xref: /freebsd-src/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
195   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
196   if (!ADC)
197     return nullptr;
198 
199   const Expr *E = getOriginExpr();
200   if (!E)
201     return nullptr;
202 
203   // Recover CFG block via reverse lookup.
204   // TODO: If we were to keep CFG element information as part of the CallEvent
205   // instead of doing this reverse lookup, we would be able to build the stack
206   // frame for non-expression-based calls, and also we wouldn't need the reverse
207   // lookup.
208   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
209   const CFGBlock *B = Map->getBlock(E);
210   assert(B);
211 
212   // Also recover CFG index by scanning the CFG block.
213   unsigned Idx = 0, Sz = B->size();
214   for (; Idx < Sz; ++Idx)
215     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
216       if (StmtElem->getStmt() == E)
217         break;
218   assert(Idx < Sz);
219 
220   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
221 }
222 
223 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
224   const StackFrameContext *SFC = getCalleeStackFrame();
225   // We cannot construct a VarRegion without a stack frame.
226   if (!SFC)
227     return nullptr;
228 
229   // Retrieve parameters of the definition, which are different from
230   // CallEvent's parameters() because getDecl() isn't necessarily
231   // the definition. SFC contains the definition that would be used
232   // during analysis.
233   const Decl *D = SFC->getDecl();
234 
235   // TODO: Refactor into a virtual method of CallEvent, like parameters().
236   const ParmVarDecl *PVD = nullptr;
237   if (const auto *FD = dyn_cast<FunctionDecl>(D))
238     PVD = FD->parameters()[Index];
239   else if (const auto *BD = dyn_cast<BlockDecl>(D))
240     PVD = BD->parameters()[Index];
241   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
242     PVD = MD->parameters()[Index];
243   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
244     PVD = CD->parameters()[Index];
245   assert(PVD && "Unexpected Decl kind!");
246 
247   const VarRegion *VR =
248       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
249 
250   // This sanity check would fail if our parameter declaration doesn't
251   // correspond to the stack frame's function declaration.
252   assert(VR->getStackFrame() == SFC);
253 
254   return VR;
255 }
256 
257 /// Returns true if a type is a pointer-to-const or reference-to-const
258 /// with no further indirection.
259 static bool isPointerToConst(QualType Ty) {
260   QualType PointeeTy = Ty->getPointeeType();
261   if (PointeeTy == QualType())
262     return false;
263   if (!PointeeTy.isConstQualified())
264     return false;
265   if (PointeeTy->isAnyPointerType())
266     return false;
267   return true;
268 }
269 
270 // Try to retrieve the function declaration and find the function parameter
271 // types which are pointers/references to a non-pointer const.
272 // We will not invalidate the corresponding argument regions.
273 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
274                                  const CallEvent &Call) {
275   unsigned Idx = 0;
276   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
277                                       E = Call.param_type_end();
278        I != E; ++I, ++Idx) {
279     if (isPointerToConst(*I))
280       PreserveArgs.insert(Idx);
281   }
282 }
283 
284 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
285                                              ProgramStateRef Orig) const {
286   ProgramStateRef Result = (Orig ? Orig : getState());
287 
288   // Don't invalidate anything if the callee is marked pure/const.
289   if (const Decl *callee = getDecl())
290     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
291       return Result;
292 
293   SmallVector<SVal, 8> ValuesToInvalidate;
294   RegionAndSymbolInvalidationTraits ETraits;
295 
296   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
297 
298   // Indexes of arguments whose values will be preserved by the call.
299   llvm::SmallSet<unsigned, 4> PreserveArgs;
300   if (!argumentsMayEscape())
301     findPtrToConstParams(PreserveArgs, *this);
302 
303   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
304     // Mark this region for invalidation.  We batch invalidate regions
305     // below for efficiency.
306     if (PreserveArgs.count(Idx))
307       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
308         ETraits.setTrait(MR->getBaseRegion(),
309                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
310         // TODO: Factor this out + handle the lower level const pointers.
311 
312     ValuesToInvalidate.push_back(getArgSVal(Idx));
313 
314     // If a function accepts an object by argument (which would of course be a
315     // temporary that isn't lifetime-extended), invalidate the object itself,
316     // not only other objects reachable from it. This is necessary because the
317     // destructor has access to the temporary object after the call.
318     // TODO: Support placement arguments once we start
319     // constructing them directly.
320     // TODO: This is unnecessary when there's no destructor, but that's
321     // currently hard to figure out.
322     if (getKind() != CE_CXXAllocator)
323       if (isArgumentConstructedDirectly(Idx))
324         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
325           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
326             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
327   }
328 
329   // Invalidate designated regions using the batch invalidation API.
330   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
331   //  global variables.
332   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
333                                    BlockCount, getLocationContext(),
334                                    /*CausedByPointerEscape*/ true,
335                                    /*Symbols=*/nullptr, this, &ETraits);
336 }
337 
338 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
339                                         const ProgramPointTag *Tag) const {
340   if (const Expr *E = getOriginExpr()) {
341     if (IsPreVisit)
342       return PreStmt(E, getLocationContext(), Tag);
343     return PostStmt(E, getLocationContext(), Tag);
344   }
345 
346   const Decl *D = getDecl();
347   assert(D && "Cannot get a program point without a statement or decl");
348 
349   SourceLocation Loc = getSourceRange().getBegin();
350   if (IsPreVisit)
351     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
352   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
353 }
354 
355 bool CallEvent::isCalled(const CallDescription &CD) const {
356   // FIXME: Add ObjC Message support.
357   if (getKind() == CE_ObjCMessage)
358     return false;
359 
360   const IdentifierInfo *II = getCalleeIdentifier();
361   if (!II)
362     return false;
363   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
364   if (!FD)
365     return false;
366 
367   if (CD.Flags & CDF_MaybeBuiltin) {
368     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
369            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs());
370   }
371 
372   if (!CD.IsLookupDone) {
373     CD.IsLookupDone = true;
374     CD.II = &getState()->getStateManager().getContext().Idents.get(
375         CD.getFunctionName());
376   }
377 
378   if (II != CD.II)
379     return false;
380 
381   // If CallDescription provides prefix names, use them to improve matching
382   // accuracy.
383   if (CD.QualifiedName.size() > 1 && FD) {
384     const DeclContext *Ctx = FD->getDeclContext();
385     // See if we'll be able to match them all.
386     size_t NumUnmatched = CD.QualifiedName.size() - 1;
387     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
388       if (NumUnmatched == 0)
389         break;
390 
391       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
392         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
393           --NumUnmatched;
394         continue;
395       }
396 
397       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
398         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
399           --NumUnmatched;
400         continue;
401       }
402     }
403 
404     if (NumUnmatched > 0)
405       return false;
406   }
407 
408   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs());
409 }
410 
411 SVal CallEvent::getArgSVal(unsigned Index) const {
412   const Expr *ArgE = getArgExpr(Index);
413   if (!ArgE)
414     return UnknownVal();
415   return getSVal(ArgE);
416 }
417 
418 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
419   const Expr *ArgE = getArgExpr(Index);
420   if (!ArgE)
421     return {};
422   return ArgE->getSourceRange();
423 }
424 
425 SVal CallEvent::getReturnValue() const {
426   const Expr *E = getOriginExpr();
427   if (!E)
428     return UndefinedVal();
429   return getSVal(E);
430 }
431 
432 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
433 
434 void CallEvent::dump(raw_ostream &Out) const {
435   ASTContext &Ctx = getState()->getStateManager().getContext();
436   if (const Expr *E = getOriginExpr()) {
437     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
438     Out << "\n";
439     return;
440   }
441 
442   if (const Decl *D = getDecl()) {
443     Out << "Call to ";
444     D->print(Out, Ctx.getPrintingPolicy());
445     return;
446   }
447 
448   // FIXME: a string representation of the kind would be nice.
449   Out << "Unknown call (type " << getKind() << ")";
450 }
451 
452 bool CallEvent::isCallStmt(const Stmt *S) {
453   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
454                           || isa<CXXConstructExpr>(S)
455                           || isa<CXXNewExpr>(S);
456 }
457 
458 QualType CallEvent::getDeclaredResultType(const Decl *D) {
459   assert(D);
460   if (const auto *FD = dyn_cast<FunctionDecl>(D))
461     return FD->getReturnType();
462   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
463     return MD->getReturnType();
464   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
465     // Blocks are difficult because the return type may not be stored in the
466     // BlockDecl itself. The AST should probably be enhanced, but for now we
467     // just do what we can.
468     // If the block is declared without an explicit argument list, the
469     // signature-as-written just includes the return type, not the entire
470     // function type.
471     // FIXME: All blocks should have signatures-as-written, even if the return
472     // type is inferred. (That's signified with a dependent result type.)
473     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
474       QualType Ty = TSI->getType();
475       if (const FunctionType *FT = Ty->getAs<FunctionType>())
476         Ty = FT->getReturnType();
477       if (!Ty->isDependentType())
478         return Ty;
479     }
480 
481     return {};
482   }
483 
484   llvm_unreachable("unknown callable kind");
485 }
486 
487 bool CallEvent::isVariadic(const Decl *D) {
488   assert(D);
489 
490   if (const auto *FD = dyn_cast<FunctionDecl>(D))
491     return FD->isVariadic();
492   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
493     return MD->isVariadic();
494   if (const auto *BD = dyn_cast<BlockDecl>(D))
495     return BD->isVariadic();
496 
497   llvm_unreachable("unknown callable kind");
498 }
499 
500 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
501                                          CallEvent::BindingsTy &Bindings,
502                                          SValBuilder &SVB,
503                                          const CallEvent &Call,
504                                          ArrayRef<ParmVarDecl*> parameters) {
505   MemRegionManager &MRMgr = SVB.getRegionManager();
506 
507   // If the function has fewer parameters than the call has arguments, we simply
508   // do not bind any values to them.
509   unsigned NumArgs = Call.getNumArgs();
510   unsigned Idx = 0;
511   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
512   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
513     const ParmVarDecl *ParamDecl = *I;
514     assert(ParamDecl && "Formal parameter has no decl?");
515 
516     // TODO: Support allocator calls.
517     if (Call.getKind() != CE_CXXAllocator)
518       if (Call.isArgumentConstructedDirectly(Idx))
519         continue;
520 
521     // TODO: Allocators should receive the correct size and possibly alignment,
522     // determined in compile-time but not represented as arg-expressions,
523     // which makes getArgSVal() fail and return UnknownVal.
524     SVal ArgVal = Call.getArgSVal(Idx);
525     if (!ArgVal.isUnknown()) {
526       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
527       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
528     }
529   }
530 
531   // FIXME: Variadic arguments are not handled at all right now.
532 }
533 
534 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
535   const FunctionDecl *D = getDecl();
536   if (!D)
537     return None;
538   return D->parameters();
539 }
540 
541 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
542   const FunctionDecl *FD = getDecl();
543   if (!FD)
544     return {};
545 
546   // Note that the AnalysisDeclContext will have the FunctionDecl with
547   // the definition (if one exists).
548   AnalysisDeclContext *AD =
549     getLocationContext()->getAnalysisDeclContext()->
550     getManager()->getContext(FD);
551   bool IsAutosynthesized;
552   Stmt* Body = AD->getBody(IsAutosynthesized);
553   LLVM_DEBUG({
554     if (IsAutosynthesized)
555       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
556                    << "\n";
557   });
558   if (Body) {
559     const Decl* Decl = AD->getDecl();
560     return RuntimeDefinition(Decl);
561   }
562 
563   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
564   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
565 
566   // Try to get CTU definition only if CTUDir is provided.
567   if (!Opts.IsNaiveCTUEnabled)
568     return {};
569 
570   cross_tu::CrossTranslationUnitContext &CTUCtx =
571       *Engine.getCrossTranslationUnitContext();
572   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
573       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
574                                   Opts.DisplayCTUProgress);
575 
576   if (!CTUDeclOrError) {
577     handleAllErrors(CTUDeclOrError.takeError(),
578                     [&](const cross_tu::IndexError &IE) {
579                       CTUCtx.emitCrossTUDiagnostics(IE);
580                     });
581     return {};
582   }
583 
584   return RuntimeDefinition(*CTUDeclOrError);
585 }
586 
587 void AnyFunctionCall::getInitialStackFrameContents(
588                                         const StackFrameContext *CalleeCtx,
589                                         BindingsTy &Bindings) const {
590   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
591   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
592   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
593                                D->parameters());
594 }
595 
596 bool AnyFunctionCall::argumentsMayEscape() const {
597   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
598     return true;
599 
600   const FunctionDecl *D = getDecl();
601   if (!D)
602     return true;
603 
604   const IdentifierInfo *II = D->getIdentifier();
605   if (!II)
606     return false;
607 
608   // This set of "escaping" APIs is
609 
610   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
611   //   value into thread local storage. The value can later be retrieved with
612   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
613   //   parameter is 'const void *', the region escapes through the call.
614   if (II->isStr("pthread_setspecific"))
615     return true;
616 
617   // - xpc_connection_set_context stores a value which can be retrieved later
618   //   with xpc_connection_get_context.
619   if (II->isStr("xpc_connection_set_context"))
620     return true;
621 
622   // - funopen - sets a buffer for future IO calls.
623   if (II->isStr("funopen"))
624     return true;
625 
626   // - __cxa_demangle - can reallocate memory and can return the pointer to
627   // the input buffer.
628   if (II->isStr("__cxa_demangle"))
629     return true;
630 
631   StringRef FName = II->getName();
632 
633   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
634   //   buffer even if it is const.
635   if (FName.endswith("NoCopy"))
636     return true;
637 
638   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
639   //   be deallocated by NSMapRemove.
640   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
641     return true;
642 
643   // - Many CF containers allow objects to escape through custom
644   //   allocators/deallocators upon container construction. (PR12101)
645   if (FName.startswith("CF") || FName.startswith("CG")) {
646     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
647            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
648            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
649            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
650            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
652   }
653 
654   return false;
655 }
656 
657 const FunctionDecl *SimpleFunctionCall::getDecl() const {
658   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
659   if (D)
660     return D;
661 
662   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
663 }
664 
665 const FunctionDecl *CXXInstanceCall::getDecl() const {
666   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
667   if (!CE)
668     return AnyFunctionCall::getDecl();
669 
670   const FunctionDecl *D = CE->getDirectCallee();
671   if (D)
672     return D;
673 
674   return getSVal(CE->getCallee()).getAsFunctionDecl();
675 }
676 
677 void CXXInstanceCall::getExtraInvalidatedValues(
678     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
679   SVal ThisVal = getCXXThisVal();
680   Values.push_back(ThisVal);
681 
682   // Don't invalidate if the method is const and there are no mutable fields.
683   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
684     if (!D->isConst())
685       return;
686     // Get the record decl for the class of 'This'. D->getParent() may return a
687     // base class decl, rather than the class of the instance which needs to be
688     // checked for mutable fields.
689     // TODO: We might as well look at the dynamic type of the object.
690     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
691     QualType T = Ex->getType();
692     if (T->isPointerType()) // Arrow or implicit-this syntax?
693       T = T->getPointeeType();
694     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
695     assert(ParentRecord);
696     if (ParentRecord->hasMutableFields())
697       return;
698     // Preserve CXXThis.
699     const MemRegion *ThisRegion = ThisVal.getAsRegion();
700     if (!ThisRegion)
701       return;
702 
703     ETraits->setTrait(ThisRegion->getBaseRegion(),
704                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
705   }
706 }
707 
708 SVal CXXInstanceCall::getCXXThisVal() const {
709   const Expr *Base = getCXXThisExpr();
710   // FIXME: This doesn't handle an overloaded ->* operator.
711   if (!Base)
712     return UnknownVal();
713 
714   SVal ThisVal = getSVal(Base);
715   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
716   return ThisVal;
717 }
718 
719 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
720   // Do we have a decl at all?
721   const Decl *D = getDecl();
722   if (!D)
723     return {};
724 
725   // If the method is non-virtual, we know we can inline it.
726   const auto *MD = cast<CXXMethodDecl>(D);
727   if (!MD->isVirtual())
728     return AnyFunctionCall::getRuntimeDefinition();
729 
730   // Do we know the implicit 'this' object being called?
731   const MemRegion *R = getCXXThisVal().getAsRegion();
732   if (!R)
733     return {};
734 
735   // Do we know anything about the type of 'this'?
736   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
737   if (!DynType.isValid())
738     return {};
739 
740   // Is the type a C++ class? (This is mostly a defensive check.)
741   QualType RegionType = DynType.getType()->getPointeeType();
742   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
743 
744   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
745   if (!RD || !RD->hasDefinition())
746     return {};
747 
748   // Find the decl for this method in that class.
749   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
750   if (!Result) {
751     // We might not even get the original statically-resolved method due to
752     // some particularly nasty casting (e.g. casts to sister classes).
753     // However, we should at least be able to search up and down our own class
754     // hierarchy, and some real bugs have been caught by checking this.
755     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
756 
757     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
758     // the static type. However, because we currently don't update
759     // DynamicTypeInfo when an object is cast, we can't actually be sure the
760     // DynamicTypeInfo is up to date. This assert should be re-enabled once
761     // this is fixed. <rdar://problem/12287087>
762     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
763 
764     return {};
765   }
766 
767   // Does the decl that we found have an implementation?
768   const FunctionDecl *Definition;
769   if (!Result->hasBody(Definition)) {
770     if (!DynType.canBeASubClass())
771       return AnyFunctionCall::getRuntimeDefinition();
772     return {};
773   }
774 
775   // We found a definition. If we're not sure that this devirtualization is
776   // actually what will happen at runtime, make sure to provide the region so
777   // that ExprEngine can decide what to do with it.
778   if (DynType.canBeASubClass())
779     return RuntimeDefinition(Definition, R->StripCasts());
780   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
781 }
782 
783 void CXXInstanceCall::getInitialStackFrameContents(
784                                             const StackFrameContext *CalleeCtx,
785                                             BindingsTy &Bindings) const {
786   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
787 
788   // Handle the binding of 'this' in the new stack frame.
789   SVal ThisVal = getCXXThisVal();
790   if (!ThisVal.isUnknown()) {
791     ProgramStateManager &StateMgr = getState()->getStateManager();
792     SValBuilder &SVB = StateMgr.getSValBuilder();
793 
794     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
795     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
796 
797     // If we devirtualized to a different member function, we need to make sure
798     // we have the proper layering of CXXBaseObjectRegions.
799     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
800       ASTContext &Ctx = SVB.getContext();
801       const CXXRecordDecl *Class = MD->getParent();
802       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
803 
804       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
805       bool Failed;
806       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
807       if (Failed) {
808         // We might have suffered some sort of placement new earlier, so
809         // we're constructing in a completely unexpected storage.
810         // Fall back to a generic pointer cast for this-value.
811         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
812         const CXXRecordDecl *StaticClass = StaticMD->getParent();
813         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
814         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
815       }
816     }
817 
818     if (!ThisVal.isUnknown())
819       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
820   }
821 }
822 
823 const Expr *CXXMemberCall::getCXXThisExpr() const {
824   return getOriginExpr()->getImplicitObjectArgument();
825 }
826 
827 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
828   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
829   // id-expression in the class member access expression is a qualified-id,
830   // that function is called. Otherwise, its final overrider in the dynamic type
831   // of the object expression is called.
832   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
833     if (ME->hasQualifier())
834       return AnyFunctionCall::getRuntimeDefinition();
835 
836   return CXXInstanceCall::getRuntimeDefinition();
837 }
838 
839 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
840   return getOriginExpr()->getArg(0);
841 }
842 
843 const BlockDataRegion *BlockCall::getBlockRegion() const {
844   const Expr *Callee = getOriginExpr()->getCallee();
845   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
846 
847   return dyn_cast_or_null<BlockDataRegion>(DataReg);
848 }
849 
850 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
851   const BlockDecl *D = getDecl();
852   if (!D)
853     return None;
854   return D->parameters();
855 }
856 
857 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
858                   RegionAndSymbolInvalidationTraits *ETraits) const {
859   // FIXME: This also needs to invalidate captured globals.
860   if (const MemRegion *R = getBlockRegion())
861     Values.push_back(loc::MemRegionVal(R));
862 }
863 
864 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
865                                              BindingsTy &Bindings) const {
866   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
867   ArrayRef<ParmVarDecl*> Params;
868   if (isConversionFromLambda()) {
869     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
870     Params = LambdaOperatorDecl->parameters();
871 
872     // For blocks converted from a C++ lambda, the callee declaration is the
873     // operator() method on the lambda so we bind "this" to
874     // the lambda captured by the block.
875     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
876     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
877     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
878     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
879   } else {
880     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
881   }
882 
883   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
884                                Params);
885 }
886 
887 SVal CXXConstructorCall::getCXXThisVal() const {
888   if (Data)
889     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
890   return UnknownVal();
891 }
892 
893 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
894                            RegionAndSymbolInvalidationTraits *ETraits) const {
895   if (Data) {
896     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
897     if (SymbolRef Sym = MV.getAsSymbol(true))
898       ETraits->setTrait(Sym,
899                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
900     Values.push_back(MV);
901   }
902 }
903 
904 void CXXConstructorCall::getInitialStackFrameContents(
905                                              const StackFrameContext *CalleeCtx,
906                                              BindingsTy &Bindings) const {
907   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
908 
909   SVal ThisVal = getCXXThisVal();
910   if (!ThisVal.isUnknown()) {
911     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
912     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
913     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
914     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
915   }
916 }
917 
918 SVal CXXDestructorCall::getCXXThisVal() const {
919   if (Data)
920     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
921   return UnknownVal();
922 }
923 
924 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
925   // Base destructors are always called non-virtually.
926   // Skip CXXInstanceCall's devirtualization logic in this case.
927   if (isBaseDestructor())
928     return AnyFunctionCall::getRuntimeDefinition();
929 
930   return CXXInstanceCall::getRuntimeDefinition();
931 }
932 
933 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
934   const ObjCMethodDecl *D = getDecl();
935   if (!D)
936     return None;
937   return D->parameters();
938 }
939 
940 void ObjCMethodCall::getExtraInvalidatedValues(
941     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
942 
943   // If the method call is a setter for property known to be backed by
944   // an instance variable, don't invalidate the entire receiver, just
945   // the storage for that instance variable.
946   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
947     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
948       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
949       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
950         ETraits->setTrait(
951           IvarRegion,
952           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
953         ETraits->setTrait(
954           IvarRegion,
955           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
956         Values.push_back(IvarLVal);
957       }
958       return;
959     }
960   }
961 
962   Values.push_back(getReceiverSVal());
963 }
964 
965 SVal ObjCMethodCall::getSelfSVal() const {
966   const LocationContext *LCtx = getLocationContext();
967   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
968   if (!SelfDecl)
969     return SVal();
970   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
971 }
972 
973 SVal ObjCMethodCall::getReceiverSVal() const {
974   // FIXME: Is this the best way to handle class receivers?
975   if (!isInstanceMessage())
976     return UnknownVal();
977 
978   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
979     return getSVal(RecE);
980 
981   // An instance message with no expression means we are sending to super.
982   // In this case the object reference is the same as 'self'.
983   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
984   SVal SelfVal = getSelfSVal();
985   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
986   return SelfVal;
987 }
988 
989 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
990   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
991       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
992       return true;
993 
994   if (!isInstanceMessage())
995     return false;
996 
997   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
998 
999   return (RecVal == getSelfSVal());
1000 }
1001 
1002 SourceRange ObjCMethodCall::getSourceRange() const {
1003   switch (getMessageKind()) {
1004   case OCM_Message:
1005     return getOriginExpr()->getSourceRange();
1006   case OCM_PropertyAccess:
1007   case OCM_Subscript:
1008     return getContainingPseudoObjectExpr()->getSourceRange();
1009   }
1010   llvm_unreachable("unknown message kind");
1011 }
1012 
1013 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1014 
1015 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1016   assert(Data && "Lazy lookup not yet performed.");
1017   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1018   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1019 }
1020 
1021 static const Expr *
1022 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1023   const Expr *Syntactic = POE->getSyntacticForm();
1024 
1025   // This handles the funny case of assigning to the result of a getter.
1026   // This can happen if the getter returns a non-const reference.
1027   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1028     Syntactic = BO->getLHS();
1029 
1030   return Syntactic;
1031 }
1032 
1033 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1034   if (!Data) {
1035     // Find the parent, ignoring implicit casts.
1036     ParentMap &PM = getLocationContext()->getParentMap();
1037     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1038 
1039     // Check if parent is a PseudoObjectExpr.
1040     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1041       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1042 
1043       ObjCMessageKind K;
1044       switch (Syntactic->getStmtClass()) {
1045       case Stmt::ObjCPropertyRefExprClass:
1046         K = OCM_PropertyAccess;
1047         break;
1048       case Stmt::ObjCSubscriptRefExprClass:
1049         K = OCM_Subscript;
1050         break;
1051       default:
1052         // FIXME: Can this ever happen?
1053         K = OCM_Message;
1054         break;
1055       }
1056 
1057       if (K != OCM_Message) {
1058         const_cast<ObjCMethodCall *>(this)->Data
1059           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1060         assert(getMessageKind() == K);
1061         return K;
1062       }
1063     }
1064 
1065     const_cast<ObjCMethodCall *>(this)->Data
1066       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1067     assert(getMessageKind() == OCM_Message);
1068     return OCM_Message;
1069   }
1070 
1071   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1072   if (!Info.getPointer())
1073     return OCM_Message;
1074   return static_cast<ObjCMessageKind>(Info.getInt());
1075 }
1076 
1077 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1078   // Look for properties accessed with property syntax (foo.bar = ...)
1079   if ( getMessageKind() == OCM_PropertyAccess) {
1080     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1081     assert(POE && "Property access without PseudoObjectExpr?");
1082 
1083     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1084     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1085 
1086     if (RefExpr->isExplicitProperty())
1087       return RefExpr->getExplicitProperty();
1088   }
1089 
1090   // Look for properties accessed with method syntax ([foo setBar:...]).
1091   const ObjCMethodDecl *MD = getDecl();
1092   if (!MD || !MD->isPropertyAccessor())
1093     return nullptr;
1094 
1095   // Note: This is potentially quite slow.
1096   return MD->findPropertyDecl();
1097 }
1098 
1099 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1100                                              Selector Sel) const {
1101   assert(IDecl);
1102   AnalysisManager &AMgr =
1103       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1104   // If the class interface is declared inside the main file, assume it is not
1105   // subcassed.
1106   // TODO: It could actually be subclassed if the subclass is private as well.
1107   // This is probably very rare.
1108   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1109   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1110     return false;
1111 
1112   // Assume that property accessors are not overridden.
1113   if (getMessageKind() == OCM_PropertyAccess)
1114     return false;
1115 
1116   // We assume that if the method is public (declared outside of main file) or
1117   // has a parent which publicly declares the method, the method could be
1118   // overridden in a subclass.
1119 
1120   // Find the first declaration in the class hierarchy that declares
1121   // the selector.
1122   ObjCMethodDecl *D = nullptr;
1123   while (true) {
1124     D = IDecl->lookupMethod(Sel, true);
1125 
1126     // Cannot find a public definition.
1127     if (!D)
1128       return false;
1129 
1130     // If outside the main file,
1131     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1132       return true;
1133 
1134     if (D->isOverriding()) {
1135       // Search in the superclass on the next iteration.
1136       IDecl = D->getClassInterface();
1137       if (!IDecl)
1138         return false;
1139 
1140       IDecl = IDecl->getSuperClass();
1141       if (!IDecl)
1142         return false;
1143 
1144       continue;
1145     }
1146 
1147     return false;
1148   };
1149 
1150   llvm_unreachable("The while loop should always terminate.");
1151 }
1152 
1153 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1154   if (!MD)
1155     return MD;
1156 
1157   // Find the redeclaration that defines the method.
1158   if (!MD->hasBody()) {
1159     for (auto I : MD->redecls())
1160       if (I->hasBody())
1161         MD = cast<ObjCMethodDecl>(I);
1162   }
1163   return MD;
1164 }
1165 
1166 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1167   const Expr* InstRec = ME->getInstanceReceiver();
1168   if (!InstRec)
1169     return false;
1170   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1171 
1172   // Check that receiver is called 'self'.
1173   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1174       !InstRecIg->getFoundDecl()->getName().equals("self"))
1175     return false;
1176 
1177   // Check that the method name is 'class'.
1178   if (ME->getSelector().getNumArgs() != 0 ||
1179       !ME->getSelector().getNameForSlot(0).equals("class"))
1180     return false;
1181 
1182   return true;
1183 }
1184 
1185 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1186   const ObjCMessageExpr *E = getOriginExpr();
1187   assert(E);
1188   Selector Sel = E->getSelector();
1189 
1190   if (E->isInstanceMessage()) {
1191     // Find the receiver type.
1192     const ObjCObjectPointerType *ReceiverT = nullptr;
1193     bool CanBeSubClassed = false;
1194     QualType SupersType = E->getSuperType();
1195     const MemRegion *Receiver = nullptr;
1196 
1197     if (!SupersType.isNull()) {
1198       // The receiver is guaranteed to be 'super' in this case.
1199       // Super always means the type of immediate predecessor to the method
1200       // where the call occurs.
1201       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1202     } else {
1203       Receiver = getReceiverSVal().getAsRegion();
1204       if (!Receiver)
1205         return {};
1206 
1207       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1208       if (!DTI.isValid()) {
1209         assert(isa<AllocaRegion>(Receiver) &&
1210                "Unhandled untyped region class!");
1211         return {};
1212       }
1213 
1214       QualType DynType = DTI.getType();
1215       CanBeSubClassed = DTI.canBeASubClass();
1216       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1217 
1218       if (ReceiverT && CanBeSubClassed)
1219         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1220           if (!canBeOverridenInSubclass(IDecl, Sel))
1221             CanBeSubClassed = false;
1222     }
1223 
1224     // Handle special cases of '[self classMethod]' and
1225     // '[[self class] classMethod]', which are treated by the compiler as
1226     // instance (not class) messages. We will statically dispatch to those.
1227     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1228       // For [self classMethod], return the compiler visible declaration.
1229       if (PT->getObjectType()->isObjCClass() &&
1230           Receiver == getSelfSVal().getAsRegion())
1231         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1232 
1233       // Similarly, handle [[self class] classMethod].
1234       // TODO: We are currently doing a syntactic match for this pattern with is
1235       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1236       // shows. A better way would be to associate the meta type with the symbol
1237       // using the dynamic type info tracking and use it here. We can add a new
1238       // SVal for ObjC 'Class' values that know what interface declaration they
1239       // come from. Then 'self' in a class method would be filled in with
1240       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1241       // do proper dynamic dispatch for class methods just like we do for
1242       // instance methods now.
1243       if (E->getInstanceReceiver())
1244         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1245           if (isCallToSelfClass(M))
1246             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1247     }
1248 
1249     // Lookup the instance method implementation.
1250     if (ReceiverT)
1251       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1252         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1253         // when in many cases it returns null.  We cache the results so
1254         // that repeated queries on the same ObjCIntefaceDecl and Selector
1255         // don't incur the same cost.  On some test cases, we can see the
1256         // same query being issued thousands of times.
1257         //
1258         // NOTE: This cache is essentially a "global" variable, but it
1259         // only gets lazily created when we get here.  The value of the
1260         // cache probably comes from it being global across ExprEngines,
1261         // where the same queries may get issued.  If we are worried about
1262         // concurrency, or possibly loading/unloading ASTs, etc., we may
1263         // need to revisit this someday.  In terms of memory, this table
1264         // stays around until clang quits, which also may be bad if we
1265         // need to release memory.
1266         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1267         using PrivateMethodCache =
1268             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1269 
1270         static PrivateMethodCache PMC;
1271         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1272 
1273         // Query lookupPrivateMethod() if the cache does not hit.
1274         if (!Val.hasValue()) {
1275           Val = IDecl->lookupPrivateMethod(Sel);
1276 
1277           // If the method is a property accessor, we should try to "inline" it
1278           // even if we don't actually have an implementation.
1279           if (!*Val)
1280             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1281               if (CompileTimeMD->isPropertyAccessor()) {
1282                 if (!CompileTimeMD->getSelfDecl() &&
1283                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1284                   // If the method is an accessor in a category, and it doesn't
1285                   // have a self declaration, first
1286                   // try to find the method in a class extension. This
1287                   // works around a bug in Sema where multiple accessors
1288                   // are synthesized for properties in class
1289                   // extensions that are redeclared in a category and the
1290                   // the implicit parameters are not filled in for
1291                   // the method on the category.
1292                   // This ensures we find the accessor in the extension, which
1293                   // has the implicit parameters filled in.
1294                   auto *ID = CompileTimeMD->getClassInterface();
1295                   for (auto *CatDecl : ID->visible_extensions()) {
1296                     Val = CatDecl->getMethod(Sel,
1297                                              CompileTimeMD->isInstanceMethod());
1298                     if (*Val)
1299                       break;
1300                   }
1301                 }
1302                 if (!*Val)
1303                   Val = IDecl->lookupInstanceMethod(Sel);
1304               }
1305         }
1306 
1307         const ObjCMethodDecl *MD = Val.getValue();
1308         if (CanBeSubClassed)
1309           return RuntimeDefinition(MD, Receiver);
1310         else
1311           return RuntimeDefinition(MD, nullptr);
1312       }
1313   } else {
1314     // This is a class method.
1315     // If we have type info for the receiver class, we are calling via
1316     // class name.
1317     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1318       // Find/Return the method implementation.
1319       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1320     }
1321   }
1322 
1323   return {};
1324 }
1325 
1326 bool ObjCMethodCall::argumentsMayEscape() const {
1327   if (isInSystemHeader() && !isInstanceMessage()) {
1328     Selector Sel = getSelector();
1329     if (Sel.getNumArgs() == 1 &&
1330         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1331       return true;
1332   }
1333 
1334   return CallEvent::argumentsMayEscape();
1335 }
1336 
1337 void ObjCMethodCall::getInitialStackFrameContents(
1338                                              const StackFrameContext *CalleeCtx,
1339                                              BindingsTy &Bindings) const {
1340   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1341   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1342   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1343                                D->parameters());
1344 
1345   SVal SelfVal = getReceiverSVal();
1346   if (!SelfVal.isUnknown()) {
1347     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1348     MemRegionManager &MRMgr = SVB.getRegionManager();
1349     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1350     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1351   }
1352 }
1353 
1354 CallEventRef<>
1355 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1356                                 const LocationContext *LCtx) {
1357   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1358     return create<CXXMemberCall>(MCE, State, LCtx);
1359 
1360   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1361     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1362     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1363       if (MD->isInstance())
1364         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1365 
1366   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1367     return create<BlockCall>(CE, State, LCtx);
1368   }
1369 
1370   // Otherwise, it's a normal function call, static member function call, or
1371   // something we can't reason about.
1372   return create<SimpleFunctionCall>(CE, State, LCtx);
1373 }
1374 
1375 CallEventRef<>
1376 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1377                             ProgramStateRef State) {
1378   const LocationContext *ParentCtx = CalleeCtx->getParent();
1379   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1380   assert(CallerCtx && "This should not be used for top-level stack frames");
1381 
1382   const Stmt *CallSite = CalleeCtx->getCallSite();
1383 
1384   if (CallSite) {
1385     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1386       return Out;
1387 
1388     // All other cases are handled by getCall.
1389     assert(isa<CXXConstructExpr>(CallSite) &&
1390            "This is not an inlineable statement");
1391 
1392     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1393     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1394     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1395     SVal ThisVal = State->getSVal(ThisPtr);
1396 
1397     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1398                                  ThisVal.getAsRegion(), State, CallerCtx);
1399   }
1400 
1401   // Fall back to the CFG. The only thing we haven't handled yet is
1402   // destructors, though this could change in the future.
1403   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1404   CFGElement E = (*B)[CalleeCtx->getIndex()];
1405   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1406          "All other CFG elements should have exprs");
1407 
1408   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1409   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1410   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1411   SVal ThisVal = State->getSVal(ThisPtr);
1412 
1413   const Stmt *Trigger;
1414   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1415     Trigger = AutoDtor->getTriggerStmt();
1416   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1417     Trigger = DeleteDtor->getDeleteExpr();
1418   else
1419     Trigger = Dtor->getBody();
1420 
1421   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1422                               E.getAs<CFGBaseDtor>().hasValue(), State,
1423                               CallerCtx);
1424 }
1425 
1426 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1427                                          const LocationContext *LC) {
1428   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1429     return getSimpleCall(CE, State, LC);
1430   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1431     return getCXXAllocatorCall(NE, State, LC);
1432   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1433     return getObjCMethodCall(ME, State, LC);
1434   } else {
1435     return nullptr;
1436   }
1437 }
1438