xref: /freebsd-src/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/None.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/PointerIntPair.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <cassert>
65 #include <utility>
66 
67 #define DEBUG_TYPE "static-analyzer-call-event"
68 
69 using namespace clang;
70 using namespace ento;
71 
72 QualType CallEvent::getResultType() const {
73   ASTContext &Ctx = getState()->getStateManager().getContext();
74   const Expr *E = getOriginExpr();
75   if (!E)
76     return Ctx.VoidTy;
77   return Ctx.getReferenceQualifiedType(E);
78 }
79 
80 static bool isCallback(QualType T) {
81   // If a parameter is a block or a callback, assume it can modify pointer.
82   if (T->isBlockPointerType() ||
83       T->isFunctionPointerType() ||
84       T->isObjCSelType())
85     return true;
86 
87   // Check if a callback is passed inside a struct (for both, struct passed by
88   // reference and by value). Dig just one level into the struct for now.
89 
90   if (T->isAnyPointerType() || T->isReferenceType())
91     T = T->getPointeeType();
92 
93   if (const RecordType *RT = T->getAsStructureType()) {
94     const RecordDecl *RD = RT->getDecl();
95     for (const auto *I : RD->fields()) {
96       QualType FieldT = I->getType();
97       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
98         return true;
99     }
100   }
101   return false;
102 }
103 
104 static bool isVoidPointerToNonConst(QualType T) {
105   if (const auto *PT = T->getAs<PointerType>()) {
106     QualType PointeeTy = PT->getPointeeType();
107     if (PointeeTy.isConstQualified())
108       return false;
109     return PointeeTy->isVoidType();
110   } else
111     return false;
112 }
113 
114 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
115   unsigned NumOfArgs = getNumArgs();
116 
117   // If calling using a function pointer, assume the function does not
118   // satisfy the callback.
119   // TODO: We could check the types of the arguments here.
120   if (!getDecl())
121     return false;
122 
123   unsigned Idx = 0;
124   for (CallEvent::param_type_iterator I = param_type_begin(),
125                                       E = param_type_end();
126        I != E && Idx < NumOfArgs; ++I, ++Idx) {
127     // If the parameter is 0, it's harmless.
128     if (getArgSVal(Idx).isZeroConstant())
129       continue;
130 
131     if (Condition(*I))
132       return true;
133   }
134   return false;
135 }
136 
137 bool CallEvent::hasNonZeroCallbackArg() const {
138   return hasNonNullArgumentsWithType(isCallback);
139 }
140 
141 bool CallEvent::hasVoidPointerToNonConstArg() const {
142   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
143 }
144 
145 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
146   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
147   if (!FD)
148     return false;
149 
150   return CheckerContext::isCLibraryFunction(FD, FunctionName);
151 }
152 
153 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
154   const Decl *D = getDecl();
155   if (!D)
156     return nullptr;
157 
158   AnalysisDeclContext *ADC =
159       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
160 
161   return ADC;
162 }
163 
164 const StackFrameContext *
165 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
166   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
167   if (!ADC)
168     return nullptr;
169 
170   const Expr *E = getOriginExpr();
171   if (!E)
172     return nullptr;
173 
174   // Recover CFG block via reverse lookup.
175   // TODO: If we were to keep CFG element information as part of the CallEvent
176   // instead of doing this reverse lookup, we would be able to build the stack
177   // frame for non-expression-based calls, and also we wouldn't need the reverse
178   // lookup.
179   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
180   const CFGBlock *B = Map->getBlock(E);
181   assert(B);
182 
183   // Also recover CFG index by scanning the CFG block.
184   unsigned Idx = 0, Sz = B->size();
185   for (; Idx < Sz; ++Idx)
186     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
187       if (StmtElem->getStmt() == E)
188         break;
189   assert(Idx < Sz);
190 
191   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
192 }
193 
194 const ParamVarRegion
195 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
196   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
197   // We cannot construct a VarRegion without a stack frame.
198   if (!SFC)
199     return nullptr;
200 
201   const ParamVarRegion *PVR =
202     State->getStateManager().getRegionManager().getParamVarRegion(
203         getOriginExpr(), Index, SFC);
204   return PVR;
205 }
206 
207 /// Returns true if a type is a pointer-to-const or reference-to-const
208 /// with no further indirection.
209 static bool isPointerToConst(QualType Ty) {
210   QualType PointeeTy = Ty->getPointeeType();
211   if (PointeeTy == QualType())
212     return false;
213   if (!PointeeTy.isConstQualified())
214     return false;
215   if (PointeeTy->isAnyPointerType())
216     return false;
217   return true;
218 }
219 
220 // Try to retrieve the function declaration and find the function parameter
221 // types which are pointers/references to a non-pointer const.
222 // We will not invalidate the corresponding argument regions.
223 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
224                                  const CallEvent &Call) {
225   unsigned Idx = 0;
226   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
227                                       E = Call.param_type_end();
228        I != E; ++I, ++Idx) {
229     if (isPointerToConst(*I))
230       PreserveArgs.insert(Idx);
231   }
232 }
233 
234 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
235                                              ProgramStateRef Orig) const {
236   ProgramStateRef Result = (Orig ? Orig : getState());
237 
238   // Don't invalidate anything if the callee is marked pure/const.
239   if (const Decl *callee = getDecl())
240     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
241       return Result;
242 
243   SmallVector<SVal, 8> ValuesToInvalidate;
244   RegionAndSymbolInvalidationTraits ETraits;
245 
246   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
247 
248   // Indexes of arguments whose values will be preserved by the call.
249   llvm::SmallSet<unsigned, 4> PreserveArgs;
250   if (!argumentsMayEscape())
251     findPtrToConstParams(PreserveArgs, *this);
252 
253   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
254     // Mark this region for invalidation.  We batch invalidate regions
255     // below for efficiency.
256     if (PreserveArgs.count(Idx))
257       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
258         ETraits.setTrait(MR->getBaseRegion(),
259                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
260         // TODO: Factor this out + handle the lower level const pointers.
261 
262     ValuesToInvalidate.push_back(getArgSVal(Idx));
263 
264     // If a function accepts an object by argument (which would of course be a
265     // temporary that isn't lifetime-extended), invalidate the object itself,
266     // not only other objects reachable from it. This is necessary because the
267     // destructor has access to the temporary object after the call.
268     // TODO: Support placement arguments once we start
269     // constructing them directly.
270     // TODO: This is unnecessary when there's no destructor, but that's
271     // currently hard to figure out.
272     if (getKind() != CE_CXXAllocator)
273       if (isArgumentConstructedDirectly(Idx))
274         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
275           if (const TypedValueRegion *TVR =
276                   getParameterLocation(*AdjIdx, BlockCount))
277             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
278   }
279 
280   // Invalidate designated regions using the batch invalidation API.
281   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
282   //  global variables.
283   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
284                                    BlockCount, getLocationContext(),
285                                    /*CausedByPointerEscape*/ true,
286                                    /*Symbols=*/nullptr, this, &ETraits);
287 }
288 
289 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
290                                         const ProgramPointTag *Tag) const {
291   if (const Expr *E = getOriginExpr()) {
292     if (IsPreVisit)
293       return PreStmt(E, getLocationContext(), Tag);
294     return PostStmt(E, getLocationContext(), Tag);
295   }
296 
297   const Decl *D = getDecl();
298   assert(D && "Cannot get a program point without a statement or decl");
299 
300   SourceLocation Loc = getSourceRange().getBegin();
301   if (IsPreVisit)
302     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
303   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
304 }
305 
306 SVal CallEvent::getArgSVal(unsigned Index) const {
307   const Expr *ArgE = getArgExpr(Index);
308   if (!ArgE)
309     return UnknownVal();
310   return getSVal(ArgE);
311 }
312 
313 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
314   const Expr *ArgE = getArgExpr(Index);
315   if (!ArgE)
316     return {};
317   return ArgE->getSourceRange();
318 }
319 
320 SVal CallEvent::getReturnValue() const {
321   const Expr *E = getOriginExpr();
322   if (!E)
323     return UndefinedVal();
324   return getSVal(E);
325 }
326 
327 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
328 
329 void CallEvent::dump(raw_ostream &Out) const {
330   ASTContext &Ctx = getState()->getStateManager().getContext();
331   if (const Expr *E = getOriginExpr()) {
332     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
333     return;
334   }
335 
336   if (const Decl *D = getDecl()) {
337     Out << "Call to ";
338     D->print(Out, Ctx.getPrintingPolicy());
339     return;
340   }
341 
342   Out << "Unknown call (type " << getKindAsString() << ")";
343 }
344 
345 bool CallEvent::isCallStmt(const Stmt *S) {
346   return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
347 }
348 
349 QualType CallEvent::getDeclaredResultType(const Decl *D) {
350   assert(D);
351   if (const auto *FD = dyn_cast<FunctionDecl>(D))
352     return FD->getReturnType();
353   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
354     return MD->getReturnType();
355   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
356     // Blocks are difficult because the return type may not be stored in the
357     // BlockDecl itself. The AST should probably be enhanced, but for now we
358     // just do what we can.
359     // If the block is declared without an explicit argument list, the
360     // signature-as-written just includes the return type, not the entire
361     // function type.
362     // FIXME: All blocks should have signatures-as-written, even if the return
363     // type is inferred. (That's signified with a dependent result type.)
364     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
365       QualType Ty = TSI->getType();
366       if (const FunctionType *FT = Ty->getAs<FunctionType>())
367         Ty = FT->getReturnType();
368       if (!Ty->isDependentType())
369         return Ty;
370     }
371 
372     return {};
373   }
374 
375   llvm_unreachable("unknown callable kind");
376 }
377 
378 bool CallEvent::isVariadic(const Decl *D) {
379   assert(D);
380 
381   if (const auto *FD = dyn_cast<FunctionDecl>(D))
382     return FD->isVariadic();
383   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
384     return MD->isVariadic();
385   if (const auto *BD = dyn_cast<BlockDecl>(D))
386     return BD->isVariadic();
387 
388   llvm_unreachable("unknown callable kind");
389 }
390 
391 static bool isTransparentUnion(QualType T) {
392   const RecordType *UT = T->getAsUnionType();
393   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
394 }
395 
396 // In some cases, symbolic cases should be transformed before we associate
397 // them with parameters.  This function incapsulates such cases.
398 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
399                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
400   QualType ParamType = Parameter->getType();
401   QualType ArgumentType = ArgumentExpr->getType();
402 
403   // Transparent unions allow users to easily convert values of union field
404   // types into union-typed objects.
405   //
406   // Also, more importantly, they allow users to define functions with different
407   // different parameter types, substituting types matching transparent union
408   // field types with the union type itself.
409   //
410   // Here, we check specifically for latter cases and prevent binding
411   // field-typed values to union-typed regions.
412   if (isTransparentUnion(ParamType) &&
413       // Let's check that we indeed trying to bind different types.
414       !isTransparentUnion(ArgumentType)) {
415     BasicValueFactory &BVF = SVB.getBasicValueFactory();
416 
417     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
418     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
419 
420     // Wrap it with compound value.
421     return SVB.makeCompoundVal(ParamType, CompoundSVals);
422   }
423 
424   return Value;
425 }
426 
427 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
428                                          CallEvent::BindingsTy &Bindings,
429                                          SValBuilder &SVB,
430                                          const CallEvent &Call,
431                                          ArrayRef<ParmVarDecl*> parameters) {
432   MemRegionManager &MRMgr = SVB.getRegionManager();
433 
434   // If the function has fewer parameters than the call has arguments, we simply
435   // do not bind any values to them.
436   unsigned NumArgs = Call.getNumArgs();
437   unsigned Idx = 0;
438   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
439   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
440     assert(*I && "Formal parameter has no decl?");
441 
442     // TODO: Support allocator calls.
443     if (Call.getKind() != CE_CXXAllocator)
444       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
445         continue;
446 
447     // TODO: Allocators should receive the correct size and possibly alignment,
448     // determined in compile-time but not represented as arg-expressions,
449     // which makes getArgSVal() fail and return UnknownVal.
450     SVal ArgVal = Call.getArgSVal(Idx);
451     const Expr *ArgExpr = Call.getArgExpr(Idx);
452     if (!ArgVal.isUnknown()) {
453       Loc ParamLoc = SVB.makeLoc(
454           MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
455       Bindings.push_back(
456           std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
457     }
458   }
459 
460   // FIXME: Variadic arguments are not handled at all right now.
461 }
462 
463 const ConstructionContext *CallEvent::getConstructionContext() const {
464   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
465   if (!StackFrame)
466     return nullptr;
467 
468   const CFGElement Element = StackFrame->getCallSiteCFGElement();
469   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
470     return Ctor->getConstructionContext();
471   }
472 
473   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
474     return RecCall->getConstructionContext();
475   }
476 
477   return nullptr;
478 }
479 
480 Optional<SVal>
481 CallEvent::getReturnValueUnderConstruction() const {
482   const auto *CC = getConstructionContext();
483   if (!CC)
484     return None;
485 
486   EvalCallOptions CallOpts;
487   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
488   SVal RetVal =
489     Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
490                                           getLocationContext(), CC, CallOpts);
491   return RetVal;
492 }
493 
494 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
495   const FunctionDecl *D = getDecl();
496   if (!D)
497     return None;
498   return D->parameters();
499 }
500 
501 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
502   const FunctionDecl *FD = getDecl();
503   if (!FD)
504     return {};
505 
506   // Note that the AnalysisDeclContext will have the FunctionDecl with
507   // the definition (if one exists).
508   AnalysisDeclContext *AD =
509     getLocationContext()->getAnalysisDeclContext()->
510     getManager()->getContext(FD);
511   bool IsAutosynthesized;
512   Stmt* Body = AD->getBody(IsAutosynthesized);
513   LLVM_DEBUG({
514     if (IsAutosynthesized)
515       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
516                    << "\n";
517   });
518   if (Body) {
519     const Decl* Decl = AD->getDecl();
520     return RuntimeDefinition(Decl);
521   }
522 
523   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
524   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
525 
526   // Try to get CTU definition only if CTUDir is provided.
527   if (!Opts.IsNaiveCTUEnabled)
528     return {};
529 
530   cross_tu::CrossTranslationUnitContext &CTUCtx =
531       *Engine.getCrossTranslationUnitContext();
532   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
533       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
534                                   Opts.DisplayCTUProgress);
535 
536   if (!CTUDeclOrError) {
537     handleAllErrors(CTUDeclOrError.takeError(),
538                     [&](const cross_tu::IndexError &IE) {
539                       CTUCtx.emitCrossTUDiagnostics(IE);
540                     });
541     return {};
542   }
543 
544   return RuntimeDefinition(*CTUDeclOrError);
545 }
546 
547 void AnyFunctionCall::getInitialStackFrameContents(
548                                         const StackFrameContext *CalleeCtx,
549                                         BindingsTy &Bindings) const {
550   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
551   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
552   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
553                                D->parameters());
554 }
555 
556 bool AnyFunctionCall::argumentsMayEscape() const {
557   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
558     return true;
559 
560   const FunctionDecl *D = getDecl();
561   if (!D)
562     return true;
563 
564   const IdentifierInfo *II = D->getIdentifier();
565   if (!II)
566     return false;
567 
568   // This set of "escaping" APIs is
569 
570   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
571   //   value into thread local storage. The value can later be retrieved with
572   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
573   //   parameter is 'const void *', the region escapes through the call.
574   if (II->isStr("pthread_setspecific"))
575     return true;
576 
577   // - xpc_connection_set_context stores a value which can be retrieved later
578   //   with xpc_connection_get_context.
579   if (II->isStr("xpc_connection_set_context"))
580     return true;
581 
582   // - funopen - sets a buffer for future IO calls.
583   if (II->isStr("funopen"))
584     return true;
585 
586   // - __cxa_demangle - can reallocate memory and can return the pointer to
587   // the input buffer.
588   if (II->isStr("__cxa_demangle"))
589     return true;
590 
591   StringRef FName = II->getName();
592 
593   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
594   //   buffer even if it is const.
595   if (FName.endswith("NoCopy"))
596     return true;
597 
598   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
599   //   be deallocated by NSMapRemove.
600   if (FName.startswith("NS") && FName.contains("Insert"))
601     return true;
602 
603   // - Many CF containers allow objects to escape through custom
604   //   allocators/deallocators upon container construction. (PR12101)
605   if (FName.startswith("CF") || FName.startswith("CG")) {
606     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
607            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
608            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
609            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
610            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
611            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
612   }
613 
614   return false;
615 }
616 
617 const FunctionDecl *SimpleFunctionCall::getDecl() const {
618   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
619   if (D)
620     return D;
621 
622   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
623 }
624 
625 const FunctionDecl *CXXInstanceCall::getDecl() const {
626   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
627   if (!CE)
628     return AnyFunctionCall::getDecl();
629 
630   const FunctionDecl *D = CE->getDirectCallee();
631   if (D)
632     return D;
633 
634   return getSVal(CE->getCallee()).getAsFunctionDecl();
635 }
636 
637 void CXXInstanceCall::getExtraInvalidatedValues(
638     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
639   SVal ThisVal = getCXXThisVal();
640   Values.push_back(ThisVal);
641 
642   // Don't invalidate if the method is const and there are no mutable fields.
643   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
644     if (!D->isConst())
645       return;
646     // Get the record decl for the class of 'This'. D->getParent() may return a
647     // base class decl, rather than the class of the instance which needs to be
648     // checked for mutable fields.
649     // TODO: We might as well look at the dynamic type of the object.
650     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
651     QualType T = Ex->getType();
652     if (T->isPointerType()) // Arrow or implicit-this syntax?
653       T = T->getPointeeType();
654     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
655     assert(ParentRecord);
656     if (ParentRecord->hasMutableFields())
657       return;
658     // Preserve CXXThis.
659     const MemRegion *ThisRegion = ThisVal.getAsRegion();
660     if (!ThisRegion)
661       return;
662 
663     ETraits->setTrait(ThisRegion->getBaseRegion(),
664                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
665   }
666 }
667 
668 SVal CXXInstanceCall::getCXXThisVal() const {
669   const Expr *Base = getCXXThisExpr();
670   // FIXME: This doesn't handle an overloaded ->* operator.
671   if (!Base)
672     return UnknownVal();
673 
674   SVal ThisVal = getSVal(Base);
675   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
676   return ThisVal;
677 }
678 
679 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
680   // Do we have a decl at all?
681   const Decl *D = getDecl();
682   if (!D)
683     return {};
684 
685   // If the method is non-virtual, we know we can inline it.
686   const auto *MD = cast<CXXMethodDecl>(D);
687   if (!MD->isVirtual())
688     return AnyFunctionCall::getRuntimeDefinition();
689 
690   // Do we know the implicit 'this' object being called?
691   const MemRegion *R = getCXXThisVal().getAsRegion();
692   if (!R)
693     return {};
694 
695   // Do we know anything about the type of 'this'?
696   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
697   if (!DynType.isValid())
698     return {};
699 
700   // Is the type a C++ class? (This is mostly a defensive check.)
701   QualType RegionType = DynType.getType()->getPointeeType();
702   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
703 
704   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
705   if (!RD || !RD->hasDefinition())
706     return {};
707 
708   // Find the decl for this method in that class.
709   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
710   if (!Result) {
711     // We might not even get the original statically-resolved method due to
712     // some particularly nasty casting (e.g. casts to sister classes).
713     // However, we should at least be able to search up and down our own class
714     // hierarchy, and some real bugs have been caught by checking this.
715     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
716 
717     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
718     // the static type. However, because we currently don't update
719     // DynamicTypeInfo when an object is cast, we can't actually be sure the
720     // DynamicTypeInfo is up to date. This assert should be re-enabled once
721     // this is fixed. <rdar://problem/12287087>
722     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
723 
724     return {};
725   }
726 
727   // Does the decl that we found have an implementation?
728   const FunctionDecl *Definition;
729   if (!Result->hasBody(Definition)) {
730     if (!DynType.canBeASubClass())
731       return AnyFunctionCall::getRuntimeDefinition();
732     return {};
733   }
734 
735   // We found a definition. If we're not sure that this devirtualization is
736   // actually what will happen at runtime, make sure to provide the region so
737   // that ExprEngine can decide what to do with it.
738   if (DynType.canBeASubClass())
739     return RuntimeDefinition(Definition, R->StripCasts());
740   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
741 }
742 
743 void CXXInstanceCall::getInitialStackFrameContents(
744                                             const StackFrameContext *CalleeCtx,
745                                             BindingsTy &Bindings) const {
746   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
747 
748   // Handle the binding of 'this' in the new stack frame.
749   SVal ThisVal = getCXXThisVal();
750   if (!ThisVal.isUnknown()) {
751     ProgramStateManager &StateMgr = getState()->getStateManager();
752     SValBuilder &SVB = StateMgr.getSValBuilder();
753 
754     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
755     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
756 
757     // If we devirtualized to a different member function, we need to make sure
758     // we have the proper layering of CXXBaseObjectRegions.
759     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
760       ASTContext &Ctx = SVB.getContext();
761       const CXXRecordDecl *Class = MD->getParent();
762       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
763 
764       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
765       bool Failed;
766       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
767       if (Failed) {
768         // We might have suffered some sort of placement new earlier, so
769         // we're constructing in a completely unexpected storage.
770         // Fall back to a generic pointer cast for this-value.
771         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
772         const CXXRecordDecl *StaticClass = StaticMD->getParent();
773         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
774         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
775       }
776     }
777 
778     if (!ThisVal.isUnknown())
779       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
780   }
781 }
782 
783 const Expr *CXXMemberCall::getCXXThisExpr() const {
784   return getOriginExpr()->getImplicitObjectArgument();
785 }
786 
787 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
788   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
789   // id-expression in the class member access expression is a qualified-id,
790   // that function is called. Otherwise, its final overrider in the dynamic type
791   // of the object expression is called.
792   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
793     if (ME->hasQualifier())
794       return AnyFunctionCall::getRuntimeDefinition();
795 
796   return CXXInstanceCall::getRuntimeDefinition();
797 }
798 
799 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
800   return getOriginExpr()->getArg(0);
801 }
802 
803 const BlockDataRegion *BlockCall::getBlockRegion() const {
804   const Expr *Callee = getOriginExpr()->getCallee();
805   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
806 
807   return dyn_cast_or_null<BlockDataRegion>(DataReg);
808 }
809 
810 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
811   const BlockDecl *D = getDecl();
812   if (!D)
813     return None;
814   return D->parameters();
815 }
816 
817 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
818                   RegionAndSymbolInvalidationTraits *ETraits) const {
819   // FIXME: This also needs to invalidate captured globals.
820   if (const MemRegion *R = getBlockRegion())
821     Values.push_back(loc::MemRegionVal(R));
822 }
823 
824 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
825                                              BindingsTy &Bindings) const {
826   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
827   ArrayRef<ParmVarDecl*> Params;
828   if (isConversionFromLambda()) {
829     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
830     Params = LambdaOperatorDecl->parameters();
831 
832     // For blocks converted from a C++ lambda, the callee declaration is the
833     // operator() method on the lambda so we bind "this" to
834     // the lambda captured by the block.
835     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
836     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
837     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
838     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
839   } else {
840     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
841   }
842 
843   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
844                                Params);
845 }
846 
847 SVal AnyCXXConstructorCall::getCXXThisVal() const {
848   if (Data)
849     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
850   return UnknownVal();
851 }
852 
853 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
854                            RegionAndSymbolInvalidationTraits *ETraits) const {
855   SVal V = getCXXThisVal();
856   if (SymbolRef Sym = V.getAsSymbol(true))
857     ETraits->setTrait(Sym,
858                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
859   Values.push_back(V);
860 }
861 
862 void AnyCXXConstructorCall::getInitialStackFrameContents(
863                                              const StackFrameContext *CalleeCtx,
864                                              BindingsTy &Bindings) const {
865   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
866 
867   SVal ThisVal = getCXXThisVal();
868   if (!ThisVal.isUnknown()) {
869     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
870     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
871     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
872     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
873   }
874 }
875 
876 const StackFrameContext *
877 CXXInheritedConstructorCall::getInheritingStackFrame() const {
878   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
879   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
880     SFC = SFC->getParent()->getStackFrame();
881   return SFC;
882 }
883 
884 SVal CXXDestructorCall::getCXXThisVal() const {
885   if (Data)
886     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
887   return UnknownVal();
888 }
889 
890 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
891   // Base destructors are always called non-virtually.
892   // Skip CXXInstanceCall's devirtualization logic in this case.
893   if (isBaseDestructor())
894     return AnyFunctionCall::getRuntimeDefinition();
895 
896   return CXXInstanceCall::getRuntimeDefinition();
897 }
898 
899 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
900   const ObjCMethodDecl *D = getDecl();
901   if (!D)
902     return None;
903   return D->parameters();
904 }
905 
906 void ObjCMethodCall::getExtraInvalidatedValues(
907     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
908 
909   // If the method call is a setter for property known to be backed by
910   // an instance variable, don't invalidate the entire receiver, just
911   // the storage for that instance variable.
912   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
913     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
914       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
915       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
916         ETraits->setTrait(
917           IvarRegion,
918           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
919         ETraits->setTrait(
920           IvarRegion,
921           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
922         Values.push_back(IvarLVal);
923       }
924       return;
925     }
926   }
927 
928   Values.push_back(getReceiverSVal());
929 }
930 
931 SVal ObjCMethodCall::getReceiverSVal() const {
932   // FIXME: Is this the best way to handle class receivers?
933   if (!isInstanceMessage())
934     return UnknownVal();
935 
936   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
937     return getSVal(RecE);
938 
939   // An instance message with no expression means we are sending to super.
940   // In this case the object reference is the same as 'self'.
941   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
942   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
943   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
944   return SelfVal;
945 }
946 
947 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
948   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
949       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
950       return true;
951 
952   if (!isInstanceMessage())
953     return false;
954 
955   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
956   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
957 
958   return (RecVal == SelfVal);
959 }
960 
961 SourceRange ObjCMethodCall::getSourceRange() const {
962   switch (getMessageKind()) {
963   case OCM_Message:
964     return getOriginExpr()->getSourceRange();
965   case OCM_PropertyAccess:
966   case OCM_Subscript:
967     return getContainingPseudoObjectExpr()->getSourceRange();
968   }
969   llvm_unreachable("unknown message kind");
970 }
971 
972 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
973 
974 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
975   assert(Data && "Lazy lookup not yet performed.");
976   assert(getMessageKind() != OCM_Message && "Explicit message send.");
977   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
978 }
979 
980 static const Expr *
981 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
982   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
983 
984   // This handles the funny case of assigning to the result of a getter.
985   // This can happen if the getter returns a non-const reference.
986   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
987     Syntactic = BO->getLHS()->IgnoreParens();
988 
989   return Syntactic;
990 }
991 
992 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
993   if (!Data) {
994     // Find the parent, ignoring implicit casts.
995     const ParentMap &PM = getLocationContext()->getParentMap();
996     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
997 
998     // Check if parent is a PseudoObjectExpr.
999     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1000       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1001 
1002       ObjCMessageKind K;
1003       switch (Syntactic->getStmtClass()) {
1004       case Stmt::ObjCPropertyRefExprClass:
1005         K = OCM_PropertyAccess;
1006         break;
1007       case Stmt::ObjCSubscriptRefExprClass:
1008         K = OCM_Subscript;
1009         break;
1010       default:
1011         // FIXME: Can this ever happen?
1012         K = OCM_Message;
1013         break;
1014       }
1015 
1016       if (K != OCM_Message) {
1017         const_cast<ObjCMethodCall *>(this)->Data
1018           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1019         assert(getMessageKind() == K);
1020         return K;
1021       }
1022     }
1023 
1024     const_cast<ObjCMethodCall *>(this)->Data
1025       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1026     assert(getMessageKind() == OCM_Message);
1027     return OCM_Message;
1028   }
1029 
1030   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1031   if (!Info.getPointer())
1032     return OCM_Message;
1033   return static_cast<ObjCMessageKind>(Info.getInt());
1034 }
1035 
1036 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1037   // Look for properties accessed with property syntax (foo.bar = ...)
1038   if (getMessageKind() == OCM_PropertyAccess) {
1039     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1040     assert(POE && "Property access without PseudoObjectExpr?");
1041 
1042     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1043     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1044 
1045     if (RefExpr->isExplicitProperty())
1046       return RefExpr->getExplicitProperty();
1047   }
1048 
1049   // Look for properties accessed with method syntax ([foo setBar:...]).
1050   const ObjCMethodDecl *MD = getDecl();
1051   if (!MD || !MD->isPropertyAccessor())
1052     return nullptr;
1053 
1054   // Note: This is potentially quite slow.
1055   return MD->findPropertyDecl();
1056 }
1057 
1058 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1059                                              Selector Sel) const {
1060   assert(IDecl);
1061   AnalysisManager &AMgr =
1062       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1063   // If the class interface is declared inside the main file, assume it is not
1064   // subcassed.
1065   // TODO: It could actually be subclassed if the subclass is private as well.
1066   // This is probably very rare.
1067   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1068   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1069     return false;
1070 
1071   // Assume that property accessors are not overridden.
1072   if (getMessageKind() == OCM_PropertyAccess)
1073     return false;
1074 
1075   // We assume that if the method is public (declared outside of main file) or
1076   // has a parent which publicly declares the method, the method could be
1077   // overridden in a subclass.
1078 
1079   // Find the first declaration in the class hierarchy that declares
1080   // the selector.
1081   ObjCMethodDecl *D = nullptr;
1082   while (true) {
1083     D = IDecl->lookupMethod(Sel, true);
1084 
1085     // Cannot find a public definition.
1086     if (!D)
1087       return false;
1088 
1089     // If outside the main file,
1090     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1091       return true;
1092 
1093     if (D->isOverriding()) {
1094       // Search in the superclass on the next iteration.
1095       IDecl = D->getClassInterface();
1096       if (!IDecl)
1097         return false;
1098 
1099       IDecl = IDecl->getSuperClass();
1100       if (!IDecl)
1101         return false;
1102 
1103       continue;
1104     }
1105 
1106     return false;
1107   };
1108 
1109   llvm_unreachable("The while loop should always terminate.");
1110 }
1111 
1112 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1113   if (!MD)
1114     return MD;
1115 
1116   // Find the redeclaration that defines the method.
1117   if (!MD->hasBody()) {
1118     for (auto I : MD->redecls())
1119       if (I->hasBody())
1120         MD = cast<ObjCMethodDecl>(I);
1121   }
1122   return MD;
1123 }
1124 
1125 struct PrivateMethodKey {
1126   const ObjCInterfaceDecl *Interface;
1127   Selector LookupSelector;
1128   bool IsClassMethod;
1129 };
1130 
1131 namespace llvm {
1132 template <> struct DenseMapInfo<PrivateMethodKey> {
1133   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1134   using SelectorInfo = DenseMapInfo<Selector>;
1135 
1136   static inline PrivateMethodKey getEmptyKey() {
1137     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1138   }
1139 
1140   static inline PrivateMethodKey getTombstoneKey() {
1141     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1142             true};
1143   }
1144 
1145   static unsigned getHashValue(const PrivateMethodKey &Key) {
1146     return llvm::hash_combine(
1147         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1148         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1149         Key.IsClassMethod);
1150   }
1151 
1152   static bool isEqual(const PrivateMethodKey &LHS,
1153                       const PrivateMethodKey &RHS) {
1154     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1155            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1156            LHS.IsClassMethod == RHS.IsClassMethod;
1157   }
1158 };
1159 } // end namespace llvm
1160 
1161 static const ObjCMethodDecl *
1162 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1163                         Selector LookupSelector, bool InstanceMethod) {
1164   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1165   // when in many cases it returns null.  We cache the results so
1166   // that repeated queries on the same ObjCIntefaceDecl and Selector
1167   // don't incur the same cost.  On some test cases, we can see the
1168   // same query being issued thousands of times.
1169   //
1170   // NOTE: This cache is essentially a "global" variable, but it
1171   // only gets lazily created when we get here.  The value of the
1172   // cache probably comes from it being global across ExprEngines,
1173   // where the same queries may get issued.  If we are worried about
1174   // concurrency, or possibly loading/unloading ASTs, etc., we may
1175   // need to revisit this someday.  In terms of memory, this table
1176   // stays around until clang quits, which also may be bad if we
1177   // need to release memory.
1178   using PrivateMethodCache =
1179       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1180 
1181   static PrivateMethodCache PMC;
1182   Optional<const ObjCMethodDecl *> &Val =
1183       PMC[{Interface, LookupSelector, InstanceMethod}];
1184 
1185   // Query lookupPrivateMethod() if the cache does not hit.
1186   if (!Val.hasValue()) {
1187     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1188 
1189     if (!*Val) {
1190       // Query 'lookupMethod' as a backup.
1191       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1192     }
1193   }
1194 
1195   return Val.getValue();
1196 }
1197 
1198 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1199   const ObjCMessageExpr *E = getOriginExpr();
1200   assert(E);
1201   Selector Sel = E->getSelector();
1202 
1203   if (E->isInstanceMessage()) {
1204     // Find the receiver type.
1205     const ObjCObjectType *ReceiverT = nullptr;
1206     bool CanBeSubClassed = false;
1207     bool LookingForInstanceMethod = true;
1208     QualType SupersType = E->getSuperType();
1209     const MemRegion *Receiver = nullptr;
1210 
1211     if (!SupersType.isNull()) {
1212       // The receiver is guaranteed to be 'super' in this case.
1213       // Super always means the type of immediate predecessor to the method
1214       // where the call occurs.
1215       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1216     } else {
1217       Receiver = getReceiverSVal().getAsRegion();
1218       if (!Receiver)
1219         return {};
1220 
1221       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1222       if (!DTI.isValid()) {
1223         assert(isa<AllocaRegion>(Receiver) &&
1224                "Unhandled untyped region class!");
1225         return {};
1226       }
1227 
1228       QualType DynType = DTI.getType();
1229       CanBeSubClassed = DTI.canBeASubClass();
1230 
1231       const auto *ReceiverDynT =
1232           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1233 
1234       if (ReceiverDynT) {
1235         ReceiverT = ReceiverDynT->getObjectType();
1236 
1237         // It can be actually class methods called with Class object as a
1238         // receiver. This type of messages is treated by the compiler as
1239         // instance (not class).
1240         if (ReceiverT->isObjCClass()) {
1241 
1242           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1243           // For [self classMethod], return compiler visible declaration.
1244           if (Receiver == SelfVal.getAsRegion()) {
1245             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1246           }
1247 
1248           // Otherwise, let's check if we know something about the type
1249           // inside of this class object.
1250           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1251             DynamicTypeInfo DTI =
1252                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1253             if (DTI.isValid()) {
1254               // Let's use this type for lookup.
1255               ReceiverT =
1256                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1257 
1258               CanBeSubClassed = DTI.canBeASubClass();
1259               // And it should be a class method instead.
1260               LookingForInstanceMethod = false;
1261             }
1262           }
1263         }
1264 
1265         if (CanBeSubClassed)
1266           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1267             // Even if `DynamicTypeInfo` told us that it can be
1268             // not necessarily this type, but its descendants, we still want
1269             // to check again if this selector can be actually overridden.
1270             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1271       }
1272     }
1273 
1274     // Lookup the instance method implementation.
1275     if (ReceiverT)
1276       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1277         const ObjCMethodDecl *MD =
1278             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1279 
1280         if (MD && !MD->hasBody())
1281           MD = MD->getCanonicalDecl();
1282 
1283         if (CanBeSubClassed)
1284           return RuntimeDefinition(MD, Receiver);
1285         else
1286           return RuntimeDefinition(MD, nullptr);
1287       }
1288   } else {
1289     // This is a class method.
1290     // If we have type info for the receiver class, we are calling via
1291     // class name.
1292     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1293       // Find/Return the method implementation.
1294       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1295     }
1296   }
1297 
1298   return {};
1299 }
1300 
1301 bool ObjCMethodCall::argumentsMayEscape() const {
1302   if (isInSystemHeader() && !isInstanceMessage()) {
1303     Selector Sel = getSelector();
1304     if (Sel.getNumArgs() == 1 &&
1305         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1306       return true;
1307   }
1308 
1309   return CallEvent::argumentsMayEscape();
1310 }
1311 
1312 void ObjCMethodCall::getInitialStackFrameContents(
1313                                              const StackFrameContext *CalleeCtx,
1314                                              BindingsTy &Bindings) const {
1315   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1316   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1317   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1318                                D->parameters());
1319 
1320   SVal SelfVal = getReceiverSVal();
1321   if (!SelfVal.isUnknown()) {
1322     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1323     MemRegionManager &MRMgr = SVB.getRegionManager();
1324     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1325     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1326   }
1327 }
1328 
1329 CallEventRef<>
1330 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1331                                 const LocationContext *LCtx) {
1332   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1333     return create<CXXMemberCall>(MCE, State, LCtx);
1334 
1335   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1336     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1337     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1338       if (MD->isInstance())
1339         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1340 
1341   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1342     return create<BlockCall>(CE, State, LCtx);
1343   }
1344 
1345   // Otherwise, it's a normal function call, static member function call, or
1346   // something we can't reason about.
1347   return create<SimpleFunctionCall>(CE, State, LCtx);
1348 }
1349 
1350 CallEventRef<>
1351 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1352                             ProgramStateRef State) {
1353   const LocationContext *ParentCtx = CalleeCtx->getParent();
1354   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1355   assert(CallerCtx && "This should not be used for top-level stack frames");
1356 
1357   const Stmt *CallSite = CalleeCtx->getCallSite();
1358 
1359   if (CallSite) {
1360     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1361       return Out;
1362 
1363     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1364     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1365     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1366     SVal ThisVal = State->getSVal(ThisPtr);
1367 
1368     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1369       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1370     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1371       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1372                                             CallerCtx);
1373     else {
1374       // All other cases are handled by getCall.
1375       llvm_unreachable("This is not an inlineable statement");
1376     }
1377   }
1378 
1379   // Fall back to the CFG. The only thing we haven't handled yet is
1380   // destructors, though this could change in the future.
1381   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1382   CFGElement E = (*B)[CalleeCtx->getIndex()];
1383   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1384          "All other CFG elements should have exprs");
1385 
1386   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1387   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1388   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1389   SVal ThisVal = State->getSVal(ThisPtr);
1390 
1391   const Stmt *Trigger;
1392   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1393     Trigger = AutoDtor->getTriggerStmt();
1394   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1395     Trigger = DeleteDtor->getDeleteExpr();
1396   else
1397     Trigger = Dtor->getBody();
1398 
1399   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1400                               E.getAs<CFGBaseDtor>().hasValue(), State,
1401                               CallerCtx);
1402 }
1403 
1404 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1405                                          const LocationContext *LC) {
1406   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1407     return getSimpleCall(CE, State, LC);
1408   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1409     return getCXXAllocatorCall(NE, State, LC);
1410   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1411     return getObjCMethodCall(ME, State, LC);
1412   } else {
1413     return nullptr;
1414   }
1415 }
1416