1e8d8bef9SDimitry Andric //===-- memprof_allocator.cpp --------------------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This file is a part of MemProfiler, a memory profiler. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // Implementation of MemProf's memory allocator, which uses the allocator 12e8d8bef9SDimitry Andric // from sanitizer_common. 13e8d8bef9SDimitry Andric // 14e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 15e8d8bef9SDimitry Andric 16e8d8bef9SDimitry Andric #include "memprof_allocator.h" 17e8d8bef9SDimitry Andric #include "memprof_mapping.h" 18349cc55cSDimitry Andric #include "memprof_mibmap.h" 19349cc55cSDimitry Andric #include "memprof_rawprofile.h" 20e8d8bef9SDimitry Andric #include "memprof_stack.h" 21e8d8bef9SDimitry Andric #include "memprof_thread.h" 221fd87a68SDimitry Andric #include "profile/MemProfData.inc" 23e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_checks.h" 24e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_interface.h" 25e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_allocator_report.h" 2606c3fb27SDimitry Andric #include "sanitizer_common/sanitizer_array_ref.h" 2706c3fb27SDimitry Andric #include "sanitizer_common/sanitizer_common.h" 28e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_errno.h" 29e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_file.h" 30e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_flags.h" 31e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_internal_defs.h" 32e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_stackdepot.h" 33e8d8bef9SDimitry Andric 34e8d8bef9SDimitry Andric #include <sched.h> 35e8d8bef9SDimitry Andric #include <time.h> 36e8d8bef9SDimitry Andric 37*0fca6ea1SDimitry Andric #define MAX_HISTOGRAM_PRINT_SIZE 32U 38*0fca6ea1SDimitry Andric 39*0fca6ea1SDimitry Andric extern bool __memprof_histogram; 40*0fca6ea1SDimitry Andric 41e8d8bef9SDimitry Andric namespace __memprof { 421fd87a68SDimitry Andric namespace { 431fd87a68SDimitry Andric using ::llvm::memprof::MemInfoBlock; 441fd87a68SDimitry Andric 451fd87a68SDimitry Andric void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 461fd87a68SDimitry Andric u64 p; 471fd87a68SDimitry Andric 481fd87a68SDimitry Andric if (print_terse) { 4981ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 5081ad6265SDimitry Andric Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 5181ad6265SDimitry Andric M.MinSize, M.MaxSize); 5281ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 5381ad6265SDimitry Andric Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 5481ad6265SDimitry Andric M.MaxAccessCount); 5581ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 5681ad6265SDimitry Andric Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 5781ad6265SDimitry Andric M.MaxLifetime); 5881ad6265SDimitry Andric Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 5981ad6265SDimitry Andric M.NumSameAllocCpu, M.NumSameDeallocCpu); 601fd87a68SDimitry Andric } else { 6181ad6265SDimitry Andric p = M.TotalSize * 100 / M.AllocCount; 621fd87a68SDimitry Andric Printf("Memory allocation stack id = %llu\n", id); 631fd87a68SDimitry Andric Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 6481ad6265SDimitry Andric M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 6581ad6265SDimitry Andric p = M.TotalAccessCount * 100 / M.AllocCount; 661fd87a68SDimitry Andric Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 6781ad6265SDimitry Andric p % 100, M.MinAccessCount, M.MaxAccessCount); 6881ad6265SDimitry Andric p = M.TotalLifetime * 100 / M.AllocCount; 691fd87a68SDimitry Andric Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 7081ad6265SDimitry Andric p % 100, M.MinLifetime, M.MaxLifetime); 711fd87a68SDimitry Andric Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 721fd87a68SDimitry Andric "cpu: %u, num same dealloc_cpu: %u\n", 7381ad6265SDimitry Andric M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 7481ad6265SDimitry Andric M.NumSameDeallocCpu); 75*0fca6ea1SDimitry Andric Printf("AccessCountHistogram[%u]: ", M.AccessHistogramSize); 76*0fca6ea1SDimitry Andric uint32_t PrintSize = M.AccessHistogramSize > MAX_HISTOGRAM_PRINT_SIZE 77*0fca6ea1SDimitry Andric ? MAX_HISTOGRAM_PRINT_SIZE 78*0fca6ea1SDimitry Andric : M.AccessHistogramSize; 79*0fca6ea1SDimitry Andric for (size_t i = 0; i < PrintSize; ++i) { 80*0fca6ea1SDimitry Andric Printf("%llu ", ((uint64_t *)M.AccessHistogram)[i]); 81*0fca6ea1SDimitry Andric } 82*0fca6ea1SDimitry Andric Printf("\n"); 831fd87a68SDimitry Andric } 841fd87a68SDimitry Andric } 851fd87a68SDimitry Andric } // namespace 86e8d8bef9SDimitry Andric 87e8d8bef9SDimitry Andric static int GetCpuId(void) { 88e8d8bef9SDimitry Andric // _memprof_preinit is called via the preinit_array, which subsequently calls 89e8d8bef9SDimitry Andric // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 90e8d8bef9SDimitry Andric // will seg fault as the address of __vdso_getcpu will be null. 9106c3fb27SDimitry Andric if (!memprof_inited) 92e8d8bef9SDimitry Andric return -1; 93e8d8bef9SDimitry Andric return sched_getcpu(); 94e8d8bef9SDimitry Andric } 95e8d8bef9SDimitry Andric 96e8d8bef9SDimitry Andric // Compute the timestamp in ms. 97e8d8bef9SDimitry Andric static int GetTimestamp(void) { 98e8d8bef9SDimitry Andric // timespec_get will segfault if called from dl_init 99e8d8bef9SDimitry Andric if (!memprof_timestamp_inited) { 100e8d8bef9SDimitry Andric // By returning 0, this will be effectively treated as being 101e8d8bef9SDimitry Andric // timestamped at memprof init time (when memprof_init_timestamp_s 102e8d8bef9SDimitry Andric // is initialized). 103e8d8bef9SDimitry Andric return 0; 104e8d8bef9SDimitry Andric } 105e8d8bef9SDimitry Andric timespec ts; 106e8d8bef9SDimitry Andric clock_gettime(CLOCK_REALTIME, &ts); 107e8d8bef9SDimitry Andric return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 108e8d8bef9SDimitry Andric } 109e8d8bef9SDimitry Andric 110e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator(); 111e8d8bef9SDimitry Andric 112e8d8bef9SDimitry Andric // The memory chunk allocated from the underlying allocator looks like this: 113e8d8bef9SDimitry Andric // H H U U U U U U 114e8d8bef9SDimitry Andric // H -- ChunkHeader (32 bytes) 115e8d8bef9SDimitry Andric // U -- user memory. 116e8d8bef9SDimitry Andric 117e8d8bef9SDimitry Andric // If there is left padding before the ChunkHeader (due to use of memalign), 118e8d8bef9SDimitry Andric // we store a magic value in the first uptr word of the memory block and 119e8d8bef9SDimitry Andric // store the address of ChunkHeader in the next uptr. 120e8d8bef9SDimitry Andric // M B L L L L L L L L L H H U U U U U U 121e8d8bef9SDimitry Andric // | ^ 122e8d8bef9SDimitry Andric // ---------------------| 123e8d8bef9SDimitry Andric // M -- magic value kAllocBegMagic 124e8d8bef9SDimitry Andric // B -- address of ChunkHeader pointing to the first 'H' 125e8d8bef9SDimitry Andric 126e8d8bef9SDimitry Andric constexpr uptr kMaxAllowedMallocBits = 40; 127e8d8bef9SDimitry Andric 128e8d8bef9SDimitry Andric // Should be no more than 32-bytes 129e8d8bef9SDimitry Andric struct ChunkHeader { 130e8d8bef9SDimitry Andric // 1-st 4 bytes. 131e8d8bef9SDimitry Andric u32 alloc_context_id; 132e8d8bef9SDimitry Andric // 2-nd 4 bytes 133e8d8bef9SDimitry Andric u32 cpu_id; 134e8d8bef9SDimitry Andric // 3-rd 4 bytes 135e8d8bef9SDimitry Andric u32 timestamp_ms; 136e8d8bef9SDimitry Andric // 4-th 4 bytes 137e8d8bef9SDimitry Andric // Note only 1 bit is needed for this flag if we need space in the future for 138e8d8bef9SDimitry Andric // more fields. 139e8d8bef9SDimitry Andric u32 from_memalign; 140e8d8bef9SDimitry Andric // 5-th and 6-th 4 bytes 141e8d8bef9SDimitry Andric // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 142e8d8bef9SDimitry Andric // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 143e8d8bef9SDimitry Andric // more fields. 144e8d8bef9SDimitry Andric atomic_uint64_t user_requested_size; 145e8d8bef9SDimitry Andric // 23 bits available 146e8d8bef9SDimitry Andric // 7-th and 8-th 4 bytes 147e8d8bef9SDimitry Andric u64 data_type_id; // TODO: hash of type name 148e8d8bef9SDimitry Andric }; 149e8d8bef9SDimitry Andric 150e8d8bef9SDimitry Andric static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 151e8d8bef9SDimitry Andric COMPILER_CHECK(kChunkHeaderSize == 32); 152e8d8bef9SDimitry Andric 153e8d8bef9SDimitry Andric struct MemprofChunk : ChunkHeader { 154e8d8bef9SDimitry Andric uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 155e8d8bef9SDimitry Andric uptr UsedSize() { 156e8d8bef9SDimitry Andric return atomic_load(&user_requested_size, memory_order_relaxed); 157e8d8bef9SDimitry Andric } 158e8d8bef9SDimitry Andric void *AllocBeg() { 159e8d8bef9SDimitry Andric if (from_memalign) 160e8d8bef9SDimitry Andric return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 161e8d8bef9SDimitry Andric return reinterpret_cast<void *>(this); 162e8d8bef9SDimitry Andric } 163e8d8bef9SDimitry Andric }; 164e8d8bef9SDimitry Andric 165e8d8bef9SDimitry Andric class LargeChunkHeader { 166e8d8bef9SDimitry Andric static constexpr uptr kAllocBegMagic = 167e8d8bef9SDimitry Andric FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 168e8d8bef9SDimitry Andric atomic_uintptr_t magic; 169e8d8bef9SDimitry Andric MemprofChunk *chunk_header; 170e8d8bef9SDimitry Andric 171e8d8bef9SDimitry Andric public: 172e8d8bef9SDimitry Andric MemprofChunk *Get() const { 173e8d8bef9SDimitry Andric return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 174e8d8bef9SDimitry Andric ? chunk_header 175e8d8bef9SDimitry Andric : nullptr; 176e8d8bef9SDimitry Andric } 177e8d8bef9SDimitry Andric 178e8d8bef9SDimitry Andric void Set(MemprofChunk *p) { 179e8d8bef9SDimitry Andric if (p) { 180e8d8bef9SDimitry Andric chunk_header = p; 181e8d8bef9SDimitry Andric atomic_store(&magic, kAllocBegMagic, memory_order_release); 182e8d8bef9SDimitry Andric return; 183e8d8bef9SDimitry Andric } 184e8d8bef9SDimitry Andric 185e8d8bef9SDimitry Andric uptr old = kAllocBegMagic; 186e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&magic, &old, 0, 187e8d8bef9SDimitry Andric memory_order_release)) { 188e8d8bef9SDimitry Andric CHECK_EQ(old, kAllocBegMagic); 189e8d8bef9SDimitry Andric } 190e8d8bef9SDimitry Andric } 191e8d8bef9SDimitry Andric }; 192e8d8bef9SDimitry Andric 193e8d8bef9SDimitry Andric void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 194e8d8bef9SDimitry Andric // Since memprof's mapping is compacting, the shadow chunk may be 195e8d8bef9SDimitry Andric // not page-aligned, so we only flush the page-aligned portion. 196e8d8bef9SDimitry Andric ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 197e8d8bef9SDimitry Andric } 198e8d8bef9SDimitry Andric 199e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 200e8d8bef9SDimitry Andric // Statistics. 201e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 202e8d8bef9SDimitry Andric thread_stats.mmaps++; 203e8d8bef9SDimitry Andric thread_stats.mmaped += size; 204e8d8bef9SDimitry Andric } 20506c3fb27SDimitry Andric 206e8d8bef9SDimitry Andric void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 207e8d8bef9SDimitry Andric // We are about to unmap a chunk of user memory. 208e8d8bef9SDimitry Andric // Mark the corresponding shadow memory as not needed. 209e8d8bef9SDimitry Andric FlushUnneededMemProfShadowMemory(p, size); 210e8d8bef9SDimitry Andric // Statistics. 211e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 212e8d8bef9SDimitry Andric thread_stats.munmaps++; 213e8d8bef9SDimitry Andric thread_stats.munmaped += size; 214e8d8bef9SDimitry Andric } 215e8d8bef9SDimitry Andric 216e8d8bef9SDimitry Andric AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 217e8d8bef9SDimitry Andric CHECK(ms); 218e8d8bef9SDimitry Andric return &ms->allocator_cache; 219e8d8bef9SDimitry Andric } 220e8d8bef9SDimitry Andric 221e8d8bef9SDimitry Andric // Accumulates the access count from the shadow for the given pointer and size. 222e8d8bef9SDimitry Andric u64 GetShadowCount(uptr p, u32 size) { 223e8d8bef9SDimitry Andric u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 224e8d8bef9SDimitry Andric u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 225e8d8bef9SDimitry Andric u64 count = 0; 226e8d8bef9SDimitry Andric for (; shadow <= shadow_end; shadow++) 227e8d8bef9SDimitry Andric count += *shadow; 228e8d8bef9SDimitry Andric return count; 229e8d8bef9SDimitry Andric } 230e8d8bef9SDimitry Andric 231*0fca6ea1SDimitry Andric // Accumulates the access count from the shadow for the given pointer and size. 232*0fca6ea1SDimitry Andric // See memprof_mapping.h for an overview on histogram counters. 233*0fca6ea1SDimitry Andric u64 GetShadowCountHistogram(uptr p, u32 size) { 234*0fca6ea1SDimitry Andric u8 *shadow = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p); 235*0fca6ea1SDimitry Andric u8 *shadow_end = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p + size); 236*0fca6ea1SDimitry Andric u64 count = 0; 237*0fca6ea1SDimitry Andric for (; shadow <= shadow_end; shadow++) 238*0fca6ea1SDimitry Andric count += *shadow; 239*0fca6ea1SDimitry Andric return count; 240*0fca6ea1SDimitry Andric } 241*0fca6ea1SDimitry Andric 242e8d8bef9SDimitry Andric // Clears the shadow counters (when memory is allocated). 243e8d8bef9SDimitry Andric void ClearShadow(uptr addr, uptr size) { 244e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr)); 245e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr)); 246e8d8bef9SDimitry Andric CHECK(AddrIsAlignedByGranularity(addr + size)); 247e8d8bef9SDimitry Andric CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 248e8d8bef9SDimitry Andric CHECK(REAL(memset)); 249*0fca6ea1SDimitry Andric uptr shadow_beg; 250*0fca6ea1SDimitry Andric uptr shadow_end; 251*0fca6ea1SDimitry Andric if (__memprof_histogram) { 252*0fca6ea1SDimitry Andric shadow_beg = HISTOGRAM_MEM_TO_SHADOW(addr); 253*0fca6ea1SDimitry Andric shadow_end = HISTOGRAM_MEM_TO_SHADOW(addr + size); 254*0fca6ea1SDimitry Andric } else { 255*0fca6ea1SDimitry Andric shadow_beg = MEM_TO_SHADOW(addr); 256*0fca6ea1SDimitry Andric shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 257*0fca6ea1SDimitry Andric } 258*0fca6ea1SDimitry Andric 259e8d8bef9SDimitry Andric if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 260e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 261e8d8bef9SDimitry Andric } else { 262e8d8bef9SDimitry Andric uptr page_size = GetPageSizeCached(); 263e8d8bef9SDimitry Andric uptr page_beg = RoundUpTo(shadow_beg, page_size); 264e8d8bef9SDimitry Andric uptr page_end = RoundDownTo(shadow_end, page_size); 265e8d8bef9SDimitry Andric 266e8d8bef9SDimitry Andric if (page_beg >= page_end) { 267e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 268e8d8bef9SDimitry Andric } else { 269e8d8bef9SDimitry Andric if (page_beg != shadow_beg) { 270e8d8bef9SDimitry Andric REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 271e8d8bef9SDimitry Andric } 272e8d8bef9SDimitry Andric if (page_end != shadow_end) { 273e8d8bef9SDimitry Andric REAL(memset)((void *)page_end, 0, shadow_end - page_end); 274e8d8bef9SDimitry Andric } 275e8d8bef9SDimitry Andric ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 276e8d8bef9SDimitry Andric } 277e8d8bef9SDimitry Andric } 278e8d8bef9SDimitry Andric } 279e8d8bef9SDimitry Andric 280e8d8bef9SDimitry Andric struct Allocator { 281e8d8bef9SDimitry Andric static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 282e8d8bef9SDimitry Andric 283e8d8bef9SDimitry Andric MemprofAllocator allocator; 284e8d8bef9SDimitry Andric StaticSpinMutex fallback_mutex; 285e8d8bef9SDimitry Andric AllocatorCache fallback_allocator_cache; 286e8d8bef9SDimitry Andric 287e8d8bef9SDimitry Andric uptr max_user_defined_malloc_size; 288e8d8bef9SDimitry Andric 289349cc55cSDimitry Andric // Holds the mapping of stack ids to MemInfoBlocks. 290349cc55cSDimitry Andric MIBMapTy MIBMap; 291349cc55cSDimitry Andric 292349cc55cSDimitry Andric atomic_uint8_t destructing; 293349cc55cSDimitry Andric atomic_uint8_t constructed; 294349cc55cSDimitry Andric bool print_text; 295e8d8bef9SDimitry Andric 296e8d8bef9SDimitry Andric // ------------------- Initialization ------------------------ 297349cc55cSDimitry Andric explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 298349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 0); 299349cc55cSDimitry Andric atomic_store_relaxed(&constructed, 1); 300349cc55cSDimitry Andric } 301e8d8bef9SDimitry Andric 302349cc55cSDimitry Andric ~Allocator() { 303349cc55cSDimitry Andric atomic_store_relaxed(&destructing, 1); 304349cc55cSDimitry Andric FinishAndWrite(); 305349cc55cSDimitry Andric } 306e8d8bef9SDimitry Andric 307349cc55cSDimitry Andric static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 308349cc55cSDimitry Andric void *Arg) { 309bdd1243dSDimitry Andric SpinMutexLock l(&Value->mutex); 3101fd87a68SDimitry Andric Print(Value->mib, Key, bool(Arg)); 311349cc55cSDimitry Andric } 312349cc55cSDimitry Andric 313*0fca6ea1SDimitry Andric // See memprof_mapping.h for an overview on histogram counters. 314*0fca6ea1SDimitry Andric static MemInfoBlock CreateNewMIB(uptr p, MemprofChunk *m, u64 user_size) { 315*0fca6ea1SDimitry Andric if (__memprof_histogram) { 316*0fca6ea1SDimitry Andric return CreateNewMIBWithHistogram(p, m, user_size); 317*0fca6ea1SDimitry Andric } else { 318*0fca6ea1SDimitry Andric return CreateNewMIBWithoutHistogram(p, m, user_size); 319*0fca6ea1SDimitry Andric } 320*0fca6ea1SDimitry Andric } 321*0fca6ea1SDimitry Andric 322*0fca6ea1SDimitry Andric static MemInfoBlock CreateNewMIBWithHistogram(uptr p, MemprofChunk *m, 323*0fca6ea1SDimitry Andric u64 user_size) { 324*0fca6ea1SDimitry Andric 325*0fca6ea1SDimitry Andric u64 c = GetShadowCountHistogram(p, user_size); 326*0fca6ea1SDimitry Andric long curtime = GetTimestamp(); 327*0fca6ea1SDimitry Andric uint32_t HistogramSize = 328*0fca6ea1SDimitry Andric RoundUpTo(user_size, HISTOGRAM_GRANULARITY) / HISTOGRAM_GRANULARITY; 329*0fca6ea1SDimitry Andric uintptr_t Histogram = 330*0fca6ea1SDimitry Andric (uintptr_t)InternalAlloc(HistogramSize * sizeof(uint64_t)); 331*0fca6ea1SDimitry Andric memset((void *)Histogram, 0, HistogramSize * sizeof(uint64_t)); 332*0fca6ea1SDimitry Andric for (size_t i = 0; i < HistogramSize; ++i) { 333*0fca6ea1SDimitry Andric u8 Counter = 334*0fca6ea1SDimitry Andric *((u8 *)HISTOGRAM_MEM_TO_SHADOW(p + HISTOGRAM_GRANULARITY * i)); 335*0fca6ea1SDimitry Andric ((uint64_t *)Histogram)[i] = (uint64_t)Counter; 336*0fca6ea1SDimitry Andric } 337*0fca6ea1SDimitry Andric MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, 338*0fca6ea1SDimitry Andric GetCpuId(), Histogram, HistogramSize); 339*0fca6ea1SDimitry Andric return newMIB; 340*0fca6ea1SDimitry Andric } 341*0fca6ea1SDimitry Andric 342*0fca6ea1SDimitry Andric static MemInfoBlock CreateNewMIBWithoutHistogram(uptr p, MemprofChunk *m, 343*0fca6ea1SDimitry Andric u64 user_size) { 344*0fca6ea1SDimitry Andric u64 c = GetShadowCount(p, user_size); 345*0fca6ea1SDimitry Andric long curtime = GetTimestamp(); 346*0fca6ea1SDimitry Andric MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, 347*0fca6ea1SDimitry Andric GetCpuId(), 0, 0); 348*0fca6ea1SDimitry Andric return newMIB; 349*0fca6ea1SDimitry Andric } 350*0fca6ea1SDimitry Andric 351349cc55cSDimitry Andric void FinishAndWrite() { 352349cc55cSDimitry Andric if (print_text && common_flags()->print_module_map) 353349cc55cSDimitry Andric DumpProcessMap(); 354349cc55cSDimitry Andric 355e8d8bef9SDimitry Andric allocator.ForceLock(); 356349cc55cSDimitry Andric 357349cc55cSDimitry Andric InsertLiveBlocks(); 358349cc55cSDimitry Andric if (print_text) { 3594824e7fdSDimitry Andric if (!flags()->print_terse) 3604824e7fdSDimitry Andric Printf("Recorded MIBs (incl. live on exit):\n"); 361349cc55cSDimitry Andric MIBMap.ForEach(PrintCallback, 362349cc55cSDimitry Andric reinterpret_cast<void *>(flags()->print_terse)); 363349cc55cSDimitry Andric StackDepotPrintAll(); 364349cc55cSDimitry Andric } else { 365349cc55cSDimitry Andric // Serialize the contents to a raw profile. Format documented in 366349cc55cSDimitry Andric // memprof_rawprofile.h. 367349cc55cSDimitry Andric char *Buffer = nullptr; 368349cc55cSDimitry Andric 36906c3fb27SDimitry Andric __sanitizer::ListOfModules List; 37006c3fb27SDimitry Andric List.init(); 37106c3fb27SDimitry Andric ArrayRef<LoadedModule> Modules(List.begin(), List.end()); 37206c3fb27SDimitry Andric u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer); 373349cc55cSDimitry Andric CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 374349cc55cSDimitry Andric report_file.Write(Buffer, BytesSerialized); 375349cc55cSDimitry Andric } 376349cc55cSDimitry Andric 377349cc55cSDimitry Andric allocator.ForceUnlock(); 378349cc55cSDimitry Andric } 379349cc55cSDimitry Andric 380349cc55cSDimitry Andric // Inserts any blocks which have been allocated but not yet deallocated. 381349cc55cSDimitry Andric void InsertLiveBlocks() { 382e8d8bef9SDimitry Andric allocator.ForEachChunk( 383e8d8bef9SDimitry Andric [](uptr chunk, void *alloc) { 384e8d8bef9SDimitry Andric u64 user_requested_size; 385349cc55cSDimitry Andric Allocator *A = (Allocator *)alloc; 386e8d8bef9SDimitry Andric MemprofChunk *m = 387349cc55cSDimitry Andric A->GetMemprofChunk((void *)chunk, user_requested_size); 388e8d8bef9SDimitry Andric if (!m) 389e8d8bef9SDimitry Andric return; 390e8d8bef9SDimitry Andric uptr user_beg = ((uptr)m) + kChunkHeaderSize; 391*0fca6ea1SDimitry Andric MemInfoBlock newMIB = CreateNewMIB(user_beg, m, user_requested_size); 392349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 393e8d8bef9SDimitry Andric }, 394e8d8bef9SDimitry Andric this); 395e8d8bef9SDimitry Andric } 396e8d8bef9SDimitry Andric 397e8d8bef9SDimitry Andric void InitLinkerInitialized() { 398e8d8bef9SDimitry Andric SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 399e8d8bef9SDimitry Andric allocator.InitLinkerInitialized( 400e8d8bef9SDimitry Andric common_flags()->allocator_release_to_os_interval_ms); 401e8d8bef9SDimitry Andric max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 402e8d8bef9SDimitry Andric ? common_flags()->max_allocation_size_mb 403e8d8bef9SDimitry Andric << 20 404e8d8bef9SDimitry Andric : kMaxAllowedMallocSize; 405e8d8bef9SDimitry Andric } 406e8d8bef9SDimitry Andric 407e8d8bef9SDimitry Andric // -------------------- Allocation/Deallocation routines --------------- 408e8d8bef9SDimitry Andric void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 409e8d8bef9SDimitry Andric AllocType alloc_type) { 410e8d8bef9SDimitry Andric if (UNLIKELY(!memprof_inited)) 411e8d8bef9SDimitry Andric MemprofInitFromRtl(); 4120eae32dcSDimitry Andric if (UNLIKELY(IsRssLimitExceeded())) { 413e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 414e8d8bef9SDimitry Andric return nullptr; 415e8d8bef9SDimitry Andric ReportRssLimitExceeded(stack); 416e8d8bef9SDimitry Andric } 417e8d8bef9SDimitry Andric CHECK(stack); 418e8d8bef9SDimitry Andric const uptr min_alignment = MEMPROF_ALIGNMENT; 419e8d8bef9SDimitry Andric if (alignment < min_alignment) 420e8d8bef9SDimitry Andric alignment = min_alignment; 421e8d8bef9SDimitry Andric if (size == 0) { 422e8d8bef9SDimitry Andric // We'd be happy to avoid allocating memory for zero-size requests, but 423e8d8bef9SDimitry Andric // some programs/tests depend on this behavior and assume that malloc 424e8d8bef9SDimitry Andric // would not return NULL even for zero-size allocations. Moreover, it 425e8d8bef9SDimitry Andric // looks like operator new should never return NULL, and results of 426e8d8bef9SDimitry Andric // consecutive "new" calls must be different even if the allocated size 427e8d8bef9SDimitry Andric // is zero. 428e8d8bef9SDimitry Andric size = 1; 429e8d8bef9SDimitry Andric } 430e8d8bef9SDimitry Andric CHECK(IsPowerOfTwo(alignment)); 431e8d8bef9SDimitry Andric uptr rounded_size = RoundUpTo(size, alignment); 432e8d8bef9SDimitry Andric uptr needed_size = rounded_size + kChunkHeaderSize; 433e8d8bef9SDimitry Andric if (alignment > min_alignment) 434e8d8bef9SDimitry Andric needed_size += alignment; 435e8d8bef9SDimitry Andric CHECK(IsAligned(needed_size, min_alignment)); 436e8d8bef9SDimitry Andric if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 437e8d8bef9SDimitry Andric size > max_user_defined_malloc_size) { 438e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) { 439349cc55cSDimitry Andric Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 440e8d8bef9SDimitry Andric return nullptr; 441e8d8bef9SDimitry Andric } 442e8d8bef9SDimitry Andric uptr malloc_limit = 443e8d8bef9SDimitry Andric Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 444e8d8bef9SDimitry Andric ReportAllocationSizeTooBig(size, malloc_limit, stack); 445e8d8bef9SDimitry Andric } 446e8d8bef9SDimitry Andric 447e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 448e8d8bef9SDimitry Andric void *allocated; 449e8d8bef9SDimitry Andric if (t) { 450e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 451e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 452e8d8bef9SDimitry Andric } else { 453e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 454e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 455e8d8bef9SDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8); 456e8d8bef9SDimitry Andric } 457e8d8bef9SDimitry Andric if (UNLIKELY(!allocated)) { 458e8d8bef9SDimitry Andric SetAllocatorOutOfMemory(); 459e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 460e8d8bef9SDimitry Andric return nullptr; 461e8d8bef9SDimitry Andric ReportOutOfMemory(size, stack); 462e8d8bef9SDimitry Andric } 463e8d8bef9SDimitry Andric 464e8d8bef9SDimitry Andric uptr alloc_beg = reinterpret_cast<uptr>(allocated); 465e8d8bef9SDimitry Andric uptr alloc_end = alloc_beg + needed_size; 466e8d8bef9SDimitry Andric uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 467e8d8bef9SDimitry Andric uptr user_beg = beg_plus_header; 468e8d8bef9SDimitry Andric if (!IsAligned(user_beg, alignment)) 469e8d8bef9SDimitry Andric user_beg = RoundUpTo(user_beg, alignment); 470e8d8bef9SDimitry Andric uptr user_end = user_beg + size; 471e8d8bef9SDimitry Andric CHECK_LE(user_end, alloc_end); 472e8d8bef9SDimitry Andric uptr chunk_beg = user_beg - kChunkHeaderSize; 473e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 474e8d8bef9SDimitry Andric m->from_memalign = alloc_beg != chunk_beg; 475e8d8bef9SDimitry Andric CHECK(size); 476e8d8bef9SDimitry Andric 477e8d8bef9SDimitry Andric m->cpu_id = GetCpuId(); 478e8d8bef9SDimitry Andric m->timestamp_ms = GetTimestamp(); 479e8d8bef9SDimitry Andric m->alloc_context_id = StackDepotPut(*stack); 480e8d8bef9SDimitry Andric 481e8d8bef9SDimitry Andric uptr size_rounded_down_to_granularity = 482e8d8bef9SDimitry Andric RoundDownTo(size, SHADOW_GRANULARITY); 483e8d8bef9SDimitry Andric if (size_rounded_down_to_granularity) 484e8d8bef9SDimitry Andric ClearShadow(user_beg, size_rounded_down_to_granularity); 485e8d8bef9SDimitry Andric 486e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 487e8d8bef9SDimitry Andric thread_stats.mallocs++; 488e8d8bef9SDimitry Andric thread_stats.malloced += size; 489e8d8bef9SDimitry Andric thread_stats.malloced_overhead += needed_size - size; 490e8d8bef9SDimitry Andric if (needed_size > SizeClassMap::kMaxSize) 491e8d8bef9SDimitry Andric thread_stats.malloc_large++; 492e8d8bef9SDimitry Andric else 493e8d8bef9SDimitry Andric thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 494e8d8bef9SDimitry Andric 495e8d8bef9SDimitry Andric void *res = reinterpret_cast<void *>(user_beg); 496e8d8bef9SDimitry Andric atomic_store(&m->user_requested_size, size, memory_order_release); 497e8d8bef9SDimitry Andric if (alloc_beg != chunk_beg) { 498e8d8bef9SDimitry Andric CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 499e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 500e8d8bef9SDimitry Andric } 50181ad6265SDimitry Andric RunMallocHooks(res, size); 502e8d8bef9SDimitry Andric return res; 503e8d8bef9SDimitry Andric } 504e8d8bef9SDimitry Andric 505e8d8bef9SDimitry Andric void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 506e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 507e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(ptr); 508e8d8bef9SDimitry Andric if (p == 0) 509e8d8bef9SDimitry Andric return; 510e8d8bef9SDimitry Andric 51181ad6265SDimitry Andric RunFreeHooks(ptr); 512e8d8bef9SDimitry Andric 513e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 514e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 515e8d8bef9SDimitry Andric 516e8d8bef9SDimitry Andric u64 user_requested_size = 517e8d8bef9SDimitry Andric atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 51806c3fb27SDimitry Andric if (memprof_inited && atomic_load_relaxed(&constructed) && 519349cc55cSDimitry Andric !atomic_load_relaxed(&destructing)) { 520*0fca6ea1SDimitry Andric MemInfoBlock newMIB = this->CreateNewMIB(p, m, user_requested_size); 521349cc55cSDimitry Andric InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric 524e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 525e8d8bef9SDimitry Andric thread_stats.frees++; 526e8d8bef9SDimitry Andric thread_stats.freed += user_requested_size; 527e8d8bef9SDimitry Andric 528e8d8bef9SDimitry Andric void *alloc_beg = m->AllocBeg(); 529e8d8bef9SDimitry Andric if (alloc_beg != m) { 530e8d8bef9SDimitry Andric // Clear the magic value, as allocator internals may overwrite the 531e8d8bef9SDimitry Andric // contents of deallocated chunk, confusing GetMemprofChunk lookup. 532e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 533e8d8bef9SDimitry Andric } 534e8d8bef9SDimitry Andric 535e8d8bef9SDimitry Andric MemprofThread *t = GetCurrentThread(); 536e8d8bef9SDimitry Andric if (t) { 537e8d8bef9SDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 538e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 539e8d8bef9SDimitry Andric } else { 540e8d8bef9SDimitry Andric SpinMutexLock l(&fallback_mutex); 541e8d8bef9SDimitry Andric AllocatorCache *cache = &fallback_allocator_cache; 542e8d8bef9SDimitry Andric allocator.Deallocate(cache, alloc_beg); 543e8d8bef9SDimitry Andric } 544e8d8bef9SDimitry Andric } 545e8d8bef9SDimitry Andric 546e8d8bef9SDimitry Andric void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 547e8d8bef9SDimitry Andric CHECK(old_ptr && new_size); 548e8d8bef9SDimitry Andric uptr p = reinterpret_cast<uptr>(old_ptr); 549e8d8bef9SDimitry Andric uptr chunk_beg = p - kChunkHeaderSize; 550e8d8bef9SDimitry Andric MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 551e8d8bef9SDimitry Andric 552e8d8bef9SDimitry Andric MemprofStats &thread_stats = GetCurrentThreadStats(); 553e8d8bef9SDimitry Andric thread_stats.reallocs++; 554e8d8bef9SDimitry Andric thread_stats.realloced += new_size; 555e8d8bef9SDimitry Andric 556e8d8bef9SDimitry Andric void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 557e8d8bef9SDimitry Andric if (new_ptr) { 558e8d8bef9SDimitry Andric CHECK_NE(REAL(memcpy), nullptr); 559e8d8bef9SDimitry Andric uptr memcpy_size = Min(new_size, m->UsedSize()); 560e8d8bef9SDimitry Andric REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 561e8d8bef9SDimitry Andric Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 562e8d8bef9SDimitry Andric } 563e8d8bef9SDimitry Andric return new_ptr; 564e8d8bef9SDimitry Andric } 565e8d8bef9SDimitry Andric 566e8d8bef9SDimitry Andric void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 567e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 568e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 569e8d8bef9SDimitry Andric return nullptr; 570e8d8bef9SDimitry Andric ReportCallocOverflow(nmemb, size, stack); 571e8d8bef9SDimitry Andric } 572e8d8bef9SDimitry Andric void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 573e8d8bef9SDimitry Andric // If the memory comes from the secondary allocator no need to clear it 574e8d8bef9SDimitry Andric // as it comes directly from mmap. 575e8d8bef9SDimitry Andric if (ptr && allocator.FromPrimary(ptr)) 576e8d8bef9SDimitry Andric REAL(memset)(ptr, 0, nmemb * size); 577e8d8bef9SDimitry Andric return ptr; 578e8d8bef9SDimitry Andric } 579e8d8bef9SDimitry Andric 580*0fca6ea1SDimitry Andric void CommitBack(MemprofThreadLocalMallocStorage *ms) { 581e8d8bef9SDimitry Andric AllocatorCache *ac = GetAllocatorCache(ms); 582e8d8bef9SDimitry Andric allocator.SwallowCache(ac); 583e8d8bef9SDimitry Andric } 584e8d8bef9SDimitry Andric 585e8d8bef9SDimitry Andric // -------------------------- Chunk lookup ---------------------- 586e8d8bef9SDimitry Andric 587e8d8bef9SDimitry Andric // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 588e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 589e8d8bef9SDimitry Andric if (!alloc_beg) 590e8d8bef9SDimitry Andric return nullptr; 591e8d8bef9SDimitry Andric MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 592e8d8bef9SDimitry Andric if (!p) { 593e8d8bef9SDimitry Andric if (!allocator.FromPrimary(alloc_beg)) 594e8d8bef9SDimitry Andric return nullptr; 595e8d8bef9SDimitry Andric p = reinterpret_cast<MemprofChunk *>(alloc_beg); 596e8d8bef9SDimitry Andric } 597e8d8bef9SDimitry Andric // The size is reset to 0 on deallocation (and a min of 1 on 598e8d8bef9SDimitry Andric // allocation). 599e8d8bef9SDimitry Andric user_requested_size = 600e8d8bef9SDimitry Andric atomic_load(&p->user_requested_size, memory_order_acquire); 601e8d8bef9SDimitry Andric if (user_requested_size) 602e8d8bef9SDimitry Andric return p; 603e8d8bef9SDimitry Andric return nullptr; 604e8d8bef9SDimitry Andric } 605e8d8bef9SDimitry Andric 606e8d8bef9SDimitry Andric MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 607e8d8bef9SDimitry Andric void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 608e8d8bef9SDimitry Andric return GetMemprofChunk(alloc_beg, user_requested_size); 609e8d8bef9SDimitry Andric } 610e8d8bef9SDimitry Andric 611e8d8bef9SDimitry Andric uptr AllocationSize(uptr p) { 612e8d8bef9SDimitry Andric u64 user_requested_size; 613e8d8bef9SDimitry Andric MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 614e8d8bef9SDimitry Andric if (!m) 615e8d8bef9SDimitry Andric return 0; 616e8d8bef9SDimitry Andric if (m->Beg() != p) 617e8d8bef9SDimitry Andric return 0; 618e8d8bef9SDimitry Andric return user_requested_size; 619e8d8bef9SDimitry Andric } 620e8d8bef9SDimitry Andric 62106c3fb27SDimitry Andric uptr AllocationSizeFast(uptr p) { 62206c3fb27SDimitry Andric return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize(); 62306c3fb27SDimitry Andric } 62406c3fb27SDimitry Andric 625*0fca6ea1SDimitry Andric void Purge() { allocator.ForceReleaseToOS(); } 626e8d8bef9SDimitry Andric 627e8d8bef9SDimitry Andric void PrintStats() { allocator.PrintStats(); } 628e8d8bef9SDimitry Andric 62904eeddc0SDimitry Andric void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 630e8d8bef9SDimitry Andric allocator.ForceLock(); 631e8d8bef9SDimitry Andric fallback_mutex.Lock(); 632e8d8bef9SDimitry Andric } 633e8d8bef9SDimitry Andric 63404eeddc0SDimitry Andric void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 635e8d8bef9SDimitry Andric fallback_mutex.Unlock(); 636e8d8bef9SDimitry Andric allocator.ForceUnlock(); 637e8d8bef9SDimitry Andric } 638e8d8bef9SDimitry Andric }; 639e8d8bef9SDimitry Andric 640e8d8bef9SDimitry Andric static Allocator instance(LINKER_INITIALIZED); 641e8d8bef9SDimitry Andric 642e8d8bef9SDimitry Andric static MemprofAllocator &get_allocator() { return instance.allocator; } 643e8d8bef9SDimitry Andric 644e8d8bef9SDimitry Andric void InitializeAllocator() { instance.InitLinkerInitialized(); } 645e8d8bef9SDimitry Andric 646e8d8bef9SDimitry Andric void MemprofThreadLocalMallocStorage::CommitBack() { 647*0fca6ea1SDimitry Andric instance.CommitBack(this); 648e8d8bef9SDimitry Andric } 649e8d8bef9SDimitry Andric 650e8d8bef9SDimitry Andric void PrintInternalAllocatorStats() { instance.PrintStats(); } 651e8d8bef9SDimitry Andric 652e8d8bef9SDimitry Andric void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 653e8d8bef9SDimitry Andric instance.Deallocate(ptr, 0, 0, stack, alloc_type); 654e8d8bef9SDimitry Andric } 655e8d8bef9SDimitry Andric 656e8d8bef9SDimitry Andric void memprof_delete(void *ptr, uptr size, uptr alignment, 657e8d8bef9SDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) { 658e8d8bef9SDimitry Andric instance.Deallocate(ptr, size, alignment, stack, alloc_type); 659e8d8bef9SDimitry Andric } 660e8d8bef9SDimitry Andric 661e8d8bef9SDimitry Andric void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 662e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 663e8d8bef9SDimitry Andric } 664e8d8bef9SDimitry Andric 665e8d8bef9SDimitry Andric void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 666e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 667e8d8bef9SDimitry Andric } 668e8d8bef9SDimitry Andric 669e8d8bef9SDimitry Andric void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 670e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 671e8d8bef9SDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 672e8d8bef9SDimitry Andric errno = errno_ENOMEM; 673e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 674e8d8bef9SDimitry Andric return nullptr; 675e8d8bef9SDimitry Andric ReportReallocArrayOverflow(nmemb, size, stack); 676e8d8bef9SDimitry Andric } 677e8d8bef9SDimitry Andric return memprof_realloc(p, nmemb * size, stack); 678e8d8bef9SDimitry Andric } 679e8d8bef9SDimitry Andric 680e8d8bef9SDimitry Andric void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 681e8d8bef9SDimitry Andric if (!p) 682e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 683e8d8bef9SDimitry Andric if (size == 0) { 684e8d8bef9SDimitry Andric if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 685e8d8bef9SDimitry Andric instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 686e8d8bef9SDimitry Andric return nullptr; 687e8d8bef9SDimitry Andric } 688e8d8bef9SDimitry Andric // Allocate a size of 1 if we shouldn't free() on Realloc to 0 689e8d8bef9SDimitry Andric size = 1; 690e8d8bef9SDimitry Andric } 691e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 692e8d8bef9SDimitry Andric } 693e8d8bef9SDimitry Andric 694e8d8bef9SDimitry Andric void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 695e8d8bef9SDimitry Andric return SetErrnoOnNull( 696e8d8bef9SDimitry Andric instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 697e8d8bef9SDimitry Andric } 698e8d8bef9SDimitry Andric 699e8d8bef9SDimitry Andric void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 700e8d8bef9SDimitry Andric uptr PageSize = GetPageSizeCached(); 701e8d8bef9SDimitry Andric if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 702e8d8bef9SDimitry Andric errno = errno_ENOMEM; 703e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 704e8d8bef9SDimitry Andric return nullptr; 705e8d8bef9SDimitry Andric ReportPvallocOverflow(size, stack); 706e8d8bef9SDimitry Andric } 707e8d8bef9SDimitry Andric // pvalloc(0) should allocate one page. 708e8d8bef9SDimitry Andric size = size ? RoundUpTo(size, PageSize) : PageSize; 709e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 710e8d8bef9SDimitry Andric } 711e8d8bef9SDimitry Andric 712e8d8bef9SDimitry Andric void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 713e8d8bef9SDimitry Andric AllocType alloc_type) { 714e8d8bef9SDimitry Andric if (UNLIKELY(!IsPowerOfTwo(alignment))) { 715e8d8bef9SDimitry Andric errno = errno_EINVAL; 716e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 717e8d8bef9SDimitry Andric return nullptr; 718e8d8bef9SDimitry Andric ReportInvalidAllocationAlignment(alignment, stack); 719e8d8bef9SDimitry Andric } 720e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 721e8d8bef9SDimitry Andric } 722e8d8bef9SDimitry Andric 723e8d8bef9SDimitry Andric void *memprof_aligned_alloc(uptr alignment, uptr size, 724e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 725e8d8bef9SDimitry Andric if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 726e8d8bef9SDimitry Andric errno = errno_EINVAL; 727e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 728e8d8bef9SDimitry Andric return nullptr; 729e8d8bef9SDimitry Andric ReportInvalidAlignedAllocAlignment(size, alignment, stack); 730e8d8bef9SDimitry Andric } 731e8d8bef9SDimitry Andric return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 732e8d8bef9SDimitry Andric } 733e8d8bef9SDimitry Andric 734e8d8bef9SDimitry Andric int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 735e8d8bef9SDimitry Andric BufferedStackTrace *stack) { 736e8d8bef9SDimitry Andric if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 737e8d8bef9SDimitry Andric if (AllocatorMayReturnNull()) 738e8d8bef9SDimitry Andric return errno_EINVAL; 739e8d8bef9SDimitry Andric ReportInvalidPosixMemalignAlignment(alignment, stack); 740e8d8bef9SDimitry Andric } 741e8d8bef9SDimitry Andric void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 742e8d8bef9SDimitry Andric if (UNLIKELY(!ptr)) 743e8d8bef9SDimitry Andric // OOM error is already taken care of by Allocate. 744e8d8bef9SDimitry Andric return errno_ENOMEM; 745e8d8bef9SDimitry Andric CHECK(IsAligned((uptr)ptr, alignment)); 746e8d8bef9SDimitry Andric *memptr = ptr; 747e8d8bef9SDimitry Andric return 0; 748e8d8bef9SDimitry Andric } 749e8d8bef9SDimitry Andric 75006c3fb27SDimitry Andric static const void *memprof_malloc_begin(const void *p) { 75106c3fb27SDimitry Andric u64 user_requested_size; 75206c3fb27SDimitry Andric MemprofChunk *m = 75306c3fb27SDimitry Andric instance.GetMemprofChunkByAddr((uptr)p, user_requested_size); 75406c3fb27SDimitry Andric if (!m) 75506c3fb27SDimitry Andric return nullptr; 75606c3fb27SDimitry Andric if (user_requested_size == 0) 75706c3fb27SDimitry Andric return nullptr; 75806c3fb27SDimitry Andric 75906c3fb27SDimitry Andric return (const void *)m->Beg(); 76006c3fb27SDimitry Andric } 76106c3fb27SDimitry Andric 762*0fca6ea1SDimitry Andric uptr memprof_malloc_usable_size(const void *ptr) { 763e8d8bef9SDimitry Andric if (!ptr) 764e8d8bef9SDimitry Andric return 0; 765e8d8bef9SDimitry Andric uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 766e8d8bef9SDimitry Andric return usable_size; 767e8d8bef9SDimitry Andric } 768e8d8bef9SDimitry Andric 769e8d8bef9SDimitry Andric } // namespace __memprof 770e8d8bef9SDimitry Andric 771e8d8bef9SDimitry Andric // ---------------------- Interface ---------------- {{{1 772e8d8bef9SDimitry Andric using namespace __memprof; 773e8d8bef9SDimitry Andric 774e8d8bef9SDimitry Andric uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 775e8d8bef9SDimitry Andric 776e8d8bef9SDimitry Andric int __sanitizer_get_ownership(const void *p) { 777*0fca6ea1SDimitry Andric return memprof_malloc_usable_size(p) != 0; 778e8d8bef9SDimitry Andric } 779e8d8bef9SDimitry Andric 78006c3fb27SDimitry Andric const void *__sanitizer_get_allocated_begin(const void *p) { 78106c3fb27SDimitry Andric return memprof_malloc_begin(p); 78206c3fb27SDimitry Andric } 78306c3fb27SDimitry Andric 784e8d8bef9SDimitry Andric uptr __sanitizer_get_allocated_size(const void *p) { 785*0fca6ea1SDimitry Andric return memprof_malloc_usable_size(p); 786e8d8bef9SDimitry Andric } 787e8d8bef9SDimitry Andric 78806c3fb27SDimitry Andric uptr __sanitizer_get_allocated_size_fast(const void *p) { 78906c3fb27SDimitry Andric DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 79006c3fb27SDimitry Andric uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); 79106c3fb27SDimitry Andric DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 79206c3fb27SDimitry Andric return ret; 79306c3fb27SDimitry Andric } 79406c3fb27SDimitry Andric 795*0fca6ea1SDimitry Andric void __sanitizer_purge_allocator() { instance.Purge(); } 796*0fca6ea1SDimitry Andric 797e8d8bef9SDimitry Andric int __memprof_profile_dump() { 798349cc55cSDimitry Andric instance.FinishAndWrite(); 799e8d8bef9SDimitry Andric // In the future we may want to return non-zero if there are any errors 800e8d8bef9SDimitry Andric // detected during the dumping process. 801e8d8bef9SDimitry Andric return 0; 802e8d8bef9SDimitry Andric } 8035f757f3fSDimitry Andric 8045f757f3fSDimitry Andric void __memprof_profile_reset() { 8055f757f3fSDimitry Andric if (report_file.fd != kInvalidFd && report_file.fd != kStdoutFd && 8065f757f3fSDimitry Andric report_file.fd != kStderrFd) { 8075f757f3fSDimitry Andric CloseFile(report_file.fd); 8085f757f3fSDimitry Andric // Setting the file descriptor to kInvalidFd ensures that we will reopen the 8095f757f3fSDimitry Andric // file when invoking Write again. 8105f757f3fSDimitry Andric report_file.fd = kInvalidFd; 8115f757f3fSDimitry Andric } 8125f757f3fSDimitry Andric } 813