1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/TemplateBase.h" 28 #include "clang/AST/TemplateName.h" 29 #include "clang/AST/Type.h" 30 #include "clang/AST/TypeLoc.h" 31 #include "clang/AST/UnresolvedSet.h" 32 #include "clang/Basic/AddressSpaces.h" 33 #include "clang/Basic/ExceptionSpecificationType.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/LangOptions.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "clang/Sema/Ownership.h" 40 #include "clang/Sema/Sema.h" 41 #include "clang/Sema/Template.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/ArrayRef.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/FoldingSet.h" 47 #include "llvm/ADT/Optional.h" 48 #include "llvm/ADT/SmallBitVector.h" 49 #include "llvm/ADT/SmallPtrSet.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <tuple> 57 #include <utility> 58 59 namespace clang { 60 61 /// Various flags that control template argument deduction. 62 /// 63 /// These flags can be bitwise-OR'd together. 64 enum TemplateDeductionFlags { 65 /// No template argument deduction flags, which indicates the 66 /// strictest results for template argument deduction (as used for, e.g., 67 /// matching class template partial specializations). 68 TDF_None = 0, 69 70 /// Within template argument deduction from a function call, we are 71 /// matching with a parameter type for which the original parameter was 72 /// a reference. 73 TDF_ParamWithReferenceType = 0x1, 74 75 /// Within template argument deduction from a function call, we 76 /// are matching in a case where we ignore cv-qualifiers. 77 TDF_IgnoreQualifiers = 0x02, 78 79 /// Within template argument deduction from a function call, 80 /// we are matching in a case where we can perform template argument 81 /// deduction from a template-id of a derived class of the argument type. 82 TDF_DerivedClass = 0x04, 83 84 /// Allow non-dependent types to differ, e.g., when performing 85 /// template argument deduction from a function call where conversions 86 /// may apply. 87 TDF_SkipNonDependent = 0x08, 88 89 /// Whether we are performing template argument deduction for 90 /// parameters and arguments in a top-level template argument 91 TDF_TopLevelParameterTypeList = 0x10, 92 93 /// Within template argument deduction from overload resolution per 94 /// C++ [over.over] allow matching function types that are compatible in 95 /// terms of noreturn and default calling convention adjustments, or 96 /// similarly matching a declared template specialization against a 97 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 98 /// deduction where the parameter is a function type that can be converted 99 /// to the argument type. 100 TDF_AllowCompatibleFunctionType = 0x20, 101 102 /// Within template argument deduction for a conversion function, we are 103 /// matching with an argument type for which the original argument was 104 /// a reference. 105 TDF_ArgWithReferenceType = 0x40, 106 }; 107 } 108 109 using namespace clang; 110 using namespace sema; 111 112 /// Compare two APSInts, extending and switching the sign as 113 /// necessary to compare their values regardless of underlying type. 114 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 115 if (Y.getBitWidth() > X.getBitWidth()) 116 X = X.extend(Y.getBitWidth()); 117 else if (Y.getBitWidth() < X.getBitWidth()) 118 Y = Y.extend(X.getBitWidth()); 119 120 // If there is a signedness mismatch, correct it. 121 if (X.isSigned() != Y.isSigned()) { 122 // If the signed value is negative, then the values cannot be the same. 123 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 124 return false; 125 126 Y.setIsSigned(true); 127 X.setIsSigned(true); 128 } 129 130 return X == Y; 131 } 132 133 static Sema::TemplateDeductionResult 134 DeduceTemplateArguments(Sema &S, 135 TemplateParameterList *TemplateParams, 136 const TemplateArgument &Param, 137 TemplateArgument Arg, 138 TemplateDeductionInfo &Info, 139 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 140 141 static Sema::TemplateDeductionResult 142 DeduceTemplateArgumentsByTypeMatch(Sema &S, 143 TemplateParameterList *TemplateParams, 144 QualType Param, 145 QualType Arg, 146 TemplateDeductionInfo &Info, 147 SmallVectorImpl<DeducedTemplateArgument> & 148 Deduced, 149 unsigned TDF, 150 bool PartialOrdering = false, 151 bool DeducedFromArrayBound = false); 152 153 static Sema::TemplateDeductionResult 154 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 155 ArrayRef<TemplateArgument> Params, 156 ArrayRef<TemplateArgument> Args, 157 TemplateDeductionInfo &Info, 158 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 159 bool NumberOfArgumentsMustMatch); 160 161 static void MarkUsedTemplateParameters(ASTContext &Ctx, 162 const TemplateArgument &TemplateArg, 163 bool OnlyDeduced, unsigned Depth, 164 llvm::SmallBitVector &Used); 165 166 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 167 bool OnlyDeduced, unsigned Level, 168 llvm::SmallBitVector &Deduced); 169 170 /// If the given expression is of a form that permits the deduction 171 /// of a non-type template parameter, return the declaration of that 172 /// non-type template parameter. 173 static NonTypeTemplateParmDecl * 174 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 175 // If we are within an alias template, the expression may have undergone 176 // any number of parameter substitutions already. 177 while (true) { 178 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 179 E = IC->getSubExpr(); 180 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 181 E = CE->getSubExpr(); 182 else if (SubstNonTypeTemplateParmExpr *Subst = 183 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 184 E = Subst->getReplacement(); 185 else 186 break; 187 } 188 189 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 190 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 191 if (NTTP->getDepth() == Info.getDeducedDepth()) 192 return NTTP; 193 194 return nullptr; 195 } 196 197 /// Determine whether two declaration pointers refer to the same 198 /// declaration. 199 static bool isSameDeclaration(Decl *X, Decl *Y) { 200 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 201 X = NX->getUnderlyingDecl(); 202 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 203 Y = NY->getUnderlyingDecl(); 204 205 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 206 } 207 208 /// Verify that the given, deduced template arguments are compatible. 209 /// 210 /// \returns The deduced template argument, or a NULL template argument if 211 /// the deduced template arguments were incompatible. 212 static DeducedTemplateArgument 213 checkDeducedTemplateArguments(ASTContext &Context, 214 const DeducedTemplateArgument &X, 215 const DeducedTemplateArgument &Y) { 216 // We have no deduction for one or both of the arguments; they're compatible. 217 if (X.isNull()) 218 return Y; 219 if (Y.isNull()) 220 return X; 221 222 // If we have two non-type template argument values deduced for the same 223 // parameter, they must both match the type of the parameter, and thus must 224 // match each other's type. As we're only keeping one of them, we must check 225 // for that now. The exception is that if either was deduced from an array 226 // bound, the type is permitted to differ. 227 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 228 QualType XType = X.getNonTypeTemplateArgumentType(); 229 if (!XType.isNull()) { 230 QualType YType = Y.getNonTypeTemplateArgumentType(); 231 if (YType.isNull() || !Context.hasSameType(XType, YType)) 232 return DeducedTemplateArgument(); 233 } 234 } 235 236 switch (X.getKind()) { 237 case TemplateArgument::Null: 238 llvm_unreachable("Non-deduced template arguments handled above"); 239 240 case TemplateArgument::Type: 241 // If two template type arguments have the same type, they're compatible. 242 if (Y.getKind() == TemplateArgument::Type && 243 Context.hasSameType(X.getAsType(), Y.getAsType())) 244 return X; 245 246 // If one of the two arguments was deduced from an array bound, the other 247 // supersedes it. 248 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 249 return X.wasDeducedFromArrayBound() ? Y : X; 250 251 // The arguments are not compatible. 252 return DeducedTemplateArgument(); 253 254 case TemplateArgument::Integral: 255 // If we deduced a constant in one case and either a dependent expression or 256 // declaration in another case, keep the integral constant. 257 // If both are integral constants with the same value, keep that value. 258 if (Y.getKind() == TemplateArgument::Expression || 259 Y.getKind() == TemplateArgument::Declaration || 260 (Y.getKind() == TemplateArgument::Integral && 261 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 262 return X.wasDeducedFromArrayBound() ? Y : X; 263 264 // All other combinations are incompatible. 265 return DeducedTemplateArgument(); 266 267 case TemplateArgument::Template: 268 if (Y.getKind() == TemplateArgument::Template && 269 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 270 return X; 271 272 // All other combinations are incompatible. 273 return DeducedTemplateArgument(); 274 275 case TemplateArgument::TemplateExpansion: 276 if (Y.getKind() == TemplateArgument::TemplateExpansion && 277 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 278 Y.getAsTemplateOrTemplatePattern())) 279 return X; 280 281 // All other combinations are incompatible. 282 return DeducedTemplateArgument(); 283 284 case TemplateArgument::Expression: { 285 if (Y.getKind() != TemplateArgument::Expression) 286 return checkDeducedTemplateArguments(Context, Y, X); 287 288 // Compare the expressions for equality 289 llvm::FoldingSetNodeID ID1, ID2; 290 X.getAsExpr()->Profile(ID1, Context, true); 291 Y.getAsExpr()->Profile(ID2, Context, true); 292 if (ID1 == ID2) 293 return X.wasDeducedFromArrayBound() ? Y : X; 294 295 // Differing dependent expressions are incompatible. 296 return DeducedTemplateArgument(); 297 } 298 299 case TemplateArgument::Declaration: 300 assert(!X.wasDeducedFromArrayBound()); 301 302 // If we deduced a declaration and a dependent expression, keep the 303 // declaration. 304 if (Y.getKind() == TemplateArgument::Expression) 305 return X; 306 307 // If we deduced a declaration and an integral constant, keep the 308 // integral constant and whichever type did not come from an array 309 // bound. 310 if (Y.getKind() == TemplateArgument::Integral) { 311 if (Y.wasDeducedFromArrayBound()) 312 return TemplateArgument(Context, Y.getAsIntegral(), 313 X.getParamTypeForDecl()); 314 return Y; 315 } 316 317 // If we deduced two declarations, make sure that they refer to the 318 // same declaration. 319 if (Y.getKind() == TemplateArgument::Declaration && 320 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 321 return X; 322 323 // All other combinations are incompatible. 324 return DeducedTemplateArgument(); 325 326 case TemplateArgument::NullPtr: 327 // If we deduced a null pointer and a dependent expression, keep the 328 // null pointer. 329 if (Y.getKind() == TemplateArgument::Expression) 330 return X; 331 332 // If we deduced a null pointer and an integral constant, keep the 333 // integral constant. 334 if (Y.getKind() == TemplateArgument::Integral) 335 return Y; 336 337 // If we deduced two null pointers, they are the same. 338 if (Y.getKind() == TemplateArgument::NullPtr) 339 return X; 340 341 // All other combinations are incompatible. 342 return DeducedTemplateArgument(); 343 344 case TemplateArgument::Pack: { 345 if (Y.getKind() != TemplateArgument::Pack || 346 X.pack_size() != Y.pack_size()) 347 return DeducedTemplateArgument(); 348 349 llvm::SmallVector<TemplateArgument, 8> NewPack; 350 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 351 XAEnd = X.pack_end(), 352 YA = Y.pack_begin(); 353 XA != XAEnd; ++XA, ++YA) { 354 TemplateArgument Merged = checkDeducedTemplateArguments( 355 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 356 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 357 if (Merged.isNull()) 358 return DeducedTemplateArgument(); 359 NewPack.push_back(Merged); 360 } 361 362 return DeducedTemplateArgument( 363 TemplateArgument::CreatePackCopy(Context, NewPack), 364 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 365 } 366 } 367 368 llvm_unreachable("Invalid TemplateArgument Kind!"); 369 } 370 371 /// Deduce the value of the given non-type template parameter 372 /// as the given deduced template argument. All non-type template parameter 373 /// deduction is funneled through here. 374 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 375 Sema &S, TemplateParameterList *TemplateParams, 376 NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 377 QualType ValueType, TemplateDeductionInfo &Info, 378 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 379 assert(NTTP->getDepth() == Info.getDeducedDepth() && 380 "deducing non-type template argument with wrong depth"); 381 382 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 383 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 384 if (Result.isNull()) { 385 Info.Param = NTTP; 386 Info.FirstArg = Deduced[NTTP->getIndex()]; 387 Info.SecondArg = NewDeduced; 388 return Sema::TDK_Inconsistent; 389 } 390 391 Deduced[NTTP->getIndex()] = Result; 392 if (!S.getLangOpts().CPlusPlus17) 393 return Sema::TDK_Success; 394 395 if (NTTP->isExpandedParameterPack()) 396 // FIXME: We may still need to deduce parts of the type here! But we 397 // don't have any way to find which slice of the type to use, and the 398 // type stored on the NTTP itself is nonsense. Perhaps the type of an 399 // expanded NTTP should be a pack expansion type? 400 return Sema::TDK_Success; 401 402 // Get the type of the parameter for deduction. If it's a (dependent) array 403 // or function type, we will not have decayed it yet, so do that now. 404 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 405 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 406 ParamType = Expansion->getPattern(); 407 408 // FIXME: It's not clear how deduction of a parameter of reference 409 // type from an argument (of non-reference type) should be performed. 410 // For now, we just remove reference types from both sides and let 411 // the final check for matching types sort out the mess. 412 return DeduceTemplateArgumentsByTypeMatch( 413 S, TemplateParams, ParamType.getNonReferenceType(), 414 ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, 415 /*PartialOrdering=*/false, 416 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 417 } 418 419 /// Deduce the value of the given non-type template parameter 420 /// from the given integral constant. 421 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 422 Sema &S, TemplateParameterList *TemplateParams, 423 NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 424 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 425 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 426 return DeduceNonTypeTemplateArgument( 427 S, TemplateParams, NTTP, 428 DeducedTemplateArgument(S.Context, Value, ValueType, 429 DeducedFromArrayBound), 430 ValueType, Info, Deduced); 431 } 432 433 /// Deduce the value of the given non-type template parameter 434 /// from the given null pointer template argument type. 435 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 436 Sema &S, TemplateParameterList *TemplateParams, 437 NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 438 TemplateDeductionInfo &Info, 439 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 440 Expr *Value = 441 S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( 442 S.Context.NullPtrTy, NTTP->getLocation()), 443 NullPtrType, CK_NullToPointer) 444 .get(); 445 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 446 DeducedTemplateArgument(Value), 447 Value->getType(), Info, Deduced); 448 } 449 450 /// Deduce the value of the given non-type template parameter 451 /// from the given type- or value-dependent expression. 452 /// 453 /// \returns true if deduction succeeded, false otherwise. 454 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 455 Sema &S, TemplateParameterList *TemplateParams, 456 NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 457 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 458 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 459 DeducedTemplateArgument(Value), 460 Value->getType(), Info, Deduced); 461 } 462 463 /// Deduce the value of the given non-type template parameter 464 /// from the given declaration. 465 /// 466 /// \returns true if deduction succeeded, false otherwise. 467 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 468 Sema &S, TemplateParameterList *TemplateParams, 469 NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 470 TemplateDeductionInfo &Info, 471 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 472 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 473 TemplateArgument New(D, T); 474 return DeduceNonTypeTemplateArgument( 475 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 476 } 477 478 static Sema::TemplateDeductionResult 479 DeduceTemplateArguments(Sema &S, 480 TemplateParameterList *TemplateParams, 481 TemplateName Param, 482 TemplateName Arg, 483 TemplateDeductionInfo &Info, 484 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 485 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 486 if (!ParamDecl) { 487 // The parameter type is dependent and is not a template template parameter, 488 // so there is nothing that we can deduce. 489 return Sema::TDK_Success; 490 } 491 492 if (TemplateTemplateParmDecl *TempParam 493 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 494 // If we're not deducing at this depth, there's nothing to deduce. 495 if (TempParam->getDepth() != Info.getDeducedDepth()) 496 return Sema::TDK_Success; 497 498 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 499 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 500 Deduced[TempParam->getIndex()], 501 NewDeduced); 502 if (Result.isNull()) { 503 Info.Param = TempParam; 504 Info.FirstArg = Deduced[TempParam->getIndex()]; 505 Info.SecondArg = NewDeduced; 506 return Sema::TDK_Inconsistent; 507 } 508 509 Deduced[TempParam->getIndex()] = Result; 510 return Sema::TDK_Success; 511 } 512 513 // Verify that the two template names are equivalent. 514 if (S.Context.hasSameTemplateName(Param, Arg)) 515 return Sema::TDK_Success; 516 517 // Mismatch of non-dependent template parameter to argument. 518 Info.FirstArg = TemplateArgument(Param); 519 Info.SecondArg = TemplateArgument(Arg); 520 return Sema::TDK_NonDeducedMismatch; 521 } 522 523 /// Deduce the template arguments by comparing the template parameter 524 /// type (which is a template-id) with the template argument type. 525 /// 526 /// \param S the Sema 527 /// 528 /// \param TemplateParams the template parameters that we are deducing 529 /// 530 /// \param Param the parameter type 531 /// 532 /// \param Arg the argument type 533 /// 534 /// \param Info information about the template argument deduction itself 535 /// 536 /// \param Deduced the deduced template arguments 537 /// 538 /// \returns the result of template argument deduction so far. Note that a 539 /// "success" result means that template argument deduction has not yet failed, 540 /// but it may still fail, later, for other reasons. 541 static Sema::TemplateDeductionResult 542 DeduceTemplateArguments(Sema &S, 543 TemplateParameterList *TemplateParams, 544 const TemplateSpecializationType *Param, 545 QualType Arg, 546 TemplateDeductionInfo &Info, 547 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 548 assert(Arg.isCanonical() && "Argument type must be canonical"); 549 550 // Treat an injected-class-name as its underlying template-id. 551 if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) 552 Arg = Injected->getInjectedSpecializationType(); 553 554 // Check whether the template argument is a dependent template-id. 555 if (const TemplateSpecializationType *SpecArg 556 = dyn_cast<TemplateSpecializationType>(Arg)) { 557 // Perform template argument deduction for the template name. 558 if (Sema::TemplateDeductionResult Result 559 = DeduceTemplateArguments(S, TemplateParams, 560 Param->getTemplateName(), 561 SpecArg->getTemplateName(), 562 Info, Deduced)) 563 return Result; 564 565 566 // Perform template argument deduction on each template 567 // argument. Ignore any missing/extra arguments, since they could be 568 // filled in by default arguments. 569 return DeduceTemplateArguments(S, TemplateParams, 570 Param->template_arguments(), 571 SpecArg->template_arguments(), Info, Deduced, 572 /*NumberOfArgumentsMustMatch=*/false); 573 } 574 575 // If the argument type is a class template specialization, we 576 // perform template argument deduction using its template 577 // arguments. 578 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 579 if (!RecordArg) { 580 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 581 Info.SecondArg = TemplateArgument(Arg); 582 return Sema::TDK_NonDeducedMismatch; 583 } 584 585 ClassTemplateSpecializationDecl *SpecArg 586 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 587 if (!SpecArg) { 588 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 589 Info.SecondArg = TemplateArgument(Arg); 590 return Sema::TDK_NonDeducedMismatch; 591 } 592 593 // Perform template argument deduction for the template name. 594 if (Sema::TemplateDeductionResult Result 595 = DeduceTemplateArguments(S, 596 TemplateParams, 597 Param->getTemplateName(), 598 TemplateName(SpecArg->getSpecializedTemplate()), 599 Info, Deduced)) 600 return Result; 601 602 // Perform template argument deduction for the template arguments. 603 return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), 604 SpecArg->getTemplateArgs().asArray(), Info, 605 Deduced, /*NumberOfArgumentsMustMatch=*/true); 606 } 607 608 /// Determines whether the given type is an opaque type that 609 /// might be more qualified when instantiated. 610 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 611 switch (T->getTypeClass()) { 612 case Type::TypeOfExpr: 613 case Type::TypeOf: 614 case Type::DependentName: 615 case Type::Decltype: 616 case Type::UnresolvedUsing: 617 case Type::TemplateTypeParm: 618 return true; 619 620 case Type::ConstantArray: 621 case Type::IncompleteArray: 622 case Type::VariableArray: 623 case Type::DependentSizedArray: 624 return IsPossiblyOpaquelyQualifiedType( 625 cast<ArrayType>(T)->getElementType()); 626 627 default: 628 return false; 629 } 630 } 631 632 /// Helper function to build a TemplateParameter when we don't 633 /// know its type statically. 634 static TemplateParameter makeTemplateParameter(Decl *D) { 635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 636 return TemplateParameter(TTP); 637 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 638 return TemplateParameter(NTTP); 639 640 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 641 } 642 643 /// If \p Param is an expanded parameter pack, get the number of expansions. 644 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 645 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 646 if (NTTP->isExpandedParameterPack()) 647 return NTTP->getNumExpansionTypes(); 648 649 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) 650 if (TTP->isExpandedParameterPack()) 651 return TTP->getNumExpansionTemplateParameters(); 652 653 return None; 654 } 655 656 /// A pack that we're currently deducing. 657 struct clang::DeducedPack { 658 // The index of the pack. 659 unsigned Index; 660 661 // The old value of the pack before we started deducing it. 662 DeducedTemplateArgument Saved; 663 664 // A deferred value of this pack from an inner deduction, that couldn't be 665 // deduced because this deduction hadn't happened yet. 666 DeducedTemplateArgument DeferredDeduction; 667 668 // The new value of the pack. 669 SmallVector<DeducedTemplateArgument, 4> New; 670 671 // The outer deduction for this pack, if any. 672 DeducedPack *Outer = nullptr; 673 674 DeducedPack(unsigned Index) : Index(Index) {} 675 }; 676 677 namespace { 678 679 /// A scope in which we're performing pack deduction. 680 class PackDeductionScope { 681 public: 682 /// Prepare to deduce the packs named within Pattern. 683 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 684 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 685 TemplateDeductionInfo &Info, TemplateArgument Pattern) 686 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 687 unsigned NumNamedPacks = addPacks(Pattern); 688 finishConstruction(NumNamedPacks); 689 } 690 691 /// Prepare to directly deduce arguments of the parameter with index \p Index. 692 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 693 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 694 TemplateDeductionInfo &Info, unsigned Index) 695 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 696 addPack(Index); 697 finishConstruction(1); 698 } 699 700 private: 701 void addPack(unsigned Index) { 702 // Save the deduced template argument for the parameter pack expanded 703 // by this pack expansion, then clear out the deduction. 704 DeducedPack Pack(Index); 705 Pack.Saved = Deduced[Index]; 706 Deduced[Index] = TemplateArgument(); 707 708 // FIXME: What if we encounter multiple packs with different numbers of 709 // pre-expanded expansions? (This should already have been diagnosed 710 // during substitution.) 711 if (Optional<unsigned> ExpandedPackExpansions = 712 getExpandedPackSize(TemplateParams->getParam(Index))) 713 FixedNumExpansions = ExpandedPackExpansions; 714 715 Packs.push_back(Pack); 716 } 717 718 unsigned addPacks(TemplateArgument Pattern) { 719 // Compute the set of template parameter indices that correspond to 720 // parameter packs expanded by the pack expansion. 721 llvm::SmallBitVector SawIndices(TemplateParams->size()); 722 723 auto AddPack = [&](unsigned Index) { 724 if (SawIndices[Index]) 725 return; 726 SawIndices[Index] = true; 727 addPack(Index); 728 }; 729 730 // First look for unexpanded packs in the pattern. 731 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 732 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 733 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 734 unsigned Depth, Index; 735 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 736 if (Depth == Info.getDeducedDepth()) 737 AddPack(Index); 738 } 739 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 740 741 unsigned NumNamedPacks = Packs.size(); 742 743 // We can also have deduced template parameters that do not actually 744 // appear in the pattern, but can be deduced by it (the type of a non-type 745 // template parameter pack, in particular). These won't have prevented us 746 // from partially expanding the pack. 747 llvm::SmallBitVector Used(TemplateParams->size()); 748 MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true, 749 Info.getDeducedDepth(), Used); 750 for (int Index = Used.find_first(); Index != -1; 751 Index = Used.find_next(Index)) 752 if (TemplateParams->getParam(Index)->isParameterPack()) 753 AddPack(Index); 754 755 return NumNamedPacks; 756 } 757 758 void finishConstruction(unsigned NumNamedPacks) { 759 // Dig out the partially-substituted pack, if there is one. 760 const TemplateArgument *PartialPackArgs = nullptr; 761 unsigned NumPartialPackArgs = 0; 762 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 763 if (auto *Scope = S.CurrentInstantiationScope) 764 if (auto *Partial = Scope->getPartiallySubstitutedPack( 765 &PartialPackArgs, &NumPartialPackArgs)) 766 PartialPackDepthIndex = getDepthAndIndex(Partial); 767 768 // This pack expansion will have been partially or fully expanded if 769 // it only names explicitly-specified parameter packs (including the 770 // partially-substituted one, if any). 771 bool IsExpanded = true; 772 for (unsigned I = 0; I != NumNamedPacks; ++I) { 773 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 774 IsExpanded = false; 775 IsPartiallyExpanded = false; 776 break; 777 } 778 if (PartialPackDepthIndex == 779 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 780 IsPartiallyExpanded = true; 781 } 782 } 783 784 // Skip over the pack elements that were expanded into separate arguments. 785 // If we partially expanded, this is the number of partial arguments. 786 if (IsPartiallyExpanded) 787 PackElements += NumPartialPackArgs; 788 else if (IsExpanded) 789 PackElements += *FixedNumExpansions; 790 791 for (auto &Pack : Packs) { 792 if (Info.PendingDeducedPacks.size() > Pack.Index) 793 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 794 else 795 Info.PendingDeducedPacks.resize(Pack.Index + 1); 796 Info.PendingDeducedPacks[Pack.Index] = &Pack; 797 798 if (PartialPackDepthIndex == 799 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 800 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 801 // We pre-populate the deduced value of the partially-substituted 802 // pack with the specified value. This is not entirely correct: the 803 // value is supposed to have been substituted, not deduced, but the 804 // cases where this is observable require an exact type match anyway. 805 // 806 // FIXME: If we could represent a "depth i, index j, pack elem k" 807 // parameter, we could substitute the partially-substituted pack 808 // everywhere and avoid this. 809 if (!IsPartiallyExpanded) 810 Deduced[Pack.Index] = Pack.New[PackElements]; 811 } 812 } 813 } 814 815 public: 816 ~PackDeductionScope() { 817 for (auto &Pack : Packs) 818 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 819 } 820 821 /// Determine whether this pack has already been partially expanded into a 822 /// sequence of (prior) function parameters / template arguments. 823 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 824 825 /// Determine whether this pack expansion scope has a known, fixed arity. 826 /// This happens if it involves a pack from an outer template that has 827 /// (notionally) already been expanded. 828 bool hasFixedArity() { return FixedNumExpansions.hasValue(); } 829 830 /// Determine whether the next element of the argument is still part of this 831 /// pack. This is the case unless the pack is already expanded to a fixed 832 /// length. 833 bool hasNextElement() { 834 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 835 } 836 837 /// Move to deducing the next element in each pack that is being deduced. 838 void nextPackElement() { 839 // Capture the deduced template arguments for each parameter pack expanded 840 // by this pack expansion, add them to the list of arguments we've deduced 841 // for that pack, then clear out the deduced argument. 842 for (auto &Pack : Packs) { 843 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 844 if (!Pack.New.empty() || !DeducedArg.isNull()) { 845 while (Pack.New.size() < PackElements) 846 Pack.New.push_back(DeducedTemplateArgument()); 847 if (Pack.New.size() == PackElements) 848 Pack.New.push_back(DeducedArg); 849 else 850 Pack.New[PackElements] = DeducedArg; 851 DeducedArg = Pack.New.size() > PackElements + 1 852 ? Pack.New[PackElements + 1] 853 : DeducedTemplateArgument(); 854 } 855 } 856 ++PackElements; 857 } 858 859 /// Finish template argument deduction for a set of argument packs, 860 /// producing the argument packs and checking for consistency with prior 861 /// deductions. 862 Sema::TemplateDeductionResult 863 finish(bool TreatNoDeductionsAsNonDeduced = true) { 864 // Build argument packs for each of the parameter packs expanded by this 865 // pack expansion. 866 for (auto &Pack : Packs) { 867 // Put back the old value for this pack. 868 Deduced[Pack.Index] = Pack.Saved; 869 870 // If we are deducing the size of this pack even if we didn't deduce any 871 // values for it, then make sure we build a pack of the right size. 872 // FIXME: Should we always deduce the size, even if the pack appears in 873 // a non-deduced context? 874 if (!TreatNoDeductionsAsNonDeduced) 875 Pack.New.resize(PackElements); 876 877 // Build or find a new value for this pack. 878 DeducedTemplateArgument NewPack; 879 if (PackElements && Pack.New.empty()) { 880 if (Pack.DeferredDeduction.isNull()) { 881 // We were not able to deduce anything for this parameter pack 882 // (because it only appeared in non-deduced contexts), so just 883 // restore the saved argument pack. 884 continue; 885 } 886 887 NewPack = Pack.DeferredDeduction; 888 Pack.DeferredDeduction = TemplateArgument(); 889 } else if (Pack.New.empty()) { 890 // If we deduced an empty argument pack, create it now. 891 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 892 } else { 893 TemplateArgument *ArgumentPack = 894 new (S.Context) TemplateArgument[Pack.New.size()]; 895 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 896 NewPack = DeducedTemplateArgument( 897 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 898 // FIXME: This is wrong, it's possible that some pack elements are 899 // deduced from an array bound and others are not: 900 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 901 // g({1, 2, 3}, {{}, {}}); 902 // ... should deduce T = {int, size_t (from array bound)}. 903 Pack.New[0].wasDeducedFromArrayBound()); 904 } 905 906 // Pick where we're going to put the merged pack. 907 DeducedTemplateArgument *Loc; 908 if (Pack.Outer) { 909 if (Pack.Outer->DeferredDeduction.isNull()) { 910 // Defer checking this pack until we have a complete pack to compare 911 // it against. 912 Pack.Outer->DeferredDeduction = NewPack; 913 continue; 914 } 915 Loc = &Pack.Outer->DeferredDeduction; 916 } else { 917 Loc = &Deduced[Pack.Index]; 918 } 919 920 // Check the new pack matches any previous value. 921 DeducedTemplateArgument OldPack = *Loc; 922 DeducedTemplateArgument Result = 923 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 924 925 // If we deferred a deduction of this pack, check that one now too. 926 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 927 OldPack = Result; 928 NewPack = Pack.DeferredDeduction; 929 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 930 } 931 932 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 933 if (Result.isNull()) { 934 Info.Param = makeTemplateParameter(Param); 935 Info.FirstArg = OldPack; 936 Info.SecondArg = NewPack; 937 return Sema::TDK_Inconsistent; 938 } 939 940 // If we have a pre-expanded pack and we didn't deduce enough elements 941 // for it, fail deduction. 942 if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { 943 if (*Expansions != PackElements) { 944 Info.Param = makeTemplateParameter(Param); 945 Info.FirstArg = Result; 946 return Sema::TDK_IncompletePack; 947 } 948 } 949 950 *Loc = Result; 951 } 952 953 return Sema::TDK_Success; 954 } 955 956 private: 957 Sema &S; 958 TemplateParameterList *TemplateParams; 959 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 960 TemplateDeductionInfo &Info; 961 unsigned PackElements = 0; 962 bool IsPartiallyExpanded = false; 963 /// The number of expansions, if we have a fully-expanded pack in this scope. 964 Optional<unsigned> FixedNumExpansions; 965 966 SmallVector<DeducedPack, 2> Packs; 967 }; 968 969 } // namespace 970 971 /// Deduce the template arguments by comparing the list of parameter 972 /// types to the list of argument types, as in the parameter-type-lists of 973 /// function types (C++ [temp.deduct.type]p10). 974 /// 975 /// \param S The semantic analysis object within which we are deducing 976 /// 977 /// \param TemplateParams The template parameters that we are deducing 978 /// 979 /// \param Params The list of parameter types 980 /// 981 /// \param NumParams The number of types in \c Params 982 /// 983 /// \param Args The list of argument types 984 /// 985 /// \param NumArgs The number of types in \c Args 986 /// 987 /// \param Info information about the template argument deduction itself 988 /// 989 /// \param Deduced the deduced template arguments 990 /// 991 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 992 /// how template argument deduction is performed. 993 /// 994 /// \param PartialOrdering If true, we are performing template argument 995 /// deduction for during partial ordering for a call 996 /// (C++0x [temp.deduct.partial]). 997 /// 998 /// \returns the result of template argument deduction so far. Note that a 999 /// "success" result means that template argument deduction has not yet failed, 1000 /// but it may still fail, later, for other reasons. 1001 static Sema::TemplateDeductionResult 1002 DeduceTemplateArguments(Sema &S, 1003 TemplateParameterList *TemplateParams, 1004 const QualType *Params, unsigned NumParams, 1005 const QualType *Args, unsigned NumArgs, 1006 TemplateDeductionInfo &Info, 1007 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1008 unsigned TDF, 1009 bool PartialOrdering = false) { 1010 // C++0x [temp.deduct.type]p10: 1011 // Similarly, if P has a form that contains (T), then each parameter type 1012 // Pi of the respective parameter-type- list of P is compared with the 1013 // corresponding parameter type Ai of the corresponding parameter-type-list 1014 // of A. [...] 1015 unsigned ArgIdx = 0, ParamIdx = 0; 1016 for (; ParamIdx != NumParams; ++ParamIdx) { 1017 // Check argument types. 1018 const PackExpansionType *Expansion 1019 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1020 if (!Expansion) { 1021 // Simple case: compare the parameter and argument types at this point. 1022 1023 // Make sure we have an argument. 1024 if (ArgIdx >= NumArgs) 1025 return Sema::TDK_MiscellaneousDeductionFailure; 1026 1027 if (isa<PackExpansionType>(Args[ArgIdx])) { 1028 // C++0x [temp.deduct.type]p22: 1029 // If the original function parameter associated with A is a function 1030 // parameter pack and the function parameter associated with P is not 1031 // a function parameter pack, then template argument deduction fails. 1032 return Sema::TDK_MiscellaneousDeductionFailure; 1033 } 1034 1035 if (Sema::TemplateDeductionResult Result 1036 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1037 Params[ParamIdx], Args[ArgIdx], 1038 Info, Deduced, TDF, 1039 PartialOrdering)) 1040 return Result; 1041 1042 ++ArgIdx; 1043 continue; 1044 } 1045 1046 // C++0x [temp.deduct.type]p10: 1047 // If the parameter-declaration corresponding to Pi is a function 1048 // parameter pack, then the type of its declarator- id is compared with 1049 // each remaining parameter type in the parameter-type-list of A. Each 1050 // comparison deduces template arguments for subsequent positions in the 1051 // template parameter packs expanded by the function parameter pack. 1052 1053 QualType Pattern = Expansion->getPattern(); 1054 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1055 1056 // A pack scope with fixed arity is not really a pack any more, so is not 1057 // a non-deduced context. 1058 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1059 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1060 // Deduce template arguments from the pattern. 1061 if (Sema::TemplateDeductionResult Result 1062 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 1063 Args[ArgIdx], Info, Deduced, 1064 TDF, PartialOrdering)) 1065 return Result; 1066 1067 PackScope.nextPackElement(); 1068 } 1069 } else { 1070 // C++0x [temp.deduct.type]p5: 1071 // The non-deduced contexts are: 1072 // - A function parameter pack that does not occur at the end of the 1073 // parameter-declaration-clause. 1074 // 1075 // FIXME: There is no wording to say what we should do in this case. We 1076 // choose to resolve this by applying the same rule that is applied for a 1077 // function call: that is, deduce all contained packs to their 1078 // explicitly-specified values (or to <> if there is no such value). 1079 // 1080 // This is seemingly-arbitrarily different from the case of a template-id 1081 // with a non-trailing pack-expansion in its arguments, which renders the 1082 // entire template-argument-list a non-deduced context. 1083 1084 // If the parameter type contains an explicitly-specified pack that we 1085 // could not expand, skip the number of parameters notionally created 1086 // by the expansion. 1087 Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1088 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1089 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1090 ++I, ++ArgIdx) 1091 PackScope.nextPackElement(); 1092 } 1093 } 1094 1095 // Build argument packs for each of the parameter packs expanded by this 1096 // pack expansion. 1097 if (auto Result = PackScope.finish()) 1098 return Result; 1099 } 1100 1101 // Make sure we don't have any extra arguments. 1102 if (ArgIdx < NumArgs) 1103 return Sema::TDK_MiscellaneousDeductionFailure; 1104 1105 return Sema::TDK_Success; 1106 } 1107 1108 /// Determine whether the parameter has qualifiers that the argument 1109 /// lacks. Put another way, determine whether there is no way to add 1110 /// a deduced set of qualifiers to the ParamType that would result in 1111 /// its qualifiers matching those of the ArgType. 1112 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1113 QualType ArgType) { 1114 Qualifiers ParamQs = ParamType.getQualifiers(); 1115 Qualifiers ArgQs = ArgType.getQualifiers(); 1116 1117 if (ParamQs == ArgQs) 1118 return false; 1119 1120 // Mismatched (but not missing) Objective-C GC attributes. 1121 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1122 ParamQs.hasObjCGCAttr()) 1123 return true; 1124 1125 // Mismatched (but not missing) address spaces. 1126 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1127 ParamQs.hasAddressSpace()) 1128 return true; 1129 1130 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1131 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1132 ParamQs.hasObjCLifetime()) 1133 return true; 1134 1135 // CVR qualifiers inconsistent or a superset. 1136 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1137 } 1138 1139 /// Compare types for equality with respect to possibly compatible 1140 /// function types (noreturn adjustment, implicit calling conventions). If any 1141 /// of parameter and argument is not a function, just perform type comparison. 1142 /// 1143 /// \param Param the template parameter type. 1144 /// 1145 /// \param Arg the argument type. 1146 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 1147 CanQualType Arg) { 1148 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 1149 *ArgFunction = Arg->getAs<FunctionType>(); 1150 1151 // Just compare if not functions. 1152 if (!ParamFunction || !ArgFunction) 1153 return Param == Arg; 1154 1155 // Noreturn and noexcept adjustment. 1156 QualType AdjustedParam; 1157 if (IsFunctionConversion(Param, Arg, AdjustedParam)) 1158 return Arg == Context.getCanonicalType(AdjustedParam); 1159 1160 // FIXME: Compatible calling conventions. 1161 1162 return Param == Arg; 1163 } 1164 1165 /// Get the index of the first template parameter that was originally from the 1166 /// innermost template-parameter-list. This is 0 except when we concatenate 1167 /// the template parameter lists of a class template and a constructor template 1168 /// when forming an implicit deduction guide. 1169 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1170 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1171 if (!Guide || !Guide->isImplicit()) 1172 return 0; 1173 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1174 } 1175 1176 /// Determine whether a type denotes a forwarding reference. 1177 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1178 // C++1z [temp.deduct.call]p3: 1179 // A forwarding reference is an rvalue reference to a cv-unqualified 1180 // template parameter that does not represent a template parameter of a 1181 // class template. 1182 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1183 if (ParamRef->getPointeeType().getQualifiers()) 1184 return false; 1185 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1186 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1187 } 1188 return false; 1189 } 1190 1191 /// Deduce the template arguments by comparing the parameter type and 1192 /// the argument type (C++ [temp.deduct.type]). 1193 /// 1194 /// \param S the semantic analysis object within which we are deducing 1195 /// 1196 /// \param TemplateParams the template parameters that we are deducing 1197 /// 1198 /// \param ParamIn the parameter type 1199 /// 1200 /// \param ArgIn the argument type 1201 /// 1202 /// \param Info information about the template argument deduction itself 1203 /// 1204 /// \param Deduced the deduced template arguments 1205 /// 1206 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1207 /// how template argument deduction is performed. 1208 /// 1209 /// \param PartialOrdering Whether we're performing template argument deduction 1210 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1211 /// 1212 /// \returns the result of template argument deduction so far. Note that a 1213 /// "success" result means that template argument deduction has not yet failed, 1214 /// but it may still fail, later, for other reasons. 1215 static Sema::TemplateDeductionResult 1216 DeduceTemplateArgumentsByTypeMatch(Sema &S, 1217 TemplateParameterList *TemplateParams, 1218 QualType ParamIn, QualType ArgIn, 1219 TemplateDeductionInfo &Info, 1220 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1221 unsigned TDF, 1222 bool PartialOrdering, 1223 bool DeducedFromArrayBound) { 1224 // We only want to look at the canonical types, since typedefs and 1225 // sugar are not part of template argument deduction. 1226 QualType Param = S.Context.getCanonicalType(ParamIn); 1227 QualType Arg = S.Context.getCanonicalType(ArgIn); 1228 1229 // If the argument type is a pack expansion, look at its pattern. 1230 // This isn't explicitly called out 1231 if (const PackExpansionType *ArgExpansion 1232 = dyn_cast<PackExpansionType>(Arg)) 1233 Arg = ArgExpansion->getPattern(); 1234 1235 if (PartialOrdering) { 1236 // C++11 [temp.deduct.partial]p5: 1237 // Before the partial ordering is done, certain transformations are 1238 // performed on the types used for partial ordering: 1239 // - If P is a reference type, P is replaced by the type referred to. 1240 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 1241 if (ParamRef) 1242 Param = ParamRef->getPointeeType(); 1243 1244 // - If A is a reference type, A is replaced by the type referred to. 1245 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 1246 if (ArgRef) 1247 Arg = ArgRef->getPointeeType(); 1248 1249 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 1250 // C++11 [temp.deduct.partial]p9: 1251 // If, for a given type, deduction succeeds in both directions (i.e., 1252 // the types are identical after the transformations above) and both 1253 // P and A were reference types [...]: 1254 // - if [one type] was an lvalue reference and [the other type] was 1255 // not, [the other type] is not considered to be at least as 1256 // specialized as [the first type] 1257 // - if [one type] is more cv-qualified than [the other type], 1258 // [the other type] is not considered to be at least as specialized 1259 // as [the first type] 1260 // Objective-C ARC adds: 1261 // - [one type] has non-trivial lifetime, [the other type] has 1262 // __unsafe_unretained lifetime, and the types are otherwise 1263 // identical 1264 // 1265 // A is "considered to be at least as specialized" as P iff deduction 1266 // succeeds, so we model this as a deduction failure. Note that 1267 // [the first type] is P and [the other type] is A here; the standard 1268 // gets this backwards. 1269 Qualifiers ParamQuals = Param.getQualifiers(); 1270 Qualifiers ArgQuals = Arg.getQualifiers(); 1271 if ((ParamRef->isLValueReferenceType() && 1272 !ArgRef->isLValueReferenceType()) || 1273 ParamQuals.isStrictSupersetOf(ArgQuals) || 1274 (ParamQuals.hasNonTrivialObjCLifetime() && 1275 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1276 ParamQuals.withoutObjCLifetime() == 1277 ArgQuals.withoutObjCLifetime())) { 1278 Info.FirstArg = TemplateArgument(ParamIn); 1279 Info.SecondArg = TemplateArgument(ArgIn); 1280 return Sema::TDK_NonDeducedMismatch; 1281 } 1282 } 1283 1284 // C++11 [temp.deduct.partial]p7: 1285 // Remove any top-level cv-qualifiers: 1286 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1287 // version of P. 1288 Param = Param.getUnqualifiedType(); 1289 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1290 // version of A. 1291 Arg = Arg.getUnqualifiedType(); 1292 } else { 1293 // C++0x [temp.deduct.call]p4 bullet 1: 1294 // - If the original P is a reference type, the deduced A (i.e., the type 1295 // referred to by the reference) can be more cv-qualified than the 1296 // transformed A. 1297 if (TDF & TDF_ParamWithReferenceType) { 1298 Qualifiers Quals; 1299 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1300 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1301 Arg.getCVRQualifiers()); 1302 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1303 } 1304 1305 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1306 // C++0x [temp.deduct.type]p10: 1307 // If P and A are function types that originated from deduction when 1308 // taking the address of a function template (14.8.2.2) or when deducing 1309 // template arguments from a function declaration (14.8.2.6) and Pi and 1310 // Ai are parameters of the top-level parameter-type-list of P and A, 1311 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1312 // is an lvalue reference, in 1313 // which case the type of Pi is changed to be the template parameter 1314 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1315 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1316 // deduced as X&. - end note ] 1317 TDF &= ~TDF_TopLevelParameterTypeList; 1318 if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) 1319 Param = Param->getPointeeType(); 1320 } 1321 } 1322 1323 // C++ [temp.deduct.type]p9: 1324 // A template type argument T, a template template argument TT or a 1325 // template non-type argument i can be deduced if P and A have one of 1326 // the following forms: 1327 // 1328 // T 1329 // cv-list T 1330 if (const TemplateTypeParmType *TemplateTypeParm 1331 = Param->getAs<TemplateTypeParmType>()) { 1332 // Just skip any attempts to deduce from a placeholder type or a parameter 1333 // at a different depth. 1334 if (Arg->isPlaceholderType() || 1335 Info.getDeducedDepth() != TemplateTypeParm->getDepth()) 1336 return Sema::TDK_Success; 1337 1338 unsigned Index = TemplateTypeParm->getIndex(); 1339 bool RecanonicalizeArg = false; 1340 1341 // If the argument type is an array type, move the qualifiers up to the 1342 // top level, so they can be matched with the qualifiers on the parameter. 1343 if (isa<ArrayType>(Arg)) { 1344 Qualifiers Quals; 1345 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1346 if (Quals) { 1347 Arg = S.Context.getQualifiedType(Arg, Quals); 1348 RecanonicalizeArg = true; 1349 } 1350 } 1351 1352 // The argument type can not be less qualified than the parameter 1353 // type. 1354 if (!(TDF & TDF_IgnoreQualifiers) && 1355 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1356 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1357 Info.FirstArg = TemplateArgument(Param); 1358 Info.SecondArg = TemplateArgument(Arg); 1359 return Sema::TDK_Underqualified; 1360 } 1361 1362 // Do not match a function type with a cv-qualified type. 1363 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1364 if (Arg->isFunctionType() && Param.hasQualifiers()) { 1365 return Sema::TDK_NonDeducedMismatch; 1366 } 1367 1368 assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && 1369 "saw template type parameter with wrong depth"); 1370 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1371 QualType DeducedType = Arg; 1372 1373 // Remove any qualifiers on the parameter from the deduced type. 1374 // We checked the qualifiers for consistency above. 1375 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1376 Qualifiers ParamQs = Param.getQualifiers(); 1377 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1378 if (ParamQs.hasObjCGCAttr()) 1379 DeducedQs.removeObjCGCAttr(); 1380 if (ParamQs.hasAddressSpace()) 1381 DeducedQs.removeAddressSpace(); 1382 if (ParamQs.hasObjCLifetime()) 1383 DeducedQs.removeObjCLifetime(); 1384 1385 // Objective-C ARC: 1386 // If template deduction would produce a lifetime qualifier on a type 1387 // that is not a lifetime type, template argument deduction fails. 1388 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1389 !DeducedType->isDependentType()) { 1390 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1391 Info.FirstArg = TemplateArgument(Param); 1392 Info.SecondArg = TemplateArgument(Arg); 1393 return Sema::TDK_Underqualified; 1394 } 1395 1396 // Objective-C ARC: 1397 // If template deduction would produce an argument type with lifetime type 1398 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1399 if (S.getLangOpts().ObjCAutoRefCount && 1400 DeducedType->isObjCLifetimeType() && 1401 !DeducedQs.hasObjCLifetime()) 1402 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1403 1404 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1405 DeducedQs); 1406 1407 if (RecanonicalizeArg) 1408 DeducedType = S.Context.getCanonicalType(DeducedType); 1409 1410 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1411 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1412 Deduced[Index], 1413 NewDeduced); 1414 if (Result.isNull()) { 1415 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1416 Info.FirstArg = Deduced[Index]; 1417 Info.SecondArg = NewDeduced; 1418 return Sema::TDK_Inconsistent; 1419 } 1420 1421 Deduced[Index] = Result; 1422 return Sema::TDK_Success; 1423 } 1424 1425 // Set up the template argument deduction information for a failure. 1426 Info.FirstArg = TemplateArgument(ParamIn); 1427 Info.SecondArg = TemplateArgument(ArgIn); 1428 1429 // If the parameter is an already-substituted template parameter 1430 // pack, do nothing: we don't know which of its arguments to look 1431 // at, so we have to wait until all of the parameter packs in this 1432 // expansion have arguments. 1433 if (isa<SubstTemplateTypeParmPackType>(Param)) 1434 return Sema::TDK_Success; 1435 1436 // Check the cv-qualifiers on the parameter and argument types. 1437 CanQualType CanParam = S.Context.getCanonicalType(Param); 1438 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1439 if (!(TDF & TDF_IgnoreQualifiers)) { 1440 if (TDF & TDF_ParamWithReferenceType) { 1441 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1442 return Sema::TDK_NonDeducedMismatch; 1443 } else if (TDF & TDF_ArgWithReferenceType) { 1444 // C++ [temp.deduct.conv]p4: 1445 // If the original A is a reference type, A can be more cv-qualified 1446 // than the deduced A 1447 if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) 1448 return Sema::TDK_NonDeducedMismatch; 1449 1450 // Strip out all extra qualifiers from the argument to figure out the 1451 // type we're converting to, prior to the qualification conversion. 1452 Qualifiers Quals; 1453 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1454 Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); 1455 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1456 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1457 return Sema::TDK_NonDeducedMismatch; 1458 } 1459 1460 // If the parameter type is not dependent, there is nothing to deduce. 1461 if (!Param->isDependentType()) { 1462 if (!(TDF & TDF_SkipNonDependent)) { 1463 bool NonDeduced = 1464 (TDF & TDF_AllowCompatibleFunctionType) 1465 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) 1466 : Param != Arg; 1467 if (NonDeduced) { 1468 return Sema::TDK_NonDeducedMismatch; 1469 } 1470 } 1471 return Sema::TDK_Success; 1472 } 1473 } else if (!Param->isDependentType()) { 1474 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1475 ArgUnqualType = CanArg.getUnqualifiedType(); 1476 bool Success = 1477 (TDF & TDF_AllowCompatibleFunctionType) 1478 ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) 1479 : ParamUnqualType == ArgUnqualType; 1480 if (Success) 1481 return Sema::TDK_Success; 1482 } 1483 1484 switch (Param->getTypeClass()) { 1485 // Non-canonical types cannot appear here. 1486 #define NON_CANONICAL_TYPE(Class, Base) \ 1487 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1488 #define TYPE(Class, Base) 1489 #include "clang/AST/TypeNodes.def" 1490 1491 case Type::TemplateTypeParm: 1492 case Type::SubstTemplateTypeParmPack: 1493 llvm_unreachable("Type nodes handled above"); 1494 1495 // These types cannot be dependent, so simply check whether the types are 1496 // the same. 1497 case Type::Builtin: 1498 case Type::VariableArray: 1499 case Type::Vector: 1500 case Type::FunctionNoProto: 1501 case Type::Record: 1502 case Type::Enum: 1503 case Type::ObjCObject: 1504 case Type::ObjCInterface: 1505 case Type::ObjCObjectPointer: 1506 if (TDF & TDF_SkipNonDependent) 1507 return Sema::TDK_Success; 1508 1509 if (TDF & TDF_IgnoreQualifiers) { 1510 Param = Param.getUnqualifiedType(); 1511 Arg = Arg.getUnqualifiedType(); 1512 } 1513 1514 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1515 1516 // _Complex T [placeholder extension] 1517 case Type::Complex: 1518 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1519 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1520 cast<ComplexType>(Param)->getElementType(), 1521 ComplexArg->getElementType(), 1522 Info, Deduced, TDF); 1523 1524 return Sema::TDK_NonDeducedMismatch; 1525 1526 // _Atomic T [extension] 1527 case Type::Atomic: 1528 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1529 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1530 cast<AtomicType>(Param)->getValueType(), 1531 AtomicArg->getValueType(), 1532 Info, Deduced, TDF); 1533 1534 return Sema::TDK_NonDeducedMismatch; 1535 1536 // T * 1537 case Type::Pointer: { 1538 QualType PointeeType; 1539 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1540 PointeeType = PointerArg->getPointeeType(); 1541 } else if (const ObjCObjectPointerType *PointerArg 1542 = Arg->getAs<ObjCObjectPointerType>()) { 1543 PointeeType = PointerArg->getPointeeType(); 1544 } else { 1545 return Sema::TDK_NonDeducedMismatch; 1546 } 1547 1548 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1549 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1550 cast<PointerType>(Param)->getPointeeType(), 1551 PointeeType, 1552 Info, Deduced, SubTDF); 1553 } 1554 1555 // T & 1556 case Type::LValueReference: { 1557 const LValueReferenceType *ReferenceArg = 1558 Arg->getAs<LValueReferenceType>(); 1559 if (!ReferenceArg) 1560 return Sema::TDK_NonDeducedMismatch; 1561 1562 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1563 cast<LValueReferenceType>(Param)->getPointeeType(), 1564 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1565 } 1566 1567 // T && [C++0x] 1568 case Type::RValueReference: { 1569 const RValueReferenceType *ReferenceArg = 1570 Arg->getAs<RValueReferenceType>(); 1571 if (!ReferenceArg) 1572 return Sema::TDK_NonDeducedMismatch; 1573 1574 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1575 cast<RValueReferenceType>(Param)->getPointeeType(), 1576 ReferenceArg->getPointeeType(), 1577 Info, Deduced, 0); 1578 } 1579 1580 // T [] (implied, but not stated explicitly) 1581 case Type::IncompleteArray: { 1582 const IncompleteArrayType *IncompleteArrayArg = 1583 S.Context.getAsIncompleteArrayType(Arg); 1584 if (!IncompleteArrayArg) 1585 return Sema::TDK_NonDeducedMismatch; 1586 1587 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1588 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1589 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1590 IncompleteArrayArg->getElementType(), 1591 Info, Deduced, SubTDF); 1592 } 1593 1594 // T [integer-constant] 1595 case Type::ConstantArray: { 1596 const ConstantArrayType *ConstantArrayArg = 1597 S.Context.getAsConstantArrayType(Arg); 1598 if (!ConstantArrayArg) 1599 return Sema::TDK_NonDeducedMismatch; 1600 1601 const ConstantArrayType *ConstantArrayParm = 1602 S.Context.getAsConstantArrayType(Param); 1603 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1604 return Sema::TDK_NonDeducedMismatch; 1605 1606 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1607 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1608 ConstantArrayParm->getElementType(), 1609 ConstantArrayArg->getElementType(), 1610 Info, Deduced, SubTDF); 1611 } 1612 1613 // type [i] 1614 case Type::DependentSizedArray: { 1615 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1616 if (!ArrayArg) 1617 return Sema::TDK_NonDeducedMismatch; 1618 1619 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1620 1621 // Check the element type of the arrays 1622 const DependentSizedArrayType *DependentArrayParm 1623 = S.Context.getAsDependentSizedArrayType(Param); 1624 if (Sema::TemplateDeductionResult Result 1625 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1626 DependentArrayParm->getElementType(), 1627 ArrayArg->getElementType(), 1628 Info, Deduced, SubTDF)) 1629 return Result; 1630 1631 // Determine the array bound is something we can deduce. 1632 NonTypeTemplateParmDecl *NTTP 1633 = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); 1634 if (!NTTP) 1635 return Sema::TDK_Success; 1636 1637 // We can perform template argument deduction for the given non-type 1638 // template parameter. 1639 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1640 "saw non-type template parameter with wrong depth"); 1641 if (const ConstantArrayType *ConstantArrayArg 1642 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1643 llvm::APSInt Size(ConstantArrayArg->getSize()); 1644 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, 1645 S.Context.getSizeType(), 1646 /*ArrayBound=*/true, 1647 Info, Deduced); 1648 } 1649 if (const DependentSizedArrayType *DependentArrayArg 1650 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1651 if (DependentArrayArg->getSizeExpr()) 1652 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1653 DependentArrayArg->getSizeExpr(), 1654 Info, Deduced); 1655 1656 // Incomplete type does not match a dependently-sized array type 1657 return Sema::TDK_NonDeducedMismatch; 1658 } 1659 1660 // type(*)(T) 1661 // T(*)() 1662 // T(*)(T) 1663 case Type::FunctionProto: { 1664 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1665 const FunctionProtoType *FunctionProtoArg = 1666 dyn_cast<FunctionProtoType>(Arg); 1667 if (!FunctionProtoArg) 1668 return Sema::TDK_NonDeducedMismatch; 1669 1670 const FunctionProtoType *FunctionProtoParam = 1671 cast<FunctionProtoType>(Param); 1672 1673 if (FunctionProtoParam->getMethodQuals() 1674 != FunctionProtoArg->getMethodQuals() || 1675 FunctionProtoParam->getRefQualifier() 1676 != FunctionProtoArg->getRefQualifier() || 1677 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1678 return Sema::TDK_NonDeducedMismatch; 1679 1680 // Check return types. 1681 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1682 S, TemplateParams, FunctionProtoParam->getReturnType(), 1683 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1684 return Result; 1685 1686 // Check parameter types. 1687 if (auto Result = DeduceTemplateArguments( 1688 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1689 FunctionProtoParam->getNumParams(), 1690 FunctionProtoArg->param_type_begin(), 1691 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) 1692 return Result; 1693 1694 if (TDF & TDF_AllowCompatibleFunctionType) 1695 return Sema::TDK_Success; 1696 1697 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1698 // deducing through the noexcept-specifier if it's part of the canonical 1699 // type. libstdc++ relies on this. 1700 Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); 1701 if (NonTypeTemplateParmDecl *NTTP = 1702 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1703 : nullptr) { 1704 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1705 "saw non-type template parameter with wrong depth"); 1706 1707 llvm::APSInt Noexcept(1); 1708 switch (FunctionProtoArg->canThrow()) { 1709 case CT_Cannot: 1710 Noexcept = 1; 1711 LLVM_FALLTHROUGH; 1712 1713 case CT_Can: 1714 // We give E in noexcept(E) the "deduced from array bound" treatment. 1715 // FIXME: Should we? 1716 return DeduceNonTypeTemplateArgument( 1717 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1718 /*ArrayBound*/true, Info, Deduced); 1719 1720 case CT_Dependent: 1721 if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) 1722 return DeduceNonTypeTemplateArgument( 1723 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1724 // Can't deduce anything from throw(T...). 1725 break; 1726 } 1727 } 1728 // FIXME: Detect non-deduced exception specification mismatches? 1729 // 1730 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1731 // top-level differences in noexcept-specifications. 1732 1733 return Sema::TDK_Success; 1734 } 1735 1736 case Type::InjectedClassName: 1737 // Treat a template's injected-class-name as if the template 1738 // specialization type had been used. 1739 Param = cast<InjectedClassNameType>(Param) 1740 ->getInjectedSpecializationType(); 1741 assert(isa<TemplateSpecializationType>(Param) && 1742 "injected class name is not a template specialization type"); 1743 LLVM_FALLTHROUGH; 1744 1745 // template-name<T> (where template-name refers to a class template) 1746 // template-name<i> 1747 // TT<T> 1748 // TT<i> 1749 // TT<> 1750 case Type::TemplateSpecialization: { 1751 const TemplateSpecializationType *SpecParam = 1752 cast<TemplateSpecializationType>(Param); 1753 1754 // When Arg cannot be a derived class, we can just try to deduce template 1755 // arguments from the template-id. 1756 const RecordType *RecordT = Arg->getAs<RecordType>(); 1757 if (!(TDF & TDF_DerivedClass) || !RecordT) 1758 return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, 1759 Deduced); 1760 1761 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1762 Deduced.end()); 1763 1764 Sema::TemplateDeductionResult Result = DeduceTemplateArguments( 1765 S, TemplateParams, SpecParam, Arg, Info, Deduced); 1766 1767 if (Result == Sema::TDK_Success) 1768 return Result; 1769 1770 // We cannot inspect base classes as part of deduction when the type 1771 // is incomplete, so either instantiate any templates necessary to 1772 // complete the type, or skip over it if it cannot be completed. 1773 if (!S.isCompleteType(Info.getLocation(), Arg)) 1774 return Result; 1775 1776 // C++14 [temp.deduct.call] p4b3: 1777 // If P is a class and P has the form simple-template-id, then the 1778 // transformed A can be a derived class of the deduced A. Likewise if 1779 // P is a pointer to a class of the form simple-template-id, the 1780 // transformed A can be a pointer to a derived class pointed to by the 1781 // deduced A. 1782 // 1783 // These alternatives are considered only if type deduction would 1784 // otherwise fail. If they yield more than one possible deduced A, the 1785 // type deduction fails. 1786 1787 // Reset the incorrectly deduced argument from above. 1788 Deduced = DeducedOrig; 1789 1790 // Use data recursion to crawl through the list of base classes. 1791 // Visited contains the set of nodes we have already visited, while 1792 // ToVisit is our stack of records that we still need to visit. 1793 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1794 SmallVector<const RecordType *, 8> ToVisit; 1795 ToVisit.push_back(RecordT); 1796 bool Successful = false; 1797 SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; 1798 while (!ToVisit.empty()) { 1799 // Retrieve the next class in the inheritance hierarchy. 1800 const RecordType *NextT = ToVisit.pop_back_val(); 1801 1802 // If we have already seen this type, skip it. 1803 if (!Visited.insert(NextT).second) 1804 continue; 1805 1806 // If this is a base class, try to perform template argument 1807 // deduction from it. 1808 if (NextT != RecordT) { 1809 TemplateDeductionInfo BaseInfo(Info.getLocation()); 1810 Sema::TemplateDeductionResult BaseResult = 1811 DeduceTemplateArguments(S, TemplateParams, SpecParam, 1812 QualType(NextT, 0), BaseInfo, Deduced); 1813 1814 // If template argument deduction for this base was successful, 1815 // note that we had some success. Otherwise, ignore any deductions 1816 // from this base class. 1817 if (BaseResult == Sema::TDK_Success) { 1818 // If we've already seen some success, then deduction fails due to 1819 // an ambiguity (temp.deduct.call p5). 1820 if (Successful) 1821 return Sema::TDK_MiscellaneousDeductionFailure; 1822 1823 Successful = true; 1824 std::swap(SuccessfulDeduced, Deduced); 1825 1826 Info.Param = BaseInfo.Param; 1827 Info.FirstArg = BaseInfo.FirstArg; 1828 Info.SecondArg = BaseInfo.SecondArg; 1829 } 1830 1831 Deduced = DeducedOrig; 1832 } 1833 1834 // Visit base classes 1835 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1836 for (const auto &Base : Next->bases()) { 1837 assert(Base.getType()->isRecordType() && 1838 "Base class that isn't a record?"); 1839 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1840 } 1841 } 1842 1843 if (Successful) { 1844 std::swap(SuccessfulDeduced, Deduced); 1845 return Sema::TDK_Success; 1846 } 1847 1848 return Result; 1849 } 1850 1851 // T type::* 1852 // T T::* 1853 // T (type::*)() 1854 // type (T::*)() 1855 // type (type::*)(T) 1856 // type (T::*)(T) 1857 // T (type::*)(T) 1858 // T (T::*)() 1859 // T (T::*)(T) 1860 case Type::MemberPointer: { 1861 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1862 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1863 if (!MemPtrArg) 1864 return Sema::TDK_NonDeducedMismatch; 1865 1866 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1867 if (ParamPointeeType->isFunctionType()) 1868 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1869 /*IsCtorOrDtor=*/false, Info.getLocation()); 1870 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1871 if (ArgPointeeType->isFunctionType()) 1872 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1873 /*IsCtorOrDtor=*/false, Info.getLocation()); 1874 1875 if (Sema::TemplateDeductionResult Result 1876 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1877 ParamPointeeType, 1878 ArgPointeeType, 1879 Info, Deduced, 1880 TDF & TDF_IgnoreQualifiers)) 1881 return Result; 1882 1883 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1884 QualType(MemPtrParam->getClass(), 0), 1885 QualType(MemPtrArg->getClass(), 0), 1886 Info, Deduced, 1887 TDF & TDF_IgnoreQualifiers); 1888 } 1889 1890 // (clang extension) 1891 // 1892 // type(^)(T) 1893 // T(^)() 1894 // T(^)(T) 1895 case Type::BlockPointer: { 1896 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1897 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1898 1899 if (!BlockPtrArg) 1900 return Sema::TDK_NonDeducedMismatch; 1901 1902 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1903 BlockPtrParam->getPointeeType(), 1904 BlockPtrArg->getPointeeType(), 1905 Info, Deduced, 0); 1906 } 1907 1908 // (clang extension) 1909 // 1910 // T __attribute__(((ext_vector_type(<integral constant>)))) 1911 case Type::ExtVector: { 1912 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1913 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1914 // Make sure that the vectors have the same number of elements. 1915 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1916 return Sema::TDK_NonDeducedMismatch; 1917 1918 // Perform deduction on the element types. 1919 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1920 VectorParam->getElementType(), 1921 VectorArg->getElementType(), 1922 Info, Deduced, TDF); 1923 } 1924 1925 if (const DependentSizedExtVectorType *VectorArg 1926 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1927 // We can't check the number of elements, since the argument has a 1928 // dependent number of elements. This can only occur during partial 1929 // ordering. 1930 1931 // Perform deduction on the element types. 1932 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1933 VectorParam->getElementType(), 1934 VectorArg->getElementType(), 1935 Info, Deduced, TDF); 1936 } 1937 1938 return Sema::TDK_NonDeducedMismatch; 1939 } 1940 1941 case Type::DependentVector: { 1942 const auto *VectorParam = cast<DependentVectorType>(Param); 1943 1944 if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { 1945 // Perform deduction on the element types. 1946 if (Sema::TemplateDeductionResult Result = 1947 DeduceTemplateArgumentsByTypeMatch( 1948 S, TemplateParams, VectorParam->getElementType(), 1949 VectorArg->getElementType(), Info, Deduced, TDF)) 1950 return Result; 1951 1952 // Perform deduction on the vector size, if we can. 1953 NonTypeTemplateParmDecl *NTTP = 1954 getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 1955 if (!NTTP) 1956 return Sema::TDK_Success; 1957 1958 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1959 ArgSize = VectorArg->getNumElements(); 1960 // Note that we use the "array bound" rules here; just like in that 1961 // case, we don't have any particular type for the vector size, but 1962 // we can provide one if necessary. 1963 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1964 S.Context.UnsignedIntTy, true, 1965 Info, Deduced); 1966 } 1967 1968 if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { 1969 // Perform deduction on the element types. 1970 if (Sema::TemplateDeductionResult Result = 1971 DeduceTemplateArgumentsByTypeMatch( 1972 S, TemplateParams, VectorParam->getElementType(), 1973 VectorArg->getElementType(), Info, Deduced, TDF)) 1974 return Result; 1975 1976 // Perform deduction on the vector size, if we can. 1977 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 1978 Info, VectorParam->getSizeExpr()); 1979 if (!NTTP) 1980 return Sema::TDK_Success; 1981 1982 return DeduceNonTypeTemplateArgument( 1983 S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); 1984 } 1985 1986 return Sema::TDK_NonDeducedMismatch; 1987 } 1988 1989 // (clang extension) 1990 // 1991 // T __attribute__(((ext_vector_type(N)))) 1992 case Type::DependentSizedExtVector: { 1993 const DependentSizedExtVectorType *VectorParam 1994 = cast<DependentSizedExtVectorType>(Param); 1995 1996 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1997 // Perform deduction on the element types. 1998 if (Sema::TemplateDeductionResult Result 1999 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2000 VectorParam->getElementType(), 2001 VectorArg->getElementType(), 2002 Info, Deduced, TDF)) 2003 return Result; 2004 2005 // Perform deduction on the vector size, if we can. 2006 NonTypeTemplateParmDecl *NTTP 2007 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2008 if (!NTTP) 2009 return Sema::TDK_Success; 2010 2011 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2012 ArgSize = VectorArg->getNumElements(); 2013 // Note that we use the "array bound" rules here; just like in that 2014 // case, we don't have any particular type for the vector size, but 2015 // we can provide one if necessary. 2016 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2017 S.Context.IntTy, true, Info, 2018 Deduced); 2019 } 2020 2021 if (const DependentSizedExtVectorType *VectorArg 2022 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 2023 // Perform deduction on the element types. 2024 if (Sema::TemplateDeductionResult Result 2025 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2026 VectorParam->getElementType(), 2027 VectorArg->getElementType(), 2028 Info, Deduced, TDF)) 2029 return Result; 2030 2031 // Perform deduction on the vector size, if we can. 2032 NonTypeTemplateParmDecl *NTTP 2033 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2034 if (!NTTP) 2035 return Sema::TDK_Success; 2036 2037 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2038 VectorArg->getSizeExpr(), 2039 Info, Deduced); 2040 } 2041 2042 return Sema::TDK_NonDeducedMismatch; 2043 } 2044 2045 // (clang extension) 2046 // 2047 // T __attribute__(((address_space(N)))) 2048 case Type::DependentAddressSpace: { 2049 const DependentAddressSpaceType *AddressSpaceParam = 2050 cast<DependentAddressSpaceType>(Param); 2051 2052 if (const DependentAddressSpaceType *AddressSpaceArg = 2053 dyn_cast<DependentAddressSpaceType>(Arg)) { 2054 // Perform deduction on the pointer type. 2055 if (Sema::TemplateDeductionResult Result = 2056 DeduceTemplateArgumentsByTypeMatch( 2057 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2058 AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) 2059 return Result; 2060 2061 // Perform deduction on the address space, if we can. 2062 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2063 Info, AddressSpaceParam->getAddrSpaceExpr()); 2064 if (!NTTP) 2065 return Sema::TDK_Success; 2066 2067 return DeduceNonTypeTemplateArgument( 2068 S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, 2069 Deduced); 2070 } 2071 2072 if (isTargetAddressSpace(Arg.getAddressSpace())) { 2073 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2074 false); 2075 ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); 2076 2077 // Perform deduction on the pointer types. 2078 if (Sema::TemplateDeductionResult Result = 2079 DeduceTemplateArgumentsByTypeMatch( 2080 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2081 S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) 2082 return Result; 2083 2084 // Perform deduction on the address space, if we can. 2085 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2086 Info, AddressSpaceParam->getAddrSpaceExpr()); 2087 if (!NTTP) 2088 return Sema::TDK_Success; 2089 2090 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2091 ArgAddressSpace, S.Context.IntTy, 2092 true, Info, Deduced); 2093 } 2094 2095 return Sema::TDK_NonDeducedMismatch; 2096 } 2097 2098 case Type::TypeOfExpr: 2099 case Type::TypeOf: 2100 case Type::DependentName: 2101 case Type::UnresolvedUsing: 2102 case Type::Decltype: 2103 case Type::UnaryTransform: 2104 case Type::Auto: 2105 case Type::DeducedTemplateSpecialization: 2106 case Type::DependentTemplateSpecialization: 2107 case Type::PackExpansion: 2108 case Type::Pipe: 2109 // No template argument deduction for these types 2110 return Sema::TDK_Success; 2111 } 2112 2113 llvm_unreachable("Invalid Type Class!"); 2114 } 2115 2116 static Sema::TemplateDeductionResult 2117 DeduceTemplateArguments(Sema &S, 2118 TemplateParameterList *TemplateParams, 2119 const TemplateArgument &Param, 2120 TemplateArgument Arg, 2121 TemplateDeductionInfo &Info, 2122 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2123 // If the template argument is a pack expansion, perform template argument 2124 // deduction against the pattern of that expansion. This only occurs during 2125 // partial ordering. 2126 if (Arg.isPackExpansion()) 2127 Arg = Arg.getPackExpansionPattern(); 2128 2129 switch (Param.getKind()) { 2130 case TemplateArgument::Null: 2131 llvm_unreachable("Null template argument in parameter list"); 2132 2133 case TemplateArgument::Type: 2134 if (Arg.getKind() == TemplateArgument::Type) 2135 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2136 Param.getAsType(), 2137 Arg.getAsType(), 2138 Info, Deduced, 0); 2139 Info.FirstArg = Param; 2140 Info.SecondArg = Arg; 2141 return Sema::TDK_NonDeducedMismatch; 2142 2143 case TemplateArgument::Template: 2144 if (Arg.getKind() == TemplateArgument::Template) 2145 return DeduceTemplateArguments(S, TemplateParams, 2146 Param.getAsTemplate(), 2147 Arg.getAsTemplate(), Info, Deduced); 2148 Info.FirstArg = Param; 2149 Info.SecondArg = Arg; 2150 return Sema::TDK_NonDeducedMismatch; 2151 2152 case TemplateArgument::TemplateExpansion: 2153 llvm_unreachable("caller should handle pack expansions"); 2154 2155 case TemplateArgument::Declaration: 2156 if (Arg.getKind() == TemplateArgument::Declaration && 2157 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 2158 return Sema::TDK_Success; 2159 2160 Info.FirstArg = Param; 2161 Info.SecondArg = Arg; 2162 return Sema::TDK_NonDeducedMismatch; 2163 2164 case TemplateArgument::NullPtr: 2165 if (Arg.getKind() == TemplateArgument::NullPtr && 2166 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 2167 return Sema::TDK_Success; 2168 2169 Info.FirstArg = Param; 2170 Info.SecondArg = Arg; 2171 return Sema::TDK_NonDeducedMismatch; 2172 2173 case TemplateArgument::Integral: 2174 if (Arg.getKind() == TemplateArgument::Integral) { 2175 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 2176 return Sema::TDK_Success; 2177 2178 Info.FirstArg = Param; 2179 Info.SecondArg = Arg; 2180 return Sema::TDK_NonDeducedMismatch; 2181 } 2182 2183 if (Arg.getKind() == TemplateArgument::Expression) { 2184 Info.FirstArg = Param; 2185 Info.SecondArg = Arg; 2186 return Sema::TDK_NonDeducedMismatch; 2187 } 2188 2189 Info.FirstArg = Param; 2190 Info.SecondArg = Arg; 2191 return Sema::TDK_NonDeducedMismatch; 2192 2193 case TemplateArgument::Expression: 2194 if (NonTypeTemplateParmDecl *NTTP 2195 = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { 2196 if (Arg.getKind() == TemplateArgument::Integral) 2197 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2198 Arg.getAsIntegral(), 2199 Arg.getIntegralType(), 2200 /*ArrayBound=*/false, 2201 Info, Deduced); 2202 if (Arg.getKind() == TemplateArgument::NullPtr) 2203 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2204 Arg.getNullPtrType(), 2205 Info, Deduced); 2206 if (Arg.getKind() == TemplateArgument::Expression) 2207 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2208 Arg.getAsExpr(), Info, Deduced); 2209 if (Arg.getKind() == TemplateArgument::Declaration) 2210 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2211 Arg.getAsDecl(), 2212 Arg.getParamTypeForDecl(), 2213 Info, Deduced); 2214 2215 Info.FirstArg = Param; 2216 Info.SecondArg = Arg; 2217 return Sema::TDK_NonDeducedMismatch; 2218 } 2219 2220 // Can't deduce anything, but that's okay. 2221 return Sema::TDK_Success; 2222 2223 case TemplateArgument::Pack: 2224 llvm_unreachable("Argument packs should be expanded by the caller!"); 2225 } 2226 2227 llvm_unreachable("Invalid TemplateArgument Kind!"); 2228 } 2229 2230 /// Determine whether there is a template argument to be used for 2231 /// deduction. 2232 /// 2233 /// This routine "expands" argument packs in-place, overriding its input 2234 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2235 /// 2236 /// \returns true if there is another template argument (which will be at 2237 /// \c Args[ArgIdx]), false otherwise. 2238 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2239 unsigned &ArgIdx) { 2240 if (ArgIdx == Args.size()) 2241 return false; 2242 2243 const TemplateArgument &Arg = Args[ArgIdx]; 2244 if (Arg.getKind() != TemplateArgument::Pack) 2245 return true; 2246 2247 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2248 Args = Arg.pack_elements(); 2249 ArgIdx = 0; 2250 return ArgIdx < Args.size(); 2251 } 2252 2253 /// Determine whether the given set of template arguments has a pack 2254 /// expansion that is not the last template argument. 2255 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2256 bool FoundPackExpansion = false; 2257 for (const auto &A : Args) { 2258 if (FoundPackExpansion) 2259 return true; 2260 2261 if (A.getKind() == TemplateArgument::Pack) 2262 return hasPackExpansionBeforeEnd(A.pack_elements()); 2263 2264 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2265 // templates, it should not be treated as a pack expansion. 2266 if (A.isPackExpansion()) 2267 FoundPackExpansion = true; 2268 } 2269 2270 return false; 2271 } 2272 2273 static Sema::TemplateDeductionResult 2274 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2275 ArrayRef<TemplateArgument> Params, 2276 ArrayRef<TemplateArgument> Args, 2277 TemplateDeductionInfo &Info, 2278 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2279 bool NumberOfArgumentsMustMatch) { 2280 // C++0x [temp.deduct.type]p9: 2281 // If the template argument list of P contains a pack expansion that is not 2282 // the last template argument, the entire template argument list is a 2283 // non-deduced context. 2284 if (hasPackExpansionBeforeEnd(Params)) 2285 return Sema::TDK_Success; 2286 2287 // C++0x [temp.deduct.type]p9: 2288 // If P has a form that contains <T> or <i>, then each argument Pi of the 2289 // respective template argument list P is compared with the corresponding 2290 // argument Ai of the corresponding template argument list of A. 2291 unsigned ArgIdx = 0, ParamIdx = 0; 2292 for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { 2293 if (!Params[ParamIdx].isPackExpansion()) { 2294 // The simple case: deduce template arguments by matching Pi and Ai. 2295 2296 // Check whether we have enough arguments. 2297 if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) 2298 return NumberOfArgumentsMustMatch 2299 ? Sema::TDK_MiscellaneousDeductionFailure 2300 : Sema::TDK_Success; 2301 2302 // C++1z [temp.deduct.type]p9: 2303 // During partial ordering, if Ai was originally a pack expansion [and] 2304 // Pi is not a pack expansion, template argument deduction fails. 2305 if (Args[ArgIdx].isPackExpansion()) 2306 return Sema::TDK_MiscellaneousDeductionFailure; 2307 2308 // Perform deduction for this Pi/Ai pair. 2309 if (Sema::TemplateDeductionResult Result 2310 = DeduceTemplateArguments(S, TemplateParams, 2311 Params[ParamIdx], Args[ArgIdx], 2312 Info, Deduced)) 2313 return Result; 2314 2315 // Move to the next argument. 2316 ++ArgIdx; 2317 continue; 2318 } 2319 2320 // The parameter is a pack expansion. 2321 2322 // C++0x [temp.deduct.type]p9: 2323 // If Pi is a pack expansion, then the pattern of Pi is compared with 2324 // each remaining argument in the template argument list of A. Each 2325 // comparison deduces template arguments for subsequent positions in the 2326 // template parameter packs expanded by Pi. 2327 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 2328 2329 // Prepare to deduce the packs within the pattern. 2330 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2331 2332 // Keep track of the deduced template arguments for each parameter pack 2333 // expanded by this pack expansion (the outer index) and for each 2334 // template argument (the inner SmallVectors). 2335 for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && 2336 PackScope.hasNextElement(); 2337 ++ArgIdx) { 2338 // Deduce template arguments from the pattern. 2339 if (Sema::TemplateDeductionResult Result 2340 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 2341 Info, Deduced)) 2342 return Result; 2343 2344 PackScope.nextPackElement(); 2345 } 2346 2347 // Build argument packs for each of the parameter packs expanded by this 2348 // pack expansion. 2349 if (auto Result = PackScope.finish()) 2350 return Result; 2351 } 2352 2353 return Sema::TDK_Success; 2354 } 2355 2356 static Sema::TemplateDeductionResult 2357 DeduceTemplateArguments(Sema &S, 2358 TemplateParameterList *TemplateParams, 2359 const TemplateArgumentList &ParamList, 2360 const TemplateArgumentList &ArgList, 2361 TemplateDeductionInfo &Info, 2362 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2363 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2364 ArgList.asArray(), Info, Deduced, 2365 /*NumberOfArgumentsMustMatch*/false); 2366 } 2367 2368 /// Determine whether two template arguments are the same. 2369 static bool isSameTemplateArg(ASTContext &Context, 2370 TemplateArgument X, 2371 const TemplateArgument &Y, 2372 bool PackExpansionMatchesPack = false) { 2373 // If we're checking deduced arguments (X) against original arguments (Y), 2374 // we will have flattened packs to non-expansions in X. 2375 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2376 X = X.getPackExpansionPattern(); 2377 2378 if (X.getKind() != Y.getKind()) 2379 return false; 2380 2381 switch (X.getKind()) { 2382 case TemplateArgument::Null: 2383 llvm_unreachable("Comparing NULL template argument"); 2384 2385 case TemplateArgument::Type: 2386 return Context.getCanonicalType(X.getAsType()) == 2387 Context.getCanonicalType(Y.getAsType()); 2388 2389 case TemplateArgument::Declaration: 2390 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2391 2392 case TemplateArgument::NullPtr: 2393 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2394 2395 case TemplateArgument::Template: 2396 case TemplateArgument::TemplateExpansion: 2397 return Context.getCanonicalTemplateName( 2398 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2399 Context.getCanonicalTemplateName( 2400 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2401 2402 case TemplateArgument::Integral: 2403 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2404 2405 case TemplateArgument::Expression: { 2406 llvm::FoldingSetNodeID XID, YID; 2407 X.getAsExpr()->Profile(XID, Context, true); 2408 Y.getAsExpr()->Profile(YID, Context, true); 2409 return XID == YID; 2410 } 2411 2412 case TemplateArgument::Pack: 2413 if (X.pack_size() != Y.pack_size()) 2414 return false; 2415 2416 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 2417 XPEnd = X.pack_end(), 2418 YP = Y.pack_begin(); 2419 XP != XPEnd; ++XP, ++YP) 2420 if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) 2421 return false; 2422 2423 return true; 2424 } 2425 2426 llvm_unreachable("Invalid TemplateArgument Kind!"); 2427 } 2428 2429 /// Allocate a TemplateArgumentLoc where all locations have 2430 /// been initialized to the given location. 2431 /// 2432 /// \param Arg The template argument we are producing template argument 2433 /// location information for. 2434 /// 2435 /// \param NTTPType For a declaration template argument, the type of 2436 /// the non-type template parameter that corresponds to this template 2437 /// argument. Can be null if no type sugar is available to add to the 2438 /// type from the template argument. 2439 /// 2440 /// \param Loc The source location to use for the resulting template 2441 /// argument. 2442 TemplateArgumentLoc 2443 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2444 QualType NTTPType, SourceLocation Loc) { 2445 switch (Arg.getKind()) { 2446 case TemplateArgument::Null: 2447 llvm_unreachable("Can't get a NULL template argument here"); 2448 2449 case TemplateArgument::Type: 2450 return TemplateArgumentLoc( 2451 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2452 2453 case TemplateArgument::Declaration: { 2454 if (NTTPType.isNull()) 2455 NTTPType = Arg.getParamTypeForDecl(); 2456 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2457 .getAs<Expr>(); 2458 return TemplateArgumentLoc(TemplateArgument(E), E); 2459 } 2460 2461 case TemplateArgument::NullPtr: { 2462 if (NTTPType.isNull()) 2463 NTTPType = Arg.getNullPtrType(); 2464 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2465 .getAs<Expr>(); 2466 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2467 E); 2468 } 2469 2470 case TemplateArgument::Integral: { 2471 Expr *E = 2472 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2473 return TemplateArgumentLoc(TemplateArgument(E), E); 2474 } 2475 2476 case TemplateArgument::Template: 2477 case TemplateArgument::TemplateExpansion: { 2478 NestedNameSpecifierLocBuilder Builder; 2479 TemplateName Template = Arg.getAsTemplate(); 2480 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2481 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2482 else if (QualifiedTemplateName *QTN = 2483 Template.getAsQualifiedTemplateName()) 2484 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2485 2486 if (Arg.getKind() == TemplateArgument::Template) 2487 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2488 Loc); 2489 2490 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2491 Loc, Loc); 2492 } 2493 2494 case TemplateArgument::Expression: 2495 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2496 2497 case TemplateArgument::Pack: 2498 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2499 } 2500 2501 llvm_unreachable("Invalid TemplateArgument Kind!"); 2502 } 2503 2504 /// Convert the given deduced template argument and add it to the set of 2505 /// fully-converted template arguments. 2506 static bool 2507 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2508 DeducedTemplateArgument Arg, 2509 NamedDecl *Template, 2510 TemplateDeductionInfo &Info, 2511 bool IsDeduced, 2512 SmallVectorImpl<TemplateArgument> &Output) { 2513 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2514 unsigned ArgumentPackIndex) { 2515 // Convert the deduced template argument into a template 2516 // argument that we can check, almost as if the user had written 2517 // the template argument explicitly. 2518 TemplateArgumentLoc ArgLoc = 2519 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2520 2521 // Check the template argument, converting it as necessary. 2522 return S.CheckTemplateArgument( 2523 Param, ArgLoc, Template, Template->getLocation(), 2524 Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, 2525 IsDeduced 2526 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2527 : Sema::CTAK_Deduced) 2528 : Sema::CTAK_Specified); 2529 }; 2530 2531 if (Arg.getKind() == TemplateArgument::Pack) { 2532 // This is a template argument pack, so check each of its arguments against 2533 // the template parameter. 2534 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2535 for (const auto &P : Arg.pack_elements()) { 2536 // When converting the deduced template argument, append it to the 2537 // general output list. We need to do this so that the template argument 2538 // checking logic has all of the prior template arguments available. 2539 DeducedTemplateArgument InnerArg(P); 2540 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2541 assert(InnerArg.getKind() != TemplateArgument::Pack && 2542 "deduced nested pack"); 2543 if (P.isNull()) { 2544 // We deduced arguments for some elements of this pack, but not for 2545 // all of them. This happens if we get a conditionally-non-deduced 2546 // context in a pack expansion (such as an overload set in one of the 2547 // arguments). 2548 S.Diag(Param->getLocation(), 2549 diag::err_template_arg_deduced_incomplete_pack) 2550 << Arg << Param; 2551 return true; 2552 } 2553 if (ConvertArg(InnerArg, PackedArgsBuilder.size())) 2554 return true; 2555 2556 // Move the converted template argument into our argument pack. 2557 PackedArgsBuilder.push_back(Output.pop_back_val()); 2558 } 2559 2560 // If the pack is empty, we still need to substitute into the parameter 2561 // itself, in case that substitution fails. 2562 if (PackedArgsBuilder.empty()) { 2563 LocalInstantiationScope Scope(S); 2564 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); 2565 MultiLevelTemplateArgumentList Args(TemplateArgs); 2566 2567 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2568 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2569 NTTP, Output, 2570 Template->getSourceRange()); 2571 if (Inst.isInvalid() || 2572 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2573 NTTP->getDeclName()).isNull()) 2574 return true; 2575 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2576 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2577 TTP, Output, 2578 Template->getSourceRange()); 2579 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2580 return true; 2581 } 2582 // For type parameters, no substitution is ever required. 2583 } 2584 2585 // Create the resulting argument pack. 2586 Output.push_back( 2587 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2588 return false; 2589 } 2590 2591 return ConvertArg(Arg, 0); 2592 } 2593 2594 // FIXME: This should not be a template, but 2595 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2596 // TemplateDecl. 2597 template<typename TemplateDeclT> 2598 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2599 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2600 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2601 TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, 2602 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2603 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2604 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2605 2606 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2607 NamedDecl *Param = TemplateParams->getParam(I); 2608 2609 // C++0x [temp.arg.explicit]p3: 2610 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2611 // be deduced to an empty sequence of template arguments. 2612 // FIXME: Where did the word "trailing" come from? 2613 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2614 if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I) 2615 .finish(/*TreatNoDeductionsAsNonDeduced*/false)) 2616 return Result; 2617 } 2618 2619 if (!Deduced[I].isNull()) { 2620 if (I < NumAlreadyConverted) { 2621 // We may have had explicitly-specified template arguments for a 2622 // template parameter pack (that may or may not have been extended 2623 // via additional deduced arguments). 2624 if (Param->isParameterPack() && CurrentInstantiationScope && 2625 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2626 // Forget the partially-substituted pack; its substitution is now 2627 // complete. 2628 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2629 // We still need to check the argument in case it was extended by 2630 // deduction. 2631 } else { 2632 // We have already fully type-checked and converted this 2633 // argument, because it was explicitly-specified. Just record the 2634 // presence of this argument. 2635 Builder.push_back(Deduced[I]); 2636 continue; 2637 } 2638 } 2639 2640 // We may have deduced this argument, so it still needs to be 2641 // checked and converted. 2642 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2643 IsDeduced, Builder)) { 2644 Info.Param = makeTemplateParameter(Param); 2645 // FIXME: These template arguments are temporary. Free them! 2646 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2647 return Sema::TDK_SubstitutionFailure; 2648 } 2649 2650 continue; 2651 } 2652 2653 // Substitute into the default template argument, if available. 2654 bool HasDefaultArg = false; 2655 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2656 if (!TD) { 2657 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2658 isa<VarTemplatePartialSpecializationDecl>(Template)); 2659 return Sema::TDK_Incomplete; 2660 } 2661 2662 TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2663 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, 2664 HasDefaultArg); 2665 2666 // If there was no default argument, deduction is incomplete. 2667 if (DefArg.getArgument().isNull()) { 2668 Info.Param = makeTemplateParameter( 2669 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2670 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2671 if (PartialOverloading) break; 2672 2673 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2674 : Sema::TDK_Incomplete; 2675 } 2676 2677 // Check whether we can actually use the default argument. 2678 if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), 2679 TD->getSourceRange().getEnd(), 0, Builder, 2680 Sema::CTAK_Specified)) { 2681 Info.Param = makeTemplateParameter( 2682 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2683 // FIXME: These template arguments are temporary. Free them! 2684 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2685 return Sema::TDK_SubstitutionFailure; 2686 } 2687 2688 // If we get here, we successfully used the default template argument. 2689 } 2690 2691 return Sema::TDK_Success; 2692 } 2693 2694 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2695 if (auto *DC = dyn_cast<DeclContext>(D)) 2696 return DC; 2697 return D->getDeclContext(); 2698 } 2699 2700 template<typename T> struct IsPartialSpecialization { 2701 static constexpr bool value = false; 2702 }; 2703 template<> 2704 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2705 static constexpr bool value = true; 2706 }; 2707 template<> 2708 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2709 static constexpr bool value = true; 2710 }; 2711 2712 /// Complete template argument deduction for a partial specialization. 2713 template <typename T> 2714 static typename std::enable_if<IsPartialSpecialization<T>::value, 2715 Sema::TemplateDeductionResult>::type 2716 FinishTemplateArgumentDeduction( 2717 Sema &S, T *Partial, bool IsPartialOrdering, 2718 const TemplateArgumentList &TemplateArgs, 2719 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2720 TemplateDeductionInfo &Info) { 2721 // Unevaluated SFINAE context. 2722 EnterExpressionEvaluationContext Unevaluated( 2723 S, Sema::ExpressionEvaluationContext::Unevaluated); 2724 Sema::SFINAETrap Trap(S); 2725 2726 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2727 2728 // C++ [temp.deduct.type]p2: 2729 // [...] or if any template argument remains neither deduced nor 2730 // explicitly specified, template argument deduction fails. 2731 SmallVector<TemplateArgument, 4> Builder; 2732 if (auto Result = ConvertDeducedTemplateArguments( 2733 S, Partial, IsPartialOrdering, Deduced, Info, Builder)) 2734 return Result; 2735 2736 // Form the template argument list from the deduced template arguments. 2737 TemplateArgumentList *DeducedArgumentList 2738 = TemplateArgumentList::CreateCopy(S.Context, Builder); 2739 2740 Info.reset(DeducedArgumentList); 2741 2742 // Substitute the deduced template arguments into the template 2743 // arguments of the class template partial specialization, and 2744 // verify that the instantiated template arguments are both valid 2745 // and are equivalent to the template arguments originally provided 2746 // to the class template. 2747 LocalInstantiationScope InstScope(S); 2748 auto *Template = Partial->getSpecializedTemplate(); 2749 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2750 Partial->getTemplateArgsAsWritten(); 2751 const TemplateArgumentLoc *PartialTemplateArgs = 2752 PartialTemplArgInfo->getTemplateArgs(); 2753 2754 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2755 PartialTemplArgInfo->RAngleLoc); 2756 2757 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2758 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2759 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2760 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2761 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2762 2763 Decl *Param = const_cast<NamedDecl *>( 2764 Partial->getTemplateParameters()->getParam(ParamIdx)); 2765 Info.Param = makeTemplateParameter(Param); 2766 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2767 return Sema::TDK_SubstitutionFailure; 2768 } 2769 2770 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2771 if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, 2772 false, ConvertedInstArgs)) 2773 return Sema::TDK_SubstitutionFailure; 2774 2775 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2776 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2777 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2778 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2779 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2780 Info.FirstArg = TemplateArgs[I]; 2781 Info.SecondArg = InstArg; 2782 return Sema::TDK_NonDeducedMismatch; 2783 } 2784 } 2785 2786 if (Trap.hasErrorOccurred()) 2787 return Sema::TDK_SubstitutionFailure; 2788 2789 return Sema::TDK_Success; 2790 } 2791 2792 /// Complete template argument deduction for a class or variable template, 2793 /// when partial ordering against a partial specialization. 2794 // FIXME: Factor out duplication with partial specialization version above. 2795 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2796 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2797 const TemplateArgumentList &TemplateArgs, 2798 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2799 TemplateDeductionInfo &Info) { 2800 // Unevaluated SFINAE context. 2801 EnterExpressionEvaluationContext Unevaluated( 2802 S, Sema::ExpressionEvaluationContext::Unevaluated); 2803 Sema::SFINAETrap Trap(S); 2804 2805 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 2806 2807 // C++ [temp.deduct.type]p2: 2808 // [...] or if any template argument remains neither deduced nor 2809 // explicitly specified, template argument deduction fails. 2810 SmallVector<TemplateArgument, 4> Builder; 2811 if (auto Result = ConvertDeducedTemplateArguments( 2812 S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) 2813 return Result; 2814 2815 // Check that we produced the correct argument list. 2816 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2817 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2818 TemplateArgument InstArg = Builder[I]; 2819 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2820 /*PackExpansionMatchesPack*/true)) { 2821 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2822 Info.FirstArg = TemplateArgs[I]; 2823 Info.SecondArg = InstArg; 2824 return Sema::TDK_NonDeducedMismatch; 2825 } 2826 } 2827 2828 if (Trap.hasErrorOccurred()) 2829 return Sema::TDK_SubstitutionFailure; 2830 2831 return Sema::TDK_Success; 2832 } 2833 2834 2835 /// Perform template argument deduction to determine whether 2836 /// the given template arguments match the given class template 2837 /// partial specialization per C++ [temp.class.spec.match]. 2838 Sema::TemplateDeductionResult 2839 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2840 const TemplateArgumentList &TemplateArgs, 2841 TemplateDeductionInfo &Info) { 2842 if (Partial->isInvalidDecl()) 2843 return TDK_Invalid; 2844 2845 // C++ [temp.class.spec.match]p2: 2846 // A partial specialization matches a given actual template 2847 // argument list if the template arguments of the partial 2848 // specialization can be deduced from the actual template argument 2849 // list (14.8.2). 2850 2851 // Unevaluated SFINAE context. 2852 EnterExpressionEvaluationContext Unevaluated( 2853 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2854 SFINAETrap Trap(*this); 2855 2856 SmallVector<DeducedTemplateArgument, 4> Deduced; 2857 Deduced.resize(Partial->getTemplateParameters()->size()); 2858 if (TemplateDeductionResult Result 2859 = ::DeduceTemplateArguments(*this, 2860 Partial->getTemplateParameters(), 2861 Partial->getTemplateArgs(), 2862 TemplateArgs, Info, Deduced)) 2863 return Result; 2864 2865 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2866 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2867 Info); 2868 if (Inst.isInvalid()) 2869 return TDK_InstantiationDepth; 2870 2871 if (Trap.hasErrorOccurred()) 2872 return Sema::TDK_SubstitutionFailure; 2873 2874 return ::FinishTemplateArgumentDeduction( 2875 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2876 } 2877 2878 /// Perform template argument deduction to determine whether 2879 /// the given template arguments match the given variable template 2880 /// partial specialization per C++ [temp.class.spec.match]. 2881 Sema::TemplateDeductionResult 2882 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 2883 const TemplateArgumentList &TemplateArgs, 2884 TemplateDeductionInfo &Info) { 2885 if (Partial->isInvalidDecl()) 2886 return TDK_Invalid; 2887 2888 // C++ [temp.class.spec.match]p2: 2889 // A partial specialization matches a given actual template 2890 // argument list if the template arguments of the partial 2891 // specialization can be deduced from the actual template argument 2892 // list (14.8.2). 2893 2894 // Unevaluated SFINAE context. 2895 EnterExpressionEvaluationContext Unevaluated( 2896 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2897 SFINAETrap Trap(*this); 2898 2899 SmallVector<DeducedTemplateArgument, 4> Deduced; 2900 Deduced.resize(Partial->getTemplateParameters()->size()); 2901 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 2902 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 2903 TemplateArgs, Info, Deduced)) 2904 return Result; 2905 2906 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2907 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2908 Info); 2909 if (Inst.isInvalid()) 2910 return TDK_InstantiationDepth; 2911 2912 if (Trap.hasErrorOccurred()) 2913 return Sema::TDK_SubstitutionFailure; 2914 2915 return ::FinishTemplateArgumentDeduction( 2916 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2917 } 2918 2919 /// Determine whether the given type T is a simple-template-id type. 2920 static bool isSimpleTemplateIdType(QualType T) { 2921 if (const TemplateSpecializationType *Spec 2922 = T->getAs<TemplateSpecializationType>()) 2923 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 2924 2925 // C++17 [temp.local]p2: 2926 // the injected-class-name [...] is equivalent to the template-name followed 2927 // by the template-arguments of the class template specialization or partial 2928 // specialization enclosed in <> 2929 // ... which means it's equivalent to a simple-template-id. 2930 // 2931 // This only arises during class template argument deduction for a copy 2932 // deduction candidate, where it permits slicing. 2933 if (T->getAs<InjectedClassNameType>()) 2934 return true; 2935 2936 return false; 2937 } 2938 2939 /// Substitute the explicitly-provided template arguments into the 2940 /// given function template according to C++ [temp.arg.explicit]. 2941 /// 2942 /// \param FunctionTemplate the function template into which the explicit 2943 /// template arguments will be substituted. 2944 /// 2945 /// \param ExplicitTemplateArgs the explicitly-specified template 2946 /// arguments. 2947 /// 2948 /// \param Deduced the deduced template arguments, which will be populated 2949 /// with the converted and checked explicit template arguments. 2950 /// 2951 /// \param ParamTypes will be populated with the instantiated function 2952 /// parameters. 2953 /// 2954 /// \param FunctionType if non-NULL, the result type of the function template 2955 /// will also be instantiated and the pointed-to value will be updated with 2956 /// the instantiated function type. 2957 /// 2958 /// \param Info if substitution fails for any reason, this object will be 2959 /// populated with more information about the failure. 2960 /// 2961 /// \returns TDK_Success if substitution was successful, or some failure 2962 /// condition. 2963 Sema::TemplateDeductionResult 2964 Sema::SubstituteExplicitTemplateArguments( 2965 FunctionTemplateDecl *FunctionTemplate, 2966 TemplateArgumentListInfo &ExplicitTemplateArgs, 2967 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2968 SmallVectorImpl<QualType> &ParamTypes, 2969 QualType *FunctionType, 2970 TemplateDeductionInfo &Info) { 2971 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 2972 TemplateParameterList *TemplateParams 2973 = FunctionTemplate->getTemplateParameters(); 2974 2975 if (ExplicitTemplateArgs.size() == 0) { 2976 // No arguments to substitute; just copy over the parameter types and 2977 // fill in the function type. 2978 for (auto P : Function->parameters()) 2979 ParamTypes.push_back(P->getType()); 2980 2981 if (FunctionType) 2982 *FunctionType = Function->getType(); 2983 return TDK_Success; 2984 } 2985 2986 // Unevaluated SFINAE context. 2987 EnterExpressionEvaluationContext Unevaluated( 2988 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2989 SFINAETrap Trap(*this); 2990 2991 // C++ [temp.arg.explicit]p3: 2992 // Template arguments that are present shall be specified in the 2993 // declaration order of their corresponding template-parameters. The 2994 // template argument list shall not specify more template-arguments than 2995 // there are corresponding template-parameters. 2996 SmallVector<TemplateArgument, 4> Builder; 2997 2998 // Enter a new template instantiation context where we check the 2999 // explicitly-specified template arguments against this function template, 3000 // and then substitute them into the function parameter types. 3001 SmallVector<TemplateArgument, 4> DeducedArgs; 3002 InstantiatingTemplate Inst( 3003 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3004 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3005 if (Inst.isInvalid()) 3006 return TDK_InstantiationDepth; 3007 3008 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3009 ExplicitTemplateArgs, true, Builder, false) || 3010 Trap.hasErrorOccurred()) { 3011 unsigned Index = Builder.size(); 3012 if (Index >= TemplateParams->size()) 3013 return TDK_SubstitutionFailure; 3014 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3015 return TDK_InvalidExplicitArguments; 3016 } 3017 3018 // Form the template argument list from the explicitly-specified 3019 // template arguments. 3020 TemplateArgumentList *ExplicitArgumentList 3021 = TemplateArgumentList::CreateCopy(Context, Builder); 3022 Info.setExplicitArgs(ExplicitArgumentList); 3023 3024 // Template argument deduction and the final substitution should be 3025 // done in the context of the templated declaration. Explicit 3026 // argument substitution, on the other hand, needs to happen in the 3027 // calling context. 3028 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3029 3030 // If we deduced template arguments for a template parameter pack, 3031 // note that the template argument pack is partially substituted and record 3032 // the explicit template arguments. They'll be used as part of deduction 3033 // for this template parameter pack. 3034 unsigned PartiallySubstitutedPackIndex = -1u; 3035 if (!Builder.empty()) { 3036 const TemplateArgument &Arg = Builder.back(); 3037 if (Arg.getKind() == TemplateArgument::Pack) { 3038 auto *Param = TemplateParams->getParam(Builder.size() - 1); 3039 // If this is a fully-saturated fixed-size pack, it should be 3040 // fully-substituted, not partially-substituted. 3041 Optional<unsigned> Expansions = getExpandedPackSize(Param); 3042 if (!Expansions || Arg.pack_size() < *Expansions) { 3043 PartiallySubstitutedPackIndex = Builder.size() - 1; 3044 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3045 Param, Arg.pack_begin(), Arg.pack_size()); 3046 } 3047 } 3048 } 3049 3050 const FunctionProtoType *Proto 3051 = Function->getType()->getAs<FunctionProtoType>(); 3052 assert(Proto && "Function template does not have a prototype?"); 3053 3054 // Isolate our substituted parameters from our caller. 3055 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3056 3057 ExtParameterInfoBuilder ExtParamInfos; 3058 3059 // Instantiate the types of each of the function parameters given the 3060 // explicitly-specified template arguments. If the function has a trailing 3061 // return type, substitute it after the arguments to ensure we substitute 3062 // in lexical order. 3063 if (Proto->hasTrailingReturn()) { 3064 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3065 Proto->getExtParameterInfosOrNull(), 3066 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3067 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3068 return TDK_SubstitutionFailure; 3069 } 3070 3071 // Instantiate the return type. 3072 QualType ResultType; 3073 { 3074 // C++11 [expr.prim.general]p3: 3075 // If a declaration declares a member function or member function 3076 // template of a class X, the expression this is a prvalue of type 3077 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3078 // and the end of the function-definition, member-declarator, or 3079 // declarator. 3080 Qualifiers ThisTypeQuals; 3081 CXXRecordDecl *ThisContext = nullptr; 3082 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3083 ThisContext = Method->getParent(); 3084 ThisTypeQuals = Method->getMethodQualifiers(); 3085 } 3086 3087 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3088 getLangOpts().CPlusPlus11); 3089 3090 ResultType = 3091 SubstType(Proto->getReturnType(), 3092 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3093 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3094 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3095 return TDK_SubstitutionFailure; 3096 } 3097 3098 // Instantiate the types of each of the function parameters given the 3099 // explicitly-specified template arguments if we didn't do so earlier. 3100 if (!Proto->hasTrailingReturn() && 3101 SubstParmTypes(Function->getLocation(), Function->parameters(), 3102 Proto->getExtParameterInfosOrNull(), 3103 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3104 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3105 return TDK_SubstitutionFailure; 3106 3107 if (FunctionType) { 3108 auto EPI = Proto->getExtProtoInfo(); 3109 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3110 3111 // In C++1z onwards, exception specifications are part of the function type, 3112 // so substitution into the type must also substitute into the exception 3113 // specification. 3114 SmallVector<QualType, 4> ExceptionStorage; 3115 if (getLangOpts().CPlusPlus17 && 3116 SubstExceptionSpec( 3117 Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, 3118 MultiLevelTemplateArgumentList(*ExplicitArgumentList))) 3119 return TDK_SubstitutionFailure; 3120 3121 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3122 Function->getLocation(), 3123 Function->getDeclName(), 3124 EPI); 3125 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3126 return TDK_SubstitutionFailure; 3127 } 3128 3129 // C++ [temp.arg.explicit]p2: 3130 // Trailing template arguments that can be deduced (14.8.2) may be 3131 // omitted from the list of explicit template-arguments. If all of the 3132 // template arguments can be deduced, they may all be omitted; in this 3133 // case, the empty template argument list <> itself may also be omitted. 3134 // 3135 // Take all of the explicitly-specified arguments and put them into 3136 // the set of deduced template arguments. The partially-substituted 3137 // parameter pack, however, will be set to NULL since the deduction 3138 // mechanism handles the partially-substituted argument pack directly. 3139 Deduced.reserve(TemplateParams->size()); 3140 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 3141 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 3142 if (I == PartiallySubstitutedPackIndex) 3143 Deduced.push_back(DeducedTemplateArgument()); 3144 else 3145 Deduced.push_back(Arg); 3146 } 3147 3148 return TDK_Success; 3149 } 3150 3151 /// Check whether the deduced argument type for a call to a function 3152 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3153 static Sema::TemplateDeductionResult 3154 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3155 Sema::OriginalCallArg OriginalArg, 3156 QualType DeducedA) { 3157 ASTContext &Context = S.Context; 3158 3159 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3160 Info.FirstArg = TemplateArgument(DeducedA); 3161 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3162 Info.CallArgIndex = OriginalArg.ArgIdx; 3163 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3164 : Sema::TDK_DeducedMismatch; 3165 }; 3166 3167 QualType A = OriginalArg.OriginalArgType; 3168 QualType OriginalParamType = OriginalArg.OriginalParamType; 3169 3170 // Check for type equality (top-level cv-qualifiers are ignored). 3171 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3172 return Sema::TDK_Success; 3173 3174 // Strip off references on the argument types; they aren't needed for 3175 // the following checks. 3176 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3177 DeducedA = DeducedARef->getPointeeType(); 3178 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3179 A = ARef->getPointeeType(); 3180 3181 // C++ [temp.deduct.call]p4: 3182 // [...] However, there are three cases that allow a difference: 3183 // - If the original P is a reference type, the deduced A (i.e., the 3184 // type referred to by the reference) can be more cv-qualified than 3185 // the transformed A. 3186 if (const ReferenceType *OriginalParamRef 3187 = OriginalParamType->getAs<ReferenceType>()) { 3188 // We don't want to keep the reference around any more. 3189 OriginalParamType = OriginalParamRef->getPointeeType(); 3190 3191 // FIXME: Resolve core issue (no number yet): if the original P is a 3192 // reference type and the transformed A is function type "noexcept F", 3193 // the deduced A can be F. 3194 QualType Tmp; 3195 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3196 return Sema::TDK_Success; 3197 3198 Qualifiers AQuals = A.getQualifiers(); 3199 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3200 3201 // Under Objective-C++ ARC, the deduced type may have implicitly 3202 // been given strong or (when dealing with a const reference) 3203 // unsafe_unretained lifetime. If so, update the original 3204 // qualifiers to include this lifetime. 3205 if (S.getLangOpts().ObjCAutoRefCount && 3206 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3207 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3208 (DeducedAQuals.hasConst() && 3209 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3210 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3211 } 3212 3213 if (AQuals == DeducedAQuals) { 3214 // Qualifiers match; there's nothing to do. 3215 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3216 return Failed(); 3217 } else { 3218 // Qualifiers are compatible, so have the argument type adopt the 3219 // deduced argument type's qualifiers as if we had performed the 3220 // qualification conversion. 3221 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3222 } 3223 } 3224 3225 // - The transformed A can be another pointer or pointer to member 3226 // type that can be converted to the deduced A via a function pointer 3227 // conversion and/or a qualification conversion. 3228 // 3229 // Also allow conversions which merely strip __attribute__((noreturn)) from 3230 // function types (recursively). 3231 bool ObjCLifetimeConversion = false; 3232 QualType ResultTy; 3233 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3234 (S.IsQualificationConversion(A, DeducedA, false, 3235 ObjCLifetimeConversion) || 3236 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3237 return Sema::TDK_Success; 3238 3239 // - If P is a class and P has the form simple-template-id, then the 3240 // transformed A can be a derived class of the deduced A. [...] 3241 // [...] Likewise, if P is a pointer to a class of the form 3242 // simple-template-id, the transformed A can be a pointer to a 3243 // derived class pointed to by the deduced A. 3244 if (const PointerType *OriginalParamPtr 3245 = OriginalParamType->getAs<PointerType>()) { 3246 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3247 if (const PointerType *APtr = A->getAs<PointerType>()) { 3248 if (A->getPointeeType()->isRecordType()) { 3249 OriginalParamType = OriginalParamPtr->getPointeeType(); 3250 DeducedA = DeducedAPtr->getPointeeType(); 3251 A = APtr->getPointeeType(); 3252 } 3253 } 3254 } 3255 } 3256 3257 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3258 return Sema::TDK_Success; 3259 3260 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3261 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3262 return Sema::TDK_Success; 3263 3264 return Failed(); 3265 } 3266 3267 /// Find the pack index for a particular parameter index in an instantiation of 3268 /// a function template with specific arguments. 3269 /// 3270 /// \return The pack index for whichever pack produced this parameter, or -1 3271 /// if this was not produced by a parameter. Intended to be used as the 3272 /// ArgumentPackSubstitutionIndex for further substitutions. 3273 // FIXME: We should track this in OriginalCallArgs so we don't need to 3274 // reconstruct it here. 3275 static unsigned getPackIndexForParam(Sema &S, 3276 FunctionTemplateDecl *FunctionTemplate, 3277 const MultiLevelTemplateArgumentList &Args, 3278 unsigned ParamIdx) { 3279 unsigned Idx = 0; 3280 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3281 if (PD->isParameterPack()) { 3282 unsigned NumExpansions = 3283 S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); 3284 if (Idx + NumExpansions > ParamIdx) 3285 return ParamIdx - Idx; 3286 Idx += NumExpansions; 3287 } else { 3288 if (Idx == ParamIdx) 3289 return -1; // Not a pack expansion 3290 ++Idx; 3291 } 3292 } 3293 3294 llvm_unreachable("parameter index would not be produced from template"); 3295 } 3296 3297 /// Finish template argument deduction for a function template, 3298 /// checking the deduced template arguments for completeness and forming 3299 /// the function template specialization. 3300 /// 3301 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3302 /// which the deduced argument types should be compared. 3303 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3304 FunctionTemplateDecl *FunctionTemplate, 3305 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3306 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3307 TemplateDeductionInfo &Info, 3308 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3309 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3310 // Unevaluated SFINAE context. 3311 EnterExpressionEvaluationContext Unevaluated( 3312 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3313 SFINAETrap Trap(*this); 3314 3315 // Enter a new template instantiation context while we instantiate the 3316 // actual function declaration. 3317 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3318 InstantiatingTemplate Inst( 3319 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3320 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3321 if (Inst.isInvalid()) 3322 return TDK_InstantiationDepth; 3323 3324 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3325 3326 // C++ [temp.deduct.type]p2: 3327 // [...] or if any template argument remains neither deduced nor 3328 // explicitly specified, template argument deduction fails. 3329 SmallVector<TemplateArgument, 4> Builder; 3330 if (auto Result = ConvertDeducedTemplateArguments( 3331 *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, 3332 CurrentInstantiationScope, NumExplicitlySpecified, 3333 PartialOverloading)) 3334 return Result; 3335 3336 // C++ [temp.deduct.call]p10: [DR1391] 3337 // If deduction succeeds for all parameters that contain 3338 // template-parameters that participate in template argument deduction, 3339 // and all template arguments are explicitly specified, deduced, or 3340 // obtained from default template arguments, remaining parameters are then 3341 // compared with the corresponding arguments. For each remaining parameter 3342 // P with a type that was non-dependent before substitution of any 3343 // explicitly-specified template arguments, if the corresponding argument 3344 // A cannot be implicitly converted to P, deduction fails. 3345 if (CheckNonDependent()) 3346 return TDK_NonDependentConversionFailure; 3347 3348 // Form the template argument list from the deduced template arguments. 3349 TemplateArgumentList *DeducedArgumentList 3350 = TemplateArgumentList::CreateCopy(Context, Builder); 3351 Info.reset(DeducedArgumentList); 3352 3353 // Substitute the deduced template arguments into the function template 3354 // declaration to produce the function template specialization. 3355 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3356 if (FunctionTemplate->getFriendObjectKind()) 3357 Owner = FunctionTemplate->getLexicalDeclContext(); 3358 MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); 3359 Specialization = cast_or_null<FunctionDecl>( 3360 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3361 if (!Specialization || Specialization->isInvalidDecl()) 3362 return TDK_SubstitutionFailure; 3363 3364 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3365 FunctionTemplate->getCanonicalDecl()); 3366 3367 // If the template argument list is owned by the function template 3368 // specialization, release it. 3369 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 3370 !Trap.hasErrorOccurred()) 3371 Info.take(); 3372 3373 // There may have been an error that did not prevent us from constructing a 3374 // declaration. Mark the declaration invalid and return with a substitution 3375 // failure. 3376 if (Trap.hasErrorOccurred()) { 3377 Specialization->setInvalidDecl(true); 3378 return TDK_SubstitutionFailure; 3379 } 3380 3381 if (OriginalCallArgs) { 3382 // C++ [temp.deduct.call]p4: 3383 // In general, the deduction process attempts to find template argument 3384 // values that will make the deduced A identical to A (after the type A 3385 // is transformed as described above). [...] 3386 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3387 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3388 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3389 3390 auto ParamIdx = OriginalArg.ArgIdx; 3391 if (ParamIdx >= Specialization->getNumParams()) 3392 // FIXME: This presumably means a pack ended up smaller than we 3393 // expected while deducing. Should this not result in deduction 3394 // failure? Can it even happen? 3395 continue; 3396 3397 QualType DeducedA; 3398 if (!OriginalArg.DecomposedParam) { 3399 // P is one of the function parameters, just look up its substituted 3400 // type. 3401 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3402 } else { 3403 // P is a decomposed element of a parameter corresponding to a 3404 // braced-init-list argument. Substitute back into P to find the 3405 // deduced A. 3406 QualType &CacheEntry = 3407 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3408 if (CacheEntry.isNull()) { 3409 ArgumentPackSubstitutionIndexRAII PackIndex( 3410 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3411 ParamIdx)); 3412 CacheEntry = 3413 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3414 Specialization->getTypeSpecStartLoc(), 3415 Specialization->getDeclName()); 3416 } 3417 DeducedA = CacheEntry; 3418 } 3419 3420 if (auto TDK = 3421 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3422 return TDK; 3423 } 3424 } 3425 3426 // If we suppressed any diagnostics while performing template argument 3427 // deduction, and if we haven't already instantiated this declaration, 3428 // keep track of these diagnostics. They'll be emitted if this specialization 3429 // is actually used. 3430 if (Info.diag_begin() != Info.diag_end()) { 3431 SuppressedDiagnosticsMap::iterator 3432 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3433 if (Pos == SuppressedDiagnostics.end()) 3434 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3435 .append(Info.diag_begin(), Info.diag_end()); 3436 } 3437 3438 return TDK_Success; 3439 } 3440 3441 /// Gets the type of a function for template-argument-deducton 3442 /// purposes when it's considered as part of an overload set. 3443 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3444 FunctionDecl *Fn) { 3445 // We may need to deduce the return type of the function now. 3446 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3447 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3448 return {}; 3449 3450 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3451 if (Method->isInstance()) { 3452 // An instance method that's referenced in a form that doesn't 3453 // look like a member pointer is just invalid. 3454 if (!R.HasFormOfMemberPointer) 3455 return {}; 3456 3457 return S.Context.getMemberPointerType(Fn->getType(), 3458 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3459 } 3460 3461 if (!R.IsAddressOfOperand) return Fn->getType(); 3462 return S.Context.getPointerType(Fn->getType()); 3463 } 3464 3465 /// Apply the deduction rules for overload sets. 3466 /// 3467 /// \return the null type if this argument should be treated as an 3468 /// undeduced context 3469 static QualType 3470 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3471 Expr *Arg, QualType ParamType, 3472 bool ParamWasReference) { 3473 3474 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3475 3476 OverloadExpr *Ovl = R.Expression; 3477 3478 // C++0x [temp.deduct.call]p4 3479 unsigned TDF = 0; 3480 if (ParamWasReference) 3481 TDF |= TDF_ParamWithReferenceType; 3482 if (R.IsAddressOfOperand) 3483 TDF |= TDF_IgnoreQualifiers; 3484 3485 // C++0x [temp.deduct.call]p6: 3486 // When P is a function type, pointer to function type, or pointer 3487 // to member function type: 3488 3489 if (!ParamType->isFunctionType() && 3490 !ParamType->isFunctionPointerType() && 3491 !ParamType->isMemberFunctionPointerType()) { 3492 if (Ovl->hasExplicitTemplateArgs()) { 3493 // But we can still look for an explicit specialization. 3494 if (FunctionDecl *ExplicitSpec 3495 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3496 return GetTypeOfFunction(S, R, ExplicitSpec); 3497 } 3498 3499 DeclAccessPair DAP; 3500 if (FunctionDecl *Viable = 3501 S.resolveAddressOfOnlyViableOverloadCandidate(Arg, DAP)) 3502 return GetTypeOfFunction(S, R, Viable); 3503 3504 return {}; 3505 } 3506 3507 // Gather the explicit template arguments, if any. 3508 TemplateArgumentListInfo ExplicitTemplateArgs; 3509 if (Ovl->hasExplicitTemplateArgs()) 3510 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3511 QualType Match; 3512 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3513 E = Ovl->decls_end(); I != E; ++I) { 3514 NamedDecl *D = (*I)->getUnderlyingDecl(); 3515 3516 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3517 // - If the argument is an overload set containing one or more 3518 // function templates, the parameter is treated as a 3519 // non-deduced context. 3520 if (!Ovl->hasExplicitTemplateArgs()) 3521 return {}; 3522 3523 // Otherwise, see if we can resolve a function type 3524 FunctionDecl *Specialization = nullptr; 3525 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3526 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3527 Specialization, Info)) 3528 continue; 3529 3530 D = Specialization; 3531 } 3532 3533 FunctionDecl *Fn = cast<FunctionDecl>(D); 3534 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3535 if (ArgType.isNull()) continue; 3536 3537 // Function-to-pointer conversion. 3538 if (!ParamWasReference && ParamType->isPointerType() && 3539 ArgType->isFunctionType()) 3540 ArgType = S.Context.getPointerType(ArgType); 3541 3542 // - If the argument is an overload set (not containing function 3543 // templates), trial argument deduction is attempted using each 3544 // of the members of the set. If deduction succeeds for only one 3545 // of the overload set members, that member is used as the 3546 // argument value for the deduction. If deduction succeeds for 3547 // more than one member of the overload set the parameter is 3548 // treated as a non-deduced context. 3549 3550 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3551 // Type deduction is done independently for each P/A pair, and 3552 // the deduced template argument values are then combined. 3553 // So we do not reject deductions which were made elsewhere. 3554 SmallVector<DeducedTemplateArgument, 8> 3555 Deduced(TemplateParams->size()); 3556 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3557 Sema::TemplateDeductionResult Result 3558 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3559 ArgType, Info, Deduced, TDF); 3560 if (Result) continue; 3561 if (!Match.isNull()) 3562 return {}; 3563 Match = ArgType; 3564 } 3565 3566 return Match; 3567 } 3568 3569 /// Perform the adjustments to the parameter and argument types 3570 /// described in C++ [temp.deduct.call]. 3571 /// 3572 /// \returns true if the caller should not attempt to perform any template 3573 /// argument deduction based on this P/A pair because the argument is an 3574 /// overloaded function set that could not be resolved. 3575 static bool AdjustFunctionParmAndArgTypesForDeduction( 3576 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3577 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3578 // C++0x [temp.deduct.call]p3: 3579 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3580 // are ignored for type deduction. 3581 if (ParamType.hasQualifiers()) 3582 ParamType = ParamType.getUnqualifiedType(); 3583 3584 // [...] If P is a reference type, the type referred to by P is 3585 // used for type deduction. 3586 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3587 if (ParamRefType) 3588 ParamType = ParamRefType->getPointeeType(); 3589 3590 // Overload sets usually make this parameter an undeduced context, 3591 // but there are sometimes special circumstances. Typically 3592 // involving a template-id-expr. 3593 if (ArgType == S.Context.OverloadTy) { 3594 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3595 Arg, ParamType, 3596 ParamRefType != nullptr); 3597 if (ArgType.isNull()) 3598 return true; 3599 } 3600 3601 if (ParamRefType) { 3602 // If the argument has incomplete array type, try to complete its type. 3603 if (ArgType->isIncompleteArrayType()) { 3604 S.completeExprArrayBound(Arg); 3605 ArgType = Arg->getType(); 3606 } 3607 3608 // C++1z [temp.deduct.call]p3: 3609 // If P is a forwarding reference and the argument is an lvalue, the type 3610 // "lvalue reference to A" is used in place of A for type deduction. 3611 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3612 Arg->isLValue()) 3613 ArgType = S.Context.getLValueReferenceType(ArgType); 3614 } else { 3615 // C++ [temp.deduct.call]p2: 3616 // If P is not a reference type: 3617 // - If A is an array type, the pointer type produced by the 3618 // array-to-pointer standard conversion (4.2) is used in place of 3619 // A for type deduction; otherwise, 3620 if (ArgType->isArrayType()) 3621 ArgType = S.Context.getArrayDecayedType(ArgType); 3622 // - If A is a function type, the pointer type produced by the 3623 // function-to-pointer standard conversion (4.3) is used in place 3624 // of A for type deduction; otherwise, 3625 else if (ArgType->isFunctionType()) 3626 ArgType = S.Context.getPointerType(ArgType); 3627 else { 3628 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3629 // type are ignored for type deduction. 3630 ArgType = ArgType.getUnqualifiedType(); 3631 } 3632 } 3633 3634 // C++0x [temp.deduct.call]p4: 3635 // In general, the deduction process attempts to find template argument 3636 // values that will make the deduced A identical to A (after the type A 3637 // is transformed as described above). [...] 3638 TDF = TDF_SkipNonDependent; 3639 3640 // - If the original P is a reference type, the deduced A (i.e., the 3641 // type referred to by the reference) can be more cv-qualified than 3642 // the transformed A. 3643 if (ParamRefType) 3644 TDF |= TDF_ParamWithReferenceType; 3645 // - The transformed A can be another pointer or pointer to member 3646 // type that can be converted to the deduced A via a qualification 3647 // conversion (4.4). 3648 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3649 ArgType->isObjCObjectPointerType()) 3650 TDF |= TDF_IgnoreQualifiers; 3651 // - If P is a class and P has the form simple-template-id, then the 3652 // transformed A can be a derived class of the deduced A. Likewise, 3653 // if P is a pointer to a class of the form simple-template-id, the 3654 // transformed A can be a pointer to a derived class pointed to by 3655 // the deduced A. 3656 if (isSimpleTemplateIdType(ParamType) || 3657 (isa<PointerType>(ParamType) && 3658 isSimpleTemplateIdType( 3659 ParamType->getAs<PointerType>()->getPointeeType()))) 3660 TDF |= TDF_DerivedClass; 3661 3662 return false; 3663 } 3664 3665 static bool 3666 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3667 QualType T); 3668 3669 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3670 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3671 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3672 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3673 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3674 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3675 3676 /// Attempt template argument deduction from an initializer list 3677 /// deemed to be an argument in a function call. 3678 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3679 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3680 InitListExpr *ILE, TemplateDeductionInfo &Info, 3681 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3682 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3683 unsigned TDF) { 3684 // C++ [temp.deduct.call]p1: (CWG 1591) 3685 // If removing references and cv-qualifiers from P gives 3686 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3687 // a non-empty initializer list, then deduction is performed instead for 3688 // each element of the initializer list, taking P0 as a function template 3689 // parameter type and the initializer element as its argument 3690 // 3691 // We've already removed references and cv-qualifiers here. 3692 if (!ILE->getNumInits()) 3693 return Sema::TDK_Success; 3694 3695 QualType ElTy; 3696 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3697 if (ArrTy) 3698 ElTy = ArrTy->getElementType(); 3699 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3700 // Otherwise, an initializer list argument causes the parameter to be 3701 // considered a non-deduced context 3702 return Sema::TDK_Success; 3703 } 3704 3705 // Deduction only needs to be done for dependent types. 3706 if (ElTy->isDependentType()) { 3707 for (Expr *E : ILE->inits()) { 3708 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3709 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3710 ArgIdx, TDF)) 3711 return Result; 3712 } 3713 } 3714 3715 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3716 // from the length of the initializer list. 3717 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3718 // Determine the array bound is something we can deduce. 3719 if (NonTypeTemplateParmDecl *NTTP = 3720 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3721 // We can perform template argument deduction for the given non-type 3722 // template parameter. 3723 // C++ [temp.deduct.type]p13: 3724 // The type of N in the type T[N] is std::size_t. 3725 QualType T = S.Context.getSizeType(); 3726 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3727 if (auto Result = DeduceNonTypeTemplateArgument( 3728 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3729 /*ArrayBound=*/true, Info, Deduced)) 3730 return Result; 3731 } 3732 } 3733 3734 return Sema::TDK_Success; 3735 } 3736 3737 /// Perform template argument deduction per [temp.deduct.call] for a 3738 /// single parameter / argument pair. 3739 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3740 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3741 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3742 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3743 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3744 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 3745 QualType ArgType = Arg->getType(); 3746 QualType OrigParamType = ParamType; 3747 3748 // If P is a reference type [...] 3749 // If P is a cv-qualified type [...] 3750 if (AdjustFunctionParmAndArgTypesForDeduction( 3751 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 3752 return Sema::TDK_Success; 3753 3754 // If [...] the argument is a non-empty initializer list [...] 3755 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 3756 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 3757 Deduced, OriginalCallArgs, ArgIdx, TDF); 3758 3759 // [...] the deduction process attempts to find template argument values 3760 // that will make the deduced A identical to A 3761 // 3762 // Keep track of the argument type and corresponding parameter index, 3763 // so we can check for compatibility between the deduced A and A. 3764 OriginalCallArgs.push_back( 3765 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 3766 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3767 ArgType, Info, Deduced, TDF); 3768 } 3769 3770 /// Perform template argument deduction from a function call 3771 /// (C++ [temp.deduct.call]). 3772 /// 3773 /// \param FunctionTemplate the function template for which we are performing 3774 /// template argument deduction. 3775 /// 3776 /// \param ExplicitTemplateArgs the explicit template arguments provided 3777 /// for this call. 3778 /// 3779 /// \param Args the function call arguments 3780 /// 3781 /// \param Specialization if template argument deduction was successful, 3782 /// this will be set to the function template specialization produced by 3783 /// template argument deduction. 3784 /// 3785 /// \param Info the argument will be updated to provide additional information 3786 /// about template argument deduction. 3787 /// 3788 /// \param CheckNonDependent A callback to invoke to check conversions for 3789 /// non-dependent parameters, between deduction and substitution, per DR1391. 3790 /// If this returns true, substitution will be skipped and we return 3791 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 3792 /// types (after substituting explicit template arguments). 3793 /// 3794 /// \returns the result of template argument deduction. 3795 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 3796 FunctionTemplateDecl *FunctionTemplate, 3797 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 3798 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 3799 bool PartialOverloading, 3800 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 3801 if (FunctionTemplate->isInvalidDecl()) 3802 return TDK_Invalid; 3803 3804 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3805 unsigned NumParams = Function->getNumParams(); 3806 3807 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 3808 3809 // C++ [temp.deduct.call]p1: 3810 // Template argument deduction is done by comparing each function template 3811 // parameter type (call it P) with the type of the corresponding argument 3812 // of the call (call it A) as described below. 3813 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 3814 return TDK_TooFewArguments; 3815 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 3816 const FunctionProtoType *Proto 3817 = Function->getType()->getAs<FunctionProtoType>(); 3818 if (Proto->isTemplateVariadic()) 3819 /* Do nothing */; 3820 else if (!Proto->isVariadic()) 3821 return TDK_TooManyArguments; 3822 } 3823 3824 // The types of the parameters from which we will perform template argument 3825 // deduction. 3826 LocalInstantiationScope InstScope(*this); 3827 TemplateParameterList *TemplateParams 3828 = FunctionTemplate->getTemplateParameters(); 3829 SmallVector<DeducedTemplateArgument, 4> Deduced; 3830 SmallVector<QualType, 8> ParamTypes; 3831 unsigned NumExplicitlySpecified = 0; 3832 if (ExplicitTemplateArgs) { 3833 TemplateDeductionResult Result = 3834 SubstituteExplicitTemplateArguments(FunctionTemplate, 3835 *ExplicitTemplateArgs, 3836 Deduced, 3837 ParamTypes, 3838 nullptr, 3839 Info); 3840 if (Result) 3841 return Result; 3842 3843 NumExplicitlySpecified = Deduced.size(); 3844 } else { 3845 // Just fill in the parameter types from the function declaration. 3846 for (unsigned I = 0; I != NumParams; ++I) 3847 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 3848 } 3849 3850 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 3851 3852 // Deduce an argument of type ParamType from an expression with index ArgIdx. 3853 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 3854 // C++ [demp.deduct.call]p1: (DR1391) 3855 // Template argument deduction is done by comparing each function template 3856 // parameter that contains template-parameters that participate in 3857 // template argument deduction ... 3858 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3859 return Sema::TDK_Success; 3860 3861 // ... with the type of the corresponding argument 3862 return DeduceTemplateArgumentsFromCallArgument( 3863 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 3864 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 3865 }; 3866 3867 // Deduce template arguments from the function parameters. 3868 Deduced.resize(TemplateParams->size()); 3869 SmallVector<QualType, 8> ParamTypesForArgChecking; 3870 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 3871 ParamIdx != NumParamTypes; ++ParamIdx) { 3872 QualType ParamType = ParamTypes[ParamIdx]; 3873 3874 const PackExpansionType *ParamExpansion = 3875 dyn_cast<PackExpansionType>(ParamType); 3876 if (!ParamExpansion) { 3877 // Simple case: matching a function parameter to a function argument. 3878 if (ArgIdx >= Args.size()) 3879 break; 3880 3881 ParamTypesForArgChecking.push_back(ParamType); 3882 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 3883 return Result; 3884 3885 continue; 3886 } 3887 3888 QualType ParamPattern = ParamExpansion->getPattern(); 3889 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 3890 ParamPattern); 3891 3892 // C++0x [temp.deduct.call]p1: 3893 // For a function parameter pack that occurs at the end of the 3894 // parameter-declaration-list, the type A of each remaining argument of 3895 // the call is compared with the type P of the declarator-id of the 3896 // function parameter pack. Each comparison deduces template arguments 3897 // for subsequent positions in the template parameter packs expanded by 3898 // the function parameter pack. When a function parameter pack appears 3899 // in a non-deduced context [not at the end of the list], the type of 3900 // that parameter pack is never deduced. 3901 // 3902 // FIXME: The above rule allows the size of the parameter pack to change 3903 // after we skip it (in the non-deduced case). That makes no sense, so 3904 // we instead notionally deduce the pack against N arguments, where N is 3905 // the length of the explicitly-specified pack if it's expanded by the 3906 // parameter pack and 0 otherwise, and we treat each deduction as a 3907 // non-deduced context. 3908 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 3909 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 3910 PackScope.nextPackElement(), ++ArgIdx) { 3911 ParamTypesForArgChecking.push_back(ParamPattern); 3912 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 3913 return Result; 3914 } 3915 } else { 3916 // If the parameter type contains an explicitly-specified pack that we 3917 // could not expand, skip the number of parameters notionally created 3918 // by the expansion. 3919 Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); 3920 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 3921 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 3922 ++I, ++ArgIdx) { 3923 ParamTypesForArgChecking.push_back(ParamPattern); 3924 // FIXME: Should we add OriginalCallArgs for these? What if the 3925 // corresponding argument is a list? 3926 PackScope.nextPackElement(); 3927 } 3928 } 3929 } 3930 3931 // Build argument packs for each of the parameter packs expanded by this 3932 // pack expansion. 3933 if (auto Result = PackScope.finish()) 3934 return Result; 3935 } 3936 3937 // Capture the context in which the function call is made. This is the context 3938 // that is needed when the accessibility of template arguments is checked. 3939 DeclContext *CallingCtx = CurContext; 3940 3941 return FinishTemplateArgumentDeduction( 3942 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 3943 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 3944 ContextRAII SavedContext(*this, CallingCtx); 3945 return CheckNonDependent(ParamTypesForArgChecking); 3946 }); 3947 } 3948 3949 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 3950 QualType FunctionType, 3951 bool AdjustExceptionSpec) { 3952 if (ArgFunctionType.isNull()) 3953 return ArgFunctionType; 3954 3955 const FunctionProtoType *FunctionTypeP = 3956 FunctionType->castAs<FunctionProtoType>(); 3957 const FunctionProtoType *ArgFunctionTypeP = 3958 ArgFunctionType->getAs<FunctionProtoType>(); 3959 3960 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 3961 bool Rebuild = false; 3962 3963 CallingConv CC = FunctionTypeP->getCallConv(); 3964 if (EPI.ExtInfo.getCC() != CC) { 3965 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 3966 Rebuild = true; 3967 } 3968 3969 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 3970 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 3971 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 3972 Rebuild = true; 3973 } 3974 3975 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 3976 ArgFunctionTypeP->hasExceptionSpec())) { 3977 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 3978 Rebuild = true; 3979 } 3980 3981 if (!Rebuild) 3982 return ArgFunctionType; 3983 3984 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 3985 ArgFunctionTypeP->getParamTypes(), EPI); 3986 } 3987 3988 /// Deduce template arguments when taking the address of a function 3989 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 3990 /// a template. 3991 /// 3992 /// \param FunctionTemplate the function template for which we are performing 3993 /// template argument deduction. 3994 /// 3995 /// \param ExplicitTemplateArgs the explicitly-specified template 3996 /// arguments. 3997 /// 3998 /// \param ArgFunctionType the function type that will be used as the 3999 /// "argument" type (A) when performing template argument deduction from the 4000 /// function template's function type. This type may be NULL, if there is no 4001 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4002 /// 4003 /// \param Specialization if template argument deduction was successful, 4004 /// this will be set to the function template specialization produced by 4005 /// template argument deduction. 4006 /// 4007 /// \param Info the argument will be updated to provide additional information 4008 /// about template argument deduction. 4009 /// 4010 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4011 /// the address of a function template per [temp.deduct.funcaddr] and 4012 /// [over.over]. If \c false, we are looking up a function template 4013 /// specialization based on its signature, per [temp.deduct.decl]. 4014 /// 4015 /// \returns the result of template argument deduction. 4016 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4017 FunctionTemplateDecl *FunctionTemplate, 4018 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4019 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4020 bool IsAddressOfFunction) { 4021 if (FunctionTemplate->isInvalidDecl()) 4022 return TDK_Invalid; 4023 4024 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4025 TemplateParameterList *TemplateParams 4026 = FunctionTemplate->getTemplateParameters(); 4027 QualType FunctionType = Function->getType(); 4028 4029 // Substitute any explicit template arguments. 4030 LocalInstantiationScope InstScope(*this); 4031 SmallVector<DeducedTemplateArgument, 4> Deduced; 4032 unsigned NumExplicitlySpecified = 0; 4033 SmallVector<QualType, 4> ParamTypes; 4034 if (ExplicitTemplateArgs) { 4035 if (TemplateDeductionResult Result 4036 = SubstituteExplicitTemplateArguments(FunctionTemplate, 4037 *ExplicitTemplateArgs, 4038 Deduced, ParamTypes, 4039 &FunctionType, Info)) 4040 return Result; 4041 4042 NumExplicitlySpecified = Deduced.size(); 4043 } 4044 4045 // When taking the address of a function, we require convertibility of 4046 // the resulting function type. Otherwise, we allow arbitrary mismatches 4047 // of calling convention and noreturn. 4048 if (!IsAddressOfFunction) 4049 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4050 /*AdjustExceptionSpec*/false); 4051 4052 // Unevaluated SFINAE context. 4053 EnterExpressionEvaluationContext Unevaluated( 4054 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4055 SFINAETrap Trap(*this); 4056 4057 Deduced.resize(TemplateParams->size()); 4058 4059 // If the function has a deduced return type, substitute it for a dependent 4060 // type so that we treat it as a non-deduced context in what follows. If we 4061 // are looking up by signature, the signature type should also have a deduced 4062 // return type, which we instead expect to exactly match. 4063 bool HasDeducedReturnType = false; 4064 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4065 Function->getReturnType()->getContainedAutoType()) { 4066 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 4067 HasDeducedReturnType = true; 4068 } 4069 4070 if (!ArgFunctionType.isNull()) { 4071 unsigned TDF = 4072 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4073 // Deduce template arguments from the function type. 4074 if (TemplateDeductionResult Result 4075 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4076 FunctionType, ArgFunctionType, 4077 Info, Deduced, TDF)) 4078 return Result; 4079 } 4080 4081 if (TemplateDeductionResult Result 4082 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4083 NumExplicitlySpecified, 4084 Specialization, Info)) 4085 return Result; 4086 4087 // If the function has a deduced return type, deduce it now, so we can check 4088 // that the deduced function type matches the requested type. 4089 if (HasDeducedReturnType && 4090 Specialization->getReturnType()->isUndeducedType() && 4091 DeduceReturnType(Specialization, Info.getLocation(), false)) 4092 return TDK_MiscellaneousDeductionFailure; 4093 4094 // If the function has a dependent exception specification, resolve it now, 4095 // so we can check that the exception specification matches. 4096 auto *SpecializationFPT = 4097 Specialization->getType()->castAs<FunctionProtoType>(); 4098 if (getLangOpts().CPlusPlus17 && 4099 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4100 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4101 return TDK_MiscellaneousDeductionFailure; 4102 4103 // Adjust the exception specification of the argument to match the 4104 // substituted and resolved type we just formed. (Calling convention and 4105 // noreturn can't be dependent, so we don't actually need this for them 4106 // right now.) 4107 QualType SpecializationType = Specialization->getType(); 4108 if (!IsAddressOfFunction) 4109 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4110 /*AdjustExceptionSpec*/true); 4111 4112 // If the requested function type does not match the actual type of the 4113 // specialization with respect to arguments of compatible pointer to function 4114 // types, template argument deduction fails. 4115 if (!ArgFunctionType.isNull()) { 4116 if (IsAddressOfFunction && 4117 !isSameOrCompatibleFunctionType( 4118 Context.getCanonicalType(SpecializationType), 4119 Context.getCanonicalType(ArgFunctionType))) 4120 return TDK_MiscellaneousDeductionFailure; 4121 4122 if (!IsAddressOfFunction && 4123 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4124 return TDK_MiscellaneousDeductionFailure; 4125 } 4126 4127 return TDK_Success; 4128 } 4129 4130 /// Deduce template arguments for a templated conversion 4131 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4132 /// conversion function template specialization. 4133 Sema::TemplateDeductionResult 4134 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4135 QualType ToType, 4136 CXXConversionDecl *&Specialization, 4137 TemplateDeductionInfo &Info) { 4138 if (ConversionTemplate->isInvalidDecl()) 4139 return TDK_Invalid; 4140 4141 CXXConversionDecl *ConversionGeneric 4142 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4143 4144 QualType FromType = ConversionGeneric->getConversionType(); 4145 4146 // Canonicalize the types for deduction. 4147 QualType P = Context.getCanonicalType(FromType); 4148 QualType A = Context.getCanonicalType(ToType); 4149 4150 // C++0x [temp.deduct.conv]p2: 4151 // If P is a reference type, the type referred to by P is used for 4152 // type deduction. 4153 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4154 P = PRef->getPointeeType(); 4155 4156 // C++0x [temp.deduct.conv]p4: 4157 // [...] If A is a reference type, the type referred to by A is used 4158 // for type deduction. 4159 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4160 A = ARef->getPointeeType(); 4161 // We work around a defect in the standard here: cv-qualifiers are also 4162 // removed from P and A in this case, unless P was a reference type. This 4163 // seems to mostly match what other compilers are doing. 4164 if (!FromType->getAs<ReferenceType>()) { 4165 A = A.getUnqualifiedType(); 4166 P = P.getUnqualifiedType(); 4167 } 4168 4169 // C++ [temp.deduct.conv]p3: 4170 // 4171 // If A is not a reference type: 4172 } else { 4173 assert(!A->isReferenceType() && "Reference types were handled above"); 4174 4175 // - If P is an array type, the pointer type produced by the 4176 // array-to-pointer standard conversion (4.2) is used in place 4177 // of P for type deduction; otherwise, 4178 if (P->isArrayType()) 4179 P = Context.getArrayDecayedType(P); 4180 // - If P is a function type, the pointer type produced by the 4181 // function-to-pointer standard conversion (4.3) is used in 4182 // place of P for type deduction; otherwise, 4183 else if (P->isFunctionType()) 4184 P = Context.getPointerType(P); 4185 // - If P is a cv-qualified type, the top level cv-qualifiers of 4186 // P's type are ignored for type deduction. 4187 else 4188 P = P.getUnqualifiedType(); 4189 4190 // C++0x [temp.deduct.conv]p4: 4191 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4192 // type are ignored for type deduction. If A is a reference type, the type 4193 // referred to by A is used for type deduction. 4194 A = A.getUnqualifiedType(); 4195 } 4196 4197 // Unevaluated SFINAE context. 4198 EnterExpressionEvaluationContext Unevaluated( 4199 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4200 SFINAETrap Trap(*this); 4201 4202 // C++ [temp.deduct.conv]p1: 4203 // Template argument deduction is done by comparing the return 4204 // type of the template conversion function (call it P) with the 4205 // type that is required as the result of the conversion (call it 4206 // A) as described in 14.8.2.4. 4207 TemplateParameterList *TemplateParams 4208 = ConversionTemplate->getTemplateParameters(); 4209 SmallVector<DeducedTemplateArgument, 4> Deduced; 4210 Deduced.resize(TemplateParams->size()); 4211 4212 // C++0x [temp.deduct.conv]p4: 4213 // In general, the deduction process attempts to find template 4214 // argument values that will make the deduced A identical to 4215 // A. However, there are two cases that allow a difference: 4216 unsigned TDF = 0; 4217 // - If the original A is a reference type, A can be more 4218 // cv-qualified than the deduced A (i.e., the type referred to 4219 // by the reference) 4220 if (ToType->isReferenceType()) 4221 TDF |= TDF_ArgWithReferenceType; 4222 // - The deduced A can be another pointer or pointer to member 4223 // type that can be converted to A via a qualification 4224 // conversion. 4225 // 4226 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4227 // both P and A are pointers or member pointers. In this case, we 4228 // just ignore cv-qualifiers completely). 4229 if ((P->isPointerType() && A->isPointerType()) || 4230 (P->isMemberPointerType() && A->isMemberPointerType())) 4231 TDF |= TDF_IgnoreQualifiers; 4232 if (TemplateDeductionResult Result 4233 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4234 P, A, Info, Deduced, TDF)) 4235 return Result; 4236 4237 // Create an Instantiation Scope for finalizing the operator. 4238 LocalInstantiationScope InstScope(*this); 4239 // Finish template argument deduction. 4240 FunctionDecl *ConversionSpecialized = nullptr; 4241 TemplateDeductionResult Result 4242 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4243 ConversionSpecialized, Info); 4244 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4245 return Result; 4246 } 4247 4248 /// Deduce template arguments for a function template when there is 4249 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4250 /// 4251 /// \param FunctionTemplate the function template for which we are performing 4252 /// template argument deduction. 4253 /// 4254 /// \param ExplicitTemplateArgs the explicitly-specified template 4255 /// arguments. 4256 /// 4257 /// \param Specialization if template argument deduction was successful, 4258 /// this will be set to the function template specialization produced by 4259 /// template argument deduction. 4260 /// 4261 /// \param Info the argument will be updated to provide additional information 4262 /// about template argument deduction. 4263 /// 4264 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4265 /// the address of a function template in a context where we do not have a 4266 /// target type, per [over.over]. If \c false, we are looking up a function 4267 /// template specialization based on its signature, which only happens when 4268 /// deducing a function parameter type from an argument that is a template-id 4269 /// naming a function template specialization. 4270 /// 4271 /// \returns the result of template argument deduction. 4272 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4273 FunctionTemplateDecl *FunctionTemplate, 4274 TemplateArgumentListInfo *ExplicitTemplateArgs, 4275 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4276 bool IsAddressOfFunction) { 4277 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4278 QualType(), Specialization, Info, 4279 IsAddressOfFunction); 4280 } 4281 4282 namespace { 4283 struct DependentAuto { bool IsPack; }; 4284 4285 /// Substitute the 'auto' specifier or deduced template specialization type 4286 /// specifier within a type for a given replacement type. 4287 class SubstituteDeducedTypeTransform : 4288 public TreeTransform<SubstituteDeducedTypeTransform> { 4289 QualType Replacement; 4290 bool ReplacementIsPack; 4291 bool UseTypeSugar; 4292 4293 public: 4294 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4295 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(), 4296 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4297 4298 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4299 bool UseTypeSugar = true) 4300 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4301 Replacement(Replacement), ReplacementIsPack(false), 4302 UseTypeSugar(UseTypeSugar) {} 4303 4304 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4305 assert(isa<TemplateTypeParmType>(Replacement) && 4306 "unexpected unsugared replacement kind"); 4307 QualType Result = Replacement; 4308 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4309 NewTL.setNameLoc(TL.getNameLoc()); 4310 return Result; 4311 } 4312 4313 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4314 // If we're building the type pattern to deduce against, don't wrap the 4315 // substituted type in an AutoType. Certain template deduction rules 4316 // apply only when a template type parameter appears directly (and not if 4317 // the parameter is found through desugaring). For instance: 4318 // auto &&lref = lvalue; 4319 // must transform into "rvalue reference to T" not "rvalue reference to 4320 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4321 // 4322 // FIXME: Is this still necessary? 4323 if (!UseTypeSugar) 4324 return TransformDesugared(TLB, TL); 4325 4326 QualType Result = SemaRef.Context.getAutoType( 4327 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4328 ReplacementIsPack); 4329 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4330 NewTL.setNameLoc(TL.getNameLoc()); 4331 return Result; 4332 } 4333 4334 QualType TransformDeducedTemplateSpecializationType( 4335 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4336 if (!UseTypeSugar) 4337 return TransformDesugared(TLB, TL); 4338 4339 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4340 TL.getTypePtr()->getTemplateName(), 4341 Replacement, Replacement.isNull()); 4342 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4343 NewTL.setNameLoc(TL.getNameLoc()); 4344 return Result; 4345 } 4346 4347 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4348 // Lambdas never need to be transformed. 4349 return E; 4350 } 4351 4352 QualType Apply(TypeLoc TL) { 4353 // Create some scratch storage for the transformed type locations. 4354 // FIXME: We're just going to throw this information away. Don't build it. 4355 TypeLocBuilder TLB; 4356 TLB.reserve(TL.getFullDataSize()); 4357 return TransformType(TLB, TL); 4358 } 4359 }; 4360 4361 } // namespace 4362 4363 Sema::DeduceAutoResult 4364 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, 4365 Optional<unsigned> DependentDeductionDepth) { 4366 return DeduceAutoType(Type->getTypeLoc(), Init, Result, 4367 DependentDeductionDepth); 4368 } 4369 4370 /// Attempt to produce an informative diagostic explaining why auto deduction 4371 /// failed. 4372 /// \return \c true if diagnosed, \c false if not. 4373 static bool diagnoseAutoDeductionFailure(Sema &S, 4374 Sema::TemplateDeductionResult TDK, 4375 TemplateDeductionInfo &Info, 4376 ArrayRef<SourceRange> Ranges) { 4377 switch (TDK) { 4378 case Sema::TDK_Inconsistent: { 4379 // Inconsistent deduction means we were deducing from an initializer list. 4380 auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); 4381 D << Info.FirstArg << Info.SecondArg; 4382 for (auto R : Ranges) 4383 D << R; 4384 return true; 4385 } 4386 4387 // FIXME: Are there other cases for which a custom diagnostic is more useful 4388 // than the basic "types don't match" diagnostic? 4389 4390 default: 4391 return false; 4392 } 4393 } 4394 4395 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4396 /// 4397 /// Note that this is done even if the initializer is dependent. (This is 4398 /// necessary to support partial ordering of templates using 'auto'.) 4399 /// A dependent type will be produced when deducing from a dependent type. 4400 /// 4401 /// \param Type the type pattern using the auto type-specifier. 4402 /// \param Init the initializer for the variable whose type is to be deduced. 4403 /// \param Result if type deduction was successful, this will be set to the 4404 /// deduced type. 4405 /// \param DependentDeductionDepth Set if we should permit deduction in 4406 /// dependent cases. This is necessary for template partial ordering with 4407 /// 'auto' template parameters. The value specified is the template 4408 /// parameter depth at which we should perform 'auto' deduction. 4409 Sema::DeduceAutoResult 4410 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, 4411 Optional<unsigned> DependentDeductionDepth) { 4412 if (Init->getType()->isNonOverloadPlaceholderType()) { 4413 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4414 if (NonPlaceholder.isInvalid()) 4415 return DAR_FailedAlreadyDiagnosed; 4416 Init = NonPlaceholder.get(); 4417 } 4418 4419 DependentAuto DependentResult = { 4420 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4421 4422 if (!DependentDeductionDepth && 4423 (Type.getType()->isDependentType() || Init->isTypeDependent())) { 4424 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4425 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4426 return DAR_Succeeded; 4427 } 4428 4429 // Find the depth of template parameter to synthesize. 4430 unsigned Depth = DependentDeductionDepth.getValueOr(0); 4431 4432 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4433 // Since 'decltype(auto)' can only occur at the top of the type, we 4434 // don't need to go digging for it. 4435 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4436 if (AT->isDecltypeAuto()) { 4437 if (isa<InitListExpr>(Init)) { 4438 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4439 return DAR_FailedAlreadyDiagnosed; 4440 } 4441 4442 ExprResult ER = CheckPlaceholderExpr(Init); 4443 if (ER.isInvalid()) 4444 return DAR_FailedAlreadyDiagnosed; 4445 Init = ER.get(); 4446 QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false); 4447 if (Deduced.isNull()) 4448 return DAR_FailedAlreadyDiagnosed; 4449 // FIXME: Support a non-canonical deduced type for 'auto'. 4450 Deduced = Context.getCanonicalType(Deduced); 4451 Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); 4452 if (Result.isNull()) 4453 return DAR_FailedAlreadyDiagnosed; 4454 return DAR_Succeeded; 4455 } else if (!getLangOpts().CPlusPlus) { 4456 if (isa<InitListExpr>(Init)) { 4457 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4458 return DAR_FailedAlreadyDiagnosed; 4459 } 4460 } 4461 } 4462 4463 SourceLocation Loc = Init->getExprLoc(); 4464 4465 LocalInstantiationScope InstScope(*this); 4466 4467 // Build template<class TemplParam> void Func(FuncParam); 4468 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4469 Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false); 4470 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4471 NamedDecl *TemplParamPtr = TemplParam; 4472 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4473 Loc, Loc, TemplParamPtr, Loc, nullptr); 4474 4475 QualType FuncParam = 4476 SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) 4477 .Apply(Type); 4478 assert(!FuncParam.isNull() && 4479 "substituting template parameter for 'auto' failed"); 4480 4481 // Deduce type of TemplParam in Func(Init) 4482 SmallVector<DeducedTemplateArgument, 1> Deduced; 4483 Deduced.resize(1); 4484 4485 TemplateDeductionInfo Info(Loc, Depth); 4486 4487 // If deduction failed, don't diagnose if the initializer is dependent; it 4488 // might acquire a matching type in the instantiation. 4489 auto DeductionFailed = [&](TemplateDeductionResult TDK, 4490 ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { 4491 if (Init->isTypeDependent()) { 4492 Result = 4493 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4494 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4495 return DAR_Succeeded; 4496 } 4497 if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) 4498 return DAR_FailedAlreadyDiagnosed; 4499 return DAR_Failed; 4500 }; 4501 4502 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4503 4504 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4505 if (InitList) { 4506 // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce 4507 // against that. Such deduction only succeeds if removing cv-qualifiers and 4508 // references results in std::initializer_list<T>. 4509 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4510 return DAR_Failed; 4511 4512 SourceRange DeducedFromInitRange; 4513 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4514 Expr *Init = InitList->getInit(i); 4515 4516 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4517 *this, TemplateParamsSt.get(), 0, TemplArg, Init, 4518 Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, 4519 /*ArgIdx*/ 0, /*TDF*/ 0)) 4520 return DeductionFailed(TDK, {DeducedFromInitRange, 4521 Init->getSourceRange()}); 4522 4523 if (DeducedFromInitRange.isInvalid() && 4524 Deduced[0].getKind() != TemplateArgument::Null) 4525 DeducedFromInitRange = Init->getSourceRange(); 4526 } 4527 } else { 4528 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4529 Diag(Loc, diag::err_auto_bitfield); 4530 return DAR_FailedAlreadyDiagnosed; 4531 } 4532 4533 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4534 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4535 OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) 4536 return DeductionFailed(TDK, {}); 4537 } 4538 4539 // Could be null if somehow 'auto' appears in a non-deduced context. 4540 if (Deduced[0].getKind() != TemplateArgument::Type) 4541 return DeductionFailed(TDK_Incomplete, {}); 4542 4543 QualType DeducedType = Deduced[0].getAsType(); 4544 4545 if (InitList) { 4546 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4547 if (DeducedType.isNull()) 4548 return DAR_FailedAlreadyDiagnosed; 4549 } 4550 4551 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4552 if (Result.isNull()) 4553 return DAR_FailedAlreadyDiagnosed; 4554 4555 // Check that the deduced argument type is compatible with the original 4556 // argument type per C++ [temp.deduct.call]p4. 4557 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4558 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4559 assert((bool)InitList == OriginalArg.DecomposedParam && 4560 "decomposed non-init-list in auto deduction?"); 4561 if (auto TDK = 4562 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4563 Result = QualType(); 4564 return DeductionFailed(TDK, {}); 4565 } 4566 } 4567 4568 return DAR_Succeeded; 4569 } 4570 4571 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4572 QualType TypeToReplaceAuto) { 4573 if (TypeToReplaceAuto->isDependentType()) 4574 return SubstituteDeducedTypeTransform( 4575 *this, DependentAuto{ 4576 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4577 .TransformType(TypeWithAuto); 4578 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4579 .TransformType(TypeWithAuto); 4580 } 4581 4582 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4583 QualType TypeToReplaceAuto) { 4584 if (TypeToReplaceAuto->isDependentType()) 4585 return SubstituteDeducedTypeTransform( 4586 *this, 4587 DependentAuto{ 4588 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4589 .TransformType(TypeWithAuto); 4590 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4591 .TransformType(TypeWithAuto); 4592 } 4593 4594 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4595 QualType TypeToReplaceAuto) { 4596 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4597 /*UseTypeSugar*/ false) 4598 .TransformType(TypeWithAuto); 4599 } 4600 4601 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4602 if (isa<InitListExpr>(Init)) 4603 Diag(VDecl->getLocation(), 4604 VDecl->isInitCapture() 4605 ? diag::err_init_capture_deduction_failure_from_init_list 4606 : diag::err_auto_var_deduction_failure_from_init_list) 4607 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4608 else 4609 Diag(VDecl->getLocation(), 4610 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4611 : diag::err_auto_var_deduction_failure) 4612 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4613 << Init->getSourceRange(); 4614 } 4615 4616 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4617 bool Diagnose) { 4618 assert(FD->getReturnType()->isUndeducedType()); 4619 4620 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4621 // within the return type from the call operator's type. 4622 if (isLambdaConversionOperator(FD)) { 4623 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4624 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4625 4626 // For a generic lambda, instantiate the call operator if needed. 4627 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4628 CallOp = InstantiateFunctionDeclaration( 4629 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4630 if (!CallOp || CallOp->isInvalidDecl()) 4631 return true; 4632 4633 // We might need to deduce the return type by instantiating the definition 4634 // of the operator() function. 4635 if (CallOp->getReturnType()->isUndeducedType()) 4636 InstantiateFunctionDefinition(Loc, CallOp); 4637 } 4638 4639 if (CallOp->isInvalidDecl()) 4640 return true; 4641 assert(!CallOp->getReturnType()->isUndeducedType() && 4642 "failed to deduce lambda return type"); 4643 4644 // Build the new return type from scratch. 4645 QualType RetType = getLambdaConversionFunctionResultType( 4646 CallOp->getType()->castAs<FunctionProtoType>()); 4647 if (FD->getReturnType()->getAs<PointerType>()) 4648 RetType = Context.getPointerType(RetType); 4649 else { 4650 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4651 RetType = Context.getBlockPointerType(RetType); 4652 } 4653 Context.adjustDeducedFunctionResultType(FD, RetType); 4654 return false; 4655 } 4656 4657 if (FD->getTemplateInstantiationPattern()) 4658 InstantiateFunctionDefinition(Loc, FD); 4659 4660 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4661 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4662 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4663 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4664 } 4665 4666 return StillUndeduced; 4667 } 4668 4669 /// If this is a non-static member function, 4670 static void 4671 AddImplicitObjectParameterType(ASTContext &Context, 4672 CXXMethodDecl *Method, 4673 SmallVectorImpl<QualType> &ArgTypes) { 4674 // C++11 [temp.func.order]p3: 4675 // [...] The new parameter is of type "reference to cv A," where cv are 4676 // the cv-qualifiers of the function template (if any) and A is 4677 // the class of which the function template is a member. 4678 // 4679 // The standard doesn't say explicitly, but we pick the appropriate kind of 4680 // reference type based on [over.match.funcs]p4. 4681 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4682 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4683 if (Method->getRefQualifier() == RQ_RValue) 4684 ArgTy = Context.getRValueReferenceType(ArgTy); 4685 else 4686 ArgTy = Context.getLValueReferenceType(ArgTy); 4687 ArgTypes.push_back(ArgTy); 4688 } 4689 4690 /// Determine whether the function template \p FT1 is at least as 4691 /// specialized as \p FT2. 4692 static bool isAtLeastAsSpecializedAs(Sema &S, 4693 SourceLocation Loc, 4694 FunctionTemplateDecl *FT1, 4695 FunctionTemplateDecl *FT2, 4696 TemplatePartialOrderingContext TPOC, 4697 unsigned NumCallArguments1) { 4698 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 4699 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 4700 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 4701 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 4702 4703 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 4704 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 4705 SmallVector<DeducedTemplateArgument, 4> Deduced; 4706 Deduced.resize(TemplateParams->size()); 4707 4708 // C++0x [temp.deduct.partial]p3: 4709 // The types used to determine the ordering depend on the context in which 4710 // the partial ordering is done: 4711 TemplateDeductionInfo Info(Loc); 4712 SmallVector<QualType, 4> Args2; 4713 switch (TPOC) { 4714 case TPOC_Call: { 4715 // - In the context of a function call, the function parameter types are 4716 // used. 4717 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 4718 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 4719 4720 // C++11 [temp.func.order]p3: 4721 // [...] If only one of the function templates is a non-static 4722 // member, that function template is considered to have a new 4723 // first parameter inserted in its function parameter list. The 4724 // new parameter is of type "reference to cv A," where cv are 4725 // the cv-qualifiers of the function template (if any) and A is 4726 // the class of which the function template is a member. 4727 // 4728 // Note that we interpret this to mean "if one of the function 4729 // templates is a non-static member and the other is a non-member"; 4730 // otherwise, the ordering rules for static functions against non-static 4731 // functions don't make any sense. 4732 // 4733 // C++98/03 doesn't have this provision but we've extended DR532 to cover 4734 // it as wording was broken prior to it. 4735 SmallVector<QualType, 4> Args1; 4736 4737 unsigned NumComparedArguments = NumCallArguments1; 4738 4739 if (!Method2 && Method1 && !Method1->isStatic()) { 4740 // Compare 'this' from Method1 against first parameter from Method2. 4741 AddImplicitObjectParameterType(S.Context, Method1, Args1); 4742 ++NumComparedArguments; 4743 } else if (!Method1 && Method2 && !Method2->isStatic()) { 4744 // Compare 'this' from Method2 against first parameter from Method1. 4745 AddImplicitObjectParameterType(S.Context, Method2, Args2); 4746 } 4747 4748 Args1.insert(Args1.end(), Proto1->param_type_begin(), 4749 Proto1->param_type_end()); 4750 Args2.insert(Args2.end(), Proto2->param_type_begin(), 4751 Proto2->param_type_end()); 4752 4753 // C++ [temp.func.order]p5: 4754 // The presence of unused ellipsis and default arguments has no effect on 4755 // the partial ordering of function templates. 4756 if (Args1.size() > NumComparedArguments) 4757 Args1.resize(NumComparedArguments); 4758 if (Args2.size() > NumComparedArguments) 4759 Args2.resize(NumComparedArguments); 4760 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 4761 Args1.data(), Args1.size(), Info, Deduced, 4762 TDF_None, /*PartialOrdering=*/true)) 4763 return false; 4764 4765 break; 4766 } 4767 4768 case TPOC_Conversion: 4769 // - In the context of a call to a conversion operator, the return types 4770 // of the conversion function templates are used. 4771 if (DeduceTemplateArgumentsByTypeMatch( 4772 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 4773 Info, Deduced, TDF_None, 4774 /*PartialOrdering=*/true)) 4775 return false; 4776 break; 4777 4778 case TPOC_Other: 4779 // - In other contexts (14.6.6.2) the function template's function type 4780 // is used. 4781 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 4782 FD2->getType(), FD1->getType(), 4783 Info, Deduced, TDF_None, 4784 /*PartialOrdering=*/true)) 4785 return false; 4786 break; 4787 } 4788 4789 // C++0x [temp.deduct.partial]p11: 4790 // In most cases, all template parameters must have values in order for 4791 // deduction to succeed, but for partial ordering purposes a template 4792 // parameter may remain without a value provided it is not used in the 4793 // types being used for partial ordering. [ Note: a template parameter used 4794 // in a non-deduced context is considered used. -end note] 4795 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 4796 for (; ArgIdx != NumArgs; ++ArgIdx) 4797 if (Deduced[ArgIdx].isNull()) 4798 break; 4799 4800 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 4801 // to substitute the deduced arguments back into the template and check that 4802 // we get the right type. 4803 4804 if (ArgIdx == NumArgs) { 4805 // All template arguments were deduced. FT1 is at least as specialized 4806 // as FT2. 4807 return true; 4808 } 4809 4810 // Figure out which template parameters were used. 4811 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 4812 switch (TPOC) { 4813 case TPOC_Call: 4814 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 4815 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 4816 TemplateParams->getDepth(), 4817 UsedParameters); 4818 break; 4819 4820 case TPOC_Conversion: 4821 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 4822 TemplateParams->getDepth(), UsedParameters); 4823 break; 4824 4825 case TPOC_Other: 4826 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 4827 TemplateParams->getDepth(), 4828 UsedParameters); 4829 break; 4830 } 4831 4832 for (; ArgIdx != NumArgs; ++ArgIdx) 4833 // If this argument had no value deduced but was used in one of the types 4834 // used for partial ordering, then deduction fails. 4835 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 4836 return false; 4837 4838 return true; 4839 } 4840 4841 /// Determine whether this a function template whose parameter-type-list 4842 /// ends with a function parameter pack. 4843 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 4844 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 4845 unsigned NumParams = Function->getNumParams(); 4846 if (NumParams == 0) 4847 return false; 4848 4849 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 4850 if (!Last->isParameterPack()) 4851 return false; 4852 4853 // Make sure that no previous parameter is a parameter pack. 4854 while (--NumParams > 0) { 4855 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 4856 return false; 4857 } 4858 4859 return true; 4860 } 4861 4862 /// Returns the more specialized function template according 4863 /// to the rules of function template partial ordering (C++ [temp.func.order]). 4864 /// 4865 /// \param FT1 the first function template 4866 /// 4867 /// \param FT2 the second function template 4868 /// 4869 /// \param TPOC the context in which we are performing partial ordering of 4870 /// function templates. 4871 /// 4872 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 4873 /// only when \c TPOC is \c TPOC_Call. 4874 /// 4875 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 4876 /// only when \c TPOC is \c TPOC_Call. 4877 /// 4878 /// \returns the more specialized function template. If neither 4879 /// template is more specialized, returns NULL. 4880 FunctionTemplateDecl * 4881 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 4882 FunctionTemplateDecl *FT2, 4883 SourceLocation Loc, 4884 TemplatePartialOrderingContext TPOC, 4885 unsigned NumCallArguments1, 4886 unsigned NumCallArguments2) { 4887 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 4888 NumCallArguments1); 4889 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 4890 NumCallArguments2); 4891 4892 if (Better1 != Better2) // We have a clear winner 4893 return Better1 ? FT1 : FT2; 4894 4895 if (!Better1 && !Better2) // Neither is better than the other 4896 return nullptr; 4897 4898 // FIXME: This mimics what GCC implements, but doesn't match up with the 4899 // proposed resolution for core issue 692. This area needs to be sorted out, 4900 // but for now we attempt to maintain compatibility. 4901 bool Variadic1 = isVariadicFunctionTemplate(FT1); 4902 bool Variadic2 = isVariadicFunctionTemplate(FT2); 4903 if (Variadic1 != Variadic2) 4904 return Variadic1? FT2 : FT1; 4905 4906 return nullptr; 4907 } 4908 4909 /// Determine if the two templates are equivalent. 4910 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 4911 if (T1 == T2) 4912 return true; 4913 4914 if (!T1 || !T2) 4915 return false; 4916 4917 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 4918 } 4919 4920 /// Retrieve the most specialized of the given function template 4921 /// specializations. 4922 /// 4923 /// \param SpecBegin the start iterator of the function template 4924 /// specializations that we will be comparing. 4925 /// 4926 /// \param SpecEnd the end iterator of the function template 4927 /// specializations, paired with \p SpecBegin. 4928 /// 4929 /// \param Loc the location where the ambiguity or no-specializations 4930 /// diagnostic should occur. 4931 /// 4932 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 4933 /// no matching candidates. 4934 /// 4935 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 4936 /// occurs. 4937 /// 4938 /// \param CandidateDiag partial diagnostic used for each function template 4939 /// specialization that is a candidate in the ambiguous ordering. One parameter 4940 /// in this diagnostic should be unbound, which will correspond to the string 4941 /// describing the template arguments for the function template specialization. 4942 /// 4943 /// \returns the most specialized function template specialization, if 4944 /// found. Otherwise, returns SpecEnd. 4945 UnresolvedSetIterator Sema::getMostSpecialized( 4946 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 4947 TemplateSpecCandidateSet &FailedCandidates, 4948 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 4949 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 4950 bool Complain, QualType TargetType) { 4951 if (SpecBegin == SpecEnd) { 4952 if (Complain) { 4953 Diag(Loc, NoneDiag); 4954 FailedCandidates.NoteCandidates(*this, Loc); 4955 } 4956 return SpecEnd; 4957 } 4958 4959 if (SpecBegin + 1 == SpecEnd) 4960 return SpecBegin; 4961 4962 // Find the function template that is better than all of the templates it 4963 // has been compared to. 4964 UnresolvedSetIterator Best = SpecBegin; 4965 FunctionTemplateDecl *BestTemplate 4966 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 4967 assert(BestTemplate && "Not a function template specialization?"); 4968 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 4969 FunctionTemplateDecl *Challenger 4970 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 4971 assert(Challenger && "Not a function template specialization?"); 4972 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 4973 Loc, TPOC_Other, 0, 0), 4974 Challenger)) { 4975 Best = I; 4976 BestTemplate = Challenger; 4977 } 4978 } 4979 4980 // Make sure that the "best" function template is more specialized than all 4981 // of the others. 4982 bool Ambiguous = false; 4983 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 4984 FunctionTemplateDecl *Challenger 4985 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 4986 if (I != Best && 4987 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 4988 Loc, TPOC_Other, 0, 0), 4989 BestTemplate)) { 4990 Ambiguous = true; 4991 break; 4992 } 4993 } 4994 4995 if (!Ambiguous) { 4996 // We found an answer. Return it. 4997 return Best; 4998 } 4999 5000 // Diagnose the ambiguity. 5001 if (Complain) { 5002 Diag(Loc, AmbigDiag); 5003 5004 // FIXME: Can we order the candidates in some sane way? 5005 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5006 PartialDiagnostic PD = CandidateDiag; 5007 const auto *FD = cast<FunctionDecl>(*I); 5008 PD << FD << getTemplateArgumentBindingsText( 5009 FD->getPrimaryTemplate()->getTemplateParameters(), 5010 *FD->getTemplateSpecializationArgs()); 5011 if (!TargetType.isNull()) 5012 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5013 Diag((*I)->getLocation(), PD); 5014 } 5015 } 5016 5017 return SpecEnd; 5018 } 5019 5020 /// Determine whether one partial specialization, P1, is at least as 5021 /// specialized than another, P2. 5022 /// 5023 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5024 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5025 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5026 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5027 template<typename TemplateLikeDecl> 5028 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5029 TemplateLikeDecl *P2, 5030 TemplateDeductionInfo &Info) { 5031 // C++ [temp.class.order]p1: 5032 // For two class template partial specializations, the first is at least as 5033 // specialized as the second if, given the following rewrite to two 5034 // function templates, the first function template is at least as 5035 // specialized as the second according to the ordering rules for function 5036 // templates (14.6.6.2): 5037 // - the first function template has the same template parameters as the 5038 // first partial specialization and has a single function parameter 5039 // whose type is a class template specialization with the template 5040 // arguments of the first partial specialization, and 5041 // - the second function template has the same template parameters as the 5042 // second partial specialization and has a single function parameter 5043 // whose type is a class template specialization with the template 5044 // arguments of the second partial specialization. 5045 // 5046 // Rather than synthesize function templates, we merely perform the 5047 // equivalent partial ordering by performing deduction directly on 5048 // the template arguments of the class template partial 5049 // specializations. This computation is slightly simpler than the 5050 // general problem of function template partial ordering, because 5051 // class template partial specializations are more constrained. We 5052 // know that every template parameter is deducible from the class 5053 // template partial specialization's template arguments, for 5054 // example. 5055 SmallVector<DeducedTemplateArgument, 4> Deduced; 5056 5057 // Determine whether P1 is at least as specialized as P2. 5058 Deduced.resize(P2->getTemplateParameters()->size()); 5059 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5060 T2, T1, Info, Deduced, TDF_None, 5061 /*PartialOrdering=*/true)) 5062 return false; 5063 5064 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5065 Deduced.end()); 5066 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5067 Info); 5068 auto *TST1 = T1->castAs<TemplateSpecializationType>(); 5069 if (FinishTemplateArgumentDeduction( 5070 S, P2, /*IsPartialOrdering=*/true, 5071 TemplateArgumentList(TemplateArgumentList::OnStack, 5072 TST1->template_arguments()), 5073 Deduced, Info)) 5074 return false; 5075 5076 return true; 5077 } 5078 5079 /// Returns the more specialized class template partial specialization 5080 /// according to the rules of partial ordering of class template partial 5081 /// specializations (C++ [temp.class.order]). 5082 /// 5083 /// \param PS1 the first class template partial specialization 5084 /// 5085 /// \param PS2 the second class template partial specialization 5086 /// 5087 /// \returns the more specialized class template partial specialization. If 5088 /// neither partial specialization is more specialized, returns NULL. 5089 ClassTemplatePartialSpecializationDecl * 5090 Sema::getMoreSpecializedPartialSpecialization( 5091 ClassTemplatePartialSpecializationDecl *PS1, 5092 ClassTemplatePartialSpecializationDecl *PS2, 5093 SourceLocation Loc) { 5094 QualType PT1 = PS1->getInjectedSpecializationType(); 5095 QualType PT2 = PS2->getInjectedSpecializationType(); 5096 5097 TemplateDeductionInfo Info(Loc); 5098 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5099 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5100 5101 if (Better1 == Better2) 5102 return nullptr; 5103 5104 return Better1 ? PS1 : PS2; 5105 } 5106 5107 bool Sema::isMoreSpecializedThanPrimary( 5108 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5109 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5110 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5111 QualType PartialT = Spec->getInjectedSpecializationType(); 5112 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5113 return false; 5114 if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { 5115 Info.clearSFINAEDiagnostic(); 5116 return false; 5117 } 5118 return true; 5119 } 5120 5121 VarTemplatePartialSpecializationDecl * 5122 Sema::getMoreSpecializedPartialSpecialization( 5123 VarTemplatePartialSpecializationDecl *PS1, 5124 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5125 // Pretend the variable template specializations are class template 5126 // specializations and form a fake injected class name type for comparison. 5127 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5128 "the partial specializations being compared should specialize" 5129 " the same template."); 5130 TemplateName Name(PS1->getSpecializedTemplate()); 5131 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5132 QualType PT1 = Context.getTemplateSpecializationType( 5133 CanonTemplate, PS1->getTemplateArgs().asArray()); 5134 QualType PT2 = Context.getTemplateSpecializationType( 5135 CanonTemplate, PS2->getTemplateArgs().asArray()); 5136 5137 TemplateDeductionInfo Info(Loc); 5138 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5139 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5140 5141 if (Better1 == Better2) 5142 return nullptr; 5143 5144 return Better1 ? PS1 : PS2; 5145 } 5146 5147 bool Sema::isMoreSpecializedThanPrimary( 5148 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5149 TemplateDecl *Primary = Spec->getSpecializedTemplate(); 5150 // FIXME: Cache the injected template arguments rather than recomputing 5151 // them for each partial specialization. 5152 SmallVector<TemplateArgument, 8> PrimaryArgs; 5153 Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), 5154 PrimaryArgs); 5155 5156 TemplateName CanonTemplate = 5157 Context.getCanonicalTemplateName(TemplateName(Primary)); 5158 QualType PrimaryT = Context.getTemplateSpecializationType( 5159 CanonTemplate, PrimaryArgs); 5160 QualType PartialT = Context.getTemplateSpecializationType( 5161 CanonTemplate, Spec->getTemplateArgs().asArray()); 5162 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5163 return false; 5164 if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { 5165 Info.clearSFINAEDiagnostic(); 5166 return false; 5167 } 5168 return true; 5169 } 5170 5171 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5172 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5173 // C++1z [temp.arg.template]p4: (DR 150) 5174 // A template template-parameter P is at least as specialized as a 5175 // template template-argument A if, given the following rewrite to two 5176 // function templates... 5177 5178 // Rather than synthesize function templates, we merely perform the 5179 // equivalent partial ordering by performing deduction directly on 5180 // the template parameter lists of the template template parameters. 5181 // 5182 // Given an invented class template X with the template parameter list of 5183 // A (including default arguments): 5184 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5185 TemplateParameterList *A = AArg->getTemplateParameters(); 5186 5187 // - Each function template has a single function parameter whose type is 5188 // a specialization of X with template arguments corresponding to the 5189 // template parameters from the respective function template 5190 SmallVector<TemplateArgument, 8> AArgs; 5191 Context.getInjectedTemplateArgs(A, AArgs); 5192 5193 // Check P's arguments against A's parameter list. This will fill in default 5194 // template arguments as needed. AArgs are already correct by construction. 5195 // We can't just use CheckTemplateIdType because that will expand alias 5196 // templates. 5197 SmallVector<TemplateArgument, 4> PArgs; 5198 { 5199 SFINAETrap Trap(*this); 5200 5201 Context.getInjectedTemplateArgs(P, PArgs); 5202 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc()); 5203 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5204 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5205 // expansions, to form an "as written" argument list. 5206 TemplateArgument Arg = PArgs[I]; 5207 if (Arg.getKind() == TemplateArgument::Pack) { 5208 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5209 Arg = *Arg.pack_begin(); 5210 } 5211 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5212 Arg, QualType(), P->getParam(I)->getLocation())); 5213 } 5214 PArgs.clear(); 5215 5216 // C++1z [temp.arg.template]p3: 5217 // If the rewrite produces an invalid type, then P is not at least as 5218 // specialized as A. 5219 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || 5220 Trap.hasErrorOccurred()) 5221 return false; 5222 } 5223 5224 QualType AType = Context.getTemplateSpecializationType(X, AArgs); 5225 QualType PType = Context.getTemplateSpecializationType(X, PArgs); 5226 5227 // ... the function template corresponding to P is at least as specialized 5228 // as the function template corresponding to A according to the partial 5229 // ordering rules for function templates. 5230 TemplateDeductionInfo Info(Loc, A->getDepth()); 5231 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5232 } 5233 5234 /// Mark the template parameters that are used by the given 5235 /// expression. 5236 static void 5237 MarkUsedTemplateParameters(ASTContext &Ctx, 5238 const Expr *E, 5239 bool OnlyDeduced, 5240 unsigned Depth, 5241 llvm::SmallBitVector &Used) { 5242 // We can deduce from a pack expansion. 5243 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5244 E = Expansion->getPattern(); 5245 5246 // Skip through any implicit casts we added while type-checking, and any 5247 // substitutions performed by template alias expansion. 5248 while (true) { 5249 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 5250 E = ICE->getSubExpr(); 5251 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 5252 E = CE->getSubExpr(); 5253 else if (const SubstNonTypeTemplateParmExpr *Subst = 5254 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 5255 E = Subst->getReplacement(); 5256 else 5257 break; 5258 } 5259 5260 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to 5261 // find other occurrences of template parameters. 5262 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 5263 if (!DRE) 5264 return; 5265 5266 const NonTypeTemplateParmDecl *NTTP 5267 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 5268 if (!NTTP) 5269 return; 5270 5271 if (NTTP->getDepth() == Depth) 5272 Used[NTTP->getIndex()] = true; 5273 5274 // In C++17 mode, additional arguments may be deduced from the type of a 5275 // non-type argument. 5276 if (Ctx.getLangOpts().CPlusPlus17) 5277 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5278 } 5279 5280 /// Mark the template parameters that are used by the given 5281 /// nested name specifier. 5282 static void 5283 MarkUsedTemplateParameters(ASTContext &Ctx, 5284 NestedNameSpecifier *NNS, 5285 bool OnlyDeduced, 5286 unsigned Depth, 5287 llvm::SmallBitVector &Used) { 5288 if (!NNS) 5289 return; 5290 5291 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5292 Used); 5293 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5294 OnlyDeduced, Depth, Used); 5295 } 5296 5297 /// Mark the template parameters that are used by the given 5298 /// template name. 5299 static void 5300 MarkUsedTemplateParameters(ASTContext &Ctx, 5301 TemplateName Name, 5302 bool OnlyDeduced, 5303 unsigned Depth, 5304 llvm::SmallBitVector &Used) { 5305 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5306 if (TemplateTemplateParmDecl *TTP 5307 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5308 if (TTP->getDepth() == Depth) 5309 Used[TTP->getIndex()] = true; 5310 } 5311 return; 5312 } 5313 5314 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5315 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5316 Depth, Used); 5317 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5318 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5319 Depth, Used); 5320 } 5321 5322 /// Mark the template parameters that are used by the given 5323 /// type. 5324 static void 5325 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5326 bool OnlyDeduced, 5327 unsigned Depth, 5328 llvm::SmallBitVector &Used) { 5329 if (T.isNull()) 5330 return; 5331 5332 // Non-dependent types have nothing deducible 5333 if (!T->isDependentType()) 5334 return; 5335 5336 T = Ctx.getCanonicalType(T); 5337 switch (T->getTypeClass()) { 5338 case Type::Pointer: 5339 MarkUsedTemplateParameters(Ctx, 5340 cast<PointerType>(T)->getPointeeType(), 5341 OnlyDeduced, 5342 Depth, 5343 Used); 5344 break; 5345 5346 case Type::BlockPointer: 5347 MarkUsedTemplateParameters(Ctx, 5348 cast<BlockPointerType>(T)->getPointeeType(), 5349 OnlyDeduced, 5350 Depth, 5351 Used); 5352 break; 5353 5354 case Type::LValueReference: 5355 case Type::RValueReference: 5356 MarkUsedTemplateParameters(Ctx, 5357 cast<ReferenceType>(T)->getPointeeType(), 5358 OnlyDeduced, 5359 Depth, 5360 Used); 5361 break; 5362 5363 case Type::MemberPointer: { 5364 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5365 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5366 Depth, Used); 5367 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5368 OnlyDeduced, Depth, Used); 5369 break; 5370 } 5371 5372 case Type::DependentSizedArray: 5373 MarkUsedTemplateParameters(Ctx, 5374 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5375 OnlyDeduced, Depth, Used); 5376 // Fall through to check the element type 5377 LLVM_FALLTHROUGH; 5378 5379 case Type::ConstantArray: 5380 case Type::IncompleteArray: 5381 MarkUsedTemplateParameters(Ctx, 5382 cast<ArrayType>(T)->getElementType(), 5383 OnlyDeduced, Depth, Used); 5384 break; 5385 5386 case Type::Vector: 5387 case Type::ExtVector: 5388 MarkUsedTemplateParameters(Ctx, 5389 cast<VectorType>(T)->getElementType(), 5390 OnlyDeduced, Depth, Used); 5391 break; 5392 5393 case Type::DependentVector: { 5394 const auto *VecType = cast<DependentVectorType>(T); 5395 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5396 Depth, Used); 5397 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5398 Used); 5399 break; 5400 } 5401 case Type::DependentSizedExtVector: { 5402 const DependentSizedExtVectorType *VecType 5403 = cast<DependentSizedExtVectorType>(T); 5404 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5405 Depth, Used); 5406 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5407 Depth, Used); 5408 break; 5409 } 5410 5411 case Type::DependentAddressSpace: { 5412 const DependentAddressSpaceType *DependentASType = 5413 cast<DependentAddressSpaceType>(T); 5414 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 5415 OnlyDeduced, Depth, Used); 5416 MarkUsedTemplateParameters(Ctx, 5417 DependentASType->getAddrSpaceExpr(), 5418 OnlyDeduced, Depth, Used); 5419 break; 5420 } 5421 5422 case Type::FunctionProto: { 5423 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 5424 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 5425 Used); 5426 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 5427 // C++17 [temp.deduct.type]p5: 5428 // The non-deduced contexts are: [...] 5429 // -- A function parameter pack that does not occur at the end of the 5430 // parameter-declaration-list. 5431 if (!OnlyDeduced || I + 1 == N || 5432 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 5433 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 5434 Depth, Used); 5435 } else { 5436 // FIXME: C++17 [temp.deduct.call]p1: 5437 // When a function parameter pack appears in a non-deduced context, 5438 // the type of that pack is never deduced. 5439 // 5440 // We should also track a set of "never deduced" parameters, and 5441 // subtract that from the list of deduced parameters after marking. 5442 } 5443 } 5444 if (auto *E = Proto->getNoexceptExpr()) 5445 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 5446 break; 5447 } 5448 5449 case Type::TemplateTypeParm: { 5450 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 5451 if (TTP->getDepth() == Depth) 5452 Used[TTP->getIndex()] = true; 5453 break; 5454 } 5455 5456 case Type::SubstTemplateTypeParmPack: { 5457 const SubstTemplateTypeParmPackType *Subst 5458 = cast<SubstTemplateTypeParmPackType>(T); 5459 MarkUsedTemplateParameters(Ctx, 5460 QualType(Subst->getReplacedParameter(), 0), 5461 OnlyDeduced, Depth, Used); 5462 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 5463 OnlyDeduced, Depth, Used); 5464 break; 5465 } 5466 5467 case Type::InjectedClassName: 5468 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 5469 LLVM_FALLTHROUGH; 5470 5471 case Type::TemplateSpecialization: { 5472 const TemplateSpecializationType *Spec 5473 = cast<TemplateSpecializationType>(T); 5474 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 5475 Depth, Used); 5476 5477 // C++0x [temp.deduct.type]p9: 5478 // If the template argument list of P contains a pack expansion that is 5479 // not the last template argument, the entire template argument list is a 5480 // non-deduced context. 5481 if (OnlyDeduced && 5482 hasPackExpansionBeforeEnd(Spec->template_arguments())) 5483 break; 5484 5485 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5486 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5487 Used); 5488 break; 5489 } 5490 5491 case Type::Complex: 5492 if (!OnlyDeduced) 5493 MarkUsedTemplateParameters(Ctx, 5494 cast<ComplexType>(T)->getElementType(), 5495 OnlyDeduced, Depth, Used); 5496 break; 5497 5498 case Type::Atomic: 5499 if (!OnlyDeduced) 5500 MarkUsedTemplateParameters(Ctx, 5501 cast<AtomicType>(T)->getValueType(), 5502 OnlyDeduced, Depth, Used); 5503 break; 5504 5505 case Type::DependentName: 5506 if (!OnlyDeduced) 5507 MarkUsedTemplateParameters(Ctx, 5508 cast<DependentNameType>(T)->getQualifier(), 5509 OnlyDeduced, Depth, Used); 5510 break; 5511 5512 case Type::DependentTemplateSpecialization: { 5513 // C++14 [temp.deduct.type]p5: 5514 // The non-deduced contexts are: 5515 // -- The nested-name-specifier of a type that was specified using a 5516 // qualified-id 5517 // 5518 // C++14 [temp.deduct.type]p6: 5519 // When a type name is specified in a way that includes a non-deduced 5520 // context, all of the types that comprise that type name are also 5521 // non-deduced. 5522 if (OnlyDeduced) 5523 break; 5524 5525 const DependentTemplateSpecializationType *Spec 5526 = cast<DependentTemplateSpecializationType>(T); 5527 5528 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 5529 OnlyDeduced, Depth, Used); 5530 5531 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5532 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5533 Used); 5534 break; 5535 } 5536 5537 case Type::TypeOf: 5538 if (!OnlyDeduced) 5539 MarkUsedTemplateParameters(Ctx, 5540 cast<TypeOfType>(T)->getUnderlyingType(), 5541 OnlyDeduced, Depth, Used); 5542 break; 5543 5544 case Type::TypeOfExpr: 5545 if (!OnlyDeduced) 5546 MarkUsedTemplateParameters(Ctx, 5547 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 5548 OnlyDeduced, Depth, Used); 5549 break; 5550 5551 case Type::Decltype: 5552 if (!OnlyDeduced) 5553 MarkUsedTemplateParameters(Ctx, 5554 cast<DecltypeType>(T)->getUnderlyingExpr(), 5555 OnlyDeduced, Depth, Used); 5556 break; 5557 5558 case Type::UnaryTransform: 5559 if (!OnlyDeduced) 5560 MarkUsedTemplateParameters(Ctx, 5561 cast<UnaryTransformType>(T)->getUnderlyingType(), 5562 OnlyDeduced, Depth, Used); 5563 break; 5564 5565 case Type::PackExpansion: 5566 MarkUsedTemplateParameters(Ctx, 5567 cast<PackExpansionType>(T)->getPattern(), 5568 OnlyDeduced, Depth, Used); 5569 break; 5570 5571 case Type::Auto: 5572 case Type::DeducedTemplateSpecialization: 5573 MarkUsedTemplateParameters(Ctx, 5574 cast<DeducedType>(T)->getDeducedType(), 5575 OnlyDeduced, Depth, Used); 5576 break; 5577 5578 // None of these types have any template parameters in them. 5579 case Type::Builtin: 5580 case Type::VariableArray: 5581 case Type::FunctionNoProto: 5582 case Type::Record: 5583 case Type::Enum: 5584 case Type::ObjCInterface: 5585 case Type::ObjCObject: 5586 case Type::ObjCObjectPointer: 5587 case Type::UnresolvedUsing: 5588 case Type::Pipe: 5589 #define TYPE(Class, Base) 5590 #define ABSTRACT_TYPE(Class, Base) 5591 #define DEPENDENT_TYPE(Class, Base) 5592 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 5593 #include "clang/AST/TypeNodes.def" 5594 break; 5595 } 5596 } 5597 5598 /// Mark the template parameters that are used by this 5599 /// template argument. 5600 static void 5601 MarkUsedTemplateParameters(ASTContext &Ctx, 5602 const TemplateArgument &TemplateArg, 5603 bool OnlyDeduced, 5604 unsigned Depth, 5605 llvm::SmallBitVector &Used) { 5606 switch (TemplateArg.getKind()) { 5607 case TemplateArgument::Null: 5608 case TemplateArgument::Integral: 5609 case TemplateArgument::Declaration: 5610 break; 5611 5612 case TemplateArgument::NullPtr: 5613 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 5614 Depth, Used); 5615 break; 5616 5617 case TemplateArgument::Type: 5618 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 5619 Depth, Used); 5620 break; 5621 5622 case TemplateArgument::Template: 5623 case TemplateArgument::TemplateExpansion: 5624 MarkUsedTemplateParameters(Ctx, 5625 TemplateArg.getAsTemplateOrTemplatePattern(), 5626 OnlyDeduced, Depth, Used); 5627 break; 5628 5629 case TemplateArgument::Expression: 5630 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 5631 Depth, Used); 5632 break; 5633 5634 case TemplateArgument::Pack: 5635 for (const auto &P : TemplateArg.pack_elements()) 5636 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 5637 break; 5638 } 5639 } 5640 5641 /// Mark which template parameters can be deduced from a given 5642 /// template argument list. 5643 /// 5644 /// \param TemplateArgs the template argument list from which template 5645 /// parameters will be deduced. 5646 /// 5647 /// \param Used a bit vector whose elements will be set to \c true 5648 /// to indicate when the corresponding template parameter will be 5649 /// deduced. 5650 void 5651 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 5652 bool OnlyDeduced, unsigned Depth, 5653 llvm::SmallBitVector &Used) { 5654 // C++0x [temp.deduct.type]p9: 5655 // If the template argument list of P contains a pack expansion that is not 5656 // the last template argument, the entire template argument list is a 5657 // non-deduced context. 5658 if (OnlyDeduced && 5659 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 5660 return; 5661 5662 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5663 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 5664 Depth, Used); 5665 } 5666 5667 /// Marks all of the template parameters that will be deduced by a 5668 /// call to the given function template. 5669 void Sema::MarkDeducedTemplateParameters( 5670 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 5671 llvm::SmallBitVector &Deduced) { 5672 TemplateParameterList *TemplateParams 5673 = FunctionTemplate->getTemplateParameters(); 5674 Deduced.clear(); 5675 Deduced.resize(TemplateParams->size()); 5676 5677 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 5678 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 5679 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 5680 true, TemplateParams->getDepth(), Deduced); 5681 } 5682 5683 bool hasDeducibleTemplateParameters(Sema &S, 5684 FunctionTemplateDecl *FunctionTemplate, 5685 QualType T) { 5686 if (!T->isDependentType()) 5687 return false; 5688 5689 TemplateParameterList *TemplateParams 5690 = FunctionTemplate->getTemplateParameters(); 5691 llvm::SmallBitVector Deduced(TemplateParams->size()); 5692 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 5693 Deduced); 5694 5695 return Deduced.any(); 5696 } 5697