xref: /freebsd-src/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
18 
19 using namespace clang;
20 using namespace ento;
21 
22 namespace {
23 class SimpleSValBuilder : public SValBuilder {
24 public:
25   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
26                     ProgramStateManager &stateMgr)
27       : SValBuilder(alloc, context, stateMgr) {}
28   ~SimpleSValBuilder() override {}
29 
30   SVal evalMinus(NonLoc val) override;
31   SVal evalComplement(NonLoc val) override;
32   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
33                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
34   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
35                    Loc lhs, Loc rhs, QualType resultTy) override;
36   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
37                    Loc lhs, NonLoc rhs, QualType resultTy) override;
38 
39   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
40   ///  (integer) value, that value is returned. Otherwise, returns NULL.
41   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
42 
43   /// Recursively descends into symbolic expressions and replaces symbols
44   /// with their known values (in the sense of the getKnownValue() method).
45   SVal simplifySVal(ProgramStateRef State, SVal V) override;
46 
47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                      const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51 
52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                            ASTContext &context,
54                                            ProgramStateManager &stateMgr) {
55   return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // Transfer function for unary operators.
60 //===----------------------------------------------------------------------===//
61 
62 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
63   switch (val.getSubKind()) {
64   case nonloc::ConcreteIntKind:
65     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
66   default:
67     return UnknownVal();
68   }
69 }
70 
71 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
72   switch (X.getSubKind()) {
73   case nonloc::ConcreteIntKind:
74     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
75   default:
76     return UnknownVal();
77   }
78 }
79 
80 //===----------------------------------------------------------------------===//
81 // Transfer function for binary operators.
82 //===----------------------------------------------------------------------===//
83 
84 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
85                                     BinaryOperator::Opcode op,
86                                     const llvm::APSInt &RHS,
87                                     QualType resultTy) {
88   bool isIdempotent = false;
89 
90   // Check for a few special cases with known reductions first.
91   switch (op) {
92   default:
93     // We can't reduce this case; just treat it normally.
94     break;
95   case BO_Mul:
96     // a*0 and a*1
97     if (RHS == 0)
98       return makeIntVal(0, resultTy);
99     else if (RHS == 1)
100       isIdempotent = true;
101     break;
102   case BO_Div:
103     // a/0 and a/1
104     if (RHS == 0)
105       // This is also handled elsewhere.
106       return UndefinedVal();
107     else if (RHS == 1)
108       isIdempotent = true;
109     break;
110   case BO_Rem:
111     // a%0 and a%1
112     if (RHS == 0)
113       // This is also handled elsewhere.
114       return UndefinedVal();
115     else if (RHS == 1)
116       return makeIntVal(0, resultTy);
117     break;
118   case BO_Add:
119   case BO_Sub:
120   case BO_Shl:
121   case BO_Shr:
122   case BO_Xor:
123     // a+0, a-0, a<<0, a>>0, a^0
124     if (RHS == 0)
125       isIdempotent = true;
126     break;
127   case BO_And:
128     // a&0 and a&(~0)
129     if (RHS == 0)
130       return makeIntVal(0, resultTy);
131     else if (RHS.isAllOnes())
132       isIdempotent = true;
133     break;
134   case BO_Or:
135     // a|0 and a|(~0)
136     if (RHS == 0)
137       isIdempotent = true;
138     else if (RHS.isAllOnes()) {
139       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
140       return nonloc::ConcreteInt(Result);
141     }
142     break;
143   }
144 
145   // Idempotent ops (like a*1) can still change the type of an expression.
146   // Wrap the LHS up in a NonLoc again and let evalCast do the
147   // dirty work.
148   if (isIdempotent)
149     return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
150 
151   // If we reach this point, the expression cannot be simplified.
152   // Make a SymbolVal for the entire expression, after converting the RHS.
153   const llvm::APSInt *ConvertedRHS = &RHS;
154   if (BinaryOperator::isComparisonOp(op)) {
155     // We're looking for a type big enough to compare the symbolic value
156     // with the given constant.
157     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
158     ASTContext &Ctx = getContext();
159     QualType SymbolType = LHS->getType();
160     uint64_t ValWidth = RHS.getBitWidth();
161     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
162 
163     if (ValWidth < TypeWidth) {
164       // If the value is too small, extend it.
165       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
166     } else if (ValWidth == TypeWidth) {
167       // If the value is signed but the symbol is unsigned, do the comparison
168       // in unsigned space. [C99 6.3.1.8]
169       // (For the opposite case, the value is already unsigned.)
170       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
171         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
172     }
173   } else
174     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
175 
176   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
177 }
178 
179 // See if Sym is known to be a relation Rel with Bound.
180 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
181                          llvm::APSInt Bound, ProgramStateRef State) {
182   SValBuilder &SVB = State->getStateManager().getSValBuilder();
183   SVal Result =
184       SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
185                       nonloc::ConcreteInt(Bound), SVB.getConditionType());
186   if (auto DV = Result.getAs<DefinedSVal>()) {
187     return !State->assume(*DV, false);
188   }
189   return false;
190 }
191 
192 // See if Sym is known to be within [min/4, max/4], where min and max
193 // are the bounds of the symbol's integral type. With such symbols,
194 // some manipulations can be performed without the risk of overflow.
195 // assume() doesn't cause infinite recursion because we should be dealing
196 // with simpler symbols on every recursive call.
197 static bool isWithinConstantOverflowBounds(SymbolRef Sym,
198                                            ProgramStateRef State) {
199   SValBuilder &SVB = State->getStateManager().getSValBuilder();
200   BasicValueFactory &BV = SVB.getBasicValueFactory();
201 
202   QualType T = Sym->getType();
203   assert(T->isSignedIntegerOrEnumerationType() &&
204          "This only works with signed integers!");
205   APSIntType AT = BV.getAPSIntType(T);
206 
207   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
208   return isInRelation(BO_LE, Sym, Max, State) &&
209          isInRelation(BO_GE, Sym, Min, State);
210 }
211 
212 // Same for the concrete integers: see if I is within [min/4, max/4].
213 static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
214   APSIntType AT(I);
215   assert(!AT.isUnsigned() &&
216          "This only works with signed integers!");
217 
218   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
219   return (I <= Max) && (I >= -Max);
220 }
221 
222 static std::pair<SymbolRef, llvm::APSInt>
223 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
224   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
225     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
226       return std::make_pair(SymInt->getLHS(),
227                             (SymInt->getOpcode() == BO_Add) ?
228                             (SymInt->getRHS()) :
229                             (-SymInt->getRHS()));
230 
231   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
232   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
233 }
234 
235 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
236 // same signed integral type and no overflows occur (which should be checked
237 // by the caller).
238 static NonLoc doRearrangeUnchecked(ProgramStateRef State,
239                                    BinaryOperator::Opcode Op,
240                                    SymbolRef LSym, llvm::APSInt LInt,
241                                    SymbolRef RSym, llvm::APSInt RInt) {
242   SValBuilder &SVB = State->getStateManager().getSValBuilder();
243   BasicValueFactory &BV = SVB.getBasicValueFactory();
244   SymbolManager &SymMgr = SVB.getSymbolManager();
245 
246   QualType SymTy = LSym->getType();
247   assert(SymTy == RSym->getType() &&
248          "Symbols are not of the same type!");
249   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
250          "Integers are not of the same type as symbols!");
251   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
252          "Integers are not of the same type as symbols!");
253 
254   QualType ResultTy;
255   if (BinaryOperator::isComparisonOp(Op))
256     ResultTy = SVB.getConditionType();
257   else if (BinaryOperator::isAdditiveOp(Op))
258     ResultTy = SymTy;
259   else
260     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
261 
262   // FIXME: Can we use assume() without getting into an infinite recursion?
263   if (LSym == RSym)
264     return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
265                            nonloc::ConcreteInt(RInt), ResultTy)
266         .castAs<NonLoc>();
267 
268   SymbolRef ResultSym = nullptr;
269   BinaryOperator::Opcode ResultOp;
270   llvm::APSInt ResultInt;
271   if (BinaryOperator::isComparisonOp(Op)) {
272     // Prefer comparing to a non-negative number.
273     // FIXME: Maybe it'd be better to have consistency in
274     // "$x - $y" vs. "$y - $x" because those are solver's keys.
275     if (LInt > RInt) {
276       ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
277       ResultOp = BinaryOperator::reverseComparisonOp(Op);
278       ResultInt = LInt - RInt; // Opposite order!
279     } else {
280       ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
281       ResultOp = Op;
282       ResultInt = RInt - LInt; // Opposite order!
283     }
284   } else {
285     ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
286     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
287     ResultOp = BO_Add;
288     // Bring back the cosmetic difference.
289     if (ResultInt < 0) {
290       ResultInt = -ResultInt;
291       ResultOp = BO_Sub;
292     } else if (ResultInt == 0) {
293       // Shortcut: Simplify "$x + 0" to "$x".
294       return nonloc::SymbolVal(ResultSym);
295     }
296   }
297   const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
298   return nonloc::SymbolVal(
299       SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
300 }
301 
302 // Rearrange if symbol type matches the result type and if the operator is a
303 // comparison operator, both symbol and constant must be within constant
304 // overflow bounds.
305 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
306                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
307   return Sym->getType() == Ty &&
308     (!BinaryOperator::isComparisonOp(Op) ||
309      (isWithinConstantOverflowBounds(Sym, State) &&
310       isWithinConstantOverflowBounds(Int)));
311 }
312 
313 static Optional<NonLoc> tryRearrange(ProgramStateRef State,
314                                      BinaryOperator::Opcode Op, NonLoc Lhs,
315                                      NonLoc Rhs, QualType ResultTy) {
316   ProgramStateManager &StateMgr = State->getStateManager();
317   SValBuilder &SVB = StateMgr.getSValBuilder();
318 
319   // We expect everything to be of the same type - this type.
320   QualType SingleTy;
321 
322   // FIXME: After putting complexity threshold to the symbols we can always
323   //        rearrange additive operations but rearrange comparisons only if
324   //        option is set.
325   if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
326     return None;
327 
328   SymbolRef LSym = Lhs.getAsSymbol();
329   if (!LSym)
330     return None;
331 
332   if (BinaryOperator::isComparisonOp(Op)) {
333     SingleTy = LSym->getType();
334     if (ResultTy != SVB.getConditionType())
335       return None;
336     // Initialize SingleTy later with a symbol's type.
337   } else if (BinaryOperator::isAdditiveOp(Op)) {
338     SingleTy = ResultTy;
339     if (LSym->getType() != SingleTy)
340       return None;
341   } else {
342     // Don't rearrange other operations.
343     return None;
344   }
345 
346   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
347 
348   // Rearrange signed symbolic expressions only
349   if (!SingleTy->isSignedIntegerOrEnumerationType())
350     return None;
351 
352   SymbolRef RSym = Rhs.getAsSymbol();
353   if (!RSym || RSym->getType() != SingleTy)
354     return None;
355 
356   BasicValueFactory &BV = State->getBasicVals();
357   llvm::APSInt LInt, RInt;
358   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
359   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
360   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
361       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
362     return None;
363 
364   // We know that no overflows can occur anymore.
365   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
366 }
367 
368 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
369                                   BinaryOperator::Opcode op,
370                                   NonLoc lhs, NonLoc rhs,
371                                   QualType resultTy)  {
372   NonLoc InputLHS = lhs;
373   NonLoc InputRHS = rhs;
374 
375   // Handle trivial case where left-side and right-side are the same.
376   if (lhs == rhs)
377     switch (op) {
378       default:
379         break;
380       case BO_EQ:
381       case BO_LE:
382       case BO_GE:
383         return makeTruthVal(true, resultTy);
384       case BO_LT:
385       case BO_GT:
386       case BO_NE:
387         return makeTruthVal(false, resultTy);
388       case BO_Xor:
389       case BO_Sub:
390         if (resultTy->isIntegralOrEnumerationType())
391           return makeIntVal(0, resultTy);
392         return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
393                         QualType{});
394       case BO_Or:
395       case BO_And:
396         return evalCast(lhs, resultTy, QualType{});
397     }
398 
399   while (1) {
400     switch (lhs.getSubKind()) {
401     default:
402       return makeSymExprValNN(op, lhs, rhs, resultTy);
403     case nonloc::PointerToMemberKind: {
404       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
405              "Both SVals should have pointer-to-member-type");
406       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
407            RPTM = rhs.castAs<nonloc::PointerToMember>();
408       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
409       switch (op) {
410         case BO_EQ:
411           return makeTruthVal(LPTMD == RPTMD, resultTy);
412         case BO_NE:
413           return makeTruthVal(LPTMD != RPTMD, resultTy);
414         default:
415           return UnknownVal();
416       }
417     }
418     case nonloc::LocAsIntegerKind: {
419       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
420       switch (rhs.getSubKind()) {
421         case nonloc::LocAsIntegerKind:
422           // FIXME: at the moment the implementation
423           // of modeling "pointers as integers" is not complete.
424           if (!BinaryOperator::isComparisonOp(op))
425             return UnknownVal();
426           return evalBinOpLL(state, op, lhsL,
427                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
428                              resultTy);
429         case nonloc::ConcreteIntKind: {
430           // FIXME: at the moment the implementation
431           // of modeling "pointers as integers" is not complete.
432           if (!BinaryOperator::isComparisonOp(op))
433             return UnknownVal();
434           // Transform the integer into a location and compare.
435           // FIXME: This only makes sense for comparisons. If we want to, say,
436           // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
437           // then pack it back into a LocAsInteger.
438           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
439           // If the region has a symbolic base, pay attention to the type; it
440           // might be coming from a non-default address space. For non-symbolic
441           // regions it doesn't matter that much because such comparisons would
442           // most likely evaluate to concrete false anyway. FIXME: We might
443           // still need to handle the non-comparison case.
444           if (SymbolRef lSym = lhs.getAsLocSymbol(true))
445             BasicVals.getAPSIntType(lSym->getType()).apply(i);
446           else
447             BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
448           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
449         }
450         default:
451           switch (op) {
452             case BO_EQ:
453               return makeTruthVal(false, resultTy);
454             case BO_NE:
455               return makeTruthVal(true, resultTy);
456             default:
457               // This case also handles pointer arithmetic.
458               return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
459           }
460       }
461     }
462     case nonloc::ConcreteIntKind: {
463       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
464 
465       // If we're dealing with two known constants, just perform the operation.
466       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
467         llvm::APSInt RHSValue = *KnownRHSValue;
468         if (BinaryOperator::isComparisonOp(op)) {
469           // We're looking for a type big enough to compare the two values.
470           // FIXME: This is not correct. char + short will result in a promotion
471           // to int. Unfortunately we have lost types by this point.
472           APSIntType CompareType = std::max(APSIntType(LHSValue),
473                                             APSIntType(RHSValue));
474           CompareType.apply(LHSValue);
475           CompareType.apply(RHSValue);
476         } else if (!BinaryOperator::isShiftOp(op)) {
477           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
478           IntType.apply(LHSValue);
479           IntType.apply(RHSValue);
480         }
481 
482         const llvm::APSInt *Result =
483           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
484         if (!Result)
485           return UndefinedVal();
486 
487         return nonloc::ConcreteInt(*Result);
488       }
489 
490       // Swap the left and right sides and flip the operator if doing so
491       // allows us to better reason about the expression (this is a form
492       // of expression canonicalization).
493       // While we're at it, catch some special cases for non-commutative ops.
494       switch (op) {
495       case BO_LT:
496       case BO_GT:
497       case BO_LE:
498       case BO_GE:
499         op = BinaryOperator::reverseComparisonOp(op);
500         LLVM_FALLTHROUGH;
501       case BO_EQ:
502       case BO_NE:
503       case BO_Add:
504       case BO_Mul:
505       case BO_And:
506       case BO_Xor:
507       case BO_Or:
508         std::swap(lhs, rhs);
509         continue;
510       case BO_Shr:
511         // (~0)>>a
512         if (LHSValue.isAllOnes() && LHSValue.isSigned())
513           return evalCast(lhs, resultTy, QualType{});
514         LLVM_FALLTHROUGH;
515       case BO_Shl:
516         // 0<<a and 0>>a
517         if (LHSValue == 0)
518           return evalCast(lhs, resultTy, QualType{});
519         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
520       case BO_Div:
521         // 0 / x == 0
522       case BO_Rem:
523         // 0 % x == 0
524         if (LHSValue == 0)
525           return makeZeroVal(resultTy);
526         LLVM_FALLTHROUGH;
527       default:
528         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
529       }
530     }
531     case nonloc::SymbolValKind: {
532       // We only handle LHS as simple symbols or SymIntExprs.
533       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
534 
535       // LHS is a symbolic expression.
536       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
537 
538         // Is this a logical not? (!x is represented as x == 0.)
539         if (op == BO_EQ && rhs.isZeroConstant()) {
540           // We know how to negate certain expressions. Simplify them here.
541 
542           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
543           switch (opc) {
544           default:
545             // We don't know how to negate this operation.
546             // Just handle it as if it were a normal comparison to 0.
547             break;
548           case BO_LAnd:
549           case BO_LOr:
550             llvm_unreachable("Logical operators handled by branching logic.");
551           case BO_Assign:
552           case BO_MulAssign:
553           case BO_DivAssign:
554           case BO_RemAssign:
555           case BO_AddAssign:
556           case BO_SubAssign:
557           case BO_ShlAssign:
558           case BO_ShrAssign:
559           case BO_AndAssign:
560           case BO_XorAssign:
561           case BO_OrAssign:
562           case BO_Comma:
563             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
564           case BO_PtrMemD:
565           case BO_PtrMemI:
566             llvm_unreachable("Pointer arithmetic not handled here.");
567           case BO_LT:
568           case BO_GT:
569           case BO_LE:
570           case BO_GE:
571           case BO_EQ:
572           case BO_NE:
573             assert(resultTy->isBooleanType() ||
574                    resultTy == getConditionType());
575             assert(symIntExpr->getType()->isBooleanType() ||
576                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
577                                                        getConditionType()));
578             // Negate the comparison and make a value.
579             opc = BinaryOperator::negateComparisonOp(opc);
580             return makeNonLoc(symIntExpr->getLHS(), opc,
581                 symIntExpr->getRHS(), resultTy);
582           }
583         }
584 
585         // For now, only handle expressions whose RHS is a constant.
586         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
587           // If both the LHS and the current expression are additive,
588           // fold their constants and try again.
589           if (BinaryOperator::isAdditiveOp(op)) {
590             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
591             if (BinaryOperator::isAdditiveOp(lop)) {
592               // Convert the two constants to a common type, then combine them.
593 
594               // resultTy may not be the best type to convert to, but it's
595               // probably the best choice in expressions with mixed type
596               // (such as x+1U+2LL). The rules for implicit conversions should
597               // choose a reasonable type to preserve the expression, and will
598               // at least match how the value is going to be used.
599               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
600               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
601               const llvm::APSInt &second = IntType.convert(*RHSValue);
602 
603               const llvm::APSInt *newRHS;
604               if (lop == op)
605                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
606               else
607                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
608 
609               assert(newRHS && "Invalid operation despite common type!");
610               rhs = nonloc::ConcreteInt(*newRHS);
611               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
612               op = lop;
613               continue;
614             }
615           }
616 
617           // Otherwise, make a SymIntExpr out of the expression.
618           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
619         }
620       }
621 
622       // Does the symbolic expression simplify to a constant?
623       // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
624       // and try again.
625       SVal simplifiedLhs = simplifySVal(state, lhs);
626       if (simplifiedLhs != lhs)
627         if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
628           lhs = *simplifiedLhsAsNonLoc;
629           continue;
630         }
631 
632       // Is the RHS a constant?
633       if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
634         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
635 
636       if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
637         return *V;
638 
639       // Give up -- this is not a symbolic expression we can handle.
640       return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
641     }
642     }
643   }
644 }
645 
646 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
647                                             const FieldRegion *RightFR,
648                                             BinaryOperator::Opcode op,
649                                             QualType resultTy,
650                                             SimpleSValBuilder &SVB) {
651   // Only comparisons are meaningful here!
652   if (!BinaryOperator::isComparisonOp(op))
653     return UnknownVal();
654 
655   // Next, see if the two FRs have the same super-region.
656   // FIXME: This doesn't handle casts yet, and simply stripping the casts
657   // doesn't help.
658   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
659     return UnknownVal();
660 
661   const FieldDecl *LeftFD = LeftFR->getDecl();
662   const FieldDecl *RightFD = RightFR->getDecl();
663   const RecordDecl *RD = LeftFD->getParent();
664 
665   // Make sure the two FRs are from the same kind of record. Just in case!
666   // FIXME: This is probably where inheritance would be a problem.
667   if (RD != RightFD->getParent())
668     return UnknownVal();
669 
670   // We know for sure that the two fields are not the same, since that
671   // would have given us the same SVal.
672   if (op == BO_EQ)
673     return SVB.makeTruthVal(false, resultTy);
674   if (op == BO_NE)
675     return SVB.makeTruthVal(true, resultTy);
676 
677   // Iterate through the fields and see which one comes first.
678   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
679   // members and the units in which bit-fields reside have addresses that
680   // increase in the order in which they are declared."
681   bool leftFirst = (op == BO_LT || op == BO_LE);
682   for (const auto *I : RD->fields()) {
683     if (I == LeftFD)
684       return SVB.makeTruthVal(leftFirst, resultTy);
685     if (I == RightFD)
686       return SVB.makeTruthVal(!leftFirst, resultTy);
687   }
688 
689   llvm_unreachable("Fields not found in parent record's definition");
690 }
691 
692 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
693 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
694                                   BinaryOperator::Opcode op,
695                                   Loc lhs, Loc rhs,
696                                   QualType resultTy) {
697   // Only comparisons and subtractions are valid operations on two pointers.
698   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
699   // However, if a pointer is casted to an integer, evalBinOpNN may end up
700   // calling this function with another operation (PR7527). We don't attempt to
701   // model this for now, but it could be useful, particularly when the
702   // "location" is actually an integer value that's been passed through a void*.
703   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
704     return UnknownVal();
705 
706   // Special cases for when both sides are identical.
707   if (lhs == rhs) {
708     switch (op) {
709     default:
710       llvm_unreachable("Unimplemented operation for two identical values");
711     case BO_Sub:
712       return makeZeroVal(resultTy);
713     case BO_EQ:
714     case BO_LE:
715     case BO_GE:
716       return makeTruthVal(true, resultTy);
717     case BO_NE:
718     case BO_LT:
719     case BO_GT:
720       return makeTruthVal(false, resultTy);
721     }
722   }
723 
724   switch (lhs.getSubKind()) {
725   default:
726     llvm_unreachable("Ordering not implemented for this Loc.");
727 
728   case loc::GotoLabelKind:
729     // The only thing we know about labels is that they're non-null.
730     if (rhs.isZeroConstant()) {
731       switch (op) {
732       default:
733         break;
734       case BO_Sub:
735         return evalCast(lhs, resultTy, QualType{});
736       case BO_EQ:
737       case BO_LE:
738       case BO_LT:
739         return makeTruthVal(false, resultTy);
740       case BO_NE:
741       case BO_GT:
742       case BO_GE:
743         return makeTruthVal(true, resultTy);
744       }
745     }
746     // There may be two labels for the same location, and a function region may
747     // have the same address as a label at the start of the function (depending
748     // on the ABI).
749     // FIXME: we can probably do a comparison against other MemRegions, though.
750     // FIXME: is there a way to tell if two labels refer to the same location?
751     return UnknownVal();
752 
753   case loc::ConcreteIntKind: {
754     // If one of the operands is a symbol and the other is a constant,
755     // build an expression for use by the constraint manager.
756     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
757       // We can only build expressions with symbols on the left,
758       // so we need a reversible operator.
759       if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
760         return UnknownVal();
761 
762       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
763       op = BinaryOperator::reverseComparisonOp(op);
764       return makeNonLoc(rSym, op, lVal, resultTy);
765     }
766 
767     // If both operands are constants, just perform the operation.
768     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
769       SVal ResultVal =
770           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
771       if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
772         return evalCast(*Result, resultTy, QualType{});
773 
774       assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
775       return UnknownVal();
776     }
777 
778     // Special case comparisons against NULL.
779     // This must come after the test if the RHS is a symbol, which is used to
780     // build constraints. The address of any non-symbolic region is guaranteed
781     // to be non-NULL, as is any label.
782     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
783     if (lhs.isZeroConstant()) {
784       switch (op) {
785       default:
786         break;
787       case BO_EQ:
788       case BO_GT:
789       case BO_GE:
790         return makeTruthVal(false, resultTy);
791       case BO_NE:
792       case BO_LT:
793       case BO_LE:
794         return makeTruthVal(true, resultTy);
795       }
796     }
797 
798     // Comparing an arbitrary integer to a region or label address is
799     // completely unknowable.
800     return UnknownVal();
801   }
802   case loc::MemRegionValKind: {
803     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
804       // If one of the operands is a symbol and the other is a constant,
805       // build an expression for use by the constraint manager.
806       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
807         if (BinaryOperator::isComparisonOp(op))
808           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
809         return UnknownVal();
810       }
811       // Special case comparisons to NULL.
812       // This must come after the test if the LHS is a symbol, which is used to
813       // build constraints. The address of any non-symbolic region is guaranteed
814       // to be non-NULL.
815       if (rInt->isZeroConstant()) {
816         if (op == BO_Sub)
817           return evalCast(lhs, resultTy, QualType{});
818 
819         if (BinaryOperator::isComparisonOp(op)) {
820           QualType boolType = getContext().BoolTy;
821           NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
822           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
823           return evalBinOpNN(state, op, l, r, resultTy);
824         }
825       }
826 
827       // Comparing a region to an arbitrary integer is completely unknowable.
828       return UnknownVal();
829     }
830 
831     // Get both values as regions, if possible.
832     const MemRegion *LeftMR = lhs.getAsRegion();
833     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
834 
835     const MemRegion *RightMR = rhs.getAsRegion();
836     if (!RightMR)
837       // The RHS is probably a label, which in theory could address a region.
838       // FIXME: we can probably make a more useful statement about non-code
839       // regions, though.
840       return UnknownVal();
841 
842     const MemRegion *LeftBase = LeftMR->getBaseRegion();
843     const MemRegion *RightBase = RightMR->getBaseRegion();
844     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
845     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
846     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
847 
848     // If the two regions are from different known memory spaces they cannot be
849     // equal. Also, assume that no symbolic region (whose memory space is
850     // unknown) is on the stack.
851     if (LeftMS != RightMS &&
852         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
853          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
854       switch (op) {
855       default:
856         return UnknownVal();
857       case BO_EQ:
858         return makeTruthVal(false, resultTy);
859       case BO_NE:
860         return makeTruthVal(true, resultTy);
861       }
862     }
863 
864     // If both values wrap regions, see if they're from different base regions.
865     // Note, heap base symbolic regions are assumed to not alias with
866     // each other; for example, we assume that malloc returns different address
867     // on each invocation.
868     // FIXME: ObjC object pointers always reside on the heap, but currently
869     // we treat their memory space as unknown, because symbolic pointers
870     // to ObjC objects may alias. There should be a way to construct
871     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
872     // guesses memory space for ObjC object pointers manually instead of
873     // relying on us.
874     if (LeftBase != RightBase &&
875         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
876          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
877       switch (op) {
878       default:
879         return UnknownVal();
880       case BO_EQ:
881         return makeTruthVal(false, resultTy);
882       case BO_NE:
883         return makeTruthVal(true, resultTy);
884       }
885     }
886 
887     // Handle special cases for when both regions are element regions.
888     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
889     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
890     if (RightER && LeftER) {
891       // Next, see if the two ERs have the same super-region and matching types.
892       // FIXME: This should do something useful even if the types don't match,
893       // though if both indexes are constant the RegionRawOffset path will
894       // give the correct answer.
895       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
896           LeftER->getElementType() == RightER->getElementType()) {
897         // Get the left index and cast it to the correct type.
898         // If the index is unknown or undefined, bail out here.
899         SVal LeftIndexVal = LeftER->getIndex();
900         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
901         if (!LeftIndex)
902           return UnknownVal();
903         LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
904         LeftIndex = LeftIndexVal.getAs<NonLoc>();
905         if (!LeftIndex)
906           return UnknownVal();
907 
908         // Do the same for the right index.
909         SVal RightIndexVal = RightER->getIndex();
910         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
911         if (!RightIndex)
912           return UnknownVal();
913         RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
914         RightIndex = RightIndexVal.getAs<NonLoc>();
915         if (!RightIndex)
916           return UnknownVal();
917 
918         // Actually perform the operation.
919         // evalBinOpNN expects the two indexes to already be the right type.
920         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
921       }
922     }
923 
924     // Special handling of the FieldRegions, even with symbolic offsets.
925     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
926     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
927     if (RightFR && LeftFR) {
928       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
929                                                *this);
930       if (!R.isUnknown())
931         return R;
932     }
933 
934     // Compare the regions using the raw offsets.
935     RegionOffset LeftOffset = LeftMR->getAsOffset();
936     RegionOffset RightOffset = RightMR->getAsOffset();
937 
938     if (LeftOffset.getRegion() != nullptr &&
939         LeftOffset.getRegion() == RightOffset.getRegion() &&
940         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
941       int64_t left = LeftOffset.getOffset();
942       int64_t right = RightOffset.getOffset();
943 
944       switch (op) {
945         default:
946           return UnknownVal();
947         case BO_LT:
948           return makeTruthVal(left < right, resultTy);
949         case BO_GT:
950           return makeTruthVal(left > right, resultTy);
951         case BO_LE:
952           return makeTruthVal(left <= right, resultTy);
953         case BO_GE:
954           return makeTruthVal(left >= right, resultTy);
955         case BO_EQ:
956           return makeTruthVal(left == right, resultTy);
957         case BO_NE:
958           return makeTruthVal(left != right, resultTy);
959       }
960     }
961 
962     // At this point we're not going to get a good answer, but we can try
963     // conjuring an expression instead.
964     SymbolRef LHSSym = lhs.getAsLocSymbol();
965     SymbolRef RHSSym = rhs.getAsLocSymbol();
966     if (LHSSym && RHSSym)
967       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
968 
969     // If we get here, we have no way of comparing the regions.
970     return UnknownVal();
971   }
972   }
973 }
974 
975 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
976                                     BinaryOperator::Opcode op, Loc lhs,
977                                     NonLoc rhs, QualType resultTy) {
978   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
979     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
980       if (PTMSV->isNullMemberPointer())
981         return UndefinedVal();
982 
983       auto getFieldLValue = [&](const auto *FD) -> SVal {
984         SVal Result = lhs;
985 
986         for (const auto &I : *PTMSV)
987           Result = StateMgr.getStoreManager().evalDerivedToBase(
988               Result, I->getType(), I->isVirtual());
989 
990         return state->getLValue(FD, Result);
991       };
992 
993       if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
994         return getFieldLValue(FD);
995       }
996       if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
997         return getFieldLValue(FD);
998       }
999     }
1000 
1001     return rhs;
1002   }
1003 
1004   assert(!BinaryOperator::isComparisonOp(op) &&
1005          "arguments to comparison ops must be of the same type");
1006 
1007   // Special case: rhs is a zero constant.
1008   if (rhs.isZeroConstant())
1009     return lhs;
1010 
1011   // Perserve the null pointer so that it can be found by the DerefChecker.
1012   if (lhs.isZeroConstant())
1013     return lhs;
1014 
1015   // We are dealing with pointer arithmetic.
1016 
1017   // Handle pointer arithmetic on constant values.
1018   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
1019     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
1020       const llvm::APSInt &leftI = lhsInt->getValue();
1021       assert(leftI.isUnsigned());
1022       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
1023 
1024       // Convert the bitwidth of rightI.  This should deal with overflow
1025       // since we are dealing with concrete values.
1026       rightI = rightI.extOrTrunc(leftI.getBitWidth());
1027 
1028       // Offset the increment by the pointer size.
1029       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
1030       QualType pointeeType = resultTy->getPointeeType();
1031       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
1032       rightI *= Multiplicand;
1033 
1034       // Compute the adjusted pointer.
1035       switch (op) {
1036         case BO_Add:
1037           rightI = leftI + rightI;
1038           break;
1039         case BO_Sub:
1040           rightI = leftI - rightI;
1041           break;
1042         default:
1043           llvm_unreachable("Invalid pointer arithmetic operation");
1044       }
1045       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
1046     }
1047   }
1048 
1049   // Handle cases where 'lhs' is a region.
1050   if (const MemRegion *region = lhs.getAsRegion()) {
1051     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
1052     SVal index = UnknownVal();
1053     const SubRegion *superR = nullptr;
1054     // We need to know the type of the pointer in order to add an integer to it.
1055     // Depending on the type, different amount of bytes is added.
1056     QualType elementType;
1057 
1058     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
1059       assert(op == BO_Add || op == BO_Sub);
1060       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
1061                           getArrayIndexType());
1062       superR = cast<SubRegion>(elemReg->getSuperRegion());
1063       elementType = elemReg->getElementType();
1064     }
1065     else if (isa<SubRegion>(region)) {
1066       assert(op == BO_Add || op == BO_Sub);
1067       index = (op == BO_Add) ? rhs : evalMinus(rhs);
1068       superR = cast<SubRegion>(region);
1069       // TODO: Is this actually reliable? Maybe improving our MemRegion
1070       // hierarchy to provide typed regions for all non-void pointers would be
1071       // better. For instance, we cannot extend this towards LocAsInteger
1072       // operations, where result type of the expression is integer.
1073       if (resultTy->isAnyPointerType())
1074         elementType = resultTy->getPointeeType();
1075     }
1076 
1077     // Represent arithmetic on void pointers as arithmetic on char pointers.
1078     // It is fine when a TypedValueRegion of char value type represents
1079     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
1080     if (elementType->isVoidType())
1081       elementType = getContext().CharTy;
1082 
1083     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
1084       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
1085                                                        superR, getContext()));
1086     }
1087   }
1088   return UnknownVal();
1089 }
1090 
1091 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
1092                                                    SVal V) {
1093   V = simplifySVal(state, V);
1094   if (V.isUnknownOrUndef())
1095     return nullptr;
1096 
1097   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
1098     return &X->getValue();
1099 
1100   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
1101     return &X->getValue();
1102 
1103   if (SymbolRef Sym = V.getAsSymbol())
1104     return state->getConstraintManager().getSymVal(state, Sym);
1105 
1106   // FIXME: Add support for SymExprs.
1107   return nullptr;
1108 }
1109 
1110 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
1111   // For now, this function tries to constant-fold symbols inside a
1112   // nonloc::SymbolVal, and does nothing else. More simplifications should
1113   // be possible, such as constant-folding an index in an ElementRegion.
1114 
1115   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
1116     ProgramStateRef State;
1117     SValBuilder &SVB;
1118 
1119     // Cache results for the lifetime of the Simplifier. Results change every
1120     // time new constraints are added to the program state, which is the whole
1121     // point of simplifying, and for that very reason it's pointless to maintain
1122     // the same cache for the duration of the whole analysis.
1123     llvm::DenseMap<SymbolRef, SVal> Cached;
1124 
1125     static bool isUnchanged(SymbolRef Sym, SVal Val) {
1126       return Sym == Val.getAsSymbol();
1127     }
1128 
1129     SVal cache(SymbolRef Sym, SVal V) {
1130       Cached[Sym] = V;
1131       return V;
1132     }
1133 
1134     SVal skip(SymbolRef Sym) {
1135       return cache(Sym, SVB.makeSymbolVal(Sym));
1136     }
1137 
1138   public:
1139     Simplifier(ProgramStateRef State)
1140         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
1141 
1142     SVal VisitSymbolData(const SymbolData *S) {
1143       // No cache here.
1144       if (const llvm::APSInt *I =
1145               SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
1146         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
1147                                             : (SVal)SVB.makeIntVal(*I);
1148       return SVB.makeSymbolVal(S);
1149     }
1150 
1151     // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
1152     // start producing them.
1153 
1154     SVal VisitSymIntExpr(const SymIntExpr *S) {
1155       auto I = Cached.find(S);
1156       if (I != Cached.end())
1157         return I->second;
1158 
1159       SVal LHS = Visit(S->getLHS());
1160       if (isUnchanged(S->getLHS(), LHS))
1161         return skip(S);
1162 
1163       SVal RHS;
1164       // By looking at the APSInt in the right-hand side of S, we cannot
1165       // figure out if it should be treated as a Loc or as a NonLoc.
1166       // So make our guess by recalling that we cannot multiply pointers
1167       // or compare a pointer to an integer.
1168       if (Loc::isLocType(S->getLHS()->getType()) &&
1169           BinaryOperator::isComparisonOp(S->getOpcode())) {
1170         // The usual conversion of $sym to &SymRegion{$sym}, as they have
1171         // the same meaning for Loc-type symbols, but the latter form
1172         // is preferred in SVal computations for being Loc itself.
1173         if (SymbolRef Sym = LHS.getAsSymbol()) {
1174           assert(Loc::isLocType(Sym->getType()));
1175           LHS = SVB.makeLoc(Sym);
1176         }
1177         RHS = SVB.makeIntLocVal(S->getRHS());
1178       } else {
1179         RHS = SVB.makeIntVal(S->getRHS());
1180       }
1181 
1182       return cache(
1183           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1184     }
1185 
1186     SVal VisitSymSymExpr(const SymSymExpr *S) {
1187       auto I = Cached.find(S);
1188       if (I != Cached.end())
1189         return I->second;
1190 
1191       // For now don't try to simplify mixed Loc/NonLoc expressions
1192       // because they often appear from LocAsInteger operations
1193       // and we don't know how to combine a LocAsInteger
1194       // with a concrete value.
1195       if (Loc::isLocType(S->getLHS()->getType()) !=
1196           Loc::isLocType(S->getRHS()->getType()))
1197         return skip(S);
1198 
1199       SVal LHS = Visit(S->getLHS());
1200       SVal RHS = Visit(S->getRHS());
1201       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
1202         return skip(S);
1203 
1204       return cache(
1205           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1206     }
1207 
1208     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
1209 
1210     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
1211 
1212     SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
1213       // Simplification is much more costly than computing complexity.
1214       // For high complexity, it may be not worth it.
1215       return Visit(V.getSymbol());
1216     }
1217 
1218     SVal VisitSVal(SVal V) { return V; }
1219   };
1220 
1221   // A crude way of preventing this function from calling itself from evalBinOp.
1222   static bool isReentering = false;
1223   if (isReentering)
1224     return V;
1225 
1226   isReentering = true;
1227   SVal SimplifiedV = Simplifier(State).Visit(V);
1228   isReentering = false;
1229 
1230   return SimplifiedV;
1231 }
1232