1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ProgramState and ProgramStateManager. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 14 #include "clang/Analysis/CFG.h" 15 #include "clang/Basic/JsonSupport.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace clang; 24 using namespace ento; 25 26 namespace clang { namespace ento { 27 /// Increments the number of times this state is referenced. 28 29 void ProgramStateRetain(const ProgramState *state) { 30 ++const_cast<ProgramState*>(state)->refCount; 31 } 32 33 /// Decrement the number of times this state is referenced. 34 void ProgramStateRelease(const ProgramState *state) { 35 assert(state->refCount > 0); 36 ProgramState *s = const_cast<ProgramState*>(state); 37 if (--s->refCount == 0) { 38 ProgramStateManager &Mgr = s->getStateManager(); 39 Mgr.StateSet.RemoveNode(s); 40 s->~ProgramState(); 41 Mgr.freeStates.push_back(s); 42 } 43 } 44 }} 45 46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 47 StoreRef st, GenericDataMap gdm) 48 : stateMgr(mgr), 49 Env(env), 50 store(st.getStore()), 51 GDM(gdm), 52 refCount(0) { 53 stateMgr->getStoreManager().incrementReferenceCount(store); 54 } 55 56 ProgramState::ProgramState(const ProgramState &RHS) 57 : stateMgr(RHS.stateMgr), Env(RHS.Env), store(RHS.store), GDM(RHS.GDM), 58 refCount(0) { 59 stateMgr->getStoreManager().incrementReferenceCount(store); 60 } 61 62 ProgramState::~ProgramState() { 63 if (store) 64 stateMgr->getStoreManager().decrementReferenceCount(store); 65 } 66 67 int64_t ProgramState::getID() const { 68 return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this); 69 } 70 71 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 72 StoreManagerCreator CreateSMgr, 73 ConstraintManagerCreator CreateCMgr, 74 llvm::BumpPtrAllocator &alloc, 75 ExprEngine *ExprEng) 76 : Eng(ExprEng), EnvMgr(alloc), GDMFactory(alloc), 77 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 78 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 79 StoreMgr = (*CreateSMgr)(*this); 80 ConstraintMgr = (*CreateCMgr)(*this, ExprEng); 81 } 82 83 84 ProgramStateManager::~ProgramStateManager() { 85 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 86 I!=E; ++I) 87 I->second.second(I->second.first); 88 } 89 90 ProgramStateRef ProgramStateManager::removeDeadBindingsFromEnvironmentAndStore( 91 ProgramStateRef state, const StackFrameContext *LCtx, 92 SymbolReaper &SymReaper) { 93 94 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 95 // The roots are any Block-level exprs and Decls that our liveness algorithm 96 // tells us are live. We then see what Decls they may reference, and keep 97 // those around. This code more than likely can be made faster, and the 98 // frequency of which this method is called should be experimented with 99 // for optimum performance. 100 ProgramState NewState = *state; 101 102 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 103 104 // Clean up the store. 105 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 106 SymReaper); 107 NewState.setStore(newStore); 108 SymReaper.setReapedStore(newStore); 109 110 return getPersistentState(NewState); 111 } 112 113 ProgramStateRef ProgramState::bindLoc(Loc LV, 114 SVal V, 115 const LocationContext *LCtx, 116 bool notifyChanges) const { 117 ProgramStateManager &Mgr = getStateManager(); 118 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 119 LV, V)); 120 const MemRegion *MR = LV.getAsRegion(); 121 if (MR && notifyChanges) 122 return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx); 123 124 return newState; 125 } 126 127 ProgramStateRef 128 ProgramState::bindDefaultInitial(SVal loc, SVal V, 129 const LocationContext *LCtx) const { 130 ProgramStateManager &Mgr = getStateManager(); 131 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 132 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V); 133 ProgramStateRef new_state = makeWithStore(newStore); 134 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 135 } 136 137 ProgramStateRef 138 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const { 139 ProgramStateManager &Mgr = getStateManager(); 140 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 141 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R); 142 ProgramStateRef new_state = makeWithStore(newStore); 143 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 144 } 145 146 typedef ArrayRef<const MemRegion *> RegionList; 147 typedef ArrayRef<SVal> ValueList; 148 149 ProgramStateRef 150 ProgramState::invalidateRegions(RegionList Regions, 151 const Expr *E, unsigned Count, 152 const LocationContext *LCtx, 153 bool CausedByPointerEscape, 154 InvalidatedSymbols *IS, 155 const CallEvent *Call, 156 RegionAndSymbolInvalidationTraits *ITraits) const { 157 SmallVector<SVal, 8> Values; 158 for (RegionList::const_iterator I = Regions.begin(), 159 End = Regions.end(); I != End; ++I) 160 Values.push_back(loc::MemRegionVal(*I)); 161 162 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 163 IS, ITraits, Call); 164 } 165 166 ProgramStateRef 167 ProgramState::invalidateRegions(ValueList Values, 168 const Expr *E, unsigned Count, 169 const LocationContext *LCtx, 170 bool CausedByPointerEscape, 171 InvalidatedSymbols *IS, 172 const CallEvent *Call, 173 RegionAndSymbolInvalidationTraits *ITraits) const { 174 175 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 176 IS, ITraits, Call); 177 } 178 179 ProgramStateRef 180 ProgramState::invalidateRegionsImpl(ValueList Values, 181 const Expr *E, unsigned Count, 182 const LocationContext *LCtx, 183 bool CausedByPointerEscape, 184 InvalidatedSymbols *IS, 185 RegionAndSymbolInvalidationTraits *ITraits, 186 const CallEvent *Call) const { 187 ProgramStateManager &Mgr = getStateManager(); 188 ExprEngine &Eng = Mgr.getOwningEngine(); 189 190 InvalidatedSymbols InvalidatedSyms; 191 if (!IS) 192 IS = &InvalidatedSyms; 193 194 RegionAndSymbolInvalidationTraits ITraitsLocal; 195 if (!ITraits) 196 ITraits = &ITraitsLocal; 197 198 StoreManager::InvalidatedRegions TopLevelInvalidated; 199 StoreManager::InvalidatedRegions Invalidated; 200 const StoreRef &newStore 201 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 202 *IS, *ITraits, &TopLevelInvalidated, 203 &Invalidated); 204 205 ProgramStateRef newState = makeWithStore(newStore); 206 207 if (CausedByPointerEscape) { 208 newState = Eng.notifyCheckersOfPointerEscape(newState, IS, 209 TopLevelInvalidated, 210 Call, 211 *ITraits); 212 } 213 214 return Eng.processRegionChanges(newState, IS, TopLevelInvalidated, 215 Invalidated, LCtx, Call); 216 } 217 218 ProgramStateRef ProgramState::killBinding(Loc LV) const { 219 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 220 221 Store OldStore = getStore(); 222 const StoreRef &newStore = 223 getStateManager().StoreMgr->killBinding(OldStore, LV); 224 225 if (newStore.getStore() == OldStore) 226 return this; 227 228 return makeWithStore(newStore); 229 } 230 231 ProgramStateRef 232 ProgramState::enterStackFrame(const CallEvent &Call, 233 const StackFrameContext *CalleeCtx) const { 234 const StoreRef &NewStore = 235 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 236 return makeWithStore(NewStore); 237 } 238 239 SVal ProgramState::getSelfSVal(const LocationContext *LCtx) const { 240 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 241 if (!SelfDecl) 242 return SVal(); 243 return getSVal(getRegion(SelfDecl, LCtx)); 244 } 245 246 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 247 // We only want to do fetches from regions that we can actually bind 248 // values. For example, SymbolicRegions of type 'id<...>' cannot 249 // have direct bindings (but their can be bindings on their subregions). 250 if (!R->isBoundable()) 251 return UnknownVal(); 252 253 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 254 QualType T = TR->getValueType(); 255 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 256 return getSVal(R); 257 } 258 259 return UnknownVal(); 260 } 261 262 SVal ProgramState::getSVal(Loc location, QualType T) const { 263 SVal V = getRawSVal(location, T); 264 265 // If 'V' is a symbolic value that is *perfectly* constrained to 266 // be a constant value, use that value instead to lessen the burden 267 // on later analysis stages (so we have less symbolic values to reason 268 // about). 269 // We only go into this branch if we can convert the APSInt value we have 270 // to the type of T, which is not always the case (e.g. for void). 271 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 272 if (SymbolRef sym = V.getAsSymbol()) { 273 if (const llvm::APSInt *Int = getStateManager() 274 .getConstraintManager() 275 .getSymVal(this, sym)) { 276 // FIXME: Because we don't correctly model (yet) sign-extension 277 // and truncation of symbolic values, we need to convert 278 // the integer value to the correct signedness and bitwidth. 279 // 280 // This shows up in the following: 281 // 282 // char foo(); 283 // unsigned x = foo(); 284 // if (x == 54) 285 // ... 286 // 287 // The symbolic value stored to 'x' is actually the conjured 288 // symbol for the call to foo(); the type of that symbol is 'char', 289 // not unsigned. 290 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 291 292 if (V.getAs<Loc>()) 293 return loc::ConcreteInt(NewV); 294 else 295 return nonloc::ConcreteInt(NewV); 296 } 297 } 298 } 299 300 return V; 301 } 302 303 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 304 const LocationContext *LCtx, 305 SVal V, bool Invalidate) const{ 306 Environment NewEnv = 307 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 308 Invalidate); 309 if (NewEnv == Env) 310 return this; 311 312 ProgramState NewSt = *this; 313 NewSt.Env = NewEnv; 314 return getStateManager().getPersistentState(NewSt); 315 } 316 317 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 318 DefinedOrUnknownSVal UpperBound, 319 bool Assumption, 320 QualType indexTy) const { 321 if (Idx.isUnknown() || UpperBound.isUnknown()) 322 return this; 323 324 // Build an expression for 0 <= Idx < UpperBound. 325 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 326 // FIXME: This should probably be part of SValBuilder. 327 ProgramStateManager &SM = getStateManager(); 328 SValBuilder &svalBuilder = SM.getSValBuilder(); 329 ASTContext &Ctx = svalBuilder.getContext(); 330 331 // Get the offset: the minimum value of the array index type. 332 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 333 if (indexTy.isNull()) 334 indexTy = svalBuilder.getArrayIndexType(); 335 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 336 337 // Adjust the index. 338 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 339 Idx.castAs<NonLoc>(), Min, indexTy); 340 if (newIdx.isUnknownOrUndef()) 341 return this; 342 343 // Adjust the upper bound. 344 SVal newBound = 345 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 346 Min, indexTy); 347 348 if (newBound.isUnknownOrUndef()) 349 return this; 350 351 // Build the actual comparison. 352 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 353 newBound.castAs<NonLoc>(), Ctx.IntTy); 354 if (inBound.isUnknownOrUndef()) 355 return this; 356 357 // Finally, let the constraint manager take care of it. 358 ConstraintManager &CM = SM.getConstraintManager(); 359 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 360 } 361 362 ConditionTruthVal ProgramState::isNonNull(SVal V) const { 363 ConditionTruthVal IsNull = isNull(V); 364 if (IsNull.isUnderconstrained()) 365 return IsNull; 366 return ConditionTruthVal(!IsNull.getValue()); 367 } 368 369 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const { 370 return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs); 371 } 372 373 ConditionTruthVal ProgramState::isNull(SVal V) const { 374 if (V.isZeroConstant()) 375 return true; 376 377 if (V.isConstant()) 378 return false; 379 380 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 381 if (!Sym) 382 return ConditionTruthVal(); 383 384 return getStateManager().ConstraintMgr->isNull(this, Sym); 385 } 386 387 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 388 ProgramState State(this, 389 EnvMgr.getInitialEnvironment(), 390 StoreMgr->getInitialStore(InitLoc), 391 GDMFactory.getEmptyMap()); 392 393 return getPersistentState(State); 394 } 395 396 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 397 ProgramStateRef FromState, 398 ProgramStateRef GDMState) { 399 ProgramState NewState(*FromState); 400 NewState.GDM = GDMState->GDM; 401 return getPersistentState(NewState); 402 } 403 404 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 405 406 llvm::FoldingSetNodeID ID; 407 State.Profile(ID); 408 void *InsertPos; 409 410 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 411 return I; 412 413 ProgramState *newState = nullptr; 414 if (!freeStates.empty()) { 415 newState = freeStates.back(); 416 freeStates.pop_back(); 417 } 418 else { 419 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 420 } 421 new (newState) ProgramState(State); 422 StateSet.InsertNode(newState, InsertPos); 423 return newState; 424 } 425 426 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 427 ProgramState NewSt(*this); 428 NewSt.setStore(store); 429 return getStateManager().getPersistentState(NewSt); 430 } 431 432 void ProgramState::setStore(const StoreRef &newStore) { 433 Store newStoreStore = newStore.getStore(); 434 if (newStoreStore) 435 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 436 if (store) 437 stateMgr->getStoreManager().decrementReferenceCount(store); 438 store = newStoreStore; 439 } 440 441 //===----------------------------------------------------------------------===// 442 // State pretty-printing. 443 //===----------------------------------------------------------------------===// 444 445 void ProgramState::printJson(raw_ostream &Out, const LocationContext *LCtx, 446 const char *NL, unsigned int Space, 447 bool IsDot) const { 448 Indent(Out, Space, IsDot) << "\"program_state\": {" << NL; 449 ++Space; 450 451 ProgramStateManager &Mgr = getStateManager(); 452 453 // Print the store. 454 Mgr.getStoreManager().printJson(Out, getStore(), NL, Space, IsDot); 455 456 // Print out the environment. 457 Env.printJson(Out, Mgr.getContext(), LCtx, NL, Space, IsDot); 458 459 // Print out the constraints. 460 Mgr.getConstraintManager().printJson(Out, this, NL, Space, IsDot); 461 462 // Print out the tracked dynamic types. 463 printDynamicTypeInfoJson(Out, this, NL, Space, IsDot); 464 465 // Print checker-specific data. 466 Mgr.getOwningEngine().printJson(Out, this, LCtx, NL, Space, IsDot); 467 468 --Space; 469 Indent(Out, Space, IsDot) << '}'; 470 } 471 472 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LCtx, 473 unsigned int Space) const { 474 printJson(Out, LCtx, /*NL=*/"\\l", Space, /*IsDot=*/true); 475 } 476 477 LLVM_DUMP_METHOD void ProgramState::dump() const { 478 printJson(llvm::errs()); 479 } 480 481 AnalysisManager& ProgramState::getAnalysisManager() const { 482 return stateMgr->getOwningEngine().getAnalysisManager(); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // Generic Data Map. 487 //===----------------------------------------------------------------------===// 488 489 void *const* ProgramState::FindGDM(void *K) const { 490 return GDM.lookup(K); 491 } 492 493 void* 494 ProgramStateManager::FindGDMContext(void *K, 495 void *(*CreateContext)(llvm::BumpPtrAllocator&), 496 void (*DeleteContext)(void*)) { 497 498 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 499 if (!p.first) { 500 p.first = CreateContext(Alloc); 501 p.second = DeleteContext; 502 } 503 504 return p.first; 505 } 506 507 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 508 ProgramState::GenericDataMap M1 = St->getGDM(); 509 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 510 511 if (M1 == M2) 512 return St; 513 514 ProgramState NewSt = *St; 515 NewSt.GDM = M2; 516 return getPersistentState(NewSt); 517 } 518 519 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 520 ProgramState::GenericDataMap OldM = state->getGDM(); 521 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 522 523 if (NewM == OldM) 524 return state; 525 526 ProgramState NewState = *state; 527 NewState.GDM = NewM; 528 return getPersistentState(NewState); 529 } 530 531 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 532 bool wasVisited = !visited.insert(val.getCVData()).second; 533 if (wasVisited) 534 return true; 535 536 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 537 // FIXME: We don't really want to use getBaseRegion() here because pointer 538 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 539 // regions right now. 540 const MemRegion *R = val.getRegion()->getBaseRegion(); 541 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 542 } 543 544 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 545 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 546 if (!scan(*I)) 547 return false; 548 549 return true; 550 } 551 552 bool ScanReachableSymbols::scan(const SymExpr *sym) { 553 for (SymExpr::symbol_iterator SI = sym->symbol_begin(), 554 SE = sym->symbol_end(); 555 SI != SE; ++SI) { 556 bool wasVisited = !visited.insert(*SI).second; 557 if (wasVisited) 558 continue; 559 560 if (!visitor.VisitSymbol(*SI)) 561 return false; 562 } 563 564 return true; 565 } 566 567 bool ScanReachableSymbols::scan(SVal val) { 568 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 569 return scan(X->getRegion()); 570 571 if (Optional<nonloc::LazyCompoundVal> X = 572 val.getAs<nonloc::LazyCompoundVal>()) 573 return scan(*X); 574 575 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 576 return scan(X->getLoc()); 577 578 if (SymbolRef Sym = val.getAsSymbol()) 579 return scan(Sym); 580 581 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 582 return scan(*X); 583 584 return true; 585 } 586 587 bool ScanReachableSymbols::scan(const MemRegion *R) { 588 if (isa<MemSpaceRegion>(R)) 589 return true; 590 591 bool wasVisited = !visited.insert(R).second; 592 if (wasVisited) 593 return true; 594 595 if (!visitor.VisitMemRegion(R)) 596 return false; 597 598 // If this is a symbolic region, visit the symbol for the region. 599 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 600 if (!visitor.VisitSymbol(SR->getSymbol())) 601 return false; 602 603 // If this is a subregion, also visit the parent regions. 604 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 605 const MemRegion *Super = SR->getSuperRegion(); 606 if (!scan(Super)) 607 return false; 608 609 // When we reach the topmost region, scan all symbols in it. 610 if (isa<MemSpaceRegion>(Super)) { 611 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 612 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 613 return false; 614 } 615 } 616 617 // Regions captured by a block are also implicitly reachable. 618 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 619 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 620 E = BDR->referenced_vars_end(); 621 for ( ; I != E; ++I) { 622 if (!scan(I.getCapturedRegion())) 623 return false; 624 } 625 } 626 627 return true; 628 } 629 630 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 631 ScanReachableSymbols S(this, visitor); 632 return S.scan(val); 633 } 634 635 bool ProgramState::scanReachableSymbols( 636 llvm::iterator_range<region_iterator> Reachable, 637 SymbolVisitor &visitor) const { 638 ScanReachableSymbols S(this, visitor); 639 for (const MemRegion *R : Reachable) { 640 if (!S.scan(R)) 641 return false; 642 } 643 return true; 644 } 645