xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaTemplateDeduction.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/TemplateBase.h"
28 #include "clang/AST/TemplateName.h"
29 #include "clang/AST/Type.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/AST/UnresolvedSet.h"
32 #include "clang/Basic/AddressSpaces.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Sema/Ownership.h"
40 #include "clang/Sema/Sema.h"
41 #include "clang/Sema/Template.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/FoldingSet.h"
47 #include "llvm/ADT/Optional.h"
48 #include "llvm/ADT/SmallBitVector.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <tuple>
57 #include <utility>
58 
59 namespace clang {
60 
61   /// Various flags that control template argument deduction.
62   ///
63   /// These flags can be bitwise-OR'd together.
64   enum TemplateDeductionFlags {
65     /// No template argument deduction flags, which indicates the
66     /// strictest results for template argument deduction (as used for, e.g.,
67     /// matching class template partial specializations).
68     TDF_None = 0,
69 
70     /// Within template argument deduction from a function call, we are
71     /// matching with a parameter type for which the original parameter was
72     /// a reference.
73     TDF_ParamWithReferenceType = 0x1,
74 
75     /// Within template argument deduction from a function call, we
76     /// are matching in a case where we ignore cv-qualifiers.
77     TDF_IgnoreQualifiers = 0x02,
78 
79     /// Within template argument deduction from a function call,
80     /// we are matching in a case where we can perform template argument
81     /// deduction from a template-id of a derived class of the argument type.
82     TDF_DerivedClass = 0x04,
83 
84     /// Allow non-dependent types to differ, e.g., when performing
85     /// template argument deduction from a function call where conversions
86     /// may apply.
87     TDF_SkipNonDependent = 0x08,
88 
89     /// Whether we are performing template argument deduction for
90     /// parameters and arguments in a top-level template argument
91     TDF_TopLevelParameterTypeList = 0x10,
92 
93     /// Within template argument deduction from overload resolution per
94     /// C++ [over.over] allow matching function types that are compatible in
95     /// terms of noreturn and default calling convention adjustments, or
96     /// similarly matching a declared template specialization against a
97     /// possible template, per C++ [temp.deduct.decl]. In either case, permit
98     /// deduction where the parameter is a function type that can be converted
99     /// to the argument type.
100     TDF_AllowCompatibleFunctionType = 0x20,
101 
102     /// Within template argument deduction for a conversion function, we are
103     /// matching with an argument type for which the original argument was
104     /// a reference.
105     TDF_ArgWithReferenceType = 0x40,
106   };
107 }
108 
109 using namespace clang;
110 using namespace sema;
111 
112 /// Compare two APSInts, extending and switching the sign as
113 /// necessary to compare their values regardless of underlying type.
114 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
115   if (Y.getBitWidth() > X.getBitWidth())
116     X = X.extend(Y.getBitWidth());
117   else if (Y.getBitWidth() < X.getBitWidth())
118     Y = Y.extend(X.getBitWidth());
119 
120   // If there is a signedness mismatch, correct it.
121   if (X.isSigned() != Y.isSigned()) {
122     // If the signed value is negative, then the values cannot be the same.
123     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
124       return false;
125 
126     Y.setIsSigned(true);
127     X.setIsSigned(true);
128   }
129 
130   return X == Y;
131 }
132 
133 static Sema::TemplateDeductionResult
134 DeduceTemplateArguments(Sema &S,
135                         TemplateParameterList *TemplateParams,
136                         const TemplateArgument &Param,
137                         TemplateArgument Arg,
138                         TemplateDeductionInfo &Info,
139                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
140 
141 static Sema::TemplateDeductionResult
142 DeduceTemplateArgumentsByTypeMatch(Sema &S,
143                                    TemplateParameterList *TemplateParams,
144                                    QualType Param,
145                                    QualType Arg,
146                                    TemplateDeductionInfo &Info,
147                                    SmallVectorImpl<DeducedTemplateArgument> &
148                                                       Deduced,
149                                    unsigned TDF,
150                                    bool PartialOrdering = false,
151                                    bool DeducedFromArrayBound = false);
152 
153 static Sema::TemplateDeductionResult
154 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
155                         ArrayRef<TemplateArgument> Params,
156                         ArrayRef<TemplateArgument> Args,
157                         TemplateDeductionInfo &Info,
158                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
159                         bool NumberOfArgumentsMustMatch);
160 
161 static void MarkUsedTemplateParameters(ASTContext &Ctx,
162                                        const TemplateArgument &TemplateArg,
163                                        bool OnlyDeduced, unsigned Depth,
164                                        llvm::SmallBitVector &Used);
165 
166 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
167                                        bool OnlyDeduced, unsigned Level,
168                                        llvm::SmallBitVector &Deduced);
169 
170 /// If the given expression is of a form that permits the deduction
171 /// of a non-type template parameter, return the declaration of that
172 /// non-type template parameter.
173 static NonTypeTemplateParmDecl *
174 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
175   // If we are within an alias template, the expression may have undergone
176   // any number of parameter substitutions already.
177   while (true) {
178     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
179       E = IC->getSubExpr();
180     else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
181       E = CE->getSubExpr();
182     else if (SubstNonTypeTemplateParmExpr *Subst =
183                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
184       E = Subst->getReplacement();
185     else
186       break;
187   }
188 
189   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
190     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
191       if (NTTP->getDepth() == Info.getDeducedDepth())
192         return NTTP;
193 
194   return nullptr;
195 }
196 
197 /// Determine whether two declaration pointers refer to the same
198 /// declaration.
199 static bool isSameDeclaration(Decl *X, Decl *Y) {
200   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
201     X = NX->getUnderlyingDecl();
202   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
203     Y = NY->getUnderlyingDecl();
204 
205   return X->getCanonicalDecl() == Y->getCanonicalDecl();
206 }
207 
208 /// Verify that the given, deduced template arguments are compatible.
209 ///
210 /// \returns The deduced template argument, or a NULL template argument if
211 /// the deduced template arguments were incompatible.
212 static DeducedTemplateArgument
213 checkDeducedTemplateArguments(ASTContext &Context,
214                               const DeducedTemplateArgument &X,
215                               const DeducedTemplateArgument &Y) {
216   // We have no deduction for one or both of the arguments; they're compatible.
217   if (X.isNull())
218     return Y;
219   if (Y.isNull())
220     return X;
221 
222   // If we have two non-type template argument values deduced for the same
223   // parameter, they must both match the type of the parameter, and thus must
224   // match each other's type. As we're only keeping one of them, we must check
225   // for that now. The exception is that if either was deduced from an array
226   // bound, the type is permitted to differ.
227   if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
228     QualType XType = X.getNonTypeTemplateArgumentType();
229     if (!XType.isNull()) {
230       QualType YType = Y.getNonTypeTemplateArgumentType();
231       if (YType.isNull() || !Context.hasSameType(XType, YType))
232         return DeducedTemplateArgument();
233     }
234   }
235 
236   switch (X.getKind()) {
237   case TemplateArgument::Null:
238     llvm_unreachable("Non-deduced template arguments handled above");
239 
240   case TemplateArgument::Type:
241     // If two template type arguments have the same type, they're compatible.
242     if (Y.getKind() == TemplateArgument::Type &&
243         Context.hasSameType(X.getAsType(), Y.getAsType()))
244       return X;
245 
246     // If one of the two arguments was deduced from an array bound, the other
247     // supersedes it.
248     if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
249       return X.wasDeducedFromArrayBound() ? Y : X;
250 
251     // The arguments are not compatible.
252     return DeducedTemplateArgument();
253 
254   case TemplateArgument::Integral:
255     // If we deduced a constant in one case and either a dependent expression or
256     // declaration in another case, keep the integral constant.
257     // If both are integral constants with the same value, keep that value.
258     if (Y.getKind() == TemplateArgument::Expression ||
259         Y.getKind() == TemplateArgument::Declaration ||
260         (Y.getKind() == TemplateArgument::Integral &&
261          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
262       return X.wasDeducedFromArrayBound() ? Y : X;
263 
264     // All other combinations are incompatible.
265     return DeducedTemplateArgument();
266 
267   case TemplateArgument::Template:
268     if (Y.getKind() == TemplateArgument::Template &&
269         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
270       return X;
271 
272     // All other combinations are incompatible.
273     return DeducedTemplateArgument();
274 
275   case TemplateArgument::TemplateExpansion:
276     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
277         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
278                                     Y.getAsTemplateOrTemplatePattern()))
279       return X;
280 
281     // All other combinations are incompatible.
282     return DeducedTemplateArgument();
283 
284   case TemplateArgument::Expression: {
285     if (Y.getKind() != TemplateArgument::Expression)
286       return checkDeducedTemplateArguments(Context, Y, X);
287 
288     // Compare the expressions for equality
289     llvm::FoldingSetNodeID ID1, ID2;
290     X.getAsExpr()->Profile(ID1, Context, true);
291     Y.getAsExpr()->Profile(ID2, Context, true);
292     if (ID1 == ID2)
293       return X.wasDeducedFromArrayBound() ? Y : X;
294 
295     // Differing dependent expressions are incompatible.
296     return DeducedTemplateArgument();
297   }
298 
299   case TemplateArgument::Declaration:
300     assert(!X.wasDeducedFromArrayBound());
301 
302     // If we deduced a declaration and a dependent expression, keep the
303     // declaration.
304     if (Y.getKind() == TemplateArgument::Expression)
305       return X;
306 
307     // If we deduced a declaration and an integral constant, keep the
308     // integral constant and whichever type did not come from an array
309     // bound.
310     if (Y.getKind() == TemplateArgument::Integral) {
311       if (Y.wasDeducedFromArrayBound())
312         return TemplateArgument(Context, Y.getAsIntegral(),
313                                 X.getParamTypeForDecl());
314       return Y;
315     }
316 
317     // If we deduced two declarations, make sure that they refer to the
318     // same declaration.
319     if (Y.getKind() == TemplateArgument::Declaration &&
320         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
321       return X;
322 
323     // All other combinations are incompatible.
324     return DeducedTemplateArgument();
325 
326   case TemplateArgument::NullPtr:
327     // If we deduced a null pointer and a dependent expression, keep the
328     // null pointer.
329     if (Y.getKind() == TemplateArgument::Expression)
330       return X;
331 
332     // If we deduced a null pointer and an integral constant, keep the
333     // integral constant.
334     if (Y.getKind() == TemplateArgument::Integral)
335       return Y;
336 
337     // If we deduced two null pointers, they are the same.
338     if (Y.getKind() == TemplateArgument::NullPtr)
339       return X;
340 
341     // All other combinations are incompatible.
342     return DeducedTemplateArgument();
343 
344   case TemplateArgument::Pack: {
345     if (Y.getKind() != TemplateArgument::Pack ||
346         X.pack_size() != Y.pack_size())
347       return DeducedTemplateArgument();
348 
349     llvm::SmallVector<TemplateArgument, 8> NewPack;
350     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
351                                       XAEnd = X.pack_end(),
352                                          YA = Y.pack_begin();
353          XA != XAEnd; ++XA, ++YA) {
354       TemplateArgument Merged = checkDeducedTemplateArguments(
355           Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
356           DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
357       if (Merged.isNull())
358         return DeducedTemplateArgument();
359       NewPack.push_back(Merged);
360     }
361 
362     return DeducedTemplateArgument(
363         TemplateArgument::CreatePackCopy(Context, NewPack),
364         X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
365   }
366   }
367 
368   llvm_unreachable("Invalid TemplateArgument Kind!");
369 }
370 
371 /// Deduce the value of the given non-type template parameter
372 /// as the given deduced template argument. All non-type template parameter
373 /// deduction is funneled through here.
374 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
375     Sema &S, TemplateParameterList *TemplateParams,
376     NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
377     QualType ValueType, TemplateDeductionInfo &Info,
378     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
379   assert(NTTP->getDepth() == Info.getDeducedDepth() &&
380          "deducing non-type template argument with wrong depth");
381 
382   DeducedTemplateArgument Result = checkDeducedTemplateArguments(
383       S.Context, Deduced[NTTP->getIndex()], NewDeduced);
384   if (Result.isNull()) {
385     Info.Param = NTTP;
386     Info.FirstArg = Deduced[NTTP->getIndex()];
387     Info.SecondArg = NewDeduced;
388     return Sema::TDK_Inconsistent;
389   }
390 
391   Deduced[NTTP->getIndex()] = Result;
392   if (!S.getLangOpts().CPlusPlus17)
393     return Sema::TDK_Success;
394 
395   if (NTTP->isExpandedParameterPack())
396     // FIXME: We may still need to deduce parts of the type here! But we
397     // don't have any way to find which slice of the type to use, and the
398     // type stored on the NTTP itself is nonsense. Perhaps the type of an
399     // expanded NTTP should be a pack expansion type?
400     return Sema::TDK_Success;
401 
402   // Get the type of the parameter for deduction. If it's a (dependent) array
403   // or function type, we will not have decayed it yet, so do that now.
404   QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
405   if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
406     ParamType = Expansion->getPattern();
407 
408   // FIXME: It's not clear how deduction of a parameter of reference
409   // type from an argument (of non-reference type) should be performed.
410   // For now, we just remove reference types from both sides and let
411   // the final check for matching types sort out the mess.
412   return DeduceTemplateArgumentsByTypeMatch(
413       S, TemplateParams, ParamType.getNonReferenceType(),
414       ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
415       /*PartialOrdering=*/false,
416       /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
417 }
418 
419 /// Deduce the value of the given non-type template parameter
420 /// from the given integral constant.
421 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
422     Sema &S, TemplateParameterList *TemplateParams,
423     NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
424     QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
425     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
426   return DeduceNonTypeTemplateArgument(
427       S, TemplateParams, NTTP,
428       DeducedTemplateArgument(S.Context, Value, ValueType,
429                               DeducedFromArrayBound),
430       ValueType, Info, Deduced);
431 }
432 
433 /// Deduce the value of the given non-type template parameter
434 /// from the given null pointer template argument type.
435 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
436     Sema &S, TemplateParameterList *TemplateParams,
437     NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
438     TemplateDeductionInfo &Info,
439     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
440   Expr *Value =
441       S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
442                               S.Context.NullPtrTy, NTTP->getLocation()),
443                           NullPtrType, CK_NullToPointer)
444           .get();
445   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
446                                        DeducedTemplateArgument(Value),
447                                        Value->getType(), Info, Deduced);
448 }
449 
450 /// Deduce the value of the given non-type template parameter
451 /// from the given type- or value-dependent expression.
452 ///
453 /// \returns true if deduction succeeded, false otherwise.
454 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
455     Sema &S, TemplateParameterList *TemplateParams,
456     NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
457     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
458   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
459                                        DeducedTemplateArgument(Value),
460                                        Value->getType(), Info, Deduced);
461 }
462 
463 /// Deduce the value of the given non-type template parameter
464 /// from the given declaration.
465 ///
466 /// \returns true if deduction succeeded, false otherwise.
467 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
468     Sema &S, TemplateParameterList *TemplateParams,
469     NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
470     TemplateDeductionInfo &Info,
471     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
472   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
473   TemplateArgument New(D, T);
474   return DeduceNonTypeTemplateArgument(
475       S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
476 }
477 
478 static Sema::TemplateDeductionResult
479 DeduceTemplateArguments(Sema &S,
480                         TemplateParameterList *TemplateParams,
481                         TemplateName Param,
482                         TemplateName Arg,
483                         TemplateDeductionInfo &Info,
484                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
485   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
486   if (!ParamDecl) {
487     // The parameter type is dependent and is not a template template parameter,
488     // so there is nothing that we can deduce.
489     return Sema::TDK_Success;
490   }
491 
492   if (TemplateTemplateParmDecl *TempParam
493         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
494     // If we're not deducing at this depth, there's nothing to deduce.
495     if (TempParam->getDepth() != Info.getDeducedDepth())
496       return Sema::TDK_Success;
497 
498     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
499     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
500                                                  Deduced[TempParam->getIndex()],
501                                                                    NewDeduced);
502     if (Result.isNull()) {
503       Info.Param = TempParam;
504       Info.FirstArg = Deduced[TempParam->getIndex()];
505       Info.SecondArg = NewDeduced;
506       return Sema::TDK_Inconsistent;
507     }
508 
509     Deduced[TempParam->getIndex()] = Result;
510     return Sema::TDK_Success;
511   }
512 
513   // Verify that the two template names are equivalent.
514   if (S.Context.hasSameTemplateName(Param, Arg))
515     return Sema::TDK_Success;
516 
517   // Mismatch of non-dependent template parameter to argument.
518   Info.FirstArg = TemplateArgument(Param);
519   Info.SecondArg = TemplateArgument(Arg);
520   return Sema::TDK_NonDeducedMismatch;
521 }
522 
523 /// Deduce the template arguments by comparing the template parameter
524 /// type (which is a template-id) with the template argument type.
525 ///
526 /// \param S the Sema
527 ///
528 /// \param TemplateParams the template parameters that we are deducing
529 ///
530 /// \param Param the parameter type
531 ///
532 /// \param Arg the argument type
533 ///
534 /// \param Info information about the template argument deduction itself
535 ///
536 /// \param Deduced the deduced template arguments
537 ///
538 /// \returns the result of template argument deduction so far. Note that a
539 /// "success" result means that template argument deduction has not yet failed,
540 /// but it may still fail, later, for other reasons.
541 static Sema::TemplateDeductionResult
542 DeduceTemplateArguments(Sema &S,
543                         TemplateParameterList *TemplateParams,
544                         const TemplateSpecializationType *Param,
545                         QualType Arg,
546                         TemplateDeductionInfo &Info,
547                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
548   assert(Arg.isCanonical() && "Argument type must be canonical");
549 
550   // Treat an injected-class-name as its underlying template-id.
551   if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
552     Arg = Injected->getInjectedSpecializationType();
553 
554   // Check whether the template argument is a dependent template-id.
555   if (const TemplateSpecializationType *SpecArg
556         = dyn_cast<TemplateSpecializationType>(Arg)) {
557     // Perform template argument deduction for the template name.
558     if (Sema::TemplateDeductionResult Result
559           = DeduceTemplateArguments(S, TemplateParams,
560                                     Param->getTemplateName(),
561                                     SpecArg->getTemplateName(),
562                                     Info, Deduced))
563       return Result;
564 
565 
566     // Perform template argument deduction on each template
567     // argument. Ignore any missing/extra arguments, since they could be
568     // filled in by default arguments.
569     return DeduceTemplateArguments(S, TemplateParams,
570                                    Param->template_arguments(),
571                                    SpecArg->template_arguments(), Info, Deduced,
572                                    /*NumberOfArgumentsMustMatch=*/false);
573   }
574 
575   // If the argument type is a class template specialization, we
576   // perform template argument deduction using its template
577   // arguments.
578   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
579   if (!RecordArg) {
580     Info.FirstArg = TemplateArgument(QualType(Param, 0));
581     Info.SecondArg = TemplateArgument(Arg);
582     return Sema::TDK_NonDeducedMismatch;
583   }
584 
585   ClassTemplateSpecializationDecl *SpecArg
586     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
587   if (!SpecArg) {
588     Info.FirstArg = TemplateArgument(QualType(Param, 0));
589     Info.SecondArg = TemplateArgument(Arg);
590     return Sema::TDK_NonDeducedMismatch;
591   }
592 
593   // Perform template argument deduction for the template name.
594   if (Sema::TemplateDeductionResult Result
595         = DeduceTemplateArguments(S,
596                                   TemplateParams,
597                                   Param->getTemplateName(),
598                                TemplateName(SpecArg->getSpecializedTemplate()),
599                                   Info, Deduced))
600     return Result;
601 
602   // Perform template argument deduction for the template arguments.
603   return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
604                                  SpecArg->getTemplateArgs().asArray(), Info,
605                                  Deduced, /*NumberOfArgumentsMustMatch=*/true);
606 }
607 
608 /// Determines whether the given type is an opaque type that
609 /// might be more qualified when instantiated.
610 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
611   switch (T->getTypeClass()) {
612   case Type::TypeOfExpr:
613   case Type::TypeOf:
614   case Type::DependentName:
615   case Type::Decltype:
616   case Type::UnresolvedUsing:
617   case Type::TemplateTypeParm:
618     return true;
619 
620   case Type::ConstantArray:
621   case Type::IncompleteArray:
622   case Type::VariableArray:
623   case Type::DependentSizedArray:
624     return IsPossiblyOpaquelyQualifiedType(
625                                       cast<ArrayType>(T)->getElementType());
626 
627   default:
628     return false;
629   }
630 }
631 
632 /// Helper function to build a TemplateParameter when we don't
633 /// know its type statically.
634 static TemplateParameter makeTemplateParameter(Decl *D) {
635   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
636     return TemplateParameter(TTP);
637   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
638     return TemplateParameter(NTTP);
639 
640   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
641 }
642 
643 /// If \p Param is an expanded parameter pack, get the number of expansions.
644 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
645   if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
646     if (NTTP->isExpandedParameterPack())
647       return NTTP->getNumExpansionTypes();
648 
649   if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
650     if (TTP->isExpandedParameterPack())
651       return TTP->getNumExpansionTemplateParameters();
652 
653   return None;
654 }
655 
656 /// A pack that we're currently deducing.
657 struct clang::DeducedPack {
658   // The index of the pack.
659   unsigned Index;
660 
661   // The old value of the pack before we started deducing it.
662   DeducedTemplateArgument Saved;
663 
664   // A deferred value of this pack from an inner deduction, that couldn't be
665   // deduced because this deduction hadn't happened yet.
666   DeducedTemplateArgument DeferredDeduction;
667 
668   // The new value of the pack.
669   SmallVector<DeducedTemplateArgument, 4> New;
670 
671   // The outer deduction for this pack, if any.
672   DeducedPack *Outer = nullptr;
673 
674   DeducedPack(unsigned Index) : Index(Index) {}
675 };
676 
677 namespace {
678 
679 /// A scope in which we're performing pack deduction.
680 class PackDeductionScope {
681 public:
682   /// Prepare to deduce the packs named within Pattern.
683   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
684                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
685                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
686       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
687     unsigned NumNamedPacks = addPacks(Pattern);
688     finishConstruction(NumNamedPacks);
689   }
690 
691   /// Prepare to directly deduce arguments of the parameter with index \p Index.
692   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
693                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
694                      TemplateDeductionInfo &Info, unsigned Index)
695       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
696     addPack(Index);
697     finishConstruction(1);
698   }
699 
700 private:
701   void addPack(unsigned Index) {
702     // Save the deduced template argument for the parameter pack expanded
703     // by this pack expansion, then clear out the deduction.
704     DeducedPack Pack(Index);
705     Pack.Saved = Deduced[Index];
706     Deduced[Index] = TemplateArgument();
707 
708     // FIXME: What if we encounter multiple packs with different numbers of
709     // pre-expanded expansions? (This should already have been diagnosed
710     // during substitution.)
711     if (Optional<unsigned> ExpandedPackExpansions =
712             getExpandedPackSize(TemplateParams->getParam(Index)))
713       FixedNumExpansions = ExpandedPackExpansions;
714 
715     Packs.push_back(Pack);
716   }
717 
718   unsigned addPacks(TemplateArgument Pattern) {
719     // Compute the set of template parameter indices that correspond to
720     // parameter packs expanded by the pack expansion.
721     llvm::SmallBitVector SawIndices(TemplateParams->size());
722 
723     auto AddPack = [&](unsigned Index) {
724       if (SawIndices[Index])
725         return;
726       SawIndices[Index] = true;
727       addPack(Index);
728     };
729 
730     // First look for unexpanded packs in the pattern.
731     SmallVector<UnexpandedParameterPack, 2> Unexpanded;
732     S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
733     for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
734       unsigned Depth, Index;
735       std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
736       if (Depth == Info.getDeducedDepth())
737         AddPack(Index);
738     }
739     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
740 
741     unsigned NumNamedPacks = Packs.size();
742 
743     // We can also have deduced template parameters that do not actually
744     // appear in the pattern, but can be deduced by it (the type of a non-type
745     // template parameter pack, in particular). These won't have prevented us
746     // from partially expanding the pack.
747     llvm::SmallBitVector Used(TemplateParams->size());
748     MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true,
749                                Info.getDeducedDepth(), Used);
750     for (int Index = Used.find_first(); Index != -1;
751          Index = Used.find_next(Index))
752       if (TemplateParams->getParam(Index)->isParameterPack())
753         AddPack(Index);
754 
755     return NumNamedPacks;
756   }
757 
758   void finishConstruction(unsigned NumNamedPacks) {
759     // Dig out the partially-substituted pack, if there is one.
760     const TemplateArgument *PartialPackArgs = nullptr;
761     unsigned NumPartialPackArgs = 0;
762     std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
763     if (auto *Scope = S.CurrentInstantiationScope)
764       if (auto *Partial = Scope->getPartiallySubstitutedPack(
765               &PartialPackArgs, &NumPartialPackArgs))
766         PartialPackDepthIndex = getDepthAndIndex(Partial);
767 
768     // This pack expansion will have been partially or fully expanded if
769     // it only names explicitly-specified parameter packs (including the
770     // partially-substituted one, if any).
771     bool IsExpanded = true;
772     for (unsigned I = 0; I != NumNamedPacks; ++I) {
773       if (Packs[I].Index >= Info.getNumExplicitArgs()) {
774         IsExpanded = false;
775         IsPartiallyExpanded = false;
776         break;
777       }
778       if (PartialPackDepthIndex ==
779             std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
780         IsPartiallyExpanded = true;
781       }
782     }
783 
784     // Skip over the pack elements that were expanded into separate arguments.
785     // If we partially expanded, this is the number of partial arguments.
786     if (IsPartiallyExpanded)
787       PackElements += NumPartialPackArgs;
788     else if (IsExpanded)
789       PackElements += *FixedNumExpansions;
790 
791     for (auto &Pack : Packs) {
792       if (Info.PendingDeducedPacks.size() > Pack.Index)
793         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
794       else
795         Info.PendingDeducedPacks.resize(Pack.Index + 1);
796       Info.PendingDeducedPacks[Pack.Index] = &Pack;
797 
798       if (PartialPackDepthIndex ==
799             std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
800         Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
801         // We pre-populate the deduced value of the partially-substituted
802         // pack with the specified value. This is not entirely correct: the
803         // value is supposed to have been substituted, not deduced, but the
804         // cases where this is observable require an exact type match anyway.
805         //
806         // FIXME: If we could represent a "depth i, index j, pack elem k"
807         // parameter, we could substitute the partially-substituted pack
808         // everywhere and avoid this.
809         if (!IsPartiallyExpanded)
810           Deduced[Pack.Index] = Pack.New[PackElements];
811       }
812     }
813   }
814 
815 public:
816   ~PackDeductionScope() {
817     for (auto &Pack : Packs)
818       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
819   }
820 
821   /// Determine whether this pack has already been partially expanded into a
822   /// sequence of (prior) function parameters / template arguments.
823   bool isPartiallyExpanded() { return IsPartiallyExpanded; }
824 
825   /// Determine whether this pack expansion scope has a known, fixed arity.
826   /// This happens if it involves a pack from an outer template that has
827   /// (notionally) already been expanded.
828   bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
829 
830   /// Determine whether the next element of the argument is still part of this
831   /// pack. This is the case unless the pack is already expanded to a fixed
832   /// length.
833   bool hasNextElement() {
834     return !FixedNumExpansions || *FixedNumExpansions > PackElements;
835   }
836 
837   /// Move to deducing the next element in each pack that is being deduced.
838   void nextPackElement() {
839     // Capture the deduced template arguments for each parameter pack expanded
840     // by this pack expansion, add them to the list of arguments we've deduced
841     // for that pack, then clear out the deduced argument.
842     for (auto &Pack : Packs) {
843       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
844       if (!Pack.New.empty() || !DeducedArg.isNull()) {
845         while (Pack.New.size() < PackElements)
846           Pack.New.push_back(DeducedTemplateArgument());
847         if (Pack.New.size() == PackElements)
848           Pack.New.push_back(DeducedArg);
849         else
850           Pack.New[PackElements] = DeducedArg;
851         DeducedArg = Pack.New.size() > PackElements + 1
852                          ? Pack.New[PackElements + 1]
853                          : DeducedTemplateArgument();
854       }
855     }
856     ++PackElements;
857   }
858 
859   /// Finish template argument deduction for a set of argument packs,
860   /// producing the argument packs and checking for consistency with prior
861   /// deductions.
862   Sema::TemplateDeductionResult
863   finish(bool TreatNoDeductionsAsNonDeduced = true) {
864     // Build argument packs for each of the parameter packs expanded by this
865     // pack expansion.
866     for (auto &Pack : Packs) {
867       // Put back the old value for this pack.
868       Deduced[Pack.Index] = Pack.Saved;
869 
870       // If we are deducing the size of this pack even if we didn't deduce any
871       // values for it, then make sure we build a pack of the right size.
872       // FIXME: Should we always deduce the size, even if the pack appears in
873       // a non-deduced context?
874       if (!TreatNoDeductionsAsNonDeduced)
875         Pack.New.resize(PackElements);
876 
877       // Build or find a new value for this pack.
878       DeducedTemplateArgument NewPack;
879       if (PackElements && Pack.New.empty()) {
880         if (Pack.DeferredDeduction.isNull()) {
881           // We were not able to deduce anything for this parameter pack
882           // (because it only appeared in non-deduced contexts), so just
883           // restore the saved argument pack.
884           continue;
885         }
886 
887         NewPack = Pack.DeferredDeduction;
888         Pack.DeferredDeduction = TemplateArgument();
889       } else if (Pack.New.empty()) {
890         // If we deduced an empty argument pack, create it now.
891         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
892       } else {
893         TemplateArgument *ArgumentPack =
894             new (S.Context) TemplateArgument[Pack.New.size()];
895         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
896         NewPack = DeducedTemplateArgument(
897             TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
898             // FIXME: This is wrong, it's possible that some pack elements are
899             // deduced from an array bound and others are not:
900             //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
901             //   g({1, 2, 3}, {{}, {}});
902             // ... should deduce T = {int, size_t (from array bound)}.
903             Pack.New[0].wasDeducedFromArrayBound());
904       }
905 
906       // Pick where we're going to put the merged pack.
907       DeducedTemplateArgument *Loc;
908       if (Pack.Outer) {
909         if (Pack.Outer->DeferredDeduction.isNull()) {
910           // Defer checking this pack until we have a complete pack to compare
911           // it against.
912           Pack.Outer->DeferredDeduction = NewPack;
913           continue;
914         }
915         Loc = &Pack.Outer->DeferredDeduction;
916       } else {
917         Loc = &Deduced[Pack.Index];
918       }
919 
920       // Check the new pack matches any previous value.
921       DeducedTemplateArgument OldPack = *Loc;
922       DeducedTemplateArgument Result =
923           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
924 
925       // If we deferred a deduction of this pack, check that one now too.
926       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
927         OldPack = Result;
928         NewPack = Pack.DeferredDeduction;
929         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
930       }
931 
932       NamedDecl *Param = TemplateParams->getParam(Pack.Index);
933       if (Result.isNull()) {
934         Info.Param = makeTemplateParameter(Param);
935         Info.FirstArg = OldPack;
936         Info.SecondArg = NewPack;
937         return Sema::TDK_Inconsistent;
938       }
939 
940       // If we have a pre-expanded pack and we didn't deduce enough elements
941       // for it, fail deduction.
942       if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
943         if (*Expansions != PackElements) {
944           Info.Param = makeTemplateParameter(Param);
945           Info.FirstArg = Result;
946           return Sema::TDK_IncompletePack;
947         }
948       }
949 
950       *Loc = Result;
951     }
952 
953     return Sema::TDK_Success;
954   }
955 
956 private:
957   Sema &S;
958   TemplateParameterList *TemplateParams;
959   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
960   TemplateDeductionInfo &Info;
961   unsigned PackElements = 0;
962   bool IsPartiallyExpanded = false;
963   /// The number of expansions, if we have a fully-expanded pack in this scope.
964   Optional<unsigned> FixedNumExpansions;
965 
966   SmallVector<DeducedPack, 2> Packs;
967 };
968 
969 } // namespace
970 
971 /// Deduce the template arguments by comparing the list of parameter
972 /// types to the list of argument types, as in the parameter-type-lists of
973 /// function types (C++ [temp.deduct.type]p10).
974 ///
975 /// \param S The semantic analysis object within which we are deducing
976 ///
977 /// \param TemplateParams The template parameters that we are deducing
978 ///
979 /// \param Params The list of parameter types
980 ///
981 /// \param NumParams The number of types in \c Params
982 ///
983 /// \param Args The list of argument types
984 ///
985 /// \param NumArgs The number of types in \c Args
986 ///
987 /// \param Info information about the template argument deduction itself
988 ///
989 /// \param Deduced the deduced template arguments
990 ///
991 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
992 /// how template argument deduction is performed.
993 ///
994 /// \param PartialOrdering If true, we are performing template argument
995 /// deduction for during partial ordering for a call
996 /// (C++0x [temp.deduct.partial]).
997 ///
998 /// \returns the result of template argument deduction so far. Note that a
999 /// "success" result means that template argument deduction has not yet failed,
1000 /// but it may still fail, later, for other reasons.
1001 static Sema::TemplateDeductionResult
1002 DeduceTemplateArguments(Sema &S,
1003                         TemplateParameterList *TemplateParams,
1004                         const QualType *Params, unsigned NumParams,
1005                         const QualType *Args, unsigned NumArgs,
1006                         TemplateDeductionInfo &Info,
1007                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1008                         unsigned TDF,
1009                         bool PartialOrdering = false) {
1010   // C++0x [temp.deduct.type]p10:
1011   //   Similarly, if P has a form that contains (T), then each parameter type
1012   //   Pi of the respective parameter-type- list of P is compared with the
1013   //   corresponding parameter type Ai of the corresponding parameter-type-list
1014   //   of A. [...]
1015   unsigned ArgIdx = 0, ParamIdx = 0;
1016   for (; ParamIdx != NumParams; ++ParamIdx) {
1017     // Check argument types.
1018     const PackExpansionType *Expansion
1019                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1020     if (!Expansion) {
1021       // Simple case: compare the parameter and argument types at this point.
1022 
1023       // Make sure we have an argument.
1024       if (ArgIdx >= NumArgs)
1025         return Sema::TDK_MiscellaneousDeductionFailure;
1026 
1027       if (isa<PackExpansionType>(Args[ArgIdx])) {
1028         // C++0x [temp.deduct.type]p22:
1029         //   If the original function parameter associated with A is a function
1030         //   parameter pack and the function parameter associated with P is not
1031         //   a function parameter pack, then template argument deduction fails.
1032         return Sema::TDK_MiscellaneousDeductionFailure;
1033       }
1034 
1035       if (Sema::TemplateDeductionResult Result
1036             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1037                                                  Params[ParamIdx], Args[ArgIdx],
1038                                                  Info, Deduced, TDF,
1039                                                  PartialOrdering))
1040         return Result;
1041 
1042       ++ArgIdx;
1043       continue;
1044     }
1045 
1046     // C++0x [temp.deduct.type]p10:
1047     //   If the parameter-declaration corresponding to Pi is a function
1048     //   parameter pack, then the type of its declarator- id is compared with
1049     //   each remaining parameter type in the parameter-type-list of A. Each
1050     //   comparison deduces template arguments for subsequent positions in the
1051     //   template parameter packs expanded by the function parameter pack.
1052 
1053     QualType Pattern = Expansion->getPattern();
1054     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1055 
1056     // A pack scope with fixed arity is not really a pack any more, so is not
1057     // a non-deduced context.
1058     if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1059       for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1060         // Deduce template arguments from the pattern.
1061         if (Sema::TemplateDeductionResult Result
1062               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
1063                                                    Args[ArgIdx], Info, Deduced,
1064                                                    TDF, PartialOrdering))
1065           return Result;
1066 
1067         PackScope.nextPackElement();
1068       }
1069     } else {
1070       // C++0x [temp.deduct.type]p5:
1071       //   The non-deduced contexts are:
1072       //     - A function parameter pack that does not occur at the end of the
1073       //       parameter-declaration-clause.
1074       //
1075       // FIXME: There is no wording to say what we should do in this case. We
1076       // choose to resolve this by applying the same rule that is applied for a
1077       // function call: that is, deduce all contained packs to their
1078       // explicitly-specified values (or to <> if there is no such value).
1079       //
1080       // This is seemingly-arbitrarily different from the case of a template-id
1081       // with a non-trailing pack-expansion in its arguments, which renders the
1082       // entire template-argument-list a non-deduced context.
1083 
1084       // If the parameter type contains an explicitly-specified pack that we
1085       // could not expand, skip the number of parameters notionally created
1086       // by the expansion.
1087       Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1088       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1089         for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1090              ++I, ++ArgIdx)
1091           PackScope.nextPackElement();
1092       }
1093     }
1094 
1095     // Build argument packs for each of the parameter packs expanded by this
1096     // pack expansion.
1097     if (auto Result = PackScope.finish())
1098       return Result;
1099   }
1100 
1101   // Make sure we don't have any extra arguments.
1102   if (ArgIdx < NumArgs)
1103     return Sema::TDK_MiscellaneousDeductionFailure;
1104 
1105   return Sema::TDK_Success;
1106 }
1107 
1108 /// Determine whether the parameter has qualifiers that the argument
1109 /// lacks. Put another way, determine whether there is no way to add
1110 /// a deduced set of qualifiers to the ParamType that would result in
1111 /// its qualifiers matching those of the ArgType.
1112 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1113                                                   QualType ArgType) {
1114   Qualifiers ParamQs = ParamType.getQualifiers();
1115   Qualifiers ArgQs = ArgType.getQualifiers();
1116 
1117   if (ParamQs == ArgQs)
1118     return false;
1119 
1120   // Mismatched (but not missing) Objective-C GC attributes.
1121   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1122       ParamQs.hasObjCGCAttr())
1123     return true;
1124 
1125   // Mismatched (but not missing) address spaces.
1126   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1127       ParamQs.hasAddressSpace())
1128     return true;
1129 
1130   // Mismatched (but not missing) Objective-C lifetime qualifiers.
1131   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1132       ParamQs.hasObjCLifetime())
1133     return true;
1134 
1135   // CVR qualifiers inconsistent or a superset.
1136   return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1137 }
1138 
1139 /// Compare types for equality with respect to possibly compatible
1140 /// function types (noreturn adjustment, implicit calling conventions). If any
1141 /// of parameter and argument is not a function, just perform type comparison.
1142 ///
1143 /// \param Param the template parameter type.
1144 ///
1145 /// \param Arg the argument type.
1146 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
1147                                           CanQualType Arg) {
1148   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
1149                      *ArgFunction   = Arg->getAs<FunctionType>();
1150 
1151   // Just compare if not functions.
1152   if (!ParamFunction || !ArgFunction)
1153     return Param == Arg;
1154 
1155   // Noreturn and noexcept adjustment.
1156   QualType AdjustedParam;
1157   if (IsFunctionConversion(Param, Arg, AdjustedParam))
1158     return Arg == Context.getCanonicalType(AdjustedParam);
1159 
1160   // FIXME: Compatible calling conventions.
1161 
1162   return Param == Arg;
1163 }
1164 
1165 /// Get the index of the first template parameter that was originally from the
1166 /// innermost template-parameter-list. This is 0 except when we concatenate
1167 /// the template parameter lists of a class template and a constructor template
1168 /// when forming an implicit deduction guide.
1169 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1170   auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1171   if (!Guide || !Guide->isImplicit())
1172     return 0;
1173   return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1174 }
1175 
1176 /// Determine whether a type denotes a forwarding reference.
1177 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1178   // C++1z [temp.deduct.call]p3:
1179   //   A forwarding reference is an rvalue reference to a cv-unqualified
1180   //   template parameter that does not represent a template parameter of a
1181   //   class template.
1182   if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1183     if (ParamRef->getPointeeType().getQualifiers())
1184       return false;
1185     auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1186     return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1187   }
1188   return false;
1189 }
1190 
1191 /// Deduce the template arguments by comparing the parameter type and
1192 /// the argument type (C++ [temp.deduct.type]).
1193 ///
1194 /// \param S the semantic analysis object within which we are deducing
1195 ///
1196 /// \param TemplateParams the template parameters that we are deducing
1197 ///
1198 /// \param ParamIn the parameter type
1199 ///
1200 /// \param ArgIn the argument type
1201 ///
1202 /// \param Info information about the template argument deduction itself
1203 ///
1204 /// \param Deduced the deduced template arguments
1205 ///
1206 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1207 /// how template argument deduction is performed.
1208 ///
1209 /// \param PartialOrdering Whether we're performing template argument deduction
1210 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
1211 ///
1212 /// \returns the result of template argument deduction so far. Note that a
1213 /// "success" result means that template argument deduction has not yet failed,
1214 /// but it may still fail, later, for other reasons.
1215 static Sema::TemplateDeductionResult
1216 DeduceTemplateArgumentsByTypeMatch(Sema &S,
1217                                    TemplateParameterList *TemplateParams,
1218                                    QualType ParamIn, QualType ArgIn,
1219                                    TemplateDeductionInfo &Info,
1220                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1221                                    unsigned TDF,
1222                                    bool PartialOrdering,
1223                                    bool DeducedFromArrayBound) {
1224   // We only want to look at the canonical types, since typedefs and
1225   // sugar are not part of template argument deduction.
1226   QualType Param = S.Context.getCanonicalType(ParamIn);
1227   QualType Arg = S.Context.getCanonicalType(ArgIn);
1228 
1229   // If the argument type is a pack expansion, look at its pattern.
1230   // This isn't explicitly called out
1231   if (const PackExpansionType *ArgExpansion
1232                                             = dyn_cast<PackExpansionType>(Arg))
1233     Arg = ArgExpansion->getPattern();
1234 
1235   if (PartialOrdering) {
1236     // C++11 [temp.deduct.partial]p5:
1237     //   Before the partial ordering is done, certain transformations are
1238     //   performed on the types used for partial ordering:
1239     //     - If P is a reference type, P is replaced by the type referred to.
1240     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1241     if (ParamRef)
1242       Param = ParamRef->getPointeeType();
1243 
1244     //     - If A is a reference type, A is replaced by the type referred to.
1245     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1246     if (ArgRef)
1247       Arg = ArgRef->getPointeeType();
1248 
1249     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
1250       // C++11 [temp.deduct.partial]p9:
1251       //   If, for a given type, deduction succeeds in both directions (i.e.,
1252       //   the types are identical after the transformations above) and both
1253       //   P and A were reference types [...]:
1254       //     - if [one type] was an lvalue reference and [the other type] was
1255       //       not, [the other type] is not considered to be at least as
1256       //       specialized as [the first type]
1257       //     - if [one type] is more cv-qualified than [the other type],
1258       //       [the other type] is not considered to be at least as specialized
1259       //       as [the first type]
1260       // Objective-C ARC adds:
1261       //     - [one type] has non-trivial lifetime, [the other type] has
1262       //       __unsafe_unretained lifetime, and the types are otherwise
1263       //       identical
1264       //
1265       // A is "considered to be at least as specialized" as P iff deduction
1266       // succeeds, so we model this as a deduction failure. Note that
1267       // [the first type] is P and [the other type] is A here; the standard
1268       // gets this backwards.
1269       Qualifiers ParamQuals = Param.getQualifiers();
1270       Qualifiers ArgQuals = Arg.getQualifiers();
1271       if ((ParamRef->isLValueReferenceType() &&
1272            !ArgRef->isLValueReferenceType()) ||
1273           ParamQuals.isStrictSupersetOf(ArgQuals) ||
1274           (ParamQuals.hasNonTrivialObjCLifetime() &&
1275            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1276            ParamQuals.withoutObjCLifetime() ==
1277                ArgQuals.withoutObjCLifetime())) {
1278         Info.FirstArg = TemplateArgument(ParamIn);
1279         Info.SecondArg = TemplateArgument(ArgIn);
1280         return Sema::TDK_NonDeducedMismatch;
1281       }
1282     }
1283 
1284     // C++11 [temp.deduct.partial]p7:
1285     //   Remove any top-level cv-qualifiers:
1286     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1287     //       version of P.
1288     Param = Param.getUnqualifiedType();
1289     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1290     //       version of A.
1291     Arg = Arg.getUnqualifiedType();
1292   } else {
1293     // C++0x [temp.deduct.call]p4 bullet 1:
1294     //   - If the original P is a reference type, the deduced A (i.e., the type
1295     //     referred to by the reference) can be more cv-qualified than the
1296     //     transformed A.
1297     if (TDF & TDF_ParamWithReferenceType) {
1298       Qualifiers Quals;
1299       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1300       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1301                              Arg.getCVRQualifiers());
1302       Param = S.Context.getQualifiedType(UnqualParam, Quals);
1303     }
1304 
1305     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1306       // C++0x [temp.deduct.type]p10:
1307       //   If P and A are function types that originated from deduction when
1308       //   taking the address of a function template (14.8.2.2) or when deducing
1309       //   template arguments from a function declaration (14.8.2.6) and Pi and
1310       //   Ai are parameters of the top-level parameter-type-list of P and A,
1311       //   respectively, Pi is adjusted if it is a forwarding reference and Ai
1312       //   is an lvalue reference, in
1313       //   which case the type of Pi is changed to be the template parameter
1314       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1315       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1316       //   deduced as X&. - end note ]
1317       TDF &= ~TDF_TopLevelParameterTypeList;
1318       if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
1319         Param = Param->getPointeeType();
1320     }
1321   }
1322 
1323   // C++ [temp.deduct.type]p9:
1324   //   A template type argument T, a template template argument TT or a
1325   //   template non-type argument i can be deduced if P and A have one of
1326   //   the following forms:
1327   //
1328   //     T
1329   //     cv-list T
1330   if (const TemplateTypeParmType *TemplateTypeParm
1331         = Param->getAs<TemplateTypeParmType>()) {
1332     // Just skip any attempts to deduce from a placeholder type or a parameter
1333     // at a different depth.
1334     if (Arg->isPlaceholderType() ||
1335         Info.getDeducedDepth() != TemplateTypeParm->getDepth())
1336       return Sema::TDK_Success;
1337 
1338     unsigned Index = TemplateTypeParm->getIndex();
1339     bool RecanonicalizeArg = false;
1340 
1341     // If the argument type is an array type, move the qualifiers up to the
1342     // top level, so they can be matched with the qualifiers on the parameter.
1343     if (isa<ArrayType>(Arg)) {
1344       Qualifiers Quals;
1345       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1346       if (Quals) {
1347         Arg = S.Context.getQualifiedType(Arg, Quals);
1348         RecanonicalizeArg = true;
1349       }
1350     }
1351 
1352     // The argument type can not be less qualified than the parameter
1353     // type.
1354     if (!(TDF & TDF_IgnoreQualifiers) &&
1355         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1356       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1357       Info.FirstArg = TemplateArgument(Param);
1358       Info.SecondArg = TemplateArgument(Arg);
1359       return Sema::TDK_Underqualified;
1360     }
1361 
1362     // Do not match a function type with a cv-qualified type.
1363     // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1364     if (Arg->isFunctionType() && Param.hasQualifiers()) {
1365       return Sema::TDK_NonDeducedMismatch;
1366     }
1367 
1368     assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
1369            "saw template type parameter with wrong depth");
1370     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1371     QualType DeducedType = Arg;
1372 
1373     // Remove any qualifiers on the parameter from the deduced type.
1374     // We checked the qualifiers for consistency above.
1375     Qualifiers DeducedQs = DeducedType.getQualifiers();
1376     Qualifiers ParamQs = Param.getQualifiers();
1377     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1378     if (ParamQs.hasObjCGCAttr())
1379       DeducedQs.removeObjCGCAttr();
1380     if (ParamQs.hasAddressSpace())
1381       DeducedQs.removeAddressSpace();
1382     if (ParamQs.hasObjCLifetime())
1383       DeducedQs.removeObjCLifetime();
1384 
1385     // Objective-C ARC:
1386     //   If template deduction would produce a lifetime qualifier on a type
1387     //   that is not a lifetime type, template argument deduction fails.
1388     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1389         !DeducedType->isDependentType()) {
1390       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1391       Info.FirstArg = TemplateArgument(Param);
1392       Info.SecondArg = TemplateArgument(Arg);
1393       return Sema::TDK_Underqualified;
1394     }
1395 
1396     // Objective-C ARC:
1397     //   If template deduction would produce an argument type with lifetime type
1398     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1399     if (S.getLangOpts().ObjCAutoRefCount &&
1400         DeducedType->isObjCLifetimeType() &&
1401         !DeducedQs.hasObjCLifetime())
1402       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1403 
1404     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1405                                              DeducedQs);
1406 
1407     if (RecanonicalizeArg)
1408       DeducedType = S.Context.getCanonicalType(DeducedType);
1409 
1410     DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1411     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1412                                                                  Deduced[Index],
1413                                                                    NewDeduced);
1414     if (Result.isNull()) {
1415       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1416       Info.FirstArg = Deduced[Index];
1417       Info.SecondArg = NewDeduced;
1418       return Sema::TDK_Inconsistent;
1419     }
1420 
1421     Deduced[Index] = Result;
1422     return Sema::TDK_Success;
1423   }
1424 
1425   // Set up the template argument deduction information for a failure.
1426   Info.FirstArg = TemplateArgument(ParamIn);
1427   Info.SecondArg = TemplateArgument(ArgIn);
1428 
1429   // If the parameter is an already-substituted template parameter
1430   // pack, do nothing: we don't know which of its arguments to look
1431   // at, so we have to wait until all of the parameter packs in this
1432   // expansion have arguments.
1433   if (isa<SubstTemplateTypeParmPackType>(Param))
1434     return Sema::TDK_Success;
1435 
1436   // Check the cv-qualifiers on the parameter and argument types.
1437   CanQualType CanParam = S.Context.getCanonicalType(Param);
1438   CanQualType CanArg = S.Context.getCanonicalType(Arg);
1439   if (!(TDF & TDF_IgnoreQualifiers)) {
1440     if (TDF & TDF_ParamWithReferenceType) {
1441       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1442         return Sema::TDK_NonDeducedMismatch;
1443     } else if (TDF & TDF_ArgWithReferenceType) {
1444       // C++ [temp.deduct.conv]p4:
1445       //   If the original A is a reference type, A can be more cv-qualified
1446       //   than the deduced A
1447       if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
1448         return Sema::TDK_NonDeducedMismatch;
1449 
1450       // Strip out all extra qualifiers from the argument to figure out the
1451       // type we're converting to, prior to the qualification conversion.
1452       Qualifiers Quals;
1453       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1454       Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
1455     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1456       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1457         return Sema::TDK_NonDeducedMismatch;
1458     }
1459 
1460     // If the parameter type is not dependent, there is nothing to deduce.
1461     if (!Param->isDependentType()) {
1462       if (!(TDF & TDF_SkipNonDependent)) {
1463         bool NonDeduced =
1464             (TDF & TDF_AllowCompatibleFunctionType)
1465                 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
1466                 : Param != Arg;
1467         if (NonDeduced) {
1468           return Sema::TDK_NonDeducedMismatch;
1469         }
1470       }
1471       return Sema::TDK_Success;
1472     }
1473   } else if (!Param->isDependentType()) {
1474     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1475                 ArgUnqualType = CanArg.getUnqualifiedType();
1476     bool Success =
1477         (TDF & TDF_AllowCompatibleFunctionType)
1478             ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
1479             : ParamUnqualType == ArgUnqualType;
1480     if (Success)
1481       return Sema::TDK_Success;
1482   }
1483 
1484   switch (Param->getTypeClass()) {
1485     // Non-canonical types cannot appear here.
1486 #define NON_CANONICAL_TYPE(Class, Base) \
1487   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1488 #define TYPE(Class, Base)
1489 #include "clang/AST/TypeNodes.def"
1490 
1491     case Type::TemplateTypeParm:
1492     case Type::SubstTemplateTypeParmPack:
1493       llvm_unreachable("Type nodes handled above");
1494 
1495     // These types cannot be dependent, so simply check whether the types are
1496     // the same.
1497     case Type::Builtin:
1498     case Type::VariableArray:
1499     case Type::Vector:
1500     case Type::FunctionNoProto:
1501     case Type::Record:
1502     case Type::Enum:
1503     case Type::ObjCObject:
1504     case Type::ObjCInterface:
1505     case Type::ObjCObjectPointer:
1506       if (TDF & TDF_SkipNonDependent)
1507         return Sema::TDK_Success;
1508 
1509       if (TDF & TDF_IgnoreQualifiers) {
1510         Param = Param.getUnqualifiedType();
1511         Arg = Arg.getUnqualifiedType();
1512       }
1513 
1514       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1515 
1516     //     _Complex T   [placeholder extension]
1517     case Type::Complex:
1518       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1519         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1520                                     cast<ComplexType>(Param)->getElementType(),
1521                                     ComplexArg->getElementType(),
1522                                     Info, Deduced, TDF);
1523 
1524       return Sema::TDK_NonDeducedMismatch;
1525 
1526     //     _Atomic T   [extension]
1527     case Type::Atomic:
1528       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1529         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1530                                        cast<AtomicType>(Param)->getValueType(),
1531                                        AtomicArg->getValueType(),
1532                                        Info, Deduced, TDF);
1533 
1534       return Sema::TDK_NonDeducedMismatch;
1535 
1536     //     T *
1537     case Type::Pointer: {
1538       QualType PointeeType;
1539       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1540         PointeeType = PointerArg->getPointeeType();
1541       } else if (const ObjCObjectPointerType *PointerArg
1542                    = Arg->getAs<ObjCObjectPointerType>()) {
1543         PointeeType = PointerArg->getPointeeType();
1544       } else {
1545         return Sema::TDK_NonDeducedMismatch;
1546       }
1547 
1548       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1549       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1550                                      cast<PointerType>(Param)->getPointeeType(),
1551                                      PointeeType,
1552                                      Info, Deduced, SubTDF);
1553     }
1554 
1555     //     T &
1556     case Type::LValueReference: {
1557       const LValueReferenceType *ReferenceArg =
1558           Arg->getAs<LValueReferenceType>();
1559       if (!ReferenceArg)
1560         return Sema::TDK_NonDeducedMismatch;
1561 
1562       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1563                            cast<LValueReferenceType>(Param)->getPointeeType(),
1564                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1565     }
1566 
1567     //     T && [C++0x]
1568     case Type::RValueReference: {
1569       const RValueReferenceType *ReferenceArg =
1570           Arg->getAs<RValueReferenceType>();
1571       if (!ReferenceArg)
1572         return Sema::TDK_NonDeducedMismatch;
1573 
1574       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1575                              cast<RValueReferenceType>(Param)->getPointeeType(),
1576                              ReferenceArg->getPointeeType(),
1577                              Info, Deduced, 0);
1578     }
1579 
1580     //     T [] (implied, but not stated explicitly)
1581     case Type::IncompleteArray: {
1582       const IncompleteArrayType *IncompleteArrayArg =
1583         S.Context.getAsIncompleteArrayType(Arg);
1584       if (!IncompleteArrayArg)
1585         return Sema::TDK_NonDeducedMismatch;
1586 
1587       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1588       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1589                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1590                     IncompleteArrayArg->getElementType(),
1591                     Info, Deduced, SubTDF);
1592     }
1593 
1594     //     T [integer-constant]
1595     case Type::ConstantArray: {
1596       const ConstantArrayType *ConstantArrayArg =
1597         S.Context.getAsConstantArrayType(Arg);
1598       if (!ConstantArrayArg)
1599         return Sema::TDK_NonDeducedMismatch;
1600 
1601       const ConstantArrayType *ConstantArrayParm =
1602         S.Context.getAsConstantArrayType(Param);
1603       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1604         return Sema::TDK_NonDeducedMismatch;
1605 
1606       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1607       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1608                                            ConstantArrayParm->getElementType(),
1609                                            ConstantArrayArg->getElementType(),
1610                                            Info, Deduced, SubTDF);
1611     }
1612 
1613     //     type [i]
1614     case Type::DependentSizedArray: {
1615       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1616       if (!ArrayArg)
1617         return Sema::TDK_NonDeducedMismatch;
1618 
1619       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1620 
1621       // Check the element type of the arrays
1622       const DependentSizedArrayType *DependentArrayParm
1623         = S.Context.getAsDependentSizedArrayType(Param);
1624       if (Sema::TemplateDeductionResult Result
1625             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1626                                           DependentArrayParm->getElementType(),
1627                                           ArrayArg->getElementType(),
1628                                           Info, Deduced, SubTDF))
1629         return Result;
1630 
1631       // Determine the array bound is something we can deduce.
1632       NonTypeTemplateParmDecl *NTTP
1633         = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
1634       if (!NTTP)
1635         return Sema::TDK_Success;
1636 
1637       // We can perform template argument deduction for the given non-type
1638       // template parameter.
1639       assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1640              "saw non-type template parameter with wrong depth");
1641       if (const ConstantArrayType *ConstantArrayArg
1642             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1643         llvm::APSInt Size(ConstantArrayArg->getSize());
1644         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
1645                                              S.Context.getSizeType(),
1646                                              /*ArrayBound=*/true,
1647                                              Info, Deduced);
1648       }
1649       if (const DependentSizedArrayType *DependentArrayArg
1650             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1651         if (DependentArrayArg->getSizeExpr())
1652           return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1653                                                DependentArrayArg->getSizeExpr(),
1654                                                Info, Deduced);
1655 
1656       // Incomplete type does not match a dependently-sized array type
1657       return Sema::TDK_NonDeducedMismatch;
1658     }
1659 
1660     //     type(*)(T)
1661     //     T(*)()
1662     //     T(*)(T)
1663     case Type::FunctionProto: {
1664       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1665       const FunctionProtoType *FunctionProtoArg =
1666         dyn_cast<FunctionProtoType>(Arg);
1667       if (!FunctionProtoArg)
1668         return Sema::TDK_NonDeducedMismatch;
1669 
1670       const FunctionProtoType *FunctionProtoParam =
1671         cast<FunctionProtoType>(Param);
1672 
1673       if (FunctionProtoParam->getMethodQuals()
1674             != FunctionProtoArg->getMethodQuals() ||
1675           FunctionProtoParam->getRefQualifier()
1676             != FunctionProtoArg->getRefQualifier() ||
1677           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1678         return Sema::TDK_NonDeducedMismatch;
1679 
1680       // Check return types.
1681       if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1682               S, TemplateParams, FunctionProtoParam->getReturnType(),
1683               FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1684         return Result;
1685 
1686       // Check parameter types.
1687       if (auto Result = DeduceTemplateArguments(
1688               S, TemplateParams, FunctionProtoParam->param_type_begin(),
1689               FunctionProtoParam->getNumParams(),
1690               FunctionProtoArg->param_type_begin(),
1691               FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
1692         return Result;
1693 
1694       if (TDF & TDF_AllowCompatibleFunctionType)
1695         return Sema::TDK_Success;
1696 
1697       // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1698       // deducing through the noexcept-specifier if it's part of the canonical
1699       // type. libstdc++ relies on this.
1700       Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
1701       if (NonTypeTemplateParmDecl *NTTP =
1702           NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1703                        : nullptr) {
1704         assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1705                "saw non-type template parameter with wrong depth");
1706 
1707         llvm::APSInt Noexcept(1);
1708         switch (FunctionProtoArg->canThrow()) {
1709         case CT_Cannot:
1710           Noexcept = 1;
1711           LLVM_FALLTHROUGH;
1712 
1713         case CT_Can:
1714           // We give E in noexcept(E) the "deduced from array bound" treatment.
1715           // FIXME: Should we?
1716           return DeduceNonTypeTemplateArgument(
1717               S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1718               /*ArrayBound*/true, Info, Deduced);
1719 
1720         case CT_Dependent:
1721           if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
1722             return DeduceNonTypeTemplateArgument(
1723                 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1724           // Can't deduce anything from throw(T...).
1725           break;
1726         }
1727       }
1728       // FIXME: Detect non-deduced exception specification mismatches?
1729       //
1730       // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1731       // top-level differences in noexcept-specifications.
1732 
1733       return Sema::TDK_Success;
1734     }
1735 
1736     case Type::InjectedClassName:
1737       // Treat a template's injected-class-name as if the template
1738       // specialization type had been used.
1739       Param = cast<InjectedClassNameType>(Param)
1740         ->getInjectedSpecializationType();
1741       assert(isa<TemplateSpecializationType>(Param) &&
1742              "injected class name is not a template specialization type");
1743       LLVM_FALLTHROUGH;
1744 
1745     //     template-name<T> (where template-name refers to a class template)
1746     //     template-name<i>
1747     //     TT<T>
1748     //     TT<i>
1749     //     TT<>
1750     case Type::TemplateSpecialization: {
1751       const TemplateSpecializationType *SpecParam =
1752           cast<TemplateSpecializationType>(Param);
1753 
1754       // When Arg cannot be a derived class, we can just try to deduce template
1755       // arguments from the template-id.
1756       const RecordType *RecordT = Arg->getAs<RecordType>();
1757       if (!(TDF & TDF_DerivedClass) || !RecordT)
1758         return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
1759                                        Deduced);
1760 
1761       SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1762                                                           Deduced.end());
1763 
1764       Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
1765           S, TemplateParams, SpecParam, Arg, Info, Deduced);
1766 
1767       if (Result == Sema::TDK_Success)
1768         return Result;
1769 
1770       // We cannot inspect base classes as part of deduction when the type
1771       // is incomplete, so either instantiate any templates necessary to
1772       // complete the type, or skip over it if it cannot be completed.
1773       if (!S.isCompleteType(Info.getLocation(), Arg))
1774         return Result;
1775 
1776       // C++14 [temp.deduct.call] p4b3:
1777       //   If P is a class and P has the form simple-template-id, then the
1778       //   transformed A can be a derived class of the deduced A. Likewise if
1779       //   P is a pointer to a class of the form simple-template-id, the
1780       //   transformed A can be a pointer to a derived class pointed to by the
1781       //   deduced A.
1782       //
1783       //   These alternatives are considered only if type deduction would
1784       //   otherwise fail. If they yield more than one possible deduced A, the
1785       //   type deduction fails.
1786 
1787       // Reset the incorrectly deduced argument from above.
1788       Deduced = DeducedOrig;
1789 
1790       // Use data recursion to crawl through the list of base classes.
1791       // Visited contains the set of nodes we have already visited, while
1792       // ToVisit is our stack of records that we still need to visit.
1793       llvm::SmallPtrSet<const RecordType *, 8> Visited;
1794       SmallVector<const RecordType *, 8> ToVisit;
1795       ToVisit.push_back(RecordT);
1796       bool Successful = false;
1797       SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
1798       while (!ToVisit.empty()) {
1799         // Retrieve the next class in the inheritance hierarchy.
1800         const RecordType *NextT = ToVisit.pop_back_val();
1801 
1802         // If we have already seen this type, skip it.
1803         if (!Visited.insert(NextT).second)
1804           continue;
1805 
1806         // If this is a base class, try to perform template argument
1807         // deduction from it.
1808         if (NextT != RecordT) {
1809           TemplateDeductionInfo BaseInfo(Info.getLocation());
1810           Sema::TemplateDeductionResult BaseResult =
1811               DeduceTemplateArguments(S, TemplateParams, SpecParam,
1812                                       QualType(NextT, 0), BaseInfo, Deduced);
1813 
1814           // If template argument deduction for this base was successful,
1815           // note that we had some success. Otherwise, ignore any deductions
1816           // from this base class.
1817           if (BaseResult == Sema::TDK_Success) {
1818             // If we've already seen some success, then deduction fails due to
1819             // an ambiguity (temp.deduct.call p5).
1820             if (Successful)
1821               return Sema::TDK_MiscellaneousDeductionFailure;
1822 
1823             Successful = true;
1824             std::swap(SuccessfulDeduced, Deduced);
1825 
1826             Info.Param = BaseInfo.Param;
1827             Info.FirstArg = BaseInfo.FirstArg;
1828             Info.SecondArg = BaseInfo.SecondArg;
1829           }
1830 
1831           Deduced = DeducedOrig;
1832         }
1833 
1834         // Visit base classes
1835         CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1836         for (const auto &Base : Next->bases()) {
1837           assert(Base.getType()->isRecordType() &&
1838                  "Base class that isn't a record?");
1839           ToVisit.push_back(Base.getType()->getAs<RecordType>());
1840         }
1841       }
1842 
1843       if (Successful) {
1844         std::swap(SuccessfulDeduced, Deduced);
1845         return Sema::TDK_Success;
1846       }
1847 
1848       return Result;
1849     }
1850 
1851     //     T type::*
1852     //     T T::*
1853     //     T (type::*)()
1854     //     type (T::*)()
1855     //     type (type::*)(T)
1856     //     type (T::*)(T)
1857     //     T (type::*)(T)
1858     //     T (T::*)()
1859     //     T (T::*)(T)
1860     case Type::MemberPointer: {
1861       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1862       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1863       if (!MemPtrArg)
1864         return Sema::TDK_NonDeducedMismatch;
1865 
1866       QualType ParamPointeeType = MemPtrParam->getPointeeType();
1867       if (ParamPointeeType->isFunctionType())
1868         S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1869                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1870       QualType ArgPointeeType = MemPtrArg->getPointeeType();
1871       if (ArgPointeeType->isFunctionType())
1872         S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1873                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1874 
1875       if (Sema::TemplateDeductionResult Result
1876             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1877                                                  ParamPointeeType,
1878                                                  ArgPointeeType,
1879                                                  Info, Deduced,
1880                                                  TDF & TDF_IgnoreQualifiers))
1881         return Result;
1882 
1883       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1884                                            QualType(MemPtrParam->getClass(), 0),
1885                                            QualType(MemPtrArg->getClass(), 0),
1886                                            Info, Deduced,
1887                                            TDF & TDF_IgnoreQualifiers);
1888     }
1889 
1890     //     (clang extension)
1891     //
1892     //     type(^)(T)
1893     //     T(^)()
1894     //     T(^)(T)
1895     case Type::BlockPointer: {
1896       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1897       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1898 
1899       if (!BlockPtrArg)
1900         return Sema::TDK_NonDeducedMismatch;
1901 
1902       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1903                                                 BlockPtrParam->getPointeeType(),
1904                                                 BlockPtrArg->getPointeeType(),
1905                                                 Info, Deduced, 0);
1906     }
1907 
1908     //     (clang extension)
1909     //
1910     //     T __attribute__(((ext_vector_type(<integral constant>))))
1911     case Type::ExtVector: {
1912       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1913       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1914         // Make sure that the vectors have the same number of elements.
1915         if (VectorParam->getNumElements() != VectorArg->getNumElements())
1916           return Sema::TDK_NonDeducedMismatch;
1917 
1918         // Perform deduction on the element types.
1919         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1920                                                   VectorParam->getElementType(),
1921                                                   VectorArg->getElementType(),
1922                                                   Info, Deduced, TDF);
1923       }
1924 
1925       if (const DependentSizedExtVectorType *VectorArg
1926                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1927         // We can't check the number of elements, since the argument has a
1928         // dependent number of elements. This can only occur during partial
1929         // ordering.
1930 
1931         // Perform deduction on the element types.
1932         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1933                                                   VectorParam->getElementType(),
1934                                                   VectorArg->getElementType(),
1935                                                   Info, Deduced, TDF);
1936       }
1937 
1938       return Sema::TDK_NonDeducedMismatch;
1939     }
1940 
1941     case Type::DependentVector: {
1942       const auto *VectorParam = cast<DependentVectorType>(Param);
1943 
1944       if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
1945         // Perform deduction on the element types.
1946         if (Sema::TemplateDeductionResult Result =
1947                 DeduceTemplateArgumentsByTypeMatch(
1948                     S, TemplateParams, VectorParam->getElementType(),
1949                     VectorArg->getElementType(), Info, Deduced, TDF))
1950           return Result;
1951 
1952         // Perform deduction on the vector size, if we can.
1953         NonTypeTemplateParmDecl *NTTP =
1954             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
1955         if (!NTTP)
1956           return Sema::TDK_Success;
1957 
1958         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1959         ArgSize = VectorArg->getNumElements();
1960         // Note that we use the "array bound" rules here; just like in that
1961         // case, we don't have any particular type for the vector size, but
1962         // we can provide one if necessary.
1963         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
1964                                              S.Context.UnsignedIntTy, true,
1965                                              Info, Deduced);
1966       }
1967 
1968       if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
1969         // Perform deduction on the element types.
1970         if (Sema::TemplateDeductionResult Result =
1971                 DeduceTemplateArgumentsByTypeMatch(
1972                     S, TemplateParams, VectorParam->getElementType(),
1973                     VectorArg->getElementType(), Info, Deduced, TDF))
1974           return Result;
1975 
1976         // Perform deduction on the vector size, if we can.
1977         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
1978             Info, VectorParam->getSizeExpr());
1979         if (!NTTP)
1980           return Sema::TDK_Success;
1981 
1982         return DeduceNonTypeTemplateArgument(
1983             S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
1984       }
1985 
1986       return Sema::TDK_NonDeducedMismatch;
1987     }
1988 
1989     //     (clang extension)
1990     //
1991     //     T __attribute__(((ext_vector_type(N))))
1992     case Type::DependentSizedExtVector: {
1993       const DependentSizedExtVectorType *VectorParam
1994         = cast<DependentSizedExtVectorType>(Param);
1995 
1996       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1997         // Perform deduction on the element types.
1998         if (Sema::TemplateDeductionResult Result
1999               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2000                                                   VectorParam->getElementType(),
2001                                                    VectorArg->getElementType(),
2002                                                    Info, Deduced, TDF))
2003           return Result;
2004 
2005         // Perform deduction on the vector size, if we can.
2006         NonTypeTemplateParmDecl *NTTP
2007           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2008         if (!NTTP)
2009           return Sema::TDK_Success;
2010 
2011         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2012         ArgSize = VectorArg->getNumElements();
2013         // Note that we use the "array bound" rules here; just like in that
2014         // case, we don't have any particular type for the vector size, but
2015         // we can provide one if necessary.
2016         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2017                                              S.Context.IntTy, true, Info,
2018                                              Deduced);
2019       }
2020 
2021       if (const DependentSizedExtVectorType *VectorArg
2022                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2023         // Perform deduction on the element types.
2024         if (Sema::TemplateDeductionResult Result
2025             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2026                                                  VectorParam->getElementType(),
2027                                                  VectorArg->getElementType(),
2028                                                  Info, Deduced, TDF))
2029           return Result;
2030 
2031         // Perform deduction on the vector size, if we can.
2032         NonTypeTemplateParmDecl *NTTP
2033           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2034         if (!NTTP)
2035           return Sema::TDK_Success;
2036 
2037         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2038                                              VectorArg->getSizeExpr(),
2039                                              Info, Deduced);
2040       }
2041 
2042       return Sema::TDK_NonDeducedMismatch;
2043     }
2044 
2045     //     (clang extension)
2046     //
2047     //     T __attribute__(((address_space(N))))
2048     case Type::DependentAddressSpace: {
2049       const DependentAddressSpaceType *AddressSpaceParam =
2050           cast<DependentAddressSpaceType>(Param);
2051 
2052       if (const DependentAddressSpaceType *AddressSpaceArg =
2053               dyn_cast<DependentAddressSpaceType>(Arg)) {
2054         // Perform deduction on the pointer type.
2055         if (Sema::TemplateDeductionResult Result =
2056                 DeduceTemplateArgumentsByTypeMatch(
2057                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2058                     AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
2059           return Result;
2060 
2061         // Perform deduction on the address space, if we can.
2062         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2063             Info, AddressSpaceParam->getAddrSpaceExpr());
2064         if (!NTTP)
2065           return Sema::TDK_Success;
2066 
2067         return DeduceNonTypeTemplateArgument(
2068             S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
2069             Deduced);
2070       }
2071 
2072       if (isTargetAddressSpace(Arg.getAddressSpace())) {
2073         llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2074                                      false);
2075         ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
2076 
2077         // Perform deduction on the pointer types.
2078         if (Sema::TemplateDeductionResult Result =
2079                 DeduceTemplateArgumentsByTypeMatch(
2080                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2081                     S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
2082           return Result;
2083 
2084         // Perform deduction on the address space, if we can.
2085         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2086             Info, AddressSpaceParam->getAddrSpaceExpr());
2087         if (!NTTP)
2088           return Sema::TDK_Success;
2089 
2090         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2091                                              ArgAddressSpace, S.Context.IntTy,
2092                                              true, Info, Deduced);
2093       }
2094 
2095       return Sema::TDK_NonDeducedMismatch;
2096     }
2097 
2098     case Type::TypeOfExpr:
2099     case Type::TypeOf:
2100     case Type::DependentName:
2101     case Type::UnresolvedUsing:
2102     case Type::Decltype:
2103     case Type::UnaryTransform:
2104     case Type::Auto:
2105     case Type::DeducedTemplateSpecialization:
2106     case Type::DependentTemplateSpecialization:
2107     case Type::PackExpansion:
2108     case Type::Pipe:
2109       // No template argument deduction for these types
2110       return Sema::TDK_Success;
2111   }
2112 
2113   llvm_unreachable("Invalid Type Class!");
2114 }
2115 
2116 static Sema::TemplateDeductionResult
2117 DeduceTemplateArguments(Sema &S,
2118                         TemplateParameterList *TemplateParams,
2119                         const TemplateArgument &Param,
2120                         TemplateArgument Arg,
2121                         TemplateDeductionInfo &Info,
2122                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2123   // If the template argument is a pack expansion, perform template argument
2124   // deduction against the pattern of that expansion. This only occurs during
2125   // partial ordering.
2126   if (Arg.isPackExpansion())
2127     Arg = Arg.getPackExpansionPattern();
2128 
2129   switch (Param.getKind()) {
2130   case TemplateArgument::Null:
2131     llvm_unreachable("Null template argument in parameter list");
2132 
2133   case TemplateArgument::Type:
2134     if (Arg.getKind() == TemplateArgument::Type)
2135       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2136                                                 Param.getAsType(),
2137                                                 Arg.getAsType(),
2138                                                 Info, Deduced, 0);
2139     Info.FirstArg = Param;
2140     Info.SecondArg = Arg;
2141     return Sema::TDK_NonDeducedMismatch;
2142 
2143   case TemplateArgument::Template:
2144     if (Arg.getKind() == TemplateArgument::Template)
2145       return DeduceTemplateArguments(S, TemplateParams,
2146                                      Param.getAsTemplate(),
2147                                      Arg.getAsTemplate(), Info, Deduced);
2148     Info.FirstArg = Param;
2149     Info.SecondArg = Arg;
2150     return Sema::TDK_NonDeducedMismatch;
2151 
2152   case TemplateArgument::TemplateExpansion:
2153     llvm_unreachable("caller should handle pack expansions");
2154 
2155   case TemplateArgument::Declaration:
2156     if (Arg.getKind() == TemplateArgument::Declaration &&
2157         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
2158       return Sema::TDK_Success;
2159 
2160     Info.FirstArg = Param;
2161     Info.SecondArg = Arg;
2162     return Sema::TDK_NonDeducedMismatch;
2163 
2164   case TemplateArgument::NullPtr:
2165     if (Arg.getKind() == TemplateArgument::NullPtr &&
2166         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
2167       return Sema::TDK_Success;
2168 
2169     Info.FirstArg = Param;
2170     Info.SecondArg = Arg;
2171     return Sema::TDK_NonDeducedMismatch;
2172 
2173   case TemplateArgument::Integral:
2174     if (Arg.getKind() == TemplateArgument::Integral) {
2175       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
2176         return Sema::TDK_Success;
2177 
2178       Info.FirstArg = Param;
2179       Info.SecondArg = Arg;
2180       return Sema::TDK_NonDeducedMismatch;
2181     }
2182 
2183     if (Arg.getKind() == TemplateArgument::Expression) {
2184       Info.FirstArg = Param;
2185       Info.SecondArg = Arg;
2186       return Sema::TDK_NonDeducedMismatch;
2187     }
2188 
2189     Info.FirstArg = Param;
2190     Info.SecondArg = Arg;
2191     return Sema::TDK_NonDeducedMismatch;
2192 
2193   case TemplateArgument::Expression:
2194     if (NonTypeTemplateParmDecl *NTTP
2195           = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
2196       if (Arg.getKind() == TemplateArgument::Integral)
2197         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2198                                              Arg.getAsIntegral(),
2199                                              Arg.getIntegralType(),
2200                                              /*ArrayBound=*/false,
2201                                              Info, Deduced);
2202       if (Arg.getKind() == TemplateArgument::NullPtr)
2203         return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2204                                              Arg.getNullPtrType(),
2205                                              Info, Deduced);
2206       if (Arg.getKind() == TemplateArgument::Expression)
2207         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2208                                              Arg.getAsExpr(), Info, Deduced);
2209       if (Arg.getKind() == TemplateArgument::Declaration)
2210         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2211                                              Arg.getAsDecl(),
2212                                              Arg.getParamTypeForDecl(),
2213                                              Info, Deduced);
2214 
2215       Info.FirstArg = Param;
2216       Info.SecondArg = Arg;
2217       return Sema::TDK_NonDeducedMismatch;
2218     }
2219 
2220     // Can't deduce anything, but that's okay.
2221     return Sema::TDK_Success;
2222 
2223   case TemplateArgument::Pack:
2224     llvm_unreachable("Argument packs should be expanded by the caller!");
2225   }
2226 
2227   llvm_unreachable("Invalid TemplateArgument Kind!");
2228 }
2229 
2230 /// Determine whether there is a template argument to be used for
2231 /// deduction.
2232 ///
2233 /// This routine "expands" argument packs in-place, overriding its input
2234 /// parameters so that \c Args[ArgIdx] will be the available template argument.
2235 ///
2236 /// \returns true if there is another template argument (which will be at
2237 /// \c Args[ArgIdx]), false otherwise.
2238 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2239                                             unsigned &ArgIdx) {
2240   if (ArgIdx == Args.size())
2241     return false;
2242 
2243   const TemplateArgument &Arg = Args[ArgIdx];
2244   if (Arg.getKind() != TemplateArgument::Pack)
2245     return true;
2246 
2247   assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2248   Args = Arg.pack_elements();
2249   ArgIdx = 0;
2250   return ArgIdx < Args.size();
2251 }
2252 
2253 /// Determine whether the given set of template arguments has a pack
2254 /// expansion that is not the last template argument.
2255 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2256   bool FoundPackExpansion = false;
2257   for (const auto &A : Args) {
2258     if (FoundPackExpansion)
2259       return true;
2260 
2261     if (A.getKind() == TemplateArgument::Pack)
2262       return hasPackExpansionBeforeEnd(A.pack_elements());
2263 
2264     // FIXME: If this is a fixed-arity pack expansion from an outer level of
2265     // templates, it should not be treated as a pack expansion.
2266     if (A.isPackExpansion())
2267       FoundPackExpansion = true;
2268   }
2269 
2270   return false;
2271 }
2272 
2273 static Sema::TemplateDeductionResult
2274 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2275                         ArrayRef<TemplateArgument> Params,
2276                         ArrayRef<TemplateArgument> Args,
2277                         TemplateDeductionInfo &Info,
2278                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2279                         bool NumberOfArgumentsMustMatch) {
2280   // C++0x [temp.deduct.type]p9:
2281   //   If the template argument list of P contains a pack expansion that is not
2282   //   the last template argument, the entire template argument list is a
2283   //   non-deduced context.
2284   if (hasPackExpansionBeforeEnd(Params))
2285     return Sema::TDK_Success;
2286 
2287   // C++0x [temp.deduct.type]p9:
2288   //   If P has a form that contains <T> or <i>, then each argument Pi of the
2289   //   respective template argument list P is compared with the corresponding
2290   //   argument Ai of the corresponding template argument list of A.
2291   unsigned ArgIdx = 0, ParamIdx = 0;
2292   for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
2293     if (!Params[ParamIdx].isPackExpansion()) {
2294       // The simple case: deduce template arguments by matching Pi and Ai.
2295 
2296       // Check whether we have enough arguments.
2297       if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
2298         return NumberOfArgumentsMustMatch
2299                    ? Sema::TDK_MiscellaneousDeductionFailure
2300                    : Sema::TDK_Success;
2301 
2302       // C++1z [temp.deduct.type]p9:
2303       //   During partial ordering, if Ai was originally a pack expansion [and]
2304       //   Pi is not a pack expansion, template argument deduction fails.
2305       if (Args[ArgIdx].isPackExpansion())
2306         return Sema::TDK_MiscellaneousDeductionFailure;
2307 
2308       // Perform deduction for this Pi/Ai pair.
2309       if (Sema::TemplateDeductionResult Result
2310             = DeduceTemplateArguments(S, TemplateParams,
2311                                       Params[ParamIdx], Args[ArgIdx],
2312                                       Info, Deduced))
2313         return Result;
2314 
2315       // Move to the next argument.
2316       ++ArgIdx;
2317       continue;
2318     }
2319 
2320     // The parameter is a pack expansion.
2321 
2322     // C++0x [temp.deduct.type]p9:
2323     //   If Pi is a pack expansion, then the pattern of Pi is compared with
2324     //   each remaining argument in the template argument list of A. Each
2325     //   comparison deduces template arguments for subsequent positions in the
2326     //   template parameter packs expanded by Pi.
2327     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
2328 
2329     // Prepare to deduce the packs within the pattern.
2330     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2331 
2332     // Keep track of the deduced template arguments for each parameter pack
2333     // expanded by this pack expansion (the outer index) and for each
2334     // template argument (the inner SmallVectors).
2335     for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
2336            PackScope.hasNextElement();
2337          ++ArgIdx) {
2338       // Deduce template arguments from the pattern.
2339       if (Sema::TemplateDeductionResult Result
2340             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
2341                                       Info, Deduced))
2342         return Result;
2343 
2344       PackScope.nextPackElement();
2345     }
2346 
2347     // Build argument packs for each of the parameter packs expanded by this
2348     // pack expansion.
2349     if (auto Result = PackScope.finish())
2350       return Result;
2351   }
2352 
2353   return Sema::TDK_Success;
2354 }
2355 
2356 static Sema::TemplateDeductionResult
2357 DeduceTemplateArguments(Sema &S,
2358                         TemplateParameterList *TemplateParams,
2359                         const TemplateArgumentList &ParamList,
2360                         const TemplateArgumentList &ArgList,
2361                         TemplateDeductionInfo &Info,
2362                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2363   return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2364                                  ArgList.asArray(), Info, Deduced,
2365                                  /*NumberOfArgumentsMustMatch*/false);
2366 }
2367 
2368 /// Determine whether two template arguments are the same.
2369 static bool isSameTemplateArg(ASTContext &Context,
2370                               TemplateArgument X,
2371                               const TemplateArgument &Y,
2372                               bool PackExpansionMatchesPack = false) {
2373   // If we're checking deduced arguments (X) against original arguments (Y),
2374   // we will have flattened packs to non-expansions in X.
2375   if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2376     X = X.getPackExpansionPattern();
2377 
2378   if (X.getKind() != Y.getKind())
2379     return false;
2380 
2381   switch (X.getKind()) {
2382     case TemplateArgument::Null:
2383       llvm_unreachable("Comparing NULL template argument");
2384 
2385     case TemplateArgument::Type:
2386       return Context.getCanonicalType(X.getAsType()) ==
2387              Context.getCanonicalType(Y.getAsType());
2388 
2389     case TemplateArgument::Declaration:
2390       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2391 
2392     case TemplateArgument::NullPtr:
2393       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2394 
2395     case TemplateArgument::Template:
2396     case TemplateArgument::TemplateExpansion:
2397       return Context.getCanonicalTemplateName(
2398                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2399              Context.getCanonicalTemplateName(
2400                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2401 
2402     case TemplateArgument::Integral:
2403       return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2404 
2405     case TemplateArgument::Expression: {
2406       llvm::FoldingSetNodeID XID, YID;
2407       X.getAsExpr()->Profile(XID, Context, true);
2408       Y.getAsExpr()->Profile(YID, Context, true);
2409       return XID == YID;
2410     }
2411 
2412     case TemplateArgument::Pack:
2413       if (X.pack_size() != Y.pack_size())
2414         return false;
2415 
2416       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
2417                                         XPEnd = X.pack_end(),
2418                                            YP = Y.pack_begin();
2419            XP != XPEnd; ++XP, ++YP)
2420         if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
2421           return false;
2422 
2423       return true;
2424   }
2425 
2426   llvm_unreachable("Invalid TemplateArgument Kind!");
2427 }
2428 
2429 /// Allocate a TemplateArgumentLoc where all locations have
2430 /// been initialized to the given location.
2431 ///
2432 /// \param Arg The template argument we are producing template argument
2433 /// location information for.
2434 ///
2435 /// \param NTTPType For a declaration template argument, the type of
2436 /// the non-type template parameter that corresponds to this template
2437 /// argument. Can be null if no type sugar is available to add to the
2438 /// type from the template argument.
2439 ///
2440 /// \param Loc The source location to use for the resulting template
2441 /// argument.
2442 TemplateArgumentLoc
2443 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2444                                     QualType NTTPType, SourceLocation Loc) {
2445   switch (Arg.getKind()) {
2446   case TemplateArgument::Null:
2447     llvm_unreachable("Can't get a NULL template argument here");
2448 
2449   case TemplateArgument::Type:
2450     return TemplateArgumentLoc(
2451         Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2452 
2453   case TemplateArgument::Declaration: {
2454     if (NTTPType.isNull())
2455       NTTPType = Arg.getParamTypeForDecl();
2456     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2457                   .getAs<Expr>();
2458     return TemplateArgumentLoc(TemplateArgument(E), E);
2459   }
2460 
2461   case TemplateArgument::NullPtr: {
2462     if (NTTPType.isNull())
2463       NTTPType = Arg.getNullPtrType();
2464     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2465                   .getAs<Expr>();
2466     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2467                                E);
2468   }
2469 
2470   case TemplateArgument::Integral: {
2471     Expr *E =
2472         BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2473     return TemplateArgumentLoc(TemplateArgument(E), E);
2474   }
2475 
2476     case TemplateArgument::Template:
2477     case TemplateArgument::TemplateExpansion: {
2478       NestedNameSpecifierLocBuilder Builder;
2479       TemplateName Template = Arg.getAsTemplate();
2480       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2481         Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2482       else if (QualifiedTemplateName *QTN =
2483                    Template.getAsQualifiedTemplateName())
2484         Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2485 
2486       if (Arg.getKind() == TemplateArgument::Template)
2487         return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2488                                    Loc);
2489 
2490       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2491                                  Loc, Loc);
2492     }
2493 
2494   case TemplateArgument::Expression:
2495     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2496 
2497   case TemplateArgument::Pack:
2498     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2499   }
2500 
2501   llvm_unreachable("Invalid TemplateArgument Kind!");
2502 }
2503 
2504 /// Convert the given deduced template argument and add it to the set of
2505 /// fully-converted template arguments.
2506 static bool
2507 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2508                                DeducedTemplateArgument Arg,
2509                                NamedDecl *Template,
2510                                TemplateDeductionInfo &Info,
2511                                bool IsDeduced,
2512                                SmallVectorImpl<TemplateArgument> &Output) {
2513   auto ConvertArg = [&](DeducedTemplateArgument Arg,
2514                         unsigned ArgumentPackIndex) {
2515     // Convert the deduced template argument into a template
2516     // argument that we can check, almost as if the user had written
2517     // the template argument explicitly.
2518     TemplateArgumentLoc ArgLoc =
2519         S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2520 
2521     // Check the template argument, converting it as necessary.
2522     return S.CheckTemplateArgument(
2523         Param, ArgLoc, Template, Template->getLocation(),
2524         Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
2525         IsDeduced
2526             ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2527                                               : Sema::CTAK_Deduced)
2528             : Sema::CTAK_Specified);
2529   };
2530 
2531   if (Arg.getKind() == TemplateArgument::Pack) {
2532     // This is a template argument pack, so check each of its arguments against
2533     // the template parameter.
2534     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2535     for (const auto &P : Arg.pack_elements()) {
2536       // When converting the deduced template argument, append it to the
2537       // general output list. We need to do this so that the template argument
2538       // checking logic has all of the prior template arguments available.
2539       DeducedTemplateArgument InnerArg(P);
2540       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2541       assert(InnerArg.getKind() != TemplateArgument::Pack &&
2542              "deduced nested pack");
2543       if (P.isNull()) {
2544         // We deduced arguments for some elements of this pack, but not for
2545         // all of them. This happens if we get a conditionally-non-deduced
2546         // context in a pack expansion (such as an overload set in one of the
2547         // arguments).
2548         S.Diag(Param->getLocation(),
2549                diag::err_template_arg_deduced_incomplete_pack)
2550           << Arg << Param;
2551         return true;
2552       }
2553       if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
2554         return true;
2555 
2556       // Move the converted template argument into our argument pack.
2557       PackedArgsBuilder.push_back(Output.pop_back_val());
2558     }
2559 
2560     // If the pack is empty, we still need to substitute into the parameter
2561     // itself, in case that substitution fails.
2562     if (PackedArgsBuilder.empty()) {
2563       LocalInstantiationScope Scope(S);
2564       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
2565       MultiLevelTemplateArgumentList Args(TemplateArgs);
2566 
2567       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2568         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2569                                          NTTP, Output,
2570                                          Template->getSourceRange());
2571         if (Inst.isInvalid() ||
2572             S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2573                         NTTP->getDeclName()).isNull())
2574           return true;
2575       } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2576         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2577                                          TTP, Output,
2578                                          Template->getSourceRange());
2579         if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2580           return true;
2581       }
2582       // For type parameters, no substitution is ever required.
2583     }
2584 
2585     // Create the resulting argument pack.
2586     Output.push_back(
2587         TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2588     return false;
2589   }
2590 
2591   return ConvertArg(Arg, 0);
2592 }
2593 
2594 // FIXME: This should not be a template, but
2595 // ClassTemplatePartialSpecializationDecl sadly does not derive from
2596 // TemplateDecl.
2597 template<typename TemplateDeclT>
2598 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2599     Sema &S, TemplateDeclT *Template, bool IsDeduced,
2600     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2601     TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
2602     LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2603     unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2604   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2605 
2606   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2607     NamedDecl *Param = TemplateParams->getParam(I);
2608 
2609     // C++0x [temp.arg.explicit]p3:
2610     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2611     //    be deduced to an empty sequence of template arguments.
2612     // FIXME: Where did the word "trailing" come from?
2613     if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2614       if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I)
2615                             .finish(/*TreatNoDeductionsAsNonDeduced*/false))
2616         return Result;
2617     }
2618 
2619     if (!Deduced[I].isNull()) {
2620       if (I < NumAlreadyConverted) {
2621         // We may have had explicitly-specified template arguments for a
2622         // template parameter pack (that may or may not have been extended
2623         // via additional deduced arguments).
2624         if (Param->isParameterPack() && CurrentInstantiationScope &&
2625             CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2626           // Forget the partially-substituted pack; its substitution is now
2627           // complete.
2628           CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2629           // We still need to check the argument in case it was extended by
2630           // deduction.
2631         } else {
2632           // We have already fully type-checked and converted this
2633           // argument, because it was explicitly-specified. Just record the
2634           // presence of this argument.
2635           Builder.push_back(Deduced[I]);
2636           continue;
2637         }
2638       }
2639 
2640       // We may have deduced this argument, so it still needs to be
2641       // checked and converted.
2642       if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2643                                          IsDeduced, Builder)) {
2644         Info.Param = makeTemplateParameter(Param);
2645         // FIXME: These template arguments are temporary. Free them!
2646         Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2647         return Sema::TDK_SubstitutionFailure;
2648       }
2649 
2650       continue;
2651     }
2652 
2653     // Substitute into the default template argument, if available.
2654     bool HasDefaultArg = false;
2655     TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2656     if (!TD) {
2657       assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2658              isa<VarTemplatePartialSpecializationDecl>(Template));
2659       return Sema::TDK_Incomplete;
2660     }
2661 
2662     TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2663         TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
2664         HasDefaultArg);
2665 
2666     // If there was no default argument, deduction is incomplete.
2667     if (DefArg.getArgument().isNull()) {
2668       Info.Param = makeTemplateParameter(
2669           const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2670       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2671       if (PartialOverloading) break;
2672 
2673       return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2674                            : Sema::TDK_Incomplete;
2675     }
2676 
2677     // Check whether we can actually use the default argument.
2678     if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
2679                                 TD->getSourceRange().getEnd(), 0, Builder,
2680                                 Sema::CTAK_Specified)) {
2681       Info.Param = makeTemplateParameter(
2682                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2683       // FIXME: These template arguments are temporary. Free them!
2684       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2685       return Sema::TDK_SubstitutionFailure;
2686     }
2687 
2688     // If we get here, we successfully used the default template argument.
2689   }
2690 
2691   return Sema::TDK_Success;
2692 }
2693 
2694 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2695   if (auto *DC = dyn_cast<DeclContext>(D))
2696     return DC;
2697   return D->getDeclContext();
2698 }
2699 
2700 template<typename T> struct IsPartialSpecialization {
2701   static constexpr bool value = false;
2702 };
2703 template<>
2704 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2705   static constexpr bool value = true;
2706 };
2707 template<>
2708 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2709   static constexpr bool value = true;
2710 };
2711 
2712 /// Complete template argument deduction for a partial specialization.
2713 template <typename T>
2714 static typename std::enable_if<IsPartialSpecialization<T>::value,
2715                                Sema::TemplateDeductionResult>::type
2716 FinishTemplateArgumentDeduction(
2717     Sema &S, T *Partial, bool IsPartialOrdering,
2718     const TemplateArgumentList &TemplateArgs,
2719     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2720     TemplateDeductionInfo &Info) {
2721   // Unevaluated SFINAE context.
2722   EnterExpressionEvaluationContext Unevaluated(
2723       S, Sema::ExpressionEvaluationContext::Unevaluated);
2724   Sema::SFINAETrap Trap(S);
2725 
2726   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2727 
2728   // C++ [temp.deduct.type]p2:
2729   //   [...] or if any template argument remains neither deduced nor
2730   //   explicitly specified, template argument deduction fails.
2731   SmallVector<TemplateArgument, 4> Builder;
2732   if (auto Result = ConvertDeducedTemplateArguments(
2733           S, Partial, IsPartialOrdering, Deduced, Info, Builder))
2734     return Result;
2735 
2736   // Form the template argument list from the deduced template arguments.
2737   TemplateArgumentList *DeducedArgumentList
2738     = TemplateArgumentList::CreateCopy(S.Context, Builder);
2739 
2740   Info.reset(DeducedArgumentList);
2741 
2742   // Substitute the deduced template arguments into the template
2743   // arguments of the class template partial specialization, and
2744   // verify that the instantiated template arguments are both valid
2745   // and are equivalent to the template arguments originally provided
2746   // to the class template.
2747   LocalInstantiationScope InstScope(S);
2748   auto *Template = Partial->getSpecializedTemplate();
2749   const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2750       Partial->getTemplateArgsAsWritten();
2751   const TemplateArgumentLoc *PartialTemplateArgs =
2752       PartialTemplArgInfo->getTemplateArgs();
2753 
2754   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2755                                     PartialTemplArgInfo->RAngleLoc);
2756 
2757   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2758               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2759     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2760     if (ParamIdx >= Partial->getTemplateParameters()->size())
2761       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2762 
2763     Decl *Param = const_cast<NamedDecl *>(
2764         Partial->getTemplateParameters()->getParam(ParamIdx));
2765     Info.Param = makeTemplateParameter(Param);
2766     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2767     return Sema::TDK_SubstitutionFailure;
2768   }
2769 
2770   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2771   if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
2772                                   false, ConvertedInstArgs))
2773     return Sema::TDK_SubstitutionFailure;
2774 
2775   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2776   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2777     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2778     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2779       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2780       Info.FirstArg = TemplateArgs[I];
2781       Info.SecondArg = InstArg;
2782       return Sema::TDK_NonDeducedMismatch;
2783     }
2784   }
2785 
2786   if (Trap.hasErrorOccurred())
2787     return Sema::TDK_SubstitutionFailure;
2788 
2789   return Sema::TDK_Success;
2790 }
2791 
2792 /// Complete template argument deduction for a class or variable template,
2793 /// when partial ordering against a partial specialization.
2794 // FIXME: Factor out duplication with partial specialization version above.
2795 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2796     Sema &S, TemplateDecl *Template, bool PartialOrdering,
2797     const TemplateArgumentList &TemplateArgs,
2798     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2799     TemplateDeductionInfo &Info) {
2800   // Unevaluated SFINAE context.
2801   EnterExpressionEvaluationContext Unevaluated(
2802       S, Sema::ExpressionEvaluationContext::Unevaluated);
2803   Sema::SFINAETrap Trap(S);
2804 
2805   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
2806 
2807   // C++ [temp.deduct.type]p2:
2808   //   [...] or if any template argument remains neither deduced nor
2809   //   explicitly specified, template argument deduction fails.
2810   SmallVector<TemplateArgument, 4> Builder;
2811   if (auto Result = ConvertDeducedTemplateArguments(
2812           S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
2813     return Result;
2814 
2815   // Check that we produced the correct argument list.
2816   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2817   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2818     TemplateArgument InstArg = Builder[I];
2819     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
2820                            /*PackExpansionMatchesPack*/true)) {
2821       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2822       Info.FirstArg = TemplateArgs[I];
2823       Info.SecondArg = InstArg;
2824       return Sema::TDK_NonDeducedMismatch;
2825     }
2826   }
2827 
2828   if (Trap.hasErrorOccurred())
2829     return Sema::TDK_SubstitutionFailure;
2830 
2831   return Sema::TDK_Success;
2832 }
2833 
2834 
2835 /// Perform template argument deduction to determine whether
2836 /// the given template arguments match the given class template
2837 /// partial specialization per C++ [temp.class.spec.match].
2838 Sema::TemplateDeductionResult
2839 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2840                               const TemplateArgumentList &TemplateArgs,
2841                               TemplateDeductionInfo &Info) {
2842   if (Partial->isInvalidDecl())
2843     return TDK_Invalid;
2844 
2845   // C++ [temp.class.spec.match]p2:
2846   //   A partial specialization matches a given actual template
2847   //   argument list if the template arguments of the partial
2848   //   specialization can be deduced from the actual template argument
2849   //   list (14.8.2).
2850 
2851   // Unevaluated SFINAE context.
2852   EnterExpressionEvaluationContext Unevaluated(
2853       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2854   SFINAETrap Trap(*this);
2855 
2856   SmallVector<DeducedTemplateArgument, 4> Deduced;
2857   Deduced.resize(Partial->getTemplateParameters()->size());
2858   if (TemplateDeductionResult Result
2859         = ::DeduceTemplateArguments(*this,
2860                                     Partial->getTemplateParameters(),
2861                                     Partial->getTemplateArgs(),
2862                                     TemplateArgs, Info, Deduced))
2863     return Result;
2864 
2865   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2866   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2867                              Info);
2868   if (Inst.isInvalid())
2869     return TDK_InstantiationDepth;
2870 
2871   if (Trap.hasErrorOccurred())
2872     return Sema::TDK_SubstitutionFailure;
2873 
2874   return ::FinishTemplateArgumentDeduction(
2875       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2876 }
2877 
2878 /// Perform template argument deduction to determine whether
2879 /// the given template arguments match the given variable template
2880 /// partial specialization per C++ [temp.class.spec.match].
2881 Sema::TemplateDeductionResult
2882 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2883                               const TemplateArgumentList &TemplateArgs,
2884                               TemplateDeductionInfo &Info) {
2885   if (Partial->isInvalidDecl())
2886     return TDK_Invalid;
2887 
2888   // C++ [temp.class.spec.match]p2:
2889   //   A partial specialization matches a given actual template
2890   //   argument list if the template arguments of the partial
2891   //   specialization can be deduced from the actual template argument
2892   //   list (14.8.2).
2893 
2894   // Unevaluated SFINAE context.
2895   EnterExpressionEvaluationContext Unevaluated(
2896       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2897   SFINAETrap Trap(*this);
2898 
2899   SmallVector<DeducedTemplateArgument, 4> Deduced;
2900   Deduced.resize(Partial->getTemplateParameters()->size());
2901   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2902           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2903           TemplateArgs, Info, Deduced))
2904     return Result;
2905 
2906   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2907   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2908                              Info);
2909   if (Inst.isInvalid())
2910     return TDK_InstantiationDepth;
2911 
2912   if (Trap.hasErrorOccurred())
2913     return Sema::TDK_SubstitutionFailure;
2914 
2915   return ::FinishTemplateArgumentDeduction(
2916       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2917 }
2918 
2919 /// Determine whether the given type T is a simple-template-id type.
2920 static bool isSimpleTemplateIdType(QualType T) {
2921   if (const TemplateSpecializationType *Spec
2922         = T->getAs<TemplateSpecializationType>())
2923     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2924 
2925   // C++17 [temp.local]p2:
2926   //   the injected-class-name [...] is equivalent to the template-name followed
2927   //   by the template-arguments of the class template specialization or partial
2928   //   specialization enclosed in <>
2929   // ... which means it's equivalent to a simple-template-id.
2930   //
2931   // This only arises during class template argument deduction for a copy
2932   // deduction candidate, where it permits slicing.
2933   if (T->getAs<InjectedClassNameType>())
2934     return true;
2935 
2936   return false;
2937 }
2938 
2939 /// Substitute the explicitly-provided template arguments into the
2940 /// given function template according to C++ [temp.arg.explicit].
2941 ///
2942 /// \param FunctionTemplate the function template into which the explicit
2943 /// template arguments will be substituted.
2944 ///
2945 /// \param ExplicitTemplateArgs the explicitly-specified template
2946 /// arguments.
2947 ///
2948 /// \param Deduced the deduced template arguments, which will be populated
2949 /// with the converted and checked explicit template arguments.
2950 ///
2951 /// \param ParamTypes will be populated with the instantiated function
2952 /// parameters.
2953 ///
2954 /// \param FunctionType if non-NULL, the result type of the function template
2955 /// will also be instantiated and the pointed-to value will be updated with
2956 /// the instantiated function type.
2957 ///
2958 /// \param Info if substitution fails for any reason, this object will be
2959 /// populated with more information about the failure.
2960 ///
2961 /// \returns TDK_Success if substitution was successful, or some failure
2962 /// condition.
2963 Sema::TemplateDeductionResult
2964 Sema::SubstituteExplicitTemplateArguments(
2965                                       FunctionTemplateDecl *FunctionTemplate,
2966                                TemplateArgumentListInfo &ExplicitTemplateArgs,
2967                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2968                                  SmallVectorImpl<QualType> &ParamTypes,
2969                                           QualType *FunctionType,
2970                                           TemplateDeductionInfo &Info) {
2971   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2972   TemplateParameterList *TemplateParams
2973     = FunctionTemplate->getTemplateParameters();
2974 
2975   if (ExplicitTemplateArgs.size() == 0) {
2976     // No arguments to substitute; just copy over the parameter types and
2977     // fill in the function type.
2978     for (auto P : Function->parameters())
2979       ParamTypes.push_back(P->getType());
2980 
2981     if (FunctionType)
2982       *FunctionType = Function->getType();
2983     return TDK_Success;
2984   }
2985 
2986   // Unevaluated SFINAE context.
2987   EnterExpressionEvaluationContext Unevaluated(
2988       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2989   SFINAETrap Trap(*this);
2990 
2991   // C++ [temp.arg.explicit]p3:
2992   //   Template arguments that are present shall be specified in the
2993   //   declaration order of their corresponding template-parameters. The
2994   //   template argument list shall not specify more template-arguments than
2995   //   there are corresponding template-parameters.
2996   SmallVector<TemplateArgument, 4> Builder;
2997 
2998   // Enter a new template instantiation context where we check the
2999   // explicitly-specified template arguments against this function template,
3000   // and then substitute them into the function parameter types.
3001   SmallVector<TemplateArgument, 4> DeducedArgs;
3002   InstantiatingTemplate Inst(
3003       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3004       CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3005   if (Inst.isInvalid())
3006     return TDK_InstantiationDepth;
3007 
3008   if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3009                                 ExplicitTemplateArgs, true, Builder, false) ||
3010       Trap.hasErrorOccurred()) {
3011     unsigned Index = Builder.size();
3012     if (Index >= TemplateParams->size())
3013       return TDK_SubstitutionFailure;
3014     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3015     return TDK_InvalidExplicitArguments;
3016   }
3017 
3018   // Form the template argument list from the explicitly-specified
3019   // template arguments.
3020   TemplateArgumentList *ExplicitArgumentList
3021     = TemplateArgumentList::CreateCopy(Context, Builder);
3022   Info.setExplicitArgs(ExplicitArgumentList);
3023 
3024   // Template argument deduction and the final substitution should be
3025   // done in the context of the templated declaration.  Explicit
3026   // argument substitution, on the other hand, needs to happen in the
3027   // calling context.
3028   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3029 
3030   // If we deduced template arguments for a template parameter pack,
3031   // note that the template argument pack is partially substituted and record
3032   // the explicit template arguments. They'll be used as part of deduction
3033   // for this template parameter pack.
3034   unsigned PartiallySubstitutedPackIndex = -1u;
3035   if (!Builder.empty()) {
3036     const TemplateArgument &Arg = Builder.back();
3037     if (Arg.getKind() == TemplateArgument::Pack) {
3038       auto *Param = TemplateParams->getParam(Builder.size() - 1);
3039       // If this is a fully-saturated fixed-size pack, it should be
3040       // fully-substituted, not partially-substituted.
3041       Optional<unsigned> Expansions = getExpandedPackSize(Param);
3042       if (!Expansions || Arg.pack_size() < *Expansions) {
3043         PartiallySubstitutedPackIndex = Builder.size() - 1;
3044         CurrentInstantiationScope->SetPartiallySubstitutedPack(
3045             Param, Arg.pack_begin(), Arg.pack_size());
3046       }
3047     }
3048   }
3049 
3050   const FunctionProtoType *Proto
3051     = Function->getType()->getAs<FunctionProtoType>();
3052   assert(Proto && "Function template does not have a prototype?");
3053 
3054   // Isolate our substituted parameters from our caller.
3055   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3056 
3057   ExtParameterInfoBuilder ExtParamInfos;
3058 
3059   // Instantiate the types of each of the function parameters given the
3060   // explicitly-specified template arguments. If the function has a trailing
3061   // return type, substitute it after the arguments to ensure we substitute
3062   // in lexical order.
3063   if (Proto->hasTrailingReturn()) {
3064     if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3065                        Proto->getExtParameterInfosOrNull(),
3066                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3067                        ParamTypes, /*params*/ nullptr, ExtParamInfos))
3068       return TDK_SubstitutionFailure;
3069   }
3070 
3071   // Instantiate the return type.
3072   QualType ResultType;
3073   {
3074     // C++11 [expr.prim.general]p3:
3075     //   If a declaration declares a member function or member function
3076     //   template of a class X, the expression this is a prvalue of type
3077     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3078     //   and the end of the function-definition, member-declarator, or
3079     //   declarator.
3080     Qualifiers ThisTypeQuals;
3081     CXXRecordDecl *ThisContext = nullptr;
3082     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3083       ThisContext = Method->getParent();
3084       ThisTypeQuals = Method->getMethodQualifiers();
3085     }
3086 
3087     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3088                                getLangOpts().CPlusPlus11);
3089 
3090     ResultType =
3091         SubstType(Proto->getReturnType(),
3092                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3093                   Function->getTypeSpecStartLoc(), Function->getDeclName());
3094     if (ResultType.isNull() || Trap.hasErrorOccurred())
3095       return TDK_SubstitutionFailure;
3096   }
3097 
3098   // Instantiate the types of each of the function parameters given the
3099   // explicitly-specified template arguments if we didn't do so earlier.
3100   if (!Proto->hasTrailingReturn() &&
3101       SubstParmTypes(Function->getLocation(), Function->parameters(),
3102                      Proto->getExtParameterInfosOrNull(),
3103                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3104                      ParamTypes, /*params*/ nullptr, ExtParamInfos))
3105     return TDK_SubstitutionFailure;
3106 
3107   if (FunctionType) {
3108     auto EPI = Proto->getExtProtoInfo();
3109     EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3110 
3111     // In C++1z onwards, exception specifications are part of the function type,
3112     // so substitution into the type must also substitute into the exception
3113     // specification.
3114     SmallVector<QualType, 4> ExceptionStorage;
3115     if (getLangOpts().CPlusPlus17 &&
3116         SubstExceptionSpec(
3117             Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
3118             MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
3119       return TDK_SubstitutionFailure;
3120 
3121     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3122                                       Function->getLocation(),
3123                                       Function->getDeclName(),
3124                                       EPI);
3125     if (FunctionType->isNull() || Trap.hasErrorOccurred())
3126       return TDK_SubstitutionFailure;
3127   }
3128 
3129   // C++ [temp.arg.explicit]p2:
3130   //   Trailing template arguments that can be deduced (14.8.2) may be
3131   //   omitted from the list of explicit template-arguments. If all of the
3132   //   template arguments can be deduced, they may all be omitted; in this
3133   //   case, the empty template argument list <> itself may also be omitted.
3134   //
3135   // Take all of the explicitly-specified arguments and put them into
3136   // the set of deduced template arguments. The partially-substituted
3137   // parameter pack, however, will be set to NULL since the deduction
3138   // mechanism handles the partially-substituted argument pack directly.
3139   Deduced.reserve(TemplateParams->size());
3140   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
3141     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
3142     if (I == PartiallySubstitutedPackIndex)
3143       Deduced.push_back(DeducedTemplateArgument());
3144     else
3145       Deduced.push_back(Arg);
3146   }
3147 
3148   return TDK_Success;
3149 }
3150 
3151 /// Check whether the deduced argument type for a call to a function
3152 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
3153 static Sema::TemplateDeductionResult
3154 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3155                               Sema::OriginalCallArg OriginalArg,
3156                               QualType DeducedA) {
3157   ASTContext &Context = S.Context;
3158 
3159   auto Failed = [&]() -> Sema::TemplateDeductionResult {
3160     Info.FirstArg = TemplateArgument(DeducedA);
3161     Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3162     Info.CallArgIndex = OriginalArg.ArgIdx;
3163     return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3164                                        : Sema::TDK_DeducedMismatch;
3165   };
3166 
3167   QualType A = OriginalArg.OriginalArgType;
3168   QualType OriginalParamType = OriginalArg.OriginalParamType;
3169 
3170   // Check for type equality (top-level cv-qualifiers are ignored).
3171   if (Context.hasSameUnqualifiedType(A, DeducedA))
3172     return Sema::TDK_Success;
3173 
3174   // Strip off references on the argument types; they aren't needed for
3175   // the following checks.
3176   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3177     DeducedA = DeducedARef->getPointeeType();
3178   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3179     A = ARef->getPointeeType();
3180 
3181   // C++ [temp.deduct.call]p4:
3182   //   [...] However, there are three cases that allow a difference:
3183   //     - If the original P is a reference type, the deduced A (i.e., the
3184   //       type referred to by the reference) can be more cv-qualified than
3185   //       the transformed A.
3186   if (const ReferenceType *OriginalParamRef
3187       = OriginalParamType->getAs<ReferenceType>()) {
3188     // We don't want to keep the reference around any more.
3189     OriginalParamType = OriginalParamRef->getPointeeType();
3190 
3191     // FIXME: Resolve core issue (no number yet): if the original P is a
3192     // reference type and the transformed A is function type "noexcept F",
3193     // the deduced A can be F.
3194     QualType Tmp;
3195     if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3196       return Sema::TDK_Success;
3197 
3198     Qualifiers AQuals = A.getQualifiers();
3199     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3200 
3201     // Under Objective-C++ ARC, the deduced type may have implicitly
3202     // been given strong or (when dealing with a const reference)
3203     // unsafe_unretained lifetime. If so, update the original
3204     // qualifiers to include this lifetime.
3205     if (S.getLangOpts().ObjCAutoRefCount &&
3206         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3207           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3208          (DeducedAQuals.hasConst() &&
3209           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3210       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3211     }
3212 
3213     if (AQuals == DeducedAQuals) {
3214       // Qualifiers match; there's nothing to do.
3215     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3216       return Failed();
3217     } else {
3218       // Qualifiers are compatible, so have the argument type adopt the
3219       // deduced argument type's qualifiers as if we had performed the
3220       // qualification conversion.
3221       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3222     }
3223   }
3224 
3225   //    - The transformed A can be another pointer or pointer to member
3226   //      type that can be converted to the deduced A via a function pointer
3227   //      conversion and/or a qualification conversion.
3228   //
3229   // Also allow conversions which merely strip __attribute__((noreturn)) from
3230   // function types (recursively).
3231   bool ObjCLifetimeConversion = false;
3232   QualType ResultTy;
3233   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3234       (S.IsQualificationConversion(A, DeducedA, false,
3235                                    ObjCLifetimeConversion) ||
3236        S.IsFunctionConversion(A, DeducedA, ResultTy)))
3237     return Sema::TDK_Success;
3238 
3239   //    - If P is a class and P has the form simple-template-id, then the
3240   //      transformed A can be a derived class of the deduced A. [...]
3241   //     [...] Likewise, if P is a pointer to a class of the form
3242   //      simple-template-id, the transformed A can be a pointer to a
3243   //      derived class pointed to by the deduced A.
3244   if (const PointerType *OriginalParamPtr
3245       = OriginalParamType->getAs<PointerType>()) {
3246     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3247       if (const PointerType *APtr = A->getAs<PointerType>()) {
3248         if (A->getPointeeType()->isRecordType()) {
3249           OriginalParamType = OriginalParamPtr->getPointeeType();
3250           DeducedA = DeducedAPtr->getPointeeType();
3251           A = APtr->getPointeeType();
3252         }
3253       }
3254     }
3255   }
3256 
3257   if (Context.hasSameUnqualifiedType(A, DeducedA))
3258     return Sema::TDK_Success;
3259 
3260   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3261       S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3262     return Sema::TDK_Success;
3263 
3264   return Failed();
3265 }
3266 
3267 /// Find the pack index for a particular parameter index in an instantiation of
3268 /// a function template with specific arguments.
3269 ///
3270 /// \return The pack index for whichever pack produced this parameter, or -1
3271 ///         if this was not produced by a parameter. Intended to be used as the
3272 ///         ArgumentPackSubstitutionIndex for further substitutions.
3273 // FIXME: We should track this in OriginalCallArgs so we don't need to
3274 // reconstruct it here.
3275 static unsigned getPackIndexForParam(Sema &S,
3276                                      FunctionTemplateDecl *FunctionTemplate,
3277                                      const MultiLevelTemplateArgumentList &Args,
3278                                      unsigned ParamIdx) {
3279   unsigned Idx = 0;
3280   for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3281     if (PD->isParameterPack()) {
3282       unsigned NumExpansions =
3283           S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
3284       if (Idx + NumExpansions > ParamIdx)
3285         return ParamIdx - Idx;
3286       Idx += NumExpansions;
3287     } else {
3288       if (Idx == ParamIdx)
3289         return -1; // Not a pack expansion
3290       ++Idx;
3291     }
3292   }
3293 
3294   llvm_unreachable("parameter index would not be produced from template");
3295 }
3296 
3297 /// Finish template argument deduction for a function template,
3298 /// checking the deduced template arguments for completeness and forming
3299 /// the function template specialization.
3300 ///
3301 /// \param OriginalCallArgs If non-NULL, the original call arguments against
3302 /// which the deduced argument types should be compared.
3303 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3304     FunctionTemplateDecl *FunctionTemplate,
3305     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3306     unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3307     TemplateDeductionInfo &Info,
3308     SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3309     bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3310   // Unevaluated SFINAE context.
3311   EnterExpressionEvaluationContext Unevaluated(
3312       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3313   SFINAETrap Trap(*this);
3314 
3315   // Enter a new template instantiation context while we instantiate the
3316   // actual function declaration.
3317   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3318   InstantiatingTemplate Inst(
3319       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3320       CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3321   if (Inst.isInvalid())
3322     return TDK_InstantiationDepth;
3323 
3324   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3325 
3326   // C++ [temp.deduct.type]p2:
3327   //   [...] or if any template argument remains neither deduced nor
3328   //   explicitly specified, template argument deduction fails.
3329   SmallVector<TemplateArgument, 4> Builder;
3330   if (auto Result = ConvertDeducedTemplateArguments(
3331           *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
3332           CurrentInstantiationScope, NumExplicitlySpecified,
3333           PartialOverloading))
3334     return Result;
3335 
3336   // C++ [temp.deduct.call]p10: [DR1391]
3337   //   If deduction succeeds for all parameters that contain
3338   //   template-parameters that participate in template argument deduction,
3339   //   and all template arguments are explicitly specified, deduced, or
3340   //   obtained from default template arguments, remaining parameters are then
3341   //   compared with the corresponding arguments. For each remaining parameter
3342   //   P with a type that was non-dependent before substitution of any
3343   //   explicitly-specified template arguments, if the corresponding argument
3344   //   A cannot be implicitly converted to P, deduction fails.
3345   if (CheckNonDependent())
3346     return TDK_NonDependentConversionFailure;
3347 
3348   // Form the template argument list from the deduced template arguments.
3349   TemplateArgumentList *DeducedArgumentList
3350     = TemplateArgumentList::CreateCopy(Context, Builder);
3351   Info.reset(DeducedArgumentList);
3352 
3353   // Substitute the deduced template arguments into the function template
3354   // declaration to produce the function template specialization.
3355   DeclContext *Owner = FunctionTemplate->getDeclContext();
3356   if (FunctionTemplate->getFriendObjectKind())
3357     Owner = FunctionTemplate->getLexicalDeclContext();
3358   MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
3359   Specialization = cast_or_null<FunctionDecl>(
3360       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3361   if (!Specialization || Specialization->isInvalidDecl())
3362     return TDK_SubstitutionFailure;
3363 
3364   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3365          FunctionTemplate->getCanonicalDecl());
3366 
3367   // If the template argument list is owned by the function template
3368   // specialization, release it.
3369   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
3370       !Trap.hasErrorOccurred())
3371     Info.take();
3372 
3373   // There may have been an error that did not prevent us from constructing a
3374   // declaration. Mark the declaration invalid and return with a substitution
3375   // failure.
3376   if (Trap.hasErrorOccurred()) {
3377     Specialization->setInvalidDecl(true);
3378     return TDK_SubstitutionFailure;
3379   }
3380 
3381   if (OriginalCallArgs) {
3382     // C++ [temp.deduct.call]p4:
3383     //   In general, the deduction process attempts to find template argument
3384     //   values that will make the deduced A identical to A (after the type A
3385     //   is transformed as described above). [...]
3386     llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3387     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3388       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3389 
3390       auto ParamIdx = OriginalArg.ArgIdx;
3391       if (ParamIdx >= Specialization->getNumParams())
3392         // FIXME: This presumably means a pack ended up smaller than we
3393         // expected while deducing. Should this not result in deduction
3394         // failure? Can it even happen?
3395         continue;
3396 
3397       QualType DeducedA;
3398       if (!OriginalArg.DecomposedParam) {
3399         // P is one of the function parameters, just look up its substituted
3400         // type.
3401         DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3402       } else {
3403         // P is a decomposed element of a parameter corresponding to a
3404         // braced-init-list argument. Substitute back into P to find the
3405         // deduced A.
3406         QualType &CacheEntry =
3407             DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3408         if (CacheEntry.isNull()) {
3409           ArgumentPackSubstitutionIndexRAII PackIndex(
3410               *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3411                                           ParamIdx));
3412           CacheEntry =
3413               SubstType(OriginalArg.OriginalParamType, SubstArgs,
3414                         Specialization->getTypeSpecStartLoc(),
3415                         Specialization->getDeclName());
3416         }
3417         DeducedA = CacheEntry;
3418       }
3419 
3420       if (auto TDK =
3421               CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3422         return TDK;
3423     }
3424   }
3425 
3426   // If we suppressed any diagnostics while performing template argument
3427   // deduction, and if we haven't already instantiated this declaration,
3428   // keep track of these diagnostics. They'll be emitted if this specialization
3429   // is actually used.
3430   if (Info.diag_begin() != Info.diag_end()) {
3431     SuppressedDiagnosticsMap::iterator
3432       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3433     if (Pos == SuppressedDiagnostics.end())
3434         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3435           .append(Info.diag_begin(), Info.diag_end());
3436   }
3437 
3438   return TDK_Success;
3439 }
3440 
3441 /// Gets the type of a function for template-argument-deducton
3442 /// purposes when it's considered as part of an overload set.
3443 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3444                                   FunctionDecl *Fn) {
3445   // We may need to deduce the return type of the function now.
3446   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3447       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3448     return {};
3449 
3450   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3451     if (Method->isInstance()) {
3452       // An instance method that's referenced in a form that doesn't
3453       // look like a member pointer is just invalid.
3454       if (!R.HasFormOfMemberPointer)
3455         return {};
3456 
3457       return S.Context.getMemberPointerType(Fn->getType(),
3458                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3459     }
3460 
3461   if (!R.IsAddressOfOperand) return Fn->getType();
3462   return S.Context.getPointerType(Fn->getType());
3463 }
3464 
3465 /// Apply the deduction rules for overload sets.
3466 ///
3467 /// \return the null type if this argument should be treated as an
3468 /// undeduced context
3469 static QualType
3470 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3471                             Expr *Arg, QualType ParamType,
3472                             bool ParamWasReference) {
3473 
3474   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3475 
3476   OverloadExpr *Ovl = R.Expression;
3477 
3478   // C++0x [temp.deduct.call]p4
3479   unsigned TDF = 0;
3480   if (ParamWasReference)
3481     TDF |= TDF_ParamWithReferenceType;
3482   if (R.IsAddressOfOperand)
3483     TDF |= TDF_IgnoreQualifiers;
3484 
3485   // C++0x [temp.deduct.call]p6:
3486   //   When P is a function type, pointer to function type, or pointer
3487   //   to member function type:
3488 
3489   if (!ParamType->isFunctionType() &&
3490       !ParamType->isFunctionPointerType() &&
3491       !ParamType->isMemberFunctionPointerType()) {
3492     if (Ovl->hasExplicitTemplateArgs()) {
3493       // But we can still look for an explicit specialization.
3494       if (FunctionDecl *ExplicitSpec
3495             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3496         return GetTypeOfFunction(S, R, ExplicitSpec);
3497     }
3498 
3499     DeclAccessPair DAP;
3500     if (FunctionDecl *Viable =
3501             S.resolveAddressOfOnlyViableOverloadCandidate(Arg, DAP))
3502       return GetTypeOfFunction(S, R, Viable);
3503 
3504     return {};
3505   }
3506 
3507   // Gather the explicit template arguments, if any.
3508   TemplateArgumentListInfo ExplicitTemplateArgs;
3509   if (Ovl->hasExplicitTemplateArgs())
3510     Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3511   QualType Match;
3512   for (UnresolvedSetIterator I = Ovl->decls_begin(),
3513          E = Ovl->decls_end(); I != E; ++I) {
3514     NamedDecl *D = (*I)->getUnderlyingDecl();
3515 
3516     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3517       //   - If the argument is an overload set containing one or more
3518       //     function templates, the parameter is treated as a
3519       //     non-deduced context.
3520       if (!Ovl->hasExplicitTemplateArgs())
3521         return {};
3522 
3523       // Otherwise, see if we can resolve a function type
3524       FunctionDecl *Specialization = nullptr;
3525       TemplateDeductionInfo Info(Ovl->getNameLoc());
3526       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3527                                     Specialization, Info))
3528         continue;
3529 
3530       D = Specialization;
3531     }
3532 
3533     FunctionDecl *Fn = cast<FunctionDecl>(D);
3534     QualType ArgType = GetTypeOfFunction(S, R, Fn);
3535     if (ArgType.isNull()) continue;
3536 
3537     // Function-to-pointer conversion.
3538     if (!ParamWasReference && ParamType->isPointerType() &&
3539         ArgType->isFunctionType())
3540       ArgType = S.Context.getPointerType(ArgType);
3541 
3542     //   - If the argument is an overload set (not containing function
3543     //     templates), trial argument deduction is attempted using each
3544     //     of the members of the set. If deduction succeeds for only one
3545     //     of the overload set members, that member is used as the
3546     //     argument value for the deduction. If deduction succeeds for
3547     //     more than one member of the overload set the parameter is
3548     //     treated as a non-deduced context.
3549 
3550     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3551     //   Type deduction is done independently for each P/A pair, and
3552     //   the deduced template argument values are then combined.
3553     // So we do not reject deductions which were made elsewhere.
3554     SmallVector<DeducedTemplateArgument, 8>
3555       Deduced(TemplateParams->size());
3556     TemplateDeductionInfo Info(Ovl->getNameLoc());
3557     Sema::TemplateDeductionResult Result
3558       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3559                                            ArgType, Info, Deduced, TDF);
3560     if (Result) continue;
3561     if (!Match.isNull())
3562       return {};
3563     Match = ArgType;
3564   }
3565 
3566   return Match;
3567 }
3568 
3569 /// Perform the adjustments to the parameter and argument types
3570 /// described in C++ [temp.deduct.call].
3571 ///
3572 /// \returns true if the caller should not attempt to perform any template
3573 /// argument deduction based on this P/A pair because the argument is an
3574 /// overloaded function set that could not be resolved.
3575 static bool AdjustFunctionParmAndArgTypesForDeduction(
3576     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3577     QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3578   // C++0x [temp.deduct.call]p3:
3579   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3580   //   are ignored for type deduction.
3581   if (ParamType.hasQualifiers())
3582     ParamType = ParamType.getUnqualifiedType();
3583 
3584   //   [...] If P is a reference type, the type referred to by P is
3585   //   used for type deduction.
3586   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3587   if (ParamRefType)
3588     ParamType = ParamRefType->getPointeeType();
3589 
3590   // Overload sets usually make this parameter an undeduced context,
3591   // but there are sometimes special circumstances.  Typically
3592   // involving a template-id-expr.
3593   if (ArgType == S.Context.OverloadTy) {
3594     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3595                                           Arg, ParamType,
3596                                           ParamRefType != nullptr);
3597     if (ArgType.isNull())
3598       return true;
3599   }
3600 
3601   if (ParamRefType) {
3602     // If the argument has incomplete array type, try to complete its type.
3603     if (ArgType->isIncompleteArrayType()) {
3604       S.completeExprArrayBound(Arg);
3605       ArgType = Arg->getType();
3606     }
3607 
3608     // C++1z [temp.deduct.call]p3:
3609     //   If P is a forwarding reference and the argument is an lvalue, the type
3610     //   "lvalue reference to A" is used in place of A for type deduction.
3611     if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3612         Arg->isLValue())
3613       ArgType = S.Context.getLValueReferenceType(ArgType);
3614   } else {
3615     // C++ [temp.deduct.call]p2:
3616     //   If P is not a reference type:
3617     //   - If A is an array type, the pointer type produced by the
3618     //     array-to-pointer standard conversion (4.2) is used in place of
3619     //     A for type deduction; otherwise,
3620     if (ArgType->isArrayType())
3621       ArgType = S.Context.getArrayDecayedType(ArgType);
3622     //   - If A is a function type, the pointer type produced by the
3623     //     function-to-pointer standard conversion (4.3) is used in place
3624     //     of A for type deduction; otherwise,
3625     else if (ArgType->isFunctionType())
3626       ArgType = S.Context.getPointerType(ArgType);
3627     else {
3628       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3629       //   type are ignored for type deduction.
3630       ArgType = ArgType.getUnqualifiedType();
3631     }
3632   }
3633 
3634   // C++0x [temp.deduct.call]p4:
3635   //   In general, the deduction process attempts to find template argument
3636   //   values that will make the deduced A identical to A (after the type A
3637   //   is transformed as described above). [...]
3638   TDF = TDF_SkipNonDependent;
3639 
3640   //     - If the original P is a reference type, the deduced A (i.e., the
3641   //       type referred to by the reference) can be more cv-qualified than
3642   //       the transformed A.
3643   if (ParamRefType)
3644     TDF |= TDF_ParamWithReferenceType;
3645   //     - The transformed A can be another pointer or pointer to member
3646   //       type that can be converted to the deduced A via a qualification
3647   //       conversion (4.4).
3648   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3649       ArgType->isObjCObjectPointerType())
3650     TDF |= TDF_IgnoreQualifiers;
3651   //     - If P is a class and P has the form simple-template-id, then the
3652   //       transformed A can be a derived class of the deduced A. Likewise,
3653   //       if P is a pointer to a class of the form simple-template-id, the
3654   //       transformed A can be a pointer to a derived class pointed to by
3655   //       the deduced A.
3656   if (isSimpleTemplateIdType(ParamType) ||
3657       (isa<PointerType>(ParamType) &&
3658        isSimpleTemplateIdType(
3659                               ParamType->getAs<PointerType>()->getPointeeType())))
3660     TDF |= TDF_DerivedClass;
3661 
3662   return false;
3663 }
3664 
3665 static bool
3666 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3667                                QualType T);
3668 
3669 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3670     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3671     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3672     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3673     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3674     bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3675 
3676 /// Attempt template argument deduction from an initializer list
3677 ///        deemed to be an argument in a function call.
3678 static Sema::TemplateDeductionResult DeduceFromInitializerList(
3679     Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3680     InitListExpr *ILE, TemplateDeductionInfo &Info,
3681     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3682     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3683     unsigned TDF) {
3684   // C++ [temp.deduct.call]p1: (CWG 1591)
3685   //   If removing references and cv-qualifiers from P gives
3686   //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3687   //   a non-empty initializer list, then deduction is performed instead for
3688   //   each element of the initializer list, taking P0 as a function template
3689   //   parameter type and the initializer element as its argument
3690   //
3691   // We've already removed references and cv-qualifiers here.
3692   if (!ILE->getNumInits())
3693     return Sema::TDK_Success;
3694 
3695   QualType ElTy;
3696   auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3697   if (ArrTy)
3698     ElTy = ArrTy->getElementType();
3699   else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3700     //   Otherwise, an initializer list argument causes the parameter to be
3701     //   considered a non-deduced context
3702     return Sema::TDK_Success;
3703   }
3704 
3705   // Deduction only needs to be done for dependent types.
3706   if (ElTy->isDependentType()) {
3707     for (Expr *E : ILE->inits()) {
3708       if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3709               S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3710               ArgIdx, TDF))
3711         return Result;
3712     }
3713   }
3714 
3715   //   in the P0[N] case, if N is a non-type template parameter, N is deduced
3716   //   from the length of the initializer list.
3717   if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
3718     // Determine the array bound is something we can deduce.
3719     if (NonTypeTemplateParmDecl *NTTP =
3720             getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
3721       // We can perform template argument deduction for the given non-type
3722       // template parameter.
3723       // C++ [temp.deduct.type]p13:
3724       //   The type of N in the type T[N] is std::size_t.
3725       QualType T = S.Context.getSizeType();
3726       llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
3727       if (auto Result = DeduceNonTypeTemplateArgument(
3728               S, TemplateParams, NTTP, llvm::APSInt(Size), T,
3729               /*ArrayBound=*/true, Info, Deduced))
3730         return Result;
3731     }
3732   }
3733 
3734   return Sema::TDK_Success;
3735 }
3736 
3737 /// Perform template argument deduction per [temp.deduct.call] for a
3738 ///        single parameter / argument pair.
3739 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3740     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3741     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3742     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3743     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3744     bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
3745   QualType ArgType = Arg->getType();
3746   QualType OrigParamType = ParamType;
3747 
3748   //   If P is a reference type [...]
3749   //   If P is a cv-qualified type [...]
3750   if (AdjustFunctionParmAndArgTypesForDeduction(
3751           S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
3752     return Sema::TDK_Success;
3753 
3754   //   If [...] the argument is a non-empty initializer list [...]
3755   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
3756     return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
3757                                      Deduced, OriginalCallArgs, ArgIdx, TDF);
3758 
3759   //   [...] the deduction process attempts to find template argument values
3760   //   that will make the deduced A identical to A
3761   //
3762   // Keep track of the argument type and corresponding parameter index,
3763   // so we can check for compatibility between the deduced A and A.
3764   OriginalCallArgs.push_back(
3765       Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
3766   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3767                                             ArgType, Info, Deduced, TDF);
3768 }
3769 
3770 /// Perform template argument deduction from a function call
3771 /// (C++ [temp.deduct.call]).
3772 ///
3773 /// \param FunctionTemplate the function template for which we are performing
3774 /// template argument deduction.
3775 ///
3776 /// \param ExplicitTemplateArgs the explicit template arguments provided
3777 /// for this call.
3778 ///
3779 /// \param Args the function call arguments
3780 ///
3781 /// \param Specialization if template argument deduction was successful,
3782 /// this will be set to the function template specialization produced by
3783 /// template argument deduction.
3784 ///
3785 /// \param Info the argument will be updated to provide additional information
3786 /// about template argument deduction.
3787 ///
3788 /// \param CheckNonDependent A callback to invoke to check conversions for
3789 /// non-dependent parameters, between deduction and substitution, per DR1391.
3790 /// If this returns true, substitution will be skipped and we return
3791 /// TDK_NonDependentConversionFailure. The callback is passed the parameter
3792 /// types (after substituting explicit template arguments).
3793 ///
3794 /// \returns the result of template argument deduction.
3795 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3796     FunctionTemplateDecl *FunctionTemplate,
3797     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3798     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3799     bool PartialOverloading,
3800     llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
3801   if (FunctionTemplate->isInvalidDecl())
3802     return TDK_Invalid;
3803 
3804   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3805   unsigned NumParams = Function->getNumParams();
3806 
3807   unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
3808 
3809   // C++ [temp.deduct.call]p1:
3810   //   Template argument deduction is done by comparing each function template
3811   //   parameter type (call it P) with the type of the corresponding argument
3812   //   of the call (call it A) as described below.
3813   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3814     return TDK_TooFewArguments;
3815   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3816     const FunctionProtoType *Proto
3817       = Function->getType()->getAs<FunctionProtoType>();
3818     if (Proto->isTemplateVariadic())
3819       /* Do nothing */;
3820     else if (!Proto->isVariadic())
3821       return TDK_TooManyArguments;
3822   }
3823 
3824   // The types of the parameters from which we will perform template argument
3825   // deduction.
3826   LocalInstantiationScope InstScope(*this);
3827   TemplateParameterList *TemplateParams
3828     = FunctionTemplate->getTemplateParameters();
3829   SmallVector<DeducedTemplateArgument, 4> Deduced;
3830   SmallVector<QualType, 8> ParamTypes;
3831   unsigned NumExplicitlySpecified = 0;
3832   if (ExplicitTemplateArgs) {
3833     TemplateDeductionResult Result =
3834       SubstituteExplicitTemplateArguments(FunctionTemplate,
3835                                           *ExplicitTemplateArgs,
3836                                           Deduced,
3837                                           ParamTypes,
3838                                           nullptr,
3839                                           Info);
3840     if (Result)
3841       return Result;
3842 
3843     NumExplicitlySpecified = Deduced.size();
3844   } else {
3845     // Just fill in the parameter types from the function declaration.
3846     for (unsigned I = 0; I != NumParams; ++I)
3847       ParamTypes.push_back(Function->getParamDecl(I)->getType());
3848   }
3849 
3850   SmallVector<OriginalCallArg, 8> OriginalCallArgs;
3851 
3852   // Deduce an argument of type ParamType from an expression with index ArgIdx.
3853   auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
3854     // C++ [demp.deduct.call]p1: (DR1391)
3855     //   Template argument deduction is done by comparing each function template
3856     //   parameter that contains template-parameters that participate in
3857     //   template argument deduction ...
3858     if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3859       return Sema::TDK_Success;
3860 
3861     //   ... with the type of the corresponding argument
3862     return DeduceTemplateArgumentsFromCallArgument(
3863         *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
3864         OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
3865   };
3866 
3867   // Deduce template arguments from the function parameters.
3868   Deduced.resize(TemplateParams->size());
3869   SmallVector<QualType, 8> ParamTypesForArgChecking;
3870   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
3871        ParamIdx != NumParamTypes; ++ParamIdx) {
3872     QualType ParamType = ParamTypes[ParamIdx];
3873 
3874     const PackExpansionType *ParamExpansion =
3875         dyn_cast<PackExpansionType>(ParamType);
3876     if (!ParamExpansion) {
3877       // Simple case: matching a function parameter to a function argument.
3878       if (ArgIdx >= Args.size())
3879         break;
3880 
3881       ParamTypesForArgChecking.push_back(ParamType);
3882       if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
3883         return Result;
3884 
3885       continue;
3886     }
3887 
3888     QualType ParamPattern = ParamExpansion->getPattern();
3889     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3890                                  ParamPattern);
3891 
3892     // C++0x [temp.deduct.call]p1:
3893     //   For a function parameter pack that occurs at the end of the
3894     //   parameter-declaration-list, the type A of each remaining argument of
3895     //   the call is compared with the type P of the declarator-id of the
3896     //   function parameter pack. Each comparison deduces template arguments
3897     //   for subsequent positions in the template parameter packs expanded by
3898     //   the function parameter pack. When a function parameter pack appears
3899     //   in a non-deduced context [not at the end of the list], the type of
3900     //   that parameter pack is never deduced.
3901     //
3902     // FIXME: The above rule allows the size of the parameter pack to change
3903     // after we skip it (in the non-deduced case). That makes no sense, so
3904     // we instead notionally deduce the pack against N arguments, where N is
3905     // the length of the explicitly-specified pack if it's expanded by the
3906     // parameter pack and 0 otherwise, and we treat each deduction as a
3907     // non-deduced context.
3908     if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
3909       for (; ArgIdx < Args.size() && PackScope.hasNextElement();
3910            PackScope.nextPackElement(), ++ArgIdx) {
3911         ParamTypesForArgChecking.push_back(ParamPattern);
3912         if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
3913           return Result;
3914       }
3915     } else {
3916       // If the parameter type contains an explicitly-specified pack that we
3917       // could not expand, skip the number of parameters notionally created
3918       // by the expansion.
3919       Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
3920       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
3921         for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
3922              ++I, ++ArgIdx) {
3923           ParamTypesForArgChecking.push_back(ParamPattern);
3924           // FIXME: Should we add OriginalCallArgs for these? What if the
3925           // corresponding argument is a list?
3926           PackScope.nextPackElement();
3927         }
3928       }
3929     }
3930 
3931     // Build argument packs for each of the parameter packs expanded by this
3932     // pack expansion.
3933     if (auto Result = PackScope.finish())
3934       return Result;
3935   }
3936 
3937   // Capture the context in which the function call is made. This is the context
3938   // that is needed when the accessibility of template arguments is checked.
3939   DeclContext *CallingCtx = CurContext;
3940 
3941   return FinishTemplateArgumentDeduction(
3942       FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
3943       &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
3944         ContextRAII SavedContext(*this, CallingCtx);
3945         return CheckNonDependent(ParamTypesForArgChecking);
3946       });
3947 }
3948 
3949 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
3950                                    QualType FunctionType,
3951                                    bool AdjustExceptionSpec) {
3952   if (ArgFunctionType.isNull())
3953     return ArgFunctionType;
3954 
3955   const FunctionProtoType *FunctionTypeP =
3956       FunctionType->castAs<FunctionProtoType>();
3957   const FunctionProtoType *ArgFunctionTypeP =
3958       ArgFunctionType->getAs<FunctionProtoType>();
3959 
3960   FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
3961   bool Rebuild = false;
3962 
3963   CallingConv CC = FunctionTypeP->getCallConv();
3964   if (EPI.ExtInfo.getCC() != CC) {
3965     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
3966     Rebuild = true;
3967   }
3968 
3969   bool NoReturn = FunctionTypeP->getNoReturnAttr();
3970   if (EPI.ExtInfo.getNoReturn() != NoReturn) {
3971     EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
3972     Rebuild = true;
3973   }
3974 
3975   if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
3976                               ArgFunctionTypeP->hasExceptionSpec())) {
3977     EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
3978     Rebuild = true;
3979   }
3980 
3981   if (!Rebuild)
3982     return ArgFunctionType;
3983 
3984   return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
3985                                  ArgFunctionTypeP->getParamTypes(), EPI);
3986 }
3987 
3988 /// Deduce template arguments when taking the address of a function
3989 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3990 /// a template.
3991 ///
3992 /// \param FunctionTemplate the function template for which we are performing
3993 /// template argument deduction.
3994 ///
3995 /// \param ExplicitTemplateArgs the explicitly-specified template
3996 /// arguments.
3997 ///
3998 /// \param ArgFunctionType the function type that will be used as the
3999 /// "argument" type (A) when performing template argument deduction from the
4000 /// function template's function type. This type may be NULL, if there is no
4001 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4002 ///
4003 /// \param Specialization if template argument deduction was successful,
4004 /// this will be set to the function template specialization produced by
4005 /// template argument deduction.
4006 ///
4007 /// \param Info the argument will be updated to provide additional information
4008 /// about template argument deduction.
4009 ///
4010 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4011 /// the address of a function template per [temp.deduct.funcaddr] and
4012 /// [over.over]. If \c false, we are looking up a function template
4013 /// specialization based on its signature, per [temp.deduct.decl].
4014 ///
4015 /// \returns the result of template argument deduction.
4016 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4017     FunctionTemplateDecl *FunctionTemplate,
4018     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4019     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4020     bool IsAddressOfFunction) {
4021   if (FunctionTemplate->isInvalidDecl())
4022     return TDK_Invalid;
4023 
4024   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4025   TemplateParameterList *TemplateParams
4026     = FunctionTemplate->getTemplateParameters();
4027   QualType FunctionType = Function->getType();
4028 
4029   // Substitute any explicit template arguments.
4030   LocalInstantiationScope InstScope(*this);
4031   SmallVector<DeducedTemplateArgument, 4> Deduced;
4032   unsigned NumExplicitlySpecified = 0;
4033   SmallVector<QualType, 4> ParamTypes;
4034   if (ExplicitTemplateArgs) {
4035     if (TemplateDeductionResult Result
4036           = SubstituteExplicitTemplateArguments(FunctionTemplate,
4037                                                 *ExplicitTemplateArgs,
4038                                                 Deduced, ParamTypes,
4039                                                 &FunctionType, Info))
4040       return Result;
4041 
4042     NumExplicitlySpecified = Deduced.size();
4043   }
4044 
4045   // When taking the address of a function, we require convertibility of
4046   // the resulting function type. Otherwise, we allow arbitrary mismatches
4047   // of calling convention and noreturn.
4048   if (!IsAddressOfFunction)
4049     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4050                                           /*AdjustExceptionSpec*/false);
4051 
4052   // Unevaluated SFINAE context.
4053   EnterExpressionEvaluationContext Unevaluated(
4054       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4055   SFINAETrap Trap(*this);
4056 
4057   Deduced.resize(TemplateParams->size());
4058 
4059   // If the function has a deduced return type, substitute it for a dependent
4060   // type so that we treat it as a non-deduced context in what follows. If we
4061   // are looking up by signature, the signature type should also have a deduced
4062   // return type, which we instead expect to exactly match.
4063   bool HasDeducedReturnType = false;
4064   if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4065       Function->getReturnType()->getContainedAutoType()) {
4066     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
4067     HasDeducedReturnType = true;
4068   }
4069 
4070   if (!ArgFunctionType.isNull()) {
4071     unsigned TDF =
4072         TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4073     // Deduce template arguments from the function type.
4074     if (TemplateDeductionResult Result
4075           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4076                                                FunctionType, ArgFunctionType,
4077                                                Info, Deduced, TDF))
4078       return Result;
4079   }
4080 
4081   if (TemplateDeductionResult Result
4082         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4083                                           NumExplicitlySpecified,
4084                                           Specialization, Info))
4085     return Result;
4086 
4087   // If the function has a deduced return type, deduce it now, so we can check
4088   // that the deduced function type matches the requested type.
4089   if (HasDeducedReturnType &&
4090       Specialization->getReturnType()->isUndeducedType() &&
4091       DeduceReturnType(Specialization, Info.getLocation(), false))
4092     return TDK_MiscellaneousDeductionFailure;
4093 
4094   // If the function has a dependent exception specification, resolve it now,
4095   // so we can check that the exception specification matches.
4096   auto *SpecializationFPT =
4097       Specialization->getType()->castAs<FunctionProtoType>();
4098   if (getLangOpts().CPlusPlus17 &&
4099       isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4100       !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4101     return TDK_MiscellaneousDeductionFailure;
4102 
4103   // Adjust the exception specification of the argument to match the
4104   // substituted and resolved type we just formed. (Calling convention and
4105   // noreturn can't be dependent, so we don't actually need this for them
4106   // right now.)
4107   QualType SpecializationType = Specialization->getType();
4108   if (!IsAddressOfFunction)
4109     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4110                                           /*AdjustExceptionSpec*/true);
4111 
4112   // If the requested function type does not match the actual type of the
4113   // specialization with respect to arguments of compatible pointer to function
4114   // types, template argument deduction fails.
4115   if (!ArgFunctionType.isNull()) {
4116     if (IsAddressOfFunction &&
4117         !isSameOrCompatibleFunctionType(
4118             Context.getCanonicalType(SpecializationType),
4119             Context.getCanonicalType(ArgFunctionType)))
4120       return TDK_MiscellaneousDeductionFailure;
4121 
4122     if (!IsAddressOfFunction &&
4123         !Context.hasSameType(SpecializationType, ArgFunctionType))
4124       return TDK_MiscellaneousDeductionFailure;
4125   }
4126 
4127   return TDK_Success;
4128 }
4129 
4130 /// Deduce template arguments for a templated conversion
4131 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
4132 /// conversion function template specialization.
4133 Sema::TemplateDeductionResult
4134 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4135                               QualType ToType,
4136                               CXXConversionDecl *&Specialization,
4137                               TemplateDeductionInfo &Info) {
4138   if (ConversionTemplate->isInvalidDecl())
4139     return TDK_Invalid;
4140 
4141   CXXConversionDecl *ConversionGeneric
4142     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4143 
4144   QualType FromType = ConversionGeneric->getConversionType();
4145 
4146   // Canonicalize the types for deduction.
4147   QualType P = Context.getCanonicalType(FromType);
4148   QualType A = Context.getCanonicalType(ToType);
4149 
4150   // C++0x [temp.deduct.conv]p2:
4151   //   If P is a reference type, the type referred to by P is used for
4152   //   type deduction.
4153   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4154     P = PRef->getPointeeType();
4155 
4156   // C++0x [temp.deduct.conv]p4:
4157   //   [...] If A is a reference type, the type referred to by A is used
4158   //   for type deduction.
4159   if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4160     A = ARef->getPointeeType();
4161     // We work around a defect in the standard here: cv-qualifiers are also
4162     // removed from P and A in this case, unless P was a reference type. This
4163     // seems to mostly match what other compilers are doing.
4164     if (!FromType->getAs<ReferenceType>()) {
4165       A = A.getUnqualifiedType();
4166       P = P.getUnqualifiedType();
4167     }
4168 
4169   // C++ [temp.deduct.conv]p3:
4170   //
4171   //   If A is not a reference type:
4172   } else {
4173     assert(!A->isReferenceType() && "Reference types were handled above");
4174 
4175     //   - If P is an array type, the pointer type produced by the
4176     //     array-to-pointer standard conversion (4.2) is used in place
4177     //     of P for type deduction; otherwise,
4178     if (P->isArrayType())
4179       P = Context.getArrayDecayedType(P);
4180     //   - If P is a function type, the pointer type produced by the
4181     //     function-to-pointer standard conversion (4.3) is used in
4182     //     place of P for type deduction; otherwise,
4183     else if (P->isFunctionType())
4184       P = Context.getPointerType(P);
4185     //   - If P is a cv-qualified type, the top level cv-qualifiers of
4186     //     P's type are ignored for type deduction.
4187     else
4188       P = P.getUnqualifiedType();
4189 
4190     // C++0x [temp.deduct.conv]p4:
4191     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
4192     //   type are ignored for type deduction. If A is a reference type, the type
4193     //   referred to by A is used for type deduction.
4194     A = A.getUnqualifiedType();
4195   }
4196 
4197   // Unevaluated SFINAE context.
4198   EnterExpressionEvaluationContext Unevaluated(
4199       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4200   SFINAETrap Trap(*this);
4201 
4202   // C++ [temp.deduct.conv]p1:
4203   //   Template argument deduction is done by comparing the return
4204   //   type of the template conversion function (call it P) with the
4205   //   type that is required as the result of the conversion (call it
4206   //   A) as described in 14.8.2.4.
4207   TemplateParameterList *TemplateParams
4208     = ConversionTemplate->getTemplateParameters();
4209   SmallVector<DeducedTemplateArgument, 4> Deduced;
4210   Deduced.resize(TemplateParams->size());
4211 
4212   // C++0x [temp.deduct.conv]p4:
4213   //   In general, the deduction process attempts to find template
4214   //   argument values that will make the deduced A identical to
4215   //   A. However, there are two cases that allow a difference:
4216   unsigned TDF = 0;
4217   //     - If the original A is a reference type, A can be more
4218   //       cv-qualified than the deduced A (i.e., the type referred to
4219   //       by the reference)
4220   if (ToType->isReferenceType())
4221     TDF |= TDF_ArgWithReferenceType;
4222   //     - The deduced A can be another pointer or pointer to member
4223   //       type that can be converted to A via a qualification
4224   //       conversion.
4225   //
4226   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4227   // both P and A are pointers or member pointers. In this case, we
4228   // just ignore cv-qualifiers completely).
4229   if ((P->isPointerType() && A->isPointerType()) ||
4230       (P->isMemberPointerType() && A->isMemberPointerType()))
4231     TDF |= TDF_IgnoreQualifiers;
4232   if (TemplateDeductionResult Result
4233         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4234                                              P, A, Info, Deduced, TDF))
4235     return Result;
4236 
4237   // Create an Instantiation Scope for finalizing the operator.
4238   LocalInstantiationScope InstScope(*this);
4239   // Finish template argument deduction.
4240   FunctionDecl *ConversionSpecialized = nullptr;
4241   TemplateDeductionResult Result
4242       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4243                                         ConversionSpecialized, Info);
4244   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4245   return Result;
4246 }
4247 
4248 /// Deduce template arguments for a function template when there is
4249 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4250 ///
4251 /// \param FunctionTemplate the function template for which we are performing
4252 /// template argument deduction.
4253 ///
4254 /// \param ExplicitTemplateArgs the explicitly-specified template
4255 /// arguments.
4256 ///
4257 /// \param Specialization if template argument deduction was successful,
4258 /// this will be set to the function template specialization produced by
4259 /// template argument deduction.
4260 ///
4261 /// \param Info the argument will be updated to provide additional information
4262 /// about template argument deduction.
4263 ///
4264 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4265 /// the address of a function template in a context where we do not have a
4266 /// target type, per [over.over]. If \c false, we are looking up a function
4267 /// template specialization based on its signature, which only happens when
4268 /// deducing a function parameter type from an argument that is a template-id
4269 /// naming a function template specialization.
4270 ///
4271 /// \returns the result of template argument deduction.
4272 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4273     FunctionTemplateDecl *FunctionTemplate,
4274     TemplateArgumentListInfo *ExplicitTemplateArgs,
4275     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4276     bool IsAddressOfFunction) {
4277   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4278                                  QualType(), Specialization, Info,
4279                                  IsAddressOfFunction);
4280 }
4281 
4282 namespace {
4283   struct DependentAuto { bool IsPack; };
4284 
4285   /// Substitute the 'auto' specifier or deduced template specialization type
4286   /// specifier within a type for a given replacement type.
4287   class SubstituteDeducedTypeTransform :
4288       public TreeTransform<SubstituteDeducedTypeTransform> {
4289     QualType Replacement;
4290     bool ReplacementIsPack;
4291     bool UseTypeSugar;
4292 
4293   public:
4294     SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4295         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
4296           ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4297 
4298     SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4299                                    bool UseTypeSugar = true)
4300         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4301           Replacement(Replacement), ReplacementIsPack(false),
4302           UseTypeSugar(UseTypeSugar) {}
4303 
4304     QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4305       assert(isa<TemplateTypeParmType>(Replacement) &&
4306              "unexpected unsugared replacement kind");
4307       QualType Result = Replacement;
4308       TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4309       NewTL.setNameLoc(TL.getNameLoc());
4310       return Result;
4311     }
4312 
4313     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4314       // If we're building the type pattern to deduce against, don't wrap the
4315       // substituted type in an AutoType. Certain template deduction rules
4316       // apply only when a template type parameter appears directly (and not if
4317       // the parameter is found through desugaring). For instance:
4318       //   auto &&lref = lvalue;
4319       // must transform into "rvalue reference to T" not "rvalue reference to
4320       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4321       //
4322       // FIXME: Is this still necessary?
4323       if (!UseTypeSugar)
4324         return TransformDesugared(TLB, TL);
4325 
4326       QualType Result = SemaRef.Context.getAutoType(
4327           Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4328           ReplacementIsPack);
4329       auto NewTL = TLB.push<AutoTypeLoc>(Result);
4330       NewTL.setNameLoc(TL.getNameLoc());
4331       return Result;
4332     }
4333 
4334     QualType TransformDeducedTemplateSpecializationType(
4335         TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4336       if (!UseTypeSugar)
4337         return TransformDesugared(TLB, TL);
4338 
4339       QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4340           TL.getTypePtr()->getTemplateName(),
4341           Replacement, Replacement.isNull());
4342       auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4343       NewTL.setNameLoc(TL.getNameLoc());
4344       return Result;
4345     }
4346 
4347     ExprResult TransformLambdaExpr(LambdaExpr *E) {
4348       // Lambdas never need to be transformed.
4349       return E;
4350     }
4351 
4352     QualType Apply(TypeLoc TL) {
4353       // Create some scratch storage for the transformed type locations.
4354       // FIXME: We're just going to throw this information away. Don't build it.
4355       TypeLocBuilder TLB;
4356       TLB.reserve(TL.getFullDataSize());
4357       return TransformType(TLB, TL);
4358     }
4359   };
4360 
4361 } // namespace
4362 
4363 Sema::DeduceAutoResult
4364 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
4365                      Optional<unsigned> DependentDeductionDepth) {
4366   return DeduceAutoType(Type->getTypeLoc(), Init, Result,
4367                         DependentDeductionDepth);
4368 }
4369 
4370 /// Attempt to produce an informative diagostic explaining why auto deduction
4371 /// failed.
4372 /// \return \c true if diagnosed, \c false if not.
4373 static bool diagnoseAutoDeductionFailure(Sema &S,
4374                                          Sema::TemplateDeductionResult TDK,
4375                                          TemplateDeductionInfo &Info,
4376                                          ArrayRef<SourceRange> Ranges) {
4377   switch (TDK) {
4378   case Sema::TDK_Inconsistent: {
4379     // Inconsistent deduction means we were deducing from an initializer list.
4380     auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
4381     D << Info.FirstArg << Info.SecondArg;
4382     for (auto R : Ranges)
4383       D << R;
4384     return true;
4385   }
4386 
4387   // FIXME: Are there other cases for which a custom diagnostic is more useful
4388   // than the basic "types don't match" diagnostic?
4389 
4390   default:
4391     return false;
4392   }
4393 }
4394 
4395 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4396 ///
4397 /// Note that this is done even if the initializer is dependent. (This is
4398 /// necessary to support partial ordering of templates using 'auto'.)
4399 /// A dependent type will be produced when deducing from a dependent type.
4400 ///
4401 /// \param Type the type pattern using the auto type-specifier.
4402 /// \param Init the initializer for the variable whose type is to be deduced.
4403 /// \param Result if type deduction was successful, this will be set to the
4404 ///        deduced type.
4405 /// \param DependentDeductionDepth Set if we should permit deduction in
4406 ///        dependent cases. This is necessary for template partial ordering with
4407 ///        'auto' template parameters. The value specified is the template
4408 ///        parameter depth at which we should perform 'auto' deduction.
4409 Sema::DeduceAutoResult
4410 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
4411                      Optional<unsigned> DependentDeductionDepth) {
4412   if (Init->getType()->isNonOverloadPlaceholderType()) {
4413     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4414     if (NonPlaceholder.isInvalid())
4415       return DAR_FailedAlreadyDiagnosed;
4416     Init = NonPlaceholder.get();
4417   }
4418 
4419   DependentAuto DependentResult = {
4420       /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4421 
4422   if (!DependentDeductionDepth &&
4423       (Type.getType()->isDependentType() || Init->isTypeDependent())) {
4424     Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4425     assert(!Result.isNull() && "substituting DependentTy can't fail");
4426     return DAR_Succeeded;
4427   }
4428 
4429   // Find the depth of template parameter to synthesize.
4430   unsigned Depth = DependentDeductionDepth.getValueOr(0);
4431 
4432   // If this is a 'decltype(auto)' specifier, do the decltype dance.
4433   // Since 'decltype(auto)' can only occur at the top of the type, we
4434   // don't need to go digging for it.
4435   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4436     if (AT->isDecltypeAuto()) {
4437       if (isa<InitListExpr>(Init)) {
4438         Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4439         return DAR_FailedAlreadyDiagnosed;
4440       }
4441 
4442       ExprResult ER = CheckPlaceholderExpr(Init);
4443       if (ER.isInvalid())
4444         return DAR_FailedAlreadyDiagnosed;
4445       Init = ER.get();
4446       QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
4447       if (Deduced.isNull())
4448         return DAR_FailedAlreadyDiagnosed;
4449       // FIXME: Support a non-canonical deduced type for 'auto'.
4450       Deduced = Context.getCanonicalType(Deduced);
4451       Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
4452       if (Result.isNull())
4453         return DAR_FailedAlreadyDiagnosed;
4454       return DAR_Succeeded;
4455     } else if (!getLangOpts().CPlusPlus) {
4456       if (isa<InitListExpr>(Init)) {
4457         Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4458         return DAR_FailedAlreadyDiagnosed;
4459       }
4460     }
4461   }
4462 
4463   SourceLocation Loc = Init->getExprLoc();
4464 
4465   LocalInstantiationScope InstScope(*this);
4466 
4467   // Build template<class TemplParam> void Func(FuncParam);
4468   TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4469       Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false);
4470   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4471   NamedDecl *TemplParamPtr = TemplParam;
4472   FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4473       Loc, Loc, TemplParamPtr, Loc, nullptr);
4474 
4475   QualType FuncParam =
4476       SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
4477           .Apply(Type);
4478   assert(!FuncParam.isNull() &&
4479          "substituting template parameter for 'auto' failed");
4480 
4481   // Deduce type of TemplParam in Func(Init)
4482   SmallVector<DeducedTemplateArgument, 1> Deduced;
4483   Deduced.resize(1);
4484 
4485   TemplateDeductionInfo Info(Loc, Depth);
4486 
4487   // If deduction failed, don't diagnose if the initializer is dependent; it
4488   // might acquire a matching type in the instantiation.
4489   auto DeductionFailed = [&](TemplateDeductionResult TDK,
4490                              ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
4491     if (Init->isTypeDependent()) {
4492       Result =
4493           SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4494       assert(!Result.isNull() && "substituting DependentTy can't fail");
4495       return DAR_Succeeded;
4496     }
4497     if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
4498       return DAR_FailedAlreadyDiagnosed;
4499     return DAR_Failed;
4500   };
4501 
4502   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4503 
4504   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4505   if (InitList) {
4506     // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
4507     // against that. Such deduction only succeeds if removing cv-qualifiers and
4508     // references results in std::initializer_list<T>.
4509     if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4510       return DAR_Failed;
4511 
4512     SourceRange DeducedFromInitRange;
4513     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4514       Expr *Init = InitList->getInit(i);
4515 
4516       if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4517               *this, TemplateParamsSt.get(), 0, TemplArg, Init,
4518               Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
4519               /*ArgIdx*/ 0, /*TDF*/ 0))
4520         return DeductionFailed(TDK, {DeducedFromInitRange,
4521                                      Init->getSourceRange()});
4522 
4523       if (DeducedFromInitRange.isInvalid() &&
4524           Deduced[0].getKind() != TemplateArgument::Null)
4525         DeducedFromInitRange = Init->getSourceRange();
4526     }
4527   } else {
4528     if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4529       Diag(Loc, diag::err_auto_bitfield);
4530       return DAR_FailedAlreadyDiagnosed;
4531     }
4532 
4533     if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4534             *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4535             OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
4536       return DeductionFailed(TDK, {});
4537   }
4538 
4539   // Could be null if somehow 'auto' appears in a non-deduced context.
4540   if (Deduced[0].getKind() != TemplateArgument::Type)
4541     return DeductionFailed(TDK_Incomplete, {});
4542 
4543   QualType DeducedType = Deduced[0].getAsType();
4544 
4545   if (InitList) {
4546     DeducedType = BuildStdInitializerList(DeducedType, Loc);
4547     if (DeducedType.isNull())
4548       return DAR_FailedAlreadyDiagnosed;
4549   }
4550 
4551   Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4552   if (Result.isNull())
4553     return DAR_FailedAlreadyDiagnosed;
4554 
4555   // Check that the deduced argument type is compatible with the original
4556   // argument type per C++ [temp.deduct.call]p4.
4557   QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4558   for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4559     assert((bool)InitList == OriginalArg.DecomposedParam &&
4560            "decomposed non-init-list in auto deduction?");
4561     if (auto TDK =
4562             CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4563       Result = QualType();
4564       return DeductionFailed(TDK, {});
4565     }
4566   }
4567 
4568   return DAR_Succeeded;
4569 }
4570 
4571 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4572                              QualType TypeToReplaceAuto) {
4573   if (TypeToReplaceAuto->isDependentType())
4574     return SubstituteDeducedTypeTransform(
4575                *this, DependentAuto{
4576                           TypeToReplaceAuto->containsUnexpandedParameterPack()})
4577         .TransformType(TypeWithAuto);
4578   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4579       .TransformType(TypeWithAuto);
4580 }
4581 
4582 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4583                                               QualType TypeToReplaceAuto) {
4584   if (TypeToReplaceAuto->isDependentType())
4585     return SubstituteDeducedTypeTransform(
4586                *this,
4587                DependentAuto{
4588                    TypeToReplaceAuto->containsUnexpandedParameterPack()})
4589         .TransformType(TypeWithAuto);
4590   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4591       .TransformType(TypeWithAuto);
4592 }
4593 
4594 QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4595                                QualType TypeToReplaceAuto) {
4596   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4597                                         /*UseTypeSugar*/ false)
4598       .TransformType(TypeWithAuto);
4599 }
4600 
4601 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4602   if (isa<InitListExpr>(Init))
4603     Diag(VDecl->getLocation(),
4604          VDecl->isInitCapture()
4605              ? diag::err_init_capture_deduction_failure_from_init_list
4606              : diag::err_auto_var_deduction_failure_from_init_list)
4607       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4608   else
4609     Diag(VDecl->getLocation(),
4610          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4611                                 : diag::err_auto_var_deduction_failure)
4612       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4613       << Init->getSourceRange();
4614 }
4615 
4616 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4617                             bool Diagnose) {
4618   assert(FD->getReturnType()->isUndeducedType());
4619 
4620   // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4621   // within the return type from the call operator's type.
4622   if (isLambdaConversionOperator(FD)) {
4623     CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
4624     FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
4625 
4626     // For a generic lambda, instantiate the call operator if needed.
4627     if (auto *Args = FD->getTemplateSpecializationArgs()) {
4628       CallOp = InstantiateFunctionDeclaration(
4629           CallOp->getDescribedFunctionTemplate(), Args, Loc);
4630       if (!CallOp || CallOp->isInvalidDecl())
4631         return true;
4632 
4633       // We might need to deduce the return type by instantiating the definition
4634       // of the operator() function.
4635       if (CallOp->getReturnType()->isUndeducedType())
4636         InstantiateFunctionDefinition(Loc, CallOp);
4637     }
4638 
4639     if (CallOp->isInvalidDecl())
4640       return true;
4641     assert(!CallOp->getReturnType()->isUndeducedType() &&
4642            "failed to deduce lambda return type");
4643 
4644     // Build the new return type from scratch.
4645     QualType RetType = getLambdaConversionFunctionResultType(
4646         CallOp->getType()->castAs<FunctionProtoType>());
4647     if (FD->getReturnType()->getAs<PointerType>())
4648       RetType = Context.getPointerType(RetType);
4649     else {
4650       assert(FD->getReturnType()->getAs<BlockPointerType>());
4651       RetType = Context.getBlockPointerType(RetType);
4652     }
4653     Context.adjustDeducedFunctionResultType(FD, RetType);
4654     return false;
4655   }
4656 
4657   if (FD->getTemplateInstantiationPattern())
4658     InstantiateFunctionDefinition(Loc, FD);
4659 
4660   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4661   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4662     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4663     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4664   }
4665 
4666   return StillUndeduced;
4667 }
4668 
4669 /// If this is a non-static member function,
4670 static void
4671 AddImplicitObjectParameterType(ASTContext &Context,
4672                                CXXMethodDecl *Method,
4673                                SmallVectorImpl<QualType> &ArgTypes) {
4674   // C++11 [temp.func.order]p3:
4675   //   [...] The new parameter is of type "reference to cv A," where cv are
4676   //   the cv-qualifiers of the function template (if any) and A is
4677   //   the class of which the function template is a member.
4678   //
4679   // The standard doesn't say explicitly, but we pick the appropriate kind of
4680   // reference type based on [over.match.funcs]p4.
4681   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4682   ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
4683   if (Method->getRefQualifier() == RQ_RValue)
4684     ArgTy = Context.getRValueReferenceType(ArgTy);
4685   else
4686     ArgTy = Context.getLValueReferenceType(ArgTy);
4687   ArgTypes.push_back(ArgTy);
4688 }
4689 
4690 /// Determine whether the function template \p FT1 is at least as
4691 /// specialized as \p FT2.
4692 static bool isAtLeastAsSpecializedAs(Sema &S,
4693                                      SourceLocation Loc,
4694                                      FunctionTemplateDecl *FT1,
4695                                      FunctionTemplateDecl *FT2,
4696                                      TemplatePartialOrderingContext TPOC,
4697                                      unsigned NumCallArguments1) {
4698   FunctionDecl *FD1 = FT1->getTemplatedDecl();
4699   FunctionDecl *FD2 = FT2->getTemplatedDecl();
4700   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4701   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4702 
4703   assert(Proto1 && Proto2 && "Function templates must have prototypes");
4704   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4705   SmallVector<DeducedTemplateArgument, 4> Deduced;
4706   Deduced.resize(TemplateParams->size());
4707 
4708   // C++0x [temp.deduct.partial]p3:
4709   //   The types used to determine the ordering depend on the context in which
4710   //   the partial ordering is done:
4711   TemplateDeductionInfo Info(Loc);
4712   SmallVector<QualType, 4> Args2;
4713   switch (TPOC) {
4714   case TPOC_Call: {
4715     //   - In the context of a function call, the function parameter types are
4716     //     used.
4717     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4718     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4719 
4720     // C++11 [temp.func.order]p3:
4721     //   [...] If only one of the function templates is a non-static
4722     //   member, that function template is considered to have a new
4723     //   first parameter inserted in its function parameter list. The
4724     //   new parameter is of type "reference to cv A," where cv are
4725     //   the cv-qualifiers of the function template (if any) and A is
4726     //   the class of which the function template is a member.
4727     //
4728     // Note that we interpret this to mean "if one of the function
4729     // templates is a non-static member and the other is a non-member";
4730     // otherwise, the ordering rules for static functions against non-static
4731     // functions don't make any sense.
4732     //
4733     // C++98/03 doesn't have this provision but we've extended DR532 to cover
4734     // it as wording was broken prior to it.
4735     SmallVector<QualType, 4> Args1;
4736 
4737     unsigned NumComparedArguments = NumCallArguments1;
4738 
4739     if (!Method2 && Method1 && !Method1->isStatic()) {
4740       // Compare 'this' from Method1 against first parameter from Method2.
4741       AddImplicitObjectParameterType(S.Context, Method1, Args1);
4742       ++NumComparedArguments;
4743     } else if (!Method1 && Method2 && !Method2->isStatic()) {
4744       // Compare 'this' from Method2 against first parameter from Method1.
4745       AddImplicitObjectParameterType(S.Context, Method2, Args2);
4746     }
4747 
4748     Args1.insert(Args1.end(), Proto1->param_type_begin(),
4749                  Proto1->param_type_end());
4750     Args2.insert(Args2.end(), Proto2->param_type_begin(),
4751                  Proto2->param_type_end());
4752 
4753     // C++ [temp.func.order]p5:
4754     //   The presence of unused ellipsis and default arguments has no effect on
4755     //   the partial ordering of function templates.
4756     if (Args1.size() > NumComparedArguments)
4757       Args1.resize(NumComparedArguments);
4758     if (Args2.size() > NumComparedArguments)
4759       Args2.resize(NumComparedArguments);
4760     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4761                                 Args1.data(), Args1.size(), Info, Deduced,
4762                                 TDF_None, /*PartialOrdering=*/true))
4763       return false;
4764 
4765     break;
4766   }
4767 
4768   case TPOC_Conversion:
4769     //   - In the context of a call to a conversion operator, the return types
4770     //     of the conversion function templates are used.
4771     if (DeduceTemplateArgumentsByTypeMatch(
4772             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4773             Info, Deduced, TDF_None,
4774             /*PartialOrdering=*/true))
4775       return false;
4776     break;
4777 
4778   case TPOC_Other:
4779     //   - In other contexts (14.6.6.2) the function template's function type
4780     //     is used.
4781     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4782                                            FD2->getType(), FD1->getType(),
4783                                            Info, Deduced, TDF_None,
4784                                            /*PartialOrdering=*/true))
4785       return false;
4786     break;
4787   }
4788 
4789   // C++0x [temp.deduct.partial]p11:
4790   //   In most cases, all template parameters must have values in order for
4791   //   deduction to succeed, but for partial ordering purposes a template
4792   //   parameter may remain without a value provided it is not used in the
4793   //   types being used for partial ordering. [ Note: a template parameter used
4794   //   in a non-deduced context is considered used. -end note]
4795   unsigned ArgIdx = 0, NumArgs = Deduced.size();
4796   for (; ArgIdx != NumArgs; ++ArgIdx)
4797     if (Deduced[ArgIdx].isNull())
4798       break;
4799 
4800   // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
4801   // to substitute the deduced arguments back into the template and check that
4802   // we get the right type.
4803 
4804   if (ArgIdx == NumArgs) {
4805     // All template arguments were deduced. FT1 is at least as specialized
4806     // as FT2.
4807     return true;
4808   }
4809 
4810   // Figure out which template parameters were used.
4811   llvm::SmallBitVector UsedParameters(TemplateParams->size());
4812   switch (TPOC) {
4813   case TPOC_Call:
4814     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4815       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4816                                    TemplateParams->getDepth(),
4817                                    UsedParameters);
4818     break;
4819 
4820   case TPOC_Conversion:
4821     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4822                                  TemplateParams->getDepth(), UsedParameters);
4823     break;
4824 
4825   case TPOC_Other:
4826     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4827                                  TemplateParams->getDepth(),
4828                                  UsedParameters);
4829     break;
4830   }
4831 
4832   for (; ArgIdx != NumArgs; ++ArgIdx)
4833     // If this argument had no value deduced but was used in one of the types
4834     // used for partial ordering, then deduction fails.
4835     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4836       return false;
4837 
4838   return true;
4839 }
4840 
4841 /// Determine whether this a function template whose parameter-type-list
4842 /// ends with a function parameter pack.
4843 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4844   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4845   unsigned NumParams = Function->getNumParams();
4846   if (NumParams == 0)
4847     return false;
4848 
4849   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4850   if (!Last->isParameterPack())
4851     return false;
4852 
4853   // Make sure that no previous parameter is a parameter pack.
4854   while (--NumParams > 0) {
4855     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4856       return false;
4857   }
4858 
4859   return true;
4860 }
4861 
4862 /// Returns the more specialized function template according
4863 /// to the rules of function template partial ordering (C++ [temp.func.order]).
4864 ///
4865 /// \param FT1 the first function template
4866 ///
4867 /// \param FT2 the second function template
4868 ///
4869 /// \param TPOC the context in which we are performing partial ordering of
4870 /// function templates.
4871 ///
4872 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
4873 /// only when \c TPOC is \c TPOC_Call.
4874 ///
4875 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
4876 /// only when \c TPOC is \c TPOC_Call.
4877 ///
4878 /// \returns the more specialized function template. If neither
4879 /// template is more specialized, returns NULL.
4880 FunctionTemplateDecl *
4881 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4882                                  FunctionTemplateDecl *FT2,
4883                                  SourceLocation Loc,
4884                                  TemplatePartialOrderingContext TPOC,
4885                                  unsigned NumCallArguments1,
4886                                  unsigned NumCallArguments2) {
4887   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4888                                           NumCallArguments1);
4889   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4890                                           NumCallArguments2);
4891 
4892   if (Better1 != Better2) // We have a clear winner
4893     return Better1 ? FT1 : FT2;
4894 
4895   if (!Better1 && !Better2) // Neither is better than the other
4896     return nullptr;
4897 
4898   // FIXME: This mimics what GCC implements, but doesn't match up with the
4899   // proposed resolution for core issue 692. This area needs to be sorted out,
4900   // but for now we attempt to maintain compatibility.
4901   bool Variadic1 = isVariadicFunctionTemplate(FT1);
4902   bool Variadic2 = isVariadicFunctionTemplate(FT2);
4903   if (Variadic1 != Variadic2)
4904     return Variadic1? FT2 : FT1;
4905 
4906   return nullptr;
4907 }
4908 
4909 /// Determine if the two templates are equivalent.
4910 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4911   if (T1 == T2)
4912     return true;
4913 
4914   if (!T1 || !T2)
4915     return false;
4916 
4917   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4918 }
4919 
4920 /// Retrieve the most specialized of the given function template
4921 /// specializations.
4922 ///
4923 /// \param SpecBegin the start iterator of the function template
4924 /// specializations that we will be comparing.
4925 ///
4926 /// \param SpecEnd the end iterator of the function template
4927 /// specializations, paired with \p SpecBegin.
4928 ///
4929 /// \param Loc the location where the ambiguity or no-specializations
4930 /// diagnostic should occur.
4931 ///
4932 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
4933 /// no matching candidates.
4934 ///
4935 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4936 /// occurs.
4937 ///
4938 /// \param CandidateDiag partial diagnostic used for each function template
4939 /// specialization that is a candidate in the ambiguous ordering. One parameter
4940 /// in this diagnostic should be unbound, which will correspond to the string
4941 /// describing the template arguments for the function template specialization.
4942 ///
4943 /// \returns the most specialized function template specialization, if
4944 /// found. Otherwise, returns SpecEnd.
4945 UnresolvedSetIterator Sema::getMostSpecialized(
4946     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4947     TemplateSpecCandidateSet &FailedCandidates,
4948     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4949     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4950     bool Complain, QualType TargetType) {
4951   if (SpecBegin == SpecEnd) {
4952     if (Complain) {
4953       Diag(Loc, NoneDiag);
4954       FailedCandidates.NoteCandidates(*this, Loc);
4955     }
4956     return SpecEnd;
4957   }
4958 
4959   if (SpecBegin + 1 == SpecEnd)
4960     return SpecBegin;
4961 
4962   // Find the function template that is better than all of the templates it
4963   // has been compared to.
4964   UnresolvedSetIterator Best = SpecBegin;
4965   FunctionTemplateDecl *BestTemplate
4966     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4967   assert(BestTemplate && "Not a function template specialization?");
4968   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4969     FunctionTemplateDecl *Challenger
4970       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4971     assert(Challenger && "Not a function template specialization?");
4972     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4973                                                   Loc, TPOC_Other, 0, 0),
4974                        Challenger)) {
4975       Best = I;
4976       BestTemplate = Challenger;
4977     }
4978   }
4979 
4980   // Make sure that the "best" function template is more specialized than all
4981   // of the others.
4982   bool Ambiguous = false;
4983   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4984     FunctionTemplateDecl *Challenger
4985       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4986     if (I != Best &&
4987         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4988                                                    Loc, TPOC_Other, 0, 0),
4989                         BestTemplate)) {
4990       Ambiguous = true;
4991       break;
4992     }
4993   }
4994 
4995   if (!Ambiguous) {
4996     // We found an answer. Return it.
4997     return Best;
4998   }
4999 
5000   // Diagnose the ambiguity.
5001   if (Complain) {
5002     Diag(Loc, AmbigDiag);
5003 
5004     // FIXME: Can we order the candidates in some sane way?
5005     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5006       PartialDiagnostic PD = CandidateDiag;
5007       const auto *FD = cast<FunctionDecl>(*I);
5008       PD << FD << getTemplateArgumentBindingsText(
5009                       FD->getPrimaryTemplate()->getTemplateParameters(),
5010                       *FD->getTemplateSpecializationArgs());
5011       if (!TargetType.isNull())
5012         HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5013       Diag((*I)->getLocation(), PD);
5014     }
5015   }
5016 
5017   return SpecEnd;
5018 }
5019 
5020 /// Determine whether one partial specialization, P1, is at least as
5021 /// specialized than another, P2.
5022 ///
5023 /// \tparam TemplateLikeDecl The kind of P2, which must be a
5024 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5025 /// \param T1 The injected-class-name of P1 (faked for a variable template).
5026 /// \param T2 The injected-class-name of P2 (faked for a variable template).
5027 template<typename TemplateLikeDecl>
5028 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5029                                      TemplateLikeDecl *P2,
5030                                      TemplateDeductionInfo &Info) {
5031   // C++ [temp.class.order]p1:
5032   //   For two class template partial specializations, the first is at least as
5033   //   specialized as the second if, given the following rewrite to two
5034   //   function templates, the first function template is at least as
5035   //   specialized as the second according to the ordering rules for function
5036   //   templates (14.6.6.2):
5037   //     - the first function template has the same template parameters as the
5038   //       first partial specialization and has a single function parameter
5039   //       whose type is a class template specialization with the template
5040   //       arguments of the first partial specialization, and
5041   //     - the second function template has the same template parameters as the
5042   //       second partial specialization and has a single function parameter
5043   //       whose type is a class template specialization with the template
5044   //       arguments of the second partial specialization.
5045   //
5046   // Rather than synthesize function templates, we merely perform the
5047   // equivalent partial ordering by performing deduction directly on
5048   // the template arguments of the class template partial
5049   // specializations. This computation is slightly simpler than the
5050   // general problem of function template partial ordering, because
5051   // class template partial specializations are more constrained. We
5052   // know that every template parameter is deducible from the class
5053   // template partial specialization's template arguments, for
5054   // example.
5055   SmallVector<DeducedTemplateArgument, 4> Deduced;
5056 
5057   // Determine whether P1 is at least as specialized as P2.
5058   Deduced.resize(P2->getTemplateParameters()->size());
5059   if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5060                                          T2, T1, Info, Deduced, TDF_None,
5061                                          /*PartialOrdering=*/true))
5062     return false;
5063 
5064   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5065                                                Deduced.end());
5066   Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5067                                    Info);
5068   auto *TST1 = T1->castAs<TemplateSpecializationType>();
5069   if (FinishTemplateArgumentDeduction(
5070           S, P2, /*IsPartialOrdering=*/true,
5071           TemplateArgumentList(TemplateArgumentList::OnStack,
5072                                TST1->template_arguments()),
5073           Deduced, Info))
5074     return false;
5075 
5076   return true;
5077 }
5078 
5079 /// Returns the more specialized class template partial specialization
5080 /// according to the rules of partial ordering of class template partial
5081 /// specializations (C++ [temp.class.order]).
5082 ///
5083 /// \param PS1 the first class template partial specialization
5084 ///
5085 /// \param PS2 the second class template partial specialization
5086 ///
5087 /// \returns the more specialized class template partial specialization. If
5088 /// neither partial specialization is more specialized, returns NULL.
5089 ClassTemplatePartialSpecializationDecl *
5090 Sema::getMoreSpecializedPartialSpecialization(
5091                                   ClassTemplatePartialSpecializationDecl *PS1,
5092                                   ClassTemplatePartialSpecializationDecl *PS2,
5093                                               SourceLocation Loc) {
5094   QualType PT1 = PS1->getInjectedSpecializationType();
5095   QualType PT2 = PS2->getInjectedSpecializationType();
5096 
5097   TemplateDeductionInfo Info(Loc);
5098   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5099   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5100 
5101   if (Better1 == Better2)
5102     return nullptr;
5103 
5104   return Better1 ? PS1 : PS2;
5105 }
5106 
5107 bool Sema::isMoreSpecializedThanPrimary(
5108     ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5109   ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5110   QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5111   QualType PartialT = Spec->getInjectedSpecializationType();
5112   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5113     return false;
5114   if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) {
5115     Info.clearSFINAEDiagnostic();
5116     return false;
5117   }
5118   return true;
5119 }
5120 
5121 VarTemplatePartialSpecializationDecl *
5122 Sema::getMoreSpecializedPartialSpecialization(
5123     VarTemplatePartialSpecializationDecl *PS1,
5124     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5125   // Pretend the variable template specializations are class template
5126   // specializations and form a fake injected class name type for comparison.
5127   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5128          "the partial specializations being compared should specialize"
5129          " the same template.");
5130   TemplateName Name(PS1->getSpecializedTemplate());
5131   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5132   QualType PT1 = Context.getTemplateSpecializationType(
5133       CanonTemplate, PS1->getTemplateArgs().asArray());
5134   QualType PT2 = Context.getTemplateSpecializationType(
5135       CanonTemplate, PS2->getTemplateArgs().asArray());
5136 
5137   TemplateDeductionInfo Info(Loc);
5138   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5139   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5140 
5141   if (Better1 == Better2)
5142     return nullptr;
5143 
5144   return Better1 ? PS1 : PS2;
5145 }
5146 
5147 bool Sema::isMoreSpecializedThanPrimary(
5148     VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5149   TemplateDecl *Primary = Spec->getSpecializedTemplate();
5150   // FIXME: Cache the injected template arguments rather than recomputing
5151   // them for each partial specialization.
5152   SmallVector<TemplateArgument, 8> PrimaryArgs;
5153   Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
5154                                   PrimaryArgs);
5155 
5156   TemplateName CanonTemplate =
5157       Context.getCanonicalTemplateName(TemplateName(Primary));
5158   QualType PrimaryT = Context.getTemplateSpecializationType(
5159       CanonTemplate, PrimaryArgs);
5160   QualType PartialT = Context.getTemplateSpecializationType(
5161       CanonTemplate, Spec->getTemplateArgs().asArray());
5162   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5163     return false;
5164   if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) {
5165     Info.clearSFINAEDiagnostic();
5166     return false;
5167   }
5168   return true;
5169 }
5170 
5171 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5172      TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5173   // C++1z [temp.arg.template]p4: (DR 150)
5174   //   A template template-parameter P is at least as specialized as a
5175   //   template template-argument A if, given the following rewrite to two
5176   //   function templates...
5177 
5178   // Rather than synthesize function templates, we merely perform the
5179   // equivalent partial ordering by performing deduction directly on
5180   // the template parameter lists of the template template parameters.
5181   //
5182   //   Given an invented class template X with the template parameter list of
5183   //   A (including default arguments):
5184   TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5185   TemplateParameterList *A = AArg->getTemplateParameters();
5186 
5187   //    - Each function template has a single function parameter whose type is
5188   //      a specialization of X with template arguments corresponding to the
5189   //      template parameters from the respective function template
5190   SmallVector<TemplateArgument, 8> AArgs;
5191   Context.getInjectedTemplateArgs(A, AArgs);
5192 
5193   // Check P's arguments against A's parameter list. This will fill in default
5194   // template arguments as needed. AArgs are already correct by construction.
5195   // We can't just use CheckTemplateIdType because that will expand alias
5196   // templates.
5197   SmallVector<TemplateArgument, 4> PArgs;
5198   {
5199     SFINAETrap Trap(*this);
5200 
5201     Context.getInjectedTemplateArgs(P, PArgs);
5202     TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc());
5203     for (unsigned I = 0, N = P->size(); I != N; ++I) {
5204       // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5205       // expansions, to form an "as written" argument list.
5206       TemplateArgument Arg = PArgs[I];
5207       if (Arg.getKind() == TemplateArgument::Pack) {
5208         assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5209         Arg = *Arg.pack_begin();
5210       }
5211       PArgList.addArgument(getTrivialTemplateArgumentLoc(
5212           Arg, QualType(), P->getParam(I)->getLocation()));
5213     }
5214     PArgs.clear();
5215 
5216     // C++1z [temp.arg.template]p3:
5217     //   If the rewrite produces an invalid type, then P is not at least as
5218     //   specialized as A.
5219     if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
5220         Trap.hasErrorOccurred())
5221       return false;
5222   }
5223 
5224   QualType AType = Context.getTemplateSpecializationType(X, AArgs);
5225   QualType PType = Context.getTemplateSpecializationType(X, PArgs);
5226 
5227   //   ... the function template corresponding to P is at least as specialized
5228   //   as the function template corresponding to A according to the partial
5229   //   ordering rules for function templates.
5230   TemplateDeductionInfo Info(Loc, A->getDepth());
5231   return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5232 }
5233 
5234 /// Mark the template parameters that are used by the given
5235 /// expression.
5236 static void
5237 MarkUsedTemplateParameters(ASTContext &Ctx,
5238                            const Expr *E,
5239                            bool OnlyDeduced,
5240                            unsigned Depth,
5241                            llvm::SmallBitVector &Used) {
5242   // We can deduce from a pack expansion.
5243   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5244     E = Expansion->getPattern();
5245 
5246   // Skip through any implicit casts we added while type-checking, and any
5247   // substitutions performed by template alias expansion.
5248   while (true) {
5249     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
5250       E = ICE->getSubExpr();
5251     else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
5252       E = CE->getSubExpr();
5253     else if (const SubstNonTypeTemplateParmExpr *Subst =
5254                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
5255       E = Subst->getReplacement();
5256     else
5257       break;
5258   }
5259 
5260   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
5261   // find other occurrences of template parameters.
5262   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
5263   if (!DRE)
5264     return;
5265 
5266   const NonTypeTemplateParmDecl *NTTP
5267     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
5268   if (!NTTP)
5269     return;
5270 
5271   if (NTTP->getDepth() == Depth)
5272     Used[NTTP->getIndex()] = true;
5273 
5274   // In C++17 mode, additional arguments may be deduced from the type of a
5275   // non-type argument.
5276   if (Ctx.getLangOpts().CPlusPlus17)
5277     MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5278 }
5279 
5280 /// Mark the template parameters that are used by the given
5281 /// nested name specifier.
5282 static void
5283 MarkUsedTemplateParameters(ASTContext &Ctx,
5284                            NestedNameSpecifier *NNS,
5285                            bool OnlyDeduced,
5286                            unsigned Depth,
5287                            llvm::SmallBitVector &Used) {
5288   if (!NNS)
5289     return;
5290 
5291   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5292                              Used);
5293   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5294                              OnlyDeduced, Depth, Used);
5295 }
5296 
5297 /// Mark the template parameters that are used by the given
5298 /// template name.
5299 static void
5300 MarkUsedTemplateParameters(ASTContext &Ctx,
5301                            TemplateName Name,
5302                            bool OnlyDeduced,
5303                            unsigned Depth,
5304                            llvm::SmallBitVector &Used) {
5305   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5306     if (TemplateTemplateParmDecl *TTP
5307           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5308       if (TTP->getDepth() == Depth)
5309         Used[TTP->getIndex()] = true;
5310     }
5311     return;
5312   }
5313 
5314   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5315     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5316                                Depth, Used);
5317   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5318     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5319                                Depth, Used);
5320 }
5321 
5322 /// Mark the template parameters that are used by the given
5323 /// type.
5324 static void
5325 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5326                            bool OnlyDeduced,
5327                            unsigned Depth,
5328                            llvm::SmallBitVector &Used) {
5329   if (T.isNull())
5330     return;
5331 
5332   // Non-dependent types have nothing deducible
5333   if (!T->isDependentType())
5334     return;
5335 
5336   T = Ctx.getCanonicalType(T);
5337   switch (T->getTypeClass()) {
5338   case Type::Pointer:
5339     MarkUsedTemplateParameters(Ctx,
5340                                cast<PointerType>(T)->getPointeeType(),
5341                                OnlyDeduced,
5342                                Depth,
5343                                Used);
5344     break;
5345 
5346   case Type::BlockPointer:
5347     MarkUsedTemplateParameters(Ctx,
5348                                cast<BlockPointerType>(T)->getPointeeType(),
5349                                OnlyDeduced,
5350                                Depth,
5351                                Used);
5352     break;
5353 
5354   case Type::LValueReference:
5355   case Type::RValueReference:
5356     MarkUsedTemplateParameters(Ctx,
5357                                cast<ReferenceType>(T)->getPointeeType(),
5358                                OnlyDeduced,
5359                                Depth,
5360                                Used);
5361     break;
5362 
5363   case Type::MemberPointer: {
5364     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5365     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5366                                Depth, Used);
5367     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5368                                OnlyDeduced, Depth, Used);
5369     break;
5370   }
5371 
5372   case Type::DependentSizedArray:
5373     MarkUsedTemplateParameters(Ctx,
5374                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
5375                                OnlyDeduced, Depth, Used);
5376     // Fall through to check the element type
5377     LLVM_FALLTHROUGH;
5378 
5379   case Type::ConstantArray:
5380   case Type::IncompleteArray:
5381     MarkUsedTemplateParameters(Ctx,
5382                                cast<ArrayType>(T)->getElementType(),
5383                                OnlyDeduced, Depth, Used);
5384     break;
5385 
5386   case Type::Vector:
5387   case Type::ExtVector:
5388     MarkUsedTemplateParameters(Ctx,
5389                                cast<VectorType>(T)->getElementType(),
5390                                OnlyDeduced, Depth, Used);
5391     break;
5392 
5393   case Type::DependentVector: {
5394     const auto *VecType = cast<DependentVectorType>(T);
5395     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5396                                Depth, Used);
5397     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5398                                Used);
5399     break;
5400   }
5401   case Type::DependentSizedExtVector: {
5402     const DependentSizedExtVectorType *VecType
5403       = cast<DependentSizedExtVectorType>(T);
5404     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5405                                Depth, Used);
5406     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5407                                Depth, Used);
5408     break;
5409   }
5410 
5411   case Type::DependentAddressSpace: {
5412     const DependentAddressSpaceType *DependentASType =
5413         cast<DependentAddressSpaceType>(T);
5414     MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
5415                                OnlyDeduced, Depth, Used);
5416     MarkUsedTemplateParameters(Ctx,
5417                                DependentASType->getAddrSpaceExpr(),
5418                                OnlyDeduced, Depth, Used);
5419     break;
5420   }
5421 
5422   case Type::FunctionProto: {
5423     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
5424     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
5425                                Used);
5426     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
5427       // C++17 [temp.deduct.type]p5:
5428       //   The non-deduced contexts are: [...]
5429       //   -- A function parameter pack that does not occur at the end of the
5430       //      parameter-declaration-list.
5431       if (!OnlyDeduced || I + 1 == N ||
5432           !Proto->getParamType(I)->getAs<PackExpansionType>()) {
5433         MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
5434                                    Depth, Used);
5435       } else {
5436         // FIXME: C++17 [temp.deduct.call]p1:
5437         //   When a function parameter pack appears in a non-deduced context,
5438         //   the type of that pack is never deduced.
5439         //
5440         // We should also track a set of "never deduced" parameters, and
5441         // subtract that from the list of deduced parameters after marking.
5442       }
5443     }
5444     if (auto *E = Proto->getNoexceptExpr())
5445       MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
5446     break;
5447   }
5448 
5449   case Type::TemplateTypeParm: {
5450     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
5451     if (TTP->getDepth() == Depth)
5452       Used[TTP->getIndex()] = true;
5453     break;
5454   }
5455 
5456   case Type::SubstTemplateTypeParmPack: {
5457     const SubstTemplateTypeParmPackType *Subst
5458       = cast<SubstTemplateTypeParmPackType>(T);
5459     MarkUsedTemplateParameters(Ctx,
5460                                QualType(Subst->getReplacedParameter(), 0),
5461                                OnlyDeduced, Depth, Used);
5462     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
5463                                OnlyDeduced, Depth, Used);
5464     break;
5465   }
5466 
5467   case Type::InjectedClassName:
5468     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
5469     LLVM_FALLTHROUGH;
5470 
5471   case Type::TemplateSpecialization: {
5472     const TemplateSpecializationType *Spec
5473       = cast<TemplateSpecializationType>(T);
5474     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
5475                                Depth, Used);
5476 
5477     // C++0x [temp.deduct.type]p9:
5478     //   If the template argument list of P contains a pack expansion that is
5479     //   not the last template argument, the entire template argument list is a
5480     //   non-deduced context.
5481     if (OnlyDeduced &&
5482         hasPackExpansionBeforeEnd(Spec->template_arguments()))
5483       break;
5484 
5485     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5486       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5487                                  Used);
5488     break;
5489   }
5490 
5491   case Type::Complex:
5492     if (!OnlyDeduced)
5493       MarkUsedTemplateParameters(Ctx,
5494                                  cast<ComplexType>(T)->getElementType(),
5495                                  OnlyDeduced, Depth, Used);
5496     break;
5497 
5498   case Type::Atomic:
5499     if (!OnlyDeduced)
5500       MarkUsedTemplateParameters(Ctx,
5501                                  cast<AtomicType>(T)->getValueType(),
5502                                  OnlyDeduced, Depth, Used);
5503     break;
5504 
5505   case Type::DependentName:
5506     if (!OnlyDeduced)
5507       MarkUsedTemplateParameters(Ctx,
5508                                  cast<DependentNameType>(T)->getQualifier(),
5509                                  OnlyDeduced, Depth, Used);
5510     break;
5511 
5512   case Type::DependentTemplateSpecialization: {
5513     // C++14 [temp.deduct.type]p5:
5514     //   The non-deduced contexts are:
5515     //     -- The nested-name-specifier of a type that was specified using a
5516     //        qualified-id
5517     //
5518     // C++14 [temp.deduct.type]p6:
5519     //   When a type name is specified in a way that includes a non-deduced
5520     //   context, all of the types that comprise that type name are also
5521     //   non-deduced.
5522     if (OnlyDeduced)
5523       break;
5524 
5525     const DependentTemplateSpecializationType *Spec
5526       = cast<DependentTemplateSpecializationType>(T);
5527 
5528     MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
5529                                OnlyDeduced, Depth, Used);
5530 
5531     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5532       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5533                                  Used);
5534     break;
5535   }
5536 
5537   case Type::TypeOf:
5538     if (!OnlyDeduced)
5539       MarkUsedTemplateParameters(Ctx,
5540                                  cast<TypeOfType>(T)->getUnderlyingType(),
5541                                  OnlyDeduced, Depth, Used);
5542     break;
5543 
5544   case Type::TypeOfExpr:
5545     if (!OnlyDeduced)
5546       MarkUsedTemplateParameters(Ctx,
5547                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
5548                                  OnlyDeduced, Depth, Used);
5549     break;
5550 
5551   case Type::Decltype:
5552     if (!OnlyDeduced)
5553       MarkUsedTemplateParameters(Ctx,
5554                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
5555                                  OnlyDeduced, Depth, Used);
5556     break;
5557 
5558   case Type::UnaryTransform:
5559     if (!OnlyDeduced)
5560       MarkUsedTemplateParameters(Ctx,
5561                                  cast<UnaryTransformType>(T)->getUnderlyingType(),
5562                                  OnlyDeduced, Depth, Used);
5563     break;
5564 
5565   case Type::PackExpansion:
5566     MarkUsedTemplateParameters(Ctx,
5567                                cast<PackExpansionType>(T)->getPattern(),
5568                                OnlyDeduced, Depth, Used);
5569     break;
5570 
5571   case Type::Auto:
5572   case Type::DeducedTemplateSpecialization:
5573     MarkUsedTemplateParameters(Ctx,
5574                                cast<DeducedType>(T)->getDeducedType(),
5575                                OnlyDeduced, Depth, Used);
5576     break;
5577 
5578   // None of these types have any template parameters in them.
5579   case Type::Builtin:
5580   case Type::VariableArray:
5581   case Type::FunctionNoProto:
5582   case Type::Record:
5583   case Type::Enum:
5584   case Type::ObjCInterface:
5585   case Type::ObjCObject:
5586   case Type::ObjCObjectPointer:
5587   case Type::UnresolvedUsing:
5588   case Type::Pipe:
5589 #define TYPE(Class, Base)
5590 #define ABSTRACT_TYPE(Class, Base)
5591 #define DEPENDENT_TYPE(Class, Base)
5592 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5593 #include "clang/AST/TypeNodes.def"
5594     break;
5595   }
5596 }
5597 
5598 /// Mark the template parameters that are used by this
5599 /// template argument.
5600 static void
5601 MarkUsedTemplateParameters(ASTContext &Ctx,
5602                            const TemplateArgument &TemplateArg,
5603                            bool OnlyDeduced,
5604                            unsigned Depth,
5605                            llvm::SmallBitVector &Used) {
5606   switch (TemplateArg.getKind()) {
5607   case TemplateArgument::Null:
5608   case TemplateArgument::Integral:
5609   case TemplateArgument::Declaration:
5610     break;
5611 
5612   case TemplateArgument::NullPtr:
5613     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
5614                                Depth, Used);
5615     break;
5616 
5617   case TemplateArgument::Type:
5618     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
5619                                Depth, Used);
5620     break;
5621 
5622   case TemplateArgument::Template:
5623   case TemplateArgument::TemplateExpansion:
5624     MarkUsedTemplateParameters(Ctx,
5625                                TemplateArg.getAsTemplateOrTemplatePattern(),
5626                                OnlyDeduced, Depth, Used);
5627     break;
5628 
5629   case TemplateArgument::Expression:
5630     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5631                                Depth, Used);
5632     break;
5633 
5634   case TemplateArgument::Pack:
5635     for (const auto &P : TemplateArg.pack_elements())
5636       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
5637     break;
5638   }
5639 }
5640 
5641 /// Mark which template parameters can be deduced from a given
5642 /// template argument list.
5643 ///
5644 /// \param TemplateArgs the template argument list from which template
5645 /// parameters will be deduced.
5646 ///
5647 /// \param Used a bit vector whose elements will be set to \c true
5648 /// to indicate when the corresponding template parameter will be
5649 /// deduced.
5650 void
5651 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5652                                  bool OnlyDeduced, unsigned Depth,
5653                                  llvm::SmallBitVector &Used) {
5654   // C++0x [temp.deduct.type]p9:
5655   //   If the template argument list of P contains a pack expansion that is not
5656   //   the last template argument, the entire template argument list is a
5657   //   non-deduced context.
5658   if (OnlyDeduced &&
5659       hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
5660     return;
5661 
5662   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5663     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5664                                  Depth, Used);
5665 }
5666 
5667 /// Marks all of the template parameters that will be deduced by a
5668 /// call to the given function template.
5669 void Sema::MarkDeducedTemplateParameters(
5670     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
5671     llvm::SmallBitVector &Deduced) {
5672   TemplateParameterList *TemplateParams
5673     = FunctionTemplate->getTemplateParameters();
5674   Deduced.clear();
5675   Deduced.resize(TemplateParams->size());
5676 
5677   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5678   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5679     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5680                                  true, TemplateParams->getDepth(), Deduced);
5681 }
5682 
5683 bool hasDeducibleTemplateParameters(Sema &S,
5684                                     FunctionTemplateDecl *FunctionTemplate,
5685                                     QualType T) {
5686   if (!T->isDependentType())
5687     return false;
5688 
5689   TemplateParameterList *TemplateParams
5690     = FunctionTemplate->getTemplateParameters();
5691   llvm::SmallBitVector Deduced(TemplateParams->size());
5692   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5693                                Deduced);
5694 
5695   return Deduced.any();
5696 }
5697