1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 /// Optionally conjure and return a symbol for offset when processing 23 /// an expression \p Expression. 24 /// If \p Other is a location, conjure a symbol for \p Symbol 25 /// (offset) if it is unknown so that memory arithmetic always 26 /// results in an ElementRegion. 27 /// \p Count The number of times the current basic block was visited. 28 static SVal conjureOffsetSymbolOnLocation( 29 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 30 unsigned Count, const LocationContext *LCtx) { 31 QualType Ty = Expression->getType(); 32 if (Other.getAs<Loc>() && 33 Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } else { 104 // If we cannot evaluate the operation escape the operands. 105 state = escapeValues(state, LeftV, PSK_EscapeOther); 106 state = escapeValues(state, RightV, PSK_EscapeOther); 107 } 108 109 Bldr.generateNode(B, *it, state); 110 continue; 111 } 112 113 assert (B->isCompoundAssignmentOp()); 114 115 switch (Op) { 116 default: 117 llvm_unreachable("Invalid opcode for compound assignment."); 118 case BO_MulAssign: Op = BO_Mul; break; 119 case BO_DivAssign: Op = BO_Div; break; 120 case BO_RemAssign: Op = BO_Rem; break; 121 case BO_AddAssign: Op = BO_Add; break; 122 case BO_SubAssign: Op = BO_Sub; break; 123 case BO_ShlAssign: Op = BO_Shl; break; 124 case BO_ShrAssign: Op = BO_Shr; break; 125 case BO_AndAssign: Op = BO_And; break; 126 case BO_XorAssign: Op = BO_Xor; break; 127 case BO_OrAssign: Op = BO_Or; break; 128 } 129 130 // Perform a load (the LHS). This performs the checks for 131 // null dereferences, and so on. 132 ExplodedNodeSet Tmp; 133 SVal location = LeftV; 134 evalLoad(Tmp, B, LHS, *it, state, location); 135 136 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 137 ++I) { 138 139 state = (*I)->getState(); 140 const LocationContext *LCtx = (*I)->getLocationContext(); 141 SVal V = state->getSVal(LHS, LCtx); 142 143 // Get the computation type. 144 QualType CTy = 145 cast<CompoundAssignOperator>(B)->getComputationResultType(); 146 CTy = getContext().getCanonicalType(CTy); 147 148 QualType CLHSTy = 149 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 150 CLHSTy = getContext().getCanonicalType(CLHSTy); 151 152 QualType LTy = getContext().getCanonicalType(LHS->getType()); 153 154 // Promote LHS. 155 V = svalBuilder.evalCast(V, CLHSTy, LTy); 156 157 // Compute the result of the operation. 158 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 159 B->getType(), CTy); 160 161 // EXPERIMENTAL: "Conjured" symbols. 162 // FIXME: Handle structs. 163 164 SVal LHSVal; 165 166 if (Result.isUnknown()) { 167 // The symbolic value is actually for the type of the left-hand side 168 // expression, not the computation type, as this is the value the 169 // LValue on the LHS will bind to. 170 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 171 currBldrCtx->blockCount()); 172 // However, we need to convert the symbol to the computation type. 173 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 174 } 175 else { 176 // The left-hand side may bind to a different value then the 177 // computation type. 178 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 179 } 180 181 // In C++, assignment and compound assignment operators return an 182 // lvalue. 183 if (B->isGLValue()) 184 state = state->BindExpr(B, LCtx, location); 185 else 186 state = state->BindExpr(B, LCtx, Result); 187 188 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 189 } 190 } 191 192 // FIXME: postvisits eventually go in ::Visit() 193 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 194 } 195 196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 197 ExplodedNodeSet &Dst) { 198 199 CanQualType T = getContext().getCanonicalType(BE->getType()); 200 201 const BlockDecl *BD = BE->getBlockDecl(); 202 // Get the value of the block itself. 203 SVal V = svalBuilder.getBlockPointer(BD, T, 204 Pred->getLocationContext(), 205 currBldrCtx->blockCount()); 206 207 ProgramStateRef State = Pred->getState(); 208 209 // If we created a new MemRegion for the block, we should explicitly bind 210 // the captured variables. 211 if (const BlockDataRegion *BDR = 212 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 213 214 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 215 E = BDR->referenced_vars_end(); 216 217 auto CI = BD->capture_begin(); 218 auto CE = BD->capture_end(); 219 for (; I != E; ++I) { 220 const VarRegion *capturedR = I.getCapturedRegion(); 221 const TypedValueRegion *originalR = I.getOriginalRegion(); 222 223 // If the capture had a copy expression, use the result of evaluating 224 // that expression, otherwise use the original value. 225 // We rely on the invariant that the block declaration's capture variables 226 // are a prefix of the BlockDataRegion's referenced vars (which may include 227 // referenced globals, etc.) to enable fast lookup of the capture for a 228 // given referenced var. 229 const Expr *copyExpr = nullptr; 230 if (CI != CE) { 231 assert(CI->getVariable() == capturedR->getDecl()); 232 copyExpr = CI->getCopyExpr(); 233 CI++; 234 } 235 236 if (capturedR != originalR) { 237 SVal originalV; 238 const LocationContext *LCtx = Pred->getLocationContext(); 239 if (copyExpr) { 240 originalV = State->getSVal(copyExpr, LCtx); 241 } else { 242 originalV = State->getSVal(loc::MemRegionVal(originalR)); 243 } 244 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 245 } 246 } 247 } 248 249 ExplodedNodeSet Tmp; 250 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 251 Bldr.generateNode(BE, Pred, 252 State->BindExpr(BE, Pred->getLocationContext(), V), 253 nullptr, ProgramPoint::PostLValueKind); 254 255 // FIXME: Move all post/pre visits to ::Visit(). 256 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 257 } 258 259 ProgramStateRef ExprEngine::handleLValueBitCast( 260 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 261 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 262 ExplodedNode* Pred) { 263 if (T->isLValueReferenceType()) { 264 assert(!CastE->getType()->isLValueReferenceType()); 265 ExTy = getContext().getLValueReferenceType(ExTy); 266 } else if (T->isRValueReferenceType()) { 267 assert(!CastE->getType()->isRValueReferenceType()); 268 ExTy = getContext().getRValueReferenceType(ExTy); 269 } 270 // Delegate to SValBuilder to process. 271 SVal OrigV = state->getSVal(Ex, LCtx); 272 SVal V = svalBuilder.evalCast(OrigV, T, ExTy); 273 // Negate the result if we're treating the boolean as a signed i1 274 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 275 V = evalMinus(V); 276 state = state->BindExpr(CastE, LCtx, V); 277 if (V.isUnknown() && !OrigV.isUnknown()) { 278 state = escapeValues(state, OrigV, PSK_EscapeOther); 279 } 280 Bldr.generateNode(CastE, Pred, state); 281 282 return state; 283 } 284 285 ProgramStateRef ExprEngine::handleLVectorSplat( 286 ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE, 287 StmtNodeBuilder &Bldr, ExplodedNode* Pred) { 288 // Recover some path sensitivity by conjuring a new value. 289 QualType resultType = CastE->getType(); 290 if (CastE->isGLValue()) 291 resultType = getContext().getPointerType(resultType); 292 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 293 resultType, 294 currBldrCtx->blockCount()); 295 state = state->BindExpr(CastE, LCtx, result); 296 Bldr.generateNode(CastE, Pred, state); 297 298 return state; 299 } 300 301 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 302 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 303 304 ExplodedNodeSet dstPreStmt; 305 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 306 307 if (CastE->getCastKind() == CK_LValueToRValue) { 308 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 309 I!=E; ++I) { 310 ExplodedNode *subExprNode = *I; 311 ProgramStateRef state = subExprNode->getState(); 312 const LocationContext *LCtx = subExprNode->getLocationContext(); 313 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 314 } 315 return; 316 } 317 318 // All other casts. 319 QualType T = CastE->getType(); 320 QualType ExTy = Ex->getType(); 321 322 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 323 T = ExCast->getTypeAsWritten(); 324 325 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 326 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 327 I != E; ++I) { 328 329 Pred = *I; 330 ProgramStateRef state = Pred->getState(); 331 const LocationContext *LCtx = Pred->getLocationContext(); 332 333 switch (CastE->getCastKind()) { 334 case CK_LValueToRValue: 335 llvm_unreachable("LValueToRValue casts handled earlier."); 336 case CK_ToVoid: 337 continue; 338 // The analyzer doesn't do anything special with these casts, 339 // since it understands retain/release semantics already. 340 case CK_ARCProduceObject: 341 case CK_ARCConsumeObject: 342 case CK_ARCReclaimReturnedObject: 343 case CK_ARCExtendBlockObject: // Fall-through. 344 case CK_CopyAndAutoreleaseBlockObject: 345 // The analyser can ignore atomic casts for now, although some future 346 // checkers may want to make certain that you're not modifying the same 347 // value through atomic and nonatomic pointers. 348 case CK_AtomicToNonAtomic: 349 case CK_NonAtomicToAtomic: 350 // True no-ops. 351 case CK_NoOp: 352 case CK_ConstructorConversion: 353 case CK_UserDefinedConversion: 354 case CK_FunctionToPointerDecay: 355 case CK_BuiltinFnToFnPtr: { 356 // Copy the SVal of Ex to CastE. 357 ProgramStateRef state = Pred->getState(); 358 const LocationContext *LCtx = Pred->getLocationContext(); 359 SVal V = state->getSVal(Ex, LCtx); 360 state = state->BindExpr(CastE, LCtx, V); 361 Bldr.generateNode(CastE, Pred, state); 362 continue; 363 } 364 case CK_MemberPointerToBoolean: 365 case CK_PointerToBoolean: { 366 SVal V = state->getSVal(Ex, LCtx); 367 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 368 if (PTMSV) 369 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 370 if (V.isUndef() || PTMSV) { 371 state = state->BindExpr(CastE, LCtx, V); 372 Bldr.generateNode(CastE, Pred, state); 373 continue; 374 } 375 // Explicitly proceed with default handler for this case cascade. 376 state = 377 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 378 continue; 379 } 380 case CK_Dependent: 381 case CK_ArrayToPointerDecay: 382 case CK_BitCast: 383 case CK_LValueToRValueBitCast: 384 case CK_AddressSpaceConversion: 385 case CK_BooleanToSignedIntegral: 386 case CK_IntegralToPointer: 387 case CK_PointerToIntegral: { 388 SVal V = state->getSVal(Ex, LCtx); 389 if (V.getAs<nonloc::PointerToMember>()) { 390 state = state->BindExpr(CastE, LCtx, UnknownVal()); 391 Bldr.generateNode(CastE, Pred, state); 392 continue; 393 } 394 // Explicitly proceed with default handler for this case cascade. 395 state = 396 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 397 continue; 398 } 399 case CK_IntegralToBoolean: 400 case CK_IntegralToFloating: 401 case CK_FloatingToIntegral: 402 case CK_FloatingToBoolean: 403 case CK_FloatingCast: 404 case CK_FloatingRealToComplex: 405 case CK_FloatingComplexToReal: 406 case CK_FloatingComplexToBoolean: 407 case CK_FloatingComplexCast: 408 case CK_FloatingComplexToIntegralComplex: 409 case CK_IntegralRealToComplex: 410 case CK_IntegralComplexToReal: 411 case CK_IntegralComplexToBoolean: 412 case CK_IntegralComplexCast: 413 case CK_IntegralComplexToFloatingComplex: 414 case CK_CPointerToObjCPointerCast: 415 case CK_BlockPointerToObjCPointerCast: 416 case CK_AnyPointerToBlockPointerCast: 417 case CK_ObjCObjectLValueCast: 418 case CK_ZeroToOCLOpaqueType: 419 case CK_IntToOCLSampler: 420 case CK_LValueBitCast: 421 case CK_FloatingToFixedPoint: 422 case CK_FixedPointToFloating: 423 case CK_FixedPointCast: 424 case CK_FixedPointToBoolean: 425 case CK_FixedPointToIntegral: 426 case CK_IntegralToFixedPoint: { 427 state = 428 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 429 continue; 430 } 431 case CK_IntegralCast: { 432 // Delegate to SValBuilder to process. 433 SVal V = state->getSVal(Ex, LCtx); 434 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 435 state = state->BindExpr(CastE, LCtx, V); 436 Bldr.generateNode(CastE, Pred, state); 437 continue; 438 } 439 case CK_DerivedToBase: 440 case CK_UncheckedDerivedToBase: { 441 // For DerivedToBase cast, delegate to the store manager. 442 SVal val = state->getSVal(Ex, LCtx); 443 val = getStoreManager().evalDerivedToBase(val, CastE); 444 state = state->BindExpr(CastE, LCtx, val); 445 Bldr.generateNode(CastE, Pred, state); 446 continue; 447 } 448 // Handle C++ dyn_cast. 449 case CK_Dynamic: { 450 SVal val = state->getSVal(Ex, LCtx); 451 452 // Compute the type of the result. 453 QualType resultType = CastE->getType(); 454 if (CastE->isGLValue()) 455 resultType = getContext().getPointerType(resultType); 456 457 bool Failed = false; 458 459 // Check if the value being cast evaluates to 0. 460 if (val.isZeroConstant()) 461 Failed = true; 462 // Else, evaluate the cast. 463 else 464 val = getStoreManager().attemptDownCast(val, T, Failed); 465 466 if (Failed) { 467 if (T->isReferenceType()) { 468 // A bad_cast exception is thrown if input value is a reference. 469 // Currently, we model this, by generating a sink. 470 Bldr.generateSink(CastE, Pred, state); 471 continue; 472 } else { 473 // If the cast fails on a pointer, bind to 0. 474 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 475 } 476 } else { 477 // If we don't know if the cast succeeded, conjure a new symbol. 478 if (val.isUnknown()) { 479 DefinedOrUnknownSVal NewSym = 480 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 481 currBldrCtx->blockCount()); 482 state = state->BindExpr(CastE, LCtx, NewSym); 483 } else 484 // Else, bind to the derived region value. 485 state = state->BindExpr(CastE, LCtx, val); 486 } 487 Bldr.generateNode(CastE, Pred, state); 488 continue; 489 } 490 case CK_BaseToDerived: { 491 SVal val = state->getSVal(Ex, LCtx); 492 QualType resultType = CastE->getType(); 493 if (CastE->isGLValue()) 494 resultType = getContext().getPointerType(resultType); 495 496 bool Failed = false; 497 498 if (!val.isConstant()) { 499 val = getStoreManager().attemptDownCast(val, T, Failed); 500 } 501 502 // Failed to cast or the result is unknown, fall back to conservative. 503 if (Failed || val.isUnknown()) { 504 val = 505 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 506 currBldrCtx->blockCount()); 507 } 508 state = state->BindExpr(CastE, LCtx, val); 509 Bldr.generateNode(CastE, Pred, state); 510 continue; 511 } 512 case CK_NullToPointer: { 513 SVal V = svalBuilder.makeNull(); 514 state = state->BindExpr(CastE, LCtx, V); 515 Bldr.generateNode(CastE, Pred, state); 516 continue; 517 } 518 case CK_NullToMemberPointer: { 519 SVal V = svalBuilder.getMemberPointer(nullptr); 520 state = state->BindExpr(CastE, LCtx, V); 521 Bldr.generateNode(CastE, Pred, state); 522 continue; 523 } 524 case CK_DerivedToBaseMemberPointer: 525 case CK_BaseToDerivedMemberPointer: 526 case CK_ReinterpretMemberPointer: { 527 SVal V = state->getSVal(Ex, LCtx); 528 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 529 SVal CastedPTMSV = svalBuilder.makePointerToMember( 530 getBasicVals().accumCXXBase( 531 llvm::make_range<CastExpr::path_const_iterator>( 532 CastE->path_begin(), CastE->path_end()), *PTMSV)); 533 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 534 Bldr.generateNode(CastE, Pred, state); 535 continue; 536 } 537 // Explicitly proceed with default handler for this case cascade. 538 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 539 continue; 540 } 541 // Various C++ casts that are not handled yet. 542 case CK_ToUnion: 543 case CK_VectorSplat: { 544 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 545 continue; 546 } 547 } 548 } 549 } 550 551 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 552 ExplodedNode *Pred, 553 ExplodedNodeSet &Dst) { 554 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 555 556 ProgramStateRef State = Pred->getState(); 557 const LocationContext *LCtx = Pred->getLocationContext(); 558 559 const Expr *Init = CL->getInitializer(); 560 SVal V = State->getSVal(CL->getInitializer(), LCtx); 561 562 if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) { 563 // No work needed. Just pass the value up to this expression. 564 } else { 565 assert(isa<InitListExpr>(Init)); 566 Loc CLLoc = State->getLValue(CL, LCtx); 567 State = State->bindLoc(CLLoc, V, LCtx); 568 569 if (CL->isGLValue()) 570 V = CLLoc; 571 } 572 573 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 574 } 575 576 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 577 ExplodedNodeSet &Dst) { 578 if (isa<TypedefNameDecl>(*DS->decl_begin())) { 579 // C99 6.7.7 "Any array size expressions associated with variable length 580 // array declarators are evaluated each time the declaration of the typedef 581 // name is reached in the order of execution." 582 // The checkers should know about typedef to be able to handle VLA size 583 // expressions. 584 ExplodedNodeSet DstPre; 585 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this); 586 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this); 587 return; 588 } 589 590 // Assumption: The CFG has one DeclStmt per Decl. 591 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 592 593 if (!VD) { 594 //TODO:AZ: remove explicit insertion after refactoring is done. 595 Dst.insert(Pred); 596 return; 597 } 598 599 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 600 ExplodedNodeSet dstPreVisit; 601 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 602 603 ExplodedNodeSet dstEvaluated; 604 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 605 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 606 I!=E; ++I) { 607 ExplodedNode *N = *I; 608 ProgramStateRef state = N->getState(); 609 const LocationContext *LC = N->getLocationContext(); 610 611 // Decls without InitExpr are not initialized explicitly. 612 if (const Expr *InitEx = VD->getInit()) { 613 614 // Note in the state that the initialization has occurred. 615 ExplodedNode *UpdatedN = N; 616 SVal InitVal = state->getSVal(InitEx, LC); 617 618 assert(DS->isSingleDecl()); 619 if (getObjectUnderConstruction(state, DS, LC)) { 620 state = finishObjectConstruction(state, DS, LC); 621 // We constructed the object directly in the variable. 622 // No need to bind anything. 623 B.generateNode(DS, UpdatedN, state); 624 } else { 625 // Recover some path-sensitivity if a scalar value evaluated to 626 // UnknownVal. 627 if (InitVal.isUnknown()) { 628 QualType Ty = InitEx->getType(); 629 if (InitEx->isGLValue()) { 630 Ty = getContext().getPointerType(Ty); 631 } 632 633 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 634 currBldrCtx->blockCount()); 635 } 636 637 638 B.takeNodes(UpdatedN); 639 ExplodedNodeSet Dst2; 640 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 641 B.addNodes(Dst2); 642 } 643 } 644 else { 645 B.generateNode(DS, N, state); 646 } 647 } 648 649 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 650 } 651 652 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 653 ExplodedNodeSet &Dst) { 654 // This method acts upon CFG elements for logical operators && and || 655 // and attaches the value (true or false) to them as expressions. 656 // It doesn't produce any state splits. 657 // If we made it that far, we're past the point when we modeled the short 658 // circuit. It means that we should have precise knowledge about whether 659 // we've short-circuited. If we did, we already know the value we need to 660 // bind. If we didn't, the value of the RHS (casted to the boolean type) 661 // is the answer. 662 // Currently this method tries to figure out whether we've short-circuited 663 // by looking at the ExplodedGraph. This method is imperfect because there 664 // could inevitably have been merges that would have resulted in multiple 665 // potential path traversal histories. We bail out when we fail. 666 // Due to this ambiguity, a more reliable solution would have been to 667 // track the short circuit operation history path-sensitively until 668 // we evaluate the respective logical operator. 669 assert(B->getOpcode() == BO_LAnd || 670 B->getOpcode() == BO_LOr); 671 672 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 673 ProgramStateRef state = Pred->getState(); 674 675 if (B->getType()->isVectorType()) { 676 // FIXME: We do not model vector arithmetic yet. When adding support for 677 // that, note that the CFG-based reasoning below does not apply, because 678 // logical operators on vectors are not short-circuit. Currently they are 679 // modeled as short-circuit in Clang CFG but this is incorrect. 680 // Do not set the value for the expression. It'd be UnknownVal by default. 681 Bldr.generateNode(B, Pred, state); 682 return; 683 } 684 685 ExplodedNode *N = Pred; 686 while (!N->getLocation().getAs<BlockEntrance>()) { 687 ProgramPoint P = N->getLocation(); 688 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 689 (void) P; 690 if (N->pred_size() != 1) { 691 // We failed to track back where we came from. 692 Bldr.generateNode(B, Pred, state); 693 return; 694 } 695 N = *N->pred_begin(); 696 } 697 698 if (N->pred_size() != 1) { 699 // We failed to track back where we came from. 700 Bldr.generateNode(B, Pred, state); 701 return; 702 } 703 704 N = *N->pred_begin(); 705 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 706 SVal X; 707 708 // Determine the value of the expression by introspecting how we 709 // got this location in the CFG. This requires looking at the previous 710 // block we were in and what kind of control-flow transfer was involved. 711 const CFGBlock *SrcBlock = BE.getSrc(); 712 // The only terminator (if there is one) that makes sense is a logical op. 713 CFGTerminator T = SrcBlock->getTerminator(); 714 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 715 (void) Term; 716 assert(Term->isLogicalOp()); 717 assert(SrcBlock->succ_size() == 2); 718 // Did we take the true or false branch? 719 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 720 X = svalBuilder.makeIntVal(constant, B->getType()); 721 } 722 else { 723 // If there is no terminator, by construction the last statement 724 // in SrcBlock is the value of the enclosing expression. 725 // However, we still need to constrain that value to be 0 or 1. 726 assert(!SrcBlock->empty()); 727 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 728 const Expr *RHS = cast<Expr>(Elem.getStmt()); 729 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 730 731 if (RHSVal.isUndef()) { 732 X = RHSVal; 733 } else { 734 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 735 // known to be false, 1 if the value is known to be true and a new symbol 736 // when the assumption is unknown. 737 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 738 X = evalBinOp(N->getState(), BO_NE, 739 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 740 Zero, B->getType()); 741 } 742 } 743 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 744 } 745 746 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 747 ExplodedNode *Pred, 748 ExplodedNodeSet &Dst) { 749 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 750 751 ProgramStateRef state = Pred->getState(); 752 const LocationContext *LCtx = Pred->getLocationContext(); 753 QualType T = getContext().getCanonicalType(IE->getType()); 754 unsigned NumInitElements = IE->getNumInits(); 755 756 if (!IE->isGLValue() && !IE->isTransparent() && 757 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 758 T->isAnyComplexType())) { 759 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 760 761 // Handle base case where the initializer has no elements. 762 // e.g: static int* myArray[] = {}; 763 if (NumInitElements == 0) { 764 SVal V = svalBuilder.makeCompoundVal(T, vals); 765 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 766 return; 767 } 768 769 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 770 ei = IE->rend(); it != ei; ++it) { 771 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 772 vals = getBasicVals().prependSVal(V, vals); 773 } 774 775 B.generateNode(IE, Pred, 776 state->BindExpr(IE, LCtx, 777 svalBuilder.makeCompoundVal(T, vals))); 778 return; 779 } 780 781 // Handle scalars: int{5} and int{} and GLvalues. 782 // Note, if the InitListExpr is a GLvalue, it means that there is an address 783 // representing it, so it must have a single init element. 784 assert(NumInitElements <= 1); 785 786 SVal V; 787 if (NumInitElements == 0) 788 V = getSValBuilder().makeZeroVal(T); 789 else 790 V = state->getSVal(IE->getInit(0), LCtx); 791 792 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 793 } 794 795 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 796 const Expr *L, 797 const Expr *R, 798 ExplodedNode *Pred, 799 ExplodedNodeSet &Dst) { 800 assert(L && R); 801 802 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 803 ProgramStateRef state = Pred->getState(); 804 const LocationContext *LCtx = Pred->getLocationContext(); 805 const CFGBlock *SrcBlock = nullptr; 806 807 // Find the predecessor block. 808 ProgramStateRef SrcState = state; 809 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 810 ProgramPoint PP = N->getLocation(); 811 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 812 // If the state N has multiple predecessors P, it means that successors 813 // of P are all equivalent. 814 // In turn, that means that all nodes at P are equivalent in terms 815 // of observable behavior at N, and we can follow any of them. 816 // FIXME: a more robust solution which does not walk up the tree. 817 continue; 818 } 819 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 820 SrcState = N->getState(); 821 break; 822 } 823 824 assert(SrcBlock && "missing function entry"); 825 826 // Find the last expression in the predecessor block. That is the 827 // expression that is used for the value of the ternary expression. 828 bool hasValue = false; 829 SVal V; 830 831 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 832 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 833 const Expr *ValEx = cast<Expr>(CS->getStmt()); 834 ValEx = ValEx->IgnoreParens(); 835 836 // For GNU extension '?:' operator, the left hand side will be an 837 // OpaqueValueExpr, so get the underlying expression. 838 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 839 L = OpaqueEx->getSourceExpr(); 840 841 // If the last expression in the predecessor block matches true or false 842 // subexpression, get its the value. 843 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 844 hasValue = true; 845 V = SrcState->getSVal(ValEx, LCtx); 846 } 847 break; 848 } 849 } 850 851 if (!hasValue) 852 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 853 currBldrCtx->blockCount()); 854 855 // Generate a new node with the binding from the appropriate path. 856 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 857 } 858 859 void ExprEngine:: 860 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 861 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 862 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 863 Expr::EvalResult Result; 864 if (OOE->EvaluateAsInt(Result, getContext())) { 865 APSInt IV = Result.Val.getInt(); 866 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 867 assert(OOE->getType()->castAs<BuiltinType>()->isInteger()); 868 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 869 SVal X = svalBuilder.makeIntVal(IV); 870 B.generateNode(OOE, Pred, 871 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 872 X)); 873 } 874 // FIXME: Handle the case where __builtin_offsetof is not a constant. 875 } 876 877 878 void ExprEngine:: 879 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 880 ExplodedNode *Pred, 881 ExplodedNodeSet &Dst) { 882 // FIXME: Prechecks eventually go in ::Visit(). 883 ExplodedNodeSet CheckedSet; 884 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 885 886 ExplodedNodeSet EvalSet; 887 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 888 889 QualType T = Ex->getTypeOfArgument(); 890 891 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 892 I != E; ++I) { 893 if (Ex->getKind() == UETT_SizeOf) { 894 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 895 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 896 897 // FIXME: Add support for VLA type arguments and VLA expressions. 898 // When that happens, we should probably refactor VLASizeChecker's code. 899 continue; 900 } else if (T->getAs<ObjCObjectType>()) { 901 // Some code tries to take the sizeof an ObjCObjectType, relying that 902 // the compiler has laid out its representation. Just report Unknown 903 // for these. 904 continue; 905 } 906 } 907 908 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 909 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 910 911 ProgramStateRef state = (*I)->getState(); 912 state = state->BindExpr(Ex, (*I)->getLocationContext(), 913 svalBuilder.makeIntVal(amt.getQuantity(), 914 Ex->getType())); 915 Bldr.generateNode(Ex, *I, state); 916 } 917 918 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 919 } 920 921 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, 922 const UnaryOperator *U, 923 StmtNodeBuilder &Bldr) { 924 // FIXME: We can probably just have some magic in Environment::getSVal() 925 // that propagates values, instead of creating a new node here. 926 // 927 // Unary "+" is a no-op, similar to a parentheses. We still have places 928 // where it may be a block-level expression, so we need to 929 // generate an extra node that just propagates the value of the 930 // subexpression. 931 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 932 ProgramStateRef state = (*I)->getState(); 933 const LocationContext *LCtx = (*I)->getLocationContext(); 934 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 935 state->getSVal(Ex, LCtx))); 936 } 937 938 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 939 ExplodedNodeSet &Dst) { 940 // FIXME: Prechecks eventually go in ::Visit(). 941 ExplodedNodeSet CheckedSet; 942 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 943 944 ExplodedNodeSet EvalSet; 945 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 946 947 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 948 I != E; ++I) { 949 switch (U->getOpcode()) { 950 default: { 951 Bldr.takeNodes(*I); 952 ExplodedNodeSet Tmp; 953 VisitIncrementDecrementOperator(U, *I, Tmp); 954 Bldr.addNodes(Tmp); 955 break; 956 } 957 case UO_Real: { 958 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 959 960 // FIXME: We don't have complex SValues yet. 961 if (Ex->getType()->isAnyComplexType()) { 962 // Just report "Unknown." 963 break; 964 } 965 966 // For all other types, UO_Real is an identity operation. 967 assert (U->getType() == Ex->getType()); 968 ProgramStateRef state = (*I)->getState(); 969 const LocationContext *LCtx = (*I)->getLocationContext(); 970 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 971 state->getSVal(Ex, LCtx))); 972 break; 973 } 974 975 case UO_Imag: { 976 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 977 // FIXME: We don't have complex SValues yet. 978 if (Ex->getType()->isAnyComplexType()) { 979 // Just report "Unknown." 980 break; 981 } 982 // For all other types, UO_Imag returns 0. 983 ProgramStateRef state = (*I)->getState(); 984 const LocationContext *LCtx = (*I)->getLocationContext(); 985 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 986 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 987 break; 988 } 989 990 case UO_AddrOf: { 991 // Process pointer-to-member address operation. 992 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 993 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 994 const ValueDecl *VD = DRE->getDecl(); 995 996 if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 997 isa<IndirectFieldDecl>(VD)) { 998 ProgramStateRef State = (*I)->getState(); 999 const LocationContext *LCtx = (*I)->getLocationContext(); 1000 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD)); 1001 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); 1002 break; 1003 } 1004 } 1005 // Explicitly proceed with default handler for this case cascade. 1006 handleUOExtension(I, U, Bldr); 1007 break; 1008 } 1009 case UO_Plus: 1010 assert(!U->isGLValue()); 1011 LLVM_FALLTHROUGH; 1012 case UO_Deref: 1013 case UO_Extension: { 1014 handleUOExtension(I, U, Bldr); 1015 break; 1016 } 1017 1018 case UO_LNot: 1019 case UO_Minus: 1020 case UO_Not: { 1021 assert (!U->isGLValue()); 1022 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1023 ProgramStateRef state = (*I)->getState(); 1024 const LocationContext *LCtx = (*I)->getLocationContext(); 1025 1026 // Get the value of the subexpression. 1027 SVal V = state->getSVal(Ex, LCtx); 1028 1029 if (V.isUnknownOrUndef()) { 1030 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 1031 break; 1032 } 1033 1034 switch (U->getOpcode()) { 1035 default: 1036 llvm_unreachable("Invalid Opcode."); 1037 case UO_Not: 1038 // FIXME: Do we need to handle promotions? 1039 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 1040 break; 1041 case UO_Minus: 1042 // FIXME: Do we need to handle promotions? 1043 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 1044 break; 1045 case UO_LNot: 1046 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1047 // 1048 // Note: technically we do "E == 0", but this is the same in the 1049 // transfer functions as "0 == E". 1050 SVal Result; 1051 if (Optional<Loc> LV = V.getAs<Loc>()) { 1052 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1053 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1054 } else if (Ex->getType()->isFloatingType()) { 1055 // FIXME: handle floating point types. 1056 Result = UnknownVal(); 1057 } else { 1058 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1059 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 1060 U->getType()); 1061 } 1062 1063 state = state->BindExpr(U, LCtx, Result); 1064 break; 1065 } 1066 Bldr.generateNode(U, *I, state); 1067 break; 1068 } 1069 } 1070 } 1071 1072 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1073 } 1074 1075 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1076 ExplodedNode *Pred, 1077 ExplodedNodeSet &Dst) { 1078 // Handle ++ and -- (both pre- and post-increment). 1079 assert (U->isIncrementDecrementOp()); 1080 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1081 1082 const LocationContext *LCtx = Pred->getLocationContext(); 1083 ProgramStateRef state = Pred->getState(); 1084 SVal loc = state->getSVal(Ex, LCtx); 1085 1086 // Perform a load. 1087 ExplodedNodeSet Tmp; 1088 evalLoad(Tmp, U, Ex, Pred, state, loc); 1089 1090 ExplodedNodeSet Dst2; 1091 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1092 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 1093 1094 state = (*I)->getState(); 1095 assert(LCtx == (*I)->getLocationContext()); 1096 SVal V2_untested = state->getSVal(Ex, LCtx); 1097 1098 // Propagate unknown and undefined values. 1099 if (V2_untested.isUnknownOrUndef()) { 1100 state = state->BindExpr(U, LCtx, V2_untested); 1101 1102 // Perform the store, so that the uninitialized value detection happens. 1103 Bldr.takeNodes(*I); 1104 ExplodedNodeSet Dst3; 1105 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); 1106 Bldr.addNodes(Dst3); 1107 1108 continue; 1109 } 1110 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1111 1112 // Handle all other values. 1113 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1114 1115 // If the UnaryOperator has non-location type, use its type to create the 1116 // constant value. If the UnaryOperator has location type, create the 1117 // constant with int type and pointer width. 1118 SVal RHS; 1119 SVal Result; 1120 1121 if (U->getType()->isAnyPointerType()) 1122 RHS = svalBuilder.makeArrayIndex(1); 1123 else if (U->getType()->isIntegralOrEnumerationType()) 1124 RHS = svalBuilder.makeIntVal(1, U->getType()); 1125 else 1126 RHS = UnknownVal(); 1127 1128 // The use of an operand of type bool with the ++ operators is deprecated 1129 // but valid until C++17. And if the operand of the ++ operator is of type 1130 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1131 // set to true when it encounters ++ operator. 1132 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1133 Result = svalBuilder.makeTruthVal(true, U->getType()); 1134 else 1135 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1136 1137 // Conjure a new symbol if necessary to recover precision. 1138 if (Result.isUnknown()){ 1139 DefinedOrUnknownSVal SymVal = 1140 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1141 currBldrCtx->blockCount()); 1142 Result = SymVal; 1143 1144 // If the value is a location, ++/-- should always preserve 1145 // non-nullness. Check if the original value was non-null, and if so 1146 // propagate that constraint. 1147 if (Loc::isLocType(U->getType())) { 1148 DefinedOrUnknownSVal Constraint = 1149 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1150 1151 if (!state->assume(Constraint, true)) { 1152 // It isn't feasible for the original value to be null. 1153 // Propagate this constraint. 1154 Constraint = svalBuilder.evalEQ(state, SymVal, 1155 svalBuilder.makeZeroVal(U->getType())); 1156 1157 state = state->assume(Constraint, false); 1158 assert(state); 1159 } 1160 } 1161 } 1162 1163 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1164 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1165 if (U->isGLValue()) 1166 state = state->BindExpr(U, LCtx, loc); 1167 else 1168 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1169 1170 // Perform the store. 1171 Bldr.takeNodes(*I); 1172 ExplodedNodeSet Dst3; 1173 evalStore(Dst3, U, Ex, *I, state, loc, Result); 1174 Bldr.addNodes(Dst3); 1175 } 1176 Dst.insert(Dst2); 1177 } 1178