xref: /freebsd-src/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/PathDiagnostic.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/CrossTU/CrossTranslationUnit.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *
195 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
196   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197   if (!ADC)
198     return nullptr;
199 
200   const Expr *E = getOriginExpr();
201   if (!E)
202     return nullptr;
203 
204   // Recover CFG block via reverse lookup.
205   // TODO: If we were to keep CFG element information as part of the CallEvent
206   // instead of doing this reverse lookup, we would be able to build the stack
207   // frame for non-expression-based calls, and also we wouldn't need the reverse
208   // lookup.
209   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210   const CFGBlock *B = Map->getBlock(E);
211   assert(B);
212 
213   // Also recover CFG index by scanning the CFG block.
214   unsigned Idx = 0, Sz = B->size();
215   for (; Idx < Sz; ++Idx)
216     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217       if (StmtElem->getStmt() == E)
218         break;
219   assert(Idx < Sz);
220 
221   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
222 }
223 
224 const VarRegion *CallEvent::getParameterLocation(unsigned Index,
225                                                  unsigned BlockCount) const {
226   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
227   // We cannot construct a VarRegion without a stack frame.
228   if (!SFC)
229     return nullptr;
230 
231   // Retrieve parameters of the definition, which are different from
232   // CallEvent's parameters() because getDecl() isn't necessarily
233   // the definition. SFC contains the definition that would be used
234   // during analysis.
235   const Decl *D = SFC->getDecl();
236 
237   // TODO: Refactor into a virtual method of CallEvent, like parameters().
238   const ParmVarDecl *PVD = nullptr;
239   if (const auto *FD = dyn_cast<FunctionDecl>(D))
240     PVD = FD->parameters()[Index];
241   else if (const auto *BD = dyn_cast<BlockDecl>(D))
242     PVD = BD->parameters()[Index];
243   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
244     PVD = MD->parameters()[Index];
245   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
246     PVD = CD->parameters()[Index];
247   assert(PVD && "Unexpected Decl kind!");
248 
249   const VarRegion *VR =
250       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
251 
252   // This sanity check would fail if our parameter declaration doesn't
253   // correspond to the stack frame's function declaration.
254   assert(VR->getStackFrame() == SFC);
255 
256   return VR;
257 }
258 
259 /// Returns true if a type is a pointer-to-const or reference-to-const
260 /// with no further indirection.
261 static bool isPointerToConst(QualType Ty) {
262   QualType PointeeTy = Ty->getPointeeType();
263   if (PointeeTy == QualType())
264     return false;
265   if (!PointeeTy.isConstQualified())
266     return false;
267   if (PointeeTy->isAnyPointerType())
268     return false;
269   return true;
270 }
271 
272 // Try to retrieve the function declaration and find the function parameter
273 // types which are pointers/references to a non-pointer const.
274 // We will not invalidate the corresponding argument regions.
275 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
276                                  const CallEvent &Call) {
277   unsigned Idx = 0;
278   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
279                                       E = Call.param_type_end();
280        I != E; ++I, ++Idx) {
281     if (isPointerToConst(*I))
282       PreserveArgs.insert(Idx);
283   }
284 }
285 
286 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
287                                              ProgramStateRef Orig) const {
288   ProgramStateRef Result = (Orig ? Orig : getState());
289 
290   // Don't invalidate anything if the callee is marked pure/const.
291   if (const Decl *callee = getDecl())
292     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
293       return Result;
294 
295   SmallVector<SVal, 8> ValuesToInvalidate;
296   RegionAndSymbolInvalidationTraits ETraits;
297 
298   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
299 
300   // Indexes of arguments whose values will be preserved by the call.
301   llvm::SmallSet<unsigned, 4> PreserveArgs;
302   if (!argumentsMayEscape())
303     findPtrToConstParams(PreserveArgs, *this);
304 
305   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
306     // Mark this region for invalidation.  We batch invalidate regions
307     // below for efficiency.
308     if (PreserveArgs.count(Idx))
309       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
310         ETraits.setTrait(MR->getBaseRegion(),
311                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
312         // TODO: Factor this out + handle the lower level const pointers.
313 
314     ValuesToInvalidate.push_back(getArgSVal(Idx));
315 
316     // If a function accepts an object by argument (which would of course be a
317     // temporary that isn't lifetime-extended), invalidate the object itself,
318     // not only other objects reachable from it. This is necessary because the
319     // destructor has access to the temporary object after the call.
320     // TODO: Support placement arguments once we start
321     // constructing them directly.
322     // TODO: This is unnecessary when there's no destructor, but that's
323     // currently hard to figure out.
324     if (getKind() != CE_CXXAllocator)
325       if (isArgumentConstructedDirectly(Idx))
326         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
327           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
328             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
329   }
330 
331   // Invalidate designated regions using the batch invalidation API.
332   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
333   //  global variables.
334   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
335                                    BlockCount, getLocationContext(),
336                                    /*CausedByPointerEscape*/ true,
337                                    /*Symbols=*/nullptr, this, &ETraits);
338 }
339 
340 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
341                                         const ProgramPointTag *Tag) const {
342   if (const Expr *E = getOriginExpr()) {
343     if (IsPreVisit)
344       return PreStmt(E, getLocationContext(), Tag);
345     return PostStmt(E, getLocationContext(), Tag);
346   }
347 
348   const Decl *D = getDecl();
349   assert(D && "Cannot get a program point without a statement or decl");
350 
351   SourceLocation Loc = getSourceRange().getBegin();
352   if (IsPreVisit)
353     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
354   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
355 }
356 
357 bool CallEvent::isCalled(const CallDescription &CD) const {
358   // FIXME: Add ObjC Message support.
359   if (getKind() == CE_ObjCMessage)
360     return false;
361 
362   const IdentifierInfo *II = getCalleeIdentifier();
363   if (!II)
364     return false;
365   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
366   if (!FD)
367     return false;
368 
369   if (CD.Flags & CDF_MaybeBuiltin) {
370     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
371            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
372            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
373   }
374 
375   if (!CD.IsLookupDone) {
376     CD.IsLookupDone = true;
377     CD.II = &getState()->getStateManager().getContext().Idents.get(
378         CD.getFunctionName());
379   }
380 
381   if (II != CD.II)
382     return false;
383 
384   // If CallDescription provides prefix names, use them to improve matching
385   // accuracy.
386   if (CD.QualifiedName.size() > 1 && FD) {
387     const DeclContext *Ctx = FD->getDeclContext();
388     // See if we'll be able to match them all.
389     size_t NumUnmatched = CD.QualifiedName.size() - 1;
390     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
391       if (NumUnmatched == 0)
392         break;
393 
394       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
395         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
396           --NumUnmatched;
397         continue;
398       }
399 
400       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
401         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
402           --NumUnmatched;
403         continue;
404       }
405     }
406 
407     if (NumUnmatched > 0)
408       return false;
409   }
410 
411   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
412          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
413 }
414 
415 SVal CallEvent::getArgSVal(unsigned Index) const {
416   const Expr *ArgE = getArgExpr(Index);
417   if (!ArgE)
418     return UnknownVal();
419   return getSVal(ArgE);
420 }
421 
422 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
423   const Expr *ArgE = getArgExpr(Index);
424   if (!ArgE)
425     return {};
426   return ArgE->getSourceRange();
427 }
428 
429 SVal CallEvent::getReturnValue() const {
430   const Expr *E = getOriginExpr();
431   if (!E)
432     return UndefinedVal();
433   return getSVal(E);
434 }
435 
436 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
437 
438 void CallEvent::dump(raw_ostream &Out) const {
439   ASTContext &Ctx = getState()->getStateManager().getContext();
440   if (const Expr *E = getOriginExpr()) {
441     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
442     Out << "\n";
443     return;
444   }
445 
446   if (const Decl *D = getDecl()) {
447     Out << "Call to ";
448     D->print(Out, Ctx.getPrintingPolicy());
449     return;
450   }
451 
452   // FIXME: a string representation of the kind would be nice.
453   Out << "Unknown call (type " << getKind() << ")";
454 }
455 
456 bool CallEvent::isCallStmt(const Stmt *S) {
457   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
458                           || isa<CXXConstructExpr>(S)
459                           || isa<CXXNewExpr>(S);
460 }
461 
462 QualType CallEvent::getDeclaredResultType(const Decl *D) {
463   assert(D);
464   if (const auto *FD = dyn_cast<FunctionDecl>(D))
465     return FD->getReturnType();
466   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
467     return MD->getReturnType();
468   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
469     // Blocks are difficult because the return type may not be stored in the
470     // BlockDecl itself. The AST should probably be enhanced, but for now we
471     // just do what we can.
472     // If the block is declared without an explicit argument list, the
473     // signature-as-written just includes the return type, not the entire
474     // function type.
475     // FIXME: All blocks should have signatures-as-written, even if the return
476     // type is inferred. (That's signified with a dependent result type.)
477     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
478       QualType Ty = TSI->getType();
479       if (const FunctionType *FT = Ty->getAs<FunctionType>())
480         Ty = FT->getReturnType();
481       if (!Ty->isDependentType())
482         return Ty;
483     }
484 
485     return {};
486   }
487 
488   llvm_unreachable("unknown callable kind");
489 }
490 
491 bool CallEvent::isVariadic(const Decl *D) {
492   assert(D);
493 
494   if (const auto *FD = dyn_cast<FunctionDecl>(D))
495     return FD->isVariadic();
496   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
497     return MD->isVariadic();
498   if (const auto *BD = dyn_cast<BlockDecl>(D))
499     return BD->isVariadic();
500 
501   llvm_unreachable("unknown callable kind");
502 }
503 
504 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
505                                          CallEvent::BindingsTy &Bindings,
506                                          SValBuilder &SVB,
507                                          const CallEvent &Call,
508                                          ArrayRef<ParmVarDecl*> parameters) {
509   MemRegionManager &MRMgr = SVB.getRegionManager();
510 
511   // If the function has fewer parameters than the call has arguments, we simply
512   // do not bind any values to them.
513   unsigned NumArgs = Call.getNumArgs();
514   unsigned Idx = 0;
515   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
516   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
517     const ParmVarDecl *ParamDecl = *I;
518     assert(ParamDecl && "Formal parameter has no decl?");
519 
520     // TODO: Support allocator calls.
521     if (Call.getKind() != CE_CXXAllocator)
522       if (Call.isArgumentConstructedDirectly(Idx))
523         continue;
524 
525     // TODO: Allocators should receive the correct size and possibly alignment,
526     // determined in compile-time but not represented as arg-expressions,
527     // which makes getArgSVal() fail and return UnknownVal.
528     SVal ArgVal = Call.getArgSVal(Idx);
529     if (!ArgVal.isUnknown()) {
530       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
531       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
532     }
533   }
534 
535   // FIXME: Variadic arguments are not handled at all right now.
536 }
537 
538 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
539   const FunctionDecl *D = getDecl();
540   if (!D)
541     return None;
542   return D->parameters();
543 }
544 
545 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
546   const FunctionDecl *FD = getDecl();
547   if (!FD)
548     return {};
549 
550   // Note that the AnalysisDeclContext will have the FunctionDecl with
551   // the definition (if one exists).
552   AnalysisDeclContext *AD =
553     getLocationContext()->getAnalysisDeclContext()->
554     getManager()->getContext(FD);
555   bool IsAutosynthesized;
556   Stmt* Body = AD->getBody(IsAutosynthesized);
557   LLVM_DEBUG({
558     if (IsAutosynthesized)
559       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
560                    << "\n";
561   });
562   if (Body) {
563     const Decl* Decl = AD->getDecl();
564     return RuntimeDefinition(Decl);
565   }
566 
567   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
568   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
569 
570   // Try to get CTU definition only if CTUDir is provided.
571   if (!Opts.IsNaiveCTUEnabled)
572     return {};
573 
574   cross_tu::CrossTranslationUnitContext &CTUCtx =
575       *Engine.getCrossTranslationUnitContext();
576   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
577       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
578                                   Opts.DisplayCTUProgress);
579 
580   if (!CTUDeclOrError) {
581     handleAllErrors(CTUDeclOrError.takeError(),
582                     [&](const cross_tu::IndexError &IE) {
583                       CTUCtx.emitCrossTUDiagnostics(IE);
584                     });
585     return {};
586   }
587 
588   return RuntimeDefinition(*CTUDeclOrError);
589 }
590 
591 void AnyFunctionCall::getInitialStackFrameContents(
592                                         const StackFrameContext *CalleeCtx,
593                                         BindingsTy &Bindings) const {
594   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
595   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
596   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
597                                D->parameters());
598 }
599 
600 bool AnyFunctionCall::argumentsMayEscape() const {
601   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
602     return true;
603 
604   const FunctionDecl *D = getDecl();
605   if (!D)
606     return true;
607 
608   const IdentifierInfo *II = D->getIdentifier();
609   if (!II)
610     return false;
611 
612   // This set of "escaping" APIs is
613 
614   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
615   //   value into thread local storage. The value can later be retrieved with
616   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
617   //   parameter is 'const void *', the region escapes through the call.
618   if (II->isStr("pthread_setspecific"))
619     return true;
620 
621   // - xpc_connection_set_context stores a value which can be retrieved later
622   //   with xpc_connection_get_context.
623   if (II->isStr("xpc_connection_set_context"))
624     return true;
625 
626   // - funopen - sets a buffer for future IO calls.
627   if (II->isStr("funopen"))
628     return true;
629 
630   // - __cxa_demangle - can reallocate memory and can return the pointer to
631   // the input buffer.
632   if (II->isStr("__cxa_demangle"))
633     return true;
634 
635   StringRef FName = II->getName();
636 
637   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
638   //   buffer even if it is const.
639   if (FName.endswith("NoCopy"))
640     return true;
641 
642   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
643   //   be deallocated by NSMapRemove.
644   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
645     return true;
646 
647   // - Many CF containers allow objects to escape through custom
648   //   allocators/deallocators upon container construction. (PR12101)
649   if (FName.startswith("CF") || FName.startswith("CG")) {
650     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
652            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
653            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
654            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
655            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
656   }
657 
658   return false;
659 }
660 
661 const FunctionDecl *SimpleFunctionCall::getDecl() const {
662   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
663   if (D)
664     return D;
665 
666   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
667 }
668 
669 const FunctionDecl *CXXInstanceCall::getDecl() const {
670   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
671   if (!CE)
672     return AnyFunctionCall::getDecl();
673 
674   const FunctionDecl *D = CE->getDirectCallee();
675   if (D)
676     return D;
677 
678   return getSVal(CE->getCallee()).getAsFunctionDecl();
679 }
680 
681 void CXXInstanceCall::getExtraInvalidatedValues(
682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683   SVal ThisVal = getCXXThisVal();
684   Values.push_back(ThisVal);
685 
686   // Don't invalidate if the method is const and there are no mutable fields.
687   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
688     if (!D->isConst())
689       return;
690     // Get the record decl for the class of 'This'. D->getParent() may return a
691     // base class decl, rather than the class of the instance which needs to be
692     // checked for mutable fields.
693     // TODO: We might as well look at the dynamic type of the object.
694     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
695     QualType T = Ex->getType();
696     if (T->isPointerType()) // Arrow or implicit-this syntax?
697       T = T->getPointeeType();
698     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
699     assert(ParentRecord);
700     if (ParentRecord->hasMutableFields())
701       return;
702     // Preserve CXXThis.
703     const MemRegion *ThisRegion = ThisVal.getAsRegion();
704     if (!ThisRegion)
705       return;
706 
707     ETraits->setTrait(ThisRegion->getBaseRegion(),
708                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
709   }
710 }
711 
712 SVal CXXInstanceCall::getCXXThisVal() const {
713   const Expr *Base = getCXXThisExpr();
714   // FIXME: This doesn't handle an overloaded ->* operator.
715   if (!Base)
716     return UnknownVal();
717 
718   SVal ThisVal = getSVal(Base);
719   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
720   return ThisVal;
721 }
722 
723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
724   // Do we have a decl at all?
725   const Decl *D = getDecl();
726   if (!D)
727     return {};
728 
729   // If the method is non-virtual, we know we can inline it.
730   const auto *MD = cast<CXXMethodDecl>(D);
731   if (!MD->isVirtual())
732     return AnyFunctionCall::getRuntimeDefinition();
733 
734   // Do we know the implicit 'this' object being called?
735   const MemRegion *R = getCXXThisVal().getAsRegion();
736   if (!R)
737     return {};
738 
739   // Do we know anything about the type of 'this'?
740   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
741   if (!DynType.isValid())
742     return {};
743 
744   // Is the type a C++ class? (This is mostly a defensive check.)
745   QualType RegionType = DynType.getType()->getPointeeType();
746   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
747 
748   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
749   if (!RD || !RD->hasDefinition())
750     return {};
751 
752   // Find the decl for this method in that class.
753   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
754   if (!Result) {
755     // We might not even get the original statically-resolved method due to
756     // some particularly nasty casting (e.g. casts to sister classes).
757     // However, we should at least be able to search up and down our own class
758     // hierarchy, and some real bugs have been caught by checking this.
759     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
760 
761     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
762     // the static type. However, because we currently don't update
763     // DynamicTypeInfo when an object is cast, we can't actually be sure the
764     // DynamicTypeInfo is up to date. This assert should be re-enabled once
765     // this is fixed. <rdar://problem/12287087>
766     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
767 
768     return {};
769   }
770 
771   // Does the decl that we found have an implementation?
772   const FunctionDecl *Definition;
773   if (!Result->hasBody(Definition)) {
774     if (!DynType.canBeASubClass())
775       return AnyFunctionCall::getRuntimeDefinition();
776     return {};
777   }
778 
779   // We found a definition. If we're not sure that this devirtualization is
780   // actually what will happen at runtime, make sure to provide the region so
781   // that ExprEngine can decide what to do with it.
782   if (DynType.canBeASubClass())
783     return RuntimeDefinition(Definition, R->StripCasts());
784   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
785 }
786 
787 void CXXInstanceCall::getInitialStackFrameContents(
788                                             const StackFrameContext *CalleeCtx,
789                                             BindingsTy &Bindings) const {
790   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
791 
792   // Handle the binding of 'this' in the new stack frame.
793   SVal ThisVal = getCXXThisVal();
794   if (!ThisVal.isUnknown()) {
795     ProgramStateManager &StateMgr = getState()->getStateManager();
796     SValBuilder &SVB = StateMgr.getSValBuilder();
797 
798     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
799     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
800 
801     // If we devirtualized to a different member function, we need to make sure
802     // we have the proper layering of CXXBaseObjectRegions.
803     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
804       ASTContext &Ctx = SVB.getContext();
805       const CXXRecordDecl *Class = MD->getParent();
806       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
807 
808       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
809       bool Failed;
810       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
811       if (Failed) {
812         // We might have suffered some sort of placement new earlier, so
813         // we're constructing in a completely unexpected storage.
814         // Fall back to a generic pointer cast for this-value.
815         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
816         const CXXRecordDecl *StaticClass = StaticMD->getParent();
817         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
818         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
819       }
820     }
821 
822     if (!ThisVal.isUnknown())
823       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
824   }
825 }
826 
827 const Expr *CXXMemberCall::getCXXThisExpr() const {
828   return getOriginExpr()->getImplicitObjectArgument();
829 }
830 
831 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
832   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
833   // id-expression in the class member access expression is a qualified-id,
834   // that function is called. Otherwise, its final overrider in the dynamic type
835   // of the object expression is called.
836   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
837     if (ME->hasQualifier())
838       return AnyFunctionCall::getRuntimeDefinition();
839 
840   return CXXInstanceCall::getRuntimeDefinition();
841 }
842 
843 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
844   return getOriginExpr()->getArg(0);
845 }
846 
847 const BlockDataRegion *BlockCall::getBlockRegion() const {
848   const Expr *Callee = getOriginExpr()->getCallee();
849   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
850 
851   return dyn_cast_or_null<BlockDataRegion>(DataReg);
852 }
853 
854 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
855   const BlockDecl *D = getDecl();
856   if (!D)
857     return None;
858   return D->parameters();
859 }
860 
861 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
862                   RegionAndSymbolInvalidationTraits *ETraits) const {
863   // FIXME: This also needs to invalidate captured globals.
864   if (const MemRegion *R = getBlockRegion())
865     Values.push_back(loc::MemRegionVal(R));
866 }
867 
868 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
869                                              BindingsTy &Bindings) const {
870   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
871   ArrayRef<ParmVarDecl*> Params;
872   if (isConversionFromLambda()) {
873     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
874     Params = LambdaOperatorDecl->parameters();
875 
876     // For blocks converted from a C++ lambda, the callee declaration is the
877     // operator() method on the lambda so we bind "this" to
878     // the lambda captured by the block.
879     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
880     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
881     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
882     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
883   } else {
884     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
885   }
886 
887   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
888                                Params);
889 }
890 
891 SVal CXXConstructorCall::getCXXThisVal() const {
892   if (Data)
893     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
894   return UnknownVal();
895 }
896 
897 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
898                            RegionAndSymbolInvalidationTraits *ETraits) const {
899   if (Data) {
900     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
901     if (SymbolRef Sym = MV.getAsSymbol(true))
902       ETraits->setTrait(Sym,
903                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
904     Values.push_back(MV);
905   }
906 }
907 
908 void CXXConstructorCall::getInitialStackFrameContents(
909                                              const StackFrameContext *CalleeCtx,
910                                              BindingsTy &Bindings) const {
911   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
912 
913   SVal ThisVal = getCXXThisVal();
914   if (!ThisVal.isUnknown()) {
915     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
916     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
917     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
918     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
919   }
920 }
921 
922 SVal CXXDestructorCall::getCXXThisVal() const {
923   if (Data)
924     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
925   return UnknownVal();
926 }
927 
928 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
929   // Base destructors are always called non-virtually.
930   // Skip CXXInstanceCall's devirtualization logic in this case.
931   if (isBaseDestructor())
932     return AnyFunctionCall::getRuntimeDefinition();
933 
934   return CXXInstanceCall::getRuntimeDefinition();
935 }
936 
937 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
938   const ObjCMethodDecl *D = getDecl();
939   if (!D)
940     return None;
941   return D->parameters();
942 }
943 
944 void ObjCMethodCall::getExtraInvalidatedValues(
945     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
946 
947   // If the method call is a setter for property known to be backed by
948   // an instance variable, don't invalidate the entire receiver, just
949   // the storage for that instance variable.
950   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
951     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
952       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
953       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
954         ETraits->setTrait(
955           IvarRegion,
956           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
957         ETraits->setTrait(
958           IvarRegion,
959           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
960         Values.push_back(IvarLVal);
961       }
962       return;
963     }
964   }
965 
966   Values.push_back(getReceiverSVal());
967 }
968 
969 SVal ObjCMethodCall::getSelfSVal() const {
970   const LocationContext *LCtx = getLocationContext();
971   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
972   if (!SelfDecl)
973     return SVal();
974   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
975 }
976 
977 SVal ObjCMethodCall::getReceiverSVal() const {
978   // FIXME: Is this the best way to handle class receivers?
979   if (!isInstanceMessage())
980     return UnknownVal();
981 
982   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
983     return getSVal(RecE);
984 
985   // An instance message with no expression means we are sending to super.
986   // In this case the object reference is the same as 'self'.
987   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
988   SVal SelfVal = getSelfSVal();
989   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
990   return SelfVal;
991 }
992 
993 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
994   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
995       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
996       return true;
997 
998   if (!isInstanceMessage())
999     return false;
1000 
1001   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1002 
1003   return (RecVal == getSelfSVal());
1004 }
1005 
1006 SourceRange ObjCMethodCall::getSourceRange() const {
1007   switch (getMessageKind()) {
1008   case OCM_Message:
1009     return getOriginExpr()->getSourceRange();
1010   case OCM_PropertyAccess:
1011   case OCM_Subscript:
1012     return getContainingPseudoObjectExpr()->getSourceRange();
1013   }
1014   llvm_unreachable("unknown message kind");
1015 }
1016 
1017 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1018 
1019 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1020   assert(Data && "Lazy lookup not yet performed.");
1021   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1022   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1023 }
1024 
1025 static const Expr *
1026 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1027   const Expr *Syntactic = POE->getSyntacticForm();
1028 
1029   // This handles the funny case of assigning to the result of a getter.
1030   // This can happen if the getter returns a non-const reference.
1031   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1032     Syntactic = BO->getLHS();
1033 
1034   return Syntactic;
1035 }
1036 
1037 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1038   if (!Data) {
1039     // Find the parent, ignoring implicit casts.
1040     const ParentMap &PM = getLocationContext()->getParentMap();
1041     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1042 
1043     // Check if parent is a PseudoObjectExpr.
1044     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1045       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1046 
1047       ObjCMessageKind K;
1048       switch (Syntactic->getStmtClass()) {
1049       case Stmt::ObjCPropertyRefExprClass:
1050         K = OCM_PropertyAccess;
1051         break;
1052       case Stmt::ObjCSubscriptRefExprClass:
1053         K = OCM_Subscript;
1054         break;
1055       default:
1056         // FIXME: Can this ever happen?
1057         K = OCM_Message;
1058         break;
1059       }
1060 
1061       if (K != OCM_Message) {
1062         const_cast<ObjCMethodCall *>(this)->Data
1063           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1064         assert(getMessageKind() == K);
1065         return K;
1066       }
1067     }
1068 
1069     const_cast<ObjCMethodCall *>(this)->Data
1070       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1071     assert(getMessageKind() == OCM_Message);
1072     return OCM_Message;
1073   }
1074 
1075   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1076   if (!Info.getPointer())
1077     return OCM_Message;
1078   return static_cast<ObjCMessageKind>(Info.getInt());
1079 }
1080 
1081 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1082   // Look for properties accessed with property syntax (foo.bar = ...)
1083   if ( getMessageKind() == OCM_PropertyAccess) {
1084     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1085     assert(POE && "Property access without PseudoObjectExpr?");
1086 
1087     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1088     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1089 
1090     if (RefExpr->isExplicitProperty())
1091       return RefExpr->getExplicitProperty();
1092   }
1093 
1094   // Look for properties accessed with method syntax ([foo setBar:...]).
1095   const ObjCMethodDecl *MD = getDecl();
1096   if (!MD || !MD->isPropertyAccessor())
1097     return nullptr;
1098 
1099   // Note: This is potentially quite slow.
1100   return MD->findPropertyDecl();
1101 }
1102 
1103 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1104                                              Selector Sel) const {
1105   assert(IDecl);
1106   AnalysisManager &AMgr =
1107       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1108   // If the class interface is declared inside the main file, assume it is not
1109   // subcassed.
1110   // TODO: It could actually be subclassed if the subclass is private as well.
1111   // This is probably very rare.
1112   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1113   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1114     return false;
1115 
1116   // Assume that property accessors are not overridden.
1117   if (getMessageKind() == OCM_PropertyAccess)
1118     return false;
1119 
1120   // We assume that if the method is public (declared outside of main file) or
1121   // has a parent which publicly declares the method, the method could be
1122   // overridden in a subclass.
1123 
1124   // Find the first declaration in the class hierarchy that declares
1125   // the selector.
1126   ObjCMethodDecl *D = nullptr;
1127   while (true) {
1128     D = IDecl->lookupMethod(Sel, true);
1129 
1130     // Cannot find a public definition.
1131     if (!D)
1132       return false;
1133 
1134     // If outside the main file,
1135     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1136       return true;
1137 
1138     if (D->isOverriding()) {
1139       // Search in the superclass on the next iteration.
1140       IDecl = D->getClassInterface();
1141       if (!IDecl)
1142         return false;
1143 
1144       IDecl = IDecl->getSuperClass();
1145       if (!IDecl)
1146         return false;
1147 
1148       continue;
1149     }
1150 
1151     return false;
1152   };
1153 
1154   llvm_unreachable("The while loop should always terminate.");
1155 }
1156 
1157 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1158   if (!MD)
1159     return MD;
1160 
1161   // Find the redeclaration that defines the method.
1162   if (!MD->hasBody()) {
1163     for (auto I : MD->redecls())
1164       if (I->hasBody())
1165         MD = cast<ObjCMethodDecl>(I);
1166   }
1167   return MD;
1168 }
1169 
1170 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1171   const Expr* InstRec = ME->getInstanceReceiver();
1172   if (!InstRec)
1173     return false;
1174   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1175 
1176   // Check that receiver is called 'self'.
1177   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1178       !InstRecIg->getFoundDecl()->getName().equals("self"))
1179     return false;
1180 
1181   // Check that the method name is 'class'.
1182   if (ME->getSelector().getNumArgs() != 0 ||
1183       !ME->getSelector().getNameForSlot(0).equals("class"))
1184     return false;
1185 
1186   return true;
1187 }
1188 
1189 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1190   const ObjCMessageExpr *E = getOriginExpr();
1191   assert(E);
1192   Selector Sel = E->getSelector();
1193 
1194   if (E->isInstanceMessage()) {
1195     // Find the receiver type.
1196     const ObjCObjectPointerType *ReceiverT = nullptr;
1197     bool CanBeSubClassed = false;
1198     QualType SupersType = E->getSuperType();
1199     const MemRegion *Receiver = nullptr;
1200 
1201     if (!SupersType.isNull()) {
1202       // The receiver is guaranteed to be 'super' in this case.
1203       // Super always means the type of immediate predecessor to the method
1204       // where the call occurs.
1205       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1206     } else {
1207       Receiver = getReceiverSVal().getAsRegion();
1208       if (!Receiver)
1209         return {};
1210 
1211       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1212       if (!DTI.isValid()) {
1213         assert(isa<AllocaRegion>(Receiver) &&
1214                "Unhandled untyped region class!");
1215         return {};
1216       }
1217 
1218       QualType DynType = DTI.getType();
1219       CanBeSubClassed = DTI.canBeASubClass();
1220       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1221 
1222       if (ReceiverT && CanBeSubClassed)
1223         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1224           if (!canBeOverridenInSubclass(IDecl, Sel))
1225             CanBeSubClassed = false;
1226     }
1227 
1228     // Handle special cases of '[self classMethod]' and
1229     // '[[self class] classMethod]', which are treated by the compiler as
1230     // instance (not class) messages. We will statically dispatch to those.
1231     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1232       // For [self classMethod], return the compiler visible declaration.
1233       if (PT->getObjectType()->isObjCClass() &&
1234           Receiver == getSelfSVal().getAsRegion())
1235         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1236 
1237       // Similarly, handle [[self class] classMethod].
1238       // TODO: We are currently doing a syntactic match for this pattern with is
1239       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1240       // shows. A better way would be to associate the meta type with the symbol
1241       // using the dynamic type info tracking and use it here. We can add a new
1242       // SVal for ObjC 'Class' values that know what interface declaration they
1243       // come from. Then 'self' in a class method would be filled in with
1244       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1245       // do proper dynamic dispatch for class methods just like we do for
1246       // instance methods now.
1247       if (E->getInstanceReceiver())
1248         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1249           if (isCallToSelfClass(M))
1250             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1251     }
1252 
1253     // Lookup the instance method implementation.
1254     if (ReceiverT)
1255       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1256         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1257         // when in many cases it returns null.  We cache the results so
1258         // that repeated queries on the same ObjCIntefaceDecl and Selector
1259         // don't incur the same cost.  On some test cases, we can see the
1260         // same query being issued thousands of times.
1261         //
1262         // NOTE: This cache is essentially a "global" variable, but it
1263         // only gets lazily created when we get here.  The value of the
1264         // cache probably comes from it being global across ExprEngines,
1265         // where the same queries may get issued.  If we are worried about
1266         // concurrency, or possibly loading/unloading ASTs, etc., we may
1267         // need to revisit this someday.  In terms of memory, this table
1268         // stays around until clang quits, which also may be bad if we
1269         // need to release memory.
1270         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1271         using PrivateMethodCache =
1272             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1273 
1274         static PrivateMethodCache PMC;
1275         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1276 
1277         // Query lookupPrivateMethod() if the cache does not hit.
1278         if (!Val.hasValue()) {
1279           Val = IDecl->lookupPrivateMethod(Sel);
1280 
1281           // If the method is a property accessor, we should try to "inline" it
1282           // even if we don't actually have an implementation.
1283           if (!*Val)
1284             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1285               if (CompileTimeMD->isPropertyAccessor()) {
1286                 if (!CompileTimeMD->getSelfDecl() &&
1287                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1288                   // If the method is an accessor in a category, and it doesn't
1289                   // have a self declaration, first
1290                   // try to find the method in a class extension. This
1291                   // works around a bug in Sema where multiple accessors
1292                   // are synthesized for properties in class
1293                   // extensions that are redeclared in a category and the
1294                   // the implicit parameters are not filled in for
1295                   // the method on the category.
1296                   // This ensures we find the accessor in the extension, which
1297                   // has the implicit parameters filled in.
1298                   auto *ID = CompileTimeMD->getClassInterface();
1299                   for (auto *CatDecl : ID->visible_extensions()) {
1300                     Val = CatDecl->getMethod(Sel,
1301                                              CompileTimeMD->isInstanceMethod());
1302                     if (*Val)
1303                       break;
1304                   }
1305                 }
1306                 if (!*Val)
1307                   Val = IDecl->lookupInstanceMethod(Sel);
1308               }
1309         }
1310 
1311         const ObjCMethodDecl *MD = Val.getValue();
1312         if (CanBeSubClassed)
1313           return RuntimeDefinition(MD, Receiver);
1314         else
1315           return RuntimeDefinition(MD, nullptr);
1316       }
1317   } else {
1318     // This is a class method.
1319     // If we have type info for the receiver class, we are calling via
1320     // class name.
1321     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1322       // Find/Return the method implementation.
1323       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1324     }
1325   }
1326 
1327   return {};
1328 }
1329 
1330 bool ObjCMethodCall::argumentsMayEscape() const {
1331   if (isInSystemHeader() && !isInstanceMessage()) {
1332     Selector Sel = getSelector();
1333     if (Sel.getNumArgs() == 1 &&
1334         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1335       return true;
1336   }
1337 
1338   return CallEvent::argumentsMayEscape();
1339 }
1340 
1341 void ObjCMethodCall::getInitialStackFrameContents(
1342                                              const StackFrameContext *CalleeCtx,
1343                                              BindingsTy &Bindings) const {
1344   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1345   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1346   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1347                                D->parameters());
1348 
1349   SVal SelfVal = getReceiverSVal();
1350   if (!SelfVal.isUnknown()) {
1351     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1352     MemRegionManager &MRMgr = SVB.getRegionManager();
1353     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1354     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1355   }
1356 }
1357 
1358 CallEventRef<>
1359 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1360                                 const LocationContext *LCtx) {
1361   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1362     return create<CXXMemberCall>(MCE, State, LCtx);
1363 
1364   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1365     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1366     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1367       if (MD->isInstance())
1368         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1369 
1370   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1371     return create<BlockCall>(CE, State, LCtx);
1372   }
1373 
1374   // Otherwise, it's a normal function call, static member function call, or
1375   // something we can't reason about.
1376   return create<SimpleFunctionCall>(CE, State, LCtx);
1377 }
1378 
1379 CallEventRef<>
1380 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1381                             ProgramStateRef State) {
1382   const LocationContext *ParentCtx = CalleeCtx->getParent();
1383   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1384   assert(CallerCtx && "This should not be used for top-level stack frames");
1385 
1386   const Stmt *CallSite = CalleeCtx->getCallSite();
1387 
1388   if (CallSite) {
1389     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1390       return Out;
1391 
1392     // All other cases are handled by getCall.
1393     assert(isa<CXXConstructExpr>(CallSite) &&
1394            "This is not an inlineable statement");
1395 
1396     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1397     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1398     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1399     SVal ThisVal = State->getSVal(ThisPtr);
1400 
1401     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1402                                  ThisVal.getAsRegion(), State, CallerCtx);
1403   }
1404 
1405   // Fall back to the CFG. The only thing we haven't handled yet is
1406   // destructors, though this could change in the future.
1407   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1408   CFGElement E = (*B)[CalleeCtx->getIndex()];
1409   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1410          "All other CFG elements should have exprs");
1411 
1412   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1413   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1414   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1415   SVal ThisVal = State->getSVal(ThisPtr);
1416 
1417   const Stmt *Trigger;
1418   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1419     Trigger = AutoDtor->getTriggerStmt();
1420   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1421     Trigger = DeleteDtor->getDeleteExpr();
1422   else
1423     Trigger = Dtor->getBody();
1424 
1425   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1426                               E.getAs<CFGBaseDtor>().hasValue(), State,
1427                               CallerCtx);
1428 }
1429 
1430 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1431                                          const LocationContext *LC) {
1432   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1433     return getSimpleCall(CE, State, LC);
1434   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1435     return getCXXAllocatorCall(NE, State, LC);
1436   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1437     return getObjCMethodCall(ME, State, LC);
1438   } else {
1439     return nullptr;
1440   }
1441 }
1442