1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file defines CallEvent and its subclasses, which represent path- 10 /// sensitive instances of different kinds of function and method calls 11 /// (C, C++, and Objective-C). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/ParentMap.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/Type.h" 27 #include "clang/Analysis/AnalysisDeclContext.h" 28 #include "clang/Analysis/CFG.h" 29 #include "clang/Analysis/CFGStmtMap.h" 30 #include "clang/Analysis/PathDiagnostic.h" 31 #include "clang/Analysis/ProgramPoint.h" 32 #include "clang/CrossTU/CrossTranslationUnit.h" 33 #include "clang/Basic/IdentifierTable.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/Specifiers.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/PointerIntPair.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/StringExtras.h" 55 #include "llvm/ADT/StringRef.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <cassert> 62 #include <utility> 63 64 #define DEBUG_TYPE "static-analyzer-call-event" 65 66 using namespace clang; 67 using namespace ento; 68 69 QualType CallEvent::getResultType() const { 70 ASTContext &Ctx = getState()->getStateManager().getContext(); 71 const Expr *E = getOriginExpr(); 72 if (!E) 73 return Ctx.VoidTy; 74 assert(E); 75 76 QualType ResultTy = E->getType(); 77 78 // A function that returns a reference to 'int' will have a result type 79 // of simply 'int'. Check the origin expr's value kind to recover the 80 // proper type. 81 switch (E->getValueKind()) { 82 case VK_LValue: 83 ResultTy = Ctx.getLValueReferenceType(ResultTy); 84 break; 85 case VK_XValue: 86 ResultTy = Ctx.getRValueReferenceType(ResultTy); 87 break; 88 case VK_RValue: 89 // No adjustment is necessary. 90 break; 91 } 92 93 return ResultTy; 94 } 95 96 static bool isCallback(QualType T) { 97 // If a parameter is a block or a callback, assume it can modify pointer. 98 if (T->isBlockPointerType() || 99 T->isFunctionPointerType() || 100 T->isObjCSelType()) 101 return true; 102 103 // Check if a callback is passed inside a struct (for both, struct passed by 104 // reference and by value). Dig just one level into the struct for now. 105 106 if (T->isAnyPointerType() || T->isReferenceType()) 107 T = T->getPointeeType(); 108 109 if (const RecordType *RT = T->getAsStructureType()) { 110 const RecordDecl *RD = RT->getDecl(); 111 for (const auto *I : RD->fields()) { 112 QualType FieldT = I->getType(); 113 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 114 return true; 115 } 116 } 117 return false; 118 } 119 120 static bool isVoidPointerToNonConst(QualType T) { 121 if (const auto *PT = T->getAs<PointerType>()) { 122 QualType PointeeTy = PT->getPointeeType(); 123 if (PointeeTy.isConstQualified()) 124 return false; 125 return PointeeTy->isVoidType(); 126 } else 127 return false; 128 } 129 130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 131 unsigned NumOfArgs = getNumArgs(); 132 133 // If calling using a function pointer, assume the function does not 134 // satisfy the callback. 135 // TODO: We could check the types of the arguments here. 136 if (!getDecl()) 137 return false; 138 139 unsigned Idx = 0; 140 for (CallEvent::param_type_iterator I = param_type_begin(), 141 E = param_type_end(); 142 I != E && Idx < NumOfArgs; ++I, ++Idx) { 143 // If the parameter is 0, it's harmless. 144 if (getArgSVal(Idx).isZeroConstant()) 145 continue; 146 147 if (Condition(*I)) 148 return true; 149 } 150 return false; 151 } 152 153 bool CallEvent::hasNonZeroCallbackArg() const { 154 return hasNonNullArgumentsWithType(isCallback); 155 } 156 157 bool CallEvent::hasVoidPointerToNonConstArg() const { 158 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 159 } 160 161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 162 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 163 if (!FD) 164 return false; 165 166 return CheckerContext::isCLibraryFunction(FD, FunctionName); 167 } 168 169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { 170 const Decl *D = getDecl(); 171 if (!D) 172 return nullptr; 173 174 // TODO: For now we skip functions without definitions, even if we have 175 // our own getDecl(), because it's hard to find out which re-declaration 176 // is going to be used, and usually clients don't really care about this 177 // situation because there's a loss of precision anyway because we cannot 178 // inline the call. 179 RuntimeDefinition RD = getRuntimeDefinition(); 180 if (!RD.getDecl()) 181 return nullptr; 182 183 AnalysisDeclContext *ADC = 184 LCtx->getAnalysisDeclContext()->getManager()->getContext(D); 185 186 // TODO: For now we skip virtual functions, because this also rises 187 // the problem of which decl to use, but now it's across different classes. 188 if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl()) 189 return nullptr; 190 191 return ADC; 192 } 193 194 const StackFrameContext * 195 CallEvent::getCalleeStackFrame(unsigned BlockCount) const { 196 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); 197 if (!ADC) 198 return nullptr; 199 200 const Expr *E = getOriginExpr(); 201 if (!E) 202 return nullptr; 203 204 // Recover CFG block via reverse lookup. 205 // TODO: If we were to keep CFG element information as part of the CallEvent 206 // instead of doing this reverse lookup, we would be able to build the stack 207 // frame for non-expression-based calls, and also we wouldn't need the reverse 208 // lookup. 209 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); 210 const CFGBlock *B = Map->getBlock(E); 211 assert(B); 212 213 // Also recover CFG index by scanning the CFG block. 214 unsigned Idx = 0, Sz = B->size(); 215 for (; Idx < Sz; ++Idx) 216 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) 217 if (StmtElem->getStmt() == E) 218 break; 219 assert(Idx < Sz); 220 221 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx); 222 } 223 224 const VarRegion *CallEvent::getParameterLocation(unsigned Index, 225 unsigned BlockCount) const { 226 const StackFrameContext *SFC = getCalleeStackFrame(BlockCount); 227 // We cannot construct a VarRegion without a stack frame. 228 if (!SFC) 229 return nullptr; 230 231 // Retrieve parameters of the definition, which are different from 232 // CallEvent's parameters() because getDecl() isn't necessarily 233 // the definition. SFC contains the definition that would be used 234 // during analysis. 235 const Decl *D = SFC->getDecl(); 236 237 // TODO: Refactor into a virtual method of CallEvent, like parameters(). 238 const ParmVarDecl *PVD = nullptr; 239 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 240 PVD = FD->parameters()[Index]; 241 else if (const auto *BD = dyn_cast<BlockDecl>(D)) 242 PVD = BD->parameters()[Index]; 243 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 244 PVD = MD->parameters()[Index]; 245 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 246 PVD = CD->parameters()[Index]; 247 assert(PVD && "Unexpected Decl kind!"); 248 249 const VarRegion *VR = 250 State->getStateManager().getRegionManager().getVarRegion(PVD, SFC); 251 252 // This sanity check would fail if our parameter declaration doesn't 253 // correspond to the stack frame's function declaration. 254 assert(VR->getStackFrame() == SFC); 255 256 return VR; 257 } 258 259 /// Returns true if a type is a pointer-to-const or reference-to-const 260 /// with no further indirection. 261 static bool isPointerToConst(QualType Ty) { 262 QualType PointeeTy = Ty->getPointeeType(); 263 if (PointeeTy == QualType()) 264 return false; 265 if (!PointeeTy.isConstQualified()) 266 return false; 267 if (PointeeTy->isAnyPointerType()) 268 return false; 269 return true; 270 } 271 272 // Try to retrieve the function declaration and find the function parameter 273 // types which are pointers/references to a non-pointer const. 274 // We will not invalidate the corresponding argument regions. 275 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 276 const CallEvent &Call) { 277 unsigned Idx = 0; 278 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 279 E = Call.param_type_end(); 280 I != E; ++I, ++Idx) { 281 if (isPointerToConst(*I)) 282 PreserveArgs.insert(Idx); 283 } 284 } 285 286 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 287 ProgramStateRef Orig) const { 288 ProgramStateRef Result = (Orig ? Orig : getState()); 289 290 // Don't invalidate anything if the callee is marked pure/const. 291 if (const Decl *callee = getDecl()) 292 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 293 return Result; 294 295 SmallVector<SVal, 8> ValuesToInvalidate; 296 RegionAndSymbolInvalidationTraits ETraits; 297 298 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 299 300 // Indexes of arguments whose values will be preserved by the call. 301 llvm::SmallSet<unsigned, 4> PreserveArgs; 302 if (!argumentsMayEscape()) 303 findPtrToConstParams(PreserveArgs, *this); 304 305 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 306 // Mark this region for invalidation. We batch invalidate regions 307 // below for efficiency. 308 if (PreserveArgs.count(Idx)) 309 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 310 ETraits.setTrait(MR->getBaseRegion(), 311 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 312 // TODO: Factor this out + handle the lower level const pointers. 313 314 ValuesToInvalidate.push_back(getArgSVal(Idx)); 315 316 // If a function accepts an object by argument (which would of course be a 317 // temporary that isn't lifetime-extended), invalidate the object itself, 318 // not only other objects reachable from it. This is necessary because the 319 // destructor has access to the temporary object after the call. 320 // TODO: Support placement arguments once we start 321 // constructing them directly. 322 // TODO: This is unnecessary when there's no destructor, but that's 323 // currently hard to figure out. 324 if (getKind() != CE_CXXAllocator) 325 if (isArgumentConstructedDirectly(Idx)) 326 if (auto AdjIdx = getAdjustedParameterIndex(Idx)) 327 if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount)) 328 ValuesToInvalidate.push_back(loc::MemRegionVal(VR)); 329 } 330 331 // Invalidate designated regions using the batch invalidation API. 332 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 333 // global variables. 334 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 335 BlockCount, getLocationContext(), 336 /*CausedByPointerEscape*/ true, 337 /*Symbols=*/nullptr, this, &ETraits); 338 } 339 340 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 341 const ProgramPointTag *Tag) const { 342 if (const Expr *E = getOriginExpr()) { 343 if (IsPreVisit) 344 return PreStmt(E, getLocationContext(), Tag); 345 return PostStmt(E, getLocationContext(), Tag); 346 } 347 348 const Decl *D = getDecl(); 349 assert(D && "Cannot get a program point without a statement or decl"); 350 351 SourceLocation Loc = getSourceRange().getBegin(); 352 if (IsPreVisit) 353 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 354 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 355 } 356 357 bool CallEvent::isCalled(const CallDescription &CD) const { 358 // FIXME: Add ObjC Message support. 359 if (getKind() == CE_ObjCMessage) 360 return false; 361 362 const IdentifierInfo *II = getCalleeIdentifier(); 363 if (!II) 364 return false; 365 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 366 if (!FD) 367 return false; 368 369 if (CD.Flags & CDF_MaybeBuiltin) { 370 return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) && 371 (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) && 372 (!CD.RequiredParams || CD.RequiredParams <= parameters().size()); 373 } 374 375 if (!CD.IsLookupDone) { 376 CD.IsLookupDone = true; 377 CD.II = &getState()->getStateManager().getContext().Idents.get( 378 CD.getFunctionName()); 379 } 380 381 if (II != CD.II) 382 return false; 383 384 // If CallDescription provides prefix names, use them to improve matching 385 // accuracy. 386 if (CD.QualifiedName.size() > 1 && FD) { 387 const DeclContext *Ctx = FD->getDeclContext(); 388 // See if we'll be able to match them all. 389 size_t NumUnmatched = CD.QualifiedName.size() - 1; 390 for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) { 391 if (NumUnmatched == 0) 392 break; 393 394 if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) { 395 if (ND->getName() == CD.QualifiedName[NumUnmatched - 1]) 396 --NumUnmatched; 397 continue; 398 } 399 400 if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) { 401 if (RD->getName() == CD.QualifiedName[NumUnmatched - 1]) 402 --NumUnmatched; 403 continue; 404 } 405 } 406 407 if (NumUnmatched > 0) 408 return false; 409 } 410 411 return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) && 412 (!CD.RequiredParams || CD.RequiredParams == parameters().size()); 413 } 414 415 SVal CallEvent::getArgSVal(unsigned Index) const { 416 const Expr *ArgE = getArgExpr(Index); 417 if (!ArgE) 418 return UnknownVal(); 419 return getSVal(ArgE); 420 } 421 422 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 423 const Expr *ArgE = getArgExpr(Index); 424 if (!ArgE) 425 return {}; 426 return ArgE->getSourceRange(); 427 } 428 429 SVal CallEvent::getReturnValue() const { 430 const Expr *E = getOriginExpr(); 431 if (!E) 432 return UndefinedVal(); 433 return getSVal(E); 434 } 435 436 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 437 438 void CallEvent::dump(raw_ostream &Out) const { 439 ASTContext &Ctx = getState()->getStateManager().getContext(); 440 if (const Expr *E = getOriginExpr()) { 441 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 442 Out << "\n"; 443 return; 444 } 445 446 if (const Decl *D = getDecl()) { 447 Out << "Call to "; 448 D->print(Out, Ctx.getPrintingPolicy()); 449 return; 450 } 451 452 // FIXME: a string representation of the kind would be nice. 453 Out << "Unknown call (type " << getKind() << ")"; 454 } 455 456 bool CallEvent::isCallStmt(const Stmt *S) { 457 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 458 || isa<CXXConstructExpr>(S) 459 || isa<CXXNewExpr>(S); 460 } 461 462 QualType CallEvent::getDeclaredResultType(const Decl *D) { 463 assert(D); 464 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 465 return FD->getReturnType(); 466 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 467 return MD->getReturnType(); 468 if (const auto *BD = dyn_cast<BlockDecl>(D)) { 469 // Blocks are difficult because the return type may not be stored in the 470 // BlockDecl itself. The AST should probably be enhanced, but for now we 471 // just do what we can. 472 // If the block is declared without an explicit argument list, the 473 // signature-as-written just includes the return type, not the entire 474 // function type. 475 // FIXME: All blocks should have signatures-as-written, even if the return 476 // type is inferred. (That's signified with a dependent result type.) 477 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 478 QualType Ty = TSI->getType(); 479 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 480 Ty = FT->getReturnType(); 481 if (!Ty->isDependentType()) 482 return Ty; 483 } 484 485 return {}; 486 } 487 488 llvm_unreachable("unknown callable kind"); 489 } 490 491 bool CallEvent::isVariadic(const Decl *D) { 492 assert(D); 493 494 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 495 return FD->isVariadic(); 496 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 497 return MD->isVariadic(); 498 if (const auto *BD = dyn_cast<BlockDecl>(D)) 499 return BD->isVariadic(); 500 501 llvm_unreachable("unknown callable kind"); 502 } 503 504 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 505 CallEvent::BindingsTy &Bindings, 506 SValBuilder &SVB, 507 const CallEvent &Call, 508 ArrayRef<ParmVarDecl*> parameters) { 509 MemRegionManager &MRMgr = SVB.getRegionManager(); 510 511 // If the function has fewer parameters than the call has arguments, we simply 512 // do not bind any values to them. 513 unsigned NumArgs = Call.getNumArgs(); 514 unsigned Idx = 0; 515 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 516 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 517 const ParmVarDecl *ParamDecl = *I; 518 assert(ParamDecl && "Formal parameter has no decl?"); 519 520 // TODO: Support allocator calls. 521 if (Call.getKind() != CE_CXXAllocator) 522 if (Call.isArgumentConstructedDirectly(Idx)) 523 continue; 524 525 // TODO: Allocators should receive the correct size and possibly alignment, 526 // determined in compile-time but not represented as arg-expressions, 527 // which makes getArgSVal() fail and return UnknownVal. 528 SVal ArgVal = Call.getArgSVal(Idx); 529 if (!ArgVal.isUnknown()) { 530 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 531 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 532 } 533 } 534 535 // FIXME: Variadic arguments are not handled at all right now. 536 } 537 538 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 539 const FunctionDecl *D = getDecl(); 540 if (!D) 541 return None; 542 return D->parameters(); 543 } 544 545 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 546 const FunctionDecl *FD = getDecl(); 547 if (!FD) 548 return {}; 549 550 // Note that the AnalysisDeclContext will have the FunctionDecl with 551 // the definition (if one exists). 552 AnalysisDeclContext *AD = 553 getLocationContext()->getAnalysisDeclContext()-> 554 getManager()->getContext(FD); 555 bool IsAutosynthesized; 556 Stmt* Body = AD->getBody(IsAutosynthesized); 557 LLVM_DEBUG({ 558 if (IsAutosynthesized) 559 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 560 << "\n"; 561 }); 562 if (Body) { 563 const Decl* Decl = AD->getDecl(); 564 return RuntimeDefinition(Decl); 565 } 566 567 SubEngine &Engine = getState()->getStateManager().getOwningEngine(); 568 AnalyzerOptions &Opts = Engine.getAnalysisManager().options; 569 570 // Try to get CTU definition only if CTUDir is provided. 571 if (!Opts.IsNaiveCTUEnabled) 572 return {}; 573 574 cross_tu::CrossTranslationUnitContext &CTUCtx = 575 *Engine.getCrossTranslationUnitContext(); 576 llvm::Expected<const FunctionDecl *> CTUDeclOrError = 577 CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName, 578 Opts.DisplayCTUProgress); 579 580 if (!CTUDeclOrError) { 581 handleAllErrors(CTUDeclOrError.takeError(), 582 [&](const cross_tu::IndexError &IE) { 583 CTUCtx.emitCrossTUDiagnostics(IE); 584 }); 585 return {}; 586 } 587 588 return RuntimeDefinition(*CTUDeclOrError); 589 } 590 591 void AnyFunctionCall::getInitialStackFrameContents( 592 const StackFrameContext *CalleeCtx, 593 BindingsTy &Bindings) const { 594 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 595 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 596 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 597 D->parameters()); 598 } 599 600 bool AnyFunctionCall::argumentsMayEscape() const { 601 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 602 return true; 603 604 const FunctionDecl *D = getDecl(); 605 if (!D) 606 return true; 607 608 const IdentifierInfo *II = D->getIdentifier(); 609 if (!II) 610 return false; 611 612 // This set of "escaping" APIs is 613 614 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 615 // value into thread local storage. The value can later be retrieved with 616 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 617 // parameter is 'const void *', the region escapes through the call. 618 if (II->isStr("pthread_setspecific")) 619 return true; 620 621 // - xpc_connection_set_context stores a value which can be retrieved later 622 // with xpc_connection_get_context. 623 if (II->isStr("xpc_connection_set_context")) 624 return true; 625 626 // - funopen - sets a buffer for future IO calls. 627 if (II->isStr("funopen")) 628 return true; 629 630 // - __cxa_demangle - can reallocate memory and can return the pointer to 631 // the input buffer. 632 if (II->isStr("__cxa_demangle")) 633 return true; 634 635 StringRef FName = II->getName(); 636 637 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 638 // buffer even if it is const. 639 if (FName.endswith("NoCopy")) 640 return true; 641 642 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 643 // be deallocated by NSMapRemove. 644 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 645 return true; 646 647 // - Many CF containers allow objects to escape through custom 648 // allocators/deallocators upon container construction. (PR12101) 649 if (FName.startswith("CF") || FName.startswith("CG")) { 650 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 651 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 652 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 653 StrInStrNoCase(FName, "WithData") != StringRef::npos || 654 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 655 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 656 } 657 658 return false; 659 } 660 661 const FunctionDecl *SimpleFunctionCall::getDecl() const { 662 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 663 if (D) 664 return D; 665 666 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 667 } 668 669 const FunctionDecl *CXXInstanceCall::getDecl() const { 670 const auto *CE = cast_or_null<CallExpr>(getOriginExpr()); 671 if (!CE) 672 return AnyFunctionCall::getDecl(); 673 674 const FunctionDecl *D = CE->getDirectCallee(); 675 if (D) 676 return D; 677 678 return getSVal(CE->getCallee()).getAsFunctionDecl(); 679 } 680 681 void CXXInstanceCall::getExtraInvalidatedValues( 682 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 683 SVal ThisVal = getCXXThisVal(); 684 Values.push_back(ThisVal); 685 686 // Don't invalidate if the method is const and there are no mutable fields. 687 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) { 688 if (!D->isConst()) 689 return; 690 // Get the record decl for the class of 'This'. D->getParent() may return a 691 // base class decl, rather than the class of the instance which needs to be 692 // checked for mutable fields. 693 // TODO: We might as well look at the dynamic type of the object. 694 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 695 QualType T = Ex->getType(); 696 if (T->isPointerType()) // Arrow or implicit-this syntax? 697 T = T->getPointeeType(); 698 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl(); 699 assert(ParentRecord); 700 if (ParentRecord->hasMutableFields()) 701 return; 702 // Preserve CXXThis. 703 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 704 if (!ThisRegion) 705 return; 706 707 ETraits->setTrait(ThisRegion->getBaseRegion(), 708 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 709 } 710 } 711 712 SVal CXXInstanceCall::getCXXThisVal() const { 713 const Expr *Base = getCXXThisExpr(); 714 // FIXME: This doesn't handle an overloaded ->* operator. 715 if (!Base) 716 return UnknownVal(); 717 718 SVal ThisVal = getSVal(Base); 719 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 720 return ThisVal; 721 } 722 723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 724 // Do we have a decl at all? 725 const Decl *D = getDecl(); 726 if (!D) 727 return {}; 728 729 // If the method is non-virtual, we know we can inline it. 730 const auto *MD = cast<CXXMethodDecl>(D); 731 if (!MD->isVirtual()) 732 return AnyFunctionCall::getRuntimeDefinition(); 733 734 // Do we know the implicit 'this' object being called? 735 const MemRegion *R = getCXXThisVal().getAsRegion(); 736 if (!R) 737 return {}; 738 739 // Do we know anything about the type of 'this'? 740 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 741 if (!DynType.isValid()) 742 return {}; 743 744 // Is the type a C++ class? (This is mostly a defensive check.) 745 QualType RegionType = DynType.getType()->getPointeeType(); 746 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 747 748 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 749 if (!RD || !RD->hasDefinition()) 750 return {}; 751 752 // Find the decl for this method in that class. 753 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 754 if (!Result) { 755 // We might not even get the original statically-resolved method due to 756 // some particularly nasty casting (e.g. casts to sister classes). 757 // However, we should at least be able to search up and down our own class 758 // hierarchy, and some real bugs have been caught by checking this. 759 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 760 761 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 762 // the static type. However, because we currently don't update 763 // DynamicTypeInfo when an object is cast, we can't actually be sure the 764 // DynamicTypeInfo is up to date. This assert should be re-enabled once 765 // this is fixed. <rdar://problem/12287087> 766 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 767 768 return {}; 769 } 770 771 // Does the decl that we found have an implementation? 772 const FunctionDecl *Definition; 773 if (!Result->hasBody(Definition)) { 774 if (!DynType.canBeASubClass()) 775 return AnyFunctionCall::getRuntimeDefinition(); 776 return {}; 777 } 778 779 // We found a definition. If we're not sure that this devirtualization is 780 // actually what will happen at runtime, make sure to provide the region so 781 // that ExprEngine can decide what to do with it. 782 if (DynType.canBeASubClass()) 783 return RuntimeDefinition(Definition, R->StripCasts()); 784 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 785 } 786 787 void CXXInstanceCall::getInitialStackFrameContents( 788 const StackFrameContext *CalleeCtx, 789 BindingsTy &Bindings) const { 790 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 791 792 // Handle the binding of 'this' in the new stack frame. 793 SVal ThisVal = getCXXThisVal(); 794 if (!ThisVal.isUnknown()) { 795 ProgramStateManager &StateMgr = getState()->getStateManager(); 796 SValBuilder &SVB = StateMgr.getSValBuilder(); 797 798 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 799 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 800 801 // If we devirtualized to a different member function, we need to make sure 802 // we have the proper layering of CXXBaseObjectRegions. 803 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 804 ASTContext &Ctx = SVB.getContext(); 805 const CXXRecordDecl *Class = MD->getParent(); 806 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 807 808 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 809 bool Failed; 810 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 811 if (Failed) { 812 // We might have suffered some sort of placement new earlier, so 813 // we're constructing in a completely unexpected storage. 814 // Fall back to a generic pointer cast for this-value. 815 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl()); 816 const CXXRecordDecl *StaticClass = StaticMD->getParent(); 817 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass)); 818 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy); 819 } 820 } 821 822 if (!ThisVal.isUnknown()) 823 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 824 } 825 } 826 827 const Expr *CXXMemberCall::getCXXThisExpr() const { 828 return getOriginExpr()->getImplicitObjectArgument(); 829 } 830 831 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 832 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 833 // id-expression in the class member access expression is a qualified-id, 834 // that function is called. Otherwise, its final overrider in the dynamic type 835 // of the object expression is called. 836 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 837 if (ME->hasQualifier()) 838 return AnyFunctionCall::getRuntimeDefinition(); 839 840 return CXXInstanceCall::getRuntimeDefinition(); 841 } 842 843 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 844 return getOriginExpr()->getArg(0); 845 } 846 847 const BlockDataRegion *BlockCall::getBlockRegion() const { 848 const Expr *Callee = getOriginExpr()->getCallee(); 849 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 850 851 return dyn_cast_or_null<BlockDataRegion>(DataReg); 852 } 853 854 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 855 const BlockDecl *D = getDecl(); 856 if (!D) 857 return None; 858 return D->parameters(); 859 } 860 861 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 862 RegionAndSymbolInvalidationTraits *ETraits) const { 863 // FIXME: This also needs to invalidate captured globals. 864 if (const MemRegion *R = getBlockRegion()) 865 Values.push_back(loc::MemRegionVal(R)); 866 } 867 868 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 869 BindingsTy &Bindings) const { 870 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 871 ArrayRef<ParmVarDecl*> Params; 872 if (isConversionFromLambda()) { 873 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 874 Params = LambdaOperatorDecl->parameters(); 875 876 // For blocks converted from a C++ lambda, the callee declaration is the 877 // operator() method on the lambda so we bind "this" to 878 // the lambda captured by the block. 879 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 880 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 881 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 882 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 883 } else { 884 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 885 } 886 887 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 888 Params); 889 } 890 891 SVal CXXConstructorCall::getCXXThisVal() const { 892 if (Data) 893 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 894 return UnknownVal(); 895 } 896 897 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 898 RegionAndSymbolInvalidationTraits *ETraits) const { 899 if (Data) { 900 loc::MemRegionVal MV(static_cast<const MemRegion *>(Data)); 901 if (SymbolRef Sym = MV.getAsSymbol(true)) 902 ETraits->setTrait(Sym, 903 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 904 Values.push_back(MV); 905 } 906 } 907 908 void CXXConstructorCall::getInitialStackFrameContents( 909 const StackFrameContext *CalleeCtx, 910 BindingsTy &Bindings) const { 911 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 912 913 SVal ThisVal = getCXXThisVal(); 914 if (!ThisVal.isUnknown()) { 915 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 916 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 917 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 918 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 919 } 920 } 921 922 SVal CXXDestructorCall::getCXXThisVal() const { 923 if (Data) 924 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 925 return UnknownVal(); 926 } 927 928 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 929 // Base destructors are always called non-virtually. 930 // Skip CXXInstanceCall's devirtualization logic in this case. 931 if (isBaseDestructor()) 932 return AnyFunctionCall::getRuntimeDefinition(); 933 934 return CXXInstanceCall::getRuntimeDefinition(); 935 } 936 937 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 938 const ObjCMethodDecl *D = getDecl(); 939 if (!D) 940 return None; 941 return D->parameters(); 942 } 943 944 void ObjCMethodCall::getExtraInvalidatedValues( 945 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 946 947 // If the method call is a setter for property known to be backed by 948 // an instance variable, don't invalidate the entire receiver, just 949 // the storage for that instance variable. 950 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 951 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 952 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 953 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 954 ETraits->setTrait( 955 IvarRegion, 956 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 957 ETraits->setTrait( 958 IvarRegion, 959 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 960 Values.push_back(IvarLVal); 961 } 962 return; 963 } 964 } 965 966 Values.push_back(getReceiverSVal()); 967 } 968 969 SVal ObjCMethodCall::getSelfSVal() const { 970 const LocationContext *LCtx = getLocationContext(); 971 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 972 if (!SelfDecl) 973 return SVal(); 974 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 975 } 976 977 SVal ObjCMethodCall::getReceiverSVal() const { 978 // FIXME: Is this the best way to handle class receivers? 979 if (!isInstanceMessage()) 980 return UnknownVal(); 981 982 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 983 return getSVal(RecE); 984 985 // An instance message with no expression means we are sending to super. 986 // In this case the object reference is the same as 'self'. 987 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 988 SVal SelfVal = getSelfSVal(); 989 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 990 return SelfVal; 991 } 992 993 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 994 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 995 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 996 return true; 997 998 if (!isInstanceMessage()) 999 return false; 1000 1001 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 1002 1003 return (RecVal == getSelfSVal()); 1004 } 1005 1006 SourceRange ObjCMethodCall::getSourceRange() const { 1007 switch (getMessageKind()) { 1008 case OCM_Message: 1009 return getOriginExpr()->getSourceRange(); 1010 case OCM_PropertyAccess: 1011 case OCM_Subscript: 1012 return getContainingPseudoObjectExpr()->getSourceRange(); 1013 } 1014 llvm_unreachable("unknown message kind"); 1015 } 1016 1017 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; 1018 1019 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 1020 assert(Data && "Lazy lookup not yet performed."); 1021 assert(getMessageKind() != OCM_Message && "Explicit message send."); 1022 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 1023 } 1024 1025 static const Expr * 1026 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 1027 const Expr *Syntactic = POE->getSyntacticForm(); 1028 1029 // This handles the funny case of assigning to the result of a getter. 1030 // This can happen if the getter returns a non-const reference. 1031 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic)) 1032 Syntactic = BO->getLHS(); 1033 1034 return Syntactic; 1035 } 1036 1037 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 1038 if (!Data) { 1039 // Find the parent, ignoring implicit casts. 1040 const ParentMap &PM = getLocationContext()->getParentMap(); 1041 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 1042 1043 // Check if parent is a PseudoObjectExpr. 1044 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 1045 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1046 1047 ObjCMessageKind K; 1048 switch (Syntactic->getStmtClass()) { 1049 case Stmt::ObjCPropertyRefExprClass: 1050 K = OCM_PropertyAccess; 1051 break; 1052 case Stmt::ObjCSubscriptRefExprClass: 1053 K = OCM_Subscript; 1054 break; 1055 default: 1056 // FIXME: Can this ever happen? 1057 K = OCM_Message; 1058 break; 1059 } 1060 1061 if (K != OCM_Message) { 1062 const_cast<ObjCMethodCall *>(this)->Data 1063 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 1064 assert(getMessageKind() == K); 1065 return K; 1066 } 1067 } 1068 1069 const_cast<ObjCMethodCall *>(this)->Data 1070 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 1071 assert(getMessageKind() == OCM_Message); 1072 return OCM_Message; 1073 } 1074 1075 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 1076 if (!Info.getPointer()) 1077 return OCM_Message; 1078 return static_cast<ObjCMessageKind>(Info.getInt()); 1079 } 1080 1081 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 1082 // Look for properties accessed with property syntax (foo.bar = ...) 1083 if ( getMessageKind() == OCM_PropertyAccess) { 1084 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 1085 assert(POE && "Property access without PseudoObjectExpr?"); 1086 1087 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1088 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 1089 1090 if (RefExpr->isExplicitProperty()) 1091 return RefExpr->getExplicitProperty(); 1092 } 1093 1094 // Look for properties accessed with method syntax ([foo setBar:...]). 1095 const ObjCMethodDecl *MD = getDecl(); 1096 if (!MD || !MD->isPropertyAccessor()) 1097 return nullptr; 1098 1099 // Note: This is potentially quite slow. 1100 return MD->findPropertyDecl(); 1101 } 1102 1103 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 1104 Selector Sel) const { 1105 assert(IDecl); 1106 AnalysisManager &AMgr = 1107 getState()->getStateManager().getOwningEngine().getAnalysisManager(); 1108 // If the class interface is declared inside the main file, assume it is not 1109 // subcassed. 1110 // TODO: It could actually be subclassed if the subclass is private as well. 1111 // This is probably very rare. 1112 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 1113 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc)) 1114 return false; 1115 1116 // Assume that property accessors are not overridden. 1117 if (getMessageKind() == OCM_PropertyAccess) 1118 return false; 1119 1120 // We assume that if the method is public (declared outside of main file) or 1121 // has a parent which publicly declares the method, the method could be 1122 // overridden in a subclass. 1123 1124 // Find the first declaration in the class hierarchy that declares 1125 // the selector. 1126 ObjCMethodDecl *D = nullptr; 1127 while (true) { 1128 D = IDecl->lookupMethod(Sel, true); 1129 1130 // Cannot find a public definition. 1131 if (!D) 1132 return false; 1133 1134 // If outside the main file, 1135 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation())) 1136 return true; 1137 1138 if (D->isOverriding()) { 1139 // Search in the superclass on the next iteration. 1140 IDecl = D->getClassInterface(); 1141 if (!IDecl) 1142 return false; 1143 1144 IDecl = IDecl->getSuperClass(); 1145 if (!IDecl) 1146 return false; 1147 1148 continue; 1149 } 1150 1151 return false; 1152 }; 1153 1154 llvm_unreachable("The while loop should always terminate."); 1155 } 1156 1157 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 1158 if (!MD) 1159 return MD; 1160 1161 // Find the redeclaration that defines the method. 1162 if (!MD->hasBody()) { 1163 for (auto I : MD->redecls()) 1164 if (I->hasBody()) 1165 MD = cast<ObjCMethodDecl>(I); 1166 } 1167 return MD; 1168 } 1169 1170 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 1171 const Expr* InstRec = ME->getInstanceReceiver(); 1172 if (!InstRec) 1173 return false; 1174 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 1175 1176 // Check that receiver is called 'self'. 1177 if (!InstRecIg || !InstRecIg->getFoundDecl() || 1178 !InstRecIg->getFoundDecl()->getName().equals("self")) 1179 return false; 1180 1181 // Check that the method name is 'class'. 1182 if (ME->getSelector().getNumArgs() != 0 || 1183 !ME->getSelector().getNameForSlot(0).equals("class")) 1184 return false; 1185 1186 return true; 1187 } 1188 1189 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 1190 const ObjCMessageExpr *E = getOriginExpr(); 1191 assert(E); 1192 Selector Sel = E->getSelector(); 1193 1194 if (E->isInstanceMessage()) { 1195 // Find the receiver type. 1196 const ObjCObjectPointerType *ReceiverT = nullptr; 1197 bool CanBeSubClassed = false; 1198 QualType SupersType = E->getSuperType(); 1199 const MemRegion *Receiver = nullptr; 1200 1201 if (!SupersType.isNull()) { 1202 // The receiver is guaranteed to be 'super' in this case. 1203 // Super always means the type of immediate predecessor to the method 1204 // where the call occurs. 1205 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 1206 } else { 1207 Receiver = getReceiverSVal().getAsRegion(); 1208 if (!Receiver) 1209 return {}; 1210 1211 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 1212 if (!DTI.isValid()) { 1213 assert(isa<AllocaRegion>(Receiver) && 1214 "Unhandled untyped region class!"); 1215 return {}; 1216 } 1217 1218 QualType DynType = DTI.getType(); 1219 CanBeSubClassed = DTI.canBeASubClass(); 1220 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 1221 1222 if (ReceiverT && CanBeSubClassed) 1223 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 1224 if (!canBeOverridenInSubclass(IDecl, Sel)) 1225 CanBeSubClassed = false; 1226 } 1227 1228 // Handle special cases of '[self classMethod]' and 1229 // '[[self class] classMethod]', which are treated by the compiler as 1230 // instance (not class) messages. We will statically dispatch to those. 1231 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 1232 // For [self classMethod], return the compiler visible declaration. 1233 if (PT->getObjectType()->isObjCClass() && 1234 Receiver == getSelfSVal().getAsRegion()) 1235 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1236 1237 // Similarly, handle [[self class] classMethod]. 1238 // TODO: We are currently doing a syntactic match for this pattern with is 1239 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 1240 // shows. A better way would be to associate the meta type with the symbol 1241 // using the dynamic type info tracking and use it here. We can add a new 1242 // SVal for ObjC 'Class' values that know what interface declaration they 1243 // come from. Then 'self' in a class method would be filled in with 1244 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 1245 // do proper dynamic dispatch for class methods just like we do for 1246 // instance methods now. 1247 if (E->getInstanceReceiver()) 1248 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 1249 if (isCallToSelfClass(M)) 1250 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1251 } 1252 1253 // Lookup the instance method implementation. 1254 if (ReceiverT) 1255 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 1256 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1257 // when in many cases it returns null. We cache the results so 1258 // that repeated queries on the same ObjCIntefaceDecl and Selector 1259 // don't incur the same cost. On some test cases, we can see the 1260 // same query being issued thousands of times. 1261 // 1262 // NOTE: This cache is essentially a "global" variable, but it 1263 // only gets lazily created when we get here. The value of the 1264 // cache probably comes from it being global across ExprEngines, 1265 // where the same queries may get issued. If we are worried about 1266 // concurrency, or possibly loading/unloading ASTs, etc., we may 1267 // need to revisit this someday. In terms of memory, this table 1268 // stays around until clang quits, which also may be bad if we 1269 // need to release memory. 1270 using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>; 1271 using PrivateMethodCache = 1272 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>; 1273 1274 static PrivateMethodCache PMC; 1275 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1276 1277 // Query lookupPrivateMethod() if the cache does not hit. 1278 if (!Val.hasValue()) { 1279 Val = IDecl->lookupPrivateMethod(Sel); 1280 1281 // If the method is a property accessor, we should try to "inline" it 1282 // even if we don't actually have an implementation. 1283 if (!*Val) 1284 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1285 if (CompileTimeMD->isPropertyAccessor()) { 1286 if (!CompileTimeMD->getSelfDecl() && 1287 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1288 // If the method is an accessor in a category, and it doesn't 1289 // have a self declaration, first 1290 // try to find the method in a class extension. This 1291 // works around a bug in Sema where multiple accessors 1292 // are synthesized for properties in class 1293 // extensions that are redeclared in a category and the 1294 // the implicit parameters are not filled in for 1295 // the method on the category. 1296 // This ensures we find the accessor in the extension, which 1297 // has the implicit parameters filled in. 1298 auto *ID = CompileTimeMD->getClassInterface(); 1299 for (auto *CatDecl : ID->visible_extensions()) { 1300 Val = CatDecl->getMethod(Sel, 1301 CompileTimeMD->isInstanceMethod()); 1302 if (*Val) 1303 break; 1304 } 1305 } 1306 if (!*Val) 1307 Val = IDecl->lookupInstanceMethod(Sel); 1308 } 1309 } 1310 1311 const ObjCMethodDecl *MD = Val.getValue(); 1312 if (CanBeSubClassed) 1313 return RuntimeDefinition(MD, Receiver); 1314 else 1315 return RuntimeDefinition(MD, nullptr); 1316 } 1317 } else { 1318 // This is a class method. 1319 // If we have type info for the receiver class, we are calling via 1320 // class name. 1321 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1322 // Find/Return the method implementation. 1323 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1324 } 1325 } 1326 1327 return {}; 1328 } 1329 1330 bool ObjCMethodCall::argumentsMayEscape() const { 1331 if (isInSystemHeader() && !isInstanceMessage()) { 1332 Selector Sel = getSelector(); 1333 if (Sel.getNumArgs() == 1 && 1334 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1335 return true; 1336 } 1337 1338 return CallEvent::argumentsMayEscape(); 1339 } 1340 1341 void ObjCMethodCall::getInitialStackFrameContents( 1342 const StackFrameContext *CalleeCtx, 1343 BindingsTy &Bindings) const { 1344 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1345 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1346 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1347 D->parameters()); 1348 1349 SVal SelfVal = getReceiverSVal(); 1350 if (!SelfVal.isUnknown()) { 1351 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1352 MemRegionManager &MRMgr = SVB.getRegionManager(); 1353 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1354 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1355 } 1356 } 1357 1358 CallEventRef<> 1359 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1360 const LocationContext *LCtx) { 1361 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1362 return create<CXXMemberCall>(MCE, State, LCtx); 1363 1364 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1365 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1366 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1367 if (MD->isInstance()) 1368 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1369 1370 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1371 return create<BlockCall>(CE, State, LCtx); 1372 } 1373 1374 // Otherwise, it's a normal function call, static member function call, or 1375 // something we can't reason about. 1376 return create<SimpleFunctionCall>(CE, State, LCtx); 1377 } 1378 1379 CallEventRef<> 1380 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1381 ProgramStateRef State) { 1382 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1383 const LocationContext *CallerCtx = ParentCtx->getStackFrame(); 1384 assert(CallerCtx && "This should not be used for top-level stack frames"); 1385 1386 const Stmt *CallSite = CalleeCtx->getCallSite(); 1387 1388 if (CallSite) { 1389 if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx)) 1390 return Out; 1391 1392 // All other cases are handled by getCall. 1393 assert(isa<CXXConstructExpr>(CallSite) && 1394 "This is not an inlineable statement"); 1395 1396 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1397 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1398 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1399 SVal ThisVal = State->getSVal(ThisPtr); 1400 1401 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1402 ThisVal.getAsRegion(), State, CallerCtx); 1403 } 1404 1405 // Fall back to the CFG. The only thing we haven't handled yet is 1406 // destructors, though this could change in the future. 1407 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1408 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1409 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && 1410 "All other CFG elements should have exprs"); 1411 1412 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1413 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1414 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1415 SVal ThisVal = State->getSVal(ThisPtr); 1416 1417 const Stmt *Trigger; 1418 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1419 Trigger = AutoDtor->getTriggerStmt(); 1420 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1421 Trigger = DeleteDtor->getDeleteExpr(); 1422 else 1423 Trigger = Dtor->getBody(); 1424 1425 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1426 E.getAs<CFGBaseDtor>().hasValue(), State, 1427 CallerCtx); 1428 } 1429 1430 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State, 1431 const LocationContext *LC) { 1432 if (const auto *CE = dyn_cast<CallExpr>(S)) { 1433 return getSimpleCall(CE, State, LC); 1434 } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) { 1435 return getCXXAllocatorCall(NE, State, LC); 1436 } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1437 return getObjCMethodCall(ME, State, LC); 1438 } else { 1439 return nullptr; 1440 } 1441 } 1442