1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines RangeConstraintManager, a class that tracks simple 10 // equality and inequality constraints on symbolic values of ProgramState. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/JsonSupport.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/ImmutableSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <iterator> 29 30 using namespace clang; 31 using namespace ento; 32 33 // This class can be extended with other tables which will help to reason 34 // about ranges more precisely. 35 class OperatorRelationsTable { 36 static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && 37 BO_GE < BO_EQ && BO_EQ < BO_NE, 38 "This class relies on operators order. Rework it otherwise."); 39 40 public: 41 enum TriStateKind { 42 False = 0, 43 True, 44 Unknown, 45 }; 46 47 private: 48 // CmpOpTable holds states which represent the corresponding range for 49 // branching an exploded graph. We can reason about the branch if there is 50 // a previously known fact of the existence of a comparison expression with 51 // operands used in the current expression. 52 // E.g. assuming (x < y) is true that means (x != y) is surely true. 53 // if (x previous_operation y) // < | != | > 54 // if (x operation y) // != | > | < 55 // tristate // True | Unknown | False 56 // 57 // CmpOpTable represents next: 58 // __|< |> |<=|>=|==|!=|UnknownX2| 59 // < |1 |0 |* |0 |0 |* |1 | 60 // > |0 |1 |0 |* |0 |* |1 | 61 // <=|1 |0 |1 |* |1 |* |0 | 62 // >=|0 |1 |* |1 |1 |* |0 | 63 // ==|0 |0 |* |* |1 |0 |1 | 64 // !=|1 |1 |* |* |0 |1 |0 | 65 // 66 // Columns stands for a previous operator. 67 // Rows stands for a current operator. 68 // Each row has exactly two `Unknown` cases. 69 // UnknownX2 means that both `Unknown` previous operators are met in code, 70 // and there is a special column for that, for example: 71 // if (x >= y) 72 // if (x != y) 73 // if (x <= y) 74 // False only 75 static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; 76 const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { 77 // < > <= >= == != UnknownX2 78 {True, False, Unknown, False, False, Unknown, True}, // < 79 {False, True, False, Unknown, False, Unknown, True}, // > 80 {True, False, True, Unknown, True, Unknown, False}, // <= 81 {False, True, Unknown, True, True, Unknown, False}, // >= 82 {False, False, Unknown, Unknown, True, False, True}, // == 83 {True, True, Unknown, Unknown, False, True, False}, // != 84 }; 85 86 static size_t getIndexFromOp(BinaryOperatorKind OP) { 87 return static_cast<size_t>(OP - BO_LT); 88 } 89 90 public: 91 constexpr size_t getCmpOpCount() const { return CmpOpCount; } 92 93 static BinaryOperatorKind getOpFromIndex(size_t Index) { 94 return static_cast<BinaryOperatorKind>(Index + BO_LT); 95 } 96 97 TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, 98 BinaryOperatorKind QueriedOP) const { 99 return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; 100 } 101 102 TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { 103 return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; 104 } 105 }; 106 107 //===----------------------------------------------------------------------===// 108 // RangeSet implementation 109 //===----------------------------------------------------------------------===// 110 111 RangeSet::ContainerType RangeSet::Factory::EmptySet{}; 112 113 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { 114 ContainerType Result; 115 Result.reserve(LHS.size() + RHS.size()); 116 std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), 117 std::back_inserter(Result)); 118 return makePersistent(std::move(Result)); 119 } 120 121 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { 122 ContainerType Result; 123 Result.reserve(Original.size() + 1); 124 125 const_iterator Lower = llvm::lower_bound(Original, Element); 126 Result.insert(Result.end(), Original.begin(), Lower); 127 Result.push_back(Element); 128 Result.insert(Result.end(), Lower, Original.end()); 129 130 return makePersistent(std::move(Result)); 131 } 132 133 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { 134 return add(Original, Range(Point)); 135 } 136 137 RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { 138 ContainerType Result = unite(*LHS.Impl, *RHS.Impl); 139 return makePersistent(std::move(Result)); 140 } 141 142 RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { 143 ContainerType Result; 144 Result.push_back(R); 145 Result = unite(*Original.Impl, Result); 146 return makePersistent(std::move(Result)); 147 } 148 149 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { 150 return unite(Original, Range(ValueFactory.getValue(Point))); 151 } 152 153 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, 154 llvm::APSInt To) { 155 return unite(Original, 156 Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); 157 } 158 159 template <typename T> 160 void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { 161 std::swap(First, Second); 162 std::swap(FirstEnd, SecondEnd); 163 } 164 165 RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, 166 const ContainerType &RHS) { 167 if (LHS.empty()) 168 return RHS; 169 if (RHS.empty()) 170 return LHS; 171 172 using llvm::APSInt; 173 using iterator = ContainerType::const_iterator; 174 175 iterator First = LHS.begin(); 176 iterator FirstEnd = LHS.end(); 177 iterator Second = RHS.begin(); 178 iterator SecondEnd = RHS.end(); 179 APSIntType Ty = APSIntType(First->From()); 180 const APSInt Min = Ty.getMinValue(); 181 182 // Handle a corner case first when both range sets start from MIN. 183 // This helps to avoid complicated conditions below. Specifically, this 184 // particular check for `MIN` is not needed in the loop below every time 185 // when we do `Second->From() - One` operation. 186 if (Min == First->From() && Min == Second->From()) { 187 if (First->To() > Second->To()) { 188 // [ First ]---> 189 // [ Second ]-----> 190 // MIN^ 191 // The Second range is entirely inside the First one. 192 193 // Check if Second is the last in its RangeSet. 194 if (++Second == SecondEnd) 195 // [ First ]--[ First + 1 ]---> 196 // [ Second ]---------------------> 197 // MIN^ 198 // The Union is equal to First's RangeSet. 199 return LHS; 200 } else { 201 // case 1: [ First ]-----> 202 // case 2: [ First ]---> 203 // [ Second ]---> 204 // MIN^ 205 // The First range is entirely inside or equal to the Second one. 206 207 // Check if First is the last in its RangeSet. 208 if (++First == FirstEnd) 209 // [ First ]-----------------------> 210 // [ Second ]--[ Second + 1 ]----> 211 // MIN^ 212 // The Union is equal to Second's RangeSet. 213 return RHS; 214 } 215 } 216 217 const APSInt One = Ty.getValue(1); 218 ContainerType Result; 219 220 // This is called when there are no ranges left in one of the ranges. 221 // Append the rest of the ranges from another range set to the Result 222 // and return with that. 223 const auto AppendTheRest = [&Result](iterator I, iterator E) { 224 Result.append(I, E); 225 return Result; 226 }; 227 228 while (true) { 229 // We want to keep the following invariant at all times: 230 // ---[ First ------> 231 // -----[ Second ---> 232 if (First->From() > Second->From()) 233 swapIterators(First, FirstEnd, Second, SecondEnd); 234 235 // The Union definitely starts with First->From(). 236 // ----------[ First ------> 237 // ------------[ Second ---> 238 // ----------[ Union ------> 239 // UnionStart^ 240 const llvm::APSInt &UnionStart = First->From(); 241 242 // Loop where the invariant holds. 243 while (true) { 244 // Skip all enclosed ranges. 245 // ---[ First ]---> 246 // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> 247 while (First->To() >= Second->To()) { 248 // Check if Second is the last in its RangeSet. 249 if (++Second == SecondEnd) { 250 // Append the Union. 251 // ---[ Union ]---> 252 // -----[ Second ]-----> 253 // --------[ First ]---> 254 // UnionEnd^ 255 Result.emplace_back(UnionStart, First->To()); 256 // ---[ Union ]-----------------> 257 // --------------[ First + 1]---> 258 // Append all remaining ranges from the First's RangeSet. 259 return AppendTheRest(++First, FirstEnd); 260 } 261 } 262 263 // Check if First and Second are disjoint. It means that we find 264 // the end of the Union. Exit the loop and append the Union. 265 // ---[ First ]=-------------> 266 // ------------=[ Second ]---> 267 // ----MinusOne^ 268 if (First->To() < Second->From() - One) 269 break; 270 271 // First is entirely inside the Union. Go next. 272 // ---[ Union -----------> 273 // ---- [ First ]--------> 274 // -------[ Second ]-----> 275 // Check if First is the last in its RangeSet. 276 if (++First == FirstEnd) { 277 // Append the Union. 278 // ---[ Union ]---> 279 // -----[ First ]-------> 280 // --------[ Second ]---> 281 // UnionEnd^ 282 Result.emplace_back(UnionStart, Second->To()); 283 // ---[ Union ]------------------> 284 // --------------[ Second + 1]---> 285 // Append all remaining ranges from the Second's RangeSet. 286 return AppendTheRest(++Second, SecondEnd); 287 } 288 289 // We know that we are at one of the two cases: 290 // case 1: --[ First ]---------> 291 // case 2: ----[ First ]-------> 292 // --------[ Second ]----------> 293 // In both cases First starts after Second->From(). 294 // Make sure that the loop invariant holds. 295 swapIterators(First, FirstEnd, Second, SecondEnd); 296 } 297 298 // Here First and Second are disjoint. 299 // Append the Union. 300 // ---[ Union ]---------------> 301 // -----------------[ Second ]---> 302 // ------[ First ]---------------> 303 // UnionEnd^ 304 Result.emplace_back(UnionStart, First->To()); 305 306 // Check if First is the last in its RangeSet. 307 if (++First == FirstEnd) 308 // ---[ Union ]---------------> 309 // --------------[ Second ]---> 310 // Append all remaining ranges from the Second's RangeSet. 311 return AppendTheRest(Second, SecondEnd); 312 } 313 314 llvm_unreachable("Normally, we should not reach here"); 315 } 316 317 RangeSet RangeSet::Factory::getRangeSet(Range From) { 318 ContainerType Result; 319 Result.push_back(From); 320 return makePersistent(std::move(Result)); 321 } 322 323 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { 324 llvm::FoldingSetNodeID ID; 325 void *InsertPos; 326 327 From.Profile(ID); 328 ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); 329 330 if (!Result) { 331 // It is cheaper to fully construct the resulting range on stack 332 // and move it to the freshly allocated buffer if we don't have 333 // a set like this already. 334 Result = construct(std::move(From)); 335 Cache.InsertNode(Result, InsertPos); 336 } 337 338 return Result; 339 } 340 341 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { 342 void *Buffer = Arena.Allocate(); 343 return new (Buffer) ContainerType(std::move(From)); 344 } 345 346 const llvm::APSInt &RangeSet::getMinValue() const { 347 assert(!isEmpty()); 348 return begin()->From(); 349 } 350 351 const llvm::APSInt &RangeSet::getMaxValue() const { 352 assert(!isEmpty()); 353 return std::prev(end())->To(); 354 } 355 356 bool clang::ento::RangeSet::isUnsigned() const { 357 assert(!isEmpty()); 358 return begin()->From().isUnsigned(); 359 } 360 361 uint32_t clang::ento::RangeSet::getBitWidth() const { 362 assert(!isEmpty()); 363 return begin()->From().getBitWidth(); 364 } 365 366 APSIntType clang::ento::RangeSet::getAPSIntType() const { 367 assert(!isEmpty()); 368 return APSIntType(begin()->From()); 369 } 370 371 bool RangeSet::containsImpl(llvm::APSInt &Point) const { 372 if (isEmpty() || !pin(Point)) 373 return false; 374 375 Range Dummy(Point); 376 const_iterator It = llvm::upper_bound(*this, Dummy); 377 if (It == begin()) 378 return false; 379 380 return std::prev(It)->Includes(Point); 381 } 382 383 bool RangeSet::pin(llvm::APSInt &Point) const { 384 APSIntType Type(getMinValue()); 385 if (Type.testInRange(Point, true) != APSIntType::RTR_Within) 386 return false; 387 388 Type.apply(Point); 389 return true; 390 } 391 392 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 393 // This function has nine cases, the cartesian product of range-testing 394 // both the upper and lower bounds against the symbol's type. 395 // Each case requires a different pinning operation. 396 // The function returns false if the described range is entirely outside 397 // the range of values for the associated symbol. 398 APSIntType Type(getMinValue()); 399 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 400 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 401 402 switch (LowerTest) { 403 case APSIntType::RTR_Below: 404 switch (UpperTest) { 405 case APSIntType::RTR_Below: 406 // The entire range is outside the symbol's set of possible values. 407 // If this is a conventionally-ordered range, the state is infeasible. 408 if (Lower <= Upper) 409 return false; 410 411 // However, if the range wraps around, it spans all possible values. 412 Lower = Type.getMinValue(); 413 Upper = Type.getMaxValue(); 414 break; 415 case APSIntType::RTR_Within: 416 // The range starts below what's possible but ends within it. Pin. 417 Lower = Type.getMinValue(); 418 Type.apply(Upper); 419 break; 420 case APSIntType::RTR_Above: 421 // The range spans all possible values for the symbol. Pin. 422 Lower = Type.getMinValue(); 423 Upper = Type.getMaxValue(); 424 break; 425 } 426 break; 427 case APSIntType::RTR_Within: 428 switch (UpperTest) { 429 case APSIntType::RTR_Below: 430 // The range wraps around, but all lower values are not possible. 431 Type.apply(Lower); 432 Upper = Type.getMaxValue(); 433 break; 434 case APSIntType::RTR_Within: 435 // The range may or may not wrap around, but both limits are valid. 436 Type.apply(Lower); 437 Type.apply(Upper); 438 break; 439 case APSIntType::RTR_Above: 440 // The range starts within what's possible but ends above it. Pin. 441 Type.apply(Lower); 442 Upper = Type.getMaxValue(); 443 break; 444 } 445 break; 446 case APSIntType::RTR_Above: 447 switch (UpperTest) { 448 case APSIntType::RTR_Below: 449 // The range wraps but is outside the symbol's set of possible values. 450 return false; 451 case APSIntType::RTR_Within: 452 // The range starts above what's possible but ends within it (wrap). 453 Lower = Type.getMinValue(); 454 Type.apply(Upper); 455 break; 456 case APSIntType::RTR_Above: 457 // The entire range is outside the symbol's set of possible values. 458 // If this is a conventionally-ordered range, the state is infeasible. 459 if (Lower <= Upper) 460 return false; 461 462 // However, if the range wraps around, it spans all possible values. 463 Lower = Type.getMinValue(); 464 Upper = Type.getMaxValue(); 465 break; 466 } 467 break; 468 } 469 470 return true; 471 } 472 473 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, 474 llvm::APSInt Upper) { 475 if (What.isEmpty() || !What.pin(Lower, Upper)) 476 return getEmptySet(); 477 478 ContainerType DummyContainer; 479 480 if (Lower <= Upper) { 481 // [Lower, Upper] is a regular range. 482 // 483 // Shortcut: check that there is even a possibility of the intersection 484 // by checking the two following situations: 485 // 486 // <---[ What ]---[------]------> 487 // Lower Upper 488 // -or- 489 // <----[------]----[ What ]----> 490 // Lower Upper 491 if (What.getMaxValue() < Lower || Upper < What.getMinValue()) 492 return getEmptySet(); 493 494 DummyContainer.push_back( 495 Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); 496 } else { 497 // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] 498 // 499 // Shortcut: check that there is even a possibility of the intersection 500 // by checking the following situation: 501 // 502 // <------]---[ What ]---[------> 503 // Upper Lower 504 if (What.getMaxValue() < Lower && Upper < What.getMinValue()) 505 return getEmptySet(); 506 507 DummyContainer.push_back( 508 Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); 509 DummyContainer.push_back( 510 Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); 511 } 512 513 return intersect(*What.Impl, DummyContainer); 514 } 515 516 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, 517 const RangeSet::ContainerType &RHS) { 518 ContainerType Result; 519 Result.reserve(std::max(LHS.size(), RHS.size())); 520 521 const_iterator First = LHS.begin(), Second = RHS.begin(), 522 FirstEnd = LHS.end(), SecondEnd = RHS.end(); 523 524 // If we ran out of ranges in one set, but not in the other, 525 // it means that those elements are definitely not in the 526 // intersection. 527 while (First != FirstEnd && Second != SecondEnd) { 528 // We want to keep the following invariant at all times: 529 // 530 // ----[ First ----------------------> 531 // --------[ Second -----------------> 532 if (Second->From() < First->From()) 533 swapIterators(First, FirstEnd, Second, SecondEnd); 534 535 // Loop where the invariant holds: 536 do { 537 // Check for the following situation: 538 // 539 // ----[ First ]---------------------> 540 // ---------------[ Second ]---------> 541 // 542 // which means that... 543 if (Second->From() > First->To()) { 544 // ...First is not in the intersection. 545 // 546 // We should move on to the next range after First and break out of the 547 // loop because the invariant might not be true. 548 ++First; 549 break; 550 } 551 552 // We have a guaranteed intersection at this point! 553 // And this is the current situation: 554 // 555 // ----[ First ]-----------------> 556 // -------[ Second ------------------> 557 // 558 // Additionally, it definitely starts with Second->From(). 559 const llvm::APSInt &IntersectionStart = Second->From(); 560 561 // It is important to know which of the two ranges' ends 562 // is greater. That "longer" range might have some other 563 // intersections, while the "shorter" range might not. 564 if (Second->To() > First->To()) { 565 // Here we make a decision to keep First as the "longer" 566 // range. 567 swapIterators(First, FirstEnd, Second, SecondEnd); 568 } 569 570 // At this point, we have the following situation: 571 // 572 // ---- First ]--------------------> 573 // ---- Second ]--[ Second+1 ----------> 574 // 575 // We don't know the relationship between First->From and 576 // Second->From and we don't know whether Second+1 intersects 577 // with First. 578 // 579 // However, we know that [IntersectionStart, Second->To] is 580 // a part of the intersection... 581 Result.push_back(Range(IntersectionStart, Second->To())); 582 ++Second; 583 // ...and that the invariant will hold for a valid Second+1 584 // because First->From <= Second->To < (Second+1)->From. 585 } while (Second != SecondEnd); 586 } 587 588 if (Result.empty()) 589 return getEmptySet(); 590 591 return makePersistent(std::move(Result)); 592 } 593 594 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { 595 // Shortcut: let's see if the intersection is even possible. 596 if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || 597 RHS.getMaxValue() < LHS.getMinValue()) 598 return getEmptySet(); 599 600 return intersect(*LHS.Impl, *RHS.Impl); 601 } 602 603 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { 604 if (LHS.containsImpl(Point)) 605 return getRangeSet(ValueFactory.getValue(Point)); 606 607 return getEmptySet(); 608 } 609 610 RangeSet RangeSet::Factory::negate(RangeSet What) { 611 if (What.isEmpty()) 612 return getEmptySet(); 613 614 const llvm::APSInt SampleValue = What.getMinValue(); 615 const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); 616 const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); 617 618 ContainerType Result; 619 Result.reserve(What.size() + (SampleValue == MIN)); 620 621 // Handle a special case for MIN value. 622 const_iterator It = What.begin(); 623 const_iterator End = What.end(); 624 625 const llvm::APSInt &From = It->From(); 626 const llvm::APSInt &To = It->To(); 627 628 if (From == MIN) { 629 // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. 630 if (To == MAX) { 631 return What; 632 } 633 634 const_iterator Last = std::prev(End); 635 636 // Try to find and unite the following ranges: 637 // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. 638 if (Last->To() == MAX) { 639 // It means that in the original range we have ranges 640 // [MIN, A], ... , [B, MAX] 641 // And the result should be [MIN, -B], ..., [-A, MAX] 642 Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); 643 // We already negated Last, so we can skip it. 644 End = Last; 645 } else { 646 // Add a separate range for the lowest value. 647 Result.emplace_back(MIN, MIN); 648 } 649 650 // Skip adding the second range in case when [From, To] are [MIN, MIN]. 651 if (To != MIN) { 652 Result.emplace_back(ValueFactory.getValue(-To), MAX); 653 } 654 655 // Skip the first range in the loop. 656 ++It; 657 } 658 659 // Negate all other ranges. 660 for (; It != End; ++It) { 661 // Negate int values. 662 const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); 663 const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); 664 665 // Add a negated range. 666 Result.emplace_back(NewFrom, NewTo); 667 } 668 669 llvm::sort(Result); 670 return makePersistent(std::move(Result)); 671 } 672 673 // Convert range set to the given integral type using truncation and promotion. 674 // This works similar to APSIntType::apply function but for the range set. 675 RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { 676 // Set is empty or NOOP (aka cast to the same type). 677 if (What.isEmpty() || What.getAPSIntType() == Ty) 678 return What; 679 680 const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); 681 const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); 682 const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); 683 684 if (IsTruncation) 685 return makePersistent(truncateTo(What, Ty)); 686 687 // Here we handle 2 cases: 688 // - IsConversion && !IsPromotion. 689 // In this case we handle changing a sign with same bitwidth: char -> uchar, 690 // uint -> int. Here we convert negatives to positives and positives which 691 // is out of range to negatives. We use convertTo function for that. 692 // - IsConversion && IsPromotion && !What.isUnsigned(). 693 // In this case we handle changing a sign from signeds to unsigneds with 694 // higher bitwidth: char -> uint, int-> uint64. The point is that we also 695 // need convert negatives to positives and use convertTo function as well. 696 // For example, we don't need such a convertion when converting unsigned to 697 // signed with higher bitwidth, because all the values of unsigned is valid 698 // for the such signed. 699 if (IsConversion && (!IsPromotion || !What.isUnsigned())) 700 return makePersistent(convertTo(What, Ty)); 701 702 assert(IsPromotion && "Only promotion operation from unsigneds left."); 703 return makePersistent(promoteTo(What, Ty)); 704 } 705 706 RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { 707 assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); 708 return castTo(What, ValueFactory.getAPSIntType(T)); 709 } 710 711 RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, 712 APSIntType Ty) { 713 using llvm::APInt; 714 using llvm::APSInt; 715 ContainerType Result; 716 ContainerType Dummy; 717 // CastRangeSize is an amount of all possible values of cast type. 718 // Example: `char` has 256 values; `short` has 65536 values. 719 // But in fact we use `amount of values` - 1, because 720 // we can't keep `amount of values of UINT64` inside uint64_t. 721 // E.g. 256 is an amount of all possible values of `char` and we can't keep 722 // it inside `char`. 723 // And it's OK, it's enough to do correct calculations. 724 uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); 725 for (const Range &R : What) { 726 // Get bounds of the given range. 727 APSInt FromInt = R.From(); 728 APSInt ToInt = R.To(); 729 // CurrentRangeSize is an amount of all possible values of the current 730 // range minus one. 731 uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); 732 // This is an optimization for a specific case when this Range covers 733 // the whole range of the target type. 734 Dummy.clear(); 735 if (CurrentRangeSize >= CastRangeSize) { 736 Dummy.emplace_back(ValueFactory.getMinValue(Ty), 737 ValueFactory.getMaxValue(Ty)); 738 Result = std::move(Dummy); 739 break; 740 } 741 // Cast the bounds. 742 Ty.apply(FromInt); 743 Ty.apply(ToInt); 744 const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); 745 const APSInt &PersistentTo = ValueFactory.getValue(ToInt); 746 if (FromInt > ToInt) { 747 Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); 748 Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); 749 } else 750 Dummy.emplace_back(PersistentFrom, PersistentTo); 751 // Every range retrieved after truncation potentialy has garbage values. 752 // So, we have to unite every next range with the previouses. 753 Result = unite(Result, Dummy); 754 } 755 756 return Result; 757 } 758 759 // Divide the convertion into two phases (presented as loops here). 760 // First phase(loop) works when casted values go in ascending order. 761 // E.g. char{1,3,5,127} -> uint{1,3,5,127} 762 // Interrupt the first phase and go to second one when casted values start 763 // go in descending order. That means that we crossed over the middle of 764 // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). 765 // For instance: 766 // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} 767 // Here we put {1,3,5} to one array and {-128, -1} to another 768 // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} 769 // Here we put {128,129,255} to one array and {0,1,3} to another. 770 // After that we unite both arrays. 771 // NOTE: We don't just concatenate the arrays, because they may have 772 // adjacent ranges, e.g.: 773 // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> 774 // unite -> uchar(0, 255) 775 // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> 776 // unite -> uchar(-2, 1) 777 RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, 778 APSIntType Ty) { 779 using llvm::APInt; 780 using llvm::APSInt; 781 using Bounds = std::pair<const APSInt &, const APSInt &>; 782 ContainerType AscendArray; 783 ContainerType DescendArray; 784 auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { 785 // Get bounds of the given range. 786 APSInt FromInt = R.From(); 787 APSInt ToInt = R.To(); 788 // Cast the bounds. 789 Ty.apply(FromInt); 790 Ty.apply(ToInt); 791 return {VF.getValue(FromInt), VF.getValue(ToInt)}; 792 }; 793 // Phase 1. Fill the first array. 794 APSInt LastConvertedInt = Ty.getMinValue(); 795 const auto *It = What.begin(); 796 const auto *E = What.end(); 797 while (It != E) { 798 Bounds NewBounds = CastRange(*(It++)); 799 // If values stop going acsending order, go to the second phase(loop). 800 if (NewBounds.first < LastConvertedInt) { 801 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 802 break; 803 } 804 // If the range contains a midpoint, then split the range. 805 // E.g. char(-5, 5) -> uchar(251, 5) 806 // Here we shall add a range (251, 255) to the first array and (0, 5) to the 807 // second one. 808 if (NewBounds.first > NewBounds.second) { 809 DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); 810 AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); 811 } else 812 // Values are going acsending order. 813 AscendArray.emplace_back(NewBounds.first, NewBounds.second); 814 LastConvertedInt = NewBounds.first; 815 } 816 // Phase 2. Fill the second array. 817 while (It != E) { 818 Bounds NewBounds = CastRange(*(It++)); 819 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 820 } 821 // Unite both arrays. 822 return unite(AscendArray, DescendArray); 823 } 824 825 /// Promotion from unsigneds to signeds/unsigneds left. 826 RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, 827 APSIntType Ty) { 828 ContainerType Result; 829 // We definitely know the size of the result set. 830 Result.reserve(What.size()); 831 832 // Each unsigned value fits every larger type without any changes, 833 // whether the larger type is signed or unsigned. So just promote and push 834 // back each range one by one. 835 for (const Range &R : What) { 836 // Get bounds of the given range. 837 llvm::APSInt FromInt = R.From(); 838 llvm::APSInt ToInt = R.To(); 839 // Cast the bounds. 840 Ty.apply(FromInt); 841 Ty.apply(ToInt); 842 Result.emplace_back(ValueFactory.getValue(FromInt), 843 ValueFactory.getValue(ToInt)); 844 } 845 return Result; 846 } 847 848 RangeSet RangeSet::Factory::deletePoint(RangeSet From, 849 const llvm::APSInt &Point) { 850 if (!From.contains(Point)) 851 return From; 852 853 llvm::APSInt Upper = Point; 854 llvm::APSInt Lower = Point; 855 856 ++Upper; 857 --Lower; 858 859 // Notice that the lower bound is greater than the upper bound. 860 return intersect(From, Upper, Lower); 861 } 862 863 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { 864 OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; 865 } 866 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } 867 868 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { 869 OS << "{ "; 870 llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); 871 OS << " }"; 872 } 873 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } 874 875 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) 876 877 namespace { 878 class EquivalenceClass; 879 } // end anonymous namespace 880 881 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) 882 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) 883 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) 884 885 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) 886 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) 887 888 namespace { 889 /// This class encapsulates a set of symbols equal to each other. 890 /// 891 /// The main idea of the approach requiring such classes is in narrowing 892 /// and sharing constraints between symbols within the class. Also we can 893 /// conclude that there is no practical need in storing constraints for 894 /// every member of the class separately. 895 /// 896 /// Main terminology: 897 /// 898 /// * "Equivalence class" is an object of this class, which can be efficiently 899 /// compared to other classes. It represents the whole class without 900 /// storing the actual in it. The members of the class however can be 901 /// retrieved from the state. 902 /// 903 /// * "Class members" are the symbols corresponding to the class. This means 904 /// that A == B for every member symbols A and B from the class. Members of 905 /// each class are stored in the state. 906 /// 907 /// * "Trivial class" is a class that has and ever had only one same symbol. 908 /// 909 /// * "Merge operation" merges two classes into one. It is the main operation 910 /// to produce non-trivial classes. 911 /// If, at some point, we can assume that two symbols from two distinct 912 /// classes are equal, we can merge these classes. 913 class EquivalenceClass : public llvm::FoldingSetNode { 914 public: 915 /// Find equivalence class for the given symbol in the given state. 916 LLVM_NODISCARD static inline EquivalenceClass find(ProgramStateRef State, 917 SymbolRef Sym); 918 919 /// Merge classes for the given symbols and return a new state. 920 LLVM_NODISCARD static inline ProgramStateRef merge(RangeSet::Factory &F, 921 ProgramStateRef State, 922 SymbolRef First, 923 SymbolRef Second); 924 // Merge this class with the given class and return a new state. 925 LLVM_NODISCARD inline ProgramStateRef 926 merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); 927 928 /// Return a set of class members for the given state. 929 LLVM_NODISCARD inline SymbolSet getClassMembers(ProgramStateRef State) const; 930 931 /// Return true if the current class is trivial in the given state. 932 /// A class is trivial if and only if there is not any member relations stored 933 /// to it in State/ClassMembers. 934 /// An equivalence class with one member might seem as it does not hold any 935 /// meaningful information, i.e. that is a tautology. However, during the 936 /// removal of dead symbols we do not remove classes with one member for 937 /// resource and performance reasons. Consequently, a class with one member is 938 /// not necessarily trivial. It could happen that we have a class with two 939 /// members and then during the removal of dead symbols we remove one of its 940 /// members. In this case, the class is still non-trivial (it still has the 941 /// mappings in ClassMembers), even though it has only one member. 942 LLVM_NODISCARD inline bool isTrivial(ProgramStateRef State) const; 943 944 /// Return true if the current class is trivial and its only member is dead. 945 LLVM_NODISCARD inline bool isTriviallyDead(ProgramStateRef State, 946 SymbolReaper &Reaper) const; 947 948 LLVM_NODISCARD static inline ProgramStateRef 949 markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, 950 SymbolRef Second); 951 LLVM_NODISCARD static inline ProgramStateRef 952 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 953 EquivalenceClass First, EquivalenceClass Second); 954 LLVM_NODISCARD inline ProgramStateRef 955 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 956 EquivalenceClass Other) const; 957 LLVM_NODISCARD static inline ClassSet 958 getDisequalClasses(ProgramStateRef State, SymbolRef Sym); 959 LLVM_NODISCARD inline ClassSet 960 getDisequalClasses(ProgramStateRef State) const; 961 LLVM_NODISCARD inline ClassSet 962 getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; 963 964 LLVM_NODISCARD static inline Optional<bool> areEqual(ProgramStateRef State, 965 EquivalenceClass First, 966 EquivalenceClass Second); 967 LLVM_NODISCARD static inline Optional<bool> 968 areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); 969 970 /// Remove one member from the class. 971 LLVM_NODISCARD ProgramStateRef removeMember(ProgramStateRef State, 972 const SymbolRef Old); 973 974 /// Iterate over all symbols and try to simplify them. 975 LLVM_NODISCARD static inline ProgramStateRef simplify(SValBuilder &SVB, 976 RangeSet::Factory &F, 977 ProgramStateRef State, 978 EquivalenceClass Class); 979 980 void dumpToStream(ProgramStateRef State, raw_ostream &os) const; 981 LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { 982 dumpToStream(State, llvm::errs()); 983 } 984 985 /// Check equivalence data for consistency. 986 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED static bool 987 isClassDataConsistent(ProgramStateRef State); 988 989 LLVM_NODISCARD QualType getType() const { 990 return getRepresentativeSymbol()->getType(); 991 } 992 993 EquivalenceClass() = delete; 994 EquivalenceClass(const EquivalenceClass &) = default; 995 EquivalenceClass &operator=(const EquivalenceClass &) = delete; 996 EquivalenceClass(EquivalenceClass &&) = default; 997 EquivalenceClass &operator=(EquivalenceClass &&) = delete; 998 999 bool operator==(const EquivalenceClass &Other) const { 1000 return ID == Other.ID; 1001 } 1002 bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } 1003 bool operator!=(const EquivalenceClass &Other) const { 1004 return !operator==(Other); 1005 } 1006 1007 static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { 1008 ID.AddInteger(CID); 1009 } 1010 1011 void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } 1012 1013 private: 1014 /* implicit */ EquivalenceClass(SymbolRef Sym) 1015 : ID(reinterpret_cast<uintptr_t>(Sym)) {} 1016 1017 /// This function is intended to be used ONLY within the class. 1018 /// The fact that ID is a pointer to a symbol is an implementation detail 1019 /// and should stay that way. 1020 /// In the current implementation, we use it to retrieve the only member 1021 /// of the trivial class. 1022 SymbolRef getRepresentativeSymbol() const { 1023 return reinterpret_cast<SymbolRef>(ID); 1024 } 1025 static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); 1026 1027 inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, 1028 SymbolSet Members, EquivalenceClass Other, 1029 SymbolSet OtherMembers); 1030 1031 static inline bool 1032 addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 1033 RangeSet::Factory &F, ProgramStateRef State, 1034 EquivalenceClass First, EquivalenceClass Second); 1035 1036 /// This is a unique identifier of the class. 1037 uintptr_t ID; 1038 }; 1039 1040 //===----------------------------------------------------------------------===// 1041 // Constraint functions 1042 //===----------------------------------------------------------------------===// 1043 1044 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED bool 1045 areFeasible(ConstraintRangeTy Constraints) { 1046 return llvm::none_of( 1047 Constraints, 1048 [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { 1049 return ClassConstraint.second.isEmpty(); 1050 }); 1051 } 1052 1053 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State, 1054 EquivalenceClass Class) { 1055 return State->get<ConstraintRange>(Class); 1056 } 1057 1058 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State, 1059 SymbolRef Sym) { 1060 return getConstraint(State, EquivalenceClass::find(State, Sym)); 1061 } 1062 1063 LLVM_NODISCARD ProgramStateRef setConstraint(ProgramStateRef State, 1064 EquivalenceClass Class, 1065 RangeSet Constraint) { 1066 return State->set<ConstraintRange>(Class, Constraint); 1067 } 1068 1069 LLVM_NODISCARD ProgramStateRef setConstraints(ProgramStateRef State, 1070 ConstraintRangeTy Constraints) { 1071 return State->set<ConstraintRange>(Constraints); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // Equality/diseqiality abstraction 1076 //===----------------------------------------------------------------------===// 1077 1078 /// A small helper function for detecting symbolic (dis)equality. 1079 /// 1080 /// Equality check can have different forms (like a == b or a - b) and this 1081 /// class encapsulates those away if the only thing the user wants to check - 1082 /// whether it's equality/diseqiality or not. 1083 /// 1084 /// \returns true if assuming this Sym to be true means equality of operands 1085 /// false if it means disequality of operands 1086 /// None otherwise 1087 Optional<bool> meansEquality(const SymSymExpr *Sym) { 1088 switch (Sym->getOpcode()) { 1089 case BO_Sub: 1090 // This case is: A - B != 0 -> disequality check. 1091 return false; 1092 case BO_EQ: 1093 // This case is: A == B != 0 -> equality check. 1094 return true; 1095 case BO_NE: 1096 // This case is: A != B != 0 -> diseqiality check. 1097 return false; 1098 default: 1099 return llvm::None; 1100 } 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // Intersection functions 1105 //===----------------------------------------------------------------------===// 1106 1107 template <class SecondTy, class... RestTy> 1108 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1109 SecondTy Second, RestTy... Tail); 1110 1111 template <class... RangeTy> struct IntersectionTraits; 1112 1113 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { 1114 // Found RangeSet, no need to check any further 1115 using Type = RangeSet; 1116 }; 1117 1118 template <> struct IntersectionTraits<> { 1119 // We ran out of types, and we didn't find any RangeSet, so the result should 1120 // be optional. 1121 using Type = Optional<RangeSet>; 1122 }; 1123 1124 template <class OptionalOrPointer, class... TailTy> 1125 struct IntersectionTraits<OptionalOrPointer, TailTy...> { 1126 // If current type is Optional or a raw pointer, we should keep looking. 1127 using Type = typename IntersectionTraits<TailTy...>::Type; 1128 }; 1129 1130 template <class EndTy> 1131 LLVM_NODISCARD inline EndTy intersect(RangeSet::Factory &F, EndTy End) { 1132 // If the list contains only RangeSet or Optional<RangeSet>, simply return 1133 // that range set. 1134 return End; 1135 } 1136 1137 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet> 1138 intersect(RangeSet::Factory &F, const RangeSet *End) { 1139 // This is an extraneous conversion from a raw pointer into Optional<RangeSet> 1140 if (End) { 1141 return *End; 1142 } 1143 return llvm::None; 1144 } 1145 1146 template <class... RestTy> 1147 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1148 RangeSet Second, RestTy... Tail) { 1149 // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version 1150 // of the function and can be sure that the result is RangeSet. 1151 return intersect(F, F.intersect(Head, Second), Tail...); 1152 } 1153 1154 template <class SecondTy, class... RestTy> 1155 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1156 SecondTy Second, RestTy... Tail) { 1157 if (Second) { 1158 // Here we call the <RangeSet,RangeSet,...> version of the function... 1159 return intersect(F, Head, *Second, Tail...); 1160 } 1161 // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which 1162 // means that the result is definitely RangeSet. 1163 return intersect(F, Head, Tail...); 1164 } 1165 1166 /// Main generic intersect function. 1167 /// It intersects all of the given range sets. If some of the given arguments 1168 /// don't hold a range set (nullptr or llvm::None), the function will skip them. 1169 /// 1170 /// Available representations for the arguments are: 1171 /// * RangeSet 1172 /// * Optional<RangeSet> 1173 /// * RangeSet * 1174 /// Pointer to a RangeSet is automatically assumed to be nullable and will get 1175 /// checked as well as the optional version. If this behaviour is undesired, 1176 /// please dereference the pointer in the call. 1177 /// 1178 /// Return type depends on the arguments' types. If we can be sure in compile 1179 /// time that there will be a range set as a result, the returning type is 1180 /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>. 1181 /// 1182 /// Please, prefer optional range sets to raw pointers. If the last argument is 1183 /// a raw pointer and all previous arguments are None, it will cost one 1184 /// additional check to convert RangeSet * into Optional<RangeSet>. 1185 template <class HeadTy, class SecondTy, class... RestTy> 1186 LLVM_NODISCARD inline 1187 typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type 1188 intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, 1189 RestTy... Tail) { 1190 if (Head) { 1191 return intersect(F, *Head, Second, Tail...); 1192 } 1193 return intersect(F, Second, Tail...); 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // Symbolic reasoning logic 1198 //===----------------------------------------------------------------------===// 1199 1200 /// A little component aggregating all of the reasoning we have about 1201 /// the ranges of symbolic expressions. 1202 /// 1203 /// Even when we don't know the exact values of the operands, we still 1204 /// can get a pretty good estimate of the result's range. 1205 class SymbolicRangeInferrer 1206 : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { 1207 public: 1208 template <class SourceType> 1209 static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, 1210 SourceType Origin) { 1211 SymbolicRangeInferrer Inferrer(F, State); 1212 return Inferrer.infer(Origin); 1213 } 1214 1215 RangeSet VisitSymExpr(SymbolRef Sym) { 1216 // If we got to this function, the actual type of the symbolic 1217 // expression is not supported for advanced inference. 1218 // In this case, we simply backoff to the default "let's simply 1219 // infer the range from the expression's type". 1220 return infer(Sym->getType()); 1221 } 1222 1223 RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { 1224 return VisitBinaryOperator(Sym); 1225 } 1226 1227 RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { 1228 return VisitBinaryOperator(Sym); 1229 } 1230 1231 RangeSet VisitSymSymExpr(const SymSymExpr *Sym) { 1232 return intersect( 1233 RangeFactory, 1234 // If Sym is (dis)equality, we might have some information 1235 // on that in our equality classes data structure. 1236 getRangeForEqualities(Sym), 1237 // And we should always check what we can get from the operands. 1238 VisitBinaryOperator(Sym)); 1239 } 1240 1241 private: 1242 SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) 1243 : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} 1244 1245 /// Infer range information from the given integer constant. 1246 /// 1247 /// It's not a real "inference", but is here for operating with 1248 /// sub-expressions in a more polymorphic manner. 1249 RangeSet inferAs(const llvm::APSInt &Val, QualType) { 1250 return {RangeFactory, Val}; 1251 } 1252 1253 /// Infer range information from symbol in the context of the given type. 1254 RangeSet inferAs(SymbolRef Sym, QualType DestType) { 1255 QualType ActualType = Sym->getType(); 1256 // Check that we can reason about the symbol at all. 1257 if (ActualType->isIntegralOrEnumerationType() || 1258 Loc::isLocType(ActualType)) { 1259 return infer(Sym); 1260 } 1261 // Otherwise, let's simply infer from the destination type. 1262 // We couldn't figure out nothing else about that expression. 1263 return infer(DestType); 1264 } 1265 1266 RangeSet infer(SymbolRef Sym) { 1267 return intersect( 1268 RangeFactory, 1269 // Of course, we should take the constraint directly associated with 1270 // this symbol into consideration. 1271 getConstraint(State, Sym), 1272 // If Sym is a difference of symbols A - B, then maybe we have range 1273 // set stored for B - A. 1274 // 1275 // If we have range set stored for both A - B and B - A then 1276 // calculate the effective range set by intersecting the range set 1277 // for A - B and the negated range set of B - A. 1278 getRangeForNegatedSub(Sym), 1279 // If Sym is a comparison expression (except <=>), 1280 // find any other comparisons with the same operands. 1281 // See function description. 1282 getRangeForComparisonSymbol(Sym), 1283 // Apart from the Sym itself, we can infer quite a lot if we look 1284 // into subexpressions of Sym. 1285 Visit(Sym)); 1286 } 1287 1288 RangeSet infer(EquivalenceClass Class) { 1289 if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) 1290 return *AssociatedConstraint; 1291 1292 return infer(Class.getType()); 1293 } 1294 1295 /// Infer range information solely from the type. 1296 RangeSet infer(QualType T) { 1297 // Lazily generate a new RangeSet representing all possible values for the 1298 // given symbol type. 1299 RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), 1300 ValueFactory.getMaxValue(T)); 1301 1302 // References are known to be non-zero. 1303 if (T->isReferenceType()) 1304 return assumeNonZero(Result, T); 1305 1306 return Result; 1307 } 1308 1309 template <class BinarySymExprTy> 1310 RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { 1311 // TODO #1: VisitBinaryOperator implementation might not make a good 1312 // use of the inferred ranges. In this case, we might be calculating 1313 // everything for nothing. This being said, we should introduce some 1314 // sort of laziness mechanism here. 1315 // 1316 // TODO #2: We didn't go into the nested expressions before, so it 1317 // might cause us spending much more time doing the inference. 1318 // This can be a problem for deeply nested expressions that are 1319 // involved in conditions and get tested continuously. We definitely 1320 // need to address this issue and introduce some sort of caching 1321 // in here. 1322 QualType ResultType = Sym->getType(); 1323 return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), 1324 Sym->getOpcode(), 1325 inferAs(Sym->getRHS(), ResultType), ResultType); 1326 } 1327 1328 RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, 1329 RangeSet RHS, QualType T) { 1330 switch (Op) { 1331 case BO_Or: 1332 return VisitBinaryOperator<BO_Or>(LHS, RHS, T); 1333 case BO_And: 1334 return VisitBinaryOperator<BO_And>(LHS, RHS, T); 1335 case BO_Rem: 1336 return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); 1337 default: 1338 return infer(T); 1339 } 1340 } 1341 1342 //===----------------------------------------------------------------------===// 1343 // Ranges and operators 1344 //===----------------------------------------------------------------------===// 1345 1346 /// Return a rough approximation of the given range set. 1347 /// 1348 /// For the range set: 1349 /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } 1350 /// it will return the range [x_0, y_N]. 1351 static Range fillGaps(RangeSet Origin) { 1352 assert(!Origin.isEmpty()); 1353 return {Origin.getMinValue(), Origin.getMaxValue()}; 1354 } 1355 1356 /// Try to convert given range into the given type. 1357 /// 1358 /// It will return llvm::None only when the trivial conversion is possible. 1359 llvm::Optional<Range> convert(const Range &Origin, APSIntType To) { 1360 if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || 1361 To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { 1362 return llvm::None; 1363 } 1364 return Range(ValueFactory.Convert(To, Origin.From()), 1365 ValueFactory.Convert(To, Origin.To())); 1366 } 1367 1368 template <BinaryOperator::Opcode Op> 1369 RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { 1370 // We should propagate information about unfeasbility of one of the 1371 // operands to the resulting range. 1372 if (LHS.isEmpty() || RHS.isEmpty()) { 1373 return RangeFactory.getEmptySet(); 1374 } 1375 1376 Range CoarseLHS = fillGaps(LHS); 1377 Range CoarseRHS = fillGaps(RHS); 1378 1379 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1380 1381 // We need to convert ranges to the resulting type, so we can compare values 1382 // and combine them in a meaningful (in terms of the given operation) way. 1383 auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); 1384 auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); 1385 1386 // It is hard to reason about ranges when conversion changes 1387 // borders of the ranges. 1388 if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { 1389 return infer(T); 1390 } 1391 1392 return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); 1393 } 1394 1395 template <BinaryOperator::Opcode Op> 1396 RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { 1397 return infer(T); 1398 } 1399 1400 /// Return a symmetrical range for the given range and type. 1401 /// 1402 /// If T is signed, return the smallest range [-x..x] that covers the original 1403 /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't 1404 /// exist due to original range covering min(T)). 1405 /// 1406 /// If T is unsigned, return the smallest range [0..x] that covers the 1407 /// original range. 1408 Range getSymmetricalRange(Range Origin, QualType T) { 1409 APSIntType RangeType = ValueFactory.getAPSIntType(T); 1410 1411 if (RangeType.isUnsigned()) { 1412 return Range(ValueFactory.getMinValue(RangeType), Origin.To()); 1413 } 1414 1415 if (Origin.From().isMinSignedValue()) { 1416 // If mini is a minimal signed value, absolute value of it is greater 1417 // than the maximal signed value. In order to avoid these 1418 // complications, we simply return the whole range. 1419 return {ValueFactory.getMinValue(RangeType), 1420 ValueFactory.getMaxValue(RangeType)}; 1421 } 1422 1423 // At this point, we are sure that the type is signed and we can safely 1424 // use unary - operator. 1425 // 1426 // While calculating absolute maximum, we can use the following formula 1427 // because of these reasons: 1428 // * If From >= 0 then To >= From and To >= -From. 1429 // AbsMax == To == max(To, -From) 1430 // * If To <= 0 then -From >= -To and -From >= From. 1431 // AbsMax == -From == max(-From, To) 1432 // * Otherwise, From <= 0, To >= 0, and 1433 // AbsMax == max(abs(From), abs(To)) 1434 llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); 1435 1436 // Intersection is guaranteed to be non-empty. 1437 return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; 1438 } 1439 1440 /// Return a range set subtracting zero from \p Domain. 1441 RangeSet assumeNonZero(RangeSet Domain, QualType T) { 1442 APSIntType IntType = ValueFactory.getAPSIntType(T); 1443 return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); 1444 } 1445 1446 Optional<RangeSet> getRangeForNegatedSub(SymbolRef Sym) { 1447 // Do not negate if the type cannot be meaningfully negated. 1448 if (!Sym->getType()->isUnsignedIntegerOrEnumerationType() && 1449 !Sym->getType()->isSignedIntegerOrEnumerationType()) 1450 return llvm::None; 1451 1452 const RangeSet *NegatedRange = nullptr; 1453 SymbolManager &SymMgr = State->getSymbolManager(); 1454 if (const auto *USE = dyn_cast<UnarySymExpr>(Sym)) { 1455 if (USE->getOpcode() == UO_Minus) { 1456 // Just get the operand when we negate a symbol that is already negated. 1457 // -(-a) == a 1458 NegatedRange = getConstraint(State, USE->getOperand()); 1459 } 1460 } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) { 1461 if (SSE->getOpcode() == BO_Sub) { 1462 QualType T = Sym->getType(); 1463 SymbolRef NegatedSym = 1464 SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T); 1465 NegatedRange = getConstraint(State, NegatedSym); 1466 } 1467 } else { 1468 SymbolRef NegatedSym = 1469 SymMgr.getUnarySymExpr(Sym, UO_Minus, Sym->getType()); 1470 NegatedRange = getConstraint(State, NegatedSym); 1471 } 1472 1473 if (NegatedRange) 1474 return RangeFactory.negate(*NegatedRange); 1475 return llvm::None; 1476 } 1477 1478 // Returns ranges only for binary comparison operators (except <=>) 1479 // when left and right operands are symbolic values. 1480 // Finds any other comparisons with the same operands. 1481 // Then do logical calculations and refuse impossible branches. 1482 // E.g. (x < y) and (x > y) at the same time are impossible. 1483 // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. 1484 // E.g. (x == y) and (y == x) are just reversed but the same. 1485 // It covers all possible combinations (see CmpOpTable description). 1486 // Note that `x` and `y` can also stand for subexpressions, 1487 // not only for actual symbols. 1488 Optional<RangeSet> getRangeForComparisonSymbol(SymbolRef Sym) { 1489 const auto *SSE = dyn_cast<SymSymExpr>(Sym); 1490 if (!SSE) 1491 return llvm::None; 1492 1493 const BinaryOperatorKind CurrentOP = SSE->getOpcode(); 1494 1495 // We currently do not support <=> (C++20). 1496 if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) 1497 return llvm::None; 1498 1499 static const OperatorRelationsTable CmpOpTable{}; 1500 1501 const SymExpr *LHS = SSE->getLHS(); 1502 const SymExpr *RHS = SSE->getRHS(); 1503 QualType T = SSE->getType(); 1504 1505 SymbolManager &SymMgr = State->getSymbolManager(); 1506 1507 // We use this variable to store the last queried operator (`QueriedOP`) 1508 // for which the `getCmpOpState` returned with `Unknown`. If there are two 1509 // different OPs that returned `Unknown` then we have to query the special 1510 // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` 1511 // never returns `Unknown`, so `CurrentOP` is a good initial value. 1512 BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; 1513 1514 // Loop goes through all of the columns exept the last one ('UnknownX2'). 1515 // We treat `UnknownX2` column separately at the end of the loop body. 1516 for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { 1517 1518 // Let's find an expression e.g. (x < y). 1519 BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); 1520 const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T); 1521 const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); 1522 1523 // If ranges were not previously found, 1524 // try to find a reversed expression (y > x). 1525 if (!QueriedRangeSet) { 1526 const BinaryOperatorKind ROP = 1527 BinaryOperator::reverseComparisonOp(QueriedOP); 1528 SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T); 1529 QueriedRangeSet = getConstraint(State, SymSym); 1530 } 1531 1532 if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) 1533 continue; 1534 1535 const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); 1536 const bool isInFalseBranch = 1537 ConcreteValue ? (*ConcreteValue == 0) : false; 1538 1539 // If it is a false branch, we shall be guided by opposite operator, 1540 // because the table is made assuming we are in the true branch. 1541 // E.g. when (x <= y) is false, then (x > y) is true. 1542 if (isInFalseBranch) 1543 QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); 1544 1545 OperatorRelationsTable::TriStateKind BranchState = 1546 CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); 1547 1548 if (BranchState == OperatorRelationsTable::Unknown) { 1549 if (LastQueriedOpToUnknown != CurrentOP && 1550 LastQueriedOpToUnknown != QueriedOP) { 1551 // If we got the Unknown state for both different operators. 1552 // if (x <= y) // assume true 1553 // if (x != y) // assume true 1554 // if (x < y) // would be also true 1555 // Get a state from `UnknownX2` column. 1556 BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); 1557 } else { 1558 LastQueriedOpToUnknown = QueriedOP; 1559 continue; 1560 } 1561 } 1562 1563 return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) 1564 : getFalseRange(T); 1565 } 1566 1567 return llvm::None; 1568 } 1569 1570 Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { 1571 Optional<bool> Equality = meansEquality(Sym); 1572 1573 if (!Equality) 1574 return llvm::None; 1575 1576 if (Optional<bool> AreEqual = 1577 EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { 1578 // Here we cover two cases at once: 1579 // * if Sym is equality and its operands are known to be equal -> true 1580 // * if Sym is disequality and its operands are disequal -> true 1581 if (*AreEqual == *Equality) { 1582 return getTrueRange(Sym->getType()); 1583 } 1584 // Opposite combinations result in false. 1585 return getFalseRange(Sym->getType()); 1586 } 1587 1588 return llvm::None; 1589 } 1590 1591 RangeSet getTrueRange(QualType T) { 1592 RangeSet TypeRange = infer(T); 1593 return assumeNonZero(TypeRange, T); 1594 } 1595 1596 RangeSet getFalseRange(QualType T) { 1597 const llvm::APSInt &Zero = ValueFactory.getValue(0, T); 1598 return RangeSet(RangeFactory, Zero); 1599 } 1600 1601 BasicValueFactory &ValueFactory; 1602 RangeSet::Factory &RangeFactory; 1603 ProgramStateRef State; 1604 }; 1605 1606 //===----------------------------------------------------------------------===// 1607 // Range-based reasoning about symbolic operations 1608 //===----------------------------------------------------------------------===// 1609 1610 template <> 1611 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, 1612 QualType T) { 1613 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1614 llvm::APSInt Zero = ResultType.getZeroValue(); 1615 1616 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1617 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1618 1619 bool IsLHSNegative = LHS.To() < Zero; 1620 bool IsRHSNegative = RHS.To() < Zero; 1621 1622 // Check if both ranges have the same sign. 1623 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1624 (IsLHSNegative && IsRHSNegative)) { 1625 // The result is definitely greater or equal than any of the operands. 1626 const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); 1627 1628 // We estimate maximal value for positives as the maximal value for the 1629 // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). 1630 // 1631 // TODO: We basically, limit the resulting range from below, but don't do 1632 // anything with the upper bound. 1633 // 1634 // For positive operands, it can be done as follows: for the upper 1635 // bound of LHS and RHS we calculate the most significant bit set. 1636 // Let's call it the N-th bit. Then we can estimate the maximal 1637 // number to be 2^(N+1)-1, i.e. the number with all the bits up to 1638 // the N-th bit set. 1639 const llvm::APSInt &Max = IsLHSNegative 1640 ? ValueFactory.getValue(--Zero) 1641 : ValueFactory.getMaxValue(ResultType); 1642 1643 return {RangeFactory, ValueFactory.getValue(Min), Max}; 1644 } 1645 1646 // Otherwise, let's check if at least one of the operands is negative. 1647 if (IsLHSNegative || IsRHSNegative) { 1648 // This means that the result is definitely negative as well. 1649 return {RangeFactory, ValueFactory.getMinValue(ResultType), 1650 ValueFactory.getValue(--Zero)}; 1651 } 1652 1653 RangeSet DefaultRange = infer(T); 1654 1655 // It is pretty hard to reason about operands with different signs 1656 // (and especially with possibly different signs). We simply check if it 1657 // can be zero. In order to conclude that the result could not be zero, 1658 // at least one of the operands should be definitely not zero itself. 1659 if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { 1660 return assumeNonZero(DefaultRange, T); 1661 } 1662 1663 // Nothing much else to do here. 1664 return DefaultRange; 1665 } 1666 1667 template <> 1668 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, 1669 Range RHS, 1670 QualType T) { 1671 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1672 llvm::APSInt Zero = ResultType.getZeroValue(); 1673 1674 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1675 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1676 1677 bool IsLHSNegative = LHS.To() < Zero; 1678 bool IsRHSNegative = RHS.To() < Zero; 1679 1680 // Check if both ranges have the same sign. 1681 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1682 (IsLHSNegative && IsRHSNegative)) { 1683 // The result is definitely less or equal than any of the operands. 1684 const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); 1685 1686 // We conservatively estimate lower bound to be the smallest positive 1687 // or negative value corresponding to the sign of the operands. 1688 const llvm::APSInt &Min = IsLHSNegative 1689 ? ValueFactory.getMinValue(ResultType) 1690 : ValueFactory.getValue(Zero); 1691 1692 return {RangeFactory, Min, Max}; 1693 } 1694 1695 // Otherwise, let's check if at least one of the operands is positive. 1696 if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { 1697 // This makes result definitely positive. 1698 // 1699 // We can also reason about a maximal value by finding the maximal 1700 // value of the positive operand. 1701 const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); 1702 1703 // The minimal value on the other hand is much harder to reason about. 1704 // The only thing we know for sure is that the result is positive. 1705 return {RangeFactory, ValueFactory.getValue(Zero), 1706 ValueFactory.getValue(Max)}; 1707 } 1708 1709 // Nothing much else to do here. 1710 return infer(T); 1711 } 1712 1713 template <> 1714 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, 1715 Range RHS, 1716 QualType T) { 1717 llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); 1718 1719 Range ConservativeRange = getSymmetricalRange(RHS, T); 1720 1721 llvm::APSInt Max = ConservativeRange.To(); 1722 llvm::APSInt Min = ConservativeRange.From(); 1723 1724 if (Max == Zero) { 1725 // It's an undefined behaviour to divide by 0 and it seems like we know 1726 // for sure that RHS is 0. Let's say that the resulting range is 1727 // simply infeasible for that matter. 1728 return RangeFactory.getEmptySet(); 1729 } 1730 1731 // At this point, our conservative range is closed. The result, however, 1732 // couldn't be greater than the RHS' maximal absolute value. Because of 1733 // this reason, we turn the range into open (or half-open in case of 1734 // unsigned integers). 1735 // 1736 // While we operate on integer values, an open interval (a, b) can be easily 1737 // represented by the closed interval [a + 1, b - 1]. And this is exactly 1738 // what we do next. 1739 // 1740 // If we are dealing with unsigned case, we shouldn't move the lower bound. 1741 if (Min.isSigned()) { 1742 ++Min; 1743 } 1744 --Max; 1745 1746 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1747 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1748 1749 // Remainder operator results with negative operands is implementation 1750 // defined. Positive cases are much easier to reason about though. 1751 if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { 1752 // If maximal value of LHS is less than maximal value of RHS, 1753 // the result won't get greater than LHS.To(). 1754 Max = std::min(LHS.To(), Max); 1755 // We want to check if it is a situation similar to the following: 1756 // 1757 // <------------|---[ LHS ]--------[ RHS ]-----> 1758 // -INF 0 +INF 1759 // 1760 // In this situation, we can conclude that (LHS / RHS) == 0 and 1761 // (LHS % RHS) == LHS. 1762 Min = LHS.To() < RHS.From() ? LHS.From() : Zero; 1763 } 1764 1765 // Nevertheless, the symmetrical range for RHS is a conservative estimate 1766 // for any sign of either LHS, or RHS. 1767 return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // Constraint manager implementation details 1772 //===----------------------------------------------------------------------===// 1773 1774 class RangeConstraintManager : public RangedConstraintManager { 1775 public: 1776 RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) 1777 : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} 1778 1779 //===------------------------------------------------------------------===// 1780 // Implementation for interface from ConstraintManager. 1781 //===------------------------------------------------------------------===// 1782 1783 bool haveEqualConstraints(ProgramStateRef S1, 1784 ProgramStateRef S2) const override { 1785 // NOTE: ClassMembers are as simple as back pointers for ClassMap, 1786 // so comparing constraint ranges and class maps should be 1787 // sufficient. 1788 return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && 1789 S1->get<ClassMap>() == S2->get<ClassMap>(); 1790 } 1791 1792 bool canReasonAbout(SVal X) const override; 1793 1794 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 1795 1796 const llvm::APSInt *getSymVal(ProgramStateRef State, 1797 SymbolRef Sym) const override; 1798 1799 ProgramStateRef removeDeadBindings(ProgramStateRef State, 1800 SymbolReaper &SymReaper) override; 1801 1802 void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", 1803 unsigned int Space = 0, bool IsDot = false) const override; 1804 void printConstraints(raw_ostream &Out, ProgramStateRef State, 1805 const char *NL = "\n", unsigned int Space = 0, 1806 bool IsDot = false) const; 1807 void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, 1808 const char *NL = "\n", unsigned int Space = 0, 1809 bool IsDot = false) const; 1810 void printDisequalities(raw_ostream &Out, ProgramStateRef State, 1811 const char *NL = "\n", unsigned int Space = 0, 1812 bool IsDot = false) const; 1813 1814 //===------------------------------------------------------------------===// 1815 // Implementation for interface from RangedConstraintManager. 1816 //===------------------------------------------------------------------===// 1817 1818 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 1819 const llvm::APSInt &V, 1820 const llvm::APSInt &Adjustment) override; 1821 1822 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 1823 const llvm::APSInt &V, 1824 const llvm::APSInt &Adjustment) override; 1825 1826 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 1827 const llvm::APSInt &V, 1828 const llvm::APSInt &Adjustment) override; 1829 1830 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 1831 const llvm::APSInt &V, 1832 const llvm::APSInt &Adjustment) override; 1833 1834 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 1835 const llvm::APSInt &V, 1836 const llvm::APSInt &Adjustment) override; 1837 1838 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 1839 const llvm::APSInt &V, 1840 const llvm::APSInt &Adjustment) override; 1841 1842 ProgramStateRef assumeSymWithinInclusiveRange( 1843 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1844 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1845 1846 ProgramStateRef assumeSymOutsideInclusiveRange( 1847 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1848 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1849 1850 private: 1851 RangeSet::Factory F; 1852 1853 RangeSet getRange(ProgramStateRef State, SymbolRef Sym); 1854 RangeSet getRange(ProgramStateRef State, EquivalenceClass Class); 1855 ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, 1856 RangeSet Range); 1857 ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class, 1858 RangeSet Range); 1859 1860 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 1861 const llvm::APSInt &Int, 1862 const llvm::APSInt &Adjustment); 1863 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 1864 const llvm::APSInt &Int, 1865 const llvm::APSInt &Adjustment); 1866 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 1867 const llvm::APSInt &Int, 1868 const llvm::APSInt &Adjustment); 1869 RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, 1870 const llvm::APSInt &Int, 1871 const llvm::APSInt &Adjustment); 1872 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 1873 const llvm::APSInt &Int, 1874 const llvm::APSInt &Adjustment); 1875 }; 1876 1877 //===----------------------------------------------------------------------===// 1878 // Constraint assignment logic 1879 //===----------------------------------------------------------------------===// 1880 1881 /// ConstraintAssignorBase is a small utility class that unifies visitor 1882 /// for ranges with a visitor for constraints (rangeset/range/constant). 1883 /// 1884 /// It is designed to have one derived class, but generally it can have more. 1885 /// Derived class can control which types we handle by defining methods of the 1886 /// following form: 1887 /// 1888 /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, 1889 /// CONSTRAINT Constraint); 1890 /// 1891 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) 1892 /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) 1893 /// return value signifies whether we should try other handle methods 1894 /// (i.e. false would mean to stop right after calling this method) 1895 template <class Derived> class ConstraintAssignorBase { 1896 public: 1897 using Const = const llvm::APSInt &; 1898 1899 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) 1900 1901 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ 1902 if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ 1903 return false 1904 1905 void assign(SymbolRef Sym, RangeSet Constraint) { 1906 assignImpl(Sym, Constraint); 1907 } 1908 1909 bool assignImpl(SymbolRef Sym, RangeSet Constraint) { 1910 switch (Sym->getKind()) { 1911 #define SYMBOL(Id, Parent) \ 1912 case SymExpr::Id##Kind: \ 1913 DISPATCH(Id); 1914 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 1915 } 1916 llvm_unreachable("Unknown SymExpr kind!"); 1917 } 1918 1919 #define DEFAULT_ASSIGN(Id) \ 1920 bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ 1921 return true; \ 1922 } \ 1923 bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ 1924 bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } 1925 1926 // When we dispatch for constraint types, we first try to check 1927 // if the new constraint is the constant and try the corresponding 1928 // assignor methods. If it didn't interrupt, we can proceed to the 1929 // range, and finally to the range set. 1930 #define CONSTRAINT_DISPATCH(Id) \ 1931 if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ 1932 ASSIGN(Id, Const, Sym, *Const); \ 1933 } \ 1934 if (Constraint.size() == 1) { \ 1935 ASSIGN(Id, Range, Sym, *Constraint.begin()); \ 1936 } \ 1937 ASSIGN(Id, RangeSet, Sym, Constraint) 1938 1939 // Our internal assign method first tries to call assignor methods for all 1940 // constraint types that apply. And if not interrupted, continues with its 1941 // parent class. 1942 #define SYMBOL(Id, Parent) \ 1943 bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ 1944 CONSTRAINT_DISPATCH(Id); \ 1945 DISPATCH(Parent); \ 1946 } \ 1947 DEFAULT_ASSIGN(Id) 1948 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) 1949 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 1950 1951 // Default implementations for the top class that doesn't have parents. 1952 bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { 1953 CONSTRAINT_DISPATCH(SymExpr); 1954 return true; 1955 } 1956 DEFAULT_ASSIGN(SymExpr); 1957 1958 #undef DISPATCH 1959 #undef CONSTRAINT_DISPATCH 1960 #undef DEFAULT_ASSIGN 1961 #undef ASSIGN 1962 }; 1963 1964 /// A little component aggregating all of the reasoning we have about 1965 /// assigning new constraints to symbols. 1966 /// 1967 /// The main purpose of this class is to associate constraints to symbols, 1968 /// and impose additional constraints on other symbols, when we can imply 1969 /// them. 1970 /// 1971 /// It has a nice symmetry with SymbolicRangeInferrer. When the latter 1972 /// can provide more precise ranges by looking into the operands of the 1973 /// expression in question, ConstraintAssignor looks into the operands 1974 /// to see if we can imply more from the new constraint. 1975 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { 1976 public: 1977 template <class ClassOrSymbol> 1978 LLVM_NODISCARD static ProgramStateRef 1979 assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, 1980 ClassOrSymbol CoS, RangeSet NewConstraint) { 1981 if (!State || NewConstraint.isEmpty()) 1982 return nullptr; 1983 1984 ConstraintAssignor Assignor{State, Builder, F}; 1985 return Assignor.assign(CoS, NewConstraint); 1986 } 1987 1988 /// Handle expressions like: a % b != 0. 1989 template <typename SymT> 1990 bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { 1991 if (Sym->getOpcode() != BO_Rem) 1992 return true; 1993 // a % b != 0 implies that a != 0. 1994 if (!Constraint.containsZero()) { 1995 SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); 1996 if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { 1997 State = State->assume(*NonLocSymSVal, true); 1998 if (!State) 1999 return false; 2000 } 2001 } 2002 return true; 2003 } 2004 2005 inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); 2006 inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, 2007 RangeSet Constraint) { 2008 return handleRemainderOp(Sym, Constraint); 2009 } 2010 inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2011 RangeSet Constraint); 2012 2013 private: 2014 ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, 2015 RangeSet::Factory &F) 2016 : State(State), Builder(Builder), RangeFactory(F) {} 2017 using Base = ConstraintAssignorBase<ConstraintAssignor>; 2018 2019 /// Base method for handling new constraints for symbols. 2020 LLVM_NODISCARD ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { 2021 // All constraints are actually associated with equivalence classes, and 2022 // that's what we are going to do first. 2023 State = assign(EquivalenceClass::find(State, Sym), NewConstraint); 2024 if (!State) 2025 return nullptr; 2026 2027 // And after that we can check what other things we can get from this 2028 // constraint. 2029 Base::assign(Sym, NewConstraint); 2030 return State; 2031 } 2032 2033 /// Base method for handling new constraints for classes. 2034 LLVM_NODISCARD ProgramStateRef assign(EquivalenceClass Class, 2035 RangeSet NewConstraint) { 2036 // There is a chance that we might need to update constraints for the 2037 // classes that are known to be disequal to Class. 2038 // 2039 // In order for this to be even possible, the new constraint should 2040 // be simply a constant because we can't reason about range disequalities. 2041 if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { 2042 2043 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2044 ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); 2045 2046 // Add new constraint. 2047 Constraints = CF.add(Constraints, Class, NewConstraint); 2048 2049 for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { 2050 RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( 2051 RangeFactory, State, DisequalClass); 2052 2053 UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); 2054 2055 // If we end up with at least one of the disequal classes to be 2056 // constrained with an empty range-set, the state is infeasible. 2057 if (UpdatedConstraint.isEmpty()) 2058 return nullptr; 2059 2060 Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); 2061 } 2062 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2063 "a state with infeasible constraints"); 2064 2065 return setConstraints(State, Constraints); 2066 } 2067 2068 return setConstraint(State, Class, NewConstraint); 2069 } 2070 2071 ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, 2072 SymbolRef RHS) { 2073 return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); 2074 } 2075 2076 ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, 2077 SymbolRef RHS) { 2078 return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); 2079 } 2080 2081 LLVM_NODISCARD Optional<bool> interpreteAsBool(RangeSet Constraint) { 2082 assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); 2083 2084 if (Constraint.getConcreteValue()) 2085 return !Constraint.getConcreteValue()->isZero(); 2086 2087 if (!Constraint.containsZero()) 2088 return true; 2089 2090 return llvm::None; 2091 } 2092 2093 ProgramStateRef State; 2094 SValBuilder &Builder; 2095 RangeSet::Factory &RangeFactory; 2096 }; 2097 2098 2099 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, 2100 const llvm::APSInt &Constraint) { 2101 llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; 2102 // Iterate over all equivalence classes and try to simplify them. 2103 ClassMembersTy Members = State->get<ClassMembers>(); 2104 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { 2105 EquivalenceClass Class = ClassToSymbolSet.first; 2106 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2107 if (!State) 2108 return false; 2109 SimplifiedClasses.insert(Class); 2110 } 2111 2112 // Trivial equivalence classes (those that have only one symbol member) are 2113 // not stored in the State. Thus, we must skim through the constraints as 2114 // well. And we try to simplify symbols in the constraints. 2115 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2116 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2117 EquivalenceClass Class = ClassConstraint.first; 2118 if (SimplifiedClasses.count(Class)) // Already simplified. 2119 continue; 2120 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2121 if (!State) 2122 return false; 2123 } 2124 2125 // We may have trivial equivalence classes in the disequality info as 2126 // well, and we need to simplify them. 2127 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2128 for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : 2129 DisequalityInfo) { 2130 EquivalenceClass Class = DisequalityEntry.first; 2131 ClassSet DisequalClasses = DisequalityEntry.second; 2132 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2133 if (!State) 2134 return false; 2135 } 2136 2137 return true; 2138 } 2139 2140 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2141 RangeSet Constraint) { 2142 if (!handleRemainderOp(Sym, Constraint)) 2143 return false; 2144 2145 Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); 2146 2147 if (!ConstraintAsBool) 2148 return true; 2149 2150 if (Optional<bool> Equality = meansEquality(Sym)) { 2151 // Here we cover two cases: 2152 // * if Sym is equality and the new constraint is true -> Sym's operands 2153 // should be marked as equal 2154 // * if Sym is disequality and the new constraint is false -> Sym's 2155 // operands should be also marked as equal 2156 if (*Equality == *ConstraintAsBool) { 2157 State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); 2158 } else { 2159 // Other combinations leave as with disequal operands. 2160 State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); 2161 } 2162 2163 if (!State) 2164 return false; 2165 } 2166 2167 return true; 2168 } 2169 2170 } // end anonymous namespace 2171 2172 std::unique_ptr<ConstraintManager> 2173 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, 2174 ExprEngine *Eng) { 2175 return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 2176 } 2177 2178 ConstraintMap ento::getConstraintMap(ProgramStateRef State) { 2179 ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); 2180 ConstraintMap Result = F.getEmptyMap(); 2181 2182 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2183 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2184 EquivalenceClass Class = ClassConstraint.first; 2185 SymbolSet ClassMembers = Class.getClassMembers(State); 2186 assert(!ClassMembers.isEmpty() && 2187 "Class must always have at least one member!"); 2188 2189 SymbolRef Representative = *ClassMembers.begin(); 2190 Result = F.add(Result, Representative, ClassConstraint.second); 2191 } 2192 2193 return Result; 2194 } 2195 2196 //===----------------------------------------------------------------------===// 2197 // EqualityClass implementation details 2198 //===----------------------------------------------------------------------===// 2199 2200 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, 2201 raw_ostream &os) const { 2202 SymbolSet ClassMembers = getClassMembers(State); 2203 for (const SymbolRef &MemberSym : ClassMembers) { 2204 MemberSym->dump(); 2205 os << "\n"; 2206 } 2207 } 2208 2209 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, 2210 SymbolRef Sym) { 2211 assert(State && "State should not be null"); 2212 assert(Sym && "Symbol should not be null"); 2213 // We store far from all Symbol -> Class mappings 2214 if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym)) 2215 return *NontrivialClass; 2216 2217 // This is a trivial class of Sym. 2218 return Sym; 2219 } 2220 2221 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2222 ProgramStateRef State, 2223 SymbolRef First, 2224 SymbolRef Second) { 2225 EquivalenceClass FirstClass = find(State, First); 2226 EquivalenceClass SecondClass = find(State, Second); 2227 2228 return FirstClass.merge(F, State, SecondClass); 2229 } 2230 2231 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2232 ProgramStateRef State, 2233 EquivalenceClass Other) { 2234 // It is already the same class. 2235 if (*this == Other) 2236 return State; 2237 2238 // FIXME: As of now, we support only equivalence classes of the same type. 2239 // This limitation is connected to the lack of explicit casts in 2240 // our symbolic expression model. 2241 // 2242 // That means that for `int x` and `char y` we don't distinguish 2243 // between these two very different cases: 2244 // * `x == y` 2245 // * `(char)x == y` 2246 // 2247 // The moment we introduce symbolic casts, this restriction can be 2248 // lifted. 2249 if (getType() != Other.getType()) 2250 return State; 2251 2252 SymbolSet Members = getClassMembers(State); 2253 SymbolSet OtherMembers = Other.getClassMembers(State); 2254 2255 // We estimate the size of the class by the height of tree containing 2256 // its members. Merging is not a trivial operation, so it's easier to 2257 // merge the smaller class into the bigger one. 2258 if (Members.getHeight() >= OtherMembers.getHeight()) { 2259 return mergeImpl(F, State, Members, Other, OtherMembers); 2260 } else { 2261 return Other.mergeImpl(F, State, OtherMembers, *this, Members); 2262 } 2263 } 2264 2265 inline ProgramStateRef 2266 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, 2267 ProgramStateRef State, SymbolSet MyMembers, 2268 EquivalenceClass Other, SymbolSet OtherMembers) { 2269 // Essentially what we try to recreate here is some kind of union-find 2270 // data structure. It does have certain limitations due to persistence 2271 // and the need to remove elements from classes. 2272 // 2273 // In this setting, EquialityClass object is the representative of the class 2274 // or the parent element. ClassMap is a mapping of class members to their 2275 // parent. Unlike the union-find structure, they all point directly to the 2276 // class representative because we don't have an opportunity to actually do 2277 // path compression when dealing with immutability. This means that we 2278 // compress paths every time we do merges. It also means that we lose 2279 // the main amortized complexity benefit from the original data structure. 2280 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2281 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2282 2283 // 1. If the merged classes have any constraints associated with them, we 2284 // need to transfer them to the class we have left. 2285 // 2286 // Intersection here makes perfect sense because both of these constraints 2287 // must hold for the whole new class. 2288 if (Optional<RangeSet> NewClassConstraint = 2289 intersect(RangeFactory, getConstraint(State, *this), 2290 getConstraint(State, Other))) { 2291 // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because 2292 // range inferrer shouldn't generate ranges incompatible with 2293 // equivalence classes. However, at the moment, due to imperfections 2294 // in the solver, it is possible and the merge function can also 2295 // return infeasible states aka null states. 2296 if (NewClassConstraint->isEmpty()) 2297 // Infeasible state 2298 return nullptr; 2299 2300 // No need in tracking constraints of a now-dissolved class. 2301 Constraints = CRF.remove(Constraints, Other); 2302 // Assign new constraints for this class. 2303 Constraints = CRF.add(Constraints, *this, *NewClassConstraint); 2304 2305 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2306 "a state with infeasible constraints"); 2307 2308 State = State->set<ConstraintRange>(Constraints); 2309 } 2310 2311 // 2. Get ALL equivalence-related maps 2312 ClassMapTy Classes = State->get<ClassMap>(); 2313 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2314 2315 ClassMembersTy Members = State->get<ClassMembers>(); 2316 ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); 2317 2318 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2319 DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); 2320 2321 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2322 SymbolSet::Factory &F = getMembersFactory(State); 2323 2324 // 2. Merge members of the Other class into the current class. 2325 SymbolSet NewClassMembers = MyMembers; 2326 for (SymbolRef Sym : OtherMembers) { 2327 NewClassMembers = F.add(NewClassMembers, Sym); 2328 // *this is now the class for all these new symbols. 2329 Classes = CMF.add(Classes, Sym, *this); 2330 } 2331 2332 // 3. Adjust member mapping. 2333 // 2334 // No need in tracking members of a now-dissolved class. 2335 Members = MF.remove(Members, Other); 2336 // Now only the current class is mapped to all the symbols. 2337 Members = MF.add(Members, *this, NewClassMembers); 2338 2339 // 4. Update disequality relations 2340 ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); 2341 // We are about to merge two classes but they are already known to be 2342 // non-equal. This is a contradiction. 2343 if (DisequalToOther.contains(*this)) 2344 return nullptr; 2345 2346 if (!DisequalToOther.isEmpty()) { 2347 ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); 2348 DisequalityInfo = DF.remove(DisequalityInfo, Other); 2349 2350 for (EquivalenceClass DisequalClass : DisequalToOther) { 2351 DisequalToThis = CF.add(DisequalToThis, DisequalClass); 2352 2353 // Disequality is a symmetric relation meaning that if 2354 // DisequalToOther not null then the set for DisequalClass is not 2355 // empty and has at least Other. 2356 ClassSet OriginalSetLinkedToOther = 2357 *DisequalityInfo.lookup(DisequalClass); 2358 2359 // Other will be eliminated and we should replace it with the bigger 2360 // united class. 2361 ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); 2362 NewSet = CF.add(NewSet, *this); 2363 2364 DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); 2365 } 2366 2367 DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); 2368 State = State->set<DisequalityMap>(DisequalityInfo); 2369 } 2370 2371 // 5. Update the state 2372 State = State->set<ClassMap>(Classes); 2373 State = State->set<ClassMembers>(Members); 2374 2375 return State; 2376 } 2377 2378 inline SymbolSet::Factory & 2379 EquivalenceClass::getMembersFactory(ProgramStateRef State) { 2380 return State->get_context<SymbolSet>(); 2381 } 2382 2383 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { 2384 if (const SymbolSet *Members = State->get<ClassMembers>(*this)) 2385 return *Members; 2386 2387 // This class is trivial, so we need to construct a set 2388 // with just that one symbol from the class. 2389 SymbolSet::Factory &F = getMembersFactory(State); 2390 return F.add(F.getEmptySet(), getRepresentativeSymbol()); 2391 } 2392 2393 bool EquivalenceClass::isTrivial(ProgramStateRef State) const { 2394 return State->get<ClassMembers>(*this) == nullptr; 2395 } 2396 2397 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, 2398 SymbolReaper &Reaper) const { 2399 return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); 2400 } 2401 2402 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2403 ProgramStateRef State, 2404 SymbolRef First, 2405 SymbolRef Second) { 2406 return markDisequal(RF, State, find(State, First), find(State, Second)); 2407 } 2408 2409 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2410 ProgramStateRef State, 2411 EquivalenceClass First, 2412 EquivalenceClass Second) { 2413 return First.markDisequal(RF, State, Second); 2414 } 2415 2416 inline ProgramStateRef 2417 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, 2418 EquivalenceClass Other) const { 2419 // If we know that two classes are equal, we can only produce an infeasible 2420 // state. 2421 if (*this == Other) { 2422 return nullptr; 2423 } 2424 2425 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2426 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2427 2428 // Disequality is a symmetric relation, so if we mark A as disequal to B, 2429 // we should also mark B as disequalt to A. 2430 if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, 2431 Other) || 2432 !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, 2433 *this)) 2434 return nullptr; 2435 2436 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2437 "a state with infeasible constraints"); 2438 2439 State = State->set<DisequalityMap>(DisequalityInfo); 2440 State = State->set<ConstraintRange>(Constraints); 2441 2442 return State; 2443 } 2444 2445 inline bool EquivalenceClass::addToDisequalityInfo( 2446 DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 2447 RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, 2448 EquivalenceClass Second) { 2449 2450 // 1. Get all of the required factories. 2451 DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); 2452 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2453 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2454 2455 // 2. Add Second to the set of classes disequal to First. 2456 const ClassSet *CurrentSet = Info.lookup(First); 2457 ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); 2458 NewSet = CF.add(NewSet, Second); 2459 2460 Info = F.add(Info, First, NewSet); 2461 2462 // 3. If Second is known to be a constant, we can delete this point 2463 // from the constraint asociated with First. 2464 // 2465 // So, if Second == 10, it means that First != 10. 2466 // At the same time, the same logic does not apply to ranges. 2467 if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) 2468 if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { 2469 2470 RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( 2471 RF, State, First.getRepresentativeSymbol()); 2472 2473 FirstConstraint = RF.deletePoint(FirstConstraint, *Point); 2474 2475 // If the First class is about to be constrained with an empty 2476 // range-set, the state is infeasible. 2477 if (FirstConstraint.isEmpty()) 2478 return false; 2479 2480 Constraints = CRF.add(Constraints, First, FirstConstraint); 2481 } 2482 2483 return true; 2484 } 2485 2486 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2487 SymbolRef FirstSym, 2488 SymbolRef SecondSym) { 2489 return EquivalenceClass::areEqual(State, find(State, FirstSym), 2490 find(State, SecondSym)); 2491 } 2492 2493 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2494 EquivalenceClass First, 2495 EquivalenceClass Second) { 2496 // The same equivalence class => symbols are equal. 2497 if (First == Second) 2498 return true; 2499 2500 // Let's check if we know anything about these two classes being not equal to 2501 // each other. 2502 ClassSet DisequalToFirst = First.getDisequalClasses(State); 2503 if (DisequalToFirst.contains(Second)) 2504 return false; 2505 2506 // It is not clear. 2507 return llvm::None; 2508 } 2509 2510 LLVM_NODISCARD ProgramStateRef 2511 EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { 2512 2513 SymbolSet ClsMembers = getClassMembers(State); 2514 assert(ClsMembers.contains(Old)); 2515 2516 // Remove `Old`'s Class->Sym relation. 2517 SymbolSet::Factory &F = getMembersFactory(State); 2518 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2519 ClsMembers = F.remove(ClsMembers, Old); 2520 // Ensure another precondition of the removeMember function (we can check 2521 // this only with isEmpty, thus we have to do the remove first). 2522 assert(!ClsMembers.isEmpty() && 2523 "Class should have had at least two members before member removal"); 2524 // Overwrite the existing members assigned to this class. 2525 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2526 ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); 2527 State = State->set<ClassMembers>(ClassMembersMap); 2528 2529 // Remove `Old`'s Sym->Class relation. 2530 ClassMapTy Classes = State->get<ClassMap>(); 2531 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2532 Classes = CMF.remove(Classes, Old); 2533 State = State->set<ClassMap>(Classes); 2534 2535 return State; 2536 } 2537 2538 // Re-evaluate an SVal with top-level `State->assume` logic. 2539 LLVM_NODISCARD ProgramStateRef reAssume(ProgramStateRef State, 2540 const RangeSet *Constraint, 2541 SVal TheValue) { 2542 if (!Constraint) 2543 return State; 2544 2545 const auto DefinedVal = TheValue.castAs<DefinedSVal>(); 2546 2547 // If the SVal is 0, we can simply interpret that as `false`. 2548 if (Constraint->encodesFalseRange()) 2549 return State->assume(DefinedVal, false); 2550 2551 // If the constraint does not encode 0 then we can interpret that as `true` 2552 // AND as a Range(Set). 2553 if (Constraint->encodesTrueRange()) { 2554 State = State->assume(DefinedVal, true); 2555 if (!State) 2556 return nullptr; 2557 // Fall through, re-assume based on the range values as well. 2558 } 2559 // Overestimate the individual Ranges with the RangeSet' lowest and 2560 // highest values. 2561 return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), 2562 Constraint->getMaxValue(), true); 2563 } 2564 2565 // Iterate over all symbols and try to simplify them. Once a symbol is 2566 // simplified then we check if we can merge the simplified symbol's equivalence 2567 // class to this class. This way, we simplify not just the symbols but the 2568 // classes as well: we strive to keep the number of the classes to be the 2569 // absolute minimum. 2570 LLVM_NODISCARD ProgramStateRef 2571 EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, 2572 ProgramStateRef State, EquivalenceClass Class) { 2573 SymbolSet ClassMembers = Class.getClassMembers(State); 2574 for (const SymbolRef &MemberSym : ClassMembers) { 2575 2576 const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); 2577 const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); 2578 2579 // The symbol is collapsed to a constant, check if the current State is 2580 // still feasible. 2581 if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { 2582 const llvm::APSInt &SV = CI->getValue(); 2583 const RangeSet *ClassConstraint = getConstraint(State, Class); 2584 // We have found a contradiction. 2585 if (ClassConstraint && !ClassConstraint->contains(SV)) 2586 return nullptr; 2587 } 2588 2589 if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { 2590 // The simplified symbol should be the member of the original Class, 2591 // however, it might be in another existing class at the moment. We 2592 // have to merge these classes. 2593 ProgramStateRef OldState = State; 2594 State = merge(F, State, MemberSym, SimplifiedMemberSym); 2595 if (!State) 2596 return nullptr; 2597 // No state change, no merge happened actually. 2598 if (OldState == State) 2599 continue; 2600 2601 assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)); 2602 // Remove the old and more complex symbol. 2603 State = find(State, MemberSym).removeMember(State, MemberSym); 2604 2605 // Query the class constraint again b/c that may have changed during the 2606 // merge above. 2607 const RangeSet *ClassConstraint = getConstraint(State, Class); 2608 2609 // Re-evaluate an SVal with top-level `State->assume`, this ignites 2610 // a RECURSIVE algorithm that will reach a FIXPOINT. 2611 // 2612 // About performance and complexity: Let us assume that in a State we 2613 // have N non-trivial equivalence classes and that all constraints and 2614 // disequality info is related to non-trivial classes. In the worst case, 2615 // we can simplify only one symbol of one class in each iteration. The 2616 // number of symbols in one class cannot grow b/c we replace the old 2617 // symbol with the simplified one. Also, the number of the equivalence 2618 // classes can decrease only, b/c the algorithm does a merge operation 2619 // optionally. We need N iterations in this case to reach the fixpoint. 2620 // Thus, the steps needed to be done in the worst case is proportional to 2621 // N*N. 2622 // 2623 // This worst case scenario can be extended to that case when we have 2624 // trivial classes in the constraints and in the disequality map. This 2625 // case can be reduced to the case with a State where there are only 2626 // non-trivial classes. This is because a merge operation on two trivial 2627 // classes results in one non-trivial class. 2628 State = reAssume(State, ClassConstraint, SimplifiedMemberVal); 2629 if (!State) 2630 return nullptr; 2631 } 2632 } 2633 return State; 2634 } 2635 2636 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, 2637 SymbolRef Sym) { 2638 return find(State, Sym).getDisequalClasses(State); 2639 } 2640 2641 inline ClassSet 2642 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { 2643 return getDisequalClasses(State->get<DisequalityMap>(), 2644 State->get_context<ClassSet>()); 2645 } 2646 2647 inline ClassSet 2648 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, 2649 ClassSet::Factory &Factory) const { 2650 if (const ClassSet *DisequalClasses = Map.lookup(*this)) 2651 return *DisequalClasses; 2652 2653 return Factory.getEmptySet(); 2654 } 2655 2656 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { 2657 ClassMembersTy Members = State->get<ClassMembers>(); 2658 2659 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { 2660 for (SymbolRef Member : ClassMembersPair.second) { 2661 // Every member of the class should have a mapping back to the class. 2662 if (find(State, Member) == ClassMembersPair.first) { 2663 continue; 2664 } 2665 2666 return false; 2667 } 2668 } 2669 2670 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2671 for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { 2672 EquivalenceClass Class = DisequalityInfo.first; 2673 ClassSet DisequalClasses = DisequalityInfo.second; 2674 2675 // There is no use in keeping empty sets in the map. 2676 if (DisequalClasses.isEmpty()) 2677 return false; 2678 2679 // Disequality is symmetrical, i.e. for every Class A and B that A != B, 2680 // B != A should also be true. 2681 for (EquivalenceClass DisequalClass : DisequalClasses) { 2682 const ClassSet *DisequalToDisequalClasses = 2683 Disequalities.lookup(DisequalClass); 2684 2685 // It should be a set of at least one element: Class 2686 if (!DisequalToDisequalClasses || 2687 !DisequalToDisequalClasses->contains(Class)) 2688 return false; 2689 } 2690 } 2691 2692 return true; 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // RangeConstraintManager implementation 2697 //===----------------------------------------------------------------------===// 2698 2699 bool RangeConstraintManager::canReasonAbout(SVal X) const { 2700 Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); 2701 if (SymVal && SymVal->isExpression()) { 2702 const SymExpr *SE = SymVal->getSymbol(); 2703 2704 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { 2705 switch (SIE->getOpcode()) { 2706 // We don't reason yet about bitwise-constraints on symbolic values. 2707 case BO_And: 2708 case BO_Or: 2709 case BO_Xor: 2710 return false; 2711 // We don't reason yet about these arithmetic constraints on 2712 // symbolic values. 2713 case BO_Mul: 2714 case BO_Div: 2715 case BO_Rem: 2716 case BO_Shl: 2717 case BO_Shr: 2718 return false; 2719 // All other cases. 2720 default: 2721 return true; 2722 } 2723 } 2724 2725 if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { 2726 // FIXME: Handle <=> here. 2727 if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || 2728 BinaryOperator::isRelationalOp(SSE->getOpcode())) { 2729 // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. 2730 // We've recently started producing Loc <> NonLoc comparisons (that 2731 // result from casts of one of the operands between eg. intptr_t and 2732 // void *), but we can't reason about them yet. 2733 if (Loc::isLocType(SSE->getLHS()->getType())) { 2734 return Loc::isLocType(SSE->getRHS()->getType()); 2735 } 2736 } 2737 } 2738 2739 return false; 2740 } 2741 2742 return true; 2743 } 2744 2745 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 2746 SymbolRef Sym) { 2747 const RangeSet *Ranges = getConstraint(State, Sym); 2748 2749 // If we don't have any information about this symbol, it's underconstrained. 2750 if (!Ranges) 2751 return ConditionTruthVal(); 2752 2753 // If we have a concrete value, see if it's zero. 2754 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 2755 return *Value == 0; 2756 2757 BasicValueFactory &BV = getBasicVals(); 2758 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 2759 llvm::APSInt Zero = IntType.getZeroValue(); 2760 2761 // Check if zero is in the set of possible values. 2762 if (!Ranges->contains(Zero)) 2763 return false; 2764 2765 // Zero is a possible value, but it is not the /only/ possible value. 2766 return ConditionTruthVal(); 2767 } 2768 2769 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 2770 SymbolRef Sym) const { 2771 const RangeSet *T = getConstraint(St, Sym); 2772 return T ? T->getConcreteValue() : nullptr; 2773 } 2774 2775 //===----------------------------------------------------------------------===// 2776 // Remove dead symbols from existing constraints 2777 //===----------------------------------------------------------------------===// 2778 2779 /// Scan all symbols referenced by the constraints. If the symbol is not alive 2780 /// as marked in LSymbols, mark it as dead in DSymbols. 2781 ProgramStateRef 2782 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 2783 SymbolReaper &SymReaper) { 2784 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2785 ClassMembersTy NewClassMembersMap = ClassMembersMap; 2786 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2787 SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); 2788 2789 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2790 ConstraintRangeTy NewConstraints = Constraints; 2791 ConstraintRangeTy::Factory &ConstraintFactory = 2792 State->get_context<ConstraintRange>(); 2793 2794 ClassMapTy Map = State->get<ClassMap>(); 2795 ClassMapTy NewMap = Map; 2796 ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); 2797 2798 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2799 DisequalityMapTy::Factory &DisequalityFactory = 2800 State->get_context<DisequalityMap>(); 2801 ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); 2802 2803 bool ClassMapChanged = false; 2804 bool MembersMapChanged = false; 2805 bool ConstraintMapChanged = false; 2806 bool DisequalitiesChanged = false; 2807 2808 auto removeDeadClass = [&](EquivalenceClass Class) { 2809 // Remove associated constraint ranges. 2810 Constraints = ConstraintFactory.remove(Constraints, Class); 2811 ConstraintMapChanged = true; 2812 2813 // Update disequality information to not hold any information on the 2814 // removed class. 2815 ClassSet DisequalClasses = 2816 Class.getDisequalClasses(Disequalities, ClassSetFactory); 2817 if (!DisequalClasses.isEmpty()) { 2818 for (EquivalenceClass DisequalClass : DisequalClasses) { 2819 ClassSet DisequalToDisequalSet = 2820 DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); 2821 // DisequalToDisequalSet is guaranteed to be non-empty for consistent 2822 // disequality info. 2823 assert(!DisequalToDisequalSet.isEmpty()); 2824 ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); 2825 2826 // No need in keeping an empty set. 2827 if (NewSet.isEmpty()) { 2828 Disequalities = 2829 DisequalityFactory.remove(Disequalities, DisequalClass); 2830 } else { 2831 Disequalities = 2832 DisequalityFactory.add(Disequalities, DisequalClass, NewSet); 2833 } 2834 } 2835 // Remove the data for the class 2836 Disequalities = DisequalityFactory.remove(Disequalities, Class); 2837 DisequalitiesChanged = true; 2838 } 2839 }; 2840 2841 // 1. Let's see if dead symbols are trivial and have associated constraints. 2842 for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : 2843 Constraints) { 2844 EquivalenceClass Class = ClassConstraintPair.first; 2845 if (Class.isTriviallyDead(State, SymReaper)) { 2846 // If this class is trivial, we can remove its constraints right away. 2847 removeDeadClass(Class); 2848 } 2849 } 2850 2851 // 2. We don't need to track classes for dead symbols. 2852 for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { 2853 SymbolRef Sym = SymbolClassPair.first; 2854 2855 if (SymReaper.isDead(Sym)) { 2856 ClassMapChanged = true; 2857 NewMap = ClassFactory.remove(NewMap, Sym); 2858 } 2859 } 2860 2861 // 3. Remove dead members from classes and remove dead non-trivial classes 2862 // and their constraints. 2863 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : 2864 ClassMembersMap) { 2865 EquivalenceClass Class = ClassMembersPair.first; 2866 SymbolSet LiveMembers = ClassMembersPair.second; 2867 bool MembersChanged = false; 2868 2869 for (SymbolRef Member : ClassMembersPair.second) { 2870 if (SymReaper.isDead(Member)) { 2871 MembersChanged = true; 2872 LiveMembers = SetFactory.remove(LiveMembers, Member); 2873 } 2874 } 2875 2876 // Check if the class changed. 2877 if (!MembersChanged) 2878 continue; 2879 2880 MembersMapChanged = true; 2881 2882 if (LiveMembers.isEmpty()) { 2883 // The class is dead now, we need to wipe it out of the members map... 2884 NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); 2885 2886 // ...and remove all of its constraints. 2887 removeDeadClass(Class); 2888 } else { 2889 // We need to change the members associated with the class. 2890 NewClassMembersMap = 2891 EMFactory.add(NewClassMembersMap, Class, LiveMembers); 2892 } 2893 } 2894 2895 // 4. Update the state with new maps. 2896 // 2897 // Here we try to be humble and update a map only if it really changed. 2898 if (ClassMapChanged) 2899 State = State->set<ClassMap>(NewMap); 2900 2901 if (MembersMapChanged) 2902 State = State->set<ClassMembers>(NewClassMembersMap); 2903 2904 if (ConstraintMapChanged) 2905 State = State->set<ConstraintRange>(Constraints); 2906 2907 if (DisequalitiesChanged) 2908 State = State->set<DisequalityMap>(Disequalities); 2909 2910 assert(EquivalenceClass::isClassDataConsistent(State)); 2911 2912 return State; 2913 } 2914 2915 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 2916 SymbolRef Sym) { 2917 return SymbolicRangeInferrer::inferRange(F, State, Sym); 2918 } 2919 2920 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, 2921 SymbolRef Sym, 2922 RangeSet Range) { 2923 return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); 2924 } 2925 2926 //===------------------------------------------------------------------------=== 2927 // assumeSymX methods: protected interface for RangeConstraintManager. 2928 //===------------------------------------------------------------------------===/ 2929 2930 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 2931 // and (x, y) for open ranges. These ranges are modular, corresponding with 2932 // a common treatment of C integer overflow. This means that these methods 2933 // do not have to worry about overflow; RangeSet::Intersect can handle such a 2934 // "wraparound" range. 2935 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 2936 // UINT_MAX, 0, 1, and 2. 2937 2938 ProgramStateRef 2939 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 2940 const llvm::APSInt &Int, 2941 const llvm::APSInt &Adjustment) { 2942 // Before we do any real work, see if the value can even show up. 2943 APSIntType AdjustmentType(Adjustment); 2944 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 2945 return St; 2946 2947 llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; 2948 RangeSet New = getRange(St, Sym); 2949 New = F.deletePoint(New, Point); 2950 2951 return setRange(St, Sym, New); 2952 } 2953 2954 ProgramStateRef 2955 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 2956 const llvm::APSInt &Int, 2957 const llvm::APSInt &Adjustment) { 2958 // Before we do any real work, see if the value can even show up. 2959 APSIntType AdjustmentType(Adjustment); 2960 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 2961 return nullptr; 2962 2963 // [Int-Adjustment, Int-Adjustment] 2964 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 2965 RangeSet New = getRange(St, Sym); 2966 New = F.intersect(New, AdjInt); 2967 2968 return setRange(St, Sym, New); 2969 } 2970 2971 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 2972 SymbolRef Sym, 2973 const llvm::APSInt &Int, 2974 const llvm::APSInt &Adjustment) { 2975 // Before we do any real work, see if the value can even show up. 2976 APSIntType AdjustmentType(Adjustment); 2977 switch (AdjustmentType.testInRange(Int, true)) { 2978 case APSIntType::RTR_Below: 2979 return F.getEmptySet(); 2980 case APSIntType::RTR_Within: 2981 break; 2982 case APSIntType::RTR_Above: 2983 return getRange(St, Sym); 2984 } 2985 2986 // Special case for Int == Min. This is always false. 2987 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 2988 llvm::APSInt Min = AdjustmentType.getMinValue(); 2989 if (ComparisonVal == Min) 2990 return F.getEmptySet(); 2991 2992 llvm::APSInt Lower = Min - Adjustment; 2993 llvm::APSInt Upper = ComparisonVal - Adjustment; 2994 --Upper; 2995 2996 RangeSet Result = getRange(St, Sym); 2997 return F.intersect(Result, Lower, Upper); 2998 } 2999 3000 ProgramStateRef 3001 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 3002 const llvm::APSInt &Int, 3003 const llvm::APSInt &Adjustment) { 3004 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 3005 return setRange(St, Sym, New); 3006 } 3007 3008 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, 3009 SymbolRef Sym, 3010 const llvm::APSInt &Int, 3011 const llvm::APSInt &Adjustment) { 3012 // Before we do any real work, see if the value can even show up. 3013 APSIntType AdjustmentType(Adjustment); 3014 switch (AdjustmentType.testInRange(Int, true)) { 3015 case APSIntType::RTR_Below: 3016 return getRange(St, Sym); 3017 case APSIntType::RTR_Within: 3018 break; 3019 case APSIntType::RTR_Above: 3020 return F.getEmptySet(); 3021 } 3022 3023 // Special case for Int == Max. This is always false. 3024 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3025 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3026 if (ComparisonVal == Max) 3027 return F.getEmptySet(); 3028 3029 llvm::APSInt Lower = ComparisonVal - Adjustment; 3030 llvm::APSInt Upper = Max - Adjustment; 3031 ++Lower; 3032 3033 RangeSet SymRange = getRange(St, Sym); 3034 return F.intersect(SymRange, Lower, Upper); 3035 } 3036 3037 ProgramStateRef 3038 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 3039 const llvm::APSInt &Int, 3040 const llvm::APSInt &Adjustment) { 3041 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 3042 return setRange(St, Sym, New); 3043 } 3044 3045 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, 3046 SymbolRef Sym, 3047 const llvm::APSInt &Int, 3048 const llvm::APSInt &Adjustment) { 3049 // Before we do any real work, see if the value can even show up. 3050 APSIntType AdjustmentType(Adjustment); 3051 switch (AdjustmentType.testInRange(Int, true)) { 3052 case APSIntType::RTR_Below: 3053 return getRange(St, Sym); 3054 case APSIntType::RTR_Within: 3055 break; 3056 case APSIntType::RTR_Above: 3057 return F.getEmptySet(); 3058 } 3059 3060 // Special case for Int == Min. This is always feasible. 3061 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3062 llvm::APSInt Min = AdjustmentType.getMinValue(); 3063 if (ComparisonVal == Min) 3064 return getRange(St, Sym); 3065 3066 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3067 llvm::APSInt Lower = ComparisonVal - Adjustment; 3068 llvm::APSInt Upper = Max - Adjustment; 3069 3070 RangeSet SymRange = getRange(St, Sym); 3071 return F.intersect(SymRange, Lower, Upper); 3072 } 3073 3074 ProgramStateRef 3075 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 3076 const llvm::APSInt &Int, 3077 const llvm::APSInt &Adjustment) { 3078 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 3079 return setRange(St, Sym, New); 3080 } 3081 3082 RangeSet 3083 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, 3084 const llvm::APSInt &Int, 3085 const llvm::APSInt &Adjustment) { 3086 // Before we do any real work, see if the value can even show up. 3087 APSIntType AdjustmentType(Adjustment); 3088 switch (AdjustmentType.testInRange(Int, true)) { 3089 case APSIntType::RTR_Below: 3090 return F.getEmptySet(); 3091 case APSIntType::RTR_Within: 3092 break; 3093 case APSIntType::RTR_Above: 3094 return RS(); 3095 } 3096 3097 // Special case for Int == Max. This is always feasible. 3098 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3099 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3100 if (ComparisonVal == Max) 3101 return RS(); 3102 3103 llvm::APSInt Min = AdjustmentType.getMinValue(); 3104 llvm::APSInt Lower = Min - Adjustment; 3105 llvm::APSInt Upper = ComparisonVal - Adjustment; 3106 3107 RangeSet Default = RS(); 3108 return F.intersect(Default, Lower, Upper); 3109 } 3110 3111 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, 3112 SymbolRef Sym, 3113 const llvm::APSInt &Int, 3114 const llvm::APSInt &Adjustment) { 3115 return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); 3116 } 3117 3118 ProgramStateRef 3119 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 3120 const llvm::APSInt &Int, 3121 const llvm::APSInt &Adjustment) { 3122 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 3123 return setRange(St, Sym, New); 3124 } 3125 3126 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( 3127 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3128 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3129 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 3130 if (New.isEmpty()) 3131 return nullptr; 3132 RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); 3133 return setRange(State, Sym, Out); 3134 } 3135 3136 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( 3137 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3138 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3139 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 3140 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 3141 RangeSet New(F.add(RangeLT, RangeGT)); 3142 return setRange(State, Sym, New); 3143 } 3144 3145 //===----------------------------------------------------------------------===// 3146 // Pretty-printing. 3147 //===----------------------------------------------------------------------===// 3148 3149 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, 3150 const char *NL, unsigned int Space, 3151 bool IsDot) const { 3152 printConstraints(Out, State, NL, Space, IsDot); 3153 printEquivalenceClasses(Out, State, NL, Space, IsDot); 3154 printDisequalities(Out, State, NL, Space, IsDot); 3155 } 3156 3157 static std::string toString(const SymbolRef &Sym) { 3158 std::string S; 3159 llvm::raw_string_ostream O(S); 3160 Sym->dumpToStream(O); 3161 return O.str(); 3162 } 3163 3164 void RangeConstraintManager::printConstraints(raw_ostream &Out, 3165 ProgramStateRef State, 3166 const char *NL, 3167 unsigned int Space, 3168 bool IsDot) const { 3169 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 3170 3171 Indent(Out, Space, IsDot) << "\"constraints\": "; 3172 if (Constraints.isEmpty()) { 3173 Out << "null," << NL; 3174 return; 3175 } 3176 3177 std::map<std::string, RangeSet> OrderedConstraints; 3178 for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { 3179 SymbolSet ClassMembers = P.first.getClassMembers(State); 3180 for (const SymbolRef &ClassMember : ClassMembers) { 3181 bool insertion_took_place; 3182 std::tie(std::ignore, insertion_took_place) = 3183 OrderedConstraints.insert({toString(ClassMember), P.second}); 3184 assert(insertion_took_place && 3185 "two symbols should not have the same dump"); 3186 } 3187 } 3188 3189 ++Space; 3190 Out << '[' << NL; 3191 bool First = true; 3192 for (std::pair<std::string, RangeSet> P : OrderedConstraints) { 3193 if (First) { 3194 First = false; 3195 } else { 3196 Out << ','; 3197 Out << NL; 3198 } 3199 Indent(Out, Space, IsDot) 3200 << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; 3201 P.second.dump(Out); 3202 Out << "\" }"; 3203 } 3204 Out << NL; 3205 3206 --Space; 3207 Indent(Out, Space, IsDot) << "]," << NL; 3208 } 3209 3210 static std::string toString(ProgramStateRef State, EquivalenceClass Class) { 3211 SymbolSet ClassMembers = Class.getClassMembers(State); 3212 llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(), 3213 ClassMembers.end()); 3214 llvm::sort(ClassMembersSorted, 3215 [](const SymbolRef &LHS, const SymbolRef &RHS) { 3216 return toString(LHS) < toString(RHS); 3217 }); 3218 3219 bool FirstMember = true; 3220 3221 std::string Str; 3222 llvm::raw_string_ostream Out(Str); 3223 Out << "[ "; 3224 for (SymbolRef ClassMember : ClassMembersSorted) { 3225 if (FirstMember) 3226 FirstMember = false; 3227 else 3228 Out << ", "; 3229 Out << "\"" << ClassMember << "\""; 3230 } 3231 Out << " ]"; 3232 return Out.str(); 3233 } 3234 3235 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, 3236 ProgramStateRef State, 3237 const char *NL, 3238 unsigned int Space, 3239 bool IsDot) const { 3240 ClassMembersTy Members = State->get<ClassMembers>(); 3241 3242 Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; 3243 if (Members.isEmpty()) { 3244 Out << "null," << NL; 3245 return; 3246 } 3247 3248 std::set<std::string> MembersStr; 3249 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) 3250 MembersStr.insert(toString(State, ClassToSymbolSet.first)); 3251 3252 ++Space; 3253 Out << '[' << NL; 3254 bool FirstClass = true; 3255 for (const std::string &Str : MembersStr) { 3256 if (FirstClass) { 3257 FirstClass = false; 3258 } else { 3259 Out << ','; 3260 Out << NL; 3261 } 3262 Indent(Out, Space, IsDot); 3263 Out << Str; 3264 } 3265 Out << NL; 3266 3267 --Space; 3268 Indent(Out, Space, IsDot) << "]," << NL; 3269 } 3270 3271 void RangeConstraintManager::printDisequalities(raw_ostream &Out, 3272 ProgramStateRef State, 3273 const char *NL, 3274 unsigned int Space, 3275 bool IsDot) const { 3276 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 3277 3278 Indent(Out, Space, IsDot) << "\"disequality_info\": "; 3279 if (Disequalities.isEmpty()) { 3280 Out << "null," << NL; 3281 return; 3282 } 3283 3284 // Transform the disequality info to an ordered map of 3285 // [string -> (ordered set of strings)] 3286 using EqClassesStrTy = std::set<std::string>; 3287 using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; 3288 DisequalityInfoStrTy DisequalityInfoStr; 3289 for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { 3290 EquivalenceClass Class = ClassToDisEqSet.first; 3291 ClassSet DisequalClasses = ClassToDisEqSet.second; 3292 EqClassesStrTy MembersStr; 3293 for (EquivalenceClass DisEqClass : DisequalClasses) 3294 MembersStr.insert(toString(State, DisEqClass)); 3295 DisequalityInfoStr.insert({toString(State, Class), MembersStr}); 3296 } 3297 3298 ++Space; 3299 Out << '[' << NL; 3300 bool FirstClass = true; 3301 for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : 3302 DisequalityInfoStr) { 3303 const std::string &Class = ClassToDisEqSet.first; 3304 if (FirstClass) { 3305 FirstClass = false; 3306 } else { 3307 Out << ','; 3308 Out << NL; 3309 } 3310 Indent(Out, Space, IsDot) << "{" << NL; 3311 unsigned int DisEqSpace = Space + 1; 3312 Indent(Out, DisEqSpace, IsDot) << "\"class\": "; 3313 Out << Class; 3314 const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; 3315 if (!DisequalClasses.empty()) { 3316 Out << "," << NL; 3317 Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; 3318 unsigned int DisEqClassSpace = DisEqSpace + 1; 3319 Indent(Out, DisEqClassSpace, IsDot); 3320 bool FirstDisEqClass = true; 3321 for (const std::string &DisEqClass : DisequalClasses) { 3322 if (FirstDisEqClass) { 3323 FirstDisEqClass = false; 3324 } else { 3325 Out << ',' << NL; 3326 Indent(Out, DisEqClassSpace, IsDot); 3327 } 3328 Out << DisEqClass; 3329 } 3330 Out << "]" << NL; 3331 } 3332 Indent(Out, Space, IsDot) << "}"; 3333 } 3334 Out << NL; 3335 3336 --Space; 3337 Indent(Out, Space, IsDot) << "]," << NL; 3338 } 3339