1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ overloading. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/CXXInheritance.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DependenceFlags.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/TypeOrdering.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/Basic/DiagnosticOptions.h" 23 #include "clang/Basic/PartialDiagnostic.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateDeduction.h" 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallString.h" 37 #include <algorithm> 38 #include <cstdlib> 39 40 using namespace clang; 41 using namespace sema; 42 43 using AllowedExplicit = Sema::AllowedExplicit; 44 45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 47 return P->hasAttr<PassObjectSizeAttr>(); 48 }); 49 } 50 51 /// A convenience routine for creating a decayed reference to a function. 52 static ExprResult 53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, 54 const Expr *Base, bool HadMultipleCandidates, 55 SourceLocation Loc = SourceLocation(), 56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 58 return ExprError(); 59 // If FoundDecl is different from Fn (such as if one is a template 60 // and the other a specialization), make sure DiagnoseUseOfDecl is 61 // called on both. 62 // FIXME: This would be more comprehensively addressed by modifying 63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 64 // being used. 65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 66 return ExprError(); 67 DeclRefExpr *DRE = new (S.Context) 68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); 69 if (HadMultipleCandidates) 70 DRE->setHadMultipleCandidates(true); 71 72 S.MarkDeclRefReferenced(DRE, Base); 73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { 74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 75 S.ResolveExceptionSpec(Loc, FPT); 76 DRE->setType(Fn->getType()); 77 } 78 } 79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 80 CK_FunctionToPointerDecay); 81 } 82 83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 84 bool InOverloadResolution, 85 StandardConversionSequence &SCS, 86 bool CStyle, 87 bool AllowObjCWritebackConversion); 88 89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 90 QualType &ToType, 91 bool InOverloadResolution, 92 StandardConversionSequence &SCS, 93 bool CStyle); 94 static OverloadingResult 95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 96 UserDefinedConversionSequence& User, 97 OverloadCandidateSet& Conversions, 98 AllowedExplicit AllowExplicit, 99 bool AllowObjCConversionOnExplicit); 100 101 static ImplicitConversionSequence::CompareKind 102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 103 const StandardConversionSequence& SCS1, 104 const StandardConversionSequence& SCS2); 105 106 static ImplicitConversionSequence::CompareKind 107 CompareQualificationConversions(Sema &S, 108 const StandardConversionSequence& SCS1, 109 const StandardConversionSequence& SCS2); 110 111 static ImplicitConversionSequence::CompareKind 112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 113 const StandardConversionSequence& SCS1, 114 const StandardConversionSequence& SCS2); 115 116 /// GetConversionRank - Retrieve the implicit conversion rank 117 /// corresponding to the given implicit conversion kind. 118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 119 static const ImplicitConversionRank 120 Rank[(int)ICK_Num_Conversion_Kinds] = { 121 ICR_Exact_Match, 122 ICR_Exact_Match, 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Promotion, 128 ICR_Promotion, 129 ICR_Promotion, 130 ICR_Conversion, 131 ICR_Conversion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_OCL_Scalar_Widening, 142 ICR_Complex_Real_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Writeback_Conversion, 146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 147 // it was omitted by the patch that added 148 // ICK_Zero_Event_Conversion 149 ICR_C_Conversion, 150 ICR_C_Conversion_Extension 151 }; 152 return Rank[(int)Kind]; 153 } 154 155 /// GetImplicitConversionName - Return the name of this kind of 156 /// implicit conversion. 157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 159 "No conversion", 160 "Lvalue-to-rvalue", 161 "Array-to-pointer", 162 "Function-to-pointer", 163 "Function pointer conversion", 164 "Qualification", 165 "Integral promotion", 166 "Floating point promotion", 167 "Complex promotion", 168 "Integral conversion", 169 "Floating conversion", 170 "Complex conversion", 171 "Floating-integral conversion", 172 "Pointer conversion", 173 "Pointer-to-member conversion", 174 "Boolean conversion", 175 "Compatible-types conversion", 176 "Derived-to-base conversion", 177 "Vector conversion", 178 "SVE Vector conversion", 179 "Vector splat", 180 "Complex-real conversion", 181 "Block Pointer conversion", 182 "Transparent Union Conversion", 183 "Writeback conversion", 184 "OpenCL Zero Event Conversion", 185 "C specific type conversion", 186 "Incompatible pointer conversion" 187 }; 188 return Name[Kind]; 189 } 190 191 /// StandardConversionSequence - Set the standard conversion 192 /// sequence to the identity conversion. 193 void StandardConversionSequence::setAsIdentityConversion() { 194 First = ICK_Identity; 195 Second = ICK_Identity; 196 Third = ICK_Identity; 197 DeprecatedStringLiteralToCharPtr = false; 198 QualificationIncludesObjCLifetime = false; 199 ReferenceBinding = false; 200 DirectBinding = false; 201 IsLvalueReference = true; 202 BindsToFunctionLvalue = false; 203 BindsToRvalue = false; 204 BindsImplicitObjectArgumentWithoutRefQualifier = false; 205 ObjCLifetimeConversionBinding = false; 206 CopyConstructor = nullptr; 207 } 208 209 /// getRank - Retrieve the rank of this standard conversion sequence 210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 211 /// implicit conversions. 212 ImplicitConversionRank StandardConversionSequence::getRank() const { 213 ImplicitConversionRank Rank = ICR_Exact_Match; 214 if (GetConversionRank(First) > Rank) 215 Rank = GetConversionRank(First); 216 if (GetConversionRank(Second) > Rank) 217 Rank = GetConversionRank(Second); 218 if (GetConversionRank(Third) > Rank) 219 Rank = GetConversionRank(Third); 220 return Rank; 221 } 222 223 /// isPointerConversionToBool - Determines whether this conversion is 224 /// a conversion of a pointer or pointer-to-member to bool. This is 225 /// used as part of the ranking of standard conversion sequences 226 /// (C++ 13.3.3.2p4). 227 bool StandardConversionSequence::isPointerConversionToBool() const { 228 // Note that FromType has not necessarily been transformed by the 229 // array-to-pointer or function-to-pointer implicit conversions, so 230 // check for their presence as well as checking whether FromType is 231 // a pointer. 232 if (getToType(1)->isBooleanType() && 233 (getFromType()->isPointerType() || 234 getFromType()->isMemberPointerType() || 235 getFromType()->isObjCObjectPointerType() || 236 getFromType()->isBlockPointerType() || 237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 238 return true; 239 240 return false; 241 } 242 243 /// isPointerConversionToVoidPointer - Determines whether this 244 /// conversion is a conversion of a pointer to a void pointer. This is 245 /// used as part of the ranking of standard conversion sequences (C++ 246 /// 13.3.3.2p4). 247 bool 248 StandardConversionSequence:: 249 isPointerConversionToVoidPointer(ASTContext& Context) const { 250 QualType FromType = getFromType(); 251 QualType ToType = getToType(1); 252 253 // Note that FromType has not necessarily been transformed by the 254 // array-to-pointer implicit conversion, so check for its presence 255 // and redo the conversion to get a pointer. 256 if (First == ICK_Array_To_Pointer) 257 FromType = Context.getArrayDecayedType(FromType); 258 259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 261 return ToPtrType->getPointeeType()->isVoidType(); 262 263 return false; 264 } 265 266 /// Skip any implicit casts which could be either part of a narrowing conversion 267 /// or after one in an implicit conversion. 268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, 269 const Expr *Converted) { 270 // We can have cleanups wrapping the converted expression; these need to be 271 // preserved so that destructors run if necessary. 272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { 273 Expr *Inner = 274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); 275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), 276 EWC->getObjects()); 277 } 278 279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 280 switch (ICE->getCastKind()) { 281 case CK_NoOp: 282 case CK_IntegralCast: 283 case CK_IntegralToBoolean: 284 case CK_IntegralToFloating: 285 case CK_BooleanToSignedIntegral: 286 case CK_FloatingToIntegral: 287 case CK_FloatingToBoolean: 288 case CK_FloatingCast: 289 Converted = ICE->getSubExpr(); 290 continue; 291 292 default: 293 return Converted; 294 } 295 } 296 297 return Converted; 298 } 299 300 /// Check if this standard conversion sequence represents a narrowing 301 /// conversion, according to C++11 [dcl.init.list]p7. 302 /// 303 /// \param Ctx The AST context. 304 /// \param Converted The result of applying this standard conversion sequence. 305 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 306 /// value of the expression prior to the narrowing conversion. 307 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 308 /// type of the expression prior to the narrowing conversion. 309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 310 /// from floating point types to integral types should be ignored. 311 NarrowingKind StandardConversionSequence::getNarrowingKind( 312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 315 316 // C++11 [dcl.init.list]p7: 317 // A narrowing conversion is an implicit conversion ... 318 QualType FromType = getToType(0); 319 QualType ToType = getToType(1); 320 321 // A conversion to an enumeration type is narrowing if the conversion to 322 // the underlying type is narrowing. This only arises for expressions of 323 // the form 'Enum{init}'. 324 if (auto *ET = ToType->getAs<EnumType>()) 325 ToType = ET->getDecl()->getIntegerType(); 326 327 switch (Second) { 328 // 'bool' is an integral type; dispatch to the right place to handle it. 329 case ICK_Boolean_Conversion: 330 if (FromType->isRealFloatingType()) 331 goto FloatingIntegralConversion; 332 if (FromType->isIntegralOrUnscopedEnumerationType()) 333 goto IntegralConversion; 334 // -- from a pointer type or pointer-to-member type to bool, or 335 return NK_Type_Narrowing; 336 337 // -- from a floating-point type to an integer type, or 338 // 339 // -- from an integer type or unscoped enumeration type to a floating-point 340 // type, except where the source is a constant expression and the actual 341 // value after conversion will fit into the target type and will produce 342 // the original value when converted back to the original type, or 343 case ICK_Floating_Integral: 344 FloatingIntegralConversion: 345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 346 return NK_Type_Narrowing; 347 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 348 ToType->isRealFloatingType()) { 349 if (IgnoreFloatToIntegralConversion) 350 return NK_Not_Narrowing; 351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 352 assert(Initializer && "Unknown conversion expression"); 353 354 // If it's value-dependent, we can't tell whether it's narrowing. 355 if (Initializer->isValueDependent()) 356 return NK_Dependent_Narrowing; 357 358 if (Optional<llvm::APSInt> IntConstantValue = 359 Initializer->getIntegerConstantExpr(Ctx)) { 360 // Convert the integer to the floating type. 361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), 363 llvm::APFloat::rmNearestTiesToEven); 364 // And back. 365 llvm::APSInt ConvertedValue = *IntConstantValue; 366 bool ignored; 367 Result.convertToInteger(ConvertedValue, 368 llvm::APFloat::rmTowardZero, &ignored); 369 // If the resulting value is different, this was a narrowing conversion. 370 if (*IntConstantValue != ConvertedValue) { 371 ConstantValue = APValue(*IntConstantValue); 372 ConstantType = Initializer->getType(); 373 return NK_Constant_Narrowing; 374 } 375 } else { 376 // Variables are always narrowings. 377 return NK_Variable_Narrowing; 378 } 379 } 380 return NK_Not_Narrowing; 381 382 // -- from long double to double or float, or from double to float, except 383 // where the source is a constant expression and the actual value after 384 // conversion is within the range of values that can be represented (even 385 // if it cannot be represented exactly), or 386 case ICK_Floating_Conversion: 387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 389 // FromType is larger than ToType. 390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 391 392 // If it's value-dependent, we can't tell whether it's narrowing. 393 if (Initializer->isValueDependent()) 394 return NK_Dependent_Narrowing; 395 396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 397 // Constant! 398 assert(ConstantValue.isFloat()); 399 llvm::APFloat FloatVal = ConstantValue.getFloat(); 400 // Convert the source value into the target type. 401 bool ignored; 402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 403 Ctx.getFloatTypeSemantics(ToType), 404 llvm::APFloat::rmNearestTiesToEven, &ignored); 405 // If there was no overflow, the source value is within the range of 406 // values that can be represented. 407 if (ConvertStatus & llvm::APFloat::opOverflow) { 408 ConstantType = Initializer->getType(); 409 return NK_Constant_Narrowing; 410 } 411 } else { 412 return NK_Variable_Narrowing; 413 } 414 } 415 return NK_Not_Narrowing; 416 417 // -- from an integer type or unscoped enumeration type to an integer type 418 // that cannot represent all the values of the original type, except where 419 // the source is a constant expression and the actual value after 420 // conversion will fit into the target type and will produce the original 421 // value when converted back to the original type. 422 case ICK_Integral_Conversion: 423 IntegralConversion: { 424 assert(FromType->isIntegralOrUnscopedEnumerationType()); 425 assert(ToType->isIntegralOrUnscopedEnumerationType()); 426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 427 const unsigned FromWidth = Ctx.getIntWidth(FromType); 428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 429 const unsigned ToWidth = Ctx.getIntWidth(ToType); 430 431 if (FromWidth > ToWidth || 432 (FromWidth == ToWidth && FromSigned != ToSigned) || 433 (FromSigned && !ToSigned)) { 434 // Not all values of FromType can be represented in ToType. 435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 436 437 // If it's value-dependent, we can't tell whether it's narrowing. 438 if (Initializer->isValueDependent()) 439 return NK_Dependent_Narrowing; 440 441 Optional<llvm::APSInt> OptInitializerValue; 442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { 443 // Such conversions on variables are always narrowing. 444 return NK_Variable_Narrowing; 445 } 446 llvm::APSInt &InitializerValue = *OptInitializerValue; 447 bool Narrowing = false; 448 if (FromWidth < ToWidth) { 449 // Negative -> unsigned is narrowing. Otherwise, more bits is never 450 // narrowing. 451 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 452 Narrowing = true; 453 } else { 454 // Add a bit to the InitializerValue so we don't have to worry about 455 // signed vs. unsigned comparisons. 456 InitializerValue = InitializerValue.extend( 457 InitializerValue.getBitWidth() + 1); 458 // Convert the initializer to and from the target width and signed-ness. 459 llvm::APSInt ConvertedValue = InitializerValue; 460 ConvertedValue = ConvertedValue.trunc(ToWidth); 461 ConvertedValue.setIsSigned(ToSigned); 462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 463 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 464 // If the result is different, this was a narrowing conversion. 465 if (ConvertedValue != InitializerValue) 466 Narrowing = true; 467 } 468 if (Narrowing) { 469 ConstantType = Initializer->getType(); 470 ConstantValue = APValue(InitializerValue); 471 return NK_Constant_Narrowing; 472 } 473 } 474 return NK_Not_Narrowing; 475 } 476 477 default: 478 // Other kinds of conversions are not narrowings. 479 return NK_Not_Narrowing; 480 } 481 } 482 483 /// dump - Print this standard conversion sequence to standard 484 /// error. Useful for debugging overloading issues. 485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 486 raw_ostream &OS = llvm::errs(); 487 bool PrintedSomething = false; 488 if (First != ICK_Identity) { 489 OS << GetImplicitConversionName(First); 490 PrintedSomething = true; 491 } 492 493 if (Second != ICK_Identity) { 494 if (PrintedSomething) { 495 OS << " -> "; 496 } 497 OS << GetImplicitConversionName(Second); 498 499 if (CopyConstructor) { 500 OS << " (by copy constructor)"; 501 } else if (DirectBinding) { 502 OS << " (direct reference binding)"; 503 } else if (ReferenceBinding) { 504 OS << " (reference binding)"; 505 } 506 PrintedSomething = true; 507 } 508 509 if (Third != ICK_Identity) { 510 if (PrintedSomething) { 511 OS << " -> "; 512 } 513 OS << GetImplicitConversionName(Third); 514 PrintedSomething = true; 515 } 516 517 if (!PrintedSomething) { 518 OS << "No conversions required"; 519 } 520 } 521 522 /// dump - Print this user-defined conversion sequence to standard 523 /// error. Useful for debugging overloading issues. 524 void UserDefinedConversionSequence::dump() const { 525 raw_ostream &OS = llvm::errs(); 526 if (Before.First || Before.Second || Before.Third) { 527 Before.dump(); 528 OS << " -> "; 529 } 530 if (ConversionFunction) 531 OS << '\'' << *ConversionFunction << '\''; 532 else 533 OS << "aggregate initialization"; 534 if (After.First || After.Second || After.Third) { 535 OS << " -> "; 536 After.dump(); 537 } 538 } 539 540 /// dump - Print this implicit conversion sequence to standard 541 /// error. Useful for debugging overloading issues. 542 void ImplicitConversionSequence::dump() const { 543 raw_ostream &OS = llvm::errs(); 544 if (hasInitializerListContainerType()) 545 OS << "Worst list element conversion: "; 546 switch (ConversionKind) { 547 case StandardConversion: 548 OS << "Standard conversion: "; 549 Standard.dump(); 550 break; 551 case UserDefinedConversion: 552 OS << "User-defined conversion: "; 553 UserDefined.dump(); 554 break; 555 case EllipsisConversion: 556 OS << "Ellipsis conversion"; 557 break; 558 case AmbiguousConversion: 559 OS << "Ambiguous conversion"; 560 break; 561 case BadConversion: 562 OS << "Bad conversion"; 563 break; 564 } 565 566 OS << "\n"; 567 } 568 569 void AmbiguousConversionSequence::construct() { 570 new (&conversions()) ConversionSet(); 571 } 572 573 void AmbiguousConversionSequence::destruct() { 574 conversions().~ConversionSet(); 575 } 576 577 void 578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 579 FromTypePtr = O.FromTypePtr; 580 ToTypePtr = O.ToTypePtr; 581 new (&conversions()) ConversionSet(O.conversions()); 582 } 583 584 namespace { 585 // Structure used by DeductionFailureInfo to store 586 // template argument information. 587 struct DFIArguments { 588 TemplateArgument FirstArg; 589 TemplateArgument SecondArg; 590 }; 591 // Structure used by DeductionFailureInfo to store 592 // template parameter and template argument information. 593 struct DFIParamWithArguments : DFIArguments { 594 TemplateParameter Param; 595 }; 596 // Structure used by DeductionFailureInfo to store template argument 597 // information and the index of the problematic call argument. 598 struct DFIDeducedMismatchArgs : DFIArguments { 599 TemplateArgumentList *TemplateArgs; 600 unsigned CallArgIndex; 601 }; 602 // Structure used by DeductionFailureInfo to store information about 603 // unsatisfied constraints. 604 struct CNSInfo { 605 TemplateArgumentList *TemplateArgs; 606 ConstraintSatisfaction Satisfaction; 607 }; 608 } 609 610 /// Convert from Sema's representation of template deduction information 611 /// to the form used in overload-candidate information. 612 DeductionFailureInfo 613 clang::MakeDeductionFailureInfo(ASTContext &Context, 614 Sema::TemplateDeductionResult TDK, 615 TemplateDeductionInfo &Info) { 616 DeductionFailureInfo Result; 617 Result.Result = static_cast<unsigned>(TDK); 618 Result.HasDiagnostic = false; 619 switch (TDK) { 620 case Sema::TDK_Invalid: 621 case Sema::TDK_InstantiationDepth: 622 case Sema::TDK_TooManyArguments: 623 case Sema::TDK_TooFewArguments: 624 case Sema::TDK_MiscellaneousDeductionFailure: 625 case Sema::TDK_CUDATargetMismatch: 626 Result.Data = nullptr; 627 break; 628 629 case Sema::TDK_Incomplete: 630 case Sema::TDK_InvalidExplicitArguments: 631 Result.Data = Info.Param.getOpaqueValue(); 632 break; 633 634 case Sema::TDK_DeducedMismatch: 635 case Sema::TDK_DeducedMismatchNested: { 636 // FIXME: Should allocate from normal heap so that we can free this later. 637 auto *Saved = new (Context) DFIDeducedMismatchArgs; 638 Saved->FirstArg = Info.FirstArg; 639 Saved->SecondArg = Info.SecondArg; 640 Saved->TemplateArgs = Info.take(); 641 Saved->CallArgIndex = Info.CallArgIndex; 642 Result.Data = Saved; 643 break; 644 } 645 646 case Sema::TDK_NonDeducedMismatch: { 647 // FIXME: Should allocate from normal heap so that we can free this later. 648 DFIArguments *Saved = new (Context) DFIArguments; 649 Saved->FirstArg = Info.FirstArg; 650 Saved->SecondArg = Info.SecondArg; 651 Result.Data = Saved; 652 break; 653 } 654 655 case Sema::TDK_IncompletePack: 656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. 657 case Sema::TDK_Inconsistent: 658 case Sema::TDK_Underqualified: { 659 // FIXME: Should allocate from normal heap so that we can free this later. 660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 661 Saved->Param = Info.Param; 662 Saved->FirstArg = Info.FirstArg; 663 Saved->SecondArg = Info.SecondArg; 664 Result.Data = Saved; 665 break; 666 } 667 668 case Sema::TDK_SubstitutionFailure: 669 Result.Data = Info.take(); 670 if (Info.hasSFINAEDiagnostic()) { 671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 672 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 673 Info.takeSFINAEDiagnostic(*Diag); 674 Result.HasDiagnostic = true; 675 } 676 break; 677 678 case Sema::TDK_ConstraintsNotSatisfied: { 679 CNSInfo *Saved = new (Context) CNSInfo; 680 Saved->TemplateArgs = Info.take(); 681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; 682 Result.Data = Saved; 683 break; 684 } 685 686 case Sema::TDK_Success: 687 case Sema::TDK_NonDependentConversionFailure: 688 llvm_unreachable("not a deduction failure"); 689 } 690 691 return Result; 692 } 693 694 void DeductionFailureInfo::Destroy() { 695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 696 case Sema::TDK_Success: 697 case Sema::TDK_Invalid: 698 case Sema::TDK_InstantiationDepth: 699 case Sema::TDK_Incomplete: 700 case Sema::TDK_TooManyArguments: 701 case Sema::TDK_TooFewArguments: 702 case Sema::TDK_InvalidExplicitArguments: 703 case Sema::TDK_CUDATargetMismatch: 704 case Sema::TDK_NonDependentConversionFailure: 705 break; 706 707 case Sema::TDK_IncompletePack: 708 case Sema::TDK_Inconsistent: 709 case Sema::TDK_Underqualified: 710 case Sema::TDK_DeducedMismatch: 711 case Sema::TDK_DeducedMismatchNested: 712 case Sema::TDK_NonDeducedMismatch: 713 // FIXME: Destroy the data? 714 Data = nullptr; 715 break; 716 717 case Sema::TDK_SubstitutionFailure: 718 // FIXME: Destroy the template argument list? 719 Data = nullptr; 720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 721 Diag->~PartialDiagnosticAt(); 722 HasDiagnostic = false; 723 } 724 break; 725 726 case Sema::TDK_ConstraintsNotSatisfied: 727 // FIXME: Destroy the template argument list? 728 Data = nullptr; 729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 730 Diag->~PartialDiagnosticAt(); 731 HasDiagnostic = false; 732 } 733 break; 734 735 // Unhandled 736 case Sema::TDK_MiscellaneousDeductionFailure: 737 break; 738 } 739 } 740 741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 742 if (HasDiagnostic) 743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 744 return nullptr; 745 } 746 747 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 749 case Sema::TDK_Success: 750 case Sema::TDK_Invalid: 751 case Sema::TDK_InstantiationDepth: 752 case Sema::TDK_TooManyArguments: 753 case Sema::TDK_TooFewArguments: 754 case Sema::TDK_SubstitutionFailure: 755 case Sema::TDK_DeducedMismatch: 756 case Sema::TDK_DeducedMismatchNested: 757 case Sema::TDK_NonDeducedMismatch: 758 case Sema::TDK_CUDATargetMismatch: 759 case Sema::TDK_NonDependentConversionFailure: 760 case Sema::TDK_ConstraintsNotSatisfied: 761 return TemplateParameter(); 762 763 case Sema::TDK_Incomplete: 764 case Sema::TDK_InvalidExplicitArguments: 765 return TemplateParameter::getFromOpaqueValue(Data); 766 767 case Sema::TDK_IncompletePack: 768 case Sema::TDK_Inconsistent: 769 case Sema::TDK_Underqualified: 770 return static_cast<DFIParamWithArguments*>(Data)->Param; 771 772 // Unhandled 773 case Sema::TDK_MiscellaneousDeductionFailure: 774 break; 775 } 776 777 return TemplateParameter(); 778 } 779 780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 782 case Sema::TDK_Success: 783 case Sema::TDK_Invalid: 784 case Sema::TDK_InstantiationDepth: 785 case Sema::TDK_TooManyArguments: 786 case Sema::TDK_TooFewArguments: 787 case Sema::TDK_Incomplete: 788 case Sema::TDK_IncompletePack: 789 case Sema::TDK_InvalidExplicitArguments: 790 case Sema::TDK_Inconsistent: 791 case Sema::TDK_Underqualified: 792 case Sema::TDK_NonDeducedMismatch: 793 case Sema::TDK_CUDATargetMismatch: 794 case Sema::TDK_NonDependentConversionFailure: 795 return nullptr; 796 797 case Sema::TDK_DeducedMismatch: 798 case Sema::TDK_DeducedMismatchNested: 799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 800 801 case Sema::TDK_SubstitutionFailure: 802 return static_cast<TemplateArgumentList*>(Data); 803 804 case Sema::TDK_ConstraintsNotSatisfied: 805 return static_cast<CNSInfo*>(Data)->TemplateArgs; 806 807 // Unhandled 808 case Sema::TDK_MiscellaneousDeductionFailure: 809 break; 810 } 811 812 return nullptr; 813 } 814 815 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 817 case Sema::TDK_Success: 818 case Sema::TDK_Invalid: 819 case Sema::TDK_InstantiationDepth: 820 case Sema::TDK_Incomplete: 821 case Sema::TDK_TooManyArguments: 822 case Sema::TDK_TooFewArguments: 823 case Sema::TDK_InvalidExplicitArguments: 824 case Sema::TDK_SubstitutionFailure: 825 case Sema::TDK_CUDATargetMismatch: 826 case Sema::TDK_NonDependentConversionFailure: 827 case Sema::TDK_ConstraintsNotSatisfied: 828 return nullptr; 829 830 case Sema::TDK_IncompletePack: 831 case Sema::TDK_Inconsistent: 832 case Sema::TDK_Underqualified: 833 case Sema::TDK_DeducedMismatch: 834 case Sema::TDK_DeducedMismatchNested: 835 case Sema::TDK_NonDeducedMismatch: 836 return &static_cast<DFIArguments*>(Data)->FirstArg; 837 838 // Unhandled 839 case Sema::TDK_MiscellaneousDeductionFailure: 840 break; 841 } 842 843 return nullptr; 844 } 845 846 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 848 case Sema::TDK_Success: 849 case Sema::TDK_Invalid: 850 case Sema::TDK_InstantiationDepth: 851 case Sema::TDK_Incomplete: 852 case Sema::TDK_IncompletePack: 853 case Sema::TDK_TooManyArguments: 854 case Sema::TDK_TooFewArguments: 855 case Sema::TDK_InvalidExplicitArguments: 856 case Sema::TDK_SubstitutionFailure: 857 case Sema::TDK_CUDATargetMismatch: 858 case Sema::TDK_NonDependentConversionFailure: 859 case Sema::TDK_ConstraintsNotSatisfied: 860 return nullptr; 861 862 case Sema::TDK_Inconsistent: 863 case Sema::TDK_Underqualified: 864 case Sema::TDK_DeducedMismatch: 865 case Sema::TDK_DeducedMismatchNested: 866 case Sema::TDK_NonDeducedMismatch: 867 return &static_cast<DFIArguments*>(Data)->SecondArg; 868 869 // Unhandled 870 case Sema::TDK_MiscellaneousDeductionFailure: 871 break; 872 } 873 874 return nullptr; 875 } 876 877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 879 case Sema::TDK_DeducedMismatch: 880 case Sema::TDK_DeducedMismatchNested: 881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 882 883 default: 884 return llvm::None; 885 } 886 } 887 888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 889 OverloadedOperatorKind Op) { 890 if (!AllowRewrittenCandidates) 891 return false; 892 return Op == OO_EqualEqual || Op == OO_Spaceship; 893 } 894 895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 896 ASTContext &Ctx, const FunctionDecl *FD) { 897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) 898 return false; 899 // Don't bother adding a reversed candidate that can never be a better 900 // match than the non-reversed version. 901 return FD->getNumParams() != 2 || 902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), 903 FD->getParamDecl(1)->getType()) || 904 FD->hasAttr<EnableIfAttr>(); 905 } 906 907 void OverloadCandidateSet::destroyCandidates() { 908 for (iterator i = begin(), e = end(); i != e; ++i) { 909 for (auto &C : i->Conversions) 910 C.~ImplicitConversionSequence(); 911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 912 i->DeductionFailure.Destroy(); 913 } 914 } 915 916 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 917 destroyCandidates(); 918 SlabAllocator.Reset(); 919 NumInlineBytesUsed = 0; 920 Candidates.clear(); 921 Functions.clear(); 922 Kind = CSK; 923 } 924 925 namespace { 926 class UnbridgedCastsSet { 927 struct Entry { 928 Expr **Addr; 929 Expr *Saved; 930 }; 931 SmallVector<Entry, 2> Entries; 932 933 public: 934 void save(Sema &S, Expr *&E) { 935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 936 Entry entry = { &E, E }; 937 Entries.push_back(entry); 938 E = S.stripARCUnbridgedCast(E); 939 } 940 941 void restore() { 942 for (SmallVectorImpl<Entry>::iterator 943 i = Entries.begin(), e = Entries.end(); i != e; ++i) 944 *i->Addr = i->Saved; 945 } 946 }; 947 } 948 949 /// checkPlaceholderForOverload - Do any interesting placeholder-like 950 /// preprocessing on the given expression. 951 /// 952 /// \param unbridgedCasts a collection to which to add unbridged casts; 953 /// without this, they will be immediately diagnosed as errors 954 /// 955 /// Return true on unrecoverable error. 956 static bool 957 checkPlaceholderForOverload(Sema &S, Expr *&E, 958 UnbridgedCastsSet *unbridgedCasts = nullptr) { 959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 960 // We can't handle overloaded expressions here because overload 961 // resolution might reasonably tweak them. 962 if (placeholder->getKind() == BuiltinType::Overload) return false; 963 964 // If the context potentially accepts unbridged ARC casts, strip 965 // the unbridged cast and add it to the collection for later restoration. 966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 967 unbridgedCasts) { 968 unbridgedCasts->save(S, E); 969 return false; 970 } 971 972 // Go ahead and check everything else. 973 ExprResult result = S.CheckPlaceholderExpr(E); 974 if (result.isInvalid()) 975 return true; 976 977 E = result.get(); 978 return false; 979 } 980 981 // Nothing to do. 982 return false; 983 } 984 985 /// checkArgPlaceholdersForOverload - Check a set of call operands for 986 /// placeholders. 987 static bool checkArgPlaceholdersForOverload(Sema &S, 988 MultiExprArg Args, 989 UnbridgedCastsSet &unbridged) { 990 for (unsigned i = 0, e = Args.size(); i != e; ++i) 991 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 992 return true; 993 994 return false; 995 } 996 997 /// Determine whether the given New declaration is an overload of the 998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 999 /// New and Old cannot be overloaded, e.g., if New has the same signature as 1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 1001 /// functions (or function templates) at all. When it does return Ovl_Match or 1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 1004 /// declaration. 1005 /// 1006 /// Example: Given the following input: 1007 /// 1008 /// void f(int, float); // #1 1009 /// void f(int, int); // #2 1010 /// int f(int, int); // #3 1011 /// 1012 /// When we process #1, there is no previous declaration of "f", so IsOverload 1013 /// will not be used. 1014 /// 1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have 1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 1018 /// unchanged. 1019 /// 1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare 1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and 1024 /// MatchedDecl will be set to point to the FunctionDecl for #2. 1025 /// 1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 1027 /// by a using declaration. The rules for whether to hide shadow declarations 1028 /// ignore some properties which otherwise figure into a function template's 1029 /// signature. 1030 Sema::OverloadKind 1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 1032 NamedDecl *&Match, bool NewIsUsingDecl) { 1033 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 1034 I != E; ++I) { 1035 NamedDecl *OldD = *I; 1036 1037 bool OldIsUsingDecl = false; 1038 if (isa<UsingShadowDecl>(OldD)) { 1039 OldIsUsingDecl = true; 1040 1041 // We can always introduce two using declarations into the same 1042 // context, even if they have identical signatures. 1043 if (NewIsUsingDecl) continue; 1044 1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1046 } 1047 1048 // A using-declaration does not conflict with another declaration 1049 // if one of them is hidden. 1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 1051 continue; 1052 1053 // If either declaration was introduced by a using declaration, 1054 // we'll need to use slightly different rules for matching. 1055 // Essentially, these rules are the normal rules, except that 1056 // function templates hide function templates with different 1057 // return types or template parameter lists. 1058 bool UseMemberUsingDeclRules = 1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 1060 !New->getFriendObjectKind(); 1061 1062 if (FunctionDecl *OldF = OldD->getAsFunction()) { 1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 1066 continue; 1067 } 1068 1069 if (!isa<FunctionTemplateDecl>(OldD) && 1070 !shouldLinkPossiblyHiddenDecl(*I, New)) 1071 continue; 1072 1073 Match = *I; 1074 return Ovl_Match; 1075 } 1076 1077 // Builtins that have custom typechecking or have a reference should 1078 // not be overloadable or redeclarable. 1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1080 Match = *I; 1081 return Ovl_NonFunction; 1082 } 1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1084 // We can overload with these, which can show up when doing 1085 // redeclaration checks for UsingDecls. 1086 assert(Old.getLookupKind() == LookupUsingDeclName); 1087 } else if (isa<TagDecl>(OldD)) { 1088 // We can always overload with tags by hiding them. 1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1090 // Optimistically assume that an unresolved using decl will 1091 // overload; if it doesn't, we'll have to diagnose during 1092 // template instantiation. 1093 // 1094 // Exception: if the scope is dependent and this is not a class 1095 // member, the using declaration can only introduce an enumerator. 1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1097 Match = *I; 1098 return Ovl_NonFunction; 1099 } 1100 } else { 1101 // (C++ 13p1): 1102 // Only function declarations can be overloaded; object and type 1103 // declarations cannot be overloaded. 1104 Match = *I; 1105 return Ovl_NonFunction; 1106 } 1107 } 1108 1109 // C++ [temp.friend]p1: 1110 // For a friend function declaration that is not a template declaration: 1111 // -- if the name of the friend is a qualified or unqualified template-id, 1112 // [...], otherwise 1113 // -- if the name of the friend is a qualified-id and a matching 1114 // non-template function is found in the specified class or namespace, 1115 // the friend declaration refers to that function, otherwise, 1116 // -- if the name of the friend is a qualified-id and a matching function 1117 // template is found in the specified class or namespace, the friend 1118 // declaration refers to the deduced specialization of that function 1119 // template, otherwise 1120 // -- the name shall be an unqualified-id [...] 1121 // If we get here for a qualified friend declaration, we've just reached the 1122 // third bullet. If the type of the friend is dependent, skip this lookup 1123 // until instantiation. 1124 if (New->getFriendObjectKind() && New->getQualifier() && 1125 !New->getDescribedFunctionTemplate() && 1126 !New->getDependentSpecializationInfo() && 1127 !New->getType()->isDependentType()) { 1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old); 1129 TemplateSpecResult.addAllDecls(Old); 1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, 1131 /*QualifiedFriend*/true)) { 1132 New->setInvalidDecl(); 1133 return Ovl_Overload; 1134 } 1135 1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); 1137 return Ovl_Match; 1138 } 1139 1140 return Ovl_Overload; 1141 } 1142 1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, 1145 bool ConsiderRequiresClauses) { 1146 // C++ [basic.start.main]p2: This function shall not be overloaded. 1147 if (New->isMain()) 1148 return false; 1149 1150 // MSVCRT user defined entry points cannot be overloaded. 1151 if (New->isMSVCRTEntryPoint()) 1152 return false; 1153 1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1156 1157 // C++ [temp.fct]p2: 1158 // A function template can be overloaded with other function templates 1159 // and with normal (non-template) functions. 1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1161 return true; 1162 1163 // Is the function New an overload of the function Old? 1164 QualType OldQType = Context.getCanonicalType(Old->getType()); 1165 QualType NewQType = Context.getCanonicalType(New->getType()); 1166 1167 // Compare the signatures (C++ 1.3.10) of the two functions to 1168 // determine whether they are overloads. If we find any mismatch 1169 // in the signature, they are overloads. 1170 1171 // If either of these functions is a K&R-style function (no 1172 // prototype), then we consider them to have matching signatures. 1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1174 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1175 return false; 1176 1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1179 1180 // The signature of a function includes the types of its 1181 // parameters (C++ 1.3.10), which includes the presence or absence 1182 // of the ellipsis; see C++ DR 357). 1183 if (OldQType != NewQType && 1184 (OldType->getNumParams() != NewType->getNumParams() || 1185 OldType->isVariadic() != NewType->isVariadic() || 1186 !FunctionParamTypesAreEqual(OldType, NewType))) 1187 return true; 1188 1189 // C++ [temp.over.link]p4: 1190 // The signature of a function template consists of its function 1191 // signature, its return type and its template parameter list. The names 1192 // of the template parameters are significant only for establishing the 1193 // relationship between the template parameters and the rest of the 1194 // signature. 1195 // 1196 // We check the return type and template parameter lists for function 1197 // templates first; the remaining checks follow. 1198 // 1199 // However, we don't consider either of these when deciding whether 1200 // a member introduced by a shadow declaration is hidden. 1201 if (!UseMemberUsingDeclRules && NewTemplate && 1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 1203 OldTemplate->getTemplateParameters(), 1204 false, TPL_TemplateMatch) || 1205 !Context.hasSameType(Old->getDeclaredReturnType(), 1206 New->getDeclaredReturnType()))) 1207 return true; 1208 1209 // If the function is a class member, its signature includes the 1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1211 // 1212 // As part of this, also check whether one of the member functions 1213 // is static, in which case they are not overloads (C++ 1214 // 13.1p2). While not part of the definition of the signature, 1215 // this check is important to determine whether these functions 1216 // can be overloaded. 1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1219 if (OldMethod && NewMethod && 1220 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1222 if (!UseMemberUsingDeclRules && 1223 (OldMethod->getRefQualifier() == RQ_None || 1224 NewMethod->getRefQualifier() == RQ_None)) { 1225 // C++0x [over.load]p2: 1226 // - Member function declarations with the same name and the same 1227 // parameter-type-list as well as member function template 1228 // declarations with the same name, the same parameter-type-list, and 1229 // the same template parameter lists cannot be overloaded if any of 1230 // them, but not all, have a ref-qualifier (8.3.5). 1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1234 } 1235 return true; 1236 } 1237 1238 // We may not have applied the implicit const for a constexpr member 1239 // function yet (because we haven't yet resolved whether this is a static 1240 // or non-static member function). Add it now, on the assumption that this 1241 // is a redeclaration of OldMethod. 1242 auto OldQuals = OldMethod->getMethodQualifiers(); 1243 auto NewQuals = NewMethod->getMethodQualifiers(); 1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1245 !isa<CXXConstructorDecl>(NewMethod)) 1246 NewQuals.addConst(); 1247 // We do not allow overloading based off of '__restrict'. 1248 OldQuals.removeRestrict(); 1249 NewQuals.removeRestrict(); 1250 if (OldQuals != NewQuals) 1251 return true; 1252 } 1253 1254 // Though pass_object_size is placed on parameters and takes an argument, we 1255 // consider it to be a function-level modifier for the sake of function 1256 // identity. Either the function has one or more parameters with 1257 // pass_object_size or it doesn't. 1258 if (functionHasPassObjectSizeParams(New) != 1259 functionHasPassObjectSizeParams(Old)) 1260 return true; 1261 1262 // enable_if attributes are an order-sensitive part of the signature. 1263 for (specific_attr_iterator<EnableIfAttr> 1264 NewI = New->specific_attr_begin<EnableIfAttr>(), 1265 NewE = New->specific_attr_end<EnableIfAttr>(), 1266 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1267 OldE = Old->specific_attr_end<EnableIfAttr>(); 1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1269 if (NewI == NewE || OldI == OldE) 1270 return true; 1271 llvm::FoldingSetNodeID NewID, OldID; 1272 NewI->getCond()->Profile(NewID, Context, true); 1273 OldI->getCond()->Profile(OldID, Context, true); 1274 if (NewID != OldID) 1275 return true; 1276 } 1277 1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1279 // Don't allow overloading of destructors. (In theory we could, but it 1280 // would be a giant change to clang.) 1281 if (!isa<CXXDestructorDecl>(New)) { 1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1283 OldTarget = IdentifyCUDATarget(Old); 1284 if (NewTarget != CFT_InvalidTarget) { 1285 assert((OldTarget != CFT_InvalidTarget) && 1286 "Unexpected invalid target."); 1287 1288 // Allow overloading of functions with same signature and different CUDA 1289 // target attributes. 1290 if (NewTarget != OldTarget) 1291 return true; 1292 } 1293 } 1294 } 1295 1296 if (ConsiderRequiresClauses) { 1297 Expr *NewRC = New->getTrailingRequiresClause(), 1298 *OldRC = Old->getTrailingRequiresClause(); 1299 if ((NewRC != nullptr) != (OldRC != nullptr)) 1300 // RC are most certainly different - these are overloads. 1301 return true; 1302 1303 if (NewRC) { 1304 llvm::FoldingSetNodeID NewID, OldID; 1305 NewRC->Profile(NewID, Context, /*Canonical=*/true); 1306 OldRC->Profile(OldID, Context, /*Canonical=*/true); 1307 if (NewID != OldID) 1308 // RCs are not equivalent - these are overloads. 1309 return true; 1310 } 1311 } 1312 1313 // The signatures match; this is not an overload. 1314 return false; 1315 } 1316 1317 /// Tries a user-defined conversion from From to ToType. 1318 /// 1319 /// Produces an implicit conversion sequence for when a standard conversion 1320 /// is not an option. See TryImplicitConversion for more information. 1321 static ImplicitConversionSequence 1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1323 bool SuppressUserConversions, 1324 AllowedExplicit AllowExplicit, 1325 bool InOverloadResolution, 1326 bool CStyle, 1327 bool AllowObjCWritebackConversion, 1328 bool AllowObjCConversionOnExplicit) { 1329 ImplicitConversionSequence ICS; 1330 1331 if (SuppressUserConversions) { 1332 // We're not in the case above, so there is no conversion that 1333 // we can perform. 1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1335 return ICS; 1336 } 1337 1338 // Attempt user-defined conversion. 1339 OverloadCandidateSet Conversions(From->getExprLoc(), 1340 OverloadCandidateSet::CSK_Normal); 1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1342 Conversions, AllowExplicit, 1343 AllowObjCConversionOnExplicit)) { 1344 case OR_Success: 1345 case OR_Deleted: 1346 ICS.setUserDefined(); 1347 // C++ [over.ics.user]p4: 1348 // A conversion of an expression of class type to the same class 1349 // type is given Exact Match rank, and a conversion of an 1350 // expression of class type to a base class of that type is 1351 // given Conversion rank, in spite of the fact that a copy 1352 // constructor (i.e., a user-defined conversion function) is 1353 // called for those cases. 1354 if (CXXConstructorDecl *Constructor 1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1356 QualType FromCanon 1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1358 QualType ToCanon 1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1360 if (Constructor->isCopyConstructor() && 1361 (FromCanon == ToCanon || 1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { 1363 // Turn this into a "standard" conversion sequence, so that it 1364 // gets ranked with standard conversion sequences. 1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1366 ICS.setStandard(); 1367 ICS.Standard.setAsIdentityConversion(); 1368 ICS.Standard.setFromType(From->getType()); 1369 ICS.Standard.setAllToTypes(ToType); 1370 ICS.Standard.CopyConstructor = Constructor; 1371 ICS.Standard.FoundCopyConstructor = Found; 1372 if (ToCanon != FromCanon) 1373 ICS.Standard.Second = ICK_Derived_To_Base; 1374 } 1375 } 1376 break; 1377 1378 case OR_Ambiguous: 1379 ICS.setAmbiguous(); 1380 ICS.Ambiguous.setFromType(From->getType()); 1381 ICS.Ambiguous.setToType(ToType); 1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1383 Cand != Conversions.end(); ++Cand) 1384 if (Cand->Best) 1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1386 break; 1387 1388 // Fall through. 1389 case OR_No_Viable_Function: 1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1391 break; 1392 } 1393 1394 return ICS; 1395 } 1396 1397 /// TryImplicitConversion - Attempt to perform an implicit conversion 1398 /// from the given expression (Expr) to the given type (ToType). This 1399 /// function returns an implicit conversion sequence that can be used 1400 /// to perform the initialization. Given 1401 /// 1402 /// void f(float f); 1403 /// void g(int i) { f(i); } 1404 /// 1405 /// this routine would produce an implicit conversion sequence to 1406 /// describe the initialization of f from i, which will be a standard 1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1409 // 1410 /// Note that this routine only determines how the conversion can be 1411 /// performed; it does not actually perform the conversion. As such, 1412 /// it will not produce any diagnostics if no conversion is available, 1413 /// but will instead return an implicit conversion sequence of kind 1414 /// "BadConversion". 1415 /// 1416 /// If @p SuppressUserConversions, then user-defined conversions are 1417 /// not permitted. 1418 /// If @p AllowExplicit, then explicit user-defined conversions are 1419 /// permitted. 1420 /// 1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1422 /// writeback conversion, which allows __autoreleasing id* parameters to 1423 /// be initialized with __strong id* or __weak id* arguments. 1424 static ImplicitConversionSequence 1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1426 bool SuppressUserConversions, 1427 AllowedExplicit AllowExplicit, 1428 bool InOverloadResolution, 1429 bool CStyle, 1430 bool AllowObjCWritebackConversion, 1431 bool AllowObjCConversionOnExplicit) { 1432 ImplicitConversionSequence ICS; 1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1435 ICS.setStandard(); 1436 return ICS; 1437 } 1438 1439 if (!S.getLangOpts().CPlusPlus) { 1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1441 return ICS; 1442 } 1443 1444 // C++ [over.ics.user]p4: 1445 // A conversion of an expression of class type to the same class 1446 // type is given Exact Match rank, and a conversion of an 1447 // expression of class type to a base class of that type is 1448 // given Conversion rank, in spite of the fact that a copy/move 1449 // constructor (i.e., a user-defined conversion function) is 1450 // called for those cases. 1451 QualType FromType = From->getType(); 1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { 1455 ICS.setStandard(); 1456 ICS.Standard.setAsIdentityConversion(); 1457 ICS.Standard.setFromType(FromType); 1458 ICS.Standard.setAllToTypes(ToType); 1459 1460 // We don't actually check at this point whether there is a valid 1461 // copy/move constructor, since overloading just assumes that it 1462 // exists. When we actually perform initialization, we'll find the 1463 // appropriate constructor to copy the returned object, if needed. 1464 ICS.Standard.CopyConstructor = nullptr; 1465 1466 // Determine whether this is considered a derived-to-base conversion. 1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1468 ICS.Standard.Second = ICK_Derived_To_Base; 1469 1470 return ICS; 1471 } 1472 1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1474 AllowExplicit, InOverloadResolution, CStyle, 1475 AllowObjCWritebackConversion, 1476 AllowObjCConversionOnExplicit); 1477 } 1478 1479 ImplicitConversionSequence 1480 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1481 bool SuppressUserConversions, 1482 AllowedExplicit AllowExplicit, 1483 bool InOverloadResolution, 1484 bool CStyle, 1485 bool AllowObjCWritebackConversion) { 1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, 1487 AllowExplicit, InOverloadResolution, CStyle, 1488 AllowObjCWritebackConversion, 1489 /*AllowObjCConversionOnExplicit=*/false); 1490 } 1491 1492 /// PerformImplicitConversion - Perform an implicit conversion of the 1493 /// expression From to the type ToType. Returns the 1494 /// converted expression. Flavor is the kind of conversion we're 1495 /// performing, used in the error message. If @p AllowExplicit, 1496 /// explicit user-defined conversions are permitted. 1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1498 AssignmentAction Action, 1499 bool AllowExplicit) { 1500 if (checkPlaceholderForOverload(*this, From)) 1501 return ExprError(); 1502 1503 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1504 bool AllowObjCWritebackConversion 1505 = getLangOpts().ObjCAutoRefCount && 1506 (Action == AA_Passing || Action == AA_Sending); 1507 if (getLangOpts().ObjC) 1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, 1509 From->getType(), From); 1510 ImplicitConversionSequence ICS = ::TryImplicitConversion( 1511 *this, From, ToType, 1512 /*SuppressUserConversions=*/false, 1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, 1514 /*InOverloadResolution=*/false, 1515 /*CStyle=*/false, AllowObjCWritebackConversion, 1516 /*AllowObjCConversionOnExplicit=*/false); 1517 return PerformImplicitConversion(From, ToType, ICS, Action); 1518 } 1519 1520 /// Determine whether the conversion from FromType to ToType is a valid 1521 /// conversion that strips "noexcept" or "noreturn" off the nested function 1522 /// type. 1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1524 QualType &ResultTy) { 1525 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1526 return false; 1527 1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1529 // or F(t noexcept) -> F(t) 1530 // where F adds one of the following at most once: 1531 // - a pointer 1532 // - a member pointer 1533 // - a block pointer 1534 // Changes here need matching changes in FindCompositePointerType. 1535 CanQualType CanTo = Context.getCanonicalType(ToType); 1536 CanQualType CanFrom = Context.getCanonicalType(FromType); 1537 Type::TypeClass TyClass = CanTo->getTypeClass(); 1538 if (TyClass != CanFrom->getTypeClass()) return false; 1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1540 if (TyClass == Type::Pointer) { 1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType(); 1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); 1543 } else if (TyClass == Type::BlockPointer) { 1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); 1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); 1546 } else if (TyClass == Type::MemberPointer) { 1547 auto ToMPT = CanTo.castAs<MemberPointerType>(); 1548 auto FromMPT = CanFrom.castAs<MemberPointerType>(); 1549 // A function pointer conversion cannot change the class of the function. 1550 if (ToMPT->getClass() != FromMPT->getClass()) 1551 return false; 1552 CanTo = ToMPT->getPointeeType(); 1553 CanFrom = FromMPT->getPointeeType(); 1554 } else { 1555 return false; 1556 } 1557 1558 TyClass = CanTo->getTypeClass(); 1559 if (TyClass != CanFrom->getTypeClass()) return false; 1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1561 return false; 1562 } 1563 1564 const auto *FromFn = cast<FunctionType>(CanFrom); 1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1566 1567 const auto *ToFn = cast<FunctionType>(CanTo); 1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1569 1570 bool Changed = false; 1571 1572 // Drop 'noreturn' if not present in target type. 1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1575 Changed = true; 1576 } 1577 1578 // Drop 'noexcept' if not present in target type. 1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1582 FromFn = cast<FunctionType>( 1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1584 EST_None) 1585 .getTypePtr()); 1586 Changed = true; 1587 } 1588 1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1590 // only if the ExtParameterInfo lists of the two function prototypes can be 1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1593 bool CanUseToFPT, CanUseFromFPT; 1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1595 CanUseFromFPT, NewParamInfos) && 1596 CanUseToFPT && !CanUseFromFPT) { 1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1598 ExtInfo.ExtParameterInfos = 1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1601 FromFPT->getParamTypes(), ExtInfo); 1602 FromFn = QT->getAs<FunctionType>(); 1603 Changed = true; 1604 } 1605 } 1606 1607 if (!Changed) 1608 return false; 1609 1610 assert(QualType(FromFn, 0).isCanonical()); 1611 if (QualType(FromFn, 0) != CanTo) return false; 1612 1613 ResultTy = ToType; 1614 return true; 1615 } 1616 1617 /// Determine whether the conversion from FromType to ToType is a valid 1618 /// vector conversion. 1619 /// 1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1621 /// conversion. 1622 static bool IsVectorConversion(Sema &S, QualType FromType, 1623 QualType ToType, ImplicitConversionKind &ICK) { 1624 // We need at least one of these types to be a vector type to have a vector 1625 // conversion. 1626 if (!ToType->isVectorType() && !FromType->isVectorType()) 1627 return false; 1628 1629 // Identical types require no conversions. 1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1631 return false; 1632 1633 // There are no conversions between extended vector types, only identity. 1634 if (ToType->isExtVectorType()) { 1635 // There are no conversions between extended vector types other than the 1636 // identity conversion. 1637 if (FromType->isExtVectorType()) 1638 return false; 1639 1640 // Vector splat from any arithmetic type to a vector. 1641 if (FromType->isArithmeticType()) { 1642 ICK = ICK_Vector_Splat; 1643 return true; 1644 } 1645 } 1646 1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) 1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) || 1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { 1650 ICK = ICK_SVE_Vector_Conversion; 1651 return true; 1652 } 1653 1654 // We can perform the conversion between vector types in the following cases: 1655 // 1)vector types are equivalent AltiVec and GCC vector types 1656 // 2)lax vector conversions are permitted and the vector types are of the 1657 // same size 1658 // 3)the destination type does not have the ARM MVE strict-polymorphism 1659 // attribute, which inhibits lax vector conversion for overload resolution 1660 // only 1661 if (ToType->isVectorType() && FromType->isVectorType()) { 1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1663 (S.isLaxVectorConversion(FromType, ToType) && 1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { 1665 ICK = ICK_Vector_Conversion; 1666 return true; 1667 } 1668 } 1669 1670 return false; 1671 } 1672 1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1674 bool InOverloadResolution, 1675 StandardConversionSequence &SCS, 1676 bool CStyle); 1677 1678 /// IsStandardConversion - Determines whether there is a standard 1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1680 /// expression From to the type ToType. Standard conversion sequences 1681 /// only consider non-class types; for conversions that involve class 1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1683 /// contain the standard conversion sequence required to perform this 1684 /// conversion and this routine will return true. Otherwise, this 1685 /// routine will return false and the value of SCS is unspecified. 1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1687 bool InOverloadResolution, 1688 StandardConversionSequence &SCS, 1689 bool CStyle, 1690 bool AllowObjCWritebackConversion) { 1691 QualType FromType = From->getType(); 1692 1693 // Standard conversions (C++ [conv]) 1694 SCS.setAsIdentityConversion(); 1695 SCS.IncompatibleObjC = false; 1696 SCS.setFromType(FromType); 1697 SCS.CopyConstructor = nullptr; 1698 1699 // There are no standard conversions for class types in C++, so 1700 // abort early. When overloading in C, however, we do permit them. 1701 if (S.getLangOpts().CPlusPlus && 1702 (FromType->isRecordType() || ToType->isRecordType())) 1703 return false; 1704 1705 // The first conversion can be an lvalue-to-rvalue conversion, 1706 // array-to-pointer conversion, or function-to-pointer conversion 1707 // (C++ 4p1). 1708 1709 if (FromType == S.Context.OverloadTy) { 1710 DeclAccessPair AccessPair; 1711 if (FunctionDecl *Fn 1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1713 AccessPair)) { 1714 // We were able to resolve the address of the overloaded function, 1715 // so we can convert to the type of that function. 1716 FromType = Fn->getType(); 1717 SCS.setFromType(FromType); 1718 1719 // we can sometimes resolve &foo<int> regardless of ToType, so check 1720 // if the type matches (identity) or we are converting to bool 1721 if (!S.Context.hasSameUnqualifiedType( 1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1723 QualType resultTy; 1724 // if the function type matches except for [[noreturn]], it's ok 1725 if (!S.IsFunctionConversion(FromType, 1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1727 // otherwise, only a boolean conversion is standard 1728 if (!ToType->isBooleanType()) 1729 return false; 1730 } 1731 1732 // Check if the "from" expression is taking the address of an overloaded 1733 // function and recompute the FromType accordingly. Take advantage of the 1734 // fact that non-static member functions *must* have such an address-of 1735 // expression. 1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1737 if (Method && !Method->isStatic()) { 1738 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1739 "Non-unary operator on non-static member address"); 1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1741 == UO_AddrOf && 1742 "Non-address-of operator on non-static member address"); 1743 const Type *ClassType 1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1745 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1748 UO_AddrOf && 1749 "Non-address-of operator for overloaded function expression"); 1750 FromType = S.Context.getPointerType(FromType); 1751 } 1752 1753 // Check that we've computed the proper type after overload resolution. 1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't 1755 // be calling it from within an NDEBUG block. 1756 assert(S.Context.hasSameType( 1757 FromType, 1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1759 } else { 1760 return false; 1761 } 1762 } 1763 // Lvalue-to-rvalue conversion (C++11 4.1): 1764 // A glvalue (3.10) of a non-function, non-array type T can 1765 // be converted to a prvalue. 1766 bool argIsLValue = From->isGLValue(); 1767 if (argIsLValue && 1768 !FromType->isFunctionType() && !FromType->isArrayType() && 1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1770 SCS.First = ICK_Lvalue_To_Rvalue; 1771 1772 // C11 6.3.2.1p2: 1773 // ... if the lvalue has atomic type, the value has the non-atomic version 1774 // of the type of the lvalue ... 1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1776 FromType = Atomic->getValueType(); 1777 1778 // If T is a non-class type, the type of the rvalue is the 1779 // cv-unqualified version of T. Otherwise, the type of the rvalue 1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1781 // just strip the qualifiers because they don't matter. 1782 FromType = FromType.getUnqualifiedType(); 1783 } else if (FromType->isArrayType()) { 1784 // Array-to-pointer conversion (C++ 4.2) 1785 SCS.First = ICK_Array_To_Pointer; 1786 1787 // An lvalue or rvalue of type "array of N T" or "array of unknown 1788 // bound of T" can be converted to an rvalue of type "pointer to 1789 // T" (C++ 4.2p1). 1790 FromType = S.Context.getArrayDecayedType(FromType); 1791 1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1793 // This conversion is deprecated in C++03 (D.4) 1794 SCS.DeprecatedStringLiteralToCharPtr = true; 1795 1796 // For the purpose of ranking in overload resolution 1797 // (13.3.3.1.1), this conversion is considered an 1798 // array-to-pointer conversion followed by a qualification 1799 // conversion (4.4). (C++ 4.2p2) 1800 SCS.Second = ICK_Identity; 1801 SCS.Third = ICK_Qualification; 1802 SCS.QualificationIncludesObjCLifetime = false; 1803 SCS.setAllToTypes(FromType); 1804 return true; 1805 } 1806 } else if (FromType->isFunctionType() && argIsLValue) { 1807 // Function-to-pointer conversion (C++ 4.3). 1808 SCS.First = ICK_Function_To_Pointer; 1809 1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1812 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1813 return false; 1814 1815 // An lvalue of function type T can be converted to an rvalue of 1816 // type "pointer to T." The result is a pointer to the 1817 // function. (C++ 4.3p1). 1818 FromType = S.Context.getPointerType(FromType); 1819 } else { 1820 // We don't require any conversions for the first step. 1821 SCS.First = ICK_Identity; 1822 } 1823 SCS.setToType(0, FromType); 1824 1825 // The second conversion can be an integral promotion, floating 1826 // point promotion, integral conversion, floating point conversion, 1827 // floating-integral conversion, pointer conversion, 1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1829 // For overloading in C, this can also be a "compatible-type" 1830 // conversion. 1831 bool IncompatibleObjC = false; 1832 ImplicitConversionKind SecondICK = ICK_Identity; 1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1834 // The unqualified versions of the types are the same: there's no 1835 // conversion to do. 1836 SCS.Second = ICK_Identity; 1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1838 // Integral promotion (C++ 4.5). 1839 SCS.Second = ICK_Integral_Promotion; 1840 FromType = ToType.getUnqualifiedType(); 1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1842 // Floating point promotion (C++ 4.6). 1843 SCS.Second = ICK_Floating_Promotion; 1844 FromType = ToType.getUnqualifiedType(); 1845 } else if (S.IsComplexPromotion(FromType, ToType)) { 1846 // Complex promotion (Clang extension) 1847 SCS.Second = ICK_Complex_Promotion; 1848 FromType = ToType.getUnqualifiedType(); 1849 } else if (ToType->isBooleanType() && 1850 (FromType->isArithmeticType() || 1851 FromType->isAnyPointerType() || 1852 FromType->isBlockPointerType() || 1853 FromType->isMemberPointerType())) { 1854 // Boolean conversions (C++ 4.12). 1855 SCS.Second = ICK_Boolean_Conversion; 1856 FromType = S.Context.BoolTy; 1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1858 ToType->isIntegralType(S.Context)) { 1859 // Integral conversions (C++ 4.7). 1860 SCS.Second = ICK_Integral_Conversion; 1861 FromType = ToType.getUnqualifiedType(); 1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1863 // Complex conversions (C99 6.3.1.6) 1864 SCS.Second = ICK_Complex_Conversion; 1865 FromType = ToType.getUnqualifiedType(); 1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1868 // Complex-real conversions (C99 6.3.1.7) 1869 SCS.Second = ICK_Complex_Real; 1870 FromType = ToType.getUnqualifiedType(); 1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1872 // FIXME: disable conversions between long double, __ibm128 and __float128 1873 // if their representation is different until there is back end support 1874 // We of course allow this conversion if long double is really double. 1875 1876 // Conversions between bfloat and other floats are not permitted. 1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) 1878 return false; 1879 1880 // Conversions between IEEE-quad and IBM-extended semantics are not 1881 // permitted. 1882 const llvm::fltSemantics &FromSem = 1883 S.Context.getFloatTypeSemantics(FromType); 1884 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); 1885 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && 1886 &ToSem == &llvm::APFloat::IEEEquad()) || 1887 (&FromSem == &llvm::APFloat::IEEEquad() && 1888 &ToSem == &llvm::APFloat::PPCDoubleDouble())) 1889 return false; 1890 1891 // Floating point conversions (C++ 4.8). 1892 SCS.Second = ICK_Floating_Conversion; 1893 FromType = ToType.getUnqualifiedType(); 1894 } else if ((FromType->isRealFloatingType() && 1895 ToType->isIntegralType(S.Context)) || 1896 (FromType->isIntegralOrUnscopedEnumerationType() && 1897 ToType->isRealFloatingType())) { 1898 // Conversions between bfloat and int are not permitted. 1899 if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) 1900 return false; 1901 1902 // Floating-integral conversions (C++ 4.9). 1903 SCS.Second = ICK_Floating_Integral; 1904 FromType = ToType.getUnqualifiedType(); 1905 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1906 SCS.Second = ICK_Block_Pointer_Conversion; 1907 } else if (AllowObjCWritebackConversion && 1908 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1909 SCS.Second = ICK_Writeback_Conversion; 1910 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1911 FromType, IncompatibleObjC)) { 1912 // Pointer conversions (C++ 4.10). 1913 SCS.Second = ICK_Pointer_Conversion; 1914 SCS.IncompatibleObjC = IncompatibleObjC; 1915 FromType = FromType.getUnqualifiedType(); 1916 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1917 InOverloadResolution, FromType)) { 1918 // Pointer to member conversions (4.11). 1919 SCS.Second = ICK_Pointer_Member; 1920 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { 1921 SCS.Second = SecondICK; 1922 FromType = ToType.getUnqualifiedType(); 1923 } else if (!S.getLangOpts().CPlusPlus && 1924 S.Context.typesAreCompatible(ToType, FromType)) { 1925 // Compatible conversions (Clang extension for C function overloading) 1926 SCS.Second = ICK_Compatible_Conversion; 1927 FromType = ToType.getUnqualifiedType(); 1928 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1929 InOverloadResolution, 1930 SCS, CStyle)) { 1931 SCS.Second = ICK_TransparentUnionConversion; 1932 FromType = ToType; 1933 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1934 CStyle)) { 1935 // tryAtomicConversion has updated the standard conversion sequence 1936 // appropriately. 1937 return true; 1938 } else if (ToType->isEventT() && 1939 From->isIntegerConstantExpr(S.getASTContext()) && 1940 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 1941 SCS.Second = ICK_Zero_Event_Conversion; 1942 FromType = ToType; 1943 } else if (ToType->isQueueT() && 1944 From->isIntegerConstantExpr(S.getASTContext()) && 1945 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 1946 SCS.Second = ICK_Zero_Queue_Conversion; 1947 FromType = ToType; 1948 } else if (ToType->isSamplerT() && 1949 From->isIntegerConstantExpr(S.getASTContext())) { 1950 SCS.Second = ICK_Compatible_Conversion; 1951 FromType = ToType; 1952 } else { 1953 // No second conversion required. 1954 SCS.Second = ICK_Identity; 1955 } 1956 SCS.setToType(1, FromType); 1957 1958 // The third conversion can be a function pointer conversion or a 1959 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 1960 bool ObjCLifetimeConversion; 1961 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 1962 // Function pointer conversions (removing 'noexcept') including removal of 1963 // 'noreturn' (Clang extension). 1964 SCS.Third = ICK_Function_Conversion; 1965 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 1966 ObjCLifetimeConversion)) { 1967 SCS.Third = ICK_Qualification; 1968 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1969 FromType = ToType; 1970 } else { 1971 // No conversion required 1972 SCS.Third = ICK_Identity; 1973 } 1974 1975 // C++ [over.best.ics]p6: 1976 // [...] Any difference in top-level cv-qualification is 1977 // subsumed by the initialization itself and does not constitute 1978 // a conversion. [...] 1979 QualType CanonFrom = S.Context.getCanonicalType(FromType); 1980 QualType CanonTo = S.Context.getCanonicalType(ToType); 1981 if (CanonFrom.getLocalUnqualifiedType() 1982 == CanonTo.getLocalUnqualifiedType() && 1983 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 1984 FromType = ToType; 1985 CanonFrom = CanonTo; 1986 } 1987 1988 SCS.setToType(2, FromType); 1989 1990 if (CanonFrom == CanonTo) 1991 return true; 1992 1993 // If we have not converted the argument type to the parameter type, 1994 // this is a bad conversion sequence, unless we're resolving an overload in C. 1995 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 1996 return false; 1997 1998 ExprResult ER = ExprResult{From}; 1999 Sema::AssignConvertType Conv = 2000 S.CheckSingleAssignmentConstraints(ToType, ER, 2001 /*Diagnose=*/false, 2002 /*DiagnoseCFAudited=*/false, 2003 /*ConvertRHS=*/false); 2004 ImplicitConversionKind SecondConv; 2005 switch (Conv) { 2006 case Sema::Compatible: 2007 SecondConv = ICK_C_Only_Conversion; 2008 break; 2009 // For our purposes, discarding qualifiers is just as bad as using an 2010 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 2011 // qualifiers, as well. 2012 case Sema::CompatiblePointerDiscardsQualifiers: 2013 case Sema::IncompatiblePointer: 2014 case Sema::IncompatiblePointerSign: 2015 SecondConv = ICK_Incompatible_Pointer_Conversion; 2016 break; 2017 default: 2018 return false; 2019 } 2020 2021 // First can only be an lvalue conversion, so we pretend that this was the 2022 // second conversion. First should already be valid from earlier in the 2023 // function. 2024 SCS.Second = SecondConv; 2025 SCS.setToType(1, ToType); 2026 2027 // Third is Identity, because Second should rank us worse than any other 2028 // conversion. This could also be ICK_Qualification, but it's simpler to just 2029 // lump everything in with the second conversion, and we don't gain anything 2030 // from making this ICK_Qualification. 2031 SCS.Third = ICK_Identity; 2032 SCS.setToType(2, ToType); 2033 return true; 2034 } 2035 2036 static bool 2037 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 2038 QualType &ToType, 2039 bool InOverloadResolution, 2040 StandardConversionSequence &SCS, 2041 bool CStyle) { 2042 2043 const RecordType *UT = ToType->getAsUnionType(); 2044 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2045 return false; 2046 // The field to initialize within the transparent union. 2047 RecordDecl *UD = UT->getDecl(); 2048 // It's compatible if the expression matches any of the fields. 2049 for (const auto *it : UD->fields()) { 2050 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 2051 CStyle, /*AllowObjCWritebackConversion=*/false)) { 2052 ToType = it->getType(); 2053 return true; 2054 } 2055 } 2056 return false; 2057 } 2058 2059 /// IsIntegralPromotion - Determines whether the conversion from the 2060 /// expression From (whose potentially-adjusted type is FromType) to 2061 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 2062 /// sets PromotedType to the promoted type. 2063 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 2064 const BuiltinType *To = ToType->getAs<BuiltinType>(); 2065 // All integers are built-in. 2066 if (!To) { 2067 return false; 2068 } 2069 2070 // An rvalue of type char, signed char, unsigned char, short int, or 2071 // unsigned short int can be converted to an rvalue of type int if 2072 // int can represent all the values of the source type; otherwise, 2073 // the source rvalue can be converted to an rvalue of type unsigned 2074 // int (C++ 4.5p1). 2075 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 2076 !FromType->isEnumeralType()) { 2077 if (// We can promote any signed, promotable integer type to an int 2078 (FromType->isSignedIntegerType() || 2079 // We can promote any unsigned integer type whose size is 2080 // less than int to an int. 2081 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 2082 return To->getKind() == BuiltinType::Int; 2083 } 2084 2085 return To->getKind() == BuiltinType::UInt; 2086 } 2087 2088 // C++11 [conv.prom]p3: 2089 // A prvalue of an unscoped enumeration type whose underlying type is not 2090 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 2091 // following types that can represent all the values of the enumeration 2092 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 2093 // unsigned int, long int, unsigned long int, long long int, or unsigned 2094 // long long int. If none of the types in that list can represent all the 2095 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 2096 // type can be converted to an rvalue a prvalue of the extended integer type 2097 // with lowest integer conversion rank (4.13) greater than the rank of long 2098 // long in which all the values of the enumeration can be represented. If 2099 // there are two such extended types, the signed one is chosen. 2100 // C++11 [conv.prom]p4: 2101 // A prvalue of an unscoped enumeration type whose underlying type is fixed 2102 // can be converted to a prvalue of its underlying type. Moreover, if 2103 // integral promotion can be applied to its underlying type, a prvalue of an 2104 // unscoped enumeration type whose underlying type is fixed can also be 2105 // converted to a prvalue of the promoted underlying type. 2106 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 2107 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 2108 // provided for a scoped enumeration. 2109 if (FromEnumType->getDecl()->isScoped()) 2110 return false; 2111 2112 // We can perform an integral promotion to the underlying type of the enum, 2113 // even if that's not the promoted type. Note that the check for promoting 2114 // the underlying type is based on the type alone, and does not consider 2115 // the bitfield-ness of the actual source expression. 2116 if (FromEnumType->getDecl()->isFixed()) { 2117 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2118 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2119 IsIntegralPromotion(nullptr, Underlying, ToType); 2120 } 2121 2122 // We have already pre-calculated the promotion type, so this is trivial. 2123 if (ToType->isIntegerType() && 2124 isCompleteType(From->getBeginLoc(), FromType)) 2125 return Context.hasSameUnqualifiedType( 2126 ToType, FromEnumType->getDecl()->getPromotionType()); 2127 2128 // C++ [conv.prom]p5: 2129 // If the bit-field has an enumerated type, it is treated as any other 2130 // value of that type for promotion purposes. 2131 // 2132 // ... so do not fall through into the bit-field checks below in C++. 2133 if (getLangOpts().CPlusPlus) 2134 return false; 2135 } 2136 2137 // C++0x [conv.prom]p2: 2138 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2139 // to an rvalue a prvalue of the first of the following types that can 2140 // represent all the values of its underlying type: int, unsigned int, 2141 // long int, unsigned long int, long long int, or unsigned long long int. 2142 // If none of the types in that list can represent all the values of its 2143 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2144 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2145 // type. 2146 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2147 ToType->isIntegerType()) { 2148 // Determine whether the type we're converting from is signed or 2149 // unsigned. 2150 bool FromIsSigned = FromType->isSignedIntegerType(); 2151 uint64_t FromSize = Context.getTypeSize(FromType); 2152 2153 // The types we'll try to promote to, in the appropriate 2154 // order. Try each of these types. 2155 QualType PromoteTypes[6] = { 2156 Context.IntTy, Context.UnsignedIntTy, 2157 Context.LongTy, Context.UnsignedLongTy , 2158 Context.LongLongTy, Context.UnsignedLongLongTy 2159 }; 2160 for (int Idx = 0; Idx < 6; ++Idx) { 2161 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2162 if (FromSize < ToSize || 2163 (FromSize == ToSize && 2164 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2165 // We found the type that we can promote to. If this is the 2166 // type we wanted, we have a promotion. Otherwise, no 2167 // promotion. 2168 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2169 } 2170 } 2171 } 2172 2173 // An rvalue for an integral bit-field (9.6) can be converted to an 2174 // rvalue of type int if int can represent all the values of the 2175 // bit-field; otherwise, it can be converted to unsigned int if 2176 // unsigned int can represent all the values of the bit-field. If 2177 // the bit-field is larger yet, no integral promotion applies to 2178 // it. If the bit-field has an enumerated type, it is treated as any 2179 // other value of that type for promotion purposes (C++ 4.5p3). 2180 // FIXME: We should delay checking of bit-fields until we actually perform the 2181 // conversion. 2182 // 2183 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be 2184 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum 2185 // bit-fields and those whose underlying type is larger than int) for GCC 2186 // compatibility. 2187 if (From) { 2188 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2189 Optional<llvm::APSInt> BitWidth; 2190 if (FromType->isIntegralType(Context) && 2191 (BitWidth = 2192 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { 2193 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); 2194 ToSize = Context.getTypeSize(ToType); 2195 2196 // Are we promoting to an int from a bitfield that fits in an int? 2197 if (*BitWidth < ToSize || 2198 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { 2199 return To->getKind() == BuiltinType::Int; 2200 } 2201 2202 // Are we promoting to an unsigned int from an unsigned bitfield 2203 // that fits into an unsigned int? 2204 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { 2205 return To->getKind() == BuiltinType::UInt; 2206 } 2207 2208 return false; 2209 } 2210 } 2211 } 2212 2213 // An rvalue of type bool can be converted to an rvalue of type int, 2214 // with false becoming zero and true becoming one (C++ 4.5p4). 2215 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2216 return true; 2217 } 2218 2219 return false; 2220 } 2221 2222 /// IsFloatingPointPromotion - Determines whether the conversion from 2223 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2224 /// returns true and sets PromotedType to the promoted type. 2225 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2226 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2227 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2228 /// An rvalue of type float can be converted to an rvalue of type 2229 /// double. (C++ 4.6p1). 2230 if (FromBuiltin->getKind() == BuiltinType::Float && 2231 ToBuiltin->getKind() == BuiltinType::Double) 2232 return true; 2233 2234 // C99 6.3.1.5p1: 2235 // When a float is promoted to double or long double, or a 2236 // double is promoted to long double [...]. 2237 if (!getLangOpts().CPlusPlus && 2238 (FromBuiltin->getKind() == BuiltinType::Float || 2239 FromBuiltin->getKind() == BuiltinType::Double) && 2240 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2241 ToBuiltin->getKind() == BuiltinType::Float128 || 2242 ToBuiltin->getKind() == BuiltinType::Ibm128)) 2243 return true; 2244 2245 // Half can be promoted to float. 2246 if (!getLangOpts().NativeHalfType && 2247 FromBuiltin->getKind() == BuiltinType::Half && 2248 ToBuiltin->getKind() == BuiltinType::Float) 2249 return true; 2250 } 2251 2252 return false; 2253 } 2254 2255 /// Determine if a conversion is a complex promotion. 2256 /// 2257 /// A complex promotion is defined as a complex -> complex conversion 2258 /// where the conversion between the underlying real types is a 2259 /// floating-point or integral promotion. 2260 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2261 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2262 if (!FromComplex) 2263 return false; 2264 2265 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2266 if (!ToComplex) 2267 return false; 2268 2269 return IsFloatingPointPromotion(FromComplex->getElementType(), 2270 ToComplex->getElementType()) || 2271 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2272 ToComplex->getElementType()); 2273 } 2274 2275 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2276 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2277 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2278 /// if non-empty, will be a pointer to ToType that may or may not have 2279 /// the right set of qualifiers on its pointee. 2280 /// 2281 static QualType 2282 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2283 QualType ToPointee, QualType ToType, 2284 ASTContext &Context, 2285 bool StripObjCLifetime = false) { 2286 assert((FromPtr->getTypeClass() == Type::Pointer || 2287 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2288 "Invalid similarly-qualified pointer type"); 2289 2290 /// Conversions to 'id' subsume cv-qualifier conversions. 2291 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2292 return ToType.getUnqualifiedType(); 2293 2294 QualType CanonFromPointee 2295 = Context.getCanonicalType(FromPtr->getPointeeType()); 2296 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2297 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2298 2299 if (StripObjCLifetime) 2300 Quals.removeObjCLifetime(); 2301 2302 // Exact qualifier match -> return the pointer type we're converting to. 2303 if (CanonToPointee.getLocalQualifiers() == Quals) { 2304 // ToType is exactly what we need. Return it. 2305 if (!ToType.isNull()) 2306 return ToType.getUnqualifiedType(); 2307 2308 // Build a pointer to ToPointee. It has the right qualifiers 2309 // already. 2310 if (isa<ObjCObjectPointerType>(ToType)) 2311 return Context.getObjCObjectPointerType(ToPointee); 2312 return Context.getPointerType(ToPointee); 2313 } 2314 2315 // Just build a canonical type that has the right qualifiers. 2316 QualType QualifiedCanonToPointee 2317 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2318 2319 if (isa<ObjCObjectPointerType>(ToType)) 2320 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2321 return Context.getPointerType(QualifiedCanonToPointee); 2322 } 2323 2324 static bool isNullPointerConstantForConversion(Expr *Expr, 2325 bool InOverloadResolution, 2326 ASTContext &Context) { 2327 // Handle value-dependent integral null pointer constants correctly. 2328 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2329 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2330 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2331 return !InOverloadResolution; 2332 2333 return Expr->isNullPointerConstant(Context, 2334 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2335 : Expr::NPC_ValueDependentIsNull); 2336 } 2337 2338 /// IsPointerConversion - Determines whether the conversion of the 2339 /// expression From, which has the (possibly adjusted) type FromType, 2340 /// can be converted to the type ToType via a pointer conversion (C++ 2341 /// 4.10). If so, returns true and places the converted type (that 2342 /// might differ from ToType in its cv-qualifiers at some level) into 2343 /// ConvertedType. 2344 /// 2345 /// This routine also supports conversions to and from block pointers 2346 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2347 /// pointers to interfaces. FIXME: Once we've determined the 2348 /// appropriate overloading rules for Objective-C, we may want to 2349 /// split the Objective-C checks into a different routine; however, 2350 /// GCC seems to consider all of these conversions to be pointer 2351 /// conversions, so for now they live here. IncompatibleObjC will be 2352 /// set if the conversion is an allowed Objective-C conversion that 2353 /// should result in a warning. 2354 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2355 bool InOverloadResolution, 2356 QualType& ConvertedType, 2357 bool &IncompatibleObjC) { 2358 IncompatibleObjC = false; 2359 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2360 IncompatibleObjC)) 2361 return true; 2362 2363 // Conversion from a null pointer constant to any Objective-C pointer type. 2364 if (ToType->isObjCObjectPointerType() && 2365 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2366 ConvertedType = ToType; 2367 return true; 2368 } 2369 2370 // Blocks: Block pointers can be converted to void*. 2371 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2372 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { 2373 ConvertedType = ToType; 2374 return true; 2375 } 2376 // Blocks: A null pointer constant can be converted to a block 2377 // pointer type. 2378 if (ToType->isBlockPointerType() && 2379 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2380 ConvertedType = ToType; 2381 return true; 2382 } 2383 2384 // If the left-hand-side is nullptr_t, the right side can be a null 2385 // pointer constant. 2386 if (ToType->isNullPtrType() && 2387 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2388 ConvertedType = ToType; 2389 return true; 2390 } 2391 2392 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2393 if (!ToTypePtr) 2394 return false; 2395 2396 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2397 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2398 ConvertedType = ToType; 2399 return true; 2400 } 2401 2402 // Beyond this point, both types need to be pointers 2403 // , including objective-c pointers. 2404 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2405 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2406 !getLangOpts().ObjCAutoRefCount) { 2407 ConvertedType = BuildSimilarlyQualifiedPointerType( 2408 FromType->getAs<ObjCObjectPointerType>(), 2409 ToPointeeType, 2410 ToType, Context); 2411 return true; 2412 } 2413 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2414 if (!FromTypePtr) 2415 return false; 2416 2417 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2418 2419 // If the unqualified pointee types are the same, this can't be a 2420 // pointer conversion, so don't do all of the work below. 2421 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2422 return false; 2423 2424 // An rvalue of type "pointer to cv T," where T is an object type, 2425 // can be converted to an rvalue of type "pointer to cv void" (C++ 2426 // 4.10p2). 2427 if (FromPointeeType->isIncompleteOrObjectType() && 2428 ToPointeeType->isVoidType()) { 2429 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2430 ToPointeeType, 2431 ToType, Context, 2432 /*StripObjCLifetime=*/true); 2433 return true; 2434 } 2435 2436 // MSVC allows implicit function to void* type conversion. 2437 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2438 ToPointeeType->isVoidType()) { 2439 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2440 ToPointeeType, 2441 ToType, Context); 2442 return true; 2443 } 2444 2445 // When we're overloading in C, we allow a special kind of pointer 2446 // conversion for compatible-but-not-identical pointee types. 2447 if (!getLangOpts().CPlusPlus && 2448 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2449 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2450 ToPointeeType, 2451 ToType, Context); 2452 return true; 2453 } 2454 2455 // C++ [conv.ptr]p3: 2456 // 2457 // An rvalue of type "pointer to cv D," where D is a class type, 2458 // can be converted to an rvalue of type "pointer to cv B," where 2459 // B is a base class (clause 10) of D. If B is an inaccessible 2460 // (clause 11) or ambiguous (10.2) base class of D, a program that 2461 // necessitates this conversion is ill-formed. The result of the 2462 // conversion is a pointer to the base class sub-object of the 2463 // derived class object. The null pointer value is converted to 2464 // the null pointer value of the destination type. 2465 // 2466 // Note that we do not check for ambiguity or inaccessibility 2467 // here. That is handled by CheckPointerConversion. 2468 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && 2469 ToPointeeType->isRecordType() && 2470 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2471 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { 2472 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2473 ToPointeeType, 2474 ToType, Context); 2475 return true; 2476 } 2477 2478 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2479 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2480 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2481 ToPointeeType, 2482 ToType, Context); 2483 return true; 2484 } 2485 2486 return false; 2487 } 2488 2489 /// Adopt the given qualifiers for the given type. 2490 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2491 Qualifiers TQs = T.getQualifiers(); 2492 2493 // Check whether qualifiers already match. 2494 if (TQs == Qs) 2495 return T; 2496 2497 if (Qs.compatiblyIncludes(TQs)) 2498 return Context.getQualifiedType(T, Qs); 2499 2500 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2501 } 2502 2503 /// isObjCPointerConversion - Determines whether this is an 2504 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2505 /// with the same arguments and return values. 2506 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2507 QualType& ConvertedType, 2508 bool &IncompatibleObjC) { 2509 if (!getLangOpts().ObjC) 2510 return false; 2511 2512 // The set of qualifiers on the type we're converting from. 2513 Qualifiers FromQualifiers = FromType.getQualifiers(); 2514 2515 // First, we handle all conversions on ObjC object pointer types. 2516 const ObjCObjectPointerType* ToObjCPtr = 2517 ToType->getAs<ObjCObjectPointerType>(); 2518 const ObjCObjectPointerType *FromObjCPtr = 2519 FromType->getAs<ObjCObjectPointerType>(); 2520 2521 if (ToObjCPtr && FromObjCPtr) { 2522 // If the pointee types are the same (ignoring qualifications), 2523 // then this is not a pointer conversion. 2524 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2525 FromObjCPtr->getPointeeType())) 2526 return false; 2527 2528 // Conversion between Objective-C pointers. 2529 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2530 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2531 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2532 if (getLangOpts().CPlusPlus && LHS && RHS && 2533 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2534 FromObjCPtr->getPointeeType())) 2535 return false; 2536 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2537 ToObjCPtr->getPointeeType(), 2538 ToType, Context); 2539 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2540 return true; 2541 } 2542 2543 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2544 // Okay: this is some kind of implicit downcast of Objective-C 2545 // interfaces, which is permitted. However, we're going to 2546 // complain about it. 2547 IncompatibleObjC = true; 2548 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2549 ToObjCPtr->getPointeeType(), 2550 ToType, Context); 2551 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2552 return true; 2553 } 2554 } 2555 // Beyond this point, both types need to be C pointers or block pointers. 2556 QualType ToPointeeType; 2557 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2558 ToPointeeType = ToCPtr->getPointeeType(); 2559 else if (const BlockPointerType *ToBlockPtr = 2560 ToType->getAs<BlockPointerType>()) { 2561 // Objective C++: We're able to convert from a pointer to any object 2562 // to a block pointer type. 2563 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2564 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2565 return true; 2566 } 2567 ToPointeeType = ToBlockPtr->getPointeeType(); 2568 } 2569 else if (FromType->getAs<BlockPointerType>() && 2570 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2571 // Objective C++: We're able to convert from a block pointer type to a 2572 // pointer to any object. 2573 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2574 return true; 2575 } 2576 else 2577 return false; 2578 2579 QualType FromPointeeType; 2580 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2581 FromPointeeType = FromCPtr->getPointeeType(); 2582 else if (const BlockPointerType *FromBlockPtr = 2583 FromType->getAs<BlockPointerType>()) 2584 FromPointeeType = FromBlockPtr->getPointeeType(); 2585 else 2586 return false; 2587 2588 // If we have pointers to pointers, recursively check whether this 2589 // is an Objective-C conversion. 2590 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2591 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2592 IncompatibleObjC)) { 2593 // We always complain about this conversion. 2594 IncompatibleObjC = true; 2595 ConvertedType = Context.getPointerType(ConvertedType); 2596 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2597 return true; 2598 } 2599 // Allow conversion of pointee being objective-c pointer to another one; 2600 // as in I* to id. 2601 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2602 ToPointeeType->getAs<ObjCObjectPointerType>() && 2603 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2604 IncompatibleObjC)) { 2605 2606 ConvertedType = Context.getPointerType(ConvertedType); 2607 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2608 return true; 2609 } 2610 2611 // If we have pointers to functions or blocks, check whether the only 2612 // differences in the argument and result types are in Objective-C 2613 // pointer conversions. If so, we permit the conversion (but 2614 // complain about it). 2615 const FunctionProtoType *FromFunctionType 2616 = FromPointeeType->getAs<FunctionProtoType>(); 2617 const FunctionProtoType *ToFunctionType 2618 = ToPointeeType->getAs<FunctionProtoType>(); 2619 if (FromFunctionType && ToFunctionType) { 2620 // If the function types are exactly the same, this isn't an 2621 // Objective-C pointer conversion. 2622 if (Context.getCanonicalType(FromPointeeType) 2623 == Context.getCanonicalType(ToPointeeType)) 2624 return false; 2625 2626 // Perform the quick checks that will tell us whether these 2627 // function types are obviously different. 2628 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2629 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2630 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) 2631 return false; 2632 2633 bool HasObjCConversion = false; 2634 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2635 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2636 // Okay, the types match exactly. Nothing to do. 2637 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2638 ToFunctionType->getReturnType(), 2639 ConvertedType, IncompatibleObjC)) { 2640 // Okay, we have an Objective-C pointer conversion. 2641 HasObjCConversion = true; 2642 } else { 2643 // Function types are too different. Abort. 2644 return false; 2645 } 2646 2647 // Check argument types. 2648 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2649 ArgIdx != NumArgs; ++ArgIdx) { 2650 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2651 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2652 if (Context.getCanonicalType(FromArgType) 2653 == Context.getCanonicalType(ToArgType)) { 2654 // Okay, the types match exactly. Nothing to do. 2655 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2656 ConvertedType, IncompatibleObjC)) { 2657 // Okay, we have an Objective-C pointer conversion. 2658 HasObjCConversion = true; 2659 } else { 2660 // Argument types are too different. Abort. 2661 return false; 2662 } 2663 } 2664 2665 if (HasObjCConversion) { 2666 // We had an Objective-C conversion. Allow this pointer 2667 // conversion, but complain about it. 2668 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2669 IncompatibleObjC = true; 2670 return true; 2671 } 2672 } 2673 2674 return false; 2675 } 2676 2677 /// Determine whether this is an Objective-C writeback conversion, 2678 /// used for parameter passing when performing automatic reference counting. 2679 /// 2680 /// \param FromType The type we're converting form. 2681 /// 2682 /// \param ToType The type we're converting to. 2683 /// 2684 /// \param ConvertedType The type that will be produced after applying 2685 /// this conversion. 2686 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2687 QualType &ConvertedType) { 2688 if (!getLangOpts().ObjCAutoRefCount || 2689 Context.hasSameUnqualifiedType(FromType, ToType)) 2690 return false; 2691 2692 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2693 QualType ToPointee; 2694 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2695 ToPointee = ToPointer->getPointeeType(); 2696 else 2697 return false; 2698 2699 Qualifiers ToQuals = ToPointee.getQualifiers(); 2700 if (!ToPointee->isObjCLifetimeType() || 2701 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2702 !ToQuals.withoutObjCLifetime().empty()) 2703 return false; 2704 2705 // Argument must be a pointer to __strong to __weak. 2706 QualType FromPointee; 2707 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2708 FromPointee = FromPointer->getPointeeType(); 2709 else 2710 return false; 2711 2712 Qualifiers FromQuals = FromPointee.getQualifiers(); 2713 if (!FromPointee->isObjCLifetimeType() || 2714 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2715 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2716 return false; 2717 2718 // Make sure that we have compatible qualifiers. 2719 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2720 if (!ToQuals.compatiblyIncludes(FromQuals)) 2721 return false; 2722 2723 // Remove qualifiers from the pointee type we're converting from; they 2724 // aren't used in the compatibility check belong, and we'll be adding back 2725 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2726 FromPointee = FromPointee.getUnqualifiedType(); 2727 2728 // The unqualified form of the pointee types must be compatible. 2729 ToPointee = ToPointee.getUnqualifiedType(); 2730 bool IncompatibleObjC; 2731 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2732 FromPointee = ToPointee; 2733 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2734 IncompatibleObjC)) 2735 return false; 2736 2737 /// Construct the type we're converting to, which is a pointer to 2738 /// __autoreleasing pointee. 2739 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2740 ConvertedType = Context.getPointerType(FromPointee); 2741 return true; 2742 } 2743 2744 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2745 QualType& ConvertedType) { 2746 QualType ToPointeeType; 2747 if (const BlockPointerType *ToBlockPtr = 2748 ToType->getAs<BlockPointerType>()) 2749 ToPointeeType = ToBlockPtr->getPointeeType(); 2750 else 2751 return false; 2752 2753 QualType FromPointeeType; 2754 if (const BlockPointerType *FromBlockPtr = 2755 FromType->getAs<BlockPointerType>()) 2756 FromPointeeType = FromBlockPtr->getPointeeType(); 2757 else 2758 return false; 2759 // We have pointer to blocks, check whether the only 2760 // differences in the argument and result types are in Objective-C 2761 // pointer conversions. If so, we permit the conversion. 2762 2763 const FunctionProtoType *FromFunctionType 2764 = FromPointeeType->getAs<FunctionProtoType>(); 2765 const FunctionProtoType *ToFunctionType 2766 = ToPointeeType->getAs<FunctionProtoType>(); 2767 2768 if (!FromFunctionType || !ToFunctionType) 2769 return false; 2770 2771 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2772 return true; 2773 2774 // Perform the quick checks that will tell us whether these 2775 // function types are obviously different. 2776 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2777 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2778 return false; 2779 2780 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2781 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2782 if (FromEInfo != ToEInfo) 2783 return false; 2784 2785 bool IncompatibleObjC = false; 2786 if (Context.hasSameType(FromFunctionType->getReturnType(), 2787 ToFunctionType->getReturnType())) { 2788 // Okay, the types match exactly. Nothing to do. 2789 } else { 2790 QualType RHS = FromFunctionType->getReturnType(); 2791 QualType LHS = ToFunctionType->getReturnType(); 2792 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2793 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2794 LHS = LHS.getUnqualifiedType(); 2795 2796 if (Context.hasSameType(RHS,LHS)) { 2797 // OK exact match. 2798 } else if (isObjCPointerConversion(RHS, LHS, 2799 ConvertedType, IncompatibleObjC)) { 2800 if (IncompatibleObjC) 2801 return false; 2802 // Okay, we have an Objective-C pointer conversion. 2803 } 2804 else 2805 return false; 2806 } 2807 2808 // Check argument types. 2809 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2810 ArgIdx != NumArgs; ++ArgIdx) { 2811 IncompatibleObjC = false; 2812 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2813 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2814 if (Context.hasSameType(FromArgType, ToArgType)) { 2815 // Okay, the types match exactly. Nothing to do. 2816 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2817 ConvertedType, IncompatibleObjC)) { 2818 if (IncompatibleObjC) 2819 return false; 2820 // Okay, we have an Objective-C pointer conversion. 2821 } else 2822 // Argument types are too different. Abort. 2823 return false; 2824 } 2825 2826 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2827 bool CanUseToFPT, CanUseFromFPT; 2828 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2829 CanUseToFPT, CanUseFromFPT, 2830 NewParamInfos)) 2831 return false; 2832 2833 ConvertedType = ToType; 2834 return true; 2835 } 2836 2837 enum { 2838 ft_default, 2839 ft_different_class, 2840 ft_parameter_arity, 2841 ft_parameter_mismatch, 2842 ft_return_type, 2843 ft_qualifer_mismatch, 2844 ft_noexcept 2845 }; 2846 2847 /// Attempts to get the FunctionProtoType from a Type. Handles 2848 /// MemberFunctionPointers properly. 2849 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2850 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2851 return FPT; 2852 2853 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2854 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2855 2856 return nullptr; 2857 } 2858 2859 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2860 /// function types. Catches different number of parameter, mismatch in 2861 /// parameter types, and different return types. 2862 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2863 QualType FromType, QualType ToType) { 2864 // If either type is not valid, include no extra info. 2865 if (FromType.isNull() || ToType.isNull()) { 2866 PDiag << ft_default; 2867 return; 2868 } 2869 2870 // Get the function type from the pointers. 2871 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2872 const auto *FromMember = FromType->castAs<MemberPointerType>(), 2873 *ToMember = ToType->castAs<MemberPointerType>(); 2874 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2875 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2876 << QualType(FromMember->getClass(), 0); 2877 return; 2878 } 2879 FromType = FromMember->getPointeeType(); 2880 ToType = ToMember->getPointeeType(); 2881 } 2882 2883 if (FromType->isPointerType()) 2884 FromType = FromType->getPointeeType(); 2885 if (ToType->isPointerType()) 2886 ToType = ToType->getPointeeType(); 2887 2888 // Remove references. 2889 FromType = FromType.getNonReferenceType(); 2890 ToType = ToType.getNonReferenceType(); 2891 2892 // Don't print extra info for non-specialized template functions. 2893 if (FromType->isInstantiationDependentType() && 2894 !FromType->getAs<TemplateSpecializationType>()) { 2895 PDiag << ft_default; 2896 return; 2897 } 2898 2899 // No extra info for same types. 2900 if (Context.hasSameType(FromType, ToType)) { 2901 PDiag << ft_default; 2902 return; 2903 } 2904 2905 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 2906 *ToFunction = tryGetFunctionProtoType(ToType); 2907 2908 // Both types need to be function types. 2909 if (!FromFunction || !ToFunction) { 2910 PDiag << ft_default; 2911 return; 2912 } 2913 2914 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 2915 PDiag << ft_parameter_arity << ToFunction->getNumParams() 2916 << FromFunction->getNumParams(); 2917 return; 2918 } 2919 2920 // Handle different parameter types. 2921 unsigned ArgPos; 2922 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2923 PDiag << ft_parameter_mismatch << ArgPos + 1 2924 << ToFunction->getParamType(ArgPos) 2925 << FromFunction->getParamType(ArgPos); 2926 return; 2927 } 2928 2929 // Handle different return type. 2930 if (!Context.hasSameType(FromFunction->getReturnType(), 2931 ToFunction->getReturnType())) { 2932 PDiag << ft_return_type << ToFunction->getReturnType() 2933 << FromFunction->getReturnType(); 2934 return; 2935 } 2936 2937 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { 2938 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() 2939 << FromFunction->getMethodQuals(); 2940 return; 2941 } 2942 2943 // Handle exception specification differences on canonical type (in C++17 2944 // onwards). 2945 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 2946 ->isNothrow() != 2947 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 2948 ->isNothrow()) { 2949 PDiag << ft_noexcept; 2950 return; 2951 } 2952 2953 // Unable to find a difference, so add no extra info. 2954 PDiag << ft_default; 2955 } 2956 2957 /// FunctionParamTypesAreEqual - This routine checks two function proto types 2958 /// for equality of their argument types. Caller has already checked that 2959 /// they have same number of arguments. If the parameters are different, 2960 /// ArgPos will have the parameter index of the first different parameter. 2961 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 2962 const FunctionProtoType *NewType, 2963 unsigned *ArgPos) { 2964 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), 2965 N = NewType->param_type_begin(), 2966 E = OldType->param_type_end(); 2967 O && (O != E); ++O, ++N) { 2968 // Ignore address spaces in pointee type. This is to disallow overloading 2969 // on __ptr32/__ptr64 address spaces. 2970 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); 2971 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); 2972 2973 if (!Context.hasSameType(Old, New)) { 2974 if (ArgPos) 2975 *ArgPos = O - OldType->param_type_begin(); 2976 return false; 2977 } 2978 } 2979 return true; 2980 } 2981 2982 /// CheckPointerConversion - Check the pointer conversion from the 2983 /// expression From to the type ToType. This routine checks for 2984 /// ambiguous or inaccessible derived-to-base pointer 2985 /// conversions for which IsPointerConversion has already returned 2986 /// true. It returns true and produces a diagnostic if there was an 2987 /// error, or returns false otherwise. 2988 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2989 CastKind &Kind, 2990 CXXCastPath& BasePath, 2991 bool IgnoreBaseAccess, 2992 bool Diagnose) { 2993 QualType FromType = From->getType(); 2994 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2995 2996 Kind = CK_BitCast; 2997 2998 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2999 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 3000 Expr::NPCK_ZeroExpression) { 3001 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 3002 DiagRuntimeBehavior(From->getExprLoc(), From, 3003 PDiag(diag::warn_impcast_bool_to_null_pointer) 3004 << ToType << From->getSourceRange()); 3005 else if (!isUnevaluatedContext()) 3006 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 3007 << ToType << From->getSourceRange(); 3008 } 3009 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 3010 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 3011 QualType FromPointeeType = FromPtrType->getPointeeType(), 3012 ToPointeeType = ToPtrType->getPointeeType(); 3013 3014 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 3015 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 3016 // We must have a derived-to-base conversion. Check an 3017 // ambiguous or inaccessible conversion. 3018 unsigned InaccessibleID = 0; 3019 unsigned AmbiguousID = 0; 3020 if (Diagnose) { 3021 InaccessibleID = diag::err_upcast_to_inaccessible_base; 3022 AmbiguousID = diag::err_ambiguous_derived_to_base_conv; 3023 } 3024 if (CheckDerivedToBaseConversion( 3025 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, 3026 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 3027 &BasePath, IgnoreBaseAccess)) 3028 return true; 3029 3030 // The conversion was successful. 3031 Kind = CK_DerivedToBase; 3032 } 3033 3034 if (Diagnose && !IsCStyleOrFunctionalCast && 3035 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 3036 assert(getLangOpts().MSVCCompat && 3037 "this should only be possible with MSVCCompat!"); 3038 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 3039 << From->getSourceRange(); 3040 } 3041 } 3042 } else if (const ObjCObjectPointerType *ToPtrType = 3043 ToType->getAs<ObjCObjectPointerType>()) { 3044 if (const ObjCObjectPointerType *FromPtrType = 3045 FromType->getAs<ObjCObjectPointerType>()) { 3046 // Objective-C++ conversions are always okay. 3047 // FIXME: We should have a different class of conversions for the 3048 // Objective-C++ implicit conversions. 3049 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 3050 return false; 3051 } else if (FromType->isBlockPointerType()) { 3052 Kind = CK_BlockPointerToObjCPointerCast; 3053 } else { 3054 Kind = CK_CPointerToObjCPointerCast; 3055 } 3056 } else if (ToType->isBlockPointerType()) { 3057 if (!FromType->isBlockPointerType()) 3058 Kind = CK_AnyPointerToBlockPointerCast; 3059 } 3060 3061 // We shouldn't fall into this case unless it's valid for other 3062 // reasons. 3063 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 3064 Kind = CK_NullToPointer; 3065 3066 return false; 3067 } 3068 3069 /// IsMemberPointerConversion - Determines whether the conversion of the 3070 /// expression From, which has the (possibly adjusted) type FromType, can be 3071 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 3072 /// If so, returns true and places the converted type (that might differ from 3073 /// ToType in its cv-qualifiers at some level) into ConvertedType. 3074 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 3075 QualType ToType, 3076 bool InOverloadResolution, 3077 QualType &ConvertedType) { 3078 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 3079 if (!ToTypePtr) 3080 return false; 3081 3082 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 3083 if (From->isNullPointerConstant(Context, 3084 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 3085 : Expr::NPC_ValueDependentIsNull)) { 3086 ConvertedType = ToType; 3087 return true; 3088 } 3089 3090 // Otherwise, both types have to be member pointers. 3091 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 3092 if (!FromTypePtr) 3093 return false; 3094 3095 // A pointer to member of B can be converted to a pointer to member of D, 3096 // where D is derived from B (C++ 4.11p2). 3097 QualType FromClass(FromTypePtr->getClass(), 0); 3098 QualType ToClass(ToTypePtr->getClass(), 0); 3099 3100 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 3101 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { 3102 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 3103 ToClass.getTypePtr()); 3104 return true; 3105 } 3106 3107 return false; 3108 } 3109 3110 /// CheckMemberPointerConversion - Check the member pointer conversion from the 3111 /// expression From to the type ToType. This routine checks for ambiguous or 3112 /// virtual or inaccessible base-to-derived member pointer conversions 3113 /// for which IsMemberPointerConversion has already returned true. It returns 3114 /// true and produces a diagnostic if there was an error, or returns false 3115 /// otherwise. 3116 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 3117 CastKind &Kind, 3118 CXXCastPath &BasePath, 3119 bool IgnoreBaseAccess) { 3120 QualType FromType = From->getType(); 3121 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 3122 if (!FromPtrType) { 3123 // This must be a null pointer to member pointer conversion 3124 assert(From->isNullPointerConstant(Context, 3125 Expr::NPC_ValueDependentIsNull) && 3126 "Expr must be null pointer constant!"); 3127 Kind = CK_NullToMemberPointer; 3128 return false; 3129 } 3130 3131 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 3132 assert(ToPtrType && "No member pointer cast has a target type " 3133 "that is not a member pointer."); 3134 3135 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3136 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3137 3138 // FIXME: What about dependent types? 3139 assert(FromClass->isRecordType() && "Pointer into non-class."); 3140 assert(ToClass->isRecordType() && "Pointer into non-class."); 3141 3142 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3143 /*DetectVirtual=*/true); 3144 bool DerivationOkay = 3145 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); 3146 assert(DerivationOkay && 3147 "Should not have been called if derivation isn't OK."); 3148 (void)DerivationOkay; 3149 3150 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3151 getUnqualifiedType())) { 3152 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3153 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3154 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3155 return true; 3156 } 3157 3158 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3159 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3160 << FromClass << ToClass << QualType(VBase, 0) 3161 << From->getSourceRange(); 3162 return true; 3163 } 3164 3165 if (!IgnoreBaseAccess) 3166 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3167 Paths.front(), 3168 diag::err_downcast_from_inaccessible_base); 3169 3170 // Must be a base to derived member conversion. 3171 BuildBasePathArray(Paths, BasePath); 3172 Kind = CK_BaseToDerivedMemberPointer; 3173 return false; 3174 } 3175 3176 /// Determine whether the lifetime conversion between the two given 3177 /// qualifiers sets is nontrivial. 3178 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3179 Qualifiers ToQuals) { 3180 // Converting anything to const __unsafe_unretained is trivial. 3181 if (ToQuals.hasConst() && 3182 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3183 return false; 3184 3185 return true; 3186 } 3187 3188 /// Perform a single iteration of the loop for checking if a qualification 3189 /// conversion is valid. 3190 /// 3191 /// Specifically, check whether any change between the qualifiers of \p 3192 /// FromType and \p ToType is permissible, given knowledge about whether every 3193 /// outer layer is const-qualified. 3194 static bool isQualificationConversionStep(QualType FromType, QualType ToType, 3195 bool CStyle, bool IsTopLevel, 3196 bool &PreviousToQualsIncludeConst, 3197 bool &ObjCLifetimeConversion) { 3198 Qualifiers FromQuals = FromType.getQualifiers(); 3199 Qualifiers ToQuals = ToType.getQualifiers(); 3200 3201 // Ignore __unaligned qualifier if this type is void. 3202 if (ToType.getUnqualifiedType()->isVoidType()) 3203 FromQuals.removeUnaligned(); 3204 3205 // Objective-C ARC: 3206 // Check Objective-C lifetime conversions. 3207 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { 3208 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3209 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3210 ObjCLifetimeConversion = true; 3211 FromQuals.removeObjCLifetime(); 3212 ToQuals.removeObjCLifetime(); 3213 } else { 3214 // Qualification conversions cannot cast between different 3215 // Objective-C lifetime qualifiers. 3216 return false; 3217 } 3218 } 3219 3220 // Allow addition/removal of GC attributes but not changing GC attributes. 3221 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3222 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3223 FromQuals.removeObjCGCAttr(); 3224 ToQuals.removeObjCGCAttr(); 3225 } 3226 3227 // -- for every j > 0, if const is in cv 1,j then const is in cv 3228 // 2,j, and similarly for volatile. 3229 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3230 return false; 3231 3232 // If address spaces mismatch: 3233 // - in top level it is only valid to convert to addr space that is a 3234 // superset in all cases apart from C-style casts where we allow 3235 // conversions between overlapping address spaces. 3236 // - in non-top levels it is not a valid conversion. 3237 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && 3238 (!IsTopLevel || 3239 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || 3240 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) 3241 return false; 3242 3243 // -- if the cv 1,j and cv 2,j are different, then const is in 3244 // every cv for 0 < k < j. 3245 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && 3246 !PreviousToQualsIncludeConst) 3247 return false; 3248 3249 // The following wording is from C++20, where the result of the conversion 3250 // is T3, not T2. 3251 // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is 3252 // "array of unknown bound of" 3253 if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) 3254 return false; 3255 3256 // -- if the resulting P3,i is different from P1,i [...], then const is 3257 // added to every cv 3_k for 0 < k < i. 3258 if (!CStyle && FromType->isConstantArrayType() && 3259 ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) 3260 return false; 3261 3262 // Keep track of whether all prior cv-qualifiers in the "to" type 3263 // include const. 3264 PreviousToQualsIncludeConst = 3265 PreviousToQualsIncludeConst && ToQuals.hasConst(); 3266 return true; 3267 } 3268 3269 /// IsQualificationConversion - Determines whether the conversion from 3270 /// an rvalue of type FromType to ToType is a qualification conversion 3271 /// (C++ 4.4). 3272 /// 3273 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3274 /// when the qualification conversion involves a change in the Objective-C 3275 /// object lifetime. 3276 bool 3277 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3278 bool CStyle, bool &ObjCLifetimeConversion) { 3279 FromType = Context.getCanonicalType(FromType); 3280 ToType = Context.getCanonicalType(ToType); 3281 ObjCLifetimeConversion = false; 3282 3283 // If FromType and ToType are the same type, this is not a 3284 // qualification conversion. 3285 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3286 return false; 3287 3288 // (C++ 4.4p4): 3289 // A conversion can add cv-qualifiers at levels other than the first 3290 // in multi-level pointers, subject to the following rules: [...] 3291 bool PreviousToQualsIncludeConst = true; 3292 bool UnwrappedAnyPointer = false; 3293 while (Context.UnwrapSimilarTypes(FromType, ToType)) { 3294 if (!isQualificationConversionStep( 3295 FromType, ToType, CStyle, !UnwrappedAnyPointer, 3296 PreviousToQualsIncludeConst, ObjCLifetimeConversion)) 3297 return false; 3298 UnwrappedAnyPointer = true; 3299 } 3300 3301 // We are left with FromType and ToType being the pointee types 3302 // after unwrapping the original FromType and ToType the same number 3303 // of times. If we unwrapped any pointers, and if FromType and 3304 // ToType have the same unqualified type (since we checked 3305 // qualifiers above), then this is a qualification conversion. 3306 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3307 } 3308 3309 /// - Determine whether this is a conversion from a scalar type to an 3310 /// atomic type. 3311 /// 3312 /// If successful, updates \c SCS's second and third steps in the conversion 3313 /// sequence to finish the conversion. 3314 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3315 bool InOverloadResolution, 3316 StandardConversionSequence &SCS, 3317 bool CStyle) { 3318 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3319 if (!ToAtomic) 3320 return false; 3321 3322 StandardConversionSequence InnerSCS; 3323 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3324 InOverloadResolution, InnerSCS, 3325 CStyle, /*AllowObjCWritebackConversion=*/false)) 3326 return false; 3327 3328 SCS.Second = InnerSCS.Second; 3329 SCS.setToType(1, InnerSCS.getToType(1)); 3330 SCS.Third = InnerSCS.Third; 3331 SCS.QualificationIncludesObjCLifetime 3332 = InnerSCS.QualificationIncludesObjCLifetime; 3333 SCS.setToType(2, InnerSCS.getToType(2)); 3334 return true; 3335 } 3336 3337 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3338 CXXConstructorDecl *Constructor, 3339 QualType Type) { 3340 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); 3341 if (CtorType->getNumParams() > 0) { 3342 QualType FirstArg = CtorType->getParamType(0); 3343 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3344 return true; 3345 } 3346 return false; 3347 } 3348 3349 static OverloadingResult 3350 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3351 CXXRecordDecl *To, 3352 UserDefinedConversionSequence &User, 3353 OverloadCandidateSet &CandidateSet, 3354 bool AllowExplicit) { 3355 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3356 for (auto *D : S.LookupConstructors(To)) { 3357 auto Info = getConstructorInfo(D); 3358 if (!Info) 3359 continue; 3360 3361 bool Usable = !Info.Constructor->isInvalidDecl() && 3362 S.isInitListConstructor(Info.Constructor); 3363 if (Usable) { 3364 bool SuppressUserConversions = false; 3365 if (Info.ConstructorTmpl) 3366 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3367 /*ExplicitArgs*/ nullptr, From, 3368 CandidateSet, SuppressUserConversions, 3369 /*PartialOverloading*/ false, 3370 AllowExplicit); 3371 else 3372 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3373 CandidateSet, SuppressUserConversions, 3374 /*PartialOverloading*/ false, AllowExplicit); 3375 } 3376 } 3377 3378 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3379 3380 OverloadCandidateSet::iterator Best; 3381 switch (auto Result = 3382 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3383 case OR_Deleted: 3384 case OR_Success: { 3385 // Record the standard conversion we used and the conversion function. 3386 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3387 QualType ThisType = Constructor->getThisType(); 3388 // Initializer lists don't have conversions as such. 3389 User.Before.setAsIdentityConversion(); 3390 User.HadMultipleCandidates = HadMultipleCandidates; 3391 User.ConversionFunction = Constructor; 3392 User.FoundConversionFunction = Best->FoundDecl; 3393 User.After.setAsIdentityConversion(); 3394 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3395 User.After.setAllToTypes(ToType); 3396 return Result; 3397 } 3398 3399 case OR_No_Viable_Function: 3400 return OR_No_Viable_Function; 3401 case OR_Ambiguous: 3402 return OR_Ambiguous; 3403 } 3404 3405 llvm_unreachable("Invalid OverloadResult!"); 3406 } 3407 3408 /// Determines whether there is a user-defined conversion sequence 3409 /// (C++ [over.ics.user]) that converts expression From to the type 3410 /// ToType. If such a conversion exists, User will contain the 3411 /// user-defined conversion sequence that performs such a conversion 3412 /// and this routine will return true. Otherwise, this routine returns 3413 /// false and User is unspecified. 3414 /// 3415 /// \param AllowExplicit true if the conversion should consider C++0x 3416 /// "explicit" conversion functions as well as non-explicit conversion 3417 /// functions (C++0x [class.conv.fct]p2). 3418 /// 3419 /// \param AllowObjCConversionOnExplicit true if the conversion should 3420 /// allow an extra Objective-C pointer conversion on uses of explicit 3421 /// constructors. Requires \c AllowExplicit to also be set. 3422 static OverloadingResult 3423 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3424 UserDefinedConversionSequence &User, 3425 OverloadCandidateSet &CandidateSet, 3426 AllowedExplicit AllowExplicit, 3427 bool AllowObjCConversionOnExplicit) { 3428 assert(AllowExplicit != AllowedExplicit::None || 3429 !AllowObjCConversionOnExplicit); 3430 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3431 3432 // Whether we will only visit constructors. 3433 bool ConstructorsOnly = false; 3434 3435 // If the type we are conversion to is a class type, enumerate its 3436 // constructors. 3437 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3438 // C++ [over.match.ctor]p1: 3439 // When objects of class type are direct-initialized (8.5), or 3440 // copy-initialized from an expression of the same or a 3441 // derived class type (8.5), overload resolution selects the 3442 // constructor. [...] For copy-initialization, the candidate 3443 // functions are all the converting constructors (12.3.1) of 3444 // that class. The argument list is the expression-list within 3445 // the parentheses of the initializer. 3446 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3447 (From->getType()->getAs<RecordType>() && 3448 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) 3449 ConstructorsOnly = true; 3450 3451 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3452 // We're not going to find any constructors. 3453 } else if (CXXRecordDecl *ToRecordDecl 3454 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3455 3456 Expr **Args = &From; 3457 unsigned NumArgs = 1; 3458 bool ListInitializing = false; 3459 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3460 // But first, see if there is an init-list-constructor that will work. 3461 OverloadingResult Result = IsInitializerListConstructorConversion( 3462 S, From, ToType, ToRecordDecl, User, CandidateSet, 3463 AllowExplicit == AllowedExplicit::All); 3464 if (Result != OR_No_Viable_Function) 3465 return Result; 3466 // Never mind. 3467 CandidateSet.clear( 3468 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3469 3470 // If we're list-initializing, we pass the individual elements as 3471 // arguments, not the entire list. 3472 Args = InitList->getInits(); 3473 NumArgs = InitList->getNumInits(); 3474 ListInitializing = true; 3475 } 3476 3477 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3478 auto Info = getConstructorInfo(D); 3479 if (!Info) 3480 continue; 3481 3482 bool Usable = !Info.Constructor->isInvalidDecl(); 3483 if (!ListInitializing) 3484 Usable = Usable && Info.Constructor->isConvertingConstructor( 3485 /*AllowExplicit*/ true); 3486 if (Usable) { 3487 bool SuppressUserConversions = !ConstructorsOnly; 3488 // C++20 [over.best.ics.general]/4.5: 3489 // if the target is the first parameter of a constructor [of class 3490 // X] and the constructor [...] is a candidate by [...] the second 3491 // phase of [over.match.list] when the initializer list has exactly 3492 // one element that is itself an initializer list, [...] and the 3493 // conversion is to X or reference to cv X, user-defined conversion 3494 // sequences are not cnosidered. 3495 if (SuppressUserConversions && ListInitializing) { 3496 SuppressUserConversions = 3497 NumArgs == 1 && isa<InitListExpr>(Args[0]) && 3498 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, 3499 ToType); 3500 } 3501 if (Info.ConstructorTmpl) 3502 S.AddTemplateOverloadCandidate( 3503 Info.ConstructorTmpl, Info.FoundDecl, 3504 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), 3505 CandidateSet, SuppressUserConversions, 3506 /*PartialOverloading*/ false, 3507 AllowExplicit == AllowedExplicit::All); 3508 else 3509 // Allow one user-defined conversion when user specifies a 3510 // From->ToType conversion via an static cast (c-style, etc). 3511 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3512 llvm::makeArrayRef(Args, NumArgs), 3513 CandidateSet, SuppressUserConversions, 3514 /*PartialOverloading*/ false, 3515 AllowExplicit == AllowedExplicit::All); 3516 } 3517 } 3518 } 3519 } 3520 3521 // Enumerate conversion functions, if we're allowed to. 3522 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3523 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { 3524 // No conversion functions from incomplete types. 3525 } else if (const RecordType *FromRecordType = 3526 From->getType()->getAs<RecordType>()) { 3527 if (CXXRecordDecl *FromRecordDecl 3528 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3529 // Add all of the conversion functions as candidates. 3530 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3531 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3532 DeclAccessPair FoundDecl = I.getPair(); 3533 NamedDecl *D = FoundDecl.getDecl(); 3534 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3535 if (isa<UsingShadowDecl>(D)) 3536 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3537 3538 CXXConversionDecl *Conv; 3539 FunctionTemplateDecl *ConvTemplate; 3540 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3541 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3542 else 3543 Conv = cast<CXXConversionDecl>(D); 3544 3545 if (ConvTemplate) 3546 S.AddTemplateConversionCandidate( 3547 ConvTemplate, FoundDecl, ActingContext, From, ToType, 3548 CandidateSet, AllowObjCConversionOnExplicit, 3549 AllowExplicit != AllowedExplicit::None); 3550 else 3551 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, 3552 CandidateSet, AllowObjCConversionOnExplicit, 3553 AllowExplicit != AllowedExplicit::None); 3554 } 3555 } 3556 } 3557 3558 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3559 3560 OverloadCandidateSet::iterator Best; 3561 switch (auto Result = 3562 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3563 case OR_Success: 3564 case OR_Deleted: 3565 // Record the standard conversion we used and the conversion function. 3566 if (CXXConstructorDecl *Constructor 3567 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3568 // C++ [over.ics.user]p1: 3569 // If the user-defined conversion is specified by a 3570 // constructor (12.3.1), the initial standard conversion 3571 // sequence converts the source type to the type required by 3572 // the argument of the constructor. 3573 // 3574 QualType ThisType = Constructor->getThisType(); 3575 if (isa<InitListExpr>(From)) { 3576 // Initializer lists don't have conversions as such. 3577 User.Before.setAsIdentityConversion(); 3578 } else { 3579 if (Best->Conversions[0].isEllipsis()) 3580 User.EllipsisConversion = true; 3581 else { 3582 User.Before = Best->Conversions[0].Standard; 3583 User.EllipsisConversion = false; 3584 } 3585 } 3586 User.HadMultipleCandidates = HadMultipleCandidates; 3587 User.ConversionFunction = Constructor; 3588 User.FoundConversionFunction = Best->FoundDecl; 3589 User.After.setAsIdentityConversion(); 3590 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3591 User.After.setAllToTypes(ToType); 3592 return Result; 3593 } 3594 if (CXXConversionDecl *Conversion 3595 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3596 // C++ [over.ics.user]p1: 3597 // 3598 // [...] If the user-defined conversion is specified by a 3599 // conversion function (12.3.2), the initial standard 3600 // conversion sequence converts the source type to the 3601 // implicit object parameter of the conversion function. 3602 User.Before = Best->Conversions[0].Standard; 3603 User.HadMultipleCandidates = HadMultipleCandidates; 3604 User.ConversionFunction = Conversion; 3605 User.FoundConversionFunction = Best->FoundDecl; 3606 User.EllipsisConversion = false; 3607 3608 // C++ [over.ics.user]p2: 3609 // The second standard conversion sequence converts the 3610 // result of the user-defined conversion to the target type 3611 // for the sequence. Since an implicit conversion sequence 3612 // is an initialization, the special rules for 3613 // initialization by user-defined conversion apply when 3614 // selecting the best user-defined conversion for a 3615 // user-defined conversion sequence (see 13.3.3 and 3616 // 13.3.3.1). 3617 User.After = Best->FinalConversion; 3618 return Result; 3619 } 3620 llvm_unreachable("Not a constructor or conversion function?"); 3621 3622 case OR_No_Viable_Function: 3623 return OR_No_Viable_Function; 3624 3625 case OR_Ambiguous: 3626 return OR_Ambiguous; 3627 } 3628 3629 llvm_unreachable("Invalid OverloadResult!"); 3630 } 3631 3632 bool 3633 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3634 ImplicitConversionSequence ICS; 3635 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3636 OverloadCandidateSet::CSK_Normal); 3637 OverloadingResult OvResult = 3638 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3639 CandidateSet, AllowedExplicit::None, false); 3640 3641 if (!(OvResult == OR_Ambiguous || 3642 (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) 3643 return false; 3644 3645 auto Cands = CandidateSet.CompleteCandidates( 3646 *this, 3647 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, 3648 From); 3649 if (OvResult == OR_Ambiguous) 3650 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) 3651 << From->getType() << ToType << From->getSourceRange(); 3652 else { // OR_No_Viable_Function && !CandidateSet.empty() 3653 if (!RequireCompleteType(From->getBeginLoc(), ToType, 3654 diag::err_typecheck_nonviable_condition_incomplete, 3655 From->getType(), From->getSourceRange())) 3656 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) 3657 << false << From->getType() << From->getSourceRange() << ToType; 3658 } 3659 3660 CandidateSet.NoteCandidates( 3661 *this, From, Cands); 3662 return true; 3663 } 3664 3665 // Helper for compareConversionFunctions that gets the FunctionType that the 3666 // conversion-operator return value 'points' to, or nullptr. 3667 static const FunctionType * 3668 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { 3669 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); 3670 const PointerType *RetPtrTy = 3671 ConvFuncTy->getReturnType()->getAs<PointerType>(); 3672 3673 if (!RetPtrTy) 3674 return nullptr; 3675 3676 return RetPtrTy->getPointeeType()->getAs<FunctionType>(); 3677 } 3678 3679 /// Compare the user-defined conversion functions or constructors 3680 /// of two user-defined conversion sequences to determine whether any ordering 3681 /// is possible. 3682 static ImplicitConversionSequence::CompareKind 3683 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3684 FunctionDecl *Function2) { 3685 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3686 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); 3687 if (!Conv1 || !Conv2) 3688 return ImplicitConversionSequence::Indistinguishable; 3689 3690 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) 3691 return ImplicitConversionSequence::Indistinguishable; 3692 3693 // Objective-C++: 3694 // If both conversion functions are implicitly-declared conversions from 3695 // a lambda closure type to a function pointer and a block pointer, 3696 // respectively, always prefer the conversion to a function pointer, 3697 // because the function pointer is more lightweight and is more likely 3698 // to keep code working. 3699 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { 3700 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3701 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3702 if (Block1 != Block2) 3703 return Block1 ? ImplicitConversionSequence::Worse 3704 : ImplicitConversionSequence::Better; 3705 } 3706 3707 // In order to support multiple calling conventions for the lambda conversion 3708 // operator (such as when the free and member function calling convention is 3709 // different), prefer the 'free' mechanism, followed by the calling-convention 3710 // of operator(). The latter is in place to support the MSVC-like solution of 3711 // defining ALL of the possible conversions in regards to calling-convention. 3712 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); 3713 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); 3714 3715 if (Conv1FuncRet && Conv2FuncRet && 3716 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { 3717 CallingConv Conv1CC = Conv1FuncRet->getCallConv(); 3718 CallingConv Conv2CC = Conv2FuncRet->getCallConv(); 3719 3720 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); 3721 const FunctionProtoType *CallOpProto = 3722 CallOp->getType()->getAs<FunctionProtoType>(); 3723 3724 CallingConv CallOpCC = 3725 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 3726 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 3727 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 3728 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 3729 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 3730 3731 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; 3732 for (CallingConv CC : PrefOrder) { 3733 if (Conv1CC == CC) 3734 return ImplicitConversionSequence::Better; 3735 if (Conv2CC == CC) 3736 return ImplicitConversionSequence::Worse; 3737 } 3738 } 3739 3740 return ImplicitConversionSequence::Indistinguishable; 3741 } 3742 3743 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3744 const ImplicitConversionSequence &ICS) { 3745 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3746 (ICS.isUserDefined() && 3747 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3748 } 3749 3750 /// CompareImplicitConversionSequences - Compare two implicit 3751 /// conversion sequences to determine whether one is better than the 3752 /// other or if they are indistinguishable (C++ 13.3.3.2). 3753 static ImplicitConversionSequence::CompareKind 3754 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3755 const ImplicitConversionSequence& ICS1, 3756 const ImplicitConversionSequence& ICS2) 3757 { 3758 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3759 // conversion sequences (as defined in 13.3.3.1) 3760 // -- a standard conversion sequence (13.3.3.1.1) is a better 3761 // conversion sequence than a user-defined conversion sequence or 3762 // an ellipsis conversion sequence, and 3763 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3764 // conversion sequence than an ellipsis conversion sequence 3765 // (13.3.3.1.3). 3766 // 3767 // C++0x [over.best.ics]p10: 3768 // For the purpose of ranking implicit conversion sequences as 3769 // described in 13.3.3.2, the ambiguous conversion sequence is 3770 // treated as a user-defined sequence that is indistinguishable 3771 // from any other user-defined conversion sequence. 3772 3773 // String literal to 'char *' conversion has been deprecated in C++03. It has 3774 // been removed from C++11. We still accept this conversion, if it happens at 3775 // the best viable function. Otherwise, this conversion is considered worse 3776 // than ellipsis conversion. Consider this as an extension; this is not in the 3777 // standard. For example: 3778 // 3779 // int &f(...); // #1 3780 // void f(char*); // #2 3781 // void g() { int &r = f("foo"); } 3782 // 3783 // In C++03, we pick #2 as the best viable function. 3784 // In C++11, we pick #1 as the best viable function, because ellipsis 3785 // conversion is better than string-literal to char* conversion (since there 3786 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3787 // convert arguments, #2 would be the best viable function in C++11. 3788 // If the best viable function has this conversion, a warning will be issued 3789 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3790 3791 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3792 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3793 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && 3794 // Ill-formedness must not differ 3795 ICS1.isBad() == ICS2.isBad()) 3796 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3797 ? ImplicitConversionSequence::Worse 3798 : ImplicitConversionSequence::Better; 3799 3800 if (ICS1.getKindRank() < ICS2.getKindRank()) 3801 return ImplicitConversionSequence::Better; 3802 if (ICS2.getKindRank() < ICS1.getKindRank()) 3803 return ImplicitConversionSequence::Worse; 3804 3805 // The following checks require both conversion sequences to be of 3806 // the same kind. 3807 if (ICS1.getKind() != ICS2.getKind()) 3808 return ImplicitConversionSequence::Indistinguishable; 3809 3810 ImplicitConversionSequence::CompareKind Result = 3811 ImplicitConversionSequence::Indistinguishable; 3812 3813 // Two implicit conversion sequences of the same form are 3814 // indistinguishable conversion sequences unless one of the 3815 // following rules apply: (C++ 13.3.3.2p3): 3816 3817 // List-initialization sequence L1 is a better conversion sequence than 3818 // list-initialization sequence L2 if: 3819 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3820 // if not that, 3821 // — L1 and L2 convert to arrays of the same element type, and either the 3822 // number of elements n_1 initialized by L1 is less than the number of 3823 // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to 3824 // an array of unknown bound and L1 does not, 3825 // even if one of the other rules in this paragraph would otherwise apply. 3826 if (!ICS1.isBad()) { 3827 bool StdInit1 = false, StdInit2 = false; 3828 if (ICS1.hasInitializerListContainerType()) 3829 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), 3830 nullptr); 3831 if (ICS2.hasInitializerListContainerType()) 3832 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), 3833 nullptr); 3834 if (StdInit1 != StdInit2) 3835 return StdInit1 ? ImplicitConversionSequence::Better 3836 : ImplicitConversionSequence::Worse; 3837 3838 if (ICS1.hasInitializerListContainerType() && 3839 ICS2.hasInitializerListContainerType()) 3840 if (auto *CAT1 = S.Context.getAsConstantArrayType( 3841 ICS1.getInitializerListContainerType())) 3842 if (auto *CAT2 = S.Context.getAsConstantArrayType( 3843 ICS2.getInitializerListContainerType())) { 3844 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), 3845 CAT2->getElementType())) { 3846 // Both to arrays of the same element type 3847 if (CAT1->getSize() != CAT2->getSize()) 3848 // Different sized, the smaller wins 3849 return CAT1->getSize().ult(CAT2->getSize()) 3850 ? ImplicitConversionSequence::Better 3851 : ImplicitConversionSequence::Worse; 3852 if (ICS1.isInitializerListOfIncompleteArray() != 3853 ICS2.isInitializerListOfIncompleteArray()) 3854 // One is incomplete, it loses 3855 return ICS2.isInitializerListOfIncompleteArray() 3856 ? ImplicitConversionSequence::Better 3857 : ImplicitConversionSequence::Worse; 3858 } 3859 } 3860 } 3861 3862 if (ICS1.isStandard()) 3863 // Standard conversion sequence S1 is a better conversion sequence than 3864 // standard conversion sequence S2 if [...] 3865 Result = CompareStandardConversionSequences(S, Loc, 3866 ICS1.Standard, ICS2.Standard); 3867 else if (ICS1.isUserDefined()) { 3868 // User-defined conversion sequence U1 is a better conversion 3869 // sequence than another user-defined conversion sequence U2 if 3870 // they contain the same user-defined conversion function or 3871 // constructor and if the second standard conversion sequence of 3872 // U1 is better than the second standard conversion sequence of 3873 // U2 (C++ 13.3.3.2p3). 3874 if (ICS1.UserDefined.ConversionFunction == 3875 ICS2.UserDefined.ConversionFunction) 3876 Result = CompareStandardConversionSequences(S, Loc, 3877 ICS1.UserDefined.After, 3878 ICS2.UserDefined.After); 3879 else 3880 Result = compareConversionFunctions(S, 3881 ICS1.UserDefined.ConversionFunction, 3882 ICS2.UserDefined.ConversionFunction); 3883 } 3884 3885 return Result; 3886 } 3887 3888 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3889 // determine if one is a proper subset of the other. 3890 static ImplicitConversionSequence::CompareKind 3891 compareStandardConversionSubsets(ASTContext &Context, 3892 const StandardConversionSequence& SCS1, 3893 const StandardConversionSequence& SCS2) { 3894 ImplicitConversionSequence::CompareKind Result 3895 = ImplicitConversionSequence::Indistinguishable; 3896 3897 // the identity conversion sequence is considered to be a subsequence of 3898 // any non-identity conversion sequence 3899 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3900 return ImplicitConversionSequence::Better; 3901 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3902 return ImplicitConversionSequence::Worse; 3903 3904 if (SCS1.Second != SCS2.Second) { 3905 if (SCS1.Second == ICK_Identity) 3906 Result = ImplicitConversionSequence::Better; 3907 else if (SCS2.Second == ICK_Identity) 3908 Result = ImplicitConversionSequence::Worse; 3909 else 3910 return ImplicitConversionSequence::Indistinguishable; 3911 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) 3912 return ImplicitConversionSequence::Indistinguishable; 3913 3914 if (SCS1.Third == SCS2.Third) { 3915 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3916 : ImplicitConversionSequence::Indistinguishable; 3917 } 3918 3919 if (SCS1.Third == ICK_Identity) 3920 return Result == ImplicitConversionSequence::Worse 3921 ? ImplicitConversionSequence::Indistinguishable 3922 : ImplicitConversionSequence::Better; 3923 3924 if (SCS2.Third == ICK_Identity) 3925 return Result == ImplicitConversionSequence::Better 3926 ? ImplicitConversionSequence::Indistinguishable 3927 : ImplicitConversionSequence::Worse; 3928 3929 return ImplicitConversionSequence::Indistinguishable; 3930 } 3931 3932 /// Determine whether one of the given reference bindings is better 3933 /// than the other based on what kind of bindings they are. 3934 static bool 3935 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3936 const StandardConversionSequence &SCS2) { 3937 // C++0x [over.ics.rank]p3b4: 3938 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3939 // implicit object parameter of a non-static member function declared 3940 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3941 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3942 // lvalue reference to a function lvalue and S2 binds an rvalue 3943 // reference*. 3944 // 3945 // FIXME: Rvalue references. We're going rogue with the above edits, 3946 // because the semantics in the current C++0x working paper (N3225 at the 3947 // time of this writing) break the standard definition of std::forward 3948 // and std::reference_wrapper when dealing with references to functions. 3949 // Proposed wording changes submitted to CWG for consideration. 3950 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3951 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3952 return false; 3953 3954 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3955 SCS2.IsLvalueReference) || 3956 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3957 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 3958 } 3959 3960 enum class FixedEnumPromotion { 3961 None, 3962 ToUnderlyingType, 3963 ToPromotedUnderlyingType 3964 }; 3965 3966 /// Returns kind of fixed enum promotion the \a SCS uses. 3967 static FixedEnumPromotion 3968 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { 3969 3970 if (SCS.Second != ICK_Integral_Promotion) 3971 return FixedEnumPromotion::None; 3972 3973 QualType FromType = SCS.getFromType(); 3974 if (!FromType->isEnumeralType()) 3975 return FixedEnumPromotion::None; 3976 3977 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); 3978 if (!Enum->isFixed()) 3979 return FixedEnumPromotion::None; 3980 3981 QualType UnderlyingType = Enum->getIntegerType(); 3982 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) 3983 return FixedEnumPromotion::ToUnderlyingType; 3984 3985 return FixedEnumPromotion::ToPromotedUnderlyingType; 3986 } 3987 3988 /// CompareStandardConversionSequences - Compare two standard 3989 /// conversion sequences to determine whether one is better than the 3990 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 3991 static ImplicitConversionSequence::CompareKind 3992 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 3993 const StandardConversionSequence& SCS1, 3994 const StandardConversionSequence& SCS2) 3995 { 3996 // Standard conversion sequence S1 is a better conversion sequence 3997 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3998 3999 // -- S1 is a proper subsequence of S2 (comparing the conversion 4000 // sequences in the canonical form defined by 13.3.3.1.1, 4001 // excluding any Lvalue Transformation; the identity conversion 4002 // sequence is considered to be a subsequence of any 4003 // non-identity conversion sequence) or, if not that, 4004 if (ImplicitConversionSequence::CompareKind CK 4005 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 4006 return CK; 4007 4008 // -- the rank of S1 is better than the rank of S2 (by the rules 4009 // defined below), or, if not that, 4010 ImplicitConversionRank Rank1 = SCS1.getRank(); 4011 ImplicitConversionRank Rank2 = SCS2.getRank(); 4012 if (Rank1 < Rank2) 4013 return ImplicitConversionSequence::Better; 4014 else if (Rank2 < Rank1) 4015 return ImplicitConversionSequence::Worse; 4016 4017 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 4018 // are indistinguishable unless one of the following rules 4019 // applies: 4020 4021 // A conversion that is not a conversion of a pointer, or 4022 // pointer to member, to bool is better than another conversion 4023 // that is such a conversion. 4024 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 4025 return SCS2.isPointerConversionToBool() 4026 ? ImplicitConversionSequence::Better 4027 : ImplicitConversionSequence::Worse; 4028 4029 // C++14 [over.ics.rank]p4b2: 4030 // This is retroactively applied to C++11 by CWG 1601. 4031 // 4032 // A conversion that promotes an enumeration whose underlying type is fixed 4033 // to its underlying type is better than one that promotes to the promoted 4034 // underlying type, if the two are different. 4035 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); 4036 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 4037 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 4038 FEP1 != FEP2) 4039 return FEP1 == FixedEnumPromotion::ToUnderlyingType 4040 ? ImplicitConversionSequence::Better 4041 : ImplicitConversionSequence::Worse; 4042 4043 // C++ [over.ics.rank]p4b2: 4044 // 4045 // If class B is derived directly or indirectly from class A, 4046 // conversion of B* to A* is better than conversion of B* to 4047 // void*, and conversion of A* to void* is better than conversion 4048 // of B* to void*. 4049 bool SCS1ConvertsToVoid 4050 = SCS1.isPointerConversionToVoidPointer(S.Context); 4051 bool SCS2ConvertsToVoid 4052 = SCS2.isPointerConversionToVoidPointer(S.Context); 4053 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 4054 // Exactly one of the conversion sequences is a conversion to 4055 // a void pointer; it's the worse conversion. 4056 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 4057 : ImplicitConversionSequence::Worse; 4058 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 4059 // Neither conversion sequence converts to a void pointer; compare 4060 // their derived-to-base conversions. 4061 if (ImplicitConversionSequence::CompareKind DerivedCK 4062 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 4063 return DerivedCK; 4064 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 4065 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 4066 // Both conversion sequences are conversions to void 4067 // pointers. Compare the source types to determine if there's an 4068 // inheritance relationship in their sources. 4069 QualType FromType1 = SCS1.getFromType(); 4070 QualType FromType2 = SCS2.getFromType(); 4071 4072 // Adjust the types we're converting from via the array-to-pointer 4073 // conversion, if we need to. 4074 if (SCS1.First == ICK_Array_To_Pointer) 4075 FromType1 = S.Context.getArrayDecayedType(FromType1); 4076 if (SCS2.First == ICK_Array_To_Pointer) 4077 FromType2 = S.Context.getArrayDecayedType(FromType2); 4078 4079 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 4080 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 4081 4082 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4083 return ImplicitConversionSequence::Better; 4084 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4085 return ImplicitConversionSequence::Worse; 4086 4087 // Objective-C++: If one interface is more specific than the 4088 // other, it is the better one. 4089 const ObjCObjectPointerType* FromObjCPtr1 4090 = FromType1->getAs<ObjCObjectPointerType>(); 4091 const ObjCObjectPointerType* FromObjCPtr2 4092 = FromType2->getAs<ObjCObjectPointerType>(); 4093 if (FromObjCPtr1 && FromObjCPtr2) { 4094 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 4095 FromObjCPtr2); 4096 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 4097 FromObjCPtr1); 4098 if (AssignLeft != AssignRight) { 4099 return AssignLeft? ImplicitConversionSequence::Better 4100 : ImplicitConversionSequence::Worse; 4101 } 4102 } 4103 } 4104 4105 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4106 // Check for a better reference binding based on the kind of bindings. 4107 if (isBetterReferenceBindingKind(SCS1, SCS2)) 4108 return ImplicitConversionSequence::Better; 4109 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 4110 return ImplicitConversionSequence::Worse; 4111 } 4112 4113 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4114 // bullet 3). 4115 if (ImplicitConversionSequence::CompareKind QualCK 4116 = CompareQualificationConversions(S, SCS1, SCS2)) 4117 return QualCK; 4118 4119 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4120 // C++ [over.ics.rank]p3b4: 4121 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4122 // which the references refer are the same type except for 4123 // top-level cv-qualifiers, and the type to which the reference 4124 // initialized by S2 refers is more cv-qualified than the type 4125 // to which the reference initialized by S1 refers. 4126 QualType T1 = SCS1.getToType(2); 4127 QualType T2 = SCS2.getToType(2); 4128 T1 = S.Context.getCanonicalType(T1); 4129 T2 = S.Context.getCanonicalType(T2); 4130 Qualifiers T1Quals, T2Quals; 4131 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4132 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4133 if (UnqualT1 == UnqualT2) { 4134 // Objective-C++ ARC: If the references refer to objects with different 4135 // lifetimes, prefer bindings that don't change lifetime. 4136 if (SCS1.ObjCLifetimeConversionBinding != 4137 SCS2.ObjCLifetimeConversionBinding) { 4138 return SCS1.ObjCLifetimeConversionBinding 4139 ? ImplicitConversionSequence::Worse 4140 : ImplicitConversionSequence::Better; 4141 } 4142 4143 // If the type is an array type, promote the element qualifiers to the 4144 // type for comparison. 4145 if (isa<ArrayType>(T1) && T1Quals) 4146 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4147 if (isa<ArrayType>(T2) && T2Quals) 4148 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4149 if (T2.isMoreQualifiedThan(T1)) 4150 return ImplicitConversionSequence::Better; 4151 if (T1.isMoreQualifiedThan(T2)) 4152 return ImplicitConversionSequence::Worse; 4153 } 4154 } 4155 4156 // In Microsoft mode (below 19.28), prefer an integral conversion to a 4157 // floating-to-integral conversion if the integral conversion 4158 // is between types of the same size. 4159 // For example: 4160 // void f(float); 4161 // void f(int); 4162 // int main { 4163 // long a; 4164 // f(a); 4165 // } 4166 // Here, MSVC will call f(int) instead of generating a compile error 4167 // as clang will do in standard mode. 4168 if (S.getLangOpts().MSVCCompat && 4169 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && 4170 SCS1.Second == ICK_Integral_Conversion && 4171 SCS2.Second == ICK_Floating_Integral && 4172 S.Context.getTypeSize(SCS1.getFromType()) == 4173 S.Context.getTypeSize(SCS1.getToType(2))) 4174 return ImplicitConversionSequence::Better; 4175 4176 // Prefer a compatible vector conversion over a lax vector conversion 4177 // For example: 4178 // 4179 // typedef float __v4sf __attribute__((__vector_size__(16))); 4180 // void f(vector float); 4181 // void f(vector signed int); 4182 // int main() { 4183 // __v4sf a; 4184 // f(a); 4185 // } 4186 // Here, we'd like to choose f(vector float) and not 4187 // report an ambiguous call error 4188 if (SCS1.Second == ICK_Vector_Conversion && 4189 SCS2.Second == ICK_Vector_Conversion) { 4190 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4191 SCS1.getFromType(), SCS1.getToType(2)); 4192 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4193 SCS2.getFromType(), SCS2.getToType(2)); 4194 4195 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4196 return SCS1IsCompatibleVectorConversion 4197 ? ImplicitConversionSequence::Better 4198 : ImplicitConversionSequence::Worse; 4199 } 4200 4201 if (SCS1.Second == ICK_SVE_Vector_Conversion && 4202 SCS2.Second == ICK_SVE_Vector_Conversion) { 4203 bool SCS1IsCompatibleSVEVectorConversion = 4204 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); 4205 bool SCS2IsCompatibleSVEVectorConversion = 4206 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); 4207 4208 if (SCS1IsCompatibleSVEVectorConversion != 4209 SCS2IsCompatibleSVEVectorConversion) 4210 return SCS1IsCompatibleSVEVectorConversion 4211 ? ImplicitConversionSequence::Better 4212 : ImplicitConversionSequence::Worse; 4213 } 4214 4215 return ImplicitConversionSequence::Indistinguishable; 4216 } 4217 4218 /// CompareQualificationConversions - Compares two standard conversion 4219 /// sequences to determine whether they can be ranked based on their 4220 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4221 static ImplicitConversionSequence::CompareKind 4222 CompareQualificationConversions(Sema &S, 4223 const StandardConversionSequence& SCS1, 4224 const StandardConversionSequence& SCS2) { 4225 // C++ [over.ics.rank]p3: 4226 // -- S1 and S2 differ only in their qualification conversion and 4227 // yield similar types T1 and T2 (C++ 4.4), respectively, [...] 4228 // [C++98] 4229 // [...] and the cv-qualification signature of type T1 is a proper subset 4230 // of the cv-qualification signature of type T2, and S1 is not the 4231 // deprecated string literal array-to-pointer conversion (4.2). 4232 // [C++2a] 4233 // [...] where T1 can be converted to T2 by a qualification conversion. 4234 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4235 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4236 return ImplicitConversionSequence::Indistinguishable; 4237 4238 // FIXME: the example in the standard doesn't use a qualification 4239 // conversion (!) 4240 QualType T1 = SCS1.getToType(2); 4241 QualType T2 = SCS2.getToType(2); 4242 T1 = S.Context.getCanonicalType(T1); 4243 T2 = S.Context.getCanonicalType(T2); 4244 assert(!T1->isReferenceType() && !T2->isReferenceType()); 4245 Qualifiers T1Quals, T2Quals; 4246 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4247 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4248 4249 // If the types are the same, we won't learn anything by unwrapping 4250 // them. 4251 if (UnqualT1 == UnqualT2) 4252 return ImplicitConversionSequence::Indistinguishable; 4253 4254 // Don't ever prefer a standard conversion sequence that uses the deprecated 4255 // string literal array to pointer conversion. 4256 bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; 4257 bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; 4258 4259 // Objective-C++ ARC: 4260 // Prefer qualification conversions not involving a change in lifetime 4261 // to qualification conversions that do change lifetime. 4262 if (SCS1.QualificationIncludesObjCLifetime && 4263 !SCS2.QualificationIncludesObjCLifetime) 4264 CanPick1 = false; 4265 if (SCS2.QualificationIncludesObjCLifetime && 4266 !SCS1.QualificationIncludesObjCLifetime) 4267 CanPick2 = false; 4268 4269 bool ObjCLifetimeConversion; 4270 if (CanPick1 && 4271 !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) 4272 CanPick1 = false; 4273 // FIXME: In Objective-C ARC, we can have qualification conversions in both 4274 // directions, so we can't short-cut this second check in general. 4275 if (CanPick2 && 4276 !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) 4277 CanPick2 = false; 4278 4279 if (CanPick1 != CanPick2) 4280 return CanPick1 ? ImplicitConversionSequence::Better 4281 : ImplicitConversionSequence::Worse; 4282 return ImplicitConversionSequence::Indistinguishable; 4283 } 4284 4285 /// CompareDerivedToBaseConversions - Compares two standard conversion 4286 /// sequences to determine whether they can be ranked based on their 4287 /// various kinds of derived-to-base conversions (C++ 4288 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4289 /// conversions between Objective-C interface types. 4290 static ImplicitConversionSequence::CompareKind 4291 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4292 const StandardConversionSequence& SCS1, 4293 const StandardConversionSequence& SCS2) { 4294 QualType FromType1 = SCS1.getFromType(); 4295 QualType ToType1 = SCS1.getToType(1); 4296 QualType FromType2 = SCS2.getFromType(); 4297 QualType ToType2 = SCS2.getToType(1); 4298 4299 // Adjust the types we're converting from via the array-to-pointer 4300 // conversion, if we need to. 4301 if (SCS1.First == ICK_Array_To_Pointer) 4302 FromType1 = S.Context.getArrayDecayedType(FromType1); 4303 if (SCS2.First == ICK_Array_To_Pointer) 4304 FromType2 = S.Context.getArrayDecayedType(FromType2); 4305 4306 // Canonicalize all of the types. 4307 FromType1 = S.Context.getCanonicalType(FromType1); 4308 ToType1 = S.Context.getCanonicalType(ToType1); 4309 FromType2 = S.Context.getCanonicalType(FromType2); 4310 ToType2 = S.Context.getCanonicalType(ToType2); 4311 4312 // C++ [over.ics.rank]p4b3: 4313 // 4314 // If class B is derived directly or indirectly from class A and 4315 // class C is derived directly or indirectly from B, 4316 // 4317 // Compare based on pointer conversions. 4318 if (SCS1.Second == ICK_Pointer_Conversion && 4319 SCS2.Second == ICK_Pointer_Conversion && 4320 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4321 FromType1->isPointerType() && FromType2->isPointerType() && 4322 ToType1->isPointerType() && ToType2->isPointerType()) { 4323 QualType FromPointee1 = 4324 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4325 QualType ToPointee1 = 4326 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4327 QualType FromPointee2 = 4328 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4329 QualType ToPointee2 = 4330 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4331 4332 // -- conversion of C* to B* is better than conversion of C* to A*, 4333 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4334 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4335 return ImplicitConversionSequence::Better; 4336 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4337 return ImplicitConversionSequence::Worse; 4338 } 4339 4340 // -- conversion of B* to A* is better than conversion of C* to A*, 4341 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4342 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4343 return ImplicitConversionSequence::Better; 4344 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4345 return ImplicitConversionSequence::Worse; 4346 } 4347 } else if (SCS1.Second == ICK_Pointer_Conversion && 4348 SCS2.Second == ICK_Pointer_Conversion) { 4349 const ObjCObjectPointerType *FromPtr1 4350 = FromType1->getAs<ObjCObjectPointerType>(); 4351 const ObjCObjectPointerType *FromPtr2 4352 = FromType2->getAs<ObjCObjectPointerType>(); 4353 const ObjCObjectPointerType *ToPtr1 4354 = ToType1->getAs<ObjCObjectPointerType>(); 4355 const ObjCObjectPointerType *ToPtr2 4356 = ToType2->getAs<ObjCObjectPointerType>(); 4357 4358 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4359 // Apply the same conversion ranking rules for Objective-C pointer types 4360 // that we do for C++ pointers to class types. However, we employ the 4361 // Objective-C pseudo-subtyping relationship used for assignment of 4362 // Objective-C pointer types. 4363 bool FromAssignLeft 4364 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4365 bool FromAssignRight 4366 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4367 bool ToAssignLeft 4368 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4369 bool ToAssignRight 4370 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4371 4372 // A conversion to an a non-id object pointer type or qualified 'id' 4373 // type is better than a conversion to 'id'. 4374 if (ToPtr1->isObjCIdType() && 4375 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4376 return ImplicitConversionSequence::Worse; 4377 if (ToPtr2->isObjCIdType() && 4378 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4379 return ImplicitConversionSequence::Better; 4380 4381 // A conversion to a non-id object pointer type is better than a 4382 // conversion to a qualified 'id' type 4383 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4384 return ImplicitConversionSequence::Worse; 4385 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4386 return ImplicitConversionSequence::Better; 4387 4388 // A conversion to an a non-Class object pointer type or qualified 'Class' 4389 // type is better than a conversion to 'Class'. 4390 if (ToPtr1->isObjCClassType() && 4391 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4392 return ImplicitConversionSequence::Worse; 4393 if (ToPtr2->isObjCClassType() && 4394 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4395 return ImplicitConversionSequence::Better; 4396 4397 // A conversion to a non-Class object pointer type is better than a 4398 // conversion to a qualified 'Class' type. 4399 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4400 return ImplicitConversionSequence::Worse; 4401 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4402 return ImplicitConversionSequence::Better; 4403 4404 // -- "conversion of C* to B* is better than conversion of C* to A*," 4405 if (S.Context.hasSameType(FromType1, FromType2) && 4406 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4407 (ToAssignLeft != ToAssignRight)) { 4408 if (FromPtr1->isSpecialized()) { 4409 // "conversion of B<A> * to B * is better than conversion of B * to 4410 // C *. 4411 bool IsFirstSame = 4412 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4413 bool IsSecondSame = 4414 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4415 if (IsFirstSame) { 4416 if (!IsSecondSame) 4417 return ImplicitConversionSequence::Better; 4418 } else if (IsSecondSame) 4419 return ImplicitConversionSequence::Worse; 4420 } 4421 return ToAssignLeft? ImplicitConversionSequence::Worse 4422 : ImplicitConversionSequence::Better; 4423 } 4424 4425 // -- "conversion of B* to A* is better than conversion of C* to A*," 4426 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4427 (FromAssignLeft != FromAssignRight)) 4428 return FromAssignLeft? ImplicitConversionSequence::Better 4429 : ImplicitConversionSequence::Worse; 4430 } 4431 } 4432 4433 // Ranking of member-pointer types. 4434 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4435 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4436 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4437 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); 4438 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); 4439 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); 4440 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); 4441 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4442 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4443 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4444 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4445 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4446 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4447 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4448 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4449 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4450 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4451 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4452 return ImplicitConversionSequence::Worse; 4453 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4454 return ImplicitConversionSequence::Better; 4455 } 4456 // conversion of B::* to C::* is better than conversion of A::* to C::* 4457 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4458 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4459 return ImplicitConversionSequence::Better; 4460 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4461 return ImplicitConversionSequence::Worse; 4462 } 4463 } 4464 4465 if (SCS1.Second == ICK_Derived_To_Base) { 4466 // -- conversion of C to B is better than conversion of C to A, 4467 // -- binding of an expression of type C to a reference of type 4468 // B& is better than binding an expression of type C to a 4469 // reference of type A&, 4470 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4471 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4472 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4473 return ImplicitConversionSequence::Better; 4474 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4475 return ImplicitConversionSequence::Worse; 4476 } 4477 4478 // -- conversion of B to A is better than conversion of C to A. 4479 // -- binding of an expression of type B to a reference of type 4480 // A& is better than binding an expression of type C to a 4481 // reference of type A&, 4482 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4483 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4484 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4485 return ImplicitConversionSequence::Better; 4486 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4487 return ImplicitConversionSequence::Worse; 4488 } 4489 } 4490 4491 return ImplicitConversionSequence::Indistinguishable; 4492 } 4493 4494 /// Determine whether the given type is valid, e.g., it is not an invalid 4495 /// C++ class. 4496 static bool isTypeValid(QualType T) { 4497 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4498 return !Record->isInvalidDecl(); 4499 4500 return true; 4501 } 4502 4503 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4504 if (!T.getQualifiers().hasUnaligned()) 4505 return T; 4506 4507 Qualifiers Q; 4508 T = Ctx.getUnqualifiedArrayType(T, Q); 4509 Q.removeUnaligned(); 4510 return Ctx.getQualifiedType(T, Q); 4511 } 4512 4513 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4514 /// determine whether they are reference-compatible, 4515 /// reference-related, or incompatible, for use in C++ initialization by 4516 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4517 /// type, and the first type (T1) is the pointee type of the reference 4518 /// type being initialized. 4519 Sema::ReferenceCompareResult 4520 Sema::CompareReferenceRelationship(SourceLocation Loc, 4521 QualType OrigT1, QualType OrigT2, 4522 ReferenceConversions *ConvOut) { 4523 assert(!OrigT1->isReferenceType() && 4524 "T1 must be the pointee type of the reference type"); 4525 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4526 4527 QualType T1 = Context.getCanonicalType(OrigT1); 4528 QualType T2 = Context.getCanonicalType(OrigT2); 4529 Qualifiers T1Quals, T2Quals; 4530 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4531 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4532 4533 ReferenceConversions ConvTmp; 4534 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4535 Conv = ReferenceConversions(); 4536 4537 // C++2a [dcl.init.ref]p4: 4538 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4539 // reference-related to "cv2 T2" if T1 is similar to T2, or 4540 // T1 is a base class of T2. 4541 // "cv1 T1" is reference-compatible with "cv2 T2" if 4542 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4543 // "pointer to cv1 T1" via a standard conversion sequence. 4544 4545 // Check for standard conversions we can apply to pointers: derived-to-base 4546 // conversions, ObjC pointer conversions, and function pointer conversions. 4547 // (Qualification conversions are checked last.) 4548 QualType ConvertedT2; 4549 if (UnqualT1 == UnqualT2) { 4550 // Nothing to do. 4551 } else if (isCompleteType(Loc, OrigT2) && 4552 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4553 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4554 Conv |= ReferenceConversions::DerivedToBase; 4555 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4556 UnqualT2->isObjCObjectOrInterfaceType() && 4557 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4558 Conv |= ReferenceConversions::ObjC; 4559 else if (UnqualT2->isFunctionType() && 4560 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4561 Conv |= ReferenceConversions::Function; 4562 // No need to check qualifiers; function types don't have them. 4563 return Ref_Compatible; 4564 } 4565 bool ConvertedReferent = Conv != 0; 4566 4567 // We can have a qualification conversion. Compute whether the types are 4568 // similar at the same time. 4569 bool PreviousToQualsIncludeConst = true; 4570 bool TopLevel = true; 4571 do { 4572 if (T1 == T2) 4573 break; 4574 4575 // We will need a qualification conversion. 4576 Conv |= ReferenceConversions::Qualification; 4577 4578 // Track whether we performed a qualification conversion anywhere other 4579 // than the top level. This matters for ranking reference bindings in 4580 // overload resolution. 4581 if (!TopLevel) 4582 Conv |= ReferenceConversions::NestedQualification; 4583 4584 // MS compiler ignores __unaligned qualifier for references; do the same. 4585 T1 = withoutUnaligned(Context, T1); 4586 T2 = withoutUnaligned(Context, T2); 4587 4588 // If we find a qualifier mismatch, the types are not reference-compatible, 4589 // but are still be reference-related if they're similar. 4590 bool ObjCLifetimeConversion = false; 4591 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, 4592 PreviousToQualsIncludeConst, 4593 ObjCLifetimeConversion)) 4594 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4595 ? Ref_Related 4596 : Ref_Incompatible; 4597 4598 // FIXME: Should we track this for any level other than the first? 4599 if (ObjCLifetimeConversion) 4600 Conv |= ReferenceConversions::ObjCLifetime; 4601 4602 TopLevel = false; 4603 } while (Context.UnwrapSimilarTypes(T1, T2)); 4604 4605 // At this point, if the types are reference-related, we must either have the 4606 // same inner type (ignoring qualifiers), or must have already worked out how 4607 // to convert the referent. 4608 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4609 ? Ref_Compatible 4610 : Ref_Incompatible; 4611 } 4612 4613 /// Look for a user-defined conversion to a value reference-compatible 4614 /// with DeclType. Return true if something definite is found. 4615 static bool 4616 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4617 QualType DeclType, SourceLocation DeclLoc, 4618 Expr *Init, QualType T2, bool AllowRvalues, 4619 bool AllowExplicit) { 4620 assert(T2->isRecordType() && "Can only find conversions of record types."); 4621 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4622 4623 OverloadCandidateSet CandidateSet( 4624 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4625 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4626 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4627 NamedDecl *D = *I; 4628 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4629 if (isa<UsingShadowDecl>(D)) 4630 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4631 4632 FunctionTemplateDecl *ConvTemplate 4633 = dyn_cast<FunctionTemplateDecl>(D); 4634 CXXConversionDecl *Conv; 4635 if (ConvTemplate) 4636 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4637 else 4638 Conv = cast<CXXConversionDecl>(D); 4639 4640 if (AllowRvalues) { 4641 // If we are initializing an rvalue reference, don't permit conversion 4642 // functions that return lvalues. 4643 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4644 const ReferenceType *RefType 4645 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4646 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4647 continue; 4648 } 4649 4650 if (!ConvTemplate && 4651 S.CompareReferenceRelationship( 4652 DeclLoc, 4653 Conv->getConversionType() 4654 .getNonReferenceType() 4655 .getUnqualifiedType(), 4656 DeclType.getNonReferenceType().getUnqualifiedType()) == 4657 Sema::Ref_Incompatible) 4658 continue; 4659 } else { 4660 // If the conversion function doesn't return a reference type, 4661 // it can't be considered for this conversion. An rvalue reference 4662 // is only acceptable if its referencee is a function type. 4663 4664 const ReferenceType *RefType = 4665 Conv->getConversionType()->getAs<ReferenceType>(); 4666 if (!RefType || 4667 (!RefType->isLValueReferenceType() && 4668 !RefType->getPointeeType()->isFunctionType())) 4669 continue; 4670 } 4671 4672 if (ConvTemplate) 4673 S.AddTemplateConversionCandidate( 4674 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4675 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4676 else 4677 S.AddConversionCandidate( 4678 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4679 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4680 } 4681 4682 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4683 4684 OverloadCandidateSet::iterator Best; 4685 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4686 case OR_Success: 4687 // C++ [over.ics.ref]p1: 4688 // 4689 // [...] If the parameter binds directly to the result of 4690 // applying a conversion function to the argument 4691 // expression, the implicit conversion sequence is a 4692 // user-defined conversion sequence (13.3.3.1.2), with the 4693 // second standard conversion sequence either an identity 4694 // conversion or, if the conversion function returns an 4695 // entity of a type that is a derived class of the parameter 4696 // type, a derived-to-base Conversion. 4697 if (!Best->FinalConversion.DirectBinding) 4698 return false; 4699 4700 ICS.setUserDefined(); 4701 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4702 ICS.UserDefined.After = Best->FinalConversion; 4703 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4704 ICS.UserDefined.ConversionFunction = Best->Function; 4705 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4706 ICS.UserDefined.EllipsisConversion = false; 4707 assert(ICS.UserDefined.After.ReferenceBinding && 4708 ICS.UserDefined.After.DirectBinding && 4709 "Expected a direct reference binding!"); 4710 return true; 4711 4712 case OR_Ambiguous: 4713 ICS.setAmbiguous(); 4714 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4715 Cand != CandidateSet.end(); ++Cand) 4716 if (Cand->Best) 4717 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4718 return true; 4719 4720 case OR_No_Viable_Function: 4721 case OR_Deleted: 4722 // There was no suitable conversion, or we found a deleted 4723 // conversion; continue with other checks. 4724 return false; 4725 } 4726 4727 llvm_unreachable("Invalid OverloadResult!"); 4728 } 4729 4730 /// Compute an implicit conversion sequence for reference 4731 /// initialization. 4732 static ImplicitConversionSequence 4733 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4734 SourceLocation DeclLoc, 4735 bool SuppressUserConversions, 4736 bool AllowExplicit) { 4737 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4738 4739 // Most paths end in a failed conversion. 4740 ImplicitConversionSequence ICS; 4741 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4742 4743 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4744 QualType T2 = Init->getType(); 4745 4746 // If the initializer is the address of an overloaded function, try 4747 // to resolve the overloaded function. If all goes well, T2 is the 4748 // type of the resulting function. 4749 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4750 DeclAccessPair Found; 4751 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4752 false, Found)) 4753 T2 = Fn->getType(); 4754 } 4755 4756 // Compute some basic properties of the types and the initializer. 4757 bool isRValRef = DeclType->isRValueReferenceType(); 4758 Expr::Classification InitCategory = Init->Classify(S.Context); 4759 4760 Sema::ReferenceConversions RefConv; 4761 Sema::ReferenceCompareResult RefRelationship = 4762 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4763 4764 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4765 ICS.setStandard(); 4766 ICS.Standard.First = ICK_Identity; 4767 // FIXME: A reference binding can be a function conversion too. We should 4768 // consider that when ordering reference-to-function bindings. 4769 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4770 ? ICK_Derived_To_Base 4771 : (RefConv & Sema::ReferenceConversions::ObjC) 4772 ? ICK_Compatible_Conversion 4773 : ICK_Identity; 4774 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4775 // a reference binding that performs a non-top-level qualification 4776 // conversion as a qualification conversion, not as an identity conversion. 4777 ICS.Standard.Third = (RefConv & 4778 Sema::ReferenceConversions::NestedQualification) 4779 ? ICK_Qualification 4780 : ICK_Identity; 4781 ICS.Standard.setFromType(T2); 4782 ICS.Standard.setToType(0, T2); 4783 ICS.Standard.setToType(1, T1); 4784 ICS.Standard.setToType(2, T1); 4785 ICS.Standard.ReferenceBinding = true; 4786 ICS.Standard.DirectBinding = BindsDirectly; 4787 ICS.Standard.IsLvalueReference = !isRValRef; 4788 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4789 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4790 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4791 ICS.Standard.ObjCLifetimeConversionBinding = 4792 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4793 ICS.Standard.CopyConstructor = nullptr; 4794 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4795 }; 4796 4797 // C++0x [dcl.init.ref]p5: 4798 // A reference to type "cv1 T1" is initialized by an expression 4799 // of type "cv2 T2" as follows: 4800 4801 // -- If reference is an lvalue reference and the initializer expression 4802 if (!isRValRef) { 4803 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4804 // reference-compatible with "cv2 T2," or 4805 // 4806 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4807 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4808 // C++ [over.ics.ref]p1: 4809 // When a parameter of reference type binds directly (8.5.3) 4810 // to an argument expression, the implicit conversion sequence 4811 // is the identity conversion, unless the argument expression 4812 // has a type that is a derived class of the parameter type, 4813 // in which case the implicit conversion sequence is a 4814 // derived-to-base Conversion (13.3.3.1). 4815 SetAsReferenceBinding(/*BindsDirectly=*/true); 4816 4817 // Nothing more to do: the inaccessibility/ambiguity check for 4818 // derived-to-base conversions is suppressed when we're 4819 // computing the implicit conversion sequence (C++ 4820 // [over.best.ics]p2). 4821 return ICS; 4822 } 4823 4824 // -- has a class type (i.e., T2 is a class type), where T1 is 4825 // not reference-related to T2, and can be implicitly 4826 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4827 // is reference-compatible with "cv3 T3" 92) (this 4828 // conversion is selected by enumerating the applicable 4829 // conversion functions (13.3.1.6) and choosing the best 4830 // one through overload resolution (13.3)), 4831 if (!SuppressUserConversions && T2->isRecordType() && 4832 S.isCompleteType(DeclLoc, T2) && 4833 RefRelationship == Sema::Ref_Incompatible) { 4834 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4835 Init, T2, /*AllowRvalues=*/false, 4836 AllowExplicit)) 4837 return ICS; 4838 } 4839 } 4840 4841 // -- Otherwise, the reference shall be an lvalue reference to a 4842 // non-volatile const type (i.e., cv1 shall be const), or the reference 4843 // shall be an rvalue reference. 4844 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { 4845 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) 4846 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4847 return ICS; 4848 } 4849 4850 // -- If the initializer expression 4851 // 4852 // -- is an xvalue, class prvalue, array prvalue or function 4853 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4854 if (RefRelationship == Sema::Ref_Compatible && 4855 (InitCategory.isXValue() || 4856 (InitCategory.isPRValue() && 4857 (T2->isRecordType() || T2->isArrayType())) || 4858 (InitCategory.isLValue() && T2->isFunctionType()))) { 4859 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4860 // binding unless we're binding to a class prvalue. 4861 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4862 // allow the use of rvalue references in C++98/03 for the benefit of 4863 // standard library implementors; therefore, we need the xvalue check here. 4864 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4865 !(InitCategory.isPRValue() || T2->isRecordType())); 4866 return ICS; 4867 } 4868 4869 // -- has a class type (i.e., T2 is a class type), where T1 is not 4870 // reference-related to T2, and can be implicitly converted to 4871 // an xvalue, class prvalue, or function lvalue of type 4872 // "cv3 T3", where "cv1 T1" is reference-compatible with 4873 // "cv3 T3", 4874 // 4875 // then the reference is bound to the value of the initializer 4876 // expression in the first case and to the result of the conversion 4877 // in the second case (or, in either case, to an appropriate base 4878 // class subobject). 4879 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4880 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4881 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4882 Init, T2, /*AllowRvalues=*/true, 4883 AllowExplicit)) { 4884 // In the second case, if the reference is an rvalue reference 4885 // and the second standard conversion sequence of the 4886 // user-defined conversion sequence includes an lvalue-to-rvalue 4887 // conversion, the program is ill-formed. 4888 if (ICS.isUserDefined() && isRValRef && 4889 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4890 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4891 4892 return ICS; 4893 } 4894 4895 // A temporary of function type cannot be created; don't even try. 4896 if (T1->isFunctionType()) 4897 return ICS; 4898 4899 // -- Otherwise, a temporary of type "cv1 T1" is created and 4900 // initialized from the initializer expression using the 4901 // rules for a non-reference copy initialization (8.5). The 4902 // reference is then bound to the temporary. If T1 is 4903 // reference-related to T2, cv1 must be the same 4904 // cv-qualification as, or greater cv-qualification than, 4905 // cv2; otherwise, the program is ill-formed. 4906 if (RefRelationship == Sema::Ref_Related) { 4907 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4908 // we would be reference-compatible or reference-compatible with 4909 // added qualification. But that wasn't the case, so the reference 4910 // initialization fails. 4911 // 4912 // Note that we only want to check address spaces and cvr-qualifiers here. 4913 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4914 Qualifiers T1Quals = T1.getQualifiers(); 4915 Qualifiers T2Quals = T2.getQualifiers(); 4916 T1Quals.removeObjCGCAttr(); 4917 T1Quals.removeObjCLifetime(); 4918 T2Quals.removeObjCGCAttr(); 4919 T2Quals.removeObjCLifetime(); 4920 // MS compiler ignores __unaligned qualifier for references; do the same. 4921 T1Quals.removeUnaligned(); 4922 T2Quals.removeUnaligned(); 4923 if (!T1Quals.compatiblyIncludes(T2Quals)) 4924 return ICS; 4925 } 4926 4927 // If at least one of the types is a class type, the types are not 4928 // related, and we aren't allowed any user conversions, the 4929 // reference binding fails. This case is important for breaking 4930 // recursion, since TryImplicitConversion below will attempt to 4931 // create a temporary through the use of a copy constructor. 4932 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4933 (T1->isRecordType() || T2->isRecordType())) 4934 return ICS; 4935 4936 // If T1 is reference-related to T2 and the reference is an rvalue 4937 // reference, the initializer expression shall not be an lvalue. 4938 if (RefRelationship >= Sema::Ref_Related && isRValRef && 4939 Init->Classify(S.Context).isLValue()) { 4940 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); 4941 return ICS; 4942 } 4943 4944 // C++ [over.ics.ref]p2: 4945 // When a parameter of reference type is not bound directly to 4946 // an argument expression, the conversion sequence is the one 4947 // required to convert the argument expression to the 4948 // underlying type of the reference according to 4949 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4950 // to copy-initializing a temporary of the underlying type with 4951 // the argument expression. Any difference in top-level 4952 // cv-qualification is subsumed by the initialization itself 4953 // and does not constitute a conversion. 4954 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4955 AllowedExplicit::None, 4956 /*InOverloadResolution=*/false, 4957 /*CStyle=*/false, 4958 /*AllowObjCWritebackConversion=*/false, 4959 /*AllowObjCConversionOnExplicit=*/false); 4960 4961 // Of course, that's still a reference binding. 4962 if (ICS.isStandard()) { 4963 ICS.Standard.ReferenceBinding = true; 4964 ICS.Standard.IsLvalueReference = !isRValRef; 4965 ICS.Standard.BindsToFunctionLvalue = false; 4966 ICS.Standard.BindsToRvalue = true; 4967 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4968 ICS.Standard.ObjCLifetimeConversionBinding = false; 4969 } else if (ICS.isUserDefined()) { 4970 const ReferenceType *LValRefType = 4971 ICS.UserDefined.ConversionFunction->getReturnType() 4972 ->getAs<LValueReferenceType>(); 4973 4974 // C++ [over.ics.ref]p3: 4975 // Except for an implicit object parameter, for which see 13.3.1, a 4976 // standard conversion sequence cannot be formed if it requires [...] 4977 // binding an rvalue reference to an lvalue other than a function 4978 // lvalue. 4979 // Note that the function case is not possible here. 4980 if (isRValRef && LValRefType) { 4981 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4982 return ICS; 4983 } 4984 4985 ICS.UserDefined.After.ReferenceBinding = true; 4986 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4987 ICS.UserDefined.After.BindsToFunctionLvalue = false; 4988 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 4989 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4990 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4991 } 4992 4993 return ICS; 4994 } 4995 4996 static ImplicitConversionSequence 4997 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4998 bool SuppressUserConversions, 4999 bool InOverloadResolution, 5000 bool AllowObjCWritebackConversion, 5001 bool AllowExplicit = false); 5002 5003 /// TryListConversion - Try to copy-initialize a value of type ToType from the 5004 /// initializer list From. 5005 static ImplicitConversionSequence 5006 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 5007 bool SuppressUserConversions, 5008 bool InOverloadResolution, 5009 bool AllowObjCWritebackConversion) { 5010 // C++11 [over.ics.list]p1: 5011 // When an argument is an initializer list, it is not an expression and 5012 // special rules apply for converting it to a parameter type. 5013 5014 ImplicitConversionSequence Result; 5015 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 5016 5017 // We need a complete type for what follows. With one C++20 exception, 5018 // incomplete types can never be initialized from init lists. 5019 QualType InitTy = ToType; 5020 const ArrayType *AT = S.Context.getAsArrayType(ToType); 5021 if (AT && S.getLangOpts().CPlusPlus20) 5022 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) 5023 // C++20 allows list initialization of an incomplete array type. 5024 InitTy = IAT->getElementType(); 5025 if (!S.isCompleteType(From->getBeginLoc(), InitTy)) 5026 return Result; 5027 5028 // Per DR1467: 5029 // If the parameter type is a class X and the initializer list has a single 5030 // element of type cv U, where U is X or a class derived from X, the 5031 // implicit conversion sequence is the one required to convert the element 5032 // to the parameter type. 5033 // 5034 // Otherwise, if the parameter type is a character array [... ] 5035 // and the initializer list has a single element that is an 5036 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 5037 // implicit conversion sequence is the identity conversion. 5038 if (From->getNumInits() == 1) { 5039 if (ToType->isRecordType()) { 5040 QualType InitType = From->getInit(0)->getType(); 5041 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 5042 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 5043 return TryCopyInitialization(S, From->getInit(0), ToType, 5044 SuppressUserConversions, 5045 InOverloadResolution, 5046 AllowObjCWritebackConversion); 5047 } 5048 5049 if (AT && S.IsStringInit(From->getInit(0), AT)) { 5050 InitializedEntity Entity = 5051 InitializedEntity::InitializeParameter(S.Context, ToType, 5052 /*Consumed=*/false); 5053 if (S.CanPerformCopyInitialization(Entity, From)) { 5054 Result.setStandard(); 5055 Result.Standard.setAsIdentityConversion(); 5056 Result.Standard.setFromType(ToType); 5057 Result.Standard.setAllToTypes(ToType); 5058 return Result; 5059 } 5060 } 5061 } 5062 5063 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 5064 // C++11 [over.ics.list]p2: 5065 // If the parameter type is std::initializer_list<X> or "array of X" and 5066 // all the elements can be implicitly converted to X, the implicit 5067 // conversion sequence is the worst conversion necessary to convert an 5068 // element of the list to X. 5069 // 5070 // C++14 [over.ics.list]p3: 5071 // Otherwise, if the parameter type is "array of N X", if the initializer 5072 // list has exactly N elements or if it has fewer than N elements and X is 5073 // default-constructible, and if all the elements of the initializer list 5074 // can be implicitly converted to X, the implicit conversion sequence is 5075 // the worst conversion necessary to convert an element of the list to X. 5076 if (AT || S.isStdInitializerList(ToType, &InitTy)) { 5077 unsigned e = From->getNumInits(); 5078 ImplicitConversionSequence DfltElt; 5079 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), 5080 QualType()); 5081 QualType ContTy = ToType; 5082 bool IsUnbounded = false; 5083 if (AT) { 5084 InitTy = AT->getElementType(); 5085 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { 5086 if (CT->getSize().ult(e)) { 5087 // Too many inits, fatally bad 5088 Result.setBad(BadConversionSequence::too_many_initializers, From, 5089 ToType); 5090 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5091 return Result; 5092 } 5093 if (CT->getSize().ugt(e)) { 5094 // Need an init from empty {}, is there one? 5095 InitListExpr EmptyList(S.Context, From->getEndLoc(), None, 5096 From->getEndLoc()); 5097 EmptyList.setType(S.Context.VoidTy); 5098 DfltElt = TryListConversion( 5099 S, &EmptyList, InitTy, SuppressUserConversions, 5100 InOverloadResolution, AllowObjCWritebackConversion); 5101 if (DfltElt.isBad()) { 5102 // No {} init, fatally bad 5103 Result.setBad(BadConversionSequence::too_few_initializers, From, 5104 ToType); 5105 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5106 return Result; 5107 } 5108 } 5109 } else { 5110 assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array"); 5111 IsUnbounded = true; 5112 if (!e) { 5113 // Cannot convert to zero-sized. 5114 Result.setBad(BadConversionSequence::too_few_initializers, From, 5115 ToType); 5116 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5117 return Result; 5118 } 5119 llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); 5120 ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, 5121 ArrayType::Normal, 0); 5122 } 5123 } 5124 5125 Result.setStandard(); 5126 Result.Standard.setAsIdentityConversion(); 5127 Result.Standard.setFromType(InitTy); 5128 Result.Standard.setAllToTypes(InitTy); 5129 for (unsigned i = 0; i < e; ++i) { 5130 Expr *Init = From->getInit(i); 5131 ImplicitConversionSequence ICS = TryCopyInitialization( 5132 S, Init, InitTy, SuppressUserConversions, InOverloadResolution, 5133 AllowObjCWritebackConversion); 5134 5135 // Keep the worse conversion seen so far. 5136 // FIXME: Sequences are not totally ordered, so 'worse' can be 5137 // ambiguous. CWG has been informed. 5138 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, 5139 Result) == 5140 ImplicitConversionSequence::Worse) { 5141 Result = ICS; 5142 // Bail as soon as we find something unconvertible. 5143 if (Result.isBad()) { 5144 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5145 return Result; 5146 } 5147 } 5148 } 5149 5150 // If we needed any implicit {} initialization, compare that now. 5151 // over.ics.list/6 indicates we should compare that conversion. Again CWG 5152 // has been informed that this might not be the best thing. 5153 if (!DfltElt.isBad() && CompareImplicitConversionSequences( 5154 S, From->getEndLoc(), DfltElt, Result) == 5155 ImplicitConversionSequence::Worse) 5156 Result = DfltElt; 5157 // Record the type being initialized so that we may compare sequences 5158 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5159 return Result; 5160 } 5161 5162 // C++14 [over.ics.list]p4: 5163 // C++11 [over.ics.list]p3: 5164 // Otherwise, if the parameter is a non-aggregate class X and overload 5165 // resolution chooses a single best constructor [...] the implicit 5166 // conversion sequence is a user-defined conversion sequence. If multiple 5167 // constructors are viable but none is better than the others, the 5168 // implicit conversion sequence is a user-defined conversion sequence. 5169 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5170 // This function can deal with initializer lists. 5171 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5172 AllowedExplicit::None, 5173 InOverloadResolution, /*CStyle=*/false, 5174 AllowObjCWritebackConversion, 5175 /*AllowObjCConversionOnExplicit=*/false); 5176 } 5177 5178 // C++14 [over.ics.list]p5: 5179 // C++11 [over.ics.list]p4: 5180 // Otherwise, if the parameter has an aggregate type which can be 5181 // initialized from the initializer list [...] the implicit conversion 5182 // sequence is a user-defined conversion sequence. 5183 if (ToType->isAggregateType()) { 5184 // Type is an aggregate, argument is an init list. At this point it comes 5185 // down to checking whether the initialization works. 5186 // FIXME: Find out whether this parameter is consumed or not. 5187 InitializedEntity Entity = 5188 InitializedEntity::InitializeParameter(S.Context, ToType, 5189 /*Consumed=*/false); 5190 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5191 From)) { 5192 Result.setUserDefined(); 5193 Result.UserDefined.Before.setAsIdentityConversion(); 5194 // Initializer lists don't have a type. 5195 Result.UserDefined.Before.setFromType(QualType()); 5196 Result.UserDefined.Before.setAllToTypes(QualType()); 5197 5198 Result.UserDefined.After.setAsIdentityConversion(); 5199 Result.UserDefined.After.setFromType(ToType); 5200 Result.UserDefined.After.setAllToTypes(ToType); 5201 Result.UserDefined.ConversionFunction = nullptr; 5202 } 5203 return Result; 5204 } 5205 5206 // C++14 [over.ics.list]p6: 5207 // C++11 [over.ics.list]p5: 5208 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5209 if (ToType->isReferenceType()) { 5210 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5211 // mention initializer lists in any way. So we go by what list- 5212 // initialization would do and try to extrapolate from that. 5213 5214 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5215 5216 // If the initializer list has a single element that is reference-related 5217 // to the parameter type, we initialize the reference from that. 5218 if (From->getNumInits() == 1) { 5219 Expr *Init = From->getInit(0); 5220 5221 QualType T2 = Init->getType(); 5222 5223 // If the initializer is the address of an overloaded function, try 5224 // to resolve the overloaded function. If all goes well, T2 is the 5225 // type of the resulting function. 5226 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5227 DeclAccessPair Found; 5228 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5229 Init, ToType, false, Found)) 5230 T2 = Fn->getType(); 5231 } 5232 5233 // Compute some basic properties of the types and the initializer. 5234 Sema::ReferenceCompareResult RefRelationship = 5235 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5236 5237 if (RefRelationship >= Sema::Ref_Related) { 5238 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5239 SuppressUserConversions, 5240 /*AllowExplicit=*/false); 5241 } 5242 } 5243 5244 // Otherwise, we bind the reference to a temporary created from the 5245 // initializer list. 5246 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5247 InOverloadResolution, 5248 AllowObjCWritebackConversion); 5249 if (Result.isFailure()) 5250 return Result; 5251 assert(!Result.isEllipsis() && 5252 "Sub-initialization cannot result in ellipsis conversion."); 5253 5254 // Can we even bind to a temporary? 5255 if (ToType->isRValueReferenceType() || 5256 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5257 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5258 Result.UserDefined.After; 5259 SCS.ReferenceBinding = true; 5260 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5261 SCS.BindsToRvalue = true; 5262 SCS.BindsToFunctionLvalue = false; 5263 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5264 SCS.ObjCLifetimeConversionBinding = false; 5265 } else 5266 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5267 From, ToType); 5268 return Result; 5269 } 5270 5271 // C++14 [over.ics.list]p7: 5272 // C++11 [over.ics.list]p6: 5273 // Otherwise, if the parameter type is not a class: 5274 if (!ToType->isRecordType()) { 5275 // - if the initializer list has one element that is not itself an 5276 // initializer list, the implicit conversion sequence is the one 5277 // required to convert the element to the parameter type. 5278 unsigned NumInits = From->getNumInits(); 5279 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5280 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5281 SuppressUserConversions, 5282 InOverloadResolution, 5283 AllowObjCWritebackConversion); 5284 // - if the initializer list has no elements, the implicit conversion 5285 // sequence is the identity conversion. 5286 else if (NumInits == 0) { 5287 Result.setStandard(); 5288 Result.Standard.setAsIdentityConversion(); 5289 Result.Standard.setFromType(ToType); 5290 Result.Standard.setAllToTypes(ToType); 5291 } 5292 return Result; 5293 } 5294 5295 // C++14 [over.ics.list]p8: 5296 // C++11 [over.ics.list]p7: 5297 // In all cases other than those enumerated above, no conversion is possible 5298 return Result; 5299 } 5300 5301 /// TryCopyInitialization - Try to copy-initialize a value of type 5302 /// ToType from the expression From. Return the implicit conversion 5303 /// sequence required to pass this argument, which may be a bad 5304 /// conversion sequence (meaning that the argument cannot be passed to 5305 /// a parameter of this type). If @p SuppressUserConversions, then we 5306 /// do not permit any user-defined conversion sequences. 5307 static ImplicitConversionSequence 5308 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5309 bool SuppressUserConversions, 5310 bool InOverloadResolution, 5311 bool AllowObjCWritebackConversion, 5312 bool AllowExplicit) { 5313 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5314 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5315 InOverloadResolution,AllowObjCWritebackConversion); 5316 5317 if (ToType->isReferenceType()) 5318 return TryReferenceInit(S, From, ToType, 5319 /*FIXME:*/ From->getBeginLoc(), 5320 SuppressUserConversions, AllowExplicit); 5321 5322 return TryImplicitConversion(S, From, ToType, 5323 SuppressUserConversions, 5324 AllowedExplicit::None, 5325 InOverloadResolution, 5326 /*CStyle=*/false, 5327 AllowObjCWritebackConversion, 5328 /*AllowObjCConversionOnExplicit=*/false); 5329 } 5330 5331 static bool TryCopyInitialization(const CanQualType FromQTy, 5332 const CanQualType ToQTy, 5333 Sema &S, 5334 SourceLocation Loc, 5335 ExprValueKind FromVK) { 5336 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5337 ImplicitConversionSequence ICS = 5338 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5339 5340 return !ICS.isBad(); 5341 } 5342 5343 /// TryObjectArgumentInitialization - Try to initialize the object 5344 /// parameter of the given member function (@c Method) from the 5345 /// expression @p From. 5346 static ImplicitConversionSequence 5347 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5348 Expr::Classification FromClassification, 5349 CXXMethodDecl *Method, 5350 CXXRecordDecl *ActingContext) { 5351 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5352 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5353 // const volatile object. 5354 Qualifiers Quals = Method->getMethodQualifiers(); 5355 if (isa<CXXDestructorDecl>(Method)) { 5356 Quals.addConst(); 5357 Quals.addVolatile(); 5358 } 5359 5360 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5361 5362 // Set up the conversion sequence as a "bad" conversion, to allow us 5363 // to exit early. 5364 ImplicitConversionSequence ICS; 5365 5366 // We need to have an object of class type. 5367 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5368 FromType = PT->getPointeeType(); 5369 5370 // When we had a pointer, it's implicitly dereferenced, so we 5371 // better have an lvalue. 5372 assert(FromClassification.isLValue()); 5373 } 5374 5375 assert(FromType->isRecordType()); 5376 5377 // C++0x [over.match.funcs]p4: 5378 // For non-static member functions, the type of the implicit object 5379 // parameter is 5380 // 5381 // - "lvalue reference to cv X" for functions declared without a 5382 // ref-qualifier or with the & ref-qualifier 5383 // - "rvalue reference to cv X" for functions declared with the && 5384 // ref-qualifier 5385 // 5386 // where X is the class of which the function is a member and cv is the 5387 // cv-qualification on the member function declaration. 5388 // 5389 // However, when finding an implicit conversion sequence for the argument, we 5390 // are not allowed to perform user-defined conversions 5391 // (C++ [over.match.funcs]p5). We perform a simplified version of 5392 // reference binding here, that allows class rvalues to bind to 5393 // non-constant references. 5394 5395 // First check the qualifiers. 5396 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5397 if (ImplicitParamType.getCVRQualifiers() 5398 != FromTypeCanon.getLocalCVRQualifiers() && 5399 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5400 ICS.setBad(BadConversionSequence::bad_qualifiers, 5401 FromType, ImplicitParamType); 5402 return ICS; 5403 } 5404 5405 if (FromTypeCanon.hasAddressSpace()) { 5406 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5407 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5408 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5409 ICS.setBad(BadConversionSequence::bad_qualifiers, 5410 FromType, ImplicitParamType); 5411 return ICS; 5412 } 5413 } 5414 5415 // Check that we have either the same type or a derived type. It 5416 // affects the conversion rank. 5417 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5418 ImplicitConversionKind SecondKind; 5419 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5420 SecondKind = ICK_Identity; 5421 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5422 SecondKind = ICK_Derived_To_Base; 5423 else { 5424 ICS.setBad(BadConversionSequence::unrelated_class, 5425 FromType, ImplicitParamType); 5426 return ICS; 5427 } 5428 5429 // Check the ref-qualifier. 5430 switch (Method->getRefQualifier()) { 5431 case RQ_None: 5432 // Do nothing; we don't care about lvalueness or rvalueness. 5433 break; 5434 5435 case RQ_LValue: 5436 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5437 // non-const lvalue reference cannot bind to an rvalue 5438 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5439 ImplicitParamType); 5440 return ICS; 5441 } 5442 break; 5443 5444 case RQ_RValue: 5445 if (!FromClassification.isRValue()) { 5446 // rvalue reference cannot bind to an lvalue 5447 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5448 ImplicitParamType); 5449 return ICS; 5450 } 5451 break; 5452 } 5453 5454 // Success. Mark this as a reference binding. 5455 ICS.setStandard(); 5456 ICS.Standard.setAsIdentityConversion(); 5457 ICS.Standard.Second = SecondKind; 5458 ICS.Standard.setFromType(FromType); 5459 ICS.Standard.setAllToTypes(ImplicitParamType); 5460 ICS.Standard.ReferenceBinding = true; 5461 ICS.Standard.DirectBinding = true; 5462 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5463 ICS.Standard.BindsToFunctionLvalue = false; 5464 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5465 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5466 = (Method->getRefQualifier() == RQ_None); 5467 return ICS; 5468 } 5469 5470 /// PerformObjectArgumentInitialization - Perform initialization of 5471 /// the implicit object parameter for the given Method with the given 5472 /// expression. 5473 ExprResult 5474 Sema::PerformObjectArgumentInitialization(Expr *From, 5475 NestedNameSpecifier *Qualifier, 5476 NamedDecl *FoundDecl, 5477 CXXMethodDecl *Method) { 5478 QualType FromRecordType, DestType; 5479 QualType ImplicitParamRecordType = 5480 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5481 5482 Expr::Classification FromClassification; 5483 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5484 FromRecordType = PT->getPointeeType(); 5485 DestType = Method->getThisType(); 5486 FromClassification = Expr::Classification::makeSimpleLValue(); 5487 } else { 5488 FromRecordType = From->getType(); 5489 DestType = ImplicitParamRecordType; 5490 FromClassification = From->Classify(Context); 5491 5492 // When performing member access on a prvalue, materialize a temporary. 5493 if (From->isPRValue()) { 5494 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5495 Method->getRefQualifier() != 5496 RefQualifierKind::RQ_RValue); 5497 } 5498 } 5499 5500 // Note that we always use the true parent context when performing 5501 // the actual argument initialization. 5502 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5503 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5504 Method->getParent()); 5505 if (ICS.isBad()) { 5506 switch (ICS.Bad.Kind) { 5507 case BadConversionSequence::bad_qualifiers: { 5508 Qualifiers FromQs = FromRecordType.getQualifiers(); 5509 Qualifiers ToQs = DestType.getQualifiers(); 5510 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5511 if (CVR) { 5512 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5513 << Method->getDeclName() << FromRecordType << (CVR - 1) 5514 << From->getSourceRange(); 5515 Diag(Method->getLocation(), diag::note_previous_decl) 5516 << Method->getDeclName(); 5517 return ExprError(); 5518 } 5519 break; 5520 } 5521 5522 case BadConversionSequence::lvalue_ref_to_rvalue: 5523 case BadConversionSequence::rvalue_ref_to_lvalue: { 5524 bool IsRValueQualified = 5525 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5526 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5527 << Method->getDeclName() << FromClassification.isRValue() 5528 << IsRValueQualified; 5529 Diag(Method->getLocation(), diag::note_previous_decl) 5530 << Method->getDeclName(); 5531 return ExprError(); 5532 } 5533 5534 case BadConversionSequence::no_conversion: 5535 case BadConversionSequence::unrelated_class: 5536 break; 5537 5538 case BadConversionSequence::too_few_initializers: 5539 case BadConversionSequence::too_many_initializers: 5540 llvm_unreachable("Lists are not objects"); 5541 } 5542 5543 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5544 << ImplicitParamRecordType << FromRecordType 5545 << From->getSourceRange(); 5546 } 5547 5548 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5549 ExprResult FromRes = 5550 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5551 if (FromRes.isInvalid()) 5552 return ExprError(); 5553 From = FromRes.get(); 5554 } 5555 5556 if (!Context.hasSameType(From->getType(), DestType)) { 5557 CastKind CK; 5558 QualType PteeTy = DestType->getPointeeType(); 5559 LangAS DestAS = 5560 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5561 if (FromRecordType.getAddressSpace() != DestAS) 5562 CK = CK_AddressSpaceConversion; 5563 else 5564 CK = CK_NoOp; 5565 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5566 } 5567 return From; 5568 } 5569 5570 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5571 /// expression From to bool (C++0x [conv]p3). 5572 static ImplicitConversionSequence 5573 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5574 // C++ [dcl.init]/17.8: 5575 // - Otherwise, if the initialization is direct-initialization, the source 5576 // type is std::nullptr_t, and the destination type is bool, the initial 5577 // value of the object being initialized is false. 5578 if (From->getType()->isNullPtrType()) 5579 return ImplicitConversionSequence::getNullptrToBool(From->getType(), 5580 S.Context.BoolTy, 5581 From->isGLValue()); 5582 5583 // All other direct-initialization of bool is equivalent to an implicit 5584 // conversion to bool in which explicit conversions are permitted. 5585 return TryImplicitConversion(S, From, S.Context.BoolTy, 5586 /*SuppressUserConversions=*/false, 5587 AllowedExplicit::Conversions, 5588 /*InOverloadResolution=*/false, 5589 /*CStyle=*/false, 5590 /*AllowObjCWritebackConversion=*/false, 5591 /*AllowObjCConversionOnExplicit=*/false); 5592 } 5593 5594 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5595 /// of the expression From to bool (C++0x [conv]p3). 5596 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5597 if (checkPlaceholderForOverload(*this, From)) 5598 return ExprError(); 5599 5600 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5601 if (!ICS.isBad()) 5602 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5603 5604 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5605 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5606 << From->getType() << From->getSourceRange(); 5607 return ExprError(); 5608 } 5609 5610 /// Check that the specified conversion is permitted in a converted constant 5611 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5612 /// is acceptable. 5613 static bool CheckConvertedConstantConversions(Sema &S, 5614 StandardConversionSequence &SCS) { 5615 // Since we know that the target type is an integral or unscoped enumeration 5616 // type, most conversion kinds are impossible. All possible First and Third 5617 // conversions are fine. 5618 switch (SCS.Second) { 5619 case ICK_Identity: 5620 case ICK_Integral_Promotion: 5621 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5622 case ICK_Zero_Queue_Conversion: 5623 return true; 5624 5625 case ICK_Boolean_Conversion: 5626 // Conversion from an integral or unscoped enumeration type to bool is 5627 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5628 // conversion, so we allow it in a converted constant expression. 5629 // 5630 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5631 // a lot of popular code. We should at least add a warning for this 5632 // (non-conforming) extension. 5633 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5634 SCS.getToType(2)->isBooleanType(); 5635 5636 case ICK_Pointer_Conversion: 5637 case ICK_Pointer_Member: 5638 // C++1z: null pointer conversions and null member pointer conversions are 5639 // only permitted if the source type is std::nullptr_t. 5640 return SCS.getFromType()->isNullPtrType(); 5641 5642 case ICK_Floating_Promotion: 5643 case ICK_Complex_Promotion: 5644 case ICK_Floating_Conversion: 5645 case ICK_Complex_Conversion: 5646 case ICK_Floating_Integral: 5647 case ICK_Compatible_Conversion: 5648 case ICK_Derived_To_Base: 5649 case ICK_Vector_Conversion: 5650 case ICK_SVE_Vector_Conversion: 5651 case ICK_Vector_Splat: 5652 case ICK_Complex_Real: 5653 case ICK_Block_Pointer_Conversion: 5654 case ICK_TransparentUnionConversion: 5655 case ICK_Writeback_Conversion: 5656 case ICK_Zero_Event_Conversion: 5657 case ICK_C_Only_Conversion: 5658 case ICK_Incompatible_Pointer_Conversion: 5659 return false; 5660 5661 case ICK_Lvalue_To_Rvalue: 5662 case ICK_Array_To_Pointer: 5663 case ICK_Function_To_Pointer: 5664 llvm_unreachable("found a first conversion kind in Second"); 5665 5666 case ICK_Function_Conversion: 5667 case ICK_Qualification: 5668 llvm_unreachable("found a third conversion kind in Second"); 5669 5670 case ICK_Num_Conversion_Kinds: 5671 break; 5672 } 5673 5674 llvm_unreachable("unknown conversion kind"); 5675 } 5676 5677 /// CheckConvertedConstantExpression - Check that the expression From is a 5678 /// converted constant expression of type T, perform the conversion and produce 5679 /// the converted expression, per C++11 [expr.const]p3. 5680 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5681 QualType T, APValue &Value, 5682 Sema::CCEKind CCE, 5683 bool RequireInt, 5684 NamedDecl *Dest) { 5685 assert(S.getLangOpts().CPlusPlus11 && 5686 "converted constant expression outside C++11"); 5687 5688 if (checkPlaceholderForOverload(S, From)) 5689 return ExprError(); 5690 5691 // C++1z [expr.const]p3: 5692 // A converted constant expression of type T is an expression, 5693 // implicitly converted to type T, where the converted 5694 // expression is a constant expression and the implicit conversion 5695 // sequence contains only [... list of conversions ...]. 5696 ImplicitConversionSequence ICS = 5697 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) 5698 ? TryContextuallyConvertToBool(S, From) 5699 : TryCopyInitialization(S, From, T, 5700 /*SuppressUserConversions=*/false, 5701 /*InOverloadResolution=*/false, 5702 /*AllowObjCWritebackConversion=*/false, 5703 /*AllowExplicit=*/false); 5704 StandardConversionSequence *SCS = nullptr; 5705 switch (ICS.getKind()) { 5706 case ImplicitConversionSequence::StandardConversion: 5707 SCS = &ICS.Standard; 5708 break; 5709 case ImplicitConversionSequence::UserDefinedConversion: 5710 if (T->isRecordType()) 5711 SCS = &ICS.UserDefined.Before; 5712 else 5713 SCS = &ICS.UserDefined.After; 5714 break; 5715 case ImplicitConversionSequence::AmbiguousConversion: 5716 case ImplicitConversionSequence::BadConversion: 5717 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5718 return S.Diag(From->getBeginLoc(), 5719 diag::err_typecheck_converted_constant_expression) 5720 << From->getType() << From->getSourceRange() << T; 5721 return ExprError(); 5722 5723 case ImplicitConversionSequence::EllipsisConversion: 5724 llvm_unreachable("ellipsis conversion in converted constant expression"); 5725 } 5726 5727 // Check that we would only use permitted conversions. 5728 if (!CheckConvertedConstantConversions(S, *SCS)) { 5729 return S.Diag(From->getBeginLoc(), 5730 diag::err_typecheck_converted_constant_expression_disallowed) 5731 << From->getType() << From->getSourceRange() << T; 5732 } 5733 // [...] and where the reference binding (if any) binds directly. 5734 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5735 return S.Diag(From->getBeginLoc(), 5736 diag::err_typecheck_converted_constant_expression_indirect) 5737 << From->getType() << From->getSourceRange() << T; 5738 } 5739 5740 // Usually we can simply apply the ImplicitConversionSequence we formed 5741 // earlier, but that's not guaranteed to work when initializing an object of 5742 // class type. 5743 ExprResult Result; 5744 if (T->isRecordType()) { 5745 assert(CCE == Sema::CCEK_TemplateArg && 5746 "unexpected class type converted constant expr"); 5747 Result = S.PerformCopyInitialization( 5748 InitializedEntity::InitializeTemplateParameter( 5749 T, cast<NonTypeTemplateParmDecl>(Dest)), 5750 SourceLocation(), From); 5751 } else { 5752 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5753 } 5754 if (Result.isInvalid()) 5755 return Result; 5756 5757 // C++2a [intro.execution]p5: 5758 // A full-expression is [...] a constant-expression [...] 5759 Result = 5760 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5761 /*DiscardedValue=*/false, /*IsConstexpr=*/true); 5762 if (Result.isInvalid()) 5763 return Result; 5764 5765 // Check for a narrowing implicit conversion. 5766 bool ReturnPreNarrowingValue = false; 5767 APValue PreNarrowingValue; 5768 QualType PreNarrowingType; 5769 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5770 PreNarrowingType)) { 5771 case NK_Dependent_Narrowing: 5772 // Implicit conversion to a narrower type, but the expression is 5773 // value-dependent so we can't tell whether it's actually narrowing. 5774 case NK_Variable_Narrowing: 5775 // Implicit conversion to a narrower type, and the value is not a constant 5776 // expression. We'll diagnose this in a moment. 5777 case NK_Not_Narrowing: 5778 break; 5779 5780 case NK_Constant_Narrowing: 5781 if (CCE == Sema::CCEK_ArrayBound && 5782 PreNarrowingType->isIntegralOrEnumerationType() && 5783 PreNarrowingValue.isInt()) { 5784 // Don't diagnose array bound narrowing here; we produce more precise 5785 // errors by allowing the un-narrowed value through. 5786 ReturnPreNarrowingValue = true; 5787 break; 5788 } 5789 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5790 << CCE << /*Constant*/ 1 5791 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5792 break; 5793 5794 case NK_Type_Narrowing: 5795 // FIXME: It would be better to diagnose that the expression is not a 5796 // constant expression. 5797 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5798 << CCE << /*Constant*/ 0 << From->getType() << T; 5799 break; 5800 } 5801 5802 if (Result.get()->isValueDependent()) { 5803 Value = APValue(); 5804 return Result; 5805 } 5806 5807 // Check the expression is a constant expression. 5808 SmallVector<PartialDiagnosticAt, 8> Notes; 5809 Expr::EvalResult Eval; 5810 Eval.Diag = &Notes; 5811 5812 ConstantExprKind Kind; 5813 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) 5814 Kind = ConstantExprKind::ClassTemplateArgument; 5815 else if (CCE == Sema::CCEK_TemplateArg) 5816 Kind = ConstantExprKind::NonClassTemplateArgument; 5817 else 5818 Kind = ConstantExprKind::Normal; 5819 5820 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || 5821 (RequireInt && !Eval.Val.isInt())) { 5822 // The expression can't be folded, so we can't keep it at this position in 5823 // the AST. 5824 Result = ExprError(); 5825 } else { 5826 Value = Eval.Val; 5827 5828 if (Notes.empty()) { 5829 // It's a constant expression. 5830 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); 5831 if (ReturnPreNarrowingValue) 5832 Value = std::move(PreNarrowingValue); 5833 return E; 5834 } 5835 } 5836 5837 // It's not a constant expression. Produce an appropriate diagnostic. 5838 if (Notes.size() == 1 && 5839 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { 5840 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5841 } else if (!Notes.empty() && Notes[0].second.getDiagID() == 5842 diag::note_constexpr_invalid_template_arg) { 5843 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); 5844 for (unsigned I = 0; I < Notes.size(); ++I) 5845 S.Diag(Notes[I].first, Notes[I].second); 5846 } else { 5847 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5848 << CCE << From->getSourceRange(); 5849 for (unsigned I = 0; I < Notes.size(); ++I) 5850 S.Diag(Notes[I].first, Notes[I].second); 5851 } 5852 return ExprError(); 5853 } 5854 5855 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5856 APValue &Value, CCEKind CCE, 5857 NamedDecl *Dest) { 5858 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, 5859 Dest); 5860 } 5861 5862 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5863 llvm::APSInt &Value, 5864 CCEKind CCE) { 5865 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5866 5867 APValue V; 5868 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, 5869 /*Dest=*/nullptr); 5870 if (!R.isInvalid() && !R.get()->isValueDependent()) 5871 Value = V.getInt(); 5872 return R; 5873 } 5874 5875 5876 /// dropPointerConversions - If the given standard conversion sequence 5877 /// involves any pointer conversions, remove them. This may change 5878 /// the result type of the conversion sequence. 5879 static void dropPointerConversion(StandardConversionSequence &SCS) { 5880 if (SCS.Second == ICK_Pointer_Conversion) { 5881 SCS.Second = ICK_Identity; 5882 SCS.Third = ICK_Identity; 5883 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5884 } 5885 } 5886 5887 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5888 /// convert the expression From to an Objective-C pointer type. 5889 static ImplicitConversionSequence 5890 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5891 // Do an implicit conversion to 'id'. 5892 QualType Ty = S.Context.getObjCIdType(); 5893 ImplicitConversionSequence ICS 5894 = TryImplicitConversion(S, From, Ty, 5895 // FIXME: Are these flags correct? 5896 /*SuppressUserConversions=*/false, 5897 AllowedExplicit::Conversions, 5898 /*InOverloadResolution=*/false, 5899 /*CStyle=*/false, 5900 /*AllowObjCWritebackConversion=*/false, 5901 /*AllowObjCConversionOnExplicit=*/true); 5902 5903 // Strip off any final conversions to 'id'. 5904 switch (ICS.getKind()) { 5905 case ImplicitConversionSequence::BadConversion: 5906 case ImplicitConversionSequence::AmbiguousConversion: 5907 case ImplicitConversionSequence::EllipsisConversion: 5908 break; 5909 5910 case ImplicitConversionSequence::UserDefinedConversion: 5911 dropPointerConversion(ICS.UserDefined.After); 5912 break; 5913 5914 case ImplicitConversionSequence::StandardConversion: 5915 dropPointerConversion(ICS.Standard); 5916 break; 5917 } 5918 5919 return ICS; 5920 } 5921 5922 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 5923 /// conversion of the expression From to an Objective-C pointer type. 5924 /// Returns a valid but null ExprResult if no conversion sequence exists. 5925 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5926 if (checkPlaceholderForOverload(*this, From)) 5927 return ExprError(); 5928 5929 QualType Ty = Context.getObjCIdType(); 5930 ImplicitConversionSequence ICS = 5931 TryContextuallyConvertToObjCPointer(*this, From); 5932 if (!ICS.isBad()) 5933 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5934 return ExprResult(); 5935 } 5936 5937 /// Determine whether the provided type is an integral type, or an enumeration 5938 /// type of a permitted flavor. 5939 bool Sema::ICEConvertDiagnoser::match(QualType T) { 5940 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5941 : T->isIntegralOrUnscopedEnumerationType(); 5942 } 5943 5944 static ExprResult 5945 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5946 Sema::ContextualImplicitConverter &Converter, 5947 QualType T, UnresolvedSetImpl &ViableConversions) { 5948 5949 if (Converter.Suppress) 5950 return ExprError(); 5951 5952 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5953 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5954 CXXConversionDecl *Conv = 5955 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5956 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5957 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5958 } 5959 return From; 5960 } 5961 5962 static bool 5963 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5964 Sema::ContextualImplicitConverter &Converter, 5965 QualType T, bool HadMultipleCandidates, 5966 UnresolvedSetImpl &ExplicitConversions) { 5967 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5968 DeclAccessPair Found = ExplicitConversions[0]; 5969 CXXConversionDecl *Conversion = 5970 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5971 5972 // The user probably meant to invoke the given explicit 5973 // conversion; use it. 5974 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5975 std::string TypeStr; 5976 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5977 5978 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5979 << FixItHint::CreateInsertion(From->getBeginLoc(), 5980 "static_cast<" + TypeStr + ">(") 5981 << FixItHint::CreateInsertion( 5982 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 5983 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5984 5985 // If we aren't in a SFINAE context, build a call to the 5986 // explicit conversion function. 5987 if (SemaRef.isSFINAEContext()) 5988 return true; 5989 5990 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5991 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5992 HadMultipleCandidates); 5993 if (Result.isInvalid()) 5994 return true; 5995 // Record usage of conversion in an implicit cast. 5996 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5997 CK_UserDefinedConversion, Result.get(), 5998 nullptr, Result.get()->getValueKind(), 5999 SemaRef.CurFPFeatureOverrides()); 6000 } 6001 return false; 6002 } 6003 6004 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 6005 Sema::ContextualImplicitConverter &Converter, 6006 QualType T, bool HadMultipleCandidates, 6007 DeclAccessPair &Found) { 6008 CXXConversionDecl *Conversion = 6009 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 6010 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 6011 6012 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 6013 if (!Converter.SuppressConversion) { 6014 if (SemaRef.isSFINAEContext()) 6015 return true; 6016 6017 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 6018 << From->getSourceRange(); 6019 } 6020 6021 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 6022 HadMultipleCandidates); 6023 if (Result.isInvalid()) 6024 return true; 6025 // Record usage of conversion in an implicit cast. 6026 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 6027 CK_UserDefinedConversion, Result.get(), 6028 nullptr, Result.get()->getValueKind(), 6029 SemaRef.CurFPFeatureOverrides()); 6030 return false; 6031 } 6032 6033 static ExprResult finishContextualImplicitConversion( 6034 Sema &SemaRef, SourceLocation Loc, Expr *From, 6035 Sema::ContextualImplicitConverter &Converter) { 6036 if (!Converter.match(From->getType()) && !Converter.Suppress) 6037 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 6038 << From->getSourceRange(); 6039 6040 return SemaRef.DefaultLvalueConversion(From); 6041 } 6042 6043 static void 6044 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 6045 UnresolvedSetImpl &ViableConversions, 6046 OverloadCandidateSet &CandidateSet) { 6047 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 6048 DeclAccessPair FoundDecl = ViableConversions[I]; 6049 NamedDecl *D = FoundDecl.getDecl(); 6050 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6051 if (isa<UsingShadowDecl>(D)) 6052 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6053 6054 CXXConversionDecl *Conv; 6055 FunctionTemplateDecl *ConvTemplate; 6056 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 6057 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6058 else 6059 Conv = cast<CXXConversionDecl>(D); 6060 6061 if (ConvTemplate) 6062 SemaRef.AddTemplateConversionCandidate( 6063 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 6064 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 6065 else 6066 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 6067 ToType, CandidateSet, 6068 /*AllowObjCConversionOnExplicit=*/false, 6069 /*AllowExplicit*/ true); 6070 } 6071 } 6072 6073 /// Attempt to convert the given expression to a type which is accepted 6074 /// by the given converter. 6075 /// 6076 /// This routine will attempt to convert an expression of class type to a 6077 /// type accepted by the specified converter. In C++11 and before, the class 6078 /// must have a single non-explicit conversion function converting to a matching 6079 /// type. In C++1y, there can be multiple such conversion functions, but only 6080 /// one target type. 6081 /// 6082 /// \param Loc The source location of the construct that requires the 6083 /// conversion. 6084 /// 6085 /// \param From The expression we're converting from. 6086 /// 6087 /// \param Converter Used to control and diagnose the conversion process. 6088 /// 6089 /// \returns The expression, converted to an integral or enumeration type if 6090 /// successful. 6091 ExprResult Sema::PerformContextualImplicitConversion( 6092 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 6093 // We can't perform any more checking for type-dependent expressions. 6094 if (From->isTypeDependent()) 6095 return From; 6096 6097 // Process placeholders immediately. 6098 if (From->hasPlaceholderType()) { 6099 ExprResult result = CheckPlaceholderExpr(From); 6100 if (result.isInvalid()) 6101 return result; 6102 From = result.get(); 6103 } 6104 6105 // If the expression already has a matching type, we're golden. 6106 QualType T = From->getType(); 6107 if (Converter.match(T)) 6108 return DefaultLvalueConversion(From); 6109 6110 // FIXME: Check for missing '()' if T is a function type? 6111 6112 // We can only perform contextual implicit conversions on objects of class 6113 // type. 6114 const RecordType *RecordTy = T->getAs<RecordType>(); 6115 if (!RecordTy || !getLangOpts().CPlusPlus) { 6116 if (!Converter.Suppress) 6117 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 6118 return From; 6119 } 6120 6121 // We must have a complete class type. 6122 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 6123 ContextualImplicitConverter &Converter; 6124 Expr *From; 6125 6126 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 6127 : Converter(Converter), From(From) {} 6128 6129 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 6130 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 6131 } 6132 } IncompleteDiagnoser(Converter, From); 6133 6134 if (Converter.Suppress ? !isCompleteType(Loc, T) 6135 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 6136 return From; 6137 6138 // Look for a conversion to an integral or enumeration type. 6139 UnresolvedSet<4> 6140 ViableConversions; // These are *potentially* viable in C++1y. 6141 UnresolvedSet<4> ExplicitConversions; 6142 const auto &Conversions = 6143 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 6144 6145 bool HadMultipleCandidates = 6146 (std::distance(Conversions.begin(), Conversions.end()) > 1); 6147 6148 // To check that there is only one target type, in C++1y: 6149 QualType ToType; 6150 bool HasUniqueTargetType = true; 6151 6152 // Collect explicit or viable (potentially in C++1y) conversions. 6153 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 6154 NamedDecl *D = (*I)->getUnderlyingDecl(); 6155 CXXConversionDecl *Conversion; 6156 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 6157 if (ConvTemplate) { 6158 if (getLangOpts().CPlusPlus14) 6159 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6160 else 6161 continue; // C++11 does not consider conversion operator templates(?). 6162 } else 6163 Conversion = cast<CXXConversionDecl>(D); 6164 6165 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 6166 "Conversion operator templates are considered potentially " 6167 "viable in C++1y"); 6168 6169 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 6170 if (Converter.match(CurToType) || ConvTemplate) { 6171 6172 if (Conversion->isExplicit()) { 6173 // FIXME: For C++1y, do we need this restriction? 6174 // cf. diagnoseNoViableConversion() 6175 if (!ConvTemplate) 6176 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 6177 } else { 6178 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 6179 if (ToType.isNull()) 6180 ToType = CurToType.getUnqualifiedType(); 6181 else if (HasUniqueTargetType && 6182 (CurToType.getUnqualifiedType() != ToType)) 6183 HasUniqueTargetType = false; 6184 } 6185 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 6186 } 6187 } 6188 } 6189 6190 if (getLangOpts().CPlusPlus14) { 6191 // C++1y [conv]p6: 6192 // ... An expression e of class type E appearing in such a context 6193 // is said to be contextually implicitly converted to a specified 6194 // type T and is well-formed if and only if e can be implicitly 6195 // converted to a type T that is determined as follows: E is searched 6196 // for conversion functions whose return type is cv T or reference to 6197 // cv T such that T is allowed by the context. There shall be 6198 // exactly one such T. 6199 6200 // If no unique T is found: 6201 if (ToType.isNull()) { 6202 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6203 HadMultipleCandidates, 6204 ExplicitConversions)) 6205 return ExprError(); 6206 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6207 } 6208 6209 // If more than one unique Ts are found: 6210 if (!HasUniqueTargetType) 6211 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6212 ViableConversions); 6213 6214 // If one unique T is found: 6215 // First, build a candidate set from the previously recorded 6216 // potentially viable conversions. 6217 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6218 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 6219 CandidateSet); 6220 6221 // Then, perform overload resolution over the candidate set. 6222 OverloadCandidateSet::iterator Best; 6223 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 6224 case OR_Success: { 6225 // Apply this conversion. 6226 DeclAccessPair Found = 6227 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 6228 if (recordConversion(*this, Loc, From, Converter, T, 6229 HadMultipleCandidates, Found)) 6230 return ExprError(); 6231 break; 6232 } 6233 case OR_Ambiguous: 6234 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6235 ViableConversions); 6236 case OR_No_Viable_Function: 6237 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6238 HadMultipleCandidates, 6239 ExplicitConversions)) 6240 return ExprError(); 6241 LLVM_FALLTHROUGH; 6242 case OR_Deleted: 6243 // We'll complain below about a non-integral condition type. 6244 break; 6245 } 6246 } else { 6247 switch (ViableConversions.size()) { 6248 case 0: { 6249 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6250 HadMultipleCandidates, 6251 ExplicitConversions)) 6252 return ExprError(); 6253 6254 // We'll complain below about a non-integral condition type. 6255 break; 6256 } 6257 case 1: { 6258 // Apply this conversion. 6259 DeclAccessPair Found = ViableConversions[0]; 6260 if (recordConversion(*this, Loc, From, Converter, T, 6261 HadMultipleCandidates, Found)) 6262 return ExprError(); 6263 break; 6264 } 6265 default: 6266 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6267 ViableConversions); 6268 } 6269 } 6270 6271 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6272 } 6273 6274 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 6275 /// an acceptable non-member overloaded operator for a call whose 6276 /// arguments have types T1 (and, if non-empty, T2). This routine 6277 /// implements the check in C++ [over.match.oper]p3b2 concerning 6278 /// enumeration types. 6279 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 6280 FunctionDecl *Fn, 6281 ArrayRef<Expr *> Args) { 6282 QualType T1 = Args[0]->getType(); 6283 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 6284 6285 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 6286 return true; 6287 6288 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 6289 return true; 6290 6291 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); 6292 if (Proto->getNumParams() < 1) 6293 return false; 6294 6295 if (T1->isEnumeralType()) { 6296 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 6297 if (Context.hasSameUnqualifiedType(T1, ArgType)) 6298 return true; 6299 } 6300 6301 if (Proto->getNumParams() < 2) 6302 return false; 6303 6304 if (!T2.isNull() && T2->isEnumeralType()) { 6305 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 6306 if (Context.hasSameUnqualifiedType(T2, ArgType)) 6307 return true; 6308 } 6309 6310 return false; 6311 } 6312 6313 /// AddOverloadCandidate - Adds the given function to the set of 6314 /// candidate functions, using the given function call arguments. If 6315 /// @p SuppressUserConversions, then don't allow user-defined 6316 /// conversions via constructors or conversion operators. 6317 /// 6318 /// \param PartialOverloading true if we are performing "partial" overloading 6319 /// based on an incomplete set of function arguments. This feature is used by 6320 /// code completion. 6321 void Sema::AddOverloadCandidate( 6322 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, 6323 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 6324 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, 6325 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, 6326 OverloadCandidateParamOrder PO) { 6327 const FunctionProtoType *Proto 6328 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 6329 assert(Proto && "Functions without a prototype cannot be overloaded"); 6330 assert(!Function->getDescribedFunctionTemplate() && 6331 "Use AddTemplateOverloadCandidate for function templates"); 6332 6333 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 6334 if (!isa<CXXConstructorDecl>(Method)) { 6335 // If we get here, it's because we're calling a member function 6336 // that is named without a member access expression (e.g., 6337 // "this->f") that was either written explicitly or created 6338 // implicitly. This can happen with a qualified call to a member 6339 // function, e.g., X::f(). We use an empty type for the implied 6340 // object argument (C++ [over.call.func]p3), and the acting context 6341 // is irrelevant. 6342 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 6343 Expr::Classification::makeSimpleLValue(), Args, 6344 CandidateSet, SuppressUserConversions, 6345 PartialOverloading, EarlyConversions, PO); 6346 return; 6347 } 6348 // We treat a constructor like a non-member function, since its object 6349 // argument doesn't participate in overload resolution. 6350 } 6351 6352 if (!CandidateSet.isNewCandidate(Function, PO)) 6353 return; 6354 6355 // C++11 [class.copy]p11: [DR1402] 6356 // A defaulted move constructor that is defined as deleted is ignored by 6357 // overload resolution. 6358 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 6359 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 6360 Constructor->isMoveConstructor()) 6361 return; 6362 6363 // Overload resolution is always an unevaluated context. 6364 EnterExpressionEvaluationContext Unevaluated( 6365 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6366 6367 // C++ [over.match.oper]p3: 6368 // if no operand has a class type, only those non-member functions in the 6369 // lookup set that have a first parameter of type T1 or "reference to 6370 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 6371 // is a right operand) a second parameter of type T2 or "reference to 6372 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 6373 // candidate functions. 6374 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 6375 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 6376 return; 6377 6378 // Add this candidate 6379 OverloadCandidate &Candidate = 6380 CandidateSet.addCandidate(Args.size(), EarlyConversions); 6381 Candidate.FoundDecl = FoundDecl; 6382 Candidate.Function = Function; 6383 Candidate.Viable = true; 6384 Candidate.RewriteKind = 6385 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); 6386 Candidate.IsSurrogate = false; 6387 Candidate.IsADLCandidate = IsADLCandidate; 6388 Candidate.IgnoreObjectArgument = false; 6389 Candidate.ExplicitCallArguments = Args.size(); 6390 6391 // Explicit functions are not actually candidates at all if we're not 6392 // allowing them in this context, but keep them around so we can point 6393 // to them in diagnostics. 6394 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { 6395 Candidate.Viable = false; 6396 Candidate.FailureKind = ovl_fail_explicit; 6397 return; 6398 } 6399 6400 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && 6401 !Function->getAttr<TargetAttr>()->isDefaultVersion()) { 6402 Candidate.Viable = false; 6403 Candidate.FailureKind = ovl_non_default_multiversion_function; 6404 return; 6405 } 6406 6407 if (Constructor) { 6408 // C++ [class.copy]p3: 6409 // A member function template is never instantiated to perform the copy 6410 // of a class object to an object of its class type. 6411 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 6412 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 6413 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 6414 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), 6415 ClassType))) { 6416 Candidate.Viable = false; 6417 Candidate.FailureKind = ovl_fail_illegal_constructor; 6418 return; 6419 } 6420 6421 // C++ [over.match.funcs]p8: (proposed DR resolution) 6422 // A constructor inherited from class type C that has a first parameter 6423 // of type "reference to P" (including such a constructor instantiated 6424 // from a template) is excluded from the set of candidate functions when 6425 // constructing an object of type cv D if the argument list has exactly 6426 // one argument and D is reference-related to P and P is reference-related 6427 // to C. 6428 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6429 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6430 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6431 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6432 QualType C = Context.getRecordType(Constructor->getParent()); 6433 QualType D = Context.getRecordType(Shadow->getParent()); 6434 SourceLocation Loc = Args.front()->getExprLoc(); 6435 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6436 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6437 Candidate.Viable = false; 6438 Candidate.FailureKind = ovl_fail_inhctor_slice; 6439 return; 6440 } 6441 } 6442 6443 // Check that the constructor is capable of constructing an object in the 6444 // destination address space. 6445 if (!Qualifiers::isAddressSpaceSupersetOf( 6446 Constructor->getMethodQualifiers().getAddressSpace(), 6447 CandidateSet.getDestAS())) { 6448 Candidate.Viable = false; 6449 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; 6450 } 6451 } 6452 6453 unsigned NumParams = Proto->getNumParams(); 6454 6455 // (C++ 13.3.2p2): A candidate function having fewer than m 6456 // parameters is viable only if it has an ellipsis in its parameter 6457 // list (8.3.5). 6458 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6459 !Proto->isVariadic() && 6460 shouldEnforceArgLimit(PartialOverloading, Function)) { 6461 Candidate.Viable = false; 6462 Candidate.FailureKind = ovl_fail_too_many_arguments; 6463 return; 6464 } 6465 6466 // (C++ 13.3.2p2): A candidate function having more than m parameters 6467 // is viable only if the (m+1)st parameter has a default argument 6468 // (8.3.6). For the purposes of overload resolution, the 6469 // parameter list is truncated on the right, so that there are 6470 // exactly m parameters. 6471 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6472 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6473 // Not enough arguments. 6474 Candidate.Viable = false; 6475 Candidate.FailureKind = ovl_fail_too_few_arguments; 6476 return; 6477 } 6478 6479 // (CUDA B.1): Check for invalid calls between targets. 6480 if (getLangOpts().CUDA) 6481 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6482 // Skip the check for callers that are implicit members, because in this 6483 // case we may not yet know what the member's target is; the target is 6484 // inferred for the member automatically, based on the bases and fields of 6485 // the class. 6486 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6487 Candidate.Viable = false; 6488 Candidate.FailureKind = ovl_fail_bad_target; 6489 return; 6490 } 6491 6492 if (Function->getTrailingRequiresClause()) { 6493 ConstraintSatisfaction Satisfaction; 6494 if (CheckFunctionConstraints(Function, Satisfaction) || 6495 !Satisfaction.IsSatisfied) { 6496 Candidate.Viable = false; 6497 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6498 return; 6499 } 6500 } 6501 6502 // Determine the implicit conversion sequences for each of the 6503 // arguments. 6504 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6505 unsigned ConvIdx = 6506 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; 6507 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6508 // We already formed a conversion sequence for this parameter during 6509 // template argument deduction. 6510 } else if (ArgIdx < NumParams) { 6511 // (C++ 13.3.2p3): for F to be a viable function, there shall 6512 // exist for each argument an implicit conversion sequence 6513 // (13.3.3.1) that converts that argument to the corresponding 6514 // parameter of F. 6515 QualType ParamType = Proto->getParamType(ArgIdx); 6516 Candidate.Conversions[ConvIdx] = TryCopyInitialization( 6517 *this, Args[ArgIdx], ParamType, SuppressUserConversions, 6518 /*InOverloadResolution=*/true, 6519 /*AllowObjCWritebackConversion=*/ 6520 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); 6521 if (Candidate.Conversions[ConvIdx].isBad()) { 6522 Candidate.Viable = false; 6523 Candidate.FailureKind = ovl_fail_bad_conversion; 6524 return; 6525 } 6526 } else { 6527 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6528 // argument for which there is no corresponding parameter is 6529 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6530 Candidate.Conversions[ConvIdx].setEllipsis(); 6531 } 6532 } 6533 6534 if (EnableIfAttr *FailedAttr = 6535 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { 6536 Candidate.Viable = false; 6537 Candidate.FailureKind = ovl_fail_enable_if; 6538 Candidate.DeductionFailure.Data = FailedAttr; 6539 return; 6540 } 6541 } 6542 6543 ObjCMethodDecl * 6544 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6545 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6546 if (Methods.size() <= 1) 6547 return nullptr; 6548 6549 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6550 bool Match = true; 6551 ObjCMethodDecl *Method = Methods[b]; 6552 unsigned NumNamedArgs = Sel.getNumArgs(); 6553 // Method might have more arguments than selector indicates. This is due 6554 // to addition of c-style arguments in method. 6555 if (Method->param_size() > NumNamedArgs) 6556 NumNamedArgs = Method->param_size(); 6557 if (Args.size() < NumNamedArgs) 6558 continue; 6559 6560 for (unsigned i = 0; i < NumNamedArgs; i++) { 6561 // We can't do any type-checking on a type-dependent argument. 6562 if (Args[i]->isTypeDependent()) { 6563 Match = false; 6564 break; 6565 } 6566 6567 ParmVarDecl *param = Method->parameters()[i]; 6568 Expr *argExpr = Args[i]; 6569 assert(argExpr && "SelectBestMethod(): missing expression"); 6570 6571 // Strip the unbridged-cast placeholder expression off unless it's 6572 // a consumed argument. 6573 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6574 !param->hasAttr<CFConsumedAttr>()) 6575 argExpr = stripARCUnbridgedCast(argExpr); 6576 6577 // If the parameter is __unknown_anytype, move on to the next method. 6578 if (param->getType() == Context.UnknownAnyTy) { 6579 Match = false; 6580 break; 6581 } 6582 6583 ImplicitConversionSequence ConversionState 6584 = TryCopyInitialization(*this, argExpr, param->getType(), 6585 /*SuppressUserConversions*/false, 6586 /*InOverloadResolution=*/true, 6587 /*AllowObjCWritebackConversion=*/ 6588 getLangOpts().ObjCAutoRefCount, 6589 /*AllowExplicit*/false); 6590 // This function looks for a reasonably-exact match, so we consider 6591 // incompatible pointer conversions to be a failure here. 6592 if (ConversionState.isBad() || 6593 (ConversionState.isStandard() && 6594 ConversionState.Standard.Second == 6595 ICK_Incompatible_Pointer_Conversion)) { 6596 Match = false; 6597 break; 6598 } 6599 } 6600 // Promote additional arguments to variadic methods. 6601 if (Match && Method->isVariadic()) { 6602 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6603 if (Args[i]->isTypeDependent()) { 6604 Match = false; 6605 break; 6606 } 6607 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6608 nullptr); 6609 if (Arg.isInvalid()) { 6610 Match = false; 6611 break; 6612 } 6613 } 6614 } else { 6615 // Check for extra arguments to non-variadic methods. 6616 if (Args.size() != NumNamedArgs) 6617 Match = false; 6618 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6619 // Special case when selectors have no argument. In this case, select 6620 // one with the most general result type of 'id'. 6621 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6622 QualType ReturnT = Methods[b]->getReturnType(); 6623 if (ReturnT->isObjCIdType()) 6624 return Methods[b]; 6625 } 6626 } 6627 } 6628 6629 if (Match) 6630 return Method; 6631 } 6632 return nullptr; 6633 } 6634 6635 static bool convertArgsForAvailabilityChecks( 6636 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, 6637 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, 6638 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { 6639 if (ThisArg) { 6640 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6641 assert(!isa<CXXConstructorDecl>(Method) && 6642 "Shouldn't have `this` for ctors!"); 6643 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6644 ExprResult R = S.PerformObjectArgumentInitialization( 6645 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6646 if (R.isInvalid()) 6647 return false; 6648 ConvertedThis = R.get(); 6649 } else { 6650 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6651 (void)MD; 6652 assert((MissingImplicitThis || MD->isStatic() || 6653 isa<CXXConstructorDecl>(MD)) && 6654 "Expected `this` for non-ctor instance methods"); 6655 } 6656 ConvertedThis = nullptr; 6657 } 6658 6659 // Ignore any variadic arguments. Converting them is pointless, since the 6660 // user can't refer to them in the function condition. 6661 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6662 6663 // Convert the arguments. 6664 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6665 ExprResult R; 6666 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6667 S.Context, Function->getParamDecl(I)), 6668 SourceLocation(), Args[I]); 6669 6670 if (R.isInvalid()) 6671 return false; 6672 6673 ConvertedArgs.push_back(R.get()); 6674 } 6675 6676 if (Trap.hasErrorOccurred()) 6677 return false; 6678 6679 // Push default arguments if needed. 6680 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6681 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6682 ParmVarDecl *P = Function->getParamDecl(i); 6683 if (!P->hasDefaultArg()) 6684 return false; 6685 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); 6686 if (R.isInvalid()) 6687 return false; 6688 ConvertedArgs.push_back(R.get()); 6689 } 6690 6691 if (Trap.hasErrorOccurred()) 6692 return false; 6693 } 6694 return true; 6695 } 6696 6697 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, 6698 SourceLocation CallLoc, 6699 ArrayRef<Expr *> Args, 6700 bool MissingImplicitThis) { 6701 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); 6702 if (EnableIfAttrs.begin() == EnableIfAttrs.end()) 6703 return nullptr; 6704 6705 SFINAETrap Trap(*this); 6706 SmallVector<Expr *, 16> ConvertedArgs; 6707 // FIXME: We should look into making enable_if late-parsed. 6708 Expr *DiscardedThis; 6709 if (!convertArgsForAvailabilityChecks( 6710 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, 6711 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6712 return *EnableIfAttrs.begin(); 6713 6714 for (auto *EIA : EnableIfAttrs) { 6715 APValue Result; 6716 // FIXME: This doesn't consider value-dependent cases, because doing so is 6717 // very difficult. Ideally, we should handle them more gracefully. 6718 if (EIA->getCond()->isValueDependent() || 6719 !EIA->getCond()->EvaluateWithSubstitution( 6720 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) 6721 return EIA; 6722 6723 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6724 return EIA; 6725 } 6726 return nullptr; 6727 } 6728 6729 template <typename CheckFn> 6730 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6731 bool ArgDependent, SourceLocation Loc, 6732 CheckFn &&IsSuccessful) { 6733 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6734 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6735 if (ArgDependent == DIA->getArgDependent()) 6736 Attrs.push_back(DIA); 6737 } 6738 6739 // Common case: No diagnose_if attributes, so we can quit early. 6740 if (Attrs.empty()) 6741 return false; 6742 6743 auto WarningBegin = std::stable_partition( 6744 Attrs.begin(), Attrs.end(), 6745 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6746 6747 // Note that diagnose_if attributes are late-parsed, so they appear in the 6748 // correct order (unlike enable_if attributes). 6749 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6750 IsSuccessful); 6751 if (ErrAttr != WarningBegin) { 6752 const DiagnoseIfAttr *DIA = *ErrAttr; 6753 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6754 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6755 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6756 return true; 6757 } 6758 6759 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6760 if (IsSuccessful(DIA)) { 6761 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6762 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6763 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6764 } 6765 6766 return false; 6767 } 6768 6769 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6770 const Expr *ThisArg, 6771 ArrayRef<const Expr *> Args, 6772 SourceLocation Loc) { 6773 return diagnoseDiagnoseIfAttrsWith( 6774 *this, Function, /*ArgDependent=*/true, Loc, 6775 [&](const DiagnoseIfAttr *DIA) { 6776 APValue Result; 6777 // It's sane to use the same Args for any redecl of this function, since 6778 // EvaluateWithSubstitution only cares about the position of each 6779 // argument in the arg list, not the ParmVarDecl* it maps to. 6780 if (!DIA->getCond()->EvaluateWithSubstitution( 6781 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6782 return false; 6783 return Result.isInt() && Result.getInt().getBoolValue(); 6784 }); 6785 } 6786 6787 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6788 SourceLocation Loc) { 6789 return diagnoseDiagnoseIfAttrsWith( 6790 *this, ND, /*ArgDependent=*/false, Loc, 6791 [&](const DiagnoseIfAttr *DIA) { 6792 bool Result; 6793 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6794 Result; 6795 }); 6796 } 6797 6798 /// Add all of the function declarations in the given function set to 6799 /// the overload candidate set. 6800 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6801 ArrayRef<Expr *> Args, 6802 OverloadCandidateSet &CandidateSet, 6803 TemplateArgumentListInfo *ExplicitTemplateArgs, 6804 bool SuppressUserConversions, 6805 bool PartialOverloading, 6806 bool FirstArgumentIsBase) { 6807 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6808 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6809 ArrayRef<Expr *> FunctionArgs = Args; 6810 6811 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 6812 FunctionDecl *FD = 6813 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 6814 6815 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6816 QualType ObjectType; 6817 Expr::Classification ObjectClassification; 6818 if (Args.size() > 0) { 6819 if (Expr *E = Args[0]) { 6820 // Use the explicit base to restrict the lookup: 6821 ObjectType = E->getType(); 6822 // Pointers in the object arguments are implicitly dereferenced, so we 6823 // always classify them as l-values. 6824 if (!ObjectType.isNull() && ObjectType->isPointerType()) 6825 ObjectClassification = Expr::Classification::makeSimpleLValue(); 6826 else 6827 ObjectClassification = E->Classify(Context); 6828 } // .. else there is an implicit base. 6829 FunctionArgs = Args.slice(1); 6830 } 6831 if (FunTmpl) { 6832 AddMethodTemplateCandidate( 6833 FunTmpl, F.getPair(), 6834 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6835 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6836 FunctionArgs, CandidateSet, SuppressUserConversions, 6837 PartialOverloading); 6838 } else { 6839 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6840 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6841 ObjectClassification, FunctionArgs, CandidateSet, 6842 SuppressUserConversions, PartialOverloading); 6843 } 6844 } else { 6845 // This branch handles both standalone functions and static methods. 6846 6847 // Slice the first argument (which is the base) when we access 6848 // static method as non-static. 6849 if (Args.size() > 0 && 6850 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6851 !isa<CXXConstructorDecl>(FD)))) { 6852 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6853 FunctionArgs = Args.slice(1); 6854 } 6855 if (FunTmpl) { 6856 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6857 ExplicitTemplateArgs, FunctionArgs, 6858 CandidateSet, SuppressUserConversions, 6859 PartialOverloading); 6860 } else { 6861 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6862 SuppressUserConversions, PartialOverloading); 6863 } 6864 } 6865 } 6866 } 6867 6868 /// AddMethodCandidate - Adds a named decl (which is some kind of 6869 /// method) as a method candidate to the given overload set. 6870 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, 6871 Expr::Classification ObjectClassification, 6872 ArrayRef<Expr *> Args, 6873 OverloadCandidateSet &CandidateSet, 6874 bool SuppressUserConversions, 6875 OverloadCandidateParamOrder PO) { 6876 NamedDecl *Decl = FoundDecl.getDecl(); 6877 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 6878 6879 if (isa<UsingShadowDecl>(Decl)) 6880 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 6881 6882 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 6883 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 6884 "Expected a member function template"); 6885 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 6886 /*ExplicitArgs*/ nullptr, ObjectType, 6887 ObjectClassification, Args, CandidateSet, 6888 SuppressUserConversions, false, PO); 6889 } else { 6890 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 6891 ObjectType, ObjectClassification, Args, CandidateSet, 6892 SuppressUserConversions, false, None, PO); 6893 } 6894 } 6895 6896 /// AddMethodCandidate - Adds the given C++ member function to the set 6897 /// of candidate functions, using the given function call arguments 6898 /// and the object argument (@c Object). For example, in a call 6899 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 6900 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 6901 /// allow user-defined conversions via constructors or conversion 6902 /// operators. 6903 void 6904 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 6905 CXXRecordDecl *ActingContext, QualType ObjectType, 6906 Expr::Classification ObjectClassification, 6907 ArrayRef<Expr *> Args, 6908 OverloadCandidateSet &CandidateSet, 6909 bool SuppressUserConversions, 6910 bool PartialOverloading, 6911 ConversionSequenceList EarlyConversions, 6912 OverloadCandidateParamOrder PO) { 6913 const FunctionProtoType *Proto 6914 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 6915 assert(Proto && "Methods without a prototype cannot be overloaded"); 6916 assert(!isa<CXXConstructorDecl>(Method) && 6917 "Use AddOverloadCandidate for constructors"); 6918 6919 if (!CandidateSet.isNewCandidate(Method, PO)) 6920 return; 6921 6922 // C++11 [class.copy]p23: [DR1402] 6923 // A defaulted move assignment operator that is defined as deleted is 6924 // ignored by overload resolution. 6925 if (Method->isDefaulted() && Method->isDeleted() && 6926 Method->isMoveAssignmentOperator()) 6927 return; 6928 6929 // Overload resolution is always an unevaluated context. 6930 EnterExpressionEvaluationContext Unevaluated( 6931 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6932 6933 // Add this candidate 6934 OverloadCandidate &Candidate = 6935 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 6936 Candidate.FoundDecl = FoundDecl; 6937 Candidate.Function = Method; 6938 Candidate.RewriteKind = 6939 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); 6940 Candidate.IsSurrogate = false; 6941 Candidate.IgnoreObjectArgument = false; 6942 Candidate.ExplicitCallArguments = Args.size(); 6943 6944 unsigned NumParams = Proto->getNumParams(); 6945 6946 // (C++ 13.3.2p2): A candidate function having fewer than m 6947 // parameters is viable only if it has an ellipsis in its parameter 6948 // list (8.3.5). 6949 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6950 !Proto->isVariadic() && 6951 shouldEnforceArgLimit(PartialOverloading, Method)) { 6952 Candidate.Viable = false; 6953 Candidate.FailureKind = ovl_fail_too_many_arguments; 6954 return; 6955 } 6956 6957 // (C++ 13.3.2p2): A candidate function having more than m parameters 6958 // is viable only if the (m+1)st parameter has a default argument 6959 // (8.3.6). For the purposes of overload resolution, the 6960 // parameter list is truncated on the right, so that there are 6961 // exactly m parameters. 6962 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 6963 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6964 // Not enough arguments. 6965 Candidate.Viable = false; 6966 Candidate.FailureKind = ovl_fail_too_few_arguments; 6967 return; 6968 } 6969 6970 Candidate.Viable = true; 6971 6972 if (Method->isStatic() || ObjectType.isNull()) 6973 // The implicit object argument is ignored. 6974 Candidate.IgnoreObjectArgument = true; 6975 else { 6976 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 6977 // Determine the implicit conversion sequence for the object 6978 // parameter. 6979 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( 6980 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6981 Method, ActingContext); 6982 if (Candidate.Conversions[ConvIdx].isBad()) { 6983 Candidate.Viable = false; 6984 Candidate.FailureKind = ovl_fail_bad_conversion; 6985 return; 6986 } 6987 } 6988 6989 // (CUDA B.1): Check for invalid calls between targets. 6990 if (getLangOpts().CUDA) 6991 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6992 if (!IsAllowedCUDACall(Caller, Method)) { 6993 Candidate.Viable = false; 6994 Candidate.FailureKind = ovl_fail_bad_target; 6995 return; 6996 } 6997 6998 if (Method->getTrailingRequiresClause()) { 6999 ConstraintSatisfaction Satisfaction; 7000 if (CheckFunctionConstraints(Method, Satisfaction) || 7001 !Satisfaction.IsSatisfied) { 7002 Candidate.Viable = false; 7003 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7004 return; 7005 } 7006 } 7007 7008 // Determine the implicit conversion sequences for each of the 7009 // arguments. 7010 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 7011 unsigned ConvIdx = 7012 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); 7013 if (Candidate.Conversions[ConvIdx].isInitialized()) { 7014 // We already formed a conversion sequence for this parameter during 7015 // template argument deduction. 7016 } else if (ArgIdx < NumParams) { 7017 // (C++ 13.3.2p3): for F to be a viable function, there shall 7018 // exist for each argument an implicit conversion sequence 7019 // (13.3.3.1) that converts that argument to the corresponding 7020 // parameter of F. 7021 QualType ParamType = Proto->getParamType(ArgIdx); 7022 Candidate.Conversions[ConvIdx] 7023 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7024 SuppressUserConversions, 7025 /*InOverloadResolution=*/true, 7026 /*AllowObjCWritebackConversion=*/ 7027 getLangOpts().ObjCAutoRefCount); 7028 if (Candidate.Conversions[ConvIdx].isBad()) { 7029 Candidate.Viable = false; 7030 Candidate.FailureKind = ovl_fail_bad_conversion; 7031 return; 7032 } 7033 } else { 7034 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7035 // argument for which there is no corresponding parameter is 7036 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 7037 Candidate.Conversions[ConvIdx].setEllipsis(); 7038 } 7039 } 7040 7041 if (EnableIfAttr *FailedAttr = 7042 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { 7043 Candidate.Viable = false; 7044 Candidate.FailureKind = ovl_fail_enable_if; 7045 Candidate.DeductionFailure.Data = FailedAttr; 7046 return; 7047 } 7048 7049 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && 7050 !Method->getAttr<TargetAttr>()->isDefaultVersion()) { 7051 Candidate.Viable = false; 7052 Candidate.FailureKind = ovl_non_default_multiversion_function; 7053 } 7054 } 7055 7056 /// Add a C++ member function template as a candidate to the candidate 7057 /// set, using template argument deduction to produce an appropriate member 7058 /// function template specialization. 7059 void Sema::AddMethodTemplateCandidate( 7060 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, 7061 CXXRecordDecl *ActingContext, 7062 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, 7063 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, 7064 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7065 bool PartialOverloading, OverloadCandidateParamOrder PO) { 7066 if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) 7067 return; 7068 7069 // C++ [over.match.funcs]p7: 7070 // In each case where a candidate is a function template, candidate 7071 // function template specializations are generated using template argument 7072 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7073 // candidate functions in the usual way.113) A given name can refer to one 7074 // or more function templates and also to a set of overloaded non-template 7075 // functions. In such a case, the candidate functions generated from each 7076 // function template are combined with the set of non-template candidate 7077 // functions. 7078 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7079 FunctionDecl *Specialization = nullptr; 7080 ConversionSequenceList Conversions; 7081 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7082 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 7083 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7084 return CheckNonDependentConversions( 7085 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 7086 SuppressUserConversions, ActingContext, ObjectType, 7087 ObjectClassification, PO); 7088 })) { 7089 OverloadCandidate &Candidate = 7090 CandidateSet.addCandidate(Conversions.size(), Conversions); 7091 Candidate.FoundDecl = FoundDecl; 7092 Candidate.Function = MethodTmpl->getTemplatedDecl(); 7093 Candidate.Viable = false; 7094 Candidate.RewriteKind = 7095 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7096 Candidate.IsSurrogate = false; 7097 Candidate.IgnoreObjectArgument = 7098 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 7099 ObjectType.isNull(); 7100 Candidate.ExplicitCallArguments = Args.size(); 7101 if (Result == TDK_NonDependentConversionFailure) 7102 Candidate.FailureKind = ovl_fail_bad_conversion; 7103 else { 7104 Candidate.FailureKind = ovl_fail_bad_deduction; 7105 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7106 Info); 7107 } 7108 return; 7109 } 7110 7111 // Add the function template specialization produced by template argument 7112 // deduction as a candidate. 7113 assert(Specialization && "Missing member function template specialization?"); 7114 assert(isa<CXXMethodDecl>(Specialization) && 7115 "Specialization is not a member function?"); 7116 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 7117 ActingContext, ObjectType, ObjectClassification, Args, 7118 CandidateSet, SuppressUserConversions, PartialOverloading, 7119 Conversions, PO); 7120 } 7121 7122 /// Determine whether a given function template has a simple explicit specifier 7123 /// or a non-value-dependent explicit-specification that evaluates to true. 7124 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { 7125 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); 7126 } 7127 7128 /// Add a C++ function template specialization as a candidate 7129 /// in the candidate set, using template argument deduction to produce 7130 /// an appropriate function template specialization. 7131 void Sema::AddTemplateOverloadCandidate( 7132 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7133 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 7134 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7135 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, 7136 OverloadCandidateParamOrder PO) { 7137 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) 7138 return; 7139 7140 // If the function template has a non-dependent explicit specification, 7141 // exclude it now if appropriate; we are not permitted to perform deduction 7142 // and substitution in this case. 7143 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7144 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7145 Candidate.FoundDecl = FoundDecl; 7146 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7147 Candidate.Viable = false; 7148 Candidate.FailureKind = ovl_fail_explicit; 7149 return; 7150 } 7151 7152 // C++ [over.match.funcs]p7: 7153 // In each case where a candidate is a function template, candidate 7154 // function template specializations are generated using template argument 7155 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7156 // candidate functions in the usual way.113) A given name can refer to one 7157 // or more function templates and also to a set of overloaded non-template 7158 // functions. In such a case, the candidate functions generated from each 7159 // function template are combined with the set of non-template candidate 7160 // functions. 7161 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7162 FunctionDecl *Specialization = nullptr; 7163 ConversionSequenceList Conversions; 7164 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7165 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 7166 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7167 return CheckNonDependentConversions( 7168 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, 7169 SuppressUserConversions, nullptr, QualType(), {}, PO); 7170 })) { 7171 OverloadCandidate &Candidate = 7172 CandidateSet.addCandidate(Conversions.size(), Conversions); 7173 Candidate.FoundDecl = FoundDecl; 7174 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7175 Candidate.Viable = false; 7176 Candidate.RewriteKind = 7177 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7178 Candidate.IsSurrogate = false; 7179 Candidate.IsADLCandidate = IsADLCandidate; 7180 // Ignore the object argument if there is one, since we don't have an object 7181 // type. 7182 Candidate.IgnoreObjectArgument = 7183 isa<CXXMethodDecl>(Candidate.Function) && 7184 !isa<CXXConstructorDecl>(Candidate.Function); 7185 Candidate.ExplicitCallArguments = Args.size(); 7186 if (Result == TDK_NonDependentConversionFailure) 7187 Candidate.FailureKind = ovl_fail_bad_conversion; 7188 else { 7189 Candidate.FailureKind = ovl_fail_bad_deduction; 7190 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7191 Info); 7192 } 7193 return; 7194 } 7195 7196 // Add the function template specialization produced by template argument 7197 // deduction as a candidate. 7198 assert(Specialization && "Missing function template specialization?"); 7199 AddOverloadCandidate( 7200 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, 7201 PartialOverloading, AllowExplicit, 7202 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); 7203 } 7204 7205 /// Check that implicit conversion sequences can be formed for each argument 7206 /// whose corresponding parameter has a non-dependent type, per DR1391's 7207 /// [temp.deduct.call]p10. 7208 bool Sema::CheckNonDependentConversions( 7209 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 7210 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 7211 ConversionSequenceList &Conversions, bool SuppressUserConversions, 7212 CXXRecordDecl *ActingContext, QualType ObjectType, 7213 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { 7214 // FIXME: The cases in which we allow explicit conversions for constructor 7215 // arguments never consider calling a constructor template. It's not clear 7216 // that is correct. 7217 const bool AllowExplicit = false; 7218 7219 auto *FD = FunctionTemplate->getTemplatedDecl(); 7220 auto *Method = dyn_cast<CXXMethodDecl>(FD); 7221 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 7222 unsigned ThisConversions = HasThisConversion ? 1 : 0; 7223 7224 Conversions = 7225 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 7226 7227 // Overload resolution is always an unevaluated context. 7228 EnterExpressionEvaluationContext Unevaluated( 7229 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7230 7231 // For a method call, check the 'this' conversion here too. DR1391 doesn't 7232 // require that, but this check should never result in a hard error, and 7233 // overload resolution is permitted to sidestep instantiations. 7234 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 7235 !ObjectType.isNull()) { 7236 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7237 Conversions[ConvIdx] = TryObjectArgumentInitialization( 7238 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7239 Method, ActingContext); 7240 if (Conversions[ConvIdx].isBad()) 7241 return true; 7242 } 7243 7244 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 7245 ++I) { 7246 QualType ParamType = ParamTypes[I]; 7247 if (!ParamType->isDependentType()) { 7248 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed 7249 ? 0 7250 : (ThisConversions + I); 7251 Conversions[ConvIdx] 7252 = TryCopyInitialization(*this, Args[I], ParamType, 7253 SuppressUserConversions, 7254 /*InOverloadResolution=*/true, 7255 /*AllowObjCWritebackConversion=*/ 7256 getLangOpts().ObjCAutoRefCount, 7257 AllowExplicit); 7258 if (Conversions[ConvIdx].isBad()) 7259 return true; 7260 } 7261 } 7262 7263 return false; 7264 } 7265 7266 /// Determine whether this is an allowable conversion from the result 7267 /// of an explicit conversion operator to the expected type, per C++ 7268 /// [over.match.conv]p1 and [over.match.ref]p1. 7269 /// 7270 /// \param ConvType The return type of the conversion function. 7271 /// 7272 /// \param ToType The type we are converting to. 7273 /// 7274 /// \param AllowObjCPointerConversion Allow a conversion from one 7275 /// Objective-C pointer to another. 7276 /// 7277 /// \returns true if the conversion is allowable, false otherwise. 7278 static bool isAllowableExplicitConversion(Sema &S, 7279 QualType ConvType, QualType ToType, 7280 bool AllowObjCPointerConversion) { 7281 QualType ToNonRefType = ToType.getNonReferenceType(); 7282 7283 // Easy case: the types are the same. 7284 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 7285 return true; 7286 7287 // Allow qualification conversions. 7288 bool ObjCLifetimeConversion; 7289 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 7290 ObjCLifetimeConversion)) 7291 return true; 7292 7293 // If we're not allowed to consider Objective-C pointer conversions, 7294 // we're done. 7295 if (!AllowObjCPointerConversion) 7296 return false; 7297 7298 // Is this an Objective-C pointer conversion? 7299 bool IncompatibleObjC = false; 7300 QualType ConvertedType; 7301 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 7302 IncompatibleObjC); 7303 } 7304 7305 /// AddConversionCandidate - Add a C++ conversion function as a 7306 /// candidate in the candidate set (C++ [over.match.conv], 7307 /// C++ [over.match.copy]). From is the expression we're converting from, 7308 /// and ToType is the type that we're eventually trying to convert to 7309 /// (which may or may not be the same type as the type that the 7310 /// conversion function produces). 7311 void Sema::AddConversionCandidate( 7312 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, 7313 CXXRecordDecl *ActingContext, Expr *From, QualType ToType, 7314 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7315 bool AllowExplicit, bool AllowResultConversion) { 7316 assert(!Conversion->getDescribedFunctionTemplate() && 7317 "Conversion function templates use AddTemplateConversionCandidate"); 7318 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 7319 if (!CandidateSet.isNewCandidate(Conversion)) 7320 return; 7321 7322 // If the conversion function has an undeduced return type, trigger its 7323 // deduction now. 7324 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 7325 if (DeduceReturnType(Conversion, From->getExprLoc())) 7326 return; 7327 ConvType = Conversion->getConversionType().getNonReferenceType(); 7328 } 7329 7330 // If we don't allow any conversion of the result type, ignore conversion 7331 // functions that don't convert to exactly (possibly cv-qualified) T. 7332 if (!AllowResultConversion && 7333 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 7334 return; 7335 7336 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 7337 // operator is only a candidate if its return type is the target type or 7338 // can be converted to the target type with a qualification conversion. 7339 // 7340 // FIXME: Include such functions in the candidate list and explain why we 7341 // can't select them. 7342 if (Conversion->isExplicit() && 7343 !isAllowableExplicitConversion(*this, ConvType, ToType, 7344 AllowObjCConversionOnExplicit)) 7345 return; 7346 7347 // Overload resolution is always an unevaluated context. 7348 EnterExpressionEvaluationContext Unevaluated( 7349 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7350 7351 // Add this candidate 7352 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 7353 Candidate.FoundDecl = FoundDecl; 7354 Candidate.Function = Conversion; 7355 Candidate.IsSurrogate = false; 7356 Candidate.IgnoreObjectArgument = false; 7357 Candidate.FinalConversion.setAsIdentityConversion(); 7358 Candidate.FinalConversion.setFromType(ConvType); 7359 Candidate.FinalConversion.setAllToTypes(ToType); 7360 Candidate.Viable = true; 7361 Candidate.ExplicitCallArguments = 1; 7362 7363 // Explicit functions are not actually candidates at all if we're not 7364 // allowing them in this context, but keep them around so we can point 7365 // to them in diagnostics. 7366 if (!AllowExplicit && Conversion->isExplicit()) { 7367 Candidate.Viable = false; 7368 Candidate.FailureKind = ovl_fail_explicit; 7369 return; 7370 } 7371 7372 // C++ [over.match.funcs]p4: 7373 // For conversion functions, the function is considered to be a member of 7374 // the class of the implicit implied object argument for the purpose of 7375 // defining the type of the implicit object parameter. 7376 // 7377 // Determine the implicit conversion sequence for the implicit 7378 // object parameter. 7379 QualType ImplicitParamType = From->getType(); 7380 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 7381 ImplicitParamType = FromPtrType->getPointeeType(); 7382 CXXRecordDecl *ConversionContext 7383 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); 7384 7385 Candidate.Conversions[0] = TryObjectArgumentInitialization( 7386 *this, CandidateSet.getLocation(), From->getType(), 7387 From->Classify(Context), Conversion, ConversionContext); 7388 7389 if (Candidate.Conversions[0].isBad()) { 7390 Candidate.Viable = false; 7391 Candidate.FailureKind = ovl_fail_bad_conversion; 7392 return; 7393 } 7394 7395 if (Conversion->getTrailingRequiresClause()) { 7396 ConstraintSatisfaction Satisfaction; 7397 if (CheckFunctionConstraints(Conversion, Satisfaction) || 7398 !Satisfaction.IsSatisfied) { 7399 Candidate.Viable = false; 7400 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7401 return; 7402 } 7403 } 7404 7405 // We won't go through a user-defined type conversion function to convert a 7406 // derived to base as such conversions are given Conversion Rank. They only 7407 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 7408 QualType FromCanon 7409 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 7410 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 7411 if (FromCanon == ToCanon || 7412 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 7413 Candidate.Viable = false; 7414 Candidate.FailureKind = ovl_fail_trivial_conversion; 7415 return; 7416 } 7417 7418 // To determine what the conversion from the result of calling the 7419 // conversion function to the type we're eventually trying to 7420 // convert to (ToType), we need to synthesize a call to the 7421 // conversion function and attempt copy initialization from it. This 7422 // makes sure that we get the right semantics with respect to 7423 // lvalues/rvalues and the type. Fortunately, we can allocate this 7424 // call on the stack and we don't need its arguments to be 7425 // well-formed. 7426 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), 7427 VK_LValue, From->getBeginLoc()); 7428 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 7429 Context.getPointerType(Conversion->getType()), 7430 CK_FunctionToPointerDecay, &ConversionRef, 7431 VK_PRValue, FPOptionsOverride()); 7432 7433 QualType ConversionType = Conversion->getConversionType(); 7434 if (!isCompleteType(From->getBeginLoc(), ConversionType)) { 7435 Candidate.Viable = false; 7436 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7437 return; 7438 } 7439 7440 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 7441 7442 // Note that it is safe to allocate CallExpr on the stack here because 7443 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 7444 // allocator). 7445 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 7446 7447 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; 7448 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( 7449 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); 7450 7451 ImplicitConversionSequence ICS = 7452 TryCopyInitialization(*this, TheTemporaryCall, ToType, 7453 /*SuppressUserConversions=*/true, 7454 /*InOverloadResolution=*/false, 7455 /*AllowObjCWritebackConversion=*/false); 7456 7457 switch (ICS.getKind()) { 7458 case ImplicitConversionSequence::StandardConversion: 7459 Candidate.FinalConversion = ICS.Standard; 7460 7461 // C++ [over.ics.user]p3: 7462 // If the user-defined conversion is specified by a specialization of a 7463 // conversion function template, the second standard conversion sequence 7464 // shall have exact match rank. 7465 if (Conversion->getPrimaryTemplate() && 7466 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 7467 Candidate.Viable = false; 7468 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 7469 return; 7470 } 7471 7472 // C++0x [dcl.init.ref]p5: 7473 // In the second case, if the reference is an rvalue reference and 7474 // the second standard conversion sequence of the user-defined 7475 // conversion sequence includes an lvalue-to-rvalue conversion, the 7476 // program is ill-formed. 7477 if (ToType->isRValueReferenceType() && 7478 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 7479 Candidate.Viable = false; 7480 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7481 return; 7482 } 7483 break; 7484 7485 case ImplicitConversionSequence::BadConversion: 7486 Candidate.Viable = false; 7487 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7488 return; 7489 7490 default: 7491 llvm_unreachable( 7492 "Can only end up with a standard conversion sequence or failure"); 7493 } 7494 7495 if (EnableIfAttr *FailedAttr = 7496 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7497 Candidate.Viable = false; 7498 Candidate.FailureKind = ovl_fail_enable_if; 7499 Candidate.DeductionFailure.Data = FailedAttr; 7500 return; 7501 } 7502 7503 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && 7504 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { 7505 Candidate.Viable = false; 7506 Candidate.FailureKind = ovl_non_default_multiversion_function; 7507 } 7508 } 7509 7510 /// Adds a conversion function template specialization 7511 /// candidate to the overload set, using template argument deduction 7512 /// to deduce the template arguments of the conversion function 7513 /// template from the type that we are converting to (C++ 7514 /// [temp.deduct.conv]). 7515 void Sema::AddTemplateConversionCandidate( 7516 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7517 CXXRecordDecl *ActingDC, Expr *From, QualType ToType, 7518 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7519 bool AllowExplicit, bool AllowResultConversion) { 7520 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7521 "Only conversion function templates permitted here"); 7522 7523 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7524 return; 7525 7526 // If the function template has a non-dependent explicit specification, 7527 // exclude it now if appropriate; we are not permitted to perform deduction 7528 // and substitution in this case. 7529 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7530 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7531 Candidate.FoundDecl = FoundDecl; 7532 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7533 Candidate.Viable = false; 7534 Candidate.FailureKind = ovl_fail_explicit; 7535 return; 7536 } 7537 7538 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7539 CXXConversionDecl *Specialization = nullptr; 7540 if (TemplateDeductionResult Result 7541 = DeduceTemplateArguments(FunctionTemplate, ToType, 7542 Specialization, Info)) { 7543 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7544 Candidate.FoundDecl = FoundDecl; 7545 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7546 Candidate.Viable = false; 7547 Candidate.FailureKind = ovl_fail_bad_deduction; 7548 Candidate.IsSurrogate = false; 7549 Candidate.IgnoreObjectArgument = false; 7550 Candidate.ExplicitCallArguments = 1; 7551 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7552 Info); 7553 return; 7554 } 7555 7556 // Add the conversion function template specialization produced by 7557 // template argument deduction as a candidate. 7558 assert(Specialization && "Missing function template specialization?"); 7559 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7560 CandidateSet, AllowObjCConversionOnExplicit, 7561 AllowExplicit, AllowResultConversion); 7562 } 7563 7564 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7565 /// converts the given @c Object to a function pointer via the 7566 /// conversion function @c Conversion, and then attempts to call it 7567 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7568 /// the type of function that we'll eventually be calling. 7569 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7570 DeclAccessPair FoundDecl, 7571 CXXRecordDecl *ActingContext, 7572 const FunctionProtoType *Proto, 7573 Expr *Object, 7574 ArrayRef<Expr *> Args, 7575 OverloadCandidateSet& CandidateSet) { 7576 if (!CandidateSet.isNewCandidate(Conversion)) 7577 return; 7578 7579 // Overload resolution is always an unevaluated context. 7580 EnterExpressionEvaluationContext Unevaluated( 7581 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7582 7583 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7584 Candidate.FoundDecl = FoundDecl; 7585 Candidate.Function = nullptr; 7586 Candidate.Surrogate = Conversion; 7587 Candidate.Viable = true; 7588 Candidate.IsSurrogate = true; 7589 Candidate.IgnoreObjectArgument = false; 7590 Candidate.ExplicitCallArguments = Args.size(); 7591 7592 // Determine the implicit conversion sequence for the implicit 7593 // object parameter. 7594 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7595 *this, CandidateSet.getLocation(), Object->getType(), 7596 Object->Classify(Context), Conversion, ActingContext); 7597 if (ObjectInit.isBad()) { 7598 Candidate.Viable = false; 7599 Candidate.FailureKind = ovl_fail_bad_conversion; 7600 Candidate.Conversions[0] = ObjectInit; 7601 return; 7602 } 7603 7604 // The first conversion is actually a user-defined conversion whose 7605 // first conversion is ObjectInit's standard conversion (which is 7606 // effectively a reference binding). Record it as such. 7607 Candidate.Conversions[0].setUserDefined(); 7608 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7609 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7610 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7611 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7612 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7613 Candidate.Conversions[0].UserDefined.After 7614 = Candidate.Conversions[0].UserDefined.Before; 7615 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7616 7617 // Find the 7618 unsigned NumParams = Proto->getNumParams(); 7619 7620 // (C++ 13.3.2p2): A candidate function having fewer than m 7621 // parameters is viable only if it has an ellipsis in its parameter 7622 // list (8.3.5). 7623 if (Args.size() > NumParams && !Proto->isVariadic()) { 7624 Candidate.Viable = false; 7625 Candidate.FailureKind = ovl_fail_too_many_arguments; 7626 return; 7627 } 7628 7629 // Function types don't have any default arguments, so just check if 7630 // we have enough arguments. 7631 if (Args.size() < NumParams) { 7632 // Not enough arguments. 7633 Candidate.Viable = false; 7634 Candidate.FailureKind = ovl_fail_too_few_arguments; 7635 return; 7636 } 7637 7638 // Determine the implicit conversion sequences for each of the 7639 // arguments. 7640 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7641 if (ArgIdx < NumParams) { 7642 // (C++ 13.3.2p3): for F to be a viable function, there shall 7643 // exist for each argument an implicit conversion sequence 7644 // (13.3.3.1) that converts that argument to the corresponding 7645 // parameter of F. 7646 QualType ParamType = Proto->getParamType(ArgIdx); 7647 Candidate.Conversions[ArgIdx + 1] 7648 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7649 /*SuppressUserConversions=*/false, 7650 /*InOverloadResolution=*/false, 7651 /*AllowObjCWritebackConversion=*/ 7652 getLangOpts().ObjCAutoRefCount); 7653 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7654 Candidate.Viable = false; 7655 Candidate.FailureKind = ovl_fail_bad_conversion; 7656 return; 7657 } 7658 } else { 7659 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7660 // argument for which there is no corresponding parameter is 7661 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7662 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7663 } 7664 } 7665 7666 if (EnableIfAttr *FailedAttr = 7667 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7668 Candidate.Viable = false; 7669 Candidate.FailureKind = ovl_fail_enable_if; 7670 Candidate.DeductionFailure.Data = FailedAttr; 7671 return; 7672 } 7673 } 7674 7675 /// Add all of the non-member operator function declarations in the given 7676 /// function set to the overload candidate set. 7677 void Sema::AddNonMemberOperatorCandidates( 7678 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, 7679 OverloadCandidateSet &CandidateSet, 7680 TemplateArgumentListInfo *ExplicitTemplateArgs) { 7681 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 7682 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 7683 ArrayRef<Expr *> FunctionArgs = Args; 7684 7685 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 7686 FunctionDecl *FD = 7687 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 7688 7689 // Don't consider rewritten functions if we're not rewriting. 7690 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) 7691 continue; 7692 7693 assert(!isa<CXXMethodDecl>(FD) && 7694 "unqualified operator lookup found a member function"); 7695 7696 if (FunTmpl) { 7697 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, 7698 FunctionArgs, CandidateSet); 7699 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7700 AddTemplateOverloadCandidate( 7701 FunTmpl, F.getPair(), ExplicitTemplateArgs, 7702 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, 7703 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); 7704 } else { 7705 if (ExplicitTemplateArgs) 7706 continue; 7707 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); 7708 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7709 AddOverloadCandidate(FD, F.getPair(), 7710 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, 7711 false, false, true, false, ADLCallKind::NotADL, 7712 None, OverloadCandidateParamOrder::Reversed); 7713 } 7714 } 7715 } 7716 7717 /// Add overload candidates for overloaded operators that are 7718 /// member functions. 7719 /// 7720 /// Add the overloaded operator candidates that are member functions 7721 /// for the operator Op that was used in an operator expression such 7722 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7723 /// CandidateSet will store the added overload candidates. (C++ 7724 /// [over.match.oper]). 7725 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7726 SourceLocation OpLoc, 7727 ArrayRef<Expr *> Args, 7728 OverloadCandidateSet &CandidateSet, 7729 OverloadCandidateParamOrder PO) { 7730 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7731 7732 // C++ [over.match.oper]p3: 7733 // For a unary operator @ with an operand of a type whose 7734 // cv-unqualified version is T1, and for a binary operator @ with 7735 // a left operand of a type whose cv-unqualified version is T1 and 7736 // a right operand of a type whose cv-unqualified version is T2, 7737 // three sets of candidate functions, designated member 7738 // candidates, non-member candidates and built-in candidates, are 7739 // constructed as follows: 7740 QualType T1 = Args[0]->getType(); 7741 7742 // -- If T1 is a complete class type or a class currently being 7743 // defined, the set of member candidates is the result of the 7744 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7745 // the set of member candidates is empty. 7746 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7747 // Complete the type if it can be completed. 7748 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7749 return; 7750 // If the type is neither complete nor being defined, bail out now. 7751 if (!T1Rec->getDecl()->getDefinition()) 7752 return; 7753 7754 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7755 LookupQualifiedName(Operators, T1Rec->getDecl()); 7756 Operators.suppressDiagnostics(); 7757 7758 for (LookupResult::iterator Oper = Operators.begin(), 7759 OperEnd = Operators.end(); 7760 Oper != OperEnd; 7761 ++Oper) 7762 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7763 Args[0]->Classify(Context), Args.slice(1), 7764 CandidateSet, /*SuppressUserConversion=*/false, PO); 7765 } 7766 } 7767 7768 /// AddBuiltinCandidate - Add a candidate for a built-in 7769 /// operator. ResultTy and ParamTys are the result and parameter types 7770 /// of the built-in candidate, respectively. Args and NumArgs are the 7771 /// arguments being passed to the candidate. IsAssignmentOperator 7772 /// should be true when this built-in candidate is an assignment 7773 /// operator. NumContextualBoolArguments is the number of arguments 7774 /// (at the beginning of the argument list) that will be contextually 7775 /// converted to bool. 7776 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7777 OverloadCandidateSet& CandidateSet, 7778 bool IsAssignmentOperator, 7779 unsigned NumContextualBoolArguments) { 7780 // Overload resolution is always an unevaluated context. 7781 EnterExpressionEvaluationContext Unevaluated( 7782 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7783 7784 // Add this candidate 7785 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7786 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7787 Candidate.Function = nullptr; 7788 Candidate.IsSurrogate = false; 7789 Candidate.IgnoreObjectArgument = false; 7790 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7791 7792 // Determine the implicit conversion sequences for each of the 7793 // arguments. 7794 Candidate.Viable = true; 7795 Candidate.ExplicitCallArguments = Args.size(); 7796 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7797 // C++ [over.match.oper]p4: 7798 // For the built-in assignment operators, conversions of the 7799 // left operand are restricted as follows: 7800 // -- no temporaries are introduced to hold the left operand, and 7801 // -- no user-defined conversions are applied to the left 7802 // operand to achieve a type match with the left-most 7803 // parameter of a built-in candidate. 7804 // 7805 // We block these conversions by turning off user-defined 7806 // conversions, since that is the only way that initialization of 7807 // a reference to a non-class type can occur from something that 7808 // is not of the same type. 7809 if (ArgIdx < NumContextualBoolArguments) { 7810 assert(ParamTys[ArgIdx] == Context.BoolTy && 7811 "Contextual conversion to bool requires bool type"); 7812 Candidate.Conversions[ArgIdx] 7813 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7814 } else { 7815 Candidate.Conversions[ArgIdx] 7816 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7817 ArgIdx == 0 && IsAssignmentOperator, 7818 /*InOverloadResolution=*/false, 7819 /*AllowObjCWritebackConversion=*/ 7820 getLangOpts().ObjCAutoRefCount); 7821 } 7822 if (Candidate.Conversions[ArgIdx].isBad()) { 7823 Candidate.Viable = false; 7824 Candidate.FailureKind = ovl_fail_bad_conversion; 7825 break; 7826 } 7827 } 7828 } 7829 7830 namespace { 7831 7832 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7833 /// candidate operator functions for built-in operators (C++ 7834 /// [over.built]). The types are separated into pointer types and 7835 /// enumeration types. 7836 class BuiltinCandidateTypeSet { 7837 /// TypeSet - A set of types. 7838 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7839 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7840 7841 /// PointerTypes - The set of pointer types that will be used in the 7842 /// built-in candidates. 7843 TypeSet PointerTypes; 7844 7845 /// MemberPointerTypes - The set of member pointer types that will be 7846 /// used in the built-in candidates. 7847 TypeSet MemberPointerTypes; 7848 7849 /// EnumerationTypes - The set of enumeration types that will be 7850 /// used in the built-in candidates. 7851 TypeSet EnumerationTypes; 7852 7853 /// The set of vector types that will be used in the built-in 7854 /// candidates. 7855 TypeSet VectorTypes; 7856 7857 /// The set of matrix types that will be used in the built-in 7858 /// candidates. 7859 TypeSet MatrixTypes; 7860 7861 /// A flag indicating non-record types are viable candidates 7862 bool HasNonRecordTypes; 7863 7864 /// A flag indicating whether either arithmetic or enumeration types 7865 /// were present in the candidate set. 7866 bool HasArithmeticOrEnumeralTypes; 7867 7868 /// A flag indicating whether the nullptr type was present in the 7869 /// candidate set. 7870 bool HasNullPtrType; 7871 7872 /// Sema - The semantic analysis instance where we are building the 7873 /// candidate type set. 7874 Sema &SemaRef; 7875 7876 /// Context - The AST context in which we will build the type sets. 7877 ASTContext &Context; 7878 7879 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7880 const Qualifiers &VisibleQuals); 7881 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 7882 7883 public: 7884 /// iterator - Iterates through the types that are part of the set. 7885 typedef TypeSet::iterator iterator; 7886 7887 BuiltinCandidateTypeSet(Sema &SemaRef) 7888 : HasNonRecordTypes(false), 7889 HasArithmeticOrEnumeralTypes(false), 7890 HasNullPtrType(false), 7891 SemaRef(SemaRef), 7892 Context(SemaRef.Context) { } 7893 7894 void AddTypesConvertedFrom(QualType Ty, 7895 SourceLocation Loc, 7896 bool AllowUserConversions, 7897 bool AllowExplicitConversions, 7898 const Qualifiers &VisibleTypeConversionsQuals); 7899 7900 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } 7901 llvm::iterator_range<iterator> member_pointer_types() { 7902 return MemberPointerTypes; 7903 } 7904 llvm::iterator_range<iterator> enumeration_types() { 7905 return EnumerationTypes; 7906 } 7907 llvm::iterator_range<iterator> vector_types() { return VectorTypes; } 7908 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } 7909 7910 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } 7911 bool hasNonRecordTypes() { return HasNonRecordTypes; } 7912 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 7913 bool hasNullPtrType() const { return HasNullPtrType; } 7914 }; 7915 7916 } // end anonymous namespace 7917 7918 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 7919 /// the set of pointer types along with any more-qualified variants of 7920 /// that type. For example, if @p Ty is "int const *", this routine 7921 /// will add "int const *", "int const volatile *", "int const 7922 /// restrict *", and "int const volatile restrict *" to the set of 7923 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7924 /// false otherwise. 7925 /// 7926 /// FIXME: what to do about extended qualifiers? 7927 bool 7928 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7929 const Qualifiers &VisibleQuals) { 7930 7931 // Insert this type. 7932 if (!PointerTypes.insert(Ty)) 7933 return false; 7934 7935 QualType PointeeTy; 7936 const PointerType *PointerTy = Ty->getAs<PointerType>(); 7937 bool buildObjCPtr = false; 7938 if (!PointerTy) { 7939 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 7940 PointeeTy = PTy->getPointeeType(); 7941 buildObjCPtr = true; 7942 } else { 7943 PointeeTy = PointerTy->getPointeeType(); 7944 } 7945 7946 // Don't add qualified variants of arrays. For one, they're not allowed 7947 // (the qualifier would sink to the element type), and for another, the 7948 // only overload situation where it matters is subscript or pointer +- int, 7949 // and those shouldn't have qualifier variants anyway. 7950 if (PointeeTy->isArrayType()) 7951 return true; 7952 7953 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7954 bool hasVolatile = VisibleQuals.hasVolatile(); 7955 bool hasRestrict = VisibleQuals.hasRestrict(); 7956 7957 // Iterate through all strict supersets of BaseCVR. 7958 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7959 if ((CVR | BaseCVR) != CVR) continue; 7960 // Skip over volatile if no volatile found anywhere in the types. 7961 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 7962 7963 // Skip over restrict if no restrict found anywhere in the types, or if 7964 // the type cannot be restrict-qualified. 7965 if ((CVR & Qualifiers::Restrict) && 7966 (!hasRestrict || 7967 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 7968 continue; 7969 7970 // Build qualified pointee type. 7971 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7972 7973 // Build qualified pointer type. 7974 QualType QPointerTy; 7975 if (!buildObjCPtr) 7976 QPointerTy = Context.getPointerType(QPointeeTy); 7977 else 7978 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 7979 7980 // Insert qualified pointer type. 7981 PointerTypes.insert(QPointerTy); 7982 } 7983 7984 return true; 7985 } 7986 7987 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 7988 /// to the set of pointer types along with any more-qualified variants of 7989 /// that type. For example, if @p Ty is "int const *", this routine 7990 /// will add "int const *", "int const volatile *", "int const 7991 /// restrict *", and "int const volatile restrict *" to the set of 7992 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7993 /// false otherwise. 7994 /// 7995 /// FIXME: what to do about extended qualifiers? 7996 bool 7997 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 7998 QualType Ty) { 7999 // Insert this type. 8000 if (!MemberPointerTypes.insert(Ty)) 8001 return false; 8002 8003 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 8004 assert(PointerTy && "type was not a member pointer type!"); 8005 8006 QualType PointeeTy = PointerTy->getPointeeType(); 8007 // Don't add qualified variants of arrays. For one, they're not allowed 8008 // (the qualifier would sink to the element type), and for another, the 8009 // only overload situation where it matters is subscript or pointer +- int, 8010 // and those shouldn't have qualifier variants anyway. 8011 if (PointeeTy->isArrayType()) 8012 return true; 8013 const Type *ClassTy = PointerTy->getClass(); 8014 8015 // Iterate through all strict supersets of the pointee type's CVR 8016 // qualifiers. 8017 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 8018 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 8019 if ((CVR | BaseCVR) != CVR) continue; 8020 8021 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 8022 MemberPointerTypes.insert( 8023 Context.getMemberPointerType(QPointeeTy, ClassTy)); 8024 } 8025 8026 return true; 8027 } 8028 8029 /// AddTypesConvertedFrom - Add each of the types to which the type @p 8030 /// Ty can be implicit converted to the given set of @p Types. We're 8031 /// primarily interested in pointer types and enumeration types. We also 8032 /// take member pointer types, for the conditional operator. 8033 /// AllowUserConversions is true if we should look at the conversion 8034 /// functions of a class type, and AllowExplicitConversions if we 8035 /// should also include the explicit conversion functions of a class 8036 /// type. 8037 void 8038 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 8039 SourceLocation Loc, 8040 bool AllowUserConversions, 8041 bool AllowExplicitConversions, 8042 const Qualifiers &VisibleQuals) { 8043 // Only deal with canonical types. 8044 Ty = Context.getCanonicalType(Ty); 8045 8046 // Look through reference types; they aren't part of the type of an 8047 // expression for the purposes of conversions. 8048 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 8049 Ty = RefTy->getPointeeType(); 8050 8051 // If we're dealing with an array type, decay to the pointer. 8052 if (Ty->isArrayType()) 8053 Ty = SemaRef.Context.getArrayDecayedType(Ty); 8054 8055 // Otherwise, we don't care about qualifiers on the type. 8056 Ty = Ty.getLocalUnqualifiedType(); 8057 8058 // Flag if we ever add a non-record type. 8059 const RecordType *TyRec = Ty->getAs<RecordType>(); 8060 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 8061 8062 // Flag if we encounter an arithmetic type. 8063 HasArithmeticOrEnumeralTypes = 8064 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 8065 8066 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 8067 PointerTypes.insert(Ty); 8068 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 8069 // Insert our type, and its more-qualified variants, into the set 8070 // of types. 8071 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 8072 return; 8073 } else if (Ty->isMemberPointerType()) { 8074 // Member pointers are far easier, since the pointee can't be converted. 8075 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 8076 return; 8077 } else if (Ty->isEnumeralType()) { 8078 HasArithmeticOrEnumeralTypes = true; 8079 EnumerationTypes.insert(Ty); 8080 } else if (Ty->isVectorType()) { 8081 // We treat vector types as arithmetic types in many contexts as an 8082 // extension. 8083 HasArithmeticOrEnumeralTypes = true; 8084 VectorTypes.insert(Ty); 8085 } else if (Ty->isMatrixType()) { 8086 // Similar to vector types, we treat vector types as arithmetic types in 8087 // many contexts as an extension. 8088 HasArithmeticOrEnumeralTypes = true; 8089 MatrixTypes.insert(Ty); 8090 } else if (Ty->isNullPtrType()) { 8091 HasNullPtrType = true; 8092 } else if (AllowUserConversions && TyRec) { 8093 // No conversion functions in incomplete types. 8094 if (!SemaRef.isCompleteType(Loc, Ty)) 8095 return; 8096 8097 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8098 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8099 if (isa<UsingShadowDecl>(D)) 8100 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8101 8102 // Skip conversion function templates; they don't tell us anything 8103 // about which builtin types we can convert to. 8104 if (isa<FunctionTemplateDecl>(D)) 8105 continue; 8106 8107 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8108 if (AllowExplicitConversions || !Conv->isExplicit()) { 8109 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 8110 VisibleQuals); 8111 } 8112 } 8113 } 8114 } 8115 /// Helper function for adjusting address spaces for the pointer or reference 8116 /// operands of builtin operators depending on the argument. 8117 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, 8118 Expr *Arg) { 8119 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); 8120 } 8121 8122 /// Helper function for AddBuiltinOperatorCandidates() that adds 8123 /// the volatile- and non-volatile-qualified assignment operators for the 8124 /// given type to the candidate set. 8125 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 8126 QualType T, 8127 ArrayRef<Expr *> Args, 8128 OverloadCandidateSet &CandidateSet) { 8129 QualType ParamTypes[2]; 8130 8131 // T& operator=(T&, T) 8132 ParamTypes[0] = S.Context.getLValueReferenceType( 8133 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); 8134 ParamTypes[1] = T; 8135 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8136 /*IsAssignmentOperator=*/true); 8137 8138 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 8139 // volatile T& operator=(volatile T&, T) 8140 ParamTypes[0] = S.Context.getLValueReferenceType( 8141 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), 8142 Args[0])); 8143 ParamTypes[1] = T; 8144 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8145 /*IsAssignmentOperator=*/true); 8146 } 8147 } 8148 8149 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 8150 /// if any, found in visible type conversion functions found in ArgExpr's type. 8151 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 8152 Qualifiers VRQuals; 8153 const RecordType *TyRec; 8154 if (const MemberPointerType *RHSMPType = 8155 ArgExpr->getType()->getAs<MemberPointerType>()) 8156 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 8157 else 8158 TyRec = ArgExpr->getType()->getAs<RecordType>(); 8159 if (!TyRec) { 8160 // Just to be safe, assume the worst case. 8161 VRQuals.addVolatile(); 8162 VRQuals.addRestrict(); 8163 return VRQuals; 8164 } 8165 8166 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8167 if (!ClassDecl->hasDefinition()) 8168 return VRQuals; 8169 8170 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8171 if (isa<UsingShadowDecl>(D)) 8172 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8173 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 8174 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 8175 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 8176 CanTy = ResTypeRef->getPointeeType(); 8177 // Need to go down the pointer/mempointer chain and add qualifiers 8178 // as see them. 8179 bool done = false; 8180 while (!done) { 8181 if (CanTy.isRestrictQualified()) 8182 VRQuals.addRestrict(); 8183 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 8184 CanTy = ResTypePtr->getPointeeType(); 8185 else if (const MemberPointerType *ResTypeMPtr = 8186 CanTy->getAs<MemberPointerType>()) 8187 CanTy = ResTypeMPtr->getPointeeType(); 8188 else 8189 done = true; 8190 if (CanTy.isVolatileQualified()) 8191 VRQuals.addVolatile(); 8192 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 8193 return VRQuals; 8194 } 8195 } 8196 } 8197 return VRQuals; 8198 } 8199 8200 namespace { 8201 8202 /// Helper class to manage the addition of builtin operator overload 8203 /// candidates. It provides shared state and utility methods used throughout 8204 /// the process, as well as a helper method to add each group of builtin 8205 /// operator overloads from the standard to a candidate set. 8206 class BuiltinOperatorOverloadBuilder { 8207 // Common instance state available to all overload candidate addition methods. 8208 Sema &S; 8209 ArrayRef<Expr *> Args; 8210 Qualifiers VisibleTypeConversionsQuals; 8211 bool HasArithmeticOrEnumeralCandidateType; 8212 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 8213 OverloadCandidateSet &CandidateSet; 8214 8215 static constexpr int ArithmeticTypesCap = 24; 8216 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 8217 8218 // Define some indices used to iterate over the arithmetic types in 8219 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 8220 // types are that preserved by promotion (C++ [over.built]p2). 8221 unsigned FirstIntegralType, 8222 LastIntegralType; 8223 unsigned FirstPromotedIntegralType, 8224 LastPromotedIntegralType; 8225 unsigned FirstPromotedArithmeticType, 8226 LastPromotedArithmeticType; 8227 unsigned NumArithmeticTypes; 8228 8229 void InitArithmeticTypes() { 8230 // Start of promoted types. 8231 FirstPromotedArithmeticType = 0; 8232 ArithmeticTypes.push_back(S.Context.FloatTy); 8233 ArithmeticTypes.push_back(S.Context.DoubleTy); 8234 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 8235 if (S.Context.getTargetInfo().hasFloat128Type()) 8236 ArithmeticTypes.push_back(S.Context.Float128Ty); 8237 if (S.Context.getTargetInfo().hasIbm128Type()) 8238 ArithmeticTypes.push_back(S.Context.Ibm128Ty); 8239 8240 // Start of integral types. 8241 FirstIntegralType = ArithmeticTypes.size(); 8242 FirstPromotedIntegralType = ArithmeticTypes.size(); 8243 ArithmeticTypes.push_back(S.Context.IntTy); 8244 ArithmeticTypes.push_back(S.Context.LongTy); 8245 ArithmeticTypes.push_back(S.Context.LongLongTy); 8246 if (S.Context.getTargetInfo().hasInt128Type() || 8247 (S.Context.getAuxTargetInfo() && 8248 S.Context.getAuxTargetInfo()->hasInt128Type())) 8249 ArithmeticTypes.push_back(S.Context.Int128Ty); 8250 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 8251 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 8252 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 8253 if (S.Context.getTargetInfo().hasInt128Type() || 8254 (S.Context.getAuxTargetInfo() && 8255 S.Context.getAuxTargetInfo()->hasInt128Type())) 8256 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 8257 LastPromotedIntegralType = ArithmeticTypes.size(); 8258 LastPromotedArithmeticType = ArithmeticTypes.size(); 8259 // End of promoted types. 8260 8261 ArithmeticTypes.push_back(S.Context.BoolTy); 8262 ArithmeticTypes.push_back(S.Context.CharTy); 8263 ArithmeticTypes.push_back(S.Context.WCharTy); 8264 if (S.Context.getLangOpts().Char8) 8265 ArithmeticTypes.push_back(S.Context.Char8Ty); 8266 ArithmeticTypes.push_back(S.Context.Char16Ty); 8267 ArithmeticTypes.push_back(S.Context.Char32Ty); 8268 ArithmeticTypes.push_back(S.Context.SignedCharTy); 8269 ArithmeticTypes.push_back(S.Context.ShortTy); 8270 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 8271 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 8272 LastIntegralType = ArithmeticTypes.size(); 8273 NumArithmeticTypes = ArithmeticTypes.size(); 8274 // End of integral types. 8275 // FIXME: What about complex? What about half? 8276 8277 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 8278 "Enough inline storage for all arithmetic types."); 8279 } 8280 8281 /// Helper method to factor out the common pattern of adding overloads 8282 /// for '++' and '--' builtin operators. 8283 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 8284 bool HasVolatile, 8285 bool HasRestrict) { 8286 QualType ParamTypes[2] = { 8287 S.Context.getLValueReferenceType(CandidateTy), 8288 S.Context.IntTy 8289 }; 8290 8291 // Non-volatile version. 8292 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8293 8294 // Use a heuristic to reduce number of builtin candidates in the set: 8295 // add volatile version only if there are conversions to a volatile type. 8296 if (HasVolatile) { 8297 ParamTypes[0] = 8298 S.Context.getLValueReferenceType( 8299 S.Context.getVolatileType(CandidateTy)); 8300 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8301 } 8302 8303 // Add restrict version only if there are conversions to a restrict type 8304 // and our candidate type is a non-restrict-qualified pointer. 8305 if (HasRestrict && CandidateTy->isAnyPointerType() && 8306 !CandidateTy.isRestrictQualified()) { 8307 ParamTypes[0] 8308 = S.Context.getLValueReferenceType( 8309 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 8310 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8311 8312 if (HasVolatile) { 8313 ParamTypes[0] 8314 = S.Context.getLValueReferenceType( 8315 S.Context.getCVRQualifiedType(CandidateTy, 8316 (Qualifiers::Volatile | 8317 Qualifiers::Restrict))); 8318 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8319 } 8320 } 8321 8322 } 8323 8324 /// Helper to add an overload candidate for a binary builtin with types \p L 8325 /// and \p R. 8326 void AddCandidate(QualType L, QualType R) { 8327 QualType LandR[2] = {L, R}; 8328 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8329 } 8330 8331 public: 8332 BuiltinOperatorOverloadBuilder( 8333 Sema &S, ArrayRef<Expr *> Args, 8334 Qualifiers VisibleTypeConversionsQuals, 8335 bool HasArithmeticOrEnumeralCandidateType, 8336 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 8337 OverloadCandidateSet &CandidateSet) 8338 : S(S), Args(Args), 8339 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 8340 HasArithmeticOrEnumeralCandidateType( 8341 HasArithmeticOrEnumeralCandidateType), 8342 CandidateTypes(CandidateTypes), 8343 CandidateSet(CandidateSet) { 8344 8345 InitArithmeticTypes(); 8346 } 8347 8348 // Increment is deprecated for bool since C++17. 8349 // 8350 // C++ [over.built]p3: 8351 // 8352 // For every pair (T, VQ), where T is an arithmetic type other 8353 // than bool, and VQ is either volatile or empty, there exist 8354 // candidate operator functions of the form 8355 // 8356 // VQ T& operator++(VQ T&); 8357 // T operator++(VQ T&, int); 8358 // 8359 // C++ [over.built]p4: 8360 // 8361 // For every pair (T, VQ), where T is an arithmetic type other 8362 // than bool, and VQ is either volatile or empty, there exist 8363 // candidate operator functions of the form 8364 // 8365 // VQ T& operator--(VQ T&); 8366 // T operator--(VQ T&, int); 8367 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 8368 if (!HasArithmeticOrEnumeralCandidateType) 8369 return; 8370 8371 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 8372 const auto TypeOfT = ArithmeticTypes[Arith]; 8373 if (TypeOfT == S.Context.BoolTy) { 8374 if (Op == OO_MinusMinus) 8375 continue; 8376 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 8377 continue; 8378 } 8379 addPlusPlusMinusMinusStyleOverloads( 8380 TypeOfT, 8381 VisibleTypeConversionsQuals.hasVolatile(), 8382 VisibleTypeConversionsQuals.hasRestrict()); 8383 } 8384 } 8385 8386 // C++ [over.built]p5: 8387 // 8388 // For every pair (T, VQ), where T is a cv-qualified or 8389 // cv-unqualified object type, and VQ is either volatile or 8390 // empty, there exist candidate operator functions of the form 8391 // 8392 // T*VQ& operator++(T*VQ&); 8393 // T*VQ& operator--(T*VQ&); 8394 // T* operator++(T*VQ&, int); 8395 // T* operator--(T*VQ&, int); 8396 void addPlusPlusMinusMinusPointerOverloads() { 8397 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8398 // Skip pointer types that aren't pointers to object types. 8399 if (!PtrTy->getPointeeType()->isObjectType()) 8400 continue; 8401 8402 addPlusPlusMinusMinusStyleOverloads( 8403 PtrTy, 8404 (!PtrTy.isVolatileQualified() && 8405 VisibleTypeConversionsQuals.hasVolatile()), 8406 (!PtrTy.isRestrictQualified() && 8407 VisibleTypeConversionsQuals.hasRestrict())); 8408 } 8409 } 8410 8411 // C++ [over.built]p6: 8412 // For every cv-qualified or cv-unqualified object type T, there 8413 // exist candidate operator functions of the form 8414 // 8415 // T& operator*(T*); 8416 // 8417 // C++ [over.built]p7: 8418 // For every function type T that does not have cv-qualifiers or a 8419 // ref-qualifier, there exist candidate operator functions of the form 8420 // T& operator*(T*); 8421 void addUnaryStarPointerOverloads() { 8422 for (QualType ParamTy : CandidateTypes[0].pointer_types()) { 8423 QualType PointeeTy = ParamTy->getPointeeType(); 8424 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 8425 continue; 8426 8427 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 8428 if (Proto->getMethodQuals() || Proto->getRefQualifier()) 8429 continue; 8430 8431 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8432 } 8433 } 8434 8435 // C++ [over.built]p9: 8436 // For every promoted arithmetic type T, there exist candidate 8437 // operator functions of the form 8438 // 8439 // T operator+(T); 8440 // T operator-(T); 8441 void addUnaryPlusOrMinusArithmeticOverloads() { 8442 if (!HasArithmeticOrEnumeralCandidateType) 8443 return; 8444 8445 for (unsigned Arith = FirstPromotedArithmeticType; 8446 Arith < LastPromotedArithmeticType; ++Arith) { 8447 QualType ArithTy = ArithmeticTypes[Arith]; 8448 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 8449 } 8450 8451 // Extension: We also add these operators for vector types. 8452 for (QualType VecTy : CandidateTypes[0].vector_types()) 8453 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8454 } 8455 8456 // C++ [over.built]p8: 8457 // For every type T, there exist candidate operator functions of 8458 // the form 8459 // 8460 // T* operator+(T*); 8461 void addUnaryPlusPointerOverloads() { 8462 for (QualType ParamTy : CandidateTypes[0].pointer_types()) 8463 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8464 } 8465 8466 // C++ [over.built]p10: 8467 // For every promoted integral type T, there exist candidate 8468 // operator functions of the form 8469 // 8470 // T operator~(T); 8471 void addUnaryTildePromotedIntegralOverloads() { 8472 if (!HasArithmeticOrEnumeralCandidateType) 8473 return; 8474 8475 for (unsigned Int = FirstPromotedIntegralType; 8476 Int < LastPromotedIntegralType; ++Int) { 8477 QualType IntTy = ArithmeticTypes[Int]; 8478 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 8479 } 8480 8481 // Extension: We also add this operator for vector types. 8482 for (QualType VecTy : CandidateTypes[0].vector_types()) 8483 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8484 } 8485 8486 // C++ [over.match.oper]p16: 8487 // For every pointer to member type T or type std::nullptr_t, there 8488 // exist candidate operator functions of the form 8489 // 8490 // bool operator==(T,T); 8491 // bool operator!=(T,T); 8492 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 8493 /// Set of (canonical) types that we've already handled. 8494 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8495 8496 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8497 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8498 // Don't add the same builtin candidate twice. 8499 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8500 continue; 8501 8502 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 8503 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8504 } 8505 8506 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 8507 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 8508 if (AddedTypes.insert(NullPtrTy).second) { 8509 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 8510 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8511 } 8512 } 8513 } 8514 } 8515 8516 // C++ [over.built]p15: 8517 // 8518 // For every T, where T is an enumeration type or a pointer type, 8519 // there exist candidate operator functions of the form 8520 // 8521 // bool operator<(T, T); 8522 // bool operator>(T, T); 8523 // bool operator<=(T, T); 8524 // bool operator>=(T, T); 8525 // bool operator==(T, T); 8526 // bool operator!=(T, T); 8527 // R operator<=>(T, T) 8528 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { 8529 // C++ [over.match.oper]p3: 8530 // [...]the built-in candidates include all of the candidate operator 8531 // functions defined in 13.6 that, compared to the given operator, [...] 8532 // do not have the same parameter-type-list as any non-template non-member 8533 // candidate. 8534 // 8535 // Note that in practice, this only affects enumeration types because there 8536 // aren't any built-in candidates of record type, and a user-defined operator 8537 // must have an operand of record or enumeration type. Also, the only other 8538 // overloaded operator with enumeration arguments, operator=, 8539 // cannot be overloaded for enumeration types, so this is the only place 8540 // where we must suppress candidates like this. 8541 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8542 UserDefinedBinaryOperators; 8543 8544 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8545 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { 8546 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8547 CEnd = CandidateSet.end(); 8548 C != CEnd; ++C) { 8549 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8550 continue; 8551 8552 if (C->Function->isFunctionTemplateSpecialization()) 8553 continue; 8554 8555 // We interpret "same parameter-type-list" as applying to the 8556 // "synthesized candidate, with the order of the two parameters 8557 // reversed", not to the original function. 8558 bool Reversed = C->isReversed(); 8559 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) 8560 ->getType() 8561 .getUnqualifiedType(); 8562 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) 8563 ->getType() 8564 .getUnqualifiedType(); 8565 8566 // Skip if either parameter isn't of enumeral type. 8567 if (!FirstParamType->isEnumeralType() || 8568 !SecondParamType->isEnumeralType()) 8569 continue; 8570 8571 // Add this operator to the set of known user-defined operators. 8572 UserDefinedBinaryOperators.insert( 8573 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8574 S.Context.getCanonicalType(SecondParamType))); 8575 } 8576 } 8577 } 8578 8579 /// Set of (canonical) types that we've already handled. 8580 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8581 8582 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8583 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 8584 // Don't add the same builtin candidate twice. 8585 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8586 continue; 8587 if (IsSpaceship && PtrTy->isFunctionPointerType()) 8588 continue; 8589 8590 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8591 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8592 } 8593 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8594 CanQualType CanonType = S.Context.getCanonicalType(EnumTy); 8595 8596 // Don't add the same builtin candidate twice, or if a user defined 8597 // candidate exists. 8598 if (!AddedTypes.insert(CanonType).second || 8599 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8600 CanonType))) 8601 continue; 8602 QualType ParamTypes[2] = {EnumTy, EnumTy}; 8603 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8604 } 8605 } 8606 } 8607 8608 // C++ [over.built]p13: 8609 // 8610 // For every cv-qualified or cv-unqualified object type T 8611 // there exist candidate operator functions of the form 8612 // 8613 // T* operator+(T*, ptrdiff_t); 8614 // T& operator[](T*, ptrdiff_t); [BELOW] 8615 // T* operator-(T*, ptrdiff_t); 8616 // T* operator+(ptrdiff_t, T*); 8617 // T& operator[](ptrdiff_t, T*); [BELOW] 8618 // 8619 // C++ [over.built]p14: 8620 // 8621 // For every T, where T is a pointer to object type, there 8622 // exist candidate operator functions of the form 8623 // 8624 // ptrdiff_t operator-(T, T); 8625 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8626 /// Set of (canonical) types that we've already handled. 8627 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8628 8629 for (int Arg = 0; Arg < 2; ++Arg) { 8630 QualType AsymmetricParamTypes[2] = { 8631 S.Context.getPointerDiffType(), 8632 S.Context.getPointerDiffType(), 8633 }; 8634 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { 8635 QualType PointeeTy = PtrTy->getPointeeType(); 8636 if (!PointeeTy->isObjectType()) 8637 continue; 8638 8639 AsymmetricParamTypes[Arg] = PtrTy; 8640 if (Arg == 0 || Op == OO_Plus) { 8641 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8642 // T* operator+(ptrdiff_t, T*); 8643 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8644 } 8645 if (Op == OO_Minus) { 8646 // ptrdiff_t operator-(T, T); 8647 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8648 continue; 8649 8650 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8651 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8652 } 8653 } 8654 } 8655 } 8656 8657 // C++ [over.built]p12: 8658 // 8659 // For every pair of promoted arithmetic types L and R, there 8660 // exist candidate operator functions of the form 8661 // 8662 // LR operator*(L, R); 8663 // LR operator/(L, R); 8664 // LR operator+(L, R); 8665 // LR operator-(L, R); 8666 // bool operator<(L, R); 8667 // bool operator>(L, R); 8668 // bool operator<=(L, R); 8669 // bool operator>=(L, R); 8670 // bool operator==(L, R); 8671 // bool operator!=(L, R); 8672 // 8673 // where LR is the result of the usual arithmetic conversions 8674 // between types L and R. 8675 // 8676 // C++ [over.built]p24: 8677 // 8678 // For every pair of promoted arithmetic types L and R, there exist 8679 // candidate operator functions of the form 8680 // 8681 // LR operator?(bool, L, R); 8682 // 8683 // where LR is the result of the usual arithmetic conversions 8684 // between types L and R. 8685 // Our candidates ignore the first parameter. 8686 void addGenericBinaryArithmeticOverloads() { 8687 if (!HasArithmeticOrEnumeralCandidateType) 8688 return; 8689 8690 for (unsigned Left = FirstPromotedArithmeticType; 8691 Left < LastPromotedArithmeticType; ++Left) { 8692 for (unsigned Right = FirstPromotedArithmeticType; 8693 Right < LastPromotedArithmeticType; ++Right) { 8694 QualType LandR[2] = { ArithmeticTypes[Left], 8695 ArithmeticTypes[Right] }; 8696 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8697 } 8698 } 8699 8700 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8701 // conditional operator for vector types. 8702 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8703 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { 8704 QualType LandR[2] = {Vec1Ty, Vec2Ty}; 8705 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8706 } 8707 } 8708 8709 /// Add binary operator overloads for each candidate matrix type M1, M2: 8710 /// * (M1, M1) -> M1 8711 /// * (M1, M1.getElementType()) -> M1 8712 /// * (M2.getElementType(), M2) -> M2 8713 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. 8714 void addMatrixBinaryArithmeticOverloads() { 8715 if (!HasArithmeticOrEnumeralCandidateType) 8716 return; 8717 8718 for (QualType M1 : CandidateTypes[0].matrix_types()) { 8719 AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); 8720 AddCandidate(M1, M1); 8721 } 8722 8723 for (QualType M2 : CandidateTypes[1].matrix_types()) { 8724 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); 8725 if (!CandidateTypes[0].containsMatrixType(M2)) 8726 AddCandidate(M2, M2); 8727 } 8728 } 8729 8730 // C++2a [over.built]p14: 8731 // 8732 // For every integral type T there exists a candidate operator function 8733 // of the form 8734 // 8735 // std::strong_ordering operator<=>(T, T) 8736 // 8737 // C++2a [over.built]p15: 8738 // 8739 // For every pair of floating-point types L and R, there exists a candidate 8740 // operator function of the form 8741 // 8742 // std::partial_ordering operator<=>(L, R); 8743 // 8744 // FIXME: The current specification for integral types doesn't play nice with 8745 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8746 // comparisons. Under the current spec this can lead to ambiguity during 8747 // overload resolution. For example: 8748 // 8749 // enum A : int {a}; 8750 // auto x = (a <=> (long)42); 8751 // 8752 // error: call is ambiguous for arguments 'A' and 'long'. 8753 // note: candidate operator<=>(int, int) 8754 // note: candidate operator<=>(long, long) 8755 // 8756 // To avoid this error, this function deviates from the specification and adds 8757 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8758 // arithmetic types (the same as the generic relational overloads). 8759 // 8760 // For now this function acts as a placeholder. 8761 void addThreeWayArithmeticOverloads() { 8762 addGenericBinaryArithmeticOverloads(); 8763 } 8764 8765 // C++ [over.built]p17: 8766 // 8767 // For every pair of promoted integral types L and R, there 8768 // exist candidate operator functions of the form 8769 // 8770 // LR operator%(L, R); 8771 // LR operator&(L, R); 8772 // LR operator^(L, R); 8773 // LR operator|(L, R); 8774 // L operator<<(L, R); 8775 // L operator>>(L, R); 8776 // 8777 // where LR is the result of the usual arithmetic conversions 8778 // between types L and R. 8779 void addBinaryBitwiseArithmeticOverloads() { 8780 if (!HasArithmeticOrEnumeralCandidateType) 8781 return; 8782 8783 for (unsigned Left = FirstPromotedIntegralType; 8784 Left < LastPromotedIntegralType; ++Left) { 8785 for (unsigned Right = FirstPromotedIntegralType; 8786 Right < LastPromotedIntegralType; ++Right) { 8787 QualType LandR[2] = { ArithmeticTypes[Left], 8788 ArithmeticTypes[Right] }; 8789 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8790 } 8791 } 8792 } 8793 8794 // C++ [over.built]p20: 8795 // 8796 // For every pair (T, VQ), where T is an enumeration or 8797 // pointer to member type and VQ is either volatile or 8798 // empty, there exist candidate operator functions of the form 8799 // 8800 // VQ T& operator=(VQ T&, T); 8801 void addAssignmentMemberPointerOrEnumeralOverloads() { 8802 /// Set of (canonical) types that we've already handled. 8803 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8804 8805 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8806 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8807 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 8808 continue; 8809 8810 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); 8811 } 8812 8813 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8814 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8815 continue; 8816 8817 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); 8818 } 8819 } 8820 } 8821 8822 // C++ [over.built]p19: 8823 // 8824 // For every pair (T, VQ), where T is any type and VQ is either 8825 // volatile or empty, there exist candidate operator functions 8826 // of the form 8827 // 8828 // T*VQ& operator=(T*VQ&, T*); 8829 // 8830 // C++ [over.built]p21: 8831 // 8832 // For every pair (T, VQ), where T is a cv-qualified or 8833 // cv-unqualified object type and VQ is either volatile or 8834 // empty, there exist candidate operator functions of the form 8835 // 8836 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 8837 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 8838 void addAssignmentPointerOverloads(bool isEqualOp) { 8839 /// Set of (canonical) types that we've already handled. 8840 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8841 8842 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8843 // If this is operator=, keep track of the builtin candidates we added. 8844 if (isEqualOp) 8845 AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); 8846 else if (!PtrTy->getPointeeType()->isObjectType()) 8847 continue; 8848 8849 // non-volatile version 8850 QualType ParamTypes[2] = { 8851 S.Context.getLValueReferenceType(PtrTy), 8852 isEqualOp ? PtrTy : S.Context.getPointerDiffType(), 8853 }; 8854 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8855 /*IsAssignmentOperator=*/ isEqualOp); 8856 8857 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8858 VisibleTypeConversionsQuals.hasVolatile(); 8859 if (NeedVolatile) { 8860 // volatile version 8861 ParamTypes[0] = 8862 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); 8863 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8864 /*IsAssignmentOperator=*/isEqualOp); 8865 } 8866 8867 if (!PtrTy.isRestrictQualified() && 8868 VisibleTypeConversionsQuals.hasRestrict()) { 8869 // restrict version 8870 ParamTypes[0] = 8871 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); 8872 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8873 /*IsAssignmentOperator=*/isEqualOp); 8874 8875 if (NeedVolatile) { 8876 // volatile restrict version 8877 ParamTypes[0] = 8878 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8879 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8880 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8881 /*IsAssignmentOperator=*/isEqualOp); 8882 } 8883 } 8884 } 8885 8886 if (isEqualOp) { 8887 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 8888 // Make sure we don't add the same candidate twice. 8889 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8890 continue; 8891 8892 QualType ParamTypes[2] = { 8893 S.Context.getLValueReferenceType(PtrTy), 8894 PtrTy, 8895 }; 8896 8897 // non-volatile version 8898 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8899 /*IsAssignmentOperator=*/true); 8900 8901 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8902 VisibleTypeConversionsQuals.hasVolatile(); 8903 if (NeedVolatile) { 8904 // volatile version 8905 ParamTypes[0] = S.Context.getLValueReferenceType( 8906 S.Context.getVolatileType(PtrTy)); 8907 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8908 /*IsAssignmentOperator=*/true); 8909 } 8910 8911 if (!PtrTy.isRestrictQualified() && 8912 VisibleTypeConversionsQuals.hasRestrict()) { 8913 // restrict version 8914 ParamTypes[0] = S.Context.getLValueReferenceType( 8915 S.Context.getRestrictType(PtrTy)); 8916 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8917 /*IsAssignmentOperator=*/true); 8918 8919 if (NeedVolatile) { 8920 // volatile restrict version 8921 ParamTypes[0] = 8922 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8923 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8924 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8925 /*IsAssignmentOperator=*/true); 8926 } 8927 } 8928 } 8929 } 8930 } 8931 8932 // C++ [over.built]p18: 8933 // 8934 // For every triple (L, VQ, R), where L is an arithmetic type, 8935 // VQ is either volatile or empty, and R is a promoted 8936 // arithmetic type, there exist candidate operator functions of 8937 // the form 8938 // 8939 // VQ L& operator=(VQ L&, R); 8940 // VQ L& operator*=(VQ L&, R); 8941 // VQ L& operator/=(VQ L&, R); 8942 // VQ L& operator+=(VQ L&, R); 8943 // VQ L& operator-=(VQ L&, R); 8944 void addAssignmentArithmeticOverloads(bool isEqualOp) { 8945 if (!HasArithmeticOrEnumeralCandidateType) 8946 return; 8947 8948 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 8949 for (unsigned Right = FirstPromotedArithmeticType; 8950 Right < LastPromotedArithmeticType; ++Right) { 8951 QualType ParamTypes[2]; 8952 ParamTypes[1] = ArithmeticTypes[Right]; 8953 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8954 S, ArithmeticTypes[Left], Args[0]); 8955 // Add this built-in operator as a candidate (VQ is empty). 8956 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8957 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8958 /*IsAssignmentOperator=*/isEqualOp); 8959 8960 // Add this built-in operator as a candidate (VQ is 'volatile'). 8961 if (VisibleTypeConversionsQuals.hasVolatile()) { 8962 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); 8963 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8964 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8965 /*IsAssignmentOperator=*/isEqualOp); 8966 } 8967 } 8968 } 8969 8970 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 8971 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8972 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { 8973 QualType ParamTypes[2]; 8974 ParamTypes[1] = Vec2Ty; 8975 // Add this built-in operator as a candidate (VQ is empty). 8976 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); 8977 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8978 /*IsAssignmentOperator=*/isEqualOp); 8979 8980 // Add this built-in operator as a candidate (VQ is 'volatile'). 8981 if (VisibleTypeConversionsQuals.hasVolatile()) { 8982 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); 8983 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8984 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8985 /*IsAssignmentOperator=*/isEqualOp); 8986 } 8987 } 8988 } 8989 8990 // C++ [over.built]p22: 8991 // 8992 // For every triple (L, VQ, R), where L is an integral type, VQ 8993 // is either volatile or empty, and R is a promoted integral 8994 // type, there exist candidate operator functions of the form 8995 // 8996 // VQ L& operator%=(VQ L&, R); 8997 // VQ L& operator<<=(VQ L&, R); 8998 // VQ L& operator>>=(VQ L&, R); 8999 // VQ L& operator&=(VQ L&, R); 9000 // VQ L& operator^=(VQ L&, R); 9001 // VQ L& operator|=(VQ L&, R); 9002 void addAssignmentIntegralOverloads() { 9003 if (!HasArithmeticOrEnumeralCandidateType) 9004 return; 9005 9006 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 9007 for (unsigned Right = FirstPromotedIntegralType; 9008 Right < LastPromotedIntegralType; ++Right) { 9009 QualType ParamTypes[2]; 9010 ParamTypes[1] = ArithmeticTypes[Right]; 9011 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 9012 S, ArithmeticTypes[Left], Args[0]); 9013 // Add this built-in operator as a candidate (VQ is empty). 9014 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 9015 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9016 if (VisibleTypeConversionsQuals.hasVolatile()) { 9017 // Add this built-in operator as a candidate (VQ is 'volatile'). 9018 ParamTypes[0] = LeftBaseTy; 9019 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 9020 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 9021 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9022 } 9023 } 9024 } 9025 } 9026 9027 // C++ [over.operator]p23: 9028 // 9029 // There also exist candidate operator functions of the form 9030 // 9031 // bool operator!(bool); 9032 // bool operator&&(bool, bool); 9033 // bool operator||(bool, bool); 9034 void addExclaimOverload() { 9035 QualType ParamTy = S.Context.BoolTy; 9036 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 9037 /*IsAssignmentOperator=*/false, 9038 /*NumContextualBoolArguments=*/1); 9039 } 9040 void addAmpAmpOrPipePipeOverload() { 9041 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 9042 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9043 /*IsAssignmentOperator=*/false, 9044 /*NumContextualBoolArguments=*/2); 9045 } 9046 9047 // C++ [over.built]p13: 9048 // 9049 // For every cv-qualified or cv-unqualified object type T there 9050 // exist candidate operator functions of the form 9051 // 9052 // T* operator+(T*, ptrdiff_t); [ABOVE] 9053 // T& operator[](T*, ptrdiff_t); 9054 // T* operator-(T*, ptrdiff_t); [ABOVE] 9055 // T* operator+(ptrdiff_t, T*); [ABOVE] 9056 // T& operator[](ptrdiff_t, T*); 9057 void addSubscriptOverloads() { 9058 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9059 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; 9060 QualType PointeeType = PtrTy->getPointeeType(); 9061 if (!PointeeType->isObjectType()) 9062 continue; 9063 9064 // T& operator[](T*, ptrdiff_t) 9065 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9066 } 9067 9068 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9069 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; 9070 QualType PointeeType = PtrTy->getPointeeType(); 9071 if (!PointeeType->isObjectType()) 9072 continue; 9073 9074 // T& operator[](ptrdiff_t, T*) 9075 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9076 } 9077 } 9078 9079 // C++ [over.built]p11: 9080 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 9081 // C1 is the same type as C2 or is a derived class of C2, T is an object 9082 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 9083 // there exist candidate operator functions of the form 9084 // 9085 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 9086 // 9087 // where CV12 is the union of CV1 and CV2. 9088 void addArrowStarOverloads() { 9089 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9090 QualType C1Ty = PtrTy; 9091 QualType C1; 9092 QualifierCollector Q1; 9093 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 9094 if (!isa<RecordType>(C1)) 9095 continue; 9096 // heuristic to reduce number of builtin candidates in the set. 9097 // Add volatile/restrict version only if there are conversions to a 9098 // volatile/restrict type. 9099 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 9100 continue; 9101 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 9102 continue; 9103 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { 9104 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); 9105 QualType C2 = QualType(mptr->getClass(), 0); 9106 C2 = C2.getUnqualifiedType(); 9107 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 9108 break; 9109 QualType ParamTypes[2] = {PtrTy, MemPtrTy}; 9110 // build CV12 T& 9111 QualType T = mptr->getPointeeType(); 9112 if (!VisibleTypeConversionsQuals.hasVolatile() && 9113 T.isVolatileQualified()) 9114 continue; 9115 if (!VisibleTypeConversionsQuals.hasRestrict() && 9116 T.isRestrictQualified()) 9117 continue; 9118 T = Q1.apply(S.Context, T); 9119 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9120 } 9121 } 9122 } 9123 9124 // Note that we don't consider the first argument, since it has been 9125 // contextually converted to bool long ago. The candidates below are 9126 // therefore added as binary. 9127 // 9128 // C++ [over.built]p25: 9129 // For every type T, where T is a pointer, pointer-to-member, or scoped 9130 // enumeration type, there exist candidate operator functions of the form 9131 // 9132 // T operator?(bool, T, T); 9133 // 9134 void addConditionalOperatorOverloads() { 9135 /// Set of (canonical) types that we've already handled. 9136 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9137 9138 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 9139 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 9140 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9141 continue; 9142 9143 QualType ParamTypes[2] = {PtrTy, PtrTy}; 9144 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9145 } 9146 9147 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9148 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9149 continue; 9150 9151 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 9152 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9153 } 9154 9155 if (S.getLangOpts().CPlusPlus11) { 9156 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 9157 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) 9158 continue; 9159 9160 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9161 continue; 9162 9163 QualType ParamTypes[2] = {EnumTy, EnumTy}; 9164 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9165 } 9166 } 9167 } 9168 } 9169 }; 9170 9171 } // end anonymous namespace 9172 9173 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 9174 /// operator overloads to the candidate set (C++ [over.built]), based 9175 /// on the operator @p Op and the arguments given. For example, if the 9176 /// operator is a binary '+', this routine might add "int 9177 /// operator+(int, int)" to cover integer addition. 9178 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 9179 SourceLocation OpLoc, 9180 ArrayRef<Expr *> Args, 9181 OverloadCandidateSet &CandidateSet) { 9182 // Find all of the types that the arguments can convert to, but only 9183 // if the operator we're looking at has built-in operator candidates 9184 // that make use of these types. Also record whether we encounter non-record 9185 // candidate types or either arithmetic or enumeral candidate types. 9186 Qualifiers VisibleTypeConversionsQuals; 9187 VisibleTypeConversionsQuals.addConst(); 9188 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) 9189 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 9190 9191 bool HasNonRecordCandidateType = false; 9192 bool HasArithmeticOrEnumeralCandidateType = false; 9193 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 9194 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9195 CandidateTypes.emplace_back(*this); 9196 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 9197 OpLoc, 9198 true, 9199 (Op == OO_Exclaim || 9200 Op == OO_AmpAmp || 9201 Op == OO_PipePipe), 9202 VisibleTypeConversionsQuals); 9203 HasNonRecordCandidateType = HasNonRecordCandidateType || 9204 CandidateTypes[ArgIdx].hasNonRecordTypes(); 9205 HasArithmeticOrEnumeralCandidateType = 9206 HasArithmeticOrEnumeralCandidateType || 9207 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 9208 } 9209 9210 // Exit early when no non-record types have been added to the candidate set 9211 // for any of the arguments to the operator. 9212 // 9213 // We can't exit early for !, ||, or &&, since there we have always have 9214 // 'bool' overloads. 9215 if (!HasNonRecordCandidateType && 9216 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 9217 return; 9218 9219 // Setup an object to manage the common state for building overloads. 9220 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 9221 VisibleTypeConversionsQuals, 9222 HasArithmeticOrEnumeralCandidateType, 9223 CandidateTypes, CandidateSet); 9224 9225 // Dispatch over the operation to add in only those overloads which apply. 9226 switch (Op) { 9227 case OO_None: 9228 case NUM_OVERLOADED_OPERATORS: 9229 llvm_unreachable("Expected an overloaded operator"); 9230 9231 case OO_New: 9232 case OO_Delete: 9233 case OO_Array_New: 9234 case OO_Array_Delete: 9235 case OO_Call: 9236 llvm_unreachable( 9237 "Special operators don't use AddBuiltinOperatorCandidates"); 9238 9239 case OO_Comma: 9240 case OO_Arrow: 9241 case OO_Coawait: 9242 // C++ [over.match.oper]p3: 9243 // -- For the operator ',', the unary operator '&', the 9244 // operator '->', or the operator 'co_await', the 9245 // built-in candidates set is empty. 9246 break; 9247 9248 case OO_Plus: // '+' is either unary or binary 9249 if (Args.size() == 1) 9250 OpBuilder.addUnaryPlusPointerOverloads(); 9251 LLVM_FALLTHROUGH; 9252 9253 case OO_Minus: // '-' is either unary or binary 9254 if (Args.size() == 1) { 9255 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 9256 } else { 9257 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 9258 OpBuilder.addGenericBinaryArithmeticOverloads(); 9259 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9260 } 9261 break; 9262 9263 case OO_Star: // '*' is either unary or binary 9264 if (Args.size() == 1) 9265 OpBuilder.addUnaryStarPointerOverloads(); 9266 else { 9267 OpBuilder.addGenericBinaryArithmeticOverloads(); 9268 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9269 } 9270 break; 9271 9272 case OO_Slash: 9273 OpBuilder.addGenericBinaryArithmeticOverloads(); 9274 break; 9275 9276 case OO_PlusPlus: 9277 case OO_MinusMinus: 9278 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 9279 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 9280 break; 9281 9282 case OO_EqualEqual: 9283 case OO_ExclaimEqual: 9284 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 9285 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9286 OpBuilder.addGenericBinaryArithmeticOverloads(); 9287 break; 9288 9289 case OO_Less: 9290 case OO_Greater: 9291 case OO_LessEqual: 9292 case OO_GreaterEqual: 9293 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9294 OpBuilder.addGenericBinaryArithmeticOverloads(); 9295 break; 9296 9297 case OO_Spaceship: 9298 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); 9299 OpBuilder.addThreeWayArithmeticOverloads(); 9300 break; 9301 9302 case OO_Percent: 9303 case OO_Caret: 9304 case OO_Pipe: 9305 case OO_LessLess: 9306 case OO_GreaterGreater: 9307 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9308 break; 9309 9310 case OO_Amp: // '&' is either unary or binary 9311 if (Args.size() == 1) 9312 // C++ [over.match.oper]p3: 9313 // -- For the operator ',', the unary operator '&', or the 9314 // operator '->', the built-in candidates set is empty. 9315 break; 9316 9317 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9318 break; 9319 9320 case OO_Tilde: 9321 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 9322 break; 9323 9324 case OO_Equal: 9325 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 9326 LLVM_FALLTHROUGH; 9327 9328 case OO_PlusEqual: 9329 case OO_MinusEqual: 9330 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 9331 LLVM_FALLTHROUGH; 9332 9333 case OO_StarEqual: 9334 case OO_SlashEqual: 9335 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 9336 break; 9337 9338 case OO_PercentEqual: 9339 case OO_LessLessEqual: 9340 case OO_GreaterGreaterEqual: 9341 case OO_AmpEqual: 9342 case OO_CaretEqual: 9343 case OO_PipeEqual: 9344 OpBuilder.addAssignmentIntegralOverloads(); 9345 break; 9346 9347 case OO_Exclaim: 9348 OpBuilder.addExclaimOverload(); 9349 break; 9350 9351 case OO_AmpAmp: 9352 case OO_PipePipe: 9353 OpBuilder.addAmpAmpOrPipePipeOverload(); 9354 break; 9355 9356 case OO_Subscript: 9357 OpBuilder.addSubscriptOverloads(); 9358 break; 9359 9360 case OO_ArrowStar: 9361 OpBuilder.addArrowStarOverloads(); 9362 break; 9363 9364 case OO_Conditional: 9365 OpBuilder.addConditionalOperatorOverloads(); 9366 OpBuilder.addGenericBinaryArithmeticOverloads(); 9367 break; 9368 } 9369 } 9370 9371 /// Add function candidates found via argument-dependent lookup 9372 /// to the set of overloading candidates. 9373 /// 9374 /// This routine performs argument-dependent name lookup based on the 9375 /// given function name (which may also be an operator name) and adds 9376 /// all of the overload candidates found by ADL to the overload 9377 /// candidate set (C++ [basic.lookup.argdep]). 9378 void 9379 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 9380 SourceLocation Loc, 9381 ArrayRef<Expr *> Args, 9382 TemplateArgumentListInfo *ExplicitTemplateArgs, 9383 OverloadCandidateSet& CandidateSet, 9384 bool PartialOverloading) { 9385 ADLResult Fns; 9386 9387 // FIXME: This approach for uniquing ADL results (and removing 9388 // redundant candidates from the set) relies on pointer-equality, 9389 // which means we need to key off the canonical decl. However, 9390 // always going back to the canonical decl might not get us the 9391 // right set of default arguments. What default arguments are 9392 // we supposed to consider on ADL candidates, anyway? 9393 9394 // FIXME: Pass in the explicit template arguments? 9395 ArgumentDependentLookup(Name, Loc, Args, Fns); 9396 9397 // Erase all of the candidates we already knew about. 9398 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 9399 CandEnd = CandidateSet.end(); 9400 Cand != CandEnd; ++Cand) 9401 if (Cand->Function) { 9402 Fns.erase(Cand->Function); 9403 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 9404 Fns.erase(FunTmpl); 9405 } 9406 9407 // For each of the ADL candidates we found, add it to the overload 9408 // set. 9409 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 9410 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 9411 9412 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 9413 if (ExplicitTemplateArgs) 9414 continue; 9415 9416 AddOverloadCandidate( 9417 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, 9418 PartialOverloading, /*AllowExplicit=*/true, 9419 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); 9420 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { 9421 AddOverloadCandidate( 9422 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, 9423 /*SuppressUserConversions=*/false, PartialOverloading, 9424 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, 9425 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); 9426 } 9427 } else { 9428 auto *FTD = cast<FunctionTemplateDecl>(*I); 9429 AddTemplateOverloadCandidate( 9430 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, 9431 /*SuppressUserConversions=*/false, PartialOverloading, 9432 /*AllowExplicit=*/true, ADLCallKind::UsesADL); 9433 if (CandidateSet.getRewriteInfo().shouldAddReversed( 9434 Context, FTD->getTemplatedDecl())) { 9435 AddTemplateOverloadCandidate( 9436 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, 9437 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, 9438 /*AllowExplicit=*/true, ADLCallKind::UsesADL, 9439 OverloadCandidateParamOrder::Reversed); 9440 } 9441 } 9442 } 9443 } 9444 9445 namespace { 9446 enum class Comparison { Equal, Better, Worse }; 9447 } 9448 9449 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 9450 /// overload resolution. 9451 /// 9452 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 9453 /// Cand1's first N enable_if attributes have precisely the same conditions as 9454 /// Cand2's first N enable_if attributes (where N = the number of enable_if 9455 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 9456 /// 9457 /// Note that you can have a pair of candidates such that Cand1's enable_if 9458 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 9459 /// worse than Cand1's. 9460 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 9461 const FunctionDecl *Cand2) { 9462 // Common case: One (or both) decls don't have enable_if attrs. 9463 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 9464 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 9465 if (!Cand1Attr || !Cand2Attr) { 9466 if (Cand1Attr == Cand2Attr) 9467 return Comparison::Equal; 9468 return Cand1Attr ? Comparison::Better : Comparison::Worse; 9469 } 9470 9471 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); 9472 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); 9473 9474 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 9475 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { 9476 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); 9477 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); 9478 9479 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 9480 // has fewer enable_if attributes than Cand2, and vice versa. 9481 if (!Cand1A) 9482 return Comparison::Worse; 9483 if (!Cand2A) 9484 return Comparison::Better; 9485 9486 Cand1ID.clear(); 9487 Cand2ID.clear(); 9488 9489 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); 9490 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); 9491 if (Cand1ID != Cand2ID) 9492 return Comparison::Worse; 9493 } 9494 9495 return Comparison::Equal; 9496 } 9497 9498 static Comparison 9499 isBetterMultiversionCandidate(const OverloadCandidate &Cand1, 9500 const OverloadCandidate &Cand2) { 9501 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || 9502 !Cand2.Function->isMultiVersion()) 9503 return Comparison::Equal; 9504 9505 // If both are invalid, they are equal. If one of them is invalid, the other 9506 // is better. 9507 if (Cand1.Function->isInvalidDecl()) { 9508 if (Cand2.Function->isInvalidDecl()) 9509 return Comparison::Equal; 9510 return Comparison::Worse; 9511 } 9512 if (Cand2.Function->isInvalidDecl()) 9513 return Comparison::Better; 9514 9515 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer 9516 // cpu_dispatch, else arbitrarily based on the identifiers. 9517 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); 9518 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); 9519 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); 9520 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); 9521 9522 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) 9523 return Comparison::Equal; 9524 9525 if (Cand1CPUDisp && !Cand2CPUDisp) 9526 return Comparison::Better; 9527 if (Cand2CPUDisp && !Cand1CPUDisp) 9528 return Comparison::Worse; 9529 9530 if (Cand1CPUSpec && Cand2CPUSpec) { 9531 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) 9532 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() 9533 ? Comparison::Better 9534 : Comparison::Worse; 9535 9536 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> 9537 FirstDiff = std::mismatch( 9538 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), 9539 Cand2CPUSpec->cpus_begin(), 9540 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { 9541 return LHS->getName() == RHS->getName(); 9542 }); 9543 9544 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && 9545 "Two different cpu-specific versions should not have the same " 9546 "identifier list, otherwise they'd be the same decl!"); 9547 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() 9548 ? Comparison::Better 9549 : Comparison::Worse; 9550 } 9551 llvm_unreachable("No way to get here unless both had cpu_dispatch"); 9552 } 9553 9554 /// Compute the type of the implicit object parameter for the given function, 9555 /// if any. Returns None if there is no implicit object parameter, and a null 9556 /// QualType if there is a 'matches anything' implicit object parameter. 9557 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, 9558 const FunctionDecl *F) { 9559 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) 9560 return llvm::None; 9561 9562 auto *M = cast<CXXMethodDecl>(F); 9563 // Static member functions' object parameters match all types. 9564 if (M->isStatic()) 9565 return QualType(); 9566 9567 QualType T = M->getThisObjectType(); 9568 if (M->getRefQualifier() == RQ_RValue) 9569 return Context.getRValueReferenceType(T); 9570 return Context.getLValueReferenceType(T); 9571 } 9572 9573 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, 9574 const FunctionDecl *F2, unsigned NumParams) { 9575 if (declaresSameEntity(F1, F2)) 9576 return true; 9577 9578 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { 9579 if (First) { 9580 if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) 9581 return *T; 9582 } 9583 assert(I < F->getNumParams()); 9584 return F->getParamDecl(I++)->getType(); 9585 }; 9586 9587 unsigned I1 = 0, I2 = 0; 9588 for (unsigned I = 0; I != NumParams; ++I) { 9589 QualType T1 = NextParam(F1, I1, I == 0); 9590 QualType T2 = NextParam(F2, I2, I == 0); 9591 assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types"); 9592 if (!Context.hasSameUnqualifiedType(T1, T2)) 9593 return false; 9594 } 9595 return true; 9596 } 9597 9598 /// isBetterOverloadCandidate - Determines whether the first overload 9599 /// candidate is a better candidate than the second (C++ 13.3.3p1). 9600 bool clang::isBetterOverloadCandidate( 9601 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 9602 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 9603 // Define viable functions to be better candidates than non-viable 9604 // functions. 9605 if (!Cand2.Viable) 9606 return Cand1.Viable; 9607 else if (!Cand1.Viable) 9608 return false; 9609 9610 // [CUDA] A function with 'never' preference is marked not viable, therefore 9611 // is never shown up here. The worst preference shown up here is 'wrong side', 9612 // e.g. an H function called by a HD function in device compilation. This is 9613 // valid AST as long as the HD function is not emitted, e.g. it is an inline 9614 // function which is called only by an H function. A deferred diagnostic will 9615 // be triggered if it is emitted. However a wrong-sided function is still 9616 // a viable candidate here. 9617 // 9618 // If Cand1 can be emitted and Cand2 cannot be emitted in the current 9619 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 9620 // can be emitted, Cand1 is not better than Cand2. This rule should have 9621 // precedence over other rules. 9622 // 9623 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then 9624 // other rules should be used to determine which is better. This is because 9625 // host/device based overloading resolution is mostly for determining 9626 // viability of a function. If two functions are both viable, other factors 9627 // should take precedence in preference, e.g. the standard-defined preferences 9628 // like argument conversion ranks or enable_if partial-ordering. The 9629 // preference for pass-object-size parameters is probably most similar to a 9630 // type-based-overloading decision and so should take priority. 9631 // 9632 // If other rules cannot determine which is better, CUDA preference will be 9633 // used again to determine which is better. 9634 // 9635 // TODO: Currently IdentifyCUDAPreference does not return correct values 9636 // for functions called in global variable initializers due to missing 9637 // correct context about device/host. Therefore we can only enforce this 9638 // rule when there is a caller. We should enforce this rule for functions 9639 // in global variable initializers once proper context is added. 9640 // 9641 // TODO: We can only enable the hostness based overloading resolution when 9642 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring 9643 // overloading resolution diagnostics. 9644 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && 9645 S.getLangOpts().GPUExcludeWrongSideOverloads) { 9646 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { 9647 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); 9648 bool IsCand1ImplicitHD = 9649 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); 9650 bool IsCand2ImplicitHD = 9651 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); 9652 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); 9653 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); 9654 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); 9655 // The implicit HD function may be a function in a system header which 9656 // is forced by pragma. In device compilation, if we prefer HD candidates 9657 // over wrong-sided candidates, overloading resolution may change, which 9658 // may result in non-deferrable diagnostics. As a workaround, we let 9659 // implicit HD candidates take equal preference as wrong-sided candidates. 9660 // This will preserve the overloading resolution. 9661 // TODO: We still need special handling of implicit HD functions since 9662 // they may incur other diagnostics to be deferred. We should make all 9663 // host/device related diagnostics deferrable and remove special handling 9664 // of implicit HD functions. 9665 auto EmitThreshold = 9666 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && 9667 (IsCand1ImplicitHD || IsCand2ImplicitHD)) 9668 ? Sema::CFP_Never 9669 : Sema::CFP_WrongSide; 9670 auto Cand1Emittable = P1 > EmitThreshold; 9671 auto Cand2Emittable = P2 > EmitThreshold; 9672 if (Cand1Emittable && !Cand2Emittable) 9673 return true; 9674 if (!Cand1Emittable && Cand2Emittable) 9675 return false; 9676 } 9677 } 9678 9679 // C++ [over.match.best]p1: 9680 // 9681 // -- if F is a static member function, ICS1(F) is defined such 9682 // that ICS1(F) is neither better nor worse than ICS1(G) for 9683 // any function G, and, symmetrically, ICS1(G) is neither 9684 // better nor worse than ICS1(F). 9685 unsigned StartArg = 0; 9686 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 9687 StartArg = 1; 9688 9689 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 9690 // We don't allow incompatible pointer conversions in C++. 9691 if (!S.getLangOpts().CPlusPlus) 9692 return ICS.isStandard() && 9693 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 9694 9695 // The only ill-formed conversion we allow in C++ is the string literal to 9696 // char* conversion, which is only considered ill-formed after C++11. 9697 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9698 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9699 }; 9700 9701 // Define functions that don't require ill-formed conversions for a given 9702 // argument to be better candidates than functions that do. 9703 unsigned NumArgs = Cand1.Conversions.size(); 9704 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9705 bool HasBetterConversion = false; 9706 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9707 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9708 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9709 if (Cand1Bad != Cand2Bad) { 9710 if (Cand1Bad) 9711 return false; 9712 HasBetterConversion = true; 9713 } 9714 } 9715 9716 if (HasBetterConversion) 9717 return true; 9718 9719 // C++ [over.match.best]p1: 9720 // A viable function F1 is defined to be a better function than another 9721 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9722 // conversion sequence than ICSi(F2), and then... 9723 bool HasWorseConversion = false; 9724 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9725 switch (CompareImplicitConversionSequences(S, Loc, 9726 Cand1.Conversions[ArgIdx], 9727 Cand2.Conversions[ArgIdx])) { 9728 case ImplicitConversionSequence::Better: 9729 // Cand1 has a better conversion sequence. 9730 HasBetterConversion = true; 9731 break; 9732 9733 case ImplicitConversionSequence::Worse: 9734 if (Cand1.Function && Cand2.Function && 9735 Cand1.isReversed() != Cand2.isReversed() && 9736 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, 9737 NumArgs)) { 9738 // Work around large-scale breakage caused by considering reversed 9739 // forms of operator== in C++20: 9740 // 9741 // When comparing a function against a reversed function with the same 9742 // parameter types, if we have a better conversion for one argument and 9743 // a worse conversion for the other, the implicit conversion sequences 9744 // are treated as being equally good. 9745 // 9746 // This prevents a comparison function from being considered ambiguous 9747 // with a reversed form that is written in the same way. 9748 // 9749 // We diagnose this as an extension from CreateOverloadedBinOp. 9750 HasWorseConversion = true; 9751 break; 9752 } 9753 9754 // Cand1 can't be better than Cand2. 9755 return false; 9756 9757 case ImplicitConversionSequence::Indistinguishable: 9758 // Do nothing. 9759 break; 9760 } 9761 } 9762 9763 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9764 // ICSj(F2), or, if not that, 9765 if (HasBetterConversion && !HasWorseConversion) 9766 return true; 9767 9768 // -- the context is an initialization by user-defined conversion 9769 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9770 // from the return type of F1 to the destination type (i.e., 9771 // the type of the entity being initialized) is a better 9772 // conversion sequence than the standard conversion sequence 9773 // from the return type of F2 to the destination type. 9774 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9775 Cand1.Function && Cand2.Function && 9776 isa<CXXConversionDecl>(Cand1.Function) && 9777 isa<CXXConversionDecl>(Cand2.Function)) { 9778 // First check whether we prefer one of the conversion functions over the 9779 // other. This only distinguishes the results in non-standard, extension 9780 // cases such as the conversion from a lambda closure type to a function 9781 // pointer or block. 9782 ImplicitConversionSequence::CompareKind Result = 9783 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9784 if (Result == ImplicitConversionSequence::Indistinguishable) 9785 Result = CompareStandardConversionSequences(S, Loc, 9786 Cand1.FinalConversion, 9787 Cand2.FinalConversion); 9788 9789 if (Result != ImplicitConversionSequence::Indistinguishable) 9790 return Result == ImplicitConversionSequence::Better; 9791 9792 // FIXME: Compare kind of reference binding if conversion functions 9793 // convert to a reference type used in direct reference binding, per 9794 // C++14 [over.match.best]p1 section 2 bullet 3. 9795 } 9796 9797 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 9798 // as combined with the resolution to CWG issue 243. 9799 // 9800 // When the context is initialization by constructor ([over.match.ctor] or 9801 // either phase of [over.match.list]), a constructor is preferred over 9802 // a conversion function. 9803 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 9804 Cand1.Function && Cand2.Function && 9805 isa<CXXConstructorDecl>(Cand1.Function) != 9806 isa<CXXConstructorDecl>(Cand2.Function)) 9807 return isa<CXXConstructorDecl>(Cand1.Function); 9808 9809 // -- F1 is a non-template function and F2 is a function template 9810 // specialization, or, if not that, 9811 bool Cand1IsSpecialization = Cand1.Function && 9812 Cand1.Function->getPrimaryTemplate(); 9813 bool Cand2IsSpecialization = Cand2.Function && 9814 Cand2.Function->getPrimaryTemplate(); 9815 if (Cand1IsSpecialization != Cand2IsSpecialization) 9816 return Cand2IsSpecialization; 9817 9818 // -- F1 and F2 are function template specializations, and the function 9819 // template for F1 is more specialized than the template for F2 9820 // according to the partial ordering rules described in 14.5.5.2, or, 9821 // if not that, 9822 if (Cand1IsSpecialization && Cand2IsSpecialization) { 9823 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( 9824 Cand1.Function->getPrimaryTemplate(), 9825 Cand2.Function->getPrimaryTemplate(), Loc, 9826 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion 9827 : TPOC_Call, 9828 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, 9829 Cand1.isReversed() ^ Cand2.isReversed())) 9830 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 9831 } 9832 9833 // -— F1 and F2 are non-template functions with the same 9834 // parameter-type-lists, and F1 is more constrained than F2 [...], 9835 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && 9836 !Cand2IsSpecialization && Cand1.Function->hasPrototype() && 9837 Cand2.Function->hasPrototype()) { 9838 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); 9839 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); 9840 if (PT1->getNumParams() == PT2->getNumParams() && 9841 PT1->isVariadic() == PT2->isVariadic() && 9842 S.FunctionParamTypesAreEqual(PT1, PT2)) { 9843 Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); 9844 Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); 9845 if (RC1 && RC2) { 9846 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 9847 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, 9848 {RC2}, AtLeastAsConstrained1) || 9849 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, 9850 {RC1}, AtLeastAsConstrained2)) 9851 return false; 9852 if (AtLeastAsConstrained1 != AtLeastAsConstrained2) 9853 return AtLeastAsConstrained1; 9854 } else if (RC1 || RC2) { 9855 return RC1 != nullptr; 9856 } 9857 } 9858 } 9859 9860 // -- F1 is a constructor for a class D, F2 is a constructor for a base 9861 // class B of D, and for all arguments the corresponding parameters of 9862 // F1 and F2 have the same type. 9863 // FIXME: Implement the "all parameters have the same type" check. 9864 bool Cand1IsInherited = 9865 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 9866 bool Cand2IsInherited = 9867 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 9868 if (Cand1IsInherited != Cand2IsInherited) 9869 return Cand2IsInherited; 9870 else if (Cand1IsInherited) { 9871 assert(Cand2IsInherited); 9872 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 9873 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 9874 if (Cand1Class->isDerivedFrom(Cand2Class)) 9875 return true; 9876 if (Cand2Class->isDerivedFrom(Cand1Class)) 9877 return false; 9878 // Inherited from sibling base classes: still ambiguous. 9879 } 9880 9881 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not 9882 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate 9883 // with reversed order of parameters and F1 is not 9884 // 9885 // We rank reversed + different operator as worse than just reversed, but 9886 // that comparison can never happen, because we only consider reversing for 9887 // the maximally-rewritten operator (== or <=>). 9888 if (Cand1.RewriteKind != Cand2.RewriteKind) 9889 return Cand1.RewriteKind < Cand2.RewriteKind; 9890 9891 // Check C++17 tie-breakers for deduction guides. 9892 { 9893 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 9894 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 9895 if (Guide1 && Guide2) { 9896 // -- F1 is generated from a deduction-guide and F2 is not 9897 if (Guide1->isImplicit() != Guide2->isImplicit()) 9898 return Guide2->isImplicit(); 9899 9900 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 9901 if (Guide1->isCopyDeductionCandidate()) 9902 return true; 9903 } 9904 } 9905 9906 // Check for enable_if value-based overload resolution. 9907 if (Cand1.Function && Cand2.Function) { 9908 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 9909 if (Cmp != Comparison::Equal) 9910 return Cmp == Comparison::Better; 9911 } 9912 9913 bool HasPS1 = Cand1.Function != nullptr && 9914 functionHasPassObjectSizeParams(Cand1.Function); 9915 bool HasPS2 = Cand2.Function != nullptr && 9916 functionHasPassObjectSizeParams(Cand2.Function); 9917 if (HasPS1 != HasPS2 && HasPS1) 9918 return true; 9919 9920 auto MV = isBetterMultiversionCandidate(Cand1, Cand2); 9921 if (MV == Comparison::Better) 9922 return true; 9923 if (MV == Comparison::Worse) 9924 return false; 9925 9926 // If other rules cannot determine which is better, CUDA preference is used 9927 // to determine which is better. 9928 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 9929 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9930 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 9931 S.IdentifyCUDAPreference(Caller, Cand2.Function); 9932 } 9933 9934 // General member function overloading is handled above, so this only handles 9935 // constructors with address spaces. 9936 // This only handles address spaces since C++ has no other 9937 // qualifier that can be used with constructors. 9938 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); 9939 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); 9940 if (CD1 && CD2) { 9941 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); 9942 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); 9943 if (AS1 != AS2) { 9944 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9945 return true; 9946 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9947 return false; 9948 } 9949 } 9950 9951 return false; 9952 } 9953 9954 /// Determine whether two declarations are "equivalent" for the purposes of 9955 /// name lookup and overload resolution. This applies when the same internal/no 9956 /// linkage entity is defined by two modules (probably by textually including 9957 /// the same header). In such a case, we don't consider the declarations to 9958 /// declare the same entity, but we also don't want lookups with both 9959 /// declarations visible to be ambiguous in some cases (this happens when using 9960 /// a modularized libstdc++). 9961 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 9962 const NamedDecl *B) { 9963 auto *VA = dyn_cast_or_null<ValueDecl>(A); 9964 auto *VB = dyn_cast_or_null<ValueDecl>(B); 9965 if (!VA || !VB) 9966 return false; 9967 9968 // The declarations must be declaring the same name as an internal linkage 9969 // entity in different modules. 9970 if (!VA->getDeclContext()->getRedeclContext()->Equals( 9971 VB->getDeclContext()->getRedeclContext()) || 9972 getOwningModule(VA) == getOwningModule(VB) || 9973 VA->isExternallyVisible() || VB->isExternallyVisible()) 9974 return false; 9975 9976 // Check that the declarations appear to be equivalent. 9977 // 9978 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 9979 // For constants and functions, we should check the initializer or body is 9980 // the same. For non-constant variables, we shouldn't allow it at all. 9981 if (Context.hasSameType(VA->getType(), VB->getType())) 9982 return true; 9983 9984 // Enum constants within unnamed enumerations will have different types, but 9985 // may still be similar enough to be interchangeable for our purposes. 9986 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 9987 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 9988 // Only handle anonymous enums. If the enumerations were named and 9989 // equivalent, they would have been merged to the same type. 9990 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 9991 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 9992 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 9993 !Context.hasSameType(EnumA->getIntegerType(), 9994 EnumB->getIntegerType())) 9995 return false; 9996 // Allow this only if the value is the same for both enumerators. 9997 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 9998 } 9999 } 10000 10001 // Nothing else is sufficiently similar. 10002 return false; 10003 } 10004 10005 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 10006 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 10007 assert(D && "Unknown declaration"); 10008 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 10009 10010 Module *M = getOwningModule(D); 10011 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 10012 << !M << (M ? M->getFullModuleName() : ""); 10013 10014 for (auto *E : Equiv) { 10015 Module *M = getOwningModule(E); 10016 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 10017 << !M << (M ? M->getFullModuleName() : ""); 10018 } 10019 } 10020 10021 /// Computes the best viable function (C++ 13.3.3) 10022 /// within an overload candidate set. 10023 /// 10024 /// \param Loc The location of the function name (or operator symbol) for 10025 /// which overload resolution occurs. 10026 /// 10027 /// \param Best If overload resolution was successful or found a deleted 10028 /// function, \p Best points to the candidate function found. 10029 /// 10030 /// \returns The result of overload resolution. 10031 OverloadingResult 10032 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 10033 iterator &Best) { 10034 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 10035 std::transform(begin(), end(), std::back_inserter(Candidates), 10036 [](OverloadCandidate &Cand) { return &Cand; }); 10037 10038 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 10039 // are accepted by both clang and NVCC. However, during a particular 10040 // compilation mode only one call variant is viable. We need to 10041 // exclude non-viable overload candidates from consideration based 10042 // only on their host/device attributes. Specifically, if one 10043 // candidate call is WrongSide and the other is SameSide, we ignore 10044 // the WrongSide candidate. 10045 // We only need to remove wrong-sided candidates here if 10046 // -fgpu-exclude-wrong-side-overloads is off. When 10047 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared 10048 // uniformly in isBetterOverloadCandidate. 10049 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { 10050 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 10051 bool ContainsSameSideCandidate = 10052 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 10053 // Check viable function only. 10054 return Cand->Viable && Cand->Function && 10055 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10056 Sema::CFP_SameSide; 10057 }); 10058 if (ContainsSameSideCandidate) { 10059 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 10060 // Check viable function only to avoid unnecessary data copying/moving. 10061 return Cand->Viable && Cand->Function && 10062 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10063 Sema::CFP_WrongSide; 10064 }; 10065 llvm::erase_if(Candidates, IsWrongSideCandidate); 10066 } 10067 } 10068 10069 // Find the best viable function. 10070 Best = end(); 10071 for (auto *Cand : Candidates) { 10072 Cand->Best = false; 10073 if (Cand->Viable) 10074 if (Best == end() || 10075 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 10076 Best = Cand; 10077 } 10078 10079 // If we didn't find any viable functions, abort. 10080 if (Best == end()) 10081 return OR_No_Viable_Function; 10082 10083 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 10084 10085 llvm::SmallVector<OverloadCandidate*, 4> PendingBest; 10086 PendingBest.push_back(&*Best); 10087 Best->Best = true; 10088 10089 // Make sure that this function is better than every other viable 10090 // function. If not, we have an ambiguity. 10091 while (!PendingBest.empty()) { 10092 auto *Curr = PendingBest.pop_back_val(); 10093 for (auto *Cand : Candidates) { 10094 if (Cand->Viable && !Cand->Best && 10095 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { 10096 PendingBest.push_back(Cand); 10097 Cand->Best = true; 10098 10099 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, 10100 Curr->Function)) 10101 EquivalentCands.push_back(Cand->Function); 10102 else 10103 Best = end(); 10104 } 10105 } 10106 } 10107 10108 // If we found more than one best candidate, this is ambiguous. 10109 if (Best == end()) 10110 return OR_Ambiguous; 10111 10112 // Best is the best viable function. 10113 if (Best->Function && Best->Function->isDeleted()) 10114 return OR_Deleted; 10115 10116 if (!EquivalentCands.empty()) 10117 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 10118 EquivalentCands); 10119 10120 return OR_Success; 10121 } 10122 10123 namespace { 10124 10125 enum OverloadCandidateKind { 10126 oc_function, 10127 oc_method, 10128 oc_reversed_binary_operator, 10129 oc_constructor, 10130 oc_implicit_default_constructor, 10131 oc_implicit_copy_constructor, 10132 oc_implicit_move_constructor, 10133 oc_implicit_copy_assignment, 10134 oc_implicit_move_assignment, 10135 oc_implicit_equality_comparison, 10136 oc_inherited_constructor 10137 }; 10138 10139 enum OverloadCandidateSelect { 10140 ocs_non_template, 10141 ocs_template, 10142 ocs_described_template, 10143 }; 10144 10145 static std::pair<OverloadCandidateKind, OverloadCandidateSelect> 10146 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 10147 OverloadCandidateRewriteKind CRK, 10148 std::string &Description) { 10149 10150 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); 10151 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 10152 isTemplate = true; 10153 Description = S.getTemplateArgumentBindingsText( 10154 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 10155 } 10156 10157 OverloadCandidateSelect Select = [&]() { 10158 if (!Description.empty()) 10159 return ocs_described_template; 10160 return isTemplate ? ocs_template : ocs_non_template; 10161 }(); 10162 10163 OverloadCandidateKind Kind = [&]() { 10164 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) 10165 return oc_implicit_equality_comparison; 10166 10167 if (CRK & CRK_Reversed) 10168 return oc_reversed_binary_operator; 10169 10170 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 10171 if (!Ctor->isImplicit()) { 10172 if (isa<ConstructorUsingShadowDecl>(Found)) 10173 return oc_inherited_constructor; 10174 else 10175 return oc_constructor; 10176 } 10177 10178 if (Ctor->isDefaultConstructor()) 10179 return oc_implicit_default_constructor; 10180 10181 if (Ctor->isMoveConstructor()) 10182 return oc_implicit_move_constructor; 10183 10184 assert(Ctor->isCopyConstructor() && 10185 "unexpected sort of implicit constructor"); 10186 return oc_implicit_copy_constructor; 10187 } 10188 10189 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 10190 // This actually gets spelled 'candidate function' for now, but 10191 // it doesn't hurt to split it out. 10192 if (!Meth->isImplicit()) 10193 return oc_method; 10194 10195 if (Meth->isMoveAssignmentOperator()) 10196 return oc_implicit_move_assignment; 10197 10198 if (Meth->isCopyAssignmentOperator()) 10199 return oc_implicit_copy_assignment; 10200 10201 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 10202 return oc_method; 10203 } 10204 10205 return oc_function; 10206 }(); 10207 10208 return std::make_pair(Kind, Select); 10209 } 10210 10211 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 10212 // FIXME: It'd be nice to only emit a note once per using-decl per overload 10213 // set. 10214 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 10215 S.Diag(FoundDecl->getLocation(), 10216 diag::note_ovl_candidate_inherited_constructor) 10217 << Shadow->getNominatedBaseClass(); 10218 } 10219 10220 } // end anonymous namespace 10221 10222 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 10223 const FunctionDecl *FD) { 10224 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 10225 bool AlwaysTrue; 10226 if (EnableIf->getCond()->isValueDependent() || 10227 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 10228 return false; 10229 if (!AlwaysTrue) 10230 return false; 10231 } 10232 return true; 10233 } 10234 10235 /// Returns true if we can take the address of the function. 10236 /// 10237 /// \param Complain - If true, we'll emit a diagnostic 10238 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 10239 /// we in overload resolution? 10240 /// \param Loc - The location of the statement we're complaining about. Ignored 10241 /// if we're not complaining, or if we're in overload resolution. 10242 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 10243 bool Complain, 10244 bool InOverloadResolution, 10245 SourceLocation Loc) { 10246 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 10247 if (Complain) { 10248 if (InOverloadResolution) 10249 S.Diag(FD->getBeginLoc(), 10250 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 10251 else 10252 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 10253 } 10254 return false; 10255 } 10256 10257 if (FD->getTrailingRequiresClause()) { 10258 ConstraintSatisfaction Satisfaction; 10259 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) 10260 return false; 10261 if (!Satisfaction.IsSatisfied) { 10262 if (Complain) { 10263 if (InOverloadResolution) 10264 S.Diag(FD->getBeginLoc(), 10265 diag::note_ovl_candidate_unsatisfied_constraints); 10266 else 10267 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) 10268 << FD; 10269 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 10270 } 10271 return false; 10272 } 10273 } 10274 10275 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 10276 return P->hasAttr<PassObjectSizeAttr>(); 10277 }); 10278 if (I == FD->param_end()) 10279 return true; 10280 10281 if (Complain) { 10282 // Add one to ParamNo because it's user-facing 10283 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 10284 if (InOverloadResolution) 10285 S.Diag(FD->getLocation(), 10286 diag::note_ovl_candidate_has_pass_object_size_params) 10287 << ParamNo; 10288 else 10289 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 10290 << FD << ParamNo; 10291 } 10292 return false; 10293 } 10294 10295 static bool checkAddressOfCandidateIsAvailable(Sema &S, 10296 const FunctionDecl *FD) { 10297 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 10298 /*InOverloadResolution=*/true, 10299 /*Loc=*/SourceLocation()); 10300 } 10301 10302 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 10303 bool Complain, 10304 SourceLocation Loc) { 10305 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 10306 /*InOverloadResolution=*/false, 10307 Loc); 10308 } 10309 10310 // Don't print candidates other than the one that matches the calling 10311 // convention of the call operator, since that is guaranteed to exist. 10312 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { 10313 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); 10314 10315 if (!ConvD) 10316 return false; 10317 const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); 10318 if (!RD->isLambda()) 10319 return false; 10320 10321 CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); 10322 CallingConv CallOpCC = 10323 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 10324 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); 10325 CallingConv ConvToCC = 10326 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); 10327 10328 return ConvToCC != CallOpCC; 10329 } 10330 10331 // Notes the location of an overload candidate. 10332 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 10333 OverloadCandidateRewriteKind RewriteKind, 10334 QualType DestType, bool TakingAddress) { 10335 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 10336 return; 10337 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && 10338 !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 10339 return; 10340 if (shouldSkipNotingLambdaConversionDecl(Fn)) 10341 return; 10342 10343 std::string FnDesc; 10344 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = 10345 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); 10346 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 10347 << (unsigned)KSPair.first << (unsigned)KSPair.second 10348 << Fn << FnDesc; 10349 10350 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 10351 Diag(Fn->getLocation(), PD); 10352 MaybeEmitInheritedConstructorNote(*this, Found); 10353 } 10354 10355 static void 10356 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { 10357 // Perhaps the ambiguity was caused by two atomic constraints that are 10358 // 'identical' but not equivalent: 10359 // 10360 // void foo() requires (sizeof(T) > 4) { } // #1 10361 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 10362 // 10363 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause 10364 // #2 to subsume #1, but these constraint are not considered equivalent 10365 // according to the subsumption rules because they are not the same 10366 // source-level construct. This behavior is quite confusing and we should try 10367 // to help the user figure out what happened. 10368 10369 SmallVector<const Expr *, 3> FirstAC, SecondAC; 10370 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; 10371 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10372 if (!I->Function) 10373 continue; 10374 SmallVector<const Expr *, 3> AC; 10375 if (auto *Template = I->Function->getPrimaryTemplate()) 10376 Template->getAssociatedConstraints(AC); 10377 else 10378 I->Function->getAssociatedConstraints(AC); 10379 if (AC.empty()) 10380 continue; 10381 if (FirstCand == nullptr) { 10382 FirstCand = I->Function; 10383 FirstAC = AC; 10384 } else if (SecondCand == nullptr) { 10385 SecondCand = I->Function; 10386 SecondAC = AC; 10387 } else { 10388 // We have more than one pair of constrained functions - this check is 10389 // expensive and we'd rather not try to diagnose it. 10390 return; 10391 } 10392 } 10393 if (!SecondCand) 10394 return; 10395 // The diagnostic can only happen if there are associated constraints on 10396 // both sides (there needs to be some identical atomic constraint). 10397 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, 10398 SecondCand, SecondAC)) 10399 // Just show the user one diagnostic, they'll probably figure it out 10400 // from here. 10401 return; 10402 } 10403 10404 // Notes the location of all overload candidates designated through 10405 // OverloadedExpr 10406 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 10407 bool TakingAddress) { 10408 assert(OverloadedExpr->getType() == Context.OverloadTy); 10409 10410 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 10411 OverloadExpr *OvlExpr = Ovl.Expression; 10412 10413 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 10414 IEnd = OvlExpr->decls_end(); 10415 I != IEnd; ++I) { 10416 if (FunctionTemplateDecl *FunTmpl = 10417 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 10418 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, 10419 TakingAddress); 10420 } else if (FunctionDecl *Fun 10421 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 10422 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); 10423 } 10424 } 10425 } 10426 10427 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 10428 /// "lead" diagnostic; it will be given two arguments, the source and 10429 /// target types of the conversion. 10430 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 10431 Sema &S, 10432 SourceLocation CaretLoc, 10433 const PartialDiagnostic &PDiag) const { 10434 S.Diag(CaretLoc, PDiag) 10435 << Ambiguous.getFromType() << Ambiguous.getToType(); 10436 unsigned CandsShown = 0; 10437 AmbiguousConversionSequence::const_iterator I, E; 10438 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 10439 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) 10440 break; 10441 ++CandsShown; 10442 S.NoteOverloadCandidate(I->first, I->second); 10443 } 10444 S.Diags.overloadCandidatesShown(CandsShown); 10445 if (I != E) 10446 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 10447 } 10448 10449 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 10450 unsigned I, bool TakingCandidateAddress) { 10451 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 10452 assert(Conv.isBad()); 10453 assert(Cand->Function && "for now, candidate must be a function"); 10454 FunctionDecl *Fn = Cand->Function; 10455 10456 // There's a conversion slot for the object argument if this is a 10457 // non-constructor method. Note that 'I' corresponds the 10458 // conversion-slot index. 10459 bool isObjectArgument = false; 10460 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 10461 if (I == 0) 10462 isObjectArgument = true; 10463 else 10464 I--; 10465 } 10466 10467 std::string FnDesc; 10468 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10469 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), 10470 FnDesc); 10471 10472 Expr *FromExpr = Conv.Bad.FromExpr; 10473 QualType FromTy = Conv.Bad.getFromType(); 10474 QualType ToTy = Conv.Bad.getToType(); 10475 10476 if (FromTy == S.Context.OverloadTy) { 10477 assert(FromExpr && "overload set argument came from implicit argument?"); 10478 Expr *E = FromExpr->IgnoreParens(); 10479 if (isa<UnaryOperator>(E)) 10480 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 10481 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 10482 10483 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 10484 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10485 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy 10486 << Name << I + 1; 10487 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10488 return; 10489 } 10490 10491 // Do some hand-waving analysis to see if the non-viability is due 10492 // to a qualifier mismatch. 10493 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 10494 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 10495 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 10496 CToTy = RT->getPointeeType(); 10497 else { 10498 // TODO: detect and diagnose the full richness of const mismatches. 10499 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 10500 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 10501 CFromTy = FromPT->getPointeeType(); 10502 CToTy = ToPT->getPointeeType(); 10503 } 10504 } 10505 10506 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 10507 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 10508 Qualifiers FromQs = CFromTy.getQualifiers(); 10509 Qualifiers ToQs = CToTy.getQualifiers(); 10510 10511 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 10512 if (isObjectArgument) 10513 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) 10514 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10515 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10516 << FromQs.getAddressSpace() << ToQs.getAddressSpace(); 10517 else 10518 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 10519 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10520 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10521 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 10522 << ToTy->isReferenceType() << I + 1; 10523 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10524 return; 10525 } 10526 10527 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10528 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 10529 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10530 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10531 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 10532 << (unsigned)isObjectArgument << I + 1; 10533 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10534 return; 10535 } 10536 10537 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 10538 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 10539 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10540 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10541 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 10542 << (unsigned)isObjectArgument << I + 1; 10543 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10544 return; 10545 } 10546 10547 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 10548 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 10549 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10550 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10551 << FromQs.hasUnaligned() << I + 1; 10552 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10553 return; 10554 } 10555 10556 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 10557 assert(CVR && "expected qualifiers mismatch"); 10558 10559 if (isObjectArgument) { 10560 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 10561 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10562 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10563 << (CVR - 1); 10564 } else { 10565 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 10566 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10567 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10568 << (CVR - 1) << I + 1; 10569 } 10570 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10571 return; 10572 } 10573 10574 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || 10575 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { 10576 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) 10577 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10578 << (unsigned)isObjectArgument << I + 1 10579 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) 10580 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); 10581 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10582 return; 10583 } 10584 10585 // Special diagnostic for failure to convert an initializer list, since 10586 // telling the user that it has type void is not useful. 10587 if (FromExpr && isa<InitListExpr>(FromExpr)) { 10588 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 10589 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10590 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10591 << ToTy << (unsigned)isObjectArgument << I + 1 10592 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 10593 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers 10594 ? 2 10595 : 0); 10596 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10597 return; 10598 } 10599 10600 // Diagnose references or pointers to incomplete types differently, 10601 // since it's far from impossible that the incompleteness triggered 10602 // the failure. 10603 QualType TempFromTy = FromTy.getNonReferenceType(); 10604 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 10605 TempFromTy = PTy->getPointeeType(); 10606 if (TempFromTy->isIncompleteType()) { 10607 // Emit the generic diagnostic and, optionally, add the hints to it. 10608 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 10609 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10610 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10611 << ToTy << (unsigned)isObjectArgument << I + 1 10612 << (unsigned)(Cand->Fix.Kind); 10613 10614 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10615 return; 10616 } 10617 10618 // Diagnose base -> derived pointer conversions. 10619 unsigned BaseToDerivedConversion = 0; 10620 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 10621 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 10622 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10623 FromPtrTy->getPointeeType()) && 10624 !FromPtrTy->getPointeeType()->isIncompleteType() && 10625 !ToPtrTy->getPointeeType()->isIncompleteType() && 10626 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 10627 FromPtrTy->getPointeeType())) 10628 BaseToDerivedConversion = 1; 10629 } 10630 } else if (const ObjCObjectPointerType *FromPtrTy 10631 = FromTy->getAs<ObjCObjectPointerType>()) { 10632 if (const ObjCObjectPointerType *ToPtrTy 10633 = ToTy->getAs<ObjCObjectPointerType>()) 10634 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 10635 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 10636 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10637 FromPtrTy->getPointeeType()) && 10638 FromIface->isSuperClassOf(ToIface)) 10639 BaseToDerivedConversion = 2; 10640 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 10641 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 10642 !FromTy->isIncompleteType() && 10643 !ToRefTy->getPointeeType()->isIncompleteType() && 10644 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 10645 BaseToDerivedConversion = 3; 10646 } 10647 } 10648 10649 if (BaseToDerivedConversion) { 10650 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) 10651 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10652 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10653 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; 10654 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10655 return; 10656 } 10657 10658 if (isa<ObjCObjectPointerType>(CFromTy) && 10659 isa<PointerType>(CToTy)) { 10660 Qualifiers FromQs = CFromTy.getQualifiers(); 10661 Qualifiers ToQs = CToTy.getQualifiers(); 10662 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10663 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 10664 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10665 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10666 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; 10667 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10668 return; 10669 } 10670 } 10671 10672 if (TakingCandidateAddress && 10673 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 10674 return; 10675 10676 // Emit the generic diagnostic and, optionally, add the hints to it. 10677 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 10678 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10679 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10680 << ToTy << (unsigned)isObjectArgument << I + 1 10681 << (unsigned)(Cand->Fix.Kind); 10682 10683 // If we can fix the conversion, suggest the FixIts. 10684 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 10685 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 10686 FDiag << *HI; 10687 S.Diag(Fn->getLocation(), FDiag); 10688 10689 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10690 } 10691 10692 /// Additional arity mismatch diagnosis specific to a function overload 10693 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 10694 /// over a candidate in any candidate set. 10695 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 10696 unsigned NumArgs) { 10697 FunctionDecl *Fn = Cand->Function; 10698 unsigned MinParams = Fn->getMinRequiredArguments(); 10699 10700 // With invalid overloaded operators, it's possible that we think we 10701 // have an arity mismatch when in fact it looks like we have the 10702 // right number of arguments, because only overloaded operators have 10703 // the weird behavior of overloading member and non-member functions. 10704 // Just don't report anything. 10705 if (Fn->isInvalidDecl() && 10706 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 10707 return true; 10708 10709 if (NumArgs < MinParams) { 10710 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 10711 (Cand->FailureKind == ovl_fail_bad_deduction && 10712 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 10713 } else { 10714 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 10715 (Cand->FailureKind == ovl_fail_bad_deduction && 10716 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 10717 } 10718 10719 return false; 10720 } 10721 10722 /// General arity mismatch diagnosis over a candidate in a candidate set. 10723 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 10724 unsigned NumFormalArgs) { 10725 assert(isa<FunctionDecl>(D) && 10726 "The templated declaration should at least be a function" 10727 " when diagnosing bad template argument deduction due to too many" 10728 " or too few arguments"); 10729 10730 FunctionDecl *Fn = cast<FunctionDecl>(D); 10731 10732 // TODO: treat calls to a missing default constructor as a special case 10733 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); 10734 unsigned MinParams = Fn->getMinRequiredArguments(); 10735 10736 // at least / at most / exactly 10737 unsigned mode, modeCount; 10738 if (NumFormalArgs < MinParams) { 10739 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 10740 FnTy->isTemplateVariadic()) 10741 mode = 0; // "at least" 10742 else 10743 mode = 2; // "exactly" 10744 modeCount = MinParams; 10745 } else { 10746 if (MinParams != FnTy->getNumParams()) 10747 mode = 1; // "at most" 10748 else 10749 mode = 2; // "exactly" 10750 modeCount = FnTy->getNumParams(); 10751 } 10752 10753 std::string Description; 10754 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10755 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); 10756 10757 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 10758 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 10759 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10760 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; 10761 else 10762 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 10763 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10764 << Description << mode << modeCount << NumFormalArgs; 10765 10766 MaybeEmitInheritedConstructorNote(S, Found); 10767 } 10768 10769 /// Arity mismatch diagnosis specific to a function overload candidate. 10770 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 10771 unsigned NumFormalArgs) { 10772 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 10773 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 10774 } 10775 10776 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 10777 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 10778 return TD; 10779 llvm_unreachable("Unsupported: Getting the described template declaration" 10780 " for bad deduction diagnosis"); 10781 } 10782 10783 /// Diagnose a failed template-argument deduction. 10784 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 10785 DeductionFailureInfo &DeductionFailure, 10786 unsigned NumArgs, 10787 bool TakingCandidateAddress) { 10788 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 10789 NamedDecl *ParamD; 10790 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 10791 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 10792 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 10793 switch (DeductionFailure.Result) { 10794 case Sema::TDK_Success: 10795 llvm_unreachable("TDK_success while diagnosing bad deduction"); 10796 10797 case Sema::TDK_Incomplete: { 10798 assert(ParamD && "no parameter found for incomplete deduction result"); 10799 S.Diag(Templated->getLocation(), 10800 diag::note_ovl_candidate_incomplete_deduction) 10801 << ParamD->getDeclName(); 10802 MaybeEmitInheritedConstructorNote(S, Found); 10803 return; 10804 } 10805 10806 case Sema::TDK_IncompletePack: { 10807 assert(ParamD && "no parameter found for incomplete deduction result"); 10808 S.Diag(Templated->getLocation(), 10809 diag::note_ovl_candidate_incomplete_deduction_pack) 10810 << ParamD->getDeclName() 10811 << (DeductionFailure.getFirstArg()->pack_size() + 1) 10812 << *DeductionFailure.getFirstArg(); 10813 MaybeEmitInheritedConstructorNote(S, Found); 10814 return; 10815 } 10816 10817 case Sema::TDK_Underqualified: { 10818 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 10819 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 10820 10821 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 10822 10823 // Param will have been canonicalized, but it should just be a 10824 // qualified version of ParamD, so move the qualifiers to that. 10825 QualifierCollector Qs; 10826 Qs.strip(Param); 10827 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 10828 assert(S.Context.hasSameType(Param, NonCanonParam)); 10829 10830 // Arg has also been canonicalized, but there's nothing we can do 10831 // about that. It also doesn't matter as much, because it won't 10832 // have any template parameters in it (because deduction isn't 10833 // done on dependent types). 10834 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 10835 10836 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 10837 << ParamD->getDeclName() << Arg << NonCanonParam; 10838 MaybeEmitInheritedConstructorNote(S, Found); 10839 return; 10840 } 10841 10842 case Sema::TDK_Inconsistent: { 10843 assert(ParamD && "no parameter found for inconsistent deduction result"); 10844 int which = 0; 10845 if (isa<TemplateTypeParmDecl>(ParamD)) 10846 which = 0; 10847 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 10848 // Deduction might have failed because we deduced arguments of two 10849 // different types for a non-type template parameter. 10850 // FIXME: Use a different TDK value for this. 10851 QualType T1 = 10852 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 10853 QualType T2 = 10854 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 10855 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { 10856 S.Diag(Templated->getLocation(), 10857 diag::note_ovl_candidate_inconsistent_deduction_types) 10858 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 10859 << *DeductionFailure.getSecondArg() << T2; 10860 MaybeEmitInheritedConstructorNote(S, Found); 10861 return; 10862 } 10863 10864 which = 1; 10865 } else { 10866 which = 2; 10867 } 10868 10869 // Tweak the diagnostic if the problem is that we deduced packs of 10870 // different arities. We'll print the actual packs anyway in case that 10871 // includes additional useful information. 10872 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && 10873 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && 10874 DeductionFailure.getFirstArg()->pack_size() != 10875 DeductionFailure.getSecondArg()->pack_size()) { 10876 which = 3; 10877 } 10878 10879 S.Diag(Templated->getLocation(), 10880 diag::note_ovl_candidate_inconsistent_deduction) 10881 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 10882 << *DeductionFailure.getSecondArg(); 10883 MaybeEmitInheritedConstructorNote(S, Found); 10884 return; 10885 } 10886 10887 case Sema::TDK_InvalidExplicitArguments: 10888 assert(ParamD && "no parameter found for invalid explicit arguments"); 10889 if (ParamD->getDeclName()) 10890 S.Diag(Templated->getLocation(), 10891 diag::note_ovl_candidate_explicit_arg_mismatch_named) 10892 << ParamD->getDeclName(); 10893 else { 10894 int index = 0; 10895 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 10896 index = TTP->getIndex(); 10897 else if (NonTypeTemplateParmDecl *NTTP 10898 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 10899 index = NTTP->getIndex(); 10900 else 10901 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 10902 S.Diag(Templated->getLocation(), 10903 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 10904 << (index + 1); 10905 } 10906 MaybeEmitInheritedConstructorNote(S, Found); 10907 return; 10908 10909 case Sema::TDK_ConstraintsNotSatisfied: { 10910 // Format the template argument list into the argument string. 10911 SmallString<128> TemplateArgString; 10912 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); 10913 TemplateArgString = " "; 10914 TemplateArgString += S.getTemplateArgumentBindingsText( 10915 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10916 if (TemplateArgString.size() == 1) 10917 TemplateArgString.clear(); 10918 S.Diag(Templated->getLocation(), 10919 diag::note_ovl_candidate_unsatisfied_constraints) 10920 << TemplateArgString; 10921 10922 S.DiagnoseUnsatisfiedConstraint( 10923 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); 10924 return; 10925 } 10926 case Sema::TDK_TooManyArguments: 10927 case Sema::TDK_TooFewArguments: 10928 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 10929 return; 10930 10931 case Sema::TDK_InstantiationDepth: 10932 S.Diag(Templated->getLocation(), 10933 diag::note_ovl_candidate_instantiation_depth); 10934 MaybeEmitInheritedConstructorNote(S, Found); 10935 return; 10936 10937 case Sema::TDK_SubstitutionFailure: { 10938 // Format the template argument list into the argument string. 10939 SmallString<128> TemplateArgString; 10940 if (TemplateArgumentList *Args = 10941 DeductionFailure.getTemplateArgumentList()) { 10942 TemplateArgString = " "; 10943 TemplateArgString += S.getTemplateArgumentBindingsText( 10944 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10945 if (TemplateArgString.size() == 1) 10946 TemplateArgString.clear(); 10947 } 10948 10949 // If this candidate was disabled by enable_if, say so. 10950 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 10951 if (PDiag && PDiag->second.getDiagID() == 10952 diag::err_typename_nested_not_found_enable_if) { 10953 // FIXME: Use the source range of the condition, and the fully-qualified 10954 // name of the enable_if template. These are both present in PDiag. 10955 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 10956 << "'enable_if'" << TemplateArgString; 10957 return; 10958 } 10959 10960 // We found a specific requirement that disabled the enable_if. 10961 if (PDiag && PDiag->second.getDiagID() == 10962 diag::err_typename_nested_not_found_requirement) { 10963 S.Diag(Templated->getLocation(), 10964 diag::note_ovl_candidate_disabled_by_requirement) 10965 << PDiag->second.getStringArg(0) << TemplateArgString; 10966 return; 10967 } 10968 10969 // Format the SFINAE diagnostic into the argument string. 10970 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 10971 // formatted message in another diagnostic. 10972 SmallString<128> SFINAEArgString; 10973 SourceRange R; 10974 if (PDiag) { 10975 SFINAEArgString = ": "; 10976 R = SourceRange(PDiag->first, PDiag->first); 10977 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 10978 } 10979 10980 S.Diag(Templated->getLocation(), 10981 diag::note_ovl_candidate_substitution_failure) 10982 << TemplateArgString << SFINAEArgString << R; 10983 MaybeEmitInheritedConstructorNote(S, Found); 10984 return; 10985 } 10986 10987 case Sema::TDK_DeducedMismatch: 10988 case Sema::TDK_DeducedMismatchNested: { 10989 // Format the template argument list into the argument string. 10990 SmallString<128> TemplateArgString; 10991 if (TemplateArgumentList *Args = 10992 DeductionFailure.getTemplateArgumentList()) { 10993 TemplateArgString = " "; 10994 TemplateArgString += S.getTemplateArgumentBindingsText( 10995 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10996 if (TemplateArgString.size() == 1) 10997 TemplateArgString.clear(); 10998 } 10999 11000 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 11001 << (*DeductionFailure.getCallArgIndex() + 1) 11002 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 11003 << TemplateArgString 11004 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 11005 break; 11006 } 11007 11008 case Sema::TDK_NonDeducedMismatch: { 11009 // FIXME: Provide a source location to indicate what we couldn't match. 11010 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 11011 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 11012 if (FirstTA.getKind() == TemplateArgument::Template && 11013 SecondTA.getKind() == TemplateArgument::Template) { 11014 TemplateName FirstTN = FirstTA.getAsTemplate(); 11015 TemplateName SecondTN = SecondTA.getAsTemplate(); 11016 if (FirstTN.getKind() == TemplateName::Template && 11017 SecondTN.getKind() == TemplateName::Template) { 11018 if (FirstTN.getAsTemplateDecl()->getName() == 11019 SecondTN.getAsTemplateDecl()->getName()) { 11020 // FIXME: This fixes a bad diagnostic where both templates are named 11021 // the same. This particular case is a bit difficult since: 11022 // 1) It is passed as a string to the diagnostic printer. 11023 // 2) The diagnostic printer only attempts to find a better 11024 // name for types, not decls. 11025 // Ideally, this should folded into the diagnostic printer. 11026 S.Diag(Templated->getLocation(), 11027 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 11028 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 11029 return; 11030 } 11031 } 11032 } 11033 11034 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 11035 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 11036 return; 11037 11038 // FIXME: For generic lambda parameters, check if the function is a lambda 11039 // call operator, and if so, emit a prettier and more informative 11040 // diagnostic that mentions 'auto' and lambda in addition to 11041 // (or instead of?) the canonical template type parameters. 11042 S.Diag(Templated->getLocation(), 11043 diag::note_ovl_candidate_non_deduced_mismatch) 11044 << FirstTA << SecondTA; 11045 return; 11046 } 11047 // TODO: diagnose these individually, then kill off 11048 // note_ovl_candidate_bad_deduction, which is uselessly vague. 11049 case Sema::TDK_MiscellaneousDeductionFailure: 11050 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 11051 MaybeEmitInheritedConstructorNote(S, Found); 11052 return; 11053 case Sema::TDK_CUDATargetMismatch: 11054 S.Diag(Templated->getLocation(), 11055 diag::note_cuda_ovl_candidate_target_mismatch); 11056 return; 11057 } 11058 } 11059 11060 /// Diagnose a failed template-argument deduction, for function calls. 11061 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 11062 unsigned NumArgs, 11063 bool TakingCandidateAddress) { 11064 unsigned TDK = Cand->DeductionFailure.Result; 11065 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 11066 if (CheckArityMismatch(S, Cand, NumArgs)) 11067 return; 11068 } 11069 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 11070 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 11071 } 11072 11073 /// CUDA: diagnose an invalid call across targets. 11074 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 11075 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 11076 FunctionDecl *Callee = Cand->Function; 11077 11078 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 11079 CalleeTarget = S.IdentifyCUDATarget(Callee); 11080 11081 std::string FnDesc; 11082 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11083 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, 11084 Cand->getRewriteKind(), FnDesc); 11085 11086 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 11087 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11088 << FnDesc /* Ignored */ 11089 << CalleeTarget << CallerTarget; 11090 11091 // This could be an implicit constructor for which we could not infer the 11092 // target due to a collsion. Diagnose that case. 11093 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 11094 if (Meth != nullptr && Meth->isImplicit()) { 11095 CXXRecordDecl *ParentClass = Meth->getParent(); 11096 Sema::CXXSpecialMember CSM; 11097 11098 switch (FnKindPair.first) { 11099 default: 11100 return; 11101 case oc_implicit_default_constructor: 11102 CSM = Sema::CXXDefaultConstructor; 11103 break; 11104 case oc_implicit_copy_constructor: 11105 CSM = Sema::CXXCopyConstructor; 11106 break; 11107 case oc_implicit_move_constructor: 11108 CSM = Sema::CXXMoveConstructor; 11109 break; 11110 case oc_implicit_copy_assignment: 11111 CSM = Sema::CXXCopyAssignment; 11112 break; 11113 case oc_implicit_move_assignment: 11114 CSM = Sema::CXXMoveAssignment; 11115 break; 11116 }; 11117 11118 bool ConstRHS = false; 11119 if (Meth->getNumParams()) { 11120 if (const ReferenceType *RT = 11121 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 11122 ConstRHS = RT->getPointeeType().isConstQualified(); 11123 } 11124 } 11125 11126 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 11127 /* ConstRHS */ ConstRHS, 11128 /* Diagnose */ true); 11129 } 11130 } 11131 11132 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 11133 FunctionDecl *Callee = Cand->Function; 11134 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 11135 11136 S.Diag(Callee->getLocation(), 11137 diag::note_ovl_candidate_disabled_by_function_cond_attr) 11138 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 11139 } 11140 11141 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { 11142 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); 11143 assert(ES.isExplicit() && "not an explicit candidate"); 11144 11145 unsigned Kind; 11146 switch (Cand->Function->getDeclKind()) { 11147 case Decl::Kind::CXXConstructor: 11148 Kind = 0; 11149 break; 11150 case Decl::Kind::CXXConversion: 11151 Kind = 1; 11152 break; 11153 case Decl::Kind::CXXDeductionGuide: 11154 Kind = Cand->Function->isImplicit() ? 0 : 2; 11155 break; 11156 default: 11157 llvm_unreachable("invalid Decl"); 11158 } 11159 11160 // Note the location of the first (in-class) declaration; a redeclaration 11161 // (particularly an out-of-class definition) will typically lack the 11162 // 'explicit' specifier. 11163 // FIXME: This is probably a good thing to do for all 'candidate' notes. 11164 FunctionDecl *First = Cand->Function->getFirstDecl(); 11165 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) 11166 First = Pattern->getFirstDecl(); 11167 11168 S.Diag(First->getLocation(), 11169 diag::note_ovl_candidate_explicit) 11170 << Kind << (ES.getExpr() ? 1 : 0) 11171 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); 11172 } 11173 11174 /// Generates a 'note' diagnostic for an overload candidate. We've 11175 /// already generated a primary error at the call site. 11176 /// 11177 /// It really does need to be a single diagnostic with its caret 11178 /// pointed at the candidate declaration. Yes, this creates some 11179 /// major challenges of technical writing. Yes, this makes pointing 11180 /// out problems with specific arguments quite awkward. It's still 11181 /// better than generating twenty screens of text for every failed 11182 /// overload. 11183 /// 11184 /// It would be great to be able to express per-candidate problems 11185 /// more richly for those diagnostic clients that cared, but we'd 11186 /// still have to be just as careful with the default diagnostics. 11187 /// \param CtorDestAS Addr space of object being constructed (for ctor 11188 /// candidates only). 11189 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 11190 unsigned NumArgs, 11191 bool TakingCandidateAddress, 11192 LangAS CtorDestAS = LangAS::Default) { 11193 FunctionDecl *Fn = Cand->Function; 11194 if (shouldSkipNotingLambdaConversionDecl(Fn)) 11195 return; 11196 11197 // Note deleted candidates, but only if they're viable. 11198 if (Cand->Viable) { 11199 if (Fn->isDeleted()) { 11200 std::string FnDesc; 11201 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11202 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11203 Cand->getRewriteKind(), FnDesc); 11204 11205 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 11206 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 11207 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 11208 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11209 return; 11210 } 11211 11212 // We don't really have anything else to say about viable candidates. 11213 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11214 return; 11215 } 11216 11217 switch (Cand->FailureKind) { 11218 case ovl_fail_too_many_arguments: 11219 case ovl_fail_too_few_arguments: 11220 return DiagnoseArityMismatch(S, Cand, NumArgs); 11221 11222 case ovl_fail_bad_deduction: 11223 return DiagnoseBadDeduction(S, Cand, NumArgs, 11224 TakingCandidateAddress); 11225 11226 case ovl_fail_illegal_constructor: { 11227 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 11228 << (Fn->getPrimaryTemplate() ? 1 : 0); 11229 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11230 return; 11231 } 11232 11233 case ovl_fail_object_addrspace_mismatch: { 11234 Qualifiers QualsForPrinting; 11235 QualsForPrinting.setAddressSpace(CtorDestAS); 11236 S.Diag(Fn->getLocation(), 11237 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) 11238 << QualsForPrinting; 11239 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11240 return; 11241 } 11242 11243 case ovl_fail_trivial_conversion: 11244 case ovl_fail_bad_final_conversion: 11245 case ovl_fail_final_conversion_not_exact: 11246 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11247 11248 case ovl_fail_bad_conversion: { 11249 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 11250 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 11251 if (Cand->Conversions[I].isBad()) 11252 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 11253 11254 // FIXME: this currently happens when we're called from SemaInit 11255 // when user-conversion overload fails. Figure out how to handle 11256 // those conditions and diagnose them well. 11257 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11258 } 11259 11260 case ovl_fail_bad_target: 11261 return DiagnoseBadTarget(S, Cand); 11262 11263 case ovl_fail_enable_if: 11264 return DiagnoseFailedEnableIfAttr(S, Cand); 11265 11266 case ovl_fail_explicit: 11267 return DiagnoseFailedExplicitSpec(S, Cand); 11268 11269 case ovl_fail_inhctor_slice: 11270 // It's generally not interesting to note copy/move constructors here. 11271 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 11272 return; 11273 S.Diag(Fn->getLocation(), 11274 diag::note_ovl_candidate_inherited_constructor_slice) 11275 << (Fn->getPrimaryTemplate() ? 1 : 0) 11276 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 11277 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11278 return; 11279 11280 case ovl_fail_addr_not_available: { 11281 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 11282 (void)Available; 11283 assert(!Available); 11284 break; 11285 } 11286 case ovl_non_default_multiversion_function: 11287 // Do nothing, these should simply be ignored. 11288 break; 11289 11290 case ovl_fail_constraints_not_satisfied: { 11291 std::string FnDesc; 11292 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11293 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11294 Cand->getRewriteKind(), FnDesc); 11295 11296 S.Diag(Fn->getLocation(), 11297 diag::note_ovl_candidate_constraints_not_satisfied) 11298 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11299 << FnDesc /* Ignored */; 11300 ConstraintSatisfaction Satisfaction; 11301 if (S.CheckFunctionConstraints(Fn, Satisfaction)) 11302 break; 11303 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 11304 } 11305 } 11306 } 11307 11308 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 11309 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) 11310 return; 11311 11312 // Desugar the type of the surrogate down to a function type, 11313 // retaining as many typedefs as possible while still showing 11314 // the function type (and, therefore, its parameter types). 11315 QualType FnType = Cand->Surrogate->getConversionType(); 11316 bool isLValueReference = false; 11317 bool isRValueReference = false; 11318 bool isPointer = false; 11319 if (const LValueReferenceType *FnTypeRef = 11320 FnType->getAs<LValueReferenceType>()) { 11321 FnType = FnTypeRef->getPointeeType(); 11322 isLValueReference = true; 11323 } else if (const RValueReferenceType *FnTypeRef = 11324 FnType->getAs<RValueReferenceType>()) { 11325 FnType = FnTypeRef->getPointeeType(); 11326 isRValueReference = true; 11327 } 11328 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 11329 FnType = FnTypePtr->getPointeeType(); 11330 isPointer = true; 11331 } 11332 // Desugar down to a function type. 11333 FnType = QualType(FnType->getAs<FunctionType>(), 0); 11334 // Reconstruct the pointer/reference as appropriate. 11335 if (isPointer) FnType = S.Context.getPointerType(FnType); 11336 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 11337 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 11338 11339 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 11340 << FnType; 11341 } 11342 11343 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 11344 SourceLocation OpLoc, 11345 OverloadCandidate *Cand) { 11346 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 11347 std::string TypeStr("operator"); 11348 TypeStr += Opc; 11349 TypeStr += "("; 11350 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 11351 if (Cand->Conversions.size() == 1) { 11352 TypeStr += ")"; 11353 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11354 } else { 11355 TypeStr += ", "; 11356 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 11357 TypeStr += ")"; 11358 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11359 } 11360 } 11361 11362 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 11363 OverloadCandidate *Cand) { 11364 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 11365 if (ICS.isBad()) break; // all meaningless after first invalid 11366 if (!ICS.isAmbiguous()) continue; 11367 11368 ICS.DiagnoseAmbiguousConversion( 11369 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 11370 } 11371 } 11372 11373 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 11374 if (Cand->Function) 11375 return Cand->Function->getLocation(); 11376 if (Cand->IsSurrogate) 11377 return Cand->Surrogate->getLocation(); 11378 return SourceLocation(); 11379 } 11380 11381 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 11382 switch ((Sema::TemplateDeductionResult)DFI.Result) { 11383 case Sema::TDK_Success: 11384 case Sema::TDK_NonDependentConversionFailure: 11385 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 11386 11387 case Sema::TDK_Invalid: 11388 case Sema::TDK_Incomplete: 11389 case Sema::TDK_IncompletePack: 11390 return 1; 11391 11392 case Sema::TDK_Underqualified: 11393 case Sema::TDK_Inconsistent: 11394 return 2; 11395 11396 case Sema::TDK_SubstitutionFailure: 11397 case Sema::TDK_DeducedMismatch: 11398 case Sema::TDK_ConstraintsNotSatisfied: 11399 case Sema::TDK_DeducedMismatchNested: 11400 case Sema::TDK_NonDeducedMismatch: 11401 case Sema::TDK_MiscellaneousDeductionFailure: 11402 case Sema::TDK_CUDATargetMismatch: 11403 return 3; 11404 11405 case Sema::TDK_InstantiationDepth: 11406 return 4; 11407 11408 case Sema::TDK_InvalidExplicitArguments: 11409 return 5; 11410 11411 case Sema::TDK_TooManyArguments: 11412 case Sema::TDK_TooFewArguments: 11413 return 6; 11414 } 11415 llvm_unreachable("Unhandled deduction result"); 11416 } 11417 11418 namespace { 11419 struct CompareOverloadCandidatesForDisplay { 11420 Sema &S; 11421 SourceLocation Loc; 11422 size_t NumArgs; 11423 OverloadCandidateSet::CandidateSetKind CSK; 11424 11425 CompareOverloadCandidatesForDisplay( 11426 Sema &S, SourceLocation Loc, size_t NArgs, 11427 OverloadCandidateSet::CandidateSetKind CSK) 11428 : S(S), NumArgs(NArgs), CSK(CSK) {} 11429 11430 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { 11431 // If there are too many or too few arguments, that's the high-order bit we 11432 // want to sort by, even if the immediate failure kind was something else. 11433 if (C->FailureKind == ovl_fail_too_many_arguments || 11434 C->FailureKind == ovl_fail_too_few_arguments) 11435 return static_cast<OverloadFailureKind>(C->FailureKind); 11436 11437 if (C->Function) { 11438 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) 11439 return ovl_fail_too_many_arguments; 11440 if (NumArgs < C->Function->getMinRequiredArguments()) 11441 return ovl_fail_too_few_arguments; 11442 } 11443 11444 return static_cast<OverloadFailureKind>(C->FailureKind); 11445 } 11446 11447 bool operator()(const OverloadCandidate *L, 11448 const OverloadCandidate *R) { 11449 // Fast-path this check. 11450 if (L == R) return false; 11451 11452 // Order first by viability. 11453 if (L->Viable) { 11454 if (!R->Viable) return true; 11455 11456 // TODO: introduce a tri-valued comparison for overload 11457 // candidates. Would be more worthwhile if we had a sort 11458 // that could exploit it. 11459 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 11460 return true; 11461 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 11462 return false; 11463 } else if (R->Viable) 11464 return false; 11465 11466 assert(L->Viable == R->Viable); 11467 11468 // Criteria by which we can sort non-viable candidates: 11469 if (!L->Viable) { 11470 OverloadFailureKind LFailureKind = EffectiveFailureKind(L); 11471 OverloadFailureKind RFailureKind = EffectiveFailureKind(R); 11472 11473 // 1. Arity mismatches come after other candidates. 11474 if (LFailureKind == ovl_fail_too_many_arguments || 11475 LFailureKind == ovl_fail_too_few_arguments) { 11476 if (RFailureKind == ovl_fail_too_many_arguments || 11477 RFailureKind == ovl_fail_too_few_arguments) { 11478 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 11479 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 11480 if (LDist == RDist) { 11481 if (LFailureKind == RFailureKind) 11482 // Sort non-surrogates before surrogates. 11483 return !L->IsSurrogate && R->IsSurrogate; 11484 // Sort candidates requiring fewer parameters than there were 11485 // arguments given after candidates requiring more parameters 11486 // than there were arguments given. 11487 return LFailureKind == ovl_fail_too_many_arguments; 11488 } 11489 return LDist < RDist; 11490 } 11491 return false; 11492 } 11493 if (RFailureKind == ovl_fail_too_many_arguments || 11494 RFailureKind == ovl_fail_too_few_arguments) 11495 return true; 11496 11497 // 2. Bad conversions come first and are ordered by the number 11498 // of bad conversions and quality of good conversions. 11499 if (LFailureKind == ovl_fail_bad_conversion) { 11500 if (RFailureKind != ovl_fail_bad_conversion) 11501 return true; 11502 11503 // The conversion that can be fixed with a smaller number of changes, 11504 // comes first. 11505 unsigned numLFixes = L->Fix.NumConversionsFixed; 11506 unsigned numRFixes = R->Fix.NumConversionsFixed; 11507 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 11508 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 11509 if (numLFixes != numRFixes) { 11510 return numLFixes < numRFixes; 11511 } 11512 11513 // If there's any ordering between the defined conversions... 11514 // FIXME: this might not be transitive. 11515 assert(L->Conversions.size() == R->Conversions.size()); 11516 11517 int leftBetter = 0; 11518 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 11519 for (unsigned E = L->Conversions.size(); I != E; ++I) { 11520 switch (CompareImplicitConversionSequences(S, Loc, 11521 L->Conversions[I], 11522 R->Conversions[I])) { 11523 case ImplicitConversionSequence::Better: 11524 leftBetter++; 11525 break; 11526 11527 case ImplicitConversionSequence::Worse: 11528 leftBetter--; 11529 break; 11530 11531 case ImplicitConversionSequence::Indistinguishable: 11532 break; 11533 } 11534 } 11535 if (leftBetter > 0) return true; 11536 if (leftBetter < 0) return false; 11537 11538 } else if (RFailureKind == ovl_fail_bad_conversion) 11539 return false; 11540 11541 if (LFailureKind == ovl_fail_bad_deduction) { 11542 if (RFailureKind != ovl_fail_bad_deduction) 11543 return true; 11544 11545 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11546 return RankDeductionFailure(L->DeductionFailure) 11547 < RankDeductionFailure(R->DeductionFailure); 11548 } else if (RFailureKind == ovl_fail_bad_deduction) 11549 return false; 11550 11551 // TODO: others? 11552 } 11553 11554 // Sort everything else by location. 11555 SourceLocation LLoc = GetLocationForCandidate(L); 11556 SourceLocation RLoc = GetLocationForCandidate(R); 11557 11558 // Put candidates without locations (e.g. builtins) at the end. 11559 if (LLoc.isInvalid()) return false; 11560 if (RLoc.isInvalid()) return true; 11561 11562 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11563 } 11564 }; 11565 } 11566 11567 /// CompleteNonViableCandidate - Normally, overload resolution only 11568 /// computes up to the first bad conversion. Produces the FixIt set if 11569 /// possible. 11570 static void 11571 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 11572 ArrayRef<Expr *> Args, 11573 OverloadCandidateSet::CandidateSetKind CSK) { 11574 assert(!Cand->Viable); 11575 11576 // Don't do anything on failures other than bad conversion. 11577 if (Cand->FailureKind != ovl_fail_bad_conversion) 11578 return; 11579 11580 // We only want the FixIts if all the arguments can be corrected. 11581 bool Unfixable = false; 11582 // Use a implicit copy initialization to check conversion fixes. 11583 Cand->Fix.setConversionChecker(TryCopyInitialization); 11584 11585 // Attempt to fix the bad conversion. 11586 unsigned ConvCount = Cand->Conversions.size(); 11587 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 11588 ++ConvIdx) { 11589 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 11590 if (Cand->Conversions[ConvIdx].isInitialized() && 11591 Cand->Conversions[ConvIdx].isBad()) { 11592 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11593 break; 11594 } 11595 } 11596 11597 // FIXME: this should probably be preserved from the overload 11598 // operation somehow. 11599 bool SuppressUserConversions = false; 11600 11601 unsigned ConvIdx = 0; 11602 unsigned ArgIdx = 0; 11603 ArrayRef<QualType> ParamTypes; 11604 bool Reversed = Cand->isReversed(); 11605 11606 if (Cand->IsSurrogate) { 11607 QualType ConvType 11608 = Cand->Surrogate->getConversionType().getNonReferenceType(); 11609 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 11610 ConvType = ConvPtrType->getPointeeType(); 11611 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); 11612 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11613 ConvIdx = 1; 11614 } else if (Cand->Function) { 11615 ParamTypes = 11616 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); 11617 if (isa<CXXMethodDecl>(Cand->Function) && 11618 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { 11619 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11620 ConvIdx = 1; 11621 if (CSK == OverloadCandidateSet::CSK_Operator && 11622 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) 11623 // Argument 0 is 'this', which doesn't have a corresponding parameter. 11624 ArgIdx = 1; 11625 } 11626 } else { 11627 // Builtin operator. 11628 assert(ConvCount <= 3); 11629 ParamTypes = Cand->BuiltinParamTypes; 11630 } 11631 11632 // Fill in the rest of the conversions. 11633 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; 11634 ConvIdx != ConvCount; 11635 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { 11636 assert(ArgIdx < Args.size() && "no argument for this arg conversion"); 11637 if (Cand->Conversions[ConvIdx].isInitialized()) { 11638 // We've already checked this conversion. 11639 } else if (ParamIdx < ParamTypes.size()) { 11640 if (ParamTypes[ParamIdx]->isDependentType()) 11641 Cand->Conversions[ConvIdx].setAsIdentityConversion( 11642 Args[ArgIdx]->getType()); 11643 else { 11644 Cand->Conversions[ConvIdx] = 11645 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], 11646 SuppressUserConversions, 11647 /*InOverloadResolution=*/true, 11648 /*AllowObjCWritebackConversion=*/ 11649 S.getLangOpts().ObjCAutoRefCount); 11650 // Store the FixIt in the candidate if it exists. 11651 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 11652 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11653 } 11654 } else 11655 Cand->Conversions[ConvIdx].setEllipsis(); 11656 } 11657 } 11658 11659 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( 11660 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 11661 SourceLocation OpLoc, 11662 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11663 // Sort the candidates by viability and position. Sorting directly would 11664 // be prohibitive, so we make a set of pointers and sort those. 11665 SmallVector<OverloadCandidate*, 32> Cands; 11666 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 11667 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11668 if (!Filter(*Cand)) 11669 continue; 11670 switch (OCD) { 11671 case OCD_AllCandidates: 11672 if (!Cand->Viable) { 11673 if (!Cand->Function && !Cand->IsSurrogate) { 11674 // This a non-viable builtin candidate. We do not, in general, 11675 // want to list every possible builtin candidate. 11676 continue; 11677 } 11678 CompleteNonViableCandidate(S, Cand, Args, Kind); 11679 } 11680 break; 11681 11682 case OCD_ViableCandidates: 11683 if (!Cand->Viable) 11684 continue; 11685 break; 11686 11687 case OCD_AmbiguousCandidates: 11688 if (!Cand->Best) 11689 continue; 11690 break; 11691 } 11692 11693 Cands.push_back(Cand); 11694 } 11695 11696 llvm::stable_sort( 11697 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 11698 11699 return Cands; 11700 } 11701 11702 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, 11703 SourceLocation OpLoc) { 11704 bool DeferHint = false; 11705 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { 11706 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or 11707 // host device candidates. 11708 auto WrongSidedCands = 11709 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { 11710 return (Cand.Viable == false && 11711 Cand.FailureKind == ovl_fail_bad_target) || 11712 (Cand.Function && 11713 Cand.Function->template hasAttr<CUDAHostAttr>() && 11714 Cand.Function->template hasAttr<CUDADeviceAttr>()); 11715 }); 11716 DeferHint = !WrongSidedCands.empty(); 11717 } 11718 return DeferHint; 11719 } 11720 11721 /// When overload resolution fails, prints diagnostic messages containing the 11722 /// candidates in the candidate set. 11723 void OverloadCandidateSet::NoteCandidates( 11724 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, 11725 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, 11726 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11727 11728 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); 11729 11730 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); 11731 11732 NoteCandidates(S, Args, Cands, Opc, OpLoc); 11733 11734 if (OCD == OCD_AmbiguousCandidates) 11735 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); 11736 } 11737 11738 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 11739 ArrayRef<OverloadCandidate *> Cands, 11740 StringRef Opc, SourceLocation OpLoc) { 11741 bool ReportedAmbiguousConversions = false; 11742 11743 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11744 unsigned CandsShown = 0; 11745 auto I = Cands.begin(), E = Cands.end(); 11746 for (; I != E; ++I) { 11747 OverloadCandidate *Cand = *I; 11748 11749 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && 11750 ShowOverloads == Ovl_Best) { 11751 break; 11752 } 11753 ++CandsShown; 11754 11755 if (Cand->Function) 11756 NoteFunctionCandidate(S, Cand, Args.size(), 11757 /*TakingCandidateAddress=*/false, DestAS); 11758 else if (Cand->IsSurrogate) 11759 NoteSurrogateCandidate(S, Cand); 11760 else { 11761 assert(Cand->Viable && 11762 "Non-viable built-in candidates are not added to Cands."); 11763 // Generally we only see ambiguities including viable builtin 11764 // operators if overload resolution got screwed up by an 11765 // ambiguous user-defined conversion. 11766 // 11767 // FIXME: It's quite possible for different conversions to see 11768 // different ambiguities, though. 11769 if (!ReportedAmbiguousConversions) { 11770 NoteAmbiguousUserConversions(S, OpLoc, Cand); 11771 ReportedAmbiguousConversions = true; 11772 } 11773 11774 // If this is a viable builtin, print it. 11775 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 11776 } 11777 } 11778 11779 // Inform S.Diags that we've shown an overload set with N elements. This may 11780 // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). 11781 S.Diags.overloadCandidatesShown(CandsShown); 11782 11783 if (I != E) 11784 S.Diag(OpLoc, diag::note_ovl_too_many_candidates, 11785 shouldDeferDiags(S, Args, OpLoc)) 11786 << int(E - I); 11787 } 11788 11789 static SourceLocation 11790 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 11791 return Cand->Specialization ? Cand->Specialization->getLocation() 11792 : SourceLocation(); 11793 } 11794 11795 namespace { 11796 struct CompareTemplateSpecCandidatesForDisplay { 11797 Sema &S; 11798 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 11799 11800 bool operator()(const TemplateSpecCandidate *L, 11801 const TemplateSpecCandidate *R) { 11802 // Fast-path this check. 11803 if (L == R) 11804 return false; 11805 11806 // Assuming that both candidates are not matches... 11807 11808 // Sort by the ranking of deduction failures. 11809 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11810 return RankDeductionFailure(L->DeductionFailure) < 11811 RankDeductionFailure(R->DeductionFailure); 11812 11813 // Sort everything else by location. 11814 SourceLocation LLoc = GetLocationForCandidate(L); 11815 SourceLocation RLoc = GetLocationForCandidate(R); 11816 11817 // Put candidates without locations (e.g. builtins) at the end. 11818 if (LLoc.isInvalid()) 11819 return false; 11820 if (RLoc.isInvalid()) 11821 return true; 11822 11823 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11824 } 11825 }; 11826 } 11827 11828 /// Diagnose a template argument deduction failure. 11829 /// We are treating these failures as overload failures due to bad 11830 /// deductions. 11831 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 11832 bool ForTakingAddress) { 11833 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 11834 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 11835 } 11836 11837 void TemplateSpecCandidateSet::destroyCandidates() { 11838 for (iterator i = begin(), e = end(); i != e; ++i) { 11839 i->DeductionFailure.Destroy(); 11840 } 11841 } 11842 11843 void TemplateSpecCandidateSet::clear() { 11844 destroyCandidates(); 11845 Candidates.clear(); 11846 } 11847 11848 /// NoteCandidates - When no template specialization match is found, prints 11849 /// diagnostic messages containing the non-matching specializations that form 11850 /// the candidate set. 11851 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 11852 /// OCD == OCD_AllCandidates and Cand->Viable == false. 11853 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 11854 // Sort the candidates by position (assuming no candidate is a match). 11855 // Sorting directly would be prohibitive, so we make a set of pointers 11856 // and sort those. 11857 SmallVector<TemplateSpecCandidate *, 32> Cands; 11858 Cands.reserve(size()); 11859 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11860 if (Cand->Specialization) 11861 Cands.push_back(Cand); 11862 // Otherwise, this is a non-matching builtin candidate. We do not, 11863 // in general, want to list every possible builtin candidate. 11864 } 11865 11866 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); 11867 11868 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 11869 // for generalization purposes (?). 11870 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11871 11872 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 11873 unsigned CandsShown = 0; 11874 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 11875 TemplateSpecCandidate *Cand = *I; 11876 11877 // Set an arbitrary limit on the number of candidates we'll spam 11878 // the user with. FIXME: This limit should depend on details of the 11879 // candidate list. 11880 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 11881 break; 11882 ++CandsShown; 11883 11884 assert(Cand->Specialization && 11885 "Non-matching built-in candidates are not added to Cands."); 11886 Cand->NoteDeductionFailure(S, ForTakingAddress); 11887 } 11888 11889 if (I != E) 11890 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 11891 } 11892 11893 // [PossiblyAFunctionType] --> [Return] 11894 // NonFunctionType --> NonFunctionType 11895 // R (A) --> R(A) 11896 // R (*)(A) --> R (A) 11897 // R (&)(A) --> R (A) 11898 // R (S::*)(A) --> R (A) 11899 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 11900 QualType Ret = PossiblyAFunctionType; 11901 if (const PointerType *ToTypePtr = 11902 PossiblyAFunctionType->getAs<PointerType>()) 11903 Ret = ToTypePtr->getPointeeType(); 11904 else if (const ReferenceType *ToTypeRef = 11905 PossiblyAFunctionType->getAs<ReferenceType>()) 11906 Ret = ToTypeRef->getPointeeType(); 11907 else if (const MemberPointerType *MemTypePtr = 11908 PossiblyAFunctionType->getAs<MemberPointerType>()) 11909 Ret = MemTypePtr->getPointeeType(); 11910 Ret = 11911 Context.getCanonicalType(Ret).getUnqualifiedType(); 11912 return Ret; 11913 } 11914 11915 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 11916 bool Complain = true) { 11917 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 11918 S.DeduceReturnType(FD, Loc, Complain)) 11919 return true; 11920 11921 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 11922 if (S.getLangOpts().CPlusPlus17 && 11923 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 11924 !S.ResolveExceptionSpec(Loc, FPT)) 11925 return true; 11926 11927 return false; 11928 } 11929 11930 namespace { 11931 // A helper class to help with address of function resolution 11932 // - allows us to avoid passing around all those ugly parameters 11933 class AddressOfFunctionResolver { 11934 Sema& S; 11935 Expr* SourceExpr; 11936 const QualType& TargetType; 11937 QualType TargetFunctionType; // Extracted function type from target type 11938 11939 bool Complain; 11940 //DeclAccessPair& ResultFunctionAccessPair; 11941 ASTContext& Context; 11942 11943 bool TargetTypeIsNonStaticMemberFunction; 11944 bool FoundNonTemplateFunction; 11945 bool StaticMemberFunctionFromBoundPointer; 11946 bool HasComplained; 11947 11948 OverloadExpr::FindResult OvlExprInfo; 11949 OverloadExpr *OvlExpr; 11950 TemplateArgumentListInfo OvlExplicitTemplateArgs; 11951 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 11952 TemplateSpecCandidateSet FailedCandidates; 11953 11954 public: 11955 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 11956 const QualType &TargetType, bool Complain) 11957 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 11958 Complain(Complain), Context(S.getASTContext()), 11959 TargetTypeIsNonStaticMemberFunction( 11960 !!TargetType->getAs<MemberPointerType>()), 11961 FoundNonTemplateFunction(false), 11962 StaticMemberFunctionFromBoundPointer(false), 11963 HasComplained(false), 11964 OvlExprInfo(OverloadExpr::find(SourceExpr)), 11965 OvlExpr(OvlExprInfo.Expression), 11966 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 11967 ExtractUnqualifiedFunctionTypeFromTargetType(); 11968 11969 if (TargetFunctionType->isFunctionType()) { 11970 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 11971 if (!UME->isImplicitAccess() && 11972 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 11973 StaticMemberFunctionFromBoundPointer = true; 11974 } else if (OvlExpr->hasExplicitTemplateArgs()) { 11975 DeclAccessPair dap; 11976 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 11977 OvlExpr, false, &dap)) { 11978 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 11979 if (!Method->isStatic()) { 11980 // If the target type is a non-function type and the function found 11981 // is a non-static member function, pretend as if that was the 11982 // target, it's the only possible type to end up with. 11983 TargetTypeIsNonStaticMemberFunction = true; 11984 11985 // And skip adding the function if its not in the proper form. 11986 // We'll diagnose this due to an empty set of functions. 11987 if (!OvlExprInfo.HasFormOfMemberPointer) 11988 return; 11989 } 11990 11991 Matches.push_back(std::make_pair(dap, Fn)); 11992 } 11993 return; 11994 } 11995 11996 if (OvlExpr->hasExplicitTemplateArgs()) 11997 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 11998 11999 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 12000 // C++ [over.over]p4: 12001 // If more than one function is selected, [...] 12002 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 12003 if (FoundNonTemplateFunction) 12004 EliminateAllTemplateMatches(); 12005 else 12006 EliminateAllExceptMostSpecializedTemplate(); 12007 } 12008 } 12009 12010 if (S.getLangOpts().CUDA && Matches.size() > 1) 12011 EliminateSuboptimalCudaMatches(); 12012 } 12013 12014 bool hasComplained() const { return HasComplained; } 12015 12016 private: 12017 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 12018 QualType Discard; 12019 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 12020 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 12021 } 12022 12023 /// \return true if A is considered a better overload candidate for the 12024 /// desired type than B. 12025 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 12026 // If A doesn't have exactly the correct type, we don't want to classify it 12027 // as "better" than anything else. This way, the user is required to 12028 // disambiguate for us if there are multiple candidates and no exact match. 12029 return candidateHasExactlyCorrectType(A) && 12030 (!candidateHasExactlyCorrectType(B) || 12031 compareEnableIfAttrs(S, A, B) == Comparison::Better); 12032 } 12033 12034 /// \return true if we were able to eliminate all but one overload candidate, 12035 /// false otherwise. 12036 bool eliminiateSuboptimalOverloadCandidates() { 12037 // Same algorithm as overload resolution -- one pass to pick the "best", 12038 // another pass to be sure that nothing is better than the best. 12039 auto Best = Matches.begin(); 12040 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 12041 if (isBetterCandidate(I->second, Best->second)) 12042 Best = I; 12043 12044 const FunctionDecl *BestFn = Best->second; 12045 auto IsBestOrInferiorToBest = [this, BestFn]( 12046 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 12047 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 12048 }; 12049 12050 // Note: We explicitly leave Matches unmodified if there isn't a clear best 12051 // option, so we can potentially give the user a better error 12052 if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) 12053 return false; 12054 Matches[0] = *Best; 12055 Matches.resize(1); 12056 return true; 12057 } 12058 12059 bool isTargetTypeAFunction() const { 12060 return TargetFunctionType->isFunctionType(); 12061 } 12062 12063 // [ToType] [Return] 12064 12065 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 12066 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 12067 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 12068 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 12069 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 12070 } 12071 12072 // return true if any matching specializations were found 12073 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 12074 const DeclAccessPair& CurAccessFunPair) { 12075 if (CXXMethodDecl *Method 12076 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 12077 // Skip non-static function templates when converting to pointer, and 12078 // static when converting to member pointer. 12079 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12080 return false; 12081 } 12082 else if (TargetTypeIsNonStaticMemberFunction) 12083 return false; 12084 12085 // C++ [over.over]p2: 12086 // If the name is a function template, template argument deduction is 12087 // done (14.8.2.2), and if the argument deduction succeeds, the 12088 // resulting template argument list is used to generate a single 12089 // function template specialization, which is added to the set of 12090 // overloaded functions considered. 12091 FunctionDecl *Specialization = nullptr; 12092 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12093 if (Sema::TemplateDeductionResult Result 12094 = S.DeduceTemplateArguments(FunctionTemplate, 12095 &OvlExplicitTemplateArgs, 12096 TargetFunctionType, Specialization, 12097 Info, /*IsAddressOfFunction*/true)) { 12098 // Make a note of the failed deduction for diagnostics. 12099 FailedCandidates.addCandidate() 12100 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 12101 MakeDeductionFailureInfo(Context, Result, Info)); 12102 return false; 12103 } 12104 12105 // Template argument deduction ensures that we have an exact match or 12106 // compatible pointer-to-function arguments that would be adjusted by ICS. 12107 // This function template specicalization works. 12108 assert(S.isSameOrCompatibleFunctionType( 12109 Context.getCanonicalType(Specialization->getType()), 12110 Context.getCanonicalType(TargetFunctionType))); 12111 12112 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 12113 return false; 12114 12115 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 12116 return true; 12117 } 12118 12119 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 12120 const DeclAccessPair& CurAccessFunPair) { 12121 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 12122 // Skip non-static functions when converting to pointer, and static 12123 // when converting to member pointer. 12124 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12125 return false; 12126 } 12127 else if (TargetTypeIsNonStaticMemberFunction) 12128 return false; 12129 12130 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 12131 if (S.getLangOpts().CUDA) 12132 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 12133 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 12134 return false; 12135 if (FunDecl->isMultiVersion()) { 12136 const auto *TA = FunDecl->getAttr<TargetAttr>(); 12137 if (TA && !TA->isDefaultVersion()) 12138 return false; 12139 } 12140 12141 // If any candidate has a placeholder return type, trigger its deduction 12142 // now. 12143 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), 12144 Complain)) { 12145 HasComplained |= Complain; 12146 return false; 12147 } 12148 12149 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 12150 return false; 12151 12152 // If we're in C, we need to support types that aren't exactly identical. 12153 if (!S.getLangOpts().CPlusPlus || 12154 candidateHasExactlyCorrectType(FunDecl)) { 12155 Matches.push_back(std::make_pair( 12156 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 12157 FoundNonTemplateFunction = true; 12158 return true; 12159 } 12160 } 12161 12162 return false; 12163 } 12164 12165 bool FindAllFunctionsThatMatchTargetTypeExactly() { 12166 bool Ret = false; 12167 12168 // If the overload expression doesn't have the form of a pointer to 12169 // member, don't try to convert it to a pointer-to-member type. 12170 if (IsInvalidFormOfPointerToMemberFunction()) 12171 return false; 12172 12173 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12174 E = OvlExpr->decls_end(); 12175 I != E; ++I) { 12176 // Look through any using declarations to find the underlying function. 12177 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 12178 12179 // C++ [over.over]p3: 12180 // Non-member functions and static member functions match 12181 // targets of type "pointer-to-function" or "reference-to-function." 12182 // Nonstatic member functions match targets of 12183 // type "pointer-to-member-function." 12184 // Note that according to DR 247, the containing class does not matter. 12185 if (FunctionTemplateDecl *FunctionTemplate 12186 = dyn_cast<FunctionTemplateDecl>(Fn)) { 12187 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 12188 Ret = true; 12189 } 12190 // If we have explicit template arguments supplied, skip non-templates. 12191 else if (!OvlExpr->hasExplicitTemplateArgs() && 12192 AddMatchingNonTemplateFunction(Fn, I.getPair())) 12193 Ret = true; 12194 } 12195 assert(Ret || Matches.empty()); 12196 return Ret; 12197 } 12198 12199 void EliminateAllExceptMostSpecializedTemplate() { 12200 // [...] and any given function template specialization F1 is 12201 // eliminated if the set contains a second function template 12202 // specialization whose function template is more specialized 12203 // than the function template of F1 according to the partial 12204 // ordering rules of 14.5.5.2. 12205 12206 // The algorithm specified above is quadratic. We instead use a 12207 // two-pass algorithm (similar to the one used to identify the 12208 // best viable function in an overload set) that identifies the 12209 // best function template (if it exists). 12210 12211 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 12212 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 12213 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 12214 12215 // TODO: It looks like FailedCandidates does not serve much purpose 12216 // here, since the no_viable diagnostic has index 0. 12217 UnresolvedSetIterator Result = S.getMostSpecialized( 12218 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 12219 SourceExpr->getBeginLoc(), S.PDiag(), 12220 S.PDiag(diag::err_addr_ovl_ambiguous) 12221 << Matches[0].second->getDeclName(), 12222 S.PDiag(diag::note_ovl_candidate) 12223 << (unsigned)oc_function << (unsigned)ocs_described_template, 12224 Complain, TargetFunctionType); 12225 12226 if (Result != MatchesCopy.end()) { 12227 // Make it the first and only element 12228 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 12229 Matches[0].second = cast<FunctionDecl>(*Result); 12230 Matches.resize(1); 12231 } else 12232 HasComplained |= Complain; 12233 } 12234 12235 void EliminateAllTemplateMatches() { 12236 // [...] any function template specializations in the set are 12237 // eliminated if the set also contains a non-template function, [...] 12238 for (unsigned I = 0, N = Matches.size(); I != N; ) { 12239 if (Matches[I].second->getPrimaryTemplate() == nullptr) 12240 ++I; 12241 else { 12242 Matches[I] = Matches[--N]; 12243 Matches.resize(N); 12244 } 12245 } 12246 } 12247 12248 void EliminateSuboptimalCudaMatches() { 12249 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); 12250 } 12251 12252 public: 12253 void ComplainNoMatchesFound() const { 12254 assert(Matches.empty()); 12255 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) 12256 << OvlExpr->getName() << TargetFunctionType 12257 << OvlExpr->getSourceRange(); 12258 if (FailedCandidates.empty()) 12259 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12260 /*TakingAddress=*/true); 12261 else { 12262 // We have some deduction failure messages. Use them to diagnose 12263 // the function templates, and diagnose the non-template candidates 12264 // normally. 12265 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12266 IEnd = OvlExpr->decls_end(); 12267 I != IEnd; ++I) 12268 if (FunctionDecl *Fun = 12269 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 12270 if (!functionHasPassObjectSizeParams(Fun)) 12271 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, 12272 /*TakingAddress=*/true); 12273 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); 12274 } 12275 } 12276 12277 bool IsInvalidFormOfPointerToMemberFunction() const { 12278 return TargetTypeIsNonStaticMemberFunction && 12279 !OvlExprInfo.HasFormOfMemberPointer; 12280 } 12281 12282 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 12283 // TODO: Should we condition this on whether any functions might 12284 // have matched, or is it more appropriate to do that in callers? 12285 // TODO: a fixit wouldn't hurt. 12286 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 12287 << TargetType << OvlExpr->getSourceRange(); 12288 } 12289 12290 bool IsStaticMemberFunctionFromBoundPointer() const { 12291 return StaticMemberFunctionFromBoundPointer; 12292 } 12293 12294 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 12295 S.Diag(OvlExpr->getBeginLoc(), 12296 diag::err_invalid_form_pointer_member_function) 12297 << OvlExpr->getSourceRange(); 12298 } 12299 12300 void ComplainOfInvalidConversion() const { 12301 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) 12302 << OvlExpr->getName() << TargetType; 12303 } 12304 12305 void ComplainMultipleMatchesFound() const { 12306 assert(Matches.size() > 1); 12307 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) 12308 << OvlExpr->getName() << OvlExpr->getSourceRange(); 12309 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12310 /*TakingAddress=*/true); 12311 } 12312 12313 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 12314 12315 int getNumMatches() const { return Matches.size(); } 12316 12317 FunctionDecl* getMatchingFunctionDecl() const { 12318 if (Matches.size() != 1) return nullptr; 12319 return Matches[0].second; 12320 } 12321 12322 const DeclAccessPair* getMatchingFunctionAccessPair() const { 12323 if (Matches.size() != 1) return nullptr; 12324 return &Matches[0].first; 12325 } 12326 }; 12327 } 12328 12329 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 12330 /// an overloaded function (C++ [over.over]), where @p From is an 12331 /// expression with overloaded function type and @p ToType is the type 12332 /// we're trying to resolve to. For example: 12333 /// 12334 /// @code 12335 /// int f(double); 12336 /// int f(int); 12337 /// 12338 /// int (*pfd)(double) = f; // selects f(double) 12339 /// @endcode 12340 /// 12341 /// This routine returns the resulting FunctionDecl if it could be 12342 /// resolved, and NULL otherwise. When @p Complain is true, this 12343 /// routine will emit diagnostics if there is an error. 12344 FunctionDecl * 12345 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 12346 QualType TargetType, 12347 bool Complain, 12348 DeclAccessPair &FoundResult, 12349 bool *pHadMultipleCandidates) { 12350 assert(AddressOfExpr->getType() == Context.OverloadTy); 12351 12352 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 12353 Complain); 12354 int NumMatches = Resolver.getNumMatches(); 12355 FunctionDecl *Fn = nullptr; 12356 bool ShouldComplain = Complain && !Resolver.hasComplained(); 12357 if (NumMatches == 0 && ShouldComplain) { 12358 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 12359 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 12360 else 12361 Resolver.ComplainNoMatchesFound(); 12362 } 12363 else if (NumMatches > 1 && ShouldComplain) 12364 Resolver.ComplainMultipleMatchesFound(); 12365 else if (NumMatches == 1) { 12366 Fn = Resolver.getMatchingFunctionDecl(); 12367 assert(Fn); 12368 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 12369 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 12370 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 12371 if (Complain) { 12372 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 12373 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 12374 else 12375 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 12376 } 12377 } 12378 12379 if (pHadMultipleCandidates) 12380 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 12381 return Fn; 12382 } 12383 12384 /// Given an expression that refers to an overloaded function, try to 12385 /// resolve that function to a single function that can have its address taken. 12386 /// This will modify `Pair` iff it returns non-null. 12387 /// 12388 /// This routine can only succeed if from all of the candidates in the overload 12389 /// set for SrcExpr that can have their addresses taken, there is one candidate 12390 /// that is more constrained than the rest. 12391 FunctionDecl * 12392 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { 12393 OverloadExpr::FindResult R = OverloadExpr::find(E); 12394 OverloadExpr *Ovl = R.Expression; 12395 bool IsResultAmbiguous = false; 12396 FunctionDecl *Result = nullptr; 12397 DeclAccessPair DAP; 12398 SmallVector<FunctionDecl *, 2> AmbiguousDecls; 12399 12400 auto CheckMoreConstrained = 12401 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { 12402 SmallVector<const Expr *, 1> AC1, AC2; 12403 FD1->getAssociatedConstraints(AC1); 12404 FD2->getAssociatedConstraints(AC2); 12405 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 12406 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) 12407 return None; 12408 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) 12409 return None; 12410 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 12411 return None; 12412 return AtLeastAsConstrained1; 12413 }; 12414 12415 // Don't use the AddressOfResolver because we're specifically looking for 12416 // cases where we have one overload candidate that lacks 12417 // enable_if/pass_object_size/... 12418 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 12419 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 12420 if (!FD) 12421 return nullptr; 12422 12423 if (!checkAddressOfFunctionIsAvailable(FD)) 12424 continue; 12425 12426 // We have more than one result - see if it is more constrained than the 12427 // previous one. 12428 if (Result) { 12429 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, 12430 Result); 12431 if (!MoreConstrainedThanPrevious) { 12432 IsResultAmbiguous = true; 12433 AmbiguousDecls.push_back(FD); 12434 continue; 12435 } 12436 if (!*MoreConstrainedThanPrevious) 12437 continue; 12438 // FD is more constrained - replace Result with it. 12439 } 12440 IsResultAmbiguous = false; 12441 DAP = I.getPair(); 12442 Result = FD; 12443 } 12444 12445 if (IsResultAmbiguous) 12446 return nullptr; 12447 12448 if (Result) { 12449 SmallVector<const Expr *, 1> ResultAC; 12450 // We skipped over some ambiguous declarations which might be ambiguous with 12451 // the selected result. 12452 for (FunctionDecl *Skipped : AmbiguousDecls) 12453 if (!CheckMoreConstrained(Skipped, Result).hasValue()) 12454 return nullptr; 12455 Pair = DAP; 12456 } 12457 return Result; 12458 } 12459 12460 /// Given an overloaded function, tries to turn it into a non-overloaded 12461 /// function reference using resolveAddressOfSingleOverloadCandidate. This 12462 /// will perform access checks, diagnose the use of the resultant decl, and, if 12463 /// requested, potentially perform a function-to-pointer decay. 12464 /// 12465 /// Returns false if resolveAddressOfSingleOverloadCandidate fails. 12466 /// Otherwise, returns true. This may emit diagnostics and return true. 12467 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( 12468 ExprResult &SrcExpr, bool DoFunctionPointerConverion) { 12469 Expr *E = SrcExpr.get(); 12470 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 12471 12472 DeclAccessPair DAP; 12473 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); 12474 if (!Found || Found->isCPUDispatchMultiVersion() || 12475 Found->isCPUSpecificMultiVersion()) 12476 return false; 12477 12478 // Emitting multiple diagnostics for a function that is both inaccessible and 12479 // unavailable is consistent with our behavior elsewhere. So, always check 12480 // for both. 12481 DiagnoseUseOfDecl(Found, E->getExprLoc()); 12482 CheckAddressOfMemberAccess(E, DAP); 12483 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 12484 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) 12485 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 12486 else 12487 SrcExpr = Fixed; 12488 return true; 12489 } 12490 12491 /// Given an expression that refers to an overloaded function, try to 12492 /// resolve that overloaded function expression down to a single function. 12493 /// 12494 /// This routine can only resolve template-ids that refer to a single function 12495 /// template, where that template-id refers to a single template whose template 12496 /// arguments are either provided by the template-id or have defaults, 12497 /// as described in C++0x [temp.arg.explicit]p3. 12498 /// 12499 /// If no template-ids are found, no diagnostics are emitted and NULL is 12500 /// returned. 12501 FunctionDecl * 12502 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 12503 bool Complain, 12504 DeclAccessPair *FoundResult) { 12505 // C++ [over.over]p1: 12506 // [...] [Note: any redundant set of parentheses surrounding the 12507 // overloaded function name is ignored (5.1). ] 12508 // C++ [over.over]p1: 12509 // [...] The overloaded function name can be preceded by the & 12510 // operator. 12511 12512 // If we didn't actually find any template-ids, we're done. 12513 if (!ovl->hasExplicitTemplateArgs()) 12514 return nullptr; 12515 12516 TemplateArgumentListInfo ExplicitTemplateArgs; 12517 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 12518 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 12519 12520 // Look through all of the overloaded functions, searching for one 12521 // whose type matches exactly. 12522 FunctionDecl *Matched = nullptr; 12523 for (UnresolvedSetIterator I = ovl->decls_begin(), 12524 E = ovl->decls_end(); I != E; ++I) { 12525 // C++0x [temp.arg.explicit]p3: 12526 // [...] In contexts where deduction is done and fails, or in contexts 12527 // where deduction is not done, if a template argument list is 12528 // specified and it, along with any default template arguments, 12529 // identifies a single function template specialization, then the 12530 // template-id is an lvalue for the function template specialization. 12531 FunctionTemplateDecl *FunctionTemplate 12532 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 12533 12534 // C++ [over.over]p2: 12535 // If the name is a function template, template argument deduction is 12536 // done (14.8.2.2), and if the argument deduction succeeds, the 12537 // resulting template argument list is used to generate a single 12538 // function template specialization, which is added to the set of 12539 // overloaded functions considered. 12540 FunctionDecl *Specialization = nullptr; 12541 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12542 if (TemplateDeductionResult Result 12543 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 12544 Specialization, Info, 12545 /*IsAddressOfFunction*/true)) { 12546 // Make a note of the failed deduction for diagnostics. 12547 // TODO: Actually use the failed-deduction info? 12548 FailedCandidates.addCandidate() 12549 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 12550 MakeDeductionFailureInfo(Context, Result, Info)); 12551 continue; 12552 } 12553 12554 assert(Specialization && "no specialization and no error?"); 12555 12556 // Multiple matches; we can't resolve to a single declaration. 12557 if (Matched) { 12558 if (Complain) { 12559 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 12560 << ovl->getName(); 12561 NoteAllOverloadCandidates(ovl); 12562 } 12563 return nullptr; 12564 } 12565 12566 Matched = Specialization; 12567 if (FoundResult) *FoundResult = I.getPair(); 12568 } 12569 12570 if (Matched && 12571 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 12572 return nullptr; 12573 12574 return Matched; 12575 } 12576 12577 // Resolve and fix an overloaded expression that can be resolved 12578 // because it identifies a single function template specialization. 12579 // 12580 // Last three arguments should only be supplied if Complain = true 12581 // 12582 // Return true if it was logically possible to so resolve the 12583 // expression, regardless of whether or not it succeeded. Always 12584 // returns true if 'complain' is set. 12585 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 12586 ExprResult &SrcExpr, bool doFunctionPointerConverion, 12587 bool complain, SourceRange OpRangeForComplaining, 12588 QualType DestTypeForComplaining, 12589 unsigned DiagIDForComplaining) { 12590 assert(SrcExpr.get()->getType() == Context.OverloadTy); 12591 12592 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 12593 12594 DeclAccessPair found; 12595 ExprResult SingleFunctionExpression; 12596 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 12597 ovl.Expression, /*complain*/ false, &found)) { 12598 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { 12599 SrcExpr = ExprError(); 12600 return true; 12601 } 12602 12603 // It is only correct to resolve to an instance method if we're 12604 // resolving a form that's permitted to be a pointer to member. 12605 // Otherwise we'll end up making a bound member expression, which 12606 // is illegal in all the contexts we resolve like this. 12607 if (!ovl.HasFormOfMemberPointer && 12608 isa<CXXMethodDecl>(fn) && 12609 cast<CXXMethodDecl>(fn)->isInstance()) { 12610 if (!complain) return false; 12611 12612 Diag(ovl.Expression->getExprLoc(), 12613 diag::err_bound_member_function) 12614 << 0 << ovl.Expression->getSourceRange(); 12615 12616 // TODO: I believe we only end up here if there's a mix of 12617 // static and non-static candidates (otherwise the expression 12618 // would have 'bound member' type, not 'overload' type). 12619 // Ideally we would note which candidate was chosen and why 12620 // the static candidates were rejected. 12621 SrcExpr = ExprError(); 12622 return true; 12623 } 12624 12625 // Fix the expression to refer to 'fn'. 12626 SingleFunctionExpression = 12627 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 12628 12629 // If desired, do function-to-pointer decay. 12630 if (doFunctionPointerConverion) { 12631 SingleFunctionExpression = 12632 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 12633 if (SingleFunctionExpression.isInvalid()) { 12634 SrcExpr = ExprError(); 12635 return true; 12636 } 12637 } 12638 } 12639 12640 if (!SingleFunctionExpression.isUsable()) { 12641 if (complain) { 12642 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 12643 << ovl.Expression->getName() 12644 << DestTypeForComplaining 12645 << OpRangeForComplaining 12646 << ovl.Expression->getQualifierLoc().getSourceRange(); 12647 NoteAllOverloadCandidates(SrcExpr.get()); 12648 12649 SrcExpr = ExprError(); 12650 return true; 12651 } 12652 12653 return false; 12654 } 12655 12656 SrcExpr = SingleFunctionExpression; 12657 return true; 12658 } 12659 12660 /// Add a single candidate to the overload set. 12661 static void AddOverloadedCallCandidate(Sema &S, 12662 DeclAccessPair FoundDecl, 12663 TemplateArgumentListInfo *ExplicitTemplateArgs, 12664 ArrayRef<Expr *> Args, 12665 OverloadCandidateSet &CandidateSet, 12666 bool PartialOverloading, 12667 bool KnownValid) { 12668 NamedDecl *Callee = FoundDecl.getDecl(); 12669 if (isa<UsingShadowDecl>(Callee)) 12670 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 12671 12672 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 12673 if (ExplicitTemplateArgs) { 12674 assert(!KnownValid && "Explicit template arguments?"); 12675 return; 12676 } 12677 // Prevent ill-formed function decls to be added as overload candidates. 12678 if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 12679 return; 12680 12681 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 12682 /*SuppressUserConversions=*/false, 12683 PartialOverloading); 12684 return; 12685 } 12686 12687 if (FunctionTemplateDecl *FuncTemplate 12688 = dyn_cast<FunctionTemplateDecl>(Callee)) { 12689 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 12690 ExplicitTemplateArgs, Args, CandidateSet, 12691 /*SuppressUserConversions=*/false, 12692 PartialOverloading); 12693 return; 12694 } 12695 12696 assert(!KnownValid && "unhandled case in overloaded call candidate"); 12697 } 12698 12699 /// Add the overload candidates named by callee and/or found by argument 12700 /// dependent lookup to the given overload set. 12701 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 12702 ArrayRef<Expr *> Args, 12703 OverloadCandidateSet &CandidateSet, 12704 bool PartialOverloading) { 12705 12706 #ifndef NDEBUG 12707 // Verify that ArgumentDependentLookup is consistent with the rules 12708 // in C++0x [basic.lookup.argdep]p3: 12709 // 12710 // Let X be the lookup set produced by unqualified lookup (3.4.1) 12711 // and let Y be the lookup set produced by argument dependent 12712 // lookup (defined as follows). If X contains 12713 // 12714 // -- a declaration of a class member, or 12715 // 12716 // -- a block-scope function declaration that is not a 12717 // using-declaration, or 12718 // 12719 // -- a declaration that is neither a function or a function 12720 // template 12721 // 12722 // then Y is empty. 12723 12724 if (ULE->requiresADL()) { 12725 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12726 E = ULE->decls_end(); I != E; ++I) { 12727 assert(!(*I)->getDeclContext()->isRecord()); 12728 assert(isa<UsingShadowDecl>(*I) || 12729 !(*I)->getDeclContext()->isFunctionOrMethod()); 12730 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 12731 } 12732 } 12733 #endif 12734 12735 // It would be nice to avoid this copy. 12736 TemplateArgumentListInfo TABuffer; 12737 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12738 if (ULE->hasExplicitTemplateArgs()) { 12739 ULE->copyTemplateArgumentsInto(TABuffer); 12740 ExplicitTemplateArgs = &TABuffer; 12741 } 12742 12743 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12744 E = ULE->decls_end(); I != E; ++I) 12745 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12746 CandidateSet, PartialOverloading, 12747 /*KnownValid*/ true); 12748 12749 if (ULE->requiresADL()) 12750 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 12751 Args, ExplicitTemplateArgs, 12752 CandidateSet, PartialOverloading); 12753 } 12754 12755 /// Add the call candidates from the given set of lookup results to the given 12756 /// overload set. Non-function lookup results are ignored. 12757 void Sema::AddOverloadedCallCandidates( 12758 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, 12759 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { 12760 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12761 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12762 CandidateSet, false, /*KnownValid*/ false); 12763 } 12764 12765 /// Determine whether a declaration with the specified name could be moved into 12766 /// a different namespace. 12767 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 12768 switch (Name.getCXXOverloadedOperator()) { 12769 case OO_New: case OO_Array_New: 12770 case OO_Delete: case OO_Array_Delete: 12771 return false; 12772 12773 default: 12774 return true; 12775 } 12776 } 12777 12778 /// Attempt to recover from an ill-formed use of a non-dependent name in a 12779 /// template, where the non-dependent name was declared after the template 12780 /// was defined. This is common in code written for a compilers which do not 12781 /// correctly implement two-stage name lookup. 12782 /// 12783 /// Returns true if a viable candidate was found and a diagnostic was issued. 12784 static bool DiagnoseTwoPhaseLookup( 12785 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, 12786 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, 12787 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 12788 CXXRecordDecl **FoundInClass = nullptr) { 12789 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 12790 return false; 12791 12792 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 12793 if (DC->isTransparentContext()) 12794 continue; 12795 12796 SemaRef.LookupQualifiedName(R, DC); 12797 12798 if (!R.empty()) { 12799 R.suppressDiagnostics(); 12800 12801 OverloadCandidateSet Candidates(FnLoc, CSK); 12802 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, 12803 Candidates); 12804 12805 OverloadCandidateSet::iterator Best; 12806 OverloadingResult OR = 12807 Candidates.BestViableFunction(SemaRef, FnLoc, Best); 12808 12809 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { 12810 // We either found non-function declarations or a best viable function 12811 // at class scope. A class-scope lookup result disables ADL. Don't 12812 // look past this, but let the caller know that we found something that 12813 // either is, or might be, usable in this class. 12814 if (FoundInClass) { 12815 *FoundInClass = RD; 12816 if (OR == OR_Success) { 12817 R.clear(); 12818 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); 12819 R.resolveKind(); 12820 } 12821 } 12822 return false; 12823 } 12824 12825 if (OR != OR_Success) { 12826 // There wasn't a unique best function or function template. 12827 return false; 12828 } 12829 12830 // Find the namespaces where ADL would have looked, and suggest 12831 // declaring the function there instead. 12832 Sema::AssociatedNamespaceSet AssociatedNamespaces; 12833 Sema::AssociatedClassSet AssociatedClasses; 12834 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 12835 AssociatedNamespaces, 12836 AssociatedClasses); 12837 Sema::AssociatedNamespaceSet SuggestedNamespaces; 12838 if (canBeDeclaredInNamespace(R.getLookupName())) { 12839 DeclContext *Std = SemaRef.getStdNamespace(); 12840 for (Sema::AssociatedNamespaceSet::iterator 12841 it = AssociatedNamespaces.begin(), 12842 end = AssociatedNamespaces.end(); it != end; ++it) { 12843 // Never suggest declaring a function within namespace 'std'. 12844 if (Std && Std->Encloses(*it)) 12845 continue; 12846 12847 // Never suggest declaring a function within a namespace with a 12848 // reserved name, like __gnu_cxx. 12849 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 12850 if (NS && 12851 NS->getQualifiedNameAsString().find("__") != std::string::npos) 12852 continue; 12853 12854 SuggestedNamespaces.insert(*it); 12855 } 12856 } 12857 12858 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 12859 << R.getLookupName(); 12860 if (SuggestedNamespaces.empty()) { 12861 SemaRef.Diag(Best->Function->getLocation(), 12862 diag::note_not_found_by_two_phase_lookup) 12863 << R.getLookupName() << 0; 12864 } else if (SuggestedNamespaces.size() == 1) { 12865 SemaRef.Diag(Best->Function->getLocation(), 12866 diag::note_not_found_by_two_phase_lookup) 12867 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 12868 } else { 12869 // FIXME: It would be useful to list the associated namespaces here, 12870 // but the diagnostics infrastructure doesn't provide a way to produce 12871 // a localized representation of a list of items. 12872 SemaRef.Diag(Best->Function->getLocation(), 12873 diag::note_not_found_by_two_phase_lookup) 12874 << R.getLookupName() << 2; 12875 } 12876 12877 // Try to recover by calling this function. 12878 return true; 12879 } 12880 12881 R.clear(); 12882 } 12883 12884 return false; 12885 } 12886 12887 /// Attempt to recover from ill-formed use of a non-dependent operator in a 12888 /// template, where the non-dependent operator was declared after the template 12889 /// was defined. 12890 /// 12891 /// Returns true if a viable candidate was found and a diagnostic was issued. 12892 static bool 12893 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 12894 SourceLocation OpLoc, 12895 ArrayRef<Expr *> Args) { 12896 DeclarationName OpName = 12897 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 12898 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 12899 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 12900 OverloadCandidateSet::CSK_Operator, 12901 /*ExplicitTemplateArgs=*/nullptr, Args); 12902 } 12903 12904 namespace { 12905 class BuildRecoveryCallExprRAII { 12906 Sema &SemaRef; 12907 public: 12908 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 12909 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 12910 SemaRef.IsBuildingRecoveryCallExpr = true; 12911 } 12912 12913 ~BuildRecoveryCallExprRAII() { 12914 SemaRef.IsBuildingRecoveryCallExpr = false; 12915 } 12916 }; 12917 12918 } 12919 12920 /// Attempts to recover from a call where no functions were found. 12921 /// 12922 /// This function will do one of three things: 12923 /// * Diagnose, recover, and return a recovery expression. 12924 /// * Diagnose, fail to recover, and return ExprError(). 12925 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is 12926 /// expected to diagnose as appropriate. 12927 static ExprResult 12928 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 12929 UnresolvedLookupExpr *ULE, 12930 SourceLocation LParenLoc, 12931 MutableArrayRef<Expr *> Args, 12932 SourceLocation RParenLoc, 12933 bool EmptyLookup, bool AllowTypoCorrection) { 12934 // Do not try to recover if it is already building a recovery call. 12935 // This stops infinite loops for template instantiations like 12936 // 12937 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 12938 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 12939 if (SemaRef.IsBuildingRecoveryCallExpr) 12940 return ExprResult(); 12941 BuildRecoveryCallExprRAII RCE(SemaRef); 12942 12943 CXXScopeSpec SS; 12944 SS.Adopt(ULE->getQualifierLoc()); 12945 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 12946 12947 TemplateArgumentListInfo TABuffer; 12948 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12949 if (ULE->hasExplicitTemplateArgs()) { 12950 ULE->copyTemplateArgumentsInto(TABuffer); 12951 ExplicitTemplateArgs = &TABuffer; 12952 } 12953 12954 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 12955 Sema::LookupOrdinaryName); 12956 CXXRecordDecl *FoundInClass = nullptr; 12957 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 12958 OverloadCandidateSet::CSK_Normal, 12959 ExplicitTemplateArgs, Args, &FoundInClass)) { 12960 // OK, diagnosed a two-phase lookup issue. 12961 } else if (EmptyLookup) { 12962 // Try to recover from an empty lookup with typo correction. 12963 R.clear(); 12964 NoTypoCorrectionCCC NoTypoValidator{}; 12965 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), 12966 ExplicitTemplateArgs != nullptr, 12967 dyn_cast<MemberExpr>(Fn)); 12968 CorrectionCandidateCallback &Validator = 12969 AllowTypoCorrection 12970 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) 12971 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); 12972 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, 12973 Args)) 12974 return ExprError(); 12975 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { 12976 // We found a usable declaration of the name in a dependent base of some 12977 // enclosing class. 12978 // FIXME: We should also explain why the candidates found by name lookup 12979 // were not viable. 12980 if (SemaRef.DiagnoseDependentMemberLookup(R)) 12981 return ExprError(); 12982 } else { 12983 // We had viable candidates and couldn't recover; let the caller diagnose 12984 // this. 12985 return ExprResult(); 12986 } 12987 12988 // If we get here, we should have issued a diagnostic and formed a recovery 12989 // lookup result. 12990 assert(!R.empty() && "lookup results empty despite recovery"); 12991 12992 // If recovery created an ambiguity, just bail out. 12993 if (R.isAmbiguous()) { 12994 R.suppressDiagnostics(); 12995 return ExprError(); 12996 } 12997 12998 // Build an implicit member call if appropriate. Just drop the 12999 // casts and such from the call, we don't really care. 13000 ExprResult NewFn = ExprError(); 13001 if ((*R.begin())->isCXXClassMember()) 13002 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 13003 ExplicitTemplateArgs, S); 13004 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 13005 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 13006 ExplicitTemplateArgs); 13007 else 13008 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 13009 13010 if (NewFn.isInvalid()) 13011 return ExprError(); 13012 13013 // This shouldn't cause an infinite loop because we're giving it 13014 // an expression with viable lookup results, which should never 13015 // end up here. 13016 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 13017 MultiExprArg(Args.data(), Args.size()), 13018 RParenLoc); 13019 } 13020 13021 /// Constructs and populates an OverloadedCandidateSet from 13022 /// the given function. 13023 /// \returns true when an the ExprResult output parameter has been set. 13024 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 13025 UnresolvedLookupExpr *ULE, 13026 MultiExprArg Args, 13027 SourceLocation RParenLoc, 13028 OverloadCandidateSet *CandidateSet, 13029 ExprResult *Result) { 13030 #ifndef NDEBUG 13031 if (ULE->requiresADL()) { 13032 // To do ADL, we must have found an unqualified name. 13033 assert(!ULE->getQualifier() && "qualified name with ADL"); 13034 13035 // We don't perform ADL for implicit declarations of builtins. 13036 // Verify that this was correctly set up. 13037 FunctionDecl *F; 13038 if (ULE->decls_begin() != ULE->decls_end() && 13039 ULE->decls_begin() + 1 == ULE->decls_end() && 13040 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 13041 F->getBuiltinID() && F->isImplicit()) 13042 llvm_unreachable("performing ADL for builtin"); 13043 13044 // We don't perform ADL in C. 13045 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 13046 } 13047 #endif 13048 13049 UnbridgedCastsSet UnbridgedCasts; 13050 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 13051 *Result = ExprError(); 13052 return true; 13053 } 13054 13055 // Add the functions denoted by the callee to the set of candidate 13056 // functions, including those from argument-dependent lookup. 13057 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 13058 13059 if (getLangOpts().MSVCCompat && 13060 CurContext->isDependentContext() && !isSFINAEContext() && 13061 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 13062 13063 OverloadCandidateSet::iterator Best; 13064 if (CandidateSet->empty() || 13065 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == 13066 OR_No_Viable_Function) { 13067 // In Microsoft mode, if we are inside a template class member function 13068 // then create a type dependent CallExpr. The goal is to postpone name 13069 // lookup to instantiation time to be able to search into type dependent 13070 // base classes. 13071 CallExpr *CE = 13072 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, 13073 RParenLoc, CurFPFeatureOverrides()); 13074 CE->markDependentForPostponedNameLookup(); 13075 *Result = CE; 13076 return true; 13077 } 13078 } 13079 13080 if (CandidateSet->empty()) 13081 return false; 13082 13083 UnbridgedCasts.restore(); 13084 return false; 13085 } 13086 13087 // Guess at what the return type for an unresolvable overload should be. 13088 static QualType chooseRecoveryType(OverloadCandidateSet &CS, 13089 OverloadCandidateSet::iterator *Best) { 13090 llvm::Optional<QualType> Result; 13091 // Adjust Type after seeing a candidate. 13092 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { 13093 if (!Candidate.Function) 13094 return; 13095 if (Candidate.Function->isInvalidDecl()) 13096 return; 13097 QualType T = Candidate.Function->getReturnType(); 13098 if (T.isNull()) 13099 return; 13100 if (!Result) 13101 Result = T; 13102 else if (Result != T) 13103 Result = QualType(); 13104 }; 13105 13106 // Look for an unambiguous type from a progressively larger subset. 13107 // e.g. if types disagree, but all *viable* overloads return int, choose int. 13108 // 13109 // First, consider only the best candidate. 13110 if (Best && *Best != CS.end()) 13111 ConsiderCandidate(**Best); 13112 // Next, consider only viable candidates. 13113 if (!Result) 13114 for (const auto &C : CS) 13115 if (C.Viable) 13116 ConsiderCandidate(C); 13117 // Finally, consider all candidates. 13118 if (!Result) 13119 for (const auto &C : CS) 13120 ConsiderCandidate(C); 13121 13122 if (!Result) 13123 return QualType(); 13124 auto Value = Result.getValue(); 13125 if (Value.isNull() || Value->isUndeducedType()) 13126 return QualType(); 13127 return Value; 13128 } 13129 13130 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 13131 /// the completed call expression. If overload resolution fails, emits 13132 /// diagnostics and returns ExprError() 13133 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13134 UnresolvedLookupExpr *ULE, 13135 SourceLocation LParenLoc, 13136 MultiExprArg Args, 13137 SourceLocation RParenLoc, 13138 Expr *ExecConfig, 13139 OverloadCandidateSet *CandidateSet, 13140 OverloadCandidateSet::iterator *Best, 13141 OverloadingResult OverloadResult, 13142 bool AllowTypoCorrection) { 13143 switch (OverloadResult) { 13144 case OR_Success: { 13145 FunctionDecl *FDecl = (*Best)->Function; 13146 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 13147 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 13148 return ExprError(); 13149 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13150 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13151 ExecConfig, /*IsExecConfig=*/false, 13152 (*Best)->IsADLCandidate); 13153 } 13154 13155 case OR_No_Viable_Function: { 13156 // Try to recover by looking for viable functions which the user might 13157 // have meant to call. 13158 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 13159 Args, RParenLoc, 13160 CandidateSet->empty(), 13161 AllowTypoCorrection); 13162 if (Recovery.isInvalid() || Recovery.isUsable()) 13163 return Recovery; 13164 13165 // If the user passes in a function that we can't take the address of, we 13166 // generally end up emitting really bad error messages. Here, we attempt to 13167 // emit better ones. 13168 for (const Expr *Arg : Args) { 13169 if (!Arg->getType()->isFunctionType()) 13170 continue; 13171 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 13172 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 13173 if (FD && 13174 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 13175 Arg->getExprLoc())) 13176 return ExprError(); 13177 } 13178 } 13179 13180 CandidateSet->NoteCandidates( 13181 PartialDiagnosticAt( 13182 Fn->getBeginLoc(), 13183 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) 13184 << ULE->getName() << Fn->getSourceRange()), 13185 SemaRef, OCD_AllCandidates, Args); 13186 break; 13187 } 13188 13189 case OR_Ambiguous: 13190 CandidateSet->NoteCandidates( 13191 PartialDiagnosticAt(Fn->getBeginLoc(), 13192 SemaRef.PDiag(diag::err_ovl_ambiguous_call) 13193 << ULE->getName() << Fn->getSourceRange()), 13194 SemaRef, OCD_AmbiguousCandidates, Args); 13195 break; 13196 13197 case OR_Deleted: { 13198 CandidateSet->NoteCandidates( 13199 PartialDiagnosticAt(Fn->getBeginLoc(), 13200 SemaRef.PDiag(diag::err_ovl_deleted_call) 13201 << ULE->getName() << Fn->getSourceRange()), 13202 SemaRef, OCD_AllCandidates, Args); 13203 13204 // We emitted an error for the unavailable/deleted function call but keep 13205 // the call in the AST. 13206 FunctionDecl *FDecl = (*Best)->Function; 13207 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13208 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13209 ExecConfig, /*IsExecConfig=*/false, 13210 (*Best)->IsADLCandidate); 13211 } 13212 } 13213 13214 // Overload resolution failed, try to recover. 13215 SmallVector<Expr *, 8> SubExprs = {Fn}; 13216 SubExprs.append(Args.begin(), Args.end()); 13217 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, 13218 chooseRecoveryType(*CandidateSet, Best)); 13219 } 13220 13221 static void markUnaddressableCandidatesUnviable(Sema &S, 13222 OverloadCandidateSet &CS) { 13223 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 13224 if (I->Viable && 13225 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 13226 I->Viable = false; 13227 I->FailureKind = ovl_fail_addr_not_available; 13228 } 13229 } 13230 } 13231 13232 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 13233 /// (which eventually refers to the declaration Func) and the call 13234 /// arguments Args/NumArgs, attempt to resolve the function call down 13235 /// to a specific function. If overload resolution succeeds, returns 13236 /// the call expression produced by overload resolution. 13237 /// Otherwise, emits diagnostics and returns ExprError. 13238 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 13239 UnresolvedLookupExpr *ULE, 13240 SourceLocation LParenLoc, 13241 MultiExprArg Args, 13242 SourceLocation RParenLoc, 13243 Expr *ExecConfig, 13244 bool AllowTypoCorrection, 13245 bool CalleesAddressIsTaken) { 13246 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 13247 OverloadCandidateSet::CSK_Normal); 13248 ExprResult result; 13249 13250 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 13251 &result)) 13252 return result; 13253 13254 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 13255 // functions that aren't addressible are considered unviable. 13256 if (CalleesAddressIsTaken) 13257 markUnaddressableCandidatesUnviable(*this, CandidateSet); 13258 13259 OverloadCandidateSet::iterator Best; 13260 OverloadingResult OverloadResult = 13261 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); 13262 13263 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, 13264 ExecConfig, &CandidateSet, &Best, 13265 OverloadResult, AllowTypoCorrection); 13266 } 13267 13268 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 13269 return Functions.size() > 1 || 13270 (Functions.size() == 1 && 13271 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); 13272 } 13273 13274 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, 13275 NestedNameSpecifierLoc NNSLoc, 13276 DeclarationNameInfo DNI, 13277 const UnresolvedSetImpl &Fns, 13278 bool PerformADL) { 13279 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, 13280 PerformADL, IsOverloaded(Fns), 13281 Fns.begin(), Fns.end()); 13282 } 13283 13284 /// Create a unary operation that may resolve to an overloaded 13285 /// operator. 13286 /// 13287 /// \param OpLoc The location of the operator itself (e.g., '*'). 13288 /// 13289 /// \param Opc The UnaryOperatorKind that describes this operator. 13290 /// 13291 /// \param Fns The set of non-member functions that will be 13292 /// considered by overload resolution. The caller needs to build this 13293 /// set based on the context using, e.g., 13294 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13295 /// set should not contain any member functions; those will be added 13296 /// by CreateOverloadedUnaryOp(). 13297 /// 13298 /// \param Input The input argument. 13299 ExprResult 13300 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 13301 const UnresolvedSetImpl &Fns, 13302 Expr *Input, bool PerformADL) { 13303 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 13304 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 13305 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13306 // TODO: provide better source location info. 13307 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13308 13309 if (checkPlaceholderForOverload(*this, Input)) 13310 return ExprError(); 13311 13312 Expr *Args[2] = { Input, nullptr }; 13313 unsigned NumArgs = 1; 13314 13315 // For post-increment and post-decrement, add the implicit '0' as 13316 // the second argument, so that we know this is a post-increment or 13317 // post-decrement. 13318 if (Opc == UO_PostInc || Opc == UO_PostDec) { 13319 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13320 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 13321 SourceLocation()); 13322 NumArgs = 2; 13323 } 13324 13325 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 13326 13327 if (Input->isTypeDependent()) { 13328 if (Fns.empty()) 13329 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, 13330 VK_PRValue, OK_Ordinary, OpLoc, false, 13331 CurFPFeatureOverrides()); 13332 13333 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13334 ExprResult Fn = CreateUnresolvedLookupExpr( 13335 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); 13336 if (Fn.isInvalid()) 13337 return ExprError(); 13338 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, 13339 Context.DependentTy, VK_PRValue, OpLoc, 13340 CurFPFeatureOverrides()); 13341 } 13342 13343 // Build an empty overload set. 13344 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 13345 13346 // Add the candidates from the given function set. 13347 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); 13348 13349 // Add operator candidates that are member functions. 13350 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13351 13352 // Add candidates from ADL. 13353 if (PerformADL) { 13354 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 13355 /*ExplicitTemplateArgs*/nullptr, 13356 CandidateSet); 13357 } 13358 13359 // Add builtin operator candidates. 13360 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13361 13362 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13363 13364 // Perform overload resolution. 13365 OverloadCandidateSet::iterator Best; 13366 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13367 case OR_Success: { 13368 // We found a built-in operator or an overloaded operator. 13369 FunctionDecl *FnDecl = Best->Function; 13370 13371 if (FnDecl) { 13372 Expr *Base = nullptr; 13373 // We matched an overloaded operator. Build a call to that 13374 // operator. 13375 13376 // Convert the arguments. 13377 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13378 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 13379 13380 ExprResult InputRes = 13381 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 13382 Best->FoundDecl, Method); 13383 if (InputRes.isInvalid()) 13384 return ExprError(); 13385 Base = Input = InputRes.get(); 13386 } else { 13387 // Convert the arguments. 13388 ExprResult InputInit 13389 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13390 Context, 13391 FnDecl->getParamDecl(0)), 13392 SourceLocation(), 13393 Input); 13394 if (InputInit.isInvalid()) 13395 return ExprError(); 13396 Input = InputInit.get(); 13397 } 13398 13399 // Build the actual expression node. 13400 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 13401 Base, HadMultipleCandidates, 13402 OpLoc); 13403 if (FnExpr.isInvalid()) 13404 return ExprError(); 13405 13406 // Determine the result type. 13407 QualType ResultTy = FnDecl->getReturnType(); 13408 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13409 ResultTy = ResultTy.getNonLValueExprType(Context); 13410 13411 Args[0] = Input; 13412 CallExpr *TheCall = CXXOperatorCallExpr::Create( 13413 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, 13414 CurFPFeatureOverrides(), Best->IsADLCandidate); 13415 13416 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 13417 return ExprError(); 13418 13419 if (CheckFunctionCall(FnDecl, TheCall, 13420 FnDecl->getType()->castAs<FunctionProtoType>())) 13421 return ExprError(); 13422 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); 13423 } else { 13424 // We matched a built-in operator. Convert the arguments, then 13425 // break out so that we will build the appropriate built-in 13426 // operator node. 13427 ExprResult InputRes = PerformImplicitConversion( 13428 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, 13429 CCK_ForBuiltinOverloadedOp); 13430 if (InputRes.isInvalid()) 13431 return ExprError(); 13432 Input = InputRes.get(); 13433 break; 13434 } 13435 } 13436 13437 case OR_No_Viable_Function: 13438 // This is an erroneous use of an operator which can be overloaded by 13439 // a non-member function. Check for non-member operators which were 13440 // defined too late to be candidates. 13441 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 13442 // FIXME: Recover by calling the found function. 13443 return ExprError(); 13444 13445 // No viable function; fall through to handling this as a 13446 // built-in operator, which will produce an error message for us. 13447 break; 13448 13449 case OR_Ambiguous: 13450 CandidateSet.NoteCandidates( 13451 PartialDiagnosticAt(OpLoc, 13452 PDiag(diag::err_ovl_ambiguous_oper_unary) 13453 << UnaryOperator::getOpcodeStr(Opc) 13454 << Input->getType() << Input->getSourceRange()), 13455 *this, OCD_AmbiguousCandidates, ArgsArray, 13456 UnaryOperator::getOpcodeStr(Opc), OpLoc); 13457 return ExprError(); 13458 13459 case OR_Deleted: 13460 CandidateSet.NoteCandidates( 13461 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 13462 << UnaryOperator::getOpcodeStr(Opc) 13463 << Input->getSourceRange()), 13464 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), 13465 OpLoc); 13466 return ExprError(); 13467 } 13468 13469 // Either we found no viable overloaded operator or we matched a 13470 // built-in operator. In either case, fall through to trying to 13471 // build a built-in operation. 13472 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 13473 } 13474 13475 /// Perform lookup for an overloaded binary operator. 13476 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, 13477 OverloadedOperatorKind Op, 13478 const UnresolvedSetImpl &Fns, 13479 ArrayRef<Expr *> Args, bool PerformADL) { 13480 SourceLocation OpLoc = CandidateSet.getLocation(); 13481 13482 OverloadedOperatorKind ExtraOp = 13483 CandidateSet.getRewriteInfo().AllowRewrittenCandidates 13484 ? getRewrittenOverloadedOperator(Op) 13485 : OO_None; 13486 13487 // Add the candidates from the given function set. This also adds the 13488 // rewritten candidates using these functions if necessary. 13489 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); 13490 13491 // Add operator candidates that are member functions. 13492 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13493 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) 13494 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, 13495 OverloadCandidateParamOrder::Reversed); 13496 13497 // In C++20, also add any rewritten member candidates. 13498 if (ExtraOp) { 13499 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); 13500 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) 13501 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, 13502 CandidateSet, 13503 OverloadCandidateParamOrder::Reversed); 13504 } 13505 13506 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 13507 // performed for an assignment operator (nor for operator[] nor operator->, 13508 // which don't get here). 13509 if (Op != OO_Equal && PerformADL) { 13510 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13511 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 13512 /*ExplicitTemplateArgs*/ nullptr, 13513 CandidateSet); 13514 if (ExtraOp) { 13515 DeclarationName ExtraOpName = 13516 Context.DeclarationNames.getCXXOperatorName(ExtraOp); 13517 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, 13518 /*ExplicitTemplateArgs*/ nullptr, 13519 CandidateSet); 13520 } 13521 } 13522 13523 // Add builtin operator candidates. 13524 // 13525 // FIXME: We don't add any rewritten candidates here. This is strictly 13526 // incorrect; a builtin candidate could be hidden by a non-viable candidate, 13527 // resulting in our selecting a rewritten builtin candidate. For example: 13528 // 13529 // enum class E { e }; 13530 // bool operator!=(E, E) requires false; 13531 // bool k = E::e != E::e; 13532 // 13533 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But 13534 // it seems unreasonable to consider rewritten builtin candidates. A core 13535 // issue has been filed proposing to removed this requirement. 13536 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13537 } 13538 13539 /// Create a binary operation that may resolve to an overloaded 13540 /// operator. 13541 /// 13542 /// \param OpLoc The location of the operator itself (e.g., '+'). 13543 /// 13544 /// \param Opc The BinaryOperatorKind that describes this operator. 13545 /// 13546 /// \param Fns The set of non-member functions that will be 13547 /// considered by overload resolution. The caller needs to build this 13548 /// set based on the context using, e.g., 13549 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13550 /// set should not contain any member functions; those will be added 13551 /// by CreateOverloadedBinOp(). 13552 /// 13553 /// \param LHS Left-hand argument. 13554 /// \param RHS Right-hand argument. 13555 /// \param PerformADL Whether to consider operator candidates found by ADL. 13556 /// \param AllowRewrittenCandidates Whether to consider candidates found by 13557 /// C++20 operator rewrites. 13558 /// \param DefaultedFn If we are synthesizing a defaulted operator function, 13559 /// the function in question. Such a function is never a candidate in 13560 /// our overload resolution. This also enables synthesizing a three-way 13561 /// comparison from < and == as described in C++20 [class.spaceship]p1. 13562 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 13563 BinaryOperatorKind Opc, 13564 const UnresolvedSetImpl &Fns, Expr *LHS, 13565 Expr *RHS, bool PerformADL, 13566 bool AllowRewrittenCandidates, 13567 FunctionDecl *DefaultedFn) { 13568 Expr *Args[2] = { LHS, RHS }; 13569 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 13570 13571 if (!getLangOpts().CPlusPlus20) 13572 AllowRewrittenCandidates = false; 13573 13574 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 13575 13576 // If either side is type-dependent, create an appropriate dependent 13577 // expression. 13578 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13579 if (Fns.empty()) { 13580 // If there are no functions to store, just build a dependent 13581 // BinaryOperator or CompoundAssignment. 13582 if (BinaryOperator::isCompoundAssignmentOp(Opc)) 13583 return CompoundAssignOperator::Create( 13584 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, 13585 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, 13586 Context.DependentTy); 13587 return BinaryOperator::Create( 13588 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, 13589 OK_Ordinary, OpLoc, CurFPFeatureOverrides()); 13590 } 13591 13592 // FIXME: save results of ADL from here? 13593 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13594 // TODO: provide better source location info in DNLoc component. 13595 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13596 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13597 ExprResult Fn = CreateUnresolvedLookupExpr( 13598 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); 13599 if (Fn.isInvalid()) 13600 return ExprError(); 13601 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, 13602 Context.DependentTy, VK_PRValue, OpLoc, 13603 CurFPFeatureOverrides()); 13604 } 13605 13606 // Always do placeholder-like conversions on the RHS. 13607 if (checkPlaceholderForOverload(*this, Args[1])) 13608 return ExprError(); 13609 13610 // Do placeholder-like conversion on the LHS; note that we should 13611 // not get here with a PseudoObject LHS. 13612 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 13613 if (checkPlaceholderForOverload(*this, Args[0])) 13614 return ExprError(); 13615 13616 // If this is the assignment operator, we only perform overload resolution 13617 // if the left-hand side is a class or enumeration type. This is actually 13618 // a hack. The standard requires that we do overload resolution between the 13619 // various built-in candidates, but as DR507 points out, this can lead to 13620 // problems. So we do it this way, which pretty much follows what GCC does. 13621 // Note that we go the traditional code path for compound assignment forms. 13622 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 13623 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13624 13625 // If this is the .* operator, which is not overloadable, just 13626 // create a built-in binary operator. 13627 if (Opc == BO_PtrMemD) 13628 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13629 13630 // Build the overload set. 13631 OverloadCandidateSet CandidateSet( 13632 OpLoc, OverloadCandidateSet::CSK_Operator, 13633 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); 13634 if (DefaultedFn) 13635 CandidateSet.exclude(DefaultedFn); 13636 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); 13637 13638 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13639 13640 // Perform overload resolution. 13641 OverloadCandidateSet::iterator Best; 13642 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13643 case OR_Success: { 13644 // We found a built-in operator or an overloaded operator. 13645 FunctionDecl *FnDecl = Best->Function; 13646 13647 bool IsReversed = Best->isReversed(); 13648 if (IsReversed) 13649 std::swap(Args[0], Args[1]); 13650 13651 if (FnDecl) { 13652 Expr *Base = nullptr; 13653 // We matched an overloaded operator. Build a call to that 13654 // operator. 13655 13656 OverloadedOperatorKind ChosenOp = 13657 FnDecl->getDeclName().getCXXOverloadedOperator(); 13658 13659 // C++2a [over.match.oper]p9: 13660 // If a rewritten operator== candidate is selected by overload 13661 // resolution for an operator@, its return type shall be cv bool 13662 if (Best->RewriteKind && ChosenOp == OO_EqualEqual && 13663 !FnDecl->getReturnType()->isBooleanType()) { 13664 bool IsExtension = 13665 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); 13666 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool 13667 : diag::err_ovl_rewrite_equalequal_not_bool) 13668 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) 13669 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13670 Diag(FnDecl->getLocation(), diag::note_declared_at); 13671 if (!IsExtension) 13672 return ExprError(); 13673 } 13674 13675 if (AllowRewrittenCandidates && !IsReversed && 13676 CandidateSet.getRewriteInfo().isReversible()) { 13677 // We could have reversed this operator, but didn't. Check if some 13678 // reversed form was a viable candidate, and if so, if it had a 13679 // better conversion for either parameter. If so, this call is 13680 // formally ambiguous, and allowing it is an extension. 13681 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; 13682 for (OverloadCandidate &Cand : CandidateSet) { 13683 if (Cand.Viable && Cand.Function && Cand.isReversed() && 13684 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { 13685 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 13686 if (CompareImplicitConversionSequences( 13687 *this, OpLoc, Cand.Conversions[ArgIdx], 13688 Best->Conversions[ArgIdx]) == 13689 ImplicitConversionSequence::Better) { 13690 AmbiguousWith.push_back(Cand.Function); 13691 break; 13692 } 13693 } 13694 } 13695 } 13696 13697 if (!AmbiguousWith.empty()) { 13698 bool AmbiguousWithSelf = 13699 AmbiguousWith.size() == 1 && 13700 declaresSameEntity(AmbiguousWith.front(), FnDecl); 13701 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) 13702 << BinaryOperator::getOpcodeStr(Opc) 13703 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf 13704 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13705 if (AmbiguousWithSelf) { 13706 Diag(FnDecl->getLocation(), 13707 diag::note_ovl_ambiguous_oper_binary_reversed_self); 13708 } else { 13709 Diag(FnDecl->getLocation(), 13710 diag::note_ovl_ambiguous_oper_binary_selected_candidate); 13711 for (auto *F : AmbiguousWith) 13712 Diag(F->getLocation(), 13713 diag::note_ovl_ambiguous_oper_binary_reversed_candidate); 13714 } 13715 } 13716 } 13717 13718 // Convert the arguments. 13719 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13720 // Best->Access is only meaningful for class members. 13721 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 13722 13723 ExprResult Arg1 = 13724 PerformCopyInitialization( 13725 InitializedEntity::InitializeParameter(Context, 13726 FnDecl->getParamDecl(0)), 13727 SourceLocation(), Args[1]); 13728 if (Arg1.isInvalid()) 13729 return ExprError(); 13730 13731 ExprResult Arg0 = 13732 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 13733 Best->FoundDecl, Method); 13734 if (Arg0.isInvalid()) 13735 return ExprError(); 13736 Base = Args[0] = Arg0.getAs<Expr>(); 13737 Args[1] = RHS = Arg1.getAs<Expr>(); 13738 } else { 13739 // Convert the arguments. 13740 ExprResult Arg0 = PerformCopyInitialization( 13741 InitializedEntity::InitializeParameter(Context, 13742 FnDecl->getParamDecl(0)), 13743 SourceLocation(), Args[0]); 13744 if (Arg0.isInvalid()) 13745 return ExprError(); 13746 13747 ExprResult Arg1 = 13748 PerformCopyInitialization( 13749 InitializedEntity::InitializeParameter(Context, 13750 FnDecl->getParamDecl(1)), 13751 SourceLocation(), Args[1]); 13752 if (Arg1.isInvalid()) 13753 return ExprError(); 13754 Args[0] = LHS = Arg0.getAs<Expr>(); 13755 Args[1] = RHS = Arg1.getAs<Expr>(); 13756 } 13757 13758 // Build the actual expression node. 13759 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 13760 Best->FoundDecl, Base, 13761 HadMultipleCandidates, OpLoc); 13762 if (FnExpr.isInvalid()) 13763 return ExprError(); 13764 13765 // Determine the result type. 13766 QualType ResultTy = FnDecl->getReturnType(); 13767 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13768 ResultTy = ResultTy.getNonLValueExprType(Context); 13769 13770 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 13771 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, 13772 CurFPFeatureOverrides(), Best->IsADLCandidate); 13773 13774 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 13775 FnDecl)) 13776 return ExprError(); 13777 13778 ArrayRef<const Expr *> ArgsArray(Args, 2); 13779 const Expr *ImplicitThis = nullptr; 13780 // Cut off the implicit 'this'. 13781 if (isa<CXXMethodDecl>(FnDecl)) { 13782 ImplicitThis = ArgsArray[0]; 13783 ArgsArray = ArgsArray.slice(1); 13784 } 13785 13786 // Check for a self move. 13787 if (Op == OO_Equal) 13788 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 13789 13790 if (ImplicitThis) { 13791 QualType ThisType = Context.getPointerType(ImplicitThis->getType()); 13792 QualType ThisTypeFromDecl = Context.getPointerType( 13793 cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); 13794 13795 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, 13796 ThisTypeFromDecl); 13797 } 13798 13799 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 13800 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 13801 VariadicDoesNotApply); 13802 13803 ExprResult R = MaybeBindToTemporary(TheCall); 13804 if (R.isInvalid()) 13805 return ExprError(); 13806 13807 R = CheckForImmediateInvocation(R, FnDecl); 13808 if (R.isInvalid()) 13809 return ExprError(); 13810 13811 // For a rewritten candidate, we've already reversed the arguments 13812 // if needed. Perform the rest of the rewrite now. 13813 if ((Best->RewriteKind & CRK_DifferentOperator) || 13814 (Op == OO_Spaceship && IsReversed)) { 13815 if (Op == OO_ExclaimEqual) { 13816 assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); 13817 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); 13818 } else { 13819 assert(ChosenOp == OO_Spaceship && "unexpected operator name"); 13820 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13821 Expr *ZeroLiteral = 13822 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); 13823 13824 Sema::CodeSynthesisContext Ctx; 13825 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; 13826 Ctx.Entity = FnDecl; 13827 pushCodeSynthesisContext(Ctx); 13828 13829 R = CreateOverloadedBinOp( 13830 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), 13831 IsReversed ? R.get() : ZeroLiteral, PerformADL, 13832 /*AllowRewrittenCandidates=*/false); 13833 13834 popCodeSynthesisContext(); 13835 } 13836 if (R.isInvalid()) 13837 return ExprError(); 13838 } else { 13839 assert(ChosenOp == Op && "unexpected operator name"); 13840 } 13841 13842 // Make a note in the AST if we did any rewriting. 13843 if (Best->RewriteKind != CRK_None) 13844 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); 13845 13846 return R; 13847 } else { 13848 // We matched a built-in operator. Convert the arguments, then 13849 // break out so that we will build the appropriate built-in 13850 // operator node. 13851 ExprResult ArgsRes0 = PerformImplicitConversion( 13852 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 13853 AA_Passing, CCK_ForBuiltinOverloadedOp); 13854 if (ArgsRes0.isInvalid()) 13855 return ExprError(); 13856 Args[0] = ArgsRes0.get(); 13857 13858 ExprResult ArgsRes1 = PerformImplicitConversion( 13859 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 13860 AA_Passing, CCK_ForBuiltinOverloadedOp); 13861 if (ArgsRes1.isInvalid()) 13862 return ExprError(); 13863 Args[1] = ArgsRes1.get(); 13864 break; 13865 } 13866 } 13867 13868 case OR_No_Viable_Function: { 13869 // C++ [over.match.oper]p9: 13870 // If the operator is the operator , [...] and there are no 13871 // viable functions, then the operator is assumed to be the 13872 // built-in operator and interpreted according to clause 5. 13873 if (Opc == BO_Comma) 13874 break; 13875 13876 // When defaulting an 'operator<=>', we can try to synthesize a three-way 13877 // compare result using '==' and '<'. 13878 if (DefaultedFn && Opc == BO_Cmp) { 13879 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], 13880 Args[1], DefaultedFn); 13881 if (E.isInvalid() || E.isUsable()) 13882 return E; 13883 } 13884 13885 // For class as left operand for assignment or compound assignment 13886 // operator do not fall through to handling in built-in, but report that 13887 // no overloaded assignment operator found 13888 ExprResult Result = ExprError(); 13889 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); 13890 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, 13891 Args, OpLoc); 13892 DeferDiagsRAII DDR(*this, 13893 CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); 13894 if (Args[0]->getType()->isRecordType() && 13895 Opc >= BO_Assign && Opc <= BO_OrAssign) { 13896 Diag(OpLoc, diag::err_ovl_no_viable_oper) 13897 << BinaryOperator::getOpcodeStr(Opc) 13898 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13899 if (Args[0]->getType()->isIncompleteType()) { 13900 Diag(OpLoc, diag::note_assign_lhs_incomplete) 13901 << Args[0]->getType() 13902 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13903 } 13904 } else { 13905 // This is an erroneous use of an operator which can be overloaded by 13906 // a non-member function. Check for non-member operators which were 13907 // defined too late to be candidates. 13908 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 13909 // FIXME: Recover by calling the found function. 13910 return ExprError(); 13911 13912 // No viable function; try to create a built-in operation, which will 13913 // produce an error. Then, show the non-viable candidates. 13914 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13915 } 13916 assert(Result.isInvalid() && 13917 "C++ binary operator overloading is missing candidates!"); 13918 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); 13919 return Result; 13920 } 13921 13922 case OR_Ambiguous: 13923 CandidateSet.NoteCandidates( 13924 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 13925 << BinaryOperator::getOpcodeStr(Opc) 13926 << Args[0]->getType() 13927 << Args[1]->getType() 13928 << Args[0]->getSourceRange() 13929 << Args[1]->getSourceRange()), 13930 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13931 OpLoc); 13932 return ExprError(); 13933 13934 case OR_Deleted: 13935 if (isImplicitlyDeleted(Best->Function)) { 13936 FunctionDecl *DeletedFD = Best->Function; 13937 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); 13938 if (DFK.isSpecialMember()) { 13939 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 13940 << Args[0]->getType() << DFK.asSpecialMember(); 13941 } else { 13942 assert(DFK.isComparison()); 13943 Diag(OpLoc, diag::err_ovl_deleted_comparison) 13944 << Args[0]->getType() << DeletedFD; 13945 } 13946 13947 // The user probably meant to call this special member. Just 13948 // explain why it's deleted. 13949 NoteDeletedFunction(DeletedFD); 13950 return ExprError(); 13951 } 13952 CandidateSet.NoteCandidates( 13953 PartialDiagnosticAt( 13954 OpLoc, PDiag(diag::err_ovl_deleted_oper) 13955 << getOperatorSpelling(Best->Function->getDeclName() 13956 .getCXXOverloadedOperator()) 13957 << Args[0]->getSourceRange() 13958 << Args[1]->getSourceRange()), 13959 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13960 OpLoc); 13961 return ExprError(); 13962 } 13963 13964 // We matched a built-in operator; build it. 13965 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13966 } 13967 13968 ExprResult Sema::BuildSynthesizedThreeWayComparison( 13969 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, 13970 FunctionDecl *DefaultedFn) { 13971 const ComparisonCategoryInfo *Info = 13972 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); 13973 // If we're not producing a known comparison category type, we can't 13974 // synthesize a three-way comparison. Let the caller diagnose this. 13975 if (!Info) 13976 return ExprResult((Expr*)nullptr); 13977 13978 // If we ever want to perform this synthesis more generally, we will need to 13979 // apply the temporary materialization conversion to the operands. 13980 assert(LHS->isGLValue() && RHS->isGLValue() && 13981 "cannot use prvalue expressions more than once"); 13982 Expr *OrigLHS = LHS; 13983 Expr *OrigRHS = RHS; 13984 13985 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to 13986 // each of them multiple times below. 13987 LHS = new (Context) 13988 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), 13989 LHS->getObjectKind(), LHS); 13990 RHS = new (Context) 13991 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), 13992 RHS->getObjectKind(), RHS); 13993 13994 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, 13995 DefaultedFn); 13996 if (Eq.isInvalid()) 13997 return ExprError(); 13998 13999 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, 14000 true, DefaultedFn); 14001 if (Less.isInvalid()) 14002 return ExprError(); 14003 14004 ExprResult Greater; 14005 if (Info->isPartial()) { 14006 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, 14007 DefaultedFn); 14008 if (Greater.isInvalid()) 14009 return ExprError(); 14010 } 14011 14012 // Form the list of comparisons we're going to perform. 14013 struct Comparison { 14014 ExprResult Cmp; 14015 ComparisonCategoryResult Result; 14016 } Comparisons[4] = 14017 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal 14018 : ComparisonCategoryResult::Equivalent}, 14019 {Less, ComparisonCategoryResult::Less}, 14020 {Greater, ComparisonCategoryResult::Greater}, 14021 {ExprResult(), ComparisonCategoryResult::Unordered}, 14022 }; 14023 14024 int I = Info->isPartial() ? 3 : 2; 14025 14026 // Combine the comparisons with suitable conditional expressions. 14027 ExprResult Result; 14028 for (; I >= 0; --I) { 14029 // Build a reference to the comparison category constant. 14030 auto *VI = Info->lookupValueInfo(Comparisons[I].Result); 14031 // FIXME: Missing a constant for a comparison category. Diagnose this? 14032 if (!VI) 14033 return ExprResult((Expr*)nullptr); 14034 ExprResult ThisResult = 14035 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); 14036 if (ThisResult.isInvalid()) 14037 return ExprError(); 14038 14039 // Build a conditional unless this is the final case. 14040 if (Result.get()) { 14041 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), 14042 ThisResult.get(), Result.get()); 14043 if (Result.isInvalid()) 14044 return ExprError(); 14045 } else { 14046 Result = ThisResult; 14047 } 14048 } 14049 14050 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to 14051 // bind the OpaqueValueExprs before they're (repeatedly) used. 14052 Expr *SyntacticForm = BinaryOperator::Create( 14053 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), 14054 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, 14055 CurFPFeatureOverrides()); 14056 Expr *SemanticForm[] = {LHS, RHS, Result.get()}; 14057 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); 14058 } 14059 14060 ExprResult 14061 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 14062 SourceLocation RLoc, 14063 Expr *Base, Expr *Idx) { 14064 Expr *Args[2] = { Base, Idx }; 14065 DeclarationName OpName = 14066 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 14067 14068 // If either side is type-dependent, create an appropriate dependent 14069 // expression. 14070 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 14071 14072 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 14073 // CHECKME: no 'operator' keyword? 14074 DeclarationNameInfo OpNameInfo(OpName, LLoc); 14075 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14076 ExprResult Fn = CreateUnresolvedLookupExpr( 14077 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); 14078 if (Fn.isInvalid()) 14079 return ExprError(); 14080 // Can't add any actual overloads yet 14081 14082 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, 14083 Context.DependentTy, VK_PRValue, RLoc, 14084 CurFPFeatureOverrides()); 14085 } 14086 14087 // Handle placeholders on both operands. 14088 if (checkPlaceholderForOverload(*this, Args[0])) 14089 return ExprError(); 14090 if (checkPlaceholderForOverload(*this, Args[1])) 14091 return ExprError(); 14092 14093 // Build an empty overload set. 14094 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 14095 14096 // Subscript can only be overloaded as a member function. 14097 14098 // Add operator candidates that are member functions. 14099 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14100 14101 // Add builtin operator candidates. 14102 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14103 14104 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14105 14106 // Perform overload resolution. 14107 OverloadCandidateSet::iterator Best; 14108 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 14109 case OR_Success: { 14110 // We found a built-in operator or an overloaded operator. 14111 FunctionDecl *FnDecl = Best->Function; 14112 14113 if (FnDecl) { 14114 // We matched an overloaded operator. Build a call to that 14115 // operator. 14116 14117 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 14118 14119 // Convert the arguments. 14120 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 14121 ExprResult Arg0 = 14122 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 14123 Best->FoundDecl, Method); 14124 if (Arg0.isInvalid()) 14125 return ExprError(); 14126 Args[0] = Arg0.get(); 14127 14128 // Convert the arguments. 14129 ExprResult InputInit 14130 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14131 Context, 14132 FnDecl->getParamDecl(0)), 14133 SourceLocation(), 14134 Args[1]); 14135 if (InputInit.isInvalid()) 14136 return ExprError(); 14137 14138 Args[1] = InputInit.getAs<Expr>(); 14139 14140 // Build the actual expression node. 14141 DeclarationNameInfo OpLocInfo(OpName, LLoc); 14142 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14143 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 14144 Best->FoundDecl, 14145 Base, 14146 HadMultipleCandidates, 14147 OpLocInfo.getLoc(), 14148 OpLocInfo.getInfo()); 14149 if (FnExpr.isInvalid()) 14150 return ExprError(); 14151 14152 // Determine the result type 14153 QualType ResultTy = FnDecl->getReturnType(); 14154 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14155 ResultTy = ResultTy.getNonLValueExprType(Context); 14156 14157 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14158 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, 14159 CurFPFeatureOverrides()); 14160 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 14161 return ExprError(); 14162 14163 if (CheckFunctionCall(Method, TheCall, 14164 Method->getType()->castAs<FunctionProtoType>())) 14165 return ExprError(); 14166 14167 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14168 FnDecl); 14169 } else { 14170 // We matched a built-in operator. Convert the arguments, then 14171 // break out so that we will build the appropriate built-in 14172 // operator node. 14173 ExprResult ArgsRes0 = PerformImplicitConversion( 14174 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14175 AA_Passing, CCK_ForBuiltinOverloadedOp); 14176 if (ArgsRes0.isInvalid()) 14177 return ExprError(); 14178 Args[0] = ArgsRes0.get(); 14179 14180 ExprResult ArgsRes1 = PerformImplicitConversion( 14181 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14182 AA_Passing, CCK_ForBuiltinOverloadedOp); 14183 if (ArgsRes1.isInvalid()) 14184 return ExprError(); 14185 Args[1] = ArgsRes1.get(); 14186 14187 break; 14188 } 14189 } 14190 14191 case OR_No_Viable_Function: { 14192 PartialDiagnostic PD = CandidateSet.empty() 14193 ? (PDiag(diag::err_ovl_no_oper) 14194 << Args[0]->getType() << /*subscript*/ 0 14195 << Args[0]->getSourceRange() << Args[1]->getSourceRange()) 14196 : (PDiag(diag::err_ovl_no_viable_subscript) 14197 << Args[0]->getType() << Args[0]->getSourceRange() 14198 << Args[1]->getSourceRange()); 14199 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, 14200 OCD_AllCandidates, Args, "[]", LLoc); 14201 return ExprError(); 14202 } 14203 14204 case OR_Ambiguous: 14205 CandidateSet.NoteCandidates( 14206 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14207 << "[]" << Args[0]->getType() 14208 << Args[1]->getType() 14209 << Args[0]->getSourceRange() 14210 << Args[1]->getSourceRange()), 14211 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14212 return ExprError(); 14213 14214 case OR_Deleted: 14215 CandidateSet.NoteCandidates( 14216 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) 14217 << "[]" << Args[0]->getSourceRange() 14218 << Args[1]->getSourceRange()), 14219 *this, OCD_AllCandidates, Args, "[]", LLoc); 14220 return ExprError(); 14221 } 14222 14223 // We matched a built-in operator; build it. 14224 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 14225 } 14226 14227 /// BuildCallToMemberFunction - Build a call to a member 14228 /// function. MemExpr is the expression that refers to the member 14229 /// function (and includes the object parameter), Args/NumArgs are the 14230 /// arguments to the function call (not including the object 14231 /// parameter). The caller needs to validate that the member 14232 /// expression refers to a non-static member function or an overloaded 14233 /// member function. 14234 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 14235 SourceLocation LParenLoc, 14236 MultiExprArg Args, 14237 SourceLocation RParenLoc, 14238 Expr *ExecConfig, bool IsExecConfig, 14239 bool AllowRecovery) { 14240 assert(MemExprE->getType() == Context.BoundMemberTy || 14241 MemExprE->getType() == Context.OverloadTy); 14242 14243 // Dig out the member expression. This holds both the object 14244 // argument and the member function we're referring to. 14245 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 14246 14247 // Determine whether this is a call to a pointer-to-member function. 14248 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 14249 assert(op->getType() == Context.BoundMemberTy); 14250 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 14251 14252 QualType fnType = 14253 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 14254 14255 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 14256 QualType resultType = proto->getCallResultType(Context); 14257 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 14258 14259 // Check that the object type isn't more qualified than the 14260 // member function we're calling. 14261 Qualifiers funcQuals = proto->getMethodQuals(); 14262 14263 QualType objectType = op->getLHS()->getType(); 14264 if (op->getOpcode() == BO_PtrMemI) 14265 objectType = objectType->castAs<PointerType>()->getPointeeType(); 14266 Qualifiers objectQuals = objectType.getQualifiers(); 14267 14268 Qualifiers difference = objectQuals - funcQuals; 14269 difference.removeObjCGCAttr(); 14270 difference.removeAddressSpace(); 14271 if (difference) { 14272 std::string qualsString = difference.getAsString(); 14273 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 14274 << fnType.getUnqualifiedType() 14275 << qualsString 14276 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 14277 } 14278 14279 CXXMemberCallExpr *call = CXXMemberCallExpr::Create( 14280 Context, MemExprE, Args, resultType, valueKind, RParenLoc, 14281 CurFPFeatureOverrides(), proto->getNumParams()); 14282 14283 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), 14284 call, nullptr)) 14285 return ExprError(); 14286 14287 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 14288 return ExprError(); 14289 14290 if (CheckOtherCall(call, proto)) 14291 return ExprError(); 14292 14293 return MaybeBindToTemporary(call); 14294 } 14295 14296 // We only try to build a recovery expr at this level if we can preserve 14297 // the return type, otherwise we return ExprError() and let the caller 14298 // recover. 14299 auto BuildRecoveryExpr = [&](QualType Type) { 14300 if (!AllowRecovery) 14301 return ExprError(); 14302 std::vector<Expr *> SubExprs = {MemExprE}; 14303 llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); 14304 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, 14305 Type); 14306 }; 14307 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 14308 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, 14309 RParenLoc, CurFPFeatureOverrides()); 14310 14311 UnbridgedCastsSet UnbridgedCasts; 14312 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14313 return ExprError(); 14314 14315 MemberExpr *MemExpr; 14316 CXXMethodDecl *Method = nullptr; 14317 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 14318 NestedNameSpecifier *Qualifier = nullptr; 14319 if (isa<MemberExpr>(NakedMemExpr)) { 14320 MemExpr = cast<MemberExpr>(NakedMemExpr); 14321 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 14322 FoundDecl = MemExpr->getFoundDecl(); 14323 Qualifier = MemExpr->getQualifier(); 14324 UnbridgedCasts.restore(); 14325 } else { 14326 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 14327 Qualifier = UnresExpr->getQualifier(); 14328 14329 QualType ObjectType = UnresExpr->getBaseType(); 14330 Expr::Classification ObjectClassification 14331 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 14332 : UnresExpr->getBase()->Classify(Context); 14333 14334 // Add overload candidates 14335 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 14336 OverloadCandidateSet::CSK_Normal); 14337 14338 // FIXME: avoid copy. 14339 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 14340 if (UnresExpr->hasExplicitTemplateArgs()) { 14341 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 14342 TemplateArgs = &TemplateArgsBuffer; 14343 } 14344 14345 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 14346 E = UnresExpr->decls_end(); I != E; ++I) { 14347 14348 NamedDecl *Func = *I; 14349 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 14350 if (isa<UsingShadowDecl>(Func)) 14351 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 14352 14353 14354 // Microsoft supports direct constructor calls. 14355 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 14356 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, 14357 CandidateSet, 14358 /*SuppressUserConversions*/ false); 14359 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 14360 // If explicit template arguments were provided, we can't call a 14361 // non-template member function. 14362 if (TemplateArgs) 14363 continue; 14364 14365 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 14366 ObjectClassification, Args, CandidateSet, 14367 /*SuppressUserConversions=*/false); 14368 } else { 14369 AddMethodTemplateCandidate( 14370 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 14371 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 14372 /*SuppressUserConversions=*/false); 14373 } 14374 } 14375 14376 DeclarationName DeclName = UnresExpr->getMemberName(); 14377 14378 UnbridgedCasts.restore(); 14379 14380 OverloadCandidateSet::iterator Best; 14381 bool Succeeded = false; 14382 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), 14383 Best)) { 14384 case OR_Success: 14385 Method = cast<CXXMethodDecl>(Best->Function); 14386 FoundDecl = Best->FoundDecl; 14387 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 14388 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 14389 break; 14390 // If FoundDecl is different from Method (such as if one is a template 14391 // and the other a specialization), make sure DiagnoseUseOfDecl is 14392 // called on both. 14393 // FIXME: This would be more comprehensively addressed by modifying 14394 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 14395 // being used. 14396 if (Method != FoundDecl.getDecl() && 14397 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) 14398 break; 14399 Succeeded = true; 14400 break; 14401 14402 case OR_No_Viable_Function: 14403 CandidateSet.NoteCandidates( 14404 PartialDiagnosticAt( 14405 UnresExpr->getMemberLoc(), 14406 PDiag(diag::err_ovl_no_viable_member_function_in_call) 14407 << DeclName << MemExprE->getSourceRange()), 14408 *this, OCD_AllCandidates, Args); 14409 break; 14410 case OR_Ambiguous: 14411 CandidateSet.NoteCandidates( 14412 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14413 PDiag(diag::err_ovl_ambiguous_member_call) 14414 << DeclName << MemExprE->getSourceRange()), 14415 *this, OCD_AmbiguousCandidates, Args); 14416 break; 14417 case OR_Deleted: 14418 CandidateSet.NoteCandidates( 14419 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14420 PDiag(diag::err_ovl_deleted_member_call) 14421 << DeclName << MemExprE->getSourceRange()), 14422 *this, OCD_AllCandidates, Args); 14423 break; 14424 } 14425 // Overload resolution fails, try to recover. 14426 if (!Succeeded) 14427 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); 14428 14429 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 14430 14431 // If overload resolution picked a static member, build a 14432 // non-member call based on that function. 14433 if (Method->isStatic()) { 14434 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc, 14435 ExecConfig, IsExecConfig); 14436 } 14437 14438 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 14439 } 14440 14441 QualType ResultType = Method->getReturnType(); 14442 ExprValueKind VK = Expr::getValueKindForType(ResultType); 14443 ResultType = ResultType.getNonLValueExprType(Context); 14444 14445 assert(Method && "Member call to something that isn't a method?"); 14446 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14447 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( 14448 Context, MemExprE, Args, ResultType, VK, RParenLoc, 14449 CurFPFeatureOverrides(), Proto->getNumParams()); 14450 14451 // Check for a valid return type. 14452 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 14453 TheCall, Method)) 14454 return BuildRecoveryExpr(ResultType); 14455 14456 // Convert the object argument (for a non-static member function call). 14457 // We only need to do this if there was actually an overload; otherwise 14458 // it was done at lookup. 14459 if (!Method->isStatic()) { 14460 ExprResult ObjectArg = 14461 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 14462 FoundDecl, Method); 14463 if (ObjectArg.isInvalid()) 14464 return ExprError(); 14465 MemExpr->setBase(ObjectArg.get()); 14466 } 14467 14468 // Convert the rest of the arguments 14469 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 14470 RParenLoc)) 14471 return BuildRecoveryExpr(ResultType); 14472 14473 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14474 14475 if (CheckFunctionCall(Method, TheCall, Proto)) 14476 return ExprError(); 14477 14478 // In the case the method to call was not selected by the overloading 14479 // resolution process, we still need to handle the enable_if attribute. Do 14480 // that here, so it will not hide previous -- and more relevant -- errors. 14481 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 14482 if (const EnableIfAttr *Attr = 14483 CheckEnableIf(Method, LParenLoc, Args, true)) { 14484 Diag(MemE->getMemberLoc(), 14485 diag::err_ovl_no_viable_member_function_in_call) 14486 << Method << Method->getSourceRange(); 14487 Diag(Method->getLocation(), 14488 diag::note_ovl_candidate_disabled_by_function_cond_attr) 14489 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 14490 return ExprError(); 14491 } 14492 } 14493 14494 if ((isa<CXXConstructorDecl>(CurContext) || 14495 isa<CXXDestructorDecl>(CurContext)) && 14496 TheCall->getMethodDecl()->isPure()) { 14497 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 14498 14499 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 14500 MemExpr->performsVirtualDispatch(getLangOpts())) { 14501 Diag(MemExpr->getBeginLoc(), 14502 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 14503 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 14504 << MD->getParent(); 14505 14506 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); 14507 if (getLangOpts().AppleKext) 14508 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) 14509 << MD->getParent() << MD->getDeclName(); 14510 } 14511 } 14512 14513 if (CXXDestructorDecl *DD = 14514 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 14515 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 14516 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 14517 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, 14518 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 14519 MemExpr->getMemberLoc()); 14520 } 14521 14522 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14523 TheCall->getMethodDecl()); 14524 } 14525 14526 /// BuildCallToObjectOfClassType - Build a call to an object of class 14527 /// type (C++ [over.call.object]), which can end up invoking an 14528 /// overloaded function call operator (@c operator()) or performing a 14529 /// user-defined conversion on the object argument. 14530 ExprResult 14531 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 14532 SourceLocation LParenLoc, 14533 MultiExprArg Args, 14534 SourceLocation RParenLoc) { 14535 if (checkPlaceholderForOverload(*this, Obj)) 14536 return ExprError(); 14537 ExprResult Object = Obj; 14538 14539 UnbridgedCastsSet UnbridgedCasts; 14540 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14541 return ExprError(); 14542 14543 assert(Object.get()->getType()->isRecordType() && 14544 "Requires object type argument"); 14545 14546 // C++ [over.call.object]p1: 14547 // If the primary-expression E in the function call syntax 14548 // evaluates to a class object of type "cv T", then the set of 14549 // candidate functions includes at least the function call 14550 // operators of T. The function call operators of T are obtained by 14551 // ordinary lookup of the name operator() in the context of 14552 // (E).operator(). 14553 OverloadCandidateSet CandidateSet(LParenLoc, 14554 OverloadCandidateSet::CSK_Operator); 14555 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 14556 14557 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 14558 diag::err_incomplete_object_call, Object.get())) 14559 return true; 14560 14561 const auto *Record = Object.get()->getType()->castAs<RecordType>(); 14562 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 14563 LookupQualifiedName(R, Record->getDecl()); 14564 R.suppressDiagnostics(); 14565 14566 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14567 Oper != OperEnd; ++Oper) { 14568 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 14569 Object.get()->Classify(Context), Args, CandidateSet, 14570 /*SuppressUserConversion=*/false); 14571 } 14572 14573 // C++ [over.call.object]p2: 14574 // In addition, for each (non-explicit in C++0x) conversion function 14575 // declared in T of the form 14576 // 14577 // operator conversion-type-id () cv-qualifier; 14578 // 14579 // where cv-qualifier is the same cv-qualification as, or a 14580 // greater cv-qualification than, cv, and where conversion-type-id 14581 // denotes the type "pointer to function of (P1,...,Pn) returning 14582 // R", or the type "reference to pointer to function of 14583 // (P1,...,Pn) returning R", or the type "reference to function 14584 // of (P1,...,Pn) returning R", a surrogate call function [...] 14585 // is also considered as a candidate function. Similarly, 14586 // surrogate call functions are added to the set of candidate 14587 // functions for each conversion function declared in an 14588 // accessible base class provided the function is not hidden 14589 // within T by another intervening declaration. 14590 const auto &Conversions = 14591 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 14592 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 14593 NamedDecl *D = *I; 14594 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 14595 if (isa<UsingShadowDecl>(D)) 14596 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 14597 14598 // Skip over templated conversion functions; they aren't 14599 // surrogates. 14600 if (isa<FunctionTemplateDecl>(D)) 14601 continue; 14602 14603 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 14604 if (!Conv->isExplicit()) { 14605 // Strip the reference type (if any) and then the pointer type (if 14606 // any) to get down to what might be a function type. 14607 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 14608 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 14609 ConvType = ConvPtrType->getPointeeType(); 14610 14611 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 14612 { 14613 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 14614 Object.get(), Args, CandidateSet); 14615 } 14616 } 14617 } 14618 14619 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14620 14621 // Perform overload resolution. 14622 OverloadCandidateSet::iterator Best; 14623 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), 14624 Best)) { 14625 case OR_Success: 14626 // Overload resolution succeeded; we'll build the appropriate call 14627 // below. 14628 break; 14629 14630 case OR_No_Viable_Function: { 14631 PartialDiagnostic PD = 14632 CandidateSet.empty() 14633 ? (PDiag(diag::err_ovl_no_oper) 14634 << Object.get()->getType() << /*call*/ 1 14635 << Object.get()->getSourceRange()) 14636 : (PDiag(diag::err_ovl_no_viable_object_call) 14637 << Object.get()->getType() << Object.get()->getSourceRange()); 14638 CandidateSet.NoteCandidates( 14639 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, 14640 OCD_AllCandidates, Args); 14641 break; 14642 } 14643 case OR_Ambiguous: 14644 CandidateSet.NoteCandidates( 14645 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14646 PDiag(diag::err_ovl_ambiguous_object_call) 14647 << Object.get()->getType() 14648 << Object.get()->getSourceRange()), 14649 *this, OCD_AmbiguousCandidates, Args); 14650 break; 14651 14652 case OR_Deleted: 14653 CandidateSet.NoteCandidates( 14654 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14655 PDiag(diag::err_ovl_deleted_object_call) 14656 << Object.get()->getType() 14657 << Object.get()->getSourceRange()), 14658 *this, OCD_AllCandidates, Args); 14659 break; 14660 } 14661 14662 if (Best == CandidateSet.end()) 14663 return true; 14664 14665 UnbridgedCasts.restore(); 14666 14667 if (Best->Function == nullptr) { 14668 // Since there is no function declaration, this is one of the 14669 // surrogate candidates. Dig out the conversion function. 14670 CXXConversionDecl *Conv 14671 = cast<CXXConversionDecl>( 14672 Best->Conversions[0].UserDefined.ConversionFunction); 14673 14674 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 14675 Best->FoundDecl); 14676 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 14677 return ExprError(); 14678 assert(Conv == Best->FoundDecl.getDecl() && 14679 "Found Decl & conversion-to-functionptr should be same, right?!"); 14680 // We selected one of the surrogate functions that converts the 14681 // object parameter to a function pointer. Perform the conversion 14682 // on the object argument, then let BuildCallExpr finish the job. 14683 14684 // Create an implicit member expr to refer to the conversion operator. 14685 // and then call it. 14686 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 14687 Conv, HadMultipleCandidates); 14688 if (Call.isInvalid()) 14689 return ExprError(); 14690 // Record usage of conversion in an implicit cast. 14691 Call = ImplicitCastExpr::Create( 14692 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), 14693 nullptr, VK_PRValue, CurFPFeatureOverrides()); 14694 14695 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 14696 } 14697 14698 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 14699 14700 // We found an overloaded operator(). Build a CXXOperatorCallExpr 14701 // that calls this method, using Object for the implicit object 14702 // parameter and passing along the remaining arguments. 14703 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14704 14705 // An error diagnostic has already been printed when parsing the declaration. 14706 if (Method->isInvalidDecl()) 14707 return ExprError(); 14708 14709 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14710 unsigned NumParams = Proto->getNumParams(); 14711 14712 DeclarationNameInfo OpLocInfo( 14713 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 14714 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 14715 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14716 Obj, HadMultipleCandidates, 14717 OpLocInfo.getLoc(), 14718 OpLocInfo.getInfo()); 14719 if (NewFn.isInvalid()) 14720 return true; 14721 14722 // The number of argument slots to allocate in the call. If we have default 14723 // arguments we need to allocate space for them as well. We additionally 14724 // need one more slot for the object parameter. 14725 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); 14726 14727 // Build the full argument list for the method call (the implicit object 14728 // parameter is placed at the beginning of the list). 14729 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); 14730 14731 bool IsError = false; 14732 14733 // Initialize the implicit object parameter. 14734 ExprResult ObjRes = 14735 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, 14736 Best->FoundDecl, Method); 14737 if (ObjRes.isInvalid()) 14738 IsError = true; 14739 else 14740 Object = ObjRes; 14741 MethodArgs[0] = Object.get(); 14742 14743 // Check the argument types. 14744 for (unsigned i = 0; i != NumParams; i++) { 14745 Expr *Arg; 14746 if (i < Args.size()) { 14747 Arg = Args[i]; 14748 14749 // Pass the argument. 14750 14751 ExprResult InputInit 14752 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14753 Context, 14754 Method->getParamDecl(i)), 14755 SourceLocation(), Arg); 14756 14757 IsError |= InputInit.isInvalid(); 14758 Arg = InputInit.getAs<Expr>(); 14759 } else { 14760 ExprResult DefArg 14761 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 14762 if (DefArg.isInvalid()) { 14763 IsError = true; 14764 break; 14765 } 14766 14767 Arg = DefArg.getAs<Expr>(); 14768 } 14769 14770 MethodArgs[i + 1] = Arg; 14771 } 14772 14773 // If this is a variadic call, handle args passed through "...". 14774 if (Proto->isVariadic()) { 14775 // Promote the arguments (C99 6.5.2.2p7). 14776 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 14777 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 14778 nullptr); 14779 IsError |= Arg.isInvalid(); 14780 MethodArgs[i + 1] = Arg.get(); 14781 } 14782 } 14783 14784 if (IsError) 14785 return true; 14786 14787 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14788 14789 // Once we've built TheCall, all of the expressions are properly owned. 14790 QualType ResultTy = Method->getReturnType(); 14791 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14792 ResultTy = ResultTy.getNonLValueExprType(Context); 14793 14794 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14795 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, 14796 CurFPFeatureOverrides()); 14797 14798 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 14799 return true; 14800 14801 if (CheckFunctionCall(Method, TheCall, Proto)) 14802 return true; 14803 14804 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 14805 } 14806 14807 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 14808 /// (if one exists), where @c Base is an expression of class type and 14809 /// @c Member is the name of the member we're trying to find. 14810 ExprResult 14811 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 14812 bool *NoArrowOperatorFound) { 14813 assert(Base->getType()->isRecordType() && 14814 "left-hand side must have class type"); 14815 14816 if (checkPlaceholderForOverload(*this, Base)) 14817 return ExprError(); 14818 14819 SourceLocation Loc = Base->getExprLoc(); 14820 14821 // C++ [over.ref]p1: 14822 // 14823 // [...] An expression x->m is interpreted as (x.operator->())->m 14824 // for a class object x of type T if T::operator->() exists and if 14825 // the operator is selected as the best match function by the 14826 // overload resolution mechanism (13.3). 14827 DeclarationName OpName = 14828 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 14829 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 14830 14831 if (RequireCompleteType(Loc, Base->getType(), 14832 diag::err_typecheck_incomplete_tag, Base)) 14833 return ExprError(); 14834 14835 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 14836 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); 14837 R.suppressDiagnostics(); 14838 14839 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14840 Oper != OperEnd; ++Oper) { 14841 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 14842 None, CandidateSet, /*SuppressUserConversion=*/false); 14843 } 14844 14845 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14846 14847 // Perform overload resolution. 14848 OverloadCandidateSet::iterator Best; 14849 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 14850 case OR_Success: 14851 // Overload resolution succeeded; we'll build the call below. 14852 break; 14853 14854 case OR_No_Viable_Function: { 14855 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); 14856 if (CandidateSet.empty()) { 14857 QualType BaseType = Base->getType(); 14858 if (NoArrowOperatorFound) { 14859 // Report this specific error to the caller instead of emitting a 14860 // diagnostic, as requested. 14861 *NoArrowOperatorFound = true; 14862 return ExprError(); 14863 } 14864 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 14865 << BaseType << Base->getSourceRange(); 14866 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 14867 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 14868 << FixItHint::CreateReplacement(OpLoc, "."); 14869 } 14870 } else 14871 Diag(OpLoc, diag::err_ovl_no_viable_oper) 14872 << "operator->" << Base->getSourceRange(); 14873 CandidateSet.NoteCandidates(*this, Base, Cands); 14874 return ExprError(); 14875 } 14876 case OR_Ambiguous: 14877 CandidateSet.NoteCandidates( 14878 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) 14879 << "->" << Base->getType() 14880 << Base->getSourceRange()), 14881 *this, OCD_AmbiguousCandidates, Base); 14882 return ExprError(); 14883 14884 case OR_Deleted: 14885 CandidateSet.NoteCandidates( 14886 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 14887 << "->" << Base->getSourceRange()), 14888 *this, OCD_AllCandidates, Base); 14889 return ExprError(); 14890 } 14891 14892 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 14893 14894 // Convert the object parameter. 14895 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14896 ExprResult BaseResult = 14897 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 14898 Best->FoundDecl, Method); 14899 if (BaseResult.isInvalid()) 14900 return ExprError(); 14901 Base = BaseResult.get(); 14902 14903 // Build the operator call. 14904 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14905 Base, HadMultipleCandidates, OpLoc); 14906 if (FnExpr.isInvalid()) 14907 return ExprError(); 14908 14909 QualType ResultTy = Method->getReturnType(); 14910 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14911 ResultTy = ResultTy.getNonLValueExprType(Context); 14912 CXXOperatorCallExpr *TheCall = 14913 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, 14914 ResultTy, VK, OpLoc, CurFPFeatureOverrides()); 14915 14916 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 14917 return ExprError(); 14918 14919 if (CheckFunctionCall(Method, TheCall, 14920 Method->getType()->castAs<FunctionProtoType>())) 14921 return ExprError(); 14922 14923 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 14924 } 14925 14926 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 14927 /// a literal operator described by the provided lookup results. 14928 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 14929 DeclarationNameInfo &SuffixInfo, 14930 ArrayRef<Expr*> Args, 14931 SourceLocation LitEndLoc, 14932 TemplateArgumentListInfo *TemplateArgs) { 14933 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 14934 14935 OverloadCandidateSet CandidateSet(UDSuffixLoc, 14936 OverloadCandidateSet::CSK_Normal); 14937 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, 14938 TemplateArgs); 14939 14940 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14941 14942 // Perform overload resolution. This will usually be trivial, but might need 14943 // to perform substitutions for a literal operator template. 14944 OverloadCandidateSet::iterator Best; 14945 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 14946 case OR_Success: 14947 case OR_Deleted: 14948 break; 14949 14950 case OR_No_Viable_Function: 14951 CandidateSet.NoteCandidates( 14952 PartialDiagnosticAt(UDSuffixLoc, 14953 PDiag(diag::err_ovl_no_viable_function_in_call) 14954 << R.getLookupName()), 14955 *this, OCD_AllCandidates, Args); 14956 return ExprError(); 14957 14958 case OR_Ambiguous: 14959 CandidateSet.NoteCandidates( 14960 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) 14961 << R.getLookupName()), 14962 *this, OCD_AmbiguousCandidates, Args); 14963 return ExprError(); 14964 } 14965 14966 FunctionDecl *FD = Best->Function; 14967 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 14968 nullptr, HadMultipleCandidates, 14969 SuffixInfo.getLoc(), 14970 SuffixInfo.getInfo()); 14971 if (Fn.isInvalid()) 14972 return true; 14973 14974 // Check the argument types. This should almost always be a no-op, except 14975 // that array-to-pointer decay is applied to string literals. 14976 Expr *ConvArgs[2]; 14977 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 14978 ExprResult InputInit = PerformCopyInitialization( 14979 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 14980 SourceLocation(), Args[ArgIdx]); 14981 if (InputInit.isInvalid()) 14982 return true; 14983 ConvArgs[ArgIdx] = InputInit.get(); 14984 } 14985 14986 QualType ResultTy = FD->getReturnType(); 14987 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14988 ResultTy = ResultTy.getNonLValueExprType(Context); 14989 14990 UserDefinedLiteral *UDL = UserDefinedLiteral::Create( 14991 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, 14992 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); 14993 14994 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 14995 return ExprError(); 14996 14997 if (CheckFunctionCall(FD, UDL, nullptr)) 14998 return ExprError(); 14999 15000 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); 15001 } 15002 15003 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 15004 /// given LookupResult is non-empty, it is assumed to describe a member which 15005 /// will be invoked. Otherwise, the function will be found via argument 15006 /// dependent lookup. 15007 /// CallExpr is set to a valid expression and FRS_Success returned on success, 15008 /// otherwise CallExpr is set to ExprError() and some non-success value 15009 /// is returned. 15010 Sema::ForRangeStatus 15011 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 15012 SourceLocation RangeLoc, 15013 const DeclarationNameInfo &NameInfo, 15014 LookupResult &MemberLookup, 15015 OverloadCandidateSet *CandidateSet, 15016 Expr *Range, ExprResult *CallExpr) { 15017 Scope *S = nullptr; 15018 15019 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 15020 if (!MemberLookup.empty()) { 15021 ExprResult MemberRef = 15022 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 15023 /*IsPtr=*/false, CXXScopeSpec(), 15024 /*TemplateKWLoc=*/SourceLocation(), 15025 /*FirstQualifierInScope=*/nullptr, 15026 MemberLookup, 15027 /*TemplateArgs=*/nullptr, S); 15028 if (MemberRef.isInvalid()) { 15029 *CallExpr = ExprError(); 15030 return FRS_DiagnosticIssued; 15031 } 15032 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); 15033 if (CallExpr->isInvalid()) { 15034 *CallExpr = ExprError(); 15035 return FRS_DiagnosticIssued; 15036 } 15037 } else { 15038 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, 15039 NestedNameSpecifierLoc(), 15040 NameInfo, UnresolvedSet<0>()); 15041 if (FnR.isInvalid()) 15042 return FRS_DiagnosticIssued; 15043 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); 15044 15045 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 15046 CandidateSet, CallExpr); 15047 if (CandidateSet->empty() || CandidateSetError) { 15048 *CallExpr = ExprError(); 15049 return FRS_NoViableFunction; 15050 } 15051 OverloadCandidateSet::iterator Best; 15052 OverloadingResult OverloadResult = 15053 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); 15054 15055 if (OverloadResult == OR_No_Viable_Function) { 15056 *CallExpr = ExprError(); 15057 return FRS_NoViableFunction; 15058 } 15059 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 15060 Loc, nullptr, CandidateSet, &Best, 15061 OverloadResult, 15062 /*AllowTypoCorrection=*/false); 15063 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 15064 *CallExpr = ExprError(); 15065 return FRS_DiagnosticIssued; 15066 } 15067 } 15068 return FRS_Success; 15069 } 15070 15071 15072 /// FixOverloadedFunctionReference - E is an expression that refers to 15073 /// a C++ overloaded function (possibly with some parentheses and 15074 /// perhaps a '&' around it). We have resolved the overloaded function 15075 /// to the function declaration Fn, so patch up the expression E to 15076 /// refer (possibly indirectly) to Fn. Returns the new expr. 15077 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 15078 FunctionDecl *Fn) { 15079 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 15080 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 15081 Found, Fn); 15082 if (SubExpr == PE->getSubExpr()) 15083 return PE; 15084 15085 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 15086 } 15087 15088 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 15089 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 15090 Found, Fn); 15091 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 15092 SubExpr->getType()) && 15093 "Implicit cast type cannot be determined from overload"); 15094 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 15095 if (SubExpr == ICE->getSubExpr()) 15096 return ICE; 15097 15098 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), 15099 SubExpr, nullptr, ICE->getValueKind(), 15100 CurFPFeatureOverrides()); 15101 } 15102 15103 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 15104 if (!GSE->isResultDependent()) { 15105 Expr *SubExpr = 15106 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 15107 if (SubExpr == GSE->getResultExpr()) 15108 return GSE; 15109 15110 // Replace the resulting type information before rebuilding the generic 15111 // selection expression. 15112 ArrayRef<Expr *> A = GSE->getAssocExprs(); 15113 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 15114 unsigned ResultIdx = GSE->getResultIndex(); 15115 AssocExprs[ResultIdx] = SubExpr; 15116 15117 return GenericSelectionExpr::Create( 15118 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 15119 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 15120 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 15121 ResultIdx); 15122 } 15123 // Rather than fall through to the unreachable, return the original generic 15124 // selection expression. 15125 return GSE; 15126 } 15127 15128 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 15129 assert(UnOp->getOpcode() == UO_AddrOf && 15130 "Can only take the address of an overloaded function"); 15131 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 15132 if (Method->isStatic()) { 15133 // Do nothing: static member functions aren't any different 15134 // from non-member functions. 15135 } else { 15136 // Fix the subexpression, which really has to be an 15137 // UnresolvedLookupExpr holding an overloaded member function 15138 // or template. 15139 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15140 Found, Fn); 15141 if (SubExpr == UnOp->getSubExpr()) 15142 return UnOp; 15143 15144 assert(isa<DeclRefExpr>(SubExpr) 15145 && "fixed to something other than a decl ref"); 15146 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 15147 && "fixed to a member ref with no nested name qualifier"); 15148 15149 // We have taken the address of a pointer to member 15150 // function. Perform the computation here so that we get the 15151 // appropriate pointer to member type. 15152 QualType ClassType 15153 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 15154 QualType MemPtrType 15155 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 15156 // Under the MS ABI, lock down the inheritance model now. 15157 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 15158 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 15159 15160 return UnaryOperator::Create( 15161 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, 15162 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); 15163 } 15164 } 15165 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15166 Found, Fn); 15167 if (SubExpr == UnOp->getSubExpr()) 15168 return UnOp; 15169 15170 return UnaryOperator::Create( 15171 Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), 15172 VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, 15173 CurFPFeatureOverrides()); 15174 } 15175 15176 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 15177 // FIXME: avoid copy. 15178 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15179 if (ULE->hasExplicitTemplateArgs()) { 15180 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 15181 TemplateArgs = &TemplateArgsBuffer; 15182 } 15183 15184 DeclRefExpr *DRE = 15185 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), 15186 ULE->getQualifierLoc(), Found.getDecl(), 15187 ULE->getTemplateKeywordLoc(), TemplateArgs); 15188 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 15189 return DRE; 15190 } 15191 15192 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 15193 // FIXME: avoid copy. 15194 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15195 if (MemExpr->hasExplicitTemplateArgs()) { 15196 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 15197 TemplateArgs = &TemplateArgsBuffer; 15198 } 15199 15200 Expr *Base; 15201 15202 // If we're filling in a static method where we used to have an 15203 // implicit member access, rewrite to a simple decl ref. 15204 if (MemExpr->isImplicitAccess()) { 15205 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15206 DeclRefExpr *DRE = BuildDeclRefExpr( 15207 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), 15208 MemExpr->getQualifierLoc(), Found.getDecl(), 15209 MemExpr->getTemplateKeywordLoc(), TemplateArgs); 15210 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 15211 return DRE; 15212 } else { 15213 SourceLocation Loc = MemExpr->getMemberLoc(); 15214 if (MemExpr->getQualifier()) 15215 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 15216 Base = 15217 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); 15218 } 15219 } else 15220 Base = MemExpr->getBase(); 15221 15222 ExprValueKind valueKind; 15223 QualType type; 15224 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15225 valueKind = VK_LValue; 15226 type = Fn->getType(); 15227 } else { 15228 valueKind = VK_PRValue; 15229 type = Context.BoundMemberTy; 15230 } 15231 15232 return BuildMemberExpr( 15233 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 15234 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 15235 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), 15236 type, valueKind, OK_Ordinary, TemplateArgs); 15237 } 15238 15239 llvm_unreachable("Invalid reference to overloaded function"); 15240 } 15241 15242 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 15243 DeclAccessPair Found, 15244 FunctionDecl *Fn) { 15245 return FixOverloadedFunctionReference(E.get(), Found, Fn); 15246 } 15247 15248 bool clang::shouldEnforceArgLimit(bool PartialOverloading, 15249 FunctionDecl *Function) { 15250 if (!PartialOverloading || !Function) 15251 return true; 15252 if (Function->isVariadic()) 15253 return false; 15254 if (const auto *Proto = 15255 dyn_cast<FunctionProtoType>(Function->getFunctionType())) 15256 if (Proto->isTemplateVariadic()) 15257 return false; 15258 if (auto *Pattern = Function->getTemplateInstantiationPattern()) 15259 if (const auto *Proto = 15260 dyn_cast<FunctionProtoType>(Pattern->getFunctionType())) 15261 if (Proto->isTemplateVariadic()) 15262 return false; 15263 return true; 15264 } 15265