xref: /freebsd-src/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
168d75effSDimitry Andric //===-- asan_allocator.cpp ------------------------------------------------===//
268d75effSDimitry Andric //
368d75effSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
468d75effSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
568d75effSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
668d75effSDimitry Andric //
768d75effSDimitry Andric //===----------------------------------------------------------------------===//
868d75effSDimitry Andric //
968d75effSDimitry Andric // This file is a part of AddressSanitizer, an address sanity checker.
1068d75effSDimitry Andric //
1168d75effSDimitry Andric // Implementation of ASan's memory allocator, 2-nd version.
1268d75effSDimitry Andric // This variant uses the allocator from sanitizer_common, i.e. the one shared
1368d75effSDimitry Andric // with ThreadSanitizer and MemorySanitizer.
1468d75effSDimitry Andric //
1568d75effSDimitry Andric //===----------------------------------------------------------------------===//
1668d75effSDimitry Andric 
1768d75effSDimitry Andric #include "asan_allocator.h"
18e8d8bef9SDimitry Andric 
1968d75effSDimitry Andric #include "asan_mapping.h"
2068d75effSDimitry Andric #include "asan_poisoning.h"
2168d75effSDimitry Andric #include "asan_report.h"
2268d75effSDimitry Andric #include "asan_stack.h"
2368d75effSDimitry Andric #include "asan_thread.h"
24e8d8bef9SDimitry Andric #include "lsan/lsan_common.h"
2568d75effSDimitry Andric #include "sanitizer_common/sanitizer_allocator_checks.h"
2668d75effSDimitry Andric #include "sanitizer_common/sanitizer_allocator_interface.h"
2768d75effSDimitry Andric #include "sanitizer_common/sanitizer_errno.h"
2868d75effSDimitry Andric #include "sanitizer_common/sanitizer_flags.h"
2968d75effSDimitry Andric #include "sanitizer_common/sanitizer_internal_defs.h"
3068d75effSDimitry Andric #include "sanitizer_common/sanitizer_list.h"
3168d75effSDimitry Andric #include "sanitizer_common/sanitizer_quarantine.h"
32e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_stackdepot.h"
3368d75effSDimitry Andric 
3468d75effSDimitry Andric namespace __asan {
3568d75effSDimitry Andric 
3668d75effSDimitry Andric // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
3768d75effSDimitry Andric // We use adaptive redzones: for larger allocation larger redzones are used.
3868d75effSDimitry Andric static u32 RZLog2Size(u32 rz_log) {
3968d75effSDimitry Andric   CHECK_LT(rz_log, 8);
4068d75effSDimitry Andric   return 16 << rz_log;
4168d75effSDimitry Andric }
4268d75effSDimitry Andric 
4368d75effSDimitry Andric static u32 RZSize2Log(u32 rz_size) {
4468d75effSDimitry Andric   CHECK_GE(rz_size, 16);
4568d75effSDimitry Andric   CHECK_LE(rz_size, 2048);
4668d75effSDimitry Andric   CHECK(IsPowerOfTwo(rz_size));
4768d75effSDimitry Andric   u32 res = Log2(rz_size) - 4;
4868d75effSDimitry Andric   CHECK_EQ(rz_size, RZLog2Size(res));
4968d75effSDimitry Andric   return res;
5068d75effSDimitry Andric }
5168d75effSDimitry Andric 
5268d75effSDimitry Andric static AsanAllocator &get_allocator();
5368d75effSDimitry Andric 
54e8d8bef9SDimitry Andric static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
55e8d8bef9SDimitry Andric                                u32 tid, u32 stack) {
56e8d8bef9SDimitry Andric   u64 context = tid;
57e8d8bef9SDimitry Andric   context <<= 32;
58e8d8bef9SDimitry Andric   context += stack;
59e8d8bef9SDimitry Andric   atomic_store(atomic_context, context, memory_order_relaxed);
60e8d8bef9SDimitry Andric }
61e8d8bef9SDimitry Andric 
62e8d8bef9SDimitry Andric static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
63e8d8bef9SDimitry Andric                               u32 &tid, u32 &stack) {
64e8d8bef9SDimitry Andric   u64 context = atomic_load(atomic_context, memory_order_relaxed);
65e8d8bef9SDimitry Andric   stack = context;
66e8d8bef9SDimitry Andric   context >>= 32;
67e8d8bef9SDimitry Andric   tid = context;
68e8d8bef9SDimitry Andric }
69e8d8bef9SDimitry Andric 
7068d75effSDimitry Andric // The memory chunk allocated from the underlying allocator looks like this:
7168d75effSDimitry Andric // L L L L L L H H U U U U U U R R
7268d75effSDimitry Andric //   L -- left redzone words (0 or more bytes)
7368d75effSDimitry Andric //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
7468d75effSDimitry Andric //   U -- user memory.
7568d75effSDimitry Andric //   R -- right redzone (0 or more bytes)
7668d75effSDimitry Andric // ChunkBase consists of ChunkHeader and other bytes that overlap with user
7768d75effSDimitry Andric // memory.
7868d75effSDimitry Andric 
7968d75effSDimitry Andric // If the left redzone is greater than the ChunkHeader size we store a magic
8068d75effSDimitry Andric // value in the first uptr word of the memory block and store the address of
8168d75effSDimitry Andric // ChunkBase in the next uptr.
8268d75effSDimitry Andric // M B L L L L L L L L L  H H U U U U U U
8368d75effSDimitry Andric //   |                    ^
8468d75effSDimitry Andric //   ---------------------|
8568d75effSDimitry Andric //   M -- magic value kAllocBegMagic
8668d75effSDimitry Andric //   B -- address of ChunkHeader pointing to the first 'H'
8768d75effSDimitry Andric 
88e8d8bef9SDimitry Andric class ChunkHeader {
89e8d8bef9SDimitry Andric  public:
90e8d8bef9SDimitry Andric   atomic_uint8_t chunk_state;
91e8d8bef9SDimitry Andric   u8 alloc_type : 2;
92e8d8bef9SDimitry Andric   u8 lsan_tag : 2;
9368d75effSDimitry Andric 
9468d75effSDimitry Andric   // align < 8 -> 0
9568d75effSDimitry Andric   // else      -> log2(min(align, 512)) - 2
96e8d8bef9SDimitry Andric   u8 user_requested_alignment_log : 3;
97e8d8bef9SDimitry Andric 
98e8d8bef9SDimitry Andric  private:
99e8d8bef9SDimitry Andric   u16 user_requested_size_hi;
100e8d8bef9SDimitry Andric   u32 user_requested_size_lo;
101e8d8bef9SDimitry Andric   atomic_uint64_t alloc_context_id;
102e8d8bef9SDimitry Andric 
103e8d8bef9SDimitry Andric  public:
104e8d8bef9SDimitry Andric   uptr UsedSize() const {
105349cc55cSDimitry Andric     static_assert(sizeof(user_requested_size_lo) == 4,
106349cc55cSDimitry Andric                   "Expression below requires this");
107349cc55cSDimitry Andric     return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
108349cc55cSDimitry Andric            user_requested_size_lo;
109e8d8bef9SDimitry Andric   }
110e8d8bef9SDimitry Andric 
111e8d8bef9SDimitry Andric   void SetUsedSize(uptr size) {
112e8d8bef9SDimitry Andric     user_requested_size_lo = size;
113349cc55cSDimitry Andric     static_assert(sizeof(user_requested_size_lo) == 4,
114349cc55cSDimitry Andric                   "Expression below requires this");
115349cc55cSDimitry Andric     user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
116349cc55cSDimitry Andric     CHECK_EQ(UsedSize(), size);
117e8d8bef9SDimitry Andric   }
118e8d8bef9SDimitry Andric 
119e8d8bef9SDimitry Andric   void SetAllocContext(u32 tid, u32 stack) {
120e8d8bef9SDimitry Andric     AtomicContextStore(&alloc_context_id, tid, stack);
121e8d8bef9SDimitry Andric   }
122e8d8bef9SDimitry Andric 
123e8d8bef9SDimitry Andric   void GetAllocContext(u32 &tid, u32 &stack) const {
124e8d8bef9SDimitry Andric     AtomicContextLoad(&alloc_context_id, tid, stack);
125e8d8bef9SDimitry Andric   }
12668d75effSDimitry Andric };
12768d75effSDimitry Andric 
128e8d8bef9SDimitry Andric class ChunkBase : public ChunkHeader {
129e8d8bef9SDimitry Andric   atomic_uint64_t free_context_id;
130e8d8bef9SDimitry Andric 
131e8d8bef9SDimitry Andric  public:
132e8d8bef9SDimitry Andric   void SetFreeContext(u32 tid, u32 stack) {
133e8d8bef9SDimitry Andric     AtomicContextStore(&free_context_id, tid, stack);
134e8d8bef9SDimitry Andric   }
135e8d8bef9SDimitry Andric 
136e8d8bef9SDimitry Andric   void GetFreeContext(u32 &tid, u32 &stack) const {
137e8d8bef9SDimitry Andric     AtomicContextLoad(&free_context_id, tid, stack);
138e8d8bef9SDimitry Andric   }
13968d75effSDimitry Andric };
14068d75effSDimitry Andric 
14168d75effSDimitry Andric static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
14268d75effSDimitry Andric static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
14368d75effSDimitry Andric COMPILER_CHECK(kChunkHeaderSize == 16);
14468d75effSDimitry Andric COMPILER_CHECK(kChunkHeader2Size <= 16);
14568d75effSDimitry Andric 
14668d75effSDimitry Andric enum {
147e8d8bef9SDimitry Andric   // Either just allocated by underlying allocator, but AsanChunk is not yet
148e8d8bef9SDimitry Andric   // ready, or almost returned to undelying allocator and AsanChunk is already
149e8d8bef9SDimitry Andric   // meaningless.
150e8d8bef9SDimitry Andric   CHUNK_INVALID = 0,
151e8d8bef9SDimitry Andric   // The chunk is allocated and not yet freed.
15268d75effSDimitry Andric   CHUNK_ALLOCATED = 2,
153e8d8bef9SDimitry Andric   // The chunk was freed and put into quarantine zone.
154e8d8bef9SDimitry Andric   CHUNK_QUARANTINE = 3,
15568d75effSDimitry Andric };
15668d75effSDimitry Andric 
157e8d8bef9SDimitry Andric class AsanChunk : public ChunkBase {
158e8d8bef9SDimitry Andric  public:
15968d75effSDimitry Andric   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
160e8d8bef9SDimitry Andric   bool AddrIsInside(uptr addr) {
161e8d8bef9SDimitry Andric     return (addr >= Beg()) && (addr < Beg() + UsedSize());
16268d75effSDimitry Andric   }
163e8d8bef9SDimitry Andric };
164e8d8bef9SDimitry Andric 
165e8d8bef9SDimitry Andric class LargeChunkHeader {
166e8d8bef9SDimitry Andric   static constexpr uptr kAllocBegMagic =
167e8d8bef9SDimitry Andric       FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
168e8d8bef9SDimitry Andric   atomic_uintptr_t magic;
169e8d8bef9SDimitry Andric   AsanChunk *chunk_header;
170e8d8bef9SDimitry Andric 
171e8d8bef9SDimitry Andric  public:
172e8d8bef9SDimitry Andric   AsanChunk *Get() const {
173e8d8bef9SDimitry Andric     return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
174e8d8bef9SDimitry Andric                ? chunk_header
175e8d8bef9SDimitry Andric                : nullptr;
17668d75effSDimitry Andric   }
177e8d8bef9SDimitry Andric 
178e8d8bef9SDimitry Andric   void Set(AsanChunk *p) {
179e8d8bef9SDimitry Andric     if (p) {
180e8d8bef9SDimitry Andric       chunk_header = p;
181e8d8bef9SDimitry Andric       atomic_store(&magic, kAllocBegMagic, memory_order_release);
182e8d8bef9SDimitry Andric       return;
18368d75effSDimitry Andric     }
184e8d8bef9SDimitry Andric 
185e8d8bef9SDimitry Andric     uptr old = kAllocBegMagic;
186e8d8bef9SDimitry Andric     if (!atomic_compare_exchange_strong(&magic, &old, 0,
187e8d8bef9SDimitry Andric                                         memory_order_release)) {
188e8d8bef9SDimitry Andric       CHECK_EQ(old, kAllocBegMagic);
189e8d8bef9SDimitry Andric     }
19068d75effSDimitry Andric   }
19168d75effSDimitry Andric };
19268d75effSDimitry Andric 
19368d75effSDimitry Andric struct QuarantineCallback {
19468d75effSDimitry Andric   QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
19568d75effSDimitry Andric       : cache_(cache),
19668d75effSDimitry Andric         stack_(stack) {
19768d75effSDimitry Andric   }
19868d75effSDimitry Andric 
19968d75effSDimitry Andric   void Recycle(AsanChunk *m) {
200e8d8bef9SDimitry Andric     void *p = get_allocator().GetBlockBegin(m);
201e8d8bef9SDimitry Andric     if (p != m) {
202e8d8bef9SDimitry Andric       // Clear the magic value, as allocator internals may overwrite the
203e8d8bef9SDimitry Andric       // contents of deallocated chunk, confusing GetAsanChunk lookup.
204e8d8bef9SDimitry Andric       reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
205e8d8bef9SDimitry Andric     }
206e8d8bef9SDimitry Andric 
207e8d8bef9SDimitry Andric     u8 old_chunk_state = CHUNK_QUARANTINE;
208e8d8bef9SDimitry Andric     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
209e8d8bef9SDimitry Andric                                         CHUNK_INVALID, memory_order_acquire)) {
210e8d8bef9SDimitry Andric       CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
211e8d8bef9SDimitry Andric     }
212e8d8bef9SDimitry Andric 
2130eae32dcSDimitry Andric     PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
21468d75effSDimitry Andric                  kAsanHeapLeftRedzoneMagic);
21568d75effSDimitry Andric 
21668d75effSDimitry Andric     // Statistics.
21768d75effSDimitry Andric     AsanStats &thread_stats = GetCurrentThreadStats();
21868d75effSDimitry Andric     thread_stats.real_frees++;
21968d75effSDimitry Andric     thread_stats.really_freed += m->UsedSize();
22068d75effSDimitry Andric 
22168d75effSDimitry Andric     get_allocator().Deallocate(cache_, p);
22268d75effSDimitry Andric   }
22368d75effSDimitry Andric 
22468d75effSDimitry Andric   void *Allocate(uptr size) {
22568d75effSDimitry Andric     void *res = get_allocator().Allocate(cache_, size, 1);
22668d75effSDimitry Andric     // TODO(alekseys): Consider making quarantine OOM-friendly.
22768d75effSDimitry Andric     if (UNLIKELY(!res))
22868d75effSDimitry Andric       ReportOutOfMemory(size, stack_);
22968d75effSDimitry Andric     return res;
23068d75effSDimitry Andric   }
23168d75effSDimitry Andric 
23268d75effSDimitry Andric   void Deallocate(void *p) {
23368d75effSDimitry Andric     get_allocator().Deallocate(cache_, p);
23468d75effSDimitry Andric   }
23568d75effSDimitry Andric 
23668d75effSDimitry Andric  private:
23768d75effSDimitry Andric   AllocatorCache* const cache_;
23868d75effSDimitry Andric   BufferedStackTrace* const stack_;
23968d75effSDimitry Andric };
24068d75effSDimitry Andric 
24168d75effSDimitry Andric typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
24268d75effSDimitry Andric typedef AsanQuarantine::Cache QuarantineCache;
24368d75effSDimitry Andric 
24468d75effSDimitry Andric void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
24568d75effSDimitry Andric   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
24668d75effSDimitry Andric   // Statistics.
24768d75effSDimitry Andric   AsanStats &thread_stats = GetCurrentThreadStats();
24868d75effSDimitry Andric   thread_stats.mmaps++;
24968d75effSDimitry Andric   thread_stats.mmaped += size;
25068d75effSDimitry Andric }
25168d75effSDimitry Andric void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
25268d75effSDimitry Andric   PoisonShadow(p, size, 0);
25368d75effSDimitry Andric   // We are about to unmap a chunk of user memory.
25468d75effSDimitry Andric   // Mark the corresponding shadow memory as not needed.
25568d75effSDimitry Andric   FlushUnneededASanShadowMemory(p, size);
25668d75effSDimitry Andric   // Statistics.
25768d75effSDimitry Andric   AsanStats &thread_stats = GetCurrentThreadStats();
25868d75effSDimitry Andric   thread_stats.munmaps++;
25968d75effSDimitry Andric   thread_stats.munmaped += size;
26068d75effSDimitry Andric }
26168d75effSDimitry Andric 
26268d75effSDimitry Andric // We can not use THREADLOCAL because it is not supported on some of the
26368d75effSDimitry Andric // platforms we care about (OSX 10.6, Android).
26468d75effSDimitry Andric // static THREADLOCAL AllocatorCache cache;
26568d75effSDimitry Andric AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
26668d75effSDimitry Andric   CHECK(ms);
26768d75effSDimitry Andric   return &ms->allocator_cache;
26868d75effSDimitry Andric }
26968d75effSDimitry Andric 
27068d75effSDimitry Andric QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
27168d75effSDimitry Andric   CHECK(ms);
27268d75effSDimitry Andric   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
27368d75effSDimitry Andric   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
27468d75effSDimitry Andric }
27568d75effSDimitry Andric 
27668d75effSDimitry Andric void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
27768d75effSDimitry Andric   quarantine_size_mb = f->quarantine_size_mb;
27868d75effSDimitry Andric   thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
27968d75effSDimitry Andric   min_redzone = f->redzone;
28068d75effSDimitry Andric   max_redzone = f->max_redzone;
28168d75effSDimitry Andric   may_return_null = cf->allocator_may_return_null;
28268d75effSDimitry Andric   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
28368d75effSDimitry Andric   release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
28468d75effSDimitry Andric }
28568d75effSDimitry Andric 
28668d75effSDimitry Andric void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
28768d75effSDimitry Andric   f->quarantine_size_mb = quarantine_size_mb;
28868d75effSDimitry Andric   f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
28968d75effSDimitry Andric   f->redzone = min_redzone;
29068d75effSDimitry Andric   f->max_redzone = max_redzone;
29168d75effSDimitry Andric   cf->allocator_may_return_null = may_return_null;
29268d75effSDimitry Andric   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
29368d75effSDimitry Andric   cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
29468d75effSDimitry Andric }
29568d75effSDimitry Andric 
29668d75effSDimitry Andric struct Allocator {
29768d75effSDimitry Andric   static const uptr kMaxAllowedMallocSize =
29868d75effSDimitry Andric       FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
29968d75effSDimitry Andric 
30068d75effSDimitry Andric   AsanAllocator allocator;
30168d75effSDimitry Andric   AsanQuarantine quarantine;
30268d75effSDimitry Andric   StaticSpinMutex fallback_mutex;
30368d75effSDimitry Andric   AllocatorCache fallback_allocator_cache;
30468d75effSDimitry Andric   QuarantineCache fallback_quarantine_cache;
30568d75effSDimitry Andric 
306480093f4SDimitry Andric   uptr max_user_defined_malloc_size;
30768d75effSDimitry Andric 
30868d75effSDimitry Andric   // ------------------- Options --------------------------
30968d75effSDimitry Andric   atomic_uint16_t min_redzone;
31068d75effSDimitry Andric   atomic_uint16_t max_redzone;
31168d75effSDimitry Andric   atomic_uint8_t alloc_dealloc_mismatch;
31268d75effSDimitry Andric 
31368d75effSDimitry Andric   // ------------------- Initialization ------------------------
31468d75effSDimitry Andric   explicit Allocator(LinkerInitialized)
31568d75effSDimitry Andric       : quarantine(LINKER_INITIALIZED),
31668d75effSDimitry Andric         fallback_quarantine_cache(LINKER_INITIALIZED) {}
31768d75effSDimitry Andric 
31868d75effSDimitry Andric   void CheckOptions(const AllocatorOptions &options) const {
31968d75effSDimitry Andric     CHECK_GE(options.min_redzone, 16);
32068d75effSDimitry Andric     CHECK_GE(options.max_redzone, options.min_redzone);
32168d75effSDimitry Andric     CHECK_LE(options.max_redzone, 2048);
32268d75effSDimitry Andric     CHECK(IsPowerOfTwo(options.min_redzone));
32368d75effSDimitry Andric     CHECK(IsPowerOfTwo(options.max_redzone));
32468d75effSDimitry Andric   }
32568d75effSDimitry Andric 
32668d75effSDimitry Andric   void SharedInitCode(const AllocatorOptions &options) {
32768d75effSDimitry Andric     CheckOptions(options);
32868d75effSDimitry Andric     quarantine.Init((uptr)options.quarantine_size_mb << 20,
32968d75effSDimitry Andric                     (uptr)options.thread_local_quarantine_size_kb << 10);
33068d75effSDimitry Andric     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
33168d75effSDimitry Andric                  memory_order_release);
33268d75effSDimitry Andric     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
33368d75effSDimitry Andric     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
33468d75effSDimitry Andric   }
33568d75effSDimitry Andric 
33668d75effSDimitry Andric   void InitLinkerInitialized(const AllocatorOptions &options) {
33768d75effSDimitry Andric     SetAllocatorMayReturnNull(options.may_return_null);
33868d75effSDimitry Andric     allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
33968d75effSDimitry Andric     SharedInitCode(options);
340480093f4SDimitry Andric     max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
341480093f4SDimitry Andric                                        ? common_flags()->max_allocation_size_mb
342480093f4SDimitry Andric                                              << 20
343480093f4SDimitry Andric                                        : kMaxAllowedMallocSize;
34468d75effSDimitry Andric   }
34568d75effSDimitry Andric 
34668d75effSDimitry Andric   void RePoisonChunk(uptr chunk) {
34768d75effSDimitry Andric     // This could be a user-facing chunk (with redzones), or some internal
34868d75effSDimitry Andric     // housekeeping chunk, like TransferBatch. Start by assuming the former.
34968d75effSDimitry Andric     AsanChunk *ac = GetAsanChunk((void *)chunk);
350e8d8bef9SDimitry Andric     uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
351e8d8bef9SDimitry Andric     if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
352e8d8bef9SDimitry Andric                   CHUNK_ALLOCATED) {
35368d75effSDimitry Andric       uptr beg = ac->Beg();
354e8d8bef9SDimitry Andric       uptr end = ac->Beg() + ac->UsedSize();
35568d75effSDimitry Andric       uptr chunk_end = chunk + allocated_size;
356e8d8bef9SDimitry Andric       if (chunk < beg && beg < end && end <= chunk_end) {
35768d75effSDimitry Andric         // Looks like a valid AsanChunk in use, poison redzones only.
35868d75effSDimitry Andric         PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
3590eae32dcSDimitry Andric         uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
36068d75effSDimitry Andric         FastPoisonShadowPartialRightRedzone(
36168d75effSDimitry Andric             end_aligned_down, end - end_aligned_down,
36268d75effSDimitry Andric             chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
363e8d8bef9SDimitry Andric         return;
364e8d8bef9SDimitry Andric       }
365e8d8bef9SDimitry Andric     }
366e8d8bef9SDimitry Andric 
36768d75effSDimitry Andric     // This is either not an AsanChunk or freed or quarantined AsanChunk.
36868d75effSDimitry Andric     // In either case, poison everything.
36968d75effSDimitry Andric     PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
37068d75effSDimitry Andric   }
37168d75effSDimitry Andric 
37268d75effSDimitry Andric   void ReInitialize(const AllocatorOptions &options) {
37368d75effSDimitry Andric     SetAllocatorMayReturnNull(options.may_return_null);
37468d75effSDimitry Andric     allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
37568d75effSDimitry Andric     SharedInitCode(options);
37668d75effSDimitry Andric 
37768d75effSDimitry Andric     // Poison all existing allocation's redzones.
37868d75effSDimitry Andric     if (CanPoisonMemory()) {
37968d75effSDimitry Andric       allocator.ForceLock();
38068d75effSDimitry Andric       allocator.ForEachChunk(
38168d75effSDimitry Andric           [](uptr chunk, void *alloc) {
38268d75effSDimitry Andric             ((Allocator *)alloc)->RePoisonChunk(chunk);
38368d75effSDimitry Andric           },
38468d75effSDimitry Andric           this);
38568d75effSDimitry Andric       allocator.ForceUnlock();
38668d75effSDimitry Andric     }
38768d75effSDimitry Andric   }
38868d75effSDimitry Andric 
38968d75effSDimitry Andric   void GetOptions(AllocatorOptions *options) const {
39068d75effSDimitry Andric     options->quarantine_size_mb = quarantine.GetSize() >> 20;
39168d75effSDimitry Andric     options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
39268d75effSDimitry Andric     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
39368d75effSDimitry Andric     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
39468d75effSDimitry Andric     options->may_return_null = AllocatorMayReturnNull();
39568d75effSDimitry Andric     options->alloc_dealloc_mismatch =
39668d75effSDimitry Andric         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
39768d75effSDimitry Andric     options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
39868d75effSDimitry Andric   }
39968d75effSDimitry Andric 
40068d75effSDimitry Andric   // -------------------- Helper methods. -------------------------
40168d75effSDimitry Andric   uptr ComputeRZLog(uptr user_requested_size) {
402e8d8bef9SDimitry Andric     u32 rz_log = user_requested_size <= 64 - 16            ? 0
403e8d8bef9SDimitry Andric                  : user_requested_size <= 128 - 32         ? 1
404e8d8bef9SDimitry Andric                  : user_requested_size <= 512 - 64         ? 2
405e8d8bef9SDimitry Andric                  : user_requested_size <= 4096 - 128       ? 3
406e8d8bef9SDimitry Andric                  : user_requested_size <= (1 << 14) - 256  ? 4
407e8d8bef9SDimitry Andric                  : user_requested_size <= (1 << 15) - 512  ? 5
408e8d8bef9SDimitry Andric                  : user_requested_size <= (1 << 16) - 1024 ? 6
409e8d8bef9SDimitry Andric                                                            : 7;
410e8d8bef9SDimitry Andric     u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
411e8d8bef9SDimitry Andric     u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
412e8d8bef9SDimitry Andric     u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
413e8d8bef9SDimitry Andric     return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
41468d75effSDimitry Andric   }
41568d75effSDimitry Andric 
41668d75effSDimitry Andric   static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
41768d75effSDimitry Andric     if (user_requested_alignment < 8)
41868d75effSDimitry Andric       return 0;
41968d75effSDimitry Andric     if (user_requested_alignment > 512)
42068d75effSDimitry Andric       user_requested_alignment = 512;
42168d75effSDimitry Andric     return Log2(user_requested_alignment) - 2;
42268d75effSDimitry Andric   }
42368d75effSDimitry Andric 
42468d75effSDimitry Andric   static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
42568d75effSDimitry Andric     if (user_requested_alignment_log == 0)
42668d75effSDimitry Andric       return 0;
42768d75effSDimitry Andric     return 1LL << (user_requested_alignment_log + 2);
42868d75effSDimitry Andric   }
42968d75effSDimitry Andric 
43068d75effSDimitry Andric   // We have an address between two chunks, and we want to report just one.
43168d75effSDimitry Andric   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
43268d75effSDimitry Andric                          AsanChunk *right_chunk) {
433e8d8bef9SDimitry Andric     if (!left_chunk)
434e8d8bef9SDimitry Andric       return right_chunk;
435e8d8bef9SDimitry Andric     if (!right_chunk)
436e8d8bef9SDimitry Andric       return left_chunk;
43768d75effSDimitry Andric     // Prefer an allocated chunk over freed chunk and freed chunk
43868d75effSDimitry Andric     // over available chunk.
439e8d8bef9SDimitry Andric     u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
440e8d8bef9SDimitry Andric     u8 right_state =
441e8d8bef9SDimitry Andric         atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
442e8d8bef9SDimitry Andric     if (left_state != right_state) {
443e8d8bef9SDimitry Andric       if (left_state == CHUNK_ALLOCATED)
44468d75effSDimitry Andric         return left_chunk;
445e8d8bef9SDimitry Andric       if (right_state == CHUNK_ALLOCATED)
44668d75effSDimitry Andric         return right_chunk;
447e8d8bef9SDimitry Andric       if (left_state == CHUNK_QUARANTINE)
44868d75effSDimitry Andric         return left_chunk;
449e8d8bef9SDimitry Andric       if (right_state == CHUNK_QUARANTINE)
45068d75effSDimitry Andric         return right_chunk;
45168d75effSDimitry Andric     }
45268d75effSDimitry Andric     // Same chunk_state: choose based on offset.
45368d75effSDimitry Andric     sptr l_offset = 0, r_offset = 0;
45468d75effSDimitry Andric     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
45568d75effSDimitry Andric     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
45668d75effSDimitry Andric     if (l_offset < r_offset)
45768d75effSDimitry Andric       return left_chunk;
45868d75effSDimitry Andric     return right_chunk;
45968d75effSDimitry Andric   }
46068d75effSDimitry Andric 
461480093f4SDimitry Andric   bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
462480093f4SDimitry Andric     AsanChunk *m = GetAsanChunkByAddr(addr);
463480093f4SDimitry Andric     if (!m) return false;
464e8d8bef9SDimitry Andric     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
465e8d8bef9SDimitry Andric       return false;
466480093f4SDimitry Andric     if (m->Beg() != addr) return false;
467e8d8bef9SDimitry Andric     AsanThread *t = GetCurrentThread();
468fe6060f1SDimitry Andric     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
469480093f4SDimitry Andric     return true;
470480093f4SDimitry Andric   }
471480093f4SDimitry Andric 
47268d75effSDimitry Andric   // -------------------- Allocation/Deallocation routines ---------------
47368d75effSDimitry Andric   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
47468d75effSDimitry Andric                  AllocType alloc_type, bool can_fill) {
47568d75effSDimitry Andric     if (UNLIKELY(!asan_inited))
47668d75effSDimitry Andric       AsanInitFromRtl();
4770eae32dcSDimitry Andric     if (UNLIKELY(IsRssLimitExceeded())) {
47868d75effSDimitry Andric       if (AllocatorMayReturnNull())
47968d75effSDimitry Andric         return nullptr;
48068d75effSDimitry Andric       ReportRssLimitExceeded(stack);
48168d75effSDimitry Andric     }
48268d75effSDimitry Andric     Flags &fl = *flags();
48368d75effSDimitry Andric     CHECK(stack);
4840eae32dcSDimitry Andric     const uptr min_alignment = ASAN_SHADOW_GRANULARITY;
48568d75effSDimitry Andric     const uptr user_requested_alignment_log =
48668d75effSDimitry Andric         ComputeUserRequestedAlignmentLog(alignment);
48768d75effSDimitry Andric     if (alignment < min_alignment)
48868d75effSDimitry Andric       alignment = min_alignment;
48968d75effSDimitry Andric     if (size == 0) {
49068d75effSDimitry Andric       // We'd be happy to avoid allocating memory for zero-size requests, but
49168d75effSDimitry Andric       // some programs/tests depend on this behavior and assume that malloc
49268d75effSDimitry Andric       // would not return NULL even for zero-size allocations. Moreover, it
49368d75effSDimitry Andric       // looks like operator new should never return NULL, and results of
49468d75effSDimitry Andric       // consecutive "new" calls must be different even if the allocated size
49568d75effSDimitry Andric       // is zero.
49668d75effSDimitry Andric       size = 1;
49768d75effSDimitry Andric     }
49868d75effSDimitry Andric     CHECK(IsPowerOfTwo(alignment));
49968d75effSDimitry Andric     uptr rz_log = ComputeRZLog(size);
50068d75effSDimitry Andric     uptr rz_size = RZLog2Size(rz_log);
50168d75effSDimitry Andric     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
50268d75effSDimitry Andric     uptr needed_size = rounded_size + rz_size;
50368d75effSDimitry Andric     if (alignment > min_alignment)
50468d75effSDimitry Andric       needed_size += alignment;
50568d75effSDimitry Andric     // If we are allocating from the secondary allocator, there will be no
50668d75effSDimitry Andric     // automatic right redzone, so add the right redzone manually.
507e8d8bef9SDimitry Andric     if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
50868d75effSDimitry Andric       needed_size += rz_size;
50968d75effSDimitry Andric     CHECK(IsAligned(needed_size, min_alignment));
510480093f4SDimitry Andric     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
511480093f4SDimitry Andric         size > max_user_defined_malloc_size) {
51268d75effSDimitry Andric       if (AllocatorMayReturnNull()) {
51368d75effSDimitry Andric         Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
514349cc55cSDimitry Andric                size);
51568d75effSDimitry Andric         return nullptr;
51668d75effSDimitry Andric       }
517480093f4SDimitry Andric       uptr malloc_limit =
518480093f4SDimitry Andric           Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
519480093f4SDimitry Andric       ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
52068d75effSDimitry Andric     }
52168d75effSDimitry Andric 
52268d75effSDimitry Andric     AsanThread *t = GetCurrentThread();
52368d75effSDimitry Andric     void *allocated;
52468d75effSDimitry Andric     if (t) {
52568d75effSDimitry Andric       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
52668d75effSDimitry Andric       allocated = allocator.Allocate(cache, needed_size, 8);
52768d75effSDimitry Andric     } else {
52868d75effSDimitry Andric       SpinMutexLock l(&fallback_mutex);
52968d75effSDimitry Andric       AllocatorCache *cache = &fallback_allocator_cache;
53068d75effSDimitry Andric       allocated = allocator.Allocate(cache, needed_size, 8);
53168d75effSDimitry Andric     }
53268d75effSDimitry Andric     if (UNLIKELY(!allocated)) {
53368d75effSDimitry Andric       SetAllocatorOutOfMemory();
53468d75effSDimitry Andric       if (AllocatorMayReturnNull())
53568d75effSDimitry Andric         return nullptr;
53668d75effSDimitry Andric       ReportOutOfMemory(size, stack);
53768d75effSDimitry Andric     }
53868d75effSDimitry Andric 
53968d75effSDimitry Andric     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
54068d75effSDimitry Andric       // Heap poisoning is enabled, but the allocator provides an unpoisoned
54168d75effSDimitry Andric       // chunk. This is possible if CanPoisonMemory() was false for some
54268d75effSDimitry Andric       // time, for example, due to flags()->start_disabled.
54368d75effSDimitry Andric       // Anyway, poison the block before using it for anything else.
54468d75effSDimitry Andric       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
54568d75effSDimitry Andric       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
54668d75effSDimitry Andric     }
54768d75effSDimitry Andric 
54868d75effSDimitry Andric     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
54968d75effSDimitry Andric     uptr alloc_end = alloc_beg + needed_size;
550e8d8bef9SDimitry Andric     uptr user_beg = alloc_beg + rz_size;
55168d75effSDimitry Andric     if (!IsAligned(user_beg, alignment))
55268d75effSDimitry Andric       user_beg = RoundUpTo(user_beg, alignment);
55368d75effSDimitry Andric     uptr user_end = user_beg + size;
55468d75effSDimitry Andric     CHECK_LE(user_end, alloc_end);
55568d75effSDimitry Andric     uptr chunk_beg = user_beg - kChunkHeaderSize;
55668d75effSDimitry Andric     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
55768d75effSDimitry Andric     m->alloc_type = alloc_type;
55868d75effSDimitry Andric     CHECK(size);
559e8d8bef9SDimitry Andric     m->SetUsedSize(size);
56068d75effSDimitry Andric     m->user_requested_alignment_log = user_requested_alignment_log;
56168d75effSDimitry Andric 
562fe6060f1SDimitry Andric     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
56368d75effSDimitry Andric 
56468d75effSDimitry Andric     uptr size_rounded_down_to_granularity =
5650eae32dcSDimitry Andric         RoundDownTo(size, ASAN_SHADOW_GRANULARITY);
56668d75effSDimitry Andric     // Unpoison the bulk of the memory region.
56768d75effSDimitry Andric     if (size_rounded_down_to_granularity)
56868d75effSDimitry Andric       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
56968d75effSDimitry Andric     // Deal with the end of the region if size is not aligned to granularity.
57068d75effSDimitry Andric     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
57168d75effSDimitry Andric       u8 *shadow =
57268d75effSDimitry Andric           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
5730eae32dcSDimitry Andric       *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0;
57468d75effSDimitry Andric     }
57568d75effSDimitry Andric 
57668d75effSDimitry Andric     AsanStats &thread_stats = GetCurrentThreadStats();
57768d75effSDimitry Andric     thread_stats.mallocs++;
57868d75effSDimitry Andric     thread_stats.malloced += size;
57968d75effSDimitry Andric     thread_stats.malloced_redzones += needed_size - size;
58068d75effSDimitry Andric     if (needed_size > SizeClassMap::kMaxSize)
58168d75effSDimitry Andric       thread_stats.malloc_large++;
58268d75effSDimitry Andric     else
58368d75effSDimitry Andric       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
58468d75effSDimitry Andric 
58568d75effSDimitry Andric     void *res = reinterpret_cast<void *>(user_beg);
58668d75effSDimitry Andric     if (can_fill && fl.max_malloc_fill_size) {
58768d75effSDimitry Andric       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
58868d75effSDimitry Andric       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
58968d75effSDimitry Andric     }
59068d75effSDimitry Andric #if CAN_SANITIZE_LEAKS
59168d75effSDimitry Andric     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
59268d75effSDimitry Andric                                                  : __lsan::kDirectlyLeaked;
59368d75effSDimitry Andric #endif
59468d75effSDimitry Andric     // Must be the last mutation of metadata in this function.
595e8d8bef9SDimitry Andric     atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
596e8d8bef9SDimitry Andric     if (alloc_beg != chunk_beg) {
597e8d8bef9SDimitry Andric       CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
598e8d8bef9SDimitry Andric       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
599e8d8bef9SDimitry Andric     }
60081ad6265SDimitry Andric     RunMallocHooks(res, size);
60168d75effSDimitry Andric     return res;
60268d75effSDimitry Andric   }
60368d75effSDimitry Andric 
60468d75effSDimitry Andric   // Set quarantine flag if chunk is allocated, issue ASan error report on
60568d75effSDimitry Andric   // available and quarantined chunks. Return true on success, false otherwise.
60668d75effSDimitry Andric   bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
60768d75effSDimitry Andric                                               BufferedStackTrace *stack) {
60868d75effSDimitry Andric     u8 old_chunk_state = CHUNK_ALLOCATED;
60968d75effSDimitry Andric     // Flip the chunk_state atomically to avoid race on double-free.
610e8d8bef9SDimitry Andric     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
61168d75effSDimitry Andric                                         CHUNK_QUARANTINE,
61268d75effSDimitry Andric                                         memory_order_acquire)) {
61368d75effSDimitry Andric       ReportInvalidFree(ptr, old_chunk_state, stack);
61468d75effSDimitry Andric       // It's not safe to push a chunk in quarantine on invalid free.
61568d75effSDimitry Andric       return false;
61668d75effSDimitry Andric     }
61768d75effSDimitry Andric     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
618e8d8bef9SDimitry Andric     // It was a user data.
619e8d8bef9SDimitry Andric     m->SetFreeContext(kInvalidTid, 0);
62068d75effSDimitry Andric     return true;
62168d75effSDimitry Andric   }
62268d75effSDimitry Andric 
62368d75effSDimitry Andric   // Expects the chunk to already be marked as quarantined by using
62468d75effSDimitry Andric   // AtomicallySetQuarantineFlagIfAllocated.
62568d75effSDimitry Andric   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
626e8d8bef9SDimitry Andric     CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
627e8d8bef9SDimitry Andric              CHUNK_QUARANTINE);
62868d75effSDimitry Andric     AsanThread *t = GetCurrentThread();
629e8d8bef9SDimitry Andric     m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
63068d75effSDimitry Andric 
63168d75effSDimitry Andric     Flags &fl = *flags();
63268d75effSDimitry Andric     if (fl.max_free_fill_size > 0) {
63368d75effSDimitry Andric       // We have to skip the chunk header, it contains free_context_id.
63468d75effSDimitry Andric       uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
63568d75effSDimitry Andric       if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
63668d75effSDimitry Andric         uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
63768d75effSDimitry Andric         size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
63868d75effSDimitry Andric         REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
63968d75effSDimitry Andric       }
64068d75effSDimitry Andric     }
64168d75effSDimitry Andric 
64268d75effSDimitry Andric     // Poison the region.
6430eae32dcSDimitry Andric     PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
64468d75effSDimitry Andric                  kAsanHeapFreeMagic);
64568d75effSDimitry Andric 
64668d75effSDimitry Andric     AsanStats &thread_stats = GetCurrentThreadStats();
64768d75effSDimitry Andric     thread_stats.frees++;
64868d75effSDimitry Andric     thread_stats.freed += m->UsedSize();
64968d75effSDimitry Andric 
65068d75effSDimitry Andric     // Push into quarantine.
65168d75effSDimitry Andric     if (t) {
65268d75effSDimitry Andric       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
65368d75effSDimitry Andric       AllocatorCache *ac = GetAllocatorCache(ms);
65468d75effSDimitry Andric       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
65568d75effSDimitry Andric                      m->UsedSize());
65668d75effSDimitry Andric     } else {
65768d75effSDimitry Andric       SpinMutexLock l(&fallback_mutex);
65868d75effSDimitry Andric       AllocatorCache *ac = &fallback_allocator_cache;
65968d75effSDimitry Andric       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
66068d75effSDimitry Andric                      m, m->UsedSize());
66168d75effSDimitry Andric     }
66268d75effSDimitry Andric   }
66368d75effSDimitry Andric 
66468d75effSDimitry Andric   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
66568d75effSDimitry Andric                   BufferedStackTrace *stack, AllocType alloc_type) {
66668d75effSDimitry Andric     uptr p = reinterpret_cast<uptr>(ptr);
66768d75effSDimitry Andric     if (p == 0) return;
66868d75effSDimitry Andric 
66968d75effSDimitry Andric     uptr chunk_beg = p - kChunkHeaderSize;
67068d75effSDimitry Andric     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
67168d75effSDimitry Andric 
67268d75effSDimitry Andric     // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
67368d75effSDimitry Andric     // malloc. Don't report an invalid free in this case.
67468d75effSDimitry Andric     if (SANITIZER_WINDOWS &&
67568d75effSDimitry Andric         !get_allocator().PointerIsMine(ptr)) {
67668d75effSDimitry Andric       if (!IsSystemHeapAddress(p))
67768d75effSDimitry Andric         ReportFreeNotMalloced(p, stack);
67868d75effSDimitry Andric       return;
67968d75effSDimitry Andric     }
68068d75effSDimitry Andric 
68181ad6265SDimitry Andric     RunFreeHooks(ptr);
68268d75effSDimitry Andric 
68368d75effSDimitry Andric     // Must mark the chunk as quarantined before any changes to its metadata.
68468d75effSDimitry Andric     // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
68568d75effSDimitry Andric     if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
68668d75effSDimitry Andric 
68768d75effSDimitry Andric     if (m->alloc_type != alloc_type) {
68868d75effSDimitry Andric       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
68968d75effSDimitry Andric         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
69068d75effSDimitry Andric                                 (AllocType)alloc_type);
69168d75effSDimitry Andric       }
69268d75effSDimitry Andric     } else {
69368d75effSDimitry Andric       if (flags()->new_delete_type_mismatch &&
69468d75effSDimitry Andric           (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
69568d75effSDimitry Andric           ((delete_size && delete_size != m->UsedSize()) ||
69668d75effSDimitry Andric            ComputeUserRequestedAlignmentLog(delete_alignment) !=
69768d75effSDimitry Andric                m->user_requested_alignment_log)) {
69868d75effSDimitry Andric         ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
69968d75effSDimitry Andric       }
70068d75effSDimitry Andric     }
70168d75effSDimitry Andric 
70268d75effSDimitry Andric     QuarantineChunk(m, ptr, stack);
70368d75effSDimitry Andric   }
70468d75effSDimitry Andric 
70568d75effSDimitry Andric   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
70668d75effSDimitry Andric     CHECK(old_ptr && new_size);
70768d75effSDimitry Andric     uptr p = reinterpret_cast<uptr>(old_ptr);
70868d75effSDimitry Andric     uptr chunk_beg = p - kChunkHeaderSize;
70968d75effSDimitry Andric     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
71068d75effSDimitry Andric 
71168d75effSDimitry Andric     AsanStats &thread_stats = GetCurrentThreadStats();
71268d75effSDimitry Andric     thread_stats.reallocs++;
71368d75effSDimitry Andric     thread_stats.realloced += new_size;
71468d75effSDimitry Andric 
71568d75effSDimitry Andric     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
71668d75effSDimitry Andric     if (new_ptr) {
717e8d8bef9SDimitry Andric       u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
71868d75effSDimitry Andric       if (chunk_state != CHUNK_ALLOCATED)
71968d75effSDimitry Andric         ReportInvalidFree(old_ptr, chunk_state, stack);
72068d75effSDimitry Andric       CHECK_NE(REAL(memcpy), nullptr);
72168d75effSDimitry Andric       uptr memcpy_size = Min(new_size, m->UsedSize());
72268d75effSDimitry Andric       // If realloc() races with free(), we may start copying freed memory.
72368d75effSDimitry Andric       // However, we will report racy double-free later anyway.
72468d75effSDimitry Andric       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
72568d75effSDimitry Andric       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
72668d75effSDimitry Andric     }
72768d75effSDimitry Andric     return new_ptr;
72868d75effSDimitry Andric   }
72968d75effSDimitry Andric 
73068d75effSDimitry Andric   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
73168d75effSDimitry Andric     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
73268d75effSDimitry Andric       if (AllocatorMayReturnNull())
73368d75effSDimitry Andric         return nullptr;
73468d75effSDimitry Andric       ReportCallocOverflow(nmemb, size, stack);
73568d75effSDimitry Andric     }
73668d75effSDimitry Andric     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
73768d75effSDimitry Andric     // If the memory comes from the secondary allocator no need to clear it
73868d75effSDimitry Andric     // as it comes directly from mmap.
73968d75effSDimitry Andric     if (ptr && allocator.FromPrimary(ptr))
74068d75effSDimitry Andric       REAL(memset)(ptr, 0, nmemb * size);
74168d75effSDimitry Andric     return ptr;
74268d75effSDimitry Andric   }
74368d75effSDimitry Andric 
74468d75effSDimitry Andric   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
74568d75effSDimitry Andric     if (chunk_state == CHUNK_QUARANTINE)
74668d75effSDimitry Andric       ReportDoubleFree((uptr)ptr, stack);
74768d75effSDimitry Andric     else
74868d75effSDimitry Andric       ReportFreeNotMalloced((uptr)ptr, stack);
74968d75effSDimitry Andric   }
75068d75effSDimitry Andric 
75168d75effSDimitry Andric   void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
75268d75effSDimitry Andric     AllocatorCache *ac = GetAllocatorCache(ms);
75368d75effSDimitry Andric     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
75468d75effSDimitry Andric     allocator.SwallowCache(ac);
75568d75effSDimitry Andric   }
75668d75effSDimitry Andric 
75768d75effSDimitry Andric   // -------------------------- Chunk lookup ----------------------
75868d75effSDimitry Andric 
75968d75effSDimitry Andric   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
760e8d8bef9SDimitry Andric   // Returns nullptr if AsanChunk is not yet initialized just after
761e8d8bef9SDimitry Andric   // get_allocator().Allocate(), or is being destroyed just before
762e8d8bef9SDimitry Andric   // get_allocator().Deallocate().
76368d75effSDimitry Andric   AsanChunk *GetAsanChunk(void *alloc_beg) {
764e8d8bef9SDimitry Andric     if (!alloc_beg)
765e8d8bef9SDimitry Andric       return nullptr;
766e8d8bef9SDimitry Andric     AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
767e8d8bef9SDimitry Andric     if (!p) {
768e8d8bef9SDimitry Andric       if (!allocator.FromPrimary(alloc_beg))
769e8d8bef9SDimitry Andric         return nullptr;
770e8d8bef9SDimitry Andric       p = reinterpret_cast<AsanChunk *>(alloc_beg);
77168d75effSDimitry Andric     }
772e8d8bef9SDimitry Andric     u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
773e8d8bef9SDimitry Andric     // It does not guaranty that Chunk is initialized, but it's
774e8d8bef9SDimitry Andric     // definitely not for any other value.
775e8d8bef9SDimitry Andric     if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
776e8d8bef9SDimitry Andric       return p;
777e8d8bef9SDimitry Andric     return nullptr;
77868d75effSDimitry Andric   }
77968d75effSDimitry Andric 
78068d75effSDimitry Andric   AsanChunk *GetAsanChunkByAddr(uptr p) {
78168d75effSDimitry Andric     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
78268d75effSDimitry Andric     return GetAsanChunk(alloc_beg);
78368d75effSDimitry Andric   }
78468d75effSDimitry Andric 
78568d75effSDimitry Andric   // Allocator must be locked when this function is called.
78668d75effSDimitry Andric   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
78768d75effSDimitry Andric     void *alloc_beg =
78868d75effSDimitry Andric         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
78968d75effSDimitry Andric     return GetAsanChunk(alloc_beg);
79068d75effSDimitry Andric   }
79168d75effSDimitry Andric 
79268d75effSDimitry Andric   uptr AllocationSize(uptr p) {
79368d75effSDimitry Andric     AsanChunk *m = GetAsanChunkByAddr(p);
79468d75effSDimitry Andric     if (!m) return 0;
795e8d8bef9SDimitry Andric     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
796e8d8bef9SDimitry Andric       return 0;
79768d75effSDimitry Andric     if (m->Beg() != p) return 0;
79868d75effSDimitry Andric     return m->UsedSize();
79968d75effSDimitry Andric   }
80068d75effSDimitry Andric 
80168d75effSDimitry Andric   AsanChunkView FindHeapChunkByAddress(uptr addr) {
80268d75effSDimitry Andric     AsanChunk *m1 = GetAsanChunkByAddr(addr);
80368d75effSDimitry Andric     sptr offset = 0;
804e8d8bef9SDimitry Andric     if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
80568d75effSDimitry Andric       // The address is in the chunk's left redzone, so maybe it is actually
806*bdd1243dSDimitry Andric       // a right buffer overflow from the other chunk before.
807*bdd1243dSDimitry Andric       // Search a bit before to see if there is another chunk.
80868d75effSDimitry Andric       AsanChunk *m2 = nullptr;
80968d75effSDimitry Andric       for (uptr l = 1; l < GetPageSizeCached(); l++) {
81068d75effSDimitry Andric         m2 = GetAsanChunkByAddr(addr - l);
81168d75effSDimitry Andric         if (m2 == m1) continue;  // Still the same chunk.
81268d75effSDimitry Andric         break;
81368d75effSDimitry Andric       }
81468d75effSDimitry Andric       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
81568d75effSDimitry Andric         m1 = ChooseChunk(addr, m2, m1);
81668d75effSDimitry Andric     }
81768d75effSDimitry Andric     return AsanChunkView(m1);
81868d75effSDimitry Andric   }
81968d75effSDimitry Andric 
82068d75effSDimitry Andric   void Purge(BufferedStackTrace *stack) {
82168d75effSDimitry Andric     AsanThread *t = GetCurrentThread();
82268d75effSDimitry Andric     if (t) {
82368d75effSDimitry Andric       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
82468d75effSDimitry Andric       quarantine.DrainAndRecycle(GetQuarantineCache(ms),
82568d75effSDimitry Andric                                  QuarantineCallback(GetAllocatorCache(ms),
82668d75effSDimitry Andric                                                     stack));
82768d75effSDimitry Andric     }
82868d75effSDimitry Andric     {
82968d75effSDimitry Andric       SpinMutexLock l(&fallback_mutex);
83068d75effSDimitry Andric       quarantine.DrainAndRecycle(&fallback_quarantine_cache,
83168d75effSDimitry Andric                                  QuarantineCallback(&fallback_allocator_cache,
83268d75effSDimitry Andric                                                     stack));
83368d75effSDimitry Andric     }
83468d75effSDimitry Andric 
83568d75effSDimitry Andric     allocator.ForceReleaseToOS();
83668d75effSDimitry Andric   }
83768d75effSDimitry Andric 
83868d75effSDimitry Andric   void PrintStats() {
83968d75effSDimitry Andric     allocator.PrintStats();
84068d75effSDimitry Andric     quarantine.PrintStats();
84168d75effSDimitry Andric   }
84268d75effSDimitry Andric 
84304eeddc0SDimitry Andric   void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) {
84468d75effSDimitry Andric     allocator.ForceLock();
84568d75effSDimitry Andric     fallback_mutex.Lock();
84668d75effSDimitry Andric   }
84768d75effSDimitry Andric 
84804eeddc0SDimitry Andric   void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) {
84968d75effSDimitry Andric     fallback_mutex.Unlock();
85068d75effSDimitry Andric     allocator.ForceUnlock();
85168d75effSDimitry Andric   }
85268d75effSDimitry Andric };
85368d75effSDimitry Andric 
85468d75effSDimitry Andric static Allocator instance(LINKER_INITIALIZED);
85568d75effSDimitry Andric 
85668d75effSDimitry Andric static AsanAllocator &get_allocator() {
85768d75effSDimitry Andric   return instance.allocator;
85868d75effSDimitry Andric }
85968d75effSDimitry Andric 
86068d75effSDimitry Andric bool AsanChunkView::IsValid() const {
861e8d8bef9SDimitry Andric   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
862e8d8bef9SDimitry Andric                        CHUNK_INVALID;
86368d75effSDimitry Andric }
86468d75effSDimitry Andric bool AsanChunkView::IsAllocated() const {
865e8d8bef9SDimitry Andric   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
866e8d8bef9SDimitry Andric                        CHUNK_ALLOCATED;
86768d75effSDimitry Andric }
86868d75effSDimitry Andric bool AsanChunkView::IsQuarantined() const {
869e8d8bef9SDimitry Andric   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
870e8d8bef9SDimitry Andric                        CHUNK_QUARANTINE;
87168d75effSDimitry Andric }
87268d75effSDimitry Andric uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
87368d75effSDimitry Andric uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
87468d75effSDimitry Andric uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
87568d75effSDimitry Andric u32 AsanChunkView::UserRequestedAlignment() const {
87668d75effSDimitry Andric   return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
87768d75effSDimitry Andric }
878e8d8bef9SDimitry Andric 
879e8d8bef9SDimitry Andric uptr AsanChunkView::AllocTid() const {
880e8d8bef9SDimitry Andric   u32 tid = 0;
881e8d8bef9SDimitry Andric   u32 stack = 0;
882e8d8bef9SDimitry Andric   chunk_->GetAllocContext(tid, stack);
883e8d8bef9SDimitry Andric   return tid;
884e8d8bef9SDimitry Andric }
885e8d8bef9SDimitry Andric 
886e8d8bef9SDimitry Andric uptr AsanChunkView::FreeTid() const {
887e8d8bef9SDimitry Andric   if (!IsQuarantined())
888e8d8bef9SDimitry Andric     return kInvalidTid;
889e8d8bef9SDimitry Andric   u32 tid = 0;
890e8d8bef9SDimitry Andric   u32 stack = 0;
891e8d8bef9SDimitry Andric   chunk_->GetFreeContext(tid, stack);
892e8d8bef9SDimitry Andric   return tid;
893e8d8bef9SDimitry Andric }
894e8d8bef9SDimitry Andric 
89568d75effSDimitry Andric AllocType AsanChunkView::GetAllocType() const {
89668d75effSDimitry Andric   return (AllocType)chunk_->alloc_type;
89768d75effSDimitry Andric }
89868d75effSDimitry Andric 
899e8d8bef9SDimitry Andric u32 AsanChunkView::GetAllocStackId() const {
900e8d8bef9SDimitry Andric   u32 tid = 0;
901e8d8bef9SDimitry Andric   u32 stack = 0;
902e8d8bef9SDimitry Andric   chunk_->GetAllocContext(tid, stack);
903e8d8bef9SDimitry Andric   return stack;
904e8d8bef9SDimitry Andric }
905e8d8bef9SDimitry Andric 
906e8d8bef9SDimitry Andric u32 AsanChunkView::GetFreeStackId() const {
907e8d8bef9SDimitry Andric   if (!IsQuarantined())
908e8d8bef9SDimitry Andric     return 0;
909e8d8bef9SDimitry Andric   u32 tid = 0;
910e8d8bef9SDimitry Andric   u32 stack = 0;
911e8d8bef9SDimitry Andric   chunk_->GetFreeContext(tid, stack);
912e8d8bef9SDimitry Andric   return stack;
913e8d8bef9SDimitry Andric }
91468d75effSDimitry Andric 
91568d75effSDimitry Andric void InitializeAllocator(const AllocatorOptions &options) {
91668d75effSDimitry Andric   instance.InitLinkerInitialized(options);
91768d75effSDimitry Andric }
91868d75effSDimitry Andric 
91968d75effSDimitry Andric void ReInitializeAllocator(const AllocatorOptions &options) {
92068d75effSDimitry Andric   instance.ReInitialize(options);
92168d75effSDimitry Andric }
92268d75effSDimitry Andric 
92368d75effSDimitry Andric void GetAllocatorOptions(AllocatorOptions *options) {
92468d75effSDimitry Andric   instance.GetOptions(options);
92568d75effSDimitry Andric }
92668d75effSDimitry Andric 
92768d75effSDimitry Andric AsanChunkView FindHeapChunkByAddress(uptr addr) {
92868d75effSDimitry Andric   return instance.FindHeapChunkByAddress(addr);
92968d75effSDimitry Andric }
93068d75effSDimitry Andric AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
93168d75effSDimitry Andric   return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
93268d75effSDimitry Andric }
93368d75effSDimitry Andric 
93468d75effSDimitry Andric void AsanThreadLocalMallocStorage::CommitBack() {
93568d75effSDimitry Andric   GET_STACK_TRACE_MALLOC;
93668d75effSDimitry Andric   instance.CommitBack(this, &stack);
93768d75effSDimitry Andric }
93868d75effSDimitry Andric 
93968d75effSDimitry Andric void PrintInternalAllocatorStats() {
94068d75effSDimitry Andric   instance.PrintStats();
94168d75effSDimitry Andric }
94268d75effSDimitry Andric 
94368d75effSDimitry Andric void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
94468d75effSDimitry Andric   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
94568d75effSDimitry Andric }
94668d75effSDimitry Andric 
94768d75effSDimitry Andric void asan_delete(void *ptr, uptr size, uptr alignment,
94868d75effSDimitry Andric                  BufferedStackTrace *stack, AllocType alloc_type) {
94968d75effSDimitry Andric   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
95068d75effSDimitry Andric }
95168d75effSDimitry Andric 
95268d75effSDimitry Andric void *asan_malloc(uptr size, BufferedStackTrace *stack) {
95368d75effSDimitry Andric   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
95468d75effSDimitry Andric }
95568d75effSDimitry Andric 
95668d75effSDimitry Andric void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
95768d75effSDimitry Andric   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
95868d75effSDimitry Andric }
95968d75effSDimitry Andric 
96068d75effSDimitry Andric void *asan_reallocarray(void *p, uptr nmemb, uptr size,
96168d75effSDimitry Andric                         BufferedStackTrace *stack) {
96268d75effSDimitry Andric   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
96368d75effSDimitry Andric     errno = errno_ENOMEM;
96468d75effSDimitry Andric     if (AllocatorMayReturnNull())
96568d75effSDimitry Andric       return nullptr;
96668d75effSDimitry Andric     ReportReallocArrayOverflow(nmemb, size, stack);
96768d75effSDimitry Andric   }
96868d75effSDimitry Andric   return asan_realloc(p, nmemb * size, stack);
96968d75effSDimitry Andric }
97068d75effSDimitry Andric 
97168d75effSDimitry Andric void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
97268d75effSDimitry Andric   if (!p)
97368d75effSDimitry Andric     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
97468d75effSDimitry Andric   if (size == 0) {
97568d75effSDimitry Andric     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
97668d75effSDimitry Andric       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
97768d75effSDimitry Andric       return nullptr;
97868d75effSDimitry Andric     }
97968d75effSDimitry Andric     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
98068d75effSDimitry Andric     size = 1;
98168d75effSDimitry Andric   }
98268d75effSDimitry Andric   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
98368d75effSDimitry Andric }
98468d75effSDimitry Andric 
98568d75effSDimitry Andric void *asan_valloc(uptr size, BufferedStackTrace *stack) {
98668d75effSDimitry Andric   return SetErrnoOnNull(
98768d75effSDimitry Andric       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
98868d75effSDimitry Andric }
98968d75effSDimitry Andric 
99068d75effSDimitry Andric void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
99168d75effSDimitry Andric   uptr PageSize = GetPageSizeCached();
99268d75effSDimitry Andric   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
99368d75effSDimitry Andric     errno = errno_ENOMEM;
99468d75effSDimitry Andric     if (AllocatorMayReturnNull())
99568d75effSDimitry Andric       return nullptr;
99668d75effSDimitry Andric     ReportPvallocOverflow(size, stack);
99768d75effSDimitry Andric   }
99868d75effSDimitry Andric   // pvalloc(0) should allocate one page.
99968d75effSDimitry Andric   size = size ? RoundUpTo(size, PageSize) : PageSize;
100068d75effSDimitry Andric   return SetErrnoOnNull(
100168d75effSDimitry Andric       instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
100268d75effSDimitry Andric }
100368d75effSDimitry Andric 
100468d75effSDimitry Andric void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
100568d75effSDimitry Andric                     AllocType alloc_type) {
100668d75effSDimitry Andric   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
100768d75effSDimitry Andric     errno = errno_EINVAL;
100868d75effSDimitry Andric     if (AllocatorMayReturnNull())
100968d75effSDimitry Andric       return nullptr;
101068d75effSDimitry Andric     ReportInvalidAllocationAlignment(alignment, stack);
101168d75effSDimitry Andric   }
101268d75effSDimitry Andric   return SetErrnoOnNull(
101368d75effSDimitry Andric       instance.Allocate(size, alignment, stack, alloc_type, true));
101468d75effSDimitry Andric }
101568d75effSDimitry Andric 
101668d75effSDimitry Andric void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
101768d75effSDimitry Andric   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
101868d75effSDimitry Andric     errno = errno_EINVAL;
101968d75effSDimitry Andric     if (AllocatorMayReturnNull())
102068d75effSDimitry Andric       return nullptr;
102168d75effSDimitry Andric     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
102268d75effSDimitry Andric   }
102368d75effSDimitry Andric   return SetErrnoOnNull(
102468d75effSDimitry Andric       instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
102568d75effSDimitry Andric }
102668d75effSDimitry Andric 
102768d75effSDimitry Andric int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
102868d75effSDimitry Andric                         BufferedStackTrace *stack) {
102968d75effSDimitry Andric   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
103068d75effSDimitry Andric     if (AllocatorMayReturnNull())
103168d75effSDimitry Andric       return errno_EINVAL;
103268d75effSDimitry Andric     ReportInvalidPosixMemalignAlignment(alignment, stack);
103368d75effSDimitry Andric   }
103468d75effSDimitry Andric   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
103568d75effSDimitry Andric   if (UNLIKELY(!ptr))
103668d75effSDimitry Andric     // OOM error is already taken care of by Allocate.
103768d75effSDimitry Andric     return errno_ENOMEM;
103868d75effSDimitry Andric   CHECK(IsAligned((uptr)ptr, alignment));
103968d75effSDimitry Andric   *memptr = ptr;
104068d75effSDimitry Andric   return 0;
104168d75effSDimitry Andric }
104268d75effSDimitry Andric 
104368d75effSDimitry Andric uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
104468d75effSDimitry Andric   if (!ptr) return 0;
104568d75effSDimitry Andric   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
104668d75effSDimitry Andric   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
104768d75effSDimitry Andric     GET_STACK_TRACE_FATAL(pc, bp);
104868d75effSDimitry Andric     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
104968d75effSDimitry Andric   }
105068d75effSDimitry Andric   return usable_size;
105168d75effSDimitry Andric }
105268d75effSDimitry Andric 
105368d75effSDimitry Andric uptr asan_mz_size(const void *ptr) {
105468d75effSDimitry Andric   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
105568d75effSDimitry Andric }
105668d75effSDimitry Andric 
105704eeddc0SDimitry Andric void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
105804eeddc0SDimitry Andric   instance.ForceLock();
105904eeddc0SDimitry Andric }
106068d75effSDimitry Andric 
106104eeddc0SDimitry Andric void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
106268d75effSDimitry Andric   instance.ForceUnlock();
106368d75effSDimitry Andric }
106468d75effSDimitry Andric 
106568d75effSDimitry Andric }  // namespace __asan
106668d75effSDimitry Andric 
106768d75effSDimitry Andric // --- Implementation of LSan-specific functions --- {{{1
106868d75effSDimitry Andric namespace __lsan {
106968d75effSDimitry Andric void LockAllocator() {
107068d75effSDimitry Andric   __asan::get_allocator().ForceLock();
107168d75effSDimitry Andric }
107268d75effSDimitry Andric 
107368d75effSDimitry Andric void UnlockAllocator() {
107468d75effSDimitry Andric   __asan::get_allocator().ForceUnlock();
107568d75effSDimitry Andric }
107668d75effSDimitry Andric 
107768d75effSDimitry Andric void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
107868d75effSDimitry Andric   *begin = (uptr)&__asan::get_allocator();
107968d75effSDimitry Andric   *end = *begin + sizeof(__asan::get_allocator());
108068d75effSDimitry Andric }
108168d75effSDimitry Andric 
108268d75effSDimitry Andric uptr PointsIntoChunk(void *p) {
108368d75effSDimitry Andric   uptr addr = reinterpret_cast<uptr>(p);
108468d75effSDimitry Andric   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1085e8d8bef9SDimitry Andric   if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1086e8d8bef9SDimitry Andric                 __asan::CHUNK_ALLOCATED)
108768d75effSDimitry Andric     return 0;
1088e8d8bef9SDimitry Andric   uptr chunk = m->Beg();
1089e8d8bef9SDimitry Andric   if (m->AddrIsInside(addr))
109068d75effSDimitry Andric     return chunk;
1091e8d8bef9SDimitry Andric   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
109268d75effSDimitry Andric     return chunk;
109368d75effSDimitry Andric   return 0;
109468d75effSDimitry Andric }
109568d75effSDimitry Andric 
109668d75effSDimitry Andric uptr GetUserBegin(uptr chunk) {
1097*bdd1243dSDimitry Andric   // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is
1098*bdd1243dSDimitry Andric   // not needed.
109968d75effSDimitry Andric   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1100e8d8bef9SDimitry Andric   return m ? m->Beg() : 0;
110168d75effSDimitry Andric }
110268d75effSDimitry Andric 
110368d75effSDimitry Andric LsanMetadata::LsanMetadata(uptr chunk) {
1104e8d8bef9SDimitry Andric   metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1105e8d8bef9SDimitry Andric                     : nullptr;
110668d75effSDimitry Andric }
110768d75effSDimitry Andric 
110868d75effSDimitry Andric bool LsanMetadata::allocated() const {
1109e8d8bef9SDimitry Andric   if (!metadata_)
1110e8d8bef9SDimitry Andric     return false;
111168d75effSDimitry Andric   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1112e8d8bef9SDimitry Andric   return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1113e8d8bef9SDimitry Andric          __asan::CHUNK_ALLOCATED;
111468d75effSDimitry Andric }
111568d75effSDimitry Andric 
111668d75effSDimitry Andric ChunkTag LsanMetadata::tag() const {
111768d75effSDimitry Andric   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
111868d75effSDimitry Andric   return static_cast<ChunkTag>(m->lsan_tag);
111968d75effSDimitry Andric }
112068d75effSDimitry Andric 
112168d75effSDimitry Andric void LsanMetadata::set_tag(ChunkTag value) {
112268d75effSDimitry Andric   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
112368d75effSDimitry Andric   m->lsan_tag = value;
112468d75effSDimitry Andric }
112568d75effSDimitry Andric 
112668d75effSDimitry Andric uptr LsanMetadata::requested_size() const {
112768d75effSDimitry Andric   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1128e8d8bef9SDimitry Andric   return m->UsedSize();
112968d75effSDimitry Andric }
113068d75effSDimitry Andric 
113168d75effSDimitry Andric u32 LsanMetadata::stack_trace_id() const {
113268d75effSDimitry Andric   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1133e8d8bef9SDimitry Andric   u32 tid = 0;
1134e8d8bef9SDimitry Andric   u32 stack = 0;
1135e8d8bef9SDimitry Andric   m->GetAllocContext(tid, stack);
1136e8d8bef9SDimitry Andric   return stack;
113768d75effSDimitry Andric }
113868d75effSDimitry Andric 
113968d75effSDimitry Andric void ForEachChunk(ForEachChunkCallback callback, void *arg) {
114068d75effSDimitry Andric   __asan::get_allocator().ForEachChunk(callback, arg);
114168d75effSDimitry Andric }
114268d75effSDimitry Andric 
114368d75effSDimitry Andric IgnoreObjectResult IgnoreObjectLocked(const void *p) {
114468d75effSDimitry Andric   uptr addr = reinterpret_cast<uptr>(p);
114568d75effSDimitry Andric   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1146e8d8bef9SDimitry Andric   if (!m ||
1147e8d8bef9SDimitry Andric       (atomic_load(&m->chunk_state, memory_order_acquire) !=
1148e8d8bef9SDimitry Andric        __asan::CHUNK_ALLOCATED) ||
1149e8d8bef9SDimitry Andric       !m->AddrIsInside(addr)) {
1150e8d8bef9SDimitry Andric     return kIgnoreObjectInvalid;
1151e8d8bef9SDimitry Andric   }
115268d75effSDimitry Andric   if (m->lsan_tag == kIgnored)
115368d75effSDimitry Andric     return kIgnoreObjectAlreadyIgnored;
115468d75effSDimitry Andric   m->lsan_tag = __lsan::kIgnored;
115568d75effSDimitry Andric   return kIgnoreObjectSuccess;
115668d75effSDimitry Andric }
1157e8d8bef9SDimitry Andric 
115868d75effSDimitry Andric }  // namespace __lsan
115968d75effSDimitry Andric 
116068d75effSDimitry Andric // ---------------------- Interface ---------------- {{{1
116168d75effSDimitry Andric using namespace __asan;
116268d75effSDimitry Andric 
116368d75effSDimitry Andric // ASan allocator doesn't reserve extra bytes, so normally we would
116468d75effSDimitry Andric // just return "size". We don't want to expose our redzone sizes, etc here.
116568d75effSDimitry Andric uptr __sanitizer_get_estimated_allocated_size(uptr size) {
116668d75effSDimitry Andric   return size;
116768d75effSDimitry Andric }
116868d75effSDimitry Andric 
116968d75effSDimitry Andric int __sanitizer_get_ownership(const void *p) {
117068d75effSDimitry Andric   uptr ptr = reinterpret_cast<uptr>(p);
117168d75effSDimitry Andric   return instance.AllocationSize(ptr) > 0;
117268d75effSDimitry Andric }
117368d75effSDimitry Andric 
117468d75effSDimitry Andric uptr __sanitizer_get_allocated_size(const void *p) {
117568d75effSDimitry Andric   if (!p) return 0;
117668d75effSDimitry Andric   uptr ptr = reinterpret_cast<uptr>(p);
117768d75effSDimitry Andric   uptr allocated_size = instance.AllocationSize(ptr);
117868d75effSDimitry Andric   // Die if p is not malloced or if it is already freed.
117968d75effSDimitry Andric   if (allocated_size == 0) {
118068d75effSDimitry Andric     GET_STACK_TRACE_FATAL_HERE;
118168d75effSDimitry Andric     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
118268d75effSDimitry Andric   }
118368d75effSDimitry Andric   return allocated_size;
118468d75effSDimitry Andric }
118568d75effSDimitry Andric 
118668d75effSDimitry Andric void __sanitizer_purge_allocator() {
118768d75effSDimitry Andric   GET_STACK_TRACE_MALLOC;
118868d75effSDimitry Andric   instance.Purge(&stack);
118968d75effSDimitry Andric }
119068d75effSDimitry Andric 
1191480093f4SDimitry Andric int __asan_update_allocation_context(void* addr) {
1192480093f4SDimitry Andric   GET_STACK_TRACE_MALLOC;
1193480093f4SDimitry Andric   return instance.UpdateAllocationStack((uptr)addr, &stack);
1194480093f4SDimitry Andric }
1195