1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines malloc/free checker, which checks for potential memory 10 // leaks, double free, and use-after-free problems. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::EndFunction, 165 check::PreCall, 166 check::PostStmt<CallExpr>, 167 check::PostStmt<CXXNewExpr>, 168 check::NewAllocator, 169 check::PreStmt<CXXDeleteExpr>, 170 check::PostStmt<BlockExpr>, 171 check::PostObjCMessage, 172 check::Location, 173 eval::Assume> 174 { 175 public: 176 MallocChecker() 177 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 178 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 179 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 180 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 181 II_kfree(nullptr), II_if_nameindex(nullptr), 182 II_if_freenameindex(nullptr), II_wcsdup(nullptr), 183 II_win_wcsdup(nullptr), II_g_malloc(nullptr), II_g_malloc0(nullptr), 184 II_g_realloc(nullptr), II_g_try_malloc(nullptr), 185 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 186 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 187 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 188 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 189 II_g_try_realloc_n(nullptr) {} 190 191 /// In pessimistic mode, the checker assumes that it does not know which 192 /// functions might free the memory. 193 enum CheckKind { 194 CK_MallocChecker, 195 CK_NewDeleteChecker, 196 CK_NewDeleteLeaksChecker, 197 CK_MismatchedDeallocatorChecker, 198 CK_InnerPointerChecker, 199 CK_NumCheckKinds 200 }; 201 202 enum class MemoryOperationKind { 203 MOK_Allocate, 204 MOK_Free, 205 MOK_Any 206 }; 207 208 DefaultBool IsOptimistic; 209 210 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 211 CheckName CheckNames[CK_NumCheckKinds]; 212 213 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 214 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 215 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 216 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 217 CheckerContext &C) const; 218 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 219 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 220 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 221 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 222 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 223 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 224 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 225 bool Assumption) const; 226 void checkLocation(SVal l, bool isLoad, const Stmt *S, 227 CheckerContext &C) const; 228 229 ProgramStateRef checkPointerEscape(ProgramStateRef State, 230 const InvalidatedSymbols &Escaped, 231 const CallEvent *Call, 232 PointerEscapeKind Kind) const; 233 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 234 const InvalidatedSymbols &Escaped, 235 const CallEvent *Call, 236 PointerEscapeKind Kind) const; 237 238 void printState(raw_ostream &Out, ProgramStateRef State, 239 const char *NL, const char *Sep) const override; 240 241 private: 242 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 243 mutable std::unique_ptr<BugType> BT_DoubleDelete; 244 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 245 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 247 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 248 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 249 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 250 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 251 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 252 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 253 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 254 *II_kfree, *II_if_nameindex, *II_if_freenameindex, 255 *II_wcsdup, *II_win_wcsdup, *II_g_malloc, 256 *II_g_malloc0, *II_g_realloc, *II_g_try_malloc, 257 *II_g_try_malloc0, *II_g_try_realloc, *II_g_free, 258 *II_g_memdup, *II_g_malloc_n, *II_g_malloc0_n, 259 *II_g_realloc_n, *II_g_try_malloc_n, 260 *II_g_try_malloc0_n, *II_g_try_realloc_n; 261 mutable Optional<uint64_t> KernelZeroFlagVal; 262 263 void initIdentifierInfo(ASTContext &C) const; 264 265 /// Determine family of a deallocation expression. 266 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 267 268 /// Print names of allocators and deallocators. 269 /// 270 /// \returns true on success. 271 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 272 const Expr *E) const; 273 274 /// Print expected name of an allocator based on the deallocator's 275 /// family derived from the DeallocExpr. 276 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 277 const Expr *DeallocExpr) const; 278 /// Print expected name of a deallocator based on the allocator's 279 /// family. 280 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 281 282 ///@{ 283 /// Check if this is one of the functions which can allocate/reallocate memory 284 /// pointed to by one of its arguments. 285 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 286 bool isCMemFunction(const FunctionDecl *FD, 287 ASTContext &C, 288 AllocationFamily Family, 289 MemoryOperationKind MemKind) const; 290 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 291 ///@} 292 293 /// Process C++ operator new()'s allocation, which is the part of C++ 294 /// new-expression that goes before the constructor. 295 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 296 SVal Target) const; 297 298 /// Perform a zero-allocation check. 299 /// The optional \p RetVal parameter specifies the newly allocated pointer 300 /// value; if unspecified, the value of expression \p E is used. 301 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 302 const unsigned AllocationSizeArg, 303 ProgramStateRef State, 304 Optional<SVal> RetVal = None) const; 305 306 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 307 const CallExpr *CE, 308 const OwnershipAttr* Att, 309 ProgramStateRef State) const; 310 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 311 const Expr *SizeEx, SVal Init, 312 ProgramStateRef State, 313 AllocationFamily Family = AF_Malloc); 314 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 315 SVal SizeEx, SVal Init, 316 ProgramStateRef State, 317 AllocationFamily Family = AF_Malloc); 318 319 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 320 ProgramStateRef State, SVal Target); 321 322 // Check if this malloc() for special flags. At present that means M_ZERO or 323 // __GFP_ZERO (in which case, treat it like calloc). 324 llvm::Optional<ProgramStateRef> 325 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 326 const ProgramStateRef &State) const; 327 328 /// Update the RefState to reflect the new memory allocation. 329 /// The optional \p RetVal parameter specifies the newly allocated pointer 330 /// value; if unspecified, the value of expression \p E is used. 331 static ProgramStateRef 332 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 333 AllocationFamily Family = AF_Malloc, 334 Optional<SVal> RetVal = None); 335 336 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 337 const OwnershipAttr* Att, 338 ProgramStateRef State) const; 339 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 340 ProgramStateRef state, unsigned Num, 341 bool Hold, 342 bool &ReleasedAllocated, 343 bool ReturnsNullOnFailure = false) const; 344 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 345 const Expr *ParentExpr, 346 ProgramStateRef State, 347 bool Hold, 348 bool &ReleasedAllocated, 349 bool ReturnsNullOnFailure = false) const; 350 351 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 352 bool FreesMemOnFailure, 353 ProgramStateRef State, 354 bool SuffixWithN = false) const; 355 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 356 const Expr *BlockBytes); 357 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 358 ProgramStateRef State); 359 360 /// Check if the memory associated with this symbol was released. 361 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 362 363 /// See if deallocation happens in a suspicious context. If so, escape the 364 /// pointers that otherwise would have been deallocated and return true. 365 bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, 366 CheckerContext &C) const; 367 368 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 369 370 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 371 const Stmt *S) const; 372 373 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 374 375 /// Check if the function is known free memory, or if it is 376 /// "interesting" and should be modeled explicitly. 377 /// 378 /// \param [out] EscapingSymbol A function might not free memory in general, 379 /// but could be known to free a particular symbol. In this case, false is 380 /// returned and the single escaping symbol is returned through the out 381 /// parameter. 382 /// 383 /// We assume that pointers do not escape through calls to system functions 384 /// not handled by this checker. 385 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 386 ProgramStateRef State, 387 SymbolRef &EscapingSymbol) const; 388 389 // Implementation of the checkPointerEscape callbacks. 390 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 391 const InvalidatedSymbols &Escaped, 392 const CallEvent *Call, 393 PointerEscapeKind Kind, 394 bool(*CheckRefState)(const RefState*)) const; 395 396 // Implementation of the checkPreStmt and checkEndFunction callbacks. 397 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 398 399 ///@{ 400 /// Tells if a given family/call/symbol is tracked by the current checker. 401 /// Sets CheckKind to the kind of the checker responsible for this 402 /// family/call/symbol. 403 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 404 bool IsALeakCheck = false) const; 405 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 406 const Stmt *AllocDeallocStmt, 407 bool IsALeakCheck = false) const; 408 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 409 bool IsALeakCheck = false) const; 410 ///@} 411 static bool SummarizeValue(raw_ostream &os, SVal V); 412 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 413 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 414 const Expr *DeallocExpr) const; 415 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 416 SourceRange Range) const; 417 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 418 const Expr *DeallocExpr, const RefState *RS, 419 SymbolRef Sym, bool OwnershipTransferred) const; 420 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 421 const Expr *DeallocExpr, 422 const Expr *AllocExpr = nullptr) const; 423 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 424 SymbolRef Sym) const; 425 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 426 SymbolRef Sym, SymbolRef PrevSym) const; 427 428 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 429 430 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 431 SymbolRef Sym) const; 432 433 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 434 SourceRange Range, const Expr *FreeExpr) const; 435 436 /// Find the location of the allocation for Sym on the path leading to the 437 /// exploded node N. 438 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 439 CheckerContext &C) const; 440 441 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 442 443 /// The bug visitor which allows us to print extra diagnostics along the 444 /// BugReport path. For example, showing the allocation site of the leaked 445 /// region. 446 class MallocBugVisitor final : public BugReporterVisitor { 447 protected: 448 enum NotificationMode { 449 Normal, 450 ReallocationFailed 451 }; 452 453 // The allocated region symbol tracked by the main analysis. 454 SymbolRef Sym; 455 456 // The mode we are in, i.e. what kind of diagnostics will be emitted. 457 NotificationMode Mode; 458 459 // A symbol from when the primary region should have been reallocated. 460 SymbolRef FailedReallocSymbol; 461 462 // A C++ destructor stack frame in which memory was released. Used for 463 // miscellaneous false positive suppression. 464 const StackFrameContext *ReleaseDestructorLC; 465 466 bool IsLeak; 467 468 public: 469 MallocBugVisitor(SymbolRef S, bool isLeak = false) 470 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 471 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 472 473 static void *getTag() { 474 static int Tag = 0; 475 return &Tag; 476 } 477 478 void Profile(llvm::FoldingSetNodeID &ID) const override { 479 ID.AddPointer(getTag()); 480 ID.AddPointer(Sym); 481 } 482 483 inline bool isAllocated(const RefState *S, const RefState *SPrev, 484 const Stmt *Stmt) { 485 // Did not track -> allocated. Other state (released) -> allocated. 486 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 487 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 488 (!SPrev || !(SPrev->isAllocated() || 489 SPrev->isAllocatedOfSizeZero()))); 490 } 491 492 inline bool isReleased(const RefState *S, const RefState *SPrev, 493 const Stmt *Stmt) { 494 // Did not track -> released. Other state (allocated) -> released. 495 // The statement associated with the release might be missing. 496 bool IsReleased = (S && S->isReleased()) && 497 (!SPrev || !SPrev->isReleased()); 498 assert(!IsReleased || 499 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 500 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 501 return IsReleased; 502 } 503 504 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 505 const Stmt *Stmt) { 506 // Did not track -> relinquished. Other state (allocated) -> relinquished. 507 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 508 isa<ObjCPropertyRefExpr>(Stmt)) && 509 (S && S->isRelinquished()) && 510 (!SPrev || !SPrev->isRelinquished())); 511 } 512 513 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 514 const Stmt *Stmt) { 515 // If the expression is not a call, and the state change is 516 // released -> allocated, it must be the realloc return value 517 // check. If we have to handle more cases here, it might be cleaner just 518 // to track this extra bit in the state itself. 519 return ((!Stmt || !isa<CallExpr>(Stmt)) && 520 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 521 (SPrev && !(SPrev->isAllocated() || 522 SPrev->isAllocatedOfSizeZero()))); 523 } 524 525 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 526 BugReporterContext &BRC, 527 BugReport &BR) override; 528 529 std::shared_ptr<PathDiagnosticPiece> 530 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 531 BugReport &BR) override { 532 if (!IsLeak) 533 return nullptr; 534 535 PathDiagnosticLocation L = 536 PathDiagnosticLocation::createEndOfPath(EndPathNode, 537 BRC.getSourceManager()); 538 // Do not add the statement itself as a range in case of leak. 539 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 540 false); 541 } 542 543 private: 544 class StackHintGeneratorForReallocationFailed 545 : public StackHintGeneratorForSymbol { 546 public: 547 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 548 : StackHintGeneratorForSymbol(S, M) {} 549 550 std::string getMessageForArg(const Expr *ArgE, 551 unsigned ArgIndex) override { 552 // Printed parameters start at 1, not 0. 553 ++ArgIndex; 554 555 SmallString<200> buf; 556 llvm::raw_svector_ostream os(buf); 557 558 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 559 << " parameter failed"; 560 561 return os.str(); 562 } 563 564 std::string getMessageForReturn(const CallExpr *CallExpr) override { 565 return "Reallocation of returned value failed"; 566 } 567 }; 568 }; 569 }; 570 } // end anonymous namespace 571 572 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 573 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 574 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 575 576 // A map from the freed symbol to the symbol representing the return value of 577 // the free function. 578 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 579 580 namespace { 581 class StopTrackingCallback final : public SymbolVisitor { 582 ProgramStateRef state; 583 public: 584 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 585 ProgramStateRef getState() const { return state; } 586 587 bool VisitSymbol(SymbolRef sym) override { 588 state = state->remove<RegionState>(sym); 589 return true; 590 } 591 }; 592 } // end anonymous namespace 593 594 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 595 if (II_malloc) 596 return; 597 II_alloca = &Ctx.Idents.get("alloca"); 598 II_malloc = &Ctx.Idents.get("malloc"); 599 II_free = &Ctx.Idents.get("free"); 600 II_realloc = &Ctx.Idents.get("realloc"); 601 II_reallocf = &Ctx.Idents.get("reallocf"); 602 II_calloc = &Ctx.Idents.get("calloc"); 603 II_valloc = &Ctx.Idents.get("valloc"); 604 II_strdup = &Ctx.Idents.get("strdup"); 605 II_strndup = &Ctx.Idents.get("strndup"); 606 II_wcsdup = &Ctx.Idents.get("wcsdup"); 607 II_kmalloc = &Ctx.Idents.get("kmalloc"); 608 II_kfree = &Ctx.Idents.get("kfree"); 609 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 610 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 611 612 //MSVC uses `_`-prefixed instead, so we check for them too. 613 II_win_strdup = &Ctx.Idents.get("_strdup"); 614 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 615 II_win_alloca = &Ctx.Idents.get("_alloca"); 616 617 // Glib 618 II_g_malloc = &Ctx.Idents.get("g_malloc"); 619 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 620 II_g_realloc = &Ctx.Idents.get("g_realloc"); 621 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 622 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 623 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 624 II_g_free = &Ctx.Idents.get("g_free"); 625 II_g_memdup = &Ctx.Idents.get("g_memdup"); 626 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 627 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 628 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 629 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 630 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 631 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 632 } 633 634 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 635 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 636 return true; 637 638 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 639 return true; 640 641 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 642 return true; 643 644 if (isStandardNewDelete(FD, C)) 645 return true; 646 647 return false; 648 } 649 650 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 651 ASTContext &C, 652 AllocationFamily Family, 653 MemoryOperationKind MemKind) const { 654 if (!FD) 655 return false; 656 657 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 658 MemKind == MemoryOperationKind::MOK_Free); 659 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 660 MemKind == MemoryOperationKind::MOK_Allocate); 661 662 if (FD->getKind() == Decl::Function) { 663 const IdentifierInfo *FunI = FD->getIdentifier(); 664 initIdentifierInfo(C); 665 666 if (Family == AF_Malloc && CheckFree) { 667 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 668 FunI == II_g_free || FunI == II_kfree) 669 return true; 670 } 671 672 if (Family == AF_Malloc && CheckAlloc) { 673 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 674 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 675 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 676 FunI == II_win_wcsdup || FunI == II_kmalloc || 677 FunI == II_g_malloc || FunI == II_g_malloc0 || 678 FunI == II_g_realloc || FunI == II_g_try_malloc || 679 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 680 FunI == II_g_memdup || FunI == II_g_malloc_n || 681 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 682 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 683 FunI == II_g_try_realloc_n) 684 return true; 685 } 686 687 if (Family == AF_IfNameIndex && CheckFree) { 688 if (FunI == II_if_freenameindex) 689 return true; 690 } 691 692 if (Family == AF_IfNameIndex && CheckAlloc) { 693 if (FunI == II_if_nameindex) 694 return true; 695 } 696 697 if (Family == AF_Alloca && CheckAlloc) { 698 if (FunI == II_alloca || FunI == II_win_alloca) 699 return true; 700 } 701 } 702 703 if (Family != AF_Malloc) 704 return false; 705 706 if (IsOptimistic && FD->hasAttrs()) { 707 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 708 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 709 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 710 if (CheckFree) 711 return true; 712 } else if (OwnKind == OwnershipAttr::Returns) { 713 if (CheckAlloc) 714 return true; 715 } 716 } 717 } 718 719 return false; 720 } 721 722 // Tells if the callee is one of the builtin new/delete operators, including 723 // placement operators and other standard overloads. 724 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 725 ASTContext &C) const { 726 if (!FD) 727 return false; 728 729 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 730 if (Kind != OO_New && Kind != OO_Array_New && 731 Kind != OO_Delete && Kind != OO_Array_Delete) 732 return false; 733 734 // This is standard if and only if it's not defined in a user file. 735 SourceLocation L = FD->getLocation(); 736 // If the header for operator delete is not included, it's still defined 737 // in an invalid source location. Check to make sure we don't crash. 738 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 739 } 740 741 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 742 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 743 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 744 // 745 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 746 // 747 // One of the possible flags is M_ZERO, which means 'give me back an 748 // allocation which is already zeroed', like calloc. 749 750 // 2-argument kmalloc(), as used in the Linux kernel: 751 // 752 // void *kmalloc(size_t size, gfp_t flags); 753 // 754 // Has the similar flag value __GFP_ZERO. 755 756 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 757 // code could be shared. 758 759 ASTContext &Ctx = C.getASTContext(); 760 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 761 762 if (!KernelZeroFlagVal.hasValue()) { 763 if (OS == llvm::Triple::FreeBSD) 764 KernelZeroFlagVal = 0x0100; 765 else if (OS == llvm::Triple::NetBSD) 766 KernelZeroFlagVal = 0x0002; 767 else if (OS == llvm::Triple::OpenBSD) 768 KernelZeroFlagVal = 0x0008; 769 else if (OS == llvm::Triple::Linux) 770 // __GFP_ZERO 771 KernelZeroFlagVal = 0x8000; 772 else 773 // FIXME: We need a more general way of getting the M_ZERO value. 774 // See also: O_CREAT in UnixAPIChecker.cpp. 775 776 // Fall back to normal malloc behavior on platforms where we don't 777 // know M_ZERO. 778 return None; 779 } 780 781 // We treat the last argument as the flags argument, and callers fall-back to 782 // normal malloc on a None return. This works for the FreeBSD kernel malloc 783 // as well as Linux kmalloc. 784 if (CE->getNumArgs() < 2) 785 return None; 786 787 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 788 const SVal V = C.getSVal(FlagsEx); 789 if (!V.getAs<NonLoc>()) { 790 // The case where 'V' can be a location can only be due to a bad header, 791 // so in this case bail out. 792 return None; 793 } 794 795 NonLoc Flags = V.castAs<NonLoc>(); 796 NonLoc ZeroFlag = C.getSValBuilder() 797 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 798 .castAs<NonLoc>(); 799 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 800 Flags, ZeroFlag, 801 FlagsEx->getType()); 802 if (MaskedFlagsUC.isUnknownOrUndef()) 803 return None; 804 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 805 806 // Check if maskedFlags is non-zero. 807 ProgramStateRef TrueState, FalseState; 808 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 809 810 // If M_ZERO is set, treat this like calloc (initialized). 811 if (TrueState && !FalseState) { 812 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 813 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 814 } 815 816 return None; 817 } 818 819 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 820 const Expr *BlockBytes) { 821 SValBuilder &SB = C.getSValBuilder(); 822 SVal BlocksVal = C.getSVal(Blocks); 823 SVal BlockBytesVal = C.getSVal(BlockBytes); 824 ProgramStateRef State = C.getState(); 825 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 826 SB.getContext().getSizeType()); 827 return TotalSize; 828 } 829 830 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 831 if (C.wasInlined) 832 return; 833 834 const FunctionDecl *FD = C.getCalleeDecl(CE); 835 if (!FD) 836 return; 837 838 ProgramStateRef State = C.getState(); 839 bool ReleasedAllocatedMemory = false; 840 841 if (FD->getKind() == Decl::Function) { 842 initIdentifierInfo(C.getASTContext()); 843 IdentifierInfo *FunI = FD->getIdentifier(); 844 845 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 846 if (CE->getNumArgs() < 1) 847 return; 848 if (CE->getNumArgs() < 3) { 849 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 850 if (CE->getNumArgs() == 1) 851 State = ProcessZeroAllocation(C, CE, 0, State); 852 } else if (CE->getNumArgs() == 3) { 853 llvm::Optional<ProgramStateRef> MaybeState = 854 performKernelMalloc(CE, C, State); 855 if (MaybeState.hasValue()) 856 State = MaybeState.getValue(); 857 else 858 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 859 } 860 } else if (FunI == II_kmalloc) { 861 if (CE->getNumArgs() < 1) 862 return; 863 llvm::Optional<ProgramStateRef> MaybeState = 864 performKernelMalloc(CE, C, State); 865 if (MaybeState.hasValue()) 866 State = MaybeState.getValue(); 867 else 868 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 869 } else if (FunI == II_valloc) { 870 if (CE->getNumArgs() < 1) 871 return; 872 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 873 State = ProcessZeroAllocation(C, CE, 0, State); 874 } else if (FunI == II_realloc || FunI == II_g_realloc || 875 FunI == II_g_try_realloc) { 876 State = ReallocMemAux(C, CE, false, State); 877 State = ProcessZeroAllocation(C, CE, 1, State); 878 } else if (FunI == II_reallocf) { 879 State = ReallocMemAux(C, CE, true, State); 880 State = ProcessZeroAllocation(C, CE, 1, State); 881 } else if (FunI == II_calloc) { 882 State = CallocMem(C, CE, State); 883 State = ProcessZeroAllocation(C, CE, 0, State); 884 State = ProcessZeroAllocation(C, CE, 1, State); 885 } else if (FunI == II_free || FunI == II_g_free || FunI == II_kfree) { 886 if (suppressDeallocationsInSuspiciousContexts(CE, C)) 887 return; 888 889 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 890 } else if (FunI == II_strdup || FunI == II_win_strdup || 891 FunI == II_wcsdup || FunI == II_win_wcsdup) { 892 State = MallocUpdateRefState(C, CE, State); 893 } else if (FunI == II_strndup) { 894 State = MallocUpdateRefState(C, CE, State); 895 } else if (FunI == II_alloca || FunI == II_win_alloca) { 896 if (CE->getNumArgs() < 1) 897 return; 898 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 899 AF_Alloca); 900 State = ProcessZeroAllocation(C, CE, 0, State); 901 } else if (isStandardNewDelete(FD, C.getASTContext())) { 902 // Process direct calls to operator new/new[]/delete/delete[] functions 903 // as distinct from new/new[]/delete/delete[] expressions that are 904 // processed by the checkPostStmt callbacks for CXXNewExpr and 905 // CXXDeleteExpr. 906 OverloadedOperatorKind K = FD->getOverloadedOperator(); 907 if (K == OO_New) { 908 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 909 AF_CXXNew); 910 State = ProcessZeroAllocation(C, CE, 0, State); 911 } 912 else if (K == OO_Array_New) { 913 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 914 AF_CXXNewArray); 915 State = ProcessZeroAllocation(C, CE, 0, State); 916 } 917 else if (K == OO_Delete || K == OO_Array_Delete) 918 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 919 else 920 llvm_unreachable("not a new/delete operator"); 921 } else if (FunI == II_if_nameindex) { 922 // Should we model this differently? We can allocate a fixed number of 923 // elements with zeros in the last one. 924 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 925 AF_IfNameIndex); 926 } else if (FunI == II_if_freenameindex) { 927 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 928 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 929 if (CE->getNumArgs() < 1) 930 return; 931 SValBuilder &svalBuilder = C.getSValBuilder(); 932 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 933 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 934 State = ProcessZeroAllocation(C, CE, 0, State); 935 } else if (FunI == II_g_memdup) { 936 if (CE->getNumArgs() < 2) 937 return; 938 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 939 State = ProcessZeroAllocation(C, CE, 1, State); 940 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 941 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 942 if (CE->getNumArgs() < 2) 943 return; 944 SVal Init = UndefinedVal(); 945 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 946 SValBuilder &SB = C.getSValBuilder(); 947 Init = SB.makeZeroVal(SB.getContext().CharTy); 948 } 949 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 950 State = MallocMemAux(C, CE, TotalSize, Init, State); 951 State = ProcessZeroAllocation(C, CE, 0, State); 952 State = ProcessZeroAllocation(C, CE, 1, State); 953 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 954 if (CE->getNumArgs() < 3) 955 return; 956 State = ReallocMemAux(C, CE, false, State, true); 957 State = ProcessZeroAllocation(C, CE, 1, State); 958 State = ProcessZeroAllocation(C, CE, 2, State); 959 } 960 } 961 962 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 963 // Check all the attributes, if there are any. 964 // There can be multiple of these attributes. 965 if (FD->hasAttrs()) 966 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 967 switch (I->getOwnKind()) { 968 case OwnershipAttr::Returns: 969 State = MallocMemReturnsAttr(C, CE, I, State); 970 break; 971 case OwnershipAttr::Takes: 972 case OwnershipAttr::Holds: 973 State = FreeMemAttr(C, CE, I, State); 974 break; 975 } 976 } 977 } 978 C.addTransition(State); 979 } 980 981 // Performs a 0-sized allocations check. 982 ProgramStateRef MallocChecker::ProcessZeroAllocation( 983 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 984 ProgramStateRef State, Optional<SVal> RetVal) const { 985 if (!State) 986 return nullptr; 987 988 if (!RetVal) 989 RetVal = C.getSVal(E); 990 991 const Expr *Arg = nullptr; 992 993 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 994 Arg = CE->getArg(AllocationSizeArg); 995 } 996 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 997 if (NE->isArray()) 998 Arg = *NE->getArraySize(); 999 else 1000 return State; 1001 } 1002 else 1003 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1004 1005 assert(Arg); 1006 1007 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1008 1009 if (!DefArgVal) 1010 return State; 1011 1012 // Check if the allocation size is 0. 1013 ProgramStateRef TrueState, FalseState; 1014 SValBuilder &SvalBuilder = C.getSValBuilder(); 1015 DefinedSVal Zero = 1016 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1017 1018 std::tie(TrueState, FalseState) = 1019 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1020 1021 if (TrueState && !FalseState) { 1022 SymbolRef Sym = RetVal->getAsLocSymbol(); 1023 if (!Sym) 1024 return State; 1025 1026 const RefState *RS = State->get<RegionState>(Sym); 1027 if (RS) { 1028 if (RS->isAllocated()) 1029 return TrueState->set<RegionState>(Sym, 1030 RefState::getAllocatedOfSizeZero(RS)); 1031 else 1032 return State; 1033 } else { 1034 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1035 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1036 // tracked. Add zero-reallocated Sym to the state to catch references 1037 // to zero-allocated memory. 1038 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1039 } 1040 } 1041 1042 // Assume the value is non-zero going forward. 1043 assert(FalseState); 1044 return FalseState; 1045 } 1046 1047 static QualType getDeepPointeeType(QualType T) { 1048 QualType Result = T, PointeeType = T->getPointeeType(); 1049 while (!PointeeType.isNull()) { 1050 Result = PointeeType; 1051 PointeeType = PointeeType->getPointeeType(); 1052 } 1053 return Result; 1054 } 1055 1056 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1057 1058 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1059 if (!ConstructE) 1060 return false; 1061 1062 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1063 return false; 1064 1065 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1066 1067 // Iterate over the constructor parameters. 1068 for (const auto *CtorParam : CtorD->parameters()) { 1069 1070 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1071 if (CtorParamPointeeT.isNull()) 1072 continue; 1073 1074 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1075 1076 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1077 return true; 1078 } 1079 1080 return false; 1081 } 1082 1083 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1084 CheckerContext &C, 1085 SVal Target) const { 1086 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1087 return; 1088 1089 ParentMap &PM = C.getLocationContext()->getParentMap(); 1090 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1091 return; 1092 1093 ProgramStateRef State = C.getState(); 1094 // The return value from operator new is bound to a specified initialization 1095 // value (if any) and we don't want to loose this value. So we call 1096 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1097 // existing binding. 1098 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1099 : AF_CXXNew, Target); 1100 State = addExtentSize(C, NE, State, Target); 1101 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1102 C.addTransition(State); 1103 } 1104 1105 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1106 CheckerContext &C) const { 1107 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1108 processNewAllocation(NE, C, C.getSVal(NE)); 1109 } 1110 1111 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1112 CheckerContext &C) const { 1113 if (!C.wasInlined) 1114 processNewAllocation(NE, C, Target); 1115 } 1116 1117 // Sets the extent value of the MemRegion allocated by 1118 // new expression NE to its size in Bytes. 1119 // 1120 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1121 const CXXNewExpr *NE, 1122 ProgramStateRef State, 1123 SVal Target) { 1124 if (!State) 1125 return nullptr; 1126 SValBuilder &svalBuilder = C.getSValBuilder(); 1127 SVal ElementCount; 1128 const SubRegion *Region; 1129 if (NE->isArray()) { 1130 const Expr *SizeExpr = *NE->getArraySize(); 1131 ElementCount = C.getSVal(SizeExpr); 1132 // Store the extent size for the (symbolic)region 1133 // containing the elements. 1134 Region = Target.getAsRegion() 1135 ->getAs<SubRegion>() 1136 ->StripCasts() 1137 ->getAs<SubRegion>(); 1138 } else { 1139 ElementCount = svalBuilder.makeIntVal(1, true); 1140 Region = Target.getAsRegion()->getAs<SubRegion>(); 1141 } 1142 assert(Region); 1143 1144 // Set the region's extent equal to the Size in Bytes. 1145 QualType ElementType = NE->getAllocatedType(); 1146 ASTContext &AstContext = C.getASTContext(); 1147 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1148 1149 if (ElementCount.getAs<NonLoc>()) { 1150 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1151 // size in Bytes = ElementCount*TypeSize 1152 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1153 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1154 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1155 svalBuilder.getArrayIndexType()); 1156 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1157 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1158 State = State->assume(extentMatchesSize, true); 1159 } 1160 return State; 1161 } 1162 1163 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1164 CheckerContext &C) const { 1165 1166 if (!ChecksEnabled[CK_NewDeleteChecker]) 1167 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1168 checkUseAfterFree(Sym, C, DE->getArgument()); 1169 1170 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1171 return; 1172 1173 ProgramStateRef State = C.getState(); 1174 bool ReleasedAllocated; 1175 State = FreeMemAux(C, DE->getArgument(), DE, State, 1176 /*Hold*/false, ReleasedAllocated); 1177 1178 C.addTransition(State); 1179 } 1180 1181 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1182 // If the first selector piece is one of the names below, assume that the 1183 // object takes ownership of the memory, promising to eventually deallocate it 1184 // with free(). 1185 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1186 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1187 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1188 return FirstSlot == "dataWithBytesNoCopy" || 1189 FirstSlot == "initWithBytesNoCopy" || 1190 FirstSlot == "initWithCharactersNoCopy"; 1191 } 1192 1193 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1194 Selector S = Call.getSelector(); 1195 1196 // FIXME: We should not rely on fully-constrained symbols being folded. 1197 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1198 if (S.getNameForSlot(i).equals("freeWhenDone")) 1199 return !Call.getArgSVal(i).isZeroConstant(); 1200 1201 return None; 1202 } 1203 1204 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1205 CheckerContext &C) const { 1206 if (C.wasInlined) 1207 return; 1208 1209 if (!isKnownDeallocObjCMethodName(Call)) 1210 return; 1211 1212 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1213 if (!*FreeWhenDone) 1214 return; 1215 1216 bool ReleasedAllocatedMemory; 1217 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1218 Call.getOriginExpr(), C.getState(), 1219 /*Hold=*/true, ReleasedAllocatedMemory, 1220 /*ReturnsNullOnFailure=*/true); 1221 1222 C.addTransition(State); 1223 } 1224 1225 ProgramStateRef 1226 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1227 const OwnershipAttr *Att, 1228 ProgramStateRef State) const { 1229 if (!State) 1230 return nullptr; 1231 1232 if (Att->getModule() != II_malloc) 1233 return nullptr; 1234 1235 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1236 if (I != E) { 1237 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1238 State); 1239 } 1240 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1241 } 1242 1243 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1244 const CallExpr *CE, 1245 const Expr *SizeEx, SVal Init, 1246 ProgramStateRef State, 1247 AllocationFamily Family) { 1248 if (!State) 1249 return nullptr; 1250 1251 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1252 } 1253 1254 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1255 const CallExpr *CE, 1256 SVal Size, SVal Init, 1257 ProgramStateRef State, 1258 AllocationFamily Family) { 1259 if (!State) 1260 return nullptr; 1261 1262 // We expect the malloc functions to return a pointer. 1263 if (!Loc::isLocType(CE->getType())) 1264 return nullptr; 1265 1266 // Bind the return value to the symbolic value from the heap region. 1267 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1268 // side effects other than what we model here. 1269 unsigned Count = C.blockCount(); 1270 SValBuilder &svalBuilder = C.getSValBuilder(); 1271 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1272 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1273 .castAs<DefinedSVal>(); 1274 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1275 1276 // Fill the region with the initialization value. 1277 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1278 1279 // Set the region's extent equal to the Size parameter. 1280 const SymbolicRegion *R = 1281 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1282 if (!R) 1283 return nullptr; 1284 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1285 Size.getAs<DefinedOrUnknownSVal>()) { 1286 SValBuilder &svalBuilder = C.getSValBuilder(); 1287 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1288 DefinedOrUnknownSVal extentMatchesSize = 1289 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1290 1291 State = State->assume(extentMatchesSize, true); 1292 assert(State); 1293 } 1294 1295 return MallocUpdateRefState(C, CE, State, Family); 1296 } 1297 1298 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1299 const Expr *E, 1300 ProgramStateRef State, 1301 AllocationFamily Family, 1302 Optional<SVal> RetVal) { 1303 if (!State) 1304 return nullptr; 1305 1306 // Get the return value. 1307 if (!RetVal) 1308 RetVal = C.getSVal(E); 1309 1310 // We expect the malloc functions to return a pointer. 1311 if (!RetVal->getAs<Loc>()) 1312 return nullptr; 1313 1314 SymbolRef Sym = RetVal->getAsLocSymbol(); 1315 // This is a return value of a function that was not inlined, such as malloc() 1316 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1317 assert(Sym); 1318 1319 // Set the symbol's state to Allocated. 1320 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1321 } 1322 1323 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1324 const CallExpr *CE, 1325 const OwnershipAttr *Att, 1326 ProgramStateRef State) const { 1327 if (!State) 1328 return nullptr; 1329 1330 if (Att->getModule() != II_malloc) 1331 return nullptr; 1332 1333 bool ReleasedAllocated = false; 1334 1335 for (const auto &Arg : Att->args()) { 1336 ProgramStateRef StateI = FreeMemAux( 1337 C, CE, State, Arg.getASTIndex(), 1338 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1339 if (StateI) 1340 State = StateI; 1341 } 1342 return State; 1343 } 1344 1345 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1346 const CallExpr *CE, 1347 ProgramStateRef State, 1348 unsigned Num, 1349 bool Hold, 1350 bool &ReleasedAllocated, 1351 bool ReturnsNullOnFailure) const { 1352 if (!State) 1353 return nullptr; 1354 1355 if (CE->getNumArgs() < (Num + 1)) 1356 return nullptr; 1357 1358 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1359 ReleasedAllocated, ReturnsNullOnFailure); 1360 } 1361 1362 /// Checks if the previous call to free on the given symbol failed - if free 1363 /// failed, returns true. Also, returns the corresponding return value symbol. 1364 static bool didPreviousFreeFail(ProgramStateRef State, 1365 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1366 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1367 if (Ret) { 1368 assert(*Ret && "We should not store the null return symbol"); 1369 ConstraintManager &CMgr = State->getConstraintManager(); 1370 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1371 RetStatusSymbol = *Ret; 1372 return FreeFailed.isConstrainedTrue(); 1373 } 1374 return false; 1375 } 1376 1377 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1378 const Stmt *S) const { 1379 if (!S) 1380 return AF_None; 1381 1382 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1383 const FunctionDecl *FD = C.getCalleeDecl(CE); 1384 1385 if (!FD) 1386 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1387 1388 ASTContext &Ctx = C.getASTContext(); 1389 1390 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1391 return AF_Malloc; 1392 1393 if (isStandardNewDelete(FD, Ctx)) { 1394 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1395 if (Kind == OO_New || Kind == OO_Delete) 1396 return AF_CXXNew; 1397 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1398 return AF_CXXNewArray; 1399 } 1400 1401 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1402 return AF_IfNameIndex; 1403 1404 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1405 return AF_Alloca; 1406 1407 return AF_None; 1408 } 1409 1410 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1411 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1412 1413 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1414 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1415 1416 if (isa<ObjCMessageExpr>(S)) 1417 return AF_Malloc; 1418 1419 return AF_None; 1420 } 1421 1422 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1423 const Expr *E) const { 1424 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1425 // FIXME: This doesn't handle indirect calls. 1426 const FunctionDecl *FD = CE->getDirectCallee(); 1427 if (!FD) 1428 return false; 1429 1430 os << *FD; 1431 if (!FD->isOverloadedOperator()) 1432 os << "()"; 1433 return true; 1434 } 1435 1436 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1437 if (Msg->isInstanceMessage()) 1438 os << "-"; 1439 else 1440 os << "+"; 1441 Msg->getSelector().print(os); 1442 return true; 1443 } 1444 1445 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1446 os << "'" 1447 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1448 << "'"; 1449 return true; 1450 } 1451 1452 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1453 os << "'" 1454 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1455 << "'"; 1456 return true; 1457 } 1458 1459 return false; 1460 } 1461 1462 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1463 const Expr *E) const { 1464 AllocationFamily Family = getAllocationFamily(C, E); 1465 1466 switch(Family) { 1467 case AF_Malloc: os << "malloc()"; return; 1468 case AF_CXXNew: os << "'new'"; return; 1469 case AF_CXXNewArray: os << "'new[]'"; return; 1470 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1471 case AF_InnerBuffer: os << "container-specific allocator"; return; 1472 case AF_Alloca: 1473 case AF_None: llvm_unreachable("not a deallocation expression"); 1474 } 1475 } 1476 1477 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1478 AllocationFamily Family) const { 1479 switch(Family) { 1480 case AF_Malloc: os << "free()"; return; 1481 case AF_CXXNew: os << "'delete'"; return; 1482 case AF_CXXNewArray: os << "'delete[]'"; return; 1483 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1484 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1485 case AF_Alloca: 1486 case AF_None: llvm_unreachable("suspicious argument"); 1487 } 1488 } 1489 1490 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1491 const Expr *ArgExpr, 1492 const Expr *ParentExpr, 1493 ProgramStateRef State, 1494 bool Hold, 1495 bool &ReleasedAllocated, 1496 bool ReturnsNullOnFailure) const { 1497 1498 if (!State) 1499 return nullptr; 1500 1501 SVal ArgVal = C.getSVal(ArgExpr); 1502 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1503 return nullptr; 1504 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1505 1506 // Check for null dereferences. 1507 if (!location.getAs<Loc>()) 1508 return nullptr; 1509 1510 // The explicit NULL case, no operation is performed. 1511 ProgramStateRef notNullState, nullState; 1512 std::tie(notNullState, nullState) = State->assume(location); 1513 if (nullState && !notNullState) 1514 return nullptr; 1515 1516 // Unknown values could easily be okay 1517 // Undefined values are handled elsewhere 1518 if (ArgVal.isUnknownOrUndef()) 1519 return nullptr; 1520 1521 const MemRegion *R = ArgVal.getAsRegion(); 1522 1523 // Nonlocs can't be freed, of course. 1524 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1525 if (!R) { 1526 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1527 return nullptr; 1528 } 1529 1530 R = R->StripCasts(); 1531 1532 // Blocks might show up as heap data, but should not be free()d 1533 if (isa<BlockDataRegion>(R)) { 1534 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1535 return nullptr; 1536 } 1537 1538 const MemSpaceRegion *MS = R->getMemorySpace(); 1539 1540 // Parameters, locals, statics, globals, and memory returned by 1541 // __builtin_alloca() shouldn't be freed. 1542 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1543 // FIXME: at the time this code was written, malloc() regions were 1544 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1545 // This means that there isn't actually anything from HeapSpaceRegion 1546 // that should be freed, even though we allow it here. 1547 // Of course, free() can work on memory allocated outside the current 1548 // function, so UnknownSpaceRegion is always a possibility. 1549 // False negatives are better than false positives. 1550 1551 if (isa<AllocaRegion>(R)) 1552 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1553 else 1554 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1555 1556 return nullptr; 1557 } 1558 1559 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1560 // Various cases could lead to non-symbol values here. 1561 // For now, ignore them. 1562 if (!SrBase) 1563 return nullptr; 1564 1565 SymbolRef SymBase = SrBase->getSymbol(); 1566 const RefState *RsBase = State->get<RegionState>(SymBase); 1567 SymbolRef PreviousRetStatusSymbol = nullptr; 1568 1569 if (RsBase) { 1570 1571 // Memory returned by alloca() shouldn't be freed. 1572 if (RsBase->getAllocationFamily() == AF_Alloca) { 1573 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1574 return nullptr; 1575 } 1576 1577 // Check for double free first. 1578 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1579 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1580 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1581 SymBase, PreviousRetStatusSymbol); 1582 return nullptr; 1583 1584 // If the pointer is allocated or escaped, but we are now trying to free it, 1585 // check that the call to free is proper. 1586 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1587 RsBase->isEscaped()) { 1588 1589 // Check if an expected deallocation function matches the real one. 1590 bool DeallocMatchesAlloc = 1591 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1592 if (!DeallocMatchesAlloc) { 1593 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1594 ParentExpr, RsBase, SymBase, Hold); 1595 return nullptr; 1596 } 1597 1598 // Check if the memory location being freed is the actual location 1599 // allocated, or an offset. 1600 RegionOffset Offset = R->getAsOffset(); 1601 if (Offset.isValid() && 1602 !Offset.hasSymbolicOffset() && 1603 Offset.getOffset() != 0) { 1604 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1605 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1606 AllocExpr); 1607 return nullptr; 1608 } 1609 } 1610 } 1611 1612 if (SymBase->getType()->isFunctionPointerType()) { 1613 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1614 return nullptr; 1615 } 1616 1617 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1618 RsBase->isAllocatedOfSizeZero()); 1619 1620 // Clean out the info on previous call to free return info. 1621 State = State->remove<FreeReturnValue>(SymBase); 1622 1623 // Keep track of the return value. If it is NULL, we will know that free 1624 // failed. 1625 if (ReturnsNullOnFailure) { 1626 SVal RetVal = C.getSVal(ParentExpr); 1627 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1628 if (RetStatusSymbol) { 1629 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1630 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1631 } 1632 } 1633 1634 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1635 : getAllocationFamily(C, ParentExpr); 1636 // Normal free. 1637 if (Hold) 1638 return State->set<RegionState>(SymBase, 1639 RefState::getRelinquished(Family, 1640 ParentExpr)); 1641 1642 return State->set<RegionState>(SymBase, 1643 RefState::getReleased(Family, ParentExpr)); 1644 } 1645 1646 Optional<MallocChecker::CheckKind> 1647 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1648 bool IsALeakCheck) const { 1649 switch (Family) { 1650 case AF_Malloc: 1651 case AF_Alloca: 1652 case AF_IfNameIndex: { 1653 if (ChecksEnabled[CK_MallocChecker]) 1654 return CK_MallocChecker; 1655 return None; 1656 } 1657 case AF_CXXNew: 1658 case AF_CXXNewArray: { 1659 if (IsALeakCheck) { 1660 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1661 return CK_NewDeleteLeaksChecker; 1662 } 1663 else { 1664 if (ChecksEnabled[CK_NewDeleteChecker]) 1665 return CK_NewDeleteChecker; 1666 } 1667 return None; 1668 } 1669 case AF_InnerBuffer: { 1670 if (ChecksEnabled[CK_InnerPointerChecker]) 1671 return CK_InnerPointerChecker; 1672 return None; 1673 } 1674 case AF_None: { 1675 llvm_unreachable("no family"); 1676 } 1677 } 1678 llvm_unreachable("unhandled family"); 1679 } 1680 1681 Optional<MallocChecker::CheckKind> 1682 MallocChecker::getCheckIfTracked(CheckerContext &C, 1683 const Stmt *AllocDeallocStmt, 1684 bool IsALeakCheck) const { 1685 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1686 IsALeakCheck); 1687 } 1688 1689 Optional<MallocChecker::CheckKind> 1690 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1691 bool IsALeakCheck) const { 1692 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1693 return CK_MallocChecker; 1694 1695 const RefState *RS = C.getState()->get<RegionState>(Sym); 1696 assert(RS); 1697 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1698 } 1699 1700 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1701 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1702 os << "an integer (" << IntVal->getValue() << ")"; 1703 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1704 os << "a constant address (" << ConstAddr->getValue() << ")"; 1705 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1706 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1707 else 1708 return false; 1709 1710 return true; 1711 } 1712 1713 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1714 const MemRegion *MR) { 1715 switch (MR->getKind()) { 1716 case MemRegion::FunctionCodeRegionKind: { 1717 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1718 if (FD) 1719 os << "the address of the function '" << *FD << '\''; 1720 else 1721 os << "the address of a function"; 1722 return true; 1723 } 1724 case MemRegion::BlockCodeRegionKind: 1725 os << "block text"; 1726 return true; 1727 case MemRegion::BlockDataRegionKind: 1728 // FIXME: where the block came from? 1729 os << "a block"; 1730 return true; 1731 default: { 1732 const MemSpaceRegion *MS = MR->getMemorySpace(); 1733 1734 if (isa<StackLocalsSpaceRegion>(MS)) { 1735 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1736 const VarDecl *VD; 1737 if (VR) 1738 VD = VR->getDecl(); 1739 else 1740 VD = nullptr; 1741 1742 if (VD) 1743 os << "the address of the local variable '" << VD->getName() << "'"; 1744 else 1745 os << "the address of a local stack variable"; 1746 return true; 1747 } 1748 1749 if (isa<StackArgumentsSpaceRegion>(MS)) { 1750 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1751 const VarDecl *VD; 1752 if (VR) 1753 VD = VR->getDecl(); 1754 else 1755 VD = nullptr; 1756 1757 if (VD) 1758 os << "the address of the parameter '" << VD->getName() << "'"; 1759 else 1760 os << "the address of a parameter"; 1761 return true; 1762 } 1763 1764 if (isa<GlobalsSpaceRegion>(MS)) { 1765 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1766 const VarDecl *VD; 1767 if (VR) 1768 VD = VR->getDecl(); 1769 else 1770 VD = nullptr; 1771 1772 if (VD) { 1773 if (VD->isStaticLocal()) 1774 os << "the address of the static variable '" << VD->getName() << "'"; 1775 else 1776 os << "the address of the global variable '" << VD->getName() << "'"; 1777 } else 1778 os << "the address of a global variable"; 1779 return true; 1780 } 1781 1782 return false; 1783 } 1784 } 1785 } 1786 1787 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1788 SourceRange Range, 1789 const Expr *DeallocExpr) const { 1790 1791 if (!ChecksEnabled[CK_MallocChecker] && 1792 !ChecksEnabled[CK_NewDeleteChecker]) 1793 return; 1794 1795 Optional<MallocChecker::CheckKind> CheckKind = 1796 getCheckIfTracked(C, DeallocExpr); 1797 if (!CheckKind.hasValue()) 1798 return; 1799 1800 if (ExplodedNode *N = C.generateErrorNode()) { 1801 if (!BT_BadFree[*CheckKind]) 1802 BT_BadFree[*CheckKind].reset(new BugType( 1803 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1804 1805 SmallString<100> buf; 1806 llvm::raw_svector_ostream os(buf); 1807 1808 const MemRegion *MR = ArgVal.getAsRegion(); 1809 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1810 MR = ER->getSuperRegion(); 1811 1812 os << "Argument to "; 1813 if (!printAllocDeallocName(os, C, DeallocExpr)) 1814 os << "deallocator"; 1815 1816 os << " is "; 1817 bool Summarized = MR ? SummarizeRegion(os, MR) 1818 : SummarizeValue(os, ArgVal); 1819 if (Summarized) 1820 os << ", which is not memory allocated by "; 1821 else 1822 os << "not memory allocated by "; 1823 1824 printExpectedAllocName(os, C, DeallocExpr); 1825 1826 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1827 R->markInteresting(MR); 1828 R->addRange(Range); 1829 C.emitReport(std::move(R)); 1830 } 1831 } 1832 1833 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1834 SourceRange Range) const { 1835 1836 Optional<MallocChecker::CheckKind> CheckKind; 1837 1838 if (ChecksEnabled[CK_MallocChecker]) 1839 CheckKind = CK_MallocChecker; 1840 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1841 CheckKind = CK_MismatchedDeallocatorChecker; 1842 else 1843 return; 1844 1845 if (ExplodedNode *N = C.generateErrorNode()) { 1846 if (!BT_FreeAlloca[*CheckKind]) 1847 BT_FreeAlloca[*CheckKind].reset(new BugType( 1848 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1849 1850 auto R = llvm::make_unique<BugReport>( 1851 *BT_FreeAlloca[*CheckKind], 1852 "Memory allocated by alloca() should not be deallocated", N); 1853 R->markInteresting(ArgVal.getAsRegion()); 1854 R->addRange(Range); 1855 C.emitReport(std::move(R)); 1856 } 1857 } 1858 1859 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1860 SourceRange Range, 1861 const Expr *DeallocExpr, 1862 const RefState *RS, 1863 SymbolRef Sym, 1864 bool OwnershipTransferred) const { 1865 1866 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1867 return; 1868 1869 if (ExplodedNode *N = C.generateErrorNode()) { 1870 if (!BT_MismatchedDealloc) 1871 BT_MismatchedDealloc.reset( 1872 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1873 "Bad deallocator", categories::MemoryError)); 1874 1875 SmallString<100> buf; 1876 llvm::raw_svector_ostream os(buf); 1877 1878 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1879 SmallString<20> AllocBuf; 1880 llvm::raw_svector_ostream AllocOs(AllocBuf); 1881 SmallString<20> DeallocBuf; 1882 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1883 1884 if (OwnershipTransferred) { 1885 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1886 os << DeallocOs.str() << " cannot"; 1887 else 1888 os << "Cannot"; 1889 1890 os << " take ownership of memory"; 1891 1892 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1893 os << " allocated by " << AllocOs.str(); 1894 } else { 1895 os << "Memory"; 1896 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1897 os << " allocated by " << AllocOs.str(); 1898 1899 os << " should be deallocated by "; 1900 printExpectedDeallocName(os, RS->getAllocationFamily()); 1901 1902 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1903 os << ", not " << DeallocOs.str(); 1904 } 1905 1906 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1907 R->markInteresting(Sym); 1908 R->addRange(Range); 1909 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1910 C.emitReport(std::move(R)); 1911 } 1912 } 1913 1914 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1915 SourceRange Range, const Expr *DeallocExpr, 1916 const Expr *AllocExpr) const { 1917 1918 1919 if (!ChecksEnabled[CK_MallocChecker] && 1920 !ChecksEnabled[CK_NewDeleteChecker]) 1921 return; 1922 1923 Optional<MallocChecker::CheckKind> CheckKind = 1924 getCheckIfTracked(C, AllocExpr); 1925 if (!CheckKind.hasValue()) 1926 return; 1927 1928 ExplodedNode *N = C.generateErrorNode(); 1929 if (!N) 1930 return; 1931 1932 if (!BT_OffsetFree[*CheckKind]) 1933 BT_OffsetFree[*CheckKind].reset(new BugType( 1934 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1935 1936 SmallString<100> buf; 1937 llvm::raw_svector_ostream os(buf); 1938 SmallString<20> AllocNameBuf; 1939 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1940 1941 const MemRegion *MR = ArgVal.getAsRegion(); 1942 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1943 1944 RegionOffset Offset = MR->getAsOffset(); 1945 assert((Offset.isValid() && 1946 !Offset.hasSymbolicOffset() && 1947 Offset.getOffset() != 0) && 1948 "Only symbols with a valid offset can have offset free errors"); 1949 1950 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1951 1952 os << "Argument to "; 1953 if (!printAllocDeallocName(os, C, DeallocExpr)) 1954 os << "deallocator"; 1955 os << " is offset by " 1956 << offsetBytes 1957 << " " 1958 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1959 << " from the start of "; 1960 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1961 os << "memory allocated by " << AllocNameOs.str(); 1962 else 1963 os << "allocated memory"; 1964 1965 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1966 R->markInteresting(MR->getBaseRegion()); 1967 R->addRange(Range); 1968 C.emitReport(std::move(R)); 1969 } 1970 1971 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1972 SymbolRef Sym) const { 1973 1974 if (!ChecksEnabled[CK_MallocChecker] && 1975 !ChecksEnabled[CK_NewDeleteChecker] && 1976 !ChecksEnabled[CK_InnerPointerChecker]) 1977 return; 1978 1979 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1980 if (!CheckKind.hasValue()) 1981 return; 1982 1983 if (ExplodedNode *N = C.generateErrorNode()) { 1984 if (!BT_UseFree[*CheckKind]) 1985 BT_UseFree[*CheckKind].reset(new BugType( 1986 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1987 1988 AllocationFamily AF = 1989 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 1990 1991 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1992 AF == AF_InnerBuffer 1993 ? "Inner pointer of container used after re/deallocation" 1994 : "Use of memory after it is freed", 1995 N); 1996 1997 R->markInteresting(Sym); 1998 R->addRange(Range); 1999 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2000 2001 if (AF == AF_InnerBuffer) 2002 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2003 2004 C.emitReport(std::move(R)); 2005 } 2006 } 2007 2008 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2009 bool Released, SymbolRef Sym, 2010 SymbolRef PrevSym) const { 2011 2012 if (!ChecksEnabled[CK_MallocChecker] && 2013 !ChecksEnabled[CK_NewDeleteChecker]) 2014 return; 2015 2016 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2017 if (!CheckKind.hasValue()) 2018 return; 2019 2020 if (ExplodedNode *N = C.generateErrorNode()) { 2021 if (!BT_DoubleFree[*CheckKind]) 2022 BT_DoubleFree[*CheckKind].reset(new BugType( 2023 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2024 2025 auto R = llvm::make_unique<BugReport>( 2026 *BT_DoubleFree[*CheckKind], 2027 (Released ? "Attempt to free released memory" 2028 : "Attempt to free non-owned memory"), 2029 N); 2030 R->addRange(Range); 2031 R->markInteresting(Sym); 2032 if (PrevSym) 2033 R->markInteresting(PrevSym); 2034 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2035 C.emitReport(std::move(R)); 2036 } 2037 } 2038 2039 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2040 2041 if (!ChecksEnabled[CK_NewDeleteChecker]) 2042 return; 2043 2044 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2045 if (!CheckKind.hasValue()) 2046 return; 2047 2048 if (ExplodedNode *N = C.generateErrorNode()) { 2049 if (!BT_DoubleDelete) 2050 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2051 "Double delete", 2052 categories::MemoryError)); 2053 2054 auto R = llvm::make_unique<BugReport>( 2055 *BT_DoubleDelete, "Attempt to delete released memory", N); 2056 2057 R->markInteresting(Sym); 2058 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2059 C.emitReport(std::move(R)); 2060 } 2061 } 2062 2063 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2064 SourceRange Range, 2065 SymbolRef Sym) const { 2066 2067 if (!ChecksEnabled[CK_MallocChecker] && 2068 !ChecksEnabled[CK_NewDeleteChecker]) 2069 return; 2070 2071 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2072 2073 if (!CheckKind.hasValue()) 2074 return; 2075 2076 if (ExplodedNode *N = C.generateErrorNode()) { 2077 if (!BT_UseZerroAllocated[*CheckKind]) 2078 BT_UseZerroAllocated[*CheckKind].reset( 2079 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2080 categories::MemoryError)); 2081 2082 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2083 "Use of zero-allocated memory", N); 2084 2085 R->addRange(Range); 2086 if (Sym) { 2087 R->markInteresting(Sym); 2088 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2089 } 2090 C.emitReport(std::move(R)); 2091 } 2092 } 2093 2094 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2095 SourceRange Range, 2096 const Expr *FreeExpr) const { 2097 if (!ChecksEnabled[CK_MallocChecker]) 2098 return; 2099 2100 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2101 if (!CheckKind.hasValue()) 2102 return; 2103 2104 if (ExplodedNode *N = C.generateErrorNode()) { 2105 if (!BT_BadFree[*CheckKind]) 2106 BT_BadFree[*CheckKind].reset(new BugType( 2107 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2108 2109 SmallString<100> Buf; 2110 llvm::raw_svector_ostream Os(Buf); 2111 2112 const MemRegion *MR = ArgVal.getAsRegion(); 2113 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2114 MR = ER->getSuperRegion(); 2115 2116 Os << "Argument to "; 2117 if (!printAllocDeallocName(Os, C, FreeExpr)) 2118 Os << "deallocator"; 2119 2120 Os << " is a function pointer"; 2121 2122 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2123 R->markInteresting(MR); 2124 R->addRange(Range); 2125 C.emitReport(std::move(R)); 2126 } 2127 } 2128 2129 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2130 const CallExpr *CE, 2131 bool FreesOnFail, 2132 ProgramStateRef State, 2133 bool SuffixWithN) const { 2134 if (!State) 2135 return nullptr; 2136 2137 if (SuffixWithN && CE->getNumArgs() < 3) 2138 return nullptr; 2139 else if (CE->getNumArgs() < 2) 2140 return nullptr; 2141 2142 const Expr *arg0Expr = CE->getArg(0); 2143 SVal Arg0Val = C.getSVal(arg0Expr); 2144 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2145 return nullptr; 2146 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2147 2148 SValBuilder &svalBuilder = C.getSValBuilder(); 2149 2150 DefinedOrUnknownSVal PtrEQ = 2151 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2152 2153 // Get the size argument. 2154 const Expr *Arg1 = CE->getArg(1); 2155 2156 // Get the value of the size argument. 2157 SVal TotalSize = C.getSVal(Arg1); 2158 if (SuffixWithN) 2159 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2160 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2161 return nullptr; 2162 2163 // Compare the size argument to 0. 2164 DefinedOrUnknownSVal SizeZero = 2165 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2166 svalBuilder.makeIntValWithPtrWidth(0, false)); 2167 2168 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2169 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2170 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2171 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2172 // We only assume exceptional states if they are definitely true; if the 2173 // state is under-constrained, assume regular realloc behavior. 2174 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2175 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2176 2177 // If the ptr is NULL and the size is not 0, the call is equivalent to 2178 // malloc(size). 2179 if (PrtIsNull && !SizeIsZero) { 2180 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2181 UndefinedVal(), StatePtrIsNull); 2182 return stateMalloc; 2183 } 2184 2185 if (PrtIsNull && SizeIsZero) 2186 return State; 2187 2188 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2189 assert(!PrtIsNull); 2190 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2191 SVal RetVal = C.getSVal(CE); 2192 SymbolRef ToPtr = RetVal.getAsSymbol(); 2193 if (!FromPtr || !ToPtr) 2194 return nullptr; 2195 2196 bool ReleasedAllocated = false; 2197 2198 // If the size is 0, free the memory. 2199 if (SizeIsZero) 2200 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2201 false, ReleasedAllocated)){ 2202 // The semantics of the return value are: 2203 // If size was equal to 0, either NULL or a pointer suitable to be passed 2204 // to free() is returned. We just free the input pointer and do not add 2205 // any constrains on the output pointer. 2206 return stateFree; 2207 } 2208 2209 // Default behavior. 2210 if (ProgramStateRef stateFree = 2211 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2212 2213 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2214 UnknownVal(), stateFree); 2215 if (!stateRealloc) 2216 return nullptr; 2217 2218 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2219 if (FreesOnFail) 2220 Kind = RPIsFreeOnFailure; 2221 else if (!ReleasedAllocated) 2222 Kind = RPDoNotTrackAfterFailure; 2223 2224 // Record the info about the reallocated symbol so that we could properly 2225 // process failed reallocation. 2226 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2227 ReallocPair(FromPtr, Kind)); 2228 // The reallocated symbol should stay alive for as long as the new symbol. 2229 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2230 return stateRealloc; 2231 } 2232 return nullptr; 2233 } 2234 2235 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2236 ProgramStateRef State) { 2237 if (!State) 2238 return nullptr; 2239 2240 if (CE->getNumArgs() < 2) 2241 return nullptr; 2242 2243 SValBuilder &svalBuilder = C.getSValBuilder(); 2244 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2245 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2246 2247 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2248 } 2249 2250 LeakInfo 2251 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2252 CheckerContext &C) const { 2253 const LocationContext *LeakContext = N->getLocationContext(); 2254 // Walk the ExplodedGraph backwards and find the first node that referred to 2255 // the tracked symbol. 2256 const ExplodedNode *AllocNode = N; 2257 const MemRegion *ReferenceRegion = nullptr; 2258 2259 while (N) { 2260 ProgramStateRef State = N->getState(); 2261 if (!State->get<RegionState>(Sym)) 2262 break; 2263 2264 // Find the most recent expression bound to the symbol in the current 2265 // context. 2266 if (!ReferenceRegion) { 2267 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2268 SVal Val = State->getSVal(MR); 2269 if (Val.getAsLocSymbol() == Sym) { 2270 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2271 // Do not show local variables belonging to a function other than 2272 // where the error is reported. 2273 if (!VR || 2274 (VR->getStackFrame() == LeakContext->getStackFrame())) 2275 ReferenceRegion = MR; 2276 } 2277 } 2278 } 2279 2280 // Allocation node, is the last node in the current or parent context in 2281 // which the symbol was tracked. 2282 const LocationContext *NContext = N->getLocationContext(); 2283 if (NContext == LeakContext || 2284 NContext->isParentOf(LeakContext)) 2285 AllocNode = N; 2286 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2287 } 2288 2289 return LeakInfo(AllocNode, ReferenceRegion); 2290 } 2291 2292 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2293 CheckerContext &C) const { 2294 2295 if (!ChecksEnabled[CK_MallocChecker] && 2296 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2297 return; 2298 2299 const RefState *RS = C.getState()->get<RegionState>(Sym); 2300 assert(RS && "cannot leak an untracked symbol"); 2301 AllocationFamily Family = RS->getAllocationFamily(); 2302 2303 if (Family == AF_Alloca) 2304 return; 2305 2306 Optional<MallocChecker::CheckKind> 2307 CheckKind = getCheckIfTracked(Family, true); 2308 2309 if (!CheckKind.hasValue()) 2310 return; 2311 2312 assert(N); 2313 if (!BT_Leak[*CheckKind]) { 2314 // Leaks should not be reported if they are post-dominated by a sink: 2315 // (1) Sinks are higher importance bugs. 2316 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2317 // with __noreturn functions such as assert() or exit(). We choose not 2318 // to report leaks on such paths. 2319 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2320 categories::MemoryError, 2321 /*SuppressOnSink=*/true)); 2322 } 2323 2324 // Most bug reports are cached at the location where they occurred. 2325 // With leaks, we want to unique them by the location where they were 2326 // allocated, and only report a single path. 2327 PathDiagnosticLocation LocUsedForUniqueing; 2328 const ExplodedNode *AllocNode = nullptr; 2329 const MemRegion *Region = nullptr; 2330 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2331 2332 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2333 if (AllocationStmt) 2334 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2335 C.getSourceManager(), 2336 AllocNode->getLocationContext()); 2337 2338 SmallString<200> buf; 2339 llvm::raw_svector_ostream os(buf); 2340 if (Region && Region->canPrintPretty()) { 2341 os << "Potential leak of memory pointed to by "; 2342 Region->printPretty(os); 2343 } else { 2344 os << "Potential memory leak"; 2345 } 2346 2347 auto R = llvm::make_unique<BugReport>( 2348 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2349 AllocNode->getLocationContext()->getDecl()); 2350 R->markInteresting(Sym); 2351 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2352 C.emitReport(std::move(R)); 2353 } 2354 2355 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2356 CheckerContext &C) const 2357 { 2358 ProgramStateRef state = C.getState(); 2359 RegionStateTy OldRS = state->get<RegionState>(); 2360 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2361 2362 RegionStateTy RS = OldRS; 2363 SmallVector<SymbolRef, 2> Errors; 2364 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2365 if (SymReaper.isDead(I->first)) { 2366 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2367 Errors.push_back(I->first); 2368 // Remove the dead symbol from the map. 2369 RS = F.remove(RS, I->first); 2370 } 2371 } 2372 2373 if (RS == OldRS) { 2374 // We shouldn't have touched other maps yet. 2375 assert(state->get<ReallocPairs>() == 2376 C.getState()->get<ReallocPairs>()); 2377 assert(state->get<FreeReturnValue>() == 2378 C.getState()->get<FreeReturnValue>()); 2379 return; 2380 } 2381 2382 // Cleanup the Realloc Pairs Map. 2383 ReallocPairsTy RP = state->get<ReallocPairs>(); 2384 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2385 if (SymReaper.isDead(I->first) || 2386 SymReaper.isDead(I->second.ReallocatedSym)) { 2387 state = state->remove<ReallocPairs>(I->first); 2388 } 2389 } 2390 2391 // Cleanup the FreeReturnValue Map. 2392 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2393 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2394 if (SymReaper.isDead(I->first) || 2395 SymReaper.isDead(I->second)) { 2396 state = state->remove<FreeReturnValue>(I->first); 2397 } 2398 } 2399 2400 // Generate leak node. 2401 ExplodedNode *N = C.getPredecessor(); 2402 if (!Errors.empty()) { 2403 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2404 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2405 if (N) { 2406 for (SmallVectorImpl<SymbolRef>::iterator 2407 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2408 reportLeak(*I, N, C); 2409 } 2410 } 2411 } 2412 2413 C.addTransition(state->set<RegionState>(RS), N); 2414 } 2415 2416 void MallocChecker::checkPreCall(const CallEvent &Call, 2417 CheckerContext &C) const { 2418 2419 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2420 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2421 if (!Sym || checkDoubleDelete(Sym, C)) 2422 return; 2423 } 2424 2425 // We will check for double free in the post visit. 2426 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2427 const FunctionDecl *FD = FC->getDecl(); 2428 if (!FD) 2429 return; 2430 2431 ASTContext &Ctx = C.getASTContext(); 2432 if (ChecksEnabled[CK_MallocChecker] && 2433 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2434 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2435 MemoryOperationKind::MOK_Free))) 2436 return; 2437 } 2438 2439 // Check if the callee of a method is deleted. 2440 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2441 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2442 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2443 return; 2444 } 2445 2446 // Check arguments for being used after free. 2447 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2448 SVal ArgSVal = Call.getArgSVal(I); 2449 if (ArgSVal.getAs<Loc>()) { 2450 SymbolRef Sym = ArgSVal.getAsSymbol(); 2451 if (!Sym) 2452 continue; 2453 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2454 return; 2455 } 2456 } 2457 } 2458 2459 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2460 CheckerContext &C) const { 2461 checkEscapeOnReturn(S, C); 2462 } 2463 2464 // In the CFG, automatic destructors come after the return statement. 2465 // This callback checks for returning memory that is freed by automatic 2466 // destructors, as those cannot be reached in checkPreStmt(). 2467 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2468 CheckerContext &C) const { 2469 checkEscapeOnReturn(S, C); 2470 } 2471 2472 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2473 CheckerContext &C) const { 2474 if (!S) 2475 return; 2476 2477 const Expr *E = S->getRetValue(); 2478 if (!E) 2479 return; 2480 2481 // Check if we are returning a symbol. 2482 ProgramStateRef State = C.getState(); 2483 SVal RetVal = C.getSVal(E); 2484 SymbolRef Sym = RetVal.getAsSymbol(); 2485 if (!Sym) 2486 // If we are returning a field of the allocated struct or an array element, 2487 // the callee could still free the memory. 2488 // TODO: This logic should be a part of generic symbol escape callback. 2489 if (const MemRegion *MR = RetVal.getAsRegion()) 2490 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2491 if (const SymbolicRegion *BMR = 2492 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2493 Sym = BMR->getSymbol(); 2494 2495 // Check if we are returning freed memory. 2496 if (Sym) 2497 checkUseAfterFree(Sym, C, E); 2498 } 2499 2500 // TODO: Blocks should be either inlined or should call invalidate regions 2501 // upon invocation. After that's in place, special casing here will not be 2502 // needed. 2503 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2504 CheckerContext &C) const { 2505 2506 // Scan the BlockDecRefExprs for any object the retain count checker 2507 // may be tracking. 2508 if (!BE->getBlockDecl()->hasCaptures()) 2509 return; 2510 2511 ProgramStateRef state = C.getState(); 2512 const BlockDataRegion *R = 2513 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2514 2515 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2516 E = R->referenced_vars_end(); 2517 2518 if (I == E) 2519 return; 2520 2521 SmallVector<const MemRegion*, 10> Regions; 2522 const LocationContext *LC = C.getLocationContext(); 2523 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2524 2525 for ( ; I != E; ++I) { 2526 const VarRegion *VR = I.getCapturedRegion(); 2527 if (VR->getSuperRegion() == R) { 2528 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2529 } 2530 Regions.push_back(VR); 2531 } 2532 2533 state = 2534 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2535 C.addTransition(state); 2536 } 2537 2538 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2539 assert(Sym); 2540 const RefState *RS = C.getState()->get<RegionState>(Sym); 2541 return (RS && RS->isReleased()); 2542 } 2543 2544 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2545 const CallExpr *CE, CheckerContext &C) const { 2546 if (CE->getNumArgs() == 0) 2547 return false; 2548 2549 StringRef FunctionStr = ""; 2550 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2551 if (const Stmt *Body = FD->getBody()) 2552 if (Body->getBeginLoc().isValid()) 2553 FunctionStr = 2554 Lexer::getSourceText(CharSourceRange::getTokenRange( 2555 {FD->getBeginLoc(), Body->getBeginLoc()}), 2556 C.getSourceManager(), C.getLangOpts()); 2557 2558 // We do not model the Integer Set Library's retain-count based allocation. 2559 if (!FunctionStr.contains("__isl_")) 2560 return false; 2561 2562 ProgramStateRef State = C.getState(); 2563 2564 for (const Expr *Arg : CE->arguments()) 2565 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2566 if (const RefState *RS = State->get<RegionState>(Sym)) 2567 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2568 2569 C.addTransition(State); 2570 return true; 2571 } 2572 2573 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2574 const Stmt *S) const { 2575 2576 if (isReleased(Sym, C)) { 2577 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2578 return true; 2579 } 2580 2581 return false; 2582 } 2583 2584 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2585 const Stmt *S) const { 2586 assert(Sym); 2587 2588 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2589 if (RS->isAllocatedOfSizeZero()) 2590 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2591 } 2592 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2593 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2594 } 2595 } 2596 2597 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2598 2599 if (isReleased(Sym, C)) { 2600 ReportDoubleDelete(C, Sym); 2601 return true; 2602 } 2603 return false; 2604 } 2605 2606 // Check if the location is a freed symbolic region. 2607 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2608 CheckerContext &C) const { 2609 SymbolRef Sym = l.getLocSymbolInBase(); 2610 if (Sym) { 2611 checkUseAfterFree(Sym, C, S); 2612 checkUseZeroAllocated(Sym, C, S); 2613 } 2614 } 2615 2616 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2617 // it - assuming that allocation failed on this path. 2618 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2619 SVal Cond, 2620 bool Assumption) const { 2621 RegionStateTy RS = state->get<RegionState>(); 2622 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2623 // If the symbol is assumed to be NULL, remove it from consideration. 2624 ConstraintManager &CMgr = state->getConstraintManager(); 2625 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2626 if (AllocFailed.isConstrainedTrue()) 2627 state = state->remove<RegionState>(I.getKey()); 2628 } 2629 2630 // Realloc returns 0 when reallocation fails, which means that we should 2631 // restore the state of the pointer being reallocated. 2632 ReallocPairsTy RP = state->get<ReallocPairs>(); 2633 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2634 // If the symbol is assumed to be NULL, remove it from consideration. 2635 ConstraintManager &CMgr = state->getConstraintManager(); 2636 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2637 if (!AllocFailed.isConstrainedTrue()) 2638 continue; 2639 2640 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2641 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2642 if (RS->isReleased()) { 2643 if (I.getData().Kind == RPToBeFreedAfterFailure) 2644 state = state->set<RegionState>(ReallocSym, 2645 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2646 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2647 state = state->remove<RegionState>(ReallocSym); 2648 else 2649 assert(I.getData().Kind == RPIsFreeOnFailure); 2650 } 2651 } 2652 state = state->remove<ReallocPairs>(I.getKey()); 2653 } 2654 2655 return state; 2656 } 2657 2658 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2659 const CallEvent *Call, 2660 ProgramStateRef State, 2661 SymbolRef &EscapingSymbol) const { 2662 assert(Call); 2663 EscapingSymbol = nullptr; 2664 2665 // For now, assume that any C++ or block call can free memory. 2666 // TODO: If we want to be more optimistic here, we'll need to make sure that 2667 // regions escape to C++ containers. They seem to do that even now, but for 2668 // mysterious reasons. 2669 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2670 return true; 2671 2672 // Check Objective-C messages by selector name. 2673 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2674 // If it's not a framework call, or if it takes a callback, assume it 2675 // can free memory. 2676 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2677 return true; 2678 2679 // If it's a method we know about, handle it explicitly post-call. 2680 // This should happen before the "freeWhenDone" check below. 2681 if (isKnownDeallocObjCMethodName(*Msg)) 2682 return false; 2683 2684 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2685 // about, we can't be sure that the object will use free() to deallocate the 2686 // memory, so we can't model it explicitly. The best we can do is use it to 2687 // decide whether the pointer escapes. 2688 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2689 return *FreeWhenDone; 2690 2691 // If the first selector piece ends with "NoCopy", and there is no 2692 // "freeWhenDone" parameter set to zero, we know ownership is being 2693 // transferred. Again, though, we can't be sure that the object will use 2694 // free() to deallocate the memory, so we can't model it explicitly. 2695 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2696 if (FirstSlot.endswith("NoCopy")) 2697 return true; 2698 2699 // If the first selector starts with addPointer, insertPointer, 2700 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2701 // This is similar to C++ containers (vector); we still might want to check 2702 // that the pointers get freed by following the container itself. 2703 if (FirstSlot.startswith("addPointer") || 2704 FirstSlot.startswith("insertPointer") || 2705 FirstSlot.startswith("replacePointer") || 2706 FirstSlot.equals("valueWithPointer")) { 2707 return true; 2708 } 2709 2710 // We should escape receiver on call to 'init'. This is especially relevant 2711 // to the receiver, as the corresponding symbol is usually not referenced 2712 // after the call. 2713 if (Msg->getMethodFamily() == OMF_init) { 2714 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2715 return true; 2716 } 2717 2718 // Otherwise, assume that the method does not free memory. 2719 // Most framework methods do not free memory. 2720 return false; 2721 } 2722 2723 // At this point the only thing left to handle is straight function calls. 2724 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2725 if (!FD) 2726 return true; 2727 2728 ASTContext &ASTC = State->getStateManager().getContext(); 2729 2730 // If it's one of the allocation functions we can reason about, we model 2731 // its behavior explicitly. 2732 if (isMemFunction(FD, ASTC)) 2733 return false; 2734 2735 // If it's not a system call, assume it frees memory. 2736 if (!Call->isInSystemHeader()) 2737 return true; 2738 2739 // White list the system functions whose arguments escape. 2740 const IdentifierInfo *II = FD->getIdentifier(); 2741 if (!II) 2742 return true; 2743 StringRef FName = II->getName(); 2744 2745 // White list the 'XXXNoCopy' CoreFoundation functions. 2746 // We specifically check these before 2747 if (FName.endswith("NoCopy")) { 2748 // Look for the deallocator argument. We know that the memory ownership 2749 // is not transferred only if the deallocator argument is 2750 // 'kCFAllocatorNull'. 2751 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2752 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2753 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2754 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2755 if (DeallocatorName == "kCFAllocatorNull") 2756 return false; 2757 } 2758 } 2759 return true; 2760 } 2761 2762 // Associating streams with malloced buffers. The pointer can escape if 2763 // 'closefn' is specified (and if that function does free memory), 2764 // but it will not if closefn is not specified. 2765 // Currently, we do not inspect the 'closefn' function (PR12101). 2766 if (FName == "funopen") 2767 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2768 return false; 2769 2770 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2771 // these leaks might be intentional when setting the buffer for stdio. 2772 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2773 if (FName == "setbuf" || FName =="setbuffer" || 2774 FName == "setlinebuf" || FName == "setvbuf") { 2775 if (Call->getNumArgs() >= 1) { 2776 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2777 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2778 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2779 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2780 return true; 2781 } 2782 } 2783 2784 // A bunch of other functions which either take ownership of a pointer or 2785 // wrap the result up in a struct or object, meaning it can be freed later. 2786 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2787 // but the Malloc checker cannot differentiate between them. The right way 2788 // of doing this would be to implement a pointer escapes callback. 2789 if (FName == "CGBitmapContextCreate" || 2790 FName == "CGBitmapContextCreateWithData" || 2791 FName == "CVPixelBufferCreateWithBytes" || 2792 FName == "CVPixelBufferCreateWithPlanarBytes" || 2793 FName == "OSAtomicEnqueue") { 2794 return true; 2795 } 2796 2797 if (FName == "postEvent" && 2798 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2799 return true; 2800 } 2801 2802 if (FName == "postEvent" && 2803 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2804 return true; 2805 } 2806 2807 if (FName == "connectImpl" && 2808 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2809 return true; 2810 } 2811 2812 // Handle cases where we know a buffer's /address/ can escape. 2813 // Note that the above checks handle some special cases where we know that 2814 // even though the address escapes, it's still our responsibility to free the 2815 // buffer. 2816 if (Call->argumentsMayEscape()) 2817 return true; 2818 2819 // Otherwise, assume that the function does not free memory. 2820 // Most system calls do not free the memory. 2821 return false; 2822 } 2823 2824 static bool retTrue(const RefState *RS) { 2825 return true; 2826 } 2827 2828 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2829 return (RS->getAllocationFamily() == AF_CXXNewArray || 2830 RS->getAllocationFamily() == AF_CXXNew); 2831 } 2832 2833 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2834 const InvalidatedSymbols &Escaped, 2835 const CallEvent *Call, 2836 PointerEscapeKind Kind) const { 2837 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2838 } 2839 2840 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2841 const InvalidatedSymbols &Escaped, 2842 const CallEvent *Call, 2843 PointerEscapeKind Kind) const { 2844 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2845 &checkIfNewOrNewArrayFamily); 2846 } 2847 2848 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2849 const InvalidatedSymbols &Escaped, 2850 const CallEvent *Call, 2851 PointerEscapeKind Kind, 2852 bool(*CheckRefState)(const RefState*)) const { 2853 // If we know that the call does not free memory, or we want to process the 2854 // call later, keep tracking the top level arguments. 2855 SymbolRef EscapingSymbol = nullptr; 2856 if (Kind == PSK_DirectEscapeOnCall && 2857 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2858 EscapingSymbol) && 2859 !EscapingSymbol) { 2860 return State; 2861 } 2862 2863 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2864 E = Escaped.end(); 2865 I != E; ++I) { 2866 SymbolRef sym = *I; 2867 2868 if (EscapingSymbol && EscapingSymbol != sym) 2869 continue; 2870 2871 if (const RefState *RS = State->get<RegionState>(sym)) { 2872 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2873 CheckRefState(RS)) { 2874 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2875 } 2876 } 2877 } 2878 return State; 2879 } 2880 2881 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2882 ProgramStateRef prevState) { 2883 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2884 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2885 2886 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2887 I != E; ++I) { 2888 SymbolRef sym = I.getKey(); 2889 if (!currMap.lookup(sym)) 2890 return sym; 2891 } 2892 2893 return nullptr; 2894 } 2895 2896 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2897 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2898 StringRef N = II->getName(); 2899 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2900 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2901 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2902 return true; 2903 } 2904 } 2905 } 2906 return false; 2907 } 2908 2909 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2910 const ExplodedNode *N, BugReporterContext &BRC, BugReport &BR) { 2911 2912 ProgramStateRef state = N->getState(); 2913 ProgramStateRef statePrev = N->getFirstPred()->getState(); 2914 2915 const RefState *RS = state->get<RegionState>(Sym); 2916 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2917 2918 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2919 // When dealing with containers, we sometimes want to give a note 2920 // even if the statement is missing. 2921 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2922 return nullptr; 2923 2924 const LocationContext *CurrentLC = N->getLocationContext(); 2925 2926 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2927 // the pointer was released (before the release), this is likely a destructor 2928 // of a shared pointer. 2929 // Because we don't model atomics, and also because we don't know that the 2930 // original reference count is positive, we should not report use-after-frees 2931 // on objects deleted in such destructors. This can probably be improved 2932 // through better shared pointer modeling. 2933 if (ReleaseDestructorLC) { 2934 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2935 AtomicExpr::AtomicOp Op = AE->getOp(); 2936 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2937 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2938 if (ReleaseDestructorLC == CurrentLC || 2939 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2940 BR.markInvalid(getTag(), S); 2941 } 2942 } 2943 } 2944 } 2945 2946 // FIXME: We will eventually need to handle non-statement-based events 2947 // (__attribute__((cleanup))). 2948 2949 // Find out if this is an interesting point and what is the kind. 2950 StringRef Msg; 2951 StackHintGeneratorForSymbol *StackHint = nullptr; 2952 SmallString<256> Buf; 2953 llvm::raw_svector_ostream OS(Buf); 2954 2955 if (Mode == Normal) { 2956 if (isAllocated(RS, RSPrev, S)) { 2957 Msg = "Memory is allocated"; 2958 StackHint = new StackHintGeneratorForSymbol(Sym, 2959 "Returned allocated memory"); 2960 } else if (isReleased(RS, RSPrev, S)) { 2961 const auto Family = RS->getAllocationFamily(); 2962 switch (Family) { 2963 case AF_Alloca: 2964 case AF_Malloc: 2965 case AF_CXXNew: 2966 case AF_CXXNewArray: 2967 case AF_IfNameIndex: 2968 Msg = "Memory is released"; 2969 StackHint = new StackHintGeneratorForSymbol(Sym, 2970 "Returning; memory was released"); 2971 break; 2972 case AF_InnerBuffer: { 2973 const MemRegion *ObjRegion = 2974 allocation_state::getContainerObjRegion(statePrev, Sym); 2975 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 2976 QualType ObjTy = TypedRegion->getValueType(); 2977 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 2978 2979 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2980 OS << "deallocated by call to destructor"; 2981 StackHint = new StackHintGeneratorForSymbol(Sym, 2982 "Returning; inner buffer was deallocated"); 2983 } else { 2984 OS << "reallocated by call to '"; 2985 const Stmt *S = RS->getStmt(); 2986 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2987 OS << MemCallE->getMethodDecl()->getNameAsString(); 2988 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2989 OS << OpCallE->getDirectCallee()->getNameAsString(); 2990 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2991 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2992 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2993 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2994 OS << (D ? D->getNameAsString() : "unknown"); 2995 } 2996 OS << "'"; 2997 StackHint = new StackHintGeneratorForSymbol(Sym, 2998 "Returning; inner buffer was reallocated"); 2999 } 3000 Msg = OS.str(); 3001 break; 3002 } 3003 case AF_None: 3004 llvm_unreachable("Unhandled allocation family!"); 3005 } 3006 3007 // See if we're releasing memory while inlining a destructor 3008 // (or one of its callees). This turns on various common 3009 // false positive suppressions. 3010 bool FoundAnyDestructor = false; 3011 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3012 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3013 if (isReferenceCountingPointerDestructor(DD)) { 3014 // This immediately looks like a reference-counting destructor. 3015 // We're bad at guessing the original reference count of the object, 3016 // so suppress the report for now. 3017 BR.markInvalid(getTag(), DD); 3018 } else if (!FoundAnyDestructor) { 3019 assert(!ReleaseDestructorLC && 3020 "There can be only one release point!"); 3021 // Suspect that it's a reference counting pointer destructor. 3022 // On one of the next nodes might find out that it has atomic 3023 // reference counting operations within it (see the code above), 3024 // and if so, we'd conclude that it likely is a reference counting 3025 // pointer destructor. 3026 ReleaseDestructorLC = LC->getStackFrame(); 3027 // It is unlikely that releasing memory is delegated to a destructor 3028 // inside a destructor of a shared pointer, because it's fairly hard 3029 // to pass the information that the pointer indeed needs to be 3030 // released into it. So we're only interested in the innermost 3031 // destructor. 3032 FoundAnyDestructor = true; 3033 } 3034 } 3035 } 3036 } else if (isRelinquished(RS, RSPrev, S)) { 3037 Msg = "Memory ownership is transferred"; 3038 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3039 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 3040 Mode = ReallocationFailed; 3041 Msg = "Reallocation failed"; 3042 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3043 "Reallocation failed"); 3044 3045 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3046 // Is it possible to fail two reallocs WITHOUT testing in between? 3047 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3048 "We only support one failed realloc at a time."); 3049 BR.markInteresting(sym); 3050 FailedReallocSymbol = sym; 3051 } 3052 } 3053 3054 // We are in a special mode if a reallocation failed later in the path. 3055 } else if (Mode == ReallocationFailed) { 3056 assert(FailedReallocSymbol && "No symbol to look for."); 3057 3058 // Is this is the first appearance of the reallocated symbol? 3059 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3060 // We're at the reallocation point. 3061 Msg = "Attempt to reallocate memory"; 3062 StackHint = new StackHintGeneratorForSymbol(Sym, 3063 "Returned reallocated memory"); 3064 FailedReallocSymbol = nullptr; 3065 Mode = Normal; 3066 } 3067 } 3068 3069 if (Msg.empty()) 3070 return nullptr; 3071 assert(StackHint); 3072 3073 // Generate the extra diagnostic. 3074 PathDiagnosticLocation Pos; 3075 if (!S) { 3076 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3077 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3078 if (!PostImplCall) 3079 return nullptr; 3080 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3081 BRC.getSourceManager()); 3082 } else { 3083 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3084 N->getLocationContext()); 3085 } 3086 3087 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3088 } 3089 3090 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3091 const char *NL, const char *Sep) const { 3092 3093 RegionStateTy RS = State->get<RegionState>(); 3094 3095 if (!RS.isEmpty()) { 3096 Out << Sep << "MallocChecker :" << NL; 3097 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3098 const RefState *RefS = State->get<RegionState>(I.getKey()); 3099 AllocationFamily Family = RefS->getAllocationFamily(); 3100 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3101 if (!CheckKind.hasValue()) 3102 CheckKind = getCheckIfTracked(Family, true); 3103 3104 I.getKey()->dumpToStream(Out); 3105 Out << " : "; 3106 I.getData().dump(Out); 3107 if (CheckKind.hasValue()) 3108 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3109 Out << NL; 3110 } 3111 } 3112 } 3113 3114 namespace clang { 3115 namespace ento { 3116 namespace allocation_state { 3117 3118 ProgramStateRef 3119 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3120 AllocationFamily Family = AF_InnerBuffer; 3121 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3122 } 3123 3124 } // end namespace allocation_state 3125 } // end namespace ento 3126 } // end namespace clang 3127 3128 // Intended to be used in InnerPointerChecker to register the part of 3129 // MallocChecker connected to it. 3130 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3131 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3132 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3133 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3134 mgr.getCurrentCheckName(); 3135 } 3136 3137 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3138 auto *checker = mgr.registerChecker<MallocChecker>(); 3139 checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption( 3140 checker, "Optimistic"); 3141 } 3142 3143 bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) { 3144 return true; 3145 } 3146 3147 #define REGISTER_CHECKER(name) \ 3148 void ento::register##name(CheckerManager &mgr) { \ 3149 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3150 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3151 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3152 } \ 3153 \ 3154 bool ento::shouldRegister##name(const LangOptions &LO) { \ 3155 return true; \ 3156 } 3157 3158 REGISTER_CHECKER(MallocChecker) 3159 REGISTER_CHECKER(NewDeleteChecker) 3160 REGISTER_CHECKER(NewDeleteLeaksChecker) 3161 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3162