1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/RecursiveASTVisitor.h" 28 #include "clang/AST/TemplateBase.h" 29 #include "clang/AST/TemplateName.h" 30 #include "clang/AST/Type.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/UnresolvedSet.h" 33 #include "clang/Basic/AddressSpaces.h" 34 #include "clang/Basic/ExceptionSpecificationType.h" 35 #include "clang/Basic/LLVM.h" 36 #include "clang/Basic/LangOptions.h" 37 #include "clang/Basic/PartialDiagnostic.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/FoldingSet.h" 48 #include "llvm/ADT/Optional.h" 49 #include "llvm/ADT/SmallBitVector.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <tuple> 58 #include <utility> 59 60 namespace clang { 61 62 /// Various flags that control template argument deduction. 63 /// 64 /// These flags can be bitwise-OR'd together. 65 enum TemplateDeductionFlags { 66 /// No template argument deduction flags, which indicates the 67 /// strictest results for template argument deduction (as used for, e.g., 68 /// matching class template partial specializations). 69 TDF_None = 0, 70 71 /// Within template argument deduction from a function call, we are 72 /// matching with a parameter type for which the original parameter was 73 /// a reference. 74 TDF_ParamWithReferenceType = 0x1, 75 76 /// Within template argument deduction from a function call, we 77 /// are matching in a case where we ignore cv-qualifiers. 78 TDF_IgnoreQualifiers = 0x02, 79 80 /// Within template argument deduction from a function call, 81 /// we are matching in a case where we can perform template argument 82 /// deduction from a template-id of a derived class of the argument type. 83 TDF_DerivedClass = 0x04, 84 85 /// Allow non-dependent types to differ, e.g., when performing 86 /// template argument deduction from a function call where conversions 87 /// may apply. 88 TDF_SkipNonDependent = 0x08, 89 90 /// Whether we are performing template argument deduction for 91 /// parameters and arguments in a top-level template argument 92 TDF_TopLevelParameterTypeList = 0x10, 93 94 /// Within template argument deduction from overload resolution per 95 /// C++ [over.over] allow matching function types that are compatible in 96 /// terms of noreturn and default calling convention adjustments, or 97 /// similarly matching a declared template specialization against a 98 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 99 /// deduction where the parameter is a function type that can be converted 100 /// to the argument type. 101 TDF_AllowCompatibleFunctionType = 0x20, 102 103 /// Within template argument deduction for a conversion function, we are 104 /// matching with an argument type for which the original argument was 105 /// a reference. 106 TDF_ArgWithReferenceType = 0x40, 107 }; 108 } 109 110 using namespace clang; 111 using namespace sema; 112 113 /// Compare two APSInts, extending and switching the sign as 114 /// necessary to compare their values regardless of underlying type. 115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 116 if (Y.getBitWidth() > X.getBitWidth()) 117 X = X.extend(Y.getBitWidth()); 118 else if (Y.getBitWidth() < X.getBitWidth()) 119 Y = Y.extend(X.getBitWidth()); 120 121 // If there is a signedness mismatch, correct it. 122 if (X.isSigned() != Y.isSigned()) { 123 // If the signed value is negative, then the values cannot be the same. 124 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 125 return false; 126 127 Y.setIsSigned(true); 128 X.setIsSigned(true); 129 } 130 131 return X == Y; 132 } 133 134 static Sema::TemplateDeductionResult 135 DeduceTemplateArguments(Sema &S, 136 TemplateParameterList *TemplateParams, 137 const TemplateArgument &Param, 138 TemplateArgument Arg, 139 TemplateDeductionInfo &Info, 140 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 141 142 static Sema::TemplateDeductionResult 143 DeduceTemplateArgumentsByTypeMatch(Sema &S, 144 TemplateParameterList *TemplateParams, 145 QualType Param, 146 QualType Arg, 147 TemplateDeductionInfo &Info, 148 SmallVectorImpl<DeducedTemplateArgument> & 149 Deduced, 150 unsigned TDF, 151 bool PartialOrdering = false, 152 bool DeducedFromArrayBound = false); 153 154 static Sema::TemplateDeductionResult 155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 156 ArrayRef<TemplateArgument> Params, 157 ArrayRef<TemplateArgument> Args, 158 TemplateDeductionInfo &Info, 159 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 160 bool NumberOfArgumentsMustMatch); 161 162 static void MarkUsedTemplateParameters(ASTContext &Ctx, 163 const TemplateArgument &TemplateArg, 164 bool OnlyDeduced, unsigned Depth, 165 llvm::SmallBitVector &Used); 166 167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 168 bool OnlyDeduced, unsigned Level, 169 llvm::SmallBitVector &Deduced); 170 171 /// If the given expression is of a form that permits the deduction 172 /// of a non-type template parameter, return the declaration of that 173 /// non-type template parameter. 174 static NonTypeTemplateParmDecl * 175 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 176 // If we are within an alias template, the expression may have undergone 177 // any number of parameter substitutions already. 178 while (true) { 179 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 180 E = IC->getSubExpr(); 181 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 182 E = CE->getSubExpr(); 183 else if (SubstNonTypeTemplateParmExpr *Subst = 184 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 185 E = Subst->getReplacement(); 186 else 187 break; 188 } 189 190 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 191 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 192 if (NTTP->getDepth() == Info.getDeducedDepth()) 193 return NTTP; 194 195 return nullptr; 196 } 197 198 /// Determine whether two declaration pointers refer to the same 199 /// declaration. 200 static bool isSameDeclaration(Decl *X, Decl *Y) { 201 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 202 X = NX->getUnderlyingDecl(); 203 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 204 Y = NY->getUnderlyingDecl(); 205 206 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 207 } 208 209 /// Verify that the given, deduced template arguments are compatible. 210 /// 211 /// \returns The deduced template argument, or a NULL template argument if 212 /// the deduced template arguments were incompatible. 213 static DeducedTemplateArgument 214 checkDeducedTemplateArguments(ASTContext &Context, 215 const DeducedTemplateArgument &X, 216 const DeducedTemplateArgument &Y) { 217 // We have no deduction for one or both of the arguments; they're compatible. 218 if (X.isNull()) 219 return Y; 220 if (Y.isNull()) 221 return X; 222 223 // If we have two non-type template argument values deduced for the same 224 // parameter, they must both match the type of the parameter, and thus must 225 // match each other's type. As we're only keeping one of them, we must check 226 // for that now. The exception is that if either was deduced from an array 227 // bound, the type is permitted to differ. 228 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 229 QualType XType = X.getNonTypeTemplateArgumentType(); 230 if (!XType.isNull()) { 231 QualType YType = Y.getNonTypeTemplateArgumentType(); 232 if (YType.isNull() || !Context.hasSameType(XType, YType)) 233 return DeducedTemplateArgument(); 234 } 235 } 236 237 switch (X.getKind()) { 238 case TemplateArgument::Null: 239 llvm_unreachable("Non-deduced template arguments handled above"); 240 241 case TemplateArgument::Type: 242 // If two template type arguments have the same type, they're compatible. 243 if (Y.getKind() == TemplateArgument::Type && 244 Context.hasSameType(X.getAsType(), Y.getAsType())) 245 return X; 246 247 // If one of the two arguments was deduced from an array bound, the other 248 // supersedes it. 249 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 250 return X.wasDeducedFromArrayBound() ? Y : X; 251 252 // The arguments are not compatible. 253 return DeducedTemplateArgument(); 254 255 case TemplateArgument::Integral: 256 // If we deduced a constant in one case and either a dependent expression or 257 // declaration in another case, keep the integral constant. 258 // If both are integral constants with the same value, keep that value. 259 if (Y.getKind() == TemplateArgument::Expression || 260 Y.getKind() == TemplateArgument::Declaration || 261 (Y.getKind() == TemplateArgument::Integral && 262 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 263 return X.wasDeducedFromArrayBound() ? Y : X; 264 265 // All other combinations are incompatible. 266 return DeducedTemplateArgument(); 267 268 case TemplateArgument::Template: 269 if (Y.getKind() == TemplateArgument::Template && 270 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 271 return X; 272 273 // All other combinations are incompatible. 274 return DeducedTemplateArgument(); 275 276 case TemplateArgument::TemplateExpansion: 277 if (Y.getKind() == TemplateArgument::TemplateExpansion && 278 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 279 Y.getAsTemplateOrTemplatePattern())) 280 return X; 281 282 // All other combinations are incompatible. 283 return DeducedTemplateArgument(); 284 285 case TemplateArgument::Expression: { 286 if (Y.getKind() != TemplateArgument::Expression) 287 return checkDeducedTemplateArguments(Context, Y, X); 288 289 // Compare the expressions for equality 290 llvm::FoldingSetNodeID ID1, ID2; 291 X.getAsExpr()->Profile(ID1, Context, true); 292 Y.getAsExpr()->Profile(ID2, Context, true); 293 if (ID1 == ID2) 294 return X.wasDeducedFromArrayBound() ? Y : X; 295 296 // Differing dependent expressions are incompatible. 297 return DeducedTemplateArgument(); 298 } 299 300 case TemplateArgument::Declaration: 301 assert(!X.wasDeducedFromArrayBound()); 302 303 // If we deduced a declaration and a dependent expression, keep the 304 // declaration. 305 if (Y.getKind() == TemplateArgument::Expression) 306 return X; 307 308 // If we deduced a declaration and an integral constant, keep the 309 // integral constant and whichever type did not come from an array 310 // bound. 311 if (Y.getKind() == TemplateArgument::Integral) { 312 if (Y.wasDeducedFromArrayBound()) 313 return TemplateArgument(Context, Y.getAsIntegral(), 314 X.getParamTypeForDecl()); 315 return Y; 316 } 317 318 // If we deduced two declarations, make sure that they refer to the 319 // same declaration. 320 if (Y.getKind() == TemplateArgument::Declaration && 321 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 322 return X; 323 324 // All other combinations are incompatible. 325 return DeducedTemplateArgument(); 326 327 case TemplateArgument::NullPtr: 328 // If we deduced a null pointer and a dependent expression, keep the 329 // null pointer. 330 if (Y.getKind() == TemplateArgument::Expression) 331 return X; 332 333 // If we deduced a null pointer and an integral constant, keep the 334 // integral constant. 335 if (Y.getKind() == TemplateArgument::Integral) 336 return Y; 337 338 // If we deduced two null pointers, they are the same. 339 if (Y.getKind() == TemplateArgument::NullPtr) 340 return X; 341 342 // All other combinations are incompatible. 343 return DeducedTemplateArgument(); 344 345 case TemplateArgument::Pack: { 346 if (Y.getKind() != TemplateArgument::Pack || 347 X.pack_size() != Y.pack_size()) 348 return DeducedTemplateArgument(); 349 350 llvm::SmallVector<TemplateArgument, 8> NewPack; 351 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 352 XAEnd = X.pack_end(), 353 YA = Y.pack_begin(); 354 XA != XAEnd; ++XA, ++YA) { 355 TemplateArgument Merged = checkDeducedTemplateArguments( 356 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 357 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 358 if (Merged.isNull()) 359 return DeducedTemplateArgument(); 360 NewPack.push_back(Merged); 361 } 362 363 return DeducedTemplateArgument( 364 TemplateArgument::CreatePackCopy(Context, NewPack), 365 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 366 } 367 } 368 369 llvm_unreachable("Invalid TemplateArgument Kind!"); 370 } 371 372 /// Deduce the value of the given non-type template parameter 373 /// as the given deduced template argument. All non-type template parameter 374 /// deduction is funneled through here. 375 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 376 Sema &S, TemplateParameterList *TemplateParams, 377 NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 378 QualType ValueType, TemplateDeductionInfo &Info, 379 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 380 assert(NTTP->getDepth() == Info.getDeducedDepth() && 381 "deducing non-type template argument with wrong depth"); 382 383 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 384 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 385 if (Result.isNull()) { 386 Info.Param = NTTP; 387 Info.FirstArg = Deduced[NTTP->getIndex()]; 388 Info.SecondArg = NewDeduced; 389 return Sema::TDK_Inconsistent; 390 } 391 392 Deduced[NTTP->getIndex()] = Result; 393 if (!S.getLangOpts().CPlusPlus17) 394 return Sema::TDK_Success; 395 396 if (NTTP->isExpandedParameterPack()) 397 // FIXME: We may still need to deduce parts of the type here! But we 398 // don't have any way to find which slice of the type to use, and the 399 // type stored on the NTTP itself is nonsense. Perhaps the type of an 400 // expanded NTTP should be a pack expansion type? 401 return Sema::TDK_Success; 402 403 // Get the type of the parameter for deduction. If it's a (dependent) array 404 // or function type, we will not have decayed it yet, so do that now. 405 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 406 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 407 ParamType = Expansion->getPattern(); 408 409 // FIXME: It's not clear how deduction of a parameter of reference 410 // type from an argument (of non-reference type) should be performed. 411 // For now, we just remove reference types from both sides and let 412 // the final check for matching types sort out the mess. 413 return DeduceTemplateArgumentsByTypeMatch( 414 S, TemplateParams, ParamType.getNonReferenceType(), 415 ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, 416 /*PartialOrdering=*/false, 417 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 418 } 419 420 /// Deduce the value of the given non-type template parameter 421 /// from the given integral constant. 422 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 423 Sema &S, TemplateParameterList *TemplateParams, 424 NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 425 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 426 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 427 return DeduceNonTypeTemplateArgument( 428 S, TemplateParams, NTTP, 429 DeducedTemplateArgument(S.Context, Value, ValueType, 430 DeducedFromArrayBound), 431 ValueType, Info, Deduced); 432 } 433 434 /// Deduce the value of the given non-type template parameter 435 /// from the given null pointer template argument type. 436 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 437 Sema &S, TemplateParameterList *TemplateParams, 438 NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 439 TemplateDeductionInfo &Info, 440 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 441 Expr *Value = 442 S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( 443 S.Context.NullPtrTy, NTTP->getLocation()), 444 NullPtrType, CK_NullToPointer) 445 .get(); 446 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 447 DeducedTemplateArgument(Value), 448 Value->getType(), Info, Deduced); 449 } 450 451 /// Deduce the value of the given non-type template parameter 452 /// from the given type- or value-dependent expression. 453 /// 454 /// \returns true if deduction succeeded, false otherwise. 455 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 456 Sema &S, TemplateParameterList *TemplateParams, 457 NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 458 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 459 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 460 DeducedTemplateArgument(Value), 461 Value->getType(), Info, Deduced); 462 } 463 464 /// Deduce the value of the given non-type template parameter 465 /// from the given declaration. 466 /// 467 /// \returns true if deduction succeeded, false otherwise. 468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 469 Sema &S, TemplateParameterList *TemplateParams, 470 NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 471 TemplateDeductionInfo &Info, 472 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 473 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 474 TemplateArgument New(D, T); 475 return DeduceNonTypeTemplateArgument( 476 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 477 } 478 479 static Sema::TemplateDeductionResult 480 DeduceTemplateArguments(Sema &S, 481 TemplateParameterList *TemplateParams, 482 TemplateName Param, 483 TemplateName Arg, 484 TemplateDeductionInfo &Info, 485 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 486 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 487 if (!ParamDecl) { 488 // The parameter type is dependent and is not a template template parameter, 489 // so there is nothing that we can deduce. 490 return Sema::TDK_Success; 491 } 492 493 if (TemplateTemplateParmDecl *TempParam 494 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 495 // If we're not deducing at this depth, there's nothing to deduce. 496 if (TempParam->getDepth() != Info.getDeducedDepth()) 497 return Sema::TDK_Success; 498 499 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 500 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 501 Deduced[TempParam->getIndex()], 502 NewDeduced); 503 if (Result.isNull()) { 504 Info.Param = TempParam; 505 Info.FirstArg = Deduced[TempParam->getIndex()]; 506 Info.SecondArg = NewDeduced; 507 return Sema::TDK_Inconsistent; 508 } 509 510 Deduced[TempParam->getIndex()] = Result; 511 return Sema::TDK_Success; 512 } 513 514 // Verify that the two template names are equivalent. 515 if (S.Context.hasSameTemplateName(Param, Arg)) 516 return Sema::TDK_Success; 517 518 // Mismatch of non-dependent template parameter to argument. 519 Info.FirstArg = TemplateArgument(Param); 520 Info.SecondArg = TemplateArgument(Arg); 521 return Sema::TDK_NonDeducedMismatch; 522 } 523 524 /// Deduce the template arguments by comparing the template parameter 525 /// type (which is a template-id) with the template argument type. 526 /// 527 /// \param S the Sema 528 /// 529 /// \param TemplateParams the template parameters that we are deducing 530 /// 531 /// \param Param the parameter type 532 /// 533 /// \param Arg the argument type 534 /// 535 /// \param Info information about the template argument deduction itself 536 /// 537 /// \param Deduced the deduced template arguments 538 /// 539 /// \returns the result of template argument deduction so far. Note that a 540 /// "success" result means that template argument deduction has not yet failed, 541 /// but it may still fail, later, for other reasons. 542 static Sema::TemplateDeductionResult 543 DeduceTemplateArguments(Sema &S, 544 TemplateParameterList *TemplateParams, 545 const TemplateSpecializationType *Param, 546 QualType Arg, 547 TemplateDeductionInfo &Info, 548 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 549 assert(Arg.isCanonical() && "Argument type must be canonical"); 550 551 // Treat an injected-class-name as its underlying template-id. 552 if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) 553 Arg = Injected->getInjectedSpecializationType(); 554 555 // Check whether the template argument is a dependent template-id. 556 if (const TemplateSpecializationType *SpecArg 557 = dyn_cast<TemplateSpecializationType>(Arg)) { 558 // Perform template argument deduction for the template name. 559 if (Sema::TemplateDeductionResult Result 560 = DeduceTemplateArguments(S, TemplateParams, 561 Param->getTemplateName(), 562 SpecArg->getTemplateName(), 563 Info, Deduced)) 564 return Result; 565 566 567 // Perform template argument deduction on each template 568 // argument. Ignore any missing/extra arguments, since they could be 569 // filled in by default arguments. 570 return DeduceTemplateArguments(S, TemplateParams, 571 Param->template_arguments(), 572 SpecArg->template_arguments(), Info, Deduced, 573 /*NumberOfArgumentsMustMatch=*/false); 574 } 575 576 // If the argument type is a class template specialization, we 577 // perform template argument deduction using its template 578 // arguments. 579 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 580 if (!RecordArg) { 581 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 582 Info.SecondArg = TemplateArgument(Arg); 583 return Sema::TDK_NonDeducedMismatch; 584 } 585 586 ClassTemplateSpecializationDecl *SpecArg 587 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 588 if (!SpecArg) { 589 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 590 Info.SecondArg = TemplateArgument(Arg); 591 return Sema::TDK_NonDeducedMismatch; 592 } 593 594 // Perform template argument deduction for the template name. 595 if (Sema::TemplateDeductionResult Result 596 = DeduceTemplateArguments(S, 597 TemplateParams, 598 Param->getTemplateName(), 599 TemplateName(SpecArg->getSpecializedTemplate()), 600 Info, Deduced)) 601 return Result; 602 603 // Perform template argument deduction for the template arguments. 604 return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), 605 SpecArg->getTemplateArgs().asArray(), Info, 606 Deduced, /*NumberOfArgumentsMustMatch=*/true); 607 } 608 609 /// Determines whether the given type is an opaque type that 610 /// might be more qualified when instantiated. 611 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 612 switch (T->getTypeClass()) { 613 case Type::TypeOfExpr: 614 case Type::TypeOf: 615 case Type::DependentName: 616 case Type::Decltype: 617 case Type::UnresolvedUsing: 618 case Type::TemplateTypeParm: 619 return true; 620 621 case Type::ConstantArray: 622 case Type::IncompleteArray: 623 case Type::VariableArray: 624 case Type::DependentSizedArray: 625 return IsPossiblyOpaquelyQualifiedType( 626 cast<ArrayType>(T)->getElementType()); 627 628 default: 629 return false; 630 } 631 } 632 633 /// Helper function to build a TemplateParameter when we don't 634 /// know its type statically. 635 static TemplateParameter makeTemplateParameter(Decl *D) { 636 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 637 return TemplateParameter(TTP); 638 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 639 return TemplateParameter(NTTP); 640 641 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 642 } 643 644 /// If \p Param is an expanded parameter pack, get the number of expansions. 645 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 646 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 647 if (TTP->isExpandedParameterPack()) 648 return TTP->getNumExpansionParameters(); 649 650 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 651 if (NTTP->isExpandedParameterPack()) 652 return NTTP->getNumExpansionTypes(); 653 654 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) 655 if (TTP->isExpandedParameterPack()) 656 return TTP->getNumExpansionTemplateParameters(); 657 658 return None; 659 } 660 661 /// A pack that we're currently deducing. 662 struct clang::DeducedPack { 663 // The index of the pack. 664 unsigned Index; 665 666 // The old value of the pack before we started deducing it. 667 DeducedTemplateArgument Saved; 668 669 // A deferred value of this pack from an inner deduction, that couldn't be 670 // deduced because this deduction hadn't happened yet. 671 DeducedTemplateArgument DeferredDeduction; 672 673 // The new value of the pack. 674 SmallVector<DeducedTemplateArgument, 4> New; 675 676 // The outer deduction for this pack, if any. 677 DeducedPack *Outer = nullptr; 678 679 DeducedPack(unsigned Index) : Index(Index) {} 680 }; 681 682 namespace { 683 684 /// A scope in which we're performing pack deduction. 685 class PackDeductionScope { 686 public: 687 /// Prepare to deduce the packs named within Pattern. 688 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 689 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 690 TemplateDeductionInfo &Info, TemplateArgument Pattern) 691 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 692 unsigned NumNamedPacks = addPacks(Pattern); 693 finishConstruction(NumNamedPacks); 694 } 695 696 /// Prepare to directly deduce arguments of the parameter with index \p Index. 697 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 698 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 699 TemplateDeductionInfo &Info, unsigned Index) 700 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 701 addPack(Index); 702 finishConstruction(1); 703 } 704 705 private: 706 void addPack(unsigned Index) { 707 // Save the deduced template argument for the parameter pack expanded 708 // by this pack expansion, then clear out the deduction. 709 DeducedPack Pack(Index); 710 Pack.Saved = Deduced[Index]; 711 Deduced[Index] = TemplateArgument(); 712 713 // FIXME: What if we encounter multiple packs with different numbers of 714 // pre-expanded expansions? (This should already have been diagnosed 715 // during substitution.) 716 if (Optional<unsigned> ExpandedPackExpansions = 717 getExpandedPackSize(TemplateParams->getParam(Index))) 718 FixedNumExpansions = ExpandedPackExpansions; 719 720 Packs.push_back(Pack); 721 } 722 723 unsigned addPacks(TemplateArgument Pattern) { 724 // Compute the set of template parameter indices that correspond to 725 // parameter packs expanded by the pack expansion. 726 llvm::SmallBitVector SawIndices(TemplateParams->size()); 727 728 auto AddPack = [&](unsigned Index) { 729 if (SawIndices[Index]) 730 return; 731 SawIndices[Index] = true; 732 addPack(Index); 733 }; 734 735 // First look for unexpanded packs in the pattern. 736 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 737 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 738 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 739 unsigned Depth, Index; 740 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 741 if (Depth == Info.getDeducedDepth()) 742 AddPack(Index); 743 } 744 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 745 746 unsigned NumNamedPacks = Packs.size(); 747 748 // We can also have deduced template parameters that do not actually 749 // appear in the pattern, but can be deduced by it (the type of a non-type 750 // template parameter pack, in particular). These won't have prevented us 751 // from partially expanding the pack. 752 llvm::SmallBitVector Used(TemplateParams->size()); 753 MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true, 754 Info.getDeducedDepth(), Used); 755 for (int Index = Used.find_first(); Index != -1; 756 Index = Used.find_next(Index)) 757 if (TemplateParams->getParam(Index)->isParameterPack()) 758 AddPack(Index); 759 760 return NumNamedPacks; 761 } 762 763 void finishConstruction(unsigned NumNamedPacks) { 764 // Dig out the partially-substituted pack, if there is one. 765 const TemplateArgument *PartialPackArgs = nullptr; 766 unsigned NumPartialPackArgs = 0; 767 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 768 if (auto *Scope = S.CurrentInstantiationScope) 769 if (auto *Partial = Scope->getPartiallySubstitutedPack( 770 &PartialPackArgs, &NumPartialPackArgs)) 771 PartialPackDepthIndex = getDepthAndIndex(Partial); 772 773 // This pack expansion will have been partially or fully expanded if 774 // it only names explicitly-specified parameter packs (including the 775 // partially-substituted one, if any). 776 bool IsExpanded = true; 777 for (unsigned I = 0; I != NumNamedPacks; ++I) { 778 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 779 IsExpanded = false; 780 IsPartiallyExpanded = false; 781 break; 782 } 783 if (PartialPackDepthIndex == 784 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 785 IsPartiallyExpanded = true; 786 } 787 } 788 789 // Skip over the pack elements that were expanded into separate arguments. 790 // If we partially expanded, this is the number of partial arguments. 791 if (IsPartiallyExpanded) 792 PackElements += NumPartialPackArgs; 793 else if (IsExpanded) 794 PackElements += *FixedNumExpansions; 795 796 for (auto &Pack : Packs) { 797 if (Info.PendingDeducedPacks.size() > Pack.Index) 798 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 799 else 800 Info.PendingDeducedPacks.resize(Pack.Index + 1); 801 Info.PendingDeducedPacks[Pack.Index] = &Pack; 802 803 if (PartialPackDepthIndex == 804 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 805 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 806 // We pre-populate the deduced value of the partially-substituted 807 // pack with the specified value. This is not entirely correct: the 808 // value is supposed to have been substituted, not deduced, but the 809 // cases where this is observable require an exact type match anyway. 810 // 811 // FIXME: If we could represent a "depth i, index j, pack elem k" 812 // parameter, we could substitute the partially-substituted pack 813 // everywhere and avoid this. 814 if (!IsPartiallyExpanded) 815 Deduced[Pack.Index] = Pack.New[PackElements]; 816 } 817 } 818 } 819 820 public: 821 ~PackDeductionScope() { 822 for (auto &Pack : Packs) 823 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 824 } 825 826 /// Determine whether this pack has already been partially expanded into a 827 /// sequence of (prior) function parameters / template arguments. 828 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 829 830 /// Determine whether this pack expansion scope has a known, fixed arity. 831 /// This happens if it involves a pack from an outer template that has 832 /// (notionally) already been expanded. 833 bool hasFixedArity() { return FixedNumExpansions.hasValue(); } 834 835 /// Determine whether the next element of the argument is still part of this 836 /// pack. This is the case unless the pack is already expanded to a fixed 837 /// length. 838 bool hasNextElement() { 839 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 840 } 841 842 /// Move to deducing the next element in each pack that is being deduced. 843 void nextPackElement() { 844 // Capture the deduced template arguments for each parameter pack expanded 845 // by this pack expansion, add them to the list of arguments we've deduced 846 // for that pack, then clear out the deduced argument. 847 for (auto &Pack : Packs) { 848 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 849 if (!Pack.New.empty() || !DeducedArg.isNull()) { 850 while (Pack.New.size() < PackElements) 851 Pack.New.push_back(DeducedTemplateArgument()); 852 if (Pack.New.size() == PackElements) 853 Pack.New.push_back(DeducedArg); 854 else 855 Pack.New[PackElements] = DeducedArg; 856 DeducedArg = Pack.New.size() > PackElements + 1 857 ? Pack.New[PackElements + 1] 858 : DeducedTemplateArgument(); 859 } 860 } 861 ++PackElements; 862 } 863 864 /// Finish template argument deduction for a set of argument packs, 865 /// producing the argument packs and checking for consistency with prior 866 /// deductions. 867 Sema::TemplateDeductionResult finish() { 868 // Build argument packs for each of the parameter packs expanded by this 869 // pack expansion. 870 for (auto &Pack : Packs) { 871 // Put back the old value for this pack. 872 Deduced[Pack.Index] = Pack.Saved; 873 874 // Always make sure the size of this pack is correct, even if we didn't 875 // deduce any values for it. 876 // 877 // FIXME: This isn't required by the normative wording, but substitution 878 // and post-substitution checking will always fail if the arity of any 879 // pack is not equal to the number of elements we processed. (Either that 880 // or something else has gone *very* wrong.) We're permitted to skip any 881 // hard errors from those follow-on steps by the intent (but not the 882 // wording) of C++ [temp.inst]p8: 883 // 884 // If the function selected by overload resolution can be determined 885 // without instantiating a class template definition, it is unspecified 886 // whether that instantiation actually takes place 887 Pack.New.resize(PackElements); 888 889 // Build or find a new value for this pack. 890 DeducedTemplateArgument NewPack; 891 if (Pack.New.empty()) { 892 // If we deduced an empty argument pack, create it now. 893 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 894 } else { 895 TemplateArgument *ArgumentPack = 896 new (S.Context) TemplateArgument[Pack.New.size()]; 897 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 898 NewPack = DeducedTemplateArgument( 899 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 900 // FIXME: This is wrong, it's possible that some pack elements are 901 // deduced from an array bound and others are not: 902 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 903 // g({1, 2, 3}, {{}, {}}); 904 // ... should deduce T = {int, size_t (from array bound)}. 905 Pack.New[0].wasDeducedFromArrayBound()); 906 } 907 908 // Pick where we're going to put the merged pack. 909 DeducedTemplateArgument *Loc; 910 if (Pack.Outer) { 911 if (Pack.Outer->DeferredDeduction.isNull()) { 912 // Defer checking this pack until we have a complete pack to compare 913 // it against. 914 Pack.Outer->DeferredDeduction = NewPack; 915 continue; 916 } 917 Loc = &Pack.Outer->DeferredDeduction; 918 } else { 919 Loc = &Deduced[Pack.Index]; 920 } 921 922 // Check the new pack matches any previous value. 923 DeducedTemplateArgument OldPack = *Loc; 924 DeducedTemplateArgument Result = 925 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 926 927 // If we deferred a deduction of this pack, check that one now too. 928 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 929 OldPack = Result; 930 NewPack = Pack.DeferredDeduction; 931 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 932 } 933 934 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 935 if (Result.isNull()) { 936 Info.Param = makeTemplateParameter(Param); 937 Info.FirstArg = OldPack; 938 Info.SecondArg = NewPack; 939 return Sema::TDK_Inconsistent; 940 } 941 942 // If we have a pre-expanded pack and we didn't deduce enough elements 943 // for it, fail deduction. 944 if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { 945 if (*Expansions != PackElements) { 946 Info.Param = makeTemplateParameter(Param); 947 Info.FirstArg = Result; 948 return Sema::TDK_IncompletePack; 949 } 950 } 951 952 *Loc = Result; 953 } 954 955 return Sema::TDK_Success; 956 } 957 958 private: 959 Sema &S; 960 TemplateParameterList *TemplateParams; 961 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 962 TemplateDeductionInfo &Info; 963 unsigned PackElements = 0; 964 bool IsPartiallyExpanded = false; 965 /// The number of expansions, if we have a fully-expanded pack in this scope. 966 Optional<unsigned> FixedNumExpansions; 967 968 SmallVector<DeducedPack, 2> Packs; 969 }; 970 971 } // namespace 972 973 /// Deduce the template arguments by comparing the list of parameter 974 /// types to the list of argument types, as in the parameter-type-lists of 975 /// function types (C++ [temp.deduct.type]p10). 976 /// 977 /// \param S The semantic analysis object within which we are deducing 978 /// 979 /// \param TemplateParams The template parameters that we are deducing 980 /// 981 /// \param Params The list of parameter types 982 /// 983 /// \param NumParams The number of types in \c Params 984 /// 985 /// \param Args The list of argument types 986 /// 987 /// \param NumArgs The number of types in \c Args 988 /// 989 /// \param Info information about the template argument deduction itself 990 /// 991 /// \param Deduced the deduced template arguments 992 /// 993 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 994 /// how template argument deduction is performed. 995 /// 996 /// \param PartialOrdering If true, we are performing template argument 997 /// deduction for during partial ordering for a call 998 /// (C++0x [temp.deduct.partial]). 999 /// 1000 /// \returns the result of template argument deduction so far. Note that a 1001 /// "success" result means that template argument deduction has not yet failed, 1002 /// but it may still fail, later, for other reasons. 1003 static Sema::TemplateDeductionResult 1004 DeduceTemplateArguments(Sema &S, 1005 TemplateParameterList *TemplateParams, 1006 const QualType *Params, unsigned NumParams, 1007 const QualType *Args, unsigned NumArgs, 1008 TemplateDeductionInfo &Info, 1009 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1010 unsigned TDF, 1011 bool PartialOrdering = false) { 1012 // C++0x [temp.deduct.type]p10: 1013 // Similarly, if P has a form that contains (T), then each parameter type 1014 // Pi of the respective parameter-type- list of P is compared with the 1015 // corresponding parameter type Ai of the corresponding parameter-type-list 1016 // of A. [...] 1017 unsigned ArgIdx = 0, ParamIdx = 0; 1018 for (; ParamIdx != NumParams; ++ParamIdx) { 1019 // Check argument types. 1020 const PackExpansionType *Expansion 1021 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1022 if (!Expansion) { 1023 // Simple case: compare the parameter and argument types at this point. 1024 1025 // Make sure we have an argument. 1026 if (ArgIdx >= NumArgs) 1027 return Sema::TDK_MiscellaneousDeductionFailure; 1028 1029 if (isa<PackExpansionType>(Args[ArgIdx])) { 1030 // C++0x [temp.deduct.type]p22: 1031 // If the original function parameter associated with A is a function 1032 // parameter pack and the function parameter associated with P is not 1033 // a function parameter pack, then template argument deduction fails. 1034 return Sema::TDK_MiscellaneousDeductionFailure; 1035 } 1036 1037 if (Sema::TemplateDeductionResult Result 1038 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1039 Params[ParamIdx], Args[ArgIdx], 1040 Info, Deduced, TDF, 1041 PartialOrdering)) 1042 return Result; 1043 1044 ++ArgIdx; 1045 continue; 1046 } 1047 1048 // C++0x [temp.deduct.type]p10: 1049 // If the parameter-declaration corresponding to Pi is a function 1050 // parameter pack, then the type of its declarator- id is compared with 1051 // each remaining parameter type in the parameter-type-list of A. Each 1052 // comparison deduces template arguments for subsequent positions in the 1053 // template parameter packs expanded by the function parameter pack. 1054 1055 QualType Pattern = Expansion->getPattern(); 1056 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1057 1058 // A pack scope with fixed arity is not really a pack any more, so is not 1059 // a non-deduced context. 1060 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1061 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1062 // Deduce template arguments from the pattern. 1063 if (Sema::TemplateDeductionResult Result 1064 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 1065 Args[ArgIdx], Info, Deduced, 1066 TDF, PartialOrdering)) 1067 return Result; 1068 1069 PackScope.nextPackElement(); 1070 } 1071 } else { 1072 // C++0x [temp.deduct.type]p5: 1073 // The non-deduced contexts are: 1074 // - A function parameter pack that does not occur at the end of the 1075 // parameter-declaration-clause. 1076 // 1077 // FIXME: There is no wording to say what we should do in this case. We 1078 // choose to resolve this by applying the same rule that is applied for a 1079 // function call: that is, deduce all contained packs to their 1080 // explicitly-specified values (or to <> if there is no such value). 1081 // 1082 // This is seemingly-arbitrarily different from the case of a template-id 1083 // with a non-trailing pack-expansion in its arguments, which renders the 1084 // entire template-argument-list a non-deduced context. 1085 1086 // If the parameter type contains an explicitly-specified pack that we 1087 // could not expand, skip the number of parameters notionally created 1088 // by the expansion. 1089 Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1090 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1091 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1092 ++I, ++ArgIdx) 1093 PackScope.nextPackElement(); 1094 } 1095 } 1096 1097 // Build argument packs for each of the parameter packs expanded by this 1098 // pack expansion. 1099 if (auto Result = PackScope.finish()) 1100 return Result; 1101 } 1102 1103 // Make sure we don't have any extra arguments. 1104 if (ArgIdx < NumArgs) 1105 return Sema::TDK_MiscellaneousDeductionFailure; 1106 1107 return Sema::TDK_Success; 1108 } 1109 1110 /// Determine whether the parameter has qualifiers that the argument 1111 /// lacks. Put another way, determine whether there is no way to add 1112 /// a deduced set of qualifiers to the ParamType that would result in 1113 /// its qualifiers matching those of the ArgType. 1114 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1115 QualType ArgType) { 1116 Qualifiers ParamQs = ParamType.getQualifiers(); 1117 Qualifiers ArgQs = ArgType.getQualifiers(); 1118 1119 if (ParamQs == ArgQs) 1120 return false; 1121 1122 // Mismatched (but not missing) Objective-C GC attributes. 1123 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1124 ParamQs.hasObjCGCAttr()) 1125 return true; 1126 1127 // Mismatched (but not missing) address spaces. 1128 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1129 ParamQs.hasAddressSpace()) 1130 return true; 1131 1132 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1133 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1134 ParamQs.hasObjCLifetime()) 1135 return true; 1136 1137 // CVR qualifiers inconsistent or a superset. 1138 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1139 } 1140 1141 /// Compare types for equality with respect to possibly compatible 1142 /// function types (noreturn adjustment, implicit calling conventions). If any 1143 /// of parameter and argument is not a function, just perform type comparison. 1144 /// 1145 /// \param Param the template parameter type. 1146 /// 1147 /// \param Arg the argument type. 1148 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 1149 CanQualType Arg) { 1150 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 1151 *ArgFunction = Arg->getAs<FunctionType>(); 1152 1153 // Just compare if not functions. 1154 if (!ParamFunction || !ArgFunction) 1155 return Param == Arg; 1156 1157 // Noreturn and noexcept adjustment. 1158 QualType AdjustedParam; 1159 if (IsFunctionConversion(Param, Arg, AdjustedParam)) 1160 return Arg == Context.getCanonicalType(AdjustedParam); 1161 1162 // FIXME: Compatible calling conventions. 1163 1164 return Param == Arg; 1165 } 1166 1167 /// Get the index of the first template parameter that was originally from the 1168 /// innermost template-parameter-list. This is 0 except when we concatenate 1169 /// the template parameter lists of a class template and a constructor template 1170 /// when forming an implicit deduction guide. 1171 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1172 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1173 if (!Guide || !Guide->isImplicit()) 1174 return 0; 1175 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1176 } 1177 1178 /// Determine whether a type denotes a forwarding reference. 1179 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1180 // C++1z [temp.deduct.call]p3: 1181 // A forwarding reference is an rvalue reference to a cv-unqualified 1182 // template parameter that does not represent a template parameter of a 1183 // class template. 1184 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1185 if (ParamRef->getPointeeType().getQualifiers()) 1186 return false; 1187 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1188 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1189 } 1190 return false; 1191 } 1192 1193 /// Deduce the template arguments by comparing the parameter type and 1194 /// the argument type (C++ [temp.deduct.type]). 1195 /// 1196 /// \param S the semantic analysis object within which we are deducing 1197 /// 1198 /// \param TemplateParams the template parameters that we are deducing 1199 /// 1200 /// \param ParamIn the parameter type 1201 /// 1202 /// \param ArgIn the argument type 1203 /// 1204 /// \param Info information about the template argument deduction itself 1205 /// 1206 /// \param Deduced the deduced template arguments 1207 /// 1208 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1209 /// how template argument deduction is performed. 1210 /// 1211 /// \param PartialOrdering Whether we're performing template argument deduction 1212 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1213 /// 1214 /// \returns the result of template argument deduction so far. Note that a 1215 /// "success" result means that template argument deduction has not yet failed, 1216 /// but it may still fail, later, for other reasons. 1217 static Sema::TemplateDeductionResult 1218 DeduceTemplateArgumentsByTypeMatch(Sema &S, 1219 TemplateParameterList *TemplateParams, 1220 QualType ParamIn, QualType ArgIn, 1221 TemplateDeductionInfo &Info, 1222 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1223 unsigned TDF, 1224 bool PartialOrdering, 1225 bool DeducedFromArrayBound) { 1226 // We only want to look at the canonical types, since typedefs and 1227 // sugar are not part of template argument deduction. 1228 QualType Param = S.Context.getCanonicalType(ParamIn); 1229 QualType Arg = S.Context.getCanonicalType(ArgIn); 1230 1231 // If the argument type is a pack expansion, look at its pattern. 1232 // This isn't explicitly called out 1233 if (const PackExpansionType *ArgExpansion 1234 = dyn_cast<PackExpansionType>(Arg)) 1235 Arg = ArgExpansion->getPattern(); 1236 1237 if (PartialOrdering) { 1238 // C++11 [temp.deduct.partial]p5: 1239 // Before the partial ordering is done, certain transformations are 1240 // performed on the types used for partial ordering: 1241 // - If P is a reference type, P is replaced by the type referred to. 1242 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 1243 if (ParamRef) 1244 Param = ParamRef->getPointeeType(); 1245 1246 // - If A is a reference type, A is replaced by the type referred to. 1247 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 1248 if (ArgRef) 1249 Arg = ArgRef->getPointeeType(); 1250 1251 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 1252 // C++11 [temp.deduct.partial]p9: 1253 // If, for a given type, deduction succeeds in both directions (i.e., 1254 // the types are identical after the transformations above) and both 1255 // P and A were reference types [...]: 1256 // - if [one type] was an lvalue reference and [the other type] was 1257 // not, [the other type] is not considered to be at least as 1258 // specialized as [the first type] 1259 // - if [one type] is more cv-qualified than [the other type], 1260 // [the other type] is not considered to be at least as specialized 1261 // as [the first type] 1262 // Objective-C ARC adds: 1263 // - [one type] has non-trivial lifetime, [the other type] has 1264 // __unsafe_unretained lifetime, and the types are otherwise 1265 // identical 1266 // 1267 // A is "considered to be at least as specialized" as P iff deduction 1268 // succeeds, so we model this as a deduction failure. Note that 1269 // [the first type] is P and [the other type] is A here; the standard 1270 // gets this backwards. 1271 Qualifiers ParamQuals = Param.getQualifiers(); 1272 Qualifiers ArgQuals = Arg.getQualifiers(); 1273 if ((ParamRef->isLValueReferenceType() && 1274 !ArgRef->isLValueReferenceType()) || 1275 ParamQuals.isStrictSupersetOf(ArgQuals) || 1276 (ParamQuals.hasNonTrivialObjCLifetime() && 1277 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1278 ParamQuals.withoutObjCLifetime() == 1279 ArgQuals.withoutObjCLifetime())) { 1280 Info.FirstArg = TemplateArgument(ParamIn); 1281 Info.SecondArg = TemplateArgument(ArgIn); 1282 return Sema::TDK_NonDeducedMismatch; 1283 } 1284 } 1285 1286 // C++11 [temp.deduct.partial]p7: 1287 // Remove any top-level cv-qualifiers: 1288 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1289 // version of P. 1290 Param = Param.getUnqualifiedType(); 1291 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1292 // version of A. 1293 Arg = Arg.getUnqualifiedType(); 1294 } else { 1295 // C++0x [temp.deduct.call]p4 bullet 1: 1296 // - If the original P is a reference type, the deduced A (i.e., the type 1297 // referred to by the reference) can be more cv-qualified than the 1298 // transformed A. 1299 if (TDF & TDF_ParamWithReferenceType) { 1300 Qualifiers Quals; 1301 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1302 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1303 Arg.getCVRQualifiers()); 1304 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1305 } 1306 1307 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1308 // C++0x [temp.deduct.type]p10: 1309 // If P and A are function types that originated from deduction when 1310 // taking the address of a function template (14.8.2.2) or when deducing 1311 // template arguments from a function declaration (14.8.2.6) and Pi and 1312 // Ai are parameters of the top-level parameter-type-list of P and A, 1313 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1314 // is an lvalue reference, in 1315 // which case the type of Pi is changed to be the template parameter 1316 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1317 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1318 // deduced as X&. - end note ] 1319 TDF &= ~TDF_TopLevelParameterTypeList; 1320 if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) 1321 Param = Param->getPointeeType(); 1322 } 1323 } 1324 1325 // C++ [temp.deduct.type]p9: 1326 // A template type argument T, a template template argument TT or a 1327 // template non-type argument i can be deduced if P and A have one of 1328 // the following forms: 1329 // 1330 // T 1331 // cv-list T 1332 if (const TemplateTypeParmType *TemplateTypeParm 1333 = Param->getAs<TemplateTypeParmType>()) { 1334 // Just skip any attempts to deduce from a placeholder type or a parameter 1335 // at a different depth. 1336 if (Arg->isPlaceholderType() || 1337 Info.getDeducedDepth() != TemplateTypeParm->getDepth()) 1338 return Sema::TDK_Success; 1339 1340 unsigned Index = TemplateTypeParm->getIndex(); 1341 bool RecanonicalizeArg = false; 1342 1343 // If the argument type is an array type, move the qualifiers up to the 1344 // top level, so they can be matched with the qualifiers on the parameter. 1345 if (isa<ArrayType>(Arg)) { 1346 Qualifiers Quals; 1347 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1348 if (Quals) { 1349 Arg = S.Context.getQualifiedType(Arg, Quals); 1350 RecanonicalizeArg = true; 1351 } 1352 } 1353 1354 // The argument type can not be less qualified than the parameter 1355 // type. 1356 if (!(TDF & TDF_IgnoreQualifiers) && 1357 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1358 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1359 Info.FirstArg = TemplateArgument(Param); 1360 Info.SecondArg = TemplateArgument(Arg); 1361 return Sema::TDK_Underqualified; 1362 } 1363 1364 // Do not match a function type with a cv-qualified type. 1365 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1366 if (Arg->isFunctionType() && Param.hasQualifiers()) { 1367 return Sema::TDK_NonDeducedMismatch; 1368 } 1369 1370 assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && 1371 "saw template type parameter with wrong depth"); 1372 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1373 QualType DeducedType = Arg; 1374 1375 // Remove any qualifiers on the parameter from the deduced type. 1376 // We checked the qualifiers for consistency above. 1377 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1378 Qualifiers ParamQs = Param.getQualifiers(); 1379 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1380 if (ParamQs.hasObjCGCAttr()) 1381 DeducedQs.removeObjCGCAttr(); 1382 if (ParamQs.hasAddressSpace()) 1383 DeducedQs.removeAddressSpace(); 1384 if (ParamQs.hasObjCLifetime()) 1385 DeducedQs.removeObjCLifetime(); 1386 1387 // Objective-C ARC: 1388 // If template deduction would produce a lifetime qualifier on a type 1389 // that is not a lifetime type, template argument deduction fails. 1390 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1391 !DeducedType->isDependentType()) { 1392 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1393 Info.FirstArg = TemplateArgument(Param); 1394 Info.SecondArg = TemplateArgument(Arg); 1395 return Sema::TDK_Underqualified; 1396 } 1397 1398 // Objective-C ARC: 1399 // If template deduction would produce an argument type with lifetime type 1400 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1401 if (S.getLangOpts().ObjCAutoRefCount && 1402 DeducedType->isObjCLifetimeType() && 1403 !DeducedQs.hasObjCLifetime()) 1404 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1405 1406 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1407 DeducedQs); 1408 1409 if (RecanonicalizeArg) 1410 DeducedType = S.Context.getCanonicalType(DeducedType); 1411 1412 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1413 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1414 Deduced[Index], 1415 NewDeduced); 1416 if (Result.isNull()) { 1417 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1418 Info.FirstArg = Deduced[Index]; 1419 Info.SecondArg = NewDeduced; 1420 return Sema::TDK_Inconsistent; 1421 } 1422 1423 Deduced[Index] = Result; 1424 return Sema::TDK_Success; 1425 } 1426 1427 // Set up the template argument deduction information for a failure. 1428 Info.FirstArg = TemplateArgument(ParamIn); 1429 Info.SecondArg = TemplateArgument(ArgIn); 1430 1431 // If the parameter is an already-substituted template parameter 1432 // pack, do nothing: we don't know which of its arguments to look 1433 // at, so we have to wait until all of the parameter packs in this 1434 // expansion have arguments. 1435 if (isa<SubstTemplateTypeParmPackType>(Param)) 1436 return Sema::TDK_Success; 1437 1438 // Check the cv-qualifiers on the parameter and argument types. 1439 CanQualType CanParam = S.Context.getCanonicalType(Param); 1440 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1441 if (!(TDF & TDF_IgnoreQualifiers)) { 1442 if (TDF & TDF_ParamWithReferenceType) { 1443 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1444 return Sema::TDK_NonDeducedMismatch; 1445 } else if (TDF & TDF_ArgWithReferenceType) { 1446 // C++ [temp.deduct.conv]p4: 1447 // If the original A is a reference type, A can be more cv-qualified 1448 // than the deduced A 1449 if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) 1450 return Sema::TDK_NonDeducedMismatch; 1451 1452 // Strip out all extra qualifiers from the argument to figure out the 1453 // type we're converting to, prior to the qualification conversion. 1454 Qualifiers Quals; 1455 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1456 Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); 1457 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1458 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1459 return Sema::TDK_NonDeducedMismatch; 1460 } 1461 1462 // If the parameter type is not dependent, there is nothing to deduce. 1463 if (!Param->isDependentType()) { 1464 if (!(TDF & TDF_SkipNonDependent)) { 1465 bool NonDeduced = 1466 (TDF & TDF_AllowCompatibleFunctionType) 1467 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) 1468 : Param != Arg; 1469 if (NonDeduced) { 1470 return Sema::TDK_NonDeducedMismatch; 1471 } 1472 } 1473 return Sema::TDK_Success; 1474 } 1475 } else if (!Param->isDependentType()) { 1476 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1477 ArgUnqualType = CanArg.getUnqualifiedType(); 1478 bool Success = 1479 (TDF & TDF_AllowCompatibleFunctionType) 1480 ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) 1481 : ParamUnqualType == ArgUnqualType; 1482 if (Success) 1483 return Sema::TDK_Success; 1484 } 1485 1486 switch (Param->getTypeClass()) { 1487 // Non-canonical types cannot appear here. 1488 #define NON_CANONICAL_TYPE(Class, Base) \ 1489 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1490 #define TYPE(Class, Base) 1491 #include "clang/AST/TypeNodes.inc" 1492 1493 case Type::TemplateTypeParm: 1494 case Type::SubstTemplateTypeParmPack: 1495 llvm_unreachable("Type nodes handled above"); 1496 1497 // These types cannot be dependent, so simply check whether the types are 1498 // the same. 1499 case Type::Builtin: 1500 case Type::VariableArray: 1501 case Type::Vector: 1502 case Type::FunctionNoProto: 1503 case Type::Record: 1504 case Type::Enum: 1505 case Type::ObjCObject: 1506 case Type::ObjCInterface: 1507 case Type::ObjCObjectPointer: 1508 if (TDF & TDF_SkipNonDependent) 1509 return Sema::TDK_Success; 1510 1511 if (TDF & TDF_IgnoreQualifiers) { 1512 Param = Param.getUnqualifiedType(); 1513 Arg = Arg.getUnqualifiedType(); 1514 } 1515 1516 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1517 1518 // _Complex T [placeholder extension] 1519 case Type::Complex: 1520 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1521 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1522 cast<ComplexType>(Param)->getElementType(), 1523 ComplexArg->getElementType(), 1524 Info, Deduced, TDF); 1525 1526 return Sema::TDK_NonDeducedMismatch; 1527 1528 // _Atomic T [extension] 1529 case Type::Atomic: 1530 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1531 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1532 cast<AtomicType>(Param)->getValueType(), 1533 AtomicArg->getValueType(), 1534 Info, Deduced, TDF); 1535 1536 return Sema::TDK_NonDeducedMismatch; 1537 1538 // T * 1539 case Type::Pointer: { 1540 QualType PointeeType; 1541 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1542 PointeeType = PointerArg->getPointeeType(); 1543 } else if (const ObjCObjectPointerType *PointerArg 1544 = Arg->getAs<ObjCObjectPointerType>()) { 1545 PointeeType = PointerArg->getPointeeType(); 1546 } else { 1547 return Sema::TDK_NonDeducedMismatch; 1548 } 1549 1550 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1551 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1552 cast<PointerType>(Param)->getPointeeType(), 1553 PointeeType, 1554 Info, Deduced, SubTDF); 1555 } 1556 1557 // T & 1558 case Type::LValueReference: { 1559 const LValueReferenceType *ReferenceArg = 1560 Arg->getAs<LValueReferenceType>(); 1561 if (!ReferenceArg) 1562 return Sema::TDK_NonDeducedMismatch; 1563 1564 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1565 cast<LValueReferenceType>(Param)->getPointeeType(), 1566 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1567 } 1568 1569 // T && [C++0x] 1570 case Type::RValueReference: { 1571 const RValueReferenceType *ReferenceArg = 1572 Arg->getAs<RValueReferenceType>(); 1573 if (!ReferenceArg) 1574 return Sema::TDK_NonDeducedMismatch; 1575 1576 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1577 cast<RValueReferenceType>(Param)->getPointeeType(), 1578 ReferenceArg->getPointeeType(), 1579 Info, Deduced, 0); 1580 } 1581 1582 // T [] (implied, but not stated explicitly) 1583 case Type::IncompleteArray: { 1584 const IncompleteArrayType *IncompleteArrayArg = 1585 S.Context.getAsIncompleteArrayType(Arg); 1586 if (!IncompleteArrayArg) 1587 return Sema::TDK_NonDeducedMismatch; 1588 1589 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1590 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1591 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1592 IncompleteArrayArg->getElementType(), 1593 Info, Deduced, SubTDF); 1594 } 1595 1596 // T [integer-constant] 1597 case Type::ConstantArray: { 1598 const ConstantArrayType *ConstantArrayArg = 1599 S.Context.getAsConstantArrayType(Arg); 1600 if (!ConstantArrayArg) 1601 return Sema::TDK_NonDeducedMismatch; 1602 1603 const ConstantArrayType *ConstantArrayParm = 1604 S.Context.getAsConstantArrayType(Param); 1605 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1606 return Sema::TDK_NonDeducedMismatch; 1607 1608 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1609 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1610 ConstantArrayParm->getElementType(), 1611 ConstantArrayArg->getElementType(), 1612 Info, Deduced, SubTDF); 1613 } 1614 1615 // type [i] 1616 case Type::DependentSizedArray: { 1617 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1618 if (!ArrayArg) 1619 return Sema::TDK_NonDeducedMismatch; 1620 1621 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1622 1623 // Check the element type of the arrays 1624 const DependentSizedArrayType *DependentArrayParm 1625 = S.Context.getAsDependentSizedArrayType(Param); 1626 if (Sema::TemplateDeductionResult Result 1627 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1628 DependentArrayParm->getElementType(), 1629 ArrayArg->getElementType(), 1630 Info, Deduced, SubTDF)) 1631 return Result; 1632 1633 // Determine the array bound is something we can deduce. 1634 NonTypeTemplateParmDecl *NTTP 1635 = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); 1636 if (!NTTP) 1637 return Sema::TDK_Success; 1638 1639 // We can perform template argument deduction for the given non-type 1640 // template parameter. 1641 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1642 "saw non-type template parameter with wrong depth"); 1643 if (const ConstantArrayType *ConstantArrayArg 1644 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1645 llvm::APSInt Size(ConstantArrayArg->getSize()); 1646 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, 1647 S.Context.getSizeType(), 1648 /*ArrayBound=*/true, 1649 Info, Deduced); 1650 } 1651 if (const DependentSizedArrayType *DependentArrayArg 1652 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1653 if (DependentArrayArg->getSizeExpr()) 1654 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1655 DependentArrayArg->getSizeExpr(), 1656 Info, Deduced); 1657 1658 // Incomplete type does not match a dependently-sized array type 1659 return Sema::TDK_NonDeducedMismatch; 1660 } 1661 1662 // type(*)(T) 1663 // T(*)() 1664 // T(*)(T) 1665 case Type::FunctionProto: { 1666 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1667 const FunctionProtoType *FunctionProtoArg = 1668 dyn_cast<FunctionProtoType>(Arg); 1669 if (!FunctionProtoArg) 1670 return Sema::TDK_NonDeducedMismatch; 1671 1672 const FunctionProtoType *FunctionProtoParam = 1673 cast<FunctionProtoType>(Param); 1674 1675 if (FunctionProtoParam->getMethodQuals() 1676 != FunctionProtoArg->getMethodQuals() || 1677 FunctionProtoParam->getRefQualifier() 1678 != FunctionProtoArg->getRefQualifier() || 1679 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1680 return Sema::TDK_NonDeducedMismatch; 1681 1682 // Check return types. 1683 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1684 S, TemplateParams, FunctionProtoParam->getReturnType(), 1685 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1686 return Result; 1687 1688 // Check parameter types. 1689 if (auto Result = DeduceTemplateArguments( 1690 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1691 FunctionProtoParam->getNumParams(), 1692 FunctionProtoArg->param_type_begin(), 1693 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) 1694 return Result; 1695 1696 if (TDF & TDF_AllowCompatibleFunctionType) 1697 return Sema::TDK_Success; 1698 1699 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1700 // deducing through the noexcept-specifier if it's part of the canonical 1701 // type. libstdc++ relies on this. 1702 Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); 1703 if (NonTypeTemplateParmDecl *NTTP = 1704 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1705 : nullptr) { 1706 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1707 "saw non-type template parameter with wrong depth"); 1708 1709 llvm::APSInt Noexcept(1); 1710 switch (FunctionProtoArg->canThrow()) { 1711 case CT_Cannot: 1712 Noexcept = 1; 1713 LLVM_FALLTHROUGH; 1714 1715 case CT_Can: 1716 // We give E in noexcept(E) the "deduced from array bound" treatment. 1717 // FIXME: Should we? 1718 return DeduceNonTypeTemplateArgument( 1719 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1720 /*ArrayBound*/true, Info, Deduced); 1721 1722 case CT_Dependent: 1723 if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) 1724 return DeduceNonTypeTemplateArgument( 1725 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1726 // Can't deduce anything from throw(T...). 1727 break; 1728 } 1729 } 1730 // FIXME: Detect non-deduced exception specification mismatches? 1731 // 1732 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1733 // top-level differences in noexcept-specifications. 1734 1735 return Sema::TDK_Success; 1736 } 1737 1738 case Type::InjectedClassName: 1739 // Treat a template's injected-class-name as if the template 1740 // specialization type had been used. 1741 Param = cast<InjectedClassNameType>(Param) 1742 ->getInjectedSpecializationType(); 1743 assert(isa<TemplateSpecializationType>(Param) && 1744 "injected class name is not a template specialization type"); 1745 LLVM_FALLTHROUGH; 1746 1747 // template-name<T> (where template-name refers to a class template) 1748 // template-name<i> 1749 // TT<T> 1750 // TT<i> 1751 // TT<> 1752 case Type::TemplateSpecialization: { 1753 const TemplateSpecializationType *SpecParam = 1754 cast<TemplateSpecializationType>(Param); 1755 1756 // When Arg cannot be a derived class, we can just try to deduce template 1757 // arguments from the template-id. 1758 const RecordType *RecordT = Arg->getAs<RecordType>(); 1759 if (!(TDF & TDF_DerivedClass) || !RecordT) 1760 return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, 1761 Deduced); 1762 1763 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1764 Deduced.end()); 1765 1766 Sema::TemplateDeductionResult Result = DeduceTemplateArguments( 1767 S, TemplateParams, SpecParam, Arg, Info, Deduced); 1768 1769 if (Result == Sema::TDK_Success) 1770 return Result; 1771 1772 // We cannot inspect base classes as part of deduction when the type 1773 // is incomplete, so either instantiate any templates necessary to 1774 // complete the type, or skip over it if it cannot be completed. 1775 if (!S.isCompleteType(Info.getLocation(), Arg)) 1776 return Result; 1777 1778 // C++14 [temp.deduct.call] p4b3: 1779 // If P is a class and P has the form simple-template-id, then the 1780 // transformed A can be a derived class of the deduced A. Likewise if 1781 // P is a pointer to a class of the form simple-template-id, the 1782 // transformed A can be a pointer to a derived class pointed to by the 1783 // deduced A. 1784 // 1785 // These alternatives are considered only if type deduction would 1786 // otherwise fail. If they yield more than one possible deduced A, the 1787 // type deduction fails. 1788 1789 // Reset the incorrectly deduced argument from above. 1790 Deduced = DeducedOrig; 1791 1792 // Use data recursion to crawl through the list of base classes. 1793 // Visited contains the set of nodes we have already visited, while 1794 // ToVisit is our stack of records that we still need to visit. 1795 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1796 SmallVector<const RecordType *, 8> ToVisit; 1797 ToVisit.push_back(RecordT); 1798 bool Successful = false; 1799 SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; 1800 while (!ToVisit.empty()) { 1801 // Retrieve the next class in the inheritance hierarchy. 1802 const RecordType *NextT = ToVisit.pop_back_val(); 1803 1804 // If we have already seen this type, skip it. 1805 if (!Visited.insert(NextT).second) 1806 continue; 1807 1808 // If this is a base class, try to perform template argument 1809 // deduction from it. 1810 if (NextT != RecordT) { 1811 TemplateDeductionInfo BaseInfo(Info.getLocation()); 1812 Sema::TemplateDeductionResult BaseResult = 1813 DeduceTemplateArguments(S, TemplateParams, SpecParam, 1814 QualType(NextT, 0), BaseInfo, Deduced); 1815 1816 // If template argument deduction for this base was successful, 1817 // note that we had some success. Otherwise, ignore any deductions 1818 // from this base class. 1819 if (BaseResult == Sema::TDK_Success) { 1820 // If we've already seen some success, then deduction fails due to 1821 // an ambiguity (temp.deduct.call p5). 1822 if (Successful) 1823 return Sema::TDK_MiscellaneousDeductionFailure; 1824 1825 Successful = true; 1826 std::swap(SuccessfulDeduced, Deduced); 1827 1828 Info.Param = BaseInfo.Param; 1829 Info.FirstArg = BaseInfo.FirstArg; 1830 Info.SecondArg = BaseInfo.SecondArg; 1831 } 1832 1833 Deduced = DeducedOrig; 1834 } 1835 1836 // Visit base classes 1837 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1838 for (const auto &Base : Next->bases()) { 1839 assert(Base.getType()->isRecordType() && 1840 "Base class that isn't a record?"); 1841 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1842 } 1843 } 1844 1845 if (Successful) { 1846 std::swap(SuccessfulDeduced, Deduced); 1847 return Sema::TDK_Success; 1848 } 1849 1850 return Result; 1851 } 1852 1853 // T type::* 1854 // T T::* 1855 // T (type::*)() 1856 // type (T::*)() 1857 // type (type::*)(T) 1858 // type (T::*)(T) 1859 // T (type::*)(T) 1860 // T (T::*)() 1861 // T (T::*)(T) 1862 case Type::MemberPointer: { 1863 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1864 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1865 if (!MemPtrArg) 1866 return Sema::TDK_NonDeducedMismatch; 1867 1868 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1869 if (ParamPointeeType->isFunctionType()) 1870 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1871 /*IsCtorOrDtor=*/false, Info.getLocation()); 1872 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1873 if (ArgPointeeType->isFunctionType()) 1874 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1875 /*IsCtorOrDtor=*/false, Info.getLocation()); 1876 1877 if (Sema::TemplateDeductionResult Result 1878 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1879 ParamPointeeType, 1880 ArgPointeeType, 1881 Info, Deduced, 1882 TDF & TDF_IgnoreQualifiers)) 1883 return Result; 1884 1885 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1886 QualType(MemPtrParam->getClass(), 0), 1887 QualType(MemPtrArg->getClass(), 0), 1888 Info, Deduced, 1889 TDF & TDF_IgnoreQualifiers); 1890 } 1891 1892 // (clang extension) 1893 // 1894 // type(^)(T) 1895 // T(^)() 1896 // T(^)(T) 1897 case Type::BlockPointer: { 1898 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1899 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1900 1901 if (!BlockPtrArg) 1902 return Sema::TDK_NonDeducedMismatch; 1903 1904 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1905 BlockPtrParam->getPointeeType(), 1906 BlockPtrArg->getPointeeType(), 1907 Info, Deduced, 0); 1908 } 1909 1910 // (clang extension) 1911 // 1912 // T __attribute__(((ext_vector_type(<integral constant>)))) 1913 case Type::ExtVector: { 1914 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1915 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1916 // Make sure that the vectors have the same number of elements. 1917 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1918 return Sema::TDK_NonDeducedMismatch; 1919 1920 // Perform deduction on the element types. 1921 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1922 VectorParam->getElementType(), 1923 VectorArg->getElementType(), 1924 Info, Deduced, TDF); 1925 } 1926 1927 if (const DependentSizedExtVectorType *VectorArg 1928 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1929 // We can't check the number of elements, since the argument has a 1930 // dependent number of elements. This can only occur during partial 1931 // ordering. 1932 1933 // Perform deduction on the element types. 1934 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1935 VectorParam->getElementType(), 1936 VectorArg->getElementType(), 1937 Info, Deduced, TDF); 1938 } 1939 1940 return Sema::TDK_NonDeducedMismatch; 1941 } 1942 1943 case Type::DependentVector: { 1944 const auto *VectorParam = cast<DependentVectorType>(Param); 1945 1946 if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { 1947 // Perform deduction on the element types. 1948 if (Sema::TemplateDeductionResult Result = 1949 DeduceTemplateArgumentsByTypeMatch( 1950 S, TemplateParams, VectorParam->getElementType(), 1951 VectorArg->getElementType(), Info, Deduced, TDF)) 1952 return Result; 1953 1954 // Perform deduction on the vector size, if we can. 1955 NonTypeTemplateParmDecl *NTTP = 1956 getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 1957 if (!NTTP) 1958 return Sema::TDK_Success; 1959 1960 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1961 ArgSize = VectorArg->getNumElements(); 1962 // Note that we use the "array bound" rules here; just like in that 1963 // case, we don't have any particular type for the vector size, but 1964 // we can provide one if necessary. 1965 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1966 S.Context.UnsignedIntTy, true, 1967 Info, Deduced); 1968 } 1969 1970 if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { 1971 // Perform deduction on the element types. 1972 if (Sema::TemplateDeductionResult Result = 1973 DeduceTemplateArgumentsByTypeMatch( 1974 S, TemplateParams, VectorParam->getElementType(), 1975 VectorArg->getElementType(), Info, Deduced, TDF)) 1976 return Result; 1977 1978 // Perform deduction on the vector size, if we can. 1979 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 1980 Info, VectorParam->getSizeExpr()); 1981 if (!NTTP) 1982 return Sema::TDK_Success; 1983 1984 return DeduceNonTypeTemplateArgument( 1985 S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); 1986 } 1987 1988 return Sema::TDK_NonDeducedMismatch; 1989 } 1990 1991 // (clang extension) 1992 // 1993 // T __attribute__(((ext_vector_type(N)))) 1994 case Type::DependentSizedExtVector: { 1995 const DependentSizedExtVectorType *VectorParam 1996 = cast<DependentSizedExtVectorType>(Param); 1997 1998 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1999 // Perform deduction on the element types. 2000 if (Sema::TemplateDeductionResult Result 2001 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2002 VectorParam->getElementType(), 2003 VectorArg->getElementType(), 2004 Info, Deduced, TDF)) 2005 return Result; 2006 2007 // Perform deduction on the vector size, if we can. 2008 NonTypeTemplateParmDecl *NTTP 2009 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2010 if (!NTTP) 2011 return Sema::TDK_Success; 2012 2013 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2014 ArgSize = VectorArg->getNumElements(); 2015 // Note that we use the "array bound" rules here; just like in that 2016 // case, we don't have any particular type for the vector size, but 2017 // we can provide one if necessary. 2018 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2019 S.Context.IntTy, true, Info, 2020 Deduced); 2021 } 2022 2023 if (const DependentSizedExtVectorType *VectorArg 2024 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 2025 // Perform deduction on the element types. 2026 if (Sema::TemplateDeductionResult Result 2027 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2028 VectorParam->getElementType(), 2029 VectorArg->getElementType(), 2030 Info, Deduced, TDF)) 2031 return Result; 2032 2033 // Perform deduction on the vector size, if we can. 2034 NonTypeTemplateParmDecl *NTTP 2035 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2036 if (!NTTP) 2037 return Sema::TDK_Success; 2038 2039 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2040 VectorArg->getSizeExpr(), 2041 Info, Deduced); 2042 } 2043 2044 return Sema::TDK_NonDeducedMismatch; 2045 } 2046 2047 // (clang extension) 2048 // 2049 // T __attribute__(((address_space(N)))) 2050 case Type::DependentAddressSpace: { 2051 const DependentAddressSpaceType *AddressSpaceParam = 2052 cast<DependentAddressSpaceType>(Param); 2053 2054 if (const DependentAddressSpaceType *AddressSpaceArg = 2055 dyn_cast<DependentAddressSpaceType>(Arg)) { 2056 // Perform deduction on the pointer type. 2057 if (Sema::TemplateDeductionResult Result = 2058 DeduceTemplateArgumentsByTypeMatch( 2059 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2060 AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) 2061 return Result; 2062 2063 // Perform deduction on the address space, if we can. 2064 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2065 Info, AddressSpaceParam->getAddrSpaceExpr()); 2066 if (!NTTP) 2067 return Sema::TDK_Success; 2068 2069 return DeduceNonTypeTemplateArgument( 2070 S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, 2071 Deduced); 2072 } 2073 2074 if (isTargetAddressSpace(Arg.getAddressSpace())) { 2075 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2076 false); 2077 ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); 2078 2079 // Perform deduction on the pointer types. 2080 if (Sema::TemplateDeductionResult Result = 2081 DeduceTemplateArgumentsByTypeMatch( 2082 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2083 S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) 2084 return Result; 2085 2086 // Perform deduction on the address space, if we can. 2087 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2088 Info, AddressSpaceParam->getAddrSpaceExpr()); 2089 if (!NTTP) 2090 return Sema::TDK_Success; 2091 2092 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2093 ArgAddressSpace, S.Context.IntTy, 2094 true, Info, Deduced); 2095 } 2096 2097 return Sema::TDK_NonDeducedMismatch; 2098 } 2099 2100 case Type::TypeOfExpr: 2101 case Type::TypeOf: 2102 case Type::DependentName: 2103 case Type::UnresolvedUsing: 2104 case Type::Decltype: 2105 case Type::UnaryTransform: 2106 case Type::Auto: 2107 case Type::DeducedTemplateSpecialization: 2108 case Type::DependentTemplateSpecialization: 2109 case Type::PackExpansion: 2110 case Type::Pipe: 2111 // No template argument deduction for these types 2112 return Sema::TDK_Success; 2113 } 2114 2115 llvm_unreachable("Invalid Type Class!"); 2116 } 2117 2118 static Sema::TemplateDeductionResult 2119 DeduceTemplateArguments(Sema &S, 2120 TemplateParameterList *TemplateParams, 2121 const TemplateArgument &Param, 2122 TemplateArgument Arg, 2123 TemplateDeductionInfo &Info, 2124 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2125 // If the template argument is a pack expansion, perform template argument 2126 // deduction against the pattern of that expansion. This only occurs during 2127 // partial ordering. 2128 if (Arg.isPackExpansion()) 2129 Arg = Arg.getPackExpansionPattern(); 2130 2131 switch (Param.getKind()) { 2132 case TemplateArgument::Null: 2133 llvm_unreachable("Null template argument in parameter list"); 2134 2135 case TemplateArgument::Type: 2136 if (Arg.getKind() == TemplateArgument::Type) 2137 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2138 Param.getAsType(), 2139 Arg.getAsType(), 2140 Info, Deduced, 0); 2141 Info.FirstArg = Param; 2142 Info.SecondArg = Arg; 2143 return Sema::TDK_NonDeducedMismatch; 2144 2145 case TemplateArgument::Template: 2146 if (Arg.getKind() == TemplateArgument::Template) 2147 return DeduceTemplateArguments(S, TemplateParams, 2148 Param.getAsTemplate(), 2149 Arg.getAsTemplate(), Info, Deduced); 2150 Info.FirstArg = Param; 2151 Info.SecondArg = Arg; 2152 return Sema::TDK_NonDeducedMismatch; 2153 2154 case TemplateArgument::TemplateExpansion: 2155 llvm_unreachable("caller should handle pack expansions"); 2156 2157 case TemplateArgument::Declaration: 2158 if (Arg.getKind() == TemplateArgument::Declaration && 2159 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 2160 return Sema::TDK_Success; 2161 2162 Info.FirstArg = Param; 2163 Info.SecondArg = Arg; 2164 return Sema::TDK_NonDeducedMismatch; 2165 2166 case TemplateArgument::NullPtr: 2167 if (Arg.getKind() == TemplateArgument::NullPtr && 2168 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 2169 return Sema::TDK_Success; 2170 2171 Info.FirstArg = Param; 2172 Info.SecondArg = Arg; 2173 return Sema::TDK_NonDeducedMismatch; 2174 2175 case TemplateArgument::Integral: 2176 if (Arg.getKind() == TemplateArgument::Integral) { 2177 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 2178 return Sema::TDK_Success; 2179 2180 Info.FirstArg = Param; 2181 Info.SecondArg = Arg; 2182 return Sema::TDK_NonDeducedMismatch; 2183 } 2184 2185 if (Arg.getKind() == TemplateArgument::Expression) { 2186 Info.FirstArg = Param; 2187 Info.SecondArg = Arg; 2188 return Sema::TDK_NonDeducedMismatch; 2189 } 2190 2191 Info.FirstArg = Param; 2192 Info.SecondArg = Arg; 2193 return Sema::TDK_NonDeducedMismatch; 2194 2195 case TemplateArgument::Expression: 2196 if (NonTypeTemplateParmDecl *NTTP 2197 = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { 2198 if (Arg.getKind() == TemplateArgument::Integral) 2199 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2200 Arg.getAsIntegral(), 2201 Arg.getIntegralType(), 2202 /*ArrayBound=*/false, 2203 Info, Deduced); 2204 if (Arg.getKind() == TemplateArgument::NullPtr) 2205 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2206 Arg.getNullPtrType(), 2207 Info, Deduced); 2208 if (Arg.getKind() == TemplateArgument::Expression) 2209 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2210 Arg.getAsExpr(), Info, Deduced); 2211 if (Arg.getKind() == TemplateArgument::Declaration) 2212 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2213 Arg.getAsDecl(), 2214 Arg.getParamTypeForDecl(), 2215 Info, Deduced); 2216 2217 Info.FirstArg = Param; 2218 Info.SecondArg = Arg; 2219 return Sema::TDK_NonDeducedMismatch; 2220 } 2221 2222 // Can't deduce anything, but that's okay. 2223 return Sema::TDK_Success; 2224 2225 case TemplateArgument::Pack: 2226 llvm_unreachable("Argument packs should be expanded by the caller!"); 2227 } 2228 2229 llvm_unreachable("Invalid TemplateArgument Kind!"); 2230 } 2231 2232 /// Determine whether there is a template argument to be used for 2233 /// deduction. 2234 /// 2235 /// This routine "expands" argument packs in-place, overriding its input 2236 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2237 /// 2238 /// \returns true if there is another template argument (which will be at 2239 /// \c Args[ArgIdx]), false otherwise. 2240 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2241 unsigned &ArgIdx) { 2242 if (ArgIdx == Args.size()) 2243 return false; 2244 2245 const TemplateArgument &Arg = Args[ArgIdx]; 2246 if (Arg.getKind() != TemplateArgument::Pack) 2247 return true; 2248 2249 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2250 Args = Arg.pack_elements(); 2251 ArgIdx = 0; 2252 return ArgIdx < Args.size(); 2253 } 2254 2255 /// Determine whether the given set of template arguments has a pack 2256 /// expansion that is not the last template argument. 2257 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2258 bool FoundPackExpansion = false; 2259 for (const auto &A : Args) { 2260 if (FoundPackExpansion) 2261 return true; 2262 2263 if (A.getKind() == TemplateArgument::Pack) 2264 return hasPackExpansionBeforeEnd(A.pack_elements()); 2265 2266 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2267 // templates, it should not be treated as a pack expansion. 2268 if (A.isPackExpansion()) 2269 FoundPackExpansion = true; 2270 } 2271 2272 return false; 2273 } 2274 2275 static Sema::TemplateDeductionResult 2276 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2277 ArrayRef<TemplateArgument> Params, 2278 ArrayRef<TemplateArgument> Args, 2279 TemplateDeductionInfo &Info, 2280 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2281 bool NumberOfArgumentsMustMatch) { 2282 // C++0x [temp.deduct.type]p9: 2283 // If the template argument list of P contains a pack expansion that is not 2284 // the last template argument, the entire template argument list is a 2285 // non-deduced context. 2286 if (hasPackExpansionBeforeEnd(Params)) 2287 return Sema::TDK_Success; 2288 2289 // C++0x [temp.deduct.type]p9: 2290 // If P has a form that contains <T> or <i>, then each argument Pi of the 2291 // respective template argument list P is compared with the corresponding 2292 // argument Ai of the corresponding template argument list of A. 2293 unsigned ArgIdx = 0, ParamIdx = 0; 2294 for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { 2295 if (!Params[ParamIdx].isPackExpansion()) { 2296 // The simple case: deduce template arguments by matching Pi and Ai. 2297 2298 // Check whether we have enough arguments. 2299 if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) 2300 return NumberOfArgumentsMustMatch 2301 ? Sema::TDK_MiscellaneousDeductionFailure 2302 : Sema::TDK_Success; 2303 2304 // C++1z [temp.deduct.type]p9: 2305 // During partial ordering, if Ai was originally a pack expansion [and] 2306 // Pi is not a pack expansion, template argument deduction fails. 2307 if (Args[ArgIdx].isPackExpansion()) 2308 return Sema::TDK_MiscellaneousDeductionFailure; 2309 2310 // Perform deduction for this Pi/Ai pair. 2311 if (Sema::TemplateDeductionResult Result 2312 = DeduceTemplateArguments(S, TemplateParams, 2313 Params[ParamIdx], Args[ArgIdx], 2314 Info, Deduced)) 2315 return Result; 2316 2317 // Move to the next argument. 2318 ++ArgIdx; 2319 continue; 2320 } 2321 2322 // The parameter is a pack expansion. 2323 2324 // C++0x [temp.deduct.type]p9: 2325 // If Pi is a pack expansion, then the pattern of Pi is compared with 2326 // each remaining argument in the template argument list of A. Each 2327 // comparison deduces template arguments for subsequent positions in the 2328 // template parameter packs expanded by Pi. 2329 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 2330 2331 // Prepare to deduce the packs within the pattern. 2332 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2333 2334 // Keep track of the deduced template arguments for each parameter pack 2335 // expanded by this pack expansion (the outer index) and for each 2336 // template argument (the inner SmallVectors). 2337 for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && 2338 PackScope.hasNextElement(); 2339 ++ArgIdx) { 2340 // Deduce template arguments from the pattern. 2341 if (Sema::TemplateDeductionResult Result 2342 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 2343 Info, Deduced)) 2344 return Result; 2345 2346 PackScope.nextPackElement(); 2347 } 2348 2349 // Build argument packs for each of the parameter packs expanded by this 2350 // pack expansion. 2351 if (auto Result = PackScope.finish()) 2352 return Result; 2353 } 2354 2355 return Sema::TDK_Success; 2356 } 2357 2358 static Sema::TemplateDeductionResult 2359 DeduceTemplateArguments(Sema &S, 2360 TemplateParameterList *TemplateParams, 2361 const TemplateArgumentList &ParamList, 2362 const TemplateArgumentList &ArgList, 2363 TemplateDeductionInfo &Info, 2364 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2365 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2366 ArgList.asArray(), Info, Deduced, 2367 /*NumberOfArgumentsMustMatch*/false); 2368 } 2369 2370 /// Determine whether two template arguments are the same. 2371 static bool isSameTemplateArg(ASTContext &Context, 2372 TemplateArgument X, 2373 const TemplateArgument &Y, 2374 bool PackExpansionMatchesPack = false) { 2375 // If we're checking deduced arguments (X) against original arguments (Y), 2376 // we will have flattened packs to non-expansions in X. 2377 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2378 X = X.getPackExpansionPattern(); 2379 2380 if (X.getKind() != Y.getKind()) 2381 return false; 2382 2383 switch (X.getKind()) { 2384 case TemplateArgument::Null: 2385 llvm_unreachable("Comparing NULL template argument"); 2386 2387 case TemplateArgument::Type: 2388 return Context.getCanonicalType(X.getAsType()) == 2389 Context.getCanonicalType(Y.getAsType()); 2390 2391 case TemplateArgument::Declaration: 2392 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2393 2394 case TemplateArgument::NullPtr: 2395 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2396 2397 case TemplateArgument::Template: 2398 case TemplateArgument::TemplateExpansion: 2399 return Context.getCanonicalTemplateName( 2400 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2401 Context.getCanonicalTemplateName( 2402 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2403 2404 case TemplateArgument::Integral: 2405 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2406 2407 case TemplateArgument::Expression: { 2408 llvm::FoldingSetNodeID XID, YID; 2409 X.getAsExpr()->Profile(XID, Context, true); 2410 Y.getAsExpr()->Profile(YID, Context, true); 2411 return XID == YID; 2412 } 2413 2414 case TemplateArgument::Pack: 2415 if (X.pack_size() != Y.pack_size()) 2416 return false; 2417 2418 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 2419 XPEnd = X.pack_end(), 2420 YP = Y.pack_begin(); 2421 XP != XPEnd; ++XP, ++YP) 2422 if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) 2423 return false; 2424 2425 return true; 2426 } 2427 2428 llvm_unreachable("Invalid TemplateArgument Kind!"); 2429 } 2430 2431 /// Allocate a TemplateArgumentLoc where all locations have 2432 /// been initialized to the given location. 2433 /// 2434 /// \param Arg The template argument we are producing template argument 2435 /// location information for. 2436 /// 2437 /// \param NTTPType For a declaration template argument, the type of 2438 /// the non-type template parameter that corresponds to this template 2439 /// argument. Can be null if no type sugar is available to add to the 2440 /// type from the template argument. 2441 /// 2442 /// \param Loc The source location to use for the resulting template 2443 /// argument. 2444 TemplateArgumentLoc 2445 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2446 QualType NTTPType, SourceLocation Loc) { 2447 switch (Arg.getKind()) { 2448 case TemplateArgument::Null: 2449 llvm_unreachable("Can't get a NULL template argument here"); 2450 2451 case TemplateArgument::Type: 2452 return TemplateArgumentLoc( 2453 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2454 2455 case TemplateArgument::Declaration: { 2456 if (NTTPType.isNull()) 2457 NTTPType = Arg.getParamTypeForDecl(); 2458 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2459 .getAs<Expr>(); 2460 return TemplateArgumentLoc(TemplateArgument(E), E); 2461 } 2462 2463 case TemplateArgument::NullPtr: { 2464 if (NTTPType.isNull()) 2465 NTTPType = Arg.getNullPtrType(); 2466 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2467 .getAs<Expr>(); 2468 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2469 E); 2470 } 2471 2472 case TemplateArgument::Integral: { 2473 Expr *E = 2474 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2475 return TemplateArgumentLoc(TemplateArgument(E), E); 2476 } 2477 2478 case TemplateArgument::Template: 2479 case TemplateArgument::TemplateExpansion: { 2480 NestedNameSpecifierLocBuilder Builder; 2481 TemplateName Template = Arg.getAsTemplate(); 2482 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2483 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2484 else if (QualifiedTemplateName *QTN = 2485 Template.getAsQualifiedTemplateName()) 2486 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2487 2488 if (Arg.getKind() == TemplateArgument::Template) 2489 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2490 Loc); 2491 2492 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2493 Loc, Loc); 2494 } 2495 2496 case TemplateArgument::Expression: 2497 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2498 2499 case TemplateArgument::Pack: 2500 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2501 } 2502 2503 llvm_unreachable("Invalid TemplateArgument Kind!"); 2504 } 2505 2506 TemplateArgumentLoc 2507 Sema::getIdentityTemplateArgumentLoc(Decl *TemplateParm, 2508 SourceLocation Location) { 2509 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParm)) 2510 return getTrivialTemplateArgumentLoc( 2511 TemplateArgument( 2512 Context.getTemplateTypeParmType(TTP->getDepth(), TTP->getIndex(), 2513 TTP->isParameterPack(), TTP)), 2514 QualType(), Location.isValid() ? Location : TTP->getLocation()); 2515 else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParm)) 2516 return getTrivialTemplateArgumentLoc(TemplateArgument(TemplateName(TTP)), 2517 QualType(), 2518 Location.isValid() ? Location : 2519 TTP->getLocation()); 2520 auto *NTTP = cast<NonTypeTemplateParmDecl>(TemplateParm); 2521 CXXScopeSpec SS; 2522 DeclarationNameInfo Info(NTTP->getDeclName(), 2523 Location.isValid() ? Location : NTTP->getLocation()); 2524 Expr *E = BuildDeclarationNameExpr(SS, Info, NTTP).get(); 2525 return getTrivialTemplateArgumentLoc(TemplateArgument(E), NTTP->getType(), 2526 Location.isValid() ? Location : 2527 NTTP->getLocation()); 2528 } 2529 2530 /// Convert the given deduced template argument and add it to the set of 2531 /// fully-converted template arguments. 2532 static bool 2533 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2534 DeducedTemplateArgument Arg, 2535 NamedDecl *Template, 2536 TemplateDeductionInfo &Info, 2537 bool IsDeduced, 2538 SmallVectorImpl<TemplateArgument> &Output) { 2539 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2540 unsigned ArgumentPackIndex) { 2541 // Convert the deduced template argument into a template 2542 // argument that we can check, almost as if the user had written 2543 // the template argument explicitly. 2544 TemplateArgumentLoc ArgLoc = 2545 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2546 2547 // Check the template argument, converting it as necessary. 2548 return S.CheckTemplateArgument( 2549 Param, ArgLoc, Template, Template->getLocation(), 2550 Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, 2551 IsDeduced 2552 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2553 : Sema::CTAK_Deduced) 2554 : Sema::CTAK_Specified); 2555 }; 2556 2557 if (Arg.getKind() == TemplateArgument::Pack) { 2558 // This is a template argument pack, so check each of its arguments against 2559 // the template parameter. 2560 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2561 for (const auto &P : Arg.pack_elements()) { 2562 // When converting the deduced template argument, append it to the 2563 // general output list. We need to do this so that the template argument 2564 // checking logic has all of the prior template arguments available. 2565 DeducedTemplateArgument InnerArg(P); 2566 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2567 assert(InnerArg.getKind() != TemplateArgument::Pack && 2568 "deduced nested pack"); 2569 if (P.isNull()) { 2570 // We deduced arguments for some elements of this pack, but not for 2571 // all of them. This happens if we get a conditionally-non-deduced 2572 // context in a pack expansion (such as an overload set in one of the 2573 // arguments). 2574 S.Diag(Param->getLocation(), 2575 diag::err_template_arg_deduced_incomplete_pack) 2576 << Arg << Param; 2577 return true; 2578 } 2579 if (ConvertArg(InnerArg, PackedArgsBuilder.size())) 2580 return true; 2581 2582 // Move the converted template argument into our argument pack. 2583 PackedArgsBuilder.push_back(Output.pop_back_val()); 2584 } 2585 2586 // If the pack is empty, we still need to substitute into the parameter 2587 // itself, in case that substitution fails. 2588 if (PackedArgsBuilder.empty()) { 2589 LocalInstantiationScope Scope(S); 2590 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); 2591 MultiLevelTemplateArgumentList Args(TemplateArgs); 2592 2593 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2594 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2595 NTTP, Output, 2596 Template->getSourceRange()); 2597 if (Inst.isInvalid() || 2598 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2599 NTTP->getDeclName()).isNull()) 2600 return true; 2601 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2602 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2603 TTP, Output, 2604 Template->getSourceRange()); 2605 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2606 return true; 2607 } 2608 // For type parameters, no substitution is ever required. 2609 } 2610 2611 // Create the resulting argument pack. 2612 Output.push_back( 2613 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2614 return false; 2615 } 2616 2617 return ConvertArg(Arg, 0); 2618 } 2619 2620 // FIXME: This should not be a template, but 2621 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2622 // TemplateDecl. 2623 template<typename TemplateDeclT> 2624 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2625 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2626 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2627 TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, 2628 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2629 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2630 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2631 2632 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2633 NamedDecl *Param = TemplateParams->getParam(I); 2634 2635 // C++0x [temp.arg.explicit]p3: 2636 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2637 // be deduced to an empty sequence of template arguments. 2638 // FIXME: Where did the word "trailing" come from? 2639 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2640 if (auto Result = 2641 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2642 return Result; 2643 } 2644 2645 if (!Deduced[I].isNull()) { 2646 if (I < NumAlreadyConverted) { 2647 // We may have had explicitly-specified template arguments for a 2648 // template parameter pack (that may or may not have been extended 2649 // via additional deduced arguments). 2650 if (Param->isParameterPack() && CurrentInstantiationScope && 2651 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2652 // Forget the partially-substituted pack; its substitution is now 2653 // complete. 2654 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2655 // We still need to check the argument in case it was extended by 2656 // deduction. 2657 } else { 2658 // We have already fully type-checked and converted this 2659 // argument, because it was explicitly-specified. Just record the 2660 // presence of this argument. 2661 Builder.push_back(Deduced[I]); 2662 continue; 2663 } 2664 } 2665 2666 // We may have deduced this argument, so it still needs to be 2667 // checked and converted. 2668 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2669 IsDeduced, Builder)) { 2670 Info.Param = makeTemplateParameter(Param); 2671 // FIXME: These template arguments are temporary. Free them! 2672 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2673 return Sema::TDK_SubstitutionFailure; 2674 } 2675 2676 continue; 2677 } 2678 2679 // Substitute into the default template argument, if available. 2680 bool HasDefaultArg = false; 2681 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2682 if (!TD) { 2683 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2684 isa<VarTemplatePartialSpecializationDecl>(Template)); 2685 return Sema::TDK_Incomplete; 2686 } 2687 2688 TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2689 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, 2690 HasDefaultArg); 2691 2692 // If there was no default argument, deduction is incomplete. 2693 if (DefArg.getArgument().isNull()) { 2694 Info.Param = makeTemplateParameter( 2695 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2696 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2697 if (PartialOverloading) break; 2698 2699 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2700 : Sema::TDK_Incomplete; 2701 } 2702 2703 // Check whether we can actually use the default argument. 2704 if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), 2705 TD->getSourceRange().getEnd(), 0, Builder, 2706 Sema::CTAK_Specified)) { 2707 Info.Param = makeTemplateParameter( 2708 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2709 // FIXME: These template arguments are temporary. Free them! 2710 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2711 return Sema::TDK_SubstitutionFailure; 2712 } 2713 2714 // If we get here, we successfully used the default template argument. 2715 } 2716 2717 return Sema::TDK_Success; 2718 } 2719 2720 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2721 if (auto *DC = dyn_cast<DeclContext>(D)) 2722 return DC; 2723 return D->getDeclContext(); 2724 } 2725 2726 template<typename T> struct IsPartialSpecialization { 2727 static constexpr bool value = false; 2728 }; 2729 template<> 2730 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2731 static constexpr bool value = true; 2732 }; 2733 template<> 2734 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2735 static constexpr bool value = true; 2736 }; 2737 2738 template<typename TemplateDeclT> 2739 static Sema::TemplateDeductionResult 2740 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template, 2741 ArrayRef<TemplateArgument> DeducedArgs, 2742 TemplateDeductionInfo& Info) { 2743 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2744 Template->getAssociatedConstraints(AssociatedConstraints); 2745 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, 2746 DeducedArgs, Info.getLocation(), 2747 Info.AssociatedConstraintsSatisfaction) || 2748 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2749 Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs)); 2750 return Sema::TDK_ConstraintsNotSatisfied; 2751 } 2752 return Sema::TDK_Success; 2753 } 2754 2755 /// Complete template argument deduction for a partial specialization. 2756 template <typename T> 2757 static typename std::enable_if<IsPartialSpecialization<T>::value, 2758 Sema::TemplateDeductionResult>::type 2759 FinishTemplateArgumentDeduction( 2760 Sema &S, T *Partial, bool IsPartialOrdering, 2761 const TemplateArgumentList &TemplateArgs, 2762 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2763 TemplateDeductionInfo &Info) { 2764 // Unevaluated SFINAE context. 2765 EnterExpressionEvaluationContext Unevaluated( 2766 S, Sema::ExpressionEvaluationContext::Unevaluated); 2767 Sema::SFINAETrap Trap(S); 2768 2769 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2770 2771 // C++ [temp.deduct.type]p2: 2772 // [...] or if any template argument remains neither deduced nor 2773 // explicitly specified, template argument deduction fails. 2774 SmallVector<TemplateArgument, 4> Builder; 2775 if (auto Result = ConvertDeducedTemplateArguments( 2776 S, Partial, IsPartialOrdering, Deduced, Info, Builder)) 2777 return Result; 2778 2779 // Form the template argument list from the deduced template arguments. 2780 TemplateArgumentList *DeducedArgumentList 2781 = TemplateArgumentList::CreateCopy(S.Context, Builder); 2782 2783 Info.reset(DeducedArgumentList); 2784 2785 // Substitute the deduced template arguments into the template 2786 // arguments of the class template partial specialization, and 2787 // verify that the instantiated template arguments are both valid 2788 // and are equivalent to the template arguments originally provided 2789 // to the class template. 2790 LocalInstantiationScope InstScope(S); 2791 auto *Template = Partial->getSpecializedTemplate(); 2792 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2793 Partial->getTemplateArgsAsWritten(); 2794 const TemplateArgumentLoc *PartialTemplateArgs = 2795 PartialTemplArgInfo->getTemplateArgs(); 2796 2797 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2798 PartialTemplArgInfo->RAngleLoc); 2799 2800 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2801 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2802 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2803 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2804 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2805 2806 Decl *Param = const_cast<NamedDecl *>( 2807 Partial->getTemplateParameters()->getParam(ParamIdx)); 2808 Info.Param = makeTemplateParameter(Param); 2809 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2810 return Sema::TDK_SubstitutionFailure; 2811 } 2812 2813 bool ConstraintsNotSatisfied; 2814 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2815 if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, 2816 false, ConvertedInstArgs, 2817 /*UpdateArgsWithConversions=*/true, 2818 &ConstraintsNotSatisfied)) 2819 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied : 2820 Sema::TDK_SubstitutionFailure; 2821 2822 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2823 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2824 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2825 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2826 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2827 Info.FirstArg = TemplateArgs[I]; 2828 Info.SecondArg = InstArg; 2829 return Sema::TDK_NonDeducedMismatch; 2830 } 2831 } 2832 2833 if (Trap.hasErrorOccurred()) 2834 return Sema::TDK_SubstitutionFailure; 2835 2836 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info)) 2837 return Result; 2838 2839 return Sema::TDK_Success; 2840 } 2841 2842 /// Complete template argument deduction for a class or variable template, 2843 /// when partial ordering against a partial specialization. 2844 // FIXME: Factor out duplication with partial specialization version above. 2845 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2846 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2847 const TemplateArgumentList &TemplateArgs, 2848 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2849 TemplateDeductionInfo &Info) { 2850 // Unevaluated SFINAE context. 2851 EnterExpressionEvaluationContext Unevaluated( 2852 S, Sema::ExpressionEvaluationContext::Unevaluated); 2853 Sema::SFINAETrap Trap(S); 2854 2855 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 2856 2857 // C++ [temp.deduct.type]p2: 2858 // [...] or if any template argument remains neither deduced nor 2859 // explicitly specified, template argument deduction fails. 2860 SmallVector<TemplateArgument, 4> Builder; 2861 if (auto Result = ConvertDeducedTemplateArguments( 2862 S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) 2863 return Result; 2864 2865 // Check that we produced the correct argument list. 2866 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2867 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2868 TemplateArgument InstArg = Builder[I]; 2869 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2870 /*PackExpansionMatchesPack*/true)) { 2871 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2872 Info.FirstArg = TemplateArgs[I]; 2873 Info.SecondArg = InstArg; 2874 return Sema::TDK_NonDeducedMismatch; 2875 } 2876 } 2877 2878 if (Trap.hasErrorOccurred()) 2879 return Sema::TDK_SubstitutionFailure; 2880 2881 if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder, 2882 Info)) 2883 return Result; 2884 2885 return Sema::TDK_Success; 2886 } 2887 2888 /// Perform template argument deduction to determine whether 2889 /// the given template arguments match the given class template 2890 /// partial specialization per C++ [temp.class.spec.match]. 2891 Sema::TemplateDeductionResult 2892 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2893 const TemplateArgumentList &TemplateArgs, 2894 TemplateDeductionInfo &Info) { 2895 if (Partial->isInvalidDecl()) 2896 return TDK_Invalid; 2897 2898 // C++ [temp.class.spec.match]p2: 2899 // A partial specialization matches a given actual template 2900 // argument list if the template arguments of the partial 2901 // specialization can be deduced from the actual template argument 2902 // list (14.8.2). 2903 2904 // Unevaluated SFINAE context. 2905 EnterExpressionEvaluationContext Unevaluated( 2906 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2907 SFINAETrap Trap(*this); 2908 2909 SmallVector<DeducedTemplateArgument, 4> Deduced; 2910 Deduced.resize(Partial->getTemplateParameters()->size()); 2911 if (TemplateDeductionResult Result 2912 = ::DeduceTemplateArguments(*this, 2913 Partial->getTemplateParameters(), 2914 Partial->getTemplateArgs(), 2915 TemplateArgs, Info, Deduced)) 2916 return Result; 2917 2918 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2919 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2920 Info); 2921 if (Inst.isInvalid()) 2922 return TDK_InstantiationDepth; 2923 2924 if (Trap.hasErrorOccurred()) 2925 return Sema::TDK_SubstitutionFailure; 2926 2927 return ::FinishTemplateArgumentDeduction( 2928 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2929 } 2930 2931 /// Perform template argument deduction to determine whether 2932 /// the given template arguments match the given variable template 2933 /// partial specialization per C++ [temp.class.spec.match]. 2934 Sema::TemplateDeductionResult 2935 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 2936 const TemplateArgumentList &TemplateArgs, 2937 TemplateDeductionInfo &Info) { 2938 if (Partial->isInvalidDecl()) 2939 return TDK_Invalid; 2940 2941 // C++ [temp.class.spec.match]p2: 2942 // A partial specialization matches a given actual template 2943 // argument list if the template arguments of the partial 2944 // specialization can be deduced from the actual template argument 2945 // list (14.8.2). 2946 2947 // Unevaluated SFINAE context. 2948 EnterExpressionEvaluationContext Unevaluated( 2949 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2950 SFINAETrap Trap(*this); 2951 2952 SmallVector<DeducedTemplateArgument, 4> Deduced; 2953 Deduced.resize(Partial->getTemplateParameters()->size()); 2954 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 2955 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 2956 TemplateArgs, Info, Deduced)) 2957 return Result; 2958 2959 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2960 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2961 Info); 2962 if (Inst.isInvalid()) 2963 return TDK_InstantiationDepth; 2964 2965 if (Trap.hasErrorOccurred()) 2966 return Sema::TDK_SubstitutionFailure; 2967 2968 return ::FinishTemplateArgumentDeduction( 2969 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2970 } 2971 2972 /// Determine whether the given type T is a simple-template-id type. 2973 static bool isSimpleTemplateIdType(QualType T) { 2974 if (const TemplateSpecializationType *Spec 2975 = T->getAs<TemplateSpecializationType>()) 2976 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 2977 2978 // C++17 [temp.local]p2: 2979 // the injected-class-name [...] is equivalent to the template-name followed 2980 // by the template-arguments of the class template specialization or partial 2981 // specialization enclosed in <> 2982 // ... which means it's equivalent to a simple-template-id. 2983 // 2984 // This only arises during class template argument deduction for a copy 2985 // deduction candidate, where it permits slicing. 2986 if (T->getAs<InjectedClassNameType>()) 2987 return true; 2988 2989 return false; 2990 } 2991 2992 /// Substitute the explicitly-provided template arguments into the 2993 /// given function template according to C++ [temp.arg.explicit]. 2994 /// 2995 /// \param FunctionTemplate the function template into which the explicit 2996 /// template arguments will be substituted. 2997 /// 2998 /// \param ExplicitTemplateArgs the explicitly-specified template 2999 /// arguments. 3000 /// 3001 /// \param Deduced the deduced template arguments, which will be populated 3002 /// with the converted and checked explicit template arguments. 3003 /// 3004 /// \param ParamTypes will be populated with the instantiated function 3005 /// parameters. 3006 /// 3007 /// \param FunctionType if non-NULL, the result type of the function template 3008 /// will also be instantiated and the pointed-to value will be updated with 3009 /// the instantiated function type. 3010 /// 3011 /// \param Info if substitution fails for any reason, this object will be 3012 /// populated with more information about the failure. 3013 /// 3014 /// \returns TDK_Success if substitution was successful, or some failure 3015 /// condition. 3016 Sema::TemplateDeductionResult 3017 Sema::SubstituteExplicitTemplateArguments( 3018 FunctionTemplateDecl *FunctionTemplate, 3019 TemplateArgumentListInfo &ExplicitTemplateArgs, 3020 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3021 SmallVectorImpl<QualType> &ParamTypes, 3022 QualType *FunctionType, 3023 TemplateDeductionInfo &Info) { 3024 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3025 TemplateParameterList *TemplateParams 3026 = FunctionTemplate->getTemplateParameters(); 3027 3028 if (ExplicitTemplateArgs.size() == 0) { 3029 // No arguments to substitute; just copy over the parameter types and 3030 // fill in the function type. 3031 for (auto P : Function->parameters()) 3032 ParamTypes.push_back(P->getType()); 3033 3034 if (FunctionType) 3035 *FunctionType = Function->getType(); 3036 return TDK_Success; 3037 } 3038 3039 // Unevaluated SFINAE context. 3040 EnterExpressionEvaluationContext Unevaluated( 3041 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3042 SFINAETrap Trap(*this); 3043 3044 // C++ [temp.arg.explicit]p3: 3045 // Template arguments that are present shall be specified in the 3046 // declaration order of their corresponding template-parameters. The 3047 // template argument list shall not specify more template-arguments than 3048 // there are corresponding template-parameters. 3049 SmallVector<TemplateArgument, 4> Builder; 3050 3051 // Enter a new template instantiation context where we check the 3052 // explicitly-specified template arguments against this function template, 3053 // and then substitute them into the function parameter types. 3054 SmallVector<TemplateArgument, 4> DeducedArgs; 3055 InstantiatingTemplate Inst( 3056 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3057 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3058 if (Inst.isInvalid()) 3059 return TDK_InstantiationDepth; 3060 3061 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3062 ExplicitTemplateArgs, true, Builder, false) || 3063 Trap.hasErrorOccurred()) { 3064 unsigned Index = Builder.size(); 3065 if (Index >= TemplateParams->size()) 3066 return TDK_SubstitutionFailure; 3067 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3068 return TDK_InvalidExplicitArguments; 3069 } 3070 3071 // Form the template argument list from the explicitly-specified 3072 // template arguments. 3073 TemplateArgumentList *ExplicitArgumentList 3074 = TemplateArgumentList::CreateCopy(Context, Builder); 3075 Info.setExplicitArgs(ExplicitArgumentList); 3076 3077 // Template argument deduction and the final substitution should be 3078 // done in the context of the templated declaration. Explicit 3079 // argument substitution, on the other hand, needs to happen in the 3080 // calling context. 3081 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3082 3083 // If we deduced template arguments for a template parameter pack, 3084 // note that the template argument pack is partially substituted and record 3085 // the explicit template arguments. They'll be used as part of deduction 3086 // for this template parameter pack. 3087 unsigned PartiallySubstitutedPackIndex = -1u; 3088 if (!Builder.empty()) { 3089 const TemplateArgument &Arg = Builder.back(); 3090 if (Arg.getKind() == TemplateArgument::Pack) { 3091 auto *Param = TemplateParams->getParam(Builder.size() - 1); 3092 // If this is a fully-saturated fixed-size pack, it should be 3093 // fully-substituted, not partially-substituted. 3094 Optional<unsigned> Expansions = getExpandedPackSize(Param); 3095 if (!Expansions || Arg.pack_size() < *Expansions) { 3096 PartiallySubstitutedPackIndex = Builder.size() - 1; 3097 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3098 Param, Arg.pack_begin(), Arg.pack_size()); 3099 } 3100 } 3101 } 3102 3103 const FunctionProtoType *Proto 3104 = Function->getType()->getAs<FunctionProtoType>(); 3105 assert(Proto && "Function template does not have a prototype?"); 3106 3107 // Isolate our substituted parameters from our caller. 3108 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3109 3110 ExtParameterInfoBuilder ExtParamInfos; 3111 3112 // Instantiate the types of each of the function parameters given the 3113 // explicitly-specified template arguments. If the function has a trailing 3114 // return type, substitute it after the arguments to ensure we substitute 3115 // in lexical order. 3116 if (Proto->hasTrailingReturn()) { 3117 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3118 Proto->getExtParameterInfosOrNull(), 3119 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3120 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3121 return TDK_SubstitutionFailure; 3122 } 3123 3124 // Instantiate the return type. 3125 QualType ResultType; 3126 { 3127 // C++11 [expr.prim.general]p3: 3128 // If a declaration declares a member function or member function 3129 // template of a class X, the expression this is a prvalue of type 3130 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3131 // and the end of the function-definition, member-declarator, or 3132 // declarator. 3133 Qualifiers ThisTypeQuals; 3134 CXXRecordDecl *ThisContext = nullptr; 3135 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3136 ThisContext = Method->getParent(); 3137 ThisTypeQuals = Method->getMethodQualifiers(); 3138 } 3139 3140 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3141 getLangOpts().CPlusPlus11); 3142 3143 ResultType = 3144 SubstType(Proto->getReturnType(), 3145 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3146 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3147 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3148 return TDK_SubstitutionFailure; 3149 // CUDA: Kernel function must have 'void' return type. 3150 if (getLangOpts().CUDA) 3151 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3152 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3153 << Function->getType() << Function->getSourceRange(); 3154 return TDK_SubstitutionFailure; 3155 } 3156 } 3157 3158 // Instantiate the types of each of the function parameters given the 3159 // explicitly-specified template arguments if we didn't do so earlier. 3160 if (!Proto->hasTrailingReturn() && 3161 SubstParmTypes(Function->getLocation(), Function->parameters(), 3162 Proto->getExtParameterInfosOrNull(), 3163 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3164 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3165 return TDK_SubstitutionFailure; 3166 3167 if (FunctionType) { 3168 auto EPI = Proto->getExtProtoInfo(); 3169 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3170 3171 // In C++1z onwards, exception specifications are part of the function type, 3172 // so substitution into the type must also substitute into the exception 3173 // specification. 3174 SmallVector<QualType, 4> ExceptionStorage; 3175 if (getLangOpts().CPlusPlus17 && 3176 SubstExceptionSpec( 3177 Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, 3178 MultiLevelTemplateArgumentList(*ExplicitArgumentList))) 3179 return TDK_SubstitutionFailure; 3180 3181 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3182 Function->getLocation(), 3183 Function->getDeclName(), 3184 EPI); 3185 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3186 return TDK_SubstitutionFailure; 3187 } 3188 3189 // C++ [temp.arg.explicit]p2: 3190 // Trailing template arguments that can be deduced (14.8.2) may be 3191 // omitted from the list of explicit template-arguments. If all of the 3192 // template arguments can be deduced, they may all be omitted; in this 3193 // case, the empty template argument list <> itself may also be omitted. 3194 // 3195 // Take all of the explicitly-specified arguments and put them into 3196 // the set of deduced template arguments. The partially-substituted 3197 // parameter pack, however, will be set to NULL since the deduction 3198 // mechanism handles the partially-substituted argument pack directly. 3199 Deduced.reserve(TemplateParams->size()); 3200 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 3201 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 3202 if (I == PartiallySubstitutedPackIndex) 3203 Deduced.push_back(DeducedTemplateArgument()); 3204 else 3205 Deduced.push_back(Arg); 3206 } 3207 3208 return TDK_Success; 3209 } 3210 3211 /// Check whether the deduced argument type for a call to a function 3212 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3213 static Sema::TemplateDeductionResult 3214 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3215 Sema::OriginalCallArg OriginalArg, 3216 QualType DeducedA) { 3217 ASTContext &Context = S.Context; 3218 3219 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3220 Info.FirstArg = TemplateArgument(DeducedA); 3221 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3222 Info.CallArgIndex = OriginalArg.ArgIdx; 3223 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3224 : Sema::TDK_DeducedMismatch; 3225 }; 3226 3227 QualType A = OriginalArg.OriginalArgType; 3228 QualType OriginalParamType = OriginalArg.OriginalParamType; 3229 3230 // Check for type equality (top-level cv-qualifiers are ignored). 3231 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3232 return Sema::TDK_Success; 3233 3234 // Strip off references on the argument types; they aren't needed for 3235 // the following checks. 3236 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3237 DeducedA = DeducedARef->getPointeeType(); 3238 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3239 A = ARef->getPointeeType(); 3240 3241 // C++ [temp.deduct.call]p4: 3242 // [...] However, there are three cases that allow a difference: 3243 // - If the original P is a reference type, the deduced A (i.e., the 3244 // type referred to by the reference) can be more cv-qualified than 3245 // the transformed A. 3246 if (const ReferenceType *OriginalParamRef 3247 = OriginalParamType->getAs<ReferenceType>()) { 3248 // We don't want to keep the reference around any more. 3249 OriginalParamType = OriginalParamRef->getPointeeType(); 3250 3251 // FIXME: Resolve core issue (no number yet): if the original P is a 3252 // reference type and the transformed A is function type "noexcept F", 3253 // the deduced A can be F. 3254 QualType Tmp; 3255 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3256 return Sema::TDK_Success; 3257 3258 Qualifiers AQuals = A.getQualifiers(); 3259 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3260 3261 // Under Objective-C++ ARC, the deduced type may have implicitly 3262 // been given strong or (when dealing with a const reference) 3263 // unsafe_unretained lifetime. If so, update the original 3264 // qualifiers to include this lifetime. 3265 if (S.getLangOpts().ObjCAutoRefCount && 3266 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3267 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3268 (DeducedAQuals.hasConst() && 3269 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3270 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3271 } 3272 3273 if (AQuals == DeducedAQuals) { 3274 // Qualifiers match; there's nothing to do. 3275 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3276 return Failed(); 3277 } else { 3278 // Qualifiers are compatible, so have the argument type adopt the 3279 // deduced argument type's qualifiers as if we had performed the 3280 // qualification conversion. 3281 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3282 } 3283 } 3284 3285 // - The transformed A can be another pointer or pointer to member 3286 // type that can be converted to the deduced A via a function pointer 3287 // conversion and/or a qualification conversion. 3288 // 3289 // Also allow conversions which merely strip __attribute__((noreturn)) from 3290 // function types (recursively). 3291 bool ObjCLifetimeConversion = false; 3292 QualType ResultTy; 3293 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3294 (S.IsQualificationConversion(A, DeducedA, false, 3295 ObjCLifetimeConversion) || 3296 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3297 return Sema::TDK_Success; 3298 3299 // - If P is a class and P has the form simple-template-id, then the 3300 // transformed A can be a derived class of the deduced A. [...] 3301 // [...] Likewise, if P is a pointer to a class of the form 3302 // simple-template-id, the transformed A can be a pointer to a 3303 // derived class pointed to by the deduced A. 3304 if (const PointerType *OriginalParamPtr 3305 = OriginalParamType->getAs<PointerType>()) { 3306 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3307 if (const PointerType *APtr = A->getAs<PointerType>()) { 3308 if (A->getPointeeType()->isRecordType()) { 3309 OriginalParamType = OriginalParamPtr->getPointeeType(); 3310 DeducedA = DeducedAPtr->getPointeeType(); 3311 A = APtr->getPointeeType(); 3312 } 3313 } 3314 } 3315 } 3316 3317 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3318 return Sema::TDK_Success; 3319 3320 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3321 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3322 return Sema::TDK_Success; 3323 3324 return Failed(); 3325 } 3326 3327 /// Find the pack index for a particular parameter index in an instantiation of 3328 /// a function template with specific arguments. 3329 /// 3330 /// \return The pack index for whichever pack produced this parameter, or -1 3331 /// if this was not produced by a parameter. Intended to be used as the 3332 /// ArgumentPackSubstitutionIndex for further substitutions. 3333 // FIXME: We should track this in OriginalCallArgs so we don't need to 3334 // reconstruct it here. 3335 static unsigned getPackIndexForParam(Sema &S, 3336 FunctionTemplateDecl *FunctionTemplate, 3337 const MultiLevelTemplateArgumentList &Args, 3338 unsigned ParamIdx) { 3339 unsigned Idx = 0; 3340 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3341 if (PD->isParameterPack()) { 3342 unsigned NumExpansions = 3343 S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); 3344 if (Idx + NumExpansions > ParamIdx) 3345 return ParamIdx - Idx; 3346 Idx += NumExpansions; 3347 } else { 3348 if (Idx == ParamIdx) 3349 return -1; // Not a pack expansion 3350 ++Idx; 3351 } 3352 } 3353 3354 llvm_unreachable("parameter index would not be produced from template"); 3355 } 3356 3357 /// Finish template argument deduction for a function template, 3358 /// checking the deduced template arguments for completeness and forming 3359 /// the function template specialization. 3360 /// 3361 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3362 /// which the deduced argument types should be compared. 3363 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3364 FunctionTemplateDecl *FunctionTemplate, 3365 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3366 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3367 TemplateDeductionInfo &Info, 3368 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3369 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3370 // Unevaluated SFINAE context. 3371 EnterExpressionEvaluationContext Unevaluated( 3372 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3373 SFINAETrap Trap(*this); 3374 3375 // Enter a new template instantiation context while we instantiate the 3376 // actual function declaration. 3377 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3378 InstantiatingTemplate Inst( 3379 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3380 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3381 if (Inst.isInvalid()) 3382 return TDK_InstantiationDepth; 3383 3384 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3385 3386 // C++ [temp.deduct.type]p2: 3387 // [...] or if any template argument remains neither deduced nor 3388 // explicitly specified, template argument deduction fails. 3389 SmallVector<TemplateArgument, 4> Builder; 3390 if (auto Result = ConvertDeducedTemplateArguments( 3391 *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, 3392 CurrentInstantiationScope, NumExplicitlySpecified, 3393 PartialOverloading)) 3394 return Result; 3395 3396 // C++ [temp.deduct.call]p10: [DR1391] 3397 // If deduction succeeds for all parameters that contain 3398 // template-parameters that participate in template argument deduction, 3399 // and all template arguments are explicitly specified, deduced, or 3400 // obtained from default template arguments, remaining parameters are then 3401 // compared with the corresponding arguments. For each remaining parameter 3402 // P with a type that was non-dependent before substitution of any 3403 // explicitly-specified template arguments, if the corresponding argument 3404 // A cannot be implicitly converted to P, deduction fails. 3405 if (CheckNonDependent()) 3406 return TDK_NonDependentConversionFailure; 3407 3408 // Form the template argument list from the deduced template arguments. 3409 TemplateArgumentList *DeducedArgumentList 3410 = TemplateArgumentList::CreateCopy(Context, Builder); 3411 Info.reset(DeducedArgumentList); 3412 3413 // Substitute the deduced template arguments into the function template 3414 // declaration to produce the function template specialization. 3415 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3416 if (FunctionTemplate->getFriendObjectKind()) 3417 Owner = FunctionTemplate->getLexicalDeclContext(); 3418 MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); 3419 Specialization = cast_or_null<FunctionDecl>( 3420 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3421 if (!Specialization || Specialization->isInvalidDecl()) 3422 return TDK_SubstitutionFailure; 3423 3424 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3425 FunctionTemplate->getCanonicalDecl()); 3426 3427 // If the template argument list is owned by the function template 3428 // specialization, release it. 3429 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 3430 !Trap.hasErrorOccurred()) 3431 Info.take(); 3432 3433 // There may have been an error that did not prevent us from constructing a 3434 // declaration. Mark the declaration invalid and return with a substitution 3435 // failure. 3436 if (Trap.hasErrorOccurred()) { 3437 Specialization->setInvalidDecl(true); 3438 return TDK_SubstitutionFailure; 3439 } 3440 3441 // C++2a [temp.deduct]p5 3442 // [...] When all template arguments have been deduced [...] all uses of 3443 // template parameters [...] are replaced with the corresponding deduced 3444 // or default argument values. 3445 // [...] If the function template has associated constraints 3446 // ([temp.constr.decl]), those constraints are checked for satisfaction 3447 // ([temp.constr.constr]). If the constraints are not satisfied, type 3448 // deduction fails. 3449 if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(), 3450 Specialization, Builder, Info.AssociatedConstraintsSatisfaction)) 3451 return TDK_MiscellaneousDeductionFailure; 3452 3453 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3454 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder)); 3455 return TDK_ConstraintsNotSatisfied; 3456 } 3457 3458 if (OriginalCallArgs) { 3459 // C++ [temp.deduct.call]p4: 3460 // In general, the deduction process attempts to find template argument 3461 // values that will make the deduced A identical to A (after the type A 3462 // is transformed as described above). [...] 3463 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3464 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3465 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3466 3467 auto ParamIdx = OriginalArg.ArgIdx; 3468 if (ParamIdx >= Specialization->getNumParams()) 3469 // FIXME: This presumably means a pack ended up smaller than we 3470 // expected while deducing. Should this not result in deduction 3471 // failure? Can it even happen? 3472 continue; 3473 3474 QualType DeducedA; 3475 if (!OriginalArg.DecomposedParam) { 3476 // P is one of the function parameters, just look up its substituted 3477 // type. 3478 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3479 } else { 3480 // P is a decomposed element of a parameter corresponding to a 3481 // braced-init-list argument. Substitute back into P to find the 3482 // deduced A. 3483 QualType &CacheEntry = 3484 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3485 if (CacheEntry.isNull()) { 3486 ArgumentPackSubstitutionIndexRAII PackIndex( 3487 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3488 ParamIdx)); 3489 CacheEntry = 3490 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3491 Specialization->getTypeSpecStartLoc(), 3492 Specialization->getDeclName()); 3493 } 3494 DeducedA = CacheEntry; 3495 } 3496 3497 if (auto TDK = 3498 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3499 return TDK; 3500 } 3501 } 3502 3503 // If we suppressed any diagnostics while performing template argument 3504 // deduction, and if we haven't already instantiated this declaration, 3505 // keep track of these diagnostics. They'll be emitted if this specialization 3506 // is actually used. 3507 if (Info.diag_begin() != Info.diag_end()) { 3508 SuppressedDiagnosticsMap::iterator 3509 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3510 if (Pos == SuppressedDiagnostics.end()) 3511 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3512 .append(Info.diag_begin(), Info.diag_end()); 3513 } 3514 3515 return TDK_Success; 3516 } 3517 3518 /// Gets the type of a function for template-argument-deducton 3519 /// purposes when it's considered as part of an overload set. 3520 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3521 FunctionDecl *Fn) { 3522 // We may need to deduce the return type of the function now. 3523 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3524 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3525 return {}; 3526 3527 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3528 if (Method->isInstance()) { 3529 // An instance method that's referenced in a form that doesn't 3530 // look like a member pointer is just invalid. 3531 if (!R.HasFormOfMemberPointer) 3532 return {}; 3533 3534 return S.Context.getMemberPointerType(Fn->getType(), 3535 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3536 } 3537 3538 if (!R.IsAddressOfOperand) return Fn->getType(); 3539 return S.Context.getPointerType(Fn->getType()); 3540 } 3541 3542 /// Apply the deduction rules for overload sets. 3543 /// 3544 /// \return the null type if this argument should be treated as an 3545 /// undeduced context 3546 static QualType 3547 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3548 Expr *Arg, QualType ParamType, 3549 bool ParamWasReference) { 3550 3551 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3552 3553 OverloadExpr *Ovl = R.Expression; 3554 3555 // C++0x [temp.deduct.call]p4 3556 unsigned TDF = 0; 3557 if (ParamWasReference) 3558 TDF |= TDF_ParamWithReferenceType; 3559 if (R.IsAddressOfOperand) 3560 TDF |= TDF_IgnoreQualifiers; 3561 3562 // C++0x [temp.deduct.call]p6: 3563 // When P is a function type, pointer to function type, or pointer 3564 // to member function type: 3565 3566 if (!ParamType->isFunctionType() && 3567 !ParamType->isFunctionPointerType() && 3568 !ParamType->isMemberFunctionPointerType()) { 3569 if (Ovl->hasExplicitTemplateArgs()) { 3570 // But we can still look for an explicit specialization. 3571 if (FunctionDecl *ExplicitSpec 3572 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3573 return GetTypeOfFunction(S, R, ExplicitSpec); 3574 } 3575 3576 DeclAccessPair DAP; 3577 if (FunctionDecl *Viable = 3578 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3579 return GetTypeOfFunction(S, R, Viable); 3580 3581 return {}; 3582 } 3583 3584 // Gather the explicit template arguments, if any. 3585 TemplateArgumentListInfo ExplicitTemplateArgs; 3586 if (Ovl->hasExplicitTemplateArgs()) 3587 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3588 QualType Match; 3589 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3590 E = Ovl->decls_end(); I != E; ++I) { 3591 NamedDecl *D = (*I)->getUnderlyingDecl(); 3592 3593 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3594 // - If the argument is an overload set containing one or more 3595 // function templates, the parameter is treated as a 3596 // non-deduced context. 3597 if (!Ovl->hasExplicitTemplateArgs()) 3598 return {}; 3599 3600 // Otherwise, see if we can resolve a function type 3601 FunctionDecl *Specialization = nullptr; 3602 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3603 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3604 Specialization, Info)) 3605 continue; 3606 3607 D = Specialization; 3608 } 3609 3610 FunctionDecl *Fn = cast<FunctionDecl>(D); 3611 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3612 if (ArgType.isNull()) continue; 3613 3614 // Function-to-pointer conversion. 3615 if (!ParamWasReference && ParamType->isPointerType() && 3616 ArgType->isFunctionType()) 3617 ArgType = S.Context.getPointerType(ArgType); 3618 3619 // - If the argument is an overload set (not containing function 3620 // templates), trial argument deduction is attempted using each 3621 // of the members of the set. If deduction succeeds for only one 3622 // of the overload set members, that member is used as the 3623 // argument value for the deduction. If deduction succeeds for 3624 // more than one member of the overload set the parameter is 3625 // treated as a non-deduced context. 3626 3627 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3628 // Type deduction is done independently for each P/A pair, and 3629 // the deduced template argument values are then combined. 3630 // So we do not reject deductions which were made elsewhere. 3631 SmallVector<DeducedTemplateArgument, 8> 3632 Deduced(TemplateParams->size()); 3633 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3634 Sema::TemplateDeductionResult Result 3635 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3636 ArgType, Info, Deduced, TDF); 3637 if (Result) continue; 3638 if (!Match.isNull()) 3639 return {}; 3640 Match = ArgType; 3641 } 3642 3643 return Match; 3644 } 3645 3646 /// Perform the adjustments to the parameter and argument types 3647 /// described in C++ [temp.deduct.call]. 3648 /// 3649 /// \returns true if the caller should not attempt to perform any template 3650 /// argument deduction based on this P/A pair because the argument is an 3651 /// overloaded function set that could not be resolved. 3652 static bool AdjustFunctionParmAndArgTypesForDeduction( 3653 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3654 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3655 // C++0x [temp.deduct.call]p3: 3656 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3657 // are ignored for type deduction. 3658 if (ParamType.hasQualifiers()) 3659 ParamType = ParamType.getUnqualifiedType(); 3660 3661 // [...] If P is a reference type, the type referred to by P is 3662 // used for type deduction. 3663 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3664 if (ParamRefType) 3665 ParamType = ParamRefType->getPointeeType(); 3666 3667 // Overload sets usually make this parameter an undeduced context, 3668 // but there are sometimes special circumstances. Typically 3669 // involving a template-id-expr. 3670 if (ArgType == S.Context.OverloadTy) { 3671 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3672 Arg, ParamType, 3673 ParamRefType != nullptr); 3674 if (ArgType.isNull()) 3675 return true; 3676 } 3677 3678 if (ParamRefType) { 3679 // If the argument has incomplete array type, try to complete its type. 3680 if (ArgType->isIncompleteArrayType()) { 3681 S.completeExprArrayBound(Arg); 3682 ArgType = Arg->getType(); 3683 } 3684 3685 // C++1z [temp.deduct.call]p3: 3686 // If P is a forwarding reference and the argument is an lvalue, the type 3687 // "lvalue reference to A" is used in place of A for type deduction. 3688 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3689 Arg->isLValue()) 3690 ArgType = S.Context.getLValueReferenceType(ArgType); 3691 } else { 3692 // C++ [temp.deduct.call]p2: 3693 // If P is not a reference type: 3694 // - If A is an array type, the pointer type produced by the 3695 // array-to-pointer standard conversion (4.2) is used in place of 3696 // A for type deduction; otherwise, 3697 if (ArgType->isArrayType()) 3698 ArgType = S.Context.getArrayDecayedType(ArgType); 3699 // - If A is a function type, the pointer type produced by the 3700 // function-to-pointer standard conversion (4.3) is used in place 3701 // of A for type deduction; otherwise, 3702 else if (ArgType->isFunctionType()) 3703 ArgType = S.Context.getPointerType(ArgType); 3704 else { 3705 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3706 // type are ignored for type deduction. 3707 ArgType = ArgType.getUnqualifiedType(); 3708 } 3709 } 3710 3711 // C++0x [temp.deduct.call]p4: 3712 // In general, the deduction process attempts to find template argument 3713 // values that will make the deduced A identical to A (after the type A 3714 // is transformed as described above). [...] 3715 TDF = TDF_SkipNonDependent; 3716 3717 // - If the original P is a reference type, the deduced A (i.e., the 3718 // type referred to by the reference) can be more cv-qualified than 3719 // the transformed A. 3720 if (ParamRefType) 3721 TDF |= TDF_ParamWithReferenceType; 3722 // - The transformed A can be another pointer or pointer to member 3723 // type that can be converted to the deduced A via a qualification 3724 // conversion (4.4). 3725 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3726 ArgType->isObjCObjectPointerType()) 3727 TDF |= TDF_IgnoreQualifiers; 3728 // - If P is a class and P has the form simple-template-id, then the 3729 // transformed A can be a derived class of the deduced A. Likewise, 3730 // if P is a pointer to a class of the form simple-template-id, the 3731 // transformed A can be a pointer to a derived class pointed to by 3732 // the deduced A. 3733 if (isSimpleTemplateIdType(ParamType) || 3734 (isa<PointerType>(ParamType) && 3735 isSimpleTemplateIdType( 3736 ParamType->getAs<PointerType>()->getPointeeType()))) 3737 TDF |= TDF_DerivedClass; 3738 3739 return false; 3740 } 3741 3742 static bool 3743 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3744 QualType T); 3745 3746 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3747 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3748 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3749 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3750 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3751 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3752 3753 /// Attempt template argument deduction from an initializer list 3754 /// deemed to be an argument in a function call. 3755 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3756 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3757 InitListExpr *ILE, TemplateDeductionInfo &Info, 3758 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3759 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3760 unsigned TDF) { 3761 // C++ [temp.deduct.call]p1: (CWG 1591) 3762 // If removing references and cv-qualifiers from P gives 3763 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3764 // a non-empty initializer list, then deduction is performed instead for 3765 // each element of the initializer list, taking P0 as a function template 3766 // parameter type and the initializer element as its argument 3767 // 3768 // We've already removed references and cv-qualifiers here. 3769 if (!ILE->getNumInits()) 3770 return Sema::TDK_Success; 3771 3772 QualType ElTy; 3773 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3774 if (ArrTy) 3775 ElTy = ArrTy->getElementType(); 3776 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3777 // Otherwise, an initializer list argument causes the parameter to be 3778 // considered a non-deduced context 3779 return Sema::TDK_Success; 3780 } 3781 3782 // Resolving a core issue: a braced-init-list containing any designators is 3783 // a non-deduced context. 3784 for (Expr *E : ILE->inits()) 3785 if (isa<DesignatedInitExpr>(E)) 3786 return Sema::TDK_Success; 3787 3788 // Deduction only needs to be done for dependent types. 3789 if (ElTy->isDependentType()) { 3790 for (Expr *E : ILE->inits()) { 3791 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3792 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3793 ArgIdx, TDF)) 3794 return Result; 3795 } 3796 } 3797 3798 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3799 // from the length of the initializer list. 3800 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3801 // Determine the array bound is something we can deduce. 3802 if (NonTypeTemplateParmDecl *NTTP = 3803 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3804 // We can perform template argument deduction for the given non-type 3805 // template parameter. 3806 // C++ [temp.deduct.type]p13: 3807 // The type of N in the type T[N] is std::size_t. 3808 QualType T = S.Context.getSizeType(); 3809 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3810 if (auto Result = DeduceNonTypeTemplateArgument( 3811 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3812 /*ArrayBound=*/true, Info, Deduced)) 3813 return Result; 3814 } 3815 } 3816 3817 return Sema::TDK_Success; 3818 } 3819 3820 /// Perform template argument deduction per [temp.deduct.call] for a 3821 /// single parameter / argument pair. 3822 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3823 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3824 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3825 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3826 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3827 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 3828 QualType ArgType = Arg->getType(); 3829 QualType OrigParamType = ParamType; 3830 3831 // If P is a reference type [...] 3832 // If P is a cv-qualified type [...] 3833 if (AdjustFunctionParmAndArgTypesForDeduction( 3834 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 3835 return Sema::TDK_Success; 3836 3837 // If [...] the argument is a non-empty initializer list [...] 3838 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 3839 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 3840 Deduced, OriginalCallArgs, ArgIdx, TDF); 3841 3842 // [...] the deduction process attempts to find template argument values 3843 // that will make the deduced A identical to A 3844 // 3845 // Keep track of the argument type and corresponding parameter index, 3846 // so we can check for compatibility between the deduced A and A. 3847 OriginalCallArgs.push_back( 3848 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 3849 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3850 ArgType, Info, Deduced, TDF); 3851 } 3852 3853 /// Perform template argument deduction from a function call 3854 /// (C++ [temp.deduct.call]). 3855 /// 3856 /// \param FunctionTemplate the function template for which we are performing 3857 /// template argument deduction. 3858 /// 3859 /// \param ExplicitTemplateArgs the explicit template arguments provided 3860 /// for this call. 3861 /// 3862 /// \param Args the function call arguments 3863 /// 3864 /// \param Specialization if template argument deduction was successful, 3865 /// this will be set to the function template specialization produced by 3866 /// template argument deduction. 3867 /// 3868 /// \param Info the argument will be updated to provide additional information 3869 /// about template argument deduction. 3870 /// 3871 /// \param CheckNonDependent A callback to invoke to check conversions for 3872 /// non-dependent parameters, between deduction and substitution, per DR1391. 3873 /// If this returns true, substitution will be skipped and we return 3874 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 3875 /// types (after substituting explicit template arguments). 3876 /// 3877 /// \returns the result of template argument deduction. 3878 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 3879 FunctionTemplateDecl *FunctionTemplate, 3880 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 3881 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 3882 bool PartialOverloading, 3883 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 3884 if (FunctionTemplate->isInvalidDecl()) 3885 return TDK_Invalid; 3886 3887 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3888 unsigned NumParams = Function->getNumParams(); 3889 3890 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 3891 3892 // C++ [temp.deduct.call]p1: 3893 // Template argument deduction is done by comparing each function template 3894 // parameter type (call it P) with the type of the corresponding argument 3895 // of the call (call it A) as described below. 3896 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 3897 return TDK_TooFewArguments; 3898 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 3899 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 3900 if (Proto->isTemplateVariadic()) 3901 /* Do nothing */; 3902 else if (!Proto->isVariadic()) 3903 return TDK_TooManyArguments; 3904 } 3905 3906 // The types of the parameters from which we will perform template argument 3907 // deduction. 3908 LocalInstantiationScope InstScope(*this); 3909 TemplateParameterList *TemplateParams 3910 = FunctionTemplate->getTemplateParameters(); 3911 SmallVector<DeducedTemplateArgument, 4> Deduced; 3912 SmallVector<QualType, 8> ParamTypes; 3913 unsigned NumExplicitlySpecified = 0; 3914 if (ExplicitTemplateArgs) { 3915 TemplateDeductionResult Result = 3916 SubstituteExplicitTemplateArguments(FunctionTemplate, 3917 *ExplicitTemplateArgs, 3918 Deduced, 3919 ParamTypes, 3920 nullptr, 3921 Info); 3922 if (Result) 3923 return Result; 3924 3925 NumExplicitlySpecified = Deduced.size(); 3926 } else { 3927 // Just fill in the parameter types from the function declaration. 3928 for (unsigned I = 0; I != NumParams; ++I) 3929 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 3930 } 3931 3932 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 3933 3934 // Deduce an argument of type ParamType from an expression with index ArgIdx. 3935 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 3936 // C++ [demp.deduct.call]p1: (DR1391) 3937 // Template argument deduction is done by comparing each function template 3938 // parameter that contains template-parameters that participate in 3939 // template argument deduction ... 3940 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3941 return Sema::TDK_Success; 3942 3943 // ... with the type of the corresponding argument 3944 return DeduceTemplateArgumentsFromCallArgument( 3945 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 3946 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 3947 }; 3948 3949 // Deduce template arguments from the function parameters. 3950 Deduced.resize(TemplateParams->size()); 3951 SmallVector<QualType, 8> ParamTypesForArgChecking; 3952 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 3953 ParamIdx != NumParamTypes; ++ParamIdx) { 3954 QualType ParamType = ParamTypes[ParamIdx]; 3955 3956 const PackExpansionType *ParamExpansion = 3957 dyn_cast<PackExpansionType>(ParamType); 3958 if (!ParamExpansion) { 3959 // Simple case: matching a function parameter to a function argument. 3960 if (ArgIdx >= Args.size()) 3961 break; 3962 3963 ParamTypesForArgChecking.push_back(ParamType); 3964 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 3965 return Result; 3966 3967 continue; 3968 } 3969 3970 QualType ParamPattern = ParamExpansion->getPattern(); 3971 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 3972 ParamPattern); 3973 3974 // C++0x [temp.deduct.call]p1: 3975 // For a function parameter pack that occurs at the end of the 3976 // parameter-declaration-list, the type A of each remaining argument of 3977 // the call is compared with the type P of the declarator-id of the 3978 // function parameter pack. Each comparison deduces template arguments 3979 // for subsequent positions in the template parameter packs expanded by 3980 // the function parameter pack. When a function parameter pack appears 3981 // in a non-deduced context [not at the end of the list], the type of 3982 // that parameter pack is never deduced. 3983 // 3984 // FIXME: The above rule allows the size of the parameter pack to change 3985 // after we skip it (in the non-deduced case). That makes no sense, so 3986 // we instead notionally deduce the pack against N arguments, where N is 3987 // the length of the explicitly-specified pack if it's expanded by the 3988 // parameter pack and 0 otherwise, and we treat each deduction as a 3989 // non-deduced context. 3990 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 3991 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 3992 PackScope.nextPackElement(), ++ArgIdx) { 3993 ParamTypesForArgChecking.push_back(ParamPattern); 3994 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 3995 return Result; 3996 } 3997 } else { 3998 // If the parameter type contains an explicitly-specified pack that we 3999 // could not expand, skip the number of parameters notionally created 4000 // by the expansion. 4001 Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); 4002 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4003 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4004 ++I, ++ArgIdx) { 4005 ParamTypesForArgChecking.push_back(ParamPattern); 4006 // FIXME: Should we add OriginalCallArgs for these? What if the 4007 // corresponding argument is a list? 4008 PackScope.nextPackElement(); 4009 } 4010 } 4011 } 4012 4013 // Build argument packs for each of the parameter packs expanded by this 4014 // pack expansion. 4015 if (auto Result = PackScope.finish()) 4016 return Result; 4017 } 4018 4019 // Capture the context in which the function call is made. This is the context 4020 // that is needed when the accessibility of template arguments is checked. 4021 DeclContext *CallingCtx = CurContext; 4022 4023 return FinishTemplateArgumentDeduction( 4024 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4025 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4026 ContextRAII SavedContext(*this, CallingCtx); 4027 return CheckNonDependent(ParamTypesForArgChecking); 4028 }); 4029 } 4030 4031 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4032 QualType FunctionType, 4033 bool AdjustExceptionSpec) { 4034 if (ArgFunctionType.isNull()) 4035 return ArgFunctionType; 4036 4037 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4038 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4039 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4040 bool Rebuild = false; 4041 4042 CallingConv CC = FunctionTypeP->getCallConv(); 4043 if (EPI.ExtInfo.getCC() != CC) { 4044 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4045 Rebuild = true; 4046 } 4047 4048 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4049 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4050 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4051 Rebuild = true; 4052 } 4053 4054 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4055 ArgFunctionTypeP->hasExceptionSpec())) { 4056 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4057 Rebuild = true; 4058 } 4059 4060 if (!Rebuild) 4061 return ArgFunctionType; 4062 4063 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4064 ArgFunctionTypeP->getParamTypes(), EPI); 4065 } 4066 4067 /// Deduce template arguments when taking the address of a function 4068 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4069 /// a template. 4070 /// 4071 /// \param FunctionTemplate the function template for which we are performing 4072 /// template argument deduction. 4073 /// 4074 /// \param ExplicitTemplateArgs the explicitly-specified template 4075 /// arguments. 4076 /// 4077 /// \param ArgFunctionType the function type that will be used as the 4078 /// "argument" type (A) when performing template argument deduction from the 4079 /// function template's function type. This type may be NULL, if there is no 4080 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4081 /// 4082 /// \param Specialization if template argument deduction was successful, 4083 /// this will be set to the function template specialization produced by 4084 /// template argument deduction. 4085 /// 4086 /// \param Info the argument will be updated to provide additional information 4087 /// about template argument deduction. 4088 /// 4089 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4090 /// the address of a function template per [temp.deduct.funcaddr] and 4091 /// [over.over]. If \c false, we are looking up a function template 4092 /// specialization based on its signature, per [temp.deduct.decl]. 4093 /// 4094 /// \returns the result of template argument deduction. 4095 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4096 FunctionTemplateDecl *FunctionTemplate, 4097 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4098 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4099 bool IsAddressOfFunction) { 4100 if (FunctionTemplate->isInvalidDecl()) 4101 return TDK_Invalid; 4102 4103 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4104 TemplateParameterList *TemplateParams 4105 = FunctionTemplate->getTemplateParameters(); 4106 QualType FunctionType = Function->getType(); 4107 4108 // Substitute any explicit template arguments. 4109 LocalInstantiationScope InstScope(*this); 4110 SmallVector<DeducedTemplateArgument, 4> Deduced; 4111 unsigned NumExplicitlySpecified = 0; 4112 SmallVector<QualType, 4> ParamTypes; 4113 if (ExplicitTemplateArgs) { 4114 if (TemplateDeductionResult Result 4115 = SubstituteExplicitTemplateArguments(FunctionTemplate, 4116 *ExplicitTemplateArgs, 4117 Deduced, ParamTypes, 4118 &FunctionType, Info)) 4119 return Result; 4120 4121 NumExplicitlySpecified = Deduced.size(); 4122 } 4123 4124 // When taking the address of a function, we require convertibility of 4125 // the resulting function type. Otherwise, we allow arbitrary mismatches 4126 // of calling convention and noreturn. 4127 if (!IsAddressOfFunction) 4128 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4129 /*AdjustExceptionSpec*/false); 4130 4131 // Unevaluated SFINAE context. 4132 EnterExpressionEvaluationContext Unevaluated( 4133 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4134 SFINAETrap Trap(*this); 4135 4136 Deduced.resize(TemplateParams->size()); 4137 4138 // If the function has a deduced return type, substitute it for a dependent 4139 // type so that we treat it as a non-deduced context in what follows. If we 4140 // are looking up by signature, the signature type should also have a deduced 4141 // return type, which we instead expect to exactly match. 4142 bool HasDeducedReturnType = false; 4143 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4144 Function->getReturnType()->getContainedAutoType()) { 4145 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 4146 HasDeducedReturnType = true; 4147 } 4148 4149 if (!ArgFunctionType.isNull()) { 4150 unsigned TDF = 4151 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4152 // Deduce template arguments from the function type. 4153 if (TemplateDeductionResult Result 4154 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4155 FunctionType, ArgFunctionType, 4156 Info, Deduced, TDF)) 4157 return Result; 4158 } 4159 4160 if (TemplateDeductionResult Result 4161 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4162 NumExplicitlySpecified, 4163 Specialization, Info)) 4164 return Result; 4165 4166 // If the function has a deduced return type, deduce it now, so we can check 4167 // that the deduced function type matches the requested type. 4168 if (HasDeducedReturnType && 4169 Specialization->getReturnType()->isUndeducedType() && 4170 DeduceReturnType(Specialization, Info.getLocation(), false)) 4171 return TDK_MiscellaneousDeductionFailure; 4172 4173 // If the function has a dependent exception specification, resolve it now, 4174 // so we can check that the exception specification matches. 4175 auto *SpecializationFPT = 4176 Specialization->getType()->castAs<FunctionProtoType>(); 4177 if (getLangOpts().CPlusPlus17 && 4178 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4179 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4180 return TDK_MiscellaneousDeductionFailure; 4181 4182 // Adjust the exception specification of the argument to match the 4183 // substituted and resolved type we just formed. (Calling convention and 4184 // noreturn can't be dependent, so we don't actually need this for them 4185 // right now.) 4186 QualType SpecializationType = Specialization->getType(); 4187 if (!IsAddressOfFunction) 4188 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4189 /*AdjustExceptionSpec*/true); 4190 4191 // If the requested function type does not match the actual type of the 4192 // specialization with respect to arguments of compatible pointer to function 4193 // types, template argument deduction fails. 4194 if (!ArgFunctionType.isNull()) { 4195 if (IsAddressOfFunction && 4196 !isSameOrCompatibleFunctionType( 4197 Context.getCanonicalType(SpecializationType), 4198 Context.getCanonicalType(ArgFunctionType))) 4199 return TDK_MiscellaneousDeductionFailure; 4200 4201 if (!IsAddressOfFunction && 4202 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4203 return TDK_MiscellaneousDeductionFailure; 4204 } 4205 4206 return TDK_Success; 4207 } 4208 4209 /// Deduce template arguments for a templated conversion 4210 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4211 /// conversion function template specialization. 4212 Sema::TemplateDeductionResult 4213 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4214 QualType ToType, 4215 CXXConversionDecl *&Specialization, 4216 TemplateDeductionInfo &Info) { 4217 if (ConversionTemplate->isInvalidDecl()) 4218 return TDK_Invalid; 4219 4220 CXXConversionDecl *ConversionGeneric 4221 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4222 4223 QualType FromType = ConversionGeneric->getConversionType(); 4224 4225 // Canonicalize the types for deduction. 4226 QualType P = Context.getCanonicalType(FromType); 4227 QualType A = Context.getCanonicalType(ToType); 4228 4229 // C++0x [temp.deduct.conv]p2: 4230 // If P is a reference type, the type referred to by P is used for 4231 // type deduction. 4232 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4233 P = PRef->getPointeeType(); 4234 4235 // C++0x [temp.deduct.conv]p4: 4236 // [...] If A is a reference type, the type referred to by A is used 4237 // for type deduction. 4238 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4239 A = ARef->getPointeeType(); 4240 // We work around a defect in the standard here: cv-qualifiers are also 4241 // removed from P and A in this case, unless P was a reference type. This 4242 // seems to mostly match what other compilers are doing. 4243 if (!FromType->getAs<ReferenceType>()) { 4244 A = A.getUnqualifiedType(); 4245 P = P.getUnqualifiedType(); 4246 } 4247 4248 // C++ [temp.deduct.conv]p3: 4249 // 4250 // If A is not a reference type: 4251 } else { 4252 assert(!A->isReferenceType() && "Reference types were handled above"); 4253 4254 // - If P is an array type, the pointer type produced by the 4255 // array-to-pointer standard conversion (4.2) is used in place 4256 // of P for type deduction; otherwise, 4257 if (P->isArrayType()) 4258 P = Context.getArrayDecayedType(P); 4259 // - If P is a function type, the pointer type produced by the 4260 // function-to-pointer standard conversion (4.3) is used in 4261 // place of P for type deduction; otherwise, 4262 else if (P->isFunctionType()) 4263 P = Context.getPointerType(P); 4264 // - If P is a cv-qualified type, the top level cv-qualifiers of 4265 // P's type are ignored for type deduction. 4266 else 4267 P = P.getUnqualifiedType(); 4268 4269 // C++0x [temp.deduct.conv]p4: 4270 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4271 // type are ignored for type deduction. If A is a reference type, the type 4272 // referred to by A is used for type deduction. 4273 A = A.getUnqualifiedType(); 4274 } 4275 4276 // Unevaluated SFINAE context. 4277 EnterExpressionEvaluationContext Unevaluated( 4278 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4279 SFINAETrap Trap(*this); 4280 4281 // C++ [temp.deduct.conv]p1: 4282 // Template argument deduction is done by comparing the return 4283 // type of the template conversion function (call it P) with the 4284 // type that is required as the result of the conversion (call it 4285 // A) as described in 14.8.2.4. 4286 TemplateParameterList *TemplateParams 4287 = ConversionTemplate->getTemplateParameters(); 4288 SmallVector<DeducedTemplateArgument, 4> Deduced; 4289 Deduced.resize(TemplateParams->size()); 4290 4291 // C++0x [temp.deduct.conv]p4: 4292 // In general, the deduction process attempts to find template 4293 // argument values that will make the deduced A identical to 4294 // A. However, there are two cases that allow a difference: 4295 unsigned TDF = 0; 4296 // - If the original A is a reference type, A can be more 4297 // cv-qualified than the deduced A (i.e., the type referred to 4298 // by the reference) 4299 if (ToType->isReferenceType()) 4300 TDF |= TDF_ArgWithReferenceType; 4301 // - The deduced A can be another pointer or pointer to member 4302 // type that can be converted to A via a qualification 4303 // conversion. 4304 // 4305 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4306 // both P and A are pointers or member pointers. In this case, we 4307 // just ignore cv-qualifiers completely). 4308 if ((P->isPointerType() && A->isPointerType()) || 4309 (P->isMemberPointerType() && A->isMemberPointerType())) 4310 TDF |= TDF_IgnoreQualifiers; 4311 if (TemplateDeductionResult Result 4312 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4313 P, A, Info, Deduced, TDF)) 4314 return Result; 4315 4316 // Create an Instantiation Scope for finalizing the operator. 4317 LocalInstantiationScope InstScope(*this); 4318 // Finish template argument deduction. 4319 FunctionDecl *ConversionSpecialized = nullptr; 4320 TemplateDeductionResult Result 4321 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4322 ConversionSpecialized, Info); 4323 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4324 return Result; 4325 } 4326 4327 /// Deduce template arguments for a function template when there is 4328 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4329 /// 4330 /// \param FunctionTemplate the function template for which we are performing 4331 /// template argument deduction. 4332 /// 4333 /// \param ExplicitTemplateArgs the explicitly-specified template 4334 /// arguments. 4335 /// 4336 /// \param Specialization if template argument deduction was successful, 4337 /// this will be set to the function template specialization produced by 4338 /// template argument deduction. 4339 /// 4340 /// \param Info the argument will be updated to provide additional information 4341 /// about template argument deduction. 4342 /// 4343 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4344 /// the address of a function template in a context where we do not have a 4345 /// target type, per [over.over]. If \c false, we are looking up a function 4346 /// template specialization based on its signature, which only happens when 4347 /// deducing a function parameter type from an argument that is a template-id 4348 /// naming a function template specialization. 4349 /// 4350 /// \returns the result of template argument deduction. 4351 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4352 FunctionTemplateDecl *FunctionTemplate, 4353 TemplateArgumentListInfo *ExplicitTemplateArgs, 4354 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4355 bool IsAddressOfFunction) { 4356 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4357 QualType(), Specialization, Info, 4358 IsAddressOfFunction); 4359 } 4360 4361 namespace { 4362 struct DependentAuto { bool IsPack; }; 4363 4364 /// Substitute the 'auto' specifier or deduced template specialization type 4365 /// specifier within a type for a given replacement type. 4366 class SubstituteDeducedTypeTransform : 4367 public TreeTransform<SubstituteDeducedTypeTransform> { 4368 QualType Replacement; 4369 bool ReplacementIsPack; 4370 bool UseTypeSugar; 4371 4372 public: 4373 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4374 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(), 4375 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4376 4377 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4378 bool UseTypeSugar = true) 4379 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4380 Replacement(Replacement), ReplacementIsPack(false), 4381 UseTypeSugar(UseTypeSugar) {} 4382 4383 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4384 assert(isa<TemplateTypeParmType>(Replacement) && 4385 "unexpected unsugared replacement kind"); 4386 QualType Result = Replacement; 4387 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4388 NewTL.setNameLoc(TL.getNameLoc()); 4389 return Result; 4390 } 4391 4392 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4393 // If we're building the type pattern to deduce against, don't wrap the 4394 // substituted type in an AutoType. Certain template deduction rules 4395 // apply only when a template type parameter appears directly (and not if 4396 // the parameter is found through desugaring). For instance: 4397 // auto &&lref = lvalue; 4398 // must transform into "rvalue reference to T" not "rvalue reference to 4399 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4400 // 4401 // FIXME: Is this still necessary? 4402 if (!UseTypeSugar) 4403 return TransformDesugared(TLB, TL); 4404 4405 QualType Result = SemaRef.Context.getAutoType( 4406 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4407 ReplacementIsPack); 4408 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4409 NewTL.setNameLoc(TL.getNameLoc()); 4410 return Result; 4411 } 4412 4413 QualType TransformDeducedTemplateSpecializationType( 4414 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4415 if (!UseTypeSugar) 4416 return TransformDesugared(TLB, TL); 4417 4418 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4419 TL.getTypePtr()->getTemplateName(), 4420 Replacement, Replacement.isNull()); 4421 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4422 NewTL.setNameLoc(TL.getNameLoc()); 4423 return Result; 4424 } 4425 4426 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4427 // Lambdas never need to be transformed. 4428 return E; 4429 } 4430 4431 QualType Apply(TypeLoc TL) { 4432 // Create some scratch storage for the transformed type locations. 4433 // FIXME: We're just going to throw this information away. Don't build it. 4434 TypeLocBuilder TLB; 4435 TLB.reserve(TL.getFullDataSize()); 4436 return TransformType(TLB, TL); 4437 } 4438 }; 4439 4440 } // namespace 4441 4442 Sema::DeduceAutoResult 4443 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, 4444 Optional<unsigned> DependentDeductionDepth) { 4445 return DeduceAutoType(Type->getTypeLoc(), Init, Result, 4446 DependentDeductionDepth); 4447 } 4448 4449 /// Attempt to produce an informative diagostic explaining why auto deduction 4450 /// failed. 4451 /// \return \c true if diagnosed, \c false if not. 4452 static bool diagnoseAutoDeductionFailure(Sema &S, 4453 Sema::TemplateDeductionResult TDK, 4454 TemplateDeductionInfo &Info, 4455 ArrayRef<SourceRange> Ranges) { 4456 switch (TDK) { 4457 case Sema::TDK_Inconsistent: { 4458 // Inconsistent deduction means we were deducing from an initializer list. 4459 auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); 4460 D << Info.FirstArg << Info.SecondArg; 4461 for (auto R : Ranges) 4462 D << R; 4463 return true; 4464 } 4465 4466 // FIXME: Are there other cases for which a custom diagnostic is more useful 4467 // than the basic "types don't match" diagnostic? 4468 4469 default: 4470 return false; 4471 } 4472 } 4473 4474 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4475 /// 4476 /// Note that this is done even if the initializer is dependent. (This is 4477 /// necessary to support partial ordering of templates using 'auto'.) 4478 /// A dependent type will be produced when deducing from a dependent type. 4479 /// 4480 /// \param Type the type pattern using the auto type-specifier. 4481 /// \param Init the initializer for the variable whose type is to be deduced. 4482 /// \param Result if type deduction was successful, this will be set to the 4483 /// deduced type. 4484 /// \param DependentDeductionDepth Set if we should permit deduction in 4485 /// dependent cases. This is necessary for template partial ordering with 4486 /// 'auto' template parameters. The value specified is the template 4487 /// parameter depth at which we should perform 'auto' deduction. 4488 Sema::DeduceAutoResult 4489 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, 4490 Optional<unsigned> DependentDeductionDepth) { 4491 if (Init->getType()->isNonOverloadPlaceholderType()) { 4492 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4493 if (NonPlaceholder.isInvalid()) 4494 return DAR_FailedAlreadyDiagnosed; 4495 Init = NonPlaceholder.get(); 4496 } 4497 4498 DependentAuto DependentResult = { 4499 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4500 4501 if (!DependentDeductionDepth && 4502 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4503 Init->containsUnexpandedParameterPack())) { 4504 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4505 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4506 return DAR_Succeeded; 4507 } 4508 4509 // Find the depth of template parameter to synthesize. 4510 unsigned Depth = DependentDeductionDepth.getValueOr(0); 4511 4512 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4513 // Since 'decltype(auto)' can only occur at the top of the type, we 4514 // don't need to go digging for it. 4515 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4516 if (AT->isDecltypeAuto()) { 4517 if (isa<InitListExpr>(Init)) { 4518 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4519 return DAR_FailedAlreadyDiagnosed; 4520 } 4521 4522 ExprResult ER = CheckPlaceholderExpr(Init); 4523 if (ER.isInvalid()) 4524 return DAR_FailedAlreadyDiagnosed; 4525 Init = ER.get(); 4526 QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false); 4527 if (Deduced.isNull()) 4528 return DAR_FailedAlreadyDiagnosed; 4529 // FIXME: Support a non-canonical deduced type for 'auto'. 4530 Deduced = Context.getCanonicalType(Deduced); 4531 Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); 4532 if (Result.isNull()) 4533 return DAR_FailedAlreadyDiagnosed; 4534 return DAR_Succeeded; 4535 } else if (!getLangOpts().CPlusPlus) { 4536 if (isa<InitListExpr>(Init)) { 4537 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4538 return DAR_FailedAlreadyDiagnosed; 4539 } 4540 } 4541 } 4542 4543 SourceLocation Loc = Init->getExprLoc(); 4544 4545 LocalInstantiationScope InstScope(*this); 4546 4547 // Build template<class TemplParam> void Func(FuncParam); 4548 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4549 Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false, 4550 false); 4551 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4552 NamedDecl *TemplParamPtr = TemplParam; 4553 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4554 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 4555 4556 QualType FuncParam = 4557 SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) 4558 .Apply(Type); 4559 assert(!FuncParam.isNull() && 4560 "substituting template parameter for 'auto' failed"); 4561 4562 // Deduce type of TemplParam in Func(Init) 4563 SmallVector<DeducedTemplateArgument, 1> Deduced; 4564 Deduced.resize(1); 4565 4566 TemplateDeductionInfo Info(Loc, Depth); 4567 4568 // If deduction failed, don't diagnose if the initializer is dependent; it 4569 // might acquire a matching type in the instantiation. 4570 auto DeductionFailed = [&](TemplateDeductionResult TDK, 4571 ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { 4572 if (Init->isTypeDependent()) { 4573 Result = 4574 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4575 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4576 return DAR_Succeeded; 4577 } 4578 if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) 4579 return DAR_FailedAlreadyDiagnosed; 4580 return DAR_Failed; 4581 }; 4582 4583 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4584 4585 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4586 if (InitList) { 4587 // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce 4588 // against that. Such deduction only succeeds if removing cv-qualifiers and 4589 // references results in std::initializer_list<T>. 4590 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4591 return DAR_Failed; 4592 4593 // Resolving a core issue: a braced-init-list containing any designators is 4594 // a non-deduced context. 4595 for (Expr *E : InitList->inits()) 4596 if (isa<DesignatedInitExpr>(E)) 4597 return DAR_Failed; 4598 4599 SourceRange DeducedFromInitRange; 4600 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4601 Expr *Init = InitList->getInit(i); 4602 4603 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4604 *this, TemplateParamsSt.get(), 0, TemplArg, Init, 4605 Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, 4606 /*ArgIdx*/ 0, /*TDF*/ 0)) 4607 return DeductionFailed(TDK, {DeducedFromInitRange, 4608 Init->getSourceRange()}); 4609 4610 if (DeducedFromInitRange.isInvalid() && 4611 Deduced[0].getKind() != TemplateArgument::Null) 4612 DeducedFromInitRange = Init->getSourceRange(); 4613 } 4614 } else { 4615 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4616 Diag(Loc, diag::err_auto_bitfield); 4617 return DAR_FailedAlreadyDiagnosed; 4618 } 4619 4620 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4621 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4622 OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) 4623 return DeductionFailed(TDK, {}); 4624 } 4625 4626 // Could be null if somehow 'auto' appears in a non-deduced context. 4627 if (Deduced[0].getKind() != TemplateArgument::Type) 4628 return DeductionFailed(TDK_Incomplete, {}); 4629 4630 QualType DeducedType = Deduced[0].getAsType(); 4631 4632 if (InitList) { 4633 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4634 if (DeducedType.isNull()) 4635 return DAR_FailedAlreadyDiagnosed; 4636 } 4637 4638 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4639 if (Result.isNull()) 4640 return DAR_FailedAlreadyDiagnosed; 4641 4642 // Check that the deduced argument type is compatible with the original 4643 // argument type per C++ [temp.deduct.call]p4. 4644 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4645 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4646 assert((bool)InitList == OriginalArg.DecomposedParam && 4647 "decomposed non-init-list in auto deduction?"); 4648 if (auto TDK = 4649 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4650 Result = QualType(); 4651 return DeductionFailed(TDK, {}); 4652 } 4653 } 4654 4655 return DAR_Succeeded; 4656 } 4657 4658 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4659 QualType TypeToReplaceAuto) { 4660 if (TypeToReplaceAuto->isDependentType()) 4661 return SubstituteDeducedTypeTransform( 4662 *this, DependentAuto{ 4663 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4664 .TransformType(TypeWithAuto); 4665 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4666 .TransformType(TypeWithAuto); 4667 } 4668 4669 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4670 QualType TypeToReplaceAuto) { 4671 if (TypeToReplaceAuto->isDependentType()) 4672 return SubstituteDeducedTypeTransform( 4673 *this, 4674 DependentAuto{ 4675 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4676 .TransformType(TypeWithAuto); 4677 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4678 .TransformType(TypeWithAuto); 4679 } 4680 4681 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4682 QualType TypeToReplaceAuto) { 4683 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4684 /*UseTypeSugar*/ false) 4685 .TransformType(TypeWithAuto); 4686 } 4687 4688 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4689 if (isa<InitListExpr>(Init)) 4690 Diag(VDecl->getLocation(), 4691 VDecl->isInitCapture() 4692 ? diag::err_init_capture_deduction_failure_from_init_list 4693 : diag::err_auto_var_deduction_failure_from_init_list) 4694 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4695 else 4696 Diag(VDecl->getLocation(), 4697 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4698 : diag::err_auto_var_deduction_failure) 4699 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4700 << Init->getSourceRange(); 4701 } 4702 4703 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4704 bool Diagnose) { 4705 assert(FD->getReturnType()->isUndeducedType()); 4706 4707 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4708 // within the return type from the call operator's type. 4709 if (isLambdaConversionOperator(FD)) { 4710 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4711 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4712 4713 // For a generic lambda, instantiate the call operator if needed. 4714 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4715 CallOp = InstantiateFunctionDeclaration( 4716 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4717 if (!CallOp || CallOp->isInvalidDecl()) 4718 return true; 4719 4720 // We might need to deduce the return type by instantiating the definition 4721 // of the operator() function. 4722 if (CallOp->getReturnType()->isUndeducedType()) { 4723 runWithSufficientStackSpace(Loc, [&] { 4724 InstantiateFunctionDefinition(Loc, CallOp); 4725 }); 4726 } 4727 } 4728 4729 if (CallOp->isInvalidDecl()) 4730 return true; 4731 assert(!CallOp->getReturnType()->isUndeducedType() && 4732 "failed to deduce lambda return type"); 4733 4734 // Build the new return type from scratch. 4735 QualType RetType = getLambdaConversionFunctionResultType( 4736 CallOp->getType()->castAs<FunctionProtoType>()); 4737 if (FD->getReturnType()->getAs<PointerType>()) 4738 RetType = Context.getPointerType(RetType); 4739 else { 4740 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4741 RetType = Context.getBlockPointerType(RetType); 4742 } 4743 Context.adjustDeducedFunctionResultType(FD, RetType); 4744 return false; 4745 } 4746 4747 if (FD->getTemplateInstantiationPattern()) { 4748 runWithSufficientStackSpace(Loc, [&] { 4749 InstantiateFunctionDefinition(Loc, FD); 4750 }); 4751 } 4752 4753 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4754 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4755 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4756 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4757 } 4758 4759 return StillUndeduced; 4760 } 4761 4762 /// If this is a non-static member function, 4763 static void 4764 AddImplicitObjectParameterType(ASTContext &Context, 4765 CXXMethodDecl *Method, 4766 SmallVectorImpl<QualType> &ArgTypes) { 4767 // C++11 [temp.func.order]p3: 4768 // [...] The new parameter is of type "reference to cv A," where cv are 4769 // the cv-qualifiers of the function template (if any) and A is 4770 // the class of which the function template is a member. 4771 // 4772 // The standard doesn't say explicitly, but we pick the appropriate kind of 4773 // reference type based on [over.match.funcs]p4. 4774 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4775 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4776 if (Method->getRefQualifier() == RQ_RValue) 4777 ArgTy = Context.getRValueReferenceType(ArgTy); 4778 else 4779 ArgTy = Context.getLValueReferenceType(ArgTy); 4780 ArgTypes.push_back(ArgTy); 4781 } 4782 4783 /// Determine whether the function template \p FT1 is at least as 4784 /// specialized as \p FT2. 4785 static bool isAtLeastAsSpecializedAs(Sema &S, 4786 SourceLocation Loc, 4787 FunctionTemplateDecl *FT1, 4788 FunctionTemplateDecl *FT2, 4789 TemplatePartialOrderingContext TPOC, 4790 unsigned NumCallArguments1) { 4791 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 4792 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 4793 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 4794 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 4795 4796 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 4797 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 4798 SmallVector<DeducedTemplateArgument, 4> Deduced; 4799 Deduced.resize(TemplateParams->size()); 4800 4801 // C++0x [temp.deduct.partial]p3: 4802 // The types used to determine the ordering depend on the context in which 4803 // the partial ordering is done: 4804 TemplateDeductionInfo Info(Loc); 4805 SmallVector<QualType, 4> Args2; 4806 switch (TPOC) { 4807 case TPOC_Call: { 4808 // - In the context of a function call, the function parameter types are 4809 // used. 4810 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 4811 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 4812 4813 // C++11 [temp.func.order]p3: 4814 // [...] If only one of the function templates is a non-static 4815 // member, that function template is considered to have a new 4816 // first parameter inserted in its function parameter list. The 4817 // new parameter is of type "reference to cv A," where cv are 4818 // the cv-qualifiers of the function template (if any) and A is 4819 // the class of which the function template is a member. 4820 // 4821 // Note that we interpret this to mean "if one of the function 4822 // templates is a non-static member and the other is a non-member"; 4823 // otherwise, the ordering rules for static functions against non-static 4824 // functions don't make any sense. 4825 // 4826 // C++98/03 doesn't have this provision but we've extended DR532 to cover 4827 // it as wording was broken prior to it. 4828 SmallVector<QualType, 4> Args1; 4829 4830 unsigned NumComparedArguments = NumCallArguments1; 4831 4832 if (!Method2 && Method1 && !Method1->isStatic()) { 4833 // Compare 'this' from Method1 against first parameter from Method2. 4834 AddImplicitObjectParameterType(S.Context, Method1, Args1); 4835 ++NumComparedArguments; 4836 } else if (!Method1 && Method2 && !Method2->isStatic()) { 4837 // Compare 'this' from Method2 against first parameter from Method1. 4838 AddImplicitObjectParameterType(S.Context, Method2, Args2); 4839 } 4840 4841 Args1.insert(Args1.end(), Proto1->param_type_begin(), 4842 Proto1->param_type_end()); 4843 Args2.insert(Args2.end(), Proto2->param_type_begin(), 4844 Proto2->param_type_end()); 4845 4846 // C++ [temp.func.order]p5: 4847 // The presence of unused ellipsis and default arguments has no effect on 4848 // the partial ordering of function templates. 4849 if (Args1.size() > NumComparedArguments) 4850 Args1.resize(NumComparedArguments); 4851 if (Args2.size() > NumComparedArguments) 4852 Args2.resize(NumComparedArguments); 4853 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 4854 Args1.data(), Args1.size(), Info, Deduced, 4855 TDF_None, /*PartialOrdering=*/true)) 4856 return false; 4857 4858 break; 4859 } 4860 4861 case TPOC_Conversion: 4862 // - In the context of a call to a conversion operator, the return types 4863 // of the conversion function templates are used. 4864 if (DeduceTemplateArgumentsByTypeMatch( 4865 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 4866 Info, Deduced, TDF_None, 4867 /*PartialOrdering=*/true)) 4868 return false; 4869 break; 4870 4871 case TPOC_Other: 4872 // - In other contexts (14.6.6.2) the function template's function type 4873 // is used. 4874 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 4875 FD2->getType(), FD1->getType(), 4876 Info, Deduced, TDF_None, 4877 /*PartialOrdering=*/true)) 4878 return false; 4879 break; 4880 } 4881 4882 // C++0x [temp.deduct.partial]p11: 4883 // In most cases, all template parameters must have values in order for 4884 // deduction to succeed, but for partial ordering purposes a template 4885 // parameter may remain without a value provided it is not used in the 4886 // types being used for partial ordering. [ Note: a template parameter used 4887 // in a non-deduced context is considered used. -end note] 4888 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 4889 for (; ArgIdx != NumArgs; ++ArgIdx) 4890 if (Deduced[ArgIdx].isNull()) 4891 break; 4892 4893 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 4894 // to substitute the deduced arguments back into the template and check that 4895 // we get the right type. 4896 4897 if (ArgIdx == NumArgs) { 4898 // All template arguments were deduced. FT1 is at least as specialized 4899 // as FT2. 4900 return true; 4901 } 4902 4903 // Figure out which template parameters were used. 4904 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 4905 switch (TPOC) { 4906 case TPOC_Call: 4907 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 4908 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 4909 TemplateParams->getDepth(), 4910 UsedParameters); 4911 break; 4912 4913 case TPOC_Conversion: 4914 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 4915 TemplateParams->getDepth(), UsedParameters); 4916 break; 4917 4918 case TPOC_Other: 4919 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 4920 TemplateParams->getDepth(), 4921 UsedParameters); 4922 break; 4923 } 4924 4925 for (; ArgIdx != NumArgs; ++ArgIdx) 4926 // If this argument had no value deduced but was used in one of the types 4927 // used for partial ordering, then deduction fails. 4928 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 4929 return false; 4930 4931 return true; 4932 } 4933 4934 /// Determine whether this a function template whose parameter-type-list 4935 /// ends with a function parameter pack. 4936 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 4937 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 4938 unsigned NumParams = Function->getNumParams(); 4939 if (NumParams == 0) 4940 return false; 4941 4942 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 4943 if (!Last->isParameterPack()) 4944 return false; 4945 4946 // Make sure that no previous parameter is a parameter pack. 4947 while (--NumParams > 0) { 4948 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 4949 return false; 4950 } 4951 4952 return true; 4953 } 4954 4955 /// Returns the more specialized function template according 4956 /// to the rules of function template partial ordering (C++ [temp.func.order]). 4957 /// 4958 /// \param FT1 the first function template 4959 /// 4960 /// \param FT2 the second function template 4961 /// 4962 /// \param TPOC the context in which we are performing partial ordering of 4963 /// function templates. 4964 /// 4965 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 4966 /// only when \c TPOC is \c TPOC_Call. 4967 /// 4968 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 4969 /// only when \c TPOC is \c TPOC_Call. 4970 /// 4971 /// \returns the more specialized function template. If neither 4972 /// template is more specialized, returns NULL. 4973 FunctionTemplateDecl * 4974 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 4975 FunctionTemplateDecl *FT2, 4976 SourceLocation Loc, 4977 TemplatePartialOrderingContext TPOC, 4978 unsigned NumCallArguments1, 4979 unsigned NumCallArguments2) { 4980 4981 auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * { 4982 llvm::SmallVector<const Expr *, 3> AC1, AC2; 4983 FT1->getAssociatedConstraints(AC1); 4984 FT2->getAssociatedConstraints(AC2); 4985 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 4986 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 4987 return nullptr; 4988 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 4989 return nullptr; 4990 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 4991 return nullptr; 4992 return AtLeastAsConstrained1 ? FT1 : FT2; 4993 }; 4994 4995 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 4996 NumCallArguments1); 4997 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 4998 NumCallArguments2); 4999 5000 if (Better1 != Better2) // We have a clear winner 5001 return Better1 ? FT1 : FT2; 5002 5003 if (!Better1 && !Better2) // Neither is better than the other 5004 return JudgeByConstraints(); 5005 5006 // FIXME: This mimics what GCC implements, but doesn't match up with the 5007 // proposed resolution for core issue 692. This area needs to be sorted out, 5008 // but for now we attempt to maintain compatibility. 5009 bool Variadic1 = isVariadicFunctionTemplate(FT1); 5010 bool Variadic2 = isVariadicFunctionTemplate(FT2); 5011 if (Variadic1 != Variadic2) 5012 return Variadic1? FT2 : FT1; 5013 5014 return JudgeByConstraints(); 5015 } 5016 5017 /// Determine if the two templates are equivalent. 5018 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5019 if (T1 == T2) 5020 return true; 5021 5022 if (!T1 || !T2) 5023 return false; 5024 5025 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5026 } 5027 5028 /// Retrieve the most specialized of the given function template 5029 /// specializations. 5030 /// 5031 /// \param SpecBegin the start iterator of the function template 5032 /// specializations that we will be comparing. 5033 /// 5034 /// \param SpecEnd the end iterator of the function template 5035 /// specializations, paired with \p SpecBegin. 5036 /// 5037 /// \param Loc the location where the ambiguity or no-specializations 5038 /// diagnostic should occur. 5039 /// 5040 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5041 /// no matching candidates. 5042 /// 5043 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5044 /// occurs. 5045 /// 5046 /// \param CandidateDiag partial diagnostic used for each function template 5047 /// specialization that is a candidate in the ambiguous ordering. One parameter 5048 /// in this diagnostic should be unbound, which will correspond to the string 5049 /// describing the template arguments for the function template specialization. 5050 /// 5051 /// \returns the most specialized function template specialization, if 5052 /// found. Otherwise, returns SpecEnd. 5053 UnresolvedSetIterator Sema::getMostSpecialized( 5054 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5055 TemplateSpecCandidateSet &FailedCandidates, 5056 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5057 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5058 bool Complain, QualType TargetType) { 5059 if (SpecBegin == SpecEnd) { 5060 if (Complain) { 5061 Diag(Loc, NoneDiag); 5062 FailedCandidates.NoteCandidates(*this, Loc); 5063 } 5064 return SpecEnd; 5065 } 5066 5067 if (SpecBegin + 1 == SpecEnd) 5068 return SpecBegin; 5069 5070 // Find the function template that is better than all of the templates it 5071 // has been compared to. 5072 UnresolvedSetIterator Best = SpecBegin; 5073 FunctionTemplateDecl *BestTemplate 5074 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5075 assert(BestTemplate && "Not a function template specialization?"); 5076 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5077 FunctionTemplateDecl *Challenger 5078 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5079 assert(Challenger && "Not a function template specialization?"); 5080 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5081 Loc, TPOC_Other, 0, 0), 5082 Challenger)) { 5083 Best = I; 5084 BestTemplate = Challenger; 5085 } 5086 } 5087 5088 // Make sure that the "best" function template is more specialized than all 5089 // of the others. 5090 bool Ambiguous = false; 5091 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5092 FunctionTemplateDecl *Challenger 5093 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5094 if (I != Best && 5095 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5096 Loc, TPOC_Other, 0, 0), 5097 BestTemplate)) { 5098 Ambiguous = true; 5099 break; 5100 } 5101 } 5102 5103 if (!Ambiguous) { 5104 // We found an answer. Return it. 5105 return Best; 5106 } 5107 5108 // Diagnose the ambiguity. 5109 if (Complain) { 5110 Diag(Loc, AmbigDiag); 5111 5112 // FIXME: Can we order the candidates in some sane way? 5113 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5114 PartialDiagnostic PD = CandidateDiag; 5115 const auto *FD = cast<FunctionDecl>(*I); 5116 PD << FD << getTemplateArgumentBindingsText( 5117 FD->getPrimaryTemplate()->getTemplateParameters(), 5118 *FD->getTemplateSpecializationArgs()); 5119 if (!TargetType.isNull()) 5120 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5121 Diag((*I)->getLocation(), PD); 5122 } 5123 } 5124 5125 return SpecEnd; 5126 } 5127 5128 /// Determine whether one partial specialization, P1, is at least as 5129 /// specialized than another, P2. 5130 /// 5131 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5132 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5133 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5134 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5135 template<typename TemplateLikeDecl> 5136 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5137 TemplateLikeDecl *P2, 5138 TemplateDeductionInfo &Info) { 5139 // C++ [temp.class.order]p1: 5140 // For two class template partial specializations, the first is at least as 5141 // specialized as the second if, given the following rewrite to two 5142 // function templates, the first function template is at least as 5143 // specialized as the second according to the ordering rules for function 5144 // templates (14.6.6.2): 5145 // - the first function template has the same template parameters as the 5146 // first partial specialization and has a single function parameter 5147 // whose type is a class template specialization with the template 5148 // arguments of the first partial specialization, and 5149 // - the second function template has the same template parameters as the 5150 // second partial specialization and has a single function parameter 5151 // whose type is a class template specialization with the template 5152 // arguments of the second partial specialization. 5153 // 5154 // Rather than synthesize function templates, we merely perform the 5155 // equivalent partial ordering by performing deduction directly on 5156 // the template arguments of the class template partial 5157 // specializations. This computation is slightly simpler than the 5158 // general problem of function template partial ordering, because 5159 // class template partial specializations are more constrained. We 5160 // know that every template parameter is deducible from the class 5161 // template partial specialization's template arguments, for 5162 // example. 5163 SmallVector<DeducedTemplateArgument, 4> Deduced; 5164 5165 // Determine whether P1 is at least as specialized as P2. 5166 Deduced.resize(P2->getTemplateParameters()->size()); 5167 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5168 T2, T1, Info, Deduced, TDF_None, 5169 /*PartialOrdering=*/true)) 5170 return false; 5171 5172 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5173 Deduced.end()); 5174 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5175 Info); 5176 auto *TST1 = T1->castAs<TemplateSpecializationType>(); 5177 if (FinishTemplateArgumentDeduction( 5178 S, P2, /*IsPartialOrdering=*/true, 5179 TemplateArgumentList(TemplateArgumentList::OnStack, 5180 TST1->template_arguments()), 5181 Deduced, Info)) 5182 return false; 5183 5184 return true; 5185 } 5186 5187 /// Returns the more specialized class template partial specialization 5188 /// according to the rules of partial ordering of class template partial 5189 /// specializations (C++ [temp.class.order]). 5190 /// 5191 /// \param PS1 the first class template partial specialization 5192 /// 5193 /// \param PS2 the second class template partial specialization 5194 /// 5195 /// \returns the more specialized class template partial specialization. If 5196 /// neither partial specialization is more specialized, returns NULL. 5197 ClassTemplatePartialSpecializationDecl * 5198 Sema::getMoreSpecializedPartialSpecialization( 5199 ClassTemplatePartialSpecializationDecl *PS1, 5200 ClassTemplatePartialSpecializationDecl *PS2, 5201 SourceLocation Loc) { 5202 QualType PT1 = PS1->getInjectedSpecializationType(); 5203 QualType PT2 = PS2->getInjectedSpecializationType(); 5204 5205 TemplateDeductionInfo Info(Loc); 5206 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5207 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5208 5209 if (!Better1 && !Better2) 5210 return nullptr; 5211 if (Better1 && Better2) { 5212 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5213 PS1->getAssociatedConstraints(AC1); 5214 PS2->getAssociatedConstraints(AC2); 5215 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5216 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5217 return nullptr; 5218 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5219 return nullptr; 5220 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5221 return nullptr; 5222 return AtLeastAsConstrained1 ? PS1 : PS2; 5223 } 5224 5225 return Better1 ? PS1 : PS2; 5226 } 5227 5228 bool Sema::isMoreSpecializedThanPrimary( 5229 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5230 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5231 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5232 QualType PartialT = Spec->getInjectedSpecializationType(); 5233 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5234 return false; 5235 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5236 return true; 5237 Info.clearSFINAEDiagnostic(); 5238 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5239 Primary->getAssociatedConstraints(PrimaryAC); 5240 Spec->getAssociatedConstraints(SpecAC); 5241 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5242 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5243 AtLeastAsConstrainedSpec)) 5244 return false; 5245 if (!AtLeastAsConstrainedSpec) 5246 return false; 5247 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5248 AtLeastAsConstrainedPrimary)) 5249 return false; 5250 return !AtLeastAsConstrainedPrimary; 5251 } 5252 5253 VarTemplatePartialSpecializationDecl * 5254 Sema::getMoreSpecializedPartialSpecialization( 5255 VarTemplatePartialSpecializationDecl *PS1, 5256 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5257 // Pretend the variable template specializations are class template 5258 // specializations and form a fake injected class name type for comparison. 5259 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5260 "the partial specializations being compared should specialize" 5261 " the same template."); 5262 TemplateName Name(PS1->getSpecializedTemplate()); 5263 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5264 QualType PT1 = Context.getTemplateSpecializationType( 5265 CanonTemplate, PS1->getTemplateArgs().asArray()); 5266 QualType PT2 = Context.getTemplateSpecializationType( 5267 CanonTemplate, PS2->getTemplateArgs().asArray()); 5268 5269 TemplateDeductionInfo Info(Loc); 5270 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5271 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5272 5273 if (!Better1 && !Better2) 5274 return nullptr; 5275 if (Better1 && Better2) { 5276 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5277 PS1->getAssociatedConstraints(AC1); 5278 PS2->getAssociatedConstraints(AC2); 5279 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5280 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5281 return nullptr; 5282 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5283 return nullptr; 5284 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5285 return nullptr; 5286 return AtLeastAsConstrained1 ? PS1 : PS2; 5287 } 5288 5289 return Better1 ? PS1 : PS2; 5290 } 5291 5292 bool Sema::isMoreSpecializedThanPrimary( 5293 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5294 TemplateDecl *Primary = Spec->getSpecializedTemplate(); 5295 // FIXME: Cache the injected template arguments rather than recomputing 5296 // them for each partial specialization. 5297 SmallVector<TemplateArgument, 8> PrimaryArgs; 5298 Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), 5299 PrimaryArgs); 5300 5301 TemplateName CanonTemplate = 5302 Context.getCanonicalTemplateName(TemplateName(Primary)); 5303 QualType PrimaryT = Context.getTemplateSpecializationType( 5304 CanonTemplate, PrimaryArgs); 5305 QualType PartialT = Context.getTemplateSpecializationType( 5306 CanonTemplate, Spec->getTemplateArgs().asArray()); 5307 5308 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5309 return false; 5310 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5311 return true; 5312 Info.clearSFINAEDiagnostic(); 5313 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5314 Primary->getAssociatedConstraints(PrimaryAC); 5315 Spec->getAssociatedConstraints(SpecAC); 5316 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5317 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5318 AtLeastAsConstrainedSpec)) 5319 return false; 5320 if (!AtLeastAsConstrainedSpec) 5321 return false; 5322 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5323 AtLeastAsConstrainedPrimary)) 5324 return false; 5325 return !AtLeastAsConstrainedPrimary; 5326 } 5327 5328 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5329 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5330 // C++1z [temp.arg.template]p4: (DR 150) 5331 // A template template-parameter P is at least as specialized as a 5332 // template template-argument A if, given the following rewrite to two 5333 // function templates... 5334 5335 // Rather than synthesize function templates, we merely perform the 5336 // equivalent partial ordering by performing deduction directly on 5337 // the template parameter lists of the template template parameters. 5338 // 5339 // Given an invented class template X with the template parameter list of 5340 // A (including default arguments): 5341 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5342 TemplateParameterList *A = AArg->getTemplateParameters(); 5343 5344 // - Each function template has a single function parameter whose type is 5345 // a specialization of X with template arguments corresponding to the 5346 // template parameters from the respective function template 5347 SmallVector<TemplateArgument, 8> AArgs; 5348 Context.getInjectedTemplateArgs(A, AArgs); 5349 5350 // Check P's arguments against A's parameter list. This will fill in default 5351 // template arguments as needed. AArgs are already correct by construction. 5352 // We can't just use CheckTemplateIdType because that will expand alias 5353 // templates. 5354 SmallVector<TemplateArgument, 4> PArgs; 5355 { 5356 SFINAETrap Trap(*this); 5357 5358 Context.getInjectedTemplateArgs(P, PArgs); 5359 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 5360 P->getRAngleLoc()); 5361 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5362 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5363 // expansions, to form an "as written" argument list. 5364 TemplateArgument Arg = PArgs[I]; 5365 if (Arg.getKind() == TemplateArgument::Pack) { 5366 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5367 Arg = *Arg.pack_begin(); 5368 } 5369 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5370 Arg, QualType(), P->getParam(I)->getLocation())); 5371 } 5372 PArgs.clear(); 5373 5374 // C++1z [temp.arg.template]p3: 5375 // If the rewrite produces an invalid type, then P is not at least as 5376 // specialized as A. 5377 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || 5378 Trap.hasErrorOccurred()) 5379 return false; 5380 } 5381 5382 QualType AType = Context.getTemplateSpecializationType(X, AArgs); 5383 QualType PType = Context.getTemplateSpecializationType(X, PArgs); 5384 5385 // ... the function template corresponding to P is at least as specialized 5386 // as the function template corresponding to A according to the partial 5387 // ordering rules for function templates. 5388 TemplateDeductionInfo Info(Loc, A->getDepth()); 5389 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5390 } 5391 5392 namespace { 5393 struct MarkUsedTemplateParameterVisitor : 5394 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 5395 llvm::SmallBitVector &Used; 5396 unsigned Depth; 5397 5398 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 5399 unsigned Depth) 5400 : Used(Used), Depth(Depth) { } 5401 5402 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 5403 if (T->getDepth() == Depth) 5404 Used[T->getIndex()] = true; 5405 return true; 5406 } 5407 5408 bool TraverseTemplateName(TemplateName Template) { 5409 if (auto *TTP = 5410 dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl())) 5411 if (TTP->getDepth() == Depth) 5412 Used[TTP->getIndex()] = true; 5413 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 5414 TraverseTemplateName(Template); 5415 return true; 5416 } 5417 5418 bool VisitDeclRefExpr(DeclRefExpr *E) { 5419 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 5420 if (NTTP->getDepth() == Depth) 5421 Used[NTTP->getIndex()] = true; 5422 return true; 5423 } 5424 }; 5425 } 5426 5427 /// Mark the template parameters that are used by the given 5428 /// expression. 5429 static void 5430 MarkUsedTemplateParameters(ASTContext &Ctx, 5431 const Expr *E, 5432 bool OnlyDeduced, 5433 unsigned Depth, 5434 llvm::SmallBitVector &Used) { 5435 if (!OnlyDeduced) { 5436 MarkUsedTemplateParameterVisitor(Used, Depth) 5437 .TraverseStmt(const_cast<Expr *>(E)); 5438 return; 5439 } 5440 5441 // We can deduce from a pack expansion. 5442 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5443 E = Expansion->getPattern(); 5444 5445 // Skip through any implicit casts we added while type-checking, and any 5446 // substitutions performed by template alias expansion. 5447 while (true) { 5448 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 5449 E = ICE->getSubExpr(); 5450 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 5451 E = CE->getSubExpr(); 5452 else if (const SubstNonTypeTemplateParmExpr *Subst = 5453 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 5454 E = Subst->getReplacement(); 5455 else 5456 break; 5457 } 5458 5459 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 5460 if (!DRE) 5461 return; 5462 5463 const NonTypeTemplateParmDecl *NTTP 5464 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 5465 if (!NTTP) 5466 return; 5467 5468 if (NTTP->getDepth() == Depth) 5469 Used[NTTP->getIndex()] = true; 5470 5471 // In C++17 mode, additional arguments may be deduced from the type of a 5472 // non-type argument. 5473 if (Ctx.getLangOpts().CPlusPlus17) 5474 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5475 } 5476 5477 /// Mark the template parameters that are used by the given 5478 /// nested name specifier. 5479 static void 5480 MarkUsedTemplateParameters(ASTContext &Ctx, 5481 NestedNameSpecifier *NNS, 5482 bool OnlyDeduced, 5483 unsigned Depth, 5484 llvm::SmallBitVector &Used) { 5485 if (!NNS) 5486 return; 5487 5488 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5489 Used); 5490 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5491 OnlyDeduced, Depth, Used); 5492 } 5493 5494 /// Mark the template parameters that are used by the given 5495 /// template name. 5496 static void 5497 MarkUsedTemplateParameters(ASTContext &Ctx, 5498 TemplateName Name, 5499 bool OnlyDeduced, 5500 unsigned Depth, 5501 llvm::SmallBitVector &Used) { 5502 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5503 if (TemplateTemplateParmDecl *TTP 5504 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5505 if (TTP->getDepth() == Depth) 5506 Used[TTP->getIndex()] = true; 5507 } 5508 return; 5509 } 5510 5511 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5512 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5513 Depth, Used); 5514 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5515 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5516 Depth, Used); 5517 } 5518 5519 /// Mark the template parameters that are used by the given 5520 /// type. 5521 static void 5522 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5523 bool OnlyDeduced, 5524 unsigned Depth, 5525 llvm::SmallBitVector &Used) { 5526 if (T.isNull()) 5527 return; 5528 5529 // Non-dependent types have nothing deducible 5530 if (!T->isDependentType()) 5531 return; 5532 5533 T = Ctx.getCanonicalType(T); 5534 switch (T->getTypeClass()) { 5535 case Type::Pointer: 5536 MarkUsedTemplateParameters(Ctx, 5537 cast<PointerType>(T)->getPointeeType(), 5538 OnlyDeduced, 5539 Depth, 5540 Used); 5541 break; 5542 5543 case Type::BlockPointer: 5544 MarkUsedTemplateParameters(Ctx, 5545 cast<BlockPointerType>(T)->getPointeeType(), 5546 OnlyDeduced, 5547 Depth, 5548 Used); 5549 break; 5550 5551 case Type::LValueReference: 5552 case Type::RValueReference: 5553 MarkUsedTemplateParameters(Ctx, 5554 cast<ReferenceType>(T)->getPointeeType(), 5555 OnlyDeduced, 5556 Depth, 5557 Used); 5558 break; 5559 5560 case Type::MemberPointer: { 5561 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5562 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5563 Depth, Used); 5564 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5565 OnlyDeduced, Depth, Used); 5566 break; 5567 } 5568 5569 case Type::DependentSizedArray: 5570 MarkUsedTemplateParameters(Ctx, 5571 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5572 OnlyDeduced, Depth, Used); 5573 // Fall through to check the element type 5574 LLVM_FALLTHROUGH; 5575 5576 case Type::ConstantArray: 5577 case Type::IncompleteArray: 5578 MarkUsedTemplateParameters(Ctx, 5579 cast<ArrayType>(T)->getElementType(), 5580 OnlyDeduced, Depth, Used); 5581 break; 5582 5583 case Type::Vector: 5584 case Type::ExtVector: 5585 MarkUsedTemplateParameters(Ctx, 5586 cast<VectorType>(T)->getElementType(), 5587 OnlyDeduced, Depth, Used); 5588 break; 5589 5590 case Type::DependentVector: { 5591 const auto *VecType = cast<DependentVectorType>(T); 5592 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5593 Depth, Used); 5594 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5595 Used); 5596 break; 5597 } 5598 case Type::DependentSizedExtVector: { 5599 const DependentSizedExtVectorType *VecType 5600 = cast<DependentSizedExtVectorType>(T); 5601 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5602 Depth, Used); 5603 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5604 Depth, Used); 5605 break; 5606 } 5607 5608 case Type::DependentAddressSpace: { 5609 const DependentAddressSpaceType *DependentASType = 5610 cast<DependentAddressSpaceType>(T); 5611 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 5612 OnlyDeduced, Depth, Used); 5613 MarkUsedTemplateParameters(Ctx, 5614 DependentASType->getAddrSpaceExpr(), 5615 OnlyDeduced, Depth, Used); 5616 break; 5617 } 5618 5619 case Type::FunctionProto: { 5620 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 5621 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 5622 Used); 5623 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 5624 // C++17 [temp.deduct.type]p5: 5625 // The non-deduced contexts are: [...] 5626 // -- A function parameter pack that does not occur at the end of the 5627 // parameter-declaration-list. 5628 if (!OnlyDeduced || I + 1 == N || 5629 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 5630 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 5631 Depth, Used); 5632 } else { 5633 // FIXME: C++17 [temp.deduct.call]p1: 5634 // When a function parameter pack appears in a non-deduced context, 5635 // the type of that pack is never deduced. 5636 // 5637 // We should also track a set of "never deduced" parameters, and 5638 // subtract that from the list of deduced parameters after marking. 5639 } 5640 } 5641 if (auto *E = Proto->getNoexceptExpr()) 5642 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 5643 break; 5644 } 5645 5646 case Type::TemplateTypeParm: { 5647 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 5648 if (TTP->getDepth() == Depth) 5649 Used[TTP->getIndex()] = true; 5650 break; 5651 } 5652 5653 case Type::SubstTemplateTypeParmPack: { 5654 const SubstTemplateTypeParmPackType *Subst 5655 = cast<SubstTemplateTypeParmPackType>(T); 5656 MarkUsedTemplateParameters(Ctx, 5657 QualType(Subst->getReplacedParameter(), 0), 5658 OnlyDeduced, Depth, Used); 5659 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 5660 OnlyDeduced, Depth, Used); 5661 break; 5662 } 5663 5664 case Type::InjectedClassName: 5665 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 5666 LLVM_FALLTHROUGH; 5667 5668 case Type::TemplateSpecialization: { 5669 const TemplateSpecializationType *Spec 5670 = cast<TemplateSpecializationType>(T); 5671 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 5672 Depth, Used); 5673 5674 // C++0x [temp.deduct.type]p9: 5675 // If the template argument list of P contains a pack expansion that is 5676 // not the last template argument, the entire template argument list is a 5677 // non-deduced context. 5678 if (OnlyDeduced && 5679 hasPackExpansionBeforeEnd(Spec->template_arguments())) 5680 break; 5681 5682 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5683 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5684 Used); 5685 break; 5686 } 5687 5688 case Type::Complex: 5689 if (!OnlyDeduced) 5690 MarkUsedTemplateParameters(Ctx, 5691 cast<ComplexType>(T)->getElementType(), 5692 OnlyDeduced, Depth, Used); 5693 break; 5694 5695 case Type::Atomic: 5696 if (!OnlyDeduced) 5697 MarkUsedTemplateParameters(Ctx, 5698 cast<AtomicType>(T)->getValueType(), 5699 OnlyDeduced, Depth, Used); 5700 break; 5701 5702 case Type::DependentName: 5703 if (!OnlyDeduced) 5704 MarkUsedTemplateParameters(Ctx, 5705 cast<DependentNameType>(T)->getQualifier(), 5706 OnlyDeduced, Depth, Used); 5707 break; 5708 5709 case Type::DependentTemplateSpecialization: { 5710 // C++14 [temp.deduct.type]p5: 5711 // The non-deduced contexts are: 5712 // -- The nested-name-specifier of a type that was specified using a 5713 // qualified-id 5714 // 5715 // C++14 [temp.deduct.type]p6: 5716 // When a type name is specified in a way that includes a non-deduced 5717 // context, all of the types that comprise that type name are also 5718 // non-deduced. 5719 if (OnlyDeduced) 5720 break; 5721 5722 const DependentTemplateSpecializationType *Spec 5723 = cast<DependentTemplateSpecializationType>(T); 5724 5725 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 5726 OnlyDeduced, Depth, Used); 5727 5728 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5729 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5730 Used); 5731 break; 5732 } 5733 5734 case Type::TypeOf: 5735 if (!OnlyDeduced) 5736 MarkUsedTemplateParameters(Ctx, 5737 cast<TypeOfType>(T)->getUnderlyingType(), 5738 OnlyDeduced, Depth, Used); 5739 break; 5740 5741 case Type::TypeOfExpr: 5742 if (!OnlyDeduced) 5743 MarkUsedTemplateParameters(Ctx, 5744 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 5745 OnlyDeduced, Depth, Used); 5746 break; 5747 5748 case Type::Decltype: 5749 if (!OnlyDeduced) 5750 MarkUsedTemplateParameters(Ctx, 5751 cast<DecltypeType>(T)->getUnderlyingExpr(), 5752 OnlyDeduced, Depth, Used); 5753 break; 5754 5755 case Type::UnaryTransform: 5756 if (!OnlyDeduced) 5757 MarkUsedTemplateParameters(Ctx, 5758 cast<UnaryTransformType>(T)->getUnderlyingType(), 5759 OnlyDeduced, Depth, Used); 5760 break; 5761 5762 case Type::PackExpansion: 5763 MarkUsedTemplateParameters(Ctx, 5764 cast<PackExpansionType>(T)->getPattern(), 5765 OnlyDeduced, Depth, Used); 5766 break; 5767 5768 case Type::Auto: 5769 case Type::DeducedTemplateSpecialization: 5770 MarkUsedTemplateParameters(Ctx, 5771 cast<DeducedType>(T)->getDeducedType(), 5772 OnlyDeduced, Depth, Used); 5773 break; 5774 5775 // None of these types have any template parameters in them. 5776 case Type::Builtin: 5777 case Type::VariableArray: 5778 case Type::FunctionNoProto: 5779 case Type::Record: 5780 case Type::Enum: 5781 case Type::ObjCInterface: 5782 case Type::ObjCObject: 5783 case Type::ObjCObjectPointer: 5784 case Type::UnresolvedUsing: 5785 case Type::Pipe: 5786 #define TYPE(Class, Base) 5787 #define ABSTRACT_TYPE(Class, Base) 5788 #define DEPENDENT_TYPE(Class, Base) 5789 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 5790 #include "clang/AST/TypeNodes.inc" 5791 break; 5792 } 5793 } 5794 5795 /// Mark the template parameters that are used by this 5796 /// template argument. 5797 static void 5798 MarkUsedTemplateParameters(ASTContext &Ctx, 5799 const TemplateArgument &TemplateArg, 5800 bool OnlyDeduced, 5801 unsigned Depth, 5802 llvm::SmallBitVector &Used) { 5803 switch (TemplateArg.getKind()) { 5804 case TemplateArgument::Null: 5805 case TemplateArgument::Integral: 5806 case TemplateArgument::Declaration: 5807 break; 5808 5809 case TemplateArgument::NullPtr: 5810 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 5811 Depth, Used); 5812 break; 5813 5814 case TemplateArgument::Type: 5815 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 5816 Depth, Used); 5817 break; 5818 5819 case TemplateArgument::Template: 5820 case TemplateArgument::TemplateExpansion: 5821 MarkUsedTemplateParameters(Ctx, 5822 TemplateArg.getAsTemplateOrTemplatePattern(), 5823 OnlyDeduced, Depth, Used); 5824 break; 5825 5826 case TemplateArgument::Expression: 5827 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 5828 Depth, Used); 5829 break; 5830 5831 case TemplateArgument::Pack: 5832 for (const auto &P : TemplateArg.pack_elements()) 5833 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 5834 break; 5835 } 5836 } 5837 5838 /// Mark which template parameters are used in a given expression. 5839 /// 5840 /// \param E the expression from which template parameters will be deduced. 5841 /// 5842 /// \param Used a bit vector whose elements will be set to \c true 5843 /// to indicate when the corresponding template parameter will be 5844 /// deduced. 5845 void 5846 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 5847 unsigned Depth, 5848 llvm::SmallBitVector &Used) { 5849 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 5850 } 5851 5852 /// Mark which template parameters can be deduced from a given 5853 /// template argument list. 5854 /// 5855 /// \param TemplateArgs the template argument list from which template 5856 /// parameters will be deduced. 5857 /// 5858 /// \param Used a bit vector whose elements will be set to \c true 5859 /// to indicate when the corresponding template parameter will be 5860 /// deduced. 5861 void 5862 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 5863 bool OnlyDeduced, unsigned Depth, 5864 llvm::SmallBitVector &Used) { 5865 // C++0x [temp.deduct.type]p9: 5866 // If the template argument list of P contains a pack expansion that is not 5867 // the last template argument, the entire template argument list is a 5868 // non-deduced context. 5869 if (OnlyDeduced && 5870 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 5871 return; 5872 5873 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5874 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 5875 Depth, Used); 5876 } 5877 5878 /// Marks all of the template parameters that will be deduced by a 5879 /// call to the given function template. 5880 void Sema::MarkDeducedTemplateParameters( 5881 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 5882 llvm::SmallBitVector &Deduced) { 5883 TemplateParameterList *TemplateParams 5884 = FunctionTemplate->getTemplateParameters(); 5885 Deduced.clear(); 5886 Deduced.resize(TemplateParams->size()); 5887 5888 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 5889 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 5890 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 5891 true, TemplateParams->getDepth(), Deduced); 5892 } 5893 5894 bool hasDeducibleTemplateParameters(Sema &S, 5895 FunctionTemplateDecl *FunctionTemplate, 5896 QualType T) { 5897 if (!T->isDependentType()) 5898 return false; 5899 5900 TemplateParameterList *TemplateParams 5901 = FunctionTemplate->getTemplateParameters(); 5902 llvm::SmallBitVector Deduced(TemplateParams->size()); 5903 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 5904 Deduced); 5905 5906 return Deduced.any(); 5907 } 5908