1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 /// Optionally conjure and return a symbol for offset when processing 23 /// an expression \p Expression. 24 /// If \p Other is a location, conjure a symbol for \p Symbol 25 /// (offset) if it is unknown so that memory arithmetic always 26 /// results in an ElementRegion. 27 /// \p Count The number of times the current basic block was visited. 28 static SVal conjureOffsetSymbolOnLocation( 29 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 30 unsigned Count, const LocationContext *LCtx) { 31 QualType Ty = Expression->getType(); 32 if (Other.getAs<Loc>() && 33 Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } else { 104 // If we cannot evaluate the operation escape the operands. 105 state = escapeValues(state, LeftV, PSK_EscapeOther); 106 state = escapeValues(state, RightV, PSK_EscapeOther); 107 } 108 109 Bldr.generateNode(B, *it, state); 110 continue; 111 } 112 113 assert (B->isCompoundAssignmentOp()); 114 115 switch (Op) { 116 default: 117 llvm_unreachable("Invalid opcode for compound assignment."); 118 case BO_MulAssign: Op = BO_Mul; break; 119 case BO_DivAssign: Op = BO_Div; break; 120 case BO_RemAssign: Op = BO_Rem; break; 121 case BO_AddAssign: Op = BO_Add; break; 122 case BO_SubAssign: Op = BO_Sub; break; 123 case BO_ShlAssign: Op = BO_Shl; break; 124 case BO_ShrAssign: Op = BO_Shr; break; 125 case BO_AndAssign: Op = BO_And; break; 126 case BO_XorAssign: Op = BO_Xor; break; 127 case BO_OrAssign: Op = BO_Or; break; 128 } 129 130 // Perform a load (the LHS). This performs the checks for 131 // null dereferences, and so on. 132 ExplodedNodeSet Tmp; 133 SVal location = LeftV; 134 evalLoad(Tmp, B, LHS, *it, state, location); 135 136 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 137 ++I) { 138 139 state = (*I)->getState(); 140 const LocationContext *LCtx = (*I)->getLocationContext(); 141 SVal V = state->getSVal(LHS, LCtx); 142 143 // Get the computation type. 144 QualType CTy = 145 cast<CompoundAssignOperator>(B)->getComputationResultType(); 146 CTy = getContext().getCanonicalType(CTy); 147 148 QualType CLHSTy = 149 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 150 CLHSTy = getContext().getCanonicalType(CLHSTy); 151 152 QualType LTy = getContext().getCanonicalType(LHS->getType()); 153 154 // Promote LHS. 155 V = svalBuilder.evalCast(V, CLHSTy, LTy); 156 157 // Compute the result of the operation. 158 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 159 B->getType(), CTy); 160 161 // EXPERIMENTAL: "Conjured" symbols. 162 // FIXME: Handle structs. 163 164 SVal LHSVal; 165 166 if (Result.isUnknown()) { 167 // The symbolic value is actually for the type of the left-hand side 168 // expression, not the computation type, as this is the value the 169 // LValue on the LHS will bind to. 170 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 171 currBldrCtx->blockCount()); 172 // However, we need to convert the symbol to the computation type. 173 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 174 } 175 else { 176 // The left-hand side may bind to a different value then the 177 // computation type. 178 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 179 } 180 181 // In C++, assignment and compound assignment operators return an 182 // lvalue. 183 if (B->isGLValue()) 184 state = state->BindExpr(B, LCtx, location); 185 else 186 state = state->BindExpr(B, LCtx, Result); 187 188 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 189 } 190 } 191 192 // FIXME: postvisits eventually go in ::Visit() 193 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 194 } 195 196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 197 ExplodedNodeSet &Dst) { 198 199 CanQualType T = getContext().getCanonicalType(BE->getType()); 200 201 const BlockDecl *BD = BE->getBlockDecl(); 202 // Get the value of the block itself. 203 SVal V = svalBuilder.getBlockPointer(BD, T, 204 Pred->getLocationContext(), 205 currBldrCtx->blockCount()); 206 207 ProgramStateRef State = Pred->getState(); 208 209 // If we created a new MemRegion for the block, we should explicitly bind 210 // the captured variables. 211 if (const BlockDataRegion *BDR = 212 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 213 214 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 215 E = BDR->referenced_vars_end(); 216 217 auto CI = BD->capture_begin(); 218 auto CE = BD->capture_end(); 219 for (; I != E; ++I) { 220 const VarRegion *capturedR = I.getCapturedRegion(); 221 const TypedValueRegion *originalR = I.getOriginalRegion(); 222 223 // If the capture had a copy expression, use the result of evaluating 224 // that expression, otherwise use the original value. 225 // We rely on the invariant that the block declaration's capture variables 226 // are a prefix of the BlockDataRegion's referenced vars (which may include 227 // referenced globals, etc.) to enable fast lookup of the capture for a 228 // given referenced var. 229 const Expr *copyExpr = nullptr; 230 if (CI != CE) { 231 assert(CI->getVariable() == capturedR->getDecl()); 232 copyExpr = CI->getCopyExpr(); 233 CI++; 234 } 235 236 if (capturedR != originalR) { 237 SVal originalV; 238 const LocationContext *LCtx = Pred->getLocationContext(); 239 if (copyExpr) { 240 originalV = State->getSVal(copyExpr, LCtx); 241 } else { 242 originalV = State->getSVal(loc::MemRegionVal(originalR)); 243 } 244 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 245 } 246 } 247 } 248 249 ExplodedNodeSet Tmp; 250 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 251 Bldr.generateNode(BE, Pred, 252 State->BindExpr(BE, Pred->getLocationContext(), V), 253 nullptr, ProgramPoint::PostLValueKind); 254 255 // FIXME: Move all post/pre visits to ::Visit(). 256 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 257 } 258 259 ProgramStateRef ExprEngine::handleLValueBitCast( 260 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 261 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 262 ExplodedNode* Pred) { 263 if (T->isLValueReferenceType()) { 264 assert(!CastE->getType()->isLValueReferenceType()); 265 ExTy = getContext().getLValueReferenceType(ExTy); 266 } else if (T->isRValueReferenceType()) { 267 assert(!CastE->getType()->isRValueReferenceType()); 268 ExTy = getContext().getRValueReferenceType(ExTy); 269 } 270 // Delegate to SValBuilder to process. 271 SVal OrigV = state->getSVal(Ex, LCtx); 272 SVal V = svalBuilder.evalCast(OrigV, T, ExTy); 273 // Negate the result if we're treating the boolean as a signed i1 274 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 275 V = evalMinus(V); 276 state = state->BindExpr(CastE, LCtx, V); 277 if (V.isUnknown() && !OrigV.isUnknown()) { 278 state = escapeValues(state, OrigV, PSK_EscapeOther); 279 } 280 Bldr.generateNode(CastE, Pred, state); 281 282 return state; 283 } 284 285 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 286 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 287 288 ExplodedNodeSet dstPreStmt; 289 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 290 291 if (CastE->getCastKind() == CK_LValueToRValue || 292 CastE->getCastKind() == CK_LValueToRValueBitCast) { 293 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 294 I!=E; ++I) { 295 ExplodedNode *subExprNode = *I; 296 ProgramStateRef state = subExprNode->getState(); 297 const LocationContext *LCtx = subExprNode->getLocationContext(); 298 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 299 } 300 return; 301 } 302 303 // All other casts. 304 QualType T = CastE->getType(); 305 QualType ExTy = Ex->getType(); 306 307 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 308 T = ExCast->getTypeAsWritten(); 309 310 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 311 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 312 I != E; ++I) { 313 314 Pred = *I; 315 ProgramStateRef state = Pred->getState(); 316 const LocationContext *LCtx = Pred->getLocationContext(); 317 318 switch (CastE->getCastKind()) { 319 case CK_LValueToRValue: 320 case CK_LValueToRValueBitCast: 321 llvm_unreachable("LValueToRValue casts handled earlier."); 322 case CK_ToVoid: 323 continue; 324 // The analyzer doesn't do anything special with these casts, 325 // since it understands retain/release semantics already. 326 case CK_ARCProduceObject: 327 case CK_ARCConsumeObject: 328 case CK_ARCReclaimReturnedObject: 329 case CK_ARCExtendBlockObject: // Fall-through. 330 case CK_CopyAndAutoreleaseBlockObject: 331 // The analyser can ignore atomic casts for now, although some future 332 // checkers may want to make certain that you're not modifying the same 333 // value through atomic and nonatomic pointers. 334 case CK_AtomicToNonAtomic: 335 case CK_NonAtomicToAtomic: 336 // True no-ops. 337 case CK_NoOp: 338 case CK_ConstructorConversion: 339 case CK_UserDefinedConversion: 340 case CK_FunctionToPointerDecay: 341 case CK_BuiltinFnToFnPtr: { 342 // Copy the SVal of Ex to CastE. 343 ProgramStateRef state = Pred->getState(); 344 const LocationContext *LCtx = Pred->getLocationContext(); 345 SVal V = state->getSVal(Ex, LCtx); 346 state = state->BindExpr(CastE, LCtx, V); 347 Bldr.generateNode(CastE, Pred, state); 348 continue; 349 } 350 case CK_MemberPointerToBoolean: 351 case CK_PointerToBoolean: { 352 SVal V = state->getSVal(Ex, LCtx); 353 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 354 if (PTMSV) 355 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 356 if (V.isUndef() || PTMSV) { 357 state = state->BindExpr(CastE, LCtx, V); 358 Bldr.generateNode(CastE, Pred, state); 359 continue; 360 } 361 // Explicitly proceed with default handler for this case cascade. 362 state = 363 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 364 continue; 365 } 366 case CK_Dependent: 367 case CK_ArrayToPointerDecay: 368 case CK_BitCast: 369 case CK_AddressSpaceConversion: 370 case CK_BooleanToSignedIntegral: 371 case CK_IntegralToPointer: 372 case CK_PointerToIntegral: { 373 SVal V = state->getSVal(Ex, LCtx); 374 if (V.getAs<nonloc::PointerToMember>()) { 375 state = state->BindExpr(CastE, LCtx, UnknownVal()); 376 Bldr.generateNode(CastE, Pred, state); 377 continue; 378 } 379 // Explicitly proceed with default handler for this case cascade. 380 state = 381 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 382 continue; 383 } 384 case CK_IntegralToBoolean: 385 case CK_IntegralToFloating: 386 case CK_FloatingToIntegral: 387 case CK_FloatingToBoolean: 388 case CK_FloatingCast: 389 case CK_FloatingRealToComplex: 390 case CK_FloatingComplexToReal: 391 case CK_FloatingComplexToBoolean: 392 case CK_FloatingComplexCast: 393 case CK_FloatingComplexToIntegralComplex: 394 case CK_IntegralRealToComplex: 395 case CK_IntegralComplexToReal: 396 case CK_IntegralComplexToBoolean: 397 case CK_IntegralComplexCast: 398 case CK_IntegralComplexToFloatingComplex: 399 case CK_CPointerToObjCPointerCast: 400 case CK_BlockPointerToObjCPointerCast: 401 case CK_AnyPointerToBlockPointerCast: 402 case CK_ObjCObjectLValueCast: 403 case CK_ZeroToOCLOpaqueType: 404 case CK_IntToOCLSampler: 405 case CK_LValueBitCast: 406 case CK_FloatingToFixedPoint: 407 case CK_FixedPointToFloating: 408 case CK_FixedPointCast: 409 case CK_FixedPointToBoolean: 410 case CK_FixedPointToIntegral: 411 case CK_IntegralToFixedPoint: { 412 state = 413 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 414 continue; 415 } 416 case CK_IntegralCast: { 417 // Delegate to SValBuilder to process. 418 SVal V = state->getSVal(Ex, LCtx); 419 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 420 state = state->BindExpr(CastE, LCtx, V); 421 Bldr.generateNode(CastE, Pred, state); 422 continue; 423 } 424 case CK_DerivedToBase: 425 case CK_UncheckedDerivedToBase: { 426 // For DerivedToBase cast, delegate to the store manager. 427 SVal val = state->getSVal(Ex, LCtx); 428 val = getStoreManager().evalDerivedToBase(val, CastE); 429 state = state->BindExpr(CastE, LCtx, val); 430 Bldr.generateNode(CastE, Pred, state); 431 continue; 432 } 433 // Handle C++ dyn_cast. 434 case CK_Dynamic: { 435 SVal val = state->getSVal(Ex, LCtx); 436 437 // Compute the type of the result. 438 QualType resultType = CastE->getType(); 439 if (CastE->isGLValue()) 440 resultType = getContext().getPointerType(resultType); 441 442 bool Failed = false; 443 444 // Check if the value being cast evaluates to 0. 445 if (val.isZeroConstant()) 446 Failed = true; 447 // Else, evaluate the cast. 448 else 449 val = getStoreManager().attemptDownCast(val, T, Failed); 450 451 if (Failed) { 452 if (T->isReferenceType()) { 453 // A bad_cast exception is thrown if input value is a reference. 454 // Currently, we model this, by generating a sink. 455 Bldr.generateSink(CastE, Pred, state); 456 continue; 457 } else { 458 // If the cast fails on a pointer, bind to 0. 459 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 460 } 461 } else { 462 // If we don't know if the cast succeeded, conjure a new symbol. 463 if (val.isUnknown()) { 464 DefinedOrUnknownSVal NewSym = 465 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 466 currBldrCtx->blockCount()); 467 state = state->BindExpr(CastE, LCtx, NewSym); 468 } else 469 // Else, bind to the derived region value. 470 state = state->BindExpr(CastE, LCtx, val); 471 } 472 Bldr.generateNode(CastE, Pred, state); 473 continue; 474 } 475 case CK_BaseToDerived: { 476 SVal val = state->getSVal(Ex, LCtx); 477 QualType resultType = CastE->getType(); 478 if (CastE->isGLValue()) 479 resultType = getContext().getPointerType(resultType); 480 481 bool Failed = false; 482 483 if (!val.isConstant()) { 484 val = getStoreManager().attemptDownCast(val, T, Failed); 485 } 486 487 // Failed to cast or the result is unknown, fall back to conservative. 488 if (Failed || val.isUnknown()) { 489 val = 490 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 491 currBldrCtx->blockCount()); 492 } 493 state = state->BindExpr(CastE, LCtx, val); 494 Bldr.generateNode(CastE, Pred, state); 495 continue; 496 } 497 case CK_NullToPointer: { 498 SVal V = svalBuilder.makeNull(); 499 state = state->BindExpr(CastE, LCtx, V); 500 Bldr.generateNode(CastE, Pred, state); 501 continue; 502 } 503 case CK_NullToMemberPointer: { 504 SVal V = svalBuilder.getMemberPointer(nullptr); 505 state = state->BindExpr(CastE, LCtx, V); 506 Bldr.generateNode(CastE, Pred, state); 507 continue; 508 } 509 case CK_DerivedToBaseMemberPointer: 510 case CK_BaseToDerivedMemberPointer: 511 case CK_ReinterpretMemberPointer: { 512 SVal V = state->getSVal(Ex, LCtx); 513 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 514 SVal CastedPTMSV = 515 svalBuilder.makePointerToMember(getBasicVals().accumCXXBase( 516 CastE->path(), *PTMSV, CastE->getCastKind())); 517 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 518 Bldr.generateNode(CastE, Pred, state); 519 continue; 520 } 521 // Explicitly proceed with default handler for this case cascade. 522 } 523 LLVM_FALLTHROUGH; 524 // Various C++ casts that are not handled yet. 525 case CK_ToUnion: 526 case CK_MatrixCast: 527 case CK_VectorSplat: { 528 QualType resultType = CastE->getType(); 529 if (CastE->isGLValue()) 530 resultType = getContext().getPointerType(resultType); 531 SVal result = svalBuilder.conjureSymbolVal( 532 /*symbolTag=*/nullptr, CastE, LCtx, resultType, 533 currBldrCtx->blockCount()); 534 state = state->BindExpr(CastE, LCtx, result); 535 Bldr.generateNode(CastE, Pred, state); 536 continue; 537 } 538 } 539 } 540 } 541 542 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 543 ExplodedNode *Pred, 544 ExplodedNodeSet &Dst) { 545 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 546 547 ProgramStateRef State = Pred->getState(); 548 const LocationContext *LCtx = Pred->getLocationContext(); 549 550 const Expr *Init = CL->getInitializer(); 551 SVal V = State->getSVal(CL->getInitializer(), LCtx); 552 553 if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) { 554 // No work needed. Just pass the value up to this expression. 555 } else { 556 assert(isa<InitListExpr>(Init)); 557 Loc CLLoc = State->getLValue(CL, LCtx); 558 State = State->bindLoc(CLLoc, V, LCtx); 559 560 if (CL->isGLValue()) 561 V = CLLoc; 562 } 563 564 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 565 } 566 567 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 568 ExplodedNodeSet &Dst) { 569 if (isa<TypedefNameDecl>(*DS->decl_begin())) { 570 // C99 6.7.7 "Any array size expressions associated with variable length 571 // array declarators are evaluated each time the declaration of the typedef 572 // name is reached in the order of execution." 573 // The checkers should know about typedef to be able to handle VLA size 574 // expressions. 575 ExplodedNodeSet DstPre; 576 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this); 577 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this); 578 return; 579 } 580 581 // Assumption: The CFG has one DeclStmt per Decl. 582 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 583 584 if (!VD) { 585 //TODO:AZ: remove explicit insertion after refactoring is done. 586 Dst.insert(Pred); 587 return; 588 } 589 590 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 591 ExplodedNodeSet dstPreVisit; 592 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 593 594 ExplodedNodeSet dstEvaluated; 595 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 596 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 597 I!=E; ++I) { 598 ExplodedNode *N = *I; 599 ProgramStateRef state = N->getState(); 600 const LocationContext *LC = N->getLocationContext(); 601 602 // Decls without InitExpr are not initialized explicitly. 603 if (const Expr *InitEx = VD->getInit()) { 604 605 // Note in the state that the initialization has occurred. 606 ExplodedNode *UpdatedN = N; 607 SVal InitVal = state->getSVal(InitEx, LC); 608 609 assert(DS->isSingleDecl()); 610 if (getObjectUnderConstruction(state, DS, LC)) { 611 state = finishObjectConstruction(state, DS, LC); 612 // We constructed the object directly in the variable. 613 // No need to bind anything. 614 B.generateNode(DS, UpdatedN, state); 615 } else { 616 // Recover some path-sensitivity if a scalar value evaluated to 617 // UnknownVal. 618 if (InitVal.isUnknown()) { 619 QualType Ty = InitEx->getType(); 620 if (InitEx->isGLValue()) { 621 Ty = getContext().getPointerType(Ty); 622 } 623 624 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 625 currBldrCtx->blockCount()); 626 } 627 628 629 B.takeNodes(UpdatedN); 630 ExplodedNodeSet Dst2; 631 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 632 B.addNodes(Dst2); 633 } 634 } 635 else { 636 B.generateNode(DS, N, state); 637 } 638 } 639 640 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 641 } 642 643 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 644 ExplodedNodeSet &Dst) { 645 // This method acts upon CFG elements for logical operators && and || 646 // and attaches the value (true or false) to them as expressions. 647 // It doesn't produce any state splits. 648 // If we made it that far, we're past the point when we modeled the short 649 // circuit. It means that we should have precise knowledge about whether 650 // we've short-circuited. If we did, we already know the value we need to 651 // bind. If we didn't, the value of the RHS (casted to the boolean type) 652 // is the answer. 653 // Currently this method tries to figure out whether we've short-circuited 654 // by looking at the ExplodedGraph. This method is imperfect because there 655 // could inevitably have been merges that would have resulted in multiple 656 // potential path traversal histories. We bail out when we fail. 657 // Due to this ambiguity, a more reliable solution would have been to 658 // track the short circuit operation history path-sensitively until 659 // we evaluate the respective logical operator. 660 assert(B->getOpcode() == BO_LAnd || 661 B->getOpcode() == BO_LOr); 662 663 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 664 ProgramStateRef state = Pred->getState(); 665 666 if (B->getType()->isVectorType()) { 667 // FIXME: We do not model vector arithmetic yet. When adding support for 668 // that, note that the CFG-based reasoning below does not apply, because 669 // logical operators on vectors are not short-circuit. Currently they are 670 // modeled as short-circuit in Clang CFG but this is incorrect. 671 // Do not set the value for the expression. It'd be UnknownVal by default. 672 Bldr.generateNode(B, Pred, state); 673 return; 674 } 675 676 ExplodedNode *N = Pred; 677 while (!N->getLocation().getAs<BlockEntrance>()) { 678 ProgramPoint P = N->getLocation(); 679 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 680 (void) P; 681 if (N->pred_size() != 1) { 682 // We failed to track back where we came from. 683 Bldr.generateNode(B, Pred, state); 684 return; 685 } 686 N = *N->pred_begin(); 687 } 688 689 if (N->pred_size() != 1) { 690 // We failed to track back where we came from. 691 Bldr.generateNode(B, Pred, state); 692 return; 693 } 694 695 N = *N->pred_begin(); 696 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 697 SVal X; 698 699 // Determine the value of the expression by introspecting how we 700 // got this location in the CFG. This requires looking at the previous 701 // block we were in and what kind of control-flow transfer was involved. 702 const CFGBlock *SrcBlock = BE.getSrc(); 703 // The only terminator (if there is one) that makes sense is a logical op. 704 CFGTerminator T = SrcBlock->getTerminator(); 705 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 706 (void) Term; 707 assert(Term->isLogicalOp()); 708 assert(SrcBlock->succ_size() == 2); 709 // Did we take the true or false branch? 710 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 711 X = svalBuilder.makeIntVal(constant, B->getType()); 712 } 713 else { 714 // If there is no terminator, by construction the last statement 715 // in SrcBlock is the value of the enclosing expression. 716 // However, we still need to constrain that value to be 0 or 1. 717 assert(!SrcBlock->empty()); 718 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 719 const Expr *RHS = cast<Expr>(Elem.getStmt()); 720 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 721 722 if (RHSVal.isUndef()) { 723 X = RHSVal; 724 } else { 725 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 726 // known to be false, 1 if the value is known to be true and a new symbol 727 // when the assumption is unknown. 728 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 729 X = evalBinOp(N->getState(), BO_NE, 730 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 731 Zero, B->getType()); 732 } 733 } 734 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 735 } 736 737 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 738 ExplodedNode *Pred, 739 ExplodedNodeSet &Dst) { 740 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 741 742 ProgramStateRef state = Pred->getState(); 743 const LocationContext *LCtx = Pred->getLocationContext(); 744 QualType T = getContext().getCanonicalType(IE->getType()); 745 unsigned NumInitElements = IE->getNumInits(); 746 747 if (!IE->isGLValue() && !IE->isTransparent() && 748 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 749 T->isAnyComplexType())) { 750 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 751 752 // Handle base case where the initializer has no elements. 753 // e.g: static int* myArray[] = {}; 754 if (NumInitElements == 0) { 755 SVal V = svalBuilder.makeCompoundVal(T, vals); 756 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 757 return; 758 } 759 760 for (const Stmt *S : llvm::reverse(*IE)) { 761 SVal V = state->getSVal(cast<Expr>(S), LCtx); 762 vals = getBasicVals().prependSVal(V, vals); 763 } 764 765 B.generateNode(IE, Pred, 766 state->BindExpr(IE, LCtx, 767 svalBuilder.makeCompoundVal(T, vals))); 768 return; 769 } 770 771 // Handle scalars: int{5} and int{} and GLvalues. 772 // Note, if the InitListExpr is a GLvalue, it means that there is an address 773 // representing it, so it must have a single init element. 774 assert(NumInitElements <= 1); 775 776 SVal V; 777 if (NumInitElements == 0) 778 V = getSValBuilder().makeZeroVal(T); 779 else 780 V = state->getSVal(IE->getInit(0), LCtx); 781 782 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 783 } 784 785 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 786 const Expr *L, 787 const Expr *R, 788 ExplodedNode *Pred, 789 ExplodedNodeSet &Dst) { 790 assert(L && R); 791 792 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 793 ProgramStateRef state = Pred->getState(); 794 const LocationContext *LCtx = Pred->getLocationContext(); 795 const CFGBlock *SrcBlock = nullptr; 796 797 // Find the predecessor block. 798 ProgramStateRef SrcState = state; 799 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 800 ProgramPoint PP = N->getLocation(); 801 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 802 // If the state N has multiple predecessors P, it means that successors 803 // of P are all equivalent. 804 // In turn, that means that all nodes at P are equivalent in terms 805 // of observable behavior at N, and we can follow any of them. 806 // FIXME: a more robust solution which does not walk up the tree. 807 continue; 808 } 809 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 810 SrcState = N->getState(); 811 break; 812 } 813 814 assert(SrcBlock && "missing function entry"); 815 816 // Find the last expression in the predecessor block. That is the 817 // expression that is used for the value of the ternary expression. 818 bool hasValue = false; 819 SVal V; 820 821 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 822 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 823 const Expr *ValEx = cast<Expr>(CS->getStmt()); 824 ValEx = ValEx->IgnoreParens(); 825 826 // For GNU extension '?:' operator, the left hand side will be an 827 // OpaqueValueExpr, so get the underlying expression. 828 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 829 L = OpaqueEx->getSourceExpr(); 830 831 // If the last expression in the predecessor block matches true or false 832 // subexpression, get its the value. 833 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 834 hasValue = true; 835 V = SrcState->getSVal(ValEx, LCtx); 836 } 837 break; 838 } 839 } 840 841 if (!hasValue) 842 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 843 currBldrCtx->blockCount()); 844 845 // Generate a new node with the binding from the appropriate path. 846 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 847 } 848 849 void ExprEngine:: 850 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 851 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 852 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 853 Expr::EvalResult Result; 854 if (OOE->EvaluateAsInt(Result, getContext())) { 855 APSInt IV = Result.Val.getInt(); 856 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 857 assert(OOE->getType()->castAs<BuiltinType>()->isInteger()); 858 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 859 SVal X = svalBuilder.makeIntVal(IV); 860 B.generateNode(OOE, Pred, 861 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 862 X)); 863 } 864 // FIXME: Handle the case where __builtin_offsetof is not a constant. 865 } 866 867 868 void ExprEngine:: 869 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 870 ExplodedNode *Pred, 871 ExplodedNodeSet &Dst) { 872 // FIXME: Prechecks eventually go in ::Visit(). 873 ExplodedNodeSet CheckedSet; 874 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 875 876 ExplodedNodeSet EvalSet; 877 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 878 879 QualType T = Ex->getTypeOfArgument(); 880 881 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 882 I != E; ++I) { 883 if (Ex->getKind() == UETT_SizeOf) { 884 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 885 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 886 887 // FIXME: Add support for VLA type arguments and VLA expressions. 888 // When that happens, we should probably refactor VLASizeChecker's code. 889 continue; 890 } else if (T->getAs<ObjCObjectType>()) { 891 // Some code tries to take the sizeof an ObjCObjectType, relying that 892 // the compiler has laid out its representation. Just report Unknown 893 // for these. 894 continue; 895 } 896 } 897 898 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 899 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 900 901 ProgramStateRef state = (*I)->getState(); 902 state = state->BindExpr(Ex, (*I)->getLocationContext(), 903 svalBuilder.makeIntVal(amt.getQuantity(), 904 Ex->getType())); 905 Bldr.generateNode(Ex, *I, state); 906 } 907 908 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 909 } 910 911 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, 912 const UnaryOperator *U, 913 StmtNodeBuilder &Bldr) { 914 // FIXME: We can probably just have some magic in Environment::getSVal() 915 // that propagates values, instead of creating a new node here. 916 // 917 // Unary "+" is a no-op, similar to a parentheses. We still have places 918 // where it may be a block-level expression, so we need to 919 // generate an extra node that just propagates the value of the 920 // subexpression. 921 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 922 ProgramStateRef state = (*I)->getState(); 923 const LocationContext *LCtx = (*I)->getLocationContext(); 924 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 925 state->getSVal(Ex, LCtx))); 926 } 927 928 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 929 ExplodedNodeSet &Dst) { 930 // FIXME: Prechecks eventually go in ::Visit(). 931 ExplodedNodeSet CheckedSet; 932 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 933 934 ExplodedNodeSet EvalSet; 935 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 936 937 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 938 I != E; ++I) { 939 switch (U->getOpcode()) { 940 default: { 941 Bldr.takeNodes(*I); 942 ExplodedNodeSet Tmp; 943 VisitIncrementDecrementOperator(U, *I, Tmp); 944 Bldr.addNodes(Tmp); 945 break; 946 } 947 case UO_Real: { 948 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 949 950 // FIXME: We don't have complex SValues yet. 951 if (Ex->getType()->isAnyComplexType()) { 952 // Just report "Unknown." 953 break; 954 } 955 956 // For all other types, UO_Real is an identity operation. 957 assert (U->getType() == Ex->getType()); 958 ProgramStateRef state = (*I)->getState(); 959 const LocationContext *LCtx = (*I)->getLocationContext(); 960 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 961 state->getSVal(Ex, LCtx))); 962 break; 963 } 964 965 case UO_Imag: { 966 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 967 // FIXME: We don't have complex SValues yet. 968 if (Ex->getType()->isAnyComplexType()) { 969 // Just report "Unknown." 970 break; 971 } 972 // For all other types, UO_Imag returns 0. 973 ProgramStateRef state = (*I)->getState(); 974 const LocationContext *LCtx = (*I)->getLocationContext(); 975 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 976 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 977 break; 978 } 979 980 case UO_AddrOf: { 981 // Process pointer-to-member address operation. 982 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 983 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 984 const ValueDecl *VD = DRE->getDecl(); 985 986 if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) { 987 ProgramStateRef State = (*I)->getState(); 988 const LocationContext *LCtx = (*I)->getLocationContext(); 989 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD)); 990 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); 991 break; 992 } 993 } 994 // Explicitly proceed with default handler for this case cascade. 995 handleUOExtension(I, U, Bldr); 996 break; 997 } 998 case UO_Plus: 999 assert(!U->isGLValue()); 1000 LLVM_FALLTHROUGH; 1001 case UO_Deref: 1002 case UO_Extension: { 1003 handleUOExtension(I, U, Bldr); 1004 break; 1005 } 1006 1007 case UO_LNot: 1008 case UO_Minus: 1009 case UO_Not: { 1010 assert (!U->isGLValue()); 1011 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1012 ProgramStateRef state = (*I)->getState(); 1013 const LocationContext *LCtx = (*I)->getLocationContext(); 1014 1015 // Get the value of the subexpression. 1016 SVal V = state->getSVal(Ex, LCtx); 1017 1018 if (V.isUnknownOrUndef()) { 1019 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 1020 break; 1021 } 1022 1023 switch (U->getOpcode()) { 1024 default: 1025 llvm_unreachable("Invalid Opcode."); 1026 case UO_Not: 1027 // FIXME: Do we need to handle promotions? 1028 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 1029 break; 1030 case UO_Minus: 1031 // FIXME: Do we need to handle promotions? 1032 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 1033 break; 1034 case UO_LNot: 1035 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1036 // 1037 // Note: technically we do "E == 0", but this is the same in the 1038 // transfer functions as "0 == E". 1039 SVal Result; 1040 if (Optional<Loc> LV = V.getAs<Loc>()) { 1041 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1042 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1043 } else if (Ex->getType()->isFloatingType()) { 1044 // FIXME: handle floating point types. 1045 Result = UnknownVal(); 1046 } else { 1047 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1048 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 1049 U->getType()); 1050 } 1051 1052 state = state->BindExpr(U, LCtx, Result); 1053 break; 1054 } 1055 Bldr.generateNode(U, *I, state); 1056 break; 1057 } 1058 } 1059 } 1060 1061 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1062 } 1063 1064 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1065 ExplodedNode *Pred, 1066 ExplodedNodeSet &Dst) { 1067 // Handle ++ and -- (both pre- and post-increment). 1068 assert (U->isIncrementDecrementOp()); 1069 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1070 1071 const LocationContext *LCtx = Pred->getLocationContext(); 1072 ProgramStateRef state = Pred->getState(); 1073 SVal loc = state->getSVal(Ex, LCtx); 1074 1075 // Perform a load. 1076 ExplodedNodeSet Tmp; 1077 evalLoad(Tmp, U, Ex, Pred, state, loc); 1078 1079 ExplodedNodeSet Dst2; 1080 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1081 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 1082 1083 state = (*I)->getState(); 1084 assert(LCtx == (*I)->getLocationContext()); 1085 SVal V2_untested = state->getSVal(Ex, LCtx); 1086 1087 // Propagate unknown and undefined values. 1088 if (V2_untested.isUnknownOrUndef()) { 1089 state = state->BindExpr(U, LCtx, V2_untested); 1090 1091 // Perform the store, so that the uninitialized value detection happens. 1092 Bldr.takeNodes(*I); 1093 ExplodedNodeSet Dst3; 1094 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); 1095 Bldr.addNodes(Dst3); 1096 1097 continue; 1098 } 1099 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1100 1101 // Handle all other values. 1102 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1103 1104 // If the UnaryOperator has non-location type, use its type to create the 1105 // constant value. If the UnaryOperator has location type, create the 1106 // constant with int type and pointer width. 1107 SVal RHS; 1108 SVal Result; 1109 1110 if (U->getType()->isAnyPointerType()) 1111 RHS = svalBuilder.makeArrayIndex(1); 1112 else if (U->getType()->isIntegralOrEnumerationType()) 1113 RHS = svalBuilder.makeIntVal(1, U->getType()); 1114 else 1115 RHS = UnknownVal(); 1116 1117 // The use of an operand of type bool with the ++ operators is deprecated 1118 // but valid until C++17. And if the operand of the ++ operator is of type 1119 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1120 // set to true when it encounters ++ operator. 1121 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1122 Result = svalBuilder.makeTruthVal(true, U->getType()); 1123 else 1124 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1125 1126 // Conjure a new symbol if necessary to recover precision. 1127 if (Result.isUnknown()){ 1128 DefinedOrUnknownSVal SymVal = 1129 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1130 currBldrCtx->blockCount()); 1131 Result = SymVal; 1132 1133 // If the value is a location, ++/-- should always preserve 1134 // non-nullness. Check if the original value was non-null, and if so 1135 // propagate that constraint. 1136 if (Loc::isLocType(U->getType())) { 1137 DefinedOrUnknownSVal Constraint = 1138 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1139 1140 if (!state->assume(Constraint, true)) { 1141 // It isn't feasible for the original value to be null. 1142 // Propagate this constraint. 1143 Constraint = svalBuilder.evalEQ(state, SymVal, 1144 svalBuilder.makeZeroVal(U->getType())); 1145 1146 state = state->assume(Constraint, false); 1147 assert(state); 1148 } 1149 } 1150 } 1151 1152 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1153 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1154 if (U->isGLValue()) 1155 state = state->BindExpr(U, LCtx, loc); 1156 else 1157 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1158 1159 // Perform the store. 1160 Bldr.takeNodes(*I); 1161 ExplodedNodeSet Dst3; 1162 evalStore(Dst3, U, Ex, *I, state, loc, Result); 1163 Bldr.addNodes(Dst3); 1164 } 1165 Dst.insert(Dst2); 1166 } 1167