1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include <optional> 20 21 using namespace clang; 22 using namespace sema; 23 24 static void checkModuleImportContext(Sema &S, Module *M, 25 SourceLocation ImportLoc, DeclContext *DC, 26 bool FromInclude = false) { 27 SourceLocation ExternCLoc; 28 29 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 30 switch (LSD->getLanguage()) { 31 case LinkageSpecLanguageIDs::C: 32 if (ExternCLoc.isInvalid()) 33 ExternCLoc = LSD->getBeginLoc(); 34 break; 35 case LinkageSpecLanguageIDs::CXX: 36 break; 37 } 38 DC = LSD->getParent(); 39 } 40 41 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 42 DC = DC->getParent(); 43 44 if (!isa<TranslationUnitDecl>(DC)) { 45 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 46 ? diag::ext_module_import_not_at_top_level_noop 47 : diag::err_module_import_not_at_top_level_fatal) 48 << M->getFullModuleName() << DC; 49 S.Diag(cast<Decl>(DC)->getBeginLoc(), 50 diag::note_module_import_not_at_top_level) 51 << DC; 52 } else if (!M->IsExternC && ExternCLoc.isValid()) { 53 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 54 << M->getFullModuleName(); 55 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 56 } 57 } 58 59 // We represent the primary and partition names as 'Paths' which are sections 60 // of the hierarchical access path for a clang module. However for C++20 61 // the periods in a name are just another character, and we will need to 62 // flatten them into a string. 63 static std::string stringFromPath(ModuleIdPath Path) { 64 std::string Name; 65 if (Path.empty()) 66 return Name; 67 68 for (auto &Piece : Path) { 69 if (!Name.empty()) 70 Name += "."; 71 Name += Piece.first->getName(); 72 } 73 return Name; 74 } 75 76 Sema::DeclGroupPtrTy 77 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 78 // We start in the global module; 79 Module *GlobalModule = 80 PushGlobalModuleFragment(ModuleLoc); 81 82 // All declarations created from now on are owned by the global module. 83 auto *TU = Context.getTranslationUnitDecl(); 84 // [module.global.frag]p2 85 // A global-module-fragment specifies the contents of the global module 86 // fragment for a module unit. The global module fragment can be used to 87 // provide declarations that are attached to the global module and usable 88 // within the module unit. 89 // 90 // So the declations in the global module shouldn't be visible by default. 91 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 92 TU->setLocalOwningModule(GlobalModule); 93 94 // FIXME: Consider creating an explicit representation of this declaration. 95 return nullptr; 96 } 97 98 void Sema::HandleStartOfHeaderUnit() { 99 assert(getLangOpts().CPlusPlusModules && 100 "Header units are only valid for C++20 modules"); 101 SourceLocation StartOfTU = 102 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 103 104 StringRef HUName = getLangOpts().CurrentModule; 105 if (HUName.empty()) { 106 HUName = 107 SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName(); 108 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 109 } 110 111 // TODO: Make the C++20 header lookup independent. 112 // When the input is pre-processed source, we need a file ref to the original 113 // file for the header map. 114 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 115 // For the sake of error recovery (if someone has moved the original header 116 // after creating the pre-processed output) fall back to obtaining the file 117 // ref for the input file, which must be present. 118 if (!F) 119 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 120 assert(F && "failed to find the header unit source?"); 121 Module::Header H{HUName.str(), HUName.str(), *F}; 122 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 123 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 124 assert(Mod && "module creation should not fail"); 125 ModuleScopes.push_back({}); // No GMF 126 ModuleScopes.back().BeginLoc = StartOfTU; 127 ModuleScopes.back().Module = Mod; 128 VisibleModules.setVisible(Mod, StartOfTU); 129 130 // From now on, we have an owning module for all declarations we see. 131 // All of these are implicitly exported. 132 auto *TU = Context.getTranslationUnitDecl(); 133 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 134 TU->setLocalOwningModule(Mod); 135 } 136 137 /// Tests whether the given identifier is reserved as a module name and 138 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 139 /// otherwise. 140 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 141 SourceLocation Loc) { 142 enum { 143 Valid = -1, 144 Invalid = 0, 145 Reserved = 1, 146 } Reason = Valid; 147 148 if (II->isStr("module") || II->isStr("import")) 149 Reason = Invalid; 150 else if (II->isReserved(S.getLangOpts()) != 151 ReservedIdentifierStatus::NotReserved) 152 Reason = Reserved; 153 154 // If the identifier is reserved (not invalid) but is in a system header, 155 // we do not diagnose (because we expect system headers to use reserved 156 // identifiers). 157 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 158 Reason = Valid; 159 160 switch (Reason) { 161 case Valid: 162 return false; 163 case Invalid: 164 return S.Diag(Loc, diag::err_invalid_module_name) << II; 165 case Reserved: 166 S.Diag(Loc, diag::warn_reserved_module_name) << II; 167 return false; 168 } 169 llvm_unreachable("fell off a fully covered switch"); 170 } 171 172 Sema::DeclGroupPtrTy 173 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 174 ModuleDeclKind MDK, ModuleIdPath Path, 175 ModuleIdPath Partition, ModuleImportState &ImportState) { 176 assert(getLangOpts().CPlusPlusModules && 177 "should only have module decl in standard C++ modules"); 178 179 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 180 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 181 // If any of the steps here fail, we count that as invalidating C++20 182 // module state; 183 ImportState = ModuleImportState::NotACXX20Module; 184 185 bool IsPartition = !Partition.empty(); 186 if (IsPartition) 187 switch (MDK) { 188 case ModuleDeclKind::Implementation: 189 MDK = ModuleDeclKind::PartitionImplementation; 190 break; 191 case ModuleDeclKind::Interface: 192 MDK = ModuleDeclKind::PartitionInterface; 193 break; 194 default: 195 llvm_unreachable("how did we get a partition type set?"); 196 } 197 198 // A (non-partition) module implementation unit requires that we are not 199 // compiling a module of any kind. A partition implementation emits an 200 // interface (and the AST for the implementation), which will subsequently 201 // be consumed to emit a binary. 202 // A module interface unit requires that we are not compiling a module map. 203 switch (getLangOpts().getCompilingModule()) { 204 case LangOptions::CMK_None: 205 // It's OK to compile a module interface as a normal translation unit. 206 break; 207 208 case LangOptions::CMK_ModuleInterface: 209 if (MDK != ModuleDeclKind::Implementation) 210 break; 211 212 // We were asked to compile a module interface unit but this is a module 213 // implementation unit. 214 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 215 << FixItHint::CreateInsertion(ModuleLoc, "export "); 216 MDK = ModuleDeclKind::Interface; 217 break; 218 219 case LangOptions::CMK_ModuleMap: 220 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 221 return nullptr; 222 223 case LangOptions::CMK_HeaderUnit: 224 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 225 return nullptr; 226 } 227 228 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 229 230 // FIXME: Most of this work should be done by the preprocessor rather than 231 // here, in order to support macro import. 232 233 // Only one module-declaration is permitted per source file. 234 if (isCurrentModulePurview()) { 235 Diag(ModuleLoc, diag::err_module_redeclaration); 236 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 237 diag::note_prev_module_declaration); 238 return nullptr; 239 } 240 241 assert((!getLangOpts().CPlusPlusModules || 242 SeenGMF == (bool)this->TheGlobalModuleFragment) && 243 "mismatched global module state"); 244 245 // In C++20, the module-declaration must be the first declaration if there 246 // is no global module fragment. 247 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 248 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 249 SourceLocation BeginLoc = 250 ModuleScopes.empty() 251 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 252 : ModuleScopes.back().BeginLoc; 253 if (BeginLoc.isValid()) { 254 Diag(BeginLoc, diag::note_global_module_introducer_missing) 255 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 256 } 257 } 258 259 // C++23 [module.unit]p1: ... The identifiers module and import shall not 260 // appear as identifiers in a module-name or module-partition. All 261 // module-names either beginning with an identifier consisting of std 262 // followed by zero or more digits or containing a reserved identifier 263 // ([lex.name]) are reserved and shall not be specified in a 264 // module-declaration; no diagnostic is required. 265 266 // Test the first part of the path to see if it's std[0-9]+ but allow the 267 // name in a system header. 268 StringRef FirstComponentName = Path[0].first->getName(); 269 if (!getSourceManager().isInSystemHeader(Path[0].second) && 270 (FirstComponentName == "std" || 271 (FirstComponentName.starts_with("std") && 272 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) 273 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 274 275 // Then test all of the components in the path to see if any of them are 276 // using another kind of reserved or invalid identifier. 277 for (auto Part : Path) { 278 if (DiagReservedModuleName(*this, Part.first, Part.second)) 279 return nullptr; 280 } 281 282 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 283 // modules, the dots here are just another character that can appear in a 284 // module name. 285 std::string ModuleName = stringFromPath(Path); 286 if (IsPartition) { 287 ModuleName += ":"; 288 ModuleName += stringFromPath(Partition); 289 } 290 // If a module name was explicitly specified on the command line, it must be 291 // correct. 292 if (!getLangOpts().CurrentModule.empty() && 293 getLangOpts().CurrentModule != ModuleName) { 294 Diag(Path.front().second, diag::err_current_module_name_mismatch) 295 << SourceRange(Path.front().second, IsPartition 296 ? Partition.back().second 297 : Path.back().second) 298 << getLangOpts().CurrentModule; 299 return nullptr; 300 } 301 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 302 303 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 304 Module *Mod; // The module we are creating. 305 Module *Interface = nullptr; // The interface for an implementation. 306 switch (MDK) { 307 case ModuleDeclKind::Interface: 308 case ModuleDeclKind::PartitionInterface: { 309 // We can't have parsed or imported a definition of this module or parsed a 310 // module map defining it already. 311 if (auto *M = Map.findModule(ModuleName)) { 312 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 313 if (M->DefinitionLoc.isValid()) 314 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 315 else if (OptionalFileEntryRef FE = M->getASTFile()) 316 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 317 << FE->getName(); 318 Mod = M; 319 break; 320 } 321 322 // Create a Module for the module that we're defining. 323 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 324 if (MDK == ModuleDeclKind::PartitionInterface) 325 Mod->Kind = Module::ModulePartitionInterface; 326 assert(Mod && "module creation should not fail"); 327 break; 328 } 329 330 case ModuleDeclKind::Implementation: { 331 // C++20 A module-declaration that contains neither an export- 332 // keyword nor a module-partition implicitly imports the primary 333 // module interface unit of the module as if by a module-import- 334 // declaration. 335 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 336 PP.getIdentifierInfo(ModuleName), Path[0].second); 337 338 // The module loader will assume we're trying to import the module that 339 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 340 // Change the value for `LangOpts.CurrentModule` temporarily to make the 341 // module loader work properly. 342 const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; 343 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 344 Module::AllVisible, 345 /*IsInclusionDirective=*/false); 346 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 347 348 if (!Interface) { 349 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 350 // Create an empty module interface unit for error recovery. 351 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 352 } else { 353 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); 354 } 355 } break; 356 357 case ModuleDeclKind::PartitionImplementation: 358 // Create an interface, but note that it is an implementation 359 // unit. 360 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 361 Mod->Kind = Module::ModulePartitionImplementation; 362 break; 363 } 364 365 if (!this->TheGlobalModuleFragment) { 366 ModuleScopes.push_back({}); 367 if (getLangOpts().ModulesLocalVisibility) 368 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 369 } else { 370 // We're done with the global module fragment now. 371 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 372 } 373 374 // Switch from the global module fragment (if any) to the named module. 375 ModuleScopes.back().BeginLoc = StartLoc; 376 ModuleScopes.back().Module = Mod; 377 VisibleModules.setVisible(Mod, ModuleLoc); 378 379 // From now on, we have an owning module for all declarations we see. 380 // In C++20 modules, those declaration would be reachable when imported 381 // unless explicitily exported. 382 // Otherwise, those declarations are module-private unless explicitly 383 // exported. 384 auto *TU = Context.getTranslationUnitDecl(); 385 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 386 TU->setLocalOwningModule(Mod); 387 388 // We are in the module purview, but before any other (non import) 389 // statements, so imports are allowed. 390 ImportState = ModuleImportState::ImportAllowed; 391 392 getASTContext().setCurrentNamedModule(Mod); 393 394 // We already potentially made an implicit import (in the case of a module 395 // implementation unit importing its interface). Make this module visible 396 // and return the import decl to be added to the current TU. 397 if (Interface) { 398 399 VisibleModules.setVisible(Interface, ModuleLoc); 400 VisibleModules.makeTransitiveImportsVisible(Interface, ModuleLoc); 401 402 // Make the import decl for the interface in the impl module. 403 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, 404 Interface, Path[0].second); 405 CurContext->addDecl(Import); 406 407 // Sequence initialization of the imported module before that of the current 408 // module, if any. 409 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 410 Mod->Imports.insert(Interface); // As if we imported it. 411 // Also save this as a shortcut to checking for decls in the interface 412 ThePrimaryInterface = Interface; 413 // If we made an implicit import of the module interface, then return the 414 // imported module decl. 415 return ConvertDeclToDeclGroup(Import); 416 } 417 418 return nullptr; 419 } 420 421 Sema::DeclGroupPtrTy 422 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 423 SourceLocation PrivateLoc) { 424 // C++20 [basic.link]/2: 425 // A private-module-fragment shall appear only in a primary module 426 // interface unit. 427 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 428 : ModuleScopes.back().Module->Kind) { 429 case Module::ModuleMapModule: 430 case Module::ExplicitGlobalModuleFragment: 431 case Module::ImplicitGlobalModuleFragment: 432 case Module::ModulePartitionImplementation: 433 case Module::ModulePartitionInterface: 434 case Module::ModuleHeaderUnit: 435 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 436 return nullptr; 437 438 case Module::PrivateModuleFragment: 439 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 440 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 441 return nullptr; 442 443 case Module::ModuleImplementationUnit: 444 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 445 Diag(ModuleScopes.back().BeginLoc, 446 diag::note_not_module_interface_add_export) 447 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 448 return nullptr; 449 450 case Module::ModuleInterfaceUnit: 451 break; 452 } 453 454 // FIXME: Check that this translation unit does not import any partitions; 455 // such imports would violate [basic.link]/2's "shall be the only module unit" 456 // restriction. 457 458 // We've finished the public fragment of the translation unit. 459 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 460 461 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 462 Module *PrivateModuleFragment = 463 Map.createPrivateModuleFragmentForInterfaceUnit( 464 ModuleScopes.back().Module, PrivateLoc); 465 assert(PrivateModuleFragment && "module creation should not fail"); 466 467 // Enter the scope of the private module fragment. 468 ModuleScopes.push_back({}); 469 ModuleScopes.back().BeginLoc = ModuleLoc; 470 ModuleScopes.back().Module = PrivateModuleFragment; 471 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 472 473 // All declarations created from now on are scoped to the private module 474 // fragment (and are neither visible nor reachable in importers of the module 475 // interface). 476 auto *TU = Context.getTranslationUnitDecl(); 477 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 478 TU->setLocalOwningModule(PrivateModuleFragment); 479 480 // FIXME: Consider creating an explicit representation of this declaration. 481 return nullptr; 482 } 483 484 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 485 SourceLocation ExportLoc, 486 SourceLocation ImportLoc, ModuleIdPath Path, 487 bool IsPartition) { 488 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 489 "partition seen in non-C++20 code?"); 490 491 // For a C++20 module name, flatten into a single identifier with the source 492 // location of the first component. 493 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 494 495 std::string ModuleName; 496 if (IsPartition) { 497 // We already checked that we are in a module purview in the parser. 498 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 499 Module *NamedMod = ModuleScopes.back().Module; 500 // If we are importing into a partition, find the owning named module, 501 // otherwise, the name of the importing named module. 502 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 503 ModuleName += ":"; 504 ModuleName += stringFromPath(Path); 505 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 506 Path = ModuleIdPath(ModuleNameLoc); 507 } else if (getLangOpts().CPlusPlusModules) { 508 ModuleName = stringFromPath(Path); 509 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 510 Path = ModuleIdPath(ModuleNameLoc); 511 } 512 513 // Diagnose self-import before attempting a load. 514 // [module.import]/9 515 // A module implementation unit of a module M that is not a module partition 516 // shall not contain a module-import-declaration nominating M. 517 // (for an implementation, the module interface is imported implicitly, 518 // but that's handled in the module decl code). 519 520 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 521 getCurrentModule()->Name == ModuleName) { 522 Diag(ImportLoc, diag::err_module_self_import_cxx20) 523 << ModuleName << currentModuleIsImplementation(); 524 return true; 525 } 526 527 Module *Mod = getModuleLoader().loadModule( 528 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 529 if (!Mod) 530 return true; 531 532 if (!Mod->isInterfaceOrPartition() && !ModuleName.empty()) { 533 Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition) 534 << ModuleName; 535 return true; 536 } 537 538 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 539 } 540 541 /// Determine whether \p D is lexically within an export-declaration. 542 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 543 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 544 if (auto *ED = dyn_cast<ExportDecl>(DC)) 545 return ED; 546 return nullptr; 547 } 548 549 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 550 SourceLocation ExportLoc, 551 SourceLocation ImportLoc, Module *Mod, 552 ModuleIdPath Path) { 553 if (Mod->isHeaderUnit()) 554 Diag(ImportLoc, diag::warn_experimental_header_unit); 555 556 VisibleModules.setVisible(Mod, ImportLoc); 557 558 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 559 560 // FIXME: we should support importing a submodule within a different submodule 561 // of the same top-level module. Until we do, make it an error rather than 562 // silently ignoring the import. 563 // FIXME: Should we warn on a redundant import of the current module? 564 if (Mod->isForBuilding(getLangOpts())) { 565 Diag(ImportLoc, getLangOpts().isCompilingModule() 566 ? diag::err_module_self_import 567 : diag::err_module_import_in_implementation) 568 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 569 } 570 571 SmallVector<SourceLocation, 2> IdentifierLocs; 572 573 if (Path.empty()) { 574 // If this was a header import, pad out with dummy locations. 575 // FIXME: Pass in and use the location of the header-name token in this 576 // case. 577 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 578 IdentifierLocs.push_back(SourceLocation()); 579 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 580 // A single identifier for the whole name. 581 IdentifierLocs.push_back(Path[0].second); 582 } else { 583 Module *ModCheck = Mod; 584 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 585 // If we've run out of module parents, just drop the remaining 586 // identifiers. We need the length to be consistent. 587 if (!ModCheck) 588 break; 589 ModCheck = ModCheck->Parent; 590 591 IdentifierLocs.push_back(Path[I].second); 592 } 593 } 594 595 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 596 Mod, IdentifierLocs); 597 CurContext->addDecl(Import); 598 599 // Sequence initialization of the imported module before that of the current 600 // module, if any. 601 if (!ModuleScopes.empty()) 602 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 603 604 // A module (partition) implementation unit shall not be exported. 605 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 606 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 607 Diag(ExportLoc, diag::err_export_partition_impl) 608 << SourceRange(ExportLoc, Path.back().second); 609 } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) { 610 // Re-export the module if the imported module is exported. 611 // Note that we don't need to add re-exported module to Imports field 612 // since `Exports` implies the module is imported already. 613 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 614 getCurrentModule()->Exports.emplace_back(Mod, false); 615 else 616 getCurrentModule()->Imports.insert(Mod); 617 } else if (ExportLoc.isValid()) { 618 // [module.interface]p1: 619 // An export-declaration shall inhabit a namespace scope and appear in the 620 // purview of a module interface unit. 621 Diag(ExportLoc, diag::err_export_not_in_module_interface); 622 } 623 624 return Import; 625 } 626 627 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 628 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 629 BuildModuleInclude(DirectiveLoc, Mod); 630 } 631 632 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 633 // Determine whether we're in the #include buffer for a module. The #includes 634 // in that buffer do not qualify as module imports; they're just an 635 // implementation detail of us building the module. 636 // 637 // FIXME: Should we even get ActOnModuleInclude calls for those? 638 bool IsInModuleIncludes = 639 TUKind == TU_Module && 640 getSourceManager().isWrittenInMainFile(DirectiveLoc); 641 642 // If we are really importing a module (not just checking layering) due to an 643 // #include in the main file, synthesize an ImportDecl. 644 if (getLangOpts().Modules && !IsInModuleIncludes) { 645 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 646 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 647 DirectiveLoc, Mod, 648 DirectiveLoc); 649 if (!ModuleScopes.empty()) 650 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 651 TU->addDecl(ImportD); 652 Consumer.HandleImplicitImportDecl(ImportD); 653 } 654 655 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 656 VisibleModules.setVisible(Mod, DirectiveLoc); 657 658 if (getLangOpts().isCompilingModule()) { 659 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 660 getLangOpts().CurrentModule, DirectiveLoc, false, false); 661 (void)ThisModule; 662 assert(ThisModule && "was expecting a module if building one"); 663 } 664 } 665 666 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 667 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 668 669 ModuleScopes.push_back({}); 670 ModuleScopes.back().Module = Mod; 671 if (getLangOpts().ModulesLocalVisibility) 672 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 673 674 VisibleModules.setVisible(Mod, DirectiveLoc); 675 676 // The enclosing context is now part of this module. 677 // FIXME: Consider creating a child DeclContext to hold the entities 678 // lexically within the module. 679 if (getLangOpts().trackLocalOwningModule()) { 680 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 681 cast<Decl>(DC)->setModuleOwnershipKind( 682 getLangOpts().ModulesLocalVisibility 683 ? Decl::ModuleOwnershipKind::VisibleWhenImported 684 : Decl::ModuleOwnershipKind::Visible); 685 cast<Decl>(DC)->setLocalOwningModule(Mod); 686 } 687 } 688 } 689 690 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 691 if (getLangOpts().ModulesLocalVisibility) { 692 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 693 // Leaving a module hides namespace names, so our visible namespace cache 694 // is now out of date. 695 VisibleNamespaceCache.clear(); 696 } 697 698 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 699 "left the wrong module scope"); 700 ModuleScopes.pop_back(); 701 702 // We got to the end of processing a local module. Create an 703 // ImportDecl as we would for an imported module. 704 FileID File = getSourceManager().getFileID(EomLoc); 705 SourceLocation DirectiveLoc; 706 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 707 // We reached the end of a #included module header. Use the #include loc. 708 assert(File != getSourceManager().getMainFileID() && 709 "end of submodule in main source file"); 710 DirectiveLoc = getSourceManager().getIncludeLoc(File); 711 } else { 712 // We reached an EOM pragma. Use the pragma location. 713 DirectiveLoc = EomLoc; 714 } 715 BuildModuleInclude(DirectiveLoc, Mod); 716 717 // Any further declarations are in whatever module we returned to. 718 if (getLangOpts().trackLocalOwningModule()) { 719 // The parser guarantees that this is the same context that we entered 720 // the module within. 721 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 722 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 723 if (!getCurrentModule()) 724 cast<Decl>(DC)->setModuleOwnershipKind( 725 Decl::ModuleOwnershipKind::Unowned); 726 } 727 } 728 } 729 730 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 731 Module *Mod) { 732 // Bail if we're not allowed to implicitly import a module here. 733 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 734 VisibleModules.isVisible(Mod)) 735 return; 736 737 // Create the implicit import declaration. 738 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 739 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 740 Loc, Mod, Loc); 741 TU->addDecl(ImportD); 742 Consumer.HandleImplicitImportDecl(ImportD); 743 744 // Make the module visible. 745 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 746 VisibleModules.setVisible(Mod, Loc); 747 } 748 749 /// We have parsed the start of an export declaration, including the '{' 750 /// (if present). 751 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 752 SourceLocation LBraceLoc) { 753 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 754 755 // Set this temporarily so we know the export-declaration was braced. 756 D->setRBraceLoc(LBraceLoc); 757 758 CurContext->addDecl(D); 759 PushDeclContext(S, D); 760 761 // C++2a [module.interface]p1: 762 // An export-declaration shall appear only [...] in the purview of a module 763 // interface unit. An export-declaration shall not appear directly or 764 // indirectly within [...] a private-module-fragment. 765 if (!isCurrentModulePurview()) { 766 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 767 D->setInvalidDecl(); 768 return D; 769 } else if (currentModuleIsImplementation()) { 770 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 771 Diag(ModuleScopes.back().BeginLoc, 772 diag::note_not_module_interface_add_export) 773 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 774 D->setInvalidDecl(); 775 return D; 776 } else if (ModuleScopes.back().Module->Kind == 777 Module::PrivateModuleFragment) { 778 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 779 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 780 D->setInvalidDecl(); 781 return D; 782 } 783 784 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 785 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 786 // An export-declaration shall not appear directly or indirectly within 787 // an unnamed namespace [...] 788 if (ND->isAnonymousNamespace()) { 789 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 790 Diag(ND->getLocation(), diag::note_anonymous_namespace); 791 // Don't diagnose internal-linkage declarations in this region. 792 D->setInvalidDecl(); 793 return D; 794 } 795 796 // A declaration is exported if it is [...] a namespace-definition 797 // that contains an exported declaration. 798 // 799 // Defer exporting the namespace until after we leave it, in order to 800 // avoid marking all subsequent declarations in the namespace as exported. 801 if (!DeferredExportedNamespaces.insert(ND).second) 802 break; 803 } 804 } 805 806 // [...] its declaration or declaration-seq shall not contain an 807 // export-declaration. 808 if (auto *ED = getEnclosingExportDecl(D)) { 809 Diag(ExportLoc, diag::err_export_within_export); 810 if (ED->hasBraces()) 811 Diag(ED->getLocation(), diag::note_export); 812 D->setInvalidDecl(); 813 return D; 814 } 815 816 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 817 return D; 818 } 819 820 static bool checkExportedDecl(Sema &, Decl *, SourceLocation); 821 822 /// Check that it's valid to export all the declarations in \p DC. 823 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 824 SourceLocation BlockStart) { 825 bool AllUnnamed = true; 826 for (auto *D : DC->decls()) 827 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 828 return AllUnnamed; 829 } 830 831 /// Check that it's valid to export \p D. 832 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 833 834 // C++20 [module.interface]p3: 835 // [...] it shall not declare a name with internal linkage. 836 bool HasName = false; 837 if (auto *ND = dyn_cast<NamedDecl>(D)) { 838 // Don't diagnose anonymous union objects; we'll diagnose their members 839 // instead. 840 HasName = (bool)ND->getDeclName(); 841 if (HasName && ND->getFormalLinkage() == Linkage::Internal) { 842 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 843 if (BlockStart.isValid()) 844 S.Diag(BlockStart, diag::note_export); 845 return false; 846 } 847 } 848 849 // C++2a [module.interface]p5: 850 // all entities to which all of the using-declarators ultimately refer 851 // shall have been introduced with a name having external linkage 852 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 853 NamedDecl *Target = USD->getUnderlyingDecl(); 854 Linkage Lk = Target->getFormalLinkage(); 855 if (Lk == Linkage::Internal || Lk == Linkage::Module) { 856 S.Diag(USD->getLocation(), diag::err_export_using_internal) 857 << (Lk == Linkage::Internal ? 0 : 1) << Target; 858 S.Diag(Target->getLocation(), diag::note_using_decl_target); 859 if (BlockStart.isValid()) 860 S.Diag(BlockStart, diag::note_export); 861 return false; 862 } 863 } 864 865 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 866 // declarations are exported). 867 if (auto *DC = dyn_cast<DeclContext>(D)) { 868 if (!isa<NamespaceDecl>(D)) 869 return true; 870 871 if (auto *ND = dyn_cast<NamedDecl>(D)) { 872 if (!ND->getDeclName()) { 873 S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal); 874 if (BlockStart.isValid()) 875 S.Diag(BlockStart, diag::note_export); 876 return false; 877 } else if (!DC->decls().empty() && 878 DC->getRedeclContext()->isFileContext()) { 879 return checkExportedDeclContext(S, DC, BlockStart); 880 } 881 } 882 } 883 return true; 884 } 885 886 /// Complete the definition of an export declaration. 887 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 888 auto *ED = cast<ExportDecl>(D); 889 if (RBraceLoc.isValid()) 890 ED->setRBraceLoc(RBraceLoc); 891 892 PopDeclContext(); 893 894 if (!D->isInvalidDecl()) { 895 SourceLocation BlockStart = 896 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 897 for (auto *Child : ED->decls()) { 898 checkExportedDecl(*this, Child, BlockStart); 899 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 900 // [dcl.inline]/7 901 // If an inline function or variable that is attached to a named module 902 // is declared in a definition domain, it shall be defined in that 903 // domain. 904 // So, if the current declaration does not have a definition, we must 905 // check at the end of the TU (or when the PMF starts) to see that we 906 // have a definition at that point. 907 if (FD->isInlineSpecified() && !FD->isDefined()) 908 PendingInlineFuncDecls.insert(FD); 909 } 910 } 911 } 912 913 return D; 914 } 915 916 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 917 // We shouldn't create new global module fragment if there is already 918 // one. 919 if (!TheGlobalModuleFragment) { 920 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 921 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 922 BeginLoc, getCurrentModule()); 923 } 924 925 assert(TheGlobalModuleFragment && "module creation should not fail"); 926 927 // Enter the scope of the global module. 928 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 929 /*OuterVisibleModules=*/{}}); 930 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 931 932 return TheGlobalModuleFragment; 933 } 934 935 void Sema::PopGlobalModuleFragment() { 936 assert(!ModuleScopes.empty() && 937 getCurrentModule()->isExplicitGlobalModule() && 938 "left the wrong module scope, which is not global module fragment"); 939 ModuleScopes.pop_back(); 940 } 941 942 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) { 943 if (!TheImplicitGlobalModuleFragment) { 944 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 945 TheImplicitGlobalModuleFragment = 946 Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc, 947 getCurrentModule()); 948 } 949 assert(TheImplicitGlobalModuleFragment && "module creation should not fail"); 950 951 // Enter the scope of the global module. 952 ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment, 953 /*OuterVisibleModules=*/{}}); 954 VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc); 955 return TheImplicitGlobalModuleFragment; 956 } 957 958 void Sema::PopImplicitGlobalModuleFragment() { 959 assert(!ModuleScopes.empty() && 960 getCurrentModule()->isImplicitGlobalModule() && 961 "left the wrong module scope, which is not global module fragment"); 962 ModuleScopes.pop_back(); 963 } 964 965 bool Sema::isCurrentModulePurview() const { 966 if (!getCurrentModule()) 967 return false; 968 969 /// Does this Module scope describe part of the purview of a standard named 970 /// C++ module? 971 switch (getCurrentModule()->Kind) { 972 case Module::ModuleInterfaceUnit: 973 case Module::ModuleImplementationUnit: 974 case Module::ModulePartitionInterface: 975 case Module::ModulePartitionImplementation: 976 case Module::PrivateModuleFragment: 977 case Module::ImplicitGlobalModuleFragment: 978 return true; 979 default: 980 return false; 981 } 982 } 983