8d8bef9SDimitry Andric CHECK_LE(user_end, alloc_end); 406e8d8bef9SDimitry Andric uptr chunk_beg = user_beg - kChunkHeaderSize; 407e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 408e8d8bef9SDimitry Andric m->from_memalign = alloc_beg != chunk_beg; 409e8d8bef9SDimitry Andric CHECK(size); 410e8d8bef9SDimitry Andric 411e8d8bef9SDimitry Andric m->cpu_id = GetCpuId(); 412e8d8bef9SDimitry Andric m->timestamp_ms = GetTimestamp(); 413e8d8bef9SDimitry Andric m->alloc_context_id = StackDepotPut(*stack); 414e8d8bef9SDimitry Andric 415e8d8bef9SDimitry Andric uptr size_rounded_down_to_granularity = 416e8d8bef9SDimitry Andric RoundDownTo(size, SHADOW_GRANULARITY); 417e8d8bef9SDimitry Andric if (size_rounded_down_to_granularity) 418e8d8bef9SDimitry Andric ClearShadow(user_beg, size_rounded_down_to_granularity); 419e8d8bef9SDimitry Andric 420e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 421e8d8bef9SDimitry Andric thread_stats.mallocs++; 422e8d8bef9SDimitry Andric thread_stats.malloced += size; 423e8d8bef9SDimitry Andric thread_stats.malloced_overhead += needed_size - size; 424e8d8bef9SDimitry Andric if (needed_size > SizeClassMap::kMaxSize) 425e8d8bef9SDimitry Andric thread_stats.malloc_large++; 426e8d8bef9SDimitry Andric else 427e8d8bef9SDimitry Andric thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 428e8d8bef9SDimitry Andric 429e8d8bef9SDimitry Andric void *res = reinterpret_cast<void *>(user_beg); 430e8d8bef9SDimitry Andric atomic_store(&m->user_requested_size, size, memory_order_release); 431e8d8bef9SDimitry Andric if (alloc_beg != chunk_beg) { 432e8d8bef9SDimitry Andric CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 433e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 434e8d8bef9SDimitry Andric } 43581ad6265SDimitry Andric RunMallocHooks(res, size); 436e8d8bef9SDimitry Andric return res; 437e8d8bef9SDimitry Andric } 438e8d8bef9SDimitry Andric 439e8d8bef9SDimitry Andric void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 440e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 441e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(ptr); 442e8d8bef9SDimitry Andric if (p == 0) 443e8d8bef9SDimitry Andric return; 444e8d8bef9SDimitry Andric 44581ad6265SDimitry Andric RunFreeHooks(ptr); 446e8d8bef9SDimitry Andric 447e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 448e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 449e8d8bef9SDimitry Andric 450e8d8bef9SDimitry Andric u64 user_requested_size = 451e8d8bef9SDimitry Andric atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 452*06c3fb27SDimitry Andric if (memprof_inited && atomic_load_relaxed(&constructed) && 453349cc55cSDimitry Andric !atomic_load_relaxed(&destructing)) { 454e8d8bef9SDimitry Andric u64 c = GetShadowCount(p, user_requested_size); 455e8d8bef9SDimitry Andric long curtime = GetTimestamp(); 456e8d8bef9SDimitry Andric 457e8d8bef9SDimitry Andric MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 458e8d8bef9SDimitry Andric m->cpu_id, GetCpuId()); 459349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 460e8d8bef9SDimitry Andric } 461e8d8bef9SDimitry Andric 462e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 463e8d8bef9SDimitry Andric thread_stats.frees++; 464e8d8bef9SDimitry Andric thread_stats.freed += user_requested_size; 465e8d8bef9SDimitry Andric 466e8d8bef9SDimitry Andric void *alloc_beg = m->AllocBeg(); 467e8d8bef9SDimitry Andric if (alloc_beg != m) { 468e8d8bef9SDimitry Andric // Clear the magic value, as allocator internals may overwrite the 469e8d8bef9SDimitry Andric // contents of deallocated chunk, confusing GetMemprofChunk lookup. 470e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 471e8d8bef9SDimitry Andric } 472e8d8bef9SDimitry Andric 473e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 474e8d8bef9SDimitry Andric if (t) { 475e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 476e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 477e8d8bef9SDimitry Andric } else { 478e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 479e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 480e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 481e8d8bef9SDimitry Andric } 482e8d8bef9SDimitry Andric } 483e8d8bef9SDimitry Andric 484e8d8bef9SDimitry Andric void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 485e8d8bef9SDimitry Andric CHECK(old_ptr && new_size); 486e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(old_ptr); 487e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 488e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 489e8d8bef9SDimitry Andric 490e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 491e8d8bef9SDimitry Andric thread_stats.reallocs++; 492e8d8bef9SDimitry Andric thread_stats.realloced += new_size; 493e8d8bef9SDimitry Andric 494e8d8bef9SDimitry Andric void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 495e8d8bef9SDimitry Andric if (new_ptr) { 496e8d8bef9SDimitry Andric CHECK_NE(REAL(memcpy), nullptr); 497e8d8bef9SDimitry Andric uptr memcpy_size = Min(new_size, m->UsedSize()); 498e8d8bef9SDimitry Andric REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 499e8d8bef9SDimitry Andric Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 500e8d8bef9SDimitry Andric } 501e8d8bef9SDimitry Andric return new_ptr; 502e8d8bef9SDimitry Andric } 503e8d8bef9SDimitry Andric 504e8d8bef9SDimitry Andric void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 505e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 506e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 507e8d8bef9SDimitry Andric return nullptr; 508e8d8bef9SDimitry Andric ReportCallocOverflow(nmemb, size, stack); 509e8d8bef9SDimitry Andric } 510e8d8bef9SDimitry Andric void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 511e8d8bef9SDimitry Andric // If the memory comes from the secondary allocator no need to clear it 512e8d8bef9SDimitry Andric // as it comes directly from mmap. 513e8d8bef9SDimitry Andric if (ptr && allocator.FromPrimary(ptr)) 514e8d8bef9SDimitry Andric REAL(memset)(ptr, 0, nmemb * size); 515e8d8bef9SDimitry Andric return ptr; 516e8d8bef9SDimitry Andric } 517e8d8bef9SDimitry Andric 518e8d8bef9SDimitry Andric void CommitBack(MemprofThreadLocalMallocStorage *ms, 519e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 520e8d8bef9SDimitry Andric AllocatorCache *ac = GetAllocatorCache(ms); 521e8d8bef9SDimitry Andric allocator.SwallowCache(ac); 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric 524e8d8bef9SDimitry Andric // -------------------------- Chunk lookup ---------------------- 525e8d8bef9SDimitry Andric 526e8d8bef9SDimitry Andric // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 527e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 528e8d8bef9SDimitry Andric if (!alloc_beg) 529e8d8bef9SDimitry Andric return nullptr; 530e8d8bef9SDimitry Andric MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 531e8d8bef9SDimitry Andric if (!p) { 532e8d8bef9SDimitry Andric if (!allocator.FromPrimary(alloc_beg)) 533e8d8bef9SDimitry Andric return nullptr; 534e8d8bef9SDimitry Andric p = reinterpret_cast<MemprofChunk *>(alloc_beg); 535e8d8bef9SDimitry Andric } 536e8d8bef9SDimitry Andric // The size is reset to 0 on deallocation (and a min of 1 on 537e8d8bef9SDimitry Andric // allocation). 538e8d8bef9SDimitry Andric user_requested_size = 539e8d8bef9SDimitry Andric atomic_load(&p->user_requested_size, memory_order_acquire); 540e8d8bef9SDimitry Andric if (user_requested_size) 541e8d8bef9SDimitry Andric return p; 542e8d8bef9SDimitry Andric return nullptr; 543e8d8bef9SDimitry Andric } 544e8d8bef9SDimitry Andric 545e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 546e8d8bef9SDimitry Andric void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 547e8d8bef9SDimitry Andric return GetMemprofChunk(alloc_beg, user_requested_size); 548e8d8bef9SDimitry Andric } 549e8d8bef9SDimitry Andric 550e8d8bef9SDimitry Andric uptr AllocationSize(uptr p) { 551e8d8bef9SDimitry Andric u64 user_requested_size; 552e8d8bef9SDimitry Andric MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 553e8d8bef9SDimitry Andric if (!m) 554e8d8bef9SDimitry Andric return 0; 555e8d8bef9SDimitry Andric if (m->Beg() != p) 556e8d8bef9SDimitry Andric return 0; 557e8d8bef9SDimitry Andric return user_requested_size; 558e8d8bef9SDimitry Andric } 559e8d8bef9SDimitry Andric 560*06c3fb27SDimitry Andric uptr AllocationSizeFast(uptr p) { 561*06c3fb27SDimitry Andric return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize(); 562*06c3fb27SDimitry Andric } 563*06c3fb27SDimitry Andric 564e8d8bef9SDimitry Andric void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 565e8d8bef9SDimitry Andric 566e8d8bef9SDimitry Andric void PrintStats() { allocator.PrintStats(); } 567e8d8bef9SDimitry Andric 56804eeddc0SDimitry Andric void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 569e8d8bef9SDimitry Andric allocator.ForceLock(); 570e8d8bef9SDimitry Andric fallback_mutex.Lock(); 571e8d8bef9SDimitry Andric } 572e8d8bef9SDimitry Andric 57304eeddc0SDimitry Andric void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 574e8d8bef9SDimitry Andric fallback_mutex.Unlock(); 575e8d8bef9SDimitry Andric allocator.ForceUnlock(); 576e8d8bef9SDimitry Andric } 577e8d8bef9SDimitry Andric }; 578e8d8bef9SDimitry Andric 579e8d8bef9SDimitry Andric static Allocator instance(LINKER_INITIALIZED); 580e8d8bef9SDimitry Andric 581e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator() { return instance.allocator; } 582e8d8bef9SDimitry Andric 583e8d8bef9SDimitry Andric void InitializeAllocator() { instance.InitLinkerInitialized(); } 584e8d8bef9SDimitry Andric 585e8d8bef9SDimitry Andric void MemprofThreadLocalMallocStorage::CommitBack() { 586e8d8bef9SDimitry Andric GET_STACK_TRACE_MALLOC; 587e8d8bef9SDimitry Andric instance.CommitBack(this, &stack); 588e8d8bef9SDimitry Andric } 589e8d8bef9SDimitry Andric 590e8d8bef9SDimitry Andric void PrintInternalAllocatorStats() { instance.PrintStats(); } 591e8d8bef9SDimitry Andric 592e8d8bef9SDimitry Andric void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 593e8d8bef9SDimitry Andric instance.Deallocate(ptr, 0, 0, stack, alloc_type); 594e8d8bef9SDimitry Andric } 595e8d8bef9SDimitry Andric 596e8d8bef9SDimitry Andric void memprof_delete(void *ptr, uptr size, uptr alignment, 597e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 598e8d8bef9SDimitry Andric instance.Deallocate(ptr, size, alignment, stack, alloc_type); 599e8d8bef9SDimitry Andric } 600e8d8bef9SDimitry Andric 601e8d8bef9SDimitry Andric void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 602e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 603e8d8bef9SDimitry Andric } 604e8d8bef9SDimitry Andric 605e8d8bef9SDimitry Andric void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 606e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 607e8d8bef9SDimitry Andric } 608e8d8bef9SDimitry Andric 609e8d8bef9SDimitry Andric void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 610e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 611e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 612e8d8bef9SDimitry Andric errno = errno_ENOMEM; 613e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 614e8d8bef9SDimitry Andric return nullptr; 615e8d8bef9SDimitry Andric ReportReallocArrayOverflow(nmemb, size, stack); 616e8d8bef9SDimitry Andric } 617e8d8bef9SDimitry Andric return memprof_realloc(p, nmemb * size, stack); 618e8d8bef9SDimitry Andric } 619e8d8bef9SDimitry Andric 620e8d8bef9SDimitry Andric void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 621e8d8bef9SDimitry Andric if (!p) 622e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 623e8d8bef9SDimitry Andric if (size == 0) { 624e8d8bef9SDimitry Andric if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 625e8d8bef9SDimitry Andric instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 626e8d8bef9SDimitry Andric return nullptr; 627e8d8bef9SDimitry Andric } 628e8d8bef9SDimitry Andric // Allocate a size of 1 if we shouldn't free() on Realloc to 0 629e8d8bef9SDimitry Andric size = 1; 630e8d8bef9SDimitry Andric } 631e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 632e8d8bef9SDimitry Andric } 633e8d8bef9SDimitry Andric 634e8d8bef9SDimitry Andric void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 635e8d8bef9SDimitry Andric return SetErrnoOnNull( 636e8d8bef9SDimitry Andric instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 637e8d8bef9SDimitry Andric } 638e8d8bef9SDimitry Andric 639e8d8bef9SDimitry Andric void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 640e8d8bef9SDimitry Andric uptr PageSize = GetPageSizeCached(); 641e8d8bef9SDimitry Andric if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 642e8d8bef9SDimitry Andric errno = errno_ENOMEM; 643e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 644e8d8bef9SDimitry Andric return nullptr; 645e8d8bef9SDimitry Andric ReportPvallocOverflow(size, stack); 646e8d8bef9SDimitry Andric } 647e8d8bef9SDimitry Andric // pvalloc(0) should allocate one page. 648e8d8bef9SDimitry Andric size = size ? RoundUpTo(size, PageSize) : PageSize; 649e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 650e8d8bef9SDimitry Andric } 651e8d8bef9SDimitry Andric 652e8d8bef9SDimitry Andric void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 653e8d8bef9SDimitry Andric AllocType alloc_type) { 654e8d8bef9SDimitry Andric if (UNLIKELY(!IsPowerOfTwo(alignment))) { 655e8d8bef9SDimitry Andric errno = errno_EINVAL; 656e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 657e8d8bef9SDimitry Andric return nullptr; 658e8d8bef9SDimitry Andric ReportInvalidAllocationAlignment(alignment, stack); 659e8d8bef9SDimitry Andric } 660e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 661e8d8bef9SDimitry Andric } 662e8d8bef9SDimitry Andric 663e8d8bef9SDimitry Andric void *memprof_aligned_alloc(uptr alignment, uptr size, 664e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 665e8d8bef9SDimitry Andric if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 666e8d8bef9SDimitry Andric errno = errno_EINVAL; 667e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 668e8d8bef9SDimitry Andric return nullptr; 669e8d8bef9SDimitry Andric ReportInvalidAlignedAllocAlignment(size, alignment, stack); 670e8d8bef9SDimitry Andric } 671e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 672e8d8bef9SDimitry Andric } 673e8d8bef9SDimitry Andric 674e8d8bef9SDimitry Andric int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 675e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 676e8d8bef9SDimitry Andric if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 677e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 678e8d8bef9SDimitry Andric return errno_EINVAL; 679e8d8bef9SDimitry Andric ReportInvalidPosixMemalignAlignment(alignment, stack); 680e8d8bef9SDimitry Andric } 681e8d8bef9SDimitry Andric void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 682e8d8bef9SDimitry Andric if (UNLIKELY(!ptr)) 683e8d8bef9SDimitry Andric // OOM error is already taken care of by Allocate. 684e8d8bef9SDimitry Andric return errno_ENOMEM; 685e8d8bef9SDimitry Andric CHECK(IsAligned((uptr)ptr, alignment)); 686e8d8bef9SDimitry Andric *memptr = ptr; 687e8d8bef9SDimitry Andric return 0; 688e8d8bef9SDimitry Andric } 689e8d8bef9SDimitry Andric 690*06c3fb27SDimitry Andric static const void *memprof_malloc_begin(const void *p) { 691*06c3fb27SDimitry Andric u64 user_requested_size; 692*06c3fb27SDimitry Andric MemprofChunk *m = 693*06c3fb27SDimitry Andric instance.GetMemprofChunkByAddr((uptr)p, user_requested_size); 694*06c3fb27SDimitry Andric if (!m) 695*06c3fb27SDimitry Andric return nullptr; 696*06c3fb27SDimitry Andric if (user_requested_size == 0) 697*06c3fb27SDimitry Andric return nullptr; 698*06c3fb27SDimitry Andric 699*06c3fb27SDimitry Andric return (const void *)m->Beg(); 700*06c3fb27SDimitry Andric } 701*06c3fb27SDimitry Andric 702e8d8bef9SDimitry Andric uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 703e8d8bef9SDimitry Andric if (!ptr) 704e8d8bef9SDimitry Andric return 0; 705e8d8bef9SDimitry Andric uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 706e8d8bef9SDimitry Andric return usable_size; 707e8d8bef9SDimitry Andric } 708e8d8bef9SDimitry Andric 709e8d8bef9SDimitry Andric } // namespace __memprof 710e8d8bef9SDimitry Andric 711e8d8bef9SDimitry Andric // ---------------------- Interface ---------------- {{{1 712e8d8bef9SDimitry Andric using namespace __memprof; 713e8d8bef9SDimitry Andric 714e8d8bef9SDimitry Andric uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 715e8d8bef9SDimitry Andric 716e8d8bef9SDimitry Andric int __sanitizer_get_ownership(const void *p) { 717e8d8bef9SDimitry Andric return memprof_malloc_usable_size(p, 0, 0) != 0; 718e8d8bef9SDimitry Andric } 719e8d8bef9SDimitry Andric 720*06c3fb27SDimitry Andric const void *__sanitizer_get_allocated_begin(const void *p) { 721*06c3fb27SDimitry Andric return memprof_malloc_begin(p); 722*06c3fb27SDimitry Andric } 723*06c3fb27SDimitry Andric 724e8d8bef9SDimitry Andric uptr __sanitizer_get_allocated_size(const void *p) { 725e8d8bef9SDimitry Andric return memprof_malloc_usable_size(p, 0, 0); 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric 728*06c3fb27SDimitry Andric uptr __sanitizer_get_allocated_size_fast(const void *p) { 729*06c3fb27SDimitry Andric DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 730*06c3fb27SDimitry Andric uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); 731*06c3fb27SDimitry Andric DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 732*06c3fb27SDimitry Andric return ret; 733*06c3fb27SDimitry Andric } 734*06c3fb27SDimitry Andric 735e8d8bef9SDimitry Andric int __memprof_profile_dump() { 736349cc55cSDimitry Andric instance.FinishAndWrite(); 737e8d8bef9SDimitry Andric // In the future we may want to return non-zero if there are any errors 738e8d8bef9SDimitry Andric // detected during the dumping process. 739e8d8bef9SDimitry Andric return 0; 740e8d8bef9SDimitry Andric } 741