1 //===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the template classes ExplodedNode and ExplodedGraph, 10 // which represent a path-sensitive, intra-procedural "exploded graph." 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/Analysis/ProgramPoint.h" 20 #include "clang/Analysis/Support/BumpVector.h" 21 #include "clang/Basic/LLVM.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/FoldingSet.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/PointerUnion.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/Support/Casting.h" 31 #include <cassert> 32 #include <memory> 33 34 using namespace clang; 35 using namespace ento; 36 37 //===----------------------------------------------------------------------===// 38 // Cleanup. 39 //===----------------------------------------------------------------------===// 40 41 ExplodedGraph::ExplodedGraph() = default; 42 43 ExplodedGraph::~ExplodedGraph() = default; 44 45 //===----------------------------------------------------------------------===// 46 // Node reclamation. 47 //===----------------------------------------------------------------------===// 48 49 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { 50 if (!Ex->isLValue()) 51 return false; 52 return isa<DeclRefExpr>(Ex) || 53 isa<MemberExpr>(Ex) || 54 isa<ObjCIvarRefExpr>(Ex); 55 } 56 57 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 58 // First, we only consider nodes for reclamation of the following 59 // conditions apply: 60 // 61 // (1) 1 predecessor (that has one successor) 62 // (2) 1 successor (that has one predecessor) 63 // 64 // If a node has no successor it is on the "frontier", while a node 65 // with no predecessor is a root. 66 // 67 // After these prerequisites, we discard all "filler" nodes that 68 // are used only for intermediate processing, and are not essential 69 // for analyzer history: 70 // 71 // (a) PreStmtPurgeDeadSymbols 72 // 73 // We then discard all other nodes where *all* of the following conditions 74 // apply: 75 // 76 // (3) The ProgramPoint is for a PostStmt, but not a PostStore. 77 // (4) There is no 'tag' for the ProgramPoint. 78 // (5) The 'store' is the same as the predecessor. 79 // (6) The 'GDM' is the same as the predecessor. 80 // (7) The LocationContext is the same as the predecessor. 81 // (8) Expressions that are *not* lvalue expressions. 82 // (9) The PostStmt isn't for a non-consumed Stmt or Expr. 83 // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or 84 // PreImplicitCall (so that we would be able to find it when retrying a 85 // call with no inlining). 86 // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. 87 88 // Conditions 1 and 2. 89 if (node->pred_size() != 1 || node->succ_size() != 1) 90 return false; 91 92 const ExplodedNode *pred = *(node->pred_begin()); 93 if (pred->succ_size() != 1) 94 return false; 95 96 const ExplodedNode *succ = *(node->succ_begin()); 97 if (succ->pred_size() != 1) 98 return false; 99 100 // Now reclaim any nodes that are (by definition) not essential to 101 // analysis history and are not consulted by any client code. 102 ProgramPoint progPoint = node->getLocation(); 103 if (progPoint.getAs<PreStmtPurgeDeadSymbols>()) 104 return !progPoint.getTag(); 105 106 // Condition 3. 107 if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>()) 108 return false; 109 110 // Condition 4. 111 if (progPoint.getTag()) 112 return false; 113 114 // Conditions 5, 6, and 7. 115 ProgramStateRef state = node->getState(); 116 ProgramStateRef pred_state = pred->getState(); 117 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 118 progPoint.getLocationContext() != pred->getLocationContext()) 119 return false; 120 121 // All further checks require expressions. As per #3, we know that we have 122 // a PostStmt. 123 const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt()); 124 if (!Ex) 125 return false; 126 127 // Condition 8. 128 // Do not collect nodes for "interesting" lvalue expressions since they are 129 // used extensively for generating path diagnostics. 130 if (isInterestingLValueExpr(Ex)) 131 return false; 132 133 // Condition 9. 134 // Do not collect nodes for non-consumed Stmt or Expr to ensure precise 135 // diagnostic generation; specifically, so that we could anchor arrows 136 // pointing to the beginning of statements (as written in code). 137 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 138 if (!PM.isConsumedExpr(Ex)) 139 return false; 140 141 // Condition 10. 142 const ProgramPoint SuccLoc = succ->getLocation(); 143 if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>()) 144 if (CallEvent::isCallStmt(SP->getStmt())) 145 return false; 146 147 // Condition 10, continuation. 148 if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>()) 149 return false; 150 151 return true; 152 } 153 154 void ExplodedGraph::collectNode(ExplodedNode *node) { 155 // Removing a node means: 156 // (a) changing the predecessors successor to the successor of this node 157 // (b) changing the successors predecessor to the predecessor of this node 158 // (c) Putting 'node' onto freeNodes. 159 assert(node->pred_size() == 1 || node->succ_size() == 1); 160 ExplodedNode *pred = *(node->pred_begin()); 161 ExplodedNode *succ = *(node->succ_begin()); 162 pred->replaceSuccessor(succ); 163 succ->replacePredecessor(pred); 164 FreeNodes.push_back(node); 165 Nodes.RemoveNode(node); 166 --NumNodes; 167 node->~ExplodedNode(); 168 } 169 170 void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 171 if (ChangedNodes.empty()) 172 return; 173 174 // Only periodically reclaim nodes so that we can build up a set of 175 // nodes that meet the reclamation criteria. Freshly created nodes 176 // by definition have no successor, and thus cannot be reclaimed (see below). 177 assert(ReclaimCounter > 0); 178 if (--ReclaimCounter != 0) 179 return; 180 ReclaimCounter = ReclaimNodeInterval; 181 182 for (const auto node : ChangedNodes) 183 if (shouldCollect(node)) 184 collectNode(node); 185 ChangedNodes.clear(); 186 } 187 188 //===----------------------------------------------------------------------===// 189 // ExplodedNode. 190 //===----------------------------------------------------------------------===// 191 192 // An NodeGroup's storage type is actually very much like a TinyPtrVector: 193 // it can be either a pointer to a single ExplodedNode, or a pointer to a 194 // BumpVector allocated with the ExplodedGraph's allocator. This allows the 195 // common case of single-node NodeGroups to be implemented with no extra memory. 196 // 197 // Consequently, each of the NodeGroup methods have up to four cases to handle: 198 // 1. The flag is set and this group does not actually contain any nodes. 199 // 2. The group is empty, in which case the storage value is null. 200 // 3. The group contains a single node. 201 // 4. The group contains more than one node. 202 using ExplodedNodeVector = BumpVector<ExplodedNode *>; 203 using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>; 204 205 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 206 assert(!V->isSink()); 207 Preds.addNode(V, G); 208 V->Succs.addNode(this, G); 209 } 210 211 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 212 assert(!getFlag()); 213 214 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 215 assert(Storage.is<ExplodedNode *>()); 216 Storage = node; 217 assert(Storage.is<ExplodedNode *>()); 218 } 219 220 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 221 assert(!getFlag()); 222 223 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 224 if (Storage.isNull()) { 225 Storage = N; 226 assert(Storage.is<ExplodedNode *>()); 227 return; 228 } 229 230 ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); 231 232 if (!V) { 233 // Switch from single-node to multi-node representation. 234 ExplodedNode *Old = Storage.get<ExplodedNode *>(); 235 236 BumpVectorContext &Ctx = G.getNodeAllocator(); 237 V = G.getAllocator().Allocate<ExplodedNodeVector>(); 238 new (V) ExplodedNodeVector(Ctx, 4); 239 V->push_back(Old, Ctx); 240 241 Storage = V; 242 assert(!getFlag()); 243 assert(Storage.is<ExplodedNodeVector *>()); 244 } 245 246 V->push_back(N, G.getNodeAllocator()); 247 } 248 249 unsigned ExplodedNode::NodeGroup::size() const { 250 if (getFlag()) 251 return 0; 252 253 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 254 if (Storage.isNull()) 255 return 0; 256 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 257 return V->size(); 258 return 1; 259 } 260 261 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { 262 if (getFlag()) 263 return nullptr; 264 265 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 266 if (Storage.isNull()) 267 return nullptr; 268 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 269 return V->begin(); 270 return Storage.getAddrOfPtr1(); 271 } 272 273 ExplodedNode * const *ExplodedNode::NodeGroup::end() const { 274 if (getFlag()) 275 return nullptr; 276 277 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 278 if (Storage.isNull()) 279 return nullptr; 280 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 281 return V->end(); 282 return Storage.getAddrOfPtr1() + 1; 283 } 284 285 int64_t ExplodedNode::getID(ExplodedGraph *G) const { 286 return G->getAllocator().identifyKnownAlignedObject<ExplodedNode>(this); 287 } 288 289 bool ExplodedNode::isTrivial() const { 290 return pred_size() == 1 && succ_size() == 1 && 291 getFirstPred()->getState()->getID() == getState()->getID() && 292 getFirstPred()->succ_size() == 1; 293 } 294 295 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 296 ProgramStateRef State, 297 bool IsSink, 298 bool* IsNew) { 299 // Profile 'State' to determine if we already have an existing node. 300 llvm::FoldingSetNodeID profile; 301 void *InsertPos = nullptr; 302 303 NodeTy::Profile(profile, L, State, IsSink); 304 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 305 306 if (!V) { 307 if (!FreeNodes.empty()) { 308 V = FreeNodes.back(); 309 FreeNodes.pop_back(); 310 } 311 else { 312 // Allocate a new node. 313 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 314 } 315 316 new (V) NodeTy(L, State, IsSink); 317 318 if (ReclaimNodeInterval) 319 ChangedNodes.push_back(V); 320 321 // Insert the node into the node set and return it. 322 Nodes.InsertNode(V, InsertPos); 323 ++NumNodes; 324 325 if (IsNew) *IsNew = true; 326 } 327 else 328 if (IsNew) *IsNew = false; 329 330 return V; 331 } 332 333 ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L, 334 ProgramStateRef State, 335 bool IsSink) { 336 NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>(); 337 new (V) NodeTy(L, State, IsSink); 338 return V; 339 } 340 341 std::unique_ptr<ExplodedGraph> 342 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks, 343 InterExplodedGraphMap *ForwardMap, 344 InterExplodedGraphMap *InverseMap) const { 345 if (Nodes.empty()) 346 return nullptr; 347 348 using Pass1Ty = llvm::DenseSet<const ExplodedNode *>; 349 Pass1Ty Pass1; 350 351 using Pass2Ty = InterExplodedGraphMap; 352 InterExplodedGraphMap Pass2Scratch; 353 Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch; 354 355 SmallVector<const ExplodedNode*, 10> WL1, WL2; 356 357 // ===- Pass 1 (reverse DFS) -=== 358 for (const auto Sink : Sinks) 359 if (Sink) 360 WL1.push_back(Sink); 361 362 // Process the first worklist until it is empty. 363 while (!WL1.empty()) { 364 const ExplodedNode *N = WL1.pop_back_val(); 365 366 // Have we already visited this node? If so, continue to the next one. 367 if (!Pass1.insert(N).second) 368 continue; 369 370 // If this is a root enqueue it to the second worklist. 371 if (N->Preds.empty()) { 372 WL2.push_back(N); 373 continue; 374 } 375 376 // Visit our predecessors and enqueue them. 377 WL1.append(N->Preds.begin(), N->Preds.end()); 378 } 379 380 // We didn't hit a root? Return with a null pointer for the new graph. 381 if (WL2.empty()) 382 return nullptr; 383 384 // Create an empty graph. 385 std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph(); 386 387 // ===- Pass 2 (forward DFS to construct the new graph) -=== 388 while (!WL2.empty()) { 389 const ExplodedNode *N = WL2.pop_back_val(); 390 391 // Skip this node if we have already processed it. 392 if (Pass2.find(N) != Pass2.end()) 393 continue; 394 395 // Create the corresponding node in the new graph and record the mapping 396 // from the old node to the new node. 397 ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->isSink()); 398 Pass2[N] = NewN; 399 400 // Also record the reverse mapping from the new node to the old node. 401 if (InverseMap) (*InverseMap)[NewN] = N; 402 403 // If this node is a root, designate it as such in the graph. 404 if (N->Preds.empty()) 405 G->addRoot(NewN); 406 407 // In the case that some of the intended predecessors of NewN have already 408 // been created, we should hook them up as predecessors. 409 410 // Walk through the predecessors of 'N' and hook up their corresponding 411 // nodes in the new graph (if any) to the freshly created node. 412 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 413 I != E; ++I) { 414 Pass2Ty::iterator PI = Pass2.find(*I); 415 if (PI == Pass2.end()) 416 continue; 417 418 NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G); 419 } 420 421 // In the case that some of the intended successors of NewN have already 422 // been created, we should hook them up as successors. Otherwise, enqueue 423 // the new nodes from the original graph that should have nodes created 424 // in the new graph. 425 for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); 426 I != E; ++I) { 427 Pass2Ty::iterator PI = Pass2.find(*I); 428 if (PI != Pass2.end()) { 429 const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G); 430 continue; 431 } 432 433 // Enqueue nodes to the worklist that were marked during pass 1. 434 if (Pass1.count(*I)) 435 WL2.push_back(*I); 436 } 437 } 438 439 return G; 440 } 441