xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/StringExtras.h"
43 
44 using namespace clang;
45 using namespace sema;
46 
47 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
48   if (FE.isInvalid())
49     return StmtError();
50 
51   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
52   if (FE.isInvalid())
53     return StmtError();
54 
55   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
56   // void expression for its side effects.  Conversion to void allows any
57   // operand, even incomplete types.
58 
59   // Same thing in for stmt first clause (when expr) and third clause.
60   return StmtResult(FE.getAs<Stmt>());
61 }
62 
63 
64 StmtResult Sema::ActOnExprStmtError() {
65   DiscardCleanupsInEvaluationContext();
66   return StmtError();
67 }
68 
69 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
70                                bool HasLeadingEmptyMacro) {
71   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
72 }
73 
74 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
75                                SourceLocation EndLoc) {
76   DeclGroupRef DG = dg.get();
77 
78   // If we have an invalid decl, just return an error.
79   if (DG.isNull()) return StmtError();
80 
81   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
82 }
83 
84 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
85   DeclGroupRef DG = dg.get();
86 
87   // If we don't have a declaration, or we have an invalid declaration,
88   // just return.
89   if (DG.isNull() || !DG.isSingleDecl())
90     return;
91 
92   Decl *decl = DG.getSingleDecl();
93   if (!decl || decl->isInvalidDecl())
94     return;
95 
96   // Only variable declarations are permitted.
97   VarDecl *var = dyn_cast<VarDecl>(decl);
98   if (!var) {
99     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
100     decl->setInvalidDecl();
101     return;
102   }
103 
104   // foreach variables are never actually initialized in the way that
105   // the parser came up with.
106   var->setInit(nullptr);
107 
108   // In ARC, we don't need to retain the iteration variable of a fast
109   // enumeration loop.  Rather than actually trying to catch that
110   // during declaration processing, we remove the consequences here.
111   if (getLangOpts().ObjCAutoRefCount) {
112     QualType type = var->getType();
113 
114     // Only do this if we inferred the lifetime.  Inferred lifetime
115     // will show up as a local qualifier because explicit lifetime
116     // should have shown up as an AttributedType instead.
117     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
118       // Add 'const' and mark the variable as pseudo-strong.
119       var->setType(type.withConst());
120       var->setARCPseudoStrong(true);
121     }
122   }
123 }
124 
125 /// Diagnose unused comparisons, both builtin and overloaded operators.
126 /// For '==' and '!=', suggest fixits for '=' or '|='.
127 ///
128 /// Adding a cast to void (or other expression wrappers) will prevent the
129 /// warning from firing.
130 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
131   SourceLocation Loc;
132   bool CanAssign;
133   enum { Equality, Inequality, Relational, ThreeWay } Kind;
134 
135   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
136     if (!Op->isComparisonOp())
137       return false;
138 
139     if (Op->getOpcode() == BO_EQ)
140       Kind = Equality;
141     else if (Op->getOpcode() == BO_NE)
142       Kind = Inequality;
143     else if (Op->getOpcode() == BO_Cmp)
144       Kind = ThreeWay;
145     else {
146       assert(Op->isRelationalOp());
147       Kind = Relational;
148     }
149     Loc = Op->getOperatorLoc();
150     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
151   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
152     switch (Op->getOperator()) {
153     case OO_EqualEqual:
154       Kind = Equality;
155       break;
156     case OO_ExclaimEqual:
157       Kind = Inequality;
158       break;
159     case OO_Less:
160     case OO_Greater:
161     case OO_GreaterEqual:
162     case OO_LessEqual:
163       Kind = Relational;
164       break;
165     case OO_Spaceship:
166       Kind = ThreeWay;
167       break;
168     default:
169       return false;
170     }
171 
172     Loc = Op->getOperatorLoc();
173     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
174   } else {
175     // Not a typo-prone comparison.
176     return false;
177   }
178 
179   // Suppress warnings when the operator, suspicious as it may be, comes from
180   // a macro expansion.
181   if (S.SourceMgr.isMacroBodyExpansion(Loc))
182     return false;
183 
184   S.Diag(Loc, diag::warn_unused_comparison)
185     << (unsigned)Kind << E->getSourceRange();
186 
187   // If the LHS is a plausible entity to assign to, provide a fixit hint to
188   // correct common typos.
189   if (CanAssign) {
190     if (Kind == Inequality)
191       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
192         << FixItHint::CreateReplacement(Loc, "|=");
193     else if (Kind == Equality)
194       S.Diag(Loc, diag::note_equality_comparison_to_assign)
195         << FixItHint::CreateReplacement(Loc, "=");
196   }
197 
198   return true;
199 }
200 
201 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
202                               SourceLocation Loc, SourceRange R1,
203                               SourceRange R2, bool IsCtor) {
204   if (!A)
205     return false;
206   StringRef Msg = A->getMessage();
207 
208   if (Msg.empty()) {
209     if (IsCtor)
210       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
211     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
212   }
213 
214   if (IsCtor)
215     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
216                                                           << R2;
217   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
218 }
219 
220 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
221   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
222     return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
223 
224   const Expr *E = dyn_cast_or_null<Expr>(S);
225   if (!E)
226     return;
227 
228   // If we are in an unevaluated expression context, then there can be no unused
229   // results because the results aren't expected to be used in the first place.
230   if (isUnevaluatedContext())
231     return;
232 
233   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
234   // In most cases, we don't want to warn if the expression is written in a
235   // macro body, or if the macro comes from a system header. If the offending
236   // expression is a call to a function with the warn_unused_result attribute,
237   // we warn no matter the location. Because of the order in which the various
238   // checks need to happen, we factor out the macro-related test here.
239   bool ShouldSuppress =
240       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
241       SourceMgr.isInSystemMacro(ExprLoc);
242 
243   const Expr *WarnExpr;
244   SourceLocation Loc;
245   SourceRange R1, R2;
246   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
247     return;
248 
249   // If this is a GNU statement expression expanded from a macro, it is probably
250   // unused because it is a function-like macro that can be used as either an
251   // expression or statement.  Don't warn, because it is almost certainly a
252   // false positive.
253   if (isa<StmtExpr>(E) && Loc.isMacroID())
254     return;
255 
256   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
257   // That macro is frequently used to suppress "unused parameter" warnings,
258   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
259   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
260     SourceLocation SpellLoc = Loc;
261     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
262       return;
263   }
264 
265   // Okay, we have an unused result.  Depending on what the base expression is,
266   // we might want to make a more specific diagnostic.  Check for one of these
267   // cases now.
268   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
269     E = Temps->getSubExpr();
270   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
271     E = TempExpr->getSubExpr();
272 
273   if (DiagnoseUnusedComparison(*this, E))
274     return;
275 
276   E = WarnExpr;
277   if (const auto *Cast = dyn_cast<CastExpr>(E))
278     if (Cast->getCastKind() == CK_NoOp ||
279         Cast->getCastKind() == CK_ConstructorConversion)
280       E = Cast->getSubExpr()->IgnoreImpCasts();
281 
282   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
283     if (E->getType()->isVoidType())
284       return;
285 
286     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
287                                      CE->getUnusedResultAttr(Context)),
288                           Loc, R1, R2, /*isCtor=*/false))
289       return;
290 
291     // If the callee has attribute pure, const, or warn_unused_result, warn with
292     // a more specific message to make it clear what is happening. If the call
293     // is written in a macro body, only warn if it has the warn_unused_result
294     // attribute.
295     if (const Decl *FD = CE->getCalleeDecl()) {
296       if (ShouldSuppress)
297         return;
298       if (FD->hasAttr<PureAttr>()) {
299         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
300         return;
301       }
302       if (FD->hasAttr<ConstAttr>()) {
303         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
304         return;
305       }
306     }
307   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
308     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
309       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
310       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
311       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
312         return;
313     }
314   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
315     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
316 
317       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
318                             R2, /*isCtor=*/false))
319         return;
320     }
321   } else if (ShouldSuppress)
322     return;
323 
324   E = WarnExpr;
325   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
326     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
327       Diag(Loc, diag::err_arc_unused_init_message) << R1;
328       return;
329     }
330     const ObjCMethodDecl *MD = ME->getMethodDecl();
331     if (MD) {
332       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
333                             R2, /*isCtor=*/false))
334         return;
335     }
336   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
337     const Expr *Source = POE->getSyntacticForm();
338     // Handle the actually selected call of an OpenMP specialized call.
339     if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
340         POE->getNumSemanticExprs() == 1 &&
341         isa<CallExpr>(POE->getSemanticExpr(0)))
342       return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
343     if (isa<ObjCSubscriptRefExpr>(Source))
344       DiagID = diag::warn_unused_container_subscript_expr;
345     else if (isa<ObjCPropertyRefExpr>(Source))
346       DiagID = diag::warn_unused_property_expr;
347   } else if (const CXXFunctionalCastExpr *FC
348                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
349     const Expr *E = FC->getSubExpr();
350     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
351       E = TE->getSubExpr();
352     if (isa<CXXTemporaryObjectExpr>(E))
353       return;
354     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
355       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
356         if (!RD->getAttr<WarnUnusedAttr>())
357           return;
358   }
359   // Diagnose "(void*) blah" as a typo for "(void) blah".
360   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
361     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
362     QualType T = TI->getType();
363 
364     // We really do want to use the non-canonical type here.
365     if (T == Context.VoidPtrTy) {
366       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
367 
368       Diag(Loc, diag::warn_unused_voidptr)
369         << FixItHint::CreateRemoval(TL.getStarLoc());
370       return;
371     }
372   }
373 
374   // Tell the user to assign it into a variable to force a volatile load if this
375   // isn't an array.
376   if (E->isGLValue() && E->getType().isVolatileQualified() &&
377       !E->getType()->isArrayType()) {
378     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
379     return;
380   }
381 
382   // Do not diagnose use of a comma operator in a SFINAE context because the
383   // type of the left operand could be used for SFINAE, so technically it is
384   // *used*.
385   if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
386     DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt,
387                     PDiag(DiagID) << R1 << R2);
388 }
389 
390 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
391   PushCompoundScope(IsStmtExpr);
392 }
393 
394 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
395   if (getCurFPFeatures().isFPConstrained()) {
396     FunctionScopeInfo *FSI = getCurFunction();
397     assert(FSI);
398     FSI->setUsesFPIntrin();
399   }
400 }
401 
402 void Sema::ActOnFinishOfCompoundStmt() {
403   PopCompoundScope();
404 }
405 
406 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
407   return getCurFunction()->CompoundScopes.back();
408 }
409 
410 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
411                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
412   const unsigned NumElts = Elts.size();
413 
414   // If we're in C mode, check that we don't have any decls after stmts.  If
415   // so, emit an extension diagnostic in C89 and potentially a warning in later
416   // versions.
417   const unsigned MixedDeclsCodeID = getLangOpts().C99
418                                         ? diag::warn_mixed_decls_code
419                                         : diag::ext_mixed_decls_code;
420   if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
421     // Note that __extension__ can be around a decl.
422     unsigned i = 0;
423     // Skip over all declarations.
424     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
425       /*empty*/;
426 
427     // We found the end of the list or a statement.  Scan for another declstmt.
428     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
429       /*empty*/;
430 
431     if (i != NumElts) {
432       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
433       Diag(D->getLocation(), MixedDeclsCodeID);
434     }
435   }
436 
437   // Check for suspicious empty body (null statement) in `for' and `while'
438   // statements.  Don't do anything for template instantiations, this just adds
439   // noise.
440   if (NumElts != 0 && !CurrentInstantiationScope &&
441       getCurCompoundScope().HasEmptyLoopBodies) {
442     for (unsigned i = 0; i != NumElts - 1; ++i)
443       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
444   }
445 
446   // Calculate difference between FP options in this compound statement and in
447   // the enclosing one. If this is a function body, take the difference against
448   // default options. In this case the difference will indicate options that are
449   // changed upon entry to the statement.
450   FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
451                       ? FPOptions(getLangOpts())
452                       : getCurCompoundScope().InitialFPFeatures;
453   FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
454 
455   return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
456 }
457 
458 ExprResult
459 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
460   if (!Val.get())
461     return Val;
462 
463   if (DiagnoseUnexpandedParameterPack(Val.get()))
464     return ExprError();
465 
466   // If we're not inside a switch, let the 'case' statement handling diagnose
467   // this. Just clean up after the expression as best we can.
468   if (getCurFunction()->SwitchStack.empty())
469     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
470                                getLangOpts().CPlusPlus11);
471 
472   Expr *CondExpr =
473       getCurFunction()->SwitchStack.back().getPointer()->getCond();
474   if (!CondExpr)
475     return ExprError();
476   QualType CondType = CondExpr->getType();
477 
478   auto CheckAndFinish = [&](Expr *E) {
479     if (CondType->isDependentType() || E->isTypeDependent())
480       return ExprResult(E);
481 
482     if (getLangOpts().CPlusPlus11) {
483       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
484       // constant expression of the promoted type of the switch condition.
485       llvm::APSInt TempVal;
486       return CheckConvertedConstantExpression(E, CondType, TempVal,
487                                               CCEK_CaseValue);
488     }
489 
490     ExprResult ER = E;
491     if (!E->isValueDependent())
492       ER = VerifyIntegerConstantExpression(E, AllowFold);
493     if (!ER.isInvalid())
494       ER = DefaultLvalueConversion(ER.get());
495     if (!ER.isInvalid())
496       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
497     if (!ER.isInvalid())
498       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
499     return ER;
500   };
501 
502   ExprResult Converted = CorrectDelayedTyposInExpr(
503       Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
504       CheckAndFinish);
505   if (Converted.get() == Val.get())
506     Converted = CheckAndFinish(Val.get());
507   return Converted;
508 }
509 
510 StmtResult
511 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
512                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
513                     SourceLocation ColonLoc) {
514   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
515   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
516                                    : RHSVal.isInvalid() || RHSVal.get()) &&
517          "missing RHS value");
518 
519   if (getCurFunction()->SwitchStack.empty()) {
520     Diag(CaseLoc, diag::err_case_not_in_switch);
521     return StmtError();
522   }
523 
524   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
525     getCurFunction()->SwitchStack.back().setInt(true);
526     return StmtError();
527   }
528 
529   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
530                               CaseLoc, DotDotDotLoc, ColonLoc);
531   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
532   return CS;
533 }
534 
535 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
536 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
537   cast<CaseStmt>(S)->setSubStmt(SubStmt);
538 }
539 
540 StmtResult
541 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
542                        Stmt *SubStmt, Scope *CurScope) {
543   if (getCurFunction()->SwitchStack.empty()) {
544     Diag(DefaultLoc, diag::err_default_not_in_switch);
545     return SubStmt;
546   }
547 
548   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
549   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
550   return DS;
551 }
552 
553 StmtResult
554 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
555                      SourceLocation ColonLoc, Stmt *SubStmt) {
556   // If the label was multiply defined, reject it now.
557   if (TheDecl->getStmt()) {
558     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
559     Diag(TheDecl->getLocation(), diag::note_previous_definition);
560     return SubStmt;
561   }
562 
563   ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
564   if (isReservedInAllContexts(Status) &&
565       !Context.getSourceManager().isInSystemHeader(IdentLoc))
566     Diag(IdentLoc, diag::warn_reserved_extern_symbol)
567         << TheDecl << static_cast<int>(Status);
568 
569   // Otherwise, things are good.  Fill in the declaration and return it.
570   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
571   TheDecl->setStmt(LS);
572   if (!TheDecl->isGnuLocal()) {
573     TheDecl->setLocStart(IdentLoc);
574     if (!TheDecl->isMSAsmLabel()) {
575       // Don't update the location of MS ASM labels.  These will result in
576       // a diagnostic, and changing the location here will mess that up.
577       TheDecl->setLocation(IdentLoc);
578     }
579   }
580   return LS;
581 }
582 
583 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
584                                      ArrayRef<const Attr *> Attrs,
585                                      Stmt *SubStmt) {
586   // FIXME: this code should move when a planned refactoring around statement
587   // attributes lands.
588   for (const auto *A : Attrs) {
589     if (A->getKind() == attr::MustTail) {
590       if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
591         return SubStmt;
592       }
593       setFunctionHasMustTail();
594     }
595   }
596 
597   return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
598 }
599 
600 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
601                                      Stmt *SubStmt) {
602   SmallVector<const Attr *, 1> SemanticAttrs;
603   ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
604   if (!SemanticAttrs.empty())
605     return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
606   // If none of the attributes applied, that's fine, we can recover by
607   // returning the substatement directly instead of making an AttributedStmt
608   // with no attributes on it.
609   return SubStmt;
610 }
611 
612 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
613   ReturnStmt *R = cast<ReturnStmt>(St);
614   Expr *E = R->getRetValue();
615 
616   if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
617     // We have to suspend our check until template instantiation time.
618     return true;
619 
620   if (!checkMustTailAttr(St, MTA))
621     return false;
622 
623   // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
624   // Currently it does not skip implicit constructors in an initialization
625   // context.
626   auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
627     return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
628                            IgnoreElidableImplicitConstructorSingleStep);
629   };
630 
631   // Now that we have verified that 'musttail' is valid here, rewrite the
632   // return value to remove all implicit nodes, but retain parentheses.
633   R->setRetValue(IgnoreImplicitAsWritten(E));
634   return true;
635 }
636 
637 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
638   assert(!CurContext->isDependentContext() &&
639          "musttail cannot be checked from a dependent context");
640 
641   // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
642   auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
643     return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
644                            IgnoreImplicitAsWrittenSingleStep,
645                            IgnoreElidableImplicitConstructorSingleStep);
646   };
647 
648   const Expr *E = cast<ReturnStmt>(St)->getRetValue();
649   const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
650 
651   if (!CE) {
652     Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
653     return false;
654   }
655 
656   if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
657     if (EWC->cleanupsHaveSideEffects()) {
658       Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
659       return false;
660     }
661   }
662 
663   // We need to determine the full function type (including "this" type, if any)
664   // for both caller and callee.
665   struct FuncType {
666     enum {
667       ft_non_member,
668       ft_static_member,
669       ft_non_static_member,
670       ft_pointer_to_member,
671     } MemberType = ft_non_member;
672 
673     QualType This;
674     const FunctionProtoType *Func;
675     const CXXMethodDecl *Method = nullptr;
676   } CallerType, CalleeType;
677 
678   auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
679                                        bool IsCallee) -> bool {
680     if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
681       Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
682           << IsCallee << isa<CXXDestructorDecl>(CMD);
683       if (IsCallee)
684         Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
685             << isa<CXXDestructorDecl>(CMD);
686       Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
687       return false;
688     }
689     if (CMD->isStatic())
690       Type.MemberType = FuncType::ft_static_member;
691     else {
692       Type.This = CMD->getFunctionObjectParameterType();
693       Type.MemberType = FuncType::ft_non_static_member;
694     }
695     Type.Func = CMD->getType()->castAs<FunctionProtoType>();
696     return true;
697   };
698 
699   const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
700 
701   // Find caller function signature.
702   if (!CallerDecl) {
703     int ContextType;
704     if (isa<BlockDecl>(CurContext))
705       ContextType = 0;
706     else if (isa<ObjCMethodDecl>(CurContext))
707       ContextType = 1;
708     else
709       ContextType = 2;
710     Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
711         << &MTA << ContextType;
712     return false;
713   } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
714     // Caller is a class/struct method.
715     if (!GetMethodType(CMD, CallerType, false))
716       return false;
717   } else {
718     // Caller is a non-method function.
719     CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
720   }
721 
722   const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
723   const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
724   SourceLocation CalleeLoc = CE->getCalleeDecl()
725                                  ? CE->getCalleeDecl()->getBeginLoc()
726                                  : St->getBeginLoc();
727 
728   // Find callee function signature.
729   if (const CXXMethodDecl *CMD =
730           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
731     // Call is: obj.method(), obj->method(), functor(), etc.
732     if (!GetMethodType(CMD, CalleeType, true))
733       return false;
734   } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
735     // Call is: obj->*method_ptr or obj.*method_ptr
736     const auto *MPT =
737         CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
738     CalleeType.This = QualType(MPT->getClass(), 0);
739     CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
740     CalleeType.MemberType = FuncType::ft_pointer_to_member;
741   } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
742     Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
743         << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
744     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
745     return false;
746   } else {
747     // Non-method function.
748     CalleeType.Func =
749         CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
750   }
751 
752   // Both caller and callee must have a prototype (no K&R declarations).
753   if (!CalleeType.Func || !CallerType.Func) {
754     Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
755     if (!CalleeType.Func && CE->getDirectCallee()) {
756       Diag(CE->getDirectCallee()->getBeginLoc(),
757            diag::note_musttail_fix_non_prototype);
758     }
759     if (!CallerType.Func)
760       Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
761     return false;
762   }
763 
764   // Caller and callee must have matching calling conventions.
765   //
766   // Some calling conventions are physically capable of supporting tail calls
767   // even if the function types don't perfectly match. LLVM is currently too
768   // strict to allow this, but if LLVM added support for this in the future, we
769   // could exit early here and skip the remaining checks if the functions are
770   // using such a calling convention.
771   if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
772     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
773       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
774           << true << ND->getDeclName();
775     else
776       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
777     Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
778         << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
779         << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
780     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
781     return false;
782   }
783 
784   if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
785     Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
786     return false;
787   }
788 
789   // Caller and callee must match in whether they have a "this" parameter.
790   if (CallerType.This.isNull() != CalleeType.This.isNull()) {
791     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
792       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
793           << CallerType.MemberType << CalleeType.MemberType << true
794           << ND->getDeclName();
795       Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
796           << ND->getDeclName();
797     } else
798       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
799           << CallerType.MemberType << CalleeType.MemberType << false;
800     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
801     return false;
802   }
803 
804   auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
805                                 PartialDiagnostic &PD) -> bool {
806     enum {
807       ft_different_class,
808       ft_parameter_arity,
809       ft_parameter_mismatch,
810       ft_return_type,
811     };
812 
813     auto DoTypesMatch = [this, &PD](QualType A, QualType B,
814                                     unsigned Select) -> bool {
815       if (!Context.hasSimilarType(A, B)) {
816         PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
817         return false;
818       }
819       return true;
820     };
821 
822     if (!CallerType.This.isNull() &&
823         !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
824       return false;
825 
826     if (!DoTypesMatch(CallerType.Func->getReturnType(),
827                       CalleeType.Func->getReturnType(), ft_return_type))
828       return false;
829 
830     if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
831       PD << ft_parameter_arity << CallerType.Func->getNumParams()
832          << CalleeType.Func->getNumParams();
833       return false;
834     }
835 
836     ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
837     ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
838     size_t N = CallerType.Func->getNumParams();
839     for (size_t I = 0; I < N; I++) {
840       if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
841                         ft_parameter_mismatch)) {
842         PD << static_cast<int>(I) + 1;
843         return false;
844       }
845     }
846 
847     return true;
848   };
849 
850   PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
851   if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
852     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
853       Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
854           << true << ND->getDeclName();
855     else
856       Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
857     Diag(CalleeLoc, PD);
858     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
859     return false;
860   }
861 
862   return true;
863 }
864 
865 namespace {
866 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
867   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
868   Sema &SemaRef;
869 public:
870   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
871   void VisitBinaryOperator(BinaryOperator *E) {
872     if (E->getOpcode() == BO_Comma)
873       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
874     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
875   }
876 };
877 }
878 
879 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
880                              IfStatementKind StatementKind,
881                              SourceLocation LParenLoc, Stmt *InitStmt,
882                              ConditionResult Cond, SourceLocation RParenLoc,
883                              Stmt *thenStmt, SourceLocation ElseLoc,
884                              Stmt *elseStmt) {
885   if (Cond.isInvalid())
886     return StmtError();
887 
888   bool ConstevalOrNegatedConsteval =
889       StatementKind == IfStatementKind::ConstevalNonNegated ||
890       StatementKind == IfStatementKind::ConstevalNegated;
891 
892   Expr *CondExpr = Cond.get().second;
893   assert((CondExpr || ConstevalOrNegatedConsteval) &&
894          "If statement: missing condition");
895   // Only call the CommaVisitor when not C89 due to differences in scope flags.
896   if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
897       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
898     CommaVisitor(*this).Visit(CondExpr);
899 
900   if (!ConstevalOrNegatedConsteval && !elseStmt)
901     DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
902 
903   if (ConstevalOrNegatedConsteval ||
904       StatementKind == IfStatementKind::Constexpr) {
905     auto DiagnoseLikelihood = [&](const Stmt *S) {
906       if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
907         Diags.Report(A->getLocation(),
908                      diag::warn_attribute_has_no_effect_on_compile_time_if)
909             << A << ConstevalOrNegatedConsteval << A->getRange();
910         Diags.Report(IfLoc,
911                      diag::note_attribute_has_no_effect_on_compile_time_if_here)
912             << ConstevalOrNegatedConsteval
913             << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
914                                        ? thenStmt->getBeginLoc()
915                                        : LParenLoc)
916                                       .getLocWithOffset(-1));
917       }
918     };
919     DiagnoseLikelihood(thenStmt);
920     DiagnoseLikelihood(elseStmt);
921   } else {
922     std::tuple<bool, const Attr *, const Attr *> LHC =
923         Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
924     if (std::get<0>(LHC)) {
925       const Attr *ThenAttr = std::get<1>(LHC);
926       const Attr *ElseAttr = std::get<2>(LHC);
927       Diags.Report(ThenAttr->getLocation(),
928                    diag::warn_attributes_likelihood_ifstmt_conflict)
929           << ThenAttr << ThenAttr->getRange();
930       Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
931           << ElseAttr << ElseAttr->getRange();
932     }
933   }
934 
935   if (ConstevalOrNegatedConsteval) {
936     bool Immediate = ExprEvalContexts.back().Context ==
937                      ExpressionEvaluationContext::ImmediateFunctionContext;
938     if (CurContext->isFunctionOrMethod()) {
939       const auto *FD =
940           dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
941       if (FD && FD->isImmediateFunction())
942         Immediate = true;
943     }
944     if (isUnevaluatedContext() || Immediate)
945       Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
946   }
947 
948   return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
949                      thenStmt, ElseLoc, elseStmt);
950 }
951 
952 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
953                              IfStatementKind StatementKind,
954                              SourceLocation LParenLoc, Stmt *InitStmt,
955                              ConditionResult Cond, SourceLocation RParenLoc,
956                              Stmt *thenStmt, SourceLocation ElseLoc,
957                              Stmt *elseStmt) {
958   if (Cond.isInvalid())
959     return StmtError();
960 
961   if (StatementKind != IfStatementKind::Ordinary ||
962       isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
963     setFunctionHasBranchProtectedScope();
964 
965   return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
966                         Cond.get().first, Cond.get().second, LParenLoc,
967                         RParenLoc, thenStmt, ElseLoc, elseStmt);
968 }
969 
970 namespace {
971   struct CaseCompareFunctor {
972     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
973                     const llvm::APSInt &RHS) {
974       return LHS.first < RHS;
975     }
976     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
977                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
978       return LHS.first < RHS.first;
979     }
980     bool operator()(const llvm::APSInt &LHS,
981                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
982       return LHS < RHS.first;
983     }
984   };
985 }
986 
987 /// CmpCaseVals - Comparison predicate for sorting case values.
988 ///
989 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
990                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
991   if (lhs.first < rhs.first)
992     return true;
993 
994   if (lhs.first == rhs.first &&
995       lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
996     return true;
997   return false;
998 }
999 
1000 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1001 ///
1002 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1003                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1004 {
1005   return lhs.first < rhs.first;
1006 }
1007 
1008 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1009 ///
1010 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1011                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1012 {
1013   return lhs.first == rhs.first;
1014 }
1015 
1016 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1017 /// potentially integral-promoted expression @p expr.
1018 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1019   if (const auto *FE = dyn_cast<FullExpr>(E))
1020     E = FE->getSubExpr();
1021   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1022     if (ImpCast->getCastKind() != CK_IntegralCast) break;
1023     E = ImpCast->getSubExpr();
1024   }
1025   return E->getType();
1026 }
1027 
1028 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1029   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1030     Expr *Cond;
1031 
1032   public:
1033     SwitchConvertDiagnoser(Expr *Cond)
1034         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1035           Cond(Cond) {}
1036 
1037     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1038                                          QualType T) override {
1039       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1040     }
1041 
1042     SemaDiagnosticBuilder diagnoseIncomplete(
1043         Sema &S, SourceLocation Loc, QualType T) override {
1044       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1045                << T << Cond->getSourceRange();
1046     }
1047 
1048     SemaDiagnosticBuilder diagnoseExplicitConv(
1049         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1050       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1051     }
1052 
1053     SemaDiagnosticBuilder noteExplicitConv(
1054         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1055       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1056         << ConvTy->isEnumeralType() << ConvTy;
1057     }
1058 
1059     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1060                                             QualType T) override {
1061       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1062     }
1063 
1064     SemaDiagnosticBuilder noteAmbiguous(
1065         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1066       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1067       << ConvTy->isEnumeralType() << ConvTy;
1068     }
1069 
1070     SemaDiagnosticBuilder diagnoseConversion(
1071         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1072       llvm_unreachable("conversion functions are permitted");
1073     }
1074   } SwitchDiagnoser(Cond);
1075 
1076   ExprResult CondResult =
1077       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1078   if (CondResult.isInvalid())
1079     return ExprError();
1080 
1081   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1082   // failed and produced a diagnostic.
1083   Cond = CondResult.get();
1084   if (!Cond->isTypeDependent() &&
1085       !Cond->getType()->isIntegralOrEnumerationType())
1086     return ExprError();
1087 
1088   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1089   return UsualUnaryConversions(Cond);
1090 }
1091 
1092 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1093                                         SourceLocation LParenLoc,
1094                                         Stmt *InitStmt, ConditionResult Cond,
1095                                         SourceLocation RParenLoc) {
1096   Expr *CondExpr = Cond.get().second;
1097   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1098 
1099   if (CondExpr && !CondExpr->isTypeDependent()) {
1100     // We have already converted the expression to an integral or enumeration
1101     // type, when we parsed the switch condition. There are cases where we don't
1102     // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1103     // inappropriate-type expr, we just return an error.
1104     if (!CondExpr->getType()->isIntegralOrEnumerationType())
1105       return StmtError();
1106     if (CondExpr->isKnownToHaveBooleanValue()) {
1107       // switch(bool_expr) {...} is often a programmer error, e.g.
1108       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
1109       // One can always use an if statement instead of switch(bool_expr).
1110       Diag(SwitchLoc, diag::warn_bool_switch_condition)
1111           << CondExpr->getSourceRange();
1112     }
1113   }
1114 
1115   setFunctionHasBranchIntoScope();
1116 
1117   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1118                                 LParenLoc, RParenLoc);
1119   getCurFunction()->SwitchStack.push_back(
1120       FunctionScopeInfo::SwitchInfo(SS, false));
1121   return SS;
1122 }
1123 
1124 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1125   Val = Val.extOrTrunc(BitWidth);
1126   Val.setIsSigned(IsSigned);
1127 }
1128 
1129 /// Check the specified case value is in range for the given unpromoted switch
1130 /// type.
1131 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1132                            unsigned UnpromotedWidth, bool UnpromotedSign) {
1133   // In C++11 onwards, this is checked by the language rules.
1134   if (S.getLangOpts().CPlusPlus11)
1135     return;
1136 
1137   // If the case value was signed and negative and the switch expression is
1138   // unsigned, don't bother to warn: this is implementation-defined behavior.
1139   // FIXME: Introduce a second, default-ignored warning for this case?
1140   if (UnpromotedWidth < Val.getBitWidth()) {
1141     llvm::APSInt ConvVal(Val);
1142     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1143     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1144     // FIXME: Use different diagnostics for overflow  in conversion to promoted
1145     // type versus "switch expression cannot have this value". Use proper
1146     // IntRange checking rather than just looking at the unpromoted type here.
1147     if (ConvVal != Val)
1148       S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1149                                                   << toString(ConvVal, 10);
1150   }
1151 }
1152 
1153 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1154 
1155 /// Returns true if we should emit a diagnostic about this case expression not
1156 /// being a part of the enum used in the switch controlling expression.
1157 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1158                                               const EnumDecl *ED,
1159                                               const Expr *CaseExpr,
1160                                               EnumValsTy::iterator &EI,
1161                                               EnumValsTy::iterator &EIEnd,
1162                                               const llvm::APSInt &Val) {
1163   if (!ED->isClosed())
1164     return false;
1165 
1166   if (const DeclRefExpr *DRE =
1167           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1168     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1169       QualType VarType = VD->getType();
1170       QualType EnumType = S.Context.getTypeDeclType(ED);
1171       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1172           S.Context.hasSameUnqualifiedType(EnumType, VarType))
1173         return false;
1174     }
1175   }
1176 
1177   if (ED->hasAttr<FlagEnumAttr>())
1178     return !S.IsValueInFlagEnum(ED, Val, false);
1179 
1180   while (EI != EIEnd && EI->first < Val)
1181     EI++;
1182 
1183   if (EI != EIEnd && EI->first == Val)
1184     return false;
1185 
1186   return true;
1187 }
1188 
1189 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1190                                        const Expr *Case) {
1191   QualType CondType = Cond->getType();
1192   QualType CaseType = Case->getType();
1193 
1194   const EnumType *CondEnumType = CondType->getAs<EnumType>();
1195   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1196   if (!CondEnumType || !CaseEnumType)
1197     return;
1198 
1199   // Ignore anonymous enums.
1200   if (!CondEnumType->getDecl()->getIdentifier() &&
1201       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1202     return;
1203   if (!CaseEnumType->getDecl()->getIdentifier() &&
1204       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1205     return;
1206 
1207   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1208     return;
1209 
1210   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1211       << CondType << CaseType << Cond->getSourceRange()
1212       << Case->getSourceRange();
1213 }
1214 
1215 StmtResult
1216 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1217                             Stmt *BodyStmt) {
1218   SwitchStmt *SS = cast<SwitchStmt>(Switch);
1219   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1220   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1221          "switch stack missing push/pop!");
1222 
1223   getCurFunction()->SwitchStack.pop_back();
1224 
1225   if (!BodyStmt) return StmtError();
1226   SS->setBody(BodyStmt, SwitchLoc);
1227 
1228   Expr *CondExpr = SS->getCond();
1229   if (!CondExpr) return StmtError();
1230 
1231   QualType CondType = CondExpr->getType();
1232 
1233   // C++ 6.4.2.p2:
1234   // Integral promotions are performed (on the switch condition).
1235   //
1236   // A case value unrepresentable by the original switch condition
1237   // type (before the promotion) doesn't make sense, even when it can
1238   // be represented by the promoted type.  Therefore we need to find
1239   // the pre-promotion type of the switch condition.
1240   const Expr *CondExprBeforePromotion = CondExpr;
1241   QualType CondTypeBeforePromotion =
1242       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1243 
1244   // Get the bitwidth of the switched-on value after promotions. We must
1245   // convert the integer case values to this width before comparison.
1246   bool HasDependentValue
1247     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1248   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1249   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1250 
1251   // Get the width and signedness that the condition might actually have, for
1252   // warning purposes.
1253   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1254   // type.
1255   unsigned CondWidthBeforePromotion
1256     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1257   bool CondIsSignedBeforePromotion
1258     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1259 
1260   // Accumulate all of the case values in a vector so that we can sort them
1261   // and detect duplicates.  This vector contains the APInt for the case after
1262   // it has been converted to the condition type.
1263   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1264   CaseValsTy CaseVals;
1265 
1266   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
1267   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1268   CaseRangesTy CaseRanges;
1269 
1270   DefaultStmt *TheDefaultStmt = nullptr;
1271 
1272   bool CaseListIsErroneous = false;
1273 
1274   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1275        SC = SC->getNextSwitchCase()) {
1276 
1277     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1278       if (TheDefaultStmt) {
1279         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1280         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1281 
1282         // FIXME: Remove the default statement from the switch block so that
1283         // we'll return a valid AST.  This requires recursing down the AST and
1284         // finding it, not something we are set up to do right now.  For now,
1285         // just lop the entire switch stmt out of the AST.
1286         CaseListIsErroneous = true;
1287       }
1288       TheDefaultStmt = DS;
1289 
1290     } else {
1291       CaseStmt *CS = cast<CaseStmt>(SC);
1292 
1293       Expr *Lo = CS->getLHS();
1294 
1295       if (Lo->isValueDependent()) {
1296         HasDependentValue = true;
1297         break;
1298       }
1299 
1300       // We already verified that the expression has a constant value;
1301       // get that value (prior to conversions).
1302       const Expr *LoBeforePromotion = Lo;
1303       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1304       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1305 
1306       // Check the unconverted value is within the range of possible values of
1307       // the switch expression.
1308       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1309                      CondIsSignedBeforePromotion);
1310 
1311       // FIXME: This duplicates the check performed for warn_not_in_enum below.
1312       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1313                                  LoBeforePromotion);
1314 
1315       // Convert the value to the same width/sign as the condition.
1316       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1317 
1318       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1319       if (CS->getRHS()) {
1320         if (CS->getRHS()->isValueDependent()) {
1321           HasDependentValue = true;
1322           break;
1323         }
1324         CaseRanges.push_back(std::make_pair(LoVal, CS));
1325       } else
1326         CaseVals.push_back(std::make_pair(LoVal, CS));
1327     }
1328   }
1329 
1330   if (!TheDefaultStmt)
1331     Diag(SwitchLoc, diag::warn_switch_default);
1332 
1333   if (!HasDependentValue) {
1334     // If we don't have a default statement, check whether the
1335     // condition is constant.
1336     llvm::APSInt ConstantCondValue;
1337     bool HasConstantCond = false;
1338     if (!TheDefaultStmt) {
1339       Expr::EvalResult Result;
1340       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1341                                                 Expr::SE_AllowSideEffects);
1342       if (Result.Val.isInt())
1343         ConstantCondValue = Result.Val.getInt();
1344       assert(!HasConstantCond ||
1345              (ConstantCondValue.getBitWidth() == CondWidth &&
1346               ConstantCondValue.isSigned() == CondIsSigned));
1347     }
1348     bool ShouldCheckConstantCond = HasConstantCond;
1349 
1350     // Sort all the scalar case values so we can easily detect duplicates.
1351     llvm::stable_sort(CaseVals, CmpCaseVals);
1352 
1353     if (!CaseVals.empty()) {
1354       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1355         if (ShouldCheckConstantCond &&
1356             CaseVals[i].first == ConstantCondValue)
1357           ShouldCheckConstantCond = false;
1358 
1359         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1360           // If we have a duplicate, report it.
1361           // First, determine if either case value has a name
1362           StringRef PrevString, CurrString;
1363           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1364           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1365           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1366             PrevString = DeclRef->getDecl()->getName();
1367           }
1368           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1369             CurrString = DeclRef->getDecl()->getName();
1370           }
1371           SmallString<16> CaseValStr;
1372           CaseVals[i-1].first.toString(CaseValStr);
1373 
1374           if (PrevString == CurrString)
1375             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1376                  diag::err_duplicate_case)
1377                 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1378           else
1379             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1380                  diag::err_duplicate_case_differing_expr)
1381                 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1382                 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1383                 << CaseValStr;
1384 
1385           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1386                diag::note_duplicate_case_prev);
1387           // FIXME: We really want to remove the bogus case stmt from the
1388           // substmt, but we have no way to do this right now.
1389           CaseListIsErroneous = true;
1390         }
1391       }
1392     }
1393 
1394     // Detect duplicate case ranges, which usually don't exist at all in
1395     // the first place.
1396     if (!CaseRanges.empty()) {
1397       // Sort all the case ranges by their low value so we can easily detect
1398       // overlaps between ranges.
1399       llvm::stable_sort(CaseRanges);
1400 
1401       // Scan the ranges, computing the high values and removing empty ranges.
1402       std::vector<llvm::APSInt> HiVals;
1403       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1404         llvm::APSInt &LoVal = CaseRanges[i].first;
1405         CaseStmt *CR = CaseRanges[i].second;
1406         Expr *Hi = CR->getRHS();
1407 
1408         const Expr *HiBeforePromotion = Hi;
1409         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1410         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1411 
1412         // Check the unconverted value is within the range of possible values of
1413         // the switch expression.
1414         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1415                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1416 
1417         // Convert the value to the same width/sign as the condition.
1418         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1419 
1420         // If the low value is bigger than the high value, the case is empty.
1421         if (LoVal > HiVal) {
1422           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1423               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1424           CaseRanges.erase(CaseRanges.begin()+i);
1425           --i;
1426           --e;
1427           continue;
1428         }
1429 
1430         if (ShouldCheckConstantCond &&
1431             LoVal <= ConstantCondValue &&
1432             ConstantCondValue <= HiVal)
1433           ShouldCheckConstantCond = false;
1434 
1435         HiVals.push_back(HiVal);
1436       }
1437 
1438       // Rescan the ranges, looking for overlap with singleton values and other
1439       // ranges.  Since the range list is sorted, we only need to compare case
1440       // ranges with their neighbors.
1441       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1442         llvm::APSInt &CRLo = CaseRanges[i].first;
1443         llvm::APSInt &CRHi = HiVals[i];
1444         CaseStmt *CR = CaseRanges[i].second;
1445 
1446         // Check to see whether the case range overlaps with any
1447         // singleton cases.
1448         CaseStmt *OverlapStmt = nullptr;
1449         llvm::APSInt OverlapVal(32);
1450 
1451         // Find the smallest value >= the lower bound.  If I is in the
1452         // case range, then we have overlap.
1453         CaseValsTy::iterator I =
1454             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1455         if (I != CaseVals.end() && I->first < CRHi) {
1456           OverlapVal  = I->first;   // Found overlap with scalar.
1457           OverlapStmt = I->second;
1458         }
1459 
1460         // Find the smallest value bigger than the upper bound.
1461         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1462         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1463           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1464           OverlapStmt = (I-1)->second;
1465         }
1466 
1467         // Check to see if this case stmt overlaps with the subsequent
1468         // case range.
1469         if (i && CRLo <= HiVals[i-1]) {
1470           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1471           OverlapStmt = CaseRanges[i-1].second;
1472         }
1473 
1474         if (OverlapStmt) {
1475           // If we have a duplicate, report it.
1476           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1477               << toString(OverlapVal, 10);
1478           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1479                diag::note_duplicate_case_prev);
1480           // FIXME: We really want to remove the bogus case stmt from the
1481           // substmt, but we have no way to do this right now.
1482           CaseListIsErroneous = true;
1483         }
1484       }
1485     }
1486 
1487     // Complain if we have a constant condition and we didn't find a match.
1488     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1489         ShouldCheckConstantCond) {
1490       // TODO: it would be nice if we printed enums as enums, chars as
1491       // chars, etc.
1492       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1493         << toString(ConstantCondValue, 10)
1494         << CondExpr->getSourceRange();
1495     }
1496 
1497     // Check to see if switch is over an Enum and handles all of its
1498     // values.  We only issue a warning if there is not 'default:', but
1499     // we still do the analysis to preserve this information in the AST
1500     // (which can be used by flow-based analyes).
1501     //
1502     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1503 
1504     // If switch has default case, then ignore it.
1505     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1506         ET && ET->getDecl()->isCompleteDefinition() &&
1507         !ET->getDecl()->enumerators().empty()) {
1508       const EnumDecl *ED = ET->getDecl();
1509       EnumValsTy EnumVals;
1510 
1511       // Gather all enum values, set their type and sort them,
1512       // allowing easier comparison with CaseVals.
1513       for (auto *EDI : ED->enumerators()) {
1514         llvm::APSInt Val = EDI->getInitVal();
1515         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1516         EnumVals.push_back(std::make_pair(Val, EDI));
1517       }
1518       llvm::stable_sort(EnumVals, CmpEnumVals);
1519       auto EI = EnumVals.begin(), EIEnd =
1520         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1521 
1522       // See which case values aren't in enum.
1523       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1524           CI != CaseVals.end(); CI++) {
1525         Expr *CaseExpr = CI->second->getLHS();
1526         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1527                                               CI->first))
1528           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1529             << CondTypeBeforePromotion;
1530       }
1531 
1532       // See which of case ranges aren't in enum
1533       EI = EnumVals.begin();
1534       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1535           RI != CaseRanges.end(); RI++) {
1536         Expr *CaseExpr = RI->second->getLHS();
1537         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1538                                               RI->first))
1539           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1540             << CondTypeBeforePromotion;
1541 
1542         llvm::APSInt Hi =
1543           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1544         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1545 
1546         CaseExpr = RI->second->getRHS();
1547         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1548                                               Hi))
1549           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1550             << CondTypeBeforePromotion;
1551       }
1552 
1553       // Check which enum vals aren't in switch
1554       auto CI = CaseVals.begin();
1555       auto RI = CaseRanges.begin();
1556       bool hasCasesNotInSwitch = false;
1557 
1558       SmallVector<DeclarationName,8> UnhandledNames;
1559 
1560       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1561         // Don't warn about omitted unavailable EnumConstantDecls.
1562         switch (EI->second->getAvailability()) {
1563         case AR_Deprecated:
1564           // Omitting a deprecated constant is ok; it should never materialize.
1565         case AR_Unavailable:
1566           continue;
1567 
1568         case AR_NotYetIntroduced:
1569           // Partially available enum constants should be present. Note that we
1570           // suppress -Wunguarded-availability diagnostics for such uses.
1571         case AR_Available:
1572           break;
1573         }
1574 
1575         if (EI->second->hasAttr<UnusedAttr>())
1576           continue;
1577 
1578         // Drop unneeded case values
1579         while (CI != CaseVals.end() && CI->first < EI->first)
1580           CI++;
1581 
1582         if (CI != CaseVals.end() && CI->first == EI->first)
1583           continue;
1584 
1585         // Drop unneeded case ranges
1586         for (; RI != CaseRanges.end(); RI++) {
1587           llvm::APSInt Hi =
1588             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1589           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1590           if (EI->first <= Hi)
1591             break;
1592         }
1593 
1594         if (RI == CaseRanges.end() || EI->first < RI->first) {
1595           hasCasesNotInSwitch = true;
1596           UnhandledNames.push_back(EI->second->getDeclName());
1597         }
1598       }
1599 
1600       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1601         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1602 
1603       // Produce a nice diagnostic if multiple values aren't handled.
1604       if (!UnhandledNames.empty()) {
1605         auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1606                                                    ? diag::warn_def_missing_case
1607                                                    : diag::warn_missing_case)
1608                   << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1609 
1610         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1611              I != E; ++I)
1612           DB << UnhandledNames[I];
1613       }
1614 
1615       if (!hasCasesNotInSwitch)
1616         SS->setAllEnumCasesCovered();
1617     }
1618   }
1619 
1620   if (BodyStmt)
1621     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1622                           diag::warn_empty_switch_body);
1623 
1624   // FIXME: If the case list was broken is some way, we don't have a good system
1625   // to patch it up.  Instead, just return the whole substmt as broken.
1626   if (CaseListIsErroneous)
1627     return StmtError();
1628 
1629   return SS;
1630 }
1631 
1632 void
1633 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1634                              Expr *SrcExpr) {
1635   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1636     return;
1637 
1638   if (const EnumType *ET = DstType->getAs<EnumType>())
1639     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1640         SrcType->isIntegerType()) {
1641       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1642           SrcExpr->isIntegerConstantExpr(Context)) {
1643         // Get the bitwidth of the enum value before promotions.
1644         unsigned DstWidth = Context.getIntWidth(DstType);
1645         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1646 
1647         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1648         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1649         const EnumDecl *ED = ET->getDecl();
1650 
1651         if (!ED->isClosed())
1652           return;
1653 
1654         if (ED->hasAttr<FlagEnumAttr>()) {
1655           if (!IsValueInFlagEnum(ED, RhsVal, true))
1656             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1657               << DstType.getUnqualifiedType();
1658         } else {
1659           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1660               EnumValsTy;
1661           EnumValsTy EnumVals;
1662 
1663           // Gather all enum values, set their type and sort them,
1664           // allowing easier comparison with rhs constant.
1665           for (auto *EDI : ED->enumerators()) {
1666             llvm::APSInt Val = EDI->getInitVal();
1667             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1668             EnumVals.push_back(std::make_pair(Val, EDI));
1669           }
1670           if (EnumVals.empty())
1671             return;
1672           llvm::stable_sort(EnumVals, CmpEnumVals);
1673           EnumValsTy::iterator EIend =
1674               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1675 
1676           // See which values aren't in the enum.
1677           EnumValsTy::const_iterator EI = EnumVals.begin();
1678           while (EI != EIend && EI->first < RhsVal)
1679             EI++;
1680           if (EI == EIend || EI->first != RhsVal) {
1681             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1682                 << DstType.getUnqualifiedType();
1683           }
1684         }
1685       }
1686     }
1687 }
1688 
1689 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1690                                 SourceLocation LParenLoc, ConditionResult Cond,
1691                                 SourceLocation RParenLoc, Stmt *Body) {
1692   if (Cond.isInvalid())
1693     return StmtError();
1694 
1695   auto CondVal = Cond.get();
1696   CheckBreakContinueBinding(CondVal.second);
1697 
1698   if (CondVal.second &&
1699       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1700     CommaVisitor(*this).Visit(CondVal.second);
1701 
1702   if (isa<NullStmt>(Body))
1703     getCurCompoundScope().setHasEmptyLoopBodies();
1704 
1705   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1706                            WhileLoc, LParenLoc, RParenLoc);
1707 }
1708 
1709 StmtResult
1710 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1711                   SourceLocation WhileLoc, SourceLocation CondLParen,
1712                   Expr *Cond, SourceLocation CondRParen) {
1713   assert(Cond && "ActOnDoStmt(): missing expression");
1714 
1715   CheckBreakContinueBinding(Cond);
1716   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1717   if (CondResult.isInvalid())
1718     return StmtError();
1719   Cond = CondResult.get();
1720 
1721   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1722   if (CondResult.isInvalid())
1723     return StmtError();
1724   Cond = CondResult.get();
1725 
1726   // Only call the CommaVisitor for C89 due to differences in scope flags.
1727   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1728       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1729     CommaVisitor(*this).Visit(Cond);
1730 
1731   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1732 }
1733 
1734 namespace {
1735   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1736   using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1737 
1738   // This visitor will traverse a conditional statement and store all
1739   // the evaluated decls into a vector.  Simple is set to true if none
1740   // of the excluded constructs are used.
1741   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1742     DeclSetVector &Decls;
1743     SmallVectorImpl<SourceRange> &Ranges;
1744     bool Simple;
1745   public:
1746     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1747 
1748     DeclExtractor(Sema &S, DeclSetVector &Decls,
1749                   SmallVectorImpl<SourceRange> &Ranges) :
1750         Inherited(S.Context),
1751         Decls(Decls),
1752         Ranges(Ranges),
1753         Simple(true) {}
1754 
1755     bool isSimple() { return Simple; }
1756 
1757     // Replaces the method in EvaluatedExprVisitor.
1758     void VisitMemberExpr(MemberExpr* E) {
1759       Simple = false;
1760     }
1761 
1762     // Any Stmt not explicitly listed will cause the condition to be marked
1763     // complex.
1764     void VisitStmt(Stmt *S) { Simple = false; }
1765 
1766     void VisitBinaryOperator(BinaryOperator *E) {
1767       Visit(E->getLHS());
1768       Visit(E->getRHS());
1769     }
1770 
1771     void VisitCastExpr(CastExpr *E) {
1772       Visit(E->getSubExpr());
1773     }
1774 
1775     void VisitUnaryOperator(UnaryOperator *E) {
1776       // Skip checking conditionals with derefernces.
1777       if (E->getOpcode() == UO_Deref)
1778         Simple = false;
1779       else
1780         Visit(E->getSubExpr());
1781     }
1782 
1783     void VisitConditionalOperator(ConditionalOperator *E) {
1784       Visit(E->getCond());
1785       Visit(E->getTrueExpr());
1786       Visit(E->getFalseExpr());
1787     }
1788 
1789     void VisitParenExpr(ParenExpr *E) {
1790       Visit(E->getSubExpr());
1791     }
1792 
1793     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1794       Visit(E->getOpaqueValue()->getSourceExpr());
1795       Visit(E->getFalseExpr());
1796     }
1797 
1798     void VisitIntegerLiteral(IntegerLiteral *E) { }
1799     void VisitFloatingLiteral(FloatingLiteral *E) { }
1800     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1801     void VisitCharacterLiteral(CharacterLiteral *E) { }
1802     void VisitGNUNullExpr(GNUNullExpr *E) { }
1803     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1804 
1805     void VisitDeclRefExpr(DeclRefExpr *E) {
1806       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1807       if (!VD) {
1808         // Don't allow unhandled Decl types.
1809         Simple = false;
1810         return;
1811       }
1812 
1813       Ranges.push_back(E->getSourceRange());
1814 
1815       Decls.insert(VD);
1816     }
1817 
1818   }; // end class DeclExtractor
1819 
1820   // DeclMatcher checks to see if the decls are used in a non-evaluated
1821   // context.
1822   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1823     DeclSetVector &Decls;
1824     bool FoundDecl;
1825 
1826   public:
1827     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1828 
1829     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1830         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1831       if (!Statement) return;
1832 
1833       Visit(Statement);
1834     }
1835 
1836     void VisitReturnStmt(ReturnStmt *S) {
1837       FoundDecl = true;
1838     }
1839 
1840     void VisitBreakStmt(BreakStmt *S) {
1841       FoundDecl = true;
1842     }
1843 
1844     void VisitGotoStmt(GotoStmt *S) {
1845       FoundDecl = true;
1846     }
1847 
1848     void VisitCastExpr(CastExpr *E) {
1849       if (E->getCastKind() == CK_LValueToRValue)
1850         CheckLValueToRValueCast(E->getSubExpr());
1851       else
1852         Visit(E->getSubExpr());
1853     }
1854 
1855     void CheckLValueToRValueCast(Expr *E) {
1856       E = E->IgnoreParenImpCasts();
1857 
1858       if (isa<DeclRefExpr>(E)) {
1859         return;
1860       }
1861 
1862       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1863         Visit(CO->getCond());
1864         CheckLValueToRValueCast(CO->getTrueExpr());
1865         CheckLValueToRValueCast(CO->getFalseExpr());
1866         return;
1867       }
1868 
1869       if (BinaryConditionalOperator *BCO =
1870               dyn_cast<BinaryConditionalOperator>(E)) {
1871         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1872         CheckLValueToRValueCast(BCO->getFalseExpr());
1873         return;
1874       }
1875 
1876       Visit(E);
1877     }
1878 
1879     void VisitDeclRefExpr(DeclRefExpr *E) {
1880       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1881         if (Decls.count(VD))
1882           FoundDecl = true;
1883     }
1884 
1885     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1886       // Only need to visit the semantics for POE.
1887       // SyntaticForm doesn't really use the Decal.
1888       for (auto *S : POE->semantics()) {
1889         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1890           // Look past the OVE into the expression it binds.
1891           Visit(OVE->getSourceExpr());
1892         else
1893           Visit(S);
1894       }
1895     }
1896 
1897     bool FoundDeclInUse() { return FoundDecl; }
1898 
1899   };  // end class DeclMatcher
1900 
1901   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1902                                         Expr *Third, Stmt *Body) {
1903     // Condition is empty
1904     if (!Second) return;
1905 
1906     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1907                           Second->getBeginLoc()))
1908       return;
1909 
1910     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1911     DeclSetVector Decls;
1912     SmallVector<SourceRange, 10> Ranges;
1913     DeclExtractor DE(S, Decls, Ranges);
1914     DE.Visit(Second);
1915 
1916     // Don't analyze complex conditionals.
1917     if (!DE.isSimple()) return;
1918 
1919     // No decls found.
1920     if (Decls.size() == 0) return;
1921 
1922     // Don't warn on volatile, static, or global variables.
1923     for (auto *VD : Decls)
1924       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1925         return;
1926 
1927     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1928         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1929         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1930       return;
1931 
1932     // Load decl names into diagnostic.
1933     if (Decls.size() > 4) {
1934       PDiag << 0;
1935     } else {
1936       PDiag << (unsigned)Decls.size();
1937       for (auto *VD : Decls)
1938         PDiag << VD->getDeclName();
1939     }
1940 
1941     for (auto Range : Ranges)
1942       PDiag << Range;
1943 
1944     S.Diag(Ranges.begin()->getBegin(), PDiag);
1945   }
1946 
1947   // If Statement is an incemement or decrement, return true and sets the
1948   // variables Increment and DRE.
1949   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1950                             DeclRefExpr *&DRE) {
1951     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1952       if (!Cleanups->cleanupsHaveSideEffects())
1953         Statement = Cleanups->getSubExpr();
1954 
1955     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1956       switch (UO->getOpcode()) {
1957         default: return false;
1958         case UO_PostInc:
1959         case UO_PreInc:
1960           Increment = true;
1961           break;
1962         case UO_PostDec:
1963         case UO_PreDec:
1964           Increment = false;
1965           break;
1966       }
1967       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1968       return DRE;
1969     }
1970 
1971     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1972       FunctionDecl *FD = Call->getDirectCallee();
1973       if (!FD || !FD->isOverloadedOperator()) return false;
1974       switch (FD->getOverloadedOperator()) {
1975         default: return false;
1976         case OO_PlusPlus:
1977           Increment = true;
1978           break;
1979         case OO_MinusMinus:
1980           Increment = false;
1981           break;
1982       }
1983       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1984       return DRE;
1985     }
1986 
1987     return false;
1988   }
1989 
1990   // A visitor to determine if a continue or break statement is a
1991   // subexpression.
1992   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1993     SourceLocation BreakLoc;
1994     SourceLocation ContinueLoc;
1995     bool InSwitch = false;
1996 
1997   public:
1998     BreakContinueFinder(Sema &S, const Stmt* Body) :
1999         Inherited(S.Context) {
2000       Visit(Body);
2001     }
2002 
2003     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2004 
2005     void VisitContinueStmt(const ContinueStmt* E) {
2006       ContinueLoc = E->getContinueLoc();
2007     }
2008 
2009     void VisitBreakStmt(const BreakStmt* E) {
2010       if (!InSwitch)
2011         BreakLoc = E->getBreakLoc();
2012     }
2013 
2014     void VisitSwitchStmt(const SwitchStmt* S) {
2015       if (const Stmt *Init = S->getInit())
2016         Visit(Init);
2017       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2018         Visit(CondVar);
2019       if (const Stmt *Cond = S->getCond())
2020         Visit(Cond);
2021 
2022       // Don't return break statements from the body of a switch.
2023       InSwitch = true;
2024       if (const Stmt *Body = S->getBody())
2025         Visit(Body);
2026       InSwitch = false;
2027     }
2028 
2029     void VisitForStmt(const ForStmt *S) {
2030       // Only visit the init statement of a for loop; the body
2031       // has a different break/continue scope.
2032       if (const Stmt *Init = S->getInit())
2033         Visit(Init);
2034     }
2035 
2036     void VisitWhileStmt(const WhileStmt *) {
2037       // Do nothing; the children of a while loop have a different
2038       // break/continue scope.
2039     }
2040 
2041     void VisitDoStmt(const DoStmt *) {
2042       // Do nothing; the children of a while loop have a different
2043       // break/continue scope.
2044     }
2045 
2046     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2047       // Only visit the initialization of a for loop; the body
2048       // has a different break/continue scope.
2049       if (const Stmt *Init = S->getInit())
2050         Visit(Init);
2051       if (const Stmt *Range = S->getRangeStmt())
2052         Visit(Range);
2053       if (const Stmt *Begin = S->getBeginStmt())
2054         Visit(Begin);
2055       if (const Stmt *End = S->getEndStmt())
2056         Visit(End);
2057     }
2058 
2059     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2060       // Only visit the initialization of a for loop; the body
2061       // has a different break/continue scope.
2062       if (const Stmt *Element = S->getElement())
2063         Visit(Element);
2064       if (const Stmt *Collection = S->getCollection())
2065         Visit(Collection);
2066     }
2067 
2068     bool ContinueFound() { return ContinueLoc.isValid(); }
2069     bool BreakFound() { return BreakLoc.isValid(); }
2070     SourceLocation GetContinueLoc() { return ContinueLoc; }
2071     SourceLocation GetBreakLoc() { return BreakLoc; }
2072 
2073   };  // end class BreakContinueFinder
2074 
2075   // Emit a warning when a loop increment/decrement appears twice per loop
2076   // iteration.  The conditions which trigger this warning are:
2077   // 1) The last statement in the loop body and the third expression in the
2078   //    for loop are both increment or both decrement of the same variable
2079   // 2) No continue statements in the loop body.
2080   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2081     // Return when there is nothing to check.
2082     if (!Body || !Third) return;
2083 
2084     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2085                           Third->getBeginLoc()))
2086       return;
2087 
2088     // Get the last statement from the loop body.
2089     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2090     if (!CS || CS->body_empty()) return;
2091     Stmt *LastStmt = CS->body_back();
2092     if (!LastStmt) return;
2093 
2094     bool LoopIncrement, LastIncrement;
2095     DeclRefExpr *LoopDRE, *LastDRE;
2096 
2097     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2098     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2099 
2100     // Check that the two statements are both increments or both decrements
2101     // on the same variable.
2102     if (LoopIncrement != LastIncrement ||
2103         LoopDRE->getDecl() != LastDRE->getDecl()) return;
2104 
2105     if (BreakContinueFinder(S, Body).ContinueFound()) return;
2106 
2107     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2108          << LastDRE->getDecl() << LastIncrement;
2109     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2110          << LoopIncrement;
2111   }
2112 
2113 } // end namespace
2114 
2115 
2116 void Sema::CheckBreakContinueBinding(Expr *E) {
2117   if (!E || getLangOpts().CPlusPlus)
2118     return;
2119   BreakContinueFinder BCFinder(*this, E);
2120   Scope *BreakParent = CurScope->getBreakParent();
2121   if (BCFinder.BreakFound() && BreakParent) {
2122     if (BreakParent->getFlags() & Scope::SwitchScope) {
2123       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2124     } else {
2125       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2126           << "break";
2127     }
2128   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2129     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2130         << "continue";
2131   }
2132 }
2133 
2134 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2135                               Stmt *First, ConditionResult Second,
2136                               FullExprArg third, SourceLocation RParenLoc,
2137                               Stmt *Body) {
2138   if (Second.isInvalid())
2139     return StmtError();
2140 
2141   if (!getLangOpts().CPlusPlus) {
2142     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2143       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2144       // declare identifiers for objects having storage class 'auto' or
2145       // 'register'.
2146       const Decl *NonVarSeen = nullptr;
2147       bool VarDeclSeen = false;
2148       for (auto *DI : DS->decls()) {
2149         if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2150           VarDeclSeen = true;
2151           if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2152             Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2153             DI->setInvalidDecl();
2154           }
2155         } else if (!NonVarSeen) {
2156           // Keep track of the first non-variable declaration we saw so that
2157           // we can diagnose if we don't see any variable declarations. This
2158           // covers a case like declaring a typedef, function, or structure
2159           // type rather than a variable.
2160           NonVarSeen = DI;
2161         }
2162       }
2163       // Diagnose if we saw a non-variable declaration but no variable
2164       // declarations.
2165       if (NonVarSeen && !VarDeclSeen)
2166         Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2167     }
2168   }
2169 
2170   CheckBreakContinueBinding(Second.get().second);
2171   CheckBreakContinueBinding(third.get());
2172 
2173   if (!Second.get().first)
2174     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2175                                      Body);
2176   CheckForRedundantIteration(*this, third.get(), Body);
2177 
2178   if (Second.get().second &&
2179       !Diags.isIgnored(diag::warn_comma_operator,
2180                        Second.get().second->getExprLoc()))
2181     CommaVisitor(*this).Visit(Second.get().second);
2182 
2183   Expr *Third  = third.release().getAs<Expr>();
2184   if (isa<NullStmt>(Body))
2185     getCurCompoundScope().setHasEmptyLoopBodies();
2186 
2187   return new (Context)
2188       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2189               Body, ForLoc, LParenLoc, RParenLoc);
2190 }
2191 
2192 /// In an Objective C collection iteration statement:
2193 ///   for (x in y)
2194 /// x can be an arbitrary l-value expression.  Bind it up as a
2195 /// full-expression.
2196 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2197   // Reduce placeholder expressions here.  Note that this rejects the
2198   // use of pseudo-object l-values in this position.
2199   ExprResult result = CheckPlaceholderExpr(E);
2200   if (result.isInvalid()) return StmtError();
2201   E = result.get();
2202 
2203   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2204   if (FullExpr.isInvalid())
2205     return StmtError();
2206   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2207 }
2208 
2209 ExprResult
2210 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
2211   if (!collection)
2212     return ExprError();
2213 
2214   ExprResult result = CorrectDelayedTyposInExpr(collection);
2215   if (!result.isUsable())
2216     return ExprError();
2217   collection = result.get();
2218 
2219   // Bail out early if we've got a type-dependent expression.
2220   if (collection->isTypeDependent()) return collection;
2221 
2222   // Perform normal l-value conversion.
2223   result = DefaultFunctionArrayLvalueConversion(collection);
2224   if (result.isInvalid())
2225     return ExprError();
2226   collection = result.get();
2227 
2228   // The operand needs to have object-pointer type.
2229   // TODO: should we do a contextual conversion?
2230   const ObjCObjectPointerType *pointerType =
2231     collection->getType()->getAs<ObjCObjectPointerType>();
2232   if (!pointerType)
2233     return Diag(forLoc, diag::err_collection_expr_type)
2234              << collection->getType() << collection->getSourceRange();
2235 
2236   // Check that the operand provides
2237   //   - countByEnumeratingWithState:objects:count:
2238   const ObjCObjectType *objectType = pointerType->getObjectType();
2239   ObjCInterfaceDecl *iface = objectType->getInterface();
2240 
2241   // If we have a forward-declared type, we can't do this check.
2242   // Under ARC, it is an error not to have a forward-declared class.
2243   if (iface &&
2244       (getLangOpts().ObjCAutoRefCount
2245            ? RequireCompleteType(forLoc, QualType(objectType, 0),
2246                                  diag::err_arc_collection_forward, collection)
2247            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2248     // Otherwise, if we have any useful type information, check that
2249     // the type declares the appropriate method.
2250   } else if (iface || !objectType->qual_empty()) {
2251     IdentifierInfo *selectorIdents[] = {
2252       &Context.Idents.get("countByEnumeratingWithState"),
2253       &Context.Idents.get("objects"),
2254       &Context.Idents.get("count")
2255     };
2256     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2257 
2258     ObjCMethodDecl *method = nullptr;
2259 
2260     // If there's an interface, look in both the public and private APIs.
2261     if (iface) {
2262       method = iface->lookupInstanceMethod(selector);
2263       if (!method) method = iface->lookupPrivateMethod(selector);
2264     }
2265 
2266     // Also check protocol qualifiers.
2267     if (!method)
2268       method = LookupMethodInQualifiedType(selector, pointerType,
2269                                            /*instance*/ true);
2270 
2271     // If we didn't find it anywhere, give up.
2272     if (!method) {
2273       Diag(forLoc, diag::warn_collection_expr_type)
2274         << collection->getType() << selector << collection->getSourceRange();
2275     }
2276 
2277     // TODO: check for an incompatible signature?
2278   }
2279 
2280   // Wrap up any cleanups in the expression.
2281   return collection;
2282 }
2283 
2284 StmtResult
2285 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
2286                                  Stmt *First, Expr *collection,
2287                                  SourceLocation RParenLoc) {
2288   setFunctionHasBranchProtectedScope();
2289 
2290   ExprResult CollectionExprResult =
2291     CheckObjCForCollectionOperand(ForLoc, collection);
2292 
2293   if (First) {
2294     QualType FirstType;
2295     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2296       if (!DS->isSingleDecl())
2297         return StmtError(Diag((*DS->decl_begin())->getLocation(),
2298                          diag::err_toomany_element_decls));
2299 
2300       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2301       if (!D || D->isInvalidDecl())
2302         return StmtError();
2303 
2304       FirstType = D->getType();
2305       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2306       // declare identifiers for objects having storage class 'auto' or
2307       // 'register'.
2308       if (!D->hasLocalStorage())
2309         return StmtError(Diag(D->getLocation(),
2310                               diag::err_non_local_variable_decl_in_for));
2311 
2312       // If the type contained 'auto', deduce the 'auto' to 'id'.
2313       if (FirstType->getContainedAutoType()) {
2314         SourceLocation Loc = D->getLocation();
2315         OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2316         Expr *DeducedInit = &OpaqueId;
2317         TemplateDeductionInfo Info(Loc);
2318         FirstType = QualType();
2319         TemplateDeductionResult Result = DeduceAutoType(
2320             D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2321         if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2322           DiagnoseAutoDeductionFailure(D, DeducedInit);
2323         if (FirstType.isNull()) {
2324           D->setInvalidDecl();
2325           return StmtError();
2326         }
2327 
2328         D->setType(FirstType);
2329 
2330         if (!inTemplateInstantiation()) {
2331           SourceLocation Loc =
2332               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
2333           Diag(Loc, diag::warn_auto_var_is_id)
2334             << D->getDeclName();
2335         }
2336       }
2337 
2338     } else {
2339       Expr *FirstE = cast<Expr>(First);
2340       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2341         return StmtError(
2342             Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2343             << First->getSourceRange());
2344 
2345       FirstType = static_cast<Expr*>(First)->getType();
2346       if (FirstType.isConstQualified())
2347         Diag(ForLoc, diag::err_selector_element_const_type)
2348           << FirstType << First->getSourceRange();
2349     }
2350     if (!FirstType->isDependentType() &&
2351         !FirstType->isObjCObjectPointerType() &&
2352         !FirstType->isBlockPointerType())
2353         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2354                            << FirstType << First->getSourceRange());
2355   }
2356 
2357   if (CollectionExprResult.isInvalid())
2358     return StmtError();
2359 
2360   CollectionExprResult =
2361       ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2362   if (CollectionExprResult.isInvalid())
2363     return StmtError();
2364 
2365   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2366                                              nullptr, ForLoc, RParenLoc);
2367 }
2368 
2369 /// Finish building a variable declaration for a for-range statement.
2370 /// \return true if an error occurs.
2371 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2372                                   SourceLocation Loc, int DiagID) {
2373   if (Decl->getType()->isUndeducedType()) {
2374     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2375     if (!Res.isUsable()) {
2376       Decl->setInvalidDecl();
2377       return true;
2378     }
2379     Init = Res.get();
2380   }
2381 
2382   // Deduce the type for the iterator variable now rather than leaving it to
2383   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2384   QualType InitType;
2385   if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2386     SemaRef.Diag(Loc, DiagID) << Init->getType();
2387   } else {
2388     TemplateDeductionInfo Info(Init->getExprLoc());
2389     Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2390         Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2391     if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2392       SemaRef.Diag(Loc, DiagID) << Init->getType();
2393   }
2394 
2395   if (InitType.isNull()) {
2396     Decl->setInvalidDecl();
2397     return true;
2398   }
2399   Decl->setType(InitType);
2400 
2401   // In ARC, infer lifetime.
2402   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2403   // we're doing the equivalent of fast iteration.
2404   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2405       SemaRef.inferObjCARCLifetime(Decl))
2406     Decl->setInvalidDecl();
2407 
2408   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2409   SemaRef.FinalizeDeclaration(Decl);
2410   SemaRef.CurContext->addHiddenDecl(Decl);
2411   return false;
2412 }
2413 
2414 namespace {
2415 // An enum to represent whether something is dealing with a call to begin()
2416 // or a call to end() in a range-based for loop.
2417 enum BeginEndFunction {
2418   BEF_begin,
2419   BEF_end
2420 };
2421 
2422 /// Produce a note indicating which begin/end function was implicitly called
2423 /// by a C++11 for-range statement. This is often not obvious from the code,
2424 /// nor from the diagnostics produced when analysing the implicit expressions
2425 /// required in a for-range statement.
2426 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2427                                   BeginEndFunction BEF) {
2428   CallExpr *CE = dyn_cast<CallExpr>(E);
2429   if (!CE)
2430     return;
2431   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2432   if (!D)
2433     return;
2434   SourceLocation Loc = D->getLocation();
2435 
2436   std::string Description;
2437   bool IsTemplate = false;
2438   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2439     Description = SemaRef.getTemplateArgumentBindingsText(
2440       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2441     IsTemplate = true;
2442   }
2443 
2444   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2445     << BEF << IsTemplate << Description << E->getType();
2446 }
2447 
2448 /// Build a variable declaration for a for-range statement.
2449 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2450                               QualType Type, StringRef Name) {
2451   DeclContext *DC = SemaRef.CurContext;
2452   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2453   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2454   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2455                                   TInfo, SC_None);
2456   Decl->setImplicit();
2457   return Decl;
2458 }
2459 
2460 }
2461 
2462 static bool ObjCEnumerationCollection(Expr *Collection) {
2463   return !Collection->isTypeDependent()
2464           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2465 }
2466 
2467 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2468 ///
2469 /// C++11 [stmt.ranged]:
2470 ///   A range-based for statement is equivalent to
2471 ///
2472 ///   {
2473 ///     auto && __range = range-init;
2474 ///     for ( auto __begin = begin-expr,
2475 ///           __end = end-expr;
2476 ///           __begin != __end;
2477 ///           ++__begin ) {
2478 ///       for-range-declaration = *__begin;
2479 ///       statement
2480 ///     }
2481 ///   }
2482 ///
2483 /// The body of the loop is not available yet, since it cannot be analysed until
2484 /// we have determined the type of the for-range-declaration.
2485 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2486                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2487                                       Stmt *First, SourceLocation ColonLoc,
2488                                       Expr *Range, SourceLocation RParenLoc,
2489                                       BuildForRangeKind Kind) {
2490   // FIXME: recover in order to allow the body to be parsed.
2491   if (!First)
2492     return StmtError();
2493 
2494   if (Range && ObjCEnumerationCollection(Range)) {
2495     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2496     if (InitStmt)
2497       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2498                  << InitStmt->getSourceRange();
2499     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2500   }
2501 
2502   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2503   assert(DS && "first part of for range not a decl stmt");
2504 
2505   if (!DS->isSingleDecl()) {
2506     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2507     return StmtError();
2508   }
2509 
2510   // This function is responsible for attaching an initializer to LoopVar. We
2511   // must call ActOnInitializerError if we fail to do so.
2512   Decl *LoopVar = DS->getSingleDecl();
2513   if (LoopVar->isInvalidDecl() || !Range ||
2514       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2515     ActOnInitializerError(LoopVar);
2516     return StmtError();
2517   }
2518 
2519   // Build the coroutine state immediately and not later during template
2520   // instantiation
2521   if (!CoawaitLoc.isInvalid()) {
2522     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2523       ActOnInitializerError(LoopVar);
2524       return StmtError();
2525     }
2526   }
2527 
2528   // Build  auto && __range = range-init
2529   // Divide by 2, since the variables are in the inner scope (loop body).
2530   const auto DepthStr = std::to_string(S->getDepth() / 2);
2531   SourceLocation RangeLoc = Range->getBeginLoc();
2532   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2533                                            Context.getAutoRRefDeductType(),
2534                                            std::string("__range") + DepthStr);
2535   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2536                             diag::err_for_range_deduction_failure)) {
2537     ActOnInitializerError(LoopVar);
2538     return StmtError();
2539   }
2540 
2541   // Claim the type doesn't contain auto: we've already done the checking.
2542   DeclGroupPtrTy RangeGroup =
2543       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2544   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2545   if (RangeDecl.isInvalid()) {
2546     ActOnInitializerError(LoopVar);
2547     return StmtError();
2548   }
2549 
2550   StmtResult R = BuildCXXForRangeStmt(
2551       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2552       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2553       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2554   if (R.isInvalid()) {
2555     ActOnInitializerError(LoopVar);
2556     return StmtError();
2557   }
2558 
2559   return R;
2560 }
2561 
2562 /// Create the initialization, compare, and increment steps for
2563 /// the range-based for loop expression.
2564 /// This function does not handle array-based for loops,
2565 /// which are created in Sema::BuildCXXForRangeStmt.
2566 ///
2567 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2568 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2569 /// CandidateSet and BEF are set and some non-success value is returned on
2570 /// failure.
2571 static Sema::ForRangeStatus
2572 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2573                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2574                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2575                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2576                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2577   DeclarationNameInfo BeginNameInfo(
2578       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2579   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2580                                   ColonLoc);
2581 
2582   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2583                                  Sema::LookupMemberName);
2584   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2585 
2586   auto BuildBegin = [&] {
2587     *BEF = BEF_begin;
2588     Sema::ForRangeStatus RangeStatus =
2589         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2590                                           BeginMemberLookup, CandidateSet,
2591                                           BeginRange, BeginExpr);
2592 
2593     if (RangeStatus != Sema::FRS_Success) {
2594       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2595         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2596             << ColonLoc << BEF_begin << BeginRange->getType();
2597       return RangeStatus;
2598     }
2599     if (!CoawaitLoc.isInvalid()) {
2600       // FIXME: getCurScope() should not be used during template instantiation.
2601       // We should pick up the set of unqualified lookup results for operator
2602       // co_await during the initial parse.
2603       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2604                                             BeginExpr->get());
2605       if (BeginExpr->isInvalid())
2606         return Sema::FRS_DiagnosticIssued;
2607     }
2608     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2609                               diag::err_for_range_iter_deduction_failure)) {
2610       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2611       return Sema::FRS_DiagnosticIssued;
2612     }
2613     return Sema::FRS_Success;
2614   };
2615 
2616   auto BuildEnd = [&] {
2617     *BEF = BEF_end;
2618     Sema::ForRangeStatus RangeStatus =
2619         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2620                                           EndMemberLookup, CandidateSet,
2621                                           EndRange, EndExpr);
2622     if (RangeStatus != Sema::FRS_Success) {
2623       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2624         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2625             << ColonLoc << BEF_end << EndRange->getType();
2626       return RangeStatus;
2627     }
2628     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2629                               diag::err_for_range_iter_deduction_failure)) {
2630       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2631       return Sema::FRS_DiagnosticIssued;
2632     }
2633     return Sema::FRS_Success;
2634   };
2635 
2636   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2637     // - if _RangeT is a class type, the unqualified-ids begin and end are
2638     //   looked up in the scope of class _RangeT as if by class member access
2639     //   lookup (3.4.5), and if either (or both) finds at least one
2640     //   declaration, begin-expr and end-expr are __range.begin() and
2641     //   __range.end(), respectively;
2642     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2643     if (BeginMemberLookup.isAmbiguous())
2644       return Sema::FRS_DiagnosticIssued;
2645 
2646     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2647     if (EndMemberLookup.isAmbiguous())
2648       return Sema::FRS_DiagnosticIssued;
2649 
2650     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2651       // Look up the non-member form of the member we didn't find, first.
2652       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2653       // a 'begin' but ignored it because there was no member 'end'"
2654       // diagnostic.
2655       auto BuildNonmember = [&](
2656           BeginEndFunction BEFFound, LookupResult &Found,
2657           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2658           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2659         LookupResult OldFound = std::move(Found);
2660         Found.clear();
2661 
2662         if (Sema::ForRangeStatus Result = BuildNotFound())
2663           return Result;
2664 
2665         switch (BuildFound()) {
2666         case Sema::FRS_Success:
2667           return Sema::FRS_Success;
2668 
2669         case Sema::FRS_NoViableFunction:
2670           CandidateSet->NoteCandidates(
2671               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2672                                   SemaRef.PDiag(diag::err_for_range_invalid)
2673                                       << BeginRange->getType() << BEFFound),
2674               SemaRef, OCD_AllCandidates, BeginRange);
2675           [[fallthrough]];
2676 
2677         case Sema::FRS_DiagnosticIssued:
2678           for (NamedDecl *D : OldFound) {
2679             SemaRef.Diag(D->getLocation(),
2680                          diag::note_for_range_member_begin_end_ignored)
2681                 << BeginRange->getType() << BEFFound;
2682           }
2683           return Sema::FRS_DiagnosticIssued;
2684         }
2685         llvm_unreachable("unexpected ForRangeStatus");
2686       };
2687       if (BeginMemberLookup.empty())
2688         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2689       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2690     }
2691   } else {
2692     // - otherwise, begin-expr and end-expr are begin(__range) and
2693     //   end(__range), respectively, where begin and end are looked up with
2694     //   argument-dependent lookup (3.4.2). For the purposes of this name
2695     //   lookup, namespace std is an associated namespace.
2696   }
2697 
2698   if (Sema::ForRangeStatus Result = BuildBegin())
2699     return Result;
2700   return BuildEnd();
2701 }
2702 
2703 /// Speculatively attempt to dereference an invalid range expression.
2704 /// If the attempt fails, this function will return a valid, null StmtResult
2705 /// and emit no diagnostics.
2706 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2707                                                  SourceLocation ForLoc,
2708                                                  SourceLocation CoawaitLoc,
2709                                                  Stmt *InitStmt,
2710                                                  Stmt *LoopVarDecl,
2711                                                  SourceLocation ColonLoc,
2712                                                  Expr *Range,
2713                                                  SourceLocation RangeLoc,
2714                                                  SourceLocation RParenLoc) {
2715   // Determine whether we can rebuild the for-range statement with a
2716   // dereferenced range expression.
2717   ExprResult AdjustedRange;
2718   {
2719     Sema::SFINAETrap Trap(SemaRef);
2720 
2721     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2722     if (AdjustedRange.isInvalid())
2723       return StmtResult();
2724 
2725     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2726         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2727         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2728     if (SR.isInvalid())
2729       return StmtResult();
2730   }
2731 
2732   // The attempt to dereference worked well enough that it could produce a valid
2733   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2734   // case there are any other (non-fatal) problems with it.
2735   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2736     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2737   return SemaRef.ActOnCXXForRangeStmt(
2738       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2739       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2740 }
2741 
2742 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2743 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2744                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2745                                       SourceLocation ColonLoc, Stmt *RangeDecl,
2746                                       Stmt *Begin, Stmt *End, Expr *Cond,
2747                                       Expr *Inc, Stmt *LoopVarDecl,
2748                                       SourceLocation RParenLoc,
2749                                       BuildForRangeKind Kind) {
2750   // FIXME: This should not be used during template instantiation. We should
2751   // pick up the set of unqualified lookup results for the != and + operators
2752   // in the initial parse.
2753   //
2754   // Testcase (accepts-invalid):
2755   //   template<typename T> void f() { for (auto x : T()) {} }
2756   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2757   //   bool operator!=(N::X, N::X); void operator++(N::X);
2758   //   void g() { f<N::X>(); }
2759   Scope *S = getCurScope();
2760 
2761   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2762   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2763   QualType RangeVarType = RangeVar->getType();
2764 
2765   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2766   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2767 
2768   StmtResult BeginDeclStmt = Begin;
2769   StmtResult EndDeclStmt = End;
2770   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2771 
2772   if (RangeVarType->isDependentType()) {
2773     // The range is implicitly used as a placeholder when it is dependent.
2774     RangeVar->markUsed(Context);
2775 
2776     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2777     // them in properly when we instantiate the loop.
2778     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2779       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2780         for (auto *Binding : DD->bindings())
2781           Binding->setType(Context.DependentTy);
2782       LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2783     }
2784   } else if (!BeginDeclStmt.get()) {
2785     SourceLocation RangeLoc = RangeVar->getLocation();
2786 
2787     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2788 
2789     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2790                                                 VK_LValue, ColonLoc);
2791     if (BeginRangeRef.isInvalid())
2792       return StmtError();
2793 
2794     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2795                                               VK_LValue, ColonLoc);
2796     if (EndRangeRef.isInvalid())
2797       return StmtError();
2798 
2799     QualType AutoType = Context.getAutoDeductType();
2800     Expr *Range = RangeVar->getInit();
2801     if (!Range)
2802       return StmtError();
2803     QualType RangeType = Range->getType();
2804 
2805     if (RequireCompleteType(RangeLoc, RangeType,
2806                             diag::err_for_range_incomplete_type))
2807       return StmtError();
2808 
2809     // Build auto __begin = begin-expr, __end = end-expr.
2810     // Divide by 2, since the variables are in the inner scope (loop body).
2811     const auto DepthStr = std::to_string(S->getDepth() / 2);
2812     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2813                                              std::string("__begin") + DepthStr);
2814     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2815                                            std::string("__end") + DepthStr);
2816 
2817     // Build begin-expr and end-expr and attach to __begin and __end variables.
2818     ExprResult BeginExpr, EndExpr;
2819     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2820       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2821       //   __range + __bound, respectively, where __bound is the array bound. If
2822       //   _RangeT is an array of unknown size or an array of incomplete type,
2823       //   the program is ill-formed;
2824 
2825       // begin-expr is __range.
2826       BeginExpr = BeginRangeRef;
2827       if (!CoawaitLoc.isInvalid()) {
2828         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2829         if (BeginExpr.isInvalid())
2830           return StmtError();
2831       }
2832       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2833                                 diag::err_for_range_iter_deduction_failure)) {
2834         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2835         return StmtError();
2836       }
2837 
2838       // Find the array bound.
2839       ExprResult BoundExpr;
2840       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2841         BoundExpr = IntegerLiteral::Create(
2842             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2843       else if (const VariableArrayType *VAT =
2844                dyn_cast<VariableArrayType>(UnqAT)) {
2845         // For a variably modified type we can't just use the expression within
2846         // the array bounds, since we don't want that to be re-evaluated here.
2847         // Rather, we need to determine what it was when the array was first
2848         // created - so we resort to using sizeof(vla)/sizeof(element).
2849         // For e.g.
2850         //  void f(int b) {
2851         //    int vla[b];
2852         //    b = -1;   <-- This should not affect the num of iterations below
2853         //    for (int &c : vla) { .. }
2854         //  }
2855 
2856         // FIXME: This results in codegen generating IR that recalculates the
2857         // run-time number of elements (as opposed to just using the IR Value
2858         // that corresponds to the run-time value of each bound that was
2859         // generated when the array was created.) If this proves too embarrassing
2860         // even for unoptimized IR, consider passing a magic-value/cookie to
2861         // codegen that then knows to simply use that initial llvm::Value (that
2862         // corresponds to the bound at time of array creation) within
2863         // getelementptr.  But be prepared to pay the price of increasing a
2864         // customized form of coupling between the two components - which  could
2865         // be hard to maintain as the codebase evolves.
2866 
2867         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2868             EndVar->getLocation(), UETT_SizeOf,
2869             /*IsType=*/true,
2870             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2871                                                  VAT->desugar(), RangeLoc))
2872                 .getAsOpaquePtr(),
2873             EndVar->getSourceRange());
2874         if (SizeOfVLAExprR.isInvalid())
2875           return StmtError();
2876 
2877         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2878             EndVar->getLocation(), UETT_SizeOf,
2879             /*IsType=*/true,
2880             CreateParsedType(VAT->desugar(),
2881                              Context.getTrivialTypeSourceInfo(
2882                                  VAT->getElementType(), RangeLoc))
2883                 .getAsOpaquePtr(),
2884             EndVar->getSourceRange());
2885         if (SizeOfEachElementExprR.isInvalid())
2886           return StmtError();
2887 
2888         BoundExpr =
2889             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2890                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2891         if (BoundExpr.isInvalid())
2892           return StmtError();
2893 
2894       } else {
2895         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2896         // UnqAT is not incomplete and Range is not type-dependent.
2897         llvm_unreachable("Unexpected array type in for-range");
2898       }
2899 
2900       // end-expr is __range + __bound.
2901       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2902                            BoundExpr.get());
2903       if (EndExpr.isInvalid())
2904         return StmtError();
2905       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2906                                 diag::err_for_range_iter_deduction_failure)) {
2907         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2908         return StmtError();
2909       }
2910     } else {
2911       OverloadCandidateSet CandidateSet(RangeLoc,
2912                                         OverloadCandidateSet::CSK_Normal);
2913       BeginEndFunction BEFFailure;
2914       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2915           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2916           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2917           &BEFFailure);
2918 
2919       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2920           BEFFailure == BEF_begin) {
2921         // If the range is being built from an array parameter, emit a
2922         // a diagnostic that it is being treated as a pointer.
2923         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2924           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2925             QualType ArrayTy = PVD->getOriginalType();
2926             QualType PointerTy = PVD->getType();
2927             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2928               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2929                   << RangeLoc << PVD << ArrayTy << PointerTy;
2930               Diag(PVD->getLocation(), diag::note_declared_at);
2931               return StmtError();
2932             }
2933           }
2934         }
2935 
2936         // If building the range failed, try dereferencing the range expression
2937         // unless a diagnostic was issued or the end function is problematic.
2938         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2939                                                        CoawaitLoc, InitStmt,
2940                                                        LoopVarDecl, ColonLoc,
2941                                                        Range, RangeLoc,
2942                                                        RParenLoc);
2943         if (SR.isInvalid() || SR.isUsable())
2944           return SR;
2945       }
2946 
2947       // Otherwise, emit diagnostics if we haven't already.
2948       if (RangeStatus == FRS_NoViableFunction) {
2949         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2950         CandidateSet.NoteCandidates(
2951             PartialDiagnosticAt(Range->getBeginLoc(),
2952                                 PDiag(diag::err_for_range_invalid)
2953                                     << RangeLoc << Range->getType()
2954                                     << BEFFailure),
2955             *this, OCD_AllCandidates, Range);
2956       }
2957       // Return an error if no fix was discovered.
2958       if (RangeStatus != FRS_Success)
2959         return StmtError();
2960     }
2961 
2962     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2963            "invalid range expression in for loop");
2964 
2965     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2966     // C++1z removes this restriction.
2967     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2968     if (!Context.hasSameType(BeginType, EndType)) {
2969       Diag(RangeLoc, getLangOpts().CPlusPlus17
2970                          ? diag::warn_for_range_begin_end_types_differ
2971                          : diag::ext_for_range_begin_end_types_differ)
2972           << BeginType << EndType;
2973       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2974       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2975     }
2976 
2977     BeginDeclStmt =
2978         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2979     EndDeclStmt =
2980         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2981 
2982     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2983     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2984                                            VK_LValue, ColonLoc);
2985     if (BeginRef.isInvalid())
2986       return StmtError();
2987 
2988     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2989                                          VK_LValue, ColonLoc);
2990     if (EndRef.isInvalid())
2991       return StmtError();
2992 
2993     // Build and check __begin != __end expression.
2994     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2995                            BeginRef.get(), EndRef.get());
2996     if (!NotEqExpr.isInvalid())
2997       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2998     if (!NotEqExpr.isInvalid())
2999       NotEqExpr =
3000           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
3001     if (NotEqExpr.isInvalid()) {
3002       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3003         << RangeLoc << 0 << BeginRangeRef.get()->getType();
3004       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3005       if (!Context.hasSameType(BeginType, EndType))
3006         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3007       return StmtError();
3008     }
3009 
3010     // Build and check ++__begin expression.
3011     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3012                                 VK_LValue, ColonLoc);
3013     if (BeginRef.isInvalid())
3014       return StmtError();
3015 
3016     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3017     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3018       // FIXME: getCurScope() should not be used during template instantiation.
3019       // We should pick up the set of unqualified lookup results for operator
3020       // co_await during the initial parse.
3021       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3022     if (!IncrExpr.isInvalid())
3023       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3024     if (IncrExpr.isInvalid()) {
3025       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3026         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3027       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3028       return StmtError();
3029     }
3030 
3031     // Build and check *__begin  expression.
3032     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3033                                 VK_LValue, ColonLoc);
3034     if (BeginRef.isInvalid())
3035       return StmtError();
3036 
3037     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3038     if (DerefExpr.isInvalid()) {
3039       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3040         << RangeLoc << 1 << BeginRangeRef.get()->getType();
3041       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3042       return StmtError();
3043     }
3044 
3045     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
3046     // trying to determine whether this would be a valid range.
3047     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3048       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3049       if (LoopVar->isInvalidDecl() ||
3050           (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3051         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3052     }
3053   }
3054 
3055   // Don't bother to actually allocate the result if we're just trying to
3056   // determine whether it would be valid.
3057   if (Kind == BFRK_Check)
3058     return StmtResult();
3059 
3060   // In OpenMP loop region loop control variable must be private. Perform
3061   // analysis of first part (if any).
3062   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3063     ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3064 
3065   return new (Context) CXXForRangeStmt(
3066       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3067       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3068       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3069       ColonLoc, RParenLoc);
3070 }
3071 
3072 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3073 /// statement.
3074 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
3075   if (!S || !B)
3076     return StmtError();
3077   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3078 
3079   ForStmt->setBody(B);
3080   return S;
3081 }
3082 
3083 // Warn when the loop variable is a const reference that creates a copy.
3084 // Suggest using the non-reference type for copies.  If a copy can be prevented
3085 // suggest the const reference type that would do so.
3086 // For instance, given "for (const &Foo : Range)", suggest
3087 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
3088 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3089 // the copy altogether.
3090 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3091                                                     const VarDecl *VD,
3092                                                     QualType RangeInitType) {
3093   const Expr *InitExpr = VD->getInit();
3094   if (!InitExpr)
3095     return;
3096 
3097   QualType VariableType = VD->getType();
3098 
3099   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3100     if (!Cleanups->cleanupsHaveSideEffects())
3101       InitExpr = Cleanups->getSubExpr();
3102 
3103   const MaterializeTemporaryExpr *MTE =
3104       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3105 
3106   // No copy made.
3107   if (!MTE)
3108     return;
3109 
3110   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3111 
3112   // Searching for either UnaryOperator for dereference of a pointer or
3113   // CXXOperatorCallExpr for handling iterators.
3114   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3115     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3116       E = CCE->getArg(0);
3117     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3118       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3119       E = ME->getBase();
3120     } else {
3121       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3122       E = MTE->getSubExpr();
3123     }
3124     E = E->IgnoreImpCasts();
3125   }
3126 
3127   QualType ReferenceReturnType;
3128   if (isa<UnaryOperator>(E)) {
3129     ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3130   } else {
3131     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3132     const FunctionDecl *FD = Call->getDirectCallee();
3133     QualType ReturnType = FD->getReturnType();
3134     if (ReturnType->isReferenceType())
3135       ReferenceReturnType = ReturnType;
3136   }
3137 
3138   if (!ReferenceReturnType.isNull()) {
3139     // Loop variable creates a temporary.  Suggest either to go with
3140     // non-reference loop variable to indicate a copy is made, or
3141     // the correct type to bind a const reference.
3142     SemaRef.Diag(VD->getLocation(),
3143                  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3144         << VD << VariableType << ReferenceReturnType;
3145     QualType NonReferenceType = VariableType.getNonReferenceType();
3146     NonReferenceType.removeLocalConst();
3147     QualType NewReferenceType =
3148         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3149     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3150         << NonReferenceType << NewReferenceType << VD->getSourceRange()
3151         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3152   } else if (!VariableType->isRValueReferenceType()) {
3153     // The range always returns a copy, so a temporary is always created.
3154     // Suggest removing the reference from the loop variable.
3155     // If the type is a rvalue reference do not warn since that changes the
3156     // semantic of the code.
3157     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3158         << VD << RangeInitType;
3159     QualType NonReferenceType = VariableType.getNonReferenceType();
3160     NonReferenceType.removeLocalConst();
3161     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3162         << NonReferenceType << VD->getSourceRange()
3163         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3164   }
3165 }
3166 
3167 /// Determines whether the @p VariableType's declaration is a record with the
3168 /// clang::trivial_abi attribute.
3169 static bool hasTrivialABIAttr(QualType VariableType) {
3170   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3171     return RD->hasAttr<TrivialABIAttr>();
3172 
3173   return false;
3174 }
3175 
3176 // Warns when the loop variable can be changed to a reference type to
3177 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
3178 // "for (const Foo &x : Range)" if this form does not make a copy.
3179 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3180                                                 const VarDecl *VD) {
3181   const Expr *InitExpr = VD->getInit();
3182   if (!InitExpr)
3183     return;
3184 
3185   QualType VariableType = VD->getType();
3186 
3187   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3188     if (!CE->getConstructor()->isCopyConstructor())
3189       return;
3190   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3191     if (CE->getCastKind() != CK_LValueToRValue)
3192       return;
3193   } else {
3194     return;
3195   }
3196 
3197   // Small trivially copyable types are cheap to copy. Do not emit the
3198   // diagnostic for these instances. 64 bytes is a common size of a cache line.
3199   // (The function `getTypeSize` returns the size in bits.)
3200   ASTContext &Ctx = SemaRef.Context;
3201   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3202       (VariableType.isTriviallyCopyableType(Ctx) ||
3203        hasTrivialABIAttr(VariableType)))
3204     return;
3205 
3206   // Suggest changing from a const variable to a const reference variable
3207   // if doing so will prevent a copy.
3208   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3209       << VD << VariableType;
3210   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3211       << SemaRef.Context.getLValueReferenceType(VariableType)
3212       << VD->getSourceRange()
3213       << FixItHint::CreateInsertion(VD->getLocation(), "&");
3214 }
3215 
3216 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3217 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
3218 ///    using "const foo x" to show that a copy is made
3219 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3220 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
3221 ///    prevent the copy.
3222 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3223 ///    Suggest "const foo &x" to prevent the copy.
3224 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3225                                            const CXXForRangeStmt *ForStmt) {
3226   if (SemaRef.inTemplateInstantiation())
3227     return;
3228 
3229   if (SemaRef.Diags.isIgnored(
3230           diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3231           ForStmt->getBeginLoc()) &&
3232       SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3233                               ForStmt->getBeginLoc()) &&
3234       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3235                               ForStmt->getBeginLoc())) {
3236     return;
3237   }
3238 
3239   const VarDecl *VD = ForStmt->getLoopVariable();
3240   if (!VD)
3241     return;
3242 
3243   QualType VariableType = VD->getType();
3244 
3245   if (VariableType->isIncompleteType())
3246     return;
3247 
3248   const Expr *InitExpr = VD->getInit();
3249   if (!InitExpr)
3250     return;
3251 
3252   if (InitExpr->getExprLoc().isMacroID())
3253     return;
3254 
3255   if (VariableType->isReferenceType()) {
3256     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3257                                             ForStmt->getRangeInit()->getType());
3258   } else if (VariableType.isConstQualified()) {
3259     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3260   }
3261 }
3262 
3263 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3264 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3265 /// body cannot be performed until after the type of the range variable is
3266 /// determined.
3267 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3268   if (!S || !B)
3269     return StmtError();
3270 
3271   if (isa<ObjCForCollectionStmt>(S))
3272     return FinishObjCForCollectionStmt(S, B);
3273 
3274   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3275   ForStmt->setBody(B);
3276 
3277   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3278                         diag::warn_empty_range_based_for_body);
3279 
3280   DiagnoseForRangeVariableCopies(*this, ForStmt);
3281 
3282   return S;
3283 }
3284 
3285 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3286                                SourceLocation LabelLoc,
3287                                LabelDecl *TheDecl) {
3288   setFunctionHasBranchIntoScope();
3289   TheDecl->markUsed(Context);
3290   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3291 }
3292 
3293 StmtResult
3294 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3295                             Expr *E) {
3296   // Convert operand to void*
3297   if (!E->isTypeDependent()) {
3298     QualType ETy = E->getType();
3299     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3300     ExprResult ExprRes = E;
3301     AssignConvertType ConvTy =
3302       CheckSingleAssignmentConstraints(DestTy, ExprRes);
3303     if (ExprRes.isInvalid())
3304       return StmtError();
3305     E = ExprRes.get();
3306     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3307       return StmtError();
3308   }
3309 
3310   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3311   if (ExprRes.isInvalid())
3312     return StmtError();
3313   E = ExprRes.get();
3314 
3315   setFunctionHasIndirectGoto();
3316 
3317   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3318 }
3319 
3320 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3321                                      const Scope &DestScope) {
3322   if (!S.CurrentSEHFinally.empty() &&
3323       DestScope.Contains(*S.CurrentSEHFinally.back())) {
3324     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3325   }
3326 }
3327 
3328 StmtResult
3329 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3330   Scope *S = CurScope->getContinueParent();
3331   if (!S) {
3332     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3333     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3334   }
3335   if (S->isConditionVarScope()) {
3336     // We cannot 'continue;' from within a statement expression in the
3337     // initializer of a condition variable because we would jump past the
3338     // initialization of that variable.
3339     return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3340   }
3341   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3342 
3343   return new (Context) ContinueStmt(ContinueLoc);
3344 }
3345 
3346 StmtResult
3347 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3348   Scope *S = CurScope->getBreakParent();
3349   if (!S) {
3350     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3351     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3352   }
3353   if (S->isOpenMPLoopScope())
3354     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3355                      << "break");
3356   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3357 
3358   return new (Context) BreakStmt(BreakLoc);
3359 }
3360 
3361 /// Determine whether the given expression might be move-eligible or
3362 /// copy-elidable in either a (co_)return statement or throw expression,
3363 /// without considering function return type, if applicable.
3364 ///
3365 /// \param E The expression being returned from the function or block,
3366 /// being thrown, or being co_returned from a coroutine. This expression
3367 /// might be modified by the implementation.
3368 ///
3369 /// \param Mode Overrides detection of current language mode
3370 /// and uses the rules for C++23.
3371 ///
3372 /// \returns An aggregate which contains the Candidate and isMoveEligible
3373 /// and isCopyElidable methods. If Candidate is non-null, it means
3374 /// isMoveEligible() would be true under the most permissive language standard.
3375 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3376                                                SimplerImplicitMoveMode Mode) {
3377   if (!E)
3378     return NamedReturnInfo();
3379   // - in a return statement in a function [where] ...
3380   // ... the expression is the name of a non-volatile automatic object ...
3381   const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3382   if (!DR || DR->refersToEnclosingVariableOrCapture())
3383     return NamedReturnInfo();
3384   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3385   if (!VD)
3386     return NamedReturnInfo();
3387   NamedReturnInfo Res = getNamedReturnInfo(VD);
3388   if (Res.Candidate && !E->isXValue() &&
3389       (Mode == SimplerImplicitMoveMode::ForceOn ||
3390        (Mode != SimplerImplicitMoveMode::ForceOff &&
3391         getLangOpts().CPlusPlus23))) {
3392     E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3393                                  CK_NoOp, E, nullptr, VK_XValue,
3394                                  FPOptionsOverride());
3395   }
3396   return Res;
3397 }
3398 
3399 /// Determine whether the given NRVO candidate variable is move-eligible or
3400 /// copy-elidable, without considering function return type.
3401 ///
3402 /// \param VD The NRVO candidate variable.
3403 ///
3404 /// \returns An aggregate which contains the Candidate and isMoveEligible
3405 /// and isCopyElidable methods. If Candidate is non-null, it means
3406 /// isMoveEligible() would be true under the most permissive language standard.
3407 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3408   NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3409 
3410   // C++20 [class.copy.elision]p3:
3411   // - in a return statement in a function with ...
3412   // (other than a function ... parameter)
3413   if (VD->getKind() == Decl::ParmVar)
3414     Info.S = NamedReturnInfo::MoveEligible;
3415   else if (VD->getKind() != Decl::Var)
3416     return NamedReturnInfo();
3417 
3418   // (other than ... a catch-clause parameter)
3419   if (VD->isExceptionVariable())
3420     Info.S = NamedReturnInfo::MoveEligible;
3421 
3422   // ...automatic...
3423   if (!VD->hasLocalStorage())
3424     return NamedReturnInfo();
3425 
3426   // We don't want to implicitly move out of a __block variable during a return
3427   // because we cannot assume the variable will no longer be used.
3428   if (VD->hasAttr<BlocksAttr>())
3429     return NamedReturnInfo();
3430 
3431   QualType VDType = VD->getType();
3432   if (VDType->isObjectType()) {
3433     // C++17 [class.copy.elision]p3:
3434     // ...non-volatile automatic object...
3435     if (VDType.isVolatileQualified())
3436       return NamedReturnInfo();
3437   } else if (VDType->isRValueReferenceType()) {
3438     // C++20 [class.copy.elision]p3:
3439     // ...either a non-volatile object or an rvalue reference to a non-volatile
3440     // object type...
3441     QualType VDReferencedType = VDType.getNonReferenceType();
3442     if (VDReferencedType.isVolatileQualified() ||
3443         !VDReferencedType->isObjectType())
3444       return NamedReturnInfo();
3445     Info.S = NamedReturnInfo::MoveEligible;
3446   } else {
3447     return NamedReturnInfo();
3448   }
3449 
3450   // Variables with higher required alignment than their type's ABI
3451   // alignment cannot use NRVO.
3452   if (!VD->hasDependentAlignment() &&
3453       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3454     Info.S = NamedReturnInfo::MoveEligible;
3455 
3456   return Info;
3457 }
3458 
3459 /// Updates given NamedReturnInfo's move-eligible and
3460 /// copy-elidable statuses, considering the function
3461 /// return type criteria as applicable to return statements.
3462 ///
3463 /// \param Info The NamedReturnInfo object to update.
3464 ///
3465 /// \param ReturnType This is the return type of the function.
3466 /// \returns The copy elision candidate, in case the initial return expression
3467 /// was copy elidable, or nullptr otherwise.
3468 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3469                                              QualType ReturnType) {
3470   if (!Info.Candidate)
3471     return nullptr;
3472 
3473   auto invalidNRVO = [&] {
3474     Info = NamedReturnInfo();
3475     return nullptr;
3476   };
3477 
3478   // If we got a non-deduced auto ReturnType, we are in a dependent context and
3479   // there is no point in allowing copy elision since we won't have it deduced
3480   // by the point the VardDecl is instantiated, which is the last chance we have
3481   // of deciding if the candidate is really copy elidable.
3482   if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3483        ReturnType->isCanonicalUnqualified()) ||
3484       ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3485     return invalidNRVO();
3486 
3487   if (!ReturnType->isDependentType()) {
3488     // - in a return statement in a function with ...
3489     // ... a class return type ...
3490     if (!ReturnType->isRecordType())
3491       return invalidNRVO();
3492 
3493     QualType VDType = Info.Candidate->getType();
3494     // ... the same cv-unqualified type as the function return type ...
3495     // When considering moving this expression out, allow dissimilar types.
3496     if (!VDType->isDependentType() &&
3497         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3498       Info.S = NamedReturnInfo::MoveEligible;
3499   }
3500   return Info.isCopyElidable() ? Info.Candidate : nullptr;
3501 }
3502 
3503 /// Verify that the initialization sequence that was picked for the
3504 /// first overload resolution is permissible under C++98.
3505 ///
3506 /// Reject (possibly converting) constructors not taking an rvalue reference,
3507 /// or user conversion operators which are not ref-qualified.
3508 static bool
3509 VerifyInitializationSequenceCXX98(const Sema &S,
3510                                   const InitializationSequence &Seq) {
3511   const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3512     return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3513            Step.Kind == InitializationSequence::SK_UserConversion;
3514   });
3515   if (Step != Seq.step_end()) {
3516     const auto *FD = Step->Function.Function;
3517     if (isa<CXXConstructorDecl>(FD)
3518             ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3519             : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3520       return false;
3521   }
3522   return true;
3523 }
3524 
3525 /// Perform the initialization of a potentially-movable value, which
3526 /// is the result of return value.
3527 ///
3528 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3529 /// treat returned lvalues as rvalues in certain cases (to prefer move
3530 /// construction), then falls back to treating them as lvalues if that failed.
3531 ExprResult Sema::PerformMoveOrCopyInitialization(
3532     const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3533     bool SupressSimplerImplicitMoves) {
3534   if (getLangOpts().CPlusPlus &&
3535       (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3536       NRInfo.isMoveEligible()) {
3537     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3538                               CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3539     Expr *InitExpr = &AsRvalue;
3540     auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3541                                                Value->getBeginLoc());
3542     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3543     auto Res = Seq.getFailedOverloadResult();
3544     if ((Res == OR_Success || Res == OR_Deleted) &&
3545         (getLangOpts().CPlusPlus11 ||
3546          VerifyInitializationSequenceCXX98(*this, Seq))) {
3547       // Promote "AsRvalue" to the heap, since we now need this
3548       // expression node to persist.
3549       Value =
3550           ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3551                                    nullptr, VK_XValue, FPOptionsOverride());
3552       // Complete type-checking the initialization of the return type
3553       // using the constructor we found.
3554       return Seq.Perform(*this, Entity, Kind, Value);
3555     }
3556   }
3557   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3558   // above, or overload resolution failed. Either way, we need to try
3559   // (again) now with the return value expression as written.
3560   return PerformCopyInitialization(Entity, SourceLocation(), Value);
3561 }
3562 
3563 /// Determine whether the declared return type of the specified function
3564 /// contains 'auto'.
3565 static bool hasDeducedReturnType(FunctionDecl *FD) {
3566   const FunctionProtoType *FPT =
3567       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3568   return FPT->getReturnType()->isUndeducedType();
3569 }
3570 
3571 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3572 /// for capturing scopes.
3573 ///
3574 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3575                                          Expr *RetValExp,
3576                                          NamedReturnInfo &NRInfo,
3577                                          bool SupressSimplerImplicitMoves) {
3578   // If this is the first return we've seen, infer the return type.
3579   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3580   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3581   QualType FnRetType = CurCap->ReturnType;
3582   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3583   if (CurLambda && CurLambda->CallOperator->getType().isNull())
3584     return StmtError();
3585   bool HasDeducedReturnType =
3586       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3587 
3588   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3589       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3590     if (RetValExp) {
3591       ExprResult ER =
3592           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3593       if (ER.isInvalid())
3594         return StmtError();
3595       RetValExp = ER.get();
3596     }
3597     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3598                               /* NRVOCandidate=*/nullptr);
3599   }
3600 
3601   if (HasDeducedReturnType) {
3602     FunctionDecl *FD = CurLambda->CallOperator;
3603     // If we've already decided this lambda is invalid, e.g. because
3604     // we saw a `return` whose expression had an error, don't keep
3605     // trying to deduce its return type.
3606     if (FD->isInvalidDecl())
3607       return StmtError();
3608     // In C++1y, the return type may involve 'auto'.
3609     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3610     if (CurCap->ReturnType.isNull())
3611       CurCap->ReturnType = FD->getReturnType();
3612 
3613     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3614     assert(AT && "lost auto type from lambda return type");
3615     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3616       FD->setInvalidDecl();
3617       // FIXME: preserve the ill-formed return expression.
3618       return StmtError();
3619     }
3620     CurCap->ReturnType = FnRetType = FD->getReturnType();
3621   } else if (CurCap->HasImplicitReturnType) {
3622     // For blocks/lambdas with implicit return types, we check each return
3623     // statement individually, and deduce the common return type when the block
3624     // or lambda is completed.
3625     // FIXME: Fold this into the 'auto' codepath above.
3626     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3627       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3628       if (Result.isInvalid())
3629         return StmtError();
3630       RetValExp = Result.get();
3631 
3632       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3633       // when deducing a return type for a lambda-expression (or by extension
3634       // for a block). These rules differ from the stated C++11 rules only in
3635       // that they remove top-level cv-qualifiers.
3636       if (!CurContext->isDependentContext())
3637         FnRetType = RetValExp->getType().getUnqualifiedType();
3638       else
3639         FnRetType = CurCap->ReturnType = Context.DependentTy;
3640     } else {
3641       if (RetValExp) {
3642         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3643         // initializer list, because it is not an expression (even
3644         // though we represent it as one). We still deduce 'void'.
3645         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3646           << RetValExp->getSourceRange();
3647       }
3648 
3649       FnRetType = Context.VoidTy;
3650     }
3651 
3652     // Although we'll properly infer the type of the block once it's completed,
3653     // make sure we provide a return type now for better error recovery.
3654     if (CurCap->ReturnType.isNull())
3655       CurCap->ReturnType = FnRetType;
3656   }
3657   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3658 
3659   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3660     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3661       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3662       return StmtError();
3663     }
3664   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3665     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3666     return StmtError();
3667   } else {
3668     assert(CurLambda && "unknown kind of captured scope");
3669     if (CurLambda->CallOperator->getType()
3670             ->castAs<FunctionType>()
3671             ->getNoReturnAttr()) {
3672       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3673       return StmtError();
3674     }
3675   }
3676 
3677   // Otherwise, verify that this result type matches the previous one.  We are
3678   // pickier with blocks than for normal functions because we don't have GCC
3679   // compatibility to worry about here.
3680   if (FnRetType->isDependentType()) {
3681     // Delay processing for now.  TODO: there are lots of dependent
3682     // types we can conclusively prove aren't void.
3683   } else if (FnRetType->isVoidType()) {
3684     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3685         !(getLangOpts().CPlusPlus &&
3686           (RetValExp->isTypeDependent() ||
3687            RetValExp->getType()->isVoidType()))) {
3688       if (!getLangOpts().CPlusPlus &&
3689           RetValExp->getType()->isVoidType())
3690         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3691       else {
3692         Diag(ReturnLoc, diag::err_return_block_has_expr);
3693         RetValExp = nullptr;
3694       }
3695     }
3696   } else if (!RetValExp) {
3697     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3698   } else if (!RetValExp->isTypeDependent()) {
3699     // we have a non-void block with an expression, continue checking
3700 
3701     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3702     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3703     // function return.
3704 
3705     // In C++ the return statement is handled via a copy initialization.
3706     // the C version of which boils down to CheckSingleAssignmentConstraints.
3707     InitializedEntity Entity =
3708         InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3709     ExprResult Res = PerformMoveOrCopyInitialization(
3710         Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3711     if (Res.isInvalid()) {
3712       // FIXME: Cleanup temporaries here, anyway?
3713       return StmtError();
3714     }
3715     RetValExp = Res.get();
3716     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3717   }
3718 
3719   if (RetValExp) {
3720     ExprResult ER =
3721         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3722     if (ER.isInvalid())
3723       return StmtError();
3724     RetValExp = ER.get();
3725   }
3726   auto *Result =
3727       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3728 
3729   // If we need to check for the named return value optimization,
3730   // or if we need to infer the return type,
3731   // save the return statement in our scope for later processing.
3732   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3733     FunctionScopes.back()->Returns.push_back(Result);
3734 
3735   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3736     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3737 
3738   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3739       CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3740       RetValExp->containsErrors())
3741     CurBlock->TheDecl->setInvalidDecl();
3742 
3743   return Result;
3744 }
3745 
3746 namespace {
3747 /// Marks all typedefs in all local classes in a type referenced.
3748 ///
3749 /// In a function like
3750 /// auto f() {
3751 ///   struct S { typedef int a; };
3752 ///   return S();
3753 /// }
3754 ///
3755 /// the local type escapes and could be referenced in some TUs but not in
3756 /// others. Pretend that all local typedefs are always referenced, to not warn
3757 /// on this. This isn't necessary if f has internal linkage, or the typedef
3758 /// is private.
3759 class LocalTypedefNameReferencer
3760     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3761 public:
3762   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3763   bool VisitRecordType(const RecordType *RT);
3764 private:
3765   Sema &S;
3766 };
3767 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3768   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3769   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3770       R->isDependentType())
3771     return true;
3772   for (auto *TmpD : R->decls())
3773     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3774       if (T->getAccess() != AS_private || R->hasFriends())
3775         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3776   return true;
3777 }
3778 }
3779 
3780 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3781   return FD->getTypeSourceInfo()
3782       ->getTypeLoc()
3783       .getAsAdjusted<FunctionProtoTypeLoc>()
3784       .getReturnLoc();
3785 }
3786 
3787 /// Deduce the return type for a function from a returned expression, per
3788 /// C++1y [dcl.spec.auto]p6.
3789 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3790                                             SourceLocation ReturnLoc,
3791                                             Expr *RetExpr, const AutoType *AT) {
3792   // If this is the conversion function for a lambda, we choose to deduce its
3793   // type from the corresponding call operator, not from the synthesized return
3794   // statement within it. See Sema::DeduceReturnType.
3795   if (isLambdaConversionOperator(FD))
3796     return false;
3797 
3798   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3799     //  If the deduction is for a return statement and the initializer is
3800     //  a braced-init-list, the program is ill-formed.
3801     Diag(RetExpr->getExprLoc(),
3802          getCurLambda() ? diag::err_lambda_return_init_list
3803                         : diag::err_auto_fn_return_init_list)
3804         << RetExpr->getSourceRange();
3805     return true;
3806   }
3807 
3808   if (FD->isDependentContext()) {
3809     // C++1y [dcl.spec.auto]p12:
3810     //   Return type deduction [...] occurs when the definition is
3811     //   instantiated even if the function body contains a return
3812     //   statement with a non-type-dependent operand.
3813     assert(AT->isDeduced() && "should have deduced to dependent type");
3814     return false;
3815   }
3816 
3817   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3818   //  In the case of a return with no operand, the initializer is considered
3819   //  to be void().
3820   CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3821   if (!RetExpr) {
3822     // For a function with a deduced result type to return with omitted
3823     // expression, the result type as written must be 'auto' or
3824     // 'decltype(auto)', possibly cv-qualified or constrained, but not
3825     // ref-qualified.
3826     if (!OrigResultType.getType()->getAs<AutoType>()) {
3827       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3828           << OrigResultType.getType();
3829       return true;
3830     }
3831     RetExpr = &VoidVal;
3832   }
3833 
3834   QualType Deduced = AT->getDeducedType();
3835   {
3836     //  Otherwise, [...] deduce a value for U using the rules of template
3837     //  argument deduction.
3838     auto RetExprLoc = RetExpr->getExprLoc();
3839     TemplateDeductionInfo Info(RetExprLoc);
3840     SourceLocation TemplateSpecLoc;
3841     if (RetExpr->getType() == Context.OverloadTy) {
3842       auto FindResult = OverloadExpr::find(RetExpr);
3843       if (FindResult.Expression)
3844         TemplateSpecLoc = FindResult.Expression->getNameLoc();
3845     }
3846     TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3847     TemplateDeductionResult Res = DeduceAutoType(
3848         OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3849         /*IgnoreConstraints=*/false, &FailedTSC);
3850     if (Res != TDK_Success && FD->isInvalidDecl())
3851       return true;
3852     switch (Res) {
3853     case TDK_Success:
3854       break;
3855     case TDK_AlreadyDiagnosed:
3856       return true;
3857     case TDK_Inconsistent: {
3858       //  If a function with a declared return type that contains a placeholder
3859       //  type has multiple return statements, the return type is deduced for
3860       //  each return statement. [...] if the type deduced is not the same in
3861       //  each deduction, the program is ill-formed.
3862       const LambdaScopeInfo *LambdaSI = getCurLambda();
3863       if (LambdaSI && LambdaSI->HasImplicitReturnType)
3864         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3865             << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3866       else
3867         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3868             << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3869             << Info.FirstArg;
3870       return true;
3871     }
3872     default:
3873       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3874           << OrigResultType.getType() << RetExpr->getType();
3875       FailedTSC.NoteCandidates(*this, RetExprLoc);
3876       return true;
3877     }
3878   }
3879 
3880   // If a local type is part of the returned type, mark its fields as
3881   // referenced.
3882   LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3883 
3884   // CUDA: Kernel function must have 'void' return type.
3885   if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3886       !Deduced->isVoidType()) {
3887     Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3888         << FD->getType() << FD->getSourceRange();
3889     return true;
3890   }
3891 
3892   if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3893     // Update all declarations of the function to have the deduced return type.
3894     Context.adjustDeducedFunctionResultType(FD, Deduced);
3895 
3896   return false;
3897 }
3898 
3899 StmtResult
3900 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3901                       Scope *CurScope) {
3902   // Correct typos, in case the containing function returns 'auto' and
3903   // RetValExp should determine the deduced type.
3904   ExprResult RetVal = CorrectDelayedTyposInExpr(
3905       RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3906   if (RetVal.isInvalid())
3907     return StmtError();
3908   StmtResult R =
3909       BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3910   if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3911     return R;
3912 
3913   VarDecl *VD =
3914       const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3915 
3916   CurScope->updateNRVOCandidate(VD);
3917 
3918   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3919 
3920   return R;
3921 }
3922 
3923 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3924                                                     const Expr *E) {
3925   if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3926     return false;
3927   const Decl *D = E->getReferencedDeclOfCallee();
3928   if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3929     return false;
3930   for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3931     if (DC->isStdNamespace())
3932       return true;
3933   }
3934   return false;
3935 }
3936 
3937 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3938                                  bool AllowRecovery) {
3939   // Check for unexpanded parameter packs.
3940   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3941     return StmtError();
3942 
3943   // HACK: We suppress simpler implicit move here in msvc compatibility mode
3944   // just as a temporary work around, as the MSVC STL has issues with
3945   // this change.
3946   bool SupressSimplerImplicitMoves =
3947       CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3948   NamedReturnInfo NRInfo = getNamedReturnInfo(
3949       RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3950                                              : SimplerImplicitMoveMode::Normal);
3951 
3952   if (isa<CapturingScopeInfo>(getCurFunction()))
3953     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3954                                    SupressSimplerImplicitMoves);
3955 
3956   QualType FnRetType;
3957   QualType RelatedRetType;
3958   const AttrVec *Attrs = nullptr;
3959   bool isObjCMethod = false;
3960 
3961   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3962     FnRetType = FD->getReturnType();
3963     if (FD->hasAttrs())
3964       Attrs = &FD->getAttrs();
3965     if (FD->isNoReturn())
3966       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3967     if (FD->isMain() && RetValExp)
3968       if (isa<CXXBoolLiteralExpr>(RetValExp))
3969         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3970             << RetValExp->getSourceRange();
3971     if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3972       if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3973         if (RT->getDecl()->isOrContainsUnion())
3974           Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3975       }
3976     }
3977   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3978     FnRetType = MD->getReturnType();
3979     isObjCMethod = true;
3980     if (MD->hasAttrs())
3981       Attrs = &MD->getAttrs();
3982     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3983       // In the implementation of a method with a related return type, the
3984       // type used to type-check the validity of return statements within the
3985       // method body is a pointer to the type of the class being implemented.
3986       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3987       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3988     }
3989   } else // If we don't have a function/method context, bail.
3990     return StmtError();
3991 
3992   if (RetValExp) {
3993     const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
3994     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
3995       Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
3996       return StmtError();
3997     }
3998   }
3999 
4000   // C++1z: discarded return statements are not considered when deducing a
4001   // return type.
4002   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
4003       FnRetType->getContainedAutoType()) {
4004     if (RetValExp) {
4005       ExprResult ER =
4006           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4007       if (ER.isInvalid())
4008         return StmtError();
4009       RetValExp = ER.get();
4010     }
4011     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4012                               /* NRVOCandidate=*/nullptr);
4013   }
4014 
4015   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
4016   // deduction.
4017   if (getLangOpts().CPlusPlus14) {
4018     if (AutoType *AT = FnRetType->getContainedAutoType()) {
4019       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
4020       // If we've already decided this function is invalid, e.g. because
4021       // we saw a `return` whose expression had an error, don't keep
4022       // trying to deduce its return type.
4023       // (Some return values may be needlessly wrapped in RecoveryExpr).
4024       if (FD->isInvalidDecl() ||
4025           DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
4026         FD->setInvalidDecl();
4027         if (!AllowRecovery)
4028           return StmtError();
4029         // The deduction failure is diagnosed and marked, try to recover.
4030         if (RetValExp) {
4031           // Wrap return value with a recovery expression of the previous type.
4032           // If no deduction yet, use DependentTy.
4033           auto Recovery = CreateRecoveryExpr(
4034               RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4035               AT->isDeduced() ? FnRetType : QualType());
4036           if (Recovery.isInvalid())
4037             return StmtError();
4038           RetValExp = Recovery.get();
4039         } else {
4040           // Nothing to do: a ReturnStmt with no value is fine recovery.
4041         }
4042       } else {
4043         FnRetType = FD->getReturnType();
4044       }
4045     }
4046   }
4047   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4048 
4049   bool HasDependentReturnType = FnRetType->isDependentType();
4050 
4051   ReturnStmt *Result = nullptr;
4052   if (FnRetType->isVoidType()) {
4053     if (RetValExp) {
4054       if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4055         // We simply never allow init lists as the return value of void
4056         // functions. This is compatible because this was never allowed before,
4057         // so there's no legacy code to deal with.
4058         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4059         int FunctionKind = 0;
4060         if (isa<ObjCMethodDecl>(CurDecl))
4061           FunctionKind = 1;
4062         else if (isa<CXXConstructorDecl>(CurDecl))
4063           FunctionKind = 2;
4064         else if (isa<CXXDestructorDecl>(CurDecl))
4065           FunctionKind = 3;
4066 
4067         Diag(ReturnLoc, diag::err_return_init_list)
4068             << CurDecl << FunctionKind << RetValExp->getSourceRange();
4069 
4070         // Preserve the initializers in the AST.
4071         RetValExp = AllowRecovery
4072                         ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4073                                              ILE->getRBraceLoc(), ILE->inits())
4074                               .get()
4075                         : nullptr;
4076       } else if (!RetValExp->isTypeDependent()) {
4077         // C99 6.8.6.4p1 (ext_ since GCC warns)
4078         unsigned D = diag::ext_return_has_expr;
4079         if (RetValExp->getType()->isVoidType()) {
4080           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4081           if (isa<CXXConstructorDecl>(CurDecl) ||
4082               isa<CXXDestructorDecl>(CurDecl))
4083             D = diag::err_ctor_dtor_returns_void;
4084           else
4085             D = diag::ext_return_has_void_expr;
4086         }
4087         else {
4088           ExprResult Result = RetValExp;
4089           Result = IgnoredValueConversions(Result.get());
4090           if (Result.isInvalid())
4091             return StmtError();
4092           RetValExp = Result.get();
4093           RetValExp = ImpCastExprToType(RetValExp,
4094                                         Context.VoidTy, CK_ToVoid).get();
4095         }
4096         // return of void in constructor/destructor is illegal in C++.
4097         if (D == diag::err_ctor_dtor_returns_void) {
4098           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4099           Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4100                              << RetValExp->getSourceRange();
4101         }
4102         // return (some void expression); is legal in C++.
4103         else if (D != diag::ext_return_has_void_expr ||
4104                  !getLangOpts().CPlusPlus) {
4105           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4106 
4107           int FunctionKind = 0;
4108           if (isa<ObjCMethodDecl>(CurDecl))
4109             FunctionKind = 1;
4110           else if (isa<CXXConstructorDecl>(CurDecl))
4111             FunctionKind = 2;
4112           else if (isa<CXXDestructorDecl>(CurDecl))
4113             FunctionKind = 3;
4114 
4115           Diag(ReturnLoc, D)
4116               << CurDecl << FunctionKind << RetValExp->getSourceRange();
4117         }
4118       }
4119 
4120       if (RetValExp) {
4121         ExprResult ER =
4122             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4123         if (ER.isInvalid())
4124           return StmtError();
4125         RetValExp = ER.get();
4126       }
4127     }
4128 
4129     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4130                                 /* NRVOCandidate=*/nullptr);
4131   } else if (!RetValExp && !HasDependentReturnType) {
4132     FunctionDecl *FD = getCurFunctionDecl();
4133 
4134     if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4135       // The intended return type might have been "void", so don't warn.
4136     } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4137       // C++11 [stmt.return]p2
4138       Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4139           << FD << FD->isConsteval();
4140       FD->setInvalidDecl();
4141     } else {
4142       // C99 6.8.6.4p1 (ext_ since GCC warns)
4143       // C90 6.6.6.4p4
4144       unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4145                                           : diag::warn_return_missing_expr;
4146       // Note that at this point one of getCurFunctionDecl() or
4147       // getCurMethodDecl() must be non-null (see above).
4148       assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4149              "Not in a FunctionDecl or ObjCMethodDecl?");
4150       bool IsMethod = FD == nullptr;
4151       const NamedDecl *ND =
4152           IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4153       Diag(ReturnLoc, DiagID) << ND << IsMethod;
4154     }
4155 
4156     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4157                                 /* NRVOCandidate=*/nullptr);
4158   } else {
4159     assert(RetValExp || HasDependentReturnType);
4160     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4161 
4162     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4163     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4164     // function return.
4165 
4166     // In C++ the return statement is handled via a copy initialization,
4167     // the C version of which boils down to CheckSingleAssignmentConstraints.
4168     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4169       // we have a non-void function with an expression, continue checking
4170       InitializedEntity Entity =
4171           InitializedEntity::InitializeResult(ReturnLoc, RetType);
4172       ExprResult Res = PerformMoveOrCopyInitialization(
4173           Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4174       if (Res.isInvalid() && AllowRecovery)
4175         Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4176                                  RetValExp->getEndLoc(), RetValExp, RetType);
4177       if (Res.isInvalid()) {
4178         // FIXME: Clean up temporaries here anyway?
4179         return StmtError();
4180       }
4181       RetValExp = Res.getAs<Expr>();
4182 
4183       // If we have a related result type, we need to implicitly
4184       // convert back to the formal result type.  We can't pretend to
4185       // initialize the result again --- we might end double-retaining
4186       // --- so instead we initialize a notional temporary.
4187       if (!RelatedRetType.isNull()) {
4188         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4189                                                             FnRetType);
4190         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4191         if (Res.isInvalid()) {
4192           // FIXME: Clean up temporaries here anyway?
4193           return StmtError();
4194         }
4195         RetValExp = Res.getAs<Expr>();
4196       }
4197 
4198       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4199                          getCurFunctionDecl());
4200     }
4201 
4202     if (RetValExp) {
4203       ExprResult ER =
4204           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4205       if (ER.isInvalid())
4206         return StmtError();
4207       RetValExp = ER.get();
4208     }
4209     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4210   }
4211 
4212   // If we need to check for the named return value optimization, save the
4213   // return statement in our scope for later processing.
4214   if (Result->getNRVOCandidate())
4215     FunctionScopes.back()->Returns.push_back(Result);
4216 
4217   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4218     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4219 
4220   return Result;
4221 }
4222 
4223 StmtResult
4224 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
4225                            SourceLocation RParen, Decl *Parm,
4226                            Stmt *Body) {
4227   VarDecl *Var = cast_or_null<VarDecl>(Parm);
4228   if (Var && Var->isInvalidDecl())
4229     return StmtError();
4230 
4231   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4232 }
4233 
4234 StmtResult
4235 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
4236   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4237 }
4238 
4239 StmtResult
4240 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4241                          MultiStmtArg CatchStmts, Stmt *Finally) {
4242   if (!getLangOpts().ObjCExceptions)
4243     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4244 
4245   // Objective-C try is incompatible with SEH __try.
4246   sema::FunctionScopeInfo *FSI = getCurFunction();
4247   if (FSI->FirstSEHTryLoc.isValid()) {
4248     Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4249     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4250   }
4251 
4252   FSI->setHasObjCTry(AtLoc);
4253   unsigned NumCatchStmts = CatchStmts.size();
4254   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4255                                NumCatchStmts, Finally);
4256 }
4257 
4258 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
4259   if (Throw) {
4260     ExprResult Result = DefaultLvalueConversion(Throw);
4261     if (Result.isInvalid())
4262       return StmtError();
4263 
4264     Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4265     if (Result.isInvalid())
4266       return StmtError();
4267     Throw = Result.get();
4268 
4269     QualType ThrowType = Throw->getType();
4270     // Make sure the expression type is an ObjC pointer or "void *".
4271     if (!ThrowType->isDependentType() &&
4272         !ThrowType->isObjCObjectPointerType()) {
4273       const PointerType *PT = ThrowType->getAs<PointerType>();
4274       if (!PT || !PT->getPointeeType()->isVoidType())
4275         return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4276                          << Throw->getType() << Throw->getSourceRange());
4277     }
4278   }
4279 
4280   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4281 }
4282 
4283 StmtResult
4284 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4285                            Scope *CurScope) {
4286   if (!getLangOpts().ObjCExceptions)
4287     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4288 
4289   if (!Throw) {
4290     // @throw without an expression designates a rethrow (which must occur
4291     // in the context of an @catch clause).
4292     Scope *AtCatchParent = CurScope;
4293     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4294       AtCatchParent = AtCatchParent->getParent();
4295     if (!AtCatchParent)
4296       return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4297   }
4298   return BuildObjCAtThrowStmt(AtLoc, Throw);
4299 }
4300 
4301 ExprResult
4302 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
4303   ExprResult result = DefaultLvalueConversion(operand);
4304   if (result.isInvalid())
4305     return ExprError();
4306   operand = result.get();
4307 
4308   // Make sure the expression type is an ObjC pointer or "void *".
4309   QualType type = operand->getType();
4310   if (!type->isDependentType() &&
4311       !type->isObjCObjectPointerType()) {
4312     const PointerType *pointerType = type->getAs<PointerType>();
4313     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4314       if (getLangOpts().CPlusPlus) {
4315         if (RequireCompleteType(atLoc, type,
4316                                 diag::err_incomplete_receiver_type))
4317           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4318                    << type << operand->getSourceRange();
4319 
4320         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4321         if (result.isInvalid())
4322           return ExprError();
4323         if (!result.isUsable())
4324           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4325                    << type << operand->getSourceRange();
4326 
4327         operand = result.get();
4328       } else {
4329           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4330                    << type << operand->getSourceRange();
4331       }
4332     }
4333   }
4334 
4335   // The operand to @synchronized is a full-expression.
4336   return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4337 }
4338 
4339 StmtResult
4340 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4341                                   Stmt *SyncBody) {
4342   // We can't jump into or indirect-jump out of a @synchronized block.
4343   setFunctionHasBranchProtectedScope();
4344   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4345 }
4346 
4347 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4348 /// and creates a proper catch handler from them.
4349 StmtResult
4350 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4351                          Stmt *HandlerBlock) {
4352   // There's nothing to test that ActOnExceptionDecl didn't already test.
4353   return new (Context)
4354       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4355 }
4356 
4357 StmtResult
4358 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4359   setFunctionHasBranchProtectedScope();
4360   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4361 }
4362 
4363 namespace {
4364 class CatchHandlerType {
4365   QualType QT;
4366   unsigned IsPointer : 1;
4367 
4368   // This is a special constructor to be used only with DenseMapInfo's
4369   // getEmptyKey() and getTombstoneKey() functions.
4370   friend struct llvm::DenseMapInfo<CatchHandlerType>;
4371   enum Unique { ForDenseMap };
4372   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4373 
4374 public:
4375   /// Used when creating a CatchHandlerType from a handler type; will determine
4376   /// whether the type is a pointer or reference and will strip off the top
4377   /// level pointer and cv-qualifiers.
4378   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4379     if (QT->isPointerType())
4380       IsPointer = true;
4381 
4382     QT = QT.getUnqualifiedType();
4383     if (IsPointer || QT->isReferenceType())
4384       QT = QT->getPointeeType();
4385   }
4386 
4387   /// Used when creating a CatchHandlerType from a base class type; pretends the
4388   /// type passed in had the pointer qualifier, does not need to get an
4389   /// unqualified type.
4390   CatchHandlerType(QualType QT, bool IsPointer)
4391       : QT(QT), IsPointer(IsPointer) {}
4392 
4393   QualType underlying() const { return QT; }
4394   bool isPointer() const { return IsPointer; }
4395 
4396   friend bool operator==(const CatchHandlerType &LHS,
4397                          const CatchHandlerType &RHS) {
4398     // If the pointer qualification does not match, we can return early.
4399     if (LHS.IsPointer != RHS.IsPointer)
4400       return false;
4401     // Otherwise, check the underlying type without cv-qualifiers.
4402     return LHS.QT == RHS.QT;
4403   }
4404 };
4405 } // namespace
4406 
4407 namespace llvm {
4408 template <> struct DenseMapInfo<CatchHandlerType> {
4409   static CatchHandlerType getEmptyKey() {
4410     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4411                        CatchHandlerType::ForDenseMap);
4412   }
4413 
4414   static CatchHandlerType getTombstoneKey() {
4415     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4416                        CatchHandlerType::ForDenseMap);
4417   }
4418 
4419   static unsigned getHashValue(const CatchHandlerType &Base) {
4420     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4421   }
4422 
4423   static bool isEqual(const CatchHandlerType &LHS,
4424                       const CatchHandlerType &RHS) {
4425     return LHS == RHS;
4426   }
4427 };
4428 }
4429 
4430 namespace {
4431 class CatchTypePublicBases {
4432   const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4433 
4434   CXXCatchStmt *FoundHandler;
4435   QualType FoundHandlerType;
4436   QualType TestAgainstType;
4437 
4438 public:
4439   CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4440                        QualType QT)
4441       : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4442 
4443   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4444   QualType getFoundHandlerType() const { return FoundHandlerType; }
4445 
4446   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4447     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4448       QualType Check = S->getType().getCanonicalType();
4449       const auto &M = TypesToCheck;
4450       auto I = M.find(Check);
4451       if (I != M.end()) {
4452         // We're pretty sure we found what we need to find. However, we still
4453         // need to make sure that we properly compare for pointers and
4454         // references, to handle cases like:
4455         //
4456         // } catch (Base *b) {
4457         // } catch (Derived &d) {
4458         // }
4459         //
4460         // where there is a qualification mismatch that disqualifies this
4461         // handler as a potential problem.
4462         if (I->second->getCaughtType()->isPointerType() ==
4463                 TestAgainstType->isPointerType()) {
4464           FoundHandler = I->second;
4465           FoundHandlerType = Check;
4466           return true;
4467         }
4468       }
4469     }
4470     return false;
4471   }
4472 };
4473 }
4474 
4475 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4476 /// handlers and creates a try statement from them.
4477 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4478                                   ArrayRef<Stmt *> Handlers) {
4479   const llvm::Triple &T = Context.getTargetInfo().getTriple();
4480   const bool IsOpenMPGPUTarget =
4481       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4482   // Don't report an error if 'try' is used in system headers or in an OpenMP
4483   // target region compiled for a GPU architecture.
4484   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4485       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4486     // Delay error emission for the OpenMP device code.
4487     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4488   }
4489 
4490   // In OpenMP target regions, we assume that catch is never reached on GPU
4491   // targets.
4492   if (IsOpenMPGPUTarget)
4493     targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4494 
4495   // Exceptions aren't allowed in CUDA device code.
4496   if (getLangOpts().CUDA)
4497     CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4498         << "try" << CurrentCUDATarget();
4499 
4500   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4501     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4502 
4503   sema::FunctionScopeInfo *FSI = getCurFunction();
4504 
4505   // C++ try is incompatible with SEH __try.
4506   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4507     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4508     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4509   }
4510 
4511   const unsigned NumHandlers = Handlers.size();
4512   assert(!Handlers.empty() &&
4513          "The parser shouldn't call this if there are no handlers.");
4514 
4515   llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4516   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4517   for (unsigned i = 0; i < NumHandlers; ++i) {
4518     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4519 
4520     // Diagnose when the handler is a catch-all handler, but it isn't the last
4521     // handler for the try block. [except.handle]p5. Also, skip exception
4522     // declarations that are invalid, since we can't usefully report on them.
4523     if (!H->getExceptionDecl()) {
4524       if (i < NumHandlers - 1)
4525         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4526       continue;
4527     } else if (H->getExceptionDecl()->isInvalidDecl())
4528       continue;
4529 
4530     // Walk the type hierarchy to diagnose when this type has already been
4531     // handled (duplication), or cannot be handled (derivation inversion). We
4532     // ignore top-level cv-qualifiers, per [except.handle]p3
4533     CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4534 
4535     // We can ignore whether the type is a reference or a pointer; we need the
4536     // underlying declaration type in order to get at the underlying record
4537     // decl, if there is one.
4538     QualType Underlying = HandlerCHT.underlying();
4539     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4540       if (!RD->hasDefinition())
4541         continue;
4542       // Check that none of the public, unambiguous base classes are in the
4543       // map ([except.handle]p1). Give the base classes the same pointer
4544       // qualification as the original type we are basing off of. This allows
4545       // comparison against the handler type using the same top-level pointer
4546       // as the original type.
4547       CXXBasePaths Paths;
4548       Paths.setOrigin(RD);
4549       CatchTypePublicBases CTPB(HandledBaseTypes,
4550                                 H->getCaughtType().getCanonicalType());
4551       if (RD->lookupInBases(CTPB, Paths)) {
4552         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4553         if (!Paths.isAmbiguous(
4554                 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4555           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4556                diag::warn_exception_caught_by_earlier_handler)
4557               << H->getCaughtType();
4558           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4559                 diag::note_previous_exception_handler)
4560               << Problem->getCaughtType();
4561         }
4562       }
4563       // Strip the qualifiers here because we're going to be comparing this
4564       // type to the base type specifiers of a class, which are ignored in a
4565       // base specifier per [class.derived.general]p2.
4566       HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4567     }
4568 
4569     // Add the type the list of ones we have handled; diagnose if we've already
4570     // handled it.
4571     auto R = HandledTypes.insert(
4572         std::make_pair(H->getCaughtType().getCanonicalType(), H));
4573     if (!R.second) {
4574       const CXXCatchStmt *Problem = R.first->second;
4575       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4576            diag::warn_exception_caught_by_earlier_handler)
4577           << H->getCaughtType();
4578       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4579            diag::note_previous_exception_handler)
4580           << Problem->getCaughtType();
4581     }
4582   }
4583 
4584   FSI->setHasCXXTry(TryLoc);
4585 
4586   return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4587                             Handlers);
4588 }
4589 
4590 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4591                                   Stmt *TryBlock, Stmt *Handler) {
4592   assert(TryBlock && Handler);
4593 
4594   sema::FunctionScopeInfo *FSI = getCurFunction();
4595 
4596   // SEH __try is incompatible with C++ try. Borland appears to support this,
4597   // however.
4598   if (!getLangOpts().Borland) {
4599     if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4600       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4601       Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4602           << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4603                   ? "'try'"
4604                   : "'@try'");
4605     }
4606   }
4607 
4608   FSI->setHasSEHTry(TryLoc);
4609 
4610   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4611   // track if they use SEH.
4612   DeclContext *DC = CurContext;
4613   while (DC && !DC->isFunctionOrMethod())
4614     DC = DC->getParent();
4615   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4616   if (FD)
4617     FD->setUsesSEHTry(true);
4618   else
4619     Diag(TryLoc, diag::err_seh_try_outside_functions);
4620 
4621   // Reject __try on unsupported targets.
4622   if (!Context.getTargetInfo().isSEHTrySupported())
4623     Diag(TryLoc, diag::err_seh_try_unsupported);
4624 
4625   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4626 }
4627 
4628 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4629                                      Stmt *Block) {
4630   assert(FilterExpr && Block);
4631   QualType FTy = FilterExpr->getType();
4632   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4633     return StmtError(
4634         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4635         << FTy);
4636   }
4637   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4638 }
4639 
4640 void Sema::ActOnStartSEHFinallyBlock() {
4641   CurrentSEHFinally.push_back(CurScope);
4642 }
4643 
4644 void Sema::ActOnAbortSEHFinallyBlock() {
4645   CurrentSEHFinally.pop_back();
4646 }
4647 
4648 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4649   assert(Block);
4650   CurrentSEHFinally.pop_back();
4651   return SEHFinallyStmt::Create(Context, Loc, Block);
4652 }
4653 
4654 StmtResult
4655 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4656   Scope *SEHTryParent = CurScope;
4657   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4658     SEHTryParent = SEHTryParent->getParent();
4659   if (!SEHTryParent)
4660     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4661   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4662 
4663   return new (Context) SEHLeaveStmt(Loc);
4664 }
4665 
4666 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4667                                             bool IsIfExists,
4668                                             NestedNameSpecifierLoc QualifierLoc,
4669                                             DeclarationNameInfo NameInfo,
4670                                             Stmt *Nested)
4671 {
4672   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4673                                              QualifierLoc, NameInfo,
4674                                              cast<CompoundStmt>(Nested));
4675 }
4676 
4677 
4678 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4679                                             bool IsIfExists,
4680                                             CXXScopeSpec &SS,
4681                                             UnqualifiedId &Name,
4682                                             Stmt *Nested) {
4683   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4684                                     SS.getWithLocInContext(Context),
4685                                     GetNameFromUnqualifiedId(Name),
4686                                     Nested);
4687 }
4688 
4689 RecordDecl*
4690 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4691                                    unsigned NumParams) {
4692   DeclContext *DC = CurContext;
4693   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4694     DC = DC->getParent();
4695 
4696   RecordDecl *RD = nullptr;
4697   if (getLangOpts().CPlusPlus)
4698     RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4699                                /*Id=*/nullptr);
4700   else
4701     RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4702                             /*Id=*/nullptr);
4703 
4704   RD->setCapturedRecord();
4705   DC->addDecl(RD);
4706   RD->setImplicit();
4707   RD->startDefinition();
4708 
4709   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4710   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4711   DC->addDecl(CD);
4712   return RD;
4713 }
4714 
4715 static bool
4716 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4717                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4718                              SmallVectorImpl<Expr *> &CaptureInits) {
4719   for (const sema::Capture &Cap : RSI->Captures) {
4720     if (Cap.isInvalid())
4721       continue;
4722 
4723     // Form the initializer for the capture.
4724     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4725                                          RSI->CapRegionKind == CR_OpenMP);
4726 
4727     // FIXME: Bail out now if the capture is not used and the initializer has
4728     // no side-effects.
4729 
4730     // Create a field for this capture.
4731     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4732 
4733     // Add the capture to our list of captures.
4734     if (Cap.isThisCapture()) {
4735       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4736                                                CapturedStmt::VCK_This));
4737     } else if (Cap.isVLATypeCapture()) {
4738       Captures.push_back(
4739           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4740     } else {
4741       assert(Cap.isVariableCapture() && "unknown kind of capture");
4742 
4743       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4744         S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4745 
4746       Captures.push_back(CapturedStmt::Capture(
4747           Cap.getLocation(),
4748           Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4749                                    : CapturedStmt::VCK_ByCopy,
4750           cast<VarDecl>(Cap.getVariable())));
4751     }
4752     CaptureInits.push_back(Init.get());
4753   }
4754   return false;
4755 }
4756 
4757 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4758                                     CapturedRegionKind Kind,
4759                                     unsigned NumParams) {
4760   CapturedDecl *CD = nullptr;
4761   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4762 
4763   // Build the context parameter
4764   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4765   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4766   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4767   auto *Param =
4768       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4769                                 ImplicitParamKind::CapturedContext);
4770   DC->addDecl(Param);
4771 
4772   CD->setContextParam(0, Param);
4773 
4774   // Enter the capturing scope for this captured region.
4775   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4776 
4777   if (CurScope)
4778     PushDeclContext(CurScope, CD);
4779   else
4780     CurContext = CD;
4781 
4782   PushExpressionEvaluationContext(
4783       ExpressionEvaluationContext::PotentiallyEvaluated);
4784   ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4785 }
4786 
4787 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4788                                     CapturedRegionKind Kind,
4789                                     ArrayRef<CapturedParamNameType> Params,
4790                                     unsigned OpenMPCaptureLevel) {
4791   CapturedDecl *CD = nullptr;
4792   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4793 
4794   // Build the context parameter
4795   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4796   bool ContextIsFound = false;
4797   unsigned ParamNum = 0;
4798   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4799                                                  E = Params.end();
4800        I != E; ++I, ++ParamNum) {
4801     if (I->second.isNull()) {
4802       assert(!ContextIsFound &&
4803              "null type has been found already for '__context' parameter");
4804       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4805       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4806                                .withConst()
4807                                .withRestrict();
4808       auto *Param =
4809           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4810                                     ImplicitParamKind::CapturedContext);
4811       DC->addDecl(Param);
4812       CD->setContextParam(ParamNum, Param);
4813       ContextIsFound = true;
4814     } else {
4815       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4816       auto *Param =
4817           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4818                                     ImplicitParamKind::CapturedContext);
4819       DC->addDecl(Param);
4820       CD->setParam(ParamNum, Param);
4821     }
4822   }
4823   assert(ContextIsFound && "no null type for '__context' parameter");
4824   if (!ContextIsFound) {
4825     // Add __context implicitly if it is not specified.
4826     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4827     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4828     auto *Param =
4829         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4830                                   ImplicitParamKind::CapturedContext);
4831     DC->addDecl(Param);
4832     CD->setContextParam(ParamNum, Param);
4833   }
4834   // Enter the capturing scope for this captured region.
4835   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4836 
4837   if (CurScope)
4838     PushDeclContext(CurScope, CD);
4839   else
4840     CurContext = CD;
4841 
4842   PushExpressionEvaluationContext(
4843       ExpressionEvaluationContext::PotentiallyEvaluated);
4844 }
4845 
4846 void Sema::ActOnCapturedRegionError() {
4847   DiscardCleanupsInEvaluationContext();
4848   PopExpressionEvaluationContext();
4849   PopDeclContext();
4850   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4851   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4852 
4853   RecordDecl *Record = RSI->TheRecordDecl;
4854   Record->setInvalidDecl();
4855 
4856   SmallVector<Decl*, 4> Fields(Record->fields());
4857   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4858               SourceLocation(), SourceLocation(), ParsedAttributesView());
4859 }
4860 
4861 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4862   // Leave the captured scope before we start creating captures in the
4863   // enclosing scope.
4864   DiscardCleanupsInEvaluationContext();
4865   PopExpressionEvaluationContext();
4866   PopDeclContext();
4867   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4868   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4869 
4870   SmallVector<CapturedStmt::Capture, 4> Captures;
4871   SmallVector<Expr *, 4> CaptureInits;
4872   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4873     return StmtError();
4874 
4875   CapturedDecl *CD = RSI->TheCapturedDecl;
4876   RecordDecl *RD = RSI->TheRecordDecl;
4877 
4878   CapturedStmt *Res = CapturedStmt::Create(
4879       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4880       Captures, CaptureInits, CD, RD);
4881 
4882   CD->setBody(Res->getCapturedStmt());
4883   RD->completeDefinition();
4884 
4885   return Res;
4886 }
4887