xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DependenceFlags.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include <algorithm>
38 #include <cstdlib>
39 
40 using namespace clang;
41 using namespace sema;
42 
43 using AllowedExplicit = Sema::AllowedExplicit;
44 
45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47     return P->hasAttr<PassObjectSizeAttr>();
48   });
49 }
50 
51 /// A convenience routine for creating a decayed reference to a function.
52 static ExprResult
53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54                       const Expr *Base, bool HadMultipleCandidates,
55                       SourceLocation Loc = SourceLocation(),
56                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58     return ExprError();
59   // If FoundDecl is different from Fn (such as if one is a template
60   // and the other a specialization), make sure DiagnoseUseOfDecl is
61   // called on both.
62   // FIXME: This would be more comprehensively addressed by modifying
63   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64   // being used.
65   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66     return ExprError();
67   DeclRefExpr *DRE = new (S.Context)
68       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69   if (HadMultipleCandidates)
70     DRE->setHadMultipleCandidates(true);
71 
72   S.MarkDeclRefReferenced(DRE, Base);
73   if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75       S.ResolveExceptionSpec(Loc, FPT);
76       DRE->setType(Fn->getType());
77     }
78   }
79   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80                              CK_FunctionToPointerDecay);
81 }
82 
83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84                                  bool InOverloadResolution,
85                                  StandardConversionSequence &SCS,
86                                  bool CStyle,
87                                  bool AllowObjCWritebackConversion);
88 
89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90                                                  QualType &ToType,
91                                                  bool InOverloadResolution,
92                                                  StandardConversionSequence &SCS,
93                                                  bool CStyle);
94 static OverloadingResult
95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96                         UserDefinedConversionSequence& User,
97                         OverloadCandidateSet& Conversions,
98                         AllowedExplicit AllowExplicit,
99                         bool AllowObjCConversionOnExplicit);
100 
101 static ImplicitConversionSequence::CompareKind
102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103                                    const StandardConversionSequence& SCS1,
104                                    const StandardConversionSequence& SCS2);
105 
106 static ImplicitConversionSequence::CompareKind
107 CompareQualificationConversions(Sema &S,
108                                 const StandardConversionSequence& SCS1,
109                                 const StandardConversionSequence& SCS2);
110 
111 static ImplicitConversionSequence::CompareKind
112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113                                 const StandardConversionSequence& SCS1,
114                                 const StandardConversionSequence& SCS2);
115 
116 /// GetConversionRank - Retrieve the implicit conversion rank
117 /// corresponding to the given implicit conversion kind.
118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119   static const ImplicitConversionRank
120     Rank[(int)ICK_Num_Conversion_Kinds] = {
121     ICR_Exact_Match,
122     ICR_Exact_Match,
123     ICR_Exact_Match,
124     ICR_Exact_Match,
125     ICR_Exact_Match,
126     ICR_Exact_Match,
127     ICR_Promotion,
128     ICR_Promotion,
129     ICR_Promotion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Conversion,
138     ICR_Conversion,
139     ICR_Conversion,
140     ICR_Conversion,
141     ICR_OCL_Scalar_Widening,
142     ICR_Complex_Real_Conversion,
143     ICR_Conversion,
144     ICR_Conversion,
145     ICR_Writeback_Conversion,
146     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147                      // it was omitted by the patch that added
148                      // ICK_Zero_Event_Conversion
149     ICR_C_Conversion,
150     ICR_C_Conversion_Extension
151   };
152   return Rank[(int)Kind];
153 }
154 
155 /// GetImplicitConversionName - Return the name of this kind of
156 /// implicit conversion.
157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159     "No conversion",
160     "Lvalue-to-rvalue",
161     "Array-to-pointer",
162     "Function-to-pointer",
163     "Function pointer conversion",
164     "Qualification",
165     "Integral promotion",
166     "Floating point promotion",
167     "Complex promotion",
168     "Integral conversion",
169     "Floating conversion",
170     "Complex conversion",
171     "Floating-integral conversion",
172     "Pointer conversion",
173     "Pointer-to-member conversion",
174     "Boolean conversion",
175     "Compatible-types conversion",
176     "Derived-to-base conversion",
177     "Vector conversion",
178     "SVE Vector conversion",
179     "Vector splat",
180     "Complex-real conversion",
181     "Block Pointer conversion",
182     "Transparent Union Conversion",
183     "Writeback conversion",
184     "OpenCL Zero Event Conversion",
185     "C specific type conversion",
186     "Incompatible pointer conversion"
187   };
188   return Name[Kind];
189 }
190 
191 /// StandardConversionSequence - Set the standard conversion
192 /// sequence to the identity conversion.
193 void StandardConversionSequence::setAsIdentityConversion() {
194   First = ICK_Identity;
195   Second = ICK_Identity;
196   Third = ICK_Identity;
197   DeprecatedStringLiteralToCharPtr = false;
198   QualificationIncludesObjCLifetime = false;
199   ReferenceBinding = false;
200   DirectBinding = false;
201   IsLvalueReference = true;
202   BindsToFunctionLvalue = false;
203   BindsToRvalue = false;
204   BindsImplicitObjectArgumentWithoutRefQualifier = false;
205   ObjCLifetimeConversionBinding = false;
206   CopyConstructor = nullptr;
207 }
208 
209 /// getRank - Retrieve the rank of this standard conversion sequence
210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211 /// implicit conversions.
212 ImplicitConversionRank StandardConversionSequence::getRank() const {
213   ImplicitConversionRank Rank = ICR_Exact_Match;
214   if  (GetConversionRank(First) > Rank)
215     Rank = GetConversionRank(First);
216   if  (GetConversionRank(Second) > Rank)
217     Rank = GetConversionRank(Second);
218   if  (GetConversionRank(Third) > Rank)
219     Rank = GetConversionRank(Third);
220   return Rank;
221 }
222 
223 /// isPointerConversionToBool - Determines whether this conversion is
224 /// a conversion of a pointer or pointer-to-member to bool. This is
225 /// used as part of the ranking of standard conversion sequences
226 /// (C++ 13.3.3.2p4).
227 bool StandardConversionSequence::isPointerConversionToBool() const {
228   // Note that FromType has not necessarily been transformed by the
229   // array-to-pointer or function-to-pointer implicit conversions, so
230   // check for their presence as well as checking whether FromType is
231   // a pointer.
232   if (getToType(1)->isBooleanType() &&
233       (getFromType()->isPointerType() ||
234        getFromType()->isMemberPointerType() ||
235        getFromType()->isObjCObjectPointerType() ||
236        getFromType()->isBlockPointerType() ||
237        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238     return true;
239 
240   return false;
241 }
242 
243 /// isPointerConversionToVoidPointer - Determines whether this
244 /// conversion is a conversion of a pointer to a void pointer. This is
245 /// used as part of the ranking of standard conversion sequences (C++
246 /// 13.3.3.2p4).
247 bool
248 StandardConversionSequence::
249 isPointerConversionToVoidPointer(ASTContext& Context) const {
250   QualType FromType = getFromType();
251   QualType ToType = getToType(1);
252 
253   // Note that FromType has not necessarily been transformed by the
254   // array-to-pointer implicit conversion, so check for its presence
255   // and redo the conversion to get a pointer.
256   if (First == ICK_Array_To_Pointer)
257     FromType = Context.getArrayDecayedType(FromType);
258 
259   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261       return ToPtrType->getPointeeType()->isVoidType();
262 
263   return false;
264 }
265 
266 /// Skip any implicit casts which could be either part of a narrowing conversion
267 /// or after one in an implicit conversion.
268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269                                              const Expr *Converted) {
270   // We can have cleanups wrapping the converted expression; these need to be
271   // preserved so that destructors run if necessary.
272   if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273     Expr *Inner =
274         const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275     return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276                                     EWC->getObjects());
277   }
278 
279   while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280     switch (ICE->getCastKind()) {
281     case CK_NoOp:
282     case CK_IntegralCast:
283     case CK_IntegralToBoolean:
284     case CK_IntegralToFloating:
285     case CK_BooleanToSignedIntegral:
286     case CK_FloatingToIntegral:
287     case CK_FloatingToBoolean:
288     case CK_FloatingCast:
289       Converted = ICE->getSubExpr();
290       continue;
291 
292     default:
293       return Converted;
294     }
295   }
296 
297   return Converted;
298 }
299 
300 /// Check if this standard conversion sequence represents a narrowing
301 /// conversion, according to C++11 [dcl.init.list]p7.
302 ///
303 /// \param Ctx  The AST context.
304 /// \param Converted  The result of applying this standard conversion sequence.
305 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306 ///        value of the expression prior to the narrowing conversion.
307 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308 ///        type of the expression prior to the narrowing conversion.
309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310 ///        from floating point types to integral types should be ignored.
311 NarrowingKind StandardConversionSequence::getNarrowingKind(
312     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315 
316   // C++11 [dcl.init.list]p7:
317   //   A narrowing conversion is an implicit conversion ...
318   QualType FromType = getToType(0);
319   QualType ToType = getToType(1);
320 
321   // A conversion to an enumeration type is narrowing if the conversion to
322   // the underlying type is narrowing. This only arises for expressions of
323   // the form 'Enum{init}'.
324   if (auto *ET = ToType->getAs<EnumType>())
325     ToType = ET->getDecl()->getIntegerType();
326 
327   switch (Second) {
328   // 'bool' is an integral type; dispatch to the right place to handle it.
329   case ICK_Boolean_Conversion:
330     if (FromType->isRealFloatingType())
331       goto FloatingIntegralConversion;
332     if (FromType->isIntegralOrUnscopedEnumerationType())
333       goto IntegralConversion;
334     // -- from a pointer type or pointer-to-member type to bool, or
335     return NK_Type_Narrowing;
336 
337   // -- from a floating-point type to an integer type, or
338   //
339   // -- from an integer type or unscoped enumeration type to a floating-point
340   //    type, except where the source is a constant expression and the actual
341   //    value after conversion will fit into the target type and will produce
342   //    the original value when converted back to the original type, or
343   case ICK_Floating_Integral:
344   FloatingIntegralConversion:
345     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346       return NK_Type_Narrowing;
347     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348                ToType->isRealFloatingType()) {
349       if (IgnoreFloatToIntegralConversion)
350         return NK_Not_Narrowing;
351       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352       assert(Initializer && "Unknown conversion expression");
353 
354       // If it's value-dependent, we can't tell whether it's narrowing.
355       if (Initializer->isValueDependent())
356         return NK_Dependent_Narrowing;
357 
358       if (Optional<llvm::APSInt> IntConstantValue =
359               Initializer->getIntegerConstantExpr(Ctx)) {
360         // Convert the integer to the floating type.
361         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362         Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363                                 llvm::APFloat::rmNearestTiesToEven);
364         // And back.
365         llvm::APSInt ConvertedValue = *IntConstantValue;
366         bool ignored;
367         Result.convertToInteger(ConvertedValue,
368                                 llvm::APFloat::rmTowardZero, &ignored);
369         // If the resulting value is different, this was a narrowing conversion.
370         if (*IntConstantValue != ConvertedValue) {
371           ConstantValue = APValue(*IntConstantValue);
372           ConstantType = Initializer->getType();
373           return NK_Constant_Narrowing;
374         }
375       } else {
376         // Variables are always narrowings.
377         return NK_Variable_Narrowing;
378       }
379     }
380     return NK_Not_Narrowing;
381 
382   // -- from long double to double or float, or from double to float, except
383   //    where the source is a constant expression and the actual value after
384   //    conversion is within the range of values that can be represented (even
385   //    if it cannot be represented exactly), or
386   case ICK_Floating_Conversion:
387     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389       // FromType is larger than ToType.
390       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391 
392       // If it's value-dependent, we can't tell whether it's narrowing.
393       if (Initializer->isValueDependent())
394         return NK_Dependent_Narrowing;
395 
396       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397         // Constant!
398         assert(ConstantValue.isFloat());
399         llvm::APFloat FloatVal = ConstantValue.getFloat();
400         // Convert the source value into the target type.
401         bool ignored;
402         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403           Ctx.getFloatTypeSemantics(ToType),
404           llvm::APFloat::rmNearestTiesToEven, &ignored);
405         // If there was no overflow, the source value is within the range of
406         // values that can be represented.
407         if (ConvertStatus & llvm::APFloat::opOverflow) {
408           ConstantType = Initializer->getType();
409           return NK_Constant_Narrowing;
410         }
411       } else {
412         return NK_Variable_Narrowing;
413       }
414     }
415     return NK_Not_Narrowing;
416 
417   // -- from an integer type or unscoped enumeration type to an integer type
418   //    that cannot represent all the values of the original type, except where
419   //    the source is a constant expression and the actual value after
420   //    conversion will fit into the target type and will produce the original
421   //    value when converted back to the original type.
422   case ICK_Integral_Conversion:
423   IntegralConversion: {
424     assert(FromType->isIntegralOrUnscopedEnumerationType());
425     assert(ToType->isIntegralOrUnscopedEnumerationType());
426     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427     const unsigned FromWidth = Ctx.getIntWidth(FromType);
428     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429     const unsigned ToWidth = Ctx.getIntWidth(ToType);
430 
431     if (FromWidth > ToWidth ||
432         (FromWidth == ToWidth && FromSigned != ToSigned) ||
433         (FromSigned && !ToSigned)) {
434       // Not all values of FromType can be represented in ToType.
435       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436 
437       // If it's value-dependent, we can't tell whether it's narrowing.
438       if (Initializer->isValueDependent())
439         return NK_Dependent_Narrowing;
440 
441       Optional<llvm::APSInt> OptInitializerValue;
442       if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443         // Such conversions on variables are always narrowing.
444         return NK_Variable_Narrowing;
445       }
446       llvm::APSInt &InitializerValue = *OptInitializerValue;
447       bool Narrowing = false;
448       if (FromWidth < ToWidth) {
449         // Negative -> unsigned is narrowing. Otherwise, more bits is never
450         // narrowing.
451         if (InitializerValue.isSigned() && InitializerValue.isNegative())
452           Narrowing = true;
453       } else {
454         // Add a bit to the InitializerValue so we don't have to worry about
455         // signed vs. unsigned comparisons.
456         InitializerValue = InitializerValue.extend(
457           InitializerValue.getBitWidth() + 1);
458         // Convert the initializer to and from the target width and signed-ness.
459         llvm::APSInt ConvertedValue = InitializerValue;
460         ConvertedValue = ConvertedValue.trunc(ToWidth);
461         ConvertedValue.setIsSigned(ToSigned);
462         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463         ConvertedValue.setIsSigned(InitializerValue.isSigned());
464         // If the result is different, this was a narrowing conversion.
465         if (ConvertedValue != InitializerValue)
466           Narrowing = true;
467       }
468       if (Narrowing) {
469         ConstantType = Initializer->getType();
470         ConstantValue = APValue(InitializerValue);
471         return NK_Constant_Narrowing;
472       }
473     }
474     return NK_Not_Narrowing;
475   }
476 
477   default:
478     // Other kinds of conversions are not narrowings.
479     return NK_Not_Narrowing;
480   }
481 }
482 
483 /// dump - Print this standard conversion sequence to standard
484 /// error. Useful for debugging overloading issues.
485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
486   raw_ostream &OS = llvm::errs();
487   bool PrintedSomething = false;
488   if (First != ICK_Identity) {
489     OS << GetImplicitConversionName(First);
490     PrintedSomething = true;
491   }
492 
493   if (Second != ICK_Identity) {
494     if (PrintedSomething) {
495       OS << " -> ";
496     }
497     OS << GetImplicitConversionName(Second);
498 
499     if (CopyConstructor) {
500       OS << " (by copy constructor)";
501     } else if (DirectBinding) {
502       OS << " (direct reference binding)";
503     } else if (ReferenceBinding) {
504       OS << " (reference binding)";
505     }
506     PrintedSomething = true;
507   }
508 
509   if (Third != ICK_Identity) {
510     if (PrintedSomething) {
511       OS << " -> ";
512     }
513     OS << GetImplicitConversionName(Third);
514     PrintedSomething = true;
515   }
516 
517   if (!PrintedSomething) {
518     OS << "No conversions required";
519   }
520 }
521 
522 /// dump - Print this user-defined conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
524 void UserDefinedConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (Before.First || Before.Second || Before.Third) {
527     Before.dump();
528     OS << " -> ";
529   }
530   if (ConversionFunction)
531     OS << '\'' << *ConversionFunction << '\'';
532   else
533     OS << "aggregate initialization";
534   if (After.First || After.Second || After.Third) {
535     OS << " -> ";
536     After.dump();
537   }
538 }
539 
540 /// dump - Print this implicit conversion sequence to standard
541 /// error. Useful for debugging overloading issues.
542 void ImplicitConversionSequence::dump() const {
543   raw_ostream &OS = llvm::errs();
544   if (hasInitializerListContainerType())
545     OS << "Worst list element conversion: ";
546   switch (ConversionKind) {
547   case StandardConversion:
548     OS << "Standard conversion: ";
549     Standard.dump();
550     break;
551   case UserDefinedConversion:
552     OS << "User-defined conversion: ";
553     UserDefined.dump();
554     break;
555   case EllipsisConversion:
556     OS << "Ellipsis conversion";
557     break;
558   case AmbiguousConversion:
559     OS << "Ambiguous conversion";
560     break;
561   case BadConversion:
562     OS << "Bad conversion";
563     break;
564   }
565 
566   OS << "\n";
567 }
568 
569 void AmbiguousConversionSequence::construct() {
570   new (&conversions()) ConversionSet();
571 }
572 
573 void AmbiguousConversionSequence::destruct() {
574   conversions().~ConversionSet();
575 }
576 
577 void
578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579   FromTypePtr = O.FromTypePtr;
580   ToTypePtr = O.ToTypePtr;
581   new (&conversions()) ConversionSet(O.conversions());
582 }
583 
584 namespace {
585   // Structure used by DeductionFailureInfo to store
586   // template argument information.
587   struct DFIArguments {
588     TemplateArgument FirstArg;
589     TemplateArgument SecondArg;
590   };
591   // Structure used by DeductionFailureInfo to store
592   // template parameter and template argument information.
593   struct DFIParamWithArguments : DFIArguments {
594     TemplateParameter Param;
595   };
596   // Structure used by DeductionFailureInfo to store template argument
597   // information and the index of the problematic call argument.
598   struct DFIDeducedMismatchArgs : DFIArguments {
599     TemplateArgumentList *TemplateArgs;
600     unsigned CallArgIndex;
601   };
602   // Structure used by DeductionFailureInfo to store information about
603   // unsatisfied constraints.
604   struct CNSInfo {
605     TemplateArgumentList *TemplateArgs;
606     ConstraintSatisfaction Satisfaction;
607   };
608 }
609 
610 /// Convert from Sema's representation of template deduction information
611 /// to the form used in overload-candidate information.
612 DeductionFailureInfo
613 clang::MakeDeductionFailureInfo(ASTContext &Context,
614                                 Sema::TemplateDeductionResult TDK,
615                                 TemplateDeductionInfo &Info) {
616   DeductionFailureInfo Result;
617   Result.Result = static_cast<unsigned>(TDK);
618   Result.HasDiagnostic = false;
619   switch (TDK) {
620   case Sema::TDK_Invalid:
621   case Sema::TDK_InstantiationDepth:
622   case Sema::TDK_TooManyArguments:
623   case Sema::TDK_TooFewArguments:
624   case Sema::TDK_MiscellaneousDeductionFailure:
625   case Sema::TDK_CUDATargetMismatch:
626     Result.Data = nullptr;
627     break;
628 
629   case Sema::TDK_Incomplete:
630   case Sema::TDK_InvalidExplicitArguments:
631     Result.Data = Info.Param.getOpaqueValue();
632     break;
633 
634   case Sema::TDK_DeducedMismatch:
635   case Sema::TDK_DeducedMismatchNested: {
636     // FIXME: Should allocate from normal heap so that we can free this later.
637     auto *Saved = new (Context) DFIDeducedMismatchArgs;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Saved->TemplateArgs = Info.take();
641     Saved->CallArgIndex = Info.CallArgIndex;
642     Result.Data = Saved;
643     break;
644   }
645 
646   case Sema::TDK_NonDeducedMismatch: {
647     // FIXME: Should allocate from normal heap so that we can free this later.
648     DFIArguments *Saved = new (Context) DFIArguments;
649     Saved->FirstArg = Info.FirstArg;
650     Saved->SecondArg = Info.SecondArg;
651     Result.Data = Saved;
652     break;
653   }
654 
655   case Sema::TDK_IncompletePack:
656     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657   case Sema::TDK_Inconsistent:
658   case Sema::TDK_Underqualified: {
659     // FIXME: Should allocate from normal heap so that we can free this later.
660     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661     Saved->Param = Info.Param;
662     Saved->FirstArg = Info.FirstArg;
663     Saved->SecondArg = Info.SecondArg;
664     Result.Data = Saved;
665     break;
666   }
667 
668   case Sema::TDK_SubstitutionFailure:
669     Result.Data = Info.take();
670     if (Info.hasSFINAEDiagnostic()) {
671       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672           SourceLocation(), PartialDiagnostic::NullDiagnostic());
673       Info.takeSFINAEDiagnostic(*Diag);
674       Result.HasDiagnostic = true;
675     }
676     break;
677 
678   case Sema::TDK_ConstraintsNotSatisfied: {
679     CNSInfo *Saved = new (Context) CNSInfo;
680     Saved->TemplateArgs = Info.take();
681     Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682     Result.Data = Saved;
683     break;
684   }
685 
686   case Sema::TDK_Success:
687   case Sema::TDK_NonDependentConversionFailure:
688     llvm_unreachable("not a deduction failure");
689   }
690 
691   return Result;
692 }
693 
694 void DeductionFailureInfo::Destroy() {
695   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696   case Sema::TDK_Success:
697   case Sema::TDK_Invalid:
698   case Sema::TDK_InstantiationDepth:
699   case Sema::TDK_Incomplete:
700   case Sema::TDK_TooManyArguments:
701   case Sema::TDK_TooFewArguments:
702   case Sema::TDK_InvalidExplicitArguments:
703   case Sema::TDK_CUDATargetMismatch:
704   case Sema::TDK_NonDependentConversionFailure:
705     break;
706 
707   case Sema::TDK_IncompletePack:
708   case Sema::TDK_Inconsistent:
709   case Sema::TDK_Underqualified:
710   case Sema::TDK_DeducedMismatch:
711   case Sema::TDK_DeducedMismatchNested:
712   case Sema::TDK_NonDeducedMismatch:
713     // FIXME: Destroy the data?
714     Data = nullptr;
715     break;
716 
717   case Sema::TDK_SubstitutionFailure:
718     // FIXME: Destroy the template argument list?
719     Data = nullptr;
720     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721       Diag->~PartialDiagnosticAt();
722       HasDiagnostic = false;
723     }
724     break;
725 
726   case Sema::TDK_ConstraintsNotSatisfied:
727     // FIXME: Destroy the template argument list?
728     Data = nullptr;
729     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730       Diag->~PartialDiagnosticAt();
731       HasDiagnostic = false;
732     }
733     break;
734 
735   // Unhandled
736   case Sema::TDK_MiscellaneousDeductionFailure:
737     break;
738   }
739 }
740 
741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742   if (HasDiagnostic)
743     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744   return nullptr;
745 }
746 
747 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749   case Sema::TDK_Success:
750   case Sema::TDK_Invalid:
751   case Sema::TDK_InstantiationDepth:
752   case Sema::TDK_TooManyArguments:
753   case Sema::TDK_TooFewArguments:
754   case Sema::TDK_SubstitutionFailure:
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757   case Sema::TDK_NonDeducedMismatch:
758   case Sema::TDK_CUDATargetMismatch:
759   case Sema::TDK_NonDependentConversionFailure:
760   case Sema::TDK_ConstraintsNotSatisfied:
761     return TemplateParameter();
762 
763   case Sema::TDK_Incomplete:
764   case Sema::TDK_InvalidExplicitArguments:
765     return TemplateParameter::getFromOpaqueValue(Data);
766 
767   case Sema::TDK_IncompletePack:
768   case Sema::TDK_Inconsistent:
769   case Sema::TDK_Underqualified:
770     return static_cast<DFIParamWithArguments*>(Data)->Param;
771 
772   // Unhandled
773   case Sema::TDK_MiscellaneousDeductionFailure:
774     break;
775   }
776 
777   return TemplateParameter();
778 }
779 
780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782   case Sema::TDK_Success:
783   case Sema::TDK_Invalid:
784   case Sema::TDK_InstantiationDepth:
785   case Sema::TDK_TooManyArguments:
786   case Sema::TDK_TooFewArguments:
787   case Sema::TDK_Incomplete:
788   case Sema::TDK_IncompletePack:
789   case Sema::TDK_InvalidExplicitArguments:
790   case Sema::TDK_Inconsistent:
791   case Sema::TDK_Underqualified:
792   case Sema::TDK_NonDeducedMismatch:
793   case Sema::TDK_CUDATargetMismatch:
794   case Sema::TDK_NonDependentConversionFailure:
795     return nullptr;
796 
797   case Sema::TDK_DeducedMismatch:
798   case Sema::TDK_DeducedMismatchNested:
799     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800 
801   case Sema::TDK_SubstitutionFailure:
802     return static_cast<TemplateArgumentList*>(Data);
803 
804   case Sema::TDK_ConstraintsNotSatisfied:
805     return static_cast<CNSInfo*>(Data)->TemplateArgs;
806 
807   // Unhandled
808   case Sema::TDK_MiscellaneousDeductionFailure:
809     break;
810   }
811 
812   return nullptr;
813 }
814 
815 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817   case Sema::TDK_Success:
818   case Sema::TDK_Invalid:
819   case Sema::TDK_InstantiationDepth:
820   case Sema::TDK_Incomplete:
821   case Sema::TDK_TooManyArguments:
822   case Sema::TDK_TooFewArguments:
823   case Sema::TDK_InvalidExplicitArguments:
824   case Sema::TDK_SubstitutionFailure:
825   case Sema::TDK_CUDATargetMismatch:
826   case Sema::TDK_NonDependentConversionFailure:
827   case Sema::TDK_ConstraintsNotSatisfied:
828     return nullptr;
829 
830   case Sema::TDK_IncompletePack:
831   case Sema::TDK_Inconsistent:
832   case Sema::TDK_Underqualified:
833   case Sema::TDK_DeducedMismatch:
834   case Sema::TDK_DeducedMismatchNested:
835   case Sema::TDK_NonDeducedMismatch:
836     return &static_cast<DFIArguments*>(Data)->FirstArg;
837 
838   // Unhandled
839   case Sema::TDK_MiscellaneousDeductionFailure:
840     break;
841   }
842 
843   return nullptr;
844 }
845 
846 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848   case Sema::TDK_Success:
849   case Sema::TDK_Invalid:
850   case Sema::TDK_InstantiationDepth:
851   case Sema::TDK_Incomplete:
852   case Sema::TDK_IncompletePack:
853   case Sema::TDK_TooManyArguments:
854   case Sema::TDK_TooFewArguments:
855   case Sema::TDK_InvalidExplicitArguments:
856   case Sema::TDK_SubstitutionFailure:
857   case Sema::TDK_CUDATargetMismatch:
858   case Sema::TDK_NonDependentConversionFailure:
859   case Sema::TDK_ConstraintsNotSatisfied:
860     return nullptr;
861 
862   case Sema::TDK_Inconsistent:
863   case Sema::TDK_Underqualified:
864   case Sema::TDK_DeducedMismatch:
865   case Sema::TDK_DeducedMismatchNested:
866   case Sema::TDK_NonDeducedMismatch:
867     return &static_cast<DFIArguments*>(Data)->SecondArg;
868 
869   // Unhandled
870   case Sema::TDK_MiscellaneousDeductionFailure:
871     break;
872   }
873 
874   return nullptr;
875 }
876 
877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879   case Sema::TDK_DeducedMismatch:
880   case Sema::TDK_DeducedMismatchNested:
881     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882 
883   default:
884     return llvm::None;
885   }
886 }
887 
888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889     OverloadedOperatorKind Op) {
890   if (!AllowRewrittenCandidates)
891     return false;
892   return Op == OO_EqualEqual || Op == OO_Spaceship;
893 }
894 
895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896     ASTContext &Ctx, const FunctionDecl *FD) {
897   if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898     return false;
899   // Don't bother adding a reversed candidate that can never be a better
900   // match than the non-reversed version.
901   return FD->getNumParams() != 2 ||
902          !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903                                      FD->getParamDecl(1)->getType()) ||
904          FD->hasAttr<EnableIfAttr>();
905 }
906 
907 void OverloadCandidateSet::destroyCandidates() {
908   for (iterator i = begin(), e = end(); i != e; ++i) {
909     for (auto &C : i->Conversions)
910       C.~ImplicitConversionSequence();
911     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912       i->DeductionFailure.Destroy();
913   }
914 }
915 
916 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917   destroyCandidates();
918   SlabAllocator.Reset();
919   NumInlineBytesUsed = 0;
920   Candidates.clear();
921   Functions.clear();
922   Kind = CSK;
923 }
924 
925 namespace {
926   class UnbridgedCastsSet {
927     struct Entry {
928       Expr **Addr;
929       Expr *Saved;
930     };
931     SmallVector<Entry, 2> Entries;
932 
933   public:
934     void save(Sema &S, Expr *&E) {
935       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
936       Entry entry = { &E, E };
937       Entries.push_back(entry);
938       E = S.stripARCUnbridgedCast(E);
939     }
940 
941     void restore() {
942       for (SmallVectorImpl<Entry>::iterator
943              i = Entries.begin(), e = Entries.end(); i != e; ++i)
944         *i->Addr = i->Saved;
945     }
946   };
947 }
948 
949 /// checkPlaceholderForOverload - Do any interesting placeholder-like
950 /// preprocessing on the given expression.
951 ///
952 /// \param unbridgedCasts a collection to which to add unbridged casts;
953 ///   without this, they will be immediately diagnosed as errors
954 ///
955 /// Return true on unrecoverable error.
956 static bool
957 checkPlaceholderForOverload(Sema &S, Expr *&E,
958                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
959   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
960     // We can't handle overloaded expressions here because overload
961     // resolution might reasonably tweak them.
962     if (placeholder->getKind() == BuiltinType::Overload) return false;
963 
964     // If the context potentially accepts unbridged ARC casts, strip
965     // the unbridged cast and add it to the collection for later restoration.
966     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967         unbridgedCasts) {
968       unbridgedCasts->save(S, E);
969       return false;
970     }
971 
972     // Go ahead and check everything else.
973     ExprResult result = S.CheckPlaceholderExpr(E);
974     if (result.isInvalid())
975       return true;
976 
977     E = result.get();
978     return false;
979   }
980 
981   // Nothing to do.
982   return false;
983 }
984 
985 /// checkArgPlaceholdersForOverload - Check a set of call operands for
986 /// placeholders.
987 static bool checkArgPlaceholdersForOverload(Sema &S,
988                                             MultiExprArg Args,
989                                             UnbridgedCastsSet &unbridged) {
990   for (unsigned i = 0, e = Args.size(); i != e; ++i)
991     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992       return true;
993 
994   return false;
995 }
996 
997 /// Determine whether the given New declaration is an overload of the
998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999 /// New and Old cannot be overloaded, e.g., if New has the same signature as
1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001 /// functions (or function templates) at all. When it does return Ovl_Match or
1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004 /// declaration.
1005 ///
1006 /// Example: Given the following input:
1007 ///
1008 ///   void f(int, float); // #1
1009 ///   void f(int, int); // #2
1010 ///   int f(int, int); // #3
1011 ///
1012 /// When we process #1, there is no previous declaration of "f", so IsOverload
1013 /// will not be used.
1014 ///
1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018 /// unchanged.
1019 ///
1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1024 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1025 ///
1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027 /// by a using declaration. The rules for whether to hide shadow declarations
1028 /// ignore some properties which otherwise figure into a function template's
1029 /// signature.
1030 Sema::OverloadKind
1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032                     NamedDecl *&Match, bool NewIsUsingDecl) {
1033   for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034          I != E; ++I) {
1035     NamedDecl *OldD = *I;
1036 
1037     bool OldIsUsingDecl = false;
1038     if (isa<UsingShadowDecl>(OldD)) {
1039       OldIsUsingDecl = true;
1040 
1041       // We can always introduce two using declarations into the same
1042       // context, even if they have identical signatures.
1043       if (NewIsUsingDecl) continue;
1044 
1045       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046     }
1047 
1048     // A using-declaration does not conflict with another declaration
1049     // if one of them is hidden.
1050     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051       continue;
1052 
1053     // If either declaration was introduced by a using declaration,
1054     // we'll need to use slightly different rules for matching.
1055     // Essentially, these rules are the normal rules, except that
1056     // function templates hide function templates with different
1057     // return types or template parameter lists.
1058     bool UseMemberUsingDeclRules =
1059       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060       !New->getFriendObjectKind();
1061 
1062     if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066           continue;
1067         }
1068 
1069         if (!isa<FunctionTemplateDecl>(OldD) &&
1070             !shouldLinkPossiblyHiddenDecl(*I, New))
1071           continue;
1072 
1073         Match = *I;
1074         return Ovl_Match;
1075       }
1076 
1077       // Builtins that have custom typechecking or have a reference should
1078       // not be overloadable or redeclarable.
1079       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080         Match = *I;
1081         return Ovl_NonFunction;
1082       }
1083     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084       // We can overload with these, which can show up when doing
1085       // redeclaration checks for UsingDecls.
1086       assert(Old.getLookupKind() == LookupUsingDeclName);
1087     } else if (isa<TagDecl>(OldD)) {
1088       // We can always overload with tags by hiding them.
1089     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090       // Optimistically assume that an unresolved using decl will
1091       // overload; if it doesn't, we'll have to diagnose during
1092       // template instantiation.
1093       //
1094       // Exception: if the scope is dependent and this is not a class
1095       // member, the using declaration can only introduce an enumerator.
1096       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097         Match = *I;
1098         return Ovl_NonFunction;
1099       }
1100     } else {
1101       // (C++ 13p1):
1102       //   Only function declarations can be overloaded; object and type
1103       //   declarations cannot be overloaded.
1104       Match = *I;
1105       return Ovl_NonFunction;
1106     }
1107   }
1108 
1109   // C++ [temp.friend]p1:
1110   //   For a friend function declaration that is not a template declaration:
1111   //    -- if the name of the friend is a qualified or unqualified template-id,
1112   //       [...], otherwise
1113   //    -- if the name of the friend is a qualified-id and a matching
1114   //       non-template function is found in the specified class or namespace,
1115   //       the friend declaration refers to that function, otherwise,
1116   //    -- if the name of the friend is a qualified-id and a matching function
1117   //       template is found in the specified class or namespace, the friend
1118   //       declaration refers to the deduced specialization of that function
1119   //       template, otherwise
1120   //    -- the name shall be an unqualified-id [...]
1121   // If we get here for a qualified friend declaration, we've just reached the
1122   // third bullet. If the type of the friend is dependent, skip this lookup
1123   // until instantiation.
1124   if (New->getFriendObjectKind() && New->getQualifier() &&
1125       !New->getDescribedFunctionTemplate() &&
1126       !New->getDependentSpecializationInfo() &&
1127       !New->getType()->isDependentType()) {
1128     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129     TemplateSpecResult.addAllDecls(Old);
1130     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131                                             /*QualifiedFriend*/true)) {
1132       New->setInvalidDecl();
1133       return Ovl_Overload;
1134     }
1135 
1136     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137     return Ovl_Match;
1138   }
1139 
1140   return Ovl_Overload;
1141 }
1142 
1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145                       bool ConsiderRequiresClauses) {
1146   // C++ [basic.start.main]p2: This function shall not be overloaded.
1147   if (New->isMain())
1148     return false;
1149 
1150   // MSVCRT user defined entry points cannot be overloaded.
1151   if (New->isMSVCRTEntryPoint())
1152     return false;
1153 
1154   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156 
1157   // C++ [temp.fct]p2:
1158   //   A function template can be overloaded with other function templates
1159   //   and with normal (non-template) functions.
1160   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161     return true;
1162 
1163   // Is the function New an overload of the function Old?
1164   QualType OldQType = Context.getCanonicalType(Old->getType());
1165   QualType NewQType = Context.getCanonicalType(New->getType());
1166 
1167   // Compare the signatures (C++ 1.3.10) of the two functions to
1168   // determine whether they are overloads. If we find any mismatch
1169   // in the signature, they are overloads.
1170 
1171   // If either of these functions is a K&R-style function (no
1172   // prototype), then we consider them to have matching signatures.
1173   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175     return false;
1176 
1177   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179 
1180   // The signature of a function includes the types of its
1181   // parameters (C++ 1.3.10), which includes the presence or absence
1182   // of the ellipsis; see C++ DR 357).
1183   if (OldQType != NewQType &&
1184       (OldType->getNumParams() != NewType->getNumParams() ||
1185        OldType->isVariadic() != NewType->isVariadic() ||
1186        !FunctionParamTypesAreEqual(OldType, NewType)))
1187     return true;
1188 
1189   // C++ [temp.over.link]p4:
1190   //   The signature of a function template consists of its function
1191   //   signature, its return type and its template parameter list. The names
1192   //   of the template parameters are significant only for establishing the
1193   //   relationship between the template parameters and the rest of the
1194   //   signature.
1195   //
1196   // We check the return type and template parameter lists for function
1197   // templates first; the remaining checks follow.
1198   //
1199   // However, we don't consider either of these when deciding whether
1200   // a member introduced by a shadow declaration is hidden.
1201   if (!UseMemberUsingDeclRules && NewTemplate &&
1202       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203                                        OldTemplate->getTemplateParameters(),
1204                                        false, TPL_TemplateMatch) ||
1205        !Context.hasSameType(Old->getDeclaredReturnType(),
1206                             New->getDeclaredReturnType())))
1207     return true;
1208 
1209   // If the function is a class member, its signature includes the
1210   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211   //
1212   // As part of this, also check whether one of the member functions
1213   // is static, in which case they are not overloads (C++
1214   // 13.1p2). While not part of the definition of the signature,
1215   // this check is important to determine whether these functions
1216   // can be overloaded.
1217   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219   if (OldMethod && NewMethod &&
1220       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222       if (!UseMemberUsingDeclRules &&
1223           (OldMethod->getRefQualifier() == RQ_None ||
1224            NewMethod->getRefQualifier() == RQ_None)) {
1225         // C++0x [over.load]p2:
1226         //   - Member function declarations with the same name and the same
1227         //     parameter-type-list as well as member function template
1228         //     declarations with the same name, the same parameter-type-list, and
1229         //     the same template parameter lists cannot be overloaded if any of
1230         //     them, but not all, have a ref-qualifier (8.3.5).
1231         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234       }
1235       return true;
1236     }
1237 
1238     // We may not have applied the implicit const for a constexpr member
1239     // function yet (because we haven't yet resolved whether this is a static
1240     // or non-static member function). Add it now, on the assumption that this
1241     // is a redeclaration of OldMethod.
1242     auto OldQuals = OldMethod->getMethodQualifiers();
1243     auto NewQuals = NewMethod->getMethodQualifiers();
1244     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245         !isa<CXXConstructorDecl>(NewMethod))
1246       NewQuals.addConst();
1247     // We do not allow overloading based off of '__restrict'.
1248     OldQuals.removeRestrict();
1249     NewQuals.removeRestrict();
1250     if (OldQuals != NewQuals)
1251       return true;
1252   }
1253 
1254   // Though pass_object_size is placed on parameters and takes an argument, we
1255   // consider it to be a function-level modifier for the sake of function
1256   // identity. Either the function has one or more parameters with
1257   // pass_object_size or it doesn't.
1258   if (functionHasPassObjectSizeParams(New) !=
1259       functionHasPassObjectSizeParams(Old))
1260     return true;
1261 
1262   // enable_if attributes are an order-sensitive part of the signature.
1263   for (specific_attr_iterator<EnableIfAttr>
1264          NewI = New->specific_attr_begin<EnableIfAttr>(),
1265          NewE = New->specific_attr_end<EnableIfAttr>(),
1266          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267          OldE = Old->specific_attr_end<EnableIfAttr>();
1268        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269     if (NewI == NewE || OldI == OldE)
1270       return true;
1271     llvm::FoldingSetNodeID NewID, OldID;
1272     NewI->getCond()->Profile(NewID, Context, true);
1273     OldI->getCond()->Profile(OldID, Context, true);
1274     if (NewID != OldID)
1275       return true;
1276   }
1277 
1278   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279     // Don't allow overloading of destructors.  (In theory we could, but it
1280     // would be a giant change to clang.)
1281     if (!isa<CXXDestructorDecl>(New)) {
1282       CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283                          OldTarget = IdentifyCUDATarget(Old);
1284       if (NewTarget != CFT_InvalidTarget) {
1285         assert((OldTarget != CFT_InvalidTarget) &&
1286                "Unexpected invalid target.");
1287 
1288         // Allow overloading of functions with same signature and different CUDA
1289         // target attributes.
1290         if (NewTarget != OldTarget)
1291           return true;
1292       }
1293     }
1294   }
1295 
1296   if (ConsiderRequiresClauses) {
1297     Expr *NewRC = New->getTrailingRequiresClause(),
1298          *OldRC = Old->getTrailingRequiresClause();
1299     if ((NewRC != nullptr) != (OldRC != nullptr))
1300       // RC are most certainly different - these are overloads.
1301       return true;
1302 
1303     if (NewRC) {
1304       llvm::FoldingSetNodeID NewID, OldID;
1305       NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306       OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307       if (NewID != OldID)
1308         // RCs are not equivalent - these are overloads.
1309         return true;
1310     }
1311   }
1312 
1313   // The signatures match; this is not an overload.
1314   return false;
1315 }
1316 
1317 /// Tries a user-defined conversion from From to ToType.
1318 ///
1319 /// Produces an implicit conversion sequence for when a standard conversion
1320 /// is not an option. See TryImplicitConversion for more information.
1321 static ImplicitConversionSequence
1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323                          bool SuppressUserConversions,
1324                          AllowedExplicit AllowExplicit,
1325                          bool InOverloadResolution,
1326                          bool CStyle,
1327                          bool AllowObjCWritebackConversion,
1328                          bool AllowObjCConversionOnExplicit) {
1329   ImplicitConversionSequence ICS;
1330 
1331   if (SuppressUserConversions) {
1332     // We're not in the case above, so there is no conversion that
1333     // we can perform.
1334     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335     return ICS;
1336   }
1337 
1338   // Attempt user-defined conversion.
1339   OverloadCandidateSet Conversions(From->getExprLoc(),
1340                                    OverloadCandidateSet::CSK_Normal);
1341   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342                                   Conversions, AllowExplicit,
1343                                   AllowObjCConversionOnExplicit)) {
1344   case OR_Success:
1345   case OR_Deleted:
1346     ICS.setUserDefined();
1347     // C++ [over.ics.user]p4:
1348     //   A conversion of an expression of class type to the same class
1349     //   type is given Exact Match rank, and a conversion of an
1350     //   expression of class type to a base class of that type is
1351     //   given Conversion rank, in spite of the fact that a copy
1352     //   constructor (i.e., a user-defined conversion function) is
1353     //   called for those cases.
1354     if (CXXConstructorDecl *Constructor
1355           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356       QualType FromCanon
1357         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358       QualType ToCanon
1359         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360       if (Constructor->isCopyConstructor() &&
1361           (FromCanon == ToCanon ||
1362            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363         // Turn this into a "standard" conversion sequence, so that it
1364         // gets ranked with standard conversion sequences.
1365         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366         ICS.setStandard();
1367         ICS.Standard.setAsIdentityConversion();
1368         ICS.Standard.setFromType(From->getType());
1369         ICS.Standard.setAllToTypes(ToType);
1370         ICS.Standard.CopyConstructor = Constructor;
1371         ICS.Standard.FoundCopyConstructor = Found;
1372         if (ToCanon != FromCanon)
1373           ICS.Standard.Second = ICK_Derived_To_Base;
1374       }
1375     }
1376     break;
1377 
1378   case OR_Ambiguous:
1379     ICS.setAmbiguous();
1380     ICS.Ambiguous.setFromType(From->getType());
1381     ICS.Ambiguous.setToType(ToType);
1382     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383          Cand != Conversions.end(); ++Cand)
1384       if (Cand->Best)
1385         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386     break;
1387 
1388     // Fall through.
1389   case OR_No_Viable_Function:
1390     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391     break;
1392   }
1393 
1394   return ICS;
1395 }
1396 
1397 /// TryImplicitConversion - Attempt to perform an implicit conversion
1398 /// from the given expression (Expr) to the given type (ToType). This
1399 /// function returns an implicit conversion sequence that can be used
1400 /// to perform the initialization. Given
1401 ///
1402 ///   void f(float f);
1403 ///   void g(int i) { f(i); }
1404 ///
1405 /// this routine would produce an implicit conversion sequence to
1406 /// describe the initialization of f from i, which will be a standard
1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409 //
1410 /// Note that this routine only determines how the conversion can be
1411 /// performed; it does not actually perform the conversion. As such,
1412 /// it will not produce any diagnostics if no conversion is available,
1413 /// but will instead return an implicit conversion sequence of kind
1414 /// "BadConversion".
1415 ///
1416 /// If @p SuppressUserConversions, then user-defined conversions are
1417 /// not permitted.
1418 /// If @p AllowExplicit, then explicit user-defined conversions are
1419 /// permitted.
1420 ///
1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422 /// writeback conversion, which allows __autoreleasing id* parameters to
1423 /// be initialized with __strong id* or __weak id* arguments.
1424 static ImplicitConversionSequence
1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426                       bool SuppressUserConversions,
1427                       AllowedExplicit AllowExplicit,
1428                       bool InOverloadResolution,
1429                       bool CStyle,
1430                       bool AllowObjCWritebackConversion,
1431                       bool AllowObjCConversionOnExplicit) {
1432   ImplicitConversionSequence ICS;
1433   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435     ICS.setStandard();
1436     return ICS;
1437   }
1438 
1439   if (!S.getLangOpts().CPlusPlus) {
1440     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441     return ICS;
1442   }
1443 
1444   // C++ [over.ics.user]p4:
1445   //   A conversion of an expression of class type to the same class
1446   //   type is given Exact Match rank, and a conversion of an
1447   //   expression of class type to a base class of that type is
1448   //   given Conversion rank, in spite of the fact that a copy/move
1449   //   constructor (i.e., a user-defined conversion function) is
1450   //   called for those cases.
1451   QualType FromType = From->getType();
1452   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455     ICS.setStandard();
1456     ICS.Standard.setAsIdentityConversion();
1457     ICS.Standard.setFromType(FromType);
1458     ICS.Standard.setAllToTypes(ToType);
1459 
1460     // We don't actually check at this point whether there is a valid
1461     // copy/move constructor, since overloading just assumes that it
1462     // exists. When we actually perform initialization, we'll find the
1463     // appropriate constructor to copy the returned object, if needed.
1464     ICS.Standard.CopyConstructor = nullptr;
1465 
1466     // Determine whether this is considered a derived-to-base conversion.
1467     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468       ICS.Standard.Second = ICK_Derived_To_Base;
1469 
1470     return ICS;
1471   }
1472 
1473   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474                                   AllowExplicit, InOverloadResolution, CStyle,
1475                                   AllowObjCWritebackConversion,
1476                                   AllowObjCConversionOnExplicit);
1477 }
1478 
1479 ImplicitConversionSequence
1480 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481                             bool SuppressUserConversions,
1482                             AllowedExplicit AllowExplicit,
1483                             bool InOverloadResolution,
1484                             bool CStyle,
1485                             bool AllowObjCWritebackConversion) {
1486   return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487                                  AllowExplicit, InOverloadResolution, CStyle,
1488                                  AllowObjCWritebackConversion,
1489                                  /*AllowObjCConversionOnExplicit=*/false);
1490 }
1491 
1492 /// PerformImplicitConversion - Perform an implicit conversion of the
1493 /// expression From to the type ToType. Returns the
1494 /// converted expression. Flavor is the kind of conversion we're
1495 /// performing, used in the error message. If @p AllowExplicit,
1496 /// explicit user-defined conversions are permitted.
1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498                                            AssignmentAction Action,
1499                                            bool AllowExplicit) {
1500   if (checkPlaceholderForOverload(*this, From))
1501     return ExprError();
1502 
1503   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504   bool AllowObjCWritebackConversion
1505     = getLangOpts().ObjCAutoRefCount &&
1506       (Action == AA_Passing || Action == AA_Sending);
1507   if (getLangOpts().ObjC)
1508     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509                                       From->getType(), From);
1510   ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511       *this, From, ToType,
1512       /*SuppressUserConversions=*/false,
1513       AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514       /*InOverloadResolution=*/false,
1515       /*CStyle=*/false, AllowObjCWritebackConversion,
1516       /*AllowObjCConversionOnExplicit=*/false);
1517   return PerformImplicitConversion(From, ToType, ICS, Action);
1518 }
1519 
1520 /// Determine whether the conversion from FromType to ToType is a valid
1521 /// conversion that strips "noexcept" or "noreturn" off the nested function
1522 /// type.
1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524                                 QualType &ResultTy) {
1525   if (Context.hasSameUnqualifiedType(FromType, ToType))
1526     return false;
1527 
1528   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529   //                    or F(t noexcept) -> F(t)
1530   // where F adds one of the following at most once:
1531   //   - a pointer
1532   //   - a member pointer
1533   //   - a block pointer
1534   // Changes here need matching changes in FindCompositePointerType.
1535   CanQualType CanTo = Context.getCanonicalType(ToType);
1536   CanQualType CanFrom = Context.getCanonicalType(FromType);
1537   Type::TypeClass TyClass = CanTo->getTypeClass();
1538   if (TyClass != CanFrom->getTypeClass()) return false;
1539   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540     if (TyClass == Type::Pointer) {
1541       CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542       CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543     } else if (TyClass == Type::BlockPointer) {
1544       CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545       CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546     } else if (TyClass == Type::MemberPointer) {
1547       auto ToMPT = CanTo.castAs<MemberPointerType>();
1548       auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549       // A function pointer conversion cannot change the class of the function.
1550       if (ToMPT->getClass() != FromMPT->getClass())
1551         return false;
1552       CanTo = ToMPT->getPointeeType();
1553       CanFrom = FromMPT->getPointeeType();
1554     } else {
1555       return false;
1556     }
1557 
1558     TyClass = CanTo->getTypeClass();
1559     if (TyClass != CanFrom->getTypeClass()) return false;
1560     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561       return false;
1562   }
1563 
1564   const auto *FromFn = cast<FunctionType>(CanFrom);
1565   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566 
1567   const auto *ToFn = cast<FunctionType>(CanTo);
1568   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569 
1570   bool Changed = false;
1571 
1572   // Drop 'noreturn' if not present in target type.
1573   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575     Changed = true;
1576   }
1577 
1578   // Drop 'noexcept' if not present in target type.
1579   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582       FromFn = cast<FunctionType>(
1583           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584                                                    EST_None)
1585                  .getTypePtr());
1586       Changed = true;
1587     }
1588 
1589     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590     // only if the ExtParameterInfo lists of the two function prototypes can be
1591     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593     bool CanUseToFPT, CanUseFromFPT;
1594     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595                                       CanUseFromFPT, NewParamInfos) &&
1596         CanUseToFPT && !CanUseFromFPT) {
1597       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598       ExtInfo.ExtParameterInfos =
1599           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601                                             FromFPT->getParamTypes(), ExtInfo);
1602       FromFn = QT->getAs<FunctionType>();
1603       Changed = true;
1604     }
1605   }
1606 
1607   if (!Changed)
1608     return false;
1609 
1610   assert(QualType(FromFn, 0).isCanonical());
1611   if (QualType(FromFn, 0) != CanTo) return false;
1612 
1613   ResultTy = ToType;
1614   return true;
1615 }
1616 
1617 /// Determine whether the conversion from FromType to ToType is a valid
1618 /// vector conversion.
1619 ///
1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1621 /// conversion.
1622 static bool IsVectorConversion(Sema &S, QualType FromType,
1623                                QualType ToType, ImplicitConversionKind &ICK) {
1624   // We need at least one of these types to be a vector type to have a vector
1625   // conversion.
1626   if (!ToType->isVectorType() && !FromType->isVectorType())
1627     return false;
1628 
1629   // Identical types require no conversions.
1630   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631     return false;
1632 
1633   // There are no conversions between extended vector types, only identity.
1634   if (ToType->isExtVectorType()) {
1635     // There are no conversions between extended vector types other than the
1636     // identity conversion.
1637     if (FromType->isExtVectorType())
1638       return false;
1639 
1640     // Vector splat from any arithmetic type to a vector.
1641     if (FromType->isArithmeticType()) {
1642       ICK = ICK_Vector_Splat;
1643       return true;
1644     }
1645   }
1646 
1647   if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648     if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649         S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650       ICK = ICK_SVE_Vector_Conversion;
1651       return true;
1652     }
1653 
1654   // We can perform the conversion between vector types in the following cases:
1655   // 1)vector types are equivalent AltiVec and GCC vector types
1656   // 2)lax vector conversions are permitted and the vector types are of the
1657   //   same size
1658   // 3)the destination type does not have the ARM MVE strict-polymorphism
1659   //   attribute, which inhibits lax vector conversion for overload resolution
1660   //   only
1661   if (ToType->isVectorType() && FromType->isVectorType()) {
1662     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663         (S.isLaxVectorConversion(FromType, ToType) &&
1664          !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665       ICK = ICK_Vector_Conversion;
1666       return true;
1667     }
1668   }
1669 
1670   return false;
1671 }
1672 
1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674                                 bool InOverloadResolution,
1675                                 StandardConversionSequence &SCS,
1676                                 bool CStyle);
1677 
1678 /// IsStandardConversion - Determines whether there is a standard
1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680 /// expression From to the type ToType. Standard conversion sequences
1681 /// only consider non-class types; for conversions that involve class
1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1683 /// contain the standard conversion sequence required to perform this
1684 /// conversion and this routine will return true. Otherwise, this
1685 /// routine will return false and the value of SCS is unspecified.
1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687                                  bool InOverloadResolution,
1688                                  StandardConversionSequence &SCS,
1689                                  bool CStyle,
1690                                  bool AllowObjCWritebackConversion) {
1691   QualType FromType = From->getType();
1692 
1693   // Standard conversions (C++ [conv])
1694   SCS.setAsIdentityConversion();
1695   SCS.IncompatibleObjC = false;
1696   SCS.setFromType(FromType);
1697   SCS.CopyConstructor = nullptr;
1698 
1699   // There are no standard conversions for class types in C++, so
1700   // abort early. When overloading in C, however, we do permit them.
1701   if (S.getLangOpts().CPlusPlus &&
1702       (FromType->isRecordType() || ToType->isRecordType()))
1703     return false;
1704 
1705   // The first conversion can be an lvalue-to-rvalue conversion,
1706   // array-to-pointer conversion, or function-to-pointer conversion
1707   // (C++ 4p1).
1708 
1709   if (FromType == S.Context.OverloadTy) {
1710     DeclAccessPair AccessPair;
1711     if (FunctionDecl *Fn
1712           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713                                                  AccessPair)) {
1714       // We were able to resolve the address of the overloaded function,
1715       // so we can convert to the type of that function.
1716       FromType = Fn->getType();
1717       SCS.setFromType(FromType);
1718 
1719       // we can sometimes resolve &foo<int> regardless of ToType, so check
1720       // if the type matches (identity) or we are converting to bool
1721       if (!S.Context.hasSameUnqualifiedType(
1722                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723         QualType resultTy;
1724         // if the function type matches except for [[noreturn]], it's ok
1725         if (!S.IsFunctionConversion(FromType,
1726               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727           // otherwise, only a boolean conversion is standard
1728           if (!ToType->isBooleanType())
1729             return false;
1730       }
1731 
1732       // Check if the "from" expression is taking the address of an overloaded
1733       // function and recompute the FromType accordingly. Take advantage of the
1734       // fact that non-static member functions *must* have such an address-of
1735       // expression.
1736       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737       if (Method && !Method->isStatic()) {
1738         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1739                "Non-unary operator on non-static member address");
1740         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1741                == UO_AddrOf &&
1742                "Non-address-of operator on non-static member address");
1743         const Type *ClassType
1744           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1748                UO_AddrOf &&
1749                "Non-address-of operator for overloaded function expression");
1750         FromType = S.Context.getPointerType(FromType);
1751       }
1752 
1753       // Check that we've computed the proper type after overload resolution.
1754       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755       // be calling it from within an NDEBUG block.
1756       assert(S.Context.hasSameType(
1757         FromType,
1758         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1759     } else {
1760       return false;
1761     }
1762   }
1763   // Lvalue-to-rvalue conversion (C++11 4.1):
1764   //   A glvalue (3.10) of a non-function, non-array type T can
1765   //   be converted to a prvalue.
1766   bool argIsLValue = From->isGLValue();
1767   if (argIsLValue &&
1768       !FromType->isFunctionType() && !FromType->isArrayType() &&
1769       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770     SCS.First = ICK_Lvalue_To_Rvalue;
1771 
1772     // C11 6.3.2.1p2:
1773     //   ... if the lvalue has atomic type, the value has the non-atomic version
1774     //   of the type of the lvalue ...
1775     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776       FromType = Atomic->getValueType();
1777 
1778     // If T is a non-class type, the type of the rvalue is the
1779     // cv-unqualified version of T. Otherwise, the type of the rvalue
1780     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781     // just strip the qualifiers because they don't matter.
1782     FromType = FromType.getUnqualifiedType();
1783   } else if (FromType->isArrayType()) {
1784     // Array-to-pointer conversion (C++ 4.2)
1785     SCS.First = ICK_Array_To_Pointer;
1786 
1787     // An lvalue or rvalue of type "array of N T" or "array of unknown
1788     // bound of T" can be converted to an rvalue of type "pointer to
1789     // T" (C++ 4.2p1).
1790     FromType = S.Context.getArrayDecayedType(FromType);
1791 
1792     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793       // This conversion is deprecated in C++03 (D.4)
1794       SCS.DeprecatedStringLiteralToCharPtr = true;
1795 
1796       // For the purpose of ranking in overload resolution
1797       // (13.3.3.1.1), this conversion is considered an
1798       // array-to-pointer conversion followed by a qualification
1799       // conversion (4.4). (C++ 4.2p2)
1800       SCS.Second = ICK_Identity;
1801       SCS.Third = ICK_Qualification;
1802       SCS.QualificationIncludesObjCLifetime = false;
1803       SCS.setAllToTypes(FromType);
1804       return true;
1805     }
1806   } else if (FromType->isFunctionType() && argIsLValue) {
1807     // Function-to-pointer conversion (C++ 4.3).
1808     SCS.First = ICK_Function_To_Pointer;
1809 
1810     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812         if (!S.checkAddressOfFunctionIsAvailable(FD))
1813           return false;
1814 
1815     // An lvalue of function type T can be converted to an rvalue of
1816     // type "pointer to T." The result is a pointer to the
1817     // function. (C++ 4.3p1).
1818     FromType = S.Context.getPointerType(FromType);
1819   } else {
1820     // We don't require any conversions for the first step.
1821     SCS.First = ICK_Identity;
1822   }
1823   SCS.setToType(0, FromType);
1824 
1825   // The second conversion can be an integral promotion, floating
1826   // point promotion, integral conversion, floating point conversion,
1827   // floating-integral conversion, pointer conversion,
1828   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829   // For overloading in C, this can also be a "compatible-type"
1830   // conversion.
1831   bool IncompatibleObjC = false;
1832   ImplicitConversionKind SecondICK = ICK_Identity;
1833   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834     // The unqualified versions of the types are the same: there's no
1835     // conversion to do.
1836     SCS.Second = ICK_Identity;
1837   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838     // Integral promotion (C++ 4.5).
1839     SCS.Second = ICK_Integral_Promotion;
1840     FromType = ToType.getUnqualifiedType();
1841   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842     // Floating point promotion (C++ 4.6).
1843     SCS.Second = ICK_Floating_Promotion;
1844     FromType = ToType.getUnqualifiedType();
1845   } else if (S.IsComplexPromotion(FromType, ToType)) {
1846     // Complex promotion (Clang extension)
1847     SCS.Second = ICK_Complex_Promotion;
1848     FromType = ToType.getUnqualifiedType();
1849   } else if (ToType->isBooleanType() &&
1850              (FromType->isArithmeticType() ||
1851               FromType->isAnyPointerType() ||
1852               FromType->isBlockPointerType() ||
1853               FromType->isMemberPointerType())) {
1854     // Boolean conversions (C++ 4.12).
1855     SCS.Second = ICK_Boolean_Conversion;
1856     FromType = S.Context.BoolTy;
1857   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858              ToType->isIntegralType(S.Context)) {
1859     // Integral conversions (C++ 4.7).
1860     SCS.Second = ICK_Integral_Conversion;
1861     FromType = ToType.getUnqualifiedType();
1862   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863     // Complex conversions (C99 6.3.1.6)
1864     SCS.Second = ICK_Complex_Conversion;
1865     FromType = ToType.getUnqualifiedType();
1866   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868     // Complex-real conversions (C99 6.3.1.7)
1869     SCS.Second = ICK_Complex_Real;
1870     FromType = ToType.getUnqualifiedType();
1871   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872     // FIXME: disable conversions between long double, __ibm128 and __float128
1873     // if their representation is different until there is back end support
1874     // We of course allow this conversion if long double is really double.
1875 
1876     // Conversions between bfloat and other floats are not permitted.
1877     if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878       return false;
1879 
1880     // Conversions between IEEE-quad and IBM-extended semantics are not
1881     // permitted.
1882     const llvm::fltSemantics &FromSem =
1883         S.Context.getFloatTypeSemantics(FromType);
1884     const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
1885     if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
1886          &ToSem == &llvm::APFloat::IEEEquad()) ||
1887         (&FromSem == &llvm::APFloat::IEEEquad() &&
1888          &ToSem == &llvm::APFloat::PPCDoubleDouble()))
1889       return false;
1890 
1891     // Floating point conversions (C++ 4.8).
1892     SCS.Second = ICK_Floating_Conversion;
1893     FromType = ToType.getUnqualifiedType();
1894   } else if ((FromType->isRealFloatingType() &&
1895               ToType->isIntegralType(S.Context)) ||
1896              (FromType->isIntegralOrUnscopedEnumerationType() &&
1897               ToType->isRealFloatingType())) {
1898     // Conversions between bfloat and int are not permitted.
1899     if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1900       return false;
1901 
1902     // Floating-integral conversions (C++ 4.9).
1903     SCS.Second = ICK_Floating_Integral;
1904     FromType = ToType.getUnqualifiedType();
1905   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1906     SCS.Second = ICK_Block_Pointer_Conversion;
1907   } else if (AllowObjCWritebackConversion &&
1908              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1909     SCS.Second = ICK_Writeback_Conversion;
1910   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1911                                    FromType, IncompatibleObjC)) {
1912     // Pointer conversions (C++ 4.10).
1913     SCS.Second = ICK_Pointer_Conversion;
1914     SCS.IncompatibleObjC = IncompatibleObjC;
1915     FromType = FromType.getUnqualifiedType();
1916   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1917                                          InOverloadResolution, FromType)) {
1918     // Pointer to member conversions (4.11).
1919     SCS.Second = ICK_Pointer_Member;
1920   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1921     SCS.Second = SecondICK;
1922     FromType = ToType.getUnqualifiedType();
1923   } else if (!S.getLangOpts().CPlusPlus &&
1924              S.Context.typesAreCompatible(ToType, FromType)) {
1925     // Compatible conversions (Clang extension for C function overloading)
1926     SCS.Second = ICK_Compatible_Conversion;
1927     FromType = ToType.getUnqualifiedType();
1928   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1929                                              InOverloadResolution,
1930                                              SCS, CStyle)) {
1931     SCS.Second = ICK_TransparentUnionConversion;
1932     FromType = ToType;
1933   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1934                                  CStyle)) {
1935     // tryAtomicConversion has updated the standard conversion sequence
1936     // appropriately.
1937     return true;
1938   } else if (ToType->isEventT() &&
1939              From->isIntegerConstantExpr(S.getASTContext()) &&
1940              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1941     SCS.Second = ICK_Zero_Event_Conversion;
1942     FromType = ToType;
1943   } else if (ToType->isQueueT() &&
1944              From->isIntegerConstantExpr(S.getASTContext()) &&
1945              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1946     SCS.Second = ICK_Zero_Queue_Conversion;
1947     FromType = ToType;
1948   } else if (ToType->isSamplerT() &&
1949              From->isIntegerConstantExpr(S.getASTContext())) {
1950     SCS.Second = ICK_Compatible_Conversion;
1951     FromType = ToType;
1952   } else {
1953     // No second conversion required.
1954     SCS.Second = ICK_Identity;
1955   }
1956   SCS.setToType(1, FromType);
1957 
1958   // The third conversion can be a function pointer conversion or a
1959   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1960   bool ObjCLifetimeConversion;
1961   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1962     // Function pointer conversions (removing 'noexcept') including removal of
1963     // 'noreturn' (Clang extension).
1964     SCS.Third = ICK_Function_Conversion;
1965   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1966                                          ObjCLifetimeConversion)) {
1967     SCS.Third = ICK_Qualification;
1968     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1969     FromType = ToType;
1970   } else {
1971     // No conversion required
1972     SCS.Third = ICK_Identity;
1973   }
1974 
1975   // C++ [over.best.ics]p6:
1976   //   [...] Any difference in top-level cv-qualification is
1977   //   subsumed by the initialization itself and does not constitute
1978   //   a conversion. [...]
1979   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1980   QualType CanonTo = S.Context.getCanonicalType(ToType);
1981   if (CanonFrom.getLocalUnqualifiedType()
1982                                      == CanonTo.getLocalUnqualifiedType() &&
1983       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1984     FromType = ToType;
1985     CanonFrom = CanonTo;
1986   }
1987 
1988   SCS.setToType(2, FromType);
1989 
1990   if (CanonFrom == CanonTo)
1991     return true;
1992 
1993   // If we have not converted the argument type to the parameter type,
1994   // this is a bad conversion sequence, unless we're resolving an overload in C.
1995   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1996     return false;
1997 
1998   ExprResult ER = ExprResult{From};
1999   Sema::AssignConvertType Conv =
2000       S.CheckSingleAssignmentConstraints(ToType, ER,
2001                                          /*Diagnose=*/false,
2002                                          /*DiagnoseCFAudited=*/false,
2003                                          /*ConvertRHS=*/false);
2004   ImplicitConversionKind SecondConv;
2005   switch (Conv) {
2006   case Sema::Compatible:
2007     SecondConv = ICK_C_Only_Conversion;
2008     break;
2009   // For our purposes, discarding qualifiers is just as bad as using an
2010   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2011   // qualifiers, as well.
2012   case Sema::CompatiblePointerDiscardsQualifiers:
2013   case Sema::IncompatiblePointer:
2014   case Sema::IncompatiblePointerSign:
2015     SecondConv = ICK_Incompatible_Pointer_Conversion;
2016     break;
2017   default:
2018     return false;
2019   }
2020 
2021   // First can only be an lvalue conversion, so we pretend that this was the
2022   // second conversion. First should already be valid from earlier in the
2023   // function.
2024   SCS.Second = SecondConv;
2025   SCS.setToType(1, ToType);
2026 
2027   // Third is Identity, because Second should rank us worse than any other
2028   // conversion. This could also be ICK_Qualification, but it's simpler to just
2029   // lump everything in with the second conversion, and we don't gain anything
2030   // from making this ICK_Qualification.
2031   SCS.Third = ICK_Identity;
2032   SCS.setToType(2, ToType);
2033   return true;
2034 }
2035 
2036 static bool
2037 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2038                                      QualType &ToType,
2039                                      bool InOverloadResolution,
2040                                      StandardConversionSequence &SCS,
2041                                      bool CStyle) {
2042 
2043   const RecordType *UT = ToType->getAsUnionType();
2044   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2045     return false;
2046   // The field to initialize within the transparent union.
2047   RecordDecl *UD = UT->getDecl();
2048   // It's compatible if the expression matches any of the fields.
2049   for (const auto *it : UD->fields()) {
2050     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2051                              CStyle, /*AllowObjCWritebackConversion=*/false)) {
2052       ToType = it->getType();
2053       return true;
2054     }
2055   }
2056   return false;
2057 }
2058 
2059 /// IsIntegralPromotion - Determines whether the conversion from the
2060 /// expression From (whose potentially-adjusted type is FromType) to
2061 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2062 /// sets PromotedType to the promoted type.
2063 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2064   const BuiltinType *To = ToType->getAs<BuiltinType>();
2065   // All integers are built-in.
2066   if (!To) {
2067     return false;
2068   }
2069 
2070   // An rvalue of type char, signed char, unsigned char, short int, or
2071   // unsigned short int can be converted to an rvalue of type int if
2072   // int can represent all the values of the source type; otherwise,
2073   // the source rvalue can be converted to an rvalue of type unsigned
2074   // int (C++ 4.5p1).
2075   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2076       !FromType->isEnumeralType()) {
2077     if (// We can promote any signed, promotable integer type to an int
2078         (FromType->isSignedIntegerType() ||
2079          // We can promote any unsigned integer type whose size is
2080          // less than int to an int.
2081          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2082       return To->getKind() == BuiltinType::Int;
2083     }
2084 
2085     return To->getKind() == BuiltinType::UInt;
2086   }
2087 
2088   // C++11 [conv.prom]p3:
2089   //   A prvalue of an unscoped enumeration type whose underlying type is not
2090   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2091   //   following types that can represent all the values of the enumeration
2092   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2093   //   unsigned int, long int, unsigned long int, long long int, or unsigned
2094   //   long long int. If none of the types in that list can represent all the
2095   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2096   //   type can be converted to an rvalue a prvalue of the extended integer type
2097   //   with lowest integer conversion rank (4.13) greater than the rank of long
2098   //   long in which all the values of the enumeration can be represented. If
2099   //   there are two such extended types, the signed one is chosen.
2100   // C++11 [conv.prom]p4:
2101   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2102   //   can be converted to a prvalue of its underlying type. Moreover, if
2103   //   integral promotion can be applied to its underlying type, a prvalue of an
2104   //   unscoped enumeration type whose underlying type is fixed can also be
2105   //   converted to a prvalue of the promoted underlying type.
2106   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2107     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2108     // provided for a scoped enumeration.
2109     if (FromEnumType->getDecl()->isScoped())
2110       return false;
2111 
2112     // We can perform an integral promotion to the underlying type of the enum,
2113     // even if that's not the promoted type. Note that the check for promoting
2114     // the underlying type is based on the type alone, and does not consider
2115     // the bitfield-ness of the actual source expression.
2116     if (FromEnumType->getDecl()->isFixed()) {
2117       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2118       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2119              IsIntegralPromotion(nullptr, Underlying, ToType);
2120     }
2121 
2122     // We have already pre-calculated the promotion type, so this is trivial.
2123     if (ToType->isIntegerType() &&
2124         isCompleteType(From->getBeginLoc(), FromType))
2125       return Context.hasSameUnqualifiedType(
2126           ToType, FromEnumType->getDecl()->getPromotionType());
2127 
2128     // C++ [conv.prom]p5:
2129     //   If the bit-field has an enumerated type, it is treated as any other
2130     //   value of that type for promotion purposes.
2131     //
2132     // ... so do not fall through into the bit-field checks below in C++.
2133     if (getLangOpts().CPlusPlus)
2134       return false;
2135   }
2136 
2137   // C++0x [conv.prom]p2:
2138   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2139   //   to an rvalue a prvalue of the first of the following types that can
2140   //   represent all the values of its underlying type: int, unsigned int,
2141   //   long int, unsigned long int, long long int, or unsigned long long int.
2142   //   If none of the types in that list can represent all the values of its
2143   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2144   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2145   //   type.
2146   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2147       ToType->isIntegerType()) {
2148     // Determine whether the type we're converting from is signed or
2149     // unsigned.
2150     bool FromIsSigned = FromType->isSignedIntegerType();
2151     uint64_t FromSize = Context.getTypeSize(FromType);
2152 
2153     // The types we'll try to promote to, in the appropriate
2154     // order. Try each of these types.
2155     QualType PromoteTypes[6] = {
2156       Context.IntTy, Context.UnsignedIntTy,
2157       Context.LongTy, Context.UnsignedLongTy ,
2158       Context.LongLongTy, Context.UnsignedLongLongTy
2159     };
2160     for (int Idx = 0; Idx < 6; ++Idx) {
2161       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2162       if (FromSize < ToSize ||
2163           (FromSize == ToSize &&
2164            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2165         // We found the type that we can promote to. If this is the
2166         // type we wanted, we have a promotion. Otherwise, no
2167         // promotion.
2168         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2169       }
2170     }
2171   }
2172 
2173   // An rvalue for an integral bit-field (9.6) can be converted to an
2174   // rvalue of type int if int can represent all the values of the
2175   // bit-field; otherwise, it can be converted to unsigned int if
2176   // unsigned int can represent all the values of the bit-field. If
2177   // the bit-field is larger yet, no integral promotion applies to
2178   // it. If the bit-field has an enumerated type, it is treated as any
2179   // other value of that type for promotion purposes (C++ 4.5p3).
2180   // FIXME: We should delay checking of bit-fields until we actually perform the
2181   // conversion.
2182   //
2183   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2184   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2185   // bit-fields and those whose underlying type is larger than int) for GCC
2186   // compatibility.
2187   if (From) {
2188     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2189       Optional<llvm::APSInt> BitWidth;
2190       if (FromType->isIntegralType(Context) &&
2191           (BitWidth =
2192                MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2193         llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2194         ToSize = Context.getTypeSize(ToType);
2195 
2196         // Are we promoting to an int from a bitfield that fits in an int?
2197         if (*BitWidth < ToSize ||
2198             (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2199           return To->getKind() == BuiltinType::Int;
2200         }
2201 
2202         // Are we promoting to an unsigned int from an unsigned bitfield
2203         // that fits into an unsigned int?
2204         if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2205           return To->getKind() == BuiltinType::UInt;
2206         }
2207 
2208         return false;
2209       }
2210     }
2211   }
2212 
2213   // An rvalue of type bool can be converted to an rvalue of type int,
2214   // with false becoming zero and true becoming one (C++ 4.5p4).
2215   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2216     return true;
2217   }
2218 
2219   return false;
2220 }
2221 
2222 /// IsFloatingPointPromotion - Determines whether the conversion from
2223 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2224 /// returns true and sets PromotedType to the promoted type.
2225 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2226   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2227     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2228       /// An rvalue of type float can be converted to an rvalue of type
2229       /// double. (C++ 4.6p1).
2230       if (FromBuiltin->getKind() == BuiltinType::Float &&
2231           ToBuiltin->getKind() == BuiltinType::Double)
2232         return true;
2233 
2234       // C99 6.3.1.5p1:
2235       //   When a float is promoted to double or long double, or a
2236       //   double is promoted to long double [...].
2237       if (!getLangOpts().CPlusPlus &&
2238           (FromBuiltin->getKind() == BuiltinType::Float ||
2239            FromBuiltin->getKind() == BuiltinType::Double) &&
2240           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2241            ToBuiltin->getKind() == BuiltinType::Float128 ||
2242            ToBuiltin->getKind() == BuiltinType::Ibm128))
2243         return true;
2244 
2245       // Half can be promoted to float.
2246       if (!getLangOpts().NativeHalfType &&
2247            FromBuiltin->getKind() == BuiltinType::Half &&
2248           ToBuiltin->getKind() == BuiltinType::Float)
2249         return true;
2250     }
2251 
2252   return false;
2253 }
2254 
2255 /// Determine if a conversion is a complex promotion.
2256 ///
2257 /// A complex promotion is defined as a complex -> complex conversion
2258 /// where the conversion between the underlying real types is a
2259 /// floating-point or integral promotion.
2260 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2261   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2262   if (!FromComplex)
2263     return false;
2264 
2265   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2266   if (!ToComplex)
2267     return false;
2268 
2269   return IsFloatingPointPromotion(FromComplex->getElementType(),
2270                                   ToComplex->getElementType()) ||
2271     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2272                         ToComplex->getElementType());
2273 }
2274 
2275 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2276 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2277 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2278 /// if non-empty, will be a pointer to ToType that may or may not have
2279 /// the right set of qualifiers on its pointee.
2280 ///
2281 static QualType
2282 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2283                                    QualType ToPointee, QualType ToType,
2284                                    ASTContext &Context,
2285                                    bool StripObjCLifetime = false) {
2286   assert((FromPtr->getTypeClass() == Type::Pointer ||
2287           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2288          "Invalid similarly-qualified pointer type");
2289 
2290   /// Conversions to 'id' subsume cv-qualifier conversions.
2291   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2292     return ToType.getUnqualifiedType();
2293 
2294   QualType CanonFromPointee
2295     = Context.getCanonicalType(FromPtr->getPointeeType());
2296   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2297   Qualifiers Quals = CanonFromPointee.getQualifiers();
2298 
2299   if (StripObjCLifetime)
2300     Quals.removeObjCLifetime();
2301 
2302   // Exact qualifier match -> return the pointer type we're converting to.
2303   if (CanonToPointee.getLocalQualifiers() == Quals) {
2304     // ToType is exactly what we need. Return it.
2305     if (!ToType.isNull())
2306       return ToType.getUnqualifiedType();
2307 
2308     // Build a pointer to ToPointee. It has the right qualifiers
2309     // already.
2310     if (isa<ObjCObjectPointerType>(ToType))
2311       return Context.getObjCObjectPointerType(ToPointee);
2312     return Context.getPointerType(ToPointee);
2313   }
2314 
2315   // Just build a canonical type that has the right qualifiers.
2316   QualType QualifiedCanonToPointee
2317     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2318 
2319   if (isa<ObjCObjectPointerType>(ToType))
2320     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2321   return Context.getPointerType(QualifiedCanonToPointee);
2322 }
2323 
2324 static bool isNullPointerConstantForConversion(Expr *Expr,
2325                                                bool InOverloadResolution,
2326                                                ASTContext &Context) {
2327   // Handle value-dependent integral null pointer constants correctly.
2328   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2329   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2330       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2331     return !InOverloadResolution;
2332 
2333   return Expr->isNullPointerConstant(Context,
2334                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2335                                         : Expr::NPC_ValueDependentIsNull);
2336 }
2337 
2338 /// IsPointerConversion - Determines whether the conversion of the
2339 /// expression From, which has the (possibly adjusted) type FromType,
2340 /// can be converted to the type ToType via a pointer conversion (C++
2341 /// 4.10). If so, returns true and places the converted type (that
2342 /// might differ from ToType in its cv-qualifiers at some level) into
2343 /// ConvertedType.
2344 ///
2345 /// This routine also supports conversions to and from block pointers
2346 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2347 /// pointers to interfaces. FIXME: Once we've determined the
2348 /// appropriate overloading rules for Objective-C, we may want to
2349 /// split the Objective-C checks into a different routine; however,
2350 /// GCC seems to consider all of these conversions to be pointer
2351 /// conversions, so for now they live here. IncompatibleObjC will be
2352 /// set if the conversion is an allowed Objective-C conversion that
2353 /// should result in a warning.
2354 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2355                                bool InOverloadResolution,
2356                                QualType& ConvertedType,
2357                                bool &IncompatibleObjC) {
2358   IncompatibleObjC = false;
2359   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2360                               IncompatibleObjC))
2361     return true;
2362 
2363   // Conversion from a null pointer constant to any Objective-C pointer type.
2364   if (ToType->isObjCObjectPointerType() &&
2365       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2366     ConvertedType = ToType;
2367     return true;
2368   }
2369 
2370   // Blocks: Block pointers can be converted to void*.
2371   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2372       ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2373     ConvertedType = ToType;
2374     return true;
2375   }
2376   // Blocks: A null pointer constant can be converted to a block
2377   // pointer type.
2378   if (ToType->isBlockPointerType() &&
2379       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2380     ConvertedType = ToType;
2381     return true;
2382   }
2383 
2384   // If the left-hand-side is nullptr_t, the right side can be a null
2385   // pointer constant.
2386   if (ToType->isNullPtrType() &&
2387       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2388     ConvertedType = ToType;
2389     return true;
2390   }
2391 
2392   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2393   if (!ToTypePtr)
2394     return false;
2395 
2396   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2397   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2398     ConvertedType = ToType;
2399     return true;
2400   }
2401 
2402   // Beyond this point, both types need to be pointers
2403   // , including objective-c pointers.
2404   QualType ToPointeeType = ToTypePtr->getPointeeType();
2405   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2406       !getLangOpts().ObjCAutoRefCount) {
2407     ConvertedType = BuildSimilarlyQualifiedPointerType(
2408                                       FromType->getAs<ObjCObjectPointerType>(),
2409                                                        ToPointeeType,
2410                                                        ToType, Context);
2411     return true;
2412   }
2413   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2414   if (!FromTypePtr)
2415     return false;
2416 
2417   QualType FromPointeeType = FromTypePtr->getPointeeType();
2418 
2419   // If the unqualified pointee types are the same, this can't be a
2420   // pointer conversion, so don't do all of the work below.
2421   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2422     return false;
2423 
2424   // An rvalue of type "pointer to cv T," where T is an object type,
2425   // can be converted to an rvalue of type "pointer to cv void" (C++
2426   // 4.10p2).
2427   if (FromPointeeType->isIncompleteOrObjectType() &&
2428       ToPointeeType->isVoidType()) {
2429     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2430                                                        ToPointeeType,
2431                                                        ToType, Context,
2432                                                    /*StripObjCLifetime=*/true);
2433     return true;
2434   }
2435 
2436   // MSVC allows implicit function to void* type conversion.
2437   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2438       ToPointeeType->isVoidType()) {
2439     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2440                                                        ToPointeeType,
2441                                                        ToType, Context);
2442     return true;
2443   }
2444 
2445   // When we're overloading in C, we allow a special kind of pointer
2446   // conversion for compatible-but-not-identical pointee types.
2447   if (!getLangOpts().CPlusPlus &&
2448       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2449     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2450                                                        ToPointeeType,
2451                                                        ToType, Context);
2452     return true;
2453   }
2454 
2455   // C++ [conv.ptr]p3:
2456   //
2457   //   An rvalue of type "pointer to cv D," where D is a class type,
2458   //   can be converted to an rvalue of type "pointer to cv B," where
2459   //   B is a base class (clause 10) of D. If B is an inaccessible
2460   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2461   //   necessitates this conversion is ill-formed. The result of the
2462   //   conversion is a pointer to the base class sub-object of the
2463   //   derived class object. The null pointer value is converted to
2464   //   the null pointer value of the destination type.
2465   //
2466   // Note that we do not check for ambiguity or inaccessibility
2467   // here. That is handled by CheckPointerConversion.
2468   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2469       ToPointeeType->isRecordType() &&
2470       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2471       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2472     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2473                                                        ToPointeeType,
2474                                                        ToType, Context);
2475     return true;
2476   }
2477 
2478   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2479       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2480     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2481                                                        ToPointeeType,
2482                                                        ToType, Context);
2483     return true;
2484   }
2485 
2486   return false;
2487 }
2488 
2489 /// Adopt the given qualifiers for the given type.
2490 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2491   Qualifiers TQs = T.getQualifiers();
2492 
2493   // Check whether qualifiers already match.
2494   if (TQs == Qs)
2495     return T;
2496 
2497   if (Qs.compatiblyIncludes(TQs))
2498     return Context.getQualifiedType(T, Qs);
2499 
2500   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2501 }
2502 
2503 /// isObjCPointerConversion - Determines whether this is an
2504 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2505 /// with the same arguments and return values.
2506 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2507                                    QualType& ConvertedType,
2508                                    bool &IncompatibleObjC) {
2509   if (!getLangOpts().ObjC)
2510     return false;
2511 
2512   // The set of qualifiers on the type we're converting from.
2513   Qualifiers FromQualifiers = FromType.getQualifiers();
2514 
2515   // First, we handle all conversions on ObjC object pointer types.
2516   const ObjCObjectPointerType* ToObjCPtr =
2517     ToType->getAs<ObjCObjectPointerType>();
2518   const ObjCObjectPointerType *FromObjCPtr =
2519     FromType->getAs<ObjCObjectPointerType>();
2520 
2521   if (ToObjCPtr && FromObjCPtr) {
2522     // If the pointee types are the same (ignoring qualifications),
2523     // then this is not a pointer conversion.
2524     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2525                                        FromObjCPtr->getPointeeType()))
2526       return false;
2527 
2528     // Conversion between Objective-C pointers.
2529     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2530       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2531       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2532       if (getLangOpts().CPlusPlus && LHS && RHS &&
2533           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2534                                                 FromObjCPtr->getPointeeType()))
2535         return false;
2536       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2537                                                    ToObjCPtr->getPointeeType(),
2538                                                          ToType, Context);
2539       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2540       return true;
2541     }
2542 
2543     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2544       // Okay: this is some kind of implicit downcast of Objective-C
2545       // interfaces, which is permitted. However, we're going to
2546       // complain about it.
2547       IncompatibleObjC = true;
2548       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2549                                                    ToObjCPtr->getPointeeType(),
2550                                                          ToType, Context);
2551       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2552       return true;
2553     }
2554   }
2555   // Beyond this point, both types need to be C pointers or block pointers.
2556   QualType ToPointeeType;
2557   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2558     ToPointeeType = ToCPtr->getPointeeType();
2559   else if (const BlockPointerType *ToBlockPtr =
2560             ToType->getAs<BlockPointerType>()) {
2561     // Objective C++: We're able to convert from a pointer to any object
2562     // to a block pointer type.
2563     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2564       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2565       return true;
2566     }
2567     ToPointeeType = ToBlockPtr->getPointeeType();
2568   }
2569   else if (FromType->getAs<BlockPointerType>() &&
2570            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2571     // Objective C++: We're able to convert from a block pointer type to a
2572     // pointer to any object.
2573     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2574     return true;
2575   }
2576   else
2577     return false;
2578 
2579   QualType FromPointeeType;
2580   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2581     FromPointeeType = FromCPtr->getPointeeType();
2582   else if (const BlockPointerType *FromBlockPtr =
2583            FromType->getAs<BlockPointerType>())
2584     FromPointeeType = FromBlockPtr->getPointeeType();
2585   else
2586     return false;
2587 
2588   // If we have pointers to pointers, recursively check whether this
2589   // is an Objective-C conversion.
2590   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2591       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2592                               IncompatibleObjC)) {
2593     // We always complain about this conversion.
2594     IncompatibleObjC = true;
2595     ConvertedType = Context.getPointerType(ConvertedType);
2596     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2597     return true;
2598   }
2599   // Allow conversion of pointee being objective-c pointer to another one;
2600   // as in I* to id.
2601   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2602       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2603       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2604                               IncompatibleObjC)) {
2605 
2606     ConvertedType = Context.getPointerType(ConvertedType);
2607     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2608     return true;
2609   }
2610 
2611   // If we have pointers to functions or blocks, check whether the only
2612   // differences in the argument and result types are in Objective-C
2613   // pointer conversions. If so, we permit the conversion (but
2614   // complain about it).
2615   const FunctionProtoType *FromFunctionType
2616     = FromPointeeType->getAs<FunctionProtoType>();
2617   const FunctionProtoType *ToFunctionType
2618     = ToPointeeType->getAs<FunctionProtoType>();
2619   if (FromFunctionType && ToFunctionType) {
2620     // If the function types are exactly the same, this isn't an
2621     // Objective-C pointer conversion.
2622     if (Context.getCanonicalType(FromPointeeType)
2623           == Context.getCanonicalType(ToPointeeType))
2624       return false;
2625 
2626     // Perform the quick checks that will tell us whether these
2627     // function types are obviously different.
2628     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2629         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2630         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2631       return false;
2632 
2633     bool HasObjCConversion = false;
2634     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2635         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2636       // Okay, the types match exactly. Nothing to do.
2637     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2638                                        ToFunctionType->getReturnType(),
2639                                        ConvertedType, IncompatibleObjC)) {
2640       // Okay, we have an Objective-C pointer conversion.
2641       HasObjCConversion = true;
2642     } else {
2643       // Function types are too different. Abort.
2644       return false;
2645     }
2646 
2647     // Check argument types.
2648     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2649          ArgIdx != NumArgs; ++ArgIdx) {
2650       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2651       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2652       if (Context.getCanonicalType(FromArgType)
2653             == Context.getCanonicalType(ToArgType)) {
2654         // Okay, the types match exactly. Nothing to do.
2655       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2656                                          ConvertedType, IncompatibleObjC)) {
2657         // Okay, we have an Objective-C pointer conversion.
2658         HasObjCConversion = true;
2659       } else {
2660         // Argument types are too different. Abort.
2661         return false;
2662       }
2663     }
2664 
2665     if (HasObjCConversion) {
2666       // We had an Objective-C conversion. Allow this pointer
2667       // conversion, but complain about it.
2668       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2669       IncompatibleObjC = true;
2670       return true;
2671     }
2672   }
2673 
2674   return false;
2675 }
2676 
2677 /// Determine whether this is an Objective-C writeback conversion,
2678 /// used for parameter passing when performing automatic reference counting.
2679 ///
2680 /// \param FromType The type we're converting form.
2681 ///
2682 /// \param ToType The type we're converting to.
2683 ///
2684 /// \param ConvertedType The type that will be produced after applying
2685 /// this conversion.
2686 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2687                                      QualType &ConvertedType) {
2688   if (!getLangOpts().ObjCAutoRefCount ||
2689       Context.hasSameUnqualifiedType(FromType, ToType))
2690     return false;
2691 
2692   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2693   QualType ToPointee;
2694   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2695     ToPointee = ToPointer->getPointeeType();
2696   else
2697     return false;
2698 
2699   Qualifiers ToQuals = ToPointee.getQualifiers();
2700   if (!ToPointee->isObjCLifetimeType() ||
2701       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2702       !ToQuals.withoutObjCLifetime().empty())
2703     return false;
2704 
2705   // Argument must be a pointer to __strong to __weak.
2706   QualType FromPointee;
2707   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2708     FromPointee = FromPointer->getPointeeType();
2709   else
2710     return false;
2711 
2712   Qualifiers FromQuals = FromPointee.getQualifiers();
2713   if (!FromPointee->isObjCLifetimeType() ||
2714       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2715        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2716     return false;
2717 
2718   // Make sure that we have compatible qualifiers.
2719   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2720   if (!ToQuals.compatiblyIncludes(FromQuals))
2721     return false;
2722 
2723   // Remove qualifiers from the pointee type we're converting from; they
2724   // aren't used in the compatibility check belong, and we'll be adding back
2725   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2726   FromPointee = FromPointee.getUnqualifiedType();
2727 
2728   // The unqualified form of the pointee types must be compatible.
2729   ToPointee = ToPointee.getUnqualifiedType();
2730   bool IncompatibleObjC;
2731   if (Context.typesAreCompatible(FromPointee, ToPointee))
2732     FromPointee = ToPointee;
2733   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2734                                     IncompatibleObjC))
2735     return false;
2736 
2737   /// Construct the type we're converting to, which is a pointer to
2738   /// __autoreleasing pointee.
2739   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2740   ConvertedType = Context.getPointerType(FromPointee);
2741   return true;
2742 }
2743 
2744 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2745                                     QualType& ConvertedType) {
2746   QualType ToPointeeType;
2747   if (const BlockPointerType *ToBlockPtr =
2748         ToType->getAs<BlockPointerType>())
2749     ToPointeeType = ToBlockPtr->getPointeeType();
2750   else
2751     return false;
2752 
2753   QualType FromPointeeType;
2754   if (const BlockPointerType *FromBlockPtr =
2755       FromType->getAs<BlockPointerType>())
2756     FromPointeeType = FromBlockPtr->getPointeeType();
2757   else
2758     return false;
2759   // We have pointer to blocks, check whether the only
2760   // differences in the argument and result types are in Objective-C
2761   // pointer conversions. If so, we permit the conversion.
2762 
2763   const FunctionProtoType *FromFunctionType
2764     = FromPointeeType->getAs<FunctionProtoType>();
2765   const FunctionProtoType *ToFunctionType
2766     = ToPointeeType->getAs<FunctionProtoType>();
2767 
2768   if (!FromFunctionType || !ToFunctionType)
2769     return false;
2770 
2771   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2772     return true;
2773 
2774   // Perform the quick checks that will tell us whether these
2775   // function types are obviously different.
2776   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2777       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2778     return false;
2779 
2780   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2781   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2782   if (FromEInfo != ToEInfo)
2783     return false;
2784 
2785   bool IncompatibleObjC = false;
2786   if (Context.hasSameType(FromFunctionType->getReturnType(),
2787                           ToFunctionType->getReturnType())) {
2788     // Okay, the types match exactly. Nothing to do.
2789   } else {
2790     QualType RHS = FromFunctionType->getReturnType();
2791     QualType LHS = ToFunctionType->getReturnType();
2792     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2793         !RHS.hasQualifiers() && LHS.hasQualifiers())
2794        LHS = LHS.getUnqualifiedType();
2795 
2796      if (Context.hasSameType(RHS,LHS)) {
2797        // OK exact match.
2798      } else if (isObjCPointerConversion(RHS, LHS,
2799                                         ConvertedType, IncompatibleObjC)) {
2800      if (IncompatibleObjC)
2801        return false;
2802      // Okay, we have an Objective-C pointer conversion.
2803      }
2804      else
2805        return false;
2806    }
2807 
2808    // Check argument types.
2809    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2810         ArgIdx != NumArgs; ++ArgIdx) {
2811      IncompatibleObjC = false;
2812      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2813      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2814      if (Context.hasSameType(FromArgType, ToArgType)) {
2815        // Okay, the types match exactly. Nothing to do.
2816      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2817                                         ConvertedType, IncompatibleObjC)) {
2818        if (IncompatibleObjC)
2819          return false;
2820        // Okay, we have an Objective-C pointer conversion.
2821      } else
2822        // Argument types are too different. Abort.
2823        return false;
2824    }
2825 
2826    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2827    bool CanUseToFPT, CanUseFromFPT;
2828    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2829                                       CanUseToFPT, CanUseFromFPT,
2830                                       NewParamInfos))
2831      return false;
2832 
2833    ConvertedType = ToType;
2834    return true;
2835 }
2836 
2837 enum {
2838   ft_default,
2839   ft_different_class,
2840   ft_parameter_arity,
2841   ft_parameter_mismatch,
2842   ft_return_type,
2843   ft_qualifer_mismatch,
2844   ft_noexcept
2845 };
2846 
2847 /// Attempts to get the FunctionProtoType from a Type. Handles
2848 /// MemberFunctionPointers properly.
2849 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2850   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2851     return FPT;
2852 
2853   if (auto *MPT = FromType->getAs<MemberPointerType>())
2854     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2855 
2856   return nullptr;
2857 }
2858 
2859 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2860 /// function types.  Catches different number of parameter, mismatch in
2861 /// parameter types, and different return types.
2862 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2863                                       QualType FromType, QualType ToType) {
2864   // If either type is not valid, include no extra info.
2865   if (FromType.isNull() || ToType.isNull()) {
2866     PDiag << ft_default;
2867     return;
2868   }
2869 
2870   // Get the function type from the pointers.
2871   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2872     const auto *FromMember = FromType->castAs<MemberPointerType>(),
2873                *ToMember = ToType->castAs<MemberPointerType>();
2874     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2875       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2876             << QualType(FromMember->getClass(), 0);
2877       return;
2878     }
2879     FromType = FromMember->getPointeeType();
2880     ToType = ToMember->getPointeeType();
2881   }
2882 
2883   if (FromType->isPointerType())
2884     FromType = FromType->getPointeeType();
2885   if (ToType->isPointerType())
2886     ToType = ToType->getPointeeType();
2887 
2888   // Remove references.
2889   FromType = FromType.getNonReferenceType();
2890   ToType = ToType.getNonReferenceType();
2891 
2892   // Don't print extra info for non-specialized template functions.
2893   if (FromType->isInstantiationDependentType() &&
2894       !FromType->getAs<TemplateSpecializationType>()) {
2895     PDiag << ft_default;
2896     return;
2897   }
2898 
2899   // No extra info for same types.
2900   if (Context.hasSameType(FromType, ToType)) {
2901     PDiag << ft_default;
2902     return;
2903   }
2904 
2905   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2906                           *ToFunction = tryGetFunctionProtoType(ToType);
2907 
2908   // Both types need to be function types.
2909   if (!FromFunction || !ToFunction) {
2910     PDiag << ft_default;
2911     return;
2912   }
2913 
2914   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2915     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2916           << FromFunction->getNumParams();
2917     return;
2918   }
2919 
2920   // Handle different parameter types.
2921   unsigned ArgPos;
2922   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2923     PDiag << ft_parameter_mismatch << ArgPos + 1
2924           << ToFunction->getParamType(ArgPos)
2925           << FromFunction->getParamType(ArgPos);
2926     return;
2927   }
2928 
2929   // Handle different return type.
2930   if (!Context.hasSameType(FromFunction->getReturnType(),
2931                            ToFunction->getReturnType())) {
2932     PDiag << ft_return_type << ToFunction->getReturnType()
2933           << FromFunction->getReturnType();
2934     return;
2935   }
2936 
2937   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2938     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2939           << FromFunction->getMethodQuals();
2940     return;
2941   }
2942 
2943   // Handle exception specification differences on canonical type (in C++17
2944   // onwards).
2945   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2946           ->isNothrow() !=
2947       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2948           ->isNothrow()) {
2949     PDiag << ft_noexcept;
2950     return;
2951   }
2952 
2953   // Unable to find a difference, so add no extra info.
2954   PDiag << ft_default;
2955 }
2956 
2957 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2958 /// for equality of their argument types. Caller has already checked that
2959 /// they have same number of arguments.  If the parameters are different,
2960 /// ArgPos will have the parameter index of the first different parameter.
2961 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2962                                       const FunctionProtoType *NewType,
2963                                       unsigned *ArgPos) {
2964   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2965                                               N = NewType->param_type_begin(),
2966                                               E = OldType->param_type_end();
2967        O && (O != E); ++O, ++N) {
2968     // Ignore address spaces in pointee type. This is to disallow overloading
2969     // on __ptr32/__ptr64 address spaces.
2970     QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2971     QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2972 
2973     if (!Context.hasSameType(Old, New)) {
2974       if (ArgPos)
2975         *ArgPos = O - OldType->param_type_begin();
2976       return false;
2977     }
2978   }
2979   return true;
2980 }
2981 
2982 /// CheckPointerConversion - Check the pointer conversion from the
2983 /// expression From to the type ToType. This routine checks for
2984 /// ambiguous or inaccessible derived-to-base pointer
2985 /// conversions for which IsPointerConversion has already returned
2986 /// true. It returns true and produces a diagnostic if there was an
2987 /// error, or returns false otherwise.
2988 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2989                                   CastKind &Kind,
2990                                   CXXCastPath& BasePath,
2991                                   bool IgnoreBaseAccess,
2992                                   bool Diagnose) {
2993   QualType FromType = From->getType();
2994   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2995 
2996   Kind = CK_BitCast;
2997 
2998   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2999       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
3000           Expr::NPCK_ZeroExpression) {
3001     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3002       DiagRuntimeBehavior(From->getExprLoc(), From,
3003                           PDiag(diag::warn_impcast_bool_to_null_pointer)
3004                             << ToType << From->getSourceRange());
3005     else if (!isUnevaluatedContext())
3006       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3007         << ToType << From->getSourceRange();
3008   }
3009   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3010     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3011       QualType FromPointeeType = FromPtrType->getPointeeType(),
3012                ToPointeeType   = ToPtrType->getPointeeType();
3013 
3014       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3015           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3016         // We must have a derived-to-base conversion. Check an
3017         // ambiguous or inaccessible conversion.
3018         unsigned InaccessibleID = 0;
3019         unsigned AmbiguousID = 0;
3020         if (Diagnose) {
3021           InaccessibleID = diag::err_upcast_to_inaccessible_base;
3022           AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3023         }
3024         if (CheckDerivedToBaseConversion(
3025                 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3026                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3027                 &BasePath, IgnoreBaseAccess))
3028           return true;
3029 
3030         // The conversion was successful.
3031         Kind = CK_DerivedToBase;
3032       }
3033 
3034       if (Diagnose && !IsCStyleOrFunctionalCast &&
3035           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3036         assert(getLangOpts().MSVCCompat &&
3037                "this should only be possible with MSVCCompat!");
3038         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3039             << From->getSourceRange();
3040       }
3041     }
3042   } else if (const ObjCObjectPointerType *ToPtrType =
3043                ToType->getAs<ObjCObjectPointerType>()) {
3044     if (const ObjCObjectPointerType *FromPtrType =
3045           FromType->getAs<ObjCObjectPointerType>()) {
3046       // Objective-C++ conversions are always okay.
3047       // FIXME: We should have a different class of conversions for the
3048       // Objective-C++ implicit conversions.
3049       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3050         return false;
3051     } else if (FromType->isBlockPointerType()) {
3052       Kind = CK_BlockPointerToObjCPointerCast;
3053     } else {
3054       Kind = CK_CPointerToObjCPointerCast;
3055     }
3056   } else if (ToType->isBlockPointerType()) {
3057     if (!FromType->isBlockPointerType())
3058       Kind = CK_AnyPointerToBlockPointerCast;
3059   }
3060 
3061   // We shouldn't fall into this case unless it's valid for other
3062   // reasons.
3063   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3064     Kind = CK_NullToPointer;
3065 
3066   return false;
3067 }
3068 
3069 /// IsMemberPointerConversion - Determines whether the conversion of the
3070 /// expression From, which has the (possibly adjusted) type FromType, can be
3071 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3072 /// If so, returns true and places the converted type (that might differ from
3073 /// ToType in its cv-qualifiers at some level) into ConvertedType.
3074 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3075                                      QualType ToType,
3076                                      bool InOverloadResolution,
3077                                      QualType &ConvertedType) {
3078   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3079   if (!ToTypePtr)
3080     return false;
3081 
3082   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3083   if (From->isNullPointerConstant(Context,
3084                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3085                                         : Expr::NPC_ValueDependentIsNull)) {
3086     ConvertedType = ToType;
3087     return true;
3088   }
3089 
3090   // Otherwise, both types have to be member pointers.
3091   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3092   if (!FromTypePtr)
3093     return false;
3094 
3095   // A pointer to member of B can be converted to a pointer to member of D,
3096   // where D is derived from B (C++ 4.11p2).
3097   QualType FromClass(FromTypePtr->getClass(), 0);
3098   QualType ToClass(ToTypePtr->getClass(), 0);
3099 
3100   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3101       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3102     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3103                                                  ToClass.getTypePtr());
3104     return true;
3105   }
3106 
3107   return false;
3108 }
3109 
3110 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3111 /// expression From to the type ToType. This routine checks for ambiguous or
3112 /// virtual or inaccessible base-to-derived member pointer conversions
3113 /// for which IsMemberPointerConversion has already returned true. It returns
3114 /// true and produces a diagnostic if there was an error, or returns false
3115 /// otherwise.
3116 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3117                                         CastKind &Kind,
3118                                         CXXCastPath &BasePath,
3119                                         bool IgnoreBaseAccess) {
3120   QualType FromType = From->getType();
3121   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3122   if (!FromPtrType) {
3123     // This must be a null pointer to member pointer conversion
3124     assert(From->isNullPointerConstant(Context,
3125                                        Expr::NPC_ValueDependentIsNull) &&
3126            "Expr must be null pointer constant!");
3127     Kind = CK_NullToMemberPointer;
3128     return false;
3129   }
3130 
3131   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3132   assert(ToPtrType && "No member pointer cast has a target type "
3133                       "that is not a member pointer.");
3134 
3135   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3136   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3137 
3138   // FIXME: What about dependent types?
3139   assert(FromClass->isRecordType() && "Pointer into non-class.");
3140   assert(ToClass->isRecordType() && "Pointer into non-class.");
3141 
3142   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3143                      /*DetectVirtual=*/true);
3144   bool DerivationOkay =
3145       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3146   assert(DerivationOkay &&
3147          "Should not have been called if derivation isn't OK.");
3148   (void)DerivationOkay;
3149 
3150   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3151                                   getUnqualifiedType())) {
3152     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3153     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3154       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3155     return true;
3156   }
3157 
3158   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3159     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3160       << FromClass << ToClass << QualType(VBase, 0)
3161       << From->getSourceRange();
3162     return true;
3163   }
3164 
3165   if (!IgnoreBaseAccess)
3166     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3167                          Paths.front(),
3168                          diag::err_downcast_from_inaccessible_base);
3169 
3170   // Must be a base to derived member conversion.
3171   BuildBasePathArray(Paths, BasePath);
3172   Kind = CK_BaseToDerivedMemberPointer;
3173   return false;
3174 }
3175 
3176 /// Determine whether the lifetime conversion between the two given
3177 /// qualifiers sets is nontrivial.
3178 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3179                                                Qualifiers ToQuals) {
3180   // Converting anything to const __unsafe_unretained is trivial.
3181   if (ToQuals.hasConst() &&
3182       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3183     return false;
3184 
3185   return true;
3186 }
3187 
3188 /// Perform a single iteration of the loop for checking if a qualification
3189 /// conversion is valid.
3190 ///
3191 /// Specifically, check whether any change between the qualifiers of \p
3192 /// FromType and \p ToType is permissible, given knowledge about whether every
3193 /// outer layer is const-qualified.
3194 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3195                                           bool CStyle, bool IsTopLevel,
3196                                           bool &PreviousToQualsIncludeConst,
3197                                           bool &ObjCLifetimeConversion) {
3198   Qualifiers FromQuals = FromType.getQualifiers();
3199   Qualifiers ToQuals = ToType.getQualifiers();
3200 
3201   // Ignore __unaligned qualifier if this type is void.
3202   if (ToType.getUnqualifiedType()->isVoidType())
3203     FromQuals.removeUnaligned();
3204 
3205   // Objective-C ARC:
3206   //   Check Objective-C lifetime conversions.
3207   if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3208     if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3209       if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3210         ObjCLifetimeConversion = true;
3211       FromQuals.removeObjCLifetime();
3212       ToQuals.removeObjCLifetime();
3213     } else {
3214       // Qualification conversions cannot cast between different
3215       // Objective-C lifetime qualifiers.
3216       return false;
3217     }
3218   }
3219 
3220   // Allow addition/removal of GC attributes but not changing GC attributes.
3221   if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3222       (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3223     FromQuals.removeObjCGCAttr();
3224     ToQuals.removeObjCGCAttr();
3225   }
3226 
3227   //   -- for every j > 0, if const is in cv 1,j then const is in cv
3228   //      2,j, and similarly for volatile.
3229   if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3230     return false;
3231 
3232   // If address spaces mismatch:
3233   //  - in top level it is only valid to convert to addr space that is a
3234   //    superset in all cases apart from C-style casts where we allow
3235   //    conversions between overlapping address spaces.
3236   //  - in non-top levels it is not a valid conversion.
3237   if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3238       (!IsTopLevel ||
3239        !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3240          (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3241     return false;
3242 
3243   //   -- if the cv 1,j and cv 2,j are different, then const is in
3244   //      every cv for 0 < k < j.
3245   if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3246       !PreviousToQualsIncludeConst)
3247     return false;
3248 
3249   // The following wording is from C++20, where the result of the conversion
3250   // is T3, not T2.
3251   //   -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
3252   //      "array of unknown bound of"
3253   if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
3254     return false;
3255 
3256   //   -- if the resulting P3,i is different from P1,i [...], then const is
3257   //      added to every cv 3_k for 0 < k < i.
3258   if (!CStyle && FromType->isConstantArrayType() &&
3259       ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
3260     return false;
3261 
3262   // Keep track of whether all prior cv-qualifiers in the "to" type
3263   // include const.
3264   PreviousToQualsIncludeConst =
3265       PreviousToQualsIncludeConst && ToQuals.hasConst();
3266   return true;
3267 }
3268 
3269 /// IsQualificationConversion - Determines whether the conversion from
3270 /// an rvalue of type FromType to ToType is a qualification conversion
3271 /// (C++ 4.4).
3272 ///
3273 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3274 /// when the qualification conversion involves a change in the Objective-C
3275 /// object lifetime.
3276 bool
3277 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3278                                 bool CStyle, bool &ObjCLifetimeConversion) {
3279   FromType = Context.getCanonicalType(FromType);
3280   ToType = Context.getCanonicalType(ToType);
3281   ObjCLifetimeConversion = false;
3282 
3283   // If FromType and ToType are the same type, this is not a
3284   // qualification conversion.
3285   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3286     return false;
3287 
3288   // (C++ 4.4p4):
3289   //   A conversion can add cv-qualifiers at levels other than the first
3290   //   in multi-level pointers, subject to the following rules: [...]
3291   bool PreviousToQualsIncludeConst = true;
3292   bool UnwrappedAnyPointer = false;
3293   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3294     if (!isQualificationConversionStep(
3295             FromType, ToType, CStyle, !UnwrappedAnyPointer,
3296             PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3297       return false;
3298     UnwrappedAnyPointer = true;
3299   }
3300 
3301   // We are left with FromType and ToType being the pointee types
3302   // after unwrapping the original FromType and ToType the same number
3303   // of times. If we unwrapped any pointers, and if FromType and
3304   // ToType have the same unqualified type (since we checked
3305   // qualifiers above), then this is a qualification conversion.
3306   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3307 }
3308 
3309 /// - Determine whether this is a conversion from a scalar type to an
3310 /// atomic type.
3311 ///
3312 /// If successful, updates \c SCS's second and third steps in the conversion
3313 /// sequence to finish the conversion.
3314 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3315                                 bool InOverloadResolution,
3316                                 StandardConversionSequence &SCS,
3317                                 bool CStyle) {
3318   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3319   if (!ToAtomic)
3320     return false;
3321 
3322   StandardConversionSequence InnerSCS;
3323   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3324                             InOverloadResolution, InnerSCS,
3325                             CStyle, /*AllowObjCWritebackConversion=*/false))
3326     return false;
3327 
3328   SCS.Second = InnerSCS.Second;
3329   SCS.setToType(1, InnerSCS.getToType(1));
3330   SCS.Third = InnerSCS.Third;
3331   SCS.QualificationIncludesObjCLifetime
3332     = InnerSCS.QualificationIncludesObjCLifetime;
3333   SCS.setToType(2, InnerSCS.getToType(2));
3334   return true;
3335 }
3336 
3337 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3338                                               CXXConstructorDecl *Constructor,
3339                                               QualType Type) {
3340   const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3341   if (CtorType->getNumParams() > 0) {
3342     QualType FirstArg = CtorType->getParamType(0);
3343     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3344       return true;
3345   }
3346   return false;
3347 }
3348 
3349 static OverloadingResult
3350 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3351                                        CXXRecordDecl *To,
3352                                        UserDefinedConversionSequence &User,
3353                                        OverloadCandidateSet &CandidateSet,
3354                                        bool AllowExplicit) {
3355   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3356   for (auto *D : S.LookupConstructors(To)) {
3357     auto Info = getConstructorInfo(D);
3358     if (!Info)
3359       continue;
3360 
3361     bool Usable = !Info.Constructor->isInvalidDecl() &&
3362                   S.isInitListConstructor(Info.Constructor);
3363     if (Usable) {
3364       bool SuppressUserConversions = false;
3365       if (Info.ConstructorTmpl)
3366         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3367                                        /*ExplicitArgs*/ nullptr, From,
3368                                        CandidateSet, SuppressUserConversions,
3369                                        /*PartialOverloading*/ false,
3370                                        AllowExplicit);
3371       else
3372         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3373                                CandidateSet, SuppressUserConversions,
3374                                /*PartialOverloading*/ false, AllowExplicit);
3375     }
3376   }
3377 
3378   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3379 
3380   OverloadCandidateSet::iterator Best;
3381   switch (auto Result =
3382               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3383   case OR_Deleted:
3384   case OR_Success: {
3385     // Record the standard conversion we used and the conversion function.
3386     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3387     QualType ThisType = Constructor->getThisType();
3388     // Initializer lists don't have conversions as such.
3389     User.Before.setAsIdentityConversion();
3390     User.HadMultipleCandidates = HadMultipleCandidates;
3391     User.ConversionFunction = Constructor;
3392     User.FoundConversionFunction = Best->FoundDecl;
3393     User.After.setAsIdentityConversion();
3394     User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3395     User.After.setAllToTypes(ToType);
3396     return Result;
3397   }
3398 
3399   case OR_No_Viable_Function:
3400     return OR_No_Viable_Function;
3401   case OR_Ambiguous:
3402     return OR_Ambiguous;
3403   }
3404 
3405   llvm_unreachable("Invalid OverloadResult!");
3406 }
3407 
3408 /// Determines whether there is a user-defined conversion sequence
3409 /// (C++ [over.ics.user]) that converts expression From to the type
3410 /// ToType. If such a conversion exists, User will contain the
3411 /// user-defined conversion sequence that performs such a conversion
3412 /// and this routine will return true. Otherwise, this routine returns
3413 /// false and User is unspecified.
3414 ///
3415 /// \param AllowExplicit  true if the conversion should consider C++0x
3416 /// "explicit" conversion functions as well as non-explicit conversion
3417 /// functions (C++0x [class.conv.fct]p2).
3418 ///
3419 /// \param AllowObjCConversionOnExplicit true if the conversion should
3420 /// allow an extra Objective-C pointer conversion on uses of explicit
3421 /// constructors. Requires \c AllowExplicit to also be set.
3422 static OverloadingResult
3423 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3424                         UserDefinedConversionSequence &User,
3425                         OverloadCandidateSet &CandidateSet,
3426                         AllowedExplicit AllowExplicit,
3427                         bool AllowObjCConversionOnExplicit) {
3428   assert(AllowExplicit != AllowedExplicit::None ||
3429          !AllowObjCConversionOnExplicit);
3430   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3431 
3432   // Whether we will only visit constructors.
3433   bool ConstructorsOnly = false;
3434 
3435   // If the type we are conversion to is a class type, enumerate its
3436   // constructors.
3437   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3438     // C++ [over.match.ctor]p1:
3439     //   When objects of class type are direct-initialized (8.5), or
3440     //   copy-initialized from an expression of the same or a
3441     //   derived class type (8.5), overload resolution selects the
3442     //   constructor. [...] For copy-initialization, the candidate
3443     //   functions are all the converting constructors (12.3.1) of
3444     //   that class. The argument list is the expression-list within
3445     //   the parentheses of the initializer.
3446     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3447         (From->getType()->getAs<RecordType>() &&
3448          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3449       ConstructorsOnly = true;
3450 
3451     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3452       // We're not going to find any constructors.
3453     } else if (CXXRecordDecl *ToRecordDecl
3454                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3455 
3456       Expr **Args = &From;
3457       unsigned NumArgs = 1;
3458       bool ListInitializing = false;
3459       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3460         // But first, see if there is an init-list-constructor that will work.
3461         OverloadingResult Result = IsInitializerListConstructorConversion(
3462             S, From, ToType, ToRecordDecl, User, CandidateSet,
3463             AllowExplicit == AllowedExplicit::All);
3464         if (Result != OR_No_Viable_Function)
3465           return Result;
3466         // Never mind.
3467         CandidateSet.clear(
3468             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3469 
3470         // If we're list-initializing, we pass the individual elements as
3471         // arguments, not the entire list.
3472         Args = InitList->getInits();
3473         NumArgs = InitList->getNumInits();
3474         ListInitializing = true;
3475       }
3476 
3477       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3478         auto Info = getConstructorInfo(D);
3479         if (!Info)
3480           continue;
3481 
3482         bool Usable = !Info.Constructor->isInvalidDecl();
3483         if (!ListInitializing)
3484           Usable = Usable && Info.Constructor->isConvertingConstructor(
3485                                  /*AllowExplicit*/ true);
3486         if (Usable) {
3487           bool SuppressUserConversions = !ConstructorsOnly;
3488           // C++20 [over.best.ics.general]/4.5:
3489           //   if the target is the first parameter of a constructor [of class
3490           //   X] and the constructor [...] is a candidate by [...] the second
3491           //   phase of [over.match.list] when the initializer list has exactly
3492           //   one element that is itself an initializer list, [...] and the
3493           //   conversion is to X or reference to cv X, user-defined conversion
3494           //   sequences are not cnosidered.
3495           if (SuppressUserConversions && ListInitializing) {
3496             SuppressUserConversions =
3497                 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3498                 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3499                                                   ToType);
3500           }
3501           if (Info.ConstructorTmpl)
3502             S.AddTemplateOverloadCandidate(
3503                 Info.ConstructorTmpl, Info.FoundDecl,
3504                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3505                 CandidateSet, SuppressUserConversions,
3506                 /*PartialOverloading*/ false,
3507                 AllowExplicit == AllowedExplicit::All);
3508           else
3509             // Allow one user-defined conversion when user specifies a
3510             // From->ToType conversion via an static cast (c-style, etc).
3511             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3512                                    llvm::makeArrayRef(Args, NumArgs),
3513                                    CandidateSet, SuppressUserConversions,
3514                                    /*PartialOverloading*/ false,
3515                                    AllowExplicit == AllowedExplicit::All);
3516         }
3517       }
3518     }
3519   }
3520 
3521   // Enumerate conversion functions, if we're allowed to.
3522   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3523   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3524     // No conversion functions from incomplete types.
3525   } else if (const RecordType *FromRecordType =
3526                  From->getType()->getAs<RecordType>()) {
3527     if (CXXRecordDecl *FromRecordDecl
3528          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3529       // Add all of the conversion functions as candidates.
3530       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3531       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3532         DeclAccessPair FoundDecl = I.getPair();
3533         NamedDecl *D = FoundDecl.getDecl();
3534         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3535         if (isa<UsingShadowDecl>(D))
3536           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3537 
3538         CXXConversionDecl *Conv;
3539         FunctionTemplateDecl *ConvTemplate;
3540         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3541           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3542         else
3543           Conv = cast<CXXConversionDecl>(D);
3544 
3545         if (ConvTemplate)
3546           S.AddTemplateConversionCandidate(
3547               ConvTemplate, FoundDecl, ActingContext, From, ToType,
3548               CandidateSet, AllowObjCConversionOnExplicit,
3549               AllowExplicit != AllowedExplicit::None);
3550         else
3551           S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3552                                    CandidateSet, AllowObjCConversionOnExplicit,
3553                                    AllowExplicit != AllowedExplicit::None);
3554       }
3555     }
3556   }
3557 
3558   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3559 
3560   OverloadCandidateSet::iterator Best;
3561   switch (auto Result =
3562               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3563   case OR_Success:
3564   case OR_Deleted:
3565     // Record the standard conversion we used and the conversion function.
3566     if (CXXConstructorDecl *Constructor
3567           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3568       // C++ [over.ics.user]p1:
3569       //   If the user-defined conversion is specified by a
3570       //   constructor (12.3.1), the initial standard conversion
3571       //   sequence converts the source type to the type required by
3572       //   the argument of the constructor.
3573       //
3574       QualType ThisType = Constructor->getThisType();
3575       if (isa<InitListExpr>(From)) {
3576         // Initializer lists don't have conversions as such.
3577         User.Before.setAsIdentityConversion();
3578       } else {
3579         if (Best->Conversions[0].isEllipsis())
3580           User.EllipsisConversion = true;
3581         else {
3582           User.Before = Best->Conversions[0].Standard;
3583           User.EllipsisConversion = false;
3584         }
3585       }
3586       User.HadMultipleCandidates = HadMultipleCandidates;
3587       User.ConversionFunction = Constructor;
3588       User.FoundConversionFunction = Best->FoundDecl;
3589       User.After.setAsIdentityConversion();
3590       User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3591       User.After.setAllToTypes(ToType);
3592       return Result;
3593     }
3594     if (CXXConversionDecl *Conversion
3595                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3596       // C++ [over.ics.user]p1:
3597       //
3598       //   [...] If the user-defined conversion is specified by a
3599       //   conversion function (12.3.2), the initial standard
3600       //   conversion sequence converts the source type to the
3601       //   implicit object parameter of the conversion function.
3602       User.Before = Best->Conversions[0].Standard;
3603       User.HadMultipleCandidates = HadMultipleCandidates;
3604       User.ConversionFunction = Conversion;
3605       User.FoundConversionFunction = Best->FoundDecl;
3606       User.EllipsisConversion = false;
3607 
3608       // C++ [over.ics.user]p2:
3609       //   The second standard conversion sequence converts the
3610       //   result of the user-defined conversion to the target type
3611       //   for the sequence. Since an implicit conversion sequence
3612       //   is an initialization, the special rules for
3613       //   initialization by user-defined conversion apply when
3614       //   selecting the best user-defined conversion for a
3615       //   user-defined conversion sequence (see 13.3.3 and
3616       //   13.3.3.1).
3617       User.After = Best->FinalConversion;
3618       return Result;
3619     }
3620     llvm_unreachable("Not a constructor or conversion function?");
3621 
3622   case OR_No_Viable_Function:
3623     return OR_No_Viable_Function;
3624 
3625   case OR_Ambiguous:
3626     return OR_Ambiguous;
3627   }
3628 
3629   llvm_unreachable("Invalid OverloadResult!");
3630 }
3631 
3632 bool
3633 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3634   ImplicitConversionSequence ICS;
3635   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3636                                     OverloadCandidateSet::CSK_Normal);
3637   OverloadingResult OvResult =
3638     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3639                             CandidateSet, AllowedExplicit::None, false);
3640 
3641   if (!(OvResult == OR_Ambiguous ||
3642         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3643     return false;
3644 
3645   auto Cands = CandidateSet.CompleteCandidates(
3646       *this,
3647       OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3648       From);
3649   if (OvResult == OR_Ambiguous)
3650     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3651         << From->getType() << ToType << From->getSourceRange();
3652   else { // OR_No_Viable_Function && !CandidateSet.empty()
3653     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3654                              diag::err_typecheck_nonviable_condition_incomplete,
3655                              From->getType(), From->getSourceRange()))
3656       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3657           << false << From->getType() << From->getSourceRange() << ToType;
3658   }
3659 
3660   CandidateSet.NoteCandidates(
3661                               *this, From, Cands);
3662   return true;
3663 }
3664 
3665 // Helper for compareConversionFunctions that gets the FunctionType that the
3666 // conversion-operator return  value 'points' to, or nullptr.
3667 static const FunctionType *
3668 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3669   const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3670   const PointerType *RetPtrTy =
3671       ConvFuncTy->getReturnType()->getAs<PointerType>();
3672 
3673   if (!RetPtrTy)
3674     return nullptr;
3675 
3676   return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3677 }
3678 
3679 /// Compare the user-defined conversion functions or constructors
3680 /// of two user-defined conversion sequences to determine whether any ordering
3681 /// is possible.
3682 static ImplicitConversionSequence::CompareKind
3683 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3684                            FunctionDecl *Function2) {
3685   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3686   CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3687   if (!Conv1 || !Conv2)
3688     return ImplicitConversionSequence::Indistinguishable;
3689 
3690   if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3691     return ImplicitConversionSequence::Indistinguishable;
3692 
3693   // Objective-C++:
3694   //   If both conversion functions are implicitly-declared conversions from
3695   //   a lambda closure type to a function pointer and a block pointer,
3696   //   respectively, always prefer the conversion to a function pointer,
3697   //   because the function pointer is more lightweight and is more likely
3698   //   to keep code working.
3699   if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3700     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3701     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3702     if (Block1 != Block2)
3703       return Block1 ? ImplicitConversionSequence::Worse
3704                     : ImplicitConversionSequence::Better;
3705   }
3706 
3707   // In order to support multiple calling conventions for the lambda conversion
3708   // operator (such as when the free and member function calling convention is
3709   // different), prefer the 'free' mechanism, followed by the calling-convention
3710   // of operator(). The latter is in place to support the MSVC-like solution of
3711   // defining ALL of the possible conversions in regards to calling-convention.
3712   const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3713   const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3714 
3715   if (Conv1FuncRet && Conv2FuncRet &&
3716       Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3717     CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3718     CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3719 
3720     CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3721     const FunctionProtoType *CallOpProto =
3722         CallOp->getType()->getAs<FunctionProtoType>();
3723 
3724     CallingConv CallOpCC =
3725         CallOp->getType()->castAs<FunctionType>()->getCallConv();
3726     CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3727         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3728     CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3729         CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3730 
3731     CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3732     for (CallingConv CC : PrefOrder) {
3733       if (Conv1CC == CC)
3734         return ImplicitConversionSequence::Better;
3735       if (Conv2CC == CC)
3736         return ImplicitConversionSequence::Worse;
3737     }
3738   }
3739 
3740   return ImplicitConversionSequence::Indistinguishable;
3741 }
3742 
3743 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3744     const ImplicitConversionSequence &ICS) {
3745   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3746          (ICS.isUserDefined() &&
3747           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3748 }
3749 
3750 /// CompareImplicitConversionSequences - Compare two implicit
3751 /// conversion sequences to determine whether one is better than the
3752 /// other or if they are indistinguishable (C++ 13.3.3.2).
3753 static ImplicitConversionSequence::CompareKind
3754 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3755                                    const ImplicitConversionSequence& ICS1,
3756                                    const ImplicitConversionSequence& ICS2)
3757 {
3758   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3759   // conversion sequences (as defined in 13.3.3.1)
3760   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3761   //      conversion sequence than a user-defined conversion sequence or
3762   //      an ellipsis conversion sequence, and
3763   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3764   //      conversion sequence than an ellipsis conversion sequence
3765   //      (13.3.3.1.3).
3766   //
3767   // C++0x [over.best.ics]p10:
3768   //   For the purpose of ranking implicit conversion sequences as
3769   //   described in 13.3.3.2, the ambiguous conversion sequence is
3770   //   treated as a user-defined sequence that is indistinguishable
3771   //   from any other user-defined conversion sequence.
3772 
3773   // String literal to 'char *' conversion has been deprecated in C++03. It has
3774   // been removed from C++11. We still accept this conversion, if it happens at
3775   // the best viable function. Otherwise, this conversion is considered worse
3776   // than ellipsis conversion. Consider this as an extension; this is not in the
3777   // standard. For example:
3778   //
3779   // int &f(...);    // #1
3780   // void f(char*);  // #2
3781   // void g() { int &r = f("foo"); }
3782   //
3783   // In C++03, we pick #2 as the best viable function.
3784   // In C++11, we pick #1 as the best viable function, because ellipsis
3785   // conversion is better than string-literal to char* conversion (since there
3786   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3787   // convert arguments, #2 would be the best viable function in C++11.
3788   // If the best viable function has this conversion, a warning will be issued
3789   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3790 
3791   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3792       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3793           hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
3794       // Ill-formedness must not differ
3795       ICS1.isBad() == ICS2.isBad())
3796     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3797                ? ImplicitConversionSequence::Worse
3798                : ImplicitConversionSequence::Better;
3799 
3800   if (ICS1.getKindRank() < ICS2.getKindRank())
3801     return ImplicitConversionSequence::Better;
3802   if (ICS2.getKindRank() < ICS1.getKindRank())
3803     return ImplicitConversionSequence::Worse;
3804 
3805   // The following checks require both conversion sequences to be of
3806   // the same kind.
3807   if (ICS1.getKind() != ICS2.getKind())
3808     return ImplicitConversionSequence::Indistinguishable;
3809 
3810   ImplicitConversionSequence::CompareKind Result =
3811       ImplicitConversionSequence::Indistinguishable;
3812 
3813   // Two implicit conversion sequences of the same form are
3814   // indistinguishable conversion sequences unless one of the
3815   // following rules apply: (C++ 13.3.3.2p3):
3816 
3817   // List-initialization sequence L1 is a better conversion sequence than
3818   // list-initialization sequence L2 if:
3819   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3820   //   if not that,
3821   // — L1 and L2 convert to arrays of the same element type, and either the
3822   //   number of elements n_1 initialized by L1 is less than the number of
3823   //   elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
3824   //   an array of unknown bound and L1 does not,
3825   // even if one of the other rules in this paragraph would otherwise apply.
3826   if (!ICS1.isBad()) {
3827     bool StdInit1 = false, StdInit2 = false;
3828     if (ICS1.hasInitializerListContainerType())
3829       StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
3830                                         nullptr);
3831     if (ICS2.hasInitializerListContainerType())
3832       StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
3833                                         nullptr);
3834     if (StdInit1 != StdInit2)
3835       return StdInit1 ? ImplicitConversionSequence::Better
3836                       : ImplicitConversionSequence::Worse;
3837 
3838     if (ICS1.hasInitializerListContainerType() &&
3839         ICS2.hasInitializerListContainerType())
3840       if (auto *CAT1 = S.Context.getAsConstantArrayType(
3841               ICS1.getInitializerListContainerType()))
3842         if (auto *CAT2 = S.Context.getAsConstantArrayType(
3843                 ICS2.getInitializerListContainerType())) {
3844           if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
3845                                                CAT2->getElementType())) {
3846             // Both to arrays of the same element type
3847             if (CAT1->getSize() != CAT2->getSize())
3848               // Different sized, the smaller wins
3849               return CAT1->getSize().ult(CAT2->getSize())
3850                          ? ImplicitConversionSequence::Better
3851                          : ImplicitConversionSequence::Worse;
3852             if (ICS1.isInitializerListOfIncompleteArray() !=
3853                 ICS2.isInitializerListOfIncompleteArray())
3854               // One is incomplete, it loses
3855               return ICS2.isInitializerListOfIncompleteArray()
3856                          ? ImplicitConversionSequence::Better
3857                          : ImplicitConversionSequence::Worse;
3858           }
3859         }
3860   }
3861 
3862   if (ICS1.isStandard())
3863     // Standard conversion sequence S1 is a better conversion sequence than
3864     // standard conversion sequence S2 if [...]
3865     Result = CompareStandardConversionSequences(S, Loc,
3866                                                 ICS1.Standard, ICS2.Standard);
3867   else if (ICS1.isUserDefined()) {
3868     // User-defined conversion sequence U1 is a better conversion
3869     // sequence than another user-defined conversion sequence U2 if
3870     // they contain the same user-defined conversion function or
3871     // constructor and if the second standard conversion sequence of
3872     // U1 is better than the second standard conversion sequence of
3873     // U2 (C++ 13.3.3.2p3).
3874     if (ICS1.UserDefined.ConversionFunction ==
3875           ICS2.UserDefined.ConversionFunction)
3876       Result = CompareStandardConversionSequences(S, Loc,
3877                                                   ICS1.UserDefined.After,
3878                                                   ICS2.UserDefined.After);
3879     else
3880       Result = compareConversionFunctions(S,
3881                                           ICS1.UserDefined.ConversionFunction,
3882                                           ICS2.UserDefined.ConversionFunction);
3883   }
3884 
3885   return Result;
3886 }
3887 
3888 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3889 // determine if one is a proper subset of the other.
3890 static ImplicitConversionSequence::CompareKind
3891 compareStandardConversionSubsets(ASTContext &Context,
3892                                  const StandardConversionSequence& SCS1,
3893                                  const StandardConversionSequence& SCS2) {
3894   ImplicitConversionSequence::CompareKind Result
3895     = ImplicitConversionSequence::Indistinguishable;
3896 
3897   // the identity conversion sequence is considered to be a subsequence of
3898   // any non-identity conversion sequence
3899   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3900     return ImplicitConversionSequence::Better;
3901   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3902     return ImplicitConversionSequence::Worse;
3903 
3904   if (SCS1.Second != SCS2.Second) {
3905     if (SCS1.Second == ICK_Identity)
3906       Result = ImplicitConversionSequence::Better;
3907     else if (SCS2.Second == ICK_Identity)
3908       Result = ImplicitConversionSequence::Worse;
3909     else
3910       return ImplicitConversionSequence::Indistinguishable;
3911   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3912     return ImplicitConversionSequence::Indistinguishable;
3913 
3914   if (SCS1.Third == SCS2.Third) {
3915     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3916                              : ImplicitConversionSequence::Indistinguishable;
3917   }
3918 
3919   if (SCS1.Third == ICK_Identity)
3920     return Result == ImplicitConversionSequence::Worse
3921              ? ImplicitConversionSequence::Indistinguishable
3922              : ImplicitConversionSequence::Better;
3923 
3924   if (SCS2.Third == ICK_Identity)
3925     return Result == ImplicitConversionSequence::Better
3926              ? ImplicitConversionSequence::Indistinguishable
3927              : ImplicitConversionSequence::Worse;
3928 
3929   return ImplicitConversionSequence::Indistinguishable;
3930 }
3931 
3932 /// Determine whether one of the given reference bindings is better
3933 /// than the other based on what kind of bindings they are.
3934 static bool
3935 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3936                              const StandardConversionSequence &SCS2) {
3937   // C++0x [over.ics.rank]p3b4:
3938   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3939   //      implicit object parameter of a non-static member function declared
3940   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3941   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3942   //      lvalue reference to a function lvalue and S2 binds an rvalue
3943   //      reference*.
3944   //
3945   // FIXME: Rvalue references. We're going rogue with the above edits,
3946   // because the semantics in the current C++0x working paper (N3225 at the
3947   // time of this writing) break the standard definition of std::forward
3948   // and std::reference_wrapper when dealing with references to functions.
3949   // Proposed wording changes submitted to CWG for consideration.
3950   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3951       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3952     return false;
3953 
3954   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3955           SCS2.IsLvalueReference) ||
3956          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3957           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3958 }
3959 
3960 enum class FixedEnumPromotion {
3961   None,
3962   ToUnderlyingType,
3963   ToPromotedUnderlyingType
3964 };
3965 
3966 /// Returns kind of fixed enum promotion the \a SCS uses.
3967 static FixedEnumPromotion
3968 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3969 
3970   if (SCS.Second != ICK_Integral_Promotion)
3971     return FixedEnumPromotion::None;
3972 
3973   QualType FromType = SCS.getFromType();
3974   if (!FromType->isEnumeralType())
3975     return FixedEnumPromotion::None;
3976 
3977   EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3978   if (!Enum->isFixed())
3979     return FixedEnumPromotion::None;
3980 
3981   QualType UnderlyingType = Enum->getIntegerType();
3982   if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3983     return FixedEnumPromotion::ToUnderlyingType;
3984 
3985   return FixedEnumPromotion::ToPromotedUnderlyingType;
3986 }
3987 
3988 /// CompareStandardConversionSequences - Compare two standard
3989 /// conversion sequences to determine whether one is better than the
3990 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3991 static ImplicitConversionSequence::CompareKind
3992 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3993                                    const StandardConversionSequence& SCS1,
3994                                    const StandardConversionSequence& SCS2)
3995 {
3996   // Standard conversion sequence S1 is a better conversion sequence
3997   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3998 
3999   //  -- S1 is a proper subsequence of S2 (comparing the conversion
4000   //     sequences in the canonical form defined by 13.3.3.1.1,
4001   //     excluding any Lvalue Transformation; the identity conversion
4002   //     sequence is considered to be a subsequence of any
4003   //     non-identity conversion sequence) or, if not that,
4004   if (ImplicitConversionSequence::CompareKind CK
4005         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
4006     return CK;
4007 
4008   //  -- the rank of S1 is better than the rank of S2 (by the rules
4009   //     defined below), or, if not that,
4010   ImplicitConversionRank Rank1 = SCS1.getRank();
4011   ImplicitConversionRank Rank2 = SCS2.getRank();
4012   if (Rank1 < Rank2)
4013     return ImplicitConversionSequence::Better;
4014   else if (Rank2 < Rank1)
4015     return ImplicitConversionSequence::Worse;
4016 
4017   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
4018   // are indistinguishable unless one of the following rules
4019   // applies:
4020 
4021   //   A conversion that is not a conversion of a pointer, or
4022   //   pointer to member, to bool is better than another conversion
4023   //   that is such a conversion.
4024   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
4025     return SCS2.isPointerConversionToBool()
4026              ? ImplicitConversionSequence::Better
4027              : ImplicitConversionSequence::Worse;
4028 
4029   // C++14 [over.ics.rank]p4b2:
4030   // This is retroactively applied to C++11 by CWG 1601.
4031   //
4032   //   A conversion that promotes an enumeration whose underlying type is fixed
4033   //   to its underlying type is better than one that promotes to the promoted
4034   //   underlying type, if the two are different.
4035   FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
4036   FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
4037   if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
4038       FEP1 != FEP2)
4039     return FEP1 == FixedEnumPromotion::ToUnderlyingType
4040                ? ImplicitConversionSequence::Better
4041                : ImplicitConversionSequence::Worse;
4042 
4043   // C++ [over.ics.rank]p4b2:
4044   //
4045   //   If class B is derived directly or indirectly from class A,
4046   //   conversion of B* to A* is better than conversion of B* to
4047   //   void*, and conversion of A* to void* is better than conversion
4048   //   of B* to void*.
4049   bool SCS1ConvertsToVoid
4050     = SCS1.isPointerConversionToVoidPointer(S.Context);
4051   bool SCS2ConvertsToVoid
4052     = SCS2.isPointerConversionToVoidPointer(S.Context);
4053   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4054     // Exactly one of the conversion sequences is a conversion to
4055     // a void pointer; it's the worse conversion.
4056     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4057                               : ImplicitConversionSequence::Worse;
4058   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4059     // Neither conversion sequence converts to a void pointer; compare
4060     // their derived-to-base conversions.
4061     if (ImplicitConversionSequence::CompareKind DerivedCK
4062           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4063       return DerivedCK;
4064   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4065              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4066     // Both conversion sequences are conversions to void
4067     // pointers. Compare the source types to determine if there's an
4068     // inheritance relationship in their sources.
4069     QualType FromType1 = SCS1.getFromType();
4070     QualType FromType2 = SCS2.getFromType();
4071 
4072     // Adjust the types we're converting from via the array-to-pointer
4073     // conversion, if we need to.
4074     if (SCS1.First == ICK_Array_To_Pointer)
4075       FromType1 = S.Context.getArrayDecayedType(FromType1);
4076     if (SCS2.First == ICK_Array_To_Pointer)
4077       FromType2 = S.Context.getArrayDecayedType(FromType2);
4078 
4079     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4080     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4081 
4082     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4083       return ImplicitConversionSequence::Better;
4084     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4085       return ImplicitConversionSequence::Worse;
4086 
4087     // Objective-C++: If one interface is more specific than the
4088     // other, it is the better one.
4089     const ObjCObjectPointerType* FromObjCPtr1
4090       = FromType1->getAs<ObjCObjectPointerType>();
4091     const ObjCObjectPointerType* FromObjCPtr2
4092       = FromType2->getAs<ObjCObjectPointerType>();
4093     if (FromObjCPtr1 && FromObjCPtr2) {
4094       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4095                                                           FromObjCPtr2);
4096       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4097                                                            FromObjCPtr1);
4098       if (AssignLeft != AssignRight) {
4099         return AssignLeft? ImplicitConversionSequence::Better
4100                          : ImplicitConversionSequence::Worse;
4101       }
4102     }
4103   }
4104 
4105   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4106     // Check for a better reference binding based on the kind of bindings.
4107     if (isBetterReferenceBindingKind(SCS1, SCS2))
4108       return ImplicitConversionSequence::Better;
4109     else if (isBetterReferenceBindingKind(SCS2, SCS1))
4110       return ImplicitConversionSequence::Worse;
4111   }
4112 
4113   // Compare based on qualification conversions (C++ 13.3.3.2p3,
4114   // bullet 3).
4115   if (ImplicitConversionSequence::CompareKind QualCK
4116         = CompareQualificationConversions(S, SCS1, SCS2))
4117     return QualCK;
4118 
4119   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4120     // C++ [over.ics.rank]p3b4:
4121     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
4122     //      which the references refer are the same type except for
4123     //      top-level cv-qualifiers, and the type to which the reference
4124     //      initialized by S2 refers is more cv-qualified than the type
4125     //      to which the reference initialized by S1 refers.
4126     QualType T1 = SCS1.getToType(2);
4127     QualType T2 = SCS2.getToType(2);
4128     T1 = S.Context.getCanonicalType(T1);
4129     T2 = S.Context.getCanonicalType(T2);
4130     Qualifiers T1Quals, T2Quals;
4131     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4132     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4133     if (UnqualT1 == UnqualT2) {
4134       // Objective-C++ ARC: If the references refer to objects with different
4135       // lifetimes, prefer bindings that don't change lifetime.
4136       if (SCS1.ObjCLifetimeConversionBinding !=
4137                                           SCS2.ObjCLifetimeConversionBinding) {
4138         return SCS1.ObjCLifetimeConversionBinding
4139                                            ? ImplicitConversionSequence::Worse
4140                                            : ImplicitConversionSequence::Better;
4141       }
4142 
4143       // If the type is an array type, promote the element qualifiers to the
4144       // type for comparison.
4145       if (isa<ArrayType>(T1) && T1Quals)
4146         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4147       if (isa<ArrayType>(T2) && T2Quals)
4148         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4149       if (T2.isMoreQualifiedThan(T1))
4150         return ImplicitConversionSequence::Better;
4151       if (T1.isMoreQualifiedThan(T2))
4152         return ImplicitConversionSequence::Worse;
4153     }
4154   }
4155 
4156   // In Microsoft mode (below 19.28), prefer an integral conversion to a
4157   // floating-to-integral conversion if the integral conversion
4158   // is between types of the same size.
4159   // For example:
4160   // void f(float);
4161   // void f(int);
4162   // int main {
4163   //    long a;
4164   //    f(a);
4165   // }
4166   // Here, MSVC will call f(int) instead of generating a compile error
4167   // as clang will do in standard mode.
4168   if (S.getLangOpts().MSVCCompat &&
4169       !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4170       SCS1.Second == ICK_Integral_Conversion &&
4171       SCS2.Second == ICK_Floating_Integral &&
4172       S.Context.getTypeSize(SCS1.getFromType()) ==
4173           S.Context.getTypeSize(SCS1.getToType(2)))
4174     return ImplicitConversionSequence::Better;
4175 
4176   // Prefer a compatible vector conversion over a lax vector conversion
4177   // For example:
4178   //
4179   // typedef float __v4sf __attribute__((__vector_size__(16)));
4180   // void f(vector float);
4181   // void f(vector signed int);
4182   // int main() {
4183   //   __v4sf a;
4184   //   f(a);
4185   // }
4186   // Here, we'd like to choose f(vector float) and not
4187   // report an ambiguous call error
4188   if (SCS1.Second == ICK_Vector_Conversion &&
4189       SCS2.Second == ICK_Vector_Conversion) {
4190     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4191         SCS1.getFromType(), SCS1.getToType(2));
4192     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4193         SCS2.getFromType(), SCS2.getToType(2));
4194 
4195     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4196       return SCS1IsCompatibleVectorConversion
4197                  ? ImplicitConversionSequence::Better
4198                  : ImplicitConversionSequence::Worse;
4199   }
4200 
4201   if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4202       SCS2.Second == ICK_SVE_Vector_Conversion) {
4203     bool SCS1IsCompatibleSVEVectorConversion =
4204         S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4205     bool SCS2IsCompatibleSVEVectorConversion =
4206         S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4207 
4208     if (SCS1IsCompatibleSVEVectorConversion !=
4209         SCS2IsCompatibleSVEVectorConversion)
4210       return SCS1IsCompatibleSVEVectorConversion
4211                  ? ImplicitConversionSequence::Better
4212                  : ImplicitConversionSequence::Worse;
4213   }
4214 
4215   return ImplicitConversionSequence::Indistinguishable;
4216 }
4217 
4218 /// CompareQualificationConversions - Compares two standard conversion
4219 /// sequences to determine whether they can be ranked based on their
4220 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4221 static ImplicitConversionSequence::CompareKind
4222 CompareQualificationConversions(Sema &S,
4223                                 const StandardConversionSequence& SCS1,
4224                                 const StandardConversionSequence& SCS2) {
4225   // C++ [over.ics.rank]p3:
4226   //  -- S1 and S2 differ only in their qualification conversion and
4227   //     yield similar types T1 and T2 (C++ 4.4), respectively, [...]
4228   // [C++98]
4229   //     [...] and the cv-qualification signature of type T1 is a proper subset
4230   //     of the cv-qualification signature of type T2, and S1 is not the
4231   //     deprecated string literal array-to-pointer conversion (4.2).
4232   // [C++2a]
4233   //     [...] where T1 can be converted to T2 by a qualification conversion.
4234   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4235       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4236     return ImplicitConversionSequence::Indistinguishable;
4237 
4238   // FIXME: the example in the standard doesn't use a qualification
4239   // conversion (!)
4240   QualType T1 = SCS1.getToType(2);
4241   QualType T2 = SCS2.getToType(2);
4242   T1 = S.Context.getCanonicalType(T1);
4243   T2 = S.Context.getCanonicalType(T2);
4244   assert(!T1->isReferenceType() && !T2->isReferenceType());
4245   Qualifiers T1Quals, T2Quals;
4246   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4247   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4248 
4249   // If the types are the same, we won't learn anything by unwrapping
4250   // them.
4251   if (UnqualT1 == UnqualT2)
4252     return ImplicitConversionSequence::Indistinguishable;
4253 
4254   // Don't ever prefer a standard conversion sequence that uses the deprecated
4255   // string literal array to pointer conversion.
4256   bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
4257   bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;
4258 
4259   // Objective-C++ ARC:
4260   //   Prefer qualification conversions not involving a change in lifetime
4261   //   to qualification conversions that do change lifetime.
4262   if (SCS1.QualificationIncludesObjCLifetime &&
4263       !SCS2.QualificationIncludesObjCLifetime)
4264     CanPick1 = false;
4265   if (SCS2.QualificationIncludesObjCLifetime &&
4266       !SCS1.QualificationIncludesObjCLifetime)
4267     CanPick2 = false;
4268 
4269   bool ObjCLifetimeConversion;
4270   if (CanPick1 &&
4271       !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
4272     CanPick1 = false;
4273   // FIXME: In Objective-C ARC, we can have qualification conversions in both
4274   // directions, so we can't short-cut this second check in general.
4275   if (CanPick2 &&
4276       !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
4277     CanPick2 = false;
4278 
4279   if (CanPick1 != CanPick2)
4280     return CanPick1 ? ImplicitConversionSequence::Better
4281                     : ImplicitConversionSequence::Worse;
4282   return ImplicitConversionSequence::Indistinguishable;
4283 }
4284 
4285 /// CompareDerivedToBaseConversions - Compares two standard conversion
4286 /// sequences to determine whether they can be ranked based on their
4287 /// various kinds of derived-to-base conversions (C++
4288 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4289 /// conversions between Objective-C interface types.
4290 static ImplicitConversionSequence::CompareKind
4291 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4292                                 const StandardConversionSequence& SCS1,
4293                                 const StandardConversionSequence& SCS2) {
4294   QualType FromType1 = SCS1.getFromType();
4295   QualType ToType1 = SCS1.getToType(1);
4296   QualType FromType2 = SCS2.getFromType();
4297   QualType ToType2 = SCS2.getToType(1);
4298 
4299   // Adjust the types we're converting from via the array-to-pointer
4300   // conversion, if we need to.
4301   if (SCS1.First == ICK_Array_To_Pointer)
4302     FromType1 = S.Context.getArrayDecayedType(FromType1);
4303   if (SCS2.First == ICK_Array_To_Pointer)
4304     FromType2 = S.Context.getArrayDecayedType(FromType2);
4305 
4306   // Canonicalize all of the types.
4307   FromType1 = S.Context.getCanonicalType(FromType1);
4308   ToType1 = S.Context.getCanonicalType(ToType1);
4309   FromType2 = S.Context.getCanonicalType(FromType2);
4310   ToType2 = S.Context.getCanonicalType(ToType2);
4311 
4312   // C++ [over.ics.rank]p4b3:
4313   //
4314   //   If class B is derived directly or indirectly from class A and
4315   //   class C is derived directly or indirectly from B,
4316   //
4317   // Compare based on pointer conversions.
4318   if (SCS1.Second == ICK_Pointer_Conversion &&
4319       SCS2.Second == ICK_Pointer_Conversion &&
4320       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4321       FromType1->isPointerType() && FromType2->isPointerType() &&
4322       ToType1->isPointerType() && ToType2->isPointerType()) {
4323     QualType FromPointee1 =
4324         FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4325     QualType ToPointee1 =
4326         ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4327     QualType FromPointee2 =
4328         FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4329     QualType ToPointee2 =
4330         ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4331 
4332     //   -- conversion of C* to B* is better than conversion of C* to A*,
4333     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4334       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4335         return ImplicitConversionSequence::Better;
4336       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4337         return ImplicitConversionSequence::Worse;
4338     }
4339 
4340     //   -- conversion of B* to A* is better than conversion of C* to A*,
4341     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4342       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4343         return ImplicitConversionSequence::Better;
4344       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4345         return ImplicitConversionSequence::Worse;
4346     }
4347   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4348              SCS2.Second == ICK_Pointer_Conversion) {
4349     const ObjCObjectPointerType *FromPtr1
4350       = FromType1->getAs<ObjCObjectPointerType>();
4351     const ObjCObjectPointerType *FromPtr2
4352       = FromType2->getAs<ObjCObjectPointerType>();
4353     const ObjCObjectPointerType *ToPtr1
4354       = ToType1->getAs<ObjCObjectPointerType>();
4355     const ObjCObjectPointerType *ToPtr2
4356       = ToType2->getAs<ObjCObjectPointerType>();
4357 
4358     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4359       // Apply the same conversion ranking rules for Objective-C pointer types
4360       // that we do for C++ pointers to class types. However, we employ the
4361       // Objective-C pseudo-subtyping relationship used for assignment of
4362       // Objective-C pointer types.
4363       bool FromAssignLeft
4364         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4365       bool FromAssignRight
4366         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4367       bool ToAssignLeft
4368         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4369       bool ToAssignRight
4370         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4371 
4372       // A conversion to an a non-id object pointer type or qualified 'id'
4373       // type is better than a conversion to 'id'.
4374       if (ToPtr1->isObjCIdType() &&
4375           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4376         return ImplicitConversionSequence::Worse;
4377       if (ToPtr2->isObjCIdType() &&
4378           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4379         return ImplicitConversionSequence::Better;
4380 
4381       // A conversion to a non-id object pointer type is better than a
4382       // conversion to a qualified 'id' type
4383       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4384         return ImplicitConversionSequence::Worse;
4385       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4386         return ImplicitConversionSequence::Better;
4387 
4388       // A conversion to an a non-Class object pointer type or qualified 'Class'
4389       // type is better than a conversion to 'Class'.
4390       if (ToPtr1->isObjCClassType() &&
4391           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4392         return ImplicitConversionSequence::Worse;
4393       if (ToPtr2->isObjCClassType() &&
4394           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4395         return ImplicitConversionSequence::Better;
4396 
4397       // A conversion to a non-Class object pointer type is better than a
4398       // conversion to a qualified 'Class' type.
4399       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4400         return ImplicitConversionSequence::Worse;
4401       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4402         return ImplicitConversionSequence::Better;
4403 
4404       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4405       if (S.Context.hasSameType(FromType1, FromType2) &&
4406           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4407           (ToAssignLeft != ToAssignRight)) {
4408         if (FromPtr1->isSpecialized()) {
4409           // "conversion of B<A> * to B * is better than conversion of B * to
4410           // C *.
4411           bool IsFirstSame =
4412               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4413           bool IsSecondSame =
4414               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4415           if (IsFirstSame) {
4416             if (!IsSecondSame)
4417               return ImplicitConversionSequence::Better;
4418           } else if (IsSecondSame)
4419             return ImplicitConversionSequence::Worse;
4420         }
4421         return ToAssignLeft? ImplicitConversionSequence::Worse
4422                            : ImplicitConversionSequence::Better;
4423       }
4424 
4425       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4426       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4427           (FromAssignLeft != FromAssignRight))
4428         return FromAssignLeft? ImplicitConversionSequence::Better
4429         : ImplicitConversionSequence::Worse;
4430     }
4431   }
4432 
4433   // Ranking of member-pointer types.
4434   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4435       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4436       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4437     const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4438     const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4439     const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4440     const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4441     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4442     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4443     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4444     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4445     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4446     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4447     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4448     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4449     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4450     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4451       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4452         return ImplicitConversionSequence::Worse;
4453       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4454         return ImplicitConversionSequence::Better;
4455     }
4456     // conversion of B::* to C::* is better than conversion of A::* to C::*
4457     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4458       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4459         return ImplicitConversionSequence::Better;
4460       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4461         return ImplicitConversionSequence::Worse;
4462     }
4463   }
4464 
4465   if (SCS1.Second == ICK_Derived_To_Base) {
4466     //   -- conversion of C to B is better than conversion of C to A,
4467     //   -- binding of an expression of type C to a reference of type
4468     //      B& is better than binding an expression of type C to a
4469     //      reference of type A&,
4470     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4471         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4472       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4473         return ImplicitConversionSequence::Better;
4474       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4475         return ImplicitConversionSequence::Worse;
4476     }
4477 
4478     //   -- conversion of B to A is better than conversion of C to A.
4479     //   -- binding of an expression of type B to a reference of type
4480     //      A& is better than binding an expression of type C to a
4481     //      reference of type A&,
4482     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4483         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4484       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4485         return ImplicitConversionSequence::Better;
4486       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4487         return ImplicitConversionSequence::Worse;
4488     }
4489   }
4490 
4491   return ImplicitConversionSequence::Indistinguishable;
4492 }
4493 
4494 /// Determine whether the given type is valid, e.g., it is not an invalid
4495 /// C++ class.
4496 static bool isTypeValid(QualType T) {
4497   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4498     return !Record->isInvalidDecl();
4499 
4500   return true;
4501 }
4502 
4503 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4504   if (!T.getQualifiers().hasUnaligned())
4505     return T;
4506 
4507   Qualifiers Q;
4508   T = Ctx.getUnqualifiedArrayType(T, Q);
4509   Q.removeUnaligned();
4510   return Ctx.getQualifiedType(T, Q);
4511 }
4512 
4513 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4514 /// determine whether they are reference-compatible,
4515 /// reference-related, or incompatible, for use in C++ initialization by
4516 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4517 /// type, and the first type (T1) is the pointee type of the reference
4518 /// type being initialized.
4519 Sema::ReferenceCompareResult
4520 Sema::CompareReferenceRelationship(SourceLocation Loc,
4521                                    QualType OrigT1, QualType OrigT2,
4522                                    ReferenceConversions *ConvOut) {
4523   assert(!OrigT1->isReferenceType() &&
4524     "T1 must be the pointee type of the reference type");
4525   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4526 
4527   QualType T1 = Context.getCanonicalType(OrigT1);
4528   QualType T2 = Context.getCanonicalType(OrigT2);
4529   Qualifiers T1Quals, T2Quals;
4530   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4531   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4532 
4533   ReferenceConversions ConvTmp;
4534   ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4535   Conv = ReferenceConversions();
4536 
4537   // C++2a [dcl.init.ref]p4:
4538   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4539   //   reference-related to "cv2 T2" if T1 is similar to T2, or
4540   //   T1 is a base class of T2.
4541   //   "cv1 T1" is reference-compatible with "cv2 T2" if
4542   //   a prvalue of type "pointer to cv2 T2" can be converted to the type
4543   //   "pointer to cv1 T1" via a standard conversion sequence.
4544 
4545   // Check for standard conversions we can apply to pointers: derived-to-base
4546   // conversions, ObjC pointer conversions, and function pointer conversions.
4547   // (Qualification conversions are checked last.)
4548   QualType ConvertedT2;
4549   if (UnqualT1 == UnqualT2) {
4550     // Nothing to do.
4551   } else if (isCompleteType(Loc, OrigT2) &&
4552              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4553              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4554     Conv |= ReferenceConversions::DerivedToBase;
4555   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4556            UnqualT2->isObjCObjectOrInterfaceType() &&
4557            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4558     Conv |= ReferenceConversions::ObjC;
4559   else if (UnqualT2->isFunctionType() &&
4560            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4561     Conv |= ReferenceConversions::Function;
4562     // No need to check qualifiers; function types don't have them.
4563     return Ref_Compatible;
4564   }
4565   bool ConvertedReferent = Conv != 0;
4566 
4567   // We can have a qualification conversion. Compute whether the types are
4568   // similar at the same time.
4569   bool PreviousToQualsIncludeConst = true;
4570   bool TopLevel = true;
4571   do {
4572     if (T1 == T2)
4573       break;
4574 
4575     // We will need a qualification conversion.
4576     Conv |= ReferenceConversions::Qualification;
4577 
4578     // Track whether we performed a qualification conversion anywhere other
4579     // than the top level. This matters for ranking reference bindings in
4580     // overload resolution.
4581     if (!TopLevel)
4582       Conv |= ReferenceConversions::NestedQualification;
4583 
4584     // MS compiler ignores __unaligned qualifier for references; do the same.
4585     T1 = withoutUnaligned(Context, T1);
4586     T2 = withoutUnaligned(Context, T2);
4587 
4588     // If we find a qualifier mismatch, the types are not reference-compatible,
4589     // but are still be reference-related if they're similar.
4590     bool ObjCLifetimeConversion = false;
4591     if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4592                                        PreviousToQualsIncludeConst,
4593                                        ObjCLifetimeConversion))
4594       return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4595                  ? Ref_Related
4596                  : Ref_Incompatible;
4597 
4598     // FIXME: Should we track this for any level other than the first?
4599     if (ObjCLifetimeConversion)
4600       Conv |= ReferenceConversions::ObjCLifetime;
4601 
4602     TopLevel = false;
4603   } while (Context.UnwrapSimilarTypes(T1, T2));
4604 
4605   // At this point, if the types are reference-related, we must either have the
4606   // same inner type (ignoring qualifiers), or must have already worked out how
4607   // to convert the referent.
4608   return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4609              ? Ref_Compatible
4610              : Ref_Incompatible;
4611 }
4612 
4613 /// Look for a user-defined conversion to a value reference-compatible
4614 ///        with DeclType. Return true if something definite is found.
4615 static bool
4616 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4617                          QualType DeclType, SourceLocation DeclLoc,
4618                          Expr *Init, QualType T2, bool AllowRvalues,
4619                          bool AllowExplicit) {
4620   assert(T2->isRecordType() && "Can only find conversions of record types.");
4621   auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4622 
4623   OverloadCandidateSet CandidateSet(
4624       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4625   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4626   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4627     NamedDecl *D = *I;
4628     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4629     if (isa<UsingShadowDecl>(D))
4630       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4631 
4632     FunctionTemplateDecl *ConvTemplate
4633       = dyn_cast<FunctionTemplateDecl>(D);
4634     CXXConversionDecl *Conv;
4635     if (ConvTemplate)
4636       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4637     else
4638       Conv = cast<CXXConversionDecl>(D);
4639 
4640     if (AllowRvalues) {
4641       // If we are initializing an rvalue reference, don't permit conversion
4642       // functions that return lvalues.
4643       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4644         const ReferenceType *RefType
4645           = Conv->getConversionType()->getAs<LValueReferenceType>();
4646         if (RefType && !RefType->getPointeeType()->isFunctionType())
4647           continue;
4648       }
4649 
4650       if (!ConvTemplate &&
4651           S.CompareReferenceRelationship(
4652               DeclLoc,
4653               Conv->getConversionType()
4654                   .getNonReferenceType()
4655                   .getUnqualifiedType(),
4656               DeclType.getNonReferenceType().getUnqualifiedType()) ==
4657               Sema::Ref_Incompatible)
4658         continue;
4659     } else {
4660       // If the conversion function doesn't return a reference type,
4661       // it can't be considered for this conversion. An rvalue reference
4662       // is only acceptable if its referencee is a function type.
4663 
4664       const ReferenceType *RefType =
4665         Conv->getConversionType()->getAs<ReferenceType>();
4666       if (!RefType ||
4667           (!RefType->isLValueReferenceType() &&
4668            !RefType->getPointeeType()->isFunctionType()))
4669         continue;
4670     }
4671 
4672     if (ConvTemplate)
4673       S.AddTemplateConversionCandidate(
4674           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4675           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4676     else
4677       S.AddConversionCandidate(
4678           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4679           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4680   }
4681 
4682   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4683 
4684   OverloadCandidateSet::iterator Best;
4685   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4686   case OR_Success:
4687     // C++ [over.ics.ref]p1:
4688     //
4689     //   [...] If the parameter binds directly to the result of
4690     //   applying a conversion function to the argument
4691     //   expression, the implicit conversion sequence is a
4692     //   user-defined conversion sequence (13.3.3.1.2), with the
4693     //   second standard conversion sequence either an identity
4694     //   conversion or, if the conversion function returns an
4695     //   entity of a type that is a derived class of the parameter
4696     //   type, a derived-to-base Conversion.
4697     if (!Best->FinalConversion.DirectBinding)
4698       return false;
4699 
4700     ICS.setUserDefined();
4701     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4702     ICS.UserDefined.After = Best->FinalConversion;
4703     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4704     ICS.UserDefined.ConversionFunction = Best->Function;
4705     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4706     ICS.UserDefined.EllipsisConversion = false;
4707     assert(ICS.UserDefined.After.ReferenceBinding &&
4708            ICS.UserDefined.After.DirectBinding &&
4709            "Expected a direct reference binding!");
4710     return true;
4711 
4712   case OR_Ambiguous:
4713     ICS.setAmbiguous();
4714     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4715          Cand != CandidateSet.end(); ++Cand)
4716       if (Cand->Best)
4717         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4718     return true;
4719 
4720   case OR_No_Viable_Function:
4721   case OR_Deleted:
4722     // There was no suitable conversion, or we found a deleted
4723     // conversion; continue with other checks.
4724     return false;
4725   }
4726 
4727   llvm_unreachable("Invalid OverloadResult!");
4728 }
4729 
4730 /// Compute an implicit conversion sequence for reference
4731 /// initialization.
4732 static ImplicitConversionSequence
4733 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4734                  SourceLocation DeclLoc,
4735                  bool SuppressUserConversions,
4736                  bool AllowExplicit) {
4737   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4738 
4739   // Most paths end in a failed conversion.
4740   ImplicitConversionSequence ICS;
4741   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4742 
4743   QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4744   QualType T2 = Init->getType();
4745 
4746   // If the initializer is the address of an overloaded function, try
4747   // to resolve the overloaded function. If all goes well, T2 is the
4748   // type of the resulting function.
4749   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4750     DeclAccessPair Found;
4751     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4752                                                                 false, Found))
4753       T2 = Fn->getType();
4754   }
4755 
4756   // Compute some basic properties of the types and the initializer.
4757   bool isRValRef = DeclType->isRValueReferenceType();
4758   Expr::Classification InitCategory = Init->Classify(S.Context);
4759 
4760   Sema::ReferenceConversions RefConv;
4761   Sema::ReferenceCompareResult RefRelationship =
4762       S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4763 
4764   auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4765     ICS.setStandard();
4766     ICS.Standard.First = ICK_Identity;
4767     // FIXME: A reference binding can be a function conversion too. We should
4768     // consider that when ordering reference-to-function bindings.
4769     ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4770                               ? ICK_Derived_To_Base
4771                               : (RefConv & Sema::ReferenceConversions::ObjC)
4772                                     ? ICK_Compatible_Conversion
4773                                     : ICK_Identity;
4774     // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4775     // a reference binding that performs a non-top-level qualification
4776     // conversion as a qualification conversion, not as an identity conversion.
4777     ICS.Standard.Third = (RefConv &
4778                               Sema::ReferenceConversions::NestedQualification)
4779                              ? ICK_Qualification
4780                              : ICK_Identity;
4781     ICS.Standard.setFromType(T2);
4782     ICS.Standard.setToType(0, T2);
4783     ICS.Standard.setToType(1, T1);
4784     ICS.Standard.setToType(2, T1);
4785     ICS.Standard.ReferenceBinding = true;
4786     ICS.Standard.DirectBinding = BindsDirectly;
4787     ICS.Standard.IsLvalueReference = !isRValRef;
4788     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4789     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4790     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4791     ICS.Standard.ObjCLifetimeConversionBinding =
4792         (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4793     ICS.Standard.CopyConstructor = nullptr;
4794     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4795   };
4796 
4797   // C++0x [dcl.init.ref]p5:
4798   //   A reference to type "cv1 T1" is initialized by an expression
4799   //   of type "cv2 T2" as follows:
4800 
4801   //     -- If reference is an lvalue reference and the initializer expression
4802   if (!isRValRef) {
4803     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4804     //        reference-compatible with "cv2 T2," or
4805     //
4806     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4807     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4808       // C++ [over.ics.ref]p1:
4809       //   When a parameter of reference type binds directly (8.5.3)
4810       //   to an argument expression, the implicit conversion sequence
4811       //   is the identity conversion, unless the argument expression
4812       //   has a type that is a derived class of the parameter type,
4813       //   in which case the implicit conversion sequence is a
4814       //   derived-to-base Conversion (13.3.3.1).
4815       SetAsReferenceBinding(/*BindsDirectly=*/true);
4816 
4817       // Nothing more to do: the inaccessibility/ambiguity check for
4818       // derived-to-base conversions is suppressed when we're
4819       // computing the implicit conversion sequence (C++
4820       // [over.best.ics]p2).
4821       return ICS;
4822     }
4823 
4824     //       -- has a class type (i.e., T2 is a class type), where T1 is
4825     //          not reference-related to T2, and can be implicitly
4826     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4827     //          is reference-compatible with "cv3 T3" 92) (this
4828     //          conversion is selected by enumerating the applicable
4829     //          conversion functions (13.3.1.6) and choosing the best
4830     //          one through overload resolution (13.3)),
4831     if (!SuppressUserConversions && T2->isRecordType() &&
4832         S.isCompleteType(DeclLoc, T2) &&
4833         RefRelationship == Sema::Ref_Incompatible) {
4834       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4835                                    Init, T2, /*AllowRvalues=*/false,
4836                                    AllowExplicit))
4837         return ICS;
4838     }
4839   }
4840 
4841   //     -- Otherwise, the reference shall be an lvalue reference to a
4842   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4843   //        shall be an rvalue reference.
4844   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4845     if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4846       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4847     return ICS;
4848   }
4849 
4850   //       -- If the initializer expression
4851   //
4852   //            -- is an xvalue, class prvalue, array prvalue or function
4853   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4854   if (RefRelationship == Sema::Ref_Compatible &&
4855       (InitCategory.isXValue() ||
4856        (InitCategory.isPRValue() &&
4857           (T2->isRecordType() || T2->isArrayType())) ||
4858        (InitCategory.isLValue() && T2->isFunctionType()))) {
4859     // In C++11, this is always a direct binding. In C++98/03, it's a direct
4860     // binding unless we're binding to a class prvalue.
4861     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4862     // allow the use of rvalue references in C++98/03 for the benefit of
4863     // standard library implementors; therefore, we need the xvalue check here.
4864     SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4865                           !(InitCategory.isPRValue() || T2->isRecordType()));
4866     return ICS;
4867   }
4868 
4869   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4870   //               reference-related to T2, and can be implicitly converted to
4871   //               an xvalue, class prvalue, or function lvalue of type
4872   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4873   //               "cv3 T3",
4874   //
4875   //          then the reference is bound to the value of the initializer
4876   //          expression in the first case and to the result of the conversion
4877   //          in the second case (or, in either case, to an appropriate base
4878   //          class subobject).
4879   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4880       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4881       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4882                                Init, T2, /*AllowRvalues=*/true,
4883                                AllowExplicit)) {
4884     // In the second case, if the reference is an rvalue reference
4885     // and the second standard conversion sequence of the
4886     // user-defined conversion sequence includes an lvalue-to-rvalue
4887     // conversion, the program is ill-formed.
4888     if (ICS.isUserDefined() && isRValRef &&
4889         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4890       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4891 
4892     return ICS;
4893   }
4894 
4895   // A temporary of function type cannot be created; don't even try.
4896   if (T1->isFunctionType())
4897     return ICS;
4898 
4899   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4900   //          initialized from the initializer expression using the
4901   //          rules for a non-reference copy initialization (8.5). The
4902   //          reference is then bound to the temporary. If T1 is
4903   //          reference-related to T2, cv1 must be the same
4904   //          cv-qualification as, or greater cv-qualification than,
4905   //          cv2; otherwise, the program is ill-formed.
4906   if (RefRelationship == Sema::Ref_Related) {
4907     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4908     // we would be reference-compatible or reference-compatible with
4909     // added qualification. But that wasn't the case, so the reference
4910     // initialization fails.
4911     //
4912     // Note that we only want to check address spaces and cvr-qualifiers here.
4913     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4914     Qualifiers T1Quals = T1.getQualifiers();
4915     Qualifiers T2Quals = T2.getQualifiers();
4916     T1Quals.removeObjCGCAttr();
4917     T1Quals.removeObjCLifetime();
4918     T2Quals.removeObjCGCAttr();
4919     T2Quals.removeObjCLifetime();
4920     // MS compiler ignores __unaligned qualifier for references; do the same.
4921     T1Quals.removeUnaligned();
4922     T2Quals.removeUnaligned();
4923     if (!T1Quals.compatiblyIncludes(T2Quals))
4924       return ICS;
4925   }
4926 
4927   // If at least one of the types is a class type, the types are not
4928   // related, and we aren't allowed any user conversions, the
4929   // reference binding fails. This case is important for breaking
4930   // recursion, since TryImplicitConversion below will attempt to
4931   // create a temporary through the use of a copy constructor.
4932   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4933       (T1->isRecordType() || T2->isRecordType()))
4934     return ICS;
4935 
4936   // If T1 is reference-related to T2 and the reference is an rvalue
4937   // reference, the initializer expression shall not be an lvalue.
4938   if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4939       Init->Classify(S.Context).isLValue()) {
4940     ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4941     return ICS;
4942   }
4943 
4944   // C++ [over.ics.ref]p2:
4945   //   When a parameter of reference type is not bound directly to
4946   //   an argument expression, the conversion sequence is the one
4947   //   required to convert the argument expression to the
4948   //   underlying type of the reference according to
4949   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4950   //   to copy-initializing a temporary of the underlying type with
4951   //   the argument expression. Any difference in top-level
4952   //   cv-qualification is subsumed by the initialization itself
4953   //   and does not constitute a conversion.
4954   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4955                               AllowedExplicit::None,
4956                               /*InOverloadResolution=*/false,
4957                               /*CStyle=*/false,
4958                               /*AllowObjCWritebackConversion=*/false,
4959                               /*AllowObjCConversionOnExplicit=*/false);
4960 
4961   // Of course, that's still a reference binding.
4962   if (ICS.isStandard()) {
4963     ICS.Standard.ReferenceBinding = true;
4964     ICS.Standard.IsLvalueReference = !isRValRef;
4965     ICS.Standard.BindsToFunctionLvalue = false;
4966     ICS.Standard.BindsToRvalue = true;
4967     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4968     ICS.Standard.ObjCLifetimeConversionBinding = false;
4969   } else if (ICS.isUserDefined()) {
4970     const ReferenceType *LValRefType =
4971         ICS.UserDefined.ConversionFunction->getReturnType()
4972             ->getAs<LValueReferenceType>();
4973 
4974     // C++ [over.ics.ref]p3:
4975     //   Except for an implicit object parameter, for which see 13.3.1, a
4976     //   standard conversion sequence cannot be formed if it requires [...]
4977     //   binding an rvalue reference to an lvalue other than a function
4978     //   lvalue.
4979     // Note that the function case is not possible here.
4980     if (isRValRef && LValRefType) {
4981       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4982       return ICS;
4983     }
4984 
4985     ICS.UserDefined.After.ReferenceBinding = true;
4986     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4987     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4988     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4989     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4990     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4991   }
4992 
4993   return ICS;
4994 }
4995 
4996 static ImplicitConversionSequence
4997 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4998                       bool SuppressUserConversions,
4999                       bool InOverloadResolution,
5000                       bool AllowObjCWritebackConversion,
5001                       bool AllowExplicit = false);
5002 
5003 /// TryListConversion - Try to copy-initialize a value of type ToType from the
5004 /// initializer list From.
5005 static ImplicitConversionSequence
5006 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5007                   bool SuppressUserConversions,
5008                   bool InOverloadResolution,
5009                   bool AllowObjCWritebackConversion) {
5010   // C++11 [over.ics.list]p1:
5011   //   When an argument is an initializer list, it is not an expression and
5012   //   special rules apply for converting it to a parameter type.
5013 
5014   ImplicitConversionSequence Result;
5015   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5016 
5017   // We need a complete type for what follows.  With one C++20 exception,
5018   // incomplete types can never be initialized from init lists.
5019   QualType InitTy = ToType;
5020   const ArrayType *AT = S.Context.getAsArrayType(ToType);
5021   if (AT && S.getLangOpts().CPlusPlus20)
5022     if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
5023       // C++20 allows list initialization of an incomplete array type.
5024       InitTy = IAT->getElementType();
5025   if (!S.isCompleteType(From->getBeginLoc(), InitTy))
5026     return Result;
5027 
5028   // Per DR1467:
5029   //   If the parameter type is a class X and the initializer list has a single
5030   //   element of type cv U, where U is X or a class derived from X, the
5031   //   implicit conversion sequence is the one required to convert the element
5032   //   to the parameter type.
5033   //
5034   //   Otherwise, if the parameter type is a character array [... ]
5035   //   and the initializer list has a single element that is an
5036   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5037   //   implicit conversion sequence is the identity conversion.
5038   if (From->getNumInits() == 1) {
5039     if (ToType->isRecordType()) {
5040       QualType InitType = From->getInit(0)->getType();
5041       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5042           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5043         return TryCopyInitialization(S, From->getInit(0), ToType,
5044                                      SuppressUserConversions,
5045                                      InOverloadResolution,
5046                                      AllowObjCWritebackConversion);
5047     }
5048 
5049     if (AT && S.IsStringInit(From->getInit(0), AT)) {
5050       InitializedEntity Entity =
5051           InitializedEntity::InitializeParameter(S.Context, ToType,
5052                                                  /*Consumed=*/false);
5053       if (S.CanPerformCopyInitialization(Entity, From)) {
5054         Result.setStandard();
5055         Result.Standard.setAsIdentityConversion();
5056         Result.Standard.setFromType(ToType);
5057         Result.Standard.setAllToTypes(ToType);
5058         return Result;
5059       }
5060     }
5061   }
5062 
5063   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5064   // C++11 [over.ics.list]p2:
5065   //   If the parameter type is std::initializer_list<X> or "array of X" and
5066   //   all the elements can be implicitly converted to X, the implicit
5067   //   conversion sequence is the worst conversion necessary to convert an
5068   //   element of the list to X.
5069   //
5070   // C++14 [over.ics.list]p3:
5071   //   Otherwise, if the parameter type is "array of N X", if the initializer
5072   //   list has exactly N elements or if it has fewer than N elements and X is
5073   //   default-constructible, and if all the elements of the initializer list
5074   //   can be implicitly converted to X, the implicit conversion sequence is
5075   //   the worst conversion necessary to convert an element of the list to X.
5076   if (AT || S.isStdInitializerList(ToType, &InitTy)) {
5077     unsigned e = From->getNumInits();
5078     ImplicitConversionSequence DfltElt;
5079     DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
5080                    QualType());
5081     QualType ContTy = ToType;
5082     bool IsUnbounded = false;
5083     if (AT) {
5084       InitTy = AT->getElementType();
5085       if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
5086         if (CT->getSize().ult(e)) {
5087           // Too many inits, fatally bad
5088           Result.setBad(BadConversionSequence::too_many_initializers, From,
5089                         ToType);
5090           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5091           return Result;
5092         }
5093         if (CT->getSize().ugt(e)) {
5094           // Need an init from empty {}, is there one?
5095           InitListExpr EmptyList(S.Context, From->getEndLoc(), None,
5096                                  From->getEndLoc());
5097           EmptyList.setType(S.Context.VoidTy);
5098           DfltElt = TryListConversion(
5099               S, &EmptyList, InitTy, SuppressUserConversions,
5100               InOverloadResolution, AllowObjCWritebackConversion);
5101           if (DfltElt.isBad()) {
5102             // No {} init, fatally bad
5103             Result.setBad(BadConversionSequence::too_few_initializers, From,
5104                           ToType);
5105             Result.setInitializerListContainerType(ContTy, IsUnbounded);
5106             return Result;
5107           }
5108         }
5109       } else {
5110         assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array");
5111         IsUnbounded = true;
5112         if (!e) {
5113           // Cannot convert to zero-sized.
5114           Result.setBad(BadConversionSequence::too_few_initializers, From,
5115                         ToType);
5116           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5117           return Result;
5118         }
5119         llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
5120         ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
5121                                                 ArrayType::Normal, 0);
5122       }
5123     }
5124 
5125     Result.setStandard();
5126     Result.Standard.setAsIdentityConversion();
5127     Result.Standard.setFromType(InitTy);
5128     Result.Standard.setAllToTypes(InitTy);
5129     for (unsigned i = 0; i < e; ++i) {
5130       Expr *Init = From->getInit(i);
5131       ImplicitConversionSequence ICS = TryCopyInitialization(
5132           S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
5133           AllowObjCWritebackConversion);
5134 
5135       // Keep the worse conversion seen so far.
5136       // FIXME: Sequences are not totally ordered, so 'worse' can be
5137       // ambiguous. CWG has been informed.
5138       if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
5139                                              Result) ==
5140           ImplicitConversionSequence::Worse) {
5141         Result = ICS;
5142         // Bail as soon as we find something unconvertible.
5143         if (Result.isBad()) {
5144           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5145           return Result;
5146         }
5147       }
5148     }
5149 
5150     // If we needed any implicit {} initialization, compare that now.
5151     // over.ics.list/6 indicates we should compare that conversion.  Again CWG
5152     // has been informed that this might not be the best thing.
5153     if (!DfltElt.isBad() && CompareImplicitConversionSequences(
5154                                 S, From->getEndLoc(), DfltElt, Result) ==
5155                                 ImplicitConversionSequence::Worse)
5156       Result = DfltElt;
5157     // Record the type being initialized so that we may compare sequences
5158     Result.setInitializerListContainerType(ContTy, IsUnbounded);
5159     return Result;
5160   }
5161 
5162   // C++14 [over.ics.list]p4:
5163   // C++11 [over.ics.list]p3:
5164   //   Otherwise, if the parameter is a non-aggregate class X and overload
5165   //   resolution chooses a single best constructor [...] the implicit
5166   //   conversion sequence is a user-defined conversion sequence. If multiple
5167   //   constructors are viable but none is better than the others, the
5168   //   implicit conversion sequence is a user-defined conversion sequence.
5169   if (ToType->isRecordType() && !ToType->isAggregateType()) {
5170     // This function can deal with initializer lists.
5171     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5172                                     AllowedExplicit::None,
5173                                     InOverloadResolution, /*CStyle=*/false,
5174                                     AllowObjCWritebackConversion,
5175                                     /*AllowObjCConversionOnExplicit=*/false);
5176   }
5177 
5178   // C++14 [over.ics.list]p5:
5179   // C++11 [over.ics.list]p4:
5180   //   Otherwise, if the parameter has an aggregate type which can be
5181   //   initialized from the initializer list [...] the implicit conversion
5182   //   sequence is a user-defined conversion sequence.
5183   if (ToType->isAggregateType()) {
5184     // Type is an aggregate, argument is an init list. At this point it comes
5185     // down to checking whether the initialization works.
5186     // FIXME: Find out whether this parameter is consumed or not.
5187     InitializedEntity Entity =
5188         InitializedEntity::InitializeParameter(S.Context, ToType,
5189                                                /*Consumed=*/false);
5190     if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5191                                                                  From)) {
5192       Result.setUserDefined();
5193       Result.UserDefined.Before.setAsIdentityConversion();
5194       // Initializer lists don't have a type.
5195       Result.UserDefined.Before.setFromType(QualType());
5196       Result.UserDefined.Before.setAllToTypes(QualType());
5197 
5198       Result.UserDefined.After.setAsIdentityConversion();
5199       Result.UserDefined.After.setFromType(ToType);
5200       Result.UserDefined.After.setAllToTypes(ToType);
5201       Result.UserDefined.ConversionFunction = nullptr;
5202     }
5203     return Result;
5204   }
5205 
5206   // C++14 [over.ics.list]p6:
5207   // C++11 [over.ics.list]p5:
5208   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5209   if (ToType->isReferenceType()) {
5210     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5211     // mention initializer lists in any way. So we go by what list-
5212     // initialization would do and try to extrapolate from that.
5213 
5214     QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5215 
5216     // If the initializer list has a single element that is reference-related
5217     // to the parameter type, we initialize the reference from that.
5218     if (From->getNumInits() == 1) {
5219       Expr *Init = From->getInit(0);
5220 
5221       QualType T2 = Init->getType();
5222 
5223       // If the initializer is the address of an overloaded function, try
5224       // to resolve the overloaded function. If all goes well, T2 is the
5225       // type of the resulting function.
5226       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5227         DeclAccessPair Found;
5228         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5229                                    Init, ToType, false, Found))
5230           T2 = Fn->getType();
5231       }
5232 
5233       // Compute some basic properties of the types and the initializer.
5234       Sema::ReferenceCompareResult RefRelationship =
5235           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5236 
5237       if (RefRelationship >= Sema::Ref_Related) {
5238         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5239                                 SuppressUserConversions,
5240                                 /*AllowExplicit=*/false);
5241       }
5242     }
5243 
5244     // Otherwise, we bind the reference to a temporary created from the
5245     // initializer list.
5246     Result = TryListConversion(S, From, T1, SuppressUserConversions,
5247                                InOverloadResolution,
5248                                AllowObjCWritebackConversion);
5249     if (Result.isFailure())
5250       return Result;
5251     assert(!Result.isEllipsis() &&
5252            "Sub-initialization cannot result in ellipsis conversion.");
5253 
5254     // Can we even bind to a temporary?
5255     if (ToType->isRValueReferenceType() ||
5256         (T1.isConstQualified() && !T1.isVolatileQualified())) {
5257       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5258                                             Result.UserDefined.After;
5259       SCS.ReferenceBinding = true;
5260       SCS.IsLvalueReference = ToType->isLValueReferenceType();
5261       SCS.BindsToRvalue = true;
5262       SCS.BindsToFunctionLvalue = false;
5263       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5264       SCS.ObjCLifetimeConversionBinding = false;
5265     } else
5266       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5267                     From, ToType);
5268     return Result;
5269   }
5270 
5271   // C++14 [over.ics.list]p7:
5272   // C++11 [over.ics.list]p6:
5273   //   Otherwise, if the parameter type is not a class:
5274   if (!ToType->isRecordType()) {
5275     //    - if the initializer list has one element that is not itself an
5276     //      initializer list, the implicit conversion sequence is the one
5277     //      required to convert the element to the parameter type.
5278     unsigned NumInits = From->getNumInits();
5279     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5280       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5281                                      SuppressUserConversions,
5282                                      InOverloadResolution,
5283                                      AllowObjCWritebackConversion);
5284     //    - if the initializer list has no elements, the implicit conversion
5285     //      sequence is the identity conversion.
5286     else if (NumInits == 0) {
5287       Result.setStandard();
5288       Result.Standard.setAsIdentityConversion();
5289       Result.Standard.setFromType(ToType);
5290       Result.Standard.setAllToTypes(ToType);
5291     }
5292     return Result;
5293   }
5294 
5295   // C++14 [over.ics.list]p8:
5296   // C++11 [over.ics.list]p7:
5297   //   In all cases other than those enumerated above, no conversion is possible
5298   return Result;
5299 }
5300 
5301 /// TryCopyInitialization - Try to copy-initialize a value of type
5302 /// ToType from the expression From. Return the implicit conversion
5303 /// sequence required to pass this argument, which may be a bad
5304 /// conversion sequence (meaning that the argument cannot be passed to
5305 /// a parameter of this type). If @p SuppressUserConversions, then we
5306 /// do not permit any user-defined conversion sequences.
5307 static ImplicitConversionSequence
5308 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5309                       bool SuppressUserConversions,
5310                       bool InOverloadResolution,
5311                       bool AllowObjCWritebackConversion,
5312                       bool AllowExplicit) {
5313   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5314     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5315                              InOverloadResolution,AllowObjCWritebackConversion);
5316 
5317   if (ToType->isReferenceType())
5318     return TryReferenceInit(S, From, ToType,
5319                             /*FIXME:*/ From->getBeginLoc(),
5320                             SuppressUserConversions, AllowExplicit);
5321 
5322   return TryImplicitConversion(S, From, ToType,
5323                                SuppressUserConversions,
5324                                AllowedExplicit::None,
5325                                InOverloadResolution,
5326                                /*CStyle=*/false,
5327                                AllowObjCWritebackConversion,
5328                                /*AllowObjCConversionOnExplicit=*/false);
5329 }
5330 
5331 static bool TryCopyInitialization(const CanQualType FromQTy,
5332                                   const CanQualType ToQTy,
5333                                   Sema &S,
5334                                   SourceLocation Loc,
5335                                   ExprValueKind FromVK) {
5336   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5337   ImplicitConversionSequence ICS =
5338     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5339 
5340   return !ICS.isBad();
5341 }
5342 
5343 /// TryObjectArgumentInitialization - Try to initialize the object
5344 /// parameter of the given member function (@c Method) from the
5345 /// expression @p From.
5346 static ImplicitConversionSequence
5347 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5348                                 Expr::Classification FromClassification,
5349                                 CXXMethodDecl *Method,
5350                                 CXXRecordDecl *ActingContext) {
5351   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5352   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5353   //                 const volatile object.
5354   Qualifiers Quals = Method->getMethodQualifiers();
5355   if (isa<CXXDestructorDecl>(Method)) {
5356     Quals.addConst();
5357     Quals.addVolatile();
5358   }
5359 
5360   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5361 
5362   // Set up the conversion sequence as a "bad" conversion, to allow us
5363   // to exit early.
5364   ImplicitConversionSequence ICS;
5365 
5366   // We need to have an object of class type.
5367   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5368     FromType = PT->getPointeeType();
5369 
5370     // When we had a pointer, it's implicitly dereferenced, so we
5371     // better have an lvalue.
5372     assert(FromClassification.isLValue());
5373   }
5374 
5375   assert(FromType->isRecordType());
5376 
5377   // C++0x [over.match.funcs]p4:
5378   //   For non-static member functions, the type of the implicit object
5379   //   parameter is
5380   //
5381   //     - "lvalue reference to cv X" for functions declared without a
5382   //        ref-qualifier or with the & ref-qualifier
5383   //     - "rvalue reference to cv X" for functions declared with the &&
5384   //        ref-qualifier
5385   //
5386   // where X is the class of which the function is a member and cv is the
5387   // cv-qualification on the member function declaration.
5388   //
5389   // However, when finding an implicit conversion sequence for the argument, we
5390   // are not allowed to perform user-defined conversions
5391   // (C++ [over.match.funcs]p5). We perform a simplified version of
5392   // reference binding here, that allows class rvalues to bind to
5393   // non-constant references.
5394 
5395   // First check the qualifiers.
5396   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5397   if (ImplicitParamType.getCVRQualifiers()
5398                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5399       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5400     ICS.setBad(BadConversionSequence::bad_qualifiers,
5401                FromType, ImplicitParamType);
5402     return ICS;
5403   }
5404 
5405   if (FromTypeCanon.hasAddressSpace()) {
5406     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5407     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5408     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5409       ICS.setBad(BadConversionSequence::bad_qualifiers,
5410                  FromType, ImplicitParamType);
5411       return ICS;
5412     }
5413   }
5414 
5415   // Check that we have either the same type or a derived type. It
5416   // affects the conversion rank.
5417   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5418   ImplicitConversionKind SecondKind;
5419   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5420     SecondKind = ICK_Identity;
5421   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5422     SecondKind = ICK_Derived_To_Base;
5423   else {
5424     ICS.setBad(BadConversionSequence::unrelated_class,
5425                FromType, ImplicitParamType);
5426     return ICS;
5427   }
5428 
5429   // Check the ref-qualifier.
5430   switch (Method->getRefQualifier()) {
5431   case RQ_None:
5432     // Do nothing; we don't care about lvalueness or rvalueness.
5433     break;
5434 
5435   case RQ_LValue:
5436     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5437       // non-const lvalue reference cannot bind to an rvalue
5438       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5439                  ImplicitParamType);
5440       return ICS;
5441     }
5442     break;
5443 
5444   case RQ_RValue:
5445     if (!FromClassification.isRValue()) {
5446       // rvalue reference cannot bind to an lvalue
5447       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5448                  ImplicitParamType);
5449       return ICS;
5450     }
5451     break;
5452   }
5453 
5454   // Success. Mark this as a reference binding.
5455   ICS.setStandard();
5456   ICS.Standard.setAsIdentityConversion();
5457   ICS.Standard.Second = SecondKind;
5458   ICS.Standard.setFromType(FromType);
5459   ICS.Standard.setAllToTypes(ImplicitParamType);
5460   ICS.Standard.ReferenceBinding = true;
5461   ICS.Standard.DirectBinding = true;
5462   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5463   ICS.Standard.BindsToFunctionLvalue = false;
5464   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5465   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5466     = (Method->getRefQualifier() == RQ_None);
5467   return ICS;
5468 }
5469 
5470 /// PerformObjectArgumentInitialization - Perform initialization of
5471 /// the implicit object parameter for the given Method with the given
5472 /// expression.
5473 ExprResult
5474 Sema::PerformObjectArgumentInitialization(Expr *From,
5475                                           NestedNameSpecifier *Qualifier,
5476                                           NamedDecl *FoundDecl,
5477                                           CXXMethodDecl *Method) {
5478   QualType FromRecordType, DestType;
5479   QualType ImplicitParamRecordType  =
5480     Method->getThisType()->castAs<PointerType>()->getPointeeType();
5481 
5482   Expr::Classification FromClassification;
5483   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5484     FromRecordType = PT->getPointeeType();
5485     DestType = Method->getThisType();
5486     FromClassification = Expr::Classification::makeSimpleLValue();
5487   } else {
5488     FromRecordType = From->getType();
5489     DestType = ImplicitParamRecordType;
5490     FromClassification = From->Classify(Context);
5491 
5492     // When performing member access on a prvalue, materialize a temporary.
5493     if (From->isPRValue()) {
5494       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5495                                             Method->getRefQualifier() !=
5496                                                 RefQualifierKind::RQ_RValue);
5497     }
5498   }
5499 
5500   // Note that we always use the true parent context when performing
5501   // the actual argument initialization.
5502   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5503       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5504       Method->getParent());
5505   if (ICS.isBad()) {
5506     switch (ICS.Bad.Kind) {
5507     case BadConversionSequence::bad_qualifiers: {
5508       Qualifiers FromQs = FromRecordType.getQualifiers();
5509       Qualifiers ToQs = DestType.getQualifiers();
5510       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5511       if (CVR) {
5512         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5513             << Method->getDeclName() << FromRecordType << (CVR - 1)
5514             << From->getSourceRange();
5515         Diag(Method->getLocation(), diag::note_previous_decl)
5516           << Method->getDeclName();
5517         return ExprError();
5518       }
5519       break;
5520     }
5521 
5522     case BadConversionSequence::lvalue_ref_to_rvalue:
5523     case BadConversionSequence::rvalue_ref_to_lvalue: {
5524       bool IsRValueQualified =
5525         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5526       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5527           << Method->getDeclName() << FromClassification.isRValue()
5528           << IsRValueQualified;
5529       Diag(Method->getLocation(), diag::note_previous_decl)
5530         << Method->getDeclName();
5531       return ExprError();
5532     }
5533 
5534     case BadConversionSequence::no_conversion:
5535     case BadConversionSequence::unrelated_class:
5536       break;
5537 
5538     case BadConversionSequence::too_few_initializers:
5539     case BadConversionSequence::too_many_initializers:
5540       llvm_unreachable("Lists are not objects");
5541     }
5542 
5543     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5544            << ImplicitParamRecordType << FromRecordType
5545            << From->getSourceRange();
5546   }
5547 
5548   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5549     ExprResult FromRes =
5550       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5551     if (FromRes.isInvalid())
5552       return ExprError();
5553     From = FromRes.get();
5554   }
5555 
5556   if (!Context.hasSameType(From->getType(), DestType)) {
5557     CastKind CK;
5558     QualType PteeTy = DestType->getPointeeType();
5559     LangAS DestAS =
5560         PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5561     if (FromRecordType.getAddressSpace() != DestAS)
5562       CK = CK_AddressSpaceConversion;
5563     else
5564       CK = CK_NoOp;
5565     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5566   }
5567   return From;
5568 }
5569 
5570 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5571 /// expression From to bool (C++0x [conv]p3).
5572 static ImplicitConversionSequence
5573 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5574   // C++ [dcl.init]/17.8:
5575   //   - Otherwise, if the initialization is direct-initialization, the source
5576   //     type is std::nullptr_t, and the destination type is bool, the initial
5577   //     value of the object being initialized is false.
5578   if (From->getType()->isNullPtrType())
5579     return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5580                                                         S.Context.BoolTy,
5581                                                         From->isGLValue());
5582 
5583   // All other direct-initialization of bool is equivalent to an implicit
5584   // conversion to bool in which explicit conversions are permitted.
5585   return TryImplicitConversion(S, From, S.Context.BoolTy,
5586                                /*SuppressUserConversions=*/false,
5587                                AllowedExplicit::Conversions,
5588                                /*InOverloadResolution=*/false,
5589                                /*CStyle=*/false,
5590                                /*AllowObjCWritebackConversion=*/false,
5591                                /*AllowObjCConversionOnExplicit=*/false);
5592 }
5593 
5594 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5595 /// of the expression From to bool (C++0x [conv]p3).
5596 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5597   if (checkPlaceholderForOverload(*this, From))
5598     return ExprError();
5599 
5600   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5601   if (!ICS.isBad())
5602     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5603 
5604   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5605     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5606            << From->getType() << From->getSourceRange();
5607   return ExprError();
5608 }
5609 
5610 /// Check that the specified conversion is permitted in a converted constant
5611 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5612 /// is acceptable.
5613 static bool CheckConvertedConstantConversions(Sema &S,
5614                                               StandardConversionSequence &SCS) {
5615   // Since we know that the target type is an integral or unscoped enumeration
5616   // type, most conversion kinds are impossible. All possible First and Third
5617   // conversions are fine.
5618   switch (SCS.Second) {
5619   case ICK_Identity:
5620   case ICK_Integral_Promotion:
5621   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5622   case ICK_Zero_Queue_Conversion:
5623     return true;
5624 
5625   case ICK_Boolean_Conversion:
5626     // Conversion from an integral or unscoped enumeration type to bool is
5627     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5628     // conversion, so we allow it in a converted constant expression.
5629     //
5630     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5631     // a lot of popular code. We should at least add a warning for this
5632     // (non-conforming) extension.
5633     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5634            SCS.getToType(2)->isBooleanType();
5635 
5636   case ICK_Pointer_Conversion:
5637   case ICK_Pointer_Member:
5638     // C++1z: null pointer conversions and null member pointer conversions are
5639     // only permitted if the source type is std::nullptr_t.
5640     return SCS.getFromType()->isNullPtrType();
5641 
5642   case ICK_Floating_Promotion:
5643   case ICK_Complex_Promotion:
5644   case ICK_Floating_Conversion:
5645   case ICK_Complex_Conversion:
5646   case ICK_Floating_Integral:
5647   case ICK_Compatible_Conversion:
5648   case ICK_Derived_To_Base:
5649   case ICK_Vector_Conversion:
5650   case ICK_SVE_Vector_Conversion:
5651   case ICK_Vector_Splat:
5652   case ICK_Complex_Real:
5653   case ICK_Block_Pointer_Conversion:
5654   case ICK_TransparentUnionConversion:
5655   case ICK_Writeback_Conversion:
5656   case ICK_Zero_Event_Conversion:
5657   case ICK_C_Only_Conversion:
5658   case ICK_Incompatible_Pointer_Conversion:
5659     return false;
5660 
5661   case ICK_Lvalue_To_Rvalue:
5662   case ICK_Array_To_Pointer:
5663   case ICK_Function_To_Pointer:
5664     llvm_unreachable("found a first conversion kind in Second");
5665 
5666   case ICK_Function_Conversion:
5667   case ICK_Qualification:
5668     llvm_unreachable("found a third conversion kind in Second");
5669 
5670   case ICK_Num_Conversion_Kinds:
5671     break;
5672   }
5673 
5674   llvm_unreachable("unknown conversion kind");
5675 }
5676 
5677 /// CheckConvertedConstantExpression - Check that the expression From is a
5678 /// converted constant expression of type T, perform the conversion and produce
5679 /// the converted expression, per C++11 [expr.const]p3.
5680 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5681                                                    QualType T, APValue &Value,
5682                                                    Sema::CCEKind CCE,
5683                                                    bool RequireInt,
5684                                                    NamedDecl *Dest) {
5685   assert(S.getLangOpts().CPlusPlus11 &&
5686          "converted constant expression outside C++11");
5687 
5688   if (checkPlaceholderForOverload(S, From))
5689     return ExprError();
5690 
5691   // C++1z [expr.const]p3:
5692   //  A converted constant expression of type T is an expression,
5693   //  implicitly converted to type T, where the converted
5694   //  expression is a constant expression and the implicit conversion
5695   //  sequence contains only [... list of conversions ...].
5696   ImplicitConversionSequence ICS =
5697       (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
5698           ? TryContextuallyConvertToBool(S, From)
5699           : TryCopyInitialization(S, From, T,
5700                                   /*SuppressUserConversions=*/false,
5701                                   /*InOverloadResolution=*/false,
5702                                   /*AllowObjCWritebackConversion=*/false,
5703                                   /*AllowExplicit=*/false);
5704   StandardConversionSequence *SCS = nullptr;
5705   switch (ICS.getKind()) {
5706   case ImplicitConversionSequence::StandardConversion:
5707     SCS = &ICS.Standard;
5708     break;
5709   case ImplicitConversionSequence::UserDefinedConversion:
5710     if (T->isRecordType())
5711       SCS = &ICS.UserDefined.Before;
5712     else
5713       SCS = &ICS.UserDefined.After;
5714     break;
5715   case ImplicitConversionSequence::AmbiguousConversion:
5716   case ImplicitConversionSequence::BadConversion:
5717     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5718       return S.Diag(From->getBeginLoc(),
5719                     diag::err_typecheck_converted_constant_expression)
5720              << From->getType() << From->getSourceRange() << T;
5721     return ExprError();
5722 
5723   case ImplicitConversionSequence::EllipsisConversion:
5724     llvm_unreachable("ellipsis conversion in converted constant expression");
5725   }
5726 
5727   // Check that we would only use permitted conversions.
5728   if (!CheckConvertedConstantConversions(S, *SCS)) {
5729     return S.Diag(From->getBeginLoc(),
5730                   diag::err_typecheck_converted_constant_expression_disallowed)
5731            << From->getType() << From->getSourceRange() << T;
5732   }
5733   // [...] and where the reference binding (if any) binds directly.
5734   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5735     return S.Diag(From->getBeginLoc(),
5736                   diag::err_typecheck_converted_constant_expression_indirect)
5737            << From->getType() << From->getSourceRange() << T;
5738   }
5739 
5740   // Usually we can simply apply the ImplicitConversionSequence we formed
5741   // earlier, but that's not guaranteed to work when initializing an object of
5742   // class type.
5743   ExprResult Result;
5744   if (T->isRecordType()) {
5745     assert(CCE == Sema::CCEK_TemplateArg &&
5746            "unexpected class type converted constant expr");
5747     Result = S.PerformCopyInitialization(
5748         InitializedEntity::InitializeTemplateParameter(
5749             T, cast<NonTypeTemplateParmDecl>(Dest)),
5750         SourceLocation(), From);
5751   } else {
5752     Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5753   }
5754   if (Result.isInvalid())
5755     return Result;
5756 
5757   // C++2a [intro.execution]p5:
5758   //   A full-expression is [...] a constant-expression [...]
5759   Result =
5760       S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5761                             /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5762   if (Result.isInvalid())
5763     return Result;
5764 
5765   // Check for a narrowing implicit conversion.
5766   bool ReturnPreNarrowingValue = false;
5767   APValue PreNarrowingValue;
5768   QualType PreNarrowingType;
5769   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5770                                 PreNarrowingType)) {
5771   case NK_Dependent_Narrowing:
5772     // Implicit conversion to a narrower type, but the expression is
5773     // value-dependent so we can't tell whether it's actually narrowing.
5774   case NK_Variable_Narrowing:
5775     // Implicit conversion to a narrower type, and the value is not a constant
5776     // expression. We'll diagnose this in a moment.
5777   case NK_Not_Narrowing:
5778     break;
5779 
5780   case NK_Constant_Narrowing:
5781     if (CCE == Sema::CCEK_ArrayBound &&
5782         PreNarrowingType->isIntegralOrEnumerationType() &&
5783         PreNarrowingValue.isInt()) {
5784       // Don't diagnose array bound narrowing here; we produce more precise
5785       // errors by allowing the un-narrowed value through.
5786       ReturnPreNarrowingValue = true;
5787       break;
5788     }
5789     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5790         << CCE << /*Constant*/ 1
5791         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5792     break;
5793 
5794   case NK_Type_Narrowing:
5795     // FIXME: It would be better to diagnose that the expression is not a
5796     // constant expression.
5797     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5798         << CCE << /*Constant*/ 0 << From->getType() << T;
5799     break;
5800   }
5801 
5802   if (Result.get()->isValueDependent()) {
5803     Value = APValue();
5804     return Result;
5805   }
5806 
5807   // Check the expression is a constant expression.
5808   SmallVector<PartialDiagnosticAt, 8> Notes;
5809   Expr::EvalResult Eval;
5810   Eval.Diag = &Notes;
5811 
5812   ConstantExprKind Kind;
5813   if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5814     Kind = ConstantExprKind::ClassTemplateArgument;
5815   else if (CCE == Sema::CCEK_TemplateArg)
5816     Kind = ConstantExprKind::NonClassTemplateArgument;
5817   else
5818     Kind = ConstantExprKind::Normal;
5819 
5820   if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5821       (RequireInt && !Eval.Val.isInt())) {
5822     // The expression can't be folded, so we can't keep it at this position in
5823     // the AST.
5824     Result = ExprError();
5825   } else {
5826     Value = Eval.Val;
5827 
5828     if (Notes.empty()) {
5829       // It's a constant expression.
5830       Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5831       if (ReturnPreNarrowingValue)
5832         Value = std::move(PreNarrowingValue);
5833       return E;
5834     }
5835   }
5836 
5837   // It's not a constant expression. Produce an appropriate diagnostic.
5838   if (Notes.size() == 1 &&
5839       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5840     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5841   } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5842                                    diag::note_constexpr_invalid_template_arg) {
5843     Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5844     for (unsigned I = 0; I < Notes.size(); ++I)
5845       S.Diag(Notes[I].first, Notes[I].second);
5846   } else {
5847     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5848         << CCE << From->getSourceRange();
5849     for (unsigned I = 0; I < Notes.size(); ++I)
5850       S.Diag(Notes[I].first, Notes[I].second);
5851   }
5852   return ExprError();
5853 }
5854 
5855 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5856                                                   APValue &Value, CCEKind CCE,
5857                                                   NamedDecl *Dest) {
5858   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5859                                             Dest);
5860 }
5861 
5862 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5863                                                   llvm::APSInt &Value,
5864                                                   CCEKind CCE) {
5865   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5866 
5867   APValue V;
5868   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5869                                               /*Dest=*/nullptr);
5870   if (!R.isInvalid() && !R.get()->isValueDependent())
5871     Value = V.getInt();
5872   return R;
5873 }
5874 
5875 
5876 /// dropPointerConversions - If the given standard conversion sequence
5877 /// involves any pointer conversions, remove them.  This may change
5878 /// the result type of the conversion sequence.
5879 static void dropPointerConversion(StandardConversionSequence &SCS) {
5880   if (SCS.Second == ICK_Pointer_Conversion) {
5881     SCS.Second = ICK_Identity;
5882     SCS.Third = ICK_Identity;
5883     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5884   }
5885 }
5886 
5887 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5888 /// convert the expression From to an Objective-C pointer type.
5889 static ImplicitConversionSequence
5890 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5891   // Do an implicit conversion to 'id'.
5892   QualType Ty = S.Context.getObjCIdType();
5893   ImplicitConversionSequence ICS
5894     = TryImplicitConversion(S, From, Ty,
5895                             // FIXME: Are these flags correct?
5896                             /*SuppressUserConversions=*/false,
5897                             AllowedExplicit::Conversions,
5898                             /*InOverloadResolution=*/false,
5899                             /*CStyle=*/false,
5900                             /*AllowObjCWritebackConversion=*/false,
5901                             /*AllowObjCConversionOnExplicit=*/true);
5902 
5903   // Strip off any final conversions to 'id'.
5904   switch (ICS.getKind()) {
5905   case ImplicitConversionSequence::BadConversion:
5906   case ImplicitConversionSequence::AmbiguousConversion:
5907   case ImplicitConversionSequence::EllipsisConversion:
5908     break;
5909 
5910   case ImplicitConversionSequence::UserDefinedConversion:
5911     dropPointerConversion(ICS.UserDefined.After);
5912     break;
5913 
5914   case ImplicitConversionSequence::StandardConversion:
5915     dropPointerConversion(ICS.Standard);
5916     break;
5917   }
5918 
5919   return ICS;
5920 }
5921 
5922 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5923 /// conversion of the expression From to an Objective-C pointer type.
5924 /// Returns a valid but null ExprResult if no conversion sequence exists.
5925 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5926   if (checkPlaceholderForOverload(*this, From))
5927     return ExprError();
5928 
5929   QualType Ty = Context.getObjCIdType();
5930   ImplicitConversionSequence ICS =
5931     TryContextuallyConvertToObjCPointer(*this, From);
5932   if (!ICS.isBad())
5933     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5934   return ExprResult();
5935 }
5936 
5937 /// Determine whether the provided type is an integral type, or an enumeration
5938 /// type of a permitted flavor.
5939 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5940   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5941                                  : T->isIntegralOrUnscopedEnumerationType();
5942 }
5943 
5944 static ExprResult
5945 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5946                             Sema::ContextualImplicitConverter &Converter,
5947                             QualType T, UnresolvedSetImpl &ViableConversions) {
5948 
5949   if (Converter.Suppress)
5950     return ExprError();
5951 
5952   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5953   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5954     CXXConversionDecl *Conv =
5955         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5956     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5957     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5958   }
5959   return From;
5960 }
5961 
5962 static bool
5963 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5964                            Sema::ContextualImplicitConverter &Converter,
5965                            QualType T, bool HadMultipleCandidates,
5966                            UnresolvedSetImpl &ExplicitConversions) {
5967   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5968     DeclAccessPair Found = ExplicitConversions[0];
5969     CXXConversionDecl *Conversion =
5970         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5971 
5972     // The user probably meant to invoke the given explicit
5973     // conversion; use it.
5974     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5975     std::string TypeStr;
5976     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5977 
5978     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5979         << FixItHint::CreateInsertion(From->getBeginLoc(),
5980                                       "static_cast<" + TypeStr + ">(")
5981         << FixItHint::CreateInsertion(
5982                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5983     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5984 
5985     // If we aren't in a SFINAE context, build a call to the
5986     // explicit conversion function.
5987     if (SemaRef.isSFINAEContext())
5988       return true;
5989 
5990     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5991     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5992                                                        HadMultipleCandidates);
5993     if (Result.isInvalid())
5994       return true;
5995     // Record usage of conversion in an implicit cast.
5996     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5997                                     CK_UserDefinedConversion, Result.get(),
5998                                     nullptr, Result.get()->getValueKind(),
5999                                     SemaRef.CurFPFeatureOverrides());
6000   }
6001   return false;
6002 }
6003 
6004 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
6005                              Sema::ContextualImplicitConverter &Converter,
6006                              QualType T, bool HadMultipleCandidates,
6007                              DeclAccessPair &Found) {
6008   CXXConversionDecl *Conversion =
6009       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
6010   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
6011 
6012   QualType ToType = Conversion->getConversionType().getNonReferenceType();
6013   if (!Converter.SuppressConversion) {
6014     if (SemaRef.isSFINAEContext())
6015       return true;
6016 
6017     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
6018         << From->getSourceRange();
6019   }
6020 
6021   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
6022                                                      HadMultipleCandidates);
6023   if (Result.isInvalid())
6024     return true;
6025   // Record usage of conversion in an implicit cast.
6026   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6027                                   CK_UserDefinedConversion, Result.get(),
6028                                   nullptr, Result.get()->getValueKind(),
6029                                   SemaRef.CurFPFeatureOverrides());
6030   return false;
6031 }
6032 
6033 static ExprResult finishContextualImplicitConversion(
6034     Sema &SemaRef, SourceLocation Loc, Expr *From,
6035     Sema::ContextualImplicitConverter &Converter) {
6036   if (!Converter.match(From->getType()) && !Converter.Suppress)
6037     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
6038         << From->getSourceRange();
6039 
6040   return SemaRef.DefaultLvalueConversion(From);
6041 }
6042 
6043 static void
6044 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
6045                                   UnresolvedSetImpl &ViableConversions,
6046                                   OverloadCandidateSet &CandidateSet) {
6047   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
6048     DeclAccessPair FoundDecl = ViableConversions[I];
6049     NamedDecl *D = FoundDecl.getDecl();
6050     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6051     if (isa<UsingShadowDecl>(D))
6052       D = cast<UsingShadowDecl>(D)->getTargetDecl();
6053 
6054     CXXConversionDecl *Conv;
6055     FunctionTemplateDecl *ConvTemplate;
6056     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
6057       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6058     else
6059       Conv = cast<CXXConversionDecl>(D);
6060 
6061     if (ConvTemplate)
6062       SemaRef.AddTemplateConversionCandidate(
6063           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6064           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6065     else
6066       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6067                                      ToType, CandidateSet,
6068                                      /*AllowObjCConversionOnExplicit=*/false,
6069                                      /*AllowExplicit*/ true);
6070   }
6071 }
6072 
6073 /// Attempt to convert the given expression to a type which is accepted
6074 /// by the given converter.
6075 ///
6076 /// This routine will attempt to convert an expression of class type to a
6077 /// type accepted by the specified converter. In C++11 and before, the class
6078 /// must have a single non-explicit conversion function converting to a matching
6079 /// type. In C++1y, there can be multiple such conversion functions, but only
6080 /// one target type.
6081 ///
6082 /// \param Loc The source location of the construct that requires the
6083 /// conversion.
6084 ///
6085 /// \param From The expression we're converting from.
6086 ///
6087 /// \param Converter Used to control and diagnose the conversion process.
6088 ///
6089 /// \returns The expression, converted to an integral or enumeration type if
6090 /// successful.
6091 ExprResult Sema::PerformContextualImplicitConversion(
6092     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6093   // We can't perform any more checking for type-dependent expressions.
6094   if (From->isTypeDependent())
6095     return From;
6096 
6097   // Process placeholders immediately.
6098   if (From->hasPlaceholderType()) {
6099     ExprResult result = CheckPlaceholderExpr(From);
6100     if (result.isInvalid())
6101       return result;
6102     From = result.get();
6103   }
6104 
6105   // If the expression already has a matching type, we're golden.
6106   QualType T = From->getType();
6107   if (Converter.match(T))
6108     return DefaultLvalueConversion(From);
6109 
6110   // FIXME: Check for missing '()' if T is a function type?
6111 
6112   // We can only perform contextual implicit conversions on objects of class
6113   // type.
6114   const RecordType *RecordTy = T->getAs<RecordType>();
6115   if (!RecordTy || !getLangOpts().CPlusPlus) {
6116     if (!Converter.Suppress)
6117       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6118     return From;
6119   }
6120 
6121   // We must have a complete class type.
6122   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6123     ContextualImplicitConverter &Converter;
6124     Expr *From;
6125 
6126     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6127         : Converter(Converter), From(From) {}
6128 
6129     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6130       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6131     }
6132   } IncompleteDiagnoser(Converter, From);
6133 
6134   if (Converter.Suppress ? !isCompleteType(Loc, T)
6135                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6136     return From;
6137 
6138   // Look for a conversion to an integral or enumeration type.
6139   UnresolvedSet<4>
6140       ViableConversions; // These are *potentially* viable in C++1y.
6141   UnresolvedSet<4> ExplicitConversions;
6142   const auto &Conversions =
6143       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6144 
6145   bool HadMultipleCandidates =
6146       (std::distance(Conversions.begin(), Conversions.end()) > 1);
6147 
6148   // To check that there is only one target type, in C++1y:
6149   QualType ToType;
6150   bool HasUniqueTargetType = true;
6151 
6152   // Collect explicit or viable (potentially in C++1y) conversions.
6153   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6154     NamedDecl *D = (*I)->getUnderlyingDecl();
6155     CXXConversionDecl *Conversion;
6156     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6157     if (ConvTemplate) {
6158       if (getLangOpts().CPlusPlus14)
6159         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6160       else
6161         continue; // C++11 does not consider conversion operator templates(?).
6162     } else
6163       Conversion = cast<CXXConversionDecl>(D);
6164 
6165     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6166            "Conversion operator templates are considered potentially "
6167            "viable in C++1y");
6168 
6169     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6170     if (Converter.match(CurToType) || ConvTemplate) {
6171 
6172       if (Conversion->isExplicit()) {
6173         // FIXME: For C++1y, do we need this restriction?
6174         // cf. diagnoseNoViableConversion()
6175         if (!ConvTemplate)
6176           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6177       } else {
6178         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6179           if (ToType.isNull())
6180             ToType = CurToType.getUnqualifiedType();
6181           else if (HasUniqueTargetType &&
6182                    (CurToType.getUnqualifiedType() != ToType))
6183             HasUniqueTargetType = false;
6184         }
6185         ViableConversions.addDecl(I.getDecl(), I.getAccess());
6186       }
6187     }
6188   }
6189 
6190   if (getLangOpts().CPlusPlus14) {
6191     // C++1y [conv]p6:
6192     // ... An expression e of class type E appearing in such a context
6193     // is said to be contextually implicitly converted to a specified
6194     // type T and is well-formed if and only if e can be implicitly
6195     // converted to a type T that is determined as follows: E is searched
6196     // for conversion functions whose return type is cv T or reference to
6197     // cv T such that T is allowed by the context. There shall be
6198     // exactly one such T.
6199 
6200     // If no unique T is found:
6201     if (ToType.isNull()) {
6202       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6203                                      HadMultipleCandidates,
6204                                      ExplicitConversions))
6205         return ExprError();
6206       return finishContextualImplicitConversion(*this, Loc, From, Converter);
6207     }
6208 
6209     // If more than one unique Ts are found:
6210     if (!HasUniqueTargetType)
6211       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6212                                          ViableConversions);
6213 
6214     // If one unique T is found:
6215     // First, build a candidate set from the previously recorded
6216     // potentially viable conversions.
6217     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6218     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6219                                       CandidateSet);
6220 
6221     // Then, perform overload resolution over the candidate set.
6222     OverloadCandidateSet::iterator Best;
6223     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6224     case OR_Success: {
6225       // Apply this conversion.
6226       DeclAccessPair Found =
6227           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6228       if (recordConversion(*this, Loc, From, Converter, T,
6229                            HadMultipleCandidates, Found))
6230         return ExprError();
6231       break;
6232     }
6233     case OR_Ambiguous:
6234       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6235                                          ViableConversions);
6236     case OR_No_Viable_Function:
6237       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6238                                      HadMultipleCandidates,
6239                                      ExplicitConversions))
6240         return ExprError();
6241       LLVM_FALLTHROUGH;
6242     case OR_Deleted:
6243       // We'll complain below about a non-integral condition type.
6244       break;
6245     }
6246   } else {
6247     switch (ViableConversions.size()) {
6248     case 0: {
6249       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6250                                      HadMultipleCandidates,
6251                                      ExplicitConversions))
6252         return ExprError();
6253 
6254       // We'll complain below about a non-integral condition type.
6255       break;
6256     }
6257     case 1: {
6258       // Apply this conversion.
6259       DeclAccessPair Found = ViableConversions[0];
6260       if (recordConversion(*this, Loc, From, Converter, T,
6261                            HadMultipleCandidates, Found))
6262         return ExprError();
6263       break;
6264     }
6265     default:
6266       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6267                                          ViableConversions);
6268     }
6269   }
6270 
6271   return finishContextualImplicitConversion(*this, Loc, From, Converter);
6272 }
6273 
6274 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6275 /// an acceptable non-member overloaded operator for a call whose
6276 /// arguments have types T1 (and, if non-empty, T2). This routine
6277 /// implements the check in C++ [over.match.oper]p3b2 concerning
6278 /// enumeration types.
6279 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6280                                                    FunctionDecl *Fn,
6281                                                    ArrayRef<Expr *> Args) {
6282   QualType T1 = Args[0]->getType();
6283   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6284 
6285   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6286     return true;
6287 
6288   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6289     return true;
6290 
6291   const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6292   if (Proto->getNumParams() < 1)
6293     return false;
6294 
6295   if (T1->isEnumeralType()) {
6296     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6297     if (Context.hasSameUnqualifiedType(T1, ArgType))
6298       return true;
6299   }
6300 
6301   if (Proto->getNumParams() < 2)
6302     return false;
6303 
6304   if (!T2.isNull() && T2->isEnumeralType()) {
6305     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6306     if (Context.hasSameUnqualifiedType(T2, ArgType))
6307       return true;
6308   }
6309 
6310   return false;
6311 }
6312 
6313 /// AddOverloadCandidate - Adds the given function to the set of
6314 /// candidate functions, using the given function call arguments.  If
6315 /// @p SuppressUserConversions, then don't allow user-defined
6316 /// conversions via constructors or conversion operators.
6317 ///
6318 /// \param PartialOverloading true if we are performing "partial" overloading
6319 /// based on an incomplete set of function arguments. This feature is used by
6320 /// code completion.
6321 void Sema::AddOverloadCandidate(
6322     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6323     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6324     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6325     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6326     OverloadCandidateParamOrder PO) {
6327   const FunctionProtoType *Proto
6328     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6329   assert(Proto && "Functions without a prototype cannot be overloaded");
6330   assert(!Function->getDescribedFunctionTemplate() &&
6331          "Use AddTemplateOverloadCandidate for function templates");
6332 
6333   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6334     if (!isa<CXXConstructorDecl>(Method)) {
6335       // If we get here, it's because we're calling a member function
6336       // that is named without a member access expression (e.g.,
6337       // "this->f") that was either written explicitly or created
6338       // implicitly. This can happen with a qualified call to a member
6339       // function, e.g., X::f(). We use an empty type for the implied
6340       // object argument (C++ [over.call.func]p3), and the acting context
6341       // is irrelevant.
6342       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6343                          Expr::Classification::makeSimpleLValue(), Args,
6344                          CandidateSet, SuppressUserConversions,
6345                          PartialOverloading, EarlyConversions, PO);
6346       return;
6347     }
6348     // We treat a constructor like a non-member function, since its object
6349     // argument doesn't participate in overload resolution.
6350   }
6351 
6352   if (!CandidateSet.isNewCandidate(Function, PO))
6353     return;
6354 
6355   // C++11 [class.copy]p11: [DR1402]
6356   //   A defaulted move constructor that is defined as deleted is ignored by
6357   //   overload resolution.
6358   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6359   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6360       Constructor->isMoveConstructor())
6361     return;
6362 
6363   // Overload resolution is always an unevaluated context.
6364   EnterExpressionEvaluationContext Unevaluated(
6365       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6366 
6367   // C++ [over.match.oper]p3:
6368   //   if no operand has a class type, only those non-member functions in the
6369   //   lookup set that have a first parameter of type T1 or "reference to
6370   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6371   //   is a right operand) a second parameter of type T2 or "reference to
6372   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6373   //   candidate functions.
6374   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6375       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6376     return;
6377 
6378   // Add this candidate
6379   OverloadCandidate &Candidate =
6380       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6381   Candidate.FoundDecl = FoundDecl;
6382   Candidate.Function = Function;
6383   Candidate.Viable = true;
6384   Candidate.RewriteKind =
6385       CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6386   Candidate.IsSurrogate = false;
6387   Candidate.IsADLCandidate = IsADLCandidate;
6388   Candidate.IgnoreObjectArgument = false;
6389   Candidate.ExplicitCallArguments = Args.size();
6390 
6391   // Explicit functions are not actually candidates at all if we're not
6392   // allowing them in this context, but keep them around so we can point
6393   // to them in diagnostics.
6394   if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6395     Candidate.Viable = false;
6396     Candidate.FailureKind = ovl_fail_explicit;
6397     return;
6398   }
6399 
6400   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6401       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6402     Candidate.Viable = false;
6403     Candidate.FailureKind = ovl_non_default_multiversion_function;
6404     return;
6405   }
6406 
6407   if (Constructor) {
6408     // C++ [class.copy]p3:
6409     //   A member function template is never instantiated to perform the copy
6410     //   of a class object to an object of its class type.
6411     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6412     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6413         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6414          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6415                        ClassType))) {
6416       Candidate.Viable = false;
6417       Candidate.FailureKind = ovl_fail_illegal_constructor;
6418       return;
6419     }
6420 
6421     // C++ [over.match.funcs]p8: (proposed DR resolution)
6422     //   A constructor inherited from class type C that has a first parameter
6423     //   of type "reference to P" (including such a constructor instantiated
6424     //   from a template) is excluded from the set of candidate functions when
6425     //   constructing an object of type cv D if the argument list has exactly
6426     //   one argument and D is reference-related to P and P is reference-related
6427     //   to C.
6428     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6429     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6430         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6431       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6432       QualType C = Context.getRecordType(Constructor->getParent());
6433       QualType D = Context.getRecordType(Shadow->getParent());
6434       SourceLocation Loc = Args.front()->getExprLoc();
6435       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6436           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6437         Candidate.Viable = false;
6438         Candidate.FailureKind = ovl_fail_inhctor_slice;
6439         return;
6440       }
6441     }
6442 
6443     // Check that the constructor is capable of constructing an object in the
6444     // destination address space.
6445     if (!Qualifiers::isAddressSpaceSupersetOf(
6446             Constructor->getMethodQualifiers().getAddressSpace(),
6447             CandidateSet.getDestAS())) {
6448       Candidate.Viable = false;
6449       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6450     }
6451   }
6452 
6453   unsigned NumParams = Proto->getNumParams();
6454 
6455   // (C++ 13.3.2p2): A candidate function having fewer than m
6456   // parameters is viable only if it has an ellipsis in its parameter
6457   // list (8.3.5).
6458   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6459       !Proto->isVariadic() &&
6460       shouldEnforceArgLimit(PartialOverloading, Function)) {
6461     Candidate.Viable = false;
6462     Candidate.FailureKind = ovl_fail_too_many_arguments;
6463     return;
6464   }
6465 
6466   // (C++ 13.3.2p2): A candidate function having more than m parameters
6467   // is viable only if the (m+1)st parameter has a default argument
6468   // (8.3.6). For the purposes of overload resolution, the
6469   // parameter list is truncated on the right, so that there are
6470   // exactly m parameters.
6471   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6472   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6473     // Not enough arguments.
6474     Candidate.Viable = false;
6475     Candidate.FailureKind = ovl_fail_too_few_arguments;
6476     return;
6477   }
6478 
6479   // (CUDA B.1): Check for invalid calls between targets.
6480   if (getLangOpts().CUDA)
6481     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6482       // Skip the check for callers that are implicit members, because in this
6483       // case we may not yet know what the member's target is; the target is
6484       // inferred for the member automatically, based on the bases and fields of
6485       // the class.
6486       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6487         Candidate.Viable = false;
6488         Candidate.FailureKind = ovl_fail_bad_target;
6489         return;
6490       }
6491 
6492   if (Function->getTrailingRequiresClause()) {
6493     ConstraintSatisfaction Satisfaction;
6494     if (CheckFunctionConstraints(Function, Satisfaction) ||
6495         !Satisfaction.IsSatisfied) {
6496       Candidate.Viable = false;
6497       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6498       return;
6499     }
6500   }
6501 
6502   // Determine the implicit conversion sequences for each of the
6503   // arguments.
6504   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6505     unsigned ConvIdx =
6506         PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6507     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6508       // We already formed a conversion sequence for this parameter during
6509       // template argument deduction.
6510     } else if (ArgIdx < NumParams) {
6511       // (C++ 13.3.2p3): for F to be a viable function, there shall
6512       // exist for each argument an implicit conversion sequence
6513       // (13.3.3.1) that converts that argument to the corresponding
6514       // parameter of F.
6515       QualType ParamType = Proto->getParamType(ArgIdx);
6516       Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6517           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6518           /*InOverloadResolution=*/true,
6519           /*AllowObjCWritebackConversion=*/
6520           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6521       if (Candidate.Conversions[ConvIdx].isBad()) {
6522         Candidate.Viable = false;
6523         Candidate.FailureKind = ovl_fail_bad_conversion;
6524         return;
6525       }
6526     } else {
6527       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6528       // argument for which there is no corresponding parameter is
6529       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6530       Candidate.Conversions[ConvIdx].setEllipsis();
6531     }
6532   }
6533 
6534   if (EnableIfAttr *FailedAttr =
6535           CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6536     Candidate.Viable = false;
6537     Candidate.FailureKind = ovl_fail_enable_if;
6538     Candidate.DeductionFailure.Data = FailedAttr;
6539     return;
6540   }
6541 }
6542 
6543 ObjCMethodDecl *
6544 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6545                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6546   if (Methods.size() <= 1)
6547     return nullptr;
6548 
6549   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6550     bool Match = true;
6551     ObjCMethodDecl *Method = Methods[b];
6552     unsigned NumNamedArgs = Sel.getNumArgs();
6553     // Method might have more arguments than selector indicates. This is due
6554     // to addition of c-style arguments in method.
6555     if (Method->param_size() > NumNamedArgs)
6556       NumNamedArgs = Method->param_size();
6557     if (Args.size() < NumNamedArgs)
6558       continue;
6559 
6560     for (unsigned i = 0; i < NumNamedArgs; i++) {
6561       // We can't do any type-checking on a type-dependent argument.
6562       if (Args[i]->isTypeDependent()) {
6563         Match = false;
6564         break;
6565       }
6566 
6567       ParmVarDecl *param = Method->parameters()[i];
6568       Expr *argExpr = Args[i];
6569       assert(argExpr && "SelectBestMethod(): missing expression");
6570 
6571       // Strip the unbridged-cast placeholder expression off unless it's
6572       // a consumed argument.
6573       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6574           !param->hasAttr<CFConsumedAttr>())
6575         argExpr = stripARCUnbridgedCast(argExpr);
6576 
6577       // If the parameter is __unknown_anytype, move on to the next method.
6578       if (param->getType() == Context.UnknownAnyTy) {
6579         Match = false;
6580         break;
6581       }
6582 
6583       ImplicitConversionSequence ConversionState
6584         = TryCopyInitialization(*this, argExpr, param->getType(),
6585                                 /*SuppressUserConversions*/false,
6586                                 /*InOverloadResolution=*/true,
6587                                 /*AllowObjCWritebackConversion=*/
6588                                 getLangOpts().ObjCAutoRefCount,
6589                                 /*AllowExplicit*/false);
6590       // This function looks for a reasonably-exact match, so we consider
6591       // incompatible pointer conversions to be a failure here.
6592       if (ConversionState.isBad() ||
6593           (ConversionState.isStandard() &&
6594            ConversionState.Standard.Second ==
6595                ICK_Incompatible_Pointer_Conversion)) {
6596         Match = false;
6597         break;
6598       }
6599     }
6600     // Promote additional arguments to variadic methods.
6601     if (Match && Method->isVariadic()) {
6602       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6603         if (Args[i]->isTypeDependent()) {
6604           Match = false;
6605           break;
6606         }
6607         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6608                                                           nullptr);
6609         if (Arg.isInvalid()) {
6610           Match = false;
6611           break;
6612         }
6613       }
6614     } else {
6615       // Check for extra arguments to non-variadic methods.
6616       if (Args.size() != NumNamedArgs)
6617         Match = false;
6618       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6619         // Special case when selectors have no argument. In this case, select
6620         // one with the most general result type of 'id'.
6621         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6622           QualType ReturnT = Methods[b]->getReturnType();
6623           if (ReturnT->isObjCIdType())
6624             return Methods[b];
6625         }
6626       }
6627     }
6628 
6629     if (Match)
6630       return Method;
6631   }
6632   return nullptr;
6633 }
6634 
6635 static bool convertArgsForAvailabilityChecks(
6636     Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6637     ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6638     Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6639   if (ThisArg) {
6640     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6641     assert(!isa<CXXConstructorDecl>(Method) &&
6642            "Shouldn't have `this` for ctors!");
6643     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6644     ExprResult R = S.PerformObjectArgumentInitialization(
6645         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6646     if (R.isInvalid())
6647       return false;
6648     ConvertedThis = R.get();
6649   } else {
6650     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6651       (void)MD;
6652       assert((MissingImplicitThis || MD->isStatic() ||
6653               isa<CXXConstructorDecl>(MD)) &&
6654              "Expected `this` for non-ctor instance methods");
6655     }
6656     ConvertedThis = nullptr;
6657   }
6658 
6659   // Ignore any variadic arguments. Converting them is pointless, since the
6660   // user can't refer to them in the function condition.
6661   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6662 
6663   // Convert the arguments.
6664   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6665     ExprResult R;
6666     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6667                                         S.Context, Function->getParamDecl(I)),
6668                                     SourceLocation(), Args[I]);
6669 
6670     if (R.isInvalid())
6671       return false;
6672 
6673     ConvertedArgs.push_back(R.get());
6674   }
6675 
6676   if (Trap.hasErrorOccurred())
6677     return false;
6678 
6679   // Push default arguments if needed.
6680   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6681     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6682       ParmVarDecl *P = Function->getParamDecl(i);
6683       if (!P->hasDefaultArg())
6684         return false;
6685       ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6686       if (R.isInvalid())
6687         return false;
6688       ConvertedArgs.push_back(R.get());
6689     }
6690 
6691     if (Trap.hasErrorOccurred())
6692       return false;
6693   }
6694   return true;
6695 }
6696 
6697 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6698                                   SourceLocation CallLoc,
6699                                   ArrayRef<Expr *> Args,
6700                                   bool MissingImplicitThis) {
6701   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6702   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6703     return nullptr;
6704 
6705   SFINAETrap Trap(*this);
6706   SmallVector<Expr *, 16> ConvertedArgs;
6707   // FIXME: We should look into making enable_if late-parsed.
6708   Expr *DiscardedThis;
6709   if (!convertArgsForAvailabilityChecks(
6710           *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6711           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6712     return *EnableIfAttrs.begin();
6713 
6714   for (auto *EIA : EnableIfAttrs) {
6715     APValue Result;
6716     // FIXME: This doesn't consider value-dependent cases, because doing so is
6717     // very difficult. Ideally, we should handle them more gracefully.
6718     if (EIA->getCond()->isValueDependent() ||
6719         !EIA->getCond()->EvaluateWithSubstitution(
6720             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6721       return EIA;
6722 
6723     if (!Result.isInt() || !Result.getInt().getBoolValue())
6724       return EIA;
6725   }
6726   return nullptr;
6727 }
6728 
6729 template <typename CheckFn>
6730 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6731                                         bool ArgDependent, SourceLocation Loc,
6732                                         CheckFn &&IsSuccessful) {
6733   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6734   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6735     if (ArgDependent == DIA->getArgDependent())
6736       Attrs.push_back(DIA);
6737   }
6738 
6739   // Common case: No diagnose_if attributes, so we can quit early.
6740   if (Attrs.empty())
6741     return false;
6742 
6743   auto WarningBegin = std::stable_partition(
6744       Attrs.begin(), Attrs.end(),
6745       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6746 
6747   // Note that diagnose_if attributes are late-parsed, so they appear in the
6748   // correct order (unlike enable_if attributes).
6749   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6750                                IsSuccessful);
6751   if (ErrAttr != WarningBegin) {
6752     const DiagnoseIfAttr *DIA = *ErrAttr;
6753     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6754     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6755         << DIA->getParent() << DIA->getCond()->getSourceRange();
6756     return true;
6757   }
6758 
6759   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6760     if (IsSuccessful(DIA)) {
6761       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6762       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6763           << DIA->getParent() << DIA->getCond()->getSourceRange();
6764     }
6765 
6766   return false;
6767 }
6768 
6769 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6770                                                const Expr *ThisArg,
6771                                                ArrayRef<const Expr *> Args,
6772                                                SourceLocation Loc) {
6773   return diagnoseDiagnoseIfAttrsWith(
6774       *this, Function, /*ArgDependent=*/true, Loc,
6775       [&](const DiagnoseIfAttr *DIA) {
6776         APValue Result;
6777         // It's sane to use the same Args for any redecl of this function, since
6778         // EvaluateWithSubstitution only cares about the position of each
6779         // argument in the arg list, not the ParmVarDecl* it maps to.
6780         if (!DIA->getCond()->EvaluateWithSubstitution(
6781                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6782           return false;
6783         return Result.isInt() && Result.getInt().getBoolValue();
6784       });
6785 }
6786 
6787 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6788                                                  SourceLocation Loc) {
6789   return diagnoseDiagnoseIfAttrsWith(
6790       *this, ND, /*ArgDependent=*/false, Loc,
6791       [&](const DiagnoseIfAttr *DIA) {
6792         bool Result;
6793         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6794                Result;
6795       });
6796 }
6797 
6798 /// Add all of the function declarations in the given function set to
6799 /// the overload candidate set.
6800 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6801                                  ArrayRef<Expr *> Args,
6802                                  OverloadCandidateSet &CandidateSet,
6803                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6804                                  bool SuppressUserConversions,
6805                                  bool PartialOverloading,
6806                                  bool FirstArgumentIsBase) {
6807   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6808     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6809     ArrayRef<Expr *> FunctionArgs = Args;
6810 
6811     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6812     FunctionDecl *FD =
6813         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6814 
6815     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6816       QualType ObjectType;
6817       Expr::Classification ObjectClassification;
6818       if (Args.size() > 0) {
6819         if (Expr *E = Args[0]) {
6820           // Use the explicit base to restrict the lookup:
6821           ObjectType = E->getType();
6822           // Pointers in the object arguments are implicitly dereferenced, so we
6823           // always classify them as l-values.
6824           if (!ObjectType.isNull() && ObjectType->isPointerType())
6825             ObjectClassification = Expr::Classification::makeSimpleLValue();
6826           else
6827             ObjectClassification = E->Classify(Context);
6828         } // .. else there is an implicit base.
6829         FunctionArgs = Args.slice(1);
6830       }
6831       if (FunTmpl) {
6832         AddMethodTemplateCandidate(
6833             FunTmpl, F.getPair(),
6834             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6835             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6836             FunctionArgs, CandidateSet, SuppressUserConversions,
6837             PartialOverloading);
6838       } else {
6839         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6840                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6841                            ObjectClassification, FunctionArgs, CandidateSet,
6842                            SuppressUserConversions, PartialOverloading);
6843       }
6844     } else {
6845       // This branch handles both standalone functions and static methods.
6846 
6847       // Slice the first argument (which is the base) when we access
6848       // static method as non-static.
6849       if (Args.size() > 0 &&
6850           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6851                         !isa<CXXConstructorDecl>(FD)))) {
6852         assert(cast<CXXMethodDecl>(FD)->isStatic());
6853         FunctionArgs = Args.slice(1);
6854       }
6855       if (FunTmpl) {
6856         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6857                                      ExplicitTemplateArgs, FunctionArgs,
6858                                      CandidateSet, SuppressUserConversions,
6859                                      PartialOverloading);
6860       } else {
6861         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6862                              SuppressUserConversions, PartialOverloading);
6863       }
6864     }
6865   }
6866 }
6867 
6868 /// AddMethodCandidate - Adds a named decl (which is some kind of
6869 /// method) as a method candidate to the given overload set.
6870 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6871                               Expr::Classification ObjectClassification,
6872                               ArrayRef<Expr *> Args,
6873                               OverloadCandidateSet &CandidateSet,
6874                               bool SuppressUserConversions,
6875                               OverloadCandidateParamOrder PO) {
6876   NamedDecl *Decl = FoundDecl.getDecl();
6877   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6878 
6879   if (isa<UsingShadowDecl>(Decl))
6880     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6881 
6882   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6883     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6884            "Expected a member function template");
6885     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6886                                /*ExplicitArgs*/ nullptr, ObjectType,
6887                                ObjectClassification, Args, CandidateSet,
6888                                SuppressUserConversions, false, PO);
6889   } else {
6890     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6891                        ObjectType, ObjectClassification, Args, CandidateSet,
6892                        SuppressUserConversions, false, None, PO);
6893   }
6894 }
6895 
6896 /// AddMethodCandidate - Adds the given C++ member function to the set
6897 /// of candidate functions, using the given function call arguments
6898 /// and the object argument (@c Object). For example, in a call
6899 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6900 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6901 /// allow user-defined conversions via constructors or conversion
6902 /// operators.
6903 void
6904 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6905                          CXXRecordDecl *ActingContext, QualType ObjectType,
6906                          Expr::Classification ObjectClassification,
6907                          ArrayRef<Expr *> Args,
6908                          OverloadCandidateSet &CandidateSet,
6909                          bool SuppressUserConversions,
6910                          bool PartialOverloading,
6911                          ConversionSequenceList EarlyConversions,
6912                          OverloadCandidateParamOrder PO) {
6913   const FunctionProtoType *Proto
6914     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6915   assert(Proto && "Methods without a prototype cannot be overloaded");
6916   assert(!isa<CXXConstructorDecl>(Method) &&
6917          "Use AddOverloadCandidate for constructors");
6918 
6919   if (!CandidateSet.isNewCandidate(Method, PO))
6920     return;
6921 
6922   // C++11 [class.copy]p23: [DR1402]
6923   //   A defaulted move assignment operator that is defined as deleted is
6924   //   ignored by overload resolution.
6925   if (Method->isDefaulted() && Method->isDeleted() &&
6926       Method->isMoveAssignmentOperator())
6927     return;
6928 
6929   // Overload resolution is always an unevaluated context.
6930   EnterExpressionEvaluationContext Unevaluated(
6931       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6932 
6933   // Add this candidate
6934   OverloadCandidate &Candidate =
6935       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6936   Candidate.FoundDecl = FoundDecl;
6937   Candidate.Function = Method;
6938   Candidate.RewriteKind =
6939       CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6940   Candidate.IsSurrogate = false;
6941   Candidate.IgnoreObjectArgument = false;
6942   Candidate.ExplicitCallArguments = Args.size();
6943 
6944   unsigned NumParams = Proto->getNumParams();
6945 
6946   // (C++ 13.3.2p2): A candidate function having fewer than m
6947   // parameters is viable only if it has an ellipsis in its parameter
6948   // list (8.3.5).
6949   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6950       !Proto->isVariadic() &&
6951       shouldEnforceArgLimit(PartialOverloading, Method)) {
6952     Candidate.Viable = false;
6953     Candidate.FailureKind = ovl_fail_too_many_arguments;
6954     return;
6955   }
6956 
6957   // (C++ 13.3.2p2): A candidate function having more than m parameters
6958   // is viable only if the (m+1)st parameter has a default argument
6959   // (8.3.6). For the purposes of overload resolution, the
6960   // parameter list is truncated on the right, so that there are
6961   // exactly m parameters.
6962   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6963   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6964     // Not enough arguments.
6965     Candidate.Viable = false;
6966     Candidate.FailureKind = ovl_fail_too_few_arguments;
6967     return;
6968   }
6969 
6970   Candidate.Viable = true;
6971 
6972   if (Method->isStatic() || ObjectType.isNull())
6973     // The implicit object argument is ignored.
6974     Candidate.IgnoreObjectArgument = true;
6975   else {
6976     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6977     // Determine the implicit conversion sequence for the object
6978     // parameter.
6979     Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6980         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6981         Method, ActingContext);
6982     if (Candidate.Conversions[ConvIdx].isBad()) {
6983       Candidate.Viable = false;
6984       Candidate.FailureKind = ovl_fail_bad_conversion;
6985       return;
6986     }
6987   }
6988 
6989   // (CUDA B.1): Check for invalid calls between targets.
6990   if (getLangOpts().CUDA)
6991     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6992       if (!IsAllowedCUDACall(Caller, Method)) {
6993         Candidate.Viable = false;
6994         Candidate.FailureKind = ovl_fail_bad_target;
6995         return;
6996       }
6997 
6998   if (Method->getTrailingRequiresClause()) {
6999     ConstraintSatisfaction Satisfaction;
7000     if (CheckFunctionConstraints(Method, Satisfaction) ||
7001         !Satisfaction.IsSatisfied) {
7002       Candidate.Viable = false;
7003       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7004       return;
7005     }
7006   }
7007 
7008   // Determine the implicit conversion sequences for each of the
7009   // arguments.
7010   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
7011     unsigned ConvIdx =
7012         PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
7013     if (Candidate.Conversions[ConvIdx].isInitialized()) {
7014       // We already formed a conversion sequence for this parameter during
7015       // template argument deduction.
7016     } else if (ArgIdx < NumParams) {
7017       // (C++ 13.3.2p3): for F to be a viable function, there shall
7018       // exist for each argument an implicit conversion sequence
7019       // (13.3.3.1) that converts that argument to the corresponding
7020       // parameter of F.
7021       QualType ParamType = Proto->getParamType(ArgIdx);
7022       Candidate.Conversions[ConvIdx]
7023         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7024                                 SuppressUserConversions,
7025                                 /*InOverloadResolution=*/true,
7026                                 /*AllowObjCWritebackConversion=*/
7027                                   getLangOpts().ObjCAutoRefCount);
7028       if (Candidate.Conversions[ConvIdx].isBad()) {
7029         Candidate.Viable = false;
7030         Candidate.FailureKind = ovl_fail_bad_conversion;
7031         return;
7032       }
7033     } else {
7034       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7035       // argument for which there is no corresponding parameter is
7036       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
7037       Candidate.Conversions[ConvIdx].setEllipsis();
7038     }
7039   }
7040 
7041   if (EnableIfAttr *FailedAttr =
7042           CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
7043     Candidate.Viable = false;
7044     Candidate.FailureKind = ovl_fail_enable_if;
7045     Candidate.DeductionFailure.Data = FailedAttr;
7046     return;
7047   }
7048 
7049   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
7050       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
7051     Candidate.Viable = false;
7052     Candidate.FailureKind = ovl_non_default_multiversion_function;
7053   }
7054 }
7055 
7056 /// Add a C++ member function template as a candidate to the candidate
7057 /// set, using template argument deduction to produce an appropriate member
7058 /// function template specialization.
7059 void Sema::AddMethodTemplateCandidate(
7060     FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7061     CXXRecordDecl *ActingContext,
7062     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7063     Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7064     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7065     bool PartialOverloading, OverloadCandidateParamOrder PO) {
7066   if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7067     return;
7068 
7069   // C++ [over.match.funcs]p7:
7070   //   In each case where a candidate is a function template, candidate
7071   //   function template specializations are generated using template argument
7072   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7073   //   candidate functions in the usual way.113) A given name can refer to one
7074   //   or more function templates and also to a set of overloaded non-template
7075   //   functions. In such a case, the candidate functions generated from each
7076   //   function template are combined with the set of non-template candidate
7077   //   functions.
7078   TemplateDeductionInfo Info(CandidateSet.getLocation());
7079   FunctionDecl *Specialization = nullptr;
7080   ConversionSequenceList Conversions;
7081   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7082           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7083           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7084             return CheckNonDependentConversions(
7085                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7086                 SuppressUserConversions, ActingContext, ObjectType,
7087                 ObjectClassification, PO);
7088           })) {
7089     OverloadCandidate &Candidate =
7090         CandidateSet.addCandidate(Conversions.size(), Conversions);
7091     Candidate.FoundDecl = FoundDecl;
7092     Candidate.Function = MethodTmpl->getTemplatedDecl();
7093     Candidate.Viable = false;
7094     Candidate.RewriteKind =
7095       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7096     Candidate.IsSurrogate = false;
7097     Candidate.IgnoreObjectArgument =
7098         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7099         ObjectType.isNull();
7100     Candidate.ExplicitCallArguments = Args.size();
7101     if (Result == TDK_NonDependentConversionFailure)
7102       Candidate.FailureKind = ovl_fail_bad_conversion;
7103     else {
7104       Candidate.FailureKind = ovl_fail_bad_deduction;
7105       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7106                                                             Info);
7107     }
7108     return;
7109   }
7110 
7111   // Add the function template specialization produced by template argument
7112   // deduction as a candidate.
7113   assert(Specialization && "Missing member function template specialization?");
7114   assert(isa<CXXMethodDecl>(Specialization) &&
7115          "Specialization is not a member function?");
7116   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7117                      ActingContext, ObjectType, ObjectClassification, Args,
7118                      CandidateSet, SuppressUserConversions, PartialOverloading,
7119                      Conversions, PO);
7120 }
7121 
7122 /// Determine whether a given function template has a simple explicit specifier
7123 /// or a non-value-dependent explicit-specification that evaluates to true.
7124 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7125   return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7126 }
7127 
7128 /// Add a C++ function template specialization as a candidate
7129 /// in the candidate set, using template argument deduction to produce
7130 /// an appropriate function template specialization.
7131 void Sema::AddTemplateOverloadCandidate(
7132     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7133     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7134     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7135     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7136     OverloadCandidateParamOrder PO) {
7137   if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7138     return;
7139 
7140   // If the function template has a non-dependent explicit specification,
7141   // exclude it now if appropriate; we are not permitted to perform deduction
7142   // and substitution in this case.
7143   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7144     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7145     Candidate.FoundDecl = FoundDecl;
7146     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7147     Candidate.Viable = false;
7148     Candidate.FailureKind = ovl_fail_explicit;
7149     return;
7150   }
7151 
7152   // C++ [over.match.funcs]p7:
7153   //   In each case where a candidate is a function template, candidate
7154   //   function template specializations are generated using template argument
7155   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7156   //   candidate functions in the usual way.113) A given name can refer to one
7157   //   or more function templates and also to a set of overloaded non-template
7158   //   functions. In such a case, the candidate functions generated from each
7159   //   function template are combined with the set of non-template candidate
7160   //   functions.
7161   TemplateDeductionInfo Info(CandidateSet.getLocation());
7162   FunctionDecl *Specialization = nullptr;
7163   ConversionSequenceList Conversions;
7164   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7165           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7166           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7167             return CheckNonDependentConversions(
7168                 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7169                 SuppressUserConversions, nullptr, QualType(), {}, PO);
7170           })) {
7171     OverloadCandidate &Candidate =
7172         CandidateSet.addCandidate(Conversions.size(), Conversions);
7173     Candidate.FoundDecl = FoundDecl;
7174     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7175     Candidate.Viable = false;
7176     Candidate.RewriteKind =
7177       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7178     Candidate.IsSurrogate = false;
7179     Candidate.IsADLCandidate = IsADLCandidate;
7180     // Ignore the object argument if there is one, since we don't have an object
7181     // type.
7182     Candidate.IgnoreObjectArgument =
7183         isa<CXXMethodDecl>(Candidate.Function) &&
7184         !isa<CXXConstructorDecl>(Candidate.Function);
7185     Candidate.ExplicitCallArguments = Args.size();
7186     if (Result == TDK_NonDependentConversionFailure)
7187       Candidate.FailureKind = ovl_fail_bad_conversion;
7188     else {
7189       Candidate.FailureKind = ovl_fail_bad_deduction;
7190       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7191                                                             Info);
7192     }
7193     return;
7194   }
7195 
7196   // Add the function template specialization produced by template argument
7197   // deduction as a candidate.
7198   assert(Specialization && "Missing function template specialization?");
7199   AddOverloadCandidate(
7200       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7201       PartialOverloading, AllowExplicit,
7202       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7203 }
7204 
7205 /// Check that implicit conversion sequences can be formed for each argument
7206 /// whose corresponding parameter has a non-dependent type, per DR1391's
7207 /// [temp.deduct.call]p10.
7208 bool Sema::CheckNonDependentConversions(
7209     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7210     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7211     ConversionSequenceList &Conversions, bool SuppressUserConversions,
7212     CXXRecordDecl *ActingContext, QualType ObjectType,
7213     Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7214   // FIXME: The cases in which we allow explicit conversions for constructor
7215   // arguments never consider calling a constructor template. It's not clear
7216   // that is correct.
7217   const bool AllowExplicit = false;
7218 
7219   auto *FD = FunctionTemplate->getTemplatedDecl();
7220   auto *Method = dyn_cast<CXXMethodDecl>(FD);
7221   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7222   unsigned ThisConversions = HasThisConversion ? 1 : 0;
7223 
7224   Conversions =
7225       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7226 
7227   // Overload resolution is always an unevaluated context.
7228   EnterExpressionEvaluationContext Unevaluated(
7229       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7230 
7231   // For a method call, check the 'this' conversion here too. DR1391 doesn't
7232   // require that, but this check should never result in a hard error, and
7233   // overload resolution is permitted to sidestep instantiations.
7234   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7235       !ObjectType.isNull()) {
7236     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7237     Conversions[ConvIdx] = TryObjectArgumentInitialization(
7238         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7239         Method, ActingContext);
7240     if (Conversions[ConvIdx].isBad())
7241       return true;
7242   }
7243 
7244   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7245        ++I) {
7246     QualType ParamType = ParamTypes[I];
7247     if (!ParamType->isDependentType()) {
7248       unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7249                              ? 0
7250                              : (ThisConversions + I);
7251       Conversions[ConvIdx]
7252         = TryCopyInitialization(*this, Args[I], ParamType,
7253                                 SuppressUserConversions,
7254                                 /*InOverloadResolution=*/true,
7255                                 /*AllowObjCWritebackConversion=*/
7256                                   getLangOpts().ObjCAutoRefCount,
7257                                 AllowExplicit);
7258       if (Conversions[ConvIdx].isBad())
7259         return true;
7260     }
7261   }
7262 
7263   return false;
7264 }
7265 
7266 /// Determine whether this is an allowable conversion from the result
7267 /// of an explicit conversion operator to the expected type, per C++
7268 /// [over.match.conv]p1 and [over.match.ref]p1.
7269 ///
7270 /// \param ConvType The return type of the conversion function.
7271 ///
7272 /// \param ToType The type we are converting to.
7273 ///
7274 /// \param AllowObjCPointerConversion Allow a conversion from one
7275 /// Objective-C pointer to another.
7276 ///
7277 /// \returns true if the conversion is allowable, false otherwise.
7278 static bool isAllowableExplicitConversion(Sema &S,
7279                                           QualType ConvType, QualType ToType,
7280                                           bool AllowObjCPointerConversion) {
7281   QualType ToNonRefType = ToType.getNonReferenceType();
7282 
7283   // Easy case: the types are the same.
7284   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7285     return true;
7286 
7287   // Allow qualification conversions.
7288   bool ObjCLifetimeConversion;
7289   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7290                                   ObjCLifetimeConversion))
7291     return true;
7292 
7293   // If we're not allowed to consider Objective-C pointer conversions,
7294   // we're done.
7295   if (!AllowObjCPointerConversion)
7296     return false;
7297 
7298   // Is this an Objective-C pointer conversion?
7299   bool IncompatibleObjC = false;
7300   QualType ConvertedType;
7301   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7302                                    IncompatibleObjC);
7303 }
7304 
7305 /// AddConversionCandidate - Add a C++ conversion function as a
7306 /// candidate in the candidate set (C++ [over.match.conv],
7307 /// C++ [over.match.copy]). From is the expression we're converting from,
7308 /// and ToType is the type that we're eventually trying to convert to
7309 /// (which may or may not be the same type as the type that the
7310 /// conversion function produces).
7311 void Sema::AddConversionCandidate(
7312     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7313     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7314     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7315     bool AllowExplicit, bool AllowResultConversion) {
7316   assert(!Conversion->getDescribedFunctionTemplate() &&
7317          "Conversion function templates use AddTemplateConversionCandidate");
7318   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7319   if (!CandidateSet.isNewCandidate(Conversion))
7320     return;
7321 
7322   // If the conversion function has an undeduced return type, trigger its
7323   // deduction now.
7324   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7325     if (DeduceReturnType(Conversion, From->getExprLoc()))
7326       return;
7327     ConvType = Conversion->getConversionType().getNonReferenceType();
7328   }
7329 
7330   // If we don't allow any conversion of the result type, ignore conversion
7331   // functions that don't convert to exactly (possibly cv-qualified) T.
7332   if (!AllowResultConversion &&
7333       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7334     return;
7335 
7336   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7337   // operator is only a candidate if its return type is the target type or
7338   // can be converted to the target type with a qualification conversion.
7339   //
7340   // FIXME: Include such functions in the candidate list and explain why we
7341   // can't select them.
7342   if (Conversion->isExplicit() &&
7343       !isAllowableExplicitConversion(*this, ConvType, ToType,
7344                                      AllowObjCConversionOnExplicit))
7345     return;
7346 
7347   // Overload resolution is always an unevaluated context.
7348   EnterExpressionEvaluationContext Unevaluated(
7349       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7350 
7351   // Add this candidate
7352   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7353   Candidate.FoundDecl = FoundDecl;
7354   Candidate.Function = Conversion;
7355   Candidate.IsSurrogate = false;
7356   Candidate.IgnoreObjectArgument = false;
7357   Candidate.FinalConversion.setAsIdentityConversion();
7358   Candidate.FinalConversion.setFromType(ConvType);
7359   Candidate.FinalConversion.setAllToTypes(ToType);
7360   Candidate.Viable = true;
7361   Candidate.ExplicitCallArguments = 1;
7362 
7363   // Explicit functions are not actually candidates at all if we're not
7364   // allowing them in this context, but keep them around so we can point
7365   // to them in diagnostics.
7366   if (!AllowExplicit && Conversion->isExplicit()) {
7367     Candidate.Viable = false;
7368     Candidate.FailureKind = ovl_fail_explicit;
7369     return;
7370   }
7371 
7372   // C++ [over.match.funcs]p4:
7373   //   For conversion functions, the function is considered to be a member of
7374   //   the class of the implicit implied object argument for the purpose of
7375   //   defining the type of the implicit object parameter.
7376   //
7377   // Determine the implicit conversion sequence for the implicit
7378   // object parameter.
7379   QualType ImplicitParamType = From->getType();
7380   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7381     ImplicitParamType = FromPtrType->getPointeeType();
7382   CXXRecordDecl *ConversionContext
7383     = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7384 
7385   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7386       *this, CandidateSet.getLocation(), From->getType(),
7387       From->Classify(Context), Conversion, ConversionContext);
7388 
7389   if (Candidate.Conversions[0].isBad()) {
7390     Candidate.Viable = false;
7391     Candidate.FailureKind = ovl_fail_bad_conversion;
7392     return;
7393   }
7394 
7395   if (Conversion->getTrailingRequiresClause()) {
7396     ConstraintSatisfaction Satisfaction;
7397     if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7398         !Satisfaction.IsSatisfied) {
7399       Candidate.Viable = false;
7400       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7401       return;
7402     }
7403   }
7404 
7405   // We won't go through a user-defined type conversion function to convert a
7406   // derived to base as such conversions are given Conversion Rank. They only
7407   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7408   QualType FromCanon
7409     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7410   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7411   if (FromCanon == ToCanon ||
7412       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7413     Candidate.Viable = false;
7414     Candidate.FailureKind = ovl_fail_trivial_conversion;
7415     return;
7416   }
7417 
7418   // To determine what the conversion from the result of calling the
7419   // conversion function to the type we're eventually trying to
7420   // convert to (ToType), we need to synthesize a call to the
7421   // conversion function and attempt copy initialization from it. This
7422   // makes sure that we get the right semantics with respect to
7423   // lvalues/rvalues and the type. Fortunately, we can allocate this
7424   // call on the stack and we don't need its arguments to be
7425   // well-formed.
7426   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7427                             VK_LValue, From->getBeginLoc());
7428   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7429                                 Context.getPointerType(Conversion->getType()),
7430                                 CK_FunctionToPointerDecay, &ConversionRef,
7431                                 VK_PRValue, FPOptionsOverride());
7432 
7433   QualType ConversionType = Conversion->getConversionType();
7434   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7435     Candidate.Viable = false;
7436     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7437     return;
7438   }
7439 
7440   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7441 
7442   // Note that it is safe to allocate CallExpr on the stack here because
7443   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7444   // allocator).
7445   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7446 
7447   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7448   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7449       Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7450 
7451   ImplicitConversionSequence ICS =
7452       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7453                             /*SuppressUserConversions=*/true,
7454                             /*InOverloadResolution=*/false,
7455                             /*AllowObjCWritebackConversion=*/false);
7456 
7457   switch (ICS.getKind()) {
7458   case ImplicitConversionSequence::StandardConversion:
7459     Candidate.FinalConversion = ICS.Standard;
7460 
7461     // C++ [over.ics.user]p3:
7462     //   If the user-defined conversion is specified by a specialization of a
7463     //   conversion function template, the second standard conversion sequence
7464     //   shall have exact match rank.
7465     if (Conversion->getPrimaryTemplate() &&
7466         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7467       Candidate.Viable = false;
7468       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7469       return;
7470     }
7471 
7472     // C++0x [dcl.init.ref]p5:
7473     //    In the second case, if the reference is an rvalue reference and
7474     //    the second standard conversion sequence of the user-defined
7475     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7476     //    program is ill-formed.
7477     if (ToType->isRValueReferenceType() &&
7478         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7479       Candidate.Viable = false;
7480       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7481       return;
7482     }
7483     break;
7484 
7485   case ImplicitConversionSequence::BadConversion:
7486     Candidate.Viable = false;
7487     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7488     return;
7489 
7490   default:
7491     llvm_unreachable(
7492            "Can only end up with a standard conversion sequence or failure");
7493   }
7494 
7495   if (EnableIfAttr *FailedAttr =
7496           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7497     Candidate.Viable = false;
7498     Candidate.FailureKind = ovl_fail_enable_if;
7499     Candidate.DeductionFailure.Data = FailedAttr;
7500     return;
7501   }
7502 
7503   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7504       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7505     Candidate.Viable = false;
7506     Candidate.FailureKind = ovl_non_default_multiversion_function;
7507   }
7508 }
7509 
7510 /// Adds a conversion function template specialization
7511 /// candidate to the overload set, using template argument deduction
7512 /// to deduce the template arguments of the conversion function
7513 /// template from the type that we are converting to (C++
7514 /// [temp.deduct.conv]).
7515 void Sema::AddTemplateConversionCandidate(
7516     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7517     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7518     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7519     bool AllowExplicit, bool AllowResultConversion) {
7520   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7521          "Only conversion function templates permitted here");
7522 
7523   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7524     return;
7525 
7526   // If the function template has a non-dependent explicit specification,
7527   // exclude it now if appropriate; we are not permitted to perform deduction
7528   // and substitution in this case.
7529   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7530     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7531     Candidate.FoundDecl = FoundDecl;
7532     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7533     Candidate.Viable = false;
7534     Candidate.FailureKind = ovl_fail_explicit;
7535     return;
7536   }
7537 
7538   TemplateDeductionInfo Info(CandidateSet.getLocation());
7539   CXXConversionDecl *Specialization = nullptr;
7540   if (TemplateDeductionResult Result
7541         = DeduceTemplateArguments(FunctionTemplate, ToType,
7542                                   Specialization, Info)) {
7543     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7544     Candidate.FoundDecl = FoundDecl;
7545     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7546     Candidate.Viable = false;
7547     Candidate.FailureKind = ovl_fail_bad_deduction;
7548     Candidate.IsSurrogate = false;
7549     Candidate.IgnoreObjectArgument = false;
7550     Candidate.ExplicitCallArguments = 1;
7551     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7552                                                           Info);
7553     return;
7554   }
7555 
7556   // Add the conversion function template specialization produced by
7557   // template argument deduction as a candidate.
7558   assert(Specialization && "Missing function template specialization?");
7559   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7560                          CandidateSet, AllowObjCConversionOnExplicit,
7561                          AllowExplicit, AllowResultConversion);
7562 }
7563 
7564 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7565 /// converts the given @c Object to a function pointer via the
7566 /// conversion function @c Conversion, and then attempts to call it
7567 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7568 /// the type of function that we'll eventually be calling.
7569 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7570                                  DeclAccessPair FoundDecl,
7571                                  CXXRecordDecl *ActingContext,
7572                                  const FunctionProtoType *Proto,
7573                                  Expr *Object,
7574                                  ArrayRef<Expr *> Args,
7575                                  OverloadCandidateSet& CandidateSet) {
7576   if (!CandidateSet.isNewCandidate(Conversion))
7577     return;
7578 
7579   // Overload resolution is always an unevaluated context.
7580   EnterExpressionEvaluationContext Unevaluated(
7581       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7582 
7583   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7584   Candidate.FoundDecl = FoundDecl;
7585   Candidate.Function = nullptr;
7586   Candidate.Surrogate = Conversion;
7587   Candidate.Viable = true;
7588   Candidate.IsSurrogate = true;
7589   Candidate.IgnoreObjectArgument = false;
7590   Candidate.ExplicitCallArguments = Args.size();
7591 
7592   // Determine the implicit conversion sequence for the implicit
7593   // object parameter.
7594   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7595       *this, CandidateSet.getLocation(), Object->getType(),
7596       Object->Classify(Context), Conversion, ActingContext);
7597   if (ObjectInit.isBad()) {
7598     Candidate.Viable = false;
7599     Candidate.FailureKind = ovl_fail_bad_conversion;
7600     Candidate.Conversions[0] = ObjectInit;
7601     return;
7602   }
7603 
7604   // The first conversion is actually a user-defined conversion whose
7605   // first conversion is ObjectInit's standard conversion (which is
7606   // effectively a reference binding). Record it as such.
7607   Candidate.Conversions[0].setUserDefined();
7608   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7609   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7610   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7611   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7612   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7613   Candidate.Conversions[0].UserDefined.After
7614     = Candidate.Conversions[0].UserDefined.Before;
7615   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7616 
7617   // Find the
7618   unsigned NumParams = Proto->getNumParams();
7619 
7620   // (C++ 13.3.2p2): A candidate function having fewer than m
7621   // parameters is viable only if it has an ellipsis in its parameter
7622   // list (8.3.5).
7623   if (Args.size() > NumParams && !Proto->isVariadic()) {
7624     Candidate.Viable = false;
7625     Candidate.FailureKind = ovl_fail_too_many_arguments;
7626     return;
7627   }
7628 
7629   // Function types don't have any default arguments, so just check if
7630   // we have enough arguments.
7631   if (Args.size() < NumParams) {
7632     // Not enough arguments.
7633     Candidate.Viable = false;
7634     Candidate.FailureKind = ovl_fail_too_few_arguments;
7635     return;
7636   }
7637 
7638   // Determine the implicit conversion sequences for each of the
7639   // arguments.
7640   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7641     if (ArgIdx < NumParams) {
7642       // (C++ 13.3.2p3): for F to be a viable function, there shall
7643       // exist for each argument an implicit conversion sequence
7644       // (13.3.3.1) that converts that argument to the corresponding
7645       // parameter of F.
7646       QualType ParamType = Proto->getParamType(ArgIdx);
7647       Candidate.Conversions[ArgIdx + 1]
7648         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7649                                 /*SuppressUserConversions=*/false,
7650                                 /*InOverloadResolution=*/false,
7651                                 /*AllowObjCWritebackConversion=*/
7652                                   getLangOpts().ObjCAutoRefCount);
7653       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7654         Candidate.Viable = false;
7655         Candidate.FailureKind = ovl_fail_bad_conversion;
7656         return;
7657       }
7658     } else {
7659       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7660       // argument for which there is no corresponding parameter is
7661       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7662       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7663     }
7664   }
7665 
7666   if (EnableIfAttr *FailedAttr =
7667           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7668     Candidate.Viable = false;
7669     Candidate.FailureKind = ovl_fail_enable_if;
7670     Candidate.DeductionFailure.Data = FailedAttr;
7671     return;
7672   }
7673 }
7674 
7675 /// Add all of the non-member operator function declarations in the given
7676 /// function set to the overload candidate set.
7677 void Sema::AddNonMemberOperatorCandidates(
7678     const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7679     OverloadCandidateSet &CandidateSet,
7680     TemplateArgumentListInfo *ExplicitTemplateArgs) {
7681   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7682     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7683     ArrayRef<Expr *> FunctionArgs = Args;
7684 
7685     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7686     FunctionDecl *FD =
7687         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7688 
7689     // Don't consider rewritten functions if we're not rewriting.
7690     if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7691       continue;
7692 
7693     assert(!isa<CXXMethodDecl>(FD) &&
7694            "unqualified operator lookup found a member function");
7695 
7696     if (FunTmpl) {
7697       AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7698                                    FunctionArgs, CandidateSet);
7699       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7700         AddTemplateOverloadCandidate(
7701             FunTmpl, F.getPair(), ExplicitTemplateArgs,
7702             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7703             true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7704     } else {
7705       if (ExplicitTemplateArgs)
7706         continue;
7707       AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7708       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7709         AddOverloadCandidate(FD, F.getPair(),
7710                              {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7711                              false, false, true, false, ADLCallKind::NotADL,
7712                              None, OverloadCandidateParamOrder::Reversed);
7713     }
7714   }
7715 }
7716 
7717 /// Add overload candidates for overloaded operators that are
7718 /// member functions.
7719 ///
7720 /// Add the overloaded operator candidates that are member functions
7721 /// for the operator Op that was used in an operator expression such
7722 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7723 /// CandidateSet will store the added overload candidates. (C++
7724 /// [over.match.oper]).
7725 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7726                                        SourceLocation OpLoc,
7727                                        ArrayRef<Expr *> Args,
7728                                        OverloadCandidateSet &CandidateSet,
7729                                        OverloadCandidateParamOrder PO) {
7730   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7731 
7732   // C++ [over.match.oper]p3:
7733   //   For a unary operator @ with an operand of a type whose
7734   //   cv-unqualified version is T1, and for a binary operator @ with
7735   //   a left operand of a type whose cv-unqualified version is T1 and
7736   //   a right operand of a type whose cv-unqualified version is T2,
7737   //   three sets of candidate functions, designated member
7738   //   candidates, non-member candidates and built-in candidates, are
7739   //   constructed as follows:
7740   QualType T1 = Args[0]->getType();
7741 
7742   //     -- If T1 is a complete class type or a class currently being
7743   //        defined, the set of member candidates is the result of the
7744   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7745   //        the set of member candidates is empty.
7746   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7747     // Complete the type if it can be completed.
7748     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7749       return;
7750     // If the type is neither complete nor being defined, bail out now.
7751     if (!T1Rec->getDecl()->getDefinition())
7752       return;
7753 
7754     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7755     LookupQualifiedName(Operators, T1Rec->getDecl());
7756     Operators.suppressDiagnostics();
7757 
7758     for (LookupResult::iterator Oper = Operators.begin(),
7759                              OperEnd = Operators.end();
7760          Oper != OperEnd;
7761          ++Oper)
7762       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7763                          Args[0]->Classify(Context), Args.slice(1),
7764                          CandidateSet, /*SuppressUserConversion=*/false, PO);
7765   }
7766 }
7767 
7768 /// AddBuiltinCandidate - Add a candidate for a built-in
7769 /// operator. ResultTy and ParamTys are the result and parameter types
7770 /// of the built-in candidate, respectively. Args and NumArgs are the
7771 /// arguments being passed to the candidate. IsAssignmentOperator
7772 /// should be true when this built-in candidate is an assignment
7773 /// operator. NumContextualBoolArguments is the number of arguments
7774 /// (at the beginning of the argument list) that will be contextually
7775 /// converted to bool.
7776 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7777                                OverloadCandidateSet& CandidateSet,
7778                                bool IsAssignmentOperator,
7779                                unsigned NumContextualBoolArguments) {
7780   // Overload resolution is always an unevaluated context.
7781   EnterExpressionEvaluationContext Unevaluated(
7782       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7783 
7784   // Add this candidate
7785   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7786   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7787   Candidate.Function = nullptr;
7788   Candidate.IsSurrogate = false;
7789   Candidate.IgnoreObjectArgument = false;
7790   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7791 
7792   // Determine the implicit conversion sequences for each of the
7793   // arguments.
7794   Candidate.Viable = true;
7795   Candidate.ExplicitCallArguments = Args.size();
7796   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7797     // C++ [over.match.oper]p4:
7798     //   For the built-in assignment operators, conversions of the
7799     //   left operand are restricted as follows:
7800     //     -- no temporaries are introduced to hold the left operand, and
7801     //     -- no user-defined conversions are applied to the left
7802     //        operand to achieve a type match with the left-most
7803     //        parameter of a built-in candidate.
7804     //
7805     // We block these conversions by turning off user-defined
7806     // conversions, since that is the only way that initialization of
7807     // a reference to a non-class type can occur from something that
7808     // is not of the same type.
7809     if (ArgIdx < NumContextualBoolArguments) {
7810       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7811              "Contextual conversion to bool requires bool type");
7812       Candidate.Conversions[ArgIdx]
7813         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7814     } else {
7815       Candidate.Conversions[ArgIdx]
7816         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7817                                 ArgIdx == 0 && IsAssignmentOperator,
7818                                 /*InOverloadResolution=*/false,
7819                                 /*AllowObjCWritebackConversion=*/
7820                                   getLangOpts().ObjCAutoRefCount);
7821     }
7822     if (Candidate.Conversions[ArgIdx].isBad()) {
7823       Candidate.Viable = false;
7824       Candidate.FailureKind = ovl_fail_bad_conversion;
7825       break;
7826     }
7827   }
7828 }
7829 
7830 namespace {
7831 
7832 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7833 /// candidate operator functions for built-in operators (C++
7834 /// [over.built]). The types are separated into pointer types and
7835 /// enumeration types.
7836 class BuiltinCandidateTypeSet  {
7837   /// TypeSet - A set of types.
7838   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7839                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7840 
7841   /// PointerTypes - The set of pointer types that will be used in the
7842   /// built-in candidates.
7843   TypeSet PointerTypes;
7844 
7845   /// MemberPointerTypes - The set of member pointer types that will be
7846   /// used in the built-in candidates.
7847   TypeSet MemberPointerTypes;
7848 
7849   /// EnumerationTypes - The set of enumeration types that will be
7850   /// used in the built-in candidates.
7851   TypeSet EnumerationTypes;
7852 
7853   /// The set of vector types that will be used in the built-in
7854   /// candidates.
7855   TypeSet VectorTypes;
7856 
7857   /// The set of matrix types that will be used in the built-in
7858   /// candidates.
7859   TypeSet MatrixTypes;
7860 
7861   /// A flag indicating non-record types are viable candidates
7862   bool HasNonRecordTypes;
7863 
7864   /// A flag indicating whether either arithmetic or enumeration types
7865   /// were present in the candidate set.
7866   bool HasArithmeticOrEnumeralTypes;
7867 
7868   /// A flag indicating whether the nullptr type was present in the
7869   /// candidate set.
7870   bool HasNullPtrType;
7871 
7872   /// Sema - The semantic analysis instance where we are building the
7873   /// candidate type set.
7874   Sema &SemaRef;
7875 
7876   /// Context - The AST context in which we will build the type sets.
7877   ASTContext &Context;
7878 
7879   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7880                                                const Qualifiers &VisibleQuals);
7881   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7882 
7883 public:
7884   /// iterator - Iterates through the types that are part of the set.
7885   typedef TypeSet::iterator iterator;
7886 
7887   BuiltinCandidateTypeSet(Sema &SemaRef)
7888     : HasNonRecordTypes(false),
7889       HasArithmeticOrEnumeralTypes(false),
7890       HasNullPtrType(false),
7891       SemaRef(SemaRef),
7892       Context(SemaRef.Context) { }
7893 
7894   void AddTypesConvertedFrom(QualType Ty,
7895                              SourceLocation Loc,
7896                              bool AllowUserConversions,
7897                              bool AllowExplicitConversions,
7898                              const Qualifiers &VisibleTypeConversionsQuals);
7899 
7900   llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
7901   llvm::iterator_range<iterator> member_pointer_types() {
7902     return MemberPointerTypes;
7903   }
7904   llvm::iterator_range<iterator> enumeration_types() {
7905     return EnumerationTypes;
7906   }
7907   llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
7908   llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7909 
7910   bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
7911   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7912   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7913   bool hasNullPtrType() const { return HasNullPtrType; }
7914 };
7915 
7916 } // end anonymous namespace
7917 
7918 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7919 /// the set of pointer types along with any more-qualified variants of
7920 /// that type. For example, if @p Ty is "int const *", this routine
7921 /// will add "int const *", "int const volatile *", "int const
7922 /// restrict *", and "int const volatile restrict *" to the set of
7923 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7924 /// false otherwise.
7925 ///
7926 /// FIXME: what to do about extended qualifiers?
7927 bool
7928 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7929                                              const Qualifiers &VisibleQuals) {
7930 
7931   // Insert this type.
7932   if (!PointerTypes.insert(Ty))
7933     return false;
7934 
7935   QualType PointeeTy;
7936   const PointerType *PointerTy = Ty->getAs<PointerType>();
7937   bool buildObjCPtr = false;
7938   if (!PointerTy) {
7939     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7940     PointeeTy = PTy->getPointeeType();
7941     buildObjCPtr = true;
7942   } else {
7943     PointeeTy = PointerTy->getPointeeType();
7944   }
7945 
7946   // Don't add qualified variants of arrays. For one, they're not allowed
7947   // (the qualifier would sink to the element type), and for another, the
7948   // only overload situation where it matters is subscript or pointer +- int,
7949   // and those shouldn't have qualifier variants anyway.
7950   if (PointeeTy->isArrayType())
7951     return true;
7952 
7953   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7954   bool hasVolatile = VisibleQuals.hasVolatile();
7955   bool hasRestrict = VisibleQuals.hasRestrict();
7956 
7957   // Iterate through all strict supersets of BaseCVR.
7958   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7959     if ((CVR | BaseCVR) != CVR) continue;
7960     // Skip over volatile if no volatile found anywhere in the types.
7961     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7962 
7963     // Skip over restrict if no restrict found anywhere in the types, or if
7964     // the type cannot be restrict-qualified.
7965     if ((CVR & Qualifiers::Restrict) &&
7966         (!hasRestrict ||
7967          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7968       continue;
7969 
7970     // Build qualified pointee type.
7971     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7972 
7973     // Build qualified pointer type.
7974     QualType QPointerTy;
7975     if (!buildObjCPtr)
7976       QPointerTy = Context.getPointerType(QPointeeTy);
7977     else
7978       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7979 
7980     // Insert qualified pointer type.
7981     PointerTypes.insert(QPointerTy);
7982   }
7983 
7984   return true;
7985 }
7986 
7987 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7988 /// to the set of pointer types along with any more-qualified variants of
7989 /// that type. For example, if @p Ty is "int const *", this routine
7990 /// will add "int const *", "int const volatile *", "int const
7991 /// restrict *", and "int const volatile restrict *" to the set of
7992 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7993 /// false otherwise.
7994 ///
7995 /// FIXME: what to do about extended qualifiers?
7996 bool
7997 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7998     QualType Ty) {
7999   // Insert this type.
8000   if (!MemberPointerTypes.insert(Ty))
8001     return false;
8002 
8003   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
8004   assert(PointerTy && "type was not a member pointer type!");
8005 
8006   QualType PointeeTy = PointerTy->getPointeeType();
8007   // Don't add qualified variants of arrays. For one, they're not allowed
8008   // (the qualifier would sink to the element type), and for another, the
8009   // only overload situation where it matters is subscript or pointer +- int,
8010   // and those shouldn't have qualifier variants anyway.
8011   if (PointeeTy->isArrayType())
8012     return true;
8013   const Type *ClassTy = PointerTy->getClass();
8014 
8015   // Iterate through all strict supersets of the pointee type's CVR
8016   // qualifiers.
8017   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
8018   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
8019     if ((CVR | BaseCVR) != CVR) continue;
8020 
8021     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
8022     MemberPointerTypes.insert(
8023       Context.getMemberPointerType(QPointeeTy, ClassTy));
8024   }
8025 
8026   return true;
8027 }
8028 
8029 /// AddTypesConvertedFrom - Add each of the types to which the type @p
8030 /// Ty can be implicit converted to the given set of @p Types. We're
8031 /// primarily interested in pointer types and enumeration types. We also
8032 /// take member pointer types, for the conditional operator.
8033 /// AllowUserConversions is true if we should look at the conversion
8034 /// functions of a class type, and AllowExplicitConversions if we
8035 /// should also include the explicit conversion functions of a class
8036 /// type.
8037 void
8038 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
8039                                                SourceLocation Loc,
8040                                                bool AllowUserConversions,
8041                                                bool AllowExplicitConversions,
8042                                                const Qualifiers &VisibleQuals) {
8043   // Only deal with canonical types.
8044   Ty = Context.getCanonicalType(Ty);
8045 
8046   // Look through reference types; they aren't part of the type of an
8047   // expression for the purposes of conversions.
8048   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
8049     Ty = RefTy->getPointeeType();
8050 
8051   // If we're dealing with an array type, decay to the pointer.
8052   if (Ty->isArrayType())
8053     Ty = SemaRef.Context.getArrayDecayedType(Ty);
8054 
8055   // Otherwise, we don't care about qualifiers on the type.
8056   Ty = Ty.getLocalUnqualifiedType();
8057 
8058   // Flag if we ever add a non-record type.
8059   const RecordType *TyRec = Ty->getAs<RecordType>();
8060   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8061 
8062   // Flag if we encounter an arithmetic type.
8063   HasArithmeticOrEnumeralTypes =
8064     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8065 
8066   if (Ty->isObjCIdType() || Ty->isObjCClassType())
8067     PointerTypes.insert(Ty);
8068   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8069     // Insert our type, and its more-qualified variants, into the set
8070     // of types.
8071     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8072       return;
8073   } else if (Ty->isMemberPointerType()) {
8074     // Member pointers are far easier, since the pointee can't be converted.
8075     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8076       return;
8077   } else if (Ty->isEnumeralType()) {
8078     HasArithmeticOrEnumeralTypes = true;
8079     EnumerationTypes.insert(Ty);
8080   } else if (Ty->isVectorType()) {
8081     // We treat vector types as arithmetic types in many contexts as an
8082     // extension.
8083     HasArithmeticOrEnumeralTypes = true;
8084     VectorTypes.insert(Ty);
8085   } else if (Ty->isMatrixType()) {
8086     // Similar to vector types, we treat vector types as arithmetic types in
8087     // many contexts as an extension.
8088     HasArithmeticOrEnumeralTypes = true;
8089     MatrixTypes.insert(Ty);
8090   } else if (Ty->isNullPtrType()) {
8091     HasNullPtrType = true;
8092   } else if (AllowUserConversions && TyRec) {
8093     // No conversion functions in incomplete types.
8094     if (!SemaRef.isCompleteType(Loc, Ty))
8095       return;
8096 
8097     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8098     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8099       if (isa<UsingShadowDecl>(D))
8100         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8101 
8102       // Skip conversion function templates; they don't tell us anything
8103       // about which builtin types we can convert to.
8104       if (isa<FunctionTemplateDecl>(D))
8105         continue;
8106 
8107       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8108       if (AllowExplicitConversions || !Conv->isExplicit()) {
8109         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8110                               VisibleQuals);
8111       }
8112     }
8113   }
8114 }
8115 /// Helper function for adjusting address spaces for the pointer or reference
8116 /// operands of builtin operators depending on the argument.
8117 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8118                                                         Expr *Arg) {
8119   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8120 }
8121 
8122 /// Helper function for AddBuiltinOperatorCandidates() that adds
8123 /// the volatile- and non-volatile-qualified assignment operators for the
8124 /// given type to the candidate set.
8125 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8126                                                    QualType T,
8127                                                    ArrayRef<Expr *> Args,
8128                                     OverloadCandidateSet &CandidateSet) {
8129   QualType ParamTypes[2];
8130 
8131   // T& operator=(T&, T)
8132   ParamTypes[0] = S.Context.getLValueReferenceType(
8133       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8134   ParamTypes[1] = T;
8135   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8136                         /*IsAssignmentOperator=*/true);
8137 
8138   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8139     // volatile T& operator=(volatile T&, T)
8140     ParamTypes[0] = S.Context.getLValueReferenceType(
8141         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8142                                                 Args[0]));
8143     ParamTypes[1] = T;
8144     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8145                           /*IsAssignmentOperator=*/true);
8146   }
8147 }
8148 
8149 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8150 /// if any, found in visible type conversion functions found in ArgExpr's type.
8151 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8152     Qualifiers VRQuals;
8153     const RecordType *TyRec;
8154     if (const MemberPointerType *RHSMPType =
8155         ArgExpr->getType()->getAs<MemberPointerType>())
8156       TyRec = RHSMPType->getClass()->getAs<RecordType>();
8157     else
8158       TyRec = ArgExpr->getType()->getAs<RecordType>();
8159     if (!TyRec) {
8160       // Just to be safe, assume the worst case.
8161       VRQuals.addVolatile();
8162       VRQuals.addRestrict();
8163       return VRQuals;
8164     }
8165 
8166     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8167     if (!ClassDecl->hasDefinition())
8168       return VRQuals;
8169 
8170     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8171       if (isa<UsingShadowDecl>(D))
8172         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8173       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8174         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8175         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8176           CanTy = ResTypeRef->getPointeeType();
8177         // Need to go down the pointer/mempointer chain and add qualifiers
8178         // as see them.
8179         bool done = false;
8180         while (!done) {
8181           if (CanTy.isRestrictQualified())
8182             VRQuals.addRestrict();
8183           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8184             CanTy = ResTypePtr->getPointeeType();
8185           else if (const MemberPointerType *ResTypeMPtr =
8186                 CanTy->getAs<MemberPointerType>())
8187             CanTy = ResTypeMPtr->getPointeeType();
8188           else
8189             done = true;
8190           if (CanTy.isVolatileQualified())
8191             VRQuals.addVolatile();
8192           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8193             return VRQuals;
8194         }
8195       }
8196     }
8197     return VRQuals;
8198 }
8199 
8200 namespace {
8201 
8202 /// Helper class to manage the addition of builtin operator overload
8203 /// candidates. It provides shared state and utility methods used throughout
8204 /// the process, as well as a helper method to add each group of builtin
8205 /// operator overloads from the standard to a candidate set.
8206 class BuiltinOperatorOverloadBuilder {
8207   // Common instance state available to all overload candidate addition methods.
8208   Sema &S;
8209   ArrayRef<Expr *> Args;
8210   Qualifiers VisibleTypeConversionsQuals;
8211   bool HasArithmeticOrEnumeralCandidateType;
8212   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8213   OverloadCandidateSet &CandidateSet;
8214 
8215   static constexpr int ArithmeticTypesCap = 24;
8216   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8217 
8218   // Define some indices used to iterate over the arithmetic types in
8219   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
8220   // types are that preserved by promotion (C++ [over.built]p2).
8221   unsigned FirstIntegralType,
8222            LastIntegralType;
8223   unsigned FirstPromotedIntegralType,
8224            LastPromotedIntegralType;
8225   unsigned FirstPromotedArithmeticType,
8226            LastPromotedArithmeticType;
8227   unsigned NumArithmeticTypes;
8228 
8229   void InitArithmeticTypes() {
8230     // Start of promoted types.
8231     FirstPromotedArithmeticType = 0;
8232     ArithmeticTypes.push_back(S.Context.FloatTy);
8233     ArithmeticTypes.push_back(S.Context.DoubleTy);
8234     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8235     if (S.Context.getTargetInfo().hasFloat128Type())
8236       ArithmeticTypes.push_back(S.Context.Float128Ty);
8237     if (S.Context.getTargetInfo().hasIbm128Type())
8238       ArithmeticTypes.push_back(S.Context.Ibm128Ty);
8239 
8240     // Start of integral types.
8241     FirstIntegralType = ArithmeticTypes.size();
8242     FirstPromotedIntegralType = ArithmeticTypes.size();
8243     ArithmeticTypes.push_back(S.Context.IntTy);
8244     ArithmeticTypes.push_back(S.Context.LongTy);
8245     ArithmeticTypes.push_back(S.Context.LongLongTy);
8246     if (S.Context.getTargetInfo().hasInt128Type() ||
8247         (S.Context.getAuxTargetInfo() &&
8248          S.Context.getAuxTargetInfo()->hasInt128Type()))
8249       ArithmeticTypes.push_back(S.Context.Int128Ty);
8250     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8251     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8252     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8253     if (S.Context.getTargetInfo().hasInt128Type() ||
8254         (S.Context.getAuxTargetInfo() &&
8255          S.Context.getAuxTargetInfo()->hasInt128Type()))
8256       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8257     LastPromotedIntegralType = ArithmeticTypes.size();
8258     LastPromotedArithmeticType = ArithmeticTypes.size();
8259     // End of promoted types.
8260 
8261     ArithmeticTypes.push_back(S.Context.BoolTy);
8262     ArithmeticTypes.push_back(S.Context.CharTy);
8263     ArithmeticTypes.push_back(S.Context.WCharTy);
8264     if (S.Context.getLangOpts().Char8)
8265       ArithmeticTypes.push_back(S.Context.Char8Ty);
8266     ArithmeticTypes.push_back(S.Context.Char16Ty);
8267     ArithmeticTypes.push_back(S.Context.Char32Ty);
8268     ArithmeticTypes.push_back(S.Context.SignedCharTy);
8269     ArithmeticTypes.push_back(S.Context.ShortTy);
8270     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8271     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8272     LastIntegralType = ArithmeticTypes.size();
8273     NumArithmeticTypes = ArithmeticTypes.size();
8274     // End of integral types.
8275     // FIXME: What about complex? What about half?
8276 
8277     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8278            "Enough inline storage for all arithmetic types.");
8279   }
8280 
8281   /// Helper method to factor out the common pattern of adding overloads
8282   /// for '++' and '--' builtin operators.
8283   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8284                                            bool HasVolatile,
8285                                            bool HasRestrict) {
8286     QualType ParamTypes[2] = {
8287       S.Context.getLValueReferenceType(CandidateTy),
8288       S.Context.IntTy
8289     };
8290 
8291     // Non-volatile version.
8292     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8293 
8294     // Use a heuristic to reduce number of builtin candidates in the set:
8295     // add volatile version only if there are conversions to a volatile type.
8296     if (HasVolatile) {
8297       ParamTypes[0] =
8298         S.Context.getLValueReferenceType(
8299           S.Context.getVolatileType(CandidateTy));
8300       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8301     }
8302 
8303     // Add restrict version only if there are conversions to a restrict type
8304     // and our candidate type is a non-restrict-qualified pointer.
8305     if (HasRestrict && CandidateTy->isAnyPointerType() &&
8306         !CandidateTy.isRestrictQualified()) {
8307       ParamTypes[0]
8308         = S.Context.getLValueReferenceType(
8309             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8310       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8311 
8312       if (HasVolatile) {
8313         ParamTypes[0]
8314           = S.Context.getLValueReferenceType(
8315               S.Context.getCVRQualifiedType(CandidateTy,
8316                                             (Qualifiers::Volatile |
8317                                              Qualifiers::Restrict)));
8318         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8319       }
8320     }
8321 
8322   }
8323 
8324   /// Helper to add an overload candidate for a binary builtin with types \p L
8325   /// and \p R.
8326   void AddCandidate(QualType L, QualType R) {
8327     QualType LandR[2] = {L, R};
8328     S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8329   }
8330 
8331 public:
8332   BuiltinOperatorOverloadBuilder(
8333     Sema &S, ArrayRef<Expr *> Args,
8334     Qualifiers VisibleTypeConversionsQuals,
8335     bool HasArithmeticOrEnumeralCandidateType,
8336     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8337     OverloadCandidateSet &CandidateSet)
8338     : S(S), Args(Args),
8339       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8340       HasArithmeticOrEnumeralCandidateType(
8341         HasArithmeticOrEnumeralCandidateType),
8342       CandidateTypes(CandidateTypes),
8343       CandidateSet(CandidateSet) {
8344 
8345     InitArithmeticTypes();
8346   }
8347 
8348   // Increment is deprecated for bool since C++17.
8349   //
8350   // C++ [over.built]p3:
8351   //
8352   //   For every pair (T, VQ), where T is an arithmetic type other
8353   //   than bool, and VQ is either volatile or empty, there exist
8354   //   candidate operator functions of the form
8355   //
8356   //       VQ T&      operator++(VQ T&);
8357   //       T          operator++(VQ T&, int);
8358   //
8359   // C++ [over.built]p4:
8360   //
8361   //   For every pair (T, VQ), where T is an arithmetic type other
8362   //   than bool, and VQ is either volatile or empty, there exist
8363   //   candidate operator functions of the form
8364   //
8365   //       VQ T&      operator--(VQ T&);
8366   //       T          operator--(VQ T&, int);
8367   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8368     if (!HasArithmeticOrEnumeralCandidateType)
8369       return;
8370 
8371     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8372       const auto TypeOfT = ArithmeticTypes[Arith];
8373       if (TypeOfT == S.Context.BoolTy) {
8374         if (Op == OO_MinusMinus)
8375           continue;
8376         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8377           continue;
8378       }
8379       addPlusPlusMinusMinusStyleOverloads(
8380         TypeOfT,
8381         VisibleTypeConversionsQuals.hasVolatile(),
8382         VisibleTypeConversionsQuals.hasRestrict());
8383     }
8384   }
8385 
8386   // C++ [over.built]p5:
8387   //
8388   //   For every pair (T, VQ), where T is a cv-qualified or
8389   //   cv-unqualified object type, and VQ is either volatile or
8390   //   empty, there exist candidate operator functions of the form
8391   //
8392   //       T*VQ&      operator++(T*VQ&);
8393   //       T*VQ&      operator--(T*VQ&);
8394   //       T*         operator++(T*VQ&, int);
8395   //       T*         operator--(T*VQ&, int);
8396   void addPlusPlusMinusMinusPointerOverloads() {
8397     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8398       // Skip pointer types that aren't pointers to object types.
8399       if (!PtrTy->getPointeeType()->isObjectType())
8400         continue;
8401 
8402       addPlusPlusMinusMinusStyleOverloads(
8403           PtrTy,
8404           (!PtrTy.isVolatileQualified() &&
8405            VisibleTypeConversionsQuals.hasVolatile()),
8406           (!PtrTy.isRestrictQualified() &&
8407            VisibleTypeConversionsQuals.hasRestrict()));
8408     }
8409   }
8410 
8411   // C++ [over.built]p6:
8412   //   For every cv-qualified or cv-unqualified object type T, there
8413   //   exist candidate operator functions of the form
8414   //
8415   //       T&         operator*(T*);
8416   //
8417   // C++ [over.built]p7:
8418   //   For every function type T that does not have cv-qualifiers or a
8419   //   ref-qualifier, there exist candidate operator functions of the form
8420   //       T&         operator*(T*);
8421   void addUnaryStarPointerOverloads() {
8422     for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8423       QualType PointeeTy = ParamTy->getPointeeType();
8424       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8425         continue;
8426 
8427       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8428         if (Proto->getMethodQuals() || Proto->getRefQualifier())
8429           continue;
8430 
8431       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8432     }
8433   }
8434 
8435   // C++ [over.built]p9:
8436   //  For every promoted arithmetic type T, there exist candidate
8437   //  operator functions of the form
8438   //
8439   //       T         operator+(T);
8440   //       T         operator-(T);
8441   void addUnaryPlusOrMinusArithmeticOverloads() {
8442     if (!HasArithmeticOrEnumeralCandidateType)
8443       return;
8444 
8445     for (unsigned Arith = FirstPromotedArithmeticType;
8446          Arith < LastPromotedArithmeticType; ++Arith) {
8447       QualType ArithTy = ArithmeticTypes[Arith];
8448       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8449     }
8450 
8451     // Extension: We also add these operators for vector types.
8452     for (QualType VecTy : CandidateTypes[0].vector_types())
8453       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8454   }
8455 
8456   // C++ [over.built]p8:
8457   //   For every type T, there exist candidate operator functions of
8458   //   the form
8459   //
8460   //       T*         operator+(T*);
8461   void addUnaryPlusPointerOverloads() {
8462     for (QualType ParamTy : CandidateTypes[0].pointer_types())
8463       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8464   }
8465 
8466   // C++ [over.built]p10:
8467   //   For every promoted integral type T, there exist candidate
8468   //   operator functions of the form
8469   //
8470   //        T         operator~(T);
8471   void addUnaryTildePromotedIntegralOverloads() {
8472     if (!HasArithmeticOrEnumeralCandidateType)
8473       return;
8474 
8475     for (unsigned Int = FirstPromotedIntegralType;
8476          Int < LastPromotedIntegralType; ++Int) {
8477       QualType IntTy = ArithmeticTypes[Int];
8478       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8479     }
8480 
8481     // Extension: We also add this operator for vector types.
8482     for (QualType VecTy : CandidateTypes[0].vector_types())
8483       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8484   }
8485 
8486   // C++ [over.match.oper]p16:
8487   //   For every pointer to member type T or type std::nullptr_t, there
8488   //   exist candidate operator functions of the form
8489   //
8490   //        bool operator==(T,T);
8491   //        bool operator!=(T,T);
8492   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8493     /// Set of (canonical) types that we've already handled.
8494     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8495 
8496     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8497       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8498         // Don't add the same builtin candidate twice.
8499         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8500           continue;
8501 
8502         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8503         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8504       }
8505 
8506       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8507         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8508         if (AddedTypes.insert(NullPtrTy).second) {
8509           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8510           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8511         }
8512       }
8513     }
8514   }
8515 
8516   // C++ [over.built]p15:
8517   //
8518   //   For every T, where T is an enumeration type or a pointer type,
8519   //   there exist candidate operator functions of the form
8520   //
8521   //        bool       operator<(T, T);
8522   //        bool       operator>(T, T);
8523   //        bool       operator<=(T, T);
8524   //        bool       operator>=(T, T);
8525   //        bool       operator==(T, T);
8526   //        bool       operator!=(T, T);
8527   //           R       operator<=>(T, T)
8528   void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8529     // C++ [over.match.oper]p3:
8530     //   [...]the built-in candidates include all of the candidate operator
8531     //   functions defined in 13.6 that, compared to the given operator, [...]
8532     //   do not have the same parameter-type-list as any non-template non-member
8533     //   candidate.
8534     //
8535     // Note that in practice, this only affects enumeration types because there
8536     // aren't any built-in candidates of record type, and a user-defined operator
8537     // must have an operand of record or enumeration type. Also, the only other
8538     // overloaded operator with enumeration arguments, operator=,
8539     // cannot be overloaded for enumeration types, so this is the only place
8540     // where we must suppress candidates like this.
8541     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8542       UserDefinedBinaryOperators;
8543 
8544     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8545       if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8546         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8547                                          CEnd = CandidateSet.end();
8548              C != CEnd; ++C) {
8549           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8550             continue;
8551 
8552           if (C->Function->isFunctionTemplateSpecialization())
8553             continue;
8554 
8555           // We interpret "same parameter-type-list" as applying to the
8556           // "synthesized candidate, with the order of the two parameters
8557           // reversed", not to the original function.
8558           bool Reversed = C->isReversed();
8559           QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8560                                         ->getType()
8561                                         .getUnqualifiedType();
8562           QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8563                                          ->getType()
8564                                          .getUnqualifiedType();
8565 
8566           // Skip if either parameter isn't of enumeral type.
8567           if (!FirstParamType->isEnumeralType() ||
8568               !SecondParamType->isEnumeralType())
8569             continue;
8570 
8571           // Add this operator to the set of known user-defined operators.
8572           UserDefinedBinaryOperators.insert(
8573             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8574                            S.Context.getCanonicalType(SecondParamType)));
8575         }
8576       }
8577     }
8578 
8579     /// Set of (canonical) types that we've already handled.
8580     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8581 
8582     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8583       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8584         // Don't add the same builtin candidate twice.
8585         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8586           continue;
8587         if (IsSpaceship && PtrTy->isFunctionPointerType())
8588           continue;
8589 
8590         QualType ParamTypes[2] = {PtrTy, PtrTy};
8591         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8592       }
8593       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8594         CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8595 
8596         // Don't add the same builtin candidate twice, or if a user defined
8597         // candidate exists.
8598         if (!AddedTypes.insert(CanonType).second ||
8599             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8600                                                             CanonType)))
8601           continue;
8602         QualType ParamTypes[2] = {EnumTy, EnumTy};
8603         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8604       }
8605     }
8606   }
8607 
8608   // C++ [over.built]p13:
8609   //
8610   //   For every cv-qualified or cv-unqualified object type T
8611   //   there exist candidate operator functions of the form
8612   //
8613   //      T*         operator+(T*, ptrdiff_t);
8614   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8615   //      T*         operator-(T*, ptrdiff_t);
8616   //      T*         operator+(ptrdiff_t, T*);
8617   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8618   //
8619   // C++ [over.built]p14:
8620   //
8621   //   For every T, where T is a pointer to object type, there
8622   //   exist candidate operator functions of the form
8623   //
8624   //      ptrdiff_t  operator-(T, T);
8625   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8626     /// Set of (canonical) types that we've already handled.
8627     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8628 
8629     for (int Arg = 0; Arg < 2; ++Arg) {
8630       QualType AsymmetricParamTypes[2] = {
8631         S.Context.getPointerDiffType(),
8632         S.Context.getPointerDiffType(),
8633       };
8634       for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8635         QualType PointeeTy = PtrTy->getPointeeType();
8636         if (!PointeeTy->isObjectType())
8637           continue;
8638 
8639         AsymmetricParamTypes[Arg] = PtrTy;
8640         if (Arg == 0 || Op == OO_Plus) {
8641           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8642           // T* operator+(ptrdiff_t, T*);
8643           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8644         }
8645         if (Op == OO_Minus) {
8646           // ptrdiff_t operator-(T, T);
8647           if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8648             continue;
8649 
8650           QualType ParamTypes[2] = {PtrTy, PtrTy};
8651           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8652         }
8653       }
8654     }
8655   }
8656 
8657   // C++ [over.built]p12:
8658   //
8659   //   For every pair of promoted arithmetic types L and R, there
8660   //   exist candidate operator functions of the form
8661   //
8662   //        LR         operator*(L, R);
8663   //        LR         operator/(L, R);
8664   //        LR         operator+(L, R);
8665   //        LR         operator-(L, R);
8666   //        bool       operator<(L, R);
8667   //        bool       operator>(L, R);
8668   //        bool       operator<=(L, R);
8669   //        bool       operator>=(L, R);
8670   //        bool       operator==(L, R);
8671   //        bool       operator!=(L, R);
8672   //
8673   //   where LR is the result of the usual arithmetic conversions
8674   //   between types L and R.
8675   //
8676   // C++ [over.built]p24:
8677   //
8678   //   For every pair of promoted arithmetic types L and R, there exist
8679   //   candidate operator functions of the form
8680   //
8681   //        LR       operator?(bool, L, R);
8682   //
8683   //   where LR is the result of the usual arithmetic conversions
8684   //   between types L and R.
8685   // Our candidates ignore the first parameter.
8686   void addGenericBinaryArithmeticOverloads() {
8687     if (!HasArithmeticOrEnumeralCandidateType)
8688       return;
8689 
8690     for (unsigned Left = FirstPromotedArithmeticType;
8691          Left < LastPromotedArithmeticType; ++Left) {
8692       for (unsigned Right = FirstPromotedArithmeticType;
8693            Right < LastPromotedArithmeticType; ++Right) {
8694         QualType LandR[2] = { ArithmeticTypes[Left],
8695                               ArithmeticTypes[Right] };
8696         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8697       }
8698     }
8699 
8700     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8701     // conditional operator for vector types.
8702     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8703       for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8704         QualType LandR[2] = {Vec1Ty, Vec2Ty};
8705         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8706       }
8707   }
8708 
8709   /// Add binary operator overloads for each candidate matrix type M1, M2:
8710   ///  * (M1, M1) -> M1
8711   ///  * (M1, M1.getElementType()) -> M1
8712   ///  * (M2.getElementType(), M2) -> M2
8713   ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
8714   void addMatrixBinaryArithmeticOverloads() {
8715     if (!HasArithmeticOrEnumeralCandidateType)
8716       return;
8717 
8718     for (QualType M1 : CandidateTypes[0].matrix_types()) {
8719       AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8720       AddCandidate(M1, M1);
8721     }
8722 
8723     for (QualType M2 : CandidateTypes[1].matrix_types()) {
8724       AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8725       if (!CandidateTypes[0].containsMatrixType(M2))
8726         AddCandidate(M2, M2);
8727     }
8728   }
8729 
8730   // C++2a [over.built]p14:
8731   //
8732   //   For every integral type T there exists a candidate operator function
8733   //   of the form
8734   //
8735   //        std::strong_ordering operator<=>(T, T)
8736   //
8737   // C++2a [over.built]p15:
8738   //
8739   //   For every pair of floating-point types L and R, there exists a candidate
8740   //   operator function of the form
8741   //
8742   //       std::partial_ordering operator<=>(L, R);
8743   //
8744   // FIXME: The current specification for integral types doesn't play nice with
8745   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8746   // comparisons. Under the current spec this can lead to ambiguity during
8747   // overload resolution. For example:
8748   //
8749   //   enum A : int {a};
8750   //   auto x = (a <=> (long)42);
8751   //
8752   //   error: call is ambiguous for arguments 'A' and 'long'.
8753   //   note: candidate operator<=>(int, int)
8754   //   note: candidate operator<=>(long, long)
8755   //
8756   // To avoid this error, this function deviates from the specification and adds
8757   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8758   // arithmetic types (the same as the generic relational overloads).
8759   //
8760   // For now this function acts as a placeholder.
8761   void addThreeWayArithmeticOverloads() {
8762     addGenericBinaryArithmeticOverloads();
8763   }
8764 
8765   // C++ [over.built]p17:
8766   //
8767   //   For every pair of promoted integral types L and R, there
8768   //   exist candidate operator functions of the form
8769   //
8770   //      LR         operator%(L, R);
8771   //      LR         operator&(L, R);
8772   //      LR         operator^(L, R);
8773   //      LR         operator|(L, R);
8774   //      L          operator<<(L, R);
8775   //      L          operator>>(L, R);
8776   //
8777   //   where LR is the result of the usual arithmetic conversions
8778   //   between types L and R.
8779   void addBinaryBitwiseArithmeticOverloads() {
8780     if (!HasArithmeticOrEnumeralCandidateType)
8781       return;
8782 
8783     for (unsigned Left = FirstPromotedIntegralType;
8784          Left < LastPromotedIntegralType; ++Left) {
8785       for (unsigned Right = FirstPromotedIntegralType;
8786            Right < LastPromotedIntegralType; ++Right) {
8787         QualType LandR[2] = { ArithmeticTypes[Left],
8788                               ArithmeticTypes[Right] };
8789         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8790       }
8791     }
8792   }
8793 
8794   // C++ [over.built]p20:
8795   //
8796   //   For every pair (T, VQ), where T is an enumeration or
8797   //   pointer to member type and VQ is either volatile or
8798   //   empty, there exist candidate operator functions of the form
8799   //
8800   //        VQ T&      operator=(VQ T&, T);
8801   void addAssignmentMemberPointerOrEnumeralOverloads() {
8802     /// Set of (canonical) types that we've already handled.
8803     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8804 
8805     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8806       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8807         if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8808           continue;
8809 
8810         AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8811       }
8812 
8813       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8814         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8815           continue;
8816 
8817         AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8818       }
8819     }
8820   }
8821 
8822   // C++ [over.built]p19:
8823   //
8824   //   For every pair (T, VQ), where T is any type and VQ is either
8825   //   volatile or empty, there exist candidate operator functions
8826   //   of the form
8827   //
8828   //        T*VQ&      operator=(T*VQ&, T*);
8829   //
8830   // C++ [over.built]p21:
8831   //
8832   //   For every pair (T, VQ), where T is a cv-qualified or
8833   //   cv-unqualified object type and VQ is either volatile or
8834   //   empty, there exist candidate operator functions of the form
8835   //
8836   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8837   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8838   void addAssignmentPointerOverloads(bool isEqualOp) {
8839     /// Set of (canonical) types that we've already handled.
8840     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8841 
8842     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8843       // If this is operator=, keep track of the builtin candidates we added.
8844       if (isEqualOp)
8845         AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8846       else if (!PtrTy->getPointeeType()->isObjectType())
8847         continue;
8848 
8849       // non-volatile version
8850       QualType ParamTypes[2] = {
8851           S.Context.getLValueReferenceType(PtrTy),
8852           isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8853       };
8854       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8855                             /*IsAssignmentOperator=*/ isEqualOp);
8856 
8857       bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8858                           VisibleTypeConversionsQuals.hasVolatile();
8859       if (NeedVolatile) {
8860         // volatile version
8861         ParamTypes[0] =
8862             S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8863         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8864                               /*IsAssignmentOperator=*/isEqualOp);
8865       }
8866 
8867       if (!PtrTy.isRestrictQualified() &&
8868           VisibleTypeConversionsQuals.hasRestrict()) {
8869         // restrict version
8870         ParamTypes[0] =
8871             S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8872         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8873                               /*IsAssignmentOperator=*/isEqualOp);
8874 
8875         if (NeedVolatile) {
8876           // volatile restrict version
8877           ParamTypes[0] =
8878               S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8879                   PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8880           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8881                                 /*IsAssignmentOperator=*/isEqualOp);
8882         }
8883       }
8884     }
8885 
8886     if (isEqualOp) {
8887       for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8888         // Make sure we don't add the same candidate twice.
8889         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8890           continue;
8891 
8892         QualType ParamTypes[2] = {
8893             S.Context.getLValueReferenceType(PtrTy),
8894             PtrTy,
8895         };
8896 
8897         // non-volatile version
8898         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8899                               /*IsAssignmentOperator=*/true);
8900 
8901         bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8902                             VisibleTypeConversionsQuals.hasVolatile();
8903         if (NeedVolatile) {
8904           // volatile version
8905           ParamTypes[0] = S.Context.getLValueReferenceType(
8906               S.Context.getVolatileType(PtrTy));
8907           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8908                                 /*IsAssignmentOperator=*/true);
8909         }
8910 
8911         if (!PtrTy.isRestrictQualified() &&
8912             VisibleTypeConversionsQuals.hasRestrict()) {
8913           // restrict version
8914           ParamTypes[0] = S.Context.getLValueReferenceType(
8915               S.Context.getRestrictType(PtrTy));
8916           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8917                                 /*IsAssignmentOperator=*/true);
8918 
8919           if (NeedVolatile) {
8920             // volatile restrict version
8921             ParamTypes[0] =
8922                 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8923                     PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8924             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8925                                   /*IsAssignmentOperator=*/true);
8926           }
8927         }
8928       }
8929     }
8930   }
8931 
8932   // C++ [over.built]p18:
8933   //
8934   //   For every triple (L, VQ, R), where L is an arithmetic type,
8935   //   VQ is either volatile or empty, and R is a promoted
8936   //   arithmetic type, there exist candidate operator functions of
8937   //   the form
8938   //
8939   //        VQ L&      operator=(VQ L&, R);
8940   //        VQ L&      operator*=(VQ L&, R);
8941   //        VQ L&      operator/=(VQ L&, R);
8942   //        VQ L&      operator+=(VQ L&, R);
8943   //        VQ L&      operator-=(VQ L&, R);
8944   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8945     if (!HasArithmeticOrEnumeralCandidateType)
8946       return;
8947 
8948     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8949       for (unsigned Right = FirstPromotedArithmeticType;
8950            Right < LastPromotedArithmeticType; ++Right) {
8951         QualType ParamTypes[2];
8952         ParamTypes[1] = ArithmeticTypes[Right];
8953         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8954             S, ArithmeticTypes[Left], Args[0]);
8955         // Add this built-in operator as a candidate (VQ is empty).
8956         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8957         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8958                               /*IsAssignmentOperator=*/isEqualOp);
8959 
8960         // Add this built-in operator as a candidate (VQ is 'volatile').
8961         if (VisibleTypeConversionsQuals.hasVolatile()) {
8962           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8963           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8964           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8965                                 /*IsAssignmentOperator=*/isEqualOp);
8966         }
8967       }
8968     }
8969 
8970     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8971     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8972       for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8973         QualType ParamTypes[2];
8974         ParamTypes[1] = Vec2Ty;
8975         // Add this built-in operator as a candidate (VQ is empty).
8976         ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8977         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8978                               /*IsAssignmentOperator=*/isEqualOp);
8979 
8980         // Add this built-in operator as a candidate (VQ is 'volatile').
8981         if (VisibleTypeConversionsQuals.hasVolatile()) {
8982           ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8983           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8984           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8985                                 /*IsAssignmentOperator=*/isEqualOp);
8986         }
8987       }
8988   }
8989 
8990   // C++ [over.built]p22:
8991   //
8992   //   For every triple (L, VQ, R), where L is an integral type, VQ
8993   //   is either volatile or empty, and R is a promoted integral
8994   //   type, there exist candidate operator functions of the form
8995   //
8996   //        VQ L&       operator%=(VQ L&, R);
8997   //        VQ L&       operator<<=(VQ L&, R);
8998   //        VQ L&       operator>>=(VQ L&, R);
8999   //        VQ L&       operator&=(VQ L&, R);
9000   //        VQ L&       operator^=(VQ L&, R);
9001   //        VQ L&       operator|=(VQ L&, R);
9002   void addAssignmentIntegralOverloads() {
9003     if (!HasArithmeticOrEnumeralCandidateType)
9004       return;
9005 
9006     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
9007       for (unsigned Right = FirstPromotedIntegralType;
9008            Right < LastPromotedIntegralType; ++Right) {
9009         QualType ParamTypes[2];
9010         ParamTypes[1] = ArithmeticTypes[Right];
9011         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9012             S, ArithmeticTypes[Left], Args[0]);
9013         // Add this built-in operator as a candidate (VQ is empty).
9014         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
9015         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9016         if (VisibleTypeConversionsQuals.hasVolatile()) {
9017           // Add this built-in operator as a candidate (VQ is 'volatile').
9018           ParamTypes[0] = LeftBaseTy;
9019           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
9020           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
9021           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9022         }
9023       }
9024     }
9025   }
9026 
9027   // C++ [over.operator]p23:
9028   //
9029   //   There also exist candidate operator functions of the form
9030   //
9031   //        bool        operator!(bool);
9032   //        bool        operator&&(bool, bool);
9033   //        bool        operator||(bool, bool);
9034   void addExclaimOverload() {
9035     QualType ParamTy = S.Context.BoolTy;
9036     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
9037                           /*IsAssignmentOperator=*/false,
9038                           /*NumContextualBoolArguments=*/1);
9039   }
9040   void addAmpAmpOrPipePipeOverload() {
9041     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
9042     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9043                           /*IsAssignmentOperator=*/false,
9044                           /*NumContextualBoolArguments=*/2);
9045   }
9046 
9047   // C++ [over.built]p13:
9048   //
9049   //   For every cv-qualified or cv-unqualified object type T there
9050   //   exist candidate operator functions of the form
9051   //
9052   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
9053   //        T&         operator[](T*, ptrdiff_t);
9054   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
9055   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
9056   //        T&         operator[](ptrdiff_t, T*);
9057   void addSubscriptOverloads() {
9058     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9059       QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
9060       QualType PointeeType = PtrTy->getPointeeType();
9061       if (!PointeeType->isObjectType())
9062         continue;
9063 
9064       // T& operator[](T*, ptrdiff_t)
9065       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9066     }
9067 
9068     for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9069       QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9070       QualType PointeeType = PtrTy->getPointeeType();
9071       if (!PointeeType->isObjectType())
9072         continue;
9073 
9074       // T& operator[](ptrdiff_t, T*)
9075       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9076     }
9077   }
9078 
9079   // C++ [over.built]p11:
9080   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9081   //    C1 is the same type as C2 or is a derived class of C2, T is an object
9082   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9083   //    there exist candidate operator functions of the form
9084   //
9085   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9086   //
9087   //    where CV12 is the union of CV1 and CV2.
9088   void addArrowStarOverloads() {
9089     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9090       QualType C1Ty = PtrTy;
9091       QualType C1;
9092       QualifierCollector Q1;
9093       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9094       if (!isa<RecordType>(C1))
9095         continue;
9096       // heuristic to reduce number of builtin candidates in the set.
9097       // Add volatile/restrict version only if there are conversions to a
9098       // volatile/restrict type.
9099       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9100         continue;
9101       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9102         continue;
9103       for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9104         const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9105         QualType C2 = QualType(mptr->getClass(), 0);
9106         C2 = C2.getUnqualifiedType();
9107         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9108           break;
9109         QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9110         // build CV12 T&
9111         QualType T = mptr->getPointeeType();
9112         if (!VisibleTypeConversionsQuals.hasVolatile() &&
9113             T.isVolatileQualified())
9114           continue;
9115         if (!VisibleTypeConversionsQuals.hasRestrict() &&
9116             T.isRestrictQualified())
9117           continue;
9118         T = Q1.apply(S.Context, T);
9119         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9120       }
9121     }
9122   }
9123 
9124   // Note that we don't consider the first argument, since it has been
9125   // contextually converted to bool long ago. The candidates below are
9126   // therefore added as binary.
9127   //
9128   // C++ [over.built]p25:
9129   //   For every type T, where T is a pointer, pointer-to-member, or scoped
9130   //   enumeration type, there exist candidate operator functions of the form
9131   //
9132   //        T        operator?(bool, T, T);
9133   //
9134   void addConditionalOperatorOverloads() {
9135     /// Set of (canonical) types that we've already handled.
9136     llvm::SmallPtrSet<QualType, 8> AddedTypes;
9137 
9138     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9139       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9140         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9141           continue;
9142 
9143         QualType ParamTypes[2] = {PtrTy, PtrTy};
9144         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9145       }
9146 
9147       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9148         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9149           continue;
9150 
9151         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9152         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9153       }
9154 
9155       if (S.getLangOpts().CPlusPlus11) {
9156         for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9157           if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9158             continue;
9159 
9160           if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9161             continue;
9162 
9163           QualType ParamTypes[2] = {EnumTy, EnumTy};
9164           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9165         }
9166       }
9167     }
9168   }
9169 };
9170 
9171 } // end anonymous namespace
9172 
9173 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9174 /// operator overloads to the candidate set (C++ [over.built]), based
9175 /// on the operator @p Op and the arguments given. For example, if the
9176 /// operator is a binary '+', this routine might add "int
9177 /// operator+(int, int)" to cover integer addition.
9178 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9179                                         SourceLocation OpLoc,
9180                                         ArrayRef<Expr *> Args,
9181                                         OverloadCandidateSet &CandidateSet) {
9182   // Find all of the types that the arguments can convert to, but only
9183   // if the operator we're looking at has built-in operator candidates
9184   // that make use of these types. Also record whether we encounter non-record
9185   // candidate types or either arithmetic or enumeral candidate types.
9186   Qualifiers VisibleTypeConversionsQuals;
9187   VisibleTypeConversionsQuals.addConst();
9188   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9189     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9190 
9191   bool HasNonRecordCandidateType = false;
9192   bool HasArithmeticOrEnumeralCandidateType = false;
9193   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9194   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9195     CandidateTypes.emplace_back(*this);
9196     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9197                                                  OpLoc,
9198                                                  true,
9199                                                  (Op == OO_Exclaim ||
9200                                                   Op == OO_AmpAmp ||
9201                                                   Op == OO_PipePipe),
9202                                                  VisibleTypeConversionsQuals);
9203     HasNonRecordCandidateType = HasNonRecordCandidateType ||
9204         CandidateTypes[ArgIdx].hasNonRecordTypes();
9205     HasArithmeticOrEnumeralCandidateType =
9206         HasArithmeticOrEnumeralCandidateType ||
9207         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9208   }
9209 
9210   // Exit early when no non-record types have been added to the candidate set
9211   // for any of the arguments to the operator.
9212   //
9213   // We can't exit early for !, ||, or &&, since there we have always have
9214   // 'bool' overloads.
9215   if (!HasNonRecordCandidateType &&
9216       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9217     return;
9218 
9219   // Setup an object to manage the common state for building overloads.
9220   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9221                                            VisibleTypeConversionsQuals,
9222                                            HasArithmeticOrEnumeralCandidateType,
9223                                            CandidateTypes, CandidateSet);
9224 
9225   // Dispatch over the operation to add in only those overloads which apply.
9226   switch (Op) {
9227   case OO_None:
9228   case NUM_OVERLOADED_OPERATORS:
9229     llvm_unreachable("Expected an overloaded operator");
9230 
9231   case OO_New:
9232   case OO_Delete:
9233   case OO_Array_New:
9234   case OO_Array_Delete:
9235   case OO_Call:
9236     llvm_unreachable(
9237                     "Special operators don't use AddBuiltinOperatorCandidates");
9238 
9239   case OO_Comma:
9240   case OO_Arrow:
9241   case OO_Coawait:
9242     // C++ [over.match.oper]p3:
9243     //   -- For the operator ',', the unary operator '&', the
9244     //      operator '->', or the operator 'co_await', the
9245     //      built-in candidates set is empty.
9246     break;
9247 
9248   case OO_Plus: // '+' is either unary or binary
9249     if (Args.size() == 1)
9250       OpBuilder.addUnaryPlusPointerOverloads();
9251     LLVM_FALLTHROUGH;
9252 
9253   case OO_Minus: // '-' is either unary or binary
9254     if (Args.size() == 1) {
9255       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9256     } else {
9257       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9258       OpBuilder.addGenericBinaryArithmeticOverloads();
9259       OpBuilder.addMatrixBinaryArithmeticOverloads();
9260     }
9261     break;
9262 
9263   case OO_Star: // '*' is either unary or binary
9264     if (Args.size() == 1)
9265       OpBuilder.addUnaryStarPointerOverloads();
9266     else {
9267       OpBuilder.addGenericBinaryArithmeticOverloads();
9268       OpBuilder.addMatrixBinaryArithmeticOverloads();
9269     }
9270     break;
9271 
9272   case OO_Slash:
9273     OpBuilder.addGenericBinaryArithmeticOverloads();
9274     break;
9275 
9276   case OO_PlusPlus:
9277   case OO_MinusMinus:
9278     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9279     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9280     break;
9281 
9282   case OO_EqualEqual:
9283   case OO_ExclaimEqual:
9284     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9285     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9286     OpBuilder.addGenericBinaryArithmeticOverloads();
9287     break;
9288 
9289   case OO_Less:
9290   case OO_Greater:
9291   case OO_LessEqual:
9292   case OO_GreaterEqual:
9293     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9294     OpBuilder.addGenericBinaryArithmeticOverloads();
9295     break;
9296 
9297   case OO_Spaceship:
9298     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9299     OpBuilder.addThreeWayArithmeticOverloads();
9300     break;
9301 
9302   case OO_Percent:
9303   case OO_Caret:
9304   case OO_Pipe:
9305   case OO_LessLess:
9306   case OO_GreaterGreater:
9307     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9308     break;
9309 
9310   case OO_Amp: // '&' is either unary or binary
9311     if (Args.size() == 1)
9312       // C++ [over.match.oper]p3:
9313       //   -- For the operator ',', the unary operator '&', or the
9314       //      operator '->', the built-in candidates set is empty.
9315       break;
9316 
9317     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9318     break;
9319 
9320   case OO_Tilde:
9321     OpBuilder.addUnaryTildePromotedIntegralOverloads();
9322     break;
9323 
9324   case OO_Equal:
9325     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9326     LLVM_FALLTHROUGH;
9327 
9328   case OO_PlusEqual:
9329   case OO_MinusEqual:
9330     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9331     LLVM_FALLTHROUGH;
9332 
9333   case OO_StarEqual:
9334   case OO_SlashEqual:
9335     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9336     break;
9337 
9338   case OO_PercentEqual:
9339   case OO_LessLessEqual:
9340   case OO_GreaterGreaterEqual:
9341   case OO_AmpEqual:
9342   case OO_CaretEqual:
9343   case OO_PipeEqual:
9344     OpBuilder.addAssignmentIntegralOverloads();
9345     break;
9346 
9347   case OO_Exclaim:
9348     OpBuilder.addExclaimOverload();
9349     break;
9350 
9351   case OO_AmpAmp:
9352   case OO_PipePipe:
9353     OpBuilder.addAmpAmpOrPipePipeOverload();
9354     break;
9355 
9356   case OO_Subscript:
9357     OpBuilder.addSubscriptOverloads();
9358     break;
9359 
9360   case OO_ArrowStar:
9361     OpBuilder.addArrowStarOverloads();
9362     break;
9363 
9364   case OO_Conditional:
9365     OpBuilder.addConditionalOperatorOverloads();
9366     OpBuilder.addGenericBinaryArithmeticOverloads();
9367     break;
9368   }
9369 }
9370 
9371 /// Add function candidates found via argument-dependent lookup
9372 /// to the set of overloading candidates.
9373 ///
9374 /// This routine performs argument-dependent name lookup based on the
9375 /// given function name (which may also be an operator name) and adds
9376 /// all of the overload candidates found by ADL to the overload
9377 /// candidate set (C++ [basic.lookup.argdep]).
9378 void
9379 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9380                                            SourceLocation Loc,
9381                                            ArrayRef<Expr *> Args,
9382                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
9383                                            OverloadCandidateSet& CandidateSet,
9384                                            bool PartialOverloading) {
9385   ADLResult Fns;
9386 
9387   // FIXME: This approach for uniquing ADL results (and removing
9388   // redundant candidates from the set) relies on pointer-equality,
9389   // which means we need to key off the canonical decl.  However,
9390   // always going back to the canonical decl might not get us the
9391   // right set of default arguments.  What default arguments are
9392   // we supposed to consider on ADL candidates, anyway?
9393 
9394   // FIXME: Pass in the explicit template arguments?
9395   ArgumentDependentLookup(Name, Loc, Args, Fns);
9396 
9397   // Erase all of the candidates we already knew about.
9398   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9399                                    CandEnd = CandidateSet.end();
9400        Cand != CandEnd; ++Cand)
9401     if (Cand->Function) {
9402       Fns.erase(Cand->Function);
9403       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9404         Fns.erase(FunTmpl);
9405     }
9406 
9407   // For each of the ADL candidates we found, add it to the overload
9408   // set.
9409   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9410     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9411 
9412     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9413       if (ExplicitTemplateArgs)
9414         continue;
9415 
9416       AddOverloadCandidate(
9417           FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9418           PartialOverloading, /*AllowExplicit=*/true,
9419           /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
9420       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9421         AddOverloadCandidate(
9422             FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9423             /*SuppressUserConversions=*/false, PartialOverloading,
9424             /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
9425             ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9426       }
9427     } else {
9428       auto *FTD = cast<FunctionTemplateDecl>(*I);
9429       AddTemplateOverloadCandidate(
9430           FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9431           /*SuppressUserConversions=*/false, PartialOverloading,
9432           /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9433       if (CandidateSet.getRewriteInfo().shouldAddReversed(
9434               Context, FTD->getTemplatedDecl())) {
9435         AddTemplateOverloadCandidate(
9436             FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9437             CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9438             /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9439             OverloadCandidateParamOrder::Reversed);
9440       }
9441     }
9442   }
9443 }
9444 
9445 namespace {
9446 enum class Comparison { Equal, Better, Worse };
9447 }
9448 
9449 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9450 /// overload resolution.
9451 ///
9452 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9453 /// Cand1's first N enable_if attributes have precisely the same conditions as
9454 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9455 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9456 ///
9457 /// Note that you can have a pair of candidates such that Cand1's enable_if
9458 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9459 /// worse than Cand1's.
9460 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9461                                        const FunctionDecl *Cand2) {
9462   // Common case: One (or both) decls don't have enable_if attrs.
9463   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9464   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9465   if (!Cand1Attr || !Cand2Attr) {
9466     if (Cand1Attr == Cand2Attr)
9467       return Comparison::Equal;
9468     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9469   }
9470 
9471   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9472   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9473 
9474   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9475   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9476     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9477     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9478 
9479     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9480     // has fewer enable_if attributes than Cand2, and vice versa.
9481     if (!Cand1A)
9482       return Comparison::Worse;
9483     if (!Cand2A)
9484       return Comparison::Better;
9485 
9486     Cand1ID.clear();
9487     Cand2ID.clear();
9488 
9489     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9490     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9491     if (Cand1ID != Cand2ID)
9492       return Comparison::Worse;
9493   }
9494 
9495   return Comparison::Equal;
9496 }
9497 
9498 static Comparison
9499 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9500                               const OverloadCandidate &Cand2) {
9501   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9502       !Cand2.Function->isMultiVersion())
9503     return Comparison::Equal;
9504 
9505   // If both are invalid, they are equal. If one of them is invalid, the other
9506   // is better.
9507   if (Cand1.Function->isInvalidDecl()) {
9508     if (Cand2.Function->isInvalidDecl())
9509       return Comparison::Equal;
9510     return Comparison::Worse;
9511   }
9512   if (Cand2.Function->isInvalidDecl())
9513     return Comparison::Better;
9514 
9515   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9516   // cpu_dispatch, else arbitrarily based on the identifiers.
9517   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9518   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9519   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9520   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9521 
9522   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9523     return Comparison::Equal;
9524 
9525   if (Cand1CPUDisp && !Cand2CPUDisp)
9526     return Comparison::Better;
9527   if (Cand2CPUDisp && !Cand1CPUDisp)
9528     return Comparison::Worse;
9529 
9530   if (Cand1CPUSpec && Cand2CPUSpec) {
9531     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9532       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9533                  ? Comparison::Better
9534                  : Comparison::Worse;
9535 
9536     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9537         FirstDiff = std::mismatch(
9538             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9539             Cand2CPUSpec->cpus_begin(),
9540             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9541               return LHS->getName() == RHS->getName();
9542             });
9543 
9544     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9545            "Two different cpu-specific versions should not have the same "
9546            "identifier list, otherwise they'd be the same decl!");
9547     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9548                ? Comparison::Better
9549                : Comparison::Worse;
9550   }
9551   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9552 }
9553 
9554 /// Compute the type of the implicit object parameter for the given function,
9555 /// if any. Returns None if there is no implicit object parameter, and a null
9556 /// QualType if there is a 'matches anything' implicit object parameter.
9557 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9558                                                      const FunctionDecl *F) {
9559   if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9560     return llvm::None;
9561 
9562   auto *M = cast<CXXMethodDecl>(F);
9563   // Static member functions' object parameters match all types.
9564   if (M->isStatic())
9565     return QualType();
9566 
9567   QualType T = M->getThisObjectType();
9568   if (M->getRefQualifier() == RQ_RValue)
9569     return Context.getRValueReferenceType(T);
9570   return Context.getLValueReferenceType(T);
9571 }
9572 
9573 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9574                                    const FunctionDecl *F2, unsigned NumParams) {
9575   if (declaresSameEntity(F1, F2))
9576     return true;
9577 
9578   auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9579     if (First) {
9580       if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9581         return *T;
9582     }
9583     assert(I < F->getNumParams());
9584     return F->getParamDecl(I++)->getType();
9585   };
9586 
9587   unsigned I1 = 0, I2 = 0;
9588   for (unsigned I = 0; I != NumParams; ++I) {
9589     QualType T1 = NextParam(F1, I1, I == 0);
9590     QualType T2 = NextParam(F2, I2, I == 0);
9591     assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types");
9592     if (!Context.hasSameUnqualifiedType(T1, T2))
9593       return false;
9594   }
9595   return true;
9596 }
9597 
9598 /// isBetterOverloadCandidate - Determines whether the first overload
9599 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9600 bool clang::isBetterOverloadCandidate(
9601     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9602     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9603   // Define viable functions to be better candidates than non-viable
9604   // functions.
9605   if (!Cand2.Viable)
9606     return Cand1.Viable;
9607   else if (!Cand1.Viable)
9608     return false;
9609 
9610   // [CUDA] A function with 'never' preference is marked not viable, therefore
9611   // is never shown up here. The worst preference shown up here is 'wrong side',
9612   // e.g. an H function called by a HD function in device compilation. This is
9613   // valid AST as long as the HD function is not emitted, e.g. it is an inline
9614   // function which is called only by an H function. A deferred diagnostic will
9615   // be triggered if it is emitted. However a wrong-sided function is still
9616   // a viable candidate here.
9617   //
9618   // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9619   // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9620   // can be emitted, Cand1 is not better than Cand2. This rule should have
9621   // precedence over other rules.
9622   //
9623   // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9624   // other rules should be used to determine which is better. This is because
9625   // host/device based overloading resolution is mostly for determining
9626   // viability of a function. If two functions are both viable, other factors
9627   // should take precedence in preference, e.g. the standard-defined preferences
9628   // like argument conversion ranks or enable_if partial-ordering. The
9629   // preference for pass-object-size parameters is probably most similar to a
9630   // type-based-overloading decision and so should take priority.
9631   //
9632   // If other rules cannot determine which is better, CUDA preference will be
9633   // used again to determine which is better.
9634   //
9635   // TODO: Currently IdentifyCUDAPreference does not return correct values
9636   // for functions called in global variable initializers due to missing
9637   // correct context about device/host. Therefore we can only enforce this
9638   // rule when there is a caller. We should enforce this rule for functions
9639   // in global variable initializers once proper context is added.
9640   //
9641   // TODO: We can only enable the hostness based overloading resolution when
9642   // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9643   // overloading resolution diagnostics.
9644   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9645       S.getLangOpts().GPUExcludeWrongSideOverloads) {
9646     if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
9647       bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9648       bool IsCand1ImplicitHD =
9649           Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9650       bool IsCand2ImplicitHD =
9651           Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9652       auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9653       auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9654       assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9655       // The implicit HD function may be a function in a system header which
9656       // is forced by pragma. In device compilation, if we prefer HD candidates
9657       // over wrong-sided candidates, overloading resolution may change, which
9658       // may result in non-deferrable diagnostics. As a workaround, we let
9659       // implicit HD candidates take equal preference as wrong-sided candidates.
9660       // This will preserve the overloading resolution.
9661       // TODO: We still need special handling of implicit HD functions since
9662       // they may incur other diagnostics to be deferred. We should make all
9663       // host/device related diagnostics deferrable and remove special handling
9664       // of implicit HD functions.
9665       auto EmitThreshold =
9666           (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9667            (IsCand1ImplicitHD || IsCand2ImplicitHD))
9668               ? Sema::CFP_Never
9669               : Sema::CFP_WrongSide;
9670       auto Cand1Emittable = P1 > EmitThreshold;
9671       auto Cand2Emittable = P2 > EmitThreshold;
9672       if (Cand1Emittable && !Cand2Emittable)
9673         return true;
9674       if (!Cand1Emittable && Cand2Emittable)
9675         return false;
9676     }
9677   }
9678 
9679   // C++ [over.match.best]p1:
9680   //
9681   //   -- if F is a static member function, ICS1(F) is defined such
9682   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9683   //      any function G, and, symmetrically, ICS1(G) is neither
9684   //      better nor worse than ICS1(F).
9685   unsigned StartArg = 0;
9686   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9687     StartArg = 1;
9688 
9689   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9690     // We don't allow incompatible pointer conversions in C++.
9691     if (!S.getLangOpts().CPlusPlus)
9692       return ICS.isStandard() &&
9693              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9694 
9695     // The only ill-formed conversion we allow in C++ is the string literal to
9696     // char* conversion, which is only considered ill-formed after C++11.
9697     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9698            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9699   };
9700 
9701   // Define functions that don't require ill-formed conversions for a given
9702   // argument to be better candidates than functions that do.
9703   unsigned NumArgs = Cand1.Conversions.size();
9704   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9705   bool HasBetterConversion = false;
9706   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9707     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9708     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9709     if (Cand1Bad != Cand2Bad) {
9710       if (Cand1Bad)
9711         return false;
9712       HasBetterConversion = true;
9713     }
9714   }
9715 
9716   if (HasBetterConversion)
9717     return true;
9718 
9719   // C++ [over.match.best]p1:
9720   //   A viable function F1 is defined to be a better function than another
9721   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9722   //   conversion sequence than ICSi(F2), and then...
9723   bool HasWorseConversion = false;
9724   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9725     switch (CompareImplicitConversionSequences(S, Loc,
9726                                                Cand1.Conversions[ArgIdx],
9727                                                Cand2.Conversions[ArgIdx])) {
9728     case ImplicitConversionSequence::Better:
9729       // Cand1 has a better conversion sequence.
9730       HasBetterConversion = true;
9731       break;
9732 
9733     case ImplicitConversionSequence::Worse:
9734       if (Cand1.Function && Cand2.Function &&
9735           Cand1.isReversed() != Cand2.isReversed() &&
9736           haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9737                                  NumArgs)) {
9738         // Work around large-scale breakage caused by considering reversed
9739         // forms of operator== in C++20:
9740         //
9741         // When comparing a function against a reversed function with the same
9742         // parameter types, if we have a better conversion for one argument and
9743         // a worse conversion for the other, the implicit conversion sequences
9744         // are treated as being equally good.
9745         //
9746         // This prevents a comparison function from being considered ambiguous
9747         // with a reversed form that is written in the same way.
9748         //
9749         // We diagnose this as an extension from CreateOverloadedBinOp.
9750         HasWorseConversion = true;
9751         break;
9752       }
9753 
9754       // Cand1 can't be better than Cand2.
9755       return false;
9756 
9757     case ImplicitConversionSequence::Indistinguishable:
9758       // Do nothing.
9759       break;
9760     }
9761   }
9762 
9763   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9764   //       ICSj(F2), or, if not that,
9765   if (HasBetterConversion && !HasWorseConversion)
9766     return true;
9767 
9768   //   -- the context is an initialization by user-defined conversion
9769   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9770   //      from the return type of F1 to the destination type (i.e.,
9771   //      the type of the entity being initialized) is a better
9772   //      conversion sequence than the standard conversion sequence
9773   //      from the return type of F2 to the destination type.
9774   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9775       Cand1.Function && Cand2.Function &&
9776       isa<CXXConversionDecl>(Cand1.Function) &&
9777       isa<CXXConversionDecl>(Cand2.Function)) {
9778     // First check whether we prefer one of the conversion functions over the
9779     // other. This only distinguishes the results in non-standard, extension
9780     // cases such as the conversion from a lambda closure type to a function
9781     // pointer or block.
9782     ImplicitConversionSequence::CompareKind Result =
9783         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9784     if (Result == ImplicitConversionSequence::Indistinguishable)
9785       Result = CompareStandardConversionSequences(S, Loc,
9786                                                   Cand1.FinalConversion,
9787                                                   Cand2.FinalConversion);
9788 
9789     if (Result != ImplicitConversionSequence::Indistinguishable)
9790       return Result == ImplicitConversionSequence::Better;
9791 
9792     // FIXME: Compare kind of reference binding if conversion functions
9793     // convert to a reference type used in direct reference binding, per
9794     // C++14 [over.match.best]p1 section 2 bullet 3.
9795   }
9796 
9797   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9798   // as combined with the resolution to CWG issue 243.
9799   //
9800   // When the context is initialization by constructor ([over.match.ctor] or
9801   // either phase of [over.match.list]), a constructor is preferred over
9802   // a conversion function.
9803   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9804       Cand1.Function && Cand2.Function &&
9805       isa<CXXConstructorDecl>(Cand1.Function) !=
9806           isa<CXXConstructorDecl>(Cand2.Function))
9807     return isa<CXXConstructorDecl>(Cand1.Function);
9808 
9809   //    -- F1 is a non-template function and F2 is a function template
9810   //       specialization, or, if not that,
9811   bool Cand1IsSpecialization = Cand1.Function &&
9812                                Cand1.Function->getPrimaryTemplate();
9813   bool Cand2IsSpecialization = Cand2.Function &&
9814                                Cand2.Function->getPrimaryTemplate();
9815   if (Cand1IsSpecialization != Cand2IsSpecialization)
9816     return Cand2IsSpecialization;
9817 
9818   //   -- F1 and F2 are function template specializations, and the function
9819   //      template for F1 is more specialized than the template for F2
9820   //      according to the partial ordering rules described in 14.5.5.2, or,
9821   //      if not that,
9822   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9823     if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9824             Cand1.Function->getPrimaryTemplate(),
9825             Cand2.Function->getPrimaryTemplate(), Loc,
9826             isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9827                                                    : TPOC_Call,
9828             Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9829             Cand1.isReversed() ^ Cand2.isReversed()))
9830       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9831   }
9832 
9833   //   -— F1 and F2 are non-template functions with the same
9834   //      parameter-type-lists, and F1 is more constrained than F2 [...],
9835   if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9836       !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9837       Cand2.Function->hasPrototype()) {
9838     auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9839     auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9840     if (PT1->getNumParams() == PT2->getNumParams() &&
9841         PT1->isVariadic() == PT2->isVariadic() &&
9842         S.FunctionParamTypesAreEqual(PT1, PT2)) {
9843       Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9844       Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9845       if (RC1 && RC2) {
9846         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9847         if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9848                                      {RC2}, AtLeastAsConstrained1) ||
9849             S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9850                                      {RC1}, AtLeastAsConstrained2))
9851           return false;
9852         if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9853           return AtLeastAsConstrained1;
9854       } else if (RC1 || RC2) {
9855         return RC1 != nullptr;
9856       }
9857     }
9858   }
9859 
9860   //   -- F1 is a constructor for a class D, F2 is a constructor for a base
9861   //      class B of D, and for all arguments the corresponding parameters of
9862   //      F1 and F2 have the same type.
9863   // FIXME: Implement the "all parameters have the same type" check.
9864   bool Cand1IsInherited =
9865       isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9866   bool Cand2IsInherited =
9867       isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9868   if (Cand1IsInherited != Cand2IsInherited)
9869     return Cand2IsInherited;
9870   else if (Cand1IsInherited) {
9871     assert(Cand2IsInherited);
9872     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9873     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9874     if (Cand1Class->isDerivedFrom(Cand2Class))
9875       return true;
9876     if (Cand2Class->isDerivedFrom(Cand1Class))
9877       return false;
9878     // Inherited from sibling base classes: still ambiguous.
9879   }
9880 
9881   //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9882   //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9883   //      with reversed order of parameters and F1 is not
9884   //
9885   // We rank reversed + different operator as worse than just reversed, but
9886   // that comparison can never happen, because we only consider reversing for
9887   // the maximally-rewritten operator (== or <=>).
9888   if (Cand1.RewriteKind != Cand2.RewriteKind)
9889     return Cand1.RewriteKind < Cand2.RewriteKind;
9890 
9891   // Check C++17 tie-breakers for deduction guides.
9892   {
9893     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9894     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9895     if (Guide1 && Guide2) {
9896       //  -- F1 is generated from a deduction-guide and F2 is not
9897       if (Guide1->isImplicit() != Guide2->isImplicit())
9898         return Guide2->isImplicit();
9899 
9900       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9901       if (Guide1->isCopyDeductionCandidate())
9902         return true;
9903     }
9904   }
9905 
9906   // Check for enable_if value-based overload resolution.
9907   if (Cand1.Function && Cand2.Function) {
9908     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9909     if (Cmp != Comparison::Equal)
9910       return Cmp == Comparison::Better;
9911   }
9912 
9913   bool HasPS1 = Cand1.Function != nullptr &&
9914                 functionHasPassObjectSizeParams(Cand1.Function);
9915   bool HasPS2 = Cand2.Function != nullptr &&
9916                 functionHasPassObjectSizeParams(Cand2.Function);
9917   if (HasPS1 != HasPS2 && HasPS1)
9918     return true;
9919 
9920   auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
9921   if (MV == Comparison::Better)
9922     return true;
9923   if (MV == Comparison::Worse)
9924     return false;
9925 
9926   // If other rules cannot determine which is better, CUDA preference is used
9927   // to determine which is better.
9928   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9929     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9930     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9931            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9932   }
9933 
9934   // General member function overloading is handled above, so this only handles
9935   // constructors with address spaces.
9936   // This only handles address spaces since C++ has no other
9937   // qualifier that can be used with constructors.
9938   const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
9939   const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
9940   if (CD1 && CD2) {
9941     LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
9942     LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
9943     if (AS1 != AS2) {
9944       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9945         return true;
9946       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9947         return false;
9948     }
9949   }
9950 
9951   return false;
9952 }
9953 
9954 /// Determine whether two declarations are "equivalent" for the purposes of
9955 /// name lookup and overload resolution. This applies when the same internal/no
9956 /// linkage entity is defined by two modules (probably by textually including
9957 /// the same header). In such a case, we don't consider the declarations to
9958 /// declare the same entity, but we also don't want lookups with both
9959 /// declarations visible to be ambiguous in some cases (this happens when using
9960 /// a modularized libstdc++).
9961 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9962                                                   const NamedDecl *B) {
9963   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9964   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9965   if (!VA || !VB)
9966     return false;
9967 
9968   // The declarations must be declaring the same name as an internal linkage
9969   // entity in different modules.
9970   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9971           VB->getDeclContext()->getRedeclContext()) ||
9972       getOwningModule(VA) == getOwningModule(VB) ||
9973       VA->isExternallyVisible() || VB->isExternallyVisible())
9974     return false;
9975 
9976   // Check that the declarations appear to be equivalent.
9977   //
9978   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9979   // For constants and functions, we should check the initializer or body is
9980   // the same. For non-constant variables, we shouldn't allow it at all.
9981   if (Context.hasSameType(VA->getType(), VB->getType()))
9982     return true;
9983 
9984   // Enum constants within unnamed enumerations will have different types, but
9985   // may still be similar enough to be interchangeable for our purposes.
9986   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9987     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9988       // Only handle anonymous enums. If the enumerations were named and
9989       // equivalent, they would have been merged to the same type.
9990       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9991       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9992       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9993           !Context.hasSameType(EnumA->getIntegerType(),
9994                                EnumB->getIntegerType()))
9995         return false;
9996       // Allow this only if the value is the same for both enumerators.
9997       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9998     }
9999   }
10000 
10001   // Nothing else is sufficiently similar.
10002   return false;
10003 }
10004 
10005 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
10006     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
10007   assert(D && "Unknown declaration");
10008   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
10009 
10010   Module *M = getOwningModule(D);
10011   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
10012       << !M << (M ? M->getFullModuleName() : "");
10013 
10014   for (auto *E : Equiv) {
10015     Module *M = getOwningModule(E);
10016     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
10017         << !M << (M ? M->getFullModuleName() : "");
10018   }
10019 }
10020 
10021 /// Computes the best viable function (C++ 13.3.3)
10022 /// within an overload candidate set.
10023 ///
10024 /// \param Loc The location of the function name (or operator symbol) for
10025 /// which overload resolution occurs.
10026 ///
10027 /// \param Best If overload resolution was successful or found a deleted
10028 /// function, \p Best points to the candidate function found.
10029 ///
10030 /// \returns The result of overload resolution.
10031 OverloadingResult
10032 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
10033                                          iterator &Best) {
10034   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
10035   std::transform(begin(), end(), std::back_inserter(Candidates),
10036                  [](OverloadCandidate &Cand) { return &Cand; });
10037 
10038   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
10039   // are accepted by both clang and NVCC. However, during a particular
10040   // compilation mode only one call variant is viable. We need to
10041   // exclude non-viable overload candidates from consideration based
10042   // only on their host/device attributes. Specifically, if one
10043   // candidate call is WrongSide and the other is SameSide, we ignore
10044   // the WrongSide candidate.
10045   // We only need to remove wrong-sided candidates here if
10046   // -fgpu-exclude-wrong-side-overloads is off. When
10047   // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
10048   // uniformly in isBetterOverloadCandidate.
10049   if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
10050     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
10051     bool ContainsSameSideCandidate =
10052         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
10053           // Check viable function only.
10054           return Cand->Viable && Cand->Function &&
10055                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10056                      Sema::CFP_SameSide;
10057         });
10058     if (ContainsSameSideCandidate) {
10059       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
10060         // Check viable function only to avoid unnecessary data copying/moving.
10061         return Cand->Viable && Cand->Function &&
10062                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10063                    Sema::CFP_WrongSide;
10064       };
10065       llvm::erase_if(Candidates, IsWrongSideCandidate);
10066     }
10067   }
10068 
10069   // Find the best viable function.
10070   Best = end();
10071   for (auto *Cand : Candidates) {
10072     Cand->Best = false;
10073     if (Cand->Viable)
10074       if (Best == end() ||
10075           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10076         Best = Cand;
10077   }
10078 
10079   // If we didn't find any viable functions, abort.
10080   if (Best == end())
10081     return OR_No_Viable_Function;
10082 
10083   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10084 
10085   llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10086   PendingBest.push_back(&*Best);
10087   Best->Best = true;
10088 
10089   // Make sure that this function is better than every other viable
10090   // function. If not, we have an ambiguity.
10091   while (!PendingBest.empty()) {
10092     auto *Curr = PendingBest.pop_back_val();
10093     for (auto *Cand : Candidates) {
10094       if (Cand->Viable && !Cand->Best &&
10095           !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10096         PendingBest.push_back(Cand);
10097         Cand->Best = true;
10098 
10099         if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10100                                                      Curr->Function))
10101           EquivalentCands.push_back(Cand->Function);
10102         else
10103           Best = end();
10104       }
10105     }
10106   }
10107 
10108   // If we found more than one best candidate, this is ambiguous.
10109   if (Best == end())
10110     return OR_Ambiguous;
10111 
10112   // Best is the best viable function.
10113   if (Best->Function && Best->Function->isDeleted())
10114     return OR_Deleted;
10115 
10116   if (!EquivalentCands.empty())
10117     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10118                                                     EquivalentCands);
10119 
10120   return OR_Success;
10121 }
10122 
10123 namespace {
10124 
10125 enum OverloadCandidateKind {
10126   oc_function,
10127   oc_method,
10128   oc_reversed_binary_operator,
10129   oc_constructor,
10130   oc_implicit_default_constructor,
10131   oc_implicit_copy_constructor,
10132   oc_implicit_move_constructor,
10133   oc_implicit_copy_assignment,
10134   oc_implicit_move_assignment,
10135   oc_implicit_equality_comparison,
10136   oc_inherited_constructor
10137 };
10138 
10139 enum OverloadCandidateSelect {
10140   ocs_non_template,
10141   ocs_template,
10142   ocs_described_template,
10143 };
10144 
10145 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
10146 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10147                           OverloadCandidateRewriteKind CRK,
10148                           std::string &Description) {
10149 
10150   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10151   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10152     isTemplate = true;
10153     Description = S.getTemplateArgumentBindingsText(
10154         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10155   }
10156 
10157   OverloadCandidateSelect Select = [&]() {
10158     if (!Description.empty())
10159       return ocs_described_template;
10160     return isTemplate ? ocs_template : ocs_non_template;
10161   }();
10162 
10163   OverloadCandidateKind Kind = [&]() {
10164     if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10165       return oc_implicit_equality_comparison;
10166 
10167     if (CRK & CRK_Reversed)
10168       return oc_reversed_binary_operator;
10169 
10170     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10171       if (!Ctor->isImplicit()) {
10172         if (isa<ConstructorUsingShadowDecl>(Found))
10173           return oc_inherited_constructor;
10174         else
10175           return oc_constructor;
10176       }
10177 
10178       if (Ctor->isDefaultConstructor())
10179         return oc_implicit_default_constructor;
10180 
10181       if (Ctor->isMoveConstructor())
10182         return oc_implicit_move_constructor;
10183 
10184       assert(Ctor->isCopyConstructor() &&
10185              "unexpected sort of implicit constructor");
10186       return oc_implicit_copy_constructor;
10187     }
10188 
10189     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10190       // This actually gets spelled 'candidate function' for now, but
10191       // it doesn't hurt to split it out.
10192       if (!Meth->isImplicit())
10193         return oc_method;
10194 
10195       if (Meth->isMoveAssignmentOperator())
10196         return oc_implicit_move_assignment;
10197 
10198       if (Meth->isCopyAssignmentOperator())
10199         return oc_implicit_copy_assignment;
10200 
10201       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10202       return oc_method;
10203     }
10204 
10205     return oc_function;
10206   }();
10207 
10208   return std::make_pair(Kind, Select);
10209 }
10210 
10211 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10212   // FIXME: It'd be nice to only emit a note once per using-decl per overload
10213   // set.
10214   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10215     S.Diag(FoundDecl->getLocation(),
10216            diag::note_ovl_candidate_inherited_constructor)
10217       << Shadow->getNominatedBaseClass();
10218 }
10219 
10220 } // end anonymous namespace
10221 
10222 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10223                                     const FunctionDecl *FD) {
10224   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10225     bool AlwaysTrue;
10226     if (EnableIf->getCond()->isValueDependent() ||
10227         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10228       return false;
10229     if (!AlwaysTrue)
10230       return false;
10231   }
10232   return true;
10233 }
10234 
10235 /// Returns true if we can take the address of the function.
10236 ///
10237 /// \param Complain - If true, we'll emit a diagnostic
10238 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10239 ///   we in overload resolution?
10240 /// \param Loc - The location of the statement we're complaining about. Ignored
10241 ///   if we're not complaining, or if we're in overload resolution.
10242 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10243                                               bool Complain,
10244                                               bool InOverloadResolution,
10245                                               SourceLocation Loc) {
10246   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10247     if (Complain) {
10248       if (InOverloadResolution)
10249         S.Diag(FD->getBeginLoc(),
10250                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10251       else
10252         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10253     }
10254     return false;
10255   }
10256 
10257   if (FD->getTrailingRequiresClause()) {
10258     ConstraintSatisfaction Satisfaction;
10259     if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10260       return false;
10261     if (!Satisfaction.IsSatisfied) {
10262       if (Complain) {
10263         if (InOverloadResolution)
10264           S.Diag(FD->getBeginLoc(),
10265                  diag::note_ovl_candidate_unsatisfied_constraints);
10266         else
10267           S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10268               << FD;
10269         S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10270       }
10271       return false;
10272     }
10273   }
10274 
10275   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10276     return P->hasAttr<PassObjectSizeAttr>();
10277   });
10278   if (I == FD->param_end())
10279     return true;
10280 
10281   if (Complain) {
10282     // Add one to ParamNo because it's user-facing
10283     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10284     if (InOverloadResolution)
10285       S.Diag(FD->getLocation(),
10286              diag::note_ovl_candidate_has_pass_object_size_params)
10287           << ParamNo;
10288     else
10289       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10290           << FD << ParamNo;
10291   }
10292   return false;
10293 }
10294 
10295 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10296                                                const FunctionDecl *FD) {
10297   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10298                                            /*InOverloadResolution=*/true,
10299                                            /*Loc=*/SourceLocation());
10300 }
10301 
10302 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10303                                              bool Complain,
10304                                              SourceLocation Loc) {
10305   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10306                                              /*InOverloadResolution=*/false,
10307                                              Loc);
10308 }
10309 
10310 // Don't print candidates other than the one that matches the calling
10311 // convention of the call operator, since that is guaranteed to exist.
10312 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10313   const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10314 
10315   if (!ConvD)
10316     return false;
10317   const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10318   if (!RD->isLambda())
10319     return false;
10320 
10321   CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10322   CallingConv CallOpCC =
10323       CallOp->getType()->castAs<FunctionType>()->getCallConv();
10324   QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10325   CallingConv ConvToCC =
10326       ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10327 
10328   return ConvToCC != CallOpCC;
10329 }
10330 
10331 // Notes the location of an overload candidate.
10332 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10333                                  OverloadCandidateRewriteKind RewriteKind,
10334                                  QualType DestType, bool TakingAddress) {
10335   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10336     return;
10337   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10338       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10339     return;
10340   if (shouldSkipNotingLambdaConversionDecl(Fn))
10341     return;
10342 
10343   std::string FnDesc;
10344   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10345       ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10346   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10347                          << (unsigned)KSPair.first << (unsigned)KSPair.second
10348                          << Fn << FnDesc;
10349 
10350   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10351   Diag(Fn->getLocation(), PD);
10352   MaybeEmitInheritedConstructorNote(*this, Found);
10353 }
10354 
10355 static void
10356 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10357   // Perhaps the ambiguity was caused by two atomic constraints that are
10358   // 'identical' but not equivalent:
10359   //
10360   // void foo() requires (sizeof(T) > 4) { } // #1
10361   // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10362   //
10363   // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10364   // #2 to subsume #1, but these constraint are not considered equivalent
10365   // according to the subsumption rules because they are not the same
10366   // source-level construct. This behavior is quite confusing and we should try
10367   // to help the user figure out what happened.
10368 
10369   SmallVector<const Expr *, 3> FirstAC, SecondAC;
10370   FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10371   for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10372     if (!I->Function)
10373       continue;
10374     SmallVector<const Expr *, 3> AC;
10375     if (auto *Template = I->Function->getPrimaryTemplate())
10376       Template->getAssociatedConstraints(AC);
10377     else
10378       I->Function->getAssociatedConstraints(AC);
10379     if (AC.empty())
10380       continue;
10381     if (FirstCand == nullptr) {
10382       FirstCand = I->Function;
10383       FirstAC = AC;
10384     } else if (SecondCand == nullptr) {
10385       SecondCand = I->Function;
10386       SecondAC = AC;
10387     } else {
10388       // We have more than one pair of constrained functions - this check is
10389       // expensive and we'd rather not try to diagnose it.
10390       return;
10391     }
10392   }
10393   if (!SecondCand)
10394     return;
10395   // The diagnostic can only happen if there are associated constraints on
10396   // both sides (there needs to be some identical atomic constraint).
10397   if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10398                                                       SecondCand, SecondAC))
10399     // Just show the user one diagnostic, they'll probably figure it out
10400     // from here.
10401     return;
10402 }
10403 
10404 // Notes the location of all overload candidates designated through
10405 // OverloadedExpr
10406 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10407                                      bool TakingAddress) {
10408   assert(OverloadedExpr->getType() == Context.OverloadTy);
10409 
10410   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10411   OverloadExpr *OvlExpr = Ovl.Expression;
10412 
10413   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10414                             IEnd = OvlExpr->decls_end();
10415        I != IEnd; ++I) {
10416     if (FunctionTemplateDecl *FunTmpl =
10417                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10418       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10419                             TakingAddress);
10420     } else if (FunctionDecl *Fun
10421                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10422       NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10423     }
10424   }
10425 }
10426 
10427 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
10428 /// "lead" diagnostic; it will be given two arguments, the source and
10429 /// target types of the conversion.
10430 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10431                                  Sema &S,
10432                                  SourceLocation CaretLoc,
10433                                  const PartialDiagnostic &PDiag) const {
10434   S.Diag(CaretLoc, PDiag)
10435     << Ambiguous.getFromType() << Ambiguous.getToType();
10436   unsigned CandsShown = 0;
10437   AmbiguousConversionSequence::const_iterator I, E;
10438   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10439     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10440       break;
10441     ++CandsShown;
10442     S.NoteOverloadCandidate(I->first, I->second);
10443   }
10444   S.Diags.overloadCandidatesShown(CandsShown);
10445   if (I != E)
10446     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10447 }
10448 
10449 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10450                                   unsigned I, bool TakingCandidateAddress) {
10451   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10452   assert(Conv.isBad());
10453   assert(Cand->Function && "for now, candidate must be a function");
10454   FunctionDecl *Fn = Cand->Function;
10455 
10456   // There's a conversion slot for the object argument if this is a
10457   // non-constructor method.  Note that 'I' corresponds the
10458   // conversion-slot index.
10459   bool isObjectArgument = false;
10460   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10461     if (I == 0)
10462       isObjectArgument = true;
10463     else
10464       I--;
10465   }
10466 
10467   std::string FnDesc;
10468   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10469       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10470                                 FnDesc);
10471 
10472   Expr *FromExpr = Conv.Bad.FromExpr;
10473   QualType FromTy = Conv.Bad.getFromType();
10474   QualType ToTy = Conv.Bad.getToType();
10475 
10476   if (FromTy == S.Context.OverloadTy) {
10477     assert(FromExpr && "overload set argument came from implicit argument?");
10478     Expr *E = FromExpr->IgnoreParens();
10479     if (isa<UnaryOperator>(E))
10480       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10481     DeclarationName Name = cast<OverloadExpr>(E)->getName();
10482 
10483     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10484         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10485         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10486         << Name << I + 1;
10487     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10488     return;
10489   }
10490 
10491   // Do some hand-waving analysis to see if the non-viability is due
10492   // to a qualifier mismatch.
10493   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10494   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10495   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10496     CToTy = RT->getPointeeType();
10497   else {
10498     // TODO: detect and diagnose the full richness of const mismatches.
10499     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10500       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10501         CFromTy = FromPT->getPointeeType();
10502         CToTy = ToPT->getPointeeType();
10503       }
10504   }
10505 
10506   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10507       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10508     Qualifiers FromQs = CFromTy.getQualifiers();
10509     Qualifiers ToQs = CToTy.getQualifiers();
10510 
10511     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10512       if (isObjectArgument)
10513         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10514             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10515             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10516             << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10517       else
10518         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10519             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10520             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10521             << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10522             << ToTy->isReferenceType() << I + 1;
10523       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10524       return;
10525     }
10526 
10527     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10528       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10529           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10530           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10531           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10532           << (unsigned)isObjectArgument << I + 1;
10533       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10534       return;
10535     }
10536 
10537     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10538       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10539           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10540           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10541           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10542           << (unsigned)isObjectArgument << I + 1;
10543       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10544       return;
10545     }
10546 
10547     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10548       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10549           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10550           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10551           << FromQs.hasUnaligned() << I + 1;
10552       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10553       return;
10554     }
10555 
10556     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10557     assert(CVR && "expected qualifiers mismatch");
10558 
10559     if (isObjectArgument) {
10560       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10561           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10562           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10563           << (CVR - 1);
10564     } else {
10565       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10566           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10567           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10568           << (CVR - 1) << I + 1;
10569     }
10570     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10571     return;
10572   }
10573 
10574   if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10575       Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10576     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10577         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10578         << (unsigned)isObjectArgument << I + 1
10579         << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10580         << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10581     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10582     return;
10583   }
10584 
10585   // Special diagnostic for failure to convert an initializer list, since
10586   // telling the user that it has type void is not useful.
10587   if (FromExpr && isa<InitListExpr>(FromExpr)) {
10588     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10589         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10590         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10591         << ToTy << (unsigned)isObjectArgument << I + 1
10592         << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1
10593             : Conv.Bad.Kind == BadConversionSequence::too_many_initializers
10594                 ? 2
10595                 : 0);
10596     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10597     return;
10598   }
10599 
10600   // Diagnose references or pointers to incomplete types differently,
10601   // since it's far from impossible that the incompleteness triggered
10602   // the failure.
10603   QualType TempFromTy = FromTy.getNonReferenceType();
10604   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10605     TempFromTy = PTy->getPointeeType();
10606   if (TempFromTy->isIncompleteType()) {
10607     // Emit the generic diagnostic and, optionally, add the hints to it.
10608     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10609         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10610         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10611         << ToTy << (unsigned)isObjectArgument << I + 1
10612         << (unsigned)(Cand->Fix.Kind);
10613 
10614     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10615     return;
10616   }
10617 
10618   // Diagnose base -> derived pointer conversions.
10619   unsigned BaseToDerivedConversion = 0;
10620   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10621     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10622       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10623                                                FromPtrTy->getPointeeType()) &&
10624           !FromPtrTy->getPointeeType()->isIncompleteType() &&
10625           !ToPtrTy->getPointeeType()->isIncompleteType() &&
10626           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10627                           FromPtrTy->getPointeeType()))
10628         BaseToDerivedConversion = 1;
10629     }
10630   } else if (const ObjCObjectPointerType *FromPtrTy
10631                                     = FromTy->getAs<ObjCObjectPointerType>()) {
10632     if (const ObjCObjectPointerType *ToPtrTy
10633                                         = ToTy->getAs<ObjCObjectPointerType>())
10634       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10635         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10636           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10637                                                 FromPtrTy->getPointeeType()) &&
10638               FromIface->isSuperClassOf(ToIface))
10639             BaseToDerivedConversion = 2;
10640   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10641     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10642         !FromTy->isIncompleteType() &&
10643         !ToRefTy->getPointeeType()->isIncompleteType() &&
10644         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10645       BaseToDerivedConversion = 3;
10646     }
10647   }
10648 
10649   if (BaseToDerivedConversion) {
10650     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10651         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10652         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10653         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10654     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10655     return;
10656   }
10657 
10658   if (isa<ObjCObjectPointerType>(CFromTy) &&
10659       isa<PointerType>(CToTy)) {
10660       Qualifiers FromQs = CFromTy.getQualifiers();
10661       Qualifiers ToQs = CToTy.getQualifiers();
10662       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10663         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10664             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10665             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10666             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10667         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10668         return;
10669       }
10670   }
10671 
10672   if (TakingCandidateAddress &&
10673       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10674     return;
10675 
10676   // Emit the generic diagnostic and, optionally, add the hints to it.
10677   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10678   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10679         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10680         << ToTy << (unsigned)isObjectArgument << I + 1
10681         << (unsigned)(Cand->Fix.Kind);
10682 
10683   // If we can fix the conversion, suggest the FixIts.
10684   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10685        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10686     FDiag << *HI;
10687   S.Diag(Fn->getLocation(), FDiag);
10688 
10689   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10690 }
10691 
10692 /// Additional arity mismatch diagnosis specific to a function overload
10693 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10694 /// over a candidate in any candidate set.
10695 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10696                                unsigned NumArgs) {
10697   FunctionDecl *Fn = Cand->Function;
10698   unsigned MinParams = Fn->getMinRequiredArguments();
10699 
10700   // With invalid overloaded operators, it's possible that we think we
10701   // have an arity mismatch when in fact it looks like we have the
10702   // right number of arguments, because only overloaded operators have
10703   // the weird behavior of overloading member and non-member functions.
10704   // Just don't report anything.
10705   if (Fn->isInvalidDecl() &&
10706       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10707     return true;
10708 
10709   if (NumArgs < MinParams) {
10710     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10711            (Cand->FailureKind == ovl_fail_bad_deduction &&
10712             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10713   } else {
10714     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10715            (Cand->FailureKind == ovl_fail_bad_deduction &&
10716             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10717   }
10718 
10719   return false;
10720 }
10721 
10722 /// General arity mismatch diagnosis over a candidate in a candidate set.
10723 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10724                                   unsigned NumFormalArgs) {
10725   assert(isa<FunctionDecl>(D) &&
10726       "The templated declaration should at least be a function"
10727       " when diagnosing bad template argument deduction due to too many"
10728       " or too few arguments");
10729 
10730   FunctionDecl *Fn = cast<FunctionDecl>(D);
10731 
10732   // TODO: treat calls to a missing default constructor as a special case
10733   const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10734   unsigned MinParams = Fn->getMinRequiredArguments();
10735 
10736   // at least / at most / exactly
10737   unsigned mode, modeCount;
10738   if (NumFormalArgs < MinParams) {
10739     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10740         FnTy->isTemplateVariadic())
10741       mode = 0; // "at least"
10742     else
10743       mode = 2; // "exactly"
10744     modeCount = MinParams;
10745   } else {
10746     if (MinParams != FnTy->getNumParams())
10747       mode = 1; // "at most"
10748     else
10749       mode = 2; // "exactly"
10750     modeCount = FnTy->getNumParams();
10751   }
10752 
10753   std::string Description;
10754   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10755       ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10756 
10757   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10758     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10759         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10760         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10761   else
10762     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10763         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10764         << Description << mode << modeCount << NumFormalArgs;
10765 
10766   MaybeEmitInheritedConstructorNote(S, Found);
10767 }
10768 
10769 /// Arity mismatch diagnosis specific to a function overload candidate.
10770 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10771                                   unsigned NumFormalArgs) {
10772   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10773     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10774 }
10775 
10776 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10777   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10778     return TD;
10779   llvm_unreachable("Unsupported: Getting the described template declaration"
10780                    " for bad deduction diagnosis");
10781 }
10782 
10783 /// Diagnose a failed template-argument deduction.
10784 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10785                                  DeductionFailureInfo &DeductionFailure,
10786                                  unsigned NumArgs,
10787                                  bool TakingCandidateAddress) {
10788   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10789   NamedDecl *ParamD;
10790   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10791   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10792   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10793   switch (DeductionFailure.Result) {
10794   case Sema::TDK_Success:
10795     llvm_unreachable("TDK_success while diagnosing bad deduction");
10796 
10797   case Sema::TDK_Incomplete: {
10798     assert(ParamD && "no parameter found for incomplete deduction result");
10799     S.Diag(Templated->getLocation(),
10800            diag::note_ovl_candidate_incomplete_deduction)
10801         << ParamD->getDeclName();
10802     MaybeEmitInheritedConstructorNote(S, Found);
10803     return;
10804   }
10805 
10806   case Sema::TDK_IncompletePack: {
10807     assert(ParamD && "no parameter found for incomplete deduction result");
10808     S.Diag(Templated->getLocation(),
10809            diag::note_ovl_candidate_incomplete_deduction_pack)
10810         << ParamD->getDeclName()
10811         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10812         << *DeductionFailure.getFirstArg();
10813     MaybeEmitInheritedConstructorNote(S, Found);
10814     return;
10815   }
10816 
10817   case Sema::TDK_Underqualified: {
10818     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10819     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10820 
10821     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10822 
10823     // Param will have been canonicalized, but it should just be a
10824     // qualified version of ParamD, so move the qualifiers to that.
10825     QualifierCollector Qs;
10826     Qs.strip(Param);
10827     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10828     assert(S.Context.hasSameType(Param, NonCanonParam));
10829 
10830     // Arg has also been canonicalized, but there's nothing we can do
10831     // about that.  It also doesn't matter as much, because it won't
10832     // have any template parameters in it (because deduction isn't
10833     // done on dependent types).
10834     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10835 
10836     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10837         << ParamD->getDeclName() << Arg << NonCanonParam;
10838     MaybeEmitInheritedConstructorNote(S, Found);
10839     return;
10840   }
10841 
10842   case Sema::TDK_Inconsistent: {
10843     assert(ParamD && "no parameter found for inconsistent deduction result");
10844     int which = 0;
10845     if (isa<TemplateTypeParmDecl>(ParamD))
10846       which = 0;
10847     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10848       // Deduction might have failed because we deduced arguments of two
10849       // different types for a non-type template parameter.
10850       // FIXME: Use a different TDK value for this.
10851       QualType T1 =
10852           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10853       QualType T2 =
10854           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10855       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10856         S.Diag(Templated->getLocation(),
10857                diag::note_ovl_candidate_inconsistent_deduction_types)
10858           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10859           << *DeductionFailure.getSecondArg() << T2;
10860         MaybeEmitInheritedConstructorNote(S, Found);
10861         return;
10862       }
10863 
10864       which = 1;
10865     } else {
10866       which = 2;
10867     }
10868 
10869     // Tweak the diagnostic if the problem is that we deduced packs of
10870     // different arities. We'll print the actual packs anyway in case that
10871     // includes additional useful information.
10872     if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10873         DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10874         DeductionFailure.getFirstArg()->pack_size() !=
10875             DeductionFailure.getSecondArg()->pack_size()) {
10876       which = 3;
10877     }
10878 
10879     S.Diag(Templated->getLocation(),
10880            diag::note_ovl_candidate_inconsistent_deduction)
10881         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10882         << *DeductionFailure.getSecondArg();
10883     MaybeEmitInheritedConstructorNote(S, Found);
10884     return;
10885   }
10886 
10887   case Sema::TDK_InvalidExplicitArguments:
10888     assert(ParamD && "no parameter found for invalid explicit arguments");
10889     if (ParamD->getDeclName())
10890       S.Diag(Templated->getLocation(),
10891              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10892           << ParamD->getDeclName();
10893     else {
10894       int index = 0;
10895       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10896         index = TTP->getIndex();
10897       else if (NonTypeTemplateParmDecl *NTTP
10898                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10899         index = NTTP->getIndex();
10900       else
10901         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10902       S.Diag(Templated->getLocation(),
10903              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10904           << (index + 1);
10905     }
10906     MaybeEmitInheritedConstructorNote(S, Found);
10907     return;
10908 
10909   case Sema::TDK_ConstraintsNotSatisfied: {
10910     // Format the template argument list into the argument string.
10911     SmallString<128> TemplateArgString;
10912     TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10913     TemplateArgString = " ";
10914     TemplateArgString += S.getTemplateArgumentBindingsText(
10915         getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10916     if (TemplateArgString.size() == 1)
10917       TemplateArgString.clear();
10918     S.Diag(Templated->getLocation(),
10919            diag::note_ovl_candidate_unsatisfied_constraints)
10920         << TemplateArgString;
10921 
10922     S.DiagnoseUnsatisfiedConstraint(
10923         static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10924     return;
10925   }
10926   case Sema::TDK_TooManyArguments:
10927   case Sema::TDK_TooFewArguments:
10928     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10929     return;
10930 
10931   case Sema::TDK_InstantiationDepth:
10932     S.Diag(Templated->getLocation(),
10933            diag::note_ovl_candidate_instantiation_depth);
10934     MaybeEmitInheritedConstructorNote(S, Found);
10935     return;
10936 
10937   case Sema::TDK_SubstitutionFailure: {
10938     // Format the template argument list into the argument string.
10939     SmallString<128> TemplateArgString;
10940     if (TemplateArgumentList *Args =
10941             DeductionFailure.getTemplateArgumentList()) {
10942       TemplateArgString = " ";
10943       TemplateArgString += S.getTemplateArgumentBindingsText(
10944           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10945       if (TemplateArgString.size() == 1)
10946         TemplateArgString.clear();
10947     }
10948 
10949     // If this candidate was disabled by enable_if, say so.
10950     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10951     if (PDiag && PDiag->second.getDiagID() ==
10952           diag::err_typename_nested_not_found_enable_if) {
10953       // FIXME: Use the source range of the condition, and the fully-qualified
10954       //        name of the enable_if template. These are both present in PDiag.
10955       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10956         << "'enable_if'" << TemplateArgString;
10957       return;
10958     }
10959 
10960     // We found a specific requirement that disabled the enable_if.
10961     if (PDiag && PDiag->second.getDiagID() ==
10962         diag::err_typename_nested_not_found_requirement) {
10963       S.Diag(Templated->getLocation(),
10964              diag::note_ovl_candidate_disabled_by_requirement)
10965         << PDiag->second.getStringArg(0) << TemplateArgString;
10966       return;
10967     }
10968 
10969     // Format the SFINAE diagnostic into the argument string.
10970     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10971     //        formatted message in another diagnostic.
10972     SmallString<128> SFINAEArgString;
10973     SourceRange R;
10974     if (PDiag) {
10975       SFINAEArgString = ": ";
10976       R = SourceRange(PDiag->first, PDiag->first);
10977       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10978     }
10979 
10980     S.Diag(Templated->getLocation(),
10981            diag::note_ovl_candidate_substitution_failure)
10982         << TemplateArgString << SFINAEArgString << R;
10983     MaybeEmitInheritedConstructorNote(S, Found);
10984     return;
10985   }
10986 
10987   case Sema::TDK_DeducedMismatch:
10988   case Sema::TDK_DeducedMismatchNested: {
10989     // Format the template argument list into the argument string.
10990     SmallString<128> TemplateArgString;
10991     if (TemplateArgumentList *Args =
10992             DeductionFailure.getTemplateArgumentList()) {
10993       TemplateArgString = " ";
10994       TemplateArgString += S.getTemplateArgumentBindingsText(
10995           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10996       if (TemplateArgString.size() == 1)
10997         TemplateArgString.clear();
10998     }
10999 
11000     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
11001         << (*DeductionFailure.getCallArgIndex() + 1)
11002         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
11003         << TemplateArgString
11004         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
11005     break;
11006   }
11007 
11008   case Sema::TDK_NonDeducedMismatch: {
11009     // FIXME: Provide a source location to indicate what we couldn't match.
11010     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
11011     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
11012     if (FirstTA.getKind() == TemplateArgument::Template &&
11013         SecondTA.getKind() == TemplateArgument::Template) {
11014       TemplateName FirstTN = FirstTA.getAsTemplate();
11015       TemplateName SecondTN = SecondTA.getAsTemplate();
11016       if (FirstTN.getKind() == TemplateName::Template &&
11017           SecondTN.getKind() == TemplateName::Template) {
11018         if (FirstTN.getAsTemplateDecl()->getName() ==
11019             SecondTN.getAsTemplateDecl()->getName()) {
11020           // FIXME: This fixes a bad diagnostic where both templates are named
11021           // the same.  This particular case is a bit difficult since:
11022           // 1) It is passed as a string to the diagnostic printer.
11023           // 2) The diagnostic printer only attempts to find a better
11024           //    name for types, not decls.
11025           // Ideally, this should folded into the diagnostic printer.
11026           S.Diag(Templated->getLocation(),
11027                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
11028               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
11029           return;
11030         }
11031       }
11032     }
11033 
11034     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
11035         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
11036       return;
11037 
11038     // FIXME: For generic lambda parameters, check if the function is a lambda
11039     // call operator, and if so, emit a prettier and more informative
11040     // diagnostic that mentions 'auto' and lambda in addition to
11041     // (or instead of?) the canonical template type parameters.
11042     S.Diag(Templated->getLocation(),
11043            diag::note_ovl_candidate_non_deduced_mismatch)
11044         << FirstTA << SecondTA;
11045     return;
11046   }
11047   // TODO: diagnose these individually, then kill off
11048   // note_ovl_candidate_bad_deduction, which is uselessly vague.
11049   case Sema::TDK_MiscellaneousDeductionFailure:
11050     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
11051     MaybeEmitInheritedConstructorNote(S, Found);
11052     return;
11053   case Sema::TDK_CUDATargetMismatch:
11054     S.Diag(Templated->getLocation(),
11055            diag::note_cuda_ovl_candidate_target_mismatch);
11056     return;
11057   }
11058 }
11059 
11060 /// Diagnose a failed template-argument deduction, for function calls.
11061 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
11062                                  unsigned NumArgs,
11063                                  bool TakingCandidateAddress) {
11064   unsigned TDK = Cand->DeductionFailure.Result;
11065   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
11066     if (CheckArityMismatch(S, Cand, NumArgs))
11067       return;
11068   }
11069   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11070                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11071 }
11072 
11073 /// CUDA: diagnose an invalid call across targets.
11074 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11075   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
11076   FunctionDecl *Callee = Cand->Function;
11077 
11078   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11079                            CalleeTarget = S.IdentifyCUDATarget(Callee);
11080 
11081   std::string FnDesc;
11082   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11083       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11084                                 Cand->getRewriteKind(), FnDesc);
11085 
11086   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11087       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11088       << FnDesc /* Ignored */
11089       << CalleeTarget << CallerTarget;
11090 
11091   // This could be an implicit constructor for which we could not infer the
11092   // target due to a collsion. Diagnose that case.
11093   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11094   if (Meth != nullptr && Meth->isImplicit()) {
11095     CXXRecordDecl *ParentClass = Meth->getParent();
11096     Sema::CXXSpecialMember CSM;
11097 
11098     switch (FnKindPair.first) {
11099     default:
11100       return;
11101     case oc_implicit_default_constructor:
11102       CSM = Sema::CXXDefaultConstructor;
11103       break;
11104     case oc_implicit_copy_constructor:
11105       CSM = Sema::CXXCopyConstructor;
11106       break;
11107     case oc_implicit_move_constructor:
11108       CSM = Sema::CXXMoveConstructor;
11109       break;
11110     case oc_implicit_copy_assignment:
11111       CSM = Sema::CXXCopyAssignment;
11112       break;
11113     case oc_implicit_move_assignment:
11114       CSM = Sema::CXXMoveAssignment;
11115       break;
11116     };
11117 
11118     bool ConstRHS = false;
11119     if (Meth->getNumParams()) {
11120       if (const ReferenceType *RT =
11121               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11122         ConstRHS = RT->getPointeeType().isConstQualified();
11123       }
11124     }
11125 
11126     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11127                                               /* ConstRHS */ ConstRHS,
11128                                               /* Diagnose */ true);
11129   }
11130 }
11131 
11132 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11133   FunctionDecl *Callee = Cand->Function;
11134   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11135 
11136   S.Diag(Callee->getLocation(),
11137          diag::note_ovl_candidate_disabled_by_function_cond_attr)
11138       << Attr->getCond()->getSourceRange() << Attr->getMessage();
11139 }
11140 
11141 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11142   ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11143   assert(ES.isExplicit() && "not an explicit candidate");
11144 
11145   unsigned Kind;
11146   switch (Cand->Function->getDeclKind()) {
11147   case Decl::Kind::CXXConstructor:
11148     Kind = 0;
11149     break;
11150   case Decl::Kind::CXXConversion:
11151     Kind = 1;
11152     break;
11153   case Decl::Kind::CXXDeductionGuide:
11154     Kind = Cand->Function->isImplicit() ? 0 : 2;
11155     break;
11156   default:
11157     llvm_unreachable("invalid Decl");
11158   }
11159 
11160   // Note the location of the first (in-class) declaration; a redeclaration
11161   // (particularly an out-of-class definition) will typically lack the
11162   // 'explicit' specifier.
11163   // FIXME: This is probably a good thing to do for all 'candidate' notes.
11164   FunctionDecl *First = Cand->Function->getFirstDecl();
11165   if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11166     First = Pattern->getFirstDecl();
11167 
11168   S.Diag(First->getLocation(),
11169          diag::note_ovl_candidate_explicit)
11170       << Kind << (ES.getExpr() ? 1 : 0)
11171       << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11172 }
11173 
11174 /// Generates a 'note' diagnostic for an overload candidate.  We've
11175 /// already generated a primary error at the call site.
11176 ///
11177 /// It really does need to be a single diagnostic with its caret
11178 /// pointed at the candidate declaration.  Yes, this creates some
11179 /// major challenges of technical writing.  Yes, this makes pointing
11180 /// out problems with specific arguments quite awkward.  It's still
11181 /// better than generating twenty screens of text for every failed
11182 /// overload.
11183 ///
11184 /// It would be great to be able to express per-candidate problems
11185 /// more richly for those diagnostic clients that cared, but we'd
11186 /// still have to be just as careful with the default diagnostics.
11187 /// \param CtorDestAS Addr space of object being constructed (for ctor
11188 /// candidates only).
11189 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11190                                   unsigned NumArgs,
11191                                   bool TakingCandidateAddress,
11192                                   LangAS CtorDestAS = LangAS::Default) {
11193   FunctionDecl *Fn = Cand->Function;
11194   if (shouldSkipNotingLambdaConversionDecl(Fn))
11195     return;
11196 
11197   // Note deleted candidates, but only if they're viable.
11198   if (Cand->Viable) {
11199     if (Fn->isDeleted()) {
11200       std::string FnDesc;
11201       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11202           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11203                                     Cand->getRewriteKind(), FnDesc);
11204 
11205       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11206           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11207           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11208       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11209       return;
11210     }
11211 
11212     // We don't really have anything else to say about viable candidates.
11213     S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11214     return;
11215   }
11216 
11217   switch (Cand->FailureKind) {
11218   case ovl_fail_too_many_arguments:
11219   case ovl_fail_too_few_arguments:
11220     return DiagnoseArityMismatch(S, Cand, NumArgs);
11221 
11222   case ovl_fail_bad_deduction:
11223     return DiagnoseBadDeduction(S, Cand, NumArgs,
11224                                 TakingCandidateAddress);
11225 
11226   case ovl_fail_illegal_constructor: {
11227     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11228       << (Fn->getPrimaryTemplate() ? 1 : 0);
11229     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11230     return;
11231   }
11232 
11233   case ovl_fail_object_addrspace_mismatch: {
11234     Qualifiers QualsForPrinting;
11235     QualsForPrinting.setAddressSpace(CtorDestAS);
11236     S.Diag(Fn->getLocation(),
11237            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11238         << QualsForPrinting;
11239     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11240     return;
11241   }
11242 
11243   case ovl_fail_trivial_conversion:
11244   case ovl_fail_bad_final_conversion:
11245   case ovl_fail_final_conversion_not_exact:
11246     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11247 
11248   case ovl_fail_bad_conversion: {
11249     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11250     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11251       if (Cand->Conversions[I].isBad())
11252         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11253 
11254     // FIXME: this currently happens when we're called from SemaInit
11255     // when user-conversion overload fails.  Figure out how to handle
11256     // those conditions and diagnose them well.
11257     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11258   }
11259 
11260   case ovl_fail_bad_target:
11261     return DiagnoseBadTarget(S, Cand);
11262 
11263   case ovl_fail_enable_if:
11264     return DiagnoseFailedEnableIfAttr(S, Cand);
11265 
11266   case ovl_fail_explicit:
11267     return DiagnoseFailedExplicitSpec(S, Cand);
11268 
11269   case ovl_fail_inhctor_slice:
11270     // It's generally not interesting to note copy/move constructors here.
11271     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11272       return;
11273     S.Diag(Fn->getLocation(),
11274            diag::note_ovl_candidate_inherited_constructor_slice)
11275       << (Fn->getPrimaryTemplate() ? 1 : 0)
11276       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11277     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11278     return;
11279 
11280   case ovl_fail_addr_not_available: {
11281     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11282     (void)Available;
11283     assert(!Available);
11284     break;
11285   }
11286   case ovl_non_default_multiversion_function:
11287     // Do nothing, these should simply be ignored.
11288     break;
11289 
11290   case ovl_fail_constraints_not_satisfied: {
11291     std::string FnDesc;
11292     std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11293         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11294                                   Cand->getRewriteKind(), FnDesc);
11295 
11296     S.Diag(Fn->getLocation(),
11297            diag::note_ovl_candidate_constraints_not_satisfied)
11298         << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11299         << FnDesc /* Ignored */;
11300     ConstraintSatisfaction Satisfaction;
11301     if (S.CheckFunctionConstraints(Fn, Satisfaction))
11302       break;
11303     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11304   }
11305   }
11306 }
11307 
11308 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11309   if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11310     return;
11311 
11312   // Desugar the type of the surrogate down to a function type,
11313   // retaining as many typedefs as possible while still showing
11314   // the function type (and, therefore, its parameter types).
11315   QualType FnType = Cand->Surrogate->getConversionType();
11316   bool isLValueReference = false;
11317   bool isRValueReference = false;
11318   bool isPointer = false;
11319   if (const LValueReferenceType *FnTypeRef =
11320         FnType->getAs<LValueReferenceType>()) {
11321     FnType = FnTypeRef->getPointeeType();
11322     isLValueReference = true;
11323   } else if (const RValueReferenceType *FnTypeRef =
11324                FnType->getAs<RValueReferenceType>()) {
11325     FnType = FnTypeRef->getPointeeType();
11326     isRValueReference = true;
11327   }
11328   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11329     FnType = FnTypePtr->getPointeeType();
11330     isPointer = true;
11331   }
11332   // Desugar down to a function type.
11333   FnType = QualType(FnType->getAs<FunctionType>(), 0);
11334   // Reconstruct the pointer/reference as appropriate.
11335   if (isPointer) FnType = S.Context.getPointerType(FnType);
11336   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11337   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11338 
11339   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11340     << FnType;
11341 }
11342 
11343 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11344                                          SourceLocation OpLoc,
11345                                          OverloadCandidate *Cand) {
11346   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11347   std::string TypeStr("operator");
11348   TypeStr += Opc;
11349   TypeStr += "(";
11350   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11351   if (Cand->Conversions.size() == 1) {
11352     TypeStr += ")";
11353     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11354   } else {
11355     TypeStr += ", ";
11356     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11357     TypeStr += ")";
11358     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11359   }
11360 }
11361 
11362 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11363                                          OverloadCandidate *Cand) {
11364   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11365     if (ICS.isBad()) break; // all meaningless after first invalid
11366     if (!ICS.isAmbiguous()) continue;
11367 
11368     ICS.DiagnoseAmbiguousConversion(
11369         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11370   }
11371 }
11372 
11373 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11374   if (Cand->Function)
11375     return Cand->Function->getLocation();
11376   if (Cand->IsSurrogate)
11377     return Cand->Surrogate->getLocation();
11378   return SourceLocation();
11379 }
11380 
11381 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11382   switch ((Sema::TemplateDeductionResult)DFI.Result) {
11383   case Sema::TDK_Success:
11384   case Sema::TDK_NonDependentConversionFailure:
11385     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11386 
11387   case Sema::TDK_Invalid:
11388   case Sema::TDK_Incomplete:
11389   case Sema::TDK_IncompletePack:
11390     return 1;
11391 
11392   case Sema::TDK_Underqualified:
11393   case Sema::TDK_Inconsistent:
11394     return 2;
11395 
11396   case Sema::TDK_SubstitutionFailure:
11397   case Sema::TDK_DeducedMismatch:
11398   case Sema::TDK_ConstraintsNotSatisfied:
11399   case Sema::TDK_DeducedMismatchNested:
11400   case Sema::TDK_NonDeducedMismatch:
11401   case Sema::TDK_MiscellaneousDeductionFailure:
11402   case Sema::TDK_CUDATargetMismatch:
11403     return 3;
11404 
11405   case Sema::TDK_InstantiationDepth:
11406     return 4;
11407 
11408   case Sema::TDK_InvalidExplicitArguments:
11409     return 5;
11410 
11411   case Sema::TDK_TooManyArguments:
11412   case Sema::TDK_TooFewArguments:
11413     return 6;
11414   }
11415   llvm_unreachable("Unhandled deduction result");
11416 }
11417 
11418 namespace {
11419 struct CompareOverloadCandidatesForDisplay {
11420   Sema &S;
11421   SourceLocation Loc;
11422   size_t NumArgs;
11423   OverloadCandidateSet::CandidateSetKind CSK;
11424 
11425   CompareOverloadCandidatesForDisplay(
11426       Sema &S, SourceLocation Loc, size_t NArgs,
11427       OverloadCandidateSet::CandidateSetKind CSK)
11428       : S(S), NumArgs(NArgs), CSK(CSK) {}
11429 
11430   OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11431     // If there are too many or too few arguments, that's the high-order bit we
11432     // want to sort by, even if the immediate failure kind was something else.
11433     if (C->FailureKind == ovl_fail_too_many_arguments ||
11434         C->FailureKind == ovl_fail_too_few_arguments)
11435       return static_cast<OverloadFailureKind>(C->FailureKind);
11436 
11437     if (C->Function) {
11438       if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11439         return ovl_fail_too_many_arguments;
11440       if (NumArgs < C->Function->getMinRequiredArguments())
11441         return ovl_fail_too_few_arguments;
11442     }
11443 
11444     return static_cast<OverloadFailureKind>(C->FailureKind);
11445   }
11446 
11447   bool operator()(const OverloadCandidate *L,
11448                   const OverloadCandidate *R) {
11449     // Fast-path this check.
11450     if (L == R) return false;
11451 
11452     // Order first by viability.
11453     if (L->Viable) {
11454       if (!R->Viable) return true;
11455 
11456       // TODO: introduce a tri-valued comparison for overload
11457       // candidates.  Would be more worthwhile if we had a sort
11458       // that could exploit it.
11459       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11460         return true;
11461       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11462         return false;
11463     } else if (R->Viable)
11464       return false;
11465 
11466     assert(L->Viable == R->Viable);
11467 
11468     // Criteria by which we can sort non-viable candidates:
11469     if (!L->Viable) {
11470       OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11471       OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11472 
11473       // 1. Arity mismatches come after other candidates.
11474       if (LFailureKind == ovl_fail_too_many_arguments ||
11475           LFailureKind == ovl_fail_too_few_arguments) {
11476         if (RFailureKind == ovl_fail_too_many_arguments ||
11477             RFailureKind == ovl_fail_too_few_arguments) {
11478           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11479           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11480           if (LDist == RDist) {
11481             if (LFailureKind == RFailureKind)
11482               // Sort non-surrogates before surrogates.
11483               return !L->IsSurrogate && R->IsSurrogate;
11484             // Sort candidates requiring fewer parameters than there were
11485             // arguments given after candidates requiring more parameters
11486             // than there were arguments given.
11487             return LFailureKind == ovl_fail_too_many_arguments;
11488           }
11489           return LDist < RDist;
11490         }
11491         return false;
11492       }
11493       if (RFailureKind == ovl_fail_too_many_arguments ||
11494           RFailureKind == ovl_fail_too_few_arguments)
11495         return true;
11496 
11497       // 2. Bad conversions come first and are ordered by the number
11498       // of bad conversions and quality of good conversions.
11499       if (LFailureKind == ovl_fail_bad_conversion) {
11500         if (RFailureKind != ovl_fail_bad_conversion)
11501           return true;
11502 
11503         // The conversion that can be fixed with a smaller number of changes,
11504         // comes first.
11505         unsigned numLFixes = L->Fix.NumConversionsFixed;
11506         unsigned numRFixes = R->Fix.NumConversionsFixed;
11507         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11508         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11509         if (numLFixes != numRFixes) {
11510           return numLFixes < numRFixes;
11511         }
11512 
11513         // If there's any ordering between the defined conversions...
11514         // FIXME: this might not be transitive.
11515         assert(L->Conversions.size() == R->Conversions.size());
11516 
11517         int leftBetter = 0;
11518         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11519         for (unsigned E = L->Conversions.size(); I != E; ++I) {
11520           switch (CompareImplicitConversionSequences(S, Loc,
11521                                                      L->Conversions[I],
11522                                                      R->Conversions[I])) {
11523           case ImplicitConversionSequence::Better:
11524             leftBetter++;
11525             break;
11526 
11527           case ImplicitConversionSequence::Worse:
11528             leftBetter--;
11529             break;
11530 
11531           case ImplicitConversionSequence::Indistinguishable:
11532             break;
11533           }
11534         }
11535         if (leftBetter > 0) return true;
11536         if (leftBetter < 0) return false;
11537 
11538       } else if (RFailureKind == ovl_fail_bad_conversion)
11539         return false;
11540 
11541       if (LFailureKind == ovl_fail_bad_deduction) {
11542         if (RFailureKind != ovl_fail_bad_deduction)
11543           return true;
11544 
11545         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11546           return RankDeductionFailure(L->DeductionFailure)
11547                < RankDeductionFailure(R->DeductionFailure);
11548       } else if (RFailureKind == ovl_fail_bad_deduction)
11549         return false;
11550 
11551       // TODO: others?
11552     }
11553 
11554     // Sort everything else by location.
11555     SourceLocation LLoc = GetLocationForCandidate(L);
11556     SourceLocation RLoc = GetLocationForCandidate(R);
11557 
11558     // Put candidates without locations (e.g. builtins) at the end.
11559     if (LLoc.isInvalid()) return false;
11560     if (RLoc.isInvalid()) return true;
11561 
11562     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11563   }
11564 };
11565 }
11566 
11567 /// CompleteNonViableCandidate - Normally, overload resolution only
11568 /// computes up to the first bad conversion. Produces the FixIt set if
11569 /// possible.
11570 static void
11571 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11572                            ArrayRef<Expr *> Args,
11573                            OverloadCandidateSet::CandidateSetKind CSK) {
11574   assert(!Cand->Viable);
11575 
11576   // Don't do anything on failures other than bad conversion.
11577   if (Cand->FailureKind != ovl_fail_bad_conversion)
11578     return;
11579 
11580   // We only want the FixIts if all the arguments can be corrected.
11581   bool Unfixable = false;
11582   // Use a implicit copy initialization to check conversion fixes.
11583   Cand->Fix.setConversionChecker(TryCopyInitialization);
11584 
11585   // Attempt to fix the bad conversion.
11586   unsigned ConvCount = Cand->Conversions.size();
11587   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11588        ++ConvIdx) {
11589     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11590     if (Cand->Conversions[ConvIdx].isInitialized() &&
11591         Cand->Conversions[ConvIdx].isBad()) {
11592       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11593       break;
11594     }
11595   }
11596 
11597   // FIXME: this should probably be preserved from the overload
11598   // operation somehow.
11599   bool SuppressUserConversions = false;
11600 
11601   unsigned ConvIdx = 0;
11602   unsigned ArgIdx = 0;
11603   ArrayRef<QualType> ParamTypes;
11604   bool Reversed = Cand->isReversed();
11605 
11606   if (Cand->IsSurrogate) {
11607     QualType ConvType
11608       = Cand->Surrogate->getConversionType().getNonReferenceType();
11609     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11610       ConvType = ConvPtrType->getPointeeType();
11611     ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11612     // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11613     ConvIdx = 1;
11614   } else if (Cand->Function) {
11615     ParamTypes =
11616         Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11617     if (isa<CXXMethodDecl>(Cand->Function) &&
11618         !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11619       // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11620       ConvIdx = 1;
11621       if (CSK == OverloadCandidateSet::CSK_Operator &&
11622           Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11623         // Argument 0 is 'this', which doesn't have a corresponding parameter.
11624         ArgIdx = 1;
11625     }
11626   } else {
11627     // Builtin operator.
11628     assert(ConvCount <= 3);
11629     ParamTypes = Cand->BuiltinParamTypes;
11630   }
11631 
11632   // Fill in the rest of the conversions.
11633   for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11634        ConvIdx != ConvCount;
11635        ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11636     assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11637     if (Cand->Conversions[ConvIdx].isInitialized()) {
11638       // We've already checked this conversion.
11639     } else if (ParamIdx < ParamTypes.size()) {
11640       if (ParamTypes[ParamIdx]->isDependentType())
11641         Cand->Conversions[ConvIdx].setAsIdentityConversion(
11642             Args[ArgIdx]->getType());
11643       else {
11644         Cand->Conversions[ConvIdx] =
11645             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11646                                   SuppressUserConversions,
11647                                   /*InOverloadResolution=*/true,
11648                                   /*AllowObjCWritebackConversion=*/
11649                                   S.getLangOpts().ObjCAutoRefCount);
11650         // Store the FixIt in the candidate if it exists.
11651         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11652           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11653       }
11654     } else
11655       Cand->Conversions[ConvIdx].setEllipsis();
11656   }
11657 }
11658 
11659 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11660     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11661     SourceLocation OpLoc,
11662     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11663   // Sort the candidates by viability and position.  Sorting directly would
11664   // be prohibitive, so we make a set of pointers and sort those.
11665   SmallVector<OverloadCandidate*, 32> Cands;
11666   if (OCD == OCD_AllCandidates) Cands.reserve(size());
11667   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11668     if (!Filter(*Cand))
11669       continue;
11670     switch (OCD) {
11671     case OCD_AllCandidates:
11672       if (!Cand->Viable) {
11673         if (!Cand->Function && !Cand->IsSurrogate) {
11674           // This a non-viable builtin candidate.  We do not, in general,
11675           // want to list every possible builtin candidate.
11676           continue;
11677         }
11678         CompleteNonViableCandidate(S, Cand, Args, Kind);
11679       }
11680       break;
11681 
11682     case OCD_ViableCandidates:
11683       if (!Cand->Viable)
11684         continue;
11685       break;
11686 
11687     case OCD_AmbiguousCandidates:
11688       if (!Cand->Best)
11689         continue;
11690       break;
11691     }
11692 
11693     Cands.push_back(Cand);
11694   }
11695 
11696   llvm::stable_sort(
11697       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11698 
11699   return Cands;
11700 }
11701 
11702 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11703                                             SourceLocation OpLoc) {
11704   bool DeferHint = false;
11705   if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11706     // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11707     // host device candidates.
11708     auto WrongSidedCands =
11709         CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11710           return (Cand.Viable == false &&
11711                   Cand.FailureKind == ovl_fail_bad_target) ||
11712                  (Cand.Function &&
11713                   Cand.Function->template hasAttr<CUDAHostAttr>() &&
11714                   Cand.Function->template hasAttr<CUDADeviceAttr>());
11715         });
11716     DeferHint = !WrongSidedCands.empty();
11717   }
11718   return DeferHint;
11719 }
11720 
11721 /// When overload resolution fails, prints diagnostic messages containing the
11722 /// candidates in the candidate set.
11723 void OverloadCandidateSet::NoteCandidates(
11724     PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11725     ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11726     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11727 
11728   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11729 
11730   S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11731 
11732   NoteCandidates(S, Args, Cands, Opc, OpLoc);
11733 
11734   if (OCD == OCD_AmbiguousCandidates)
11735     MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11736 }
11737 
11738 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11739                                           ArrayRef<OverloadCandidate *> Cands,
11740                                           StringRef Opc, SourceLocation OpLoc) {
11741   bool ReportedAmbiguousConversions = false;
11742 
11743   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11744   unsigned CandsShown = 0;
11745   auto I = Cands.begin(), E = Cands.end();
11746   for (; I != E; ++I) {
11747     OverloadCandidate *Cand = *I;
11748 
11749     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11750         ShowOverloads == Ovl_Best) {
11751       break;
11752     }
11753     ++CandsShown;
11754 
11755     if (Cand->Function)
11756       NoteFunctionCandidate(S, Cand, Args.size(),
11757                             /*TakingCandidateAddress=*/false, DestAS);
11758     else if (Cand->IsSurrogate)
11759       NoteSurrogateCandidate(S, Cand);
11760     else {
11761       assert(Cand->Viable &&
11762              "Non-viable built-in candidates are not added to Cands.");
11763       // Generally we only see ambiguities including viable builtin
11764       // operators if overload resolution got screwed up by an
11765       // ambiguous user-defined conversion.
11766       //
11767       // FIXME: It's quite possible for different conversions to see
11768       // different ambiguities, though.
11769       if (!ReportedAmbiguousConversions) {
11770         NoteAmbiguousUserConversions(S, OpLoc, Cand);
11771         ReportedAmbiguousConversions = true;
11772       }
11773 
11774       // If this is a viable builtin, print it.
11775       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11776     }
11777   }
11778 
11779   // Inform S.Diags that we've shown an overload set with N elements.  This may
11780   // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11781   S.Diags.overloadCandidatesShown(CandsShown);
11782 
11783   if (I != E)
11784     S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11785            shouldDeferDiags(S, Args, OpLoc))
11786         << int(E - I);
11787 }
11788 
11789 static SourceLocation
11790 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11791   return Cand->Specialization ? Cand->Specialization->getLocation()
11792                               : SourceLocation();
11793 }
11794 
11795 namespace {
11796 struct CompareTemplateSpecCandidatesForDisplay {
11797   Sema &S;
11798   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11799 
11800   bool operator()(const TemplateSpecCandidate *L,
11801                   const TemplateSpecCandidate *R) {
11802     // Fast-path this check.
11803     if (L == R)
11804       return false;
11805 
11806     // Assuming that both candidates are not matches...
11807 
11808     // Sort by the ranking of deduction failures.
11809     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11810       return RankDeductionFailure(L->DeductionFailure) <
11811              RankDeductionFailure(R->DeductionFailure);
11812 
11813     // Sort everything else by location.
11814     SourceLocation LLoc = GetLocationForCandidate(L);
11815     SourceLocation RLoc = GetLocationForCandidate(R);
11816 
11817     // Put candidates without locations (e.g. builtins) at the end.
11818     if (LLoc.isInvalid())
11819       return false;
11820     if (RLoc.isInvalid())
11821       return true;
11822 
11823     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11824   }
11825 };
11826 }
11827 
11828 /// Diagnose a template argument deduction failure.
11829 /// We are treating these failures as overload failures due to bad
11830 /// deductions.
11831 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11832                                                  bool ForTakingAddress) {
11833   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11834                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11835 }
11836 
11837 void TemplateSpecCandidateSet::destroyCandidates() {
11838   for (iterator i = begin(), e = end(); i != e; ++i) {
11839     i->DeductionFailure.Destroy();
11840   }
11841 }
11842 
11843 void TemplateSpecCandidateSet::clear() {
11844   destroyCandidates();
11845   Candidates.clear();
11846 }
11847 
11848 /// NoteCandidates - When no template specialization match is found, prints
11849 /// diagnostic messages containing the non-matching specializations that form
11850 /// the candidate set.
11851 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11852 /// OCD == OCD_AllCandidates and Cand->Viable == false.
11853 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11854   // Sort the candidates by position (assuming no candidate is a match).
11855   // Sorting directly would be prohibitive, so we make a set of pointers
11856   // and sort those.
11857   SmallVector<TemplateSpecCandidate *, 32> Cands;
11858   Cands.reserve(size());
11859   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11860     if (Cand->Specialization)
11861       Cands.push_back(Cand);
11862     // Otherwise, this is a non-matching builtin candidate.  We do not,
11863     // in general, want to list every possible builtin candidate.
11864   }
11865 
11866   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11867 
11868   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11869   // for generalization purposes (?).
11870   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11871 
11872   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11873   unsigned CandsShown = 0;
11874   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11875     TemplateSpecCandidate *Cand = *I;
11876 
11877     // Set an arbitrary limit on the number of candidates we'll spam
11878     // the user with.  FIXME: This limit should depend on details of the
11879     // candidate list.
11880     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11881       break;
11882     ++CandsShown;
11883 
11884     assert(Cand->Specialization &&
11885            "Non-matching built-in candidates are not added to Cands.");
11886     Cand->NoteDeductionFailure(S, ForTakingAddress);
11887   }
11888 
11889   if (I != E)
11890     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11891 }
11892 
11893 // [PossiblyAFunctionType]  -->   [Return]
11894 // NonFunctionType --> NonFunctionType
11895 // R (A) --> R(A)
11896 // R (*)(A) --> R (A)
11897 // R (&)(A) --> R (A)
11898 // R (S::*)(A) --> R (A)
11899 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11900   QualType Ret = PossiblyAFunctionType;
11901   if (const PointerType *ToTypePtr =
11902     PossiblyAFunctionType->getAs<PointerType>())
11903     Ret = ToTypePtr->getPointeeType();
11904   else if (const ReferenceType *ToTypeRef =
11905     PossiblyAFunctionType->getAs<ReferenceType>())
11906     Ret = ToTypeRef->getPointeeType();
11907   else if (const MemberPointerType *MemTypePtr =
11908     PossiblyAFunctionType->getAs<MemberPointerType>())
11909     Ret = MemTypePtr->getPointeeType();
11910   Ret =
11911     Context.getCanonicalType(Ret).getUnqualifiedType();
11912   return Ret;
11913 }
11914 
11915 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11916                                  bool Complain = true) {
11917   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11918       S.DeduceReturnType(FD, Loc, Complain))
11919     return true;
11920 
11921   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11922   if (S.getLangOpts().CPlusPlus17 &&
11923       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11924       !S.ResolveExceptionSpec(Loc, FPT))
11925     return true;
11926 
11927   return false;
11928 }
11929 
11930 namespace {
11931 // A helper class to help with address of function resolution
11932 // - allows us to avoid passing around all those ugly parameters
11933 class AddressOfFunctionResolver {
11934   Sema& S;
11935   Expr* SourceExpr;
11936   const QualType& TargetType;
11937   QualType TargetFunctionType; // Extracted function type from target type
11938 
11939   bool Complain;
11940   //DeclAccessPair& ResultFunctionAccessPair;
11941   ASTContext& Context;
11942 
11943   bool TargetTypeIsNonStaticMemberFunction;
11944   bool FoundNonTemplateFunction;
11945   bool StaticMemberFunctionFromBoundPointer;
11946   bool HasComplained;
11947 
11948   OverloadExpr::FindResult OvlExprInfo;
11949   OverloadExpr *OvlExpr;
11950   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11951   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11952   TemplateSpecCandidateSet FailedCandidates;
11953 
11954 public:
11955   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11956                             const QualType &TargetType, bool Complain)
11957       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11958         Complain(Complain), Context(S.getASTContext()),
11959         TargetTypeIsNonStaticMemberFunction(
11960             !!TargetType->getAs<MemberPointerType>()),
11961         FoundNonTemplateFunction(false),
11962         StaticMemberFunctionFromBoundPointer(false),
11963         HasComplained(false),
11964         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11965         OvlExpr(OvlExprInfo.Expression),
11966         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11967     ExtractUnqualifiedFunctionTypeFromTargetType();
11968 
11969     if (TargetFunctionType->isFunctionType()) {
11970       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11971         if (!UME->isImplicitAccess() &&
11972             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11973           StaticMemberFunctionFromBoundPointer = true;
11974     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11975       DeclAccessPair dap;
11976       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11977               OvlExpr, false, &dap)) {
11978         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11979           if (!Method->isStatic()) {
11980             // If the target type is a non-function type and the function found
11981             // is a non-static member function, pretend as if that was the
11982             // target, it's the only possible type to end up with.
11983             TargetTypeIsNonStaticMemberFunction = true;
11984 
11985             // And skip adding the function if its not in the proper form.
11986             // We'll diagnose this due to an empty set of functions.
11987             if (!OvlExprInfo.HasFormOfMemberPointer)
11988               return;
11989           }
11990 
11991         Matches.push_back(std::make_pair(dap, Fn));
11992       }
11993       return;
11994     }
11995 
11996     if (OvlExpr->hasExplicitTemplateArgs())
11997       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11998 
11999     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
12000       // C++ [over.over]p4:
12001       //   If more than one function is selected, [...]
12002       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
12003         if (FoundNonTemplateFunction)
12004           EliminateAllTemplateMatches();
12005         else
12006           EliminateAllExceptMostSpecializedTemplate();
12007       }
12008     }
12009 
12010     if (S.getLangOpts().CUDA && Matches.size() > 1)
12011       EliminateSuboptimalCudaMatches();
12012   }
12013 
12014   bool hasComplained() const { return HasComplained; }
12015 
12016 private:
12017   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
12018     QualType Discard;
12019     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
12020            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
12021   }
12022 
12023   /// \return true if A is considered a better overload candidate for the
12024   /// desired type than B.
12025   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
12026     // If A doesn't have exactly the correct type, we don't want to classify it
12027     // as "better" than anything else. This way, the user is required to
12028     // disambiguate for us if there are multiple candidates and no exact match.
12029     return candidateHasExactlyCorrectType(A) &&
12030            (!candidateHasExactlyCorrectType(B) ||
12031             compareEnableIfAttrs(S, A, B) == Comparison::Better);
12032   }
12033 
12034   /// \return true if we were able to eliminate all but one overload candidate,
12035   /// false otherwise.
12036   bool eliminiateSuboptimalOverloadCandidates() {
12037     // Same algorithm as overload resolution -- one pass to pick the "best",
12038     // another pass to be sure that nothing is better than the best.
12039     auto Best = Matches.begin();
12040     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
12041       if (isBetterCandidate(I->second, Best->second))
12042         Best = I;
12043 
12044     const FunctionDecl *BestFn = Best->second;
12045     auto IsBestOrInferiorToBest = [this, BestFn](
12046         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
12047       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
12048     };
12049 
12050     // Note: We explicitly leave Matches unmodified if there isn't a clear best
12051     // option, so we can potentially give the user a better error
12052     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
12053       return false;
12054     Matches[0] = *Best;
12055     Matches.resize(1);
12056     return true;
12057   }
12058 
12059   bool isTargetTypeAFunction() const {
12060     return TargetFunctionType->isFunctionType();
12061   }
12062 
12063   // [ToType]     [Return]
12064 
12065   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
12066   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
12067   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
12068   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12069     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12070   }
12071 
12072   // return true if any matching specializations were found
12073   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12074                                    const DeclAccessPair& CurAccessFunPair) {
12075     if (CXXMethodDecl *Method
12076               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12077       // Skip non-static function templates when converting to pointer, and
12078       // static when converting to member pointer.
12079       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12080         return false;
12081     }
12082     else if (TargetTypeIsNonStaticMemberFunction)
12083       return false;
12084 
12085     // C++ [over.over]p2:
12086     //   If the name is a function template, template argument deduction is
12087     //   done (14.8.2.2), and if the argument deduction succeeds, the
12088     //   resulting template argument list is used to generate a single
12089     //   function template specialization, which is added to the set of
12090     //   overloaded functions considered.
12091     FunctionDecl *Specialization = nullptr;
12092     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12093     if (Sema::TemplateDeductionResult Result
12094           = S.DeduceTemplateArguments(FunctionTemplate,
12095                                       &OvlExplicitTemplateArgs,
12096                                       TargetFunctionType, Specialization,
12097                                       Info, /*IsAddressOfFunction*/true)) {
12098       // Make a note of the failed deduction for diagnostics.
12099       FailedCandidates.addCandidate()
12100           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12101                MakeDeductionFailureInfo(Context, Result, Info));
12102       return false;
12103     }
12104 
12105     // Template argument deduction ensures that we have an exact match or
12106     // compatible pointer-to-function arguments that would be adjusted by ICS.
12107     // This function template specicalization works.
12108     assert(S.isSameOrCompatibleFunctionType(
12109               Context.getCanonicalType(Specialization->getType()),
12110               Context.getCanonicalType(TargetFunctionType)));
12111 
12112     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12113       return false;
12114 
12115     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12116     return true;
12117   }
12118 
12119   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12120                                       const DeclAccessPair& CurAccessFunPair) {
12121     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12122       // Skip non-static functions when converting to pointer, and static
12123       // when converting to member pointer.
12124       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12125         return false;
12126     }
12127     else if (TargetTypeIsNonStaticMemberFunction)
12128       return false;
12129 
12130     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12131       if (S.getLangOpts().CUDA)
12132         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12133           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12134             return false;
12135       if (FunDecl->isMultiVersion()) {
12136         const auto *TA = FunDecl->getAttr<TargetAttr>();
12137         if (TA && !TA->isDefaultVersion())
12138           return false;
12139       }
12140 
12141       // If any candidate has a placeholder return type, trigger its deduction
12142       // now.
12143       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12144                                Complain)) {
12145         HasComplained |= Complain;
12146         return false;
12147       }
12148 
12149       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12150         return false;
12151 
12152       // If we're in C, we need to support types that aren't exactly identical.
12153       if (!S.getLangOpts().CPlusPlus ||
12154           candidateHasExactlyCorrectType(FunDecl)) {
12155         Matches.push_back(std::make_pair(
12156             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12157         FoundNonTemplateFunction = true;
12158         return true;
12159       }
12160     }
12161 
12162     return false;
12163   }
12164 
12165   bool FindAllFunctionsThatMatchTargetTypeExactly() {
12166     bool Ret = false;
12167 
12168     // If the overload expression doesn't have the form of a pointer to
12169     // member, don't try to convert it to a pointer-to-member type.
12170     if (IsInvalidFormOfPointerToMemberFunction())
12171       return false;
12172 
12173     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12174                                E = OvlExpr->decls_end();
12175          I != E; ++I) {
12176       // Look through any using declarations to find the underlying function.
12177       NamedDecl *Fn = (*I)->getUnderlyingDecl();
12178 
12179       // C++ [over.over]p3:
12180       //   Non-member functions and static member functions match
12181       //   targets of type "pointer-to-function" or "reference-to-function."
12182       //   Nonstatic member functions match targets of
12183       //   type "pointer-to-member-function."
12184       // Note that according to DR 247, the containing class does not matter.
12185       if (FunctionTemplateDecl *FunctionTemplate
12186                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
12187         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12188           Ret = true;
12189       }
12190       // If we have explicit template arguments supplied, skip non-templates.
12191       else if (!OvlExpr->hasExplicitTemplateArgs() &&
12192                AddMatchingNonTemplateFunction(Fn, I.getPair()))
12193         Ret = true;
12194     }
12195     assert(Ret || Matches.empty());
12196     return Ret;
12197   }
12198 
12199   void EliminateAllExceptMostSpecializedTemplate() {
12200     //   [...] and any given function template specialization F1 is
12201     //   eliminated if the set contains a second function template
12202     //   specialization whose function template is more specialized
12203     //   than the function template of F1 according to the partial
12204     //   ordering rules of 14.5.5.2.
12205 
12206     // The algorithm specified above is quadratic. We instead use a
12207     // two-pass algorithm (similar to the one used to identify the
12208     // best viable function in an overload set) that identifies the
12209     // best function template (if it exists).
12210 
12211     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12212     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12213       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12214 
12215     // TODO: It looks like FailedCandidates does not serve much purpose
12216     // here, since the no_viable diagnostic has index 0.
12217     UnresolvedSetIterator Result = S.getMostSpecialized(
12218         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12219         SourceExpr->getBeginLoc(), S.PDiag(),
12220         S.PDiag(diag::err_addr_ovl_ambiguous)
12221             << Matches[0].second->getDeclName(),
12222         S.PDiag(diag::note_ovl_candidate)
12223             << (unsigned)oc_function << (unsigned)ocs_described_template,
12224         Complain, TargetFunctionType);
12225 
12226     if (Result != MatchesCopy.end()) {
12227       // Make it the first and only element
12228       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12229       Matches[0].second = cast<FunctionDecl>(*Result);
12230       Matches.resize(1);
12231     } else
12232       HasComplained |= Complain;
12233   }
12234 
12235   void EliminateAllTemplateMatches() {
12236     //   [...] any function template specializations in the set are
12237     //   eliminated if the set also contains a non-template function, [...]
12238     for (unsigned I = 0, N = Matches.size(); I != N; ) {
12239       if (Matches[I].second->getPrimaryTemplate() == nullptr)
12240         ++I;
12241       else {
12242         Matches[I] = Matches[--N];
12243         Matches.resize(N);
12244       }
12245     }
12246   }
12247 
12248   void EliminateSuboptimalCudaMatches() {
12249     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12250   }
12251 
12252 public:
12253   void ComplainNoMatchesFound() const {
12254     assert(Matches.empty());
12255     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12256         << OvlExpr->getName() << TargetFunctionType
12257         << OvlExpr->getSourceRange();
12258     if (FailedCandidates.empty())
12259       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12260                                   /*TakingAddress=*/true);
12261     else {
12262       // We have some deduction failure messages. Use them to diagnose
12263       // the function templates, and diagnose the non-template candidates
12264       // normally.
12265       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12266                                  IEnd = OvlExpr->decls_end();
12267            I != IEnd; ++I)
12268         if (FunctionDecl *Fun =
12269                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12270           if (!functionHasPassObjectSizeParams(Fun))
12271             S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12272                                     /*TakingAddress=*/true);
12273       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12274     }
12275   }
12276 
12277   bool IsInvalidFormOfPointerToMemberFunction() const {
12278     return TargetTypeIsNonStaticMemberFunction &&
12279       !OvlExprInfo.HasFormOfMemberPointer;
12280   }
12281 
12282   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12283       // TODO: Should we condition this on whether any functions might
12284       // have matched, or is it more appropriate to do that in callers?
12285       // TODO: a fixit wouldn't hurt.
12286       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12287         << TargetType << OvlExpr->getSourceRange();
12288   }
12289 
12290   bool IsStaticMemberFunctionFromBoundPointer() const {
12291     return StaticMemberFunctionFromBoundPointer;
12292   }
12293 
12294   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12295     S.Diag(OvlExpr->getBeginLoc(),
12296            diag::err_invalid_form_pointer_member_function)
12297         << OvlExpr->getSourceRange();
12298   }
12299 
12300   void ComplainOfInvalidConversion() const {
12301     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12302         << OvlExpr->getName() << TargetType;
12303   }
12304 
12305   void ComplainMultipleMatchesFound() const {
12306     assert(Matches.size() > 1);
12307     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12308         << OvlExpr->getName() << OvlExpr->getSourceRange();
12309     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12310                                 /*TakingAddress=*/true);
12311   }
12312 
12313   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12314 
12315   int getNumMatches() const { return Matches.size(); }
12316 
12317   FunctionDecl* getMatchingFunctionDecl() const {
12318     if (Matches.size() != 1) return nullptr;
12319     return Matches[0].second;
12320   }
12321 
12322   const DeclAccessPair* getMatchingFunctionAccessPair() const {
12323     if (Matches.size() != 1) return nullptr;
12324     return &Matches[0].first;
12325   }
12326 };
12327 }
12328 
12329 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12330 /// an overloaded function (C++ [over.over]), where @p From is an
12331 /// expression with overloaded function type and @p ToType is the type
12332 /// we're trying to resolve to. For example:
12333 ///
12334 /// @code
12335 /// int f(double);
12336 /// int f(int);
12337 ///
12338 /// int (*pfd)(double) = f; // selects f(double)
12339 /// @endcode
12340 ///
12341 /// This routine returns the resulting FunctionDecl if it could be
12342 /// resolved, and NULL otherwise. When @p Complain is true, this
12343 /// routine will emit diagnostics if there is an error.
12344 FunctionDecl *
12345 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12346                                          QualType TargetType,
12347                                          bool Complain,
12348                                          DeclAccessPair &FoundResult,
12349                                          bool *pHadMultipleCandidates) {
12350   assert(AddressOfExpr->getType() == Context.OverloadTy);
12351 
12352   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12353                                      Complain);
12354   int NumMatches = Resolver.getNumMatches();
12355   FunctionDecl *Fn = nullptr;
12356   bool ShouldComplain = Complain && !Resolver.hasComplained();
12357   if (NumMatches == 0 && ShouldComplain) {
12358     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12359       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12360     else
12361       Resolver.ComplainNoMatchesFound();
12362   }
12363   else if (NumMatches > 1 && ShouldComplain)
12364     Resolver.ComplainMultipleMatchesFound();
12365   else if (NumMatches == 1) {
12366     Fn = Resolver.getMatchingFunctionDecl();
12367     assert(Fn);
12368     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12369       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12370     FoundResult = *Resolver.getMatchingFunctionAccessPair();
12371     if (Complain) {
12372       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12373         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12374       else
12375         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12376     }
12377   }
12378 
12379   if (pHadMultipleCandidates)
12380     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12381   return Fn;
12382 }
12383 
12384 /// Given an expression that refers to an overloaded function, try to
12385 /// resolve that function to a single function that can have its address taken.
12386 /// This will modify `Pair` iff it returns non-null.
12387 ///
12388 /// This routine can only succeed if from all of the candidates in the overload
12389 /// set for SrcExpr that can have their addresses taken, there is one candidate
12390 /// that is more constrained than the rest.
12391 FunctionDecl *
12392 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12393   OverloadExpr::FindResult R = OverloadExpr::find(E);
12394   OverloadExpr *Ovl = R.Expression;
12395   bool IsResultAmbiguous = false;
12396   FunctionDecl *Result = nullptr;
12397   DeclAccessPair DAP;
12398   SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12399 
12400   auto CheckMoreConstrained =
12401       [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12402         SmallVector<const Expr *, 1> AC1, AC2;
12403         FD1->getAssociatedConstraints(AC1);
12404         FD2->getAssociatedConstraints(AC2);
12405         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12406         if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12407           return None;
12408         if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12409           return None;
12410         if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12411           return None;
12412         return AtLeastAsConstrained1;
12413       };
12414 
12415   // Don't use the AddressOfResolver because we're specifically looking for
12416   // cases where we have one overload candidate that lacks
12417   // enable_if/pass_object_size/...
12418   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12419     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12420     if (!FD)
12421       return nullptr;
12422 
12423     if (!checkAddressOfFunctionIsAvailable(FD))
12424       continue;
12425 
12426     // We have more than one result - see if it is more constrained than the
12427     // previous one.
12428     if (Result) {
12429       Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12430                                                                         Result);
12431       if (!MoreConstrainedThanPrevious) {
12432         IsResultAmbiguous = true;
12433         AmbiguousDecls.push_back(FD);
12434         continue;
12435       }
12436       if (!*MoreConstrainedThanPrevious)
12437         continue;
12438       // FD is more constrained - replace Result with it.
12439     }
12440     IsResultAmbiguous = false;
12441     DAP = I.getPair();
12442     Result = FD;
12443   }
12444 
12445   if (IsResultAmbiguous)
12446     return nullptr;
12447 
12448   if (Result) {
12449     SmallVector<const Expr *, 1> ResultAC;
12450     // We skipped over some ambiguous declarations which might be ambiguous with
12451     // the selected result.
12452     for (FunctionDecl *Skipped : AmbiguousDecls)
12453       if (!CheckMoreConstrained(Skipped, Result).hasValue())
12454         return nullptr;
12455     Pair = DAP;
12456   }
12457   return Result;
12458 }
12459 
12460 /// Given an overloaded function, tries to turn it into a non-overloaded
12461 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12462 /// will perform access checks, diagnose the use of the resultant decl, and, if
12463 /// requested, potentially perform a function-to-pointer decay.
12464 ///
12465 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12466 /// Otherwise, returns true. This may emit diagnostics and return true.
12467 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12468     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12469   Expr *E = SrcExpr.get();
12470   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12471 
12472   DeclAccessPair DAP;
12473   FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12474   if (!Found || Found->isCPUDispatchMultiVersion() ||
12475       Found->isCPUSpecificMultiVersion())
12476     return false;
12477 
12478   // Emitting multiple diagnostics for a function that is both inaccessible and
12479   // unavailable is consistent with our behavior elsewhere. So, always check
12480   // for both.
12481   DiagnoseUseOfDecl(Found, E->getExprLoc());
12482   CheckAddressOfMemberAccess(E, DAP);
12483   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12484   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12485     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12486   else
12487     SrcExpr = Fixed;
12488   return true;
12489 }
12490 
12491 /// Given an expression that refers to an overloaded function, try to
12492 /// resolve that overloaded function expression down to a single function.
12493 ///
12494 /// This routine can only resolve template-ids that refer to a single function
12495 /// template, where that template-id refers to a single template whose template
12496 /// arguments are either provided by the template-id or have defaults,
12497 /// as described in C++0x [temp.arg.explicit]p3.
12498 ///
12499 /// If no template-ids are found, no diagnostics are emitted and NULL is
12500 /// returned.
12501 FunctionDecl *
12502 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12503                                                   bool Complain,
12504                                                   DeclAccessPair *FoundResult) {
12505   // C++ [over.over]p1:
12506   //   [...] [Note: any redundant set of parentheses surrounding the
12507   //   overloaded function name is ignored (5.1). ]
12508   // C++ [over.over]p1:
12509   //   [...] The overloaded function name can be preceded by the &
12510   //   operator.
12511 
12512   // If we didn't actually find any template-ids, we're done.
12513   if (!ovl->hasExplicitTemplateArgs())
12514     return nullptr;
12515 
12516   TemplateArgumentListInfo ExplicitTemplateArgs;
12517   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12518   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12519 
12520   // Look through all of the overloaded functions, searching for one
12521   // whose type matches exactly.
12522   FunctionDecl *Matched = nullptr;
12523   for (UnresolvedSetIterator I = ovl->decls_begin(),
12524          E = ovl->decls_end(); I != E; ++I) {
12525     // C++0x [temp.arg.explicit]p3:
12526     //   [...] In contexts where deduction is done and fails, or in contexts
12527     //   where deduction is not done, if a template argument list is
12528     //   specified and it, along with any default template arguments,
12529     //   identifies a single function template specialization, then the
12530     //   template-id is an lvalue for the function template specialization.
12531     FunctionTemplateDecl *FunctionTemplate
12532       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12533 
12534     // C++ [over.over]p2:
12535     //   If the name is a function template, template argument deduction is
12536     //   done (14.8.2.2), and if the argument deduction succeeds, the
12537     //   resulting template argument list is used to generate a single
12538     //   function template specialization, which is added to the set of
12539     //   overloaded functions considered.
12540     FunctionDecl *Specialization = nullptr;
12541     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12542     if (TemplateDeductionResult Result
12543           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12544                                     Specialization, Info,
12545                                     /*IsAddressOfFunction*/true)) {
12546       // Make a note of the failed deduction for diagnostics.
12547       // TODO: Actually use the failed-deduction info?
12548       FailedCandidates.addCandidate()
12549           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12550                MakeDeductionFailureInfo(Context, Result, Info));
12551       continue;
12552     }
12553 
12554     assert(Specialization && "no specialization and no error?");
12555 
12556     // Multiple matches; we can't resolve to a single declaration.
12557     if (Matched) {
12558       if (Complain) {
12559         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12560           << ovl->getName();
12561         NoteAllOverloadCandidates(ovl);
12562       }
12563       return nullptr;
12564     }
12565 
12566     Matched = Specialization;
12567     if (FoundResult) *FoundResult = I.getPair();
12568   }
12569 
12570   if (Matched &&
12571       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12572     return nullptr;
12573 
12574   return Matched;
12575 }
12576 
12577 // Resolve and fix an overloaded expression that can be resolved
12578 // because it identifies a single function template specialization.
12579 //
12580 // Last three arguments should only be supplied if Complain = true
12581 //
12582 // Return true if it was logically possible to so resolve the
12583 // expression, regardless of whether or not it succeeded.  Always
12584 // returns true if 'complain' is set.
12585 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12586                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
12587                       bool complain, SourceRange OpRangeForComplaining,
12588                                            QualType DestTypeForComplaining,
12589                                             unsigned DiagIDForComplaining) {
12590   assert(SrcExpr.get()->getType() == Context.OverloadTy);
12591 
12592   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12593 
12594   DeclAccessPair found;
12595   ExprResult SingleFunctionExpression;
12596   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12597                            ovl.Expression, /*complain*/ false, &found)) {
12598     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12599       SrcExpr = ExprError();
12600       return true;
12601     }
12602 
12603     // It is only correct to resolve to an instance method if we're
12604     // resolving a form that's permitted to be a pointer to member.
12605     // Otherwise we'll end up making a bound member expression, which
12606     // is illegal in all the contexts we resolve like this.
12607     if (!ovl.HasFormOfMemberPointer &&
12608         isa<CXXMethodDecl>(fn) &&
12609         cast<CXXMethodDecl>(fn)->isInstance()) {
12610       if (!complain) return false;
12611 
12612       Diag(ovl.Expression->getExprLoc(),
12613            diag::err_bound_member_function)
12614         << 0 << ovl.Expression->getSourceRange();
12615 
12616       // TODO: I believe we only end up here if there's a mix of
12617       // static and non-static candidates (otherwise the expression
12618       // would have 'bound member' type, not 'overload' type).
12619       // Ideally we would note which candidate was chosen and why
12620       // the static candidates were rejected.
12621       SrcExpr = ExprError();
12622       return true;
12623     }
12624 
12625     // Fix the expression to refer to 'fn'.
12626     SingleFunctionExpression =
12627         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12628 
12629     // If desired, do function-to-pointer decay.
12630     if (doFunctionPointerConverion) {
12631       SingleFunctionExpression =
12632         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12633       if (SingleFunctionExpression.isInvalid()) {
12634         SrcExpr = ExprError();
12635         return true;
12636       }
12637     }
12638   }
12639 
12640   if (!SingleFunctionExpression.isUsable()) {
12641     if (complain) {
12642       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12643         << ovl.Expression->getName()
12644         << DestTypeForComplaining
12645         << OpRangeForComplaining
12646         << ovl.Expression->getQualifierLoc().getSourceRange();
12647       NoteAllOverloadCandidates(SrcExpr.get());
12648 
12649       SrcExpr = ExprError();
12650       return true;
12651     }
12652 
12653     return false;
12654   }
12655 
12656   SrcExpr = SingleFunctionExpression;
12657   return true;
12658 }
12659 
12660 /// Add a single candidate to the overload set.
12661 static void AddOverloadedCallCandidate(Sema &S,
12662                                        DeclAccessPair FoundDecl,
12663                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
12664                                        ArrayRef<Expr *> Args,
12665                                        OverloadCandidateSet &CandidateSet,
12666                                        bool PartialOverloading,
12667                                        bool KnownValid) {
12668   NamedDecl *Callee = FoundDecl.getDecl();
12669   if (isa<UsingShadowDecl>(Callee))
12670     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12671 
12672   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12673     if (ExplicitTemplateArgs) {
12674       assert(!KnownValid && "Explicit template arguments?");
12675       return;
12676     }
12677     // Prevent ill-formed function decls to be added as overload candidates.
12678     if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12679       return;
12680 
12681     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12682                            /*SuppressUserConversions=*/false,
12683                            PartialOverloading);
12684     return;
12685   }
12686 
12687   if (FunctionTemplateDecl *FuncTemplate
12688       = dyn_cast<FunctionTemplateDecl>(Callee)) {
12689     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12690                                    ExplicitTemplateArgs, Args, CandidateSet,
12691                                    /*SuppressUserConversions=*/false,
12692                                    PartialOverloading);
12693     return;
12694   }
12695 
12696   assert(!KnownValid && "unhandled case in overloaded call candidate");
12697 }
12698 
12699 /// Add the overload candidates named by callee and/or found by argument
12700 /// dependent lookup to the given overload set.
12701 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12702                                        ArrayRef<Expr *> Args,
12703                                        OverloadCandidateSet &CandidateSet,
12704                                        bool PartialOverloading) {
12705 
12706 #ifndef NDEBUG
12707   // Verify that ArgumentDependentLookup is consistent with the rules
12708   // in C++0x [basic.lookup.argdep]p3:
12709   //
12710   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
12711   //   and let Y be the lookup set produced by argument dependent
12712   //   lookup (defined as follows). If X contains
12713   //
12714   //     -- a declaration of a class member, or
12715   //
12716   //     -- a block-scope function declaration that is not a
12717   //        using-declaration, or
12718   //
12719   //     -- a declaration that is neither a function or a function
12720   //        template
12721   //
12722   //   then Y is empty.
12723 
12724   if (ULE->requiresADL()) {
12725     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12726            E = ULE->decls_end(); I != E; ++I) {
12727       assert(!(*I)->getDeclContext()->isRecord());
12728       assert(isa<UsingShadowDecl>(*I) ||
12729              !(*I)->getDeclContext()->isFunctionOrMethod());
12730       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12731     }
12732   }
12733 #endif
12734 
12735   // It would be nice to avoid this copy.
12736   TemplateArgumentListInfo TABuffer;
12737   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12738   if (ULE->hasExplicitTemplateArgs()) {
12739     ULE->copyTemplateArgumentsInto(TABuffer);
12740     ExplicitTemplateArgs = &TABuffer;
12741   }
12742 
12743   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12744          E = ULE->decls_end(); I != E; ++I)
12745     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12746                                CandidateSet, PartialOverloading,
12747                                /*KnownValid*/ true);
12748 
12749   if (ULE->requiresADL())
12750     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12751                                          Args, ExplicitTemplateArgs,
12752                                          CandidateSet, PartialOverloading);
12753 }
12754 
12755 /// Add the call candidates from the given set of lookup results to the given
12756 /// overload set. Non-function lookup results are ignored.
12757 void Sema::AddOverloadedCallCandidates(
12758     LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12759     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12760   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12761     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12762                                CandidateSet, false, /*KnownValid*/ false);
12763 }
12764 
12765 /// Determine whether a declaration with the specified name could be moved into
12766 /// a different namespace.
12767 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12768   switch (Name.getCXXOverloadedOperator()) {
12769   case OO_New: case OO_Array_New:
12770   case OO_Delete: case OO_Array_Delete:
12771     return false;
12772 
12773   default:
12774     return true;
12775   }
12776 }
12777 
12778 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12779 /// template, where the non-dependent name was declared after the template
12780 /// was defined. This is common in code written for a compilers which do not
12781 /// correctly implement two-stage name lookup.
12782 ///
12783 /// Returns true if a viable candidate was found and a diagnostic was issued.
12784 static bool DiagnoseTwoPhaseLookup(
12785     Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12786     LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12787     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12788     CXXRecordDecl **FoundInClass = nullptr) {
12789   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12790     return false;
12791 
12792   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12793     if (DC->isTransparentContext())
12794       continue;
12795 
12796     SemaRef.LookupQualifiedName(R, DC);
12797 
12798     if (!R.empty()) {
12799       R.suppressDiagnostics();
12800 
12801       OverloadCandidateSet Candidates(FnLoc, CSK);
12802       SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12803                                           Candidates);
12804 
12805       OverloadCandidateSet::iterator Best;
12806       OverloadingResult OR =
12807           Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12808 
12809       if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12810         // We either found non-function declarations or a best viable function
12811         // at class scope. A class-scope lookup result disables ADL. Don't
12812         // look past this, but let the caller know that we found something that
12813         // either is, or might be, usable in this class.
12814         if (FoundInClass) {
12815           *FoundInClass = RD;
12816           if (OR == OR_Success) {
12817             R.clear();
12818             R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12819             R.resolveKind();
12820           }
12821         }
12822         return false;
12823       }
12824 
12825       if (OR != OR_Success) {
12826         // There wasn't a unique best function or function template.
12827         return false;
12828       }
12829 
12830       // Find the namespaces where ADL would have looked, and suggest
12831       // declaring the function there instead.
12832       Sema::AssociatedNamespaceSet AssociatedNamespaces;
12833       Sema::AssociatedClassSet AssociatedClasses;
12834       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12835                                                  AssociatedNamespaces,
12836                                                  AssociatedClasses);
12837       Sema::AssociatedNamespaceSet SuggestedNamespaces;
12838       if (canBeDeclaredInNamespace(R.getLookupName())) {
12839         DeclContext *Std = SemaRef.getStdNamespace();
12840         for (Sema::AssociatedNamespaceSet::iterator
12841                it = AssociatedNamespaces.begin(),
12842                end = AssociatedNamespaces.end(); it != end; ++it) {
12843           // Never suggest declaring a function within namespace 'std'.
12844           if (Std && Std->Encloses(*it))
12845             continue;
12846 
12847           // Never suggest declaring a function within a namespace with a
12848           // reserved name, like __gnu_cxx.
12849           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12850           if (NS &&
12851               NS->getQualifiedNameAsString().find("__") != std::string::npos)
12852             continue;
12853 
12854           SuggestedNamespaces.insert(*it);
12855         }
12856       }
12857 
12858       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12859         << R.getLookupName();
12860       if (SuggestedNamespaces.empty()) {
12861         SemaRef.Diag(Best->Function->getLocation(),
12862                      diag::note_not_found_by_two_phase_lookup)
12863           << R.getLookupName() << 0;
12864       } else if (SuggestedNamespaces.size() == 1) {
12865         SemaRef.Diag(Best->Function->getLocation(),
12866                      diag::note_not_found_by_two_phase_lookup)
12867           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12868       } else {
12869         // FIXME: It would be useful to list the associated namespaces here,
12870         // but the diagnostics infrastructure doesn't provide a way to produce
12871         // a localized representation of a list of items.
12872         SemaRef.Diag(Best->Function->getLocation(),
12873                      diag::note_not_found_by_two_phase_lookup)
12874           << R.getLookupName() << 2;
12875       }
12876 
12877       // Try to recover by calling this function.
12878       return true;
12879     }
12880 
12881     R.clear();
12882   }
12883 
12884   return false;
12885 }
12886 
12887 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12888 /// template, where the non-dependent operator was declared after the template
12889 /// was defined.
12890 ///
12891 /// Returns true if a viable candidate was found and a diagnostic was issued.
12892 static bool
12893 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12894                                SourceLocation OpLoc,
12895                                ArrayRef<Expr *> Args) {
12896   DeclarationName OpName =
12897     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12898   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12899   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12900                                 OverloadCandidateSet::CSK_Operator,
12901                                 /*ExplicitTemplateArgs=*/nullptr, Args);
12902 }
12903 
12904 namespace {
12905 class BuildRecoveryCallExprRAII {
12906   Sema &SemaRef;
12907 public:
12908   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12909     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
12910     SemaRef.IsBuildingRecoveryCallExpr = true;
12911   }
12912 
12913   ~BuildRecoveryCallExprRAII() {
12914     SemaRef.IsBuildingRecoveryCallExpr = false;
12915   }
12916 };
12917 
12918 }
12919 
12920 /// Attempts to recover from a call where no functions were found.
12921 ///
12922 /// This function will do one of three things:
12923 ///  * Diagnose, recover, and return a recovery expression.
12924 ///  * Diagnose, fail to recover, and return ExprError().
12925 ///  * Do not diagnose, do not recover, and return ExprResult(). The caller is
12926 ///    expected to diagnose as appropriate.
12927 static ExprResult
12928 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12929                       UnresolvedLookupExpr *ULE,
12930                       SourceLocation LParenLoc,
12931                       MutableArrayRef<Expr *> Args,
12932                       SourceLocation RParenLoc,
12933                       bool EmptyLookup, bool AllowTypoCorrection) {
12934   // Do not try to recover if it is already building a recovery call.
12935   // This stops infinite loops for template instantiations like
12936   //
12937   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12938   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12939   if (SemaRef.IsBuildingRecoveryCallExpr)
12940     return ExprResult();
12941   BuildRecoveryCallExprRAII RCE(SemaRef);
12942 
12943   CXXScopeSpec SS;
12944   SS.Adopt(ULE->getQualifierLoc());
12945   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12946 
12947   TemplateArgumentListInfo TABuffer;
12948   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12949   if (ULE->hasExplicitTemplateArgs()) {
12950     ULE->copyTemplateArgumentsInto(TABuffer);
12951     ExplicitTemplateArgs = &TABuffer;
12952   }
12953 
12954   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12955                  Sema::LookupOrdinaryName);
12956   CXXRecordDecl *FoundInClass = nullptr;
12957   if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
12958                              OverloadCandidateSet::CSK_Normal,
12959                              ExplicitTemplateArgs, Args, &FoundInClass)) {
12960     // OK, diagnosed a two-phase lookup issue.
12961   } else if (EmptyLookup) {
12962     // Try to recover from an empty lookup with typo correction.
12963     R.clear();
12964     NoTypoCorrectionCCC NoTypoValidator{};
12965     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12966                                                 ExplicitTemplateArgs != nullptr,
12967                                                 dyn_cast<MemberExpr>(Fn));
12968     CorrectionCandidateCallback &Validator =
12969         AllowTypoCorrection
12970             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12971             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12972     if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12973                                     Args))
12974       return ExprError();
12975   } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
12976     // We found a usable declaration of the name in a dependent base of some
12977     // enclosing class.
12978     // FIXME: We should also explain why the candidates found by name lookup
12979     // were not viable.
12980     if (SemaRef.DiagnoseDependentMemberLookup(R))
12981       return ExprError();
12982   } else {
12983     // We had viable candidates and couldn't recover; let the caller diagnose
12984     // this.
12985     return ExprResult();
12986   }
12987 
12988   // If we get here, we should have issued a diagnostic and formed a recovery
12989   // lookup result.
12990   assert(!R.empty() && "lookup results empty despite recovery");
12991 
12992   // If recovery created an ambiguity, just bail out.
12993   if (R.isAmbiguous()) {
12994     R.suppressDiagnostics();
12995     return ExprError();
12996   }
12997 
12998   // Build an implicit member call if appropriate.  Just drop the
12999   // casts and such from the call, we don't really care.
13000   ExprResult NewFn = ExprError();
13001   if ((*R.begin())->isCXXClassMember())
13002     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
13003                                                     ExplicitTemplateArgs, S);
13004   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
13005     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
13006                                         ExplicitTemplateArgs);
13007   else
13008     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
13009 
13010   if (NewFn.isInvalid())
13011     return ExprError();
13012 
13013   // This shouldn't cause an infinite loop because we're giving it
13014   // an expression with viable lookup results, which should never
13015   // end up here.
13016   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
13017                                MultiExprArg(Args.data(), Args.size()),
13018                                RParenLoc);
13019 }
13020 
13021 /// Constructs and populates an OverloadedCandidateSet from
13022 /// the given function.
13023 /// \returns true when an the ExprResult output parameter has been set.
13024 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
13025                                   UnresolvedLookupExpr *ULE,
13026                                   MultiExprArg Args,
13027                                   SourceLocation RParenLoc,
13028                                   OverloadCandidateSet *CandidateSet,
13029                                   ExprResult *Result) {
13030 #ifndef NDEBUG
13031   if (ULE->requiresADL()) {
13032     // To do ADL, we must have found an unqualified name.
13033     assert(!ULE->getQualifier() && "qualified name with ADL");
13034 
13035     // We don't perform ADL for implicit declarations of builtins.
13036     // Verify that this was correctly set up.
13037     FunctionDecl *F;
13038     if (ULE->decls_begin() != ULE->decls_end() &&
13039         ULE->decls_begin() + 1 == ULE->decls_end() &&
13040         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
13041         F->getBuiltinID() && F->isImplicit())
13042       llvm_unreachable("performing ADL for builtin");
13043 
13044     // We don't perform ADL in C.
13045     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
13046   }
13047 #endif
13048 
13049   UnbridgedCastsSet UnbridgedCasts;
13050   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
13051     *Result = ExprError();
13052     return true;
13053   }
13054 
13055   // Add the functions denoted by the callee to the set of candidate
13056   // functions, including those from argument-dependent lookup.
13057   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
13058 
13059   if (getLangOpts().MSVCCompat &&
13060       CurContext->isDependentContext() && !isSFINAEContext() &&
13061       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
13062 
13063     OverloadCandidateSet::iterator Best;
13064     if (CandidateSet->empty() ||
13065         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
13066             OR_No_Viable_Function) {
13067       // In Microsoft mode, if we are inside a template class member function
13068       // then create a type dependent CallExpr. The goal is to postpone name
13069       // lookup to instantiation time to be able to search into type dependent
13070       // base classes.
13071       CallExpr *CE =
13072           CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13073                            RParenLoc, CurFPFeatureOverrides());
13074       CE->markDependentForPostponedNameLookup();
13075       *Result = CE;
13076       return true;
13077     }
13078   }
13079 
13080   if (CandidateSet->empty())
13081     return false;
13082 
13083   UnbridgedCasts.restore();
13084   return false;
13085 }
13086 
13087 // Guess at what the return type for an unresolvable overload should be.
13088 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13089                                    OverloadCandidateSet::iterator *Best) {
13090   llvm::Optional<QualType> Result;
13091   // Adjust Type after seeing a candidate.
13092   auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13093     if (!Candidate.Function)
13094       return;
13095     if (Candidate.Function->isInvalidDecl())
13096       return;
13097     QualType T = Candidate.Function->getReturnType();
13098     if (T.isNull())
13099       return;
13100     if (!Result)
13101       Result = T;
13102     else if (Result != T)
13103       Result = QualType();
13104   };
13105 
13106   // Look for an unambiguous type from a progressively larger subset.
13107   // e.g. if types disagree, but all *viable* overloads return int, choose int.
13108   //
13109   // First, consider only the best candidate.
13110   if (Best && *Best != CS.end())
13111     ConsiderCandidate(**Best);
13112   // Next, consider only viable candidates.
13113   if (!Result)
13114     for (const auto &C : CS)
13115       if (C.Viable)
13116         ConsiderCandidate(C);
13117   // Finally, consider all candidates.
13118   if (!Result)
13119     for (const auto &C : CS)
13120       ConsiderCandidate(C);
13121 
13122   if (!Result)
13123     return QualType();
13124   auto Value = Result.getValue();
13125   if (Value.isNull() || Value->isUndeducedType())
13126     return QualType();
13127   return Value;
13128 }
13129 
13130 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13131 /// the completed call expression. If overload resolution fails, emits
13132 /// diagnostics and returns ExprError()
13133 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13134                                            UnresolvedLookupExpr *ULE,
13135                                            SourceLocation LParenLoc,
13136                                            MultiExprArg Args,
13137                                            SourceLocation RParenLoc,
13138                                            Expr *ExecConfig,
13139                                            OverloadCandidateSet *CandidateSet,
13140                                            OverloadCandidateSet::iterator *Best,
13141                                            OverloadingResult OverloadResult,
13142                                            bool AllowTypoCorrection) {
13143   switch (OverloadResult) {
13144   case OR_Success: {
13145     FunctionDecl *FDecl = (*Best)->Function;
13146     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13147     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13148       return ExprError();
13149     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13150     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13151                                          ExecConfig, /*IsExecConfig=*/false,
13152                                          (*Best)->IsADLCandidate);
13153   }
13154 
13155   case OR_No_Viable_Function: {
13156     // Try to recover by looking for viable functions which the user might
13157     // have meant to call.
13158     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13159                                                 Args, RParenLoc,
13160                                                 CandidateSet->empty(),
13161                                                 AllowTypoCorrection);
13162     if (Recovery.isInvalid() || Recovery.isUsable())
13163       return Recovery;
13164 
13165     // If the user passes in a function that we can't take the address of, we
13166     // generally end up emitting really bad error messages. Here, we attempt to
13167     // emit better ones.
13168     for (const Expr *Arg : Args) {
13169       if (!Arg->getType()->isFunctionType())
13170         continue;
13171       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13172         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13173         if (FD &&
13174             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13175                                                        Arg->getExprLoc()))
13176           return ExprError();
13177       }
13178     }
13179 
13180     CandidateSet->NoteCandidates(
13181         PartialDiagnosticAt(
13182             Fn->getBeginLoc(),
13183             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13184                 << ULE->getName() << Fn->getSourceRange()),
13185         SemaRef, OCD_AllCandidates, Args);
13186     break;
13187   }
13188 
13189   case OR_Ambiguous:
13190     CandidateSet->NoteCandidates(
13191         PartialDiagnosticAt(Fn->getBeginLoc(),
13192                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13193                                 << ULE->getName() << Fn->getSourceRange()),
13194         SemaRef, OCD_AmbiguousCandidates, Args);
13195     break;
13196 
13197   case OR_Deleted: {
13198     CandidateSet->NoteCandidates(
13199         PartialDiagnosticAt(Fn->getBeginLoc(),
13200                             SemaRef.PDiag(diag::err_ovl_deleted_call)
13201                                 << ULE->getName() << Fn->getSourceRange()),
13202         SemaRef, OCD_AllCandidates, Args);
13203 
13204     // We emitted an error for the unavailable/deleted function call but keep
13205     // the call in the AST.
13206     FunctionDecl *FDecl = (*Best)->Function;
13207     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13208     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13209                                          ExecConfig, /*IsExecConfig=*/false,
13210                                          (*Best)->IsADLCandidate);
13211   }
13212   }
13213 
13214   // Overload resolution failed, try to recover.
13215   SmallVector<Expr *, 8> SubExprs = {Fn};
13216   SubExprs.append(Args.begin(), Args.end());
13217   return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13218                                     chooseRecoveryType(*CandidateSet, Best));
13219 }
13220 
13221 static void markUnaddressableCandidatesUnviable(Sema &S,
13222                                                 OverloadCandidateSet &CS) {
13223   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13224     if (I->Viable &&
13225         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13226       I->Viable = false;
13227       I->FailureKind = ovl_fail_addr_not_available;
13228     }
13229   }
13230 }
13231 
13232 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13233 /// (which eventually refers to the declaration Func) and the call
13234 /// arguments Args/NumArgs, attempt to resolve the function call down
13235 /// to a specific function. If overload resolution succeeds, returns
13236 /// the call expression produced by overload resolution.
13237 /// Otherwise, emits diagnostics and returns ExprError.
13238 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13239                                          UnresolvedLookupExpr *ULE,
13240                                          SourceLocation LParenLoc,
13241                                          MultiExprArg Args,
13242                                          SourceLocation RParenLoc,
13243                                          Expr *ExecConfig,
13244                                          bool AllowTypoCorrection,
13245                                          bool CalleesAddressIsTaken) {
13246   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13247                                     OverloadCandidateSet::CSK_Normal);
13248   ExprResult result;
13249 
13250   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13251                              &result))
13252     return result;
13253 
13254   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13255   // functions that aren't addressible are considered unviable.
13256   if (CalleesAddressIsTaken)
13257     markUnaddressableCandidatesUnviable(*this, CandidateSet);
13258 
13259   OverloadCandidateSet::iterator Best;
13260   OverloadingResult OverloadResult =
13261       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13262 
13263   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13264                                   ExecConfig, &CandidateSet, &Best,
13265                                   OverloadResult, AllowTypoCorrection);
13266 }
13267 
13268 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13269   return Functions.size() > 1 ||
13270          (Functions.size() == 1 &&
13271           isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13272 }
13273 
13274 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13275                                             NestedNameSpecifierLoc NNSLoc,
13276                                             DeclarationNameInfo DNI,
13277                                             const UnresolvedSetImpl &Fns,
13278                                             bool PerformADL) {
13279   return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13280                                       PerformADL, IsOverloaded(Fns),
13281                                       Fns.begin(), Fns.end());
13282 }
13283 
13284 /// Create a unary operation that may resolve to an overloaded
13285 /// operator.
13286 ///
13287 /// \param OpLoc The location of the operator itself (e.g., '*').
13288 ///
13289 /// \param Opc The UnaryOperatorKind that describes this operator.
13290 ///
13291 /// \param Fns The set of non-member functions that will be
13292 /// considered by overload resolution. The caller needs to build this
13293 /// set based on the context using, e.g.,
13294 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13295 /// set should not contain any member functions; those will be added
13296 /// by CreateOverloadedUnaryOp().
13297 ///
13298 /// \param Input The input argument.
13299 ExprResult
13300 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13301                               const UnresolvedSetImpl &Fns,
13302                               Expr *Input, bool PerformADL) {
13303   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13304   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13305   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13306   // TODO: provide better source location info.
13307   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13308 
13309   if (checkPlaceholderForOverload(*this, Input))
13310     return ExprError();
13311 
13312   Expr *Args[2] = { Input, nullptr };
13313   unsigned NumArgs = 1;
13314 
13315   // For post-increment and post-decrement, add the implicit '0' as
13316   // the second argument, so that we know this is a post-increment or
13317   // post-decrement.
13318   if (Opc == UO_PostInc || Opc == UO_PostDec) {
13319     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13320     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13321                                      SourceLocation());
13322     NumArgs = 2;
13323   }
13324 
13325   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13326 
13327   if (Input->isTypeDependent()) {
13328     if (Fns.empty())
13329       return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13330                                    VK_PRValue, OK_Ordinary, OpLoc, false,
13331                                    CurFPFeatureOverrides());
13332 
13333     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13334     ExprResult Fn = CreateUnresolvedLookupExpr(
13335         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13336     if (Fn.isInvalid())
13337       return ExprError();
13338     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13339                                        Context.DependentTy, VK_PRValue, OpLoc,
13340                                        CurFPFeatureOverrides());
13341   }
13342 
13343   // Build an empty overload set.
13344   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13345 
13346   // Add the candidates from the given function set.
13347   AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13348 
13349   // Add operator candidates that are member functions.
13350   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13351 
13352   // Add candidates from ADL.
13353   if (PerformADL) {
13354     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13355                                          /*ExplicitTemplateArgs*/nullptr,
13356                                          CandidateSet);
13357   }
13358 
13359   // Add builtin operator candidates.
13360   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13361 
13362   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13363 
13364   // Perform overload resolution.
13365   OverloadCandidateSet::iterator Best;
13366   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13367   case OR_Success: {
13368     // We found a built-in operator or an overloaded operator.
13369     FunctionDecl *FnDecl = Best->Function;
13370 
13371     if (FnDecl) {
13372       Expr *Base = nullptr;
13373       // We matched an overloaded operator. Build a call to that
13374       // operator.
13375 
13376       // Convert the arguments.
13377       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13378         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13379 
13380         ExprResult InputRes =
13381           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13382                                               Best->FoundDecl, Method);
13383         if (InputRes.isInvalid())
13384           return ExprError();
13385         Base = Input = InputRes.get();
13386       } else {
13387         // Convert the arguments.
13388         ExprResult InputInit
13389           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13390                                                       Context,
13391                                                       FnDecl->getParamDecl(0)),
13392                                       SourceLocation(),
13393                                       Input);
13394         if (InputInit.isInvalid())
13395           return ExprError();
13396         Input = InputInit.get();
13397       }
13398 
13399       // Build the actual expression node.
13400       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13401                                                 Base, HadMultipleCandidates,
13402                                                 OpLoc);
13403       if (FnExpr.isInvalid())
13404         return ExprError();
13405 
13406       // Determine the result type.
13407       QualType ResultTy = FnDecl->getReturnType();
13408       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13409       ResultTy = ResultTy.getNonLValueExprType(Context);
13410 
13411       Args[0] = Input;
13412       CallExpr *TheCall = CXXOperatorCallExpr::Create(
13413           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13414           CurFPFeatureOverrides(), Best->IsADLCandidate);
13415 
13416       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13417         return ExprError();
13418 
13419       if (CheckFunctionCall(FnDecl, TheCall,
13420                             FnDecl->getType()->castAs<FunctionProtoType>()))
13421         return ExprError();
13422       return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13423     } else {
13424       // We matched a built-in operator. Convert the arguments, then
13425       // break out so that we will build the appropriate built-in
13426       // operator node.
13427       ExprResult InputRes = PerformImplicitConversion(
13428           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13429           CCK_ForBuiltinOverloadedOp);
13430       if (InputRes.isInvalid())
13431         return ExprError();
13432       Input = InputRes.get();
13433       break;
13434     }
13435   }
13436 
13437   case OR_No_Viable_Function:
13438     // This is an erroneous use of an operator which can be overloaded by
13439     // a non-member function. Check for non-member operators which were
13440     // defined too late to be candidates.
13441     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13442       // FIXME: Recover by calling the found function.
13443       return ExprError();
13444 
13445     // No viable function; fall through to handling this as a
13446     // built-in operator, which will produce an error message for us.
13447     break;
13448 
13449   case OR_Ambiguous:
13450     CandidateSet.NoteCandidates(
13451         PartialDiagnosticAt(OpLoc,
13452                             PDiag(diag::err_ovl_ambiguous_oper_unary)
13453                                 << UnaryOperator::getOpcodeStr(Opc)
13454                                 << Input->getType() << Input->getSourceRange()),
13455         *this, OCD_AmbiguousCandidates, ArgsArray,
13456         UnaryOperator::getOpcodeStr(Opc), OpLoc);
13457     return ExprError();
13458 
13459   case OR_Deleted:
13460     CandidateSet.NoteCandidates(
13461         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13462                                        << UnaryOperator::getOpcodeStr(Opc)
13463                                        << Input->getSourceRange()),
13464         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13465         OpLoc);
13466     return ExprError();
13467   }
13468 
13469   // Either we found no viable overloaded operator or we matched a
13470   // built-in operator. In either case, fall through to trying to
13471   // build a built-in operation.
13472   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13473 }
13474 
13475 /// Perform lookup for an overloaded binary operator.
13476 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13477                                  OverloadedOperatorKind Op,
13478                                  const UnresolvedSetImpl &Fns,
13479                                  ArrayRef<Expr *> Args, bool PerformADL) {
13480   SourceLocation OpLoc = CandidateSet.getLocation();
13481 
13482   OverloadedOperatorKind ExtraOp =
13483       CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13484           ? getRewrittenOverloadedOperator(Op)
13485           : OO_None;
13486 
13487   // Add the candidates from the given function set. This also adds the
13488   // rewritten candidates using these functions if necessary.
13489   AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13490 
13491   // Add operator candidates that are member functions.
13492   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13493   if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13494     AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13495                                 OverloadCandidateParamOrder::Reversed);
13496 
13497   // In C++20, also add any rewritten member candidates.
13498   if (ExtraOp) {
13499     AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13500     if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13501       AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13502                                   CandidateSet,
13503                                   OverloadCandidateParamOrder::Reversed);
13504   }
13505 
13506   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13507   // performed for an assignment operator (nor for operator[] nor operator->,
13508   // which don't get here).
13509   if (Op != OO_Equal && PerformADL) {
13510     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13511     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13512                                          /*ExplicitTemplateArgs*/ nullptr,
13513                                          CandidateSet);
13514     if (ExtraOp) {
13515       DeclarationName ExtraOpName =
13516           Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13517       AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13518                                            /*ExplicitTemplateArgs*/ nullptr,
13519                                            CandidateSet);
13520     }
13521   }
13522 
13523   // Add builtin operator candidates.
13524   //
13525   // FIXME: We don't add any rewritten candidates here. This is strictly
13526   // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13527   // resulting in our selecting a rewritten builtin candidate. For example:
13528   //
13529   //   enum class E { e };
13530   //   bool operator!=(E, E) requires false;
13531   //   bool k = E::e != E::e;
13532   //
13533   // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13534   // it seems unreasonable to consider rewritten builtin candidates. A core
13535   // issue has been filed proposing to removed this requirement.
13536   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13537 }
13538 
13539 /// Create a binary operation that may resolve to an overloaded
13540 /// operator.
13541 ///
13542 /// \param OpLoc The location of the operator itself (e.g., '+').
13543 ///
13544 /// \param Opc The BinaryOperatorKind that describes this operator.
13545 ///
13546 /// \param Fns The set of non-member functions that will be
13547 /// considered by overload resolution. The caller needs to build this
13548 /// set based on the context using, e.g.,
13549 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13550 /// set should not contain any member functions; those will be added
13551 /// by CreateOverloadedBinOp().
13552 ///
13553 /// \param LHS Left-hand argument.
13554 /// \param RHS Right-hand argument.
13555 /// \param PerformADL Whether to consider operator candidates found by ADL.
13556 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13557 ///        C++20 operator rewrites.
13558 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13559 ///        the function in question. Such a function is never a candidate in
13560 ///        our overload resolution. This also enables synthesizing a three-way
13561 ///        comparison from < and == as described in C++20 [class.spaceship]p1.
13562 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13563                                        BinaryOperatorKind Opc,
13564                                        const UnresolvedSetImpl &Fns, Expr *LHS,
13565                                        Expr *RHS, bool PerformADL,
13566                                        bool AllowRewrittenCandidates,
13567                                        FunctionDecl *DefaultedFn) {
13568   Expr *Args[2] = { LHS, RHS };
13569   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13570 
13571   if (!getLangOpts().CPlusPlus20)
13572     AllowRewrittenCandidates = false;
13573 
13574   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13575 
13576   // If either side is type-dependent, create an appropriate dependent
13577   // expression.
13578   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13579     if (Fns.empty()) {
13580       // If there are no functions to store, just build a dependent
13581       // BinaryOperator or CompoundAssignment.
13582       if (BinaryOperator::isCompoundAssignmentOp(Opc))
13583         return CompoundAssignOperator::Create(
13584             Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13585             OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13586             Context.DependentTy);
13587       return BinaryOperator::Create(
13588           Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13589           OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13590     }
13591 
13592     // FIXME: save results of ADL from here?
13593     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13594     // TODO: provide better source location info in DNLoc component.
13595     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13596     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13597     ExprResult Fn = CreateUnresolvedLookupExpr(
13598         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13599     if (Fn.isInvalid())
13600       return ExprError();
13601     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13602                                        Context.DependentTy, VK_PRValue, OpLoc,
13603                                        CurFPFeatureOverrides());
13604   }
13605 
13606   // Always do placeholder-like conversions on the RHS.
13607   if (checkPlaceholderForOverload(*this, Args[1]))
13608     return ExprError();
13609 
13610   // Do placeholder-like conversion on the LHS; note that we should
13611   // not get here with a PseudoObject LHS.
13612   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13613   if (checkPlaceholderForOverload(*this, Args[0]))
13614     return ExprError();
13615 
13616   // If this is the assignment operator, we only perform overload resolution
13617   // if the left-hand side is a class or enumeration type. This is actually
13618   // a hack. The standard requires that we do overload resolution between the
13619   // various built-in candidates, but as DR507 points out, this can lead to
13620   // problems. So we do it this way, which pretty much follows what GCC does.
13621   // Note that we go the traditional code path for compound assignment forms.
13622   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13623     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13624 
13625   // If this is the .* operator, which is not overloadable, just
13626   // create a built-in binary operator.
13627   if (Opc == BO_PtrMemD)
13628     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13629 
13630   // Build the overload set.
13631   OverloadCandidateSet CandidateSet(
13632       OpLoc, OverloadCandidateSet::CSK_Operator,
13633       OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13634   if (DefaultedFn)
13635     CandidateSet.exclude(DefaultedFn);
13636   LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13637 
13638   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13639 
13640   // Perform overload resolution.
13641   OverloadCandidateSet::iterator Best;
13642   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13643     case OR_Success: {
13644       // We found a built-in operator or an overloaded operator.
13645       FunctionDecl *FnDecl = Best->Function;
13646 
13647       bool IsReversed = Best->isReversed();
13648       if (IsReversed)
13649         std::swap(Args[0], Args[1]);
13650 
13651       if (FnDecl) {
13652         Expr *Base = nullptr;
13653         // We matched an overloaded operator. Build a call to that
13654         // operator.
13655 
13656         OverloadedOperatorKind ChosenOp =
13657             FnDecl->getDeclName().getCXXOverloadedOperator();
13658 
13659         // C++2a [over.match.oper]p9:
13660         //   If a rewritten operator== candidate is selected by overload
13661         //   resolution for an operator@, its return type shall be cv bool
13662         if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13663             !FnDecl->getReturnType()->isBooleanType()) {
13664           bool IsExtension =
13665               FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13666           Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13667                                   : diag::err_ovl_rewrite_equalequal_not_bool)
13668               << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13669               << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13670           Diag(FnDecl->getLocation(), diag::note_declared_at);
13671           if (!IsExtension)
13672             return ExprError();
13673         }
13674 
13675         if (AllowRewrittenCandidates && !IsReversed &&
13676             CandidateSet.getRewriteInfo().isReversible()) {
13677           // We could have reversed this operator, but didn't. Check if some
13678           // reversed form was a viable candidate, and if so, if it had a
13679           // better conversion for either parameter. If so, this call is
13680           // formally ambiguous, and allowing it is an extension.
13681           llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13682           for (OverloadCandidate &Cand : CandidateSet) {
13683             if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13684                 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13685               for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13686                 if (CompareImplicitConversionSequences(
13687                         *this, OpLoc, Cand.Conversions[ArgIdx],
13688                         Best->Conversions[ArgIdx]) ==
13689                     ImplicitConversionSequence::Better) {
13690                   AmbiguousWith.push_back(Cand.Function);
13691                   break;
13692                 }
13693               }
13694             }
13695           }
13696 
13697           if (!AmbiguousWith.empty()) {
13698             bool AmbiguousWithSelf =
13699                 AmbiguousWith.size() == 1 &&
13700                 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13701             Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13702                 << BinaryOperator::getOpcodeStr(Opc)
13703                 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13704                 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13705             if (AmbiguousWithSelf) {
13706               Diag(FnDecl->getLocation(),
13707                    diag::note_ovl_ambiguous_oper_binary_reversed_self);
13708             } else {
13709               Diag(FnDecl->getLocation(),
13710                    diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13711               for (auto *F : AmbiguousWith)
13712                 Diag(F->getLocation(),
13713                      diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13714             }
13715           }
13716         }
13717 
13718         // Convert the arguments.
13719         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13720           // Best->Access is only meaningful for class members.
13721           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13722 
13723           ExprResult Arg1 =
13724             PerformCopyInitialization(
13725               InitializedEntity::InitializeParameter(Context,
13726                                                      FnDecl->getParamDecl(0)),
13727               SourceLocation(), Args[1]);
13728           if (Arg1.isInvalid())
13729             return ExprError();
13730 
13731           ExprResult Arg0 =
13732             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13733                                                 Best->FoundDecl, Method);
13734           if (Arg0.isInvalid())
13735             return ExprError();
13736           Base = Args[0] = Arg0.getAs<Expr>();
13737           Args[1] = RHS = Arg1.getAs<Expr>();
13738         } else {
13739           // Convert the arguments.
13740           ExprResult Arg0 = PerformCopyInitialization(
13741             InitializedEntity::InitializeParameter(Context,
13742                                                    FnDecl->getParamDecl(0)),
13743             SourceLocation(), Args[0]);
13744           if (Arg0.isInvalid())
13745             return ExprError();
13746 
13747           ExprResult Arg1 =
13748             PerformCopyInitialization(
13749               InitializedEntity::InitializeParameter(Context,
13750                                                      FnDecl->getParamDecl(1)),
13751               SourceLocation(), Args[1]);
13752           if (Arg1.isInvalid())
13753             return ExprError();
13754           Args[0] = LHS = Arg0.getAs<Expr>();
13755           Args[1] = RHS = Arg1.getAs<Expr>();
13756         }
13757 
13758         // Build the actual expression node.
13759         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13760                                                   Best->FoundDecl, Base,
13761                                                   HadMultipleCandidates, OpLoc);
13762         if (FnExpr.isInvalid())
13763           return ExprError();
13764 
13765         // Determine the result type.
13766         QualType ResultTy = FnDecl->getReturnType();
13767         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13768         ResultTy = ResultTy.getNonLValueExprType(Context);
13769 
13770         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13771             Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13772             CurFPFeatureOverrides(), Best->IsADLCandidate);
13773 
13774         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13775                                 FnDecl))
13776           return ExprError();
13777 
13778         ArrayRef<const Expr *> ArgsArray(Args, 2);
13779         const Expr *ImplicitThis = nullptr;
13780         // Cut off the implicit 'this'.
13781         if (isa<CXXMethodDecl>(FnDecl)) {
13782           ImplicitThis = ArgsArray[0];
13783           ArgsArray = ArgsArray.slice(1);
13784         }
13785 
13786         // Check for a self move.
13787         if (Op == OO_Equal)
13788           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13789 
13790         if (ImplicitThis) {
13791           QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13792           QualType ThisTypeFromDecl = Context.getPointerType(
13793               cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13794 
13795           CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13796                             ThisTypeFromDecl);
13797         }
13798 
13799         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13800                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13801                   VariadicDoesNotApply);
13802 
13803         ExprResult R = MaybeBindToTemporary(TheCall);
13804         if (R.isInvalid())
13805           return ExprError();
13806 
13807         R = CheckForImmediateInvocation(R, FnDecl);
13808         if (R.isInvalid())
13809           return ExprError();
13810 
13811         // For a rewritten candidate, we've already reversed the arguments
13812         // if needed. Perform the rest of the rewrite now.
13813         if ((Best->RewriteKind & CRK_DifferentOperator) ||
13814             (Op == OO_Spaceship && IsReversed)) {
13815           if (Op == OO_ExclaimEqual) {
13816             assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
13817             R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13818           } else {
13819             assert(ChosenOp == OO_Spaceship && "unexpected operator name");
13820             llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13821             Expr *ZeroLiteral =
13822                 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13823 
13824             Sema::CodeSynthesisContext Ctx;
13825             Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13826             Ctx.Entity = FnDecl;
13827             pushCodeSynthesisContext(Ctx);
13828 
13829             R = CreateOverloadedBinOp(
13830                 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13831                 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13832                 /*AllowRewrittenCandidates=*/false);
13833 
13834             popCodeSynthesisContext();
13835           }
13836           if (R.isInvalid())
13837             return ExprError();
13838         } else {
13839           assert(ChosenOp == Op && "unexpected operator name");
13840         }
13841 
13842         // Make a note in the AST if we did any rewriting.
13843         if (Best->RewriteKind != CRK_None)
13844           R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13845 
13846         return R;
13847       } else {
13848         // We matched a built-in operator. Convert the arguments, then
13849         // break out so that we will build the appropriate built-in
13850         // operator node.
13851         ExprResult ArgsRes0 = PerformImplicitConversion(
13852             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13853             AA_Passing, CCK_ForBuiltinOverloadedOp);
13854         if (ArgsRes0.isInvalid())
13855           return ExprError();
13856         Args[0] = ArgsRes0.get();
13857 
13858         ExprResult ArgsRes1 = PerformImplicitConversion(
13859             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13860             AA_Passing, CCK_ForBuiltinOverloadedOp);
13861         if (ArgsRes1.isInvalid())
13862           return ExprError();
13863         Args[1] = ArgsRes1.get();
13864         break;
13865       }
13866     }
13867 
13868     case OR_No_Viable_Function: {
13869       // C++ [over.match.oper]p9:
13870       //   If the operator is the operator , [...] and there are no
13871       //   viable functions, then the operator is assumed to be the
13872       //   built-in operator and interpreted according to clause 5.
13873       if (Opc == BO_Comma)
13874         break;
13875 
13876       // When defaulting an 'operator<=>', we can try to synthesize a three-way
13877       // compare result using '==' and '<'.
13878       if (DefaultedFn && Opc == BO_Cmp) {
13879         ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13880                                                           Args[1], DefaultedFn);
13881         if (E.isInvalid() || E.isUsable())
13882           return E;
13883       }
13884 
13885       // For class as left operand for assignment or compound assignment
13886       // operator do not fall through to handling in built-in, but report that
13887       // no overloaded assignment operator found
13888       ExprResult Result = ExprError();
13889       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13890       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13891                                                    Args, OpLoc);
13892       DeferDiagsRAII DDR(*this,
13893                          CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
13894       if (Args[0]->getType()->isRecordType() &&
13895           Opc >= BO_Assign && Opc <= BO_OrAssign) {
13896         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
13897              << BinaryOperator::getOpcodeStr(Opc)
13898              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13899         if (Args[0]->getType()->isIncompleteType()) {
13900           Diag(OpLoc, diag::note_assign_lhs_incomplete)
13901             << Args[0]->getType()
13902             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13903         }
13904       } else {
13905         // This is an erroneous use of an operator which can be overloaded by
13906         // a non-member function. Check for non-member operators which were
13907         // defined too late to be candidates.
13908         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13909           // FIXME: Recover by calling the found function.
13910           return ExprError();
13911 
13912         // No viable function; try to create a built-in operation, which will
13913         // produce an error. Then, show the non-viable candidates.
13914         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13915       }
13916       assert(Result.isInvalid() &&
13917              "C++ binary operator overloading is missing candidates!");
13918       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13919       return Result;
13920     }
13921 
13922     case OR_Ambiguous:
13923       CandidateSet.NoteCandidates(
13924           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13925                                          << BinaryOperator::getOpcodeStr(Opc)
13926                                          << Args[0]->getType()
13927                                          << Args[1]->getType()
13928                                          << Args[0]->getSourceRange()
13929                                          << Args[1]->getSourceRange()),
13930           *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13931           OpLoc);
13932       return ExprError();
13933 
13934     case OR_Deleted:
13935       if (isImplicitlyDeleted(Best->Function)) {
13936         FunctionDecl *DeletedFD = Best->Function;
13937         DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13938         if (DFK.isSpecialMember()) {
13939           Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13940             << Args[0]->getType() << DFK.asSpecialMember();
13941         } else {
13942           assert(DFK.isComparison());
13943           Diag(OpLoc, diag::err_ovl_deleted_comparison)
13944             << Args[0]->getType() << DeletedFD;
13945         }
13946 
13947         // The user probably meant to call this special member. Just
13948         // explain why it's deleted.
13949         NoteDeletedFunction(DeletedFD);
13950         return ExprError();
13951       }
13952       CandidateSet.NoteCandidates(
13953           PartialDiagnosticAt(
13954               OpLoc, PDiag(diag::err_ovl_deleted_oper)
13955                          << getOperatorSpelling(Best->Function->getDeclName()
13956                                                     .getCXXOverloadedOperator())
13957                          << Args[0]->getSourceRange()
13958                          << Args[1]->getSourceRange()),
13959           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13960           OpLoc);
13961       return ExprError();
13962   }
13963 
13964   // We matched a built-in operator; build it.
13965   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13966 }
13967 
13968 ExprResult Sema::BuildSynthesizedThreeWayComparison(
13969     SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13970     FunctionDecl *DefaultedFn) {
13971   const ComparisonCategoryInfo *Info =
13972       Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13973   // If we're not producing a known comparison category type, we can't
13974   // synthesize a three-way comparison. Let the caller diagnose this.
13975   if (!Info)
13976     return ExprResult((Expr*)nullptr);
13977 
13978   // If we ever want to perform this synthesis more generally, we will need to
13979   // apply the temporary materialization conversion to the operands.
13980   assert(LHS->isGLValue() && RHS->isGLValue() &&
13981          "cannot use prvalue expressions more than once");
13982   Expr *OrigLHS = LHS;
13983   Expr *OrigRHS = RHS;
13984 
13985   // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13986   // each of them multiple times below.
13987   LHS = new (Context)
13988       OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13989                       LHS->getObjectKind(), LHS);
13990   RHS = new (Context)
13991       OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13992                       RHS->getObjectKind(), RHS);
13993 
13994   ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13995                                         DefaultedFn);
13996   if (Eq.isInvalid())
13997     return ExprError();
13998 
13999   ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
14000                                           true, DefaultedFn);
14001   if (Less.isInvalid())
14002     return ExprError();
14003 
14004   ExprResult Greater;
14005   if (Info->isPartial()) {
14006     Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
14007                                     DefaultedFn);
14008     if (Greater.isInvalid())
14009       return ExprError();
14010   }
14011 
14012   // Form the list of comparisons we're going to perform.
14013   struct Comparison {
14014     ExprResult Cmp;
14015     ComparisonCategoryResult Result;
14016   } Comparisons[4] =
14017   { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
14018                           : ComparisonCategoryResult::Equivalent},
14019     {Less, ComparisonCategoryResult::Less},
14020     {Greater, ComparisonCategoryResult::Greater},
14021     {ExprResult(), ComparisonCategoryResult::Unordered},
14022   };
14023 
14024   int I = Info->isPartial() ? 3 : 2;
14025 
14026   // Combine the comparisons with suitable conditional expressions.
14027   ExprResult Result;
14028   for (; I >= 0; --I) {
14029     // Build a reference to the comparison category constant.
14030     auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
14031     // FIXME: Missing a constant for a comparison category. Diagnose this?
14032     if (!VI)
14033       return ExprResult((Expr*)nullptr);
14034     ExprResult ThisResult =
14035         BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
14036     if (ThisResult.isInvalid())
14037       return ExprError();
14038 
14039     // Build a conditional unless this is the final case.
14040     if (Result.get()) {
14041       Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
14042                                   ThisResult.get(), Result.get());
14043       if (Result.isInvalid())
14044         return ExprError();
14045     } else {
14046       Result = ThisResult;
14047     }
14048   }
14049 
14050   // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
14051   // bind the OpaqueValueExprs before they're (repeatedly) used.
14052   Expr *SyntacticForm = BinaryOperator::Create(
14053       Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
14054       Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
14055       CurFPFeatureOverrides());
14056   Expr *SemanticForm[] = {LHS, RHS, Result.get()};
14057   return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
14058 }
14059 
14060 ExprResult
14061 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
14062                                          SourceLocation RLoc,
14063                                          Expr *Base, Expr *Idx) {
14064   Expr *Args[2] = { Base, Idx };
14065   DeclarationName OpName =
14066       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
14067 
14068   // If either side is type-dependent, create an appropriate dependent
14069   // expression.
14070   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
14071 
14072     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14073     // CHECKME: no 'operator' keyword?
14074     DeclarationNameInfo OpNameInfo(OpName, LLoc);
14075     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14076     ExprResult Fn = CreateUnresolvedLookupExpr(
14077         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14078     if (Fn.isInvalid())
14079       return ExprError();
14080     // Can't add any actual overloads yet
14081 
14082     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14083                                        Context.DependentTy, VK_PRValue, RLoc,
14084                                        CurFPFeatureOverrides());
14085   }
14086 
14087   // Handle placeholders on both operands.
14088   if (checkPlaceholderForOverload(*this, Args[0]))
14089     return ExprError();
14090   if (checkPlaceholderForOverload(*this, Args[1]))
14091     return ExprError();
14092 
14093   // Build an empty overload set.
14094   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14095 
14096   // Subscript can only be overloaded as a member function.
14097 
14098   // Add operator candidates that are member functions.
14099   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14100 
14101   // Add builtin operator candidates.
14102   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14103 
14104   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14105 
14106   // Perform overload resolution.
14107   OverloadCandidateSet::iterator Best;
14108   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14109     case OR_Success: {
14110       // We found a built-in operator or an overloaded operator.
14111       FunctionDecl *FnDecl = Best->Function;
14112 
14113       if (FnDecl) {
14114         // We matched an overloaded operator. Build a call to that
14115         // operator.
14116 
14117         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
14118 
14119         // Convert the arguments.
14120         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14121         ExprResult Arg0 =
14122           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14123                                               Best->FoundDecl, Method);
14124         if (Arg0.isInvalid())
14125           return ExprError();
14126         Args[0] = Arg0.get();
14127 
14128         // Convert the arguments.
14129         ExprResult InputInit
14130           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14131                                                       Context,
14132                                                       FnDecl->getParamDecl(0)),
14133                                       SourceLocation(),
14134                                       Args[1]);
14135         if (InputInit.isInvalid())
14136           return ExprError();
14137 
14138         Args[1] = InputInit.getAs<Expr>();
14139 
14140         // Build the actual expression node.
14141         DeclarationNameInfo OpLocInfo(OpName, LLoc);
14142         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14143         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14144                                                   Best->FoundDecl,
14145                                                   Base,
14146                                                   HadMultipleCandidates,
14147                                                   OpLocInfo.getLoc(),
14148                                                   OpLocInfo.getInfo());
14149         if (FnExpr.isInvalid())
14150           return ExprError();
14151 
14152         // Determine the result type
14153         QualType ResultTy = FnDecl->getReturnType();
14154         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14155         ResultTy = ResultTy.getNonLValueExprType(Context);
14156 
14157         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14158             Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14159             CurFPFeatureOverrides());
14160         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14161           return ExprError();
14162 
14163         if (CheckFunctionCall(Method, TheCall,
14164                               Method->getType()->castAs<FunctionProtoType>()))
14165           return ExprError();
14166 
14167         return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14168                                            FnDecl);
14169       } else {
14170         // We matched a built-in operator. Convert the arguments, then
14171         // break out so that we will build the appropriate built-in
14172         // operator node.
14173         ExprResult ArgsRes0 = PerformImplicitConversion(
14174             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14175             AA_Passing, CCK_ForBuiltinOverloadedOp);
14176         if (ArgsRes0.isInvalid())
14177           return ExprError();
14178         Args[0] = ArgsRes0.get();
14179 
14180         ExprResult ArgsRes1 = PerformImplicitConversion(
14181             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14182             AA_Passing, CCK_ForBuiltinOverloadedOp);
14183         if (ArgsRes1.isInvalid())
14184           return ExprError();
14185         Args[1] = ArgsRes1.get();
14186 
14187         break;
14188       }
14189     }
14190 
14191     case OR_No_Viable_Function: {
14192       PartialDiagnostic PD = CandidateSet.empty()
14193           ? (PDiag(diag::err_ovl_no_oper)
14194              << Args[0]->getType() << /*subscript*/ 0
14195              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14196           : (PDiag(diag::err_ovl_no_viable_subscript)
14197              << Args[0]->getType() << Args[0]->getSourceRange()
14198              << Args[1]->getSourceRange());
14199       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14200                                   OCD_AllCandidates, Args, "[]", LLoc);
14201       return ExprError();
14202     }
14203 
14204     case OR_Ambiguous:
14205       CandidateSet.NoteCandidates(
14206           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14207                                         << "[]" << Args[0]->getType()
14208                                         << Args[1]->getType()
14209                                         << Args[0]->getSourceRange()
14210                                         << Args[1]->getSourceRange()),
14211           *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14212       return ExprError();
14213 
14214     case OR_Deleted:
14215       CandidateSet.NoteCandidates(
14216           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14217                                         << "[]" << Args[0]->getSourceRange()
14218                                         << Args[1]->getSourceRange()),
14219           *this, OCD_AllCandidates, Args, "[]", LLoc);
14220       return ExprError();
14221     }
14222 
14223   // We matched a built-in operator; build it.
14224   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14225 }
14226 
14227 /// BuildCallToMemberFunction - Build a call to a member
14228 /// function. MemExpr is the expression that refers to the member
14229 /// function (and includes the object parameter), Args/NumArgs are the
14230 /// arguments to the function call (not including the object
14231 /// parameter). The caller needs to validate that the member
14232 /// expression refers to a non-static member function or an overloaded
14233 /// member function.
14234 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14235                                            SourceLocation LParenLoc,
14236                                            MultiExprArg Args,
14237                                            SourceLocation RParenLoc,
14238                                            Expr *ExecConfig, bool IsExecConfig,
14239                                            bool AllowRecovery) {
14240   assert(MemExprE->getType() == Context.BoundMemberTy ||
14241          MemExprE->getType() == Context.OverloadTy);
14242 
14243   // Dig out the member expression. This holds both the object
14244   // argument and the member function we're referring to.
14245   Expr *NakedMemExpr = MemExprE->IgnoreParens();
14246 
14247   // Determine whether this is a call to a pointer-to-member function.
14248   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14249     assert(op->getType() == Context.BoundMemberTy);
14250     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14251 
14252     QualType fnType =
14253       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14254 
14255     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14256     QualType resultType = proto->getCallResultType(Context);
14257     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14258 
14259     // Check that the object type isn't more qualified than the
14260     // member function we're calling.
14261     Qualifiers funcQuals = proto->getMethodQuals();
14262 
14263     QualType objectType = op->getLHS()->getType();
14264     if (op->getOpcode() == BO_PtrMemI)
14265       objectType = objectType->castAs<PointerType>()->getPointeeType();
14266     Qualifiers objectQuals = objectType.getQualifiers();
14267 
14268     Qualifiers difference = objectQuals - funcQuals;
14269     difference.removeObjCGCAttr();
14270     difference.removeAddressSpace();
14271     if (difference) {
14272       std::string qualsString = difference.getAsString();
14273       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14274         << fnType.getUnqualifiedType()
14275         << qualsString
14276         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14277     }
14278 
14279     CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14280         Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14281         CurFPFeatureOverrides(), proto->getNumParams());
14282 
14283     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14284                             call, nullptr))
14285       return ExprError();
14286 
14287     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14288       return ExprError();
14289 
14290     if (CheckOtherCall(call, proto))
14291       return ExprError();
14292 
14293     return MaybeBindToTemporary(call);
14294   }
14295 
14296   // We only try to build a recovery expr at this level if we can preserve
14297   // the return type, otherwise we return ExprError() and let the caller
14298   // recover.
14299   auto BuildRecoveryExpr = [&](QualType Type) {
14300     if (!AllowRecovery)
14301       return ExprError();
14302     std::vector<Expr *> SubExprs = {MemExprE};
14303     llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
14304     return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14305                               Type);
14306   };
14307   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14308     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14309                             RParenLoc, CurFPFeatureOverrides());
14310 
14311   UnbridgedCastsSet UnbridgedCasts;
14312   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14313     return ExprError();
14314 
14315   MemberExpr *MemExpr;
14316   CXXMethodDecl *Method = nullptr;
14317   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14318   NestedNameSpecifier *Qualifier = nullptr;
14319   if (isa<MemberExpr>(NakedMemExpr)) {
14320     MemExpr = cast<MemberExpr>(NakedMemExpr);
14321     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14322     FoundDecl = MemExpr->getFoundDecl();
14323     Qualifier = MemExpr->getQualifier();
14324     UnbridgedCasts.restore();
14325   } else {
14326     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14327     Qualifier = UnresExpr->getQualifier();
14328 
14329     QualType ObjectType = UnresExpr->getBaseType();
14330     Expr::Classification ObjectClassification
14331       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14332                             : UnresExpr->getBase()->Classify(Context);
14333 
14334     // Add overload candidates
14335     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14336                                       OverloadCandidateSet::CSK_Normal);
14337 
14338     // FIXME: avoid copy.
14339     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14340     if (UnresExpr->hasExplicitTemplateArgs()) {
14341       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14342       TemplateArgs = &TemplateArgsBuffer;
14343     }
14344 
14345     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14346            E = UnresExpr->decls_end(); I != E; ++I) {
14347 
14348       NamedDecl *Func = *I;
14349       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14350       if (isa<UsingShadowDecl>(Func))
14351         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14352 
14353 
14354       // Microsoft supports direct constructor calls.
14355       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14356         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14357                              CandidateSet,
14358                              /*SuppressUserConversions*/ false);
14359       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14360         // If explicit template arguments were provided, we can't call a
14361         // non-template member function.
14362         if (TemplateArgs)
14363           continue;
14364 
14365         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14366                            ObjectClassification, Args, CandidateSet,
14367                            /*SuppressUserConversions=*/false);
14368       } else {
14369         AddMethodTemplateCandidate(
14370             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14371             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14372             /*SuppressUserConversions=*/false);
14373       }
14374     }
14375 
14376     DeclarationName DeclName = UnresExpr->getMemberName();
14377 
14378     UnbridgedCasts.restore();
14379 
14380     OverloadCandidateSet::iterator Best;
14381     bool Succeeded = false;
14382     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14383                                             Best)) {
14384     case OR_Success:
14385       Method = cast<CXXMethodDecl>(Best->Function);
14386       FoundDecl = Best->FoundDecl;
14387       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14388       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14389         break;
14390       // If FoundDecl is different from Method (such as if one is a template
14391       // and the other a specialization), make sure DiagnoseUseOfDecl is
14392       // called on both.
14393       // FIXME: This would be more comprehensively addressed by modifying
14394       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14395       // being used.
14396       if (Method != FoundDecl.getDecl() &&
14397                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14398         break;
14399       Succeeded = true;
14400       break;
14401 
14402     case OR_No_Viable_Function:
14403       CandidateSet.NoteCandidates(
14404           PartialDiagnosticAt(
14405               UnresExpr->getMemberLoc(),
14406               PDiag(diag::err_ovl_no_viable_member_function_in_call)
14407                   << DeclName << MemExprE->getSourceRange()),
14408           *this, OCD_AllCandidates, Args);
14409       break;
14410     case OR_Ambiguous:
14411       CandidateSet.NoteCandidates(
14412           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14413                               PDiag(diag::err_ovl_ambiguous_member_call)
14414                                   << DeclName << MemExprE->getSourceRange()),
14415           *this, OCD_AmbiguousCandidates, Args);
14416       break;
14417     case OR_Deleted:
14418       CandidateSet.NoteCandidates(
14419           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14420                               PDiag(diag::err_ovl_deleted_member_call)
14421                                   << DeclName << MemExprE->getSourceRange()),
14422           *this, OCD_AllCandidates, Args);
14423       break;
14424     }
14425     // Overload resolution fails, try to recover.
14426     if (!Succeeded)
14427       return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14428 
14429     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14430 
14431     // If overload resolution picked a static member, build a
14432     // non-member call based on that function.
14433     if (Method->isStatic()) {
14434       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc,
14435                                    ExecConfig, IsExecConfig);
14436     }
14437 
14438     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14439   }
14440 
14441   QualType ResultType = Method->getReturnType();
14442   ExprValueKind VK = Expr::getValueKindForType(ResultType);
14443   ResultType = ResultType.getNonLValueExprType(Context);
14444 
14445   assert(Method && "Member call to something that isn't a method?");
14446   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14447   CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14448       Context, MemExprE, Args, ResultType, VK, RParenLoc,
14449       CurFPFeatureOverrides(), Proto->getNumParams());
14450 
14451   // Check for a valid return type.
14452   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14453                           TheCall, Method))
14454     return BuildRecoveryExpr(ResultType);
14455 
14456   // Convert the object argument (for a non-static member function call).
14457   // We only need to do this if there was actually an overload; otherwise
14458   // it was done at lookup.
14459   if (!Method->isStatic()) {
14460     ExprResult ObjectArg =
14461       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14462                                           FoundDecl, Method);
14463     if (ObjectArg.isInvalid())
14464       return ExprError();
14465     MemExpr->setBase(ObjectArg.get());
14466   }
14467 
14468   // Convert the rest of the arguments
14469   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14470                               RParenLoc))
14471     return BuildRecoveryExpr(ResultType);
14472 
14473   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14474 
14475   if (CheckFunctionCall(Method, TheCall, Proto))
14476     return ExprError();
14477 
14478   // In the case the method to call was not selected by the overloading
14479   // resolution process, we still need to handle the enable_if attribute. Do
14480   // that here, so it will not hide previous -- and more relevant -- errors.
14481   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14482     if (const EnableIfAttr *Attr =
14483             CheckEnableIf(Method, LParenLoc, Args, true)) {
14484       Diag(MemE->getMemberLoc(),
14485            diag::err_ovl_no_viable_member_function_in_call)
14486           << Method << Method->getSourceRange();
14487       Diag(Method->getLocation(),
14488            diag::note_ovl_candidate_disabled_by_function_cond_attr)
14489           << Attr->getCond()->getSourceRange() << Attr->getMessage();
14490       return ExprError();
14491     }
14492   }
14493 
14494   if ((isa<CXXConstructorDecl>(CurContext) ||
14495        isa<CXXDestructorDecl>(CurContext)) &&
14496       TheCall->getMethodDecl()->isPure()) {
14497     const CXXMethodDecl *MD = TheCall->getMethodDecl();
14498 
14499     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14500         MemExpr->performsVirtualDispatch(getLangOpts())) {
14501       Diag(MemExpr->getBeginLoc(),
14502            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14503           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14504           << MD->getParent();
14505 
14506       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14507       if (getLangOpts().AppleKext)
14508         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14509             << MD->getParent() << MD->getDeclName();
14510     }
14511   }
14512 
14513   if (CXXDestructorDecl *DD =
14514           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14515     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14516     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14517     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14518                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14519                          MemExpr->getMemberLoc());
14520   }
14521 
14522   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14523                                      TheCall->getMethodDecl());
14524 }
14525 
14526 /// BuildCallToObjectOfClassType - Build a call to an object of class
14527 /// type (C++ [over.call.object]), which can end up invoking an
14528 /// overloaded function call operator (@c operator()) or performing a
14529 /// user-defined conversion on the object argument.
14530 ExprResult
14531 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14532                                    SourceLocation LParenLoc,
14533                                    MultiExprArg Args,
14534                                    SourceLocation RParenLoc) {
14535   if (checkPlaceholderForOverload(*this, Obj))
14536     return ExprError();
14537   ExprResult Object = Obj;
14538 
14539   UnbridgedCastsSet UnbridgedCasts;
14540   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14541     return ExprError();
14542 
14543   assert(Object.get()->getType()->isRecordType() &&
14544          "Requires object type argument");
14545 
14546   // C++ [over.call.object]p1:
14547   //  If the primary-expression E in the function call syntax
14548   //  evaluates to a class object of type "cv T", then the set of
14549   //  candidate functions includes at least the function call
14550   //  operators of T. The function call operators of T are obtained by
14551   //  ordinary lookup of the name operator() in the context of
14552   //  (E).operator().
14553   OverloadCandidateSet CandidateSet(LParenLoc,
14554                                     OverloadCandidateSet::CSK_Operator);
14555   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14556 
14557   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14558                           diag::err_incomplete_object_call, Object.get()))
14559     return true;
14560 
14561   const auto *Record = Object.get()->getType()->castAs<RecordType>();
14562   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14563   LookupQualifiedName(R, Record->getDecl());
14564   R.suppressDiagnostics();
14565 
14566   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14567        Oper != OperEnd; ++Oper) {
14568     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14569                        Object.get()->Classify(Context), Args, CandidateSet,
14570                        /*SuppressUserConversion=*/false);
14571   }
14572 
14573   // C++ [over.call.object]p2:
14574   //   In addition, for each (non-explicit in C++0x) conversion function
14575   //   declared in T of the form
14576   //
14577   //        operator conversion-type-id () cv-qualifier;
14578   //
14579   //   where cv-qualifier is the same cv-qualification as, or a
14580   //   greater cv-qualification than, cv, and where conversion-type-id
14581   //   denotes the type "pointer to function of (P1,...,Pn) returning
14582   //   R", or the type "reference to pointer to function of
14583   //   (P1,...,Pn) returning R", or the type "reference to function
14584   //   of (P1,...,Pn) returning R", a surrogate call function [...]
14585   //   is also considered as a candidate function. Similarly,
14586   //   surrogate call functions are added to the set of candidate
14587   //   functions for each conversion function declared in an
14588   //   accessible base class provided the function is not hidden
14589   //   within T by another intervening declaration.
14590   const auto &Conversions =
14591       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14592   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14593     NamedDecl *D = *I;
14594     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14595     if (isa<UsingShadowDecl>(D))
14596       D = cast<UsingShadowDecl>(D)->getTargetDecl();
14597 
14598     // Skip over templated conversion functions; they aren't
14599     // surrogates.
14600     if (isa<FunctionTemplateDecl>(D))
14601       continue;
14602 
14603     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14604     if (!Conv->isExplicit()) {
14605       // Strip the reference type (if any) and then the pointer type (if
14606       // any) to get down to what might be a function type.
14607       QualType ConvType = Conv->getConversionType().getNonReferenceType();
14608       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14609         ConvType = ConvPtrType->getPointeeType();
14610 
14611       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14612       {
14613         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14614                               Object.get(), Args, CandidateSet);
14615       }
14616     }
14617   }
14618 
14619   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14620 
14621   // Perform overload resolution.
14622   OverloadCandidateSet::iterator Best;
14623   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14624                                           Best)) {
14625   case OR_Success:
14626     // Overload resolution succeeded; we'll build the appropriate call
14627     // below.
14628     break;
14629 
14630   case OR_No_Viable_Function: {
14631     PartialDiagnostic PD =
14632         CandidateSet.empty()
14633             ? (PDiag(diag::err_ovl_no_oper)
14634                << Object.get()->getType() << /*call*/ 1
14635                << Object.get()->getSourceRange())
14636             : (PDiag(diag::err_ovl_no_viable_object_call)
14637                << Object.get()->getType() << Object.get()->getSourceRange());
14638     CandidateSet.NoteCandidates(
14639         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14640         OCD_AllCandidates, Args);
14641     break;
14642   }
14643   case OR_Ambiguous:
14644     CandidateSet.NoteCandidates(
14645         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14646                             PDiag(diag::err_ovl_ambiguous_object_call)
14647                                 << Object.get()->getType()
14648                                 << Object.get()->getSourceRange()),
14649         *this, OCD_AmbiguousCandidates, Args);
14650     break;
14651 
14652   case OR_Deleted:
14653     CandidateSet.NoteCandidates(
14654         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14655                             PDiag(diag::err_ovl_deleted_object_call)
14656                                 << Object.get()->getType()
14657                                 << Object.get()->getSourceRange()),
14658         *this, OCD_AllCandidates, Args);
14659     break;
14660   }
14661 
14662   if (Best == CandidateSet.end())
14663     return true;
14664 
14665   UnbridgedCasts.restore();
14666 
14667   if (Best->Function == nullptr) {
14668     // Since there is no function declaration, this is one of the
14669     // surrogate candidates. Dig out the conversion function.
14670     CXXConversionDecl *Conv
14671       = cast<CXXConversionDecl>(
14672                          Best->Conversions[0].UserDefined.ConversionFunction);
14673 
14674     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14675                               Best->FoundDecl);
14676     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14677       return ExprError();
14678     assert(Conv == Best->FoundDecl.getDecl() &&
14679              "Found Decl & conversion-to-functionptr should be same, right?!");
14680     // We selected one of the surrogate functions that converts the
14681     // object parameter to a function pointer. Perform the conversion
14682     // on the object argument, then let BuildCallExpr finish the job.
14683 
14684     // Create an implicit member expr to refer to the conversion operator.
14685     // and then call it.
14686     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14687                                              Conv, HadMultipleCandidates);
14688     if (Call.isInvalid())
14689       return ExprError();
14690     // Record usage of conversion in an implicit cast.
14691     Call = ImplicitCastExpr::Create(
14692         Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14693         nullptr, VK_PRValue, CurFPFeatureOverrides());
14694 
14695     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14696   }
14697 
14698   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14699 
14700   // We found an overloaded operator(). Build a CXXOperatorCallExpr
14701   // that calls this method, using Object for the implicit object
14702   // parameter and passing along the remaining arguments.
14703   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14704 
14705   // An error diagnostic has already been printed when parsing the declaration.
14706   if (Method->isInvalidDecl())
14707     return ExprError();
14708 
14709   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14710   unsigned NumParams = Proto->getNumParams();
14711 
14712   DeclarationNameInfo OpLocInfo(
14713                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14714   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14715   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14716                                            Obj, HadMultipleCandidates,
14717                                            OpLocInfo.getLoc(),
14718                                            OpLocInfo.getInfo());
14719   if (NewFn.isInvalid())
14720     return true;
14721 
14722   // The number of argument slots to allocate in the call. If we have default
14723   // arguments we need to allocate space for them as well. We additionally
14724   // need one more slot for the object parameter.
14725   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14726 
14727   // Build the full argument list for the method call (the implicit object
14728   // parameter is placed at the beginning of the list).
14729   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14730 
14731   bool IsError = false;
14732 
14733   // Initialize the implicit object parameter.
14734   ExprResult ObjRes =
14735     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14736                                         Best->FoundDecl, Method);
14737   if (ObjRes.isInvalid())
14738     IsError = true;
14739   else
14740     Object = ObjRes;
14741   MethodArgs[0] = Object.get();
14742 
14743   // Check the argument types.
14744   for (unsigned i = 0; i != NumParams; i++) {
14745     Expr *Arg;
14746     if (i < Args.size()) {
14747       Arg = Args[i];
14748 
14749       // Pass the argument.
14750 
14751       ExprResult InputInit
14752         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14753                                                     Context,
14754                                                     Method->getParamDecl(i)),
14755                                     SourceLocation(), Arg);
14756 
14757       IsError |= InputInit.isInvalid();
14758       Arg = InputInit.getAs<Expr>();
14759     } else {
14760       ExprResult DefArg
14761         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14762       if (DefArg.isInvalid()) {
14763         IsError = true;
14764         break;
14765       }
14766 
14767       Arg = DefArg.getAs<Expr>();
14768     }
14769 
14770     MethodArgs[i + 1] = Arg;
14771   }
14772 
14773   // If this is a variadic call, handle args passed through "...".
14774   if (Proto->isVariadic()) {
14775     // Promote the arguments (C99 6.5.2.2p7).
14776     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14777       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14778                                                         nullptr);
14779       IsError |= Arg.isInvalid();
14780       MethodArgs[i + 1] = Arg.get();
14781     }
14782   }
14783 
14784   if (IsError)
14785     return true;
14786 
14787   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14788 
14789   // Once we've built TheCall, all of the expressions are properly owned.
14790   QualType ResultTy = Method->getReturnType();
14791   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14792   ResultTy = ResultTy.getNonLValueExprType(Context);
14793 
14794   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14795       Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14796       CurFPFeatureOverrides());
14797 
14798   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14799     return true;
14800 
14801   if (CheckFunctionCall(Method, TheCall, Proto))
14802     return true;
14803 
14804   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14805 }
14806 
14807 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14808 ///  (if one exists), where @c Base is an expression of class type and
14809 /// @c Member is the name of the member we're trying to find.
14810 ExprResult
14811 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14812                                bool *NoArrowOperatorFound) {
14813   assert(Base->getType()->isRecordType() &&
14814          "left-hand side must have class type");
14815 
14816   if (checkPlaceholderForOverload(*this, Base))
14817     return ExprError();
14818 
14819   SourceLocation Loc = Base->getExprLoc();
14820 
14821   // C++ [over.ref]p1:
14822   //
14823   //   [...] An expression x->m is interpreted as (x.operator->())->m
14824   //   for a class object x of type T if T::operator->() exists and if
14825   //   the operator is selected as the best match function by the
14826   //   overload resolution mechanism (13.3).
14827   DeclarationName OpName =
14828     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14829   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14830 
14831   if (RequireCompleteType(Loc, Base->getType(),
14832                           diag::err_typecheck_incomplete_tag, Base))
14833     return ExprError();
14834 
14835   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14836   LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14837   R.suppressDiagnostics();
14838 
14839   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14840        Oper != OperEnd; ++Oper) {
14841     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14842                        None, CandidateSet, /*SuppressUserConversion=*/false);
14843   }
14844 
14845   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14846 
14847   // Perform overload resolution.
14848   OverloadCandidateSet::iterator Best;
14849   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14850   case OR_Success:
14851     // Overload resolution succeeded; we'll build the call below.
14852     break;
14853 
14854   case OR_No_Viable_Function: {
14855     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14856     if (CandidateSet.empty()) {
14857       QualType BaseType = Base->getType();
14858       if (NoArrowOperatorFound) {
14859         // Report this specific error to the caller instead of emitting a
14860         // diagnostic, as requested.
14861         *NoArrowOperatorFound = true;
14862         return ExprError();
14863       }
14864       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14865         << BaseType << Base->getSourceRange();
14866       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14867         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14868           << FixItHint::CreateReplacement(OpLoc, ".");
14869       }
14870     } else
14871       Diag(OpLoc, diag::err_ovl_no_viable_oper)
14872         << "operator->" << Base->getSourceRange();
14873     CandidateSet.NoteCandidates(*this, Base, Cands);
14874     return ExprError();
14875   }
14876   case OR_Ambiguous:
14877     CandidateSet.NoteCandidates(
14878         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14879                                        << "->" << Base->getType()
14880                                        << Base->getSourceRange()),
14881         *this, OCD_AmbiguousCandidates, Base);
14882     return ExprError();
14883 
14884   case OR_Deleted:
14885     CandidateSet.NoteCandidates(
14886         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14887                                        << "->" << Base->getSourceRange()),
14888         *this, OCD_AllCandidates, Base);
14889     return ExprError();
14890   }
14891 
14892   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14893 
14894   // Convert the object parameter.
14895   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14896   ExprResult BaseResult =
14897     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14898                                         Best->FoundDecl, Method);
14899   if (BaseResult.isInvalid())
14900     return ExprError();
14901   Base = BaseResult.get();
14902 
14903   // Build the operator call.
14904   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14905                                             Base, HadMultipleCandidates, OpLoc);
14906   if (FnExpr.isInvalid())
14907     return ExprError();
14908 
14909   QualType ResultTy = Method->getReturnType();
14910   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14911   ResultTy = ResultTy.getNonLValueExprType(Context);
14912   CXXOperatorCallExpr *TheCall =
14913       CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14914                                   ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14915 
14916   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14917     return ExprError();
14918 
14919   if (CheckFunctionCall(Method, TheCall,
14920                         Method->getType()->castAs<FunctionProtoType>()))
14921     return ExprError();
14922 
14923   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14924 }
14925 
14926 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14927 /// a literal operator described by the provided lookup results.
14928 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14929                                           DeclarationNameInfo &SuffixInfo,
14930                                           ArrayRef<Expr*> Args,
14931                                           SourceLocation LitEndLoc,
14932                                        TemplateArgumentListInfo *TemplateArgs) {
14933   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14934 
14935   OverloadCandidateSet CandidateSet(UDSuffixLoc,
14936                                     OverloadCandidateSet::CSK_Normal);
14937   AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14938                                  TemplateArgs);
14939 
14940   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14941 
14942   // Perform overload resolution. This will usually be trivial, but might need
14943   // to perform substitutions for a literal operator template.
14944   OverloadCandidateSet::iterator Best;
14945   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14946   case OR_Success:
14947   case OR_Deleted:
14948     break;
14949 
14950   case OR_No_Viable_Function:
14951     CandidateSet.NoteCandidates(
14952         PartialDiagnosticAt(UDSuffixLoc,
14953                             PDiag(diag::err_ovl_no_viable_function_in_call)
14954                                 << R.getLookupName()),
14955         *this, OCD_AllCandidates, Args);
14956     return ExprError();
14957 
14958   case OR_Ambiguous:
14959     CandidateSet.NoteCandidates(
14960         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14961                                                 << R.getLookupName()),
14962         *this, OCD_AmbiguousCandidates, Args);
14963     return ExprError();
14964   }
14965 
14966   FunctionDecl *FD = Best->Function;
14967   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14968                                         nullptr, HadMultipleCandidates,
14969                                         SuffixInfo.getLoc(),
14970                                         SuffixInfo.getInfo());
14971   if (Fn.isInvalid())
14972     return true;
14973 
14974   // Check the argument types. This should almost always be a no-op, except
14975   // that array-to-pointer decay is applied to string literals.
14976   Expr *ConvArgs[2];
14977   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14978     ExprResult InputInit = PerformCopyInitialization(
14979       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14980       SourceLocation(), Args[ArgIdx]);
14981     if (InputInit.isInvalid())
14982       return true;
14983     ConvArgs[ArgIdx] = InputInit.get();
14984   }
14985 
14986   QualType ResultTy = FD->getReturnType();
14987   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14988   ResultTy = ResultTy.getNonLValueExprType(Context);
14989 
14990   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14991       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14992       VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14993 
14994   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14995     return ExprError();
14996 
14997   if (CheckFunctionCall(FD, UDL, nullptr))
14998     return ExprError();
14999 
15000   return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
15001 }
15002 
15003 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
15004 /// given LookupResult is non-empty, it is assumed to describe a member which
15005 /// will be invoked. Otherwise, the function will be found via argument
15006 /// dependent lookup.
15007 /// CallExpr is set to a valid expression and FRS_Success returned on success,
15008 /// otherwise CallExpr is set to ExprError() and some non-success value
15009 /// is returned.
15010 Sema::ForRangeStatus
15011 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
15012                                 SourceLocation RangeLoc,
15013                                 const DeclarationNameInfo &NameInfo,
15014                                 LookupResult &MemberLookup,
15015                                 OverloadCandidateSet *CandidateSet,
15016                                 Expr *Range, ExprResult *CallExpr) {
15017   Scope *S = nullptr;
15018 
15019   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
15020   if (!MemberLookup.empty()) {
15021     ExprResult MemberRef =
15022         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
15023                                  /*IsPtr=*/false, CXXScopeSpec(),
15024                                  /*TemplateKWLoc=*/SourceLocation(),
15025                                  /*FirstQualifierInScope=*/nullptr,
15026                                  MemberLookup,
15027                                  /*TemplateArgs=*/nullptr, S);
15028     if (MemberRef.isInvalid()) {
15029       *CallExpr = ExprError();
15030       return FRS_DiagnosticIssued;
15031     }
15032     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
15033     if (CallExpr->isInvalid()) {
15034       *CallExpr = ExprError();
15035       return FRS_DiagnosticIssued;
15036     }
15037   } else {
15038     ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
15039                                                 NestedNameSpecifierLoc(),
15040                                                 NameInfo, UnresolvedSet<0>());
15041     if (FnR.isInvalid())
15042       return FRS_DiagnosticIssued;
15043     UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
15044 
15045     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
15046                                                     CandidateSet, CallExpr);
15047     if (CandidateSet->empty() || CandidateSetError) {
15048       *CallExpr = ExprError();
15049       return FRS_NoViableFunction;
15050     }
15051     OverloadCandidateSet::iterator Best;
15052     OverloadingResult OverloadResult =
15053         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
15054 
15055     if (OverloadResult == OR_No_Viable_Function) {
15056       *CallExpr = ExprError();
15057       return FRS_NoViableFunction;
15058     }
15059     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
15060                                          Loc, nullptr, CandidateSet, &Best,
15061                                          OverloadResult,
15062                                          /*AllowTypoCorrection=*/false);
15063     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
15064       *CallExpr = ExprError();
15065       return FRS_DiagnosticIssued;
15066     }
15067   }
15068   return FRS_Success;
15069 }
15070 
15071 
15072 /// FixOverloadedFunctionReference - E is an expression that refers to
15073 /// a C++ overloaded function (possibly with some parentheses and
15074 /// perhaps a '&' around it). We have resolved the overloaded function
15075 /// to the function declaration Fn, so patch up the expression E to
15076 /// refer (possibly indirectly) to Fn. Returns the new expr.
15077 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15078                                            FunctionDecl *Fn) {
15079   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15080     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15081                                                    Found, Fn);
15082     if (SubExpr == PE->getSubExpr())
15083       return PE;
15084 
15085     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15086   }
15087 
15088   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15089     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15090                                                    Found, Fn);
15091     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15092                                SubExpr->getType()) &&
15093            "Implicit cast type cannot be determined from overload");
15094     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15095     if (SubExpr == ICE->getSubExpr())
15096       return ICE;
15097 
15098     return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15099                                     SubExpr, nullptr, ICE->getValueKind(),
15100                                     CurFPFeatureOverrides());
15101   }
15102 
15103   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15104     if (!GSE->isResultDependent()) {
15105       Expr *SubExpr =
15106           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15107       if (SubExpr == GSE->getResultExpr())
15108         return GSE;
15109 
15110       // Replace the resulting type information before rebuilding the generic
15111       // selection expression.
15112       ArrayRef<Expr *> A = GSE->getAssocExprs();
15113       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15114       unsigned ResultIdx = GSE->getResultIndex();
15115       AssocExprs[ResultIdx] = SubExpr;
15116 
15117       return GenericSelectionExpr::Create(
15118           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15119           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15120           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15121           ResultIdx);
15122     }
15123     // Rather than fall through to the unreachable, return the original generic
15124     // selection expression.
15125     return GSE;
15126   }
15127 
15128   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15129     assert(UnOp->getOpcode() == UO_AddrOf &&
15130            "Can only take the address of an overloaded function");
15131     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15132       if (Method->isStatic()) {
15133         // Do nothing: static member functions aren't any different
15134         // from non-member functions.
15135       } else {
15136         // Fix the subexpression, which really has to be an
15137         // UnresolvedLookupExpr holding an overloaded member function
15138         // or template.
15139         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15140                                                        Found, Fn);
15141         if (SubExpr == UnOp->getSubExpr())
15142           return UnOp;
15143 
15144         assert(isa<DeclRefExpr>(SubExpr)
15145                && "fixed to something other than a decl ref");
15146         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15147                && "fixed to a member ref with no nested name qualifier");
15148 
15149         // We have taken the address of a pointer to member
15150         // function. Perform the computation here so that we get the
15151         // appropriate pointer to member type.
15152         QualType ClassType
15153           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15154         QualType MemPtrType
15155           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15156         // Under the MS ABI, lock down the inheritance model now.
15157         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15158           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15159 
15160         return UnaryOperator::Create(
15161             Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15162             UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15163       }
15164     }
15165     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15166                                                    Found, Fn);
15167     if (SubExpr == UnOp->getSubExpr())
15168       return UnOp;
15169 
15170     return UnaryOperator::Create(
15171         Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()),
15172         VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false,
15173         CurFPFeatureOverrides());
15174   }
15175 
15176   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15177     // FIXME: avoid copy.
15178     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15179     if (ULE->hasExplicitTemplateArgs()) {
15180       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15181       TemplateArgs = &TemplateArgsBuffer;
15182     }
15183 
15184     DeclRefExpr *DRE =
15185         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15186                          ULE->getQualifierLoc(), Found.getDecl(),
15187                          ULE->getTemplateKeywordLoc(), TemplateArgs);
15188     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15189     return DRE;
15190   }
15191 
15192   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15193     // FIXME: avoid copy.
15194     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15195     if (MemExpr->hasExplicitTemplateArgs()) {
15196       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15197       TemplateArgs = &TemplateArgsBuffer;
15198     }
15199 
15200     Expr *Base;
15201 
15202     // If we're filling in a static method where we used to have an
15203     // implicit member access, rewrite to a simple decl ref.
15204     if (MemExpr->isImplicitAccess()) {
15205       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15206         DeclRefExpr *DRE = BuildDeclRefExpr(
15207             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15208             MemExpr->getQualifierLoc(), Found.getDecl(),
15209             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15210         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15211         return DRE;
15212       } else {
15213         SourceLocation Loc = MemExpr->getMemberLoc();
15214         if (MemExpr->getQualifier())
15215           Loc = MemExpr->getQualifierLoc().getBeginLoc();
15216         Base =
15217             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15218       }
15219     } else
15220       Base = MemExpr->getBase();
15221 
15222     ExprValueKind valueKind;
15223     QualType type;
15224     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15225       valueKind = VK_LValue;
15226       type = Fn->getType();
15227     } else {
15228       valueKind = VK_PRValue;
15229       type = Context.BoundMemberTy;
15230     }
15231 
15232     return BuildMemberExpr(
15233         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15234         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15235         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15236         type, valueKind, OK_Ordinary, TemplateArgs);
15237   }
15238 
15239   llvm_unreachable("Invalid reference to overloaded function");
15240 }
15241 
15242 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15243                                                 DeclAccessPair Found,
15244                                                 FunctionDecl *Fn) {
15245   return FixOverloadedFunctionReference(E.get(), Found, Fn);
15246 }
15247 
15248 bool clang::shouldEnforceArgLimit(bool PartialOverloading,
15249                                   FunctionDecl *Function) {
15250   if (!PartialOverloading || !Function)
15251     return true;
15252   if (Function->isVariadic())
15253     return false;
15254   if (const auto *Proto =
15255           dyn_cast<FunctionProtoType>(Function->getFunctionType()))
15256     if (Proto->isTemplateVariadic())
15257       return false;
15258   if (auto *Pattern = Function->getTemplateInstantiationPattern())
15259     if (const auto *Proto =
15260             dyn_cast<FunctionProtoType>(Pattern->getFunctionType()))
15261       if (Proto->isTemplateVariadic())
15262         return false;
15263   return true;
15264 }
15265