1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 18 19 using namespace clang; 20 using namespace ento; 21 22 namespace { 23 class SimpleSValBuilder : public SValBuilder { 24 public: 25 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 26 ProgramStateManager &stateMgr) 27 : SValBuilder(alloc, context, stateMgr) {} 28 ~SimpleSValBuilder() override {} 29 30 SVal evalMinus(NonLoc val) override; 31 SVal evalComplement(NonLoc val) override; 32 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 33 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 34 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 35 Loc lhs, Loc rhs, QualType resultTy) override; 36 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 37 Loc lhs, NonLoc rhs, QualType resultTy) override; 38 39 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 40 /// (integer) value, that value is returned. Otherwise, returns NULL. 41 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 42 43 /// Recursively descends into symbolic expressions and replaces symbols 44 /// with their known values (in the sense of the getKnownValue() method). 45 SVal simplifySVal(ProgramStateRef State, SVal V) override; 46 47 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 48 const llvm::APSInt &RHS, QualType resultTy); 49 }; 50 } // end anonymous namespace 51 52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 53 ASTContext &context, 54 ProgramStateManager &stateMgr) { 55 return new SimpleSValBuilder(alloc, context, stateMgr); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Transfer function for unary operators. 60 //===----------------------------------------------------------------------===// 61 62 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 63 switch (val.getSubKind()) { 64 case nonloc::ConcreteIntKind: 65 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 66 default: 67 return UnknownVal(); 68 } 69 } 70 71 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 72 switch (X.getSubKind()) { 73 case nonloc::ConcreteIntKind: 74 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 75 default: 76 return UnknownVal(); 77 } 78 } 79 80 //===----------------------------------------------------------------------===// 81 // Transfer function for binary operators. 82 //===----------------------------------------------------------------------===// 83 84 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 85 BinaryOperator::Opcode op, 86 const llvm::APSInt &RHS, 87 QualType resultTy) { 88 bool isIdempotent = false; 89 90 // Check for a few special cases with known reductions first. 91 switch (op) { 92 default: 93 // We can't reduce this case; just treat it normally. 94 break; 95 case BO_Mul: 96 // a*0 and a*1 97 if (RHS == 0) 98 return makeIntVal(0, resultTy); 99 else if (RHS == 1) 100 isIdempotent = true; 101 break; 102 case BO_Div: 103 // a/0 and a/1 104 if (RHS == 0) 105 // This is also handled elsewhere. 106 return UndefinedVal(); 107 else if (RHS == 1) 108 isIdempotent = true; 109 break; 110 case BO_Rem: 111 // a%0 and a%1 112 if (RHS == 0) 113 // This is also handled elsewhere. 114 return UndefinedVal(); 115 else if (RHS == 1) 116 return makeIntVal(0, resultTy); 117 break; 118 case BO_Add: 119 case BO_Sub: 120 case BO_Shl: 121 case BO_Shr: 122 case BO_Xor: 123 // a+0, a-0, a<<0, a>>0, a^0 124 if (RHS == 0) 125 isIdempotent = true; 126 break; 127 case BO_And: 128 // a&0 and a&(~0) 129 if (RHS == 0) 130 return makeIntVal(0, resultTy); 131 else if (RHS.isAllOnes()) 132 isIdempotent = true; 133 break; 134 case BO_Or: 135 // a|0 and a|(~0) 136 if (RHS == 0) 137 isIdempotent = true; 138 else if (RHS.isAllOnes()) { 139 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 140 return nonloc::ConcreteInt(Result); 141 } 142 break; 143 } 144 145 // Idempotent ops (like a*1) can still change the type of an expression. 146 // Wrap the LHS up in a NonLoc again and let evalCast do the 147 // dirty work. 148 if (isIdempotent) 149 return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{}); 150 151 // If we reach this point, the expression cannot be simplified. 152 // Make a SymbolVal for the entire expression, after converting the RHS. 153 const llvm::APSInt *ConvertedRHS = &RHS; 154 if (BinaryOperator::isComparisonOp(op)) { 155 // We're looking for a type big enough to compare the symbolic value 156 // with the given constant. 157 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 158 ASTContext &Ctx = getContext(); 159 QualType SymbolType = LHS->getType(); 160 uint64_t ValWidth = RHS.getBitWidth(); 161 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 162 163 if (ValWidth < TypeWidth) { 164 // If the value is too small, extend it. 165 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 166 } else if (ValWidth == TypeWidth) { 167 // If the value is signed but the symbol is unsigned, do the comparison 168 // in unsigned space. [C99 6.3.1.8] 169 // (For the opposite case, the value is already unsigned.) 170 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 171 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 172 } 173 } else 174 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 175 176 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 177 } 178 179 // See if Sym is known to be a relation Rel with Bound. 180 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 181 llvm::APSInt Bound, ProgramStateRef State) { 182 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 183 SVal Result = 184 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 185 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 186 if (auto DV = Result.getAs<DefinedSVal>()) { 187 return !State->assume(*DV, false); 188 } 189 return false; 190 } 191 192 // See if Sym is known to be within [min/4, max/4], where min and max 193 // are the bounds of the symbol's integral type. With such symbols, 194 // some manipulations can be performed without the risk of overflow. 195 // assume() doesn't cause infinite recursion because we should be dealing 196 // with simpler symbols on every recursive call. 197 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 198 ProgramStateRef State) { 199 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 200 BasicValueFactory &BV = SVB.getBasicValueFactory(); 201 202 QualType T = Sym->getType(); 203 assert(T->isSignedIntegerOrEnumerationType() && 204 "This only works with signed integers!"); 205 APSIntType AT = BV.getAPSIntType(T); 206 207 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 208 return isInRelation(BO_LE, Sym, Max, State) && 209 isInRelation(BO_GE, Sym, Min, State); 210 } 211 212 // Same for the concrete integers: see if I is within [min/4, max/4]. 213 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 214 APSIntType AT(I); 215 assert(!AT.isUnsigned() && 216 "This only works with signed integers!"); 217 218 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 219 return (I <= Max) && (I >= -Max); 220 } 221 222 static std::pair<SymbolRef, llvm::APSInt> 223 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 224 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 225 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 226 return std::make_pair(SymInt->getLHS(), 227 (SymInt->getOpcode() == BO_Add) ? 228 (SymInt->getRHS()) : 229 (-SymInt->getRHS())); 230 231 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 232 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 233 } 234 235 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 236 // same signed integral type and no overflows occur (which should be checked 237 // by the caller). 238 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 239 BinaryOperator::Opcode Op, 240 SymbolRef LSym, llvm::APSInt LInt, 241 SymbolRef RSym, llvm::APSInt RInt) { 242 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 243 BasicValueFactory &BV = SVB.getBasicValueFactory(); 244 SymbolManager &SymMgr = SVB.getSymbolManager(); 245 246 QualType SymTy = LSym->getType(); 247 assert(SymTy == RSym->getType() && 248 "Symbols are not of the same type!"); 249 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 250 "Integers are not of the same type as symbols!"); 251 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 252 "Integers are not of the same type as symbols!"); 253 254 QualType ResultTy; 255 if (BinaryOperator::isComparisonOp(Op)) 256 ResultTy = SVB.getConditionType(); 257 else if (BinaryOperator::isAdditiveOp(Op)) 258 ResultTy = SymTy; 259 else 260 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 261 262 // FIXME: Can we use assume() without getting into an infinite recursion? 263 if (LSym == RSym) 264 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 265 nonloc::ConcreteInt(RInt), ResultTy) 266 .castAs<NonLoc>(); 267 268 SymbolRef ResultSym = nullptr; 269 BinaryOperator::Opcode ResultOp; 270 llvm::APSInt ResultInt; 271 if (BinaryOperator::isComparisonOp(Op)) { 272 // Prefer comparing to a non-negative number. 273 // FIXME: Maybe it'd be better to have consistency in 274 // "$x - $y" vs. "$y - $x" because those are solver's keys. 275 if (LInt > RInt) { 276 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 277 ResultOp = BinaryOperator::reverseComparisonOp(Op); 278 ResultInt = LInt - RInt; // Opposite order! 279 } else { 280 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 281 ResultOp = Op; 282 ResultInt = RInt - LInt; // Opposite order! 283 } 284 } else { 285 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 286 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 287 ResultOp = BO_Add; 288 // Bring back the cosmetic difference. 289 if (ResultInt < 0) { 290 ResultInt = -ResultInt; 291 ResultOp = BO_Sub; 292 } else if (ResultInt == 0) { 293 // Shortcut: Simplify "$x + 0" to "$x". 294 return nonloc::SymbolVal(ResultSym); 295 } 296 } 297 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 298 return nonloc::SymbolVal( 299 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 300 } 301 302 // Rearrange if symbol type matches the result type and if the operator is a 303 // comparison operator, both symbol and constant must be within constant 304 // overflow bounds. 305 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 306 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 307 return Sym->getType() == Ty && 308 (!BinaryOperator::isComparisonOp(Op) || 309 (isWithinConstantOverflowBounds(Sym, State) && 310 isWithinConstantOverflowBounds(Int))); 311 } 312 313 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 314 BinaryOperator::Opcode Op, NonLoc Lhs, 315 NonLoc Rhs, QualType ResultTy) { 316 ProgramStateManager &StateMgr = State->getStateManager(); 317 SValBuilder &SVB = StateMgr.getSValBuilder(); 318 319 // We expect everything to be of the same type - this type. 320 QualType SingleTy; 321 322 // FIXME: After putting complexity threshold to the symbols we can always 323 // rearrange additive operations but rearrange comparisons only if 324 // option is set. 325 if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation) 326 return None; 327 328 SymbolRef LSym = Lhs.getAsSymbol(); 329 if (!LSym) 330 return None; 331 332 if (BinaryOperator::isComparisonOp(Op)) { 333 SingleTy = LSym->getType(); 334 if (ResultTy != SVB.getConditionType()) 335 return None; 336 // Initialize SingleTy later with a symbol's type. 337 } else if (BinaryOperator::isAdditiveOp(Op)) { 338 SingleTy = ResultTy; 339 if (LSym->getType() != SingleTy) 340 return None; 341 } else { 342 // Don't rearrange other operations. 343 return None; 344 } 345 346 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 347 348 // Rearrange signed symbolic expressions only 349 if (!SingleTy->isSignedIntegerOrEnumerationType()) 350 return None; 351 352 SymbolRef RSym = Rhs.getAsSymbol(); 353 if (!RSym || RSym->getType() != SingleTy) 354 return None; 355 356 BasicValueFactory &BV = State->getBasicVals(); 357 llvm::APSInt LInt, RInt; 358 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 359 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 360 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 361 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 362 return None; 363 364 // We know that no overflows can occur anymore. 365 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 366 } 367 368 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 369 BinaryOperator::Opcode op, 370 NonLoc lhs, NonLoc rhs, 371 QualType resultTy) { 372 NonLoc InputLHS = lhs; 373 NonLoc InputRHS = rhs; 374 375 // Handle trivial case where left-side and right-side are the same. 376 if (lhs == rhs) 377 switch (op) { 378 default: 379 break; 380 case BO_EQ: 381 case BO_LE: 382 case BO_GE: 383 return makeTruthVal(true, resultTy); 384 case BO_LT: 385 case BO_GT: 386 case BO_NE: 387 return makeTruthVal(false, resultTy); 388 case BO_Xor: 389 case BO_Sub: 390 if (resultTy->isIntegralOrEnumerationType()) 391 return makeIntVal(0, resultTy); 392 return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy, 393 QualType{}); 394 case BO_Or: 395 case BO_And: 396 return evalCast(lhs, resultTy, QualType{}); 397 } 398 399 while (1) { 400 switch (lhs.getSubKind()) { 401 default: 402 return makeSymExprValNN(op, lhs, rhs, resultTy); 403 case nonloc::PointerToMemberKind: { 404 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 405 "Both SVals should have pointer-to-member-type"); 406 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 407 RPTM = rhs.castAs<nonloc::PointerToMember>(); 408 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 409 switch (op) { 410 case BO_EQ: 411 return makeTruthVal(LPTMD == RPTMD, resultTy); 412 case BO_NE: 413 return makeTruthVal(LPTMD != RPTMD, resultTy); 414 default: 415 return UnknownVal(); 416 } 417 } 418 case nonloc::LocAsIntegerKind: { 419 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 420 switch (rhs.getSubKind()) { 421 case nonloc::LocAsIntegerKind: 422 // FIXME: at the moment the implementation 423 // of modeling "pointers as integers" is not complete. 424 if (!BinaryOperator::isComparisonOp(op)) 425 return UnknownVal(); 426 return evalBinOpLL(state, op, lhsL, 427 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 428 resultTy); 429 case nonloc::ConcreteIntKind: { 430 // FIXME: at the moment the implementation 431 // of modeling "pointers as integers" is not complete. 432 if (!BinaryOperator::isComparisonOp(op)) 433 return UnknownVal(); 434 // Transform the integer into a location and compare. 435 // FIXME: This only makes sense for comparisons. If we want to, say, 436 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 437 // then pack it back into a LocAsInteger. 438 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 439 // If the region has a symbolic base, pay attention to the type; it 440 // might be coming from a non-default address space. For non-symbolic 441 // regions it doesn't matter that much because such comparisons would 442 // most likely evaluate to concrete false anyway. FIXME: We might 443 // still need to handle the non-comparison case. 444 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 445 BasicVals.getAPSIntType(lSym->getType()).apply(i); 446 else 447 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 448 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 449 } 450 default: 451 switch (op) { 452 case BO_EQ: 453 return makeTruthVal(false, resultTy); 454 case BO_NE: 455 return makeTruthVal(true, resultTy); 456 default: 457 // This case also handles pointer arithmetic. 458 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 459 } 460 } 461 } 462 case nonloc::ConcreteIntKind: { 463 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 464 465 // If we're dealing with two known constants, just perform the operation. 466 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 467 llvm::APSInt RHSValue = *KnownRHSValue; 468 if (BinaryOperator::isComparisonOp(op)) { 469 // We're looking for a type big enough to compare the two values. 470 // FIXME: This is not correct. char + short will result in a promotion 471 // to int. Unfortunately we have lost types by this point. 472 APSIntType CompareType = std::max(APSIntType(LHSValue), 473 APSIntType(RHSValue)); 474 CompareType.apply(LHSValue); 475 CompareType.apply(RHSValue); 476 } else if (!BinaryOperator::isShiftOp(op)) { 477 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 478 IntType.apply(LHSValue); 479 IntType.apply(RHSValue); 480 } 481 482 const llvm::APSInt *Result = 483 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 484 if (!Result) 485 return UndefinedVal(); 486 487 return nonloc::ConcreteInt(*Result); 488 } 489 490 // Swap the left and right sides and flip the operator if doing so 491 // allows us to better reason about the expression (this is a form 492 // of expression canonicalization). 493 // While we're at it, catch some special cases for non-commutative ops. 494 switch (op) { 495 case BO_LT: 496 case BO_GT: 497 case BO_LE: 498 case BO_GE: 499 op = BinaryOperator::reverseComparisonOp(op); 500 LLVM_FALLTHROUGH; 501 case BO_EQ: 502 case BO_NE: 503 case BO_Add: 504 case BO_Mul: 505 case BO_And: 506 case BO_Xor: 507 case BO_Or: 508 std::swap(lhs, rhs); 509 continue; 510 case BO_Shr: 511 // (~0)>>a 512 if (LHSValue.isAllOnes() && LHSValue.isSigned()) 513 return evalCast(lhs, resultTy, QualType{}); 514 LLVM_FALLTHROUGH; 515 case BO_Shl: 516 // 0<<a and 0>>a 517 if (LHSValue == 0) 518 return evalCast(lhs, resultTy, QualType{}); 519 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 520 case BO_Div: 521 // 0 / x == 0 522 case BO_Rem: 523 // 0 % x == 0 524 if (LHSValue == 0) 525 return makeZeroVal(resultTy); 526 LLVM_FALLTHROUGH; 527 default: 528 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 529 } 530 } 531 case nonloc::SymbolValKind: { 532 // We only handle LHS as simple symbols or SymIntExprs. 533 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 534 535 // LHS is a symbolic expression. 536 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 537 538 // Is this a logical not? (!x is represented as x == 0.) 539 if (op == BO_EQ && rhs.isZeroConstant()) { 540 // We know how to negate certain expressions. Simplify them here. 541 542 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 543 switch (opc) { 544 default: 545 // We don't know how to negate this operation. 546 // Just handle it as if it were a normal comparison to 0. 547 break; 548 case BO_LAnd: 549 case BO_LOr: 550 llvm_unreachable("Logical operators handled by branching logic."); 551 case BO_Assign: 552 case BO_MulAssign: 553 case BO_DivAssign: 554 case BO_RemAssign: 555 case BO_AddAssign: 556 case BO_SubAssign: 557 case BO_ShlAssign: 558 case BO_ShrAssign: 559 case BO_AndAssign: 560 case BO_XorAssign: 561 case BO_OrAssign: 562 case BO_Comma: 563 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 564 case BO_PtrMemD: 565 case BO_PtrMemI: 566 llvm_unreachable("Pointer arithmetic not handled here."); 567 case BO_LT: 568 case BO_GT: 569 case BO_LE: 570 case BO_GE: 571 case BO_EQ: 572 case BO_NE: 573 assert(resultTy->isBooleanType() || 574 resultTy == getConditionType()); 575 assert(symIntExpr->getType()->isBooleanType() || 576 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 577 getConditionType())); 578 // Negate the comparison and make a value. 579 opc = BinaryOperator::negateComparisonOp(opc); 580 return makeNonLoc(symIntExpr->getLHS(), opc, 581 symIntExpr->getRHS(), resultTy); 582 } 583 } 584 585 // For now, only handle expressions whose RHS is a constant. 586 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 587 // If both the LHS and the current expression are additive, 588 // fold their constants and try again. 589 if (BinaryOperator::isAdditiveOp(op)) { 590 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 591 if (BinaryOperator::isAdditiveOp(lop)) { 592 // Convert the two constants to a common type, then combine them. 593 594 // resultTy may not be the best type to convert to, but it's 595 // probably the best choice in expressions with mixed type 596 // (such as x+1U+2LL). The rules for implicit conversions should 597 // choose a reasonable type to preserve the expression, and will 598 // at least match how the value is going to be used. 599 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 600 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 601 const llvm::APSInt &second = IntType.convert(*RHSValue); 602 603 const llvm::APSInt *newRHS; 604 if (lop == op) 605 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 606 else 607 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 608 609 assert(newRHS && "Invalid operation despite common type!"); 610 rhs = nonloc::ConcreteInt(*newRHS); 611 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 612 op = lop; 613 continue; 614 } 615 } 616 617 // Otherwise, make a SymIntExpr out of the expression. 618 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 619 } 620 } 621 622 // Does the symbolic expression simplify to a constant? 623 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 624 // and try again. 625 SVal simplifiedLhs = simplifySVal(state, lhs); 626 if (simplifiedLhs != lhs) 627 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 628 lhs = *simplifiedLhsAsNonLoc; 629 continue; 630 } 631 632 // Is the RHS a constant? 633 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 634 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 635 636 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 637 return *V; 638 639 // Give up -- this is not a symbolic expression we can handle. 640 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 641 } 642 } 643 } 644 } 645 646 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 647 const FieldRegion *RightFR, 648 BinaryOperator::Opcode op, 649 QualType resultTy, 650 SimpleSValBuilder &SVB) { 651 // Only comparisons are meaningful here! 652 if (!BinaryOperator::isComparisonOp(op)) 653 return UnknownVal(); 654 655 // Next, see if the two FRs have the same super-region. 656 // FIXME: This doesn't handle casts yet, and simply stripping the casts 657 // doesn't help. 658 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 659 return UnknownVal(); 660 661 const FieldDecl *LeftFD = LeftFR->getDecl(); 662 const FieldDecl *RightFD = RightFR->getDecl(); 663 const RecordDecl *RD = LeftFD->getParent(); 664 665 // Make sure the two FRs are from the same kind of record. Just in case! 666 // FIXME: This is probably where inheritance would be a problem. 667 if (RD != RightFD->getParent()) 668 return UnknownVal(); 669 670 // We know for sure that the two fields are not the same, since that 671 // would have given us the same SVal. 672 if (op == BO_EQ) 673 return SVB.makeTruthVal(false, resultTy); 674 if (op == BO_NE) 675 return SVB.makeTruthVal(true, resultTy); 676 677 // Iterate through the fields and see which one comes first. 678 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 679 // members and the units in which bit-fields reside have addresses that 680 // increase in the order in which they are declared." 681 bool leftFirst = (op == BO_LT || op == BO_LE); 682 for (const auto *I : RD->fields()) { 683 if (I == LeftFD) 684 return SVB.makeTruthVal(leftFirst, resultTy); 685 if (I == RightFD) 686 return SVB.makeTruthVal(!leftFirst, resultTy); 687 } 688 689 llvm_unreachable("Fields not found in parent record's definition"); 690 } 691 692 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 693 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 694 BinaryOperator::Opcode op, 695 Loc lhs, Loc rhs, 696 QualType resultTy) { 697 // Only comparisons and subtractions are valid operations on two pointers. 698 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 699 // However, if a pointer is casted to an integer, evalBinOpNN may end up 700 // calling this function with another operation (PR7527). We don't attempt to 701 // model this for now, but it could be useful, particularly when the 702 // "location" is actually an integer value that's been passed through a void*. 703 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 704 return UnknownVal(); 705 706 // Special cases for when both sides are identical. 707 if (lhs == rhs) { 708 switch (op) { 709 default: 710 llvm_unreachable("Unimplemented operation for two identical values"); 711 case BO_Sub: 712 return makeZeroVal(resultTy); 713 case BO_EQ: 714 case BO_LE: 715 case BO_GE: 716 return makeTruthVal(true, resultTy); 717 case BO_NE: 718 case BO_LT: 719 case BO_GT: 720 return makeTruthVal(false, resultTy); 721 } 722 } 723 724 switch (lhs.getSubKind()) { 725 default: 726 llvm_unreachable("Ordering not implemented for this Loc."); 727 728 case loc::GotoLabelKind: 729 // The only thing we know about labels is that they're non-null. 730 if (rhs.isZeroConstant()) { 731 switch (op) { 732 default: 733 break; 734 case BO_Sub: 735 return evalCast(lhs, resultTy, QualType{}); 736 case BO_EQ: 737 case BO_LE: 738 case BO_LT: 739 return makeTruthVal(false, resultTy); 740 case BO_NE: 741 case BO_GT: 742 case BO_GE: 743 return makeTruthVal(true, resultTy); 744 } 745 } 746 // There may be two labels for the same location, and a function region may 747 // have the same address as a label at the start of the function (depending 748 // on the ABI). 749 // FIXME: we can probably do a comparison against other MemRegions, though. 750 // FIXME: is there a way to tell if two labels refer to the same location? 751 return UnknownVal(); 752 753 case loc::ConcreteIntKind: { 754 // If one of the operands is a symbol and the other is a constant, 755 // build an expression for use by the constraint manager. 756 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 757 // We can only build expressions with symbols on the left, 758 // so we need a reversible operator. 759 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 760 return UnknownVal(); 761 762 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 763 op = BinaryOperator::reverseComparisonOp(op); 764 return makeNonLoc(rSym, op, lVal, resultTy); 765 } 766 767 // If both operands are constants, just perform the operation. 768 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 769 SVal ResultVal = 770 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 771 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 772 return evalCast(*Result, resultTy, QualType{}); 773 774 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 775 return UnknownVal(); 776 } 777 778 // Special case comparisons against NULL. 779 // This must come after the test if the RHS is a symbol, which is used to 780 // build constraints. The address of any non-symbolic region is guaranteed 781 // to be non-NULL, as is any label. 782 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 783 if (lhs.isZeroConstant()) { 784 switch (op) { 785 default: 786 break; 787 case BO_EQ: 788 case BO_GT: 789 case BO_GE: 790 return makeTruthVal(false, resultTy); 791 case BO_NE: 792 case BO_LT: 793 case BO_LE: 794 return makeTruthVal(true, resultTy); 795 } 796 } 797 798 // Comparing an arbitrary integer to a region or label address is 799 // completely unknowable. 800 return UnknownVal(); 801 } 802 case loc::MemRegionValKind: { 803 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 804 // If one of the operands is a symbol and the other is a constant, 805 // build an expression for use by the constraint manager. 806 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 807 if (BinaryOperator::isComparisonOp(op)) 808 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 809 return UnknownVal(); 810 } 811 // Special case comparisons to NULL. 812 // This must come after the test if the LHS is a symbol, which is used to 813 // build constraints. The address of any non-symbolic region is guaranteed 814 // to be non-NULL. 815 if (rInt->isZeroConstant()) { 816 if (op == BO_Sub) 817 return evalCast(lhs, resultTy, QualType{}); 818 819 if (BinaryOperator::isComparisonOp(op)) { 820 QualType boolType = getContext().BoolTy; 821 NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>(); 822 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 823 return evalBinOpNN(state, op, l, r, resultTy); 824 } 825 } 826 827 // Comparing a region to an arbitrary integer is completely unknowable. 828 return UnknownVal(); 829 } 830 831 // Get both values as regions, if possible. 832 const MemRegion *LeftMR = lhs.getAsRegion(); 833 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 834 835 const MemRegion *RightMR = rhs.getAsRegion(); 836 if (!RightMR) 837 // The RHS is probably a label, which in theory could address a region. 838 // FIXME: we can probably make a more useful statement about non-code 839 // regions, though. 840 return UnknownVal(); 841 842 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 843 const MemRegion *RightBase = RightMR->getBaseRegion(); 844 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 845 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 846 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 847 848 // If the two regions are from different known memory spaces they cannot be 849 // equal. Also, assume that no symbolic region (whose memory space is 850 // unknown) is on the stack. 851 if (LeftMS != RightMS && 852 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 853 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 854 switch (op) { 855 default: 856 return UnknownVal(); 857 case BO_EQ: 858 return makeTruthVal(false, resultTy); 859 case BO_NE: 860 return makeTruthVal(true, resultTy); 861 } 862 } 863 864 // If both values wrap regions, see if they're from different base regions. 865 // Note, heap base symbolic regions are assumed to not alias with 866 // each other; for example, we assume that malloc returns different address 867 // on each invocation. 868 // FIXME: ObjC object pointers always reside on the heap, but currently 869 // we treat their memory space as unknown, because symbolic pointers 870 // to ObjC objects may alias. There should be a way to construct 871 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 872 // guesses memory space for ObjC object pointers manually instead of 873 // relying on us. 874 if (LeftBase != RightBase && 875 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 876 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 877 switch (op) { 878 default: 879 return UnknownVal(); 880 case BO_EQ: 881 return makeTruthVal(false, resultTy); 882 case BO_NE: 883 return makeTruthVal(true, resultTy); 884 } 885 } 886 887 // Handle special cases for when both regions are element regions. 888 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 889 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 890 if (RightER && LeftER) { 891 // Next, see if the two ERs have the same super-region and matching types. 892 // FIXME: This should do something useful even if the types don't match, 893 // though if both indexes are constant the RegionRawOffset path will 894 // give the correct answer. 895 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 896 LeftER->getElementType() == RightER->getElementType()) { 897 // Get the left index and cast it to the correct type. 898 // If the index is unknown or undefined, bail out here. 899 SVal LeftIndexVal = LeftER->getIndex(); 900 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 901 if (!LeftIndex) 902 return UnknownVal(); 903 LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{}); 904 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 905 if (!LeftIndex) 906 return UnknownVal(); 907 908 // Do the same for the right index. 909 SVal RightIndexVal = RightER->getIndex(); 910 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 911 if (!RightIndex) 912 return UnknownVal(); 913 RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{}); 914 RightIndex = RightIndexVal.getAs<NonLoc>(); 915 if (!RightIndex) 916 return UnknownVal(); 917 918 // Actually perform the operation. 919 // evalBinOpNN expects the two indexes to already be the right type. 920 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 921 } 922 } 923 924 // Special handling of the FieldRegions, even with symbolic offsets. 925 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 926 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 927 if (RightFR && LeftFR) { 928 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 929 *this); 930 if (!R.isUnknown()) 931 return R; 932 } 933 934 // Compare the regions using the raw offsets. 935 RegionOffset LeftOffset = LeftMR->getAsOffset(); 936 RegionOffset RightOffset = RightMR->getAsOffset(); 937 938 if (LeftOffset.getRegion() != nullptr && 939 LeftOffset.getRegion() == RightOffset.getRegion() && 940 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 941 int64_t left = LeftOffset.getOffset(); 942 int64_t right = RightOffset.getOffset(); 943 944 switch (op) { 945 default: 946 return UnknownVal(); 947 case BO_LT: 948 return makeTruthVal(left < right, resultTy); 949 case BO_GT: 950 return makeTruthVal(left > right, resultTy); 951 case BO_LE: 952 return makeTruthVal(left <= right, resultTy); 953 case BO_GE: 954 return makeTruthVal(left >= right, resultTy); 955 case BO_EQ: 956 return makeTruthVal(left == right, resultTy); 957 case BO_NE: 958 return makeTruthVal(left != right, resultTy); 959 } 960 } 961 962 // At this point we're not going to get a good answer, but we can try 963 // conjuring an expression instead. 964 SymbolRef LHSSym = lhs.getAsLocSymbol(); 965 SymbolRef RHSSym = rhs.getAsLocSymbol(); 966 if (LHSSym && RHSSym) 967 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 968 969 // If we get here, we have no way of comparing the regions. 970 return UnknownVal(); 971 } 972 } 973 } 974 975 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 976 BinaryOperator::Opcode op, Loc lhs, 977 NonLoc rhs, QualType resultTy) { 978 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 979 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 980 if (PTMSV->isNullMemberPointer()) 981 return UndefinedVal(); 982 983 auto getFieldLValue = [&](const auto *FD) -> SVal { 984 SVal Result = lhs; 985 986 for (const auto &I : *PTMSV) 987 Result = StateMgr.getStoreManager().evalDerivedToBase( 988 Result, I->getType(), I->isVirtual()); 989 990 return state->getLValue(FD, Result); 991 }; 992 993 if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) { 994 return getFieldLValue(FD); 995 } 996 if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) { 997 return getFieldLValue(FD); 998 } 999 } 1000 1001 return rhs; 1002 } 1003 1004 assert(!BinaryOperator::isComparisonOp(op) && 1005 "arguments to comparison ops must be of the same type"); 1006 1007 // Special case: rhs is a zero constant. 1008 if (rhs.isZeroConstant()) 1009 return lhs; 1010 1011 // Perserve the null pointer so that it can be found by the DerefChecker. 1012 if (lhs.isZeroConstant()) 1013 return lhs; 1014 1015 // We are dealing with pointer arithmetic. 1016 1017 // Handle pointer arithmetic on constant values. 1018 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1019 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1020 const llvm::APSInt &leftI = lhsInt->getValue(); 1021 assert(leftI.isUnsigned()); 1022 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1023 1024 // Convert the bitwidth of rightI. This should deal with overflow 1025 // since we are dealing with concrete values. 1026 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1027 1028 // Offset the increment by the pointer size. 1029 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1030 QualType pointeeType = resultTy->getPointeeType(); 1031 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1032 rightI *= Multiplicand; 1033 1034 // Compute the adjusted pointer. 1035 switch (op) { 1036 case BO_Add: 1037 rightI = leftI + rightI; 1038 break; 1039 case BO_Sub: 1040 rightI = leftI - rightI; 1041 break; 1042 default: 1043 llvm_unreachable("Invalid pointer arithmetic operation"); 1044 } 1045 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1046 } 1047 } 1048 1049 // Handle cases where 'lhs' is a region. 1050 if (const MemRegion *region = lhs.getAsRegion()) { 1051 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1052 SVal index = UnknownVal(); 1053 const SubRegion *superR = nullptr; 1054 // We need to know the type of the pointer in order to add an integer to it. 1055 // Depending on the type, different amount of bytes is added. 1056 QualType elementType; 1057 1058 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1059 assert(op == BO_Add || op == BO_Sub); 1060 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1061 getArrayIndexType()); 1062 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1063 elementType = elemReg->getElementType(); 1064 } 1065 else if (isa<SubRegion>(region)) { 1066 assert(op == BO_Add || op == BO_Sub); 1067 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1068 superR = cast<SubRegion>(region); 1069 // TODO: Is this actually reliable? Maybe improving our MemRegion 1070 // hierarchy to provide typed regions for all non-void pointers would be 1071 // better. For instance, we cannot extend this towards LocAsInteger 1072 // operations, where result type of the expression is integer. 1073 if (resultTy->isAnyPointerType()) 1074 elementType = resultTy->getPointeeType(); 1075 } 1076 1077 // Represent arithmetic on void pointers as arithmetic on char pointers. 1078 // It is fine when a TypedValueRegion of char value type represents 1079 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1080 if (elementType->isVoidType()) 1081 elementType = getContext().CharTy; 1082 1083 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1084 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1085 superR, getContext())); 1086 } 1087 } 1088 return UnknownVal(); 1089 } 1090 1091 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1092 SVal V) { 1093 V = simplifySVal(state, V); 1094 if (V.isUnknownOrUndef()) 1095 return nullptr; 1096 1097 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1098 return &X->getValue(); 1099 1100 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1101 return &X->getValue(); 1102 1103 if (SymbolRef Sym = V.getAsSymbol()) 1104 return state->getConstraintManager().getSymVal(state, Sym); 1105 1106 // FIXME: Add support for SymExprs. 1107 return nullptr; 1108 } 1109 1110 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1111 // For now, this function tries to constant-fold symbols inside a 1112 // nonloc::SymbolVal, and does nothing else. More simplifications should 1113 // be possible, such as constant-folding an index in an ElementRegion. 1114 1115 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1116 ProgramStateRef State; 1117 SValBuilder &SVB; 1118 1119 // Cache results for the lifetime of the Simplifier. Results change every 1120 // time new constraints are added to the program state, which is the whole 1121 // point of simplifying, and for that very reason it's pointless to maintain 1122 // the same cache for the duration of the whole analysis. 1123 llvm::DenseMap<SymbolRef, SVal> Cached; 1124 1125 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1126 return Sym == Val.getAsSymbol(); 1127 } 1128 1129 SVal cache(SymbolRef Sym, SVal V) { 1130 Cached[Sym] = V; 1131 return V; 1132 } 1133 1134 SVal skip(SymbolRef Sym) { 1135 return cache(Sym, SVB.makeSymbolVal(Sym)); 1136 } 1137 1138 public: 1139 Simplifier(ProgramStateRef State) 1140 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1141 1142 SVal VisitSymbolData(const SymbolData *S) { 1143 // No cache here. 1144 if (const llvm::APSInt *I = 1145 SVB.getKnownValue(State, SVB.makeSymbolVal(S))) 1146 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1147 : (SVal)SVB.makeIntVal(*I); 1148 return SVB.makeSymbolVal(S); 1149 } 1150 1151 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1152 // start producing them. 1153 1154 SVal VisitSymIntExpr(const SymIntExpr *S) { 1155 auto I = Cached.find(S); 1156 if (I != Cached.end()) 1157 return I->second; 1158 1159 SVal LHS = Visit(S->getLHS()); 1160 if (isUnchanged(S->getLHS(), LHS)) 1161 return skip(S); 1162 1163 SVal RHS; 1164 // By looking at the APSInt in the right-hand side of S, we cannot 1165 // figure out if it should be treated as a Loc or as a NonLoc. 1166 // So make our guess by recalling that we cannot multiply pointers 1167 // or compare a pointer to an integer. 1168 if (Loc::isLocType(S->getLHS()->getType()) && 1169 BinaryOperator::isComparisonOp(S->getOpcode())) { 1170 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1171 // the same meaning for Loc-type symbols, but the latter form 1172 // is preferred in SVal computations for being Loc itself. 1173 if (SymbolRef Sym = LHS.getAsSymbol()) { 1174 assert(Loc::isLocType(Sym->getType())); 1175 LHS = SVB.makeLoc(Sym); 1176 } 1177 RHS = SVB.makeIntLocVal(S->getRHS()); 1178 } else { 1179 RHS = SVB.makeIntVal(S->getRHS()); 1180 } 1181 1182 return cache( 1183 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1184 } 1185 1186 SVal VisitSymSymExpr(const SymSymExpr *S) { 1187 auto I = Cached.find(S); 1188 if (I != Cached.end()) 1189 return I->second; 1190 1191 // For now don't try to simplify mixed Loc/NonLoc expressions 1192 // because they often appear from LocAsInteger operations 1193 // and we don't know how to combine a LocAsInteger 1194 // with a concrete value. 1195 if (Loc::isLocType(S->getLHS()->getType()) != 1196 Loc::isLocType(S->getRHS()->getType())) 1197 return skip(S); 1198 1199 SVal LHS = Visit(S->getLHS()); 1200 SVal RHS = Visit(S->getRHS()); 1201 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1202 return skip(S); 1203 1204 return cache( 1205 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1206 } 1207 1208 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1209 1210 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1211 1212 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1213 // Simplification is much more costly than computing complexity. 1214 // For high complexity, it may be not worth it. 1215 return Visit(V.getSymbol()); 1216 } 1217 1218 SVal VisitSVal(SVal V) { return V; } 1219 }; 1220 1221 // A crude way of preventing this function from calling itself from evalBinOp. 1222 static bool isReentering = false; 1223 if (isReentering) 1224 return V; 1225 1226 isReentering = true; 1227 SVal SimplifiedV = Simplifier(State).Visit(V); 1228 isReentering = false; 1229 1230 return SimplifiedV; 1231 } 1232