1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "clang/Sema/TypoCorrection.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/TinyPtrVector.h" 42 #include "llvm/ADT/edit_distance.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include <algorithm> 45 #include <iterator> 46 #include <list> 47 #include <set> 48 #include <utility> 49 #include <vector> 50 51 #include "OpenCLBuiltins.inc" 52 53 using namespace clang; 54 using namespace sema; 55 56 namespace { 57 class UnqualUsingEntry { 58 const DeclContext *Nominated; 59 const DeclContext *CommonAncestor; 60 61 public: 62 UnqualUsingEntry(const DeclContext *Nominated, 63 const DeclContext *CommonAncestor) 64 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 65 } 66 67 const DeclContext *getCommonAncestor() const { 68 return CommonAncestor; 69 } 70 71 const DeclContext *getNominatedNamespace() const { 72 return Nominated; 73 } 74 75 // Sort by the pointer value of the common ancestor. 76 struct Comparator { 77 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 78 return L.getCommonAncestor() < R.getCommonAncestor(); 79 } 80 81 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 82 return E.getCommonAncestor() < DC; 83 } 84 85 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 86 return DC < E.getCommonAncestor(); 87 } 88 }; 89 }; 90 91 /// A collection of using directives, as used by C++ unqualified 92 /// lookup. 93 class UnqualUsingDirectiveSet { 94 Sema &SemaRef; 95 96 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 97 98 ListTy list; 99 llvm::SmallPtrSet<DeclContext*, 8> visited; 100 101 public: 102 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 103 104 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 105 // C++ [namespace.udir]p1: 106 // During unqualified name lookup, the names appear as if they 107 // were declared in the nearest enclosing namespace which contains 108 // both the using-directive and the nominated namespace. 109 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 110 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 111 112 for (; S; S = S->getParent()) { 113 // C++ [namespace.udir]p1: 114 // A using-directive shall not appear in class scope, but may 115 // appear in namespace scope or in block scope. 116 DeclContext *Ctx = S->getEntity(); 117 if (Ctx && Ctx->isFileContext()) { 118 visit(Ctx, Ctx); 119 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 120 for (auto *I : S->using_directives()) 121 if (SemaRef.isVisible(I)) 122 visit(I, InnermostFileDC); 123 } 124 } 125 } 126 127 // Visits a context and collect all of its using directives 128 // recursively. Treats all using directives as if they were 129 // declared in the context. 130 // 131 // A given context is only every visited once, so it is important 132 // that contexts be visited from the inside out in order to get 133 // the effective DCs right. 134 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 135 if (!visited.insert(DC).second) 136 return; 137 138 addUsingDirectives(DC, EffectiveDC); 139 } 140 141 // Visits a using directive and collects all of its using 142 // directives recursively. Treats all using directives as if they 143 // were declared in the effective DC. 144 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 145 DeclContext *NS = UD->getNominatedNamespace(); 146 if (!visited.insert(NS).second) 147 return; 148 149 addUsingDirective(UD, EffectiveDC); 150 addUsingDirectives(NS, EffectiveDC); 151 } 152 153 // Adds all the using directives in a context (and those nominated 154 // by its using directives, transitively) as if they appeared in 155 // the given effective context. 156 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 157 SmallVector<DeclContext*, 4> queue; 158 while (true) { 159 for (auto UD : DC->using_directives()) { 160 DeclContext *NS = UD->getNominatedNamespace(); 161 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 162 addUsingDirective(UD, EffectiveDC); 163 queue.push_back(NS); 164 } 165 } 166 167 if (queue.empty()) 168 return; 169 170 DC = queue.pop_back_val(); 171 } 172 } 173 174 // Add a using directive as if it had been declared in the given 175 // context. This helps implement C++ [namespace.udir]p3: 176 // The using-directive is transitive: if a scope contains a 177 // using-directive that nominates a second namespace that itself 178 // contains using-directives, the effect is as if the 179 // using-directives from the second namespace also appeared in 180 // the first. 181 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 182 // Find the common ancestor between the effective context and 183 // the nominated namespace. 184 DeclContext *Common = UD->getNominatedNamespace(); 185 while (!Common->Encloses(EffectiveDC)) 186 Common = Common->getParent(); 187 Common = Common->getPrimaryContext(); 188 189 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 190 } 191 192 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 193 194 typedef ListTy::const_iterator const_iterator; 195 196 const_iterator begin() const { return list.begin(); } 197 const_iterator end() const { return list.end(); } 198 199 llvm::iterator_range<const_iterator> 200 getNamespacesFor(DeclContext *DC) const { 201 return llvm::make_range(std::equal_range(begin(), end(), 202 DC->getPrimaryContext(), 203 UnqualUsingEntry::Comparator())); 204 } 205 }; 206 } // end anonymous namespace 207 208 // Retrieve the set of identifier namespaces that correspond to a 209 // specific kind of name lookup. 210 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 211 bool CPlusPlus, 212 bool Redeclaration) { 213 unsigned IDNS = 0; 214 switch (NameKind) { 215 case Sema::LookupObjCImplicitSelfParam: 216 case Sema::LookupOrdinaryName: 217 case Sema::LookupRedeclarationWithLinkage: 218 case Sema::LookupLocalFriendName: 219 case Sema::LookupDestructorName: 220 IDNS = Decl::IDNS_Ordinary; 221 if (CPlusPlus) { 222 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 223 if (Redeclaration) 224 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 225 } 226 if (Redeclaration) 227 IDNS |= Decl::IDNS_LocalExtern; 228 break; 229 230 case Sema::LookupOperatorName: 231 // Operator lookup is its own crazy thing; it is not the same 232 // as (e.g.) looking up an operator name for redeclaration. 233 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 234 IDNS = Decl::IDNS_NonMemberOperator; 235 break; 236 237 case Sema::LookupTagName: 238 if (CPlusPlus) { 239 IDNS = Decl::IDNS_Type; 240 241 // When looking for a redeclaration of a tag name, we add: 242 // 1) TagFriend to find undeclared friend decls 243 // 2) Namespace because they can't "overload" with tag decls. 244 // 3) Tag because it includes class templates, which can't 245 // "overload" with tag decls. 246 if (Redeclaration) 247 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 248 } else { 249 IDNS = Decl::IDNS_Tag; 250 } 251 break; 252 253 case Sema::LookupLabel: 254 IDNS = Decl::IDNS_Label; 255 break; 256 257 case Sema::LookupMemberName: 258 IDNS = Decl::IDNS_Member; 259 if (CPlusPlus) 260 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 261 break; 262 263 case Sema::LookupNestedNameSpecifierName: 264 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 265 break; 266 267 case Sema::LookupNamespaceName: 268 IDNS = Decl::IDNS_Namespace; 269 break; 270 271 case Sema::LookupUsingDeclName: 272 assert(Redeclaration && "should only be used for redecl lookup"); 273 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 274 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 275 Decl::IDNS_LocalExtern; 276 break; 277 278 case Sema::LookupObjCProtocolName: 279 IDNS = Decl::IDNS_ObjCProtocol; 280 break; 281 282 case Sema::LookupOMPReductionName: 283 IDNS = Decl::IDNS_OMPReduction; 284 break; 285 286 case Sema::LookupOMPMapperName: 287 IDNS = Decl::IDNS_OMPMapper; 288 break; 289 290 case Sema::LookupAnyName: 291 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 292 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 293 | Decl::IDNS_Type; 294 break; 295 } 296 return IDNS; 297 } 298 299 void LookupResult::configure() { 300 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 301 isForRedeclaration()); 302 303 // If we're looking for one of the allocation or deallocation 304 // operators, make sure that the implicitly-declared new and delete 305 // operators can be found. 306 switch (NameInfo.getName().getCXXOverloadedOperator()) { 307 case OO_New: 308 case OO_Delete: 309 case OO_Array_New: 310 case OO_Array_Delete: 311 getSema().DeclareGlobalNewDelete(); 312 break; 313 314 default: 315 break; 316 } 317 318 // Compiler builtins are always visible, regardless of where they end 319 // up being declared. 320 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 321 if (unsigned BuiltinID = Id->getBuiltinID()) { 322 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 323 AllowHidden = true; 324 } 325 } 326 } 327 328 bool LookupResult::checkDebugAssumptions() const { 329 // This function is never called by NDEBUG builds. 330 assert(ResultKind != NotFound || Decls.size() == 0); 331 assert(ResultKind != Found || Decls.size() == 1); 332 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 333 (Decls.size() == 1 && 334 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 335 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 336 assert(ResultKind != Ambiguous || Decls.size() > 1 || 337 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 338 Ambiguity == AmbiguousBaseSubobjectTypes))); 339 assert((Paths != nullptr) == (ResultKind == Ambiguous && 340 (Ambiguity == AmbiguousBaseSubobjectTypes || 341 Ambiguity == AmbiguousBaseSubobjects))); 342 return true; 343 } 344 345 // Necessary because CXXBasePaths is not complete in Sema.h 346 void LookupResult::deletePaths(CXXBasePaths *Paths) { 347 delete Paths; 348 } 349 350 /// Get a representative context for a declaration such that two declarations 351 /// will have the same context if they were found within the same scope. 352 static DeclContext *getContextForScopeMatching(Decl *D) { 353 // For function-local declarations, use that function as the context. This 354 // doesn't account for scopes within the function; the caller must deal with 355 // those. 356 DeclContext *DC = D->getLexicalDeclContext(); 357 if (DC->isFunctionOrMethod()) 358 return DC; 359 360 // Otherwise, look at the semantic context of the declaration. The 361 // declaration must have been found there. 362 return D->getDeclContext()->getRedeclContext(); 363 } 364 365 /// Determine whether \p D is a better lookup result than \p Existing, 366 /// given that they declare the same entity. 367 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 368 NamedDecl *D, NamedDecl *Existing) { 369 // When looking up redeclarations of a using declaration, prefer a using 370 // shadow declaration over any other declaration of the same entity. 371 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 372 !isa<UsingShadowDecl>(Existing)) 373 return true; 374 375 auto *DUnderlying = D->getUnderlyingDecl(); 376 auto *EUnderlying = Existing->getUnderlyingDecl(); 377 378 // If they have different underlying declarations, prefer a typedef over the 379 // original type (this happens when two type declarations denote the same 380 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 381 // might carry additional semantic information, such as an alignment override. 382 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 383 // declaration over a typedef. Also prefer a tag over a typedef for 384 // destructor name lookup because in some contexts we only accept a 385 // class-name in a destructor declaration. 386 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 387 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 388 bool HaveTag = isa<TagDecl>(EUnderlying); 389 bool WantTag = 390 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 391 return HaveTag != WantTag; 392 } 393 394 // Pick the function with more default arguments. 395 // FIXME: In the presence of ambiguous default arguments, we should keep both, 396 // so we can diagnose the ambiguity if the default argument is needed. 397 // See C++ [over.match.best]p3. 398 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 399 auto *EFD = cast<FunctionDecl>(EUnderlying); 400 unsigned DMin = DFD->getMinRequiredArguments(); 401 unsigned EMin = EFD->getMinRequiredArguments(); 402 // If D has more default arguments, it is preferred. 403 if (DMin != EMin) 404 return DMin < EMin; 405 // FIXME: When we track visibility for default function arguments, check 406 // that we pick the declaration with more visible default arguments. 407 } 408 409 // Pick the template with more default template arguments. 410 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 411 auto *ETD = cast<TemplateDecl>(EUnderlying); 412 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 413 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 414 // If D has more default arguments, it is preferred. Note that default 415 // arguments (and their visibility) is monotonically increasing across the 416 // redeclaration chain, so this is a quick proxy for "is more recent". 417 if (DMin != EMin) 418 return DMin < EMin; 419 // If D has more *visible* default arguments, it is preferred. Note, an 420 // earlier default argument being visible does not imply that a later 421 // default argument is visible, so we can't just check the first one. 422 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 423 I != N; ++I) { 424 if (!S.hasVisibleDefaultArgument( 425 ETD->getTemplateParameters()->getParam(I)) && 426 S.hasVisibleDefaultArgument( 427 DTD->getTemplateParameters()->getParam(I))) 428 return true; 429 } 430 } 431 432 // VarDecl can have incomplete array types, prefer the one with more complete 433 // array type. 434 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) { 435 VarDecl *EVD = cast<VarDecl>(EUnderlying); 436 if (EVD->getType()->isIncompleteType() && 437 !DVD->getType()->isIncompleteType()) { 438 // Prefer the decl with a more complete type if visible. 439 return S.isVisible(DVD); 440 } 441 return false; // Avoid picking up a newer decl, just because it was newer. 442 } 443 444 // For most kinds of declaration, it doesn't really matter which one we pick. 445 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 446 // If the existing declaration is hidden, prefer the new one. Otherwise, 447 // keep what we've got. 448 return !S.isVisible(Existing); 449 } 450 451 // Pick the newer declaration; it might have a more precise type. 452 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 453 Prev = Prev->getPreviousDecl()) 454 if (Prev == EUnderlying) 455 return true; 456 return false; 457 } 458 459 /// Determine whether \p D can hide a tag declaration. 460 static bool canHideTag(NamedDecl *D) { 461 // C++ [basic.scope.declarative]p4: 462 // Given a set of declarations in a single declarative region [...] 463 // exactly one declaration shall declare a class name or enumeration name 464 // that is not a typedef name and the other declarations shall all refer to 465 // the same variable, non-static data member, or enumerator, or all refer 466 // to functions and function templates; in this case the class name or 467 // enumeration name is hidden. 468 // C++ [basic.scope.hiding]p2: 469 // A class name or enumeration name can be hidden by the name of a 470 // variable, data member, function, or enumerator declared in the same 471 // scope. 472 // An UnresolvedUsingValueDecl always instantiates to one of these. 473 D = D->getUnderlyingDecl(); 474 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 475 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 476 isa<UnresolvedUsingValueDecl>(D); 477 } 478 479 /// Resolves the result kind of this lookup. 480 void LookupResult::resolveKind() { 481 unsigned N = Decls.size(); 482 483 // Fast case: no possible ambiguity. 484 if (N == 0) { 485 assert(ResultKind == NotFound || 486 ResultKind == NotFoundInCurrentInstantiation); 487 return; 488 } 489 490 // If there's a single decl, we need to examine it to decide what 491 // kind of lookup this is. 492 if (N == 1) { 493 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 494 if (isa<FunctionTemplateDecl>(D)) 495 ResultKind = FoundOverloaded; 496 else if (isa<UnresolvedUsingValueDecl>(D)) 497 ResultKind = FoundUnresolvedValue; 498 return; 499 } 500 501 // Don't do any extra resolution if we've already resolved as ambiguous. 502 if (ResultKind == Ambiguous) return; 503 504 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique; 505 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 506 507 bool Ambiguous = false; 508 bool HasTag = false, HasFunction = false; 509 bool HasFunctionTemplate = false, HasUnresolved = false; 510 NamedDecl *HasNonFunction = nullptr; 511 512 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions; 513 514 unsigned UniqueTagIndex = 0; 515 516 unsigned I = 0; 517 while (I < N) { 518 NamedDecl *D = Decls[I]->getUnderlyingDecl(); 519 D = cast<NamedDecl>(D->getCanonicalDecl()); 520 521 // Ignore an invalid declaration unless it's the only one left. 522 if (D->isInvalidDecl() && !(I == 0 && N == 1)) { 523 Decls[I] = Decls[--N]; 524 continue; 525 } 526 527 llvm::Optional<unsigned> ExistingI; 528 529 // Redeclarations of types via typedef can occur both within a scope 530 // and, through using declarations and directives, across scopes. There is 531 // no ambiguity if they all refer to the same type, so unique based on the 532 // canonical type. 533 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { 534 QualType T = getSema().Context.getTypeDeclType(TD); 535 auto UniqueResult = UniqueTypes.insert( 536 std::make_pair(getSema().Context.getCanonicalType(T), I)); 537 if (!UniqueResult.second) { 538 // The type is not unique. 539 ExistingI = UniqueResult.first->second; 540 } 541 } 542 543 // For non-type declarations, check for a prior lookup result naming this 544 // canonical declaration. 545 if (!ExistingI) { 546 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 547 if (!UniqueResult.second) { 548 // We've seen this entity before. 549 ExistingI = UniqueResult.first->second; 550 } 551 } 552 553 if (ExistingI) { 554 // This is not a unique lookup result. Pick one of the results and 555 // discard the other. 556 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 557 Decls[*ExistingI])) 558 Decls[*ExistingI] = Decls[I]; 559 Decls[I] = Decls[--N]; 560 continue; 561 } 562 563 // Otherwise, do some decl type analysis and then continue. 564 565 if (isa<UnresolvedUsingValueDecl>(D)) { 566 HasUnresolved = true; 567 } else if (isa<TagDecl>(D)) { 568 if (HasTag) 569 Ambiguous = true; 570 UniqueTagIndex = I; 571 HasTag = true; 572 } else if (isa<FunctionTemplateDecl>(D)) { 573 HasFunction = true; 574 HasFunctionTemplate = true; 575 } else if (isa<FunctionDecl>(D)) { 576 HasFunction = true; 577 } else { 578 if (HasNonFunction) { 579 // If we're about to create an ambiguity between two declarations that 580 // are equivalent, but one is an internal linkage declaration from one 581 // module and the other is an internal linkage declaration from another 582 // module, just skip it. 583 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 584 D)) { 585 EquivalentNonFunctions.push_back(D); 586 Decls[I] = Decls[--N]; 587 continue; 588 } 589 590 Ambiguous = true; 591 } 592 HasNonFunction = D; 593 } 594 I++; 595 } 596 597 // C++ [basic.scope.hiding]p2: 598 // A class name or enumeration name can be hidden by the name of 599 // an object, function, or enumerator declared in the same 600 // scope. If a class or enumeration name and an object, function, 601 // or enumerator are declared in the same scope (in any order) 602 // with the same name, the class or enumeration name is hidden 603 // wherever the object, function, or enumerator name is visible. 604 // But it's still an error if there are distinct tag types found, 605 // even if they're not visible. (ref?) 606 if (N > 1 && HideTags && HasTag && !Ambiguous && 607 (HasFunction || HasNonFunction || HasUnresolved)) { 608 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; 609 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && 610 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( 611 getContextForScopeMatching(OtherDecl)) && 612 canHideTag(OtherDecl)) 613 Decls[UniqueTagIndex] = Decls[--N]; 614 else 615 Ambiguous = true; 616 } 617 618 // FIXME: This diagnostic should really be delayed until we're done with 619 // the lookup result, in case the ambiguity is resolved by the caller. 620 if (!EquivalentNonFunctions.empty() && !Ambiguous) 621 getSema().diagnoseEquivalentInternalLinkageDeclarations( 622 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 623 624 Decls.truncate(N); 625 626 if (HasNonFunction && (HasFunction || HasUnresolved)) 627 Ambiguous = true; 628 629 if (Ambiguous) 630 setAmbiguous(LookupResult::AmbiguousReference); 631 else if (HasUnresolved) 632 ResultKind = LookupResult::FoundUnresolvedValue; 633 else if (N > 1 || HasFunctionTemplate) 634 ResultKind = LookupResult::FoundOverloaded; 635 else 636 ResultKind = LookupResult::Found; 637 } 638 639 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 640 CXXBasePaths::const_paths_iterator I, E; 641 for (I = P.begin(), E = P.end(); I != E; ++I) 642 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 643 ++DI) 644 addDecl(*DI); 645 } 646 647 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 648 Paths = new CXXBasePaths; 649 Paths->swap(P); 650 addDeclsFromBasePaths(*Paths); 651 resolveKind(); 652 setAmbiguous(AmbiguousBaseSubobjects); 653 } 654 655 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 656 Paths = new CXXBasePaths; 657 Paths->swap(P); 658 addDeclsFromBasePaths(*Paths); 659 resolveKind(); 660 setAmbiguous(AmbiguousBaseSubobjectTypes); 661 } 662 663 void LookupResult::print(raw_ostream &Out) { 664 Out << Decls.size() << " result(s)"; 665 if (isAmbiguous()) Out << ", ambiguous"; 666 if (Paths) Out << ", base paths present"; 667 668 for (iterator I = begin(), E = end(); I != E; ++I) { 669 Out << "\n"; 670 (*I)->print(Out, 2); 671 } 672 } 673 674 LLVM_DUMP_METHOD void LookupResult::dump() { 675 llvm::errs() << "lookup results for " << getLookupName().getAsString() 676 << ":\n"; 677 for (NamedDecl *D : *this) 678 D->dump(); 679 } 680 681 /// Diagnose a missing builtin type. 682 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 683 llvm::StringRef Name) { 684 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 685 << TypeClass << Name; 686 return S.Context.VoidTy; 687 } 688 689 /// Lookup an OpenCL enum type. 690 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 691 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 692 Sema::LookupTagName); 693 S.LookupName(Result, S.TUScope); 694 if (Result.empty()) 695 return diagOpenCLBuiltinTypeError(S, "enum", Name); 696 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 697 if (!Decl) 698 return diagOpenCLBuiltinTypeError(S, "enum", Name); 699 return S.Context.getEnumType(Decl); 700 } 701 702 /// Lookup an OpenCL typedef type. 703 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 704 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 705 Sema::LookupOrdinaryName); 706 S.LookupName(Result, S.TUScope); 707 if (Result.empty()) 708 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 709 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 710 if (!Decl) 711 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 712 return S.Context.getTypedefType(Decl); 713 } 714 715 /// Get the QualType instances of the return type and arguments for an OpenCL 716 /// builtin function signature. 717 /// \param S (in) The Sema instance. 718 /// \param OpenCLBuiltin (in) The signature currently handled. 719 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 720 /// type used as return type or as argument. 721 /// Only meaningful for generic types, otherwise equals 1. 722 /// \param RetTypes (out) List of the possible return types. 723 /// \param ArgTypes (out) List of the possible argument types. For each 724 /// argument, ArgTypes contains QualTypes for the Cartesian product 725 /// of (vector sizes) x (types) . 726 static void GetQualTypesForOpenCLBuiltin( 727 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 728 SmallVector<QualType, 1> &RetTypes, 729 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 730 // Get the QualType instances of the return types. 731 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 732 OCL2Qual(S, TypeTable[Sig], RetTypes); 733 GenTypeMaxCnt = RetTypes.size(); 734 735 // Get the QualType instances of the arguments. 736 // First type is the return type, skip it. 737 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 738 SmallVector<QualType, 1> Ty; 739 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 740 Ty); 741 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 742 ArgTypes.push_back(std::move(Ty)); 743 } 744 } 745 746 /// Create a list of the candidate function overloads for an OpenCL builtin 747 /// function. 748 /// \param Context (in) The ASTContext instance. 749 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 750 /// type used as return type or as argument. 751 /// Only meaningful for generic types, otherwise equals 1. 752 /// \param FunctionList (out) List of FunctionTypes. 753 /// \param RetTypes (in) List of the possible return types. 754 /// \param ArgTypes (in) List of the possible types for the arguments. 755 static void GetOpenCLBuiltinFctOverloads( 756 ASTContext &Context, unsigned GenTypeMaxCnt, 757 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 758 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 759 FunctionProtoType::ExtProtoInfo PI( 760 Context.getDefaultCallingConvention(false, false, true)); 761 PI.Variadic = false; 762 763 // Do not attempt to create any FunctionTypes if there are no return types, 764 // which happens when a type belongs to a disabled extension. 765 if (RetTypes.size() == 0) 766 return; 767 768 // Create FunctionTypes for each (gen)type. 769 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 770 SmallVector<QualType, 5> ArgList; 771 772 for (unsigned A = 0; A < ArgTypes.size(); A++) { 773 // Bail out if there is an argument that has no available types. 774 if (ArgTypes[A].size() == 0) 775 return; 776 777 // Builtins such as "max" have an "sgentype" argument that represents 778 // the corresponding scalar type of a gentype. The number of gentypes 779 // must be a multiple of the number of sgentypes. 780 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 781 "argument type count not compatible with gentype type count"); 782 unsigned Idx = IGenType % ArgTypes[A].size(); 783 ArgList.push_back(ArgTypes[A][Idx]); 784 } 785 786 FunctionList.push_back(Context.getFunctionType( 787 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 788 } 789 } 790 791 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 792 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 793 /// builtin function. Add all candidate signatures to the LookUpResult. 794 /// 795 /// \param S (in) The Sema instance. 796 /// \param LR (inout) The LookupResult instance. 797 /// \param II (in) The identifier being resolved. 798 /// \param FctIndex (in) Starting index in the BuiltinTable. 799 /// \param Len (in) The signature list has Len elements. 800 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 801 IdentifierInfo *II, 802 const unsigned FctIndex, 803 const unsigned Len) { 804 // The builtin function declaration uses generic types (gentype). 805 bool HasGenType = false; 806 807 // Maximum number of types contained in a generic type used as return type or 808 // as argument. Only meaningful for generic types, otherwise equals 1. 809 unsigned GenTypeMaxCnt; 810 811 ASTContext &Context = S.Context; 812 813 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 814 const OpenCLBuiltinStruct &OpenCLBuiltin = 815 BuiltinTable[FctIndex + SignatureIndex]; 816 817 // Ignore this builtin function if it is not available in the currently 818 // selected language version. 819 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 820 OpenCLBuiltin.Versions)) 821 continue; 822 823 // Ignore this builtin function if it carries an extension macro that is 824 // not defined. This indicates that the extension is not supported by the 825 // target, so the builtin function should not be available. 826 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 827 if (!Extensions.empty()) { 828 SmallVector<StringRef, 2> ExtVec; 829 Extensions.split(ExtVec, " "); 830 bool AllExtensionsDefined = true; 831 for (StringRef Ext : ExtVec) { 832 if (!S.getPreprocessor().isMacroDefined(Ext)) { 833 AllExtensionsDefined = false; 834 break; 835 } 836 } 837 if (!AllExtensionsDefined) 838 continue; 839 } 840 841 SmallVector<QualType, 1> RetTypes; 842 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 843 844 // Obtain QualType lists for the function signature. 845 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 846 ArgTypes); 847 if (GenTypeMaxCnt > 1) { 848 HasGenType = true; 849 } 850 851 // Create function overload for each type combination. 852 std::vector<QualType> FunctionList; 853 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 854 ArgTypes); 855 856 SourceLocation Loc = LR.getNameLoc(); 857 DeclContext *Parent = Context.getTranslationUnitDecl(); 858 FunctionDecl *NewOpenCLBuiltin; 859 860 for (const auto &FTy : FunctionList) { 861 NewOpenCLBuiltin = FunctionDecl::Create( 862 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 863 S.getCurFPFeatures().isFPConstrained(), false, 864 FTy->isFunctionProtoType()); 865 NewOpenCLBuiltin->setImplicit(); 866 867 // Create Decl objects for each parameter, adding them to the 868 // FunctionDecl. 869 const auto *FP = cast<FunctionProtoType>(FTy); 870 SmallVector<ParmVarDecl *, 4> ParmList; 871 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 872 ParmVarDecl *Parm = ParmVarDecl::Create( 873 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 874 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 875 Parm->setScopeInfo(0, IParm); 876 ParmList.push_back(Parm); 877 } 878 NewOpenCLBuiltin->setParams(ParmList); 879 880 // Add function attributes. 881 if (OpenCLBuiltin.IsPure) 882 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 883 if (OpenCLBuiltin.IsConst) 884 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 885 if (OpenCLBuiltin.IsConv) 886 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 887 888 if (!S.getLangOpts().OpenCLCPlusPlus) 889 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 890 891 LR.addDecl(NewOpenCLBuiltin); 892 } 893 } 894 895 // If we added overloads, need to resolve the lookup result. 896 if (Len > 1 || HasGenType) 897 LR.resolveKind(); 898 } 899 900 /// Lookup a builtin function, when name lookup would otherwise 901 /// fail. 902 bool Sema::LookupBuiltin(LookupResult &R) { 903 Sema::LookupNameKind NameKind = R.getLookupKind(); 904 905 // If we didn't find a use of this identifier, and if the identifier 906 // corresponds to a compiler builtin, create the decl object for the builtin 907 // now, injecting it into translation unit scope, and return it. 908 if (NameKind == Sema::LookupOrdinaryName || 909 NameKind == Sema::LookupRedeclarationWithLinkage) { 910 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 911 if (II) { 912 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 913 if (II == getASTContext().getMakeIntegerSeqName()) { 914 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 915 return true; 916 } else if (II == getASTContext().getTypePackElementName()) { 917 R.addDecl(getASTContext().getTypePackElementDecl()); 918 return true; 919 } 920 } 921 922 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 923 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 924 auto Index = isOpenCLBuiltin(II->getName()); 925 if (Index.first) { 926 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 927 Index.second); 928 return true; 929 } 930 } 931 932 if (DeclareRISCVVBuiltins) { 933 if (!RVIntrinsicManager) 934 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this); 935 936 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 937 return true; 938 } 939 940 // If this is a builtin on this (or all) targets, create the decl. 941 if (unsigned BuiltinID = II->getBuiltinID()) { 942 // In C++, C2x, and OpenCL (spec v1.2 s6.9.f), we don't have any 943 // predefined library functions like 'malloc'. Instead, we'll just 944 // error. 945 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL || 946 getLangOpts().C2x) && 947 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 948 return false; 949 950 if (NamedDecl *D = 951 LazilyCreateBuiltin(II, BuiltinID, TUScope, 952 R.isForRedeclaration(), R.getNameLoc())) { 953 R.addDecl(D); 954 return true; 955 } 956 } 957 } 958 } 959 960 return false; 961 } 962 963 /// Looks up the declaration of "struct objc_super" and 964 /// saves it for later use in building builtin declaration of 965 /// objc_msgSendSuper and objc_msgSendSuper_stret. 966 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 967 ASTContext &Context = Sema.Context; 968 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 969 Sema::LookupTagName); 970 Sema.LookupName(Result, S); 971 if (Result.getResultKind() == LookupResult::Found) 972 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 973 Context.setObjCSuperType(Context.getTagDeclType(TD)); 974 } 975 976 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 977 if (ID == Builtin::BIobjc_msgSendSuper) 978 LookupPredefedObjCSuperType(*this, S); 979 } 980 981 /// Determine whether we can declare a special member function within 982 /// the class at this point. 983 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 984 // We need to have a definition for the class. 985 if (!Class->getDefinition() || Class->isDependentContext()) 986 return false; 987 988 // We can't be in the middle of defining the class. 989 return !Class->isBeingDefined(); 990 } 991 992 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 993 if (!CanDeclareSpecialMemberFunction(Class)) 994 return; 995 996 // If the default constructor has not yet been declared, do so now. 997 if (Class->needsImplicitDefaultConstructor()) 998 DeclareImplicitDefaultConstructor(Class); 999 1000 // If the copy constructor has not yet been declared, do so now. 1001 if (Class->needsImplicitCopyConstructor()) 1002 DeclareImplicitCopyConstructor(Class); 1003 1004 // If the copy assignment operator has not yet been declared, do so now. 1005 if (Class->needsImplicitCopyAssignment()) 1006 DeclareImplicitCopyAssignment(Class); 1007 1008 if (getLangOpts().CPlusPlus11) { 1009 // If the move constructor has not yet been declared, do so now. 1010 if (Class->needsImplicitMoveConstructor()) 1011 DeclareImplicitMoveConstructor(Class); 1012 1013 // If the move assignment operator has not yet been declared, do so now. 1014 if (Class->needsImplicitMoveAssignment()) 1015 DeclareImplicitMoveAssignment(Class); 1016 } 1017 1018 // If the destructor has not yet been declared, do so now. 1019 if (Class->needsImplicitDestructor()) 1020 DeclareImplicitDestructor(Class); 1021 } 1022 1023 /// Determine whether this is the name of an implicitly-declared 1024 /// special member function. 1025 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1026 switch (Name.getNameKind()) { 1027 case DeclarationName::CXXConstructorName: 1028 case DeclarationName::CXXDestructorName: 1029 return true; 1030 1031 case DeclarationName::CXXOperatorName: 1032 return Name.getCXXOverloadedOperator() == OO_Equal; 1033 1034 default: 1035 break; 1036 } 1037 1038 return false; 1039 } 1040 1041 /// If there are any implicit member functions with the given name 1042 /// that need to be declared in the given declaration context, do so. 1043 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1044 DeclarationName Name, 1045 SourceLocation Loc, 1046 const DeclContext *DC) { 1047 if (!DC) 1048 return; 1049 1050 switch (Name.getNameKind()) { 1051 case DeclarationName::CXXConstructorName: 1052 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1053 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1054 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1055 if (Record->needsImplicitDefaultConstructor()) 1056 S.DeclareImplicitDefaultConstructor(Class); 1057 if (Record->needsImplicitCopyConstructor()) 1058 S.DeclareImplicitCopyConstructor(Class); 1059 if (S.getLangOpts().CPlusPlus11 && 1060 Record->needsImplicitMoveConstructor()) 1061 S.DeclareImplicitMoveConstructor(Class); 1062 } 1063 break; 1064 1065 case DeclarationName::CXXDestructorName: 1066 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1067 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1068 CanDeclareSpecialMemberFunction(Record)) 1069 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1070 break; 1071 1072 case DeclarationName::CXXOperatorName: 1073 if (Name.getCXXOverloadedOperator() != OO_Equal) 1074 break; 1075 1076 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1077 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1078 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1079 if (Record->needsImplicitCopyAssignment()) 1080 S.DeclareImplicitCopyAssignment(Class); 1081 if (S.getLangOpts().CPlusPlus11 && 1082 Record->needsImplicitMoveAssignment()) 1083 S.DeclareImplicitMoveAssignment(Class); 1084 } 1085 } 1086 break; 1087 1088 case DeclarationName::CXXDeductionGuideName: 1089 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1090 break; 1091 1092 default: 1093 break; 1094 } 1095 } 1096 1097 // Adds all qualifying matches for a name within a decl context to the 1098 // given lookup result. Returns true if any matches were found. 1099 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1100 bool Found = false; 1101 1102 // Lazily declare C++ special member functions. 1103 if (S.getLangOpts().CPlusPlus) 1104 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1105 DC); 1106 1107 // Perform lookup into this declaration context. 1108 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1109 for (NamedDecl *D : DR) { 1110 if ((D = R.getAcceptableDecl(D))) { 1111 R.addDecl(D); 1112 Found = true; 1113 } 1114 } 1115 1116 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1117 return true; 1118 1119 if (R.getLookupName().getNameKind() 1120 != DeclarationName::CXXConversionFunctionName || 1121 R.getLookupName().getCXXNameType()->isDependentType() || 1122 !isa<CXXRecordDecl>(DC)) 1123 return Found; 1124 1125 // C++ [temp.mem]p6: 1126 // A specialization of a conversion function template is not found by 1127 // name lookup. Instead, any conversion function templates visible in the 1128 // context of the use are considered. [...] 1129 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1130 if (!Record->isCompleteDefinition()) 1131 return Found; 1132 1133 // For conversion operators, 'operator auto' should only match 1134 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1135 // as a candidate for template substitution. 1136 auto *ContainedDeducedType = 1137 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1138 if (R.getLookupName().getNameKind() == 1139 DeclarationName::CXXConversionFunctionName && 1140 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1141 return Found; 1142 1143 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1144 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1145 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1146 if (!ConvTemplate) 1147 continue; 1148 1149 // When we're performing lookup for the purposes of redeclaration, just 1150 // add the conversion function template. When we deduce template 1151 // arguments for specializations, we'll end up unifying the return 1152 // type of the new declaration with the type of the function template. 1153 if (R.isForRedeclaration()) { 1154 R.addDecl(ConvTemplate); 1155 Found = true; 1156 continue; 1157 } 1158 1159 // C++ [temp.mem]p6: 1160 // [...] For each such operator, if argument deduction succeeds 1161 // (14.9.2.3), the resulting specialization is used as if found by 1162 // name lookup. 1163 // 1164 // When referencing a conversion function for any purpose other than 1165 // a redeclaration (such that we'll be building an expression with the 1166 // result), perform template argument deduction and place the 1167 // specialization into the result set. We do this to avoid forcing all 1168 // callers to perform special deduction for conversion functions. 1169 TemplateDeductionInfo Info(R.getNameLoc()); 1170 FunctionDecl *Specialization = nullptr; 1171 1172 const FunctionProtoType *ConvProto 1173 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1174 assert(ConvProto && "Nonsensical conversion function template type"); 1175 1176 // Compute the type of the function that we would expect the conversion 1177 // function to have, if it were to match the name given. 1178 // FIXME: Calling convention! 1179 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1180 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1181 EPI.ExceptionSpec = EST_None; 1182 QualType ExpectedType 1183 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), 1184 None, EPI); 1185 1186 // Perform template argument deduction against the type that we would 1187 // expect the function to have. 1188 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1189 Specialization, Info) 1190 == Sema::TDK_Success) { 1191 R.addDecl(Specialization); 1192 Found = true; 1193 } 1194 } 1195 1196 return Found; 1197 } 1198 1199 // Performs C++ unqualified lookup into the given file context. 1200 static bool 1201 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1202 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { 1203 1204 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1205 1206 // Perform direct name lookup into the LookupCtx. 1207 bool Found = LookupDirect(S, R, NS); 1208 1209 // Perform direct name lookup into the namespaces nominated by the 1210 // using directives whose common ancestor is this namespace. 1211 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1212 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1213 Found = true; 1214 1215 R.resolveKind(); 1216 1217 return Found; 1218 } 1219 1220 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1221 if (DeclContext *Ctx = S->getEntity()) 1222 return Ctx->isFileContext(); 1223 return false; 1224 } 1225 1226 /// Find the outer declaration context from this scope. This indicates the 1227 /// context that we should search up to (exclusive) before considering the 1228 /// parent of the specified scope. 1229 static DeclContext *findOuterContext(Scope *S) { 1230 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1231 if (DeclContext *DC = OuterS->getLookupEntity()) 1232 return DC; 1233 return nullptr; 1234 } 1235 1236 namespace { 1237 /// An RAII object to specify that we want to find block scope extern 1238 /// declarations. 1239 struct FindLocalExternScope { 1240 FindLocalExternScope(LookupResult &R) 1241 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1242 Decl::IDNS_LocalExtern) { 1243 R.setFindLocalExtern(R.getIdentifierNamespace() & 1244 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1245 } 1246 void restore() { 1247 R.setFindLocalExtern(OldFindLocalExtern); 1248 } 1249 ~FindLocalExternScope() { 1250 restore(); 1251 } 1252 LookupResult &R; 1253 bool OldFindLocalExtern; 1254 }; 1255 } // end anonymous namespace 1256 1257 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1258 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1259 1260 DeclarationName Name = R.getLookupName(); 1261 Sema::LookupNameKind NameKind = R.getLookupKind(); 1262 1263 // If this is the name of an implicitly-declared special member function, 1264 // go through the scope stack to implicitly declare 1265 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1266 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1267 if (DeclContext *DC = PreS->getEntity()) 1268 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1269 } 1270 1271 // Implicitly declare member functions with the name we're looking for, if in 1272 // fact we are in a scope where it matters. 1273 1274 Scope *Initial = S; 1275 IdentifierResolver::iterator 1276 I = IdResolver.begin(Name), 1277 IEnd = IdResolver.end(); 1278 1279 // First we lookup local scope. 1280 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1281 // ...During unqualified name lookup (3.4.1), the names appear as if 1282 // they were declared in the nearest enclosing namespace which contains 1283 // both the using-directive and the nominated namespace. 1284 // [Note: in this context, "contains" means "contains directly or 1285 // indirectly". 1286 // 1287 // For example: 1288 // namespace A { int i; } 1289 // void foo() { 1290 // int i; 1291 // { 1292 // using namespace A; 1293 // ++i; // finds local 'i', A::i appears at global scope 1294 // } 1295 // } 1296 // 1297 UnqualUsingDirectiveSet UDirs(*this); 1298 bool VisitedUsingDirectives = false; 1299 bool LeftStartingScope = false; 1300 1301 // When performing a scope lookup, we want to find local extern decls. 1302 FindLocalExternScope FindLocals(R); 1303 1304 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1305 bool SearchNamespaceScope = true; 1306 // Check whether the IdResolver has anything in this scope. 1307 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1308 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1309 if (NameKind == LookupRedeclarationWithLinkage && 1310 !(*I)->isTemplateParameter()) { 1311 // If it's a template parameter, we still find it, so we can diagnose 1312 // the invalid redeclaration. 1313 1314 // Determine whether this (or a previous) declaration is 1315 // out-of-scope. 1316 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1317 LeftStartingScope = true; 1318 1319 // If we found something outside of our starting scope that 1320 // does not have linkage, skip it. 1321 if (LeftStartingScope && !((*I)->hasLinkage())) { 1322 R.setShadowed(); 1323 continue; 1324 } 1325 } else { 1326 // We found something in this scope, we should not look at the 1327 // namespace scope 1328 SearchNamespaceScope = false; 1329 } 1330 R.addDecl(ND); 1331 } 1332 } 1333 if (!SearchNamespaceScope) { 1334 R.resolveKind(); 1335 if (S->isClassScope()) 1336 if (CXXRecordDecl *Record = 1337 dyn_cast_or_null<CXXRecordDecl>(S->getEntity())) 1338 R.setNamingClass(Record); 1339 return true; 1340 } 1341 1342 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1343 // C++11 [class.friend]p11: 1344 // If a friend declaration appears in a local class and the name 1345 // specified is an unqualified name, a prior declaration is 1346 // looked up without considering scopes that are outside the 1347 // innermost enclosing non-class scope. 1348 return false; 1349 } 1350 1351 if (DeclContext *Ctx = S->getLookupEntity()) { 1352 DeclContext *OuterCtx = findOuterContext(S); 1353 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1354 // We do not directly look into transparent contexts, since 1355 // those entities will be found in the nearest enclosing 1356 // non-transparent context. 1357 if (Ctx->isTransparentContext()) 1358 continue; 1359 1360 // We do not look directly into function or method contexts, 1361 // since all of the local variables and parameters of the 1362 // function/method are present within the Scope. 1363 if (Ctx->isFunctionOrMethod()) { 1364 // If we have an Objective-C instance method, look for ivars 1365 // in the corresponding interface. 1366 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1367 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1368 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1369 ObjCInterfaceDecl *ClassDeclared; 1370 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1371 Name.getAsIdentifierInfo(), 1372 ClassDeclared)) { 1373 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1374 R.addDecl(ND); 1375 R.resolveKind(); 1376 return true; 1377 } 1378 } 1379 } 1380 } 1381 1382 continue; 1383 } 1384 1385 // If this is a file context, we need to perform unqualified name 1386 // lookup considering using directives. 1387 if (Ctx->isFileContext()) { 1388 // If we haven't handled using directives yet, do so now. 1389 if (!VisitedUsingDirectives) { 1390 // Add using directives from this context up to the top level. 1391 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1392 if (UCtx->isTransparentContext()) 1393 continue; 1394 1395 UDirs.visit(UCtx, UCtx); 1396 } 1397 1398 // Find the innermost file scope, so we can add using directives 1399 // from local scopes. 1400 Scope *InnermostFileScope = S; 1401 while (InnermostFileScope && 1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1403 InnermostFileScope = InnermostFileScope->getParent(); 1404 UDirs.visitScopeChain(Initial, InnermostFileScope); 1405 1406 UDirs.done(); 1407 1408 VisitedUsingDirectives = true; 1409 } 1410 1411 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1412 R.resolveKind(); 1413 return true; 1414 } 1415 1416 continue; 1417 } 1418 1419 // Perform qualified name lookup into this context. 1420 // FIXME: In some cases, we know that every name that could be found by 1421 // this qualified name lookup will also be on the identifier chain. For 1422 // example, inside a class without any base classes, we never need to 1423 // perform qualified lookup because all of the members are on top of the 1424 // identifier chain. 1425 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1426 return true; 1427 } 1428 } 1429 } 1430 1431 // Stop if we ran out of scopes. 1432 // FIXME: This really, really shouldn't be happening. 1433 if (!S) return false; 1434 1435 // If we are looking for members, no need to look into global/namespace scope. 1436 if (NameKind == LookupMemberName) 1437 return false; 1438 1439 // Collect UsingDirectiveDecls in all scopes, and recursively all 1440 // nominated namespaces by those using-directives. 1441 // 1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1443 // don't build it for each lookup! 1444 if (!VisitedUsingDirectives) { 1445 UDirs.visitScopeChain(Initial, S); 1446 UDirs.done(); 1447 } 1448 1449 // If we're not performing redeclaration lookup, do not look for local 1450 // extern declarations outside of a function scope. 1451 if (!R.isForRedeclaration()) 1452 FindLocals.restore(); 1453 1454 // Lookup namespace scope, and global scope. 1455 // Unqualified name lookup in C++ requires looking into scopes 1456 // that aren't strictly lexical, and therefore we walk through the 1457 // context as well as walking through the scopes. 1458 for (; S; S = S->getParent()) { 1459 // Check whether the IdResolver has anything in this scope. 1460 bool Found = false; 1461 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1462 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1463 // We found something. Look for anything else in our scope 1464 // with this same name and in an acceptable identifier 1465 // namespace, so that we can construct an overload set if we 1466 // need to. 1467 Found = true; 1468 R.addDecl(ND); 1469 } 1470 } 1471 1472 if (Found && S->isTemplateParamScope()) { 1473 R.resolveKind(); 1474 return true; 1475 } 1476 1477 DeclContext *Ctx = S->getLookupEntity(); 1478 if (Ctx) { 1479 DeclContext *OuterCtx = findOuterContext(S); 1480 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1481 // We do not directly look into transparent contexts, since 1482 // those entities will be found in the nearest enclosing 1483 // non-transparent context. 1484 if (Ctx->isTransparentContext()) 1485 continue; 1486 1487 // If we have a context, and it's not a context stashed in the 1488 // template parameter scope for an out-of-line definition, also 1489 // look into that context. 1490 if (!(Found && S->isTemplateParamScope())) { 1491 assert(Ctx->isFileContext() && 1492 "We should have been looking only at file context here already."); 1493 1494 // Look into context considering using-directives. 1495 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1496 Found = true; 1497 } 1498 1499 if (Found) { 1500 R.resolveKind(); 1501 return true; 1502 } 1503 1504 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1505 return false; 1506 } 1507 } 1508 1509 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1510 return false; 1511 } 1512 1513 return !R.empty(); 1514 } 1515 1516 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1517 if (auto *M = getCurrentModule()) 1518 Context.mergeDefinitionIntoModule(ND, M); 1519 else 1520 // We're not building a module; just make the definition visible. 1521 ND->setVisibleDespiteOwningModule(); 1522 1523 // If ND is a template declaration, make the template parameters 1524 // visible too. They're not (necessarily) within a mergeable DeclContext. 1525 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1526 for (auto *Param : *TD->getTemplateParameters()) 1527 makeMergedDefinitionVisible(Param); 1528 } 1529 1530 /// Find the module in which the given declaration was defined. 1531 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1532 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1533 // If this function was instantiated from a template, the defining module is 1534 // the module containing the pattern. 1535 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1536 Entity = Pattern; 1537 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1538 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1539 Entity = Pattern; 1540 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1541 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1542 Entity = Pattern; 1543 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1544 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1545 Entity = Pattern; 1546 } 1547 1548 // Walk up to the containing context. That might also have been instantiated 1549 // from a template. 1550 DeclContext *Context = Entity->getLexicalDeclContext(); 1551 if (Context->isFileContext()) 1552 return S.getOwningModule(Entity); 1553 return getDefiningModule(S, cast<Decl>(Context)); 1554 } 1555 1556 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1557 unsigned N = CodeSynthesisContexts.size(); 1558 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1559 I != N; ++I) { 1560 Module *M = CodeSynthesisContexts[I].Entity ? 1561 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1562 nullptr; 1563 if (M && !LookupModulesCache.insert(M).second) 1564 M = nullptr; 1565 CodeSynthesisContextLookupModules.push_back(M); 1566 } 1567 return LookupModulesCache; 1568 } 1569 1570 /// Determine if we could use all the declarations in the module. 1571 bool Sema::isUsableModule(const Module *M) { 1572 assert(M && "We shouldn't check nullness for module here"); 1573 // Return quickly if we cached the result. 1574 if (UsableModuleUnitsCache.count(M)) 1575 return true; 1576 1577 // If M is the global module fragment of the current translation unit. So it 1578 // should be usable. 1579 // [module.global.frag]p1: 1580 // The global module fragment can be used to provide declarations that are 1581 // attached to the global module and usable within the module unit. 1582 if (M == GlobalModuleFragment || 1583 // If M is the module we're parsing, it should be usable. This covers the 1584 // private module fragment. The private module fragment is usable only if 1585 // it is within the current module unit. And it must be the current 1586 // parsing module unit if it is within the current module unit according 1587 // to the grammar of the private module fragment. NOTE: This is covered by 1588 // the following condition. The intention of the check is to avoid string 1589 // comparison as much as possible. 1590 M == getCurrentModule() || 1591 // The module unit which is in the same module with the current module 1592 // unit is usable. 1593 // 1594 // FIXME: Here we judge if they are in the same module by comparing the 1595 // string. Is there any better solution? 1596 M->getPrimaryModuleInterfaceName() == 1597 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) { 1598 UsableModuleUnitsCache.insert(M); 1599 return true; 1600 } 1601 1602 return false; 1603 } 1604 1605 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) { 1606 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1607 if (isModuleVisible(Merged)) 1608 return true; 1609 return false; 1610 } 1611 1612 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) { 1613 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1614 if (isUsableModule(Merged)) 1615 return true; 1616 return false; 1617 } 1618 1619 template <typename ParmDecl> 1620 static bool 1621 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1622 llvm::SmallVectorImpl<Module *> *Modules, 1623 Sema::AcceptableKind Kind) { 1624 if (!D->hasDefaultArgument()) 1625 return false; 1626 1627 llvm::SmallDenseSet<const ParmDecl *, 4> Visited; 1628 while (D && !Visited.count(D)) { 1629 Visited.insert(D); 1630 1631 auto &DefaultArg = D->getDefaultArgStorage(); 1632 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1633 return true; 1634 1635 if (!DefaultArg.isInherited() && Modules) { 1636 auto *NonConstD = const_cast<ParmDecl*>(D); 1637 Modules->push_back(S.getOwningModule(NonConstD)); 1638 } 1639 1640 // If there was a previous default argument, maybe its parameter is 1641 // acceptable. 1642 D = DefaultArg.getInheritedFrom(); 1643 } 1644 return false; 1645 } 1646 1647 bool Sema::hasAcceptableDefaultArgument( 1648 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1649 Sema::AcceptableKind Kind) { 1650 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1651 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1652 1653 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1654 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1655 1656 return ::hasAcceptableDefaultArgument( 1657 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1658 } 1659 1660 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1661 llvm::SmallVectorImpl<Module *> *Modules) { 1662 return hasAcceptableDefaultArgument(D, Modules, 1663 Sema::AcceptableKind::Visible); 1664 } 1665 1666 bool Sema::hasReachableDefaultArgument( 1667 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1668 return hasAcceptableDefaultArgument(D, Modules, 1669 Sema::AcceptableKind::Reachable); 1670 } 1671 1672 template <typename Filter> 1673 static bool 1674 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1675 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1676 Sema::AcceptableKind Kind) { 1677 bool HasFilteredRedecls = false; 1678 1679 for (auto *Redecl : D->redecls()) { 1680 auto *R = cast<NamedDecl>(Redecl); 1681 if (!F(R)) 1682 continue; 1683 1684 if (S.isAcceptable(R, Kind)) 1685 return true; 1686 1687 HasFilteredRedecls = true; 1688 1689 if (Modules) 1690 Modules->push_back(R->getOwningModule()); 1691 } 1692 1693 // Only return false if there is at least one redecl that is not filtered out. 1694 if (HasFilteredRedecls) 1695 return false; 1696 1697 return true; 1698 } 1699 1700 static bool 1701 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1702 llvm::SmallVectorImpl<Module *> *Modules, 1703 Sema::AcceptableKind Kind) { 1704 return hasAcceptableDeclarationImpl( 1705 S, D, Modules, 1706 [](const NamedDecl *D) { 1707 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1708 return RD->getTemplateSpecializationKind() == 1709 TSK_ExplicitSpecialization; 1710 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1711 return FD->getTemplateSpecializationKind() == 1712 TSK_ExplicitSpecialization; 1713 if (auto *VD = dyn_cast<VarDecl>(D)) 1714 return VD->getTemplateSpecializationKind() == 1715 TSK_ExplicitSpecialization; 1716 llvm_unreachable("unknown explicit specialization kind"); 1717 }, 1718 Kind); 1719 } 1720 1721 bool Sema::hasVisibleExplicitSpecialization( 1722 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1723 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1724 Sema::AcceptableKind::Visible); 1725 } 1726 1727 bool Sema::hasReachableExplicitSpecialization( 1728 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1729 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1730 Sema::AcceptableKind::Reachable); 1731 } 1732 1733 static bool 1734 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1735 llvm::SmallVectorImpl<Module *> *Modules, 1736 Sema::AcceptableKind Kind) { 1737 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1738 "not a member specialization"); 1739 return hasAcceptableDeclarationImpl( 1740 S, D, Modules, 1741 [](const NamedDecl *D) { 1742 // If the specialization is declared at namespace scope, then it's a 1743 // member specialization declaration. If it's lexically inside the class 1744 // definition then it was instantiated. 1745 // 1746 // FIXME: This is a hack. There should be a better way to determine 1747 // this. 1748 // FIXME: What about MS-style explicit specializations declared within a 1749 // class definition? 1750 return D->getLexicalDeclContext()->isFileContext(); 1751 }, 1752 Kind); 1753 } 1754 1755 bool Sema::hasVisibleMemberSpecialization( 1756 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1757 return hasAcceptableMemberSpecialization(*this, D, Modules, 1758 Sema::AcceptableKind::Visible); 1759 } 1760 1761 bool Sema::hasReachableMemberSpecialization( 1762 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1763 return hasAcceptableMemberSpecialization(*this, D, Modules, 1764 Sema::AcceptableKind::Reachable); 1765 } 1766 1767 /// Determine whether a declaration is acceptable to name lookup. 1768 /// 1769 /// This routine determines whether the declaration D is acceptable in the 1770 /// current lookup context, taking into account the current template 1771 /// instantiation stack. During template instantiation, a declaration is 1772 /// acceptable if it is acceptable from a module containing any entity on the 1773 /// template instantiation path (by instantiating a template, you allow it to 1774 /// see the declarations that your module can see, including those later on in 1775 /// your module). 1776 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1777 Sema::AcceptableKind Kind) { 1778 assert(!D->isUnconditionallyVisible() && 1779 "should not call this: not in slow case"); 1780 1781 Module *DeclModule = SemaRef.getOwningModule(D); 1782 assert(DeclModule && "hidden decl has no owning module"); 1783 1784 // If the owning module is visible, the decl is acceptable. 1785 if (SemaRef.isModuleVisible(DeclModule, 1786 D->isInvisibleOutsideTheOwningModule())) 1787 return true; 1788 1789 // Determine whether a decl context is a file context for the purpose of 1790 // visibility/reachability. This looks through some (export and linkage spec) 1791 // transparent contexts, but not others (enums). 1792 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1793 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1794 isa<ExportDecl>(DC); 1795 }; 1796 1797 // If this declaration is not at namespace scope 1798 // then it is acceptable if its lexical parent has a acceptable definition. 1799 DeclContext *DC = D->getLexicalDeclContext(); 1800 if (DC && !IsEffectivelyFileContext(DC)) { 1801 // For a parameter, check whether our current template declaration's 1802 // lexical context is acceptable, not whether there's some other acceptable 1803 // definition of it, because parameters aren't "within" the definition. 1804 // 1805 // In C++ we need to check for a acceptable definition due to ODR merging, 1806 // and in C we must not because each declaration of a function gets its own 1807 // set of declarations for tags in prototype scope. 1808 bool AcceptableWithinParent; 1809 if (D->isTemplateParameter()) { 1810 bool SearchDefinitions = true; 1811 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1812 if (const auto *TD = DCD->getDescribedTemplate()) { 1813 TemplateParameterList *TPL = TD->getTemplateParameters(); 1814 auto Index = getDepthAndIndex(D).second; 1815 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1816 } 1817 } 1818 if (SearchDefinitions) 1819 AcceptableWithinParent = 1820 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1821 else 1822 AcceptableWithinParent = 1823 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1824 } else if (isa<ParmVarDecl>(D) || 1825 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1826 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1827 else if (D->isModulePrivate()) { 1828 // A module-private declaration is only acceptable if an enclosing lexical 1829 // parent was merged with another definition in the current module. 1830 AcceptableWithinParent = false; 1831 do { 1832 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1833 AcceptableWithinParent = true; 1834 break; 1835 } 1836 DC = DC->getLexicalParent(); 1837 } while (!IsEffectivelyFileContext(DC)); 1838 } else { 1839 AcceptableWithinParent = 1840 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1841 } 1842 1843 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1844 Kind == Sema::AcceptableKind::Visible && 1845 // FIXME: Do something better in this case. 1846 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1847 // Cache the fact that this declaration is implicitly visible because 1848 // its parent has a visible definition. 1849 D->setVisibleDespiteOwningModule(); 1850 } 1851 return AcceptableWithinParent; 1852 } 1853 1854 if (Kind == Sema::AcceptableKind::Visible) 1855 return false; 1856 1857 assert(Kind == Sema::AcceptableKind::Reachable && 1858 "Additional Sema::AcceptableKind?"); 1859 return isReachableSlow(SemaRef, D); 1860 } 1861 1862 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1863 // [module.global.frag]p2: 1864 // A global-module-fragment specifies the contents of the global module 1865 // fragment for a module unit. The global module fragment can be used to 1866 // provide declarations that are attached to the global module and usable 1867 // within the module unit. 1868 // 1869 // Global module fragment is special. Global Module fragment is only usable 1870 // within the module unit it got defined [module.global.frag]p2. So here we 1871 // check if the Module is the global module fragment in current translation 1872 // unit. 1873 if (M->isGlobalModule() && M != this->GlobalModuleFragment) 1874 return false; 1875 1876 // The module might be ordinarily visible. For a module-private query, that 1877 // means it is part of the current module. 1878 if (ModulePrivate && isUsableModule(M)) 1879 return true; 1880 1881 // For a query which is not module-private, that means it is in our visible 1882 // module set. 1883 if (!ModulePrivate && VisibleModules.isVisible(M)) 1884 return true; 1885 1886 // Otherwise, it might be visible by virtue of the query being within a 1887 // template instantiation or similar that is permitted to look inside M. 1888 1889 // Find the extra places where we need to look. 1890 const auto &LookupModules = getLookupModules(); 1891 if (LookupModules.empty()) 1892 return false; 1893 1894 // If our lookup set contains the module, it's visible. 1895 if (LookupModules.count(M)) 1896 return true; 1897 1898 // For a module-private query, that's everywhere we get to look. 1899 if (ModulePrivate) 1900 return false; 1901 1902 // Check whether M is transitively exported to an import of the lookup set. 1903 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1904 return LookupM->isModuleVisible(M); 1905 }); 1906 } 1907 1908 // FIXME: Return false directly if we don't have an interface dependency on the 1909 // translation unit containing D. 1910 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1911 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1912 1913 Module *DeclModule = SemaRef.getOwningModule(D); 1914 assert(DeclModule && "hidden decl has no owning module"); 1915 1916 // Entities in module map modules are reachable only if they're visible. 1917 if (DeclModule->isModuleMapModule()) 1918 return false; 1919 1920 // If D comes from a module and SemaRef doesn't own a module, it implies D 1921 // comes from another TU. In case SemaRef owns a module, we could judge if D 1922 // comes from another TU by comparing the module unit. 1923 // 1924 // FIXME: It would look better if we have direct method to judge whether D is 1925 // in another TU. 1926 if (SemaRef.getCurrentModule() && 1927 SemaRef.getCurrentModule()->getTopLevelModule() == 1928 DeclModule->getTopLevelModule()) 1929 return true; 1930 1931 // [module.reach]/p3: 1932 // A declaration D is reachable from a point P if: 1933 // ... 1934 // - D is not discarded ([module.global.frag]), appears in a translation unit 1935 // that is reachable from P, and does not appear within a private module 1936 // fragment. 1937 // 1938 // A declaration that's discarded in the GMF should be module-private. 1939 if (D->isModulePrivate()) 1940 return false; 1941 1942 // [module.reach]/p1 1943 // A translation unit U is necessarily reachable from a point P if U is a 1944 // module interface unit on which the translation unit containing P has an 1945 // interface dependency, or the translation unit containing P imports U, in 1946 // either case prior to P ([module.import]). 1947 // 1948 // [module.import]/p10 1949 // A translation unit has an interface dependency on a translation unit U if 1950 // it contains a declaration (possibly a module-declaration) that imports U 1951 // or if it has an interface dependency on a translation unit that has an 1952 // interface dependency on U. 1953 // 1954 // So we could conclude the module unit U is necessarily reachable if: 1955 // (1) The module unit U is module interface unit. 1956 // (2) The current unit has an interface dependency on the module unit U. 1957 // 1958 // Here we only check for the first condition. Since we couldn't see 1959 // DeclModule if it isn't (transitively) imported. 1960 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1961 return true; 1962 1963 // [module.reach]/p2 1964 // Additional translation units on 1965 // which the point within the program has an interface dependency may be 1966 // considered reachable, but it is unspecified which are and under what 1967 // circumstances. 1968 // 1969 // The decision here is to treat all additional tranditional units as 1970 // unreachable. 1971 return false; 1972 } 1973 1974 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1975 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1976 } 1977 1978 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 1979 // FIXME: If there are both visible and hidden declarations, we need to take 1980 // into account whether redeclaration is possible. Example: 1981 // 1982 // Non-imported module: 1983 // int f(T); // #1 1984 // Some TU: 1985 // static int f(U); // #2, not a redeclaration of #1 1986 // int f(T); // #3, finds both, should link with #1 if T != U, but 1987 // // with #2 if T == U; neither should be ambiguous. 1988 for (auto *D : R) { 1989 if (isVisible(D)) 1990 return true; 1991 assert(D->isExternallyDeclarable() && 1992 "should not have hidden, non-externally-declarable result here"); 1993 } 1994 1995 // This function is called once "New" is essentially complete, but before a 1996 // previous declaration is attached. We can't query the linkage of "New" in 1997 // general, because attaching the previous declaration can change the 1998 // linkage of New to match the previous declaration. 1999 // 2000 // However, because we've just determined that there is no *visible* prior 2001 // declaration, we can compute the linkage here. There are two possibilities: 2002 // 2003 // * This is not a redeclaration; it's safe to compute the linkage now. 2004 // 2005 // * This is a redeclaration of a prior declaration that is externally 2006 // redeclarable. In that case, the linkage of the declaration is not 2007 // changed by attaching the prior declaration, because both are externally 2008 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2009 // 2010 // FIXME: This is subtle and fragile. 2011 return New->isExternallyDeclarable(); 2012 } 2013 2014 /// Retrieve the visible declaration corresponding to D, if any. 2015 /// 2016 /// This routine determines whether the declaration D is visible in the current 2017 /// module, with the current imports. If not, it checks whether any 2018 /// redeclaration of D is visible, and if so, returns that declaration. 2019 /// 2020 /// \returns D, or a visible previous declaration of D, whichever is more recent 2021 /// and visible. If no declaration of D is visible, returns null. 2022 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2023 unsigned IDNS) { 2024 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2025 2026 for (auto RD : D->redecls()) { 2027 // Don't bother with extra checks if we already know this one isn't visible. 2028 if (RD == D) 2029 continue; 2030 2031 auto ND = cast<NamedDecl>(RD); 2032 // FIXME: This is wrong in the case where the previous declaration is not 2033 // visible in the same scope as D. This needs to be done much more 2034 // carefully. 2035 if (ND->isInIdentifierNamespace(IDNS) && 2036 LookupResult::isAvailableForLookup(SemaRef, ND)) 2037 return ND; 2038 } 2039 2040 return nullptr; 2041 } 2042 2043 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2044 llvm::SmallVectorImpl<Module *> *Modules) { 2045 assert(!isVisible(D) && "not in slow case"); 2046 return hasAcceptableDeclarationImpl( 2047 *this, D, Modules, [](const NamedDecl *) { return true; }, 2048 Sema::AcceptableKind::Visible); 2049 } 2050 2051 bool Sema::hasReachableDeclarationSlow( 2052 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2053 assert(!isReachable(D) && "not in slow case"); 2054 return hasAcceptableDeclarationImpl( 2055 *this, D, Modules, [](const NamedDecl *) { return true; }, 2056 Sema::AcceptableKind::Reachable); 2057 } 2058 2059 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2060 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2061 // Namespaces are a bit of a special case: we expect there to be a lot of 2062 // redeclarations of some namespaces, all declarations of a namespace are 2063 // essentially interchangeable, all declarations are found by name lookup 2064 // if any is, and namespaces are never looked up during template 2065 // instantiation. So we benefit from caching the check in this case, and 2066 // it is correct to do so. 2067 auto *Key = ND->getCanonicalDecl(); 2068 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2069 return Acceptable; 2070 auto *Acceptable = isVisible(getSema(), Key) 2071 ? Key 2072 : findAcceptableDecl(getSema(), Key, IDNS); 2073 if (Acceptable) 2074 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2075 return Acceptable; 2076 } 2077 2078 return findAcceptableDecl(getSema(), D, IDNS); 2079 } 2080 2081 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2082 // If this declaration is already visible, return it directly. 2083 if (D->isUnconditionallyVisible()) 2084 return true; 2085 2086 // During template instantiation, we can refer to hidden declarations, if 2087 // they were visible in any module along the path of instantiation. 2088 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2089 } 2090 2091 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2092 if (D->isUnconditionallyVisible()) 2093 return true; 2094 2095 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2096 } 2097 2098 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2099 // We should check the visibility at the callsite already. 2100 if (isVisible(SemaRef, ND)) 2101 return true; 2102 2103 // Deduction guide lives in namespace scope generally, but it is just a 2104 // hint to the compilers. What we actually lookup for is the generated member 2105 // of the corresponding template. So it is sufficient to check the 2106 // reachability of the template decl. 2107 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2108 return SemaRef.hasReachableDefinition(DeductionGuide); 2109 2110 auto *DC = ND->getDeclContext(); 2111 // If ND is not visible and it is at namespace scope, it shouldn't be found 2112 // by name lookup. 2113 if (DC->isFileContext()) 2114 return false; 2115 2116 // [module.interface]p7 2117 // Class and enumeration member names can be found by name lookup in any 2118 // context in which a definition of the type is reachable. 2119 // 2120 // FIXME: The current implementation didn't consider about scope. For example, 2121 // ``` 2122 // // m.cppm 2123 // export module m; 2124 // enum E1 { e1 }; 2125 // // Use.cpp 2126 // import m; 2127 // void test() { 2128 // auto a = E1::e1; // Error as expected. 2129 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2130 // } 2131 // ``` 2132 // For the above example, the current implementation would emit error for `a` 2133 // correctly. However, the implementation wouldn't diagnose about `b` now. 2134 // Since we only check the reachability for the parent only. 2135 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2136 if (auto *TD = dyn_cast<TagDecl>(DC)) 2137 return SemaRef.hasReachableDefinition(TD); 2138 2139 return false; 2140 } 2141 2142 /// Perform unqualified name lookup starting from a given 2143 /// scope. 2144 /// 2145 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is 2146 /// used to find names within the current scope. For example, 'x' in 2147 /// @code 2148 /// int x; 2149 /// int f() { 2150 /// return x; // unqualified name look finds 'x' in the global scope 2151 /// } 2152 /// @endcode 2153 /// 2154 /// Different lookup criteria can find different names. For example, a 2155 /// particular scope can have both a struct and a function of the same 2156 /// name, and each can be found by certain lookup criteria. For more 2157 /// information about lookup criteria, see the documentation for the 2158 /// class LookupCriteria. 2159 /// 2160 /// @param S The scope from which unqualified name lookup will 2161 /// begin. If the lookup criteria permits, name lookup may also search 2162 /// in the parent scopes. 2163 /// 2164 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to 2165 /// look up and the lookup kind), and is updated with the results of lookup 2166 /// including zero or more declarations and possibly additional information 2167 /// used to diagnose ambiguities. 2168 /// 2169 /// @returns \c true if lookup succeeded and false otherwise. 2170 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2171 bool ForceNoCPlusPlus) { 2172 DeclarationName Name = R.getLookupName(); 2173 if (!Name) return false; 2174 2175 LookupNameKind NameKind = R.getLookupKind(); 2176 2177 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2178 // Unqualified name lookup in C/Objective-C is purely lexical, so 2179 // search in the declarations attached to the name. 2180 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2181 // Find the nearest non-transparent declaration scope. 2182 while (!(S->getFlags() & Scope::DeclScope) || 2183 (S->getEntity() && S->getEntity()->isTransparentContext())) 2184 S = S->getParent(); 2185 } 2186 2187 // When performing a scope lookup, we want to find local extern decls. 2188 FindLocalExternScope FindLocals(R); 2189 2190 // Scan up the scope chain looking for a decl that matches this 2191 // identifier that is in the appropriate namespace. This search 2192 // should not take long, as shadowing of names is uncommon, and 2193 // deep shadowing is extremely uncommon. 2194 bool LeftStartingScope = false; 2195 2196 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2197 IEnd = IdResolver.end(); 2198 I != IEnd; ++I) 2199 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2200 if (NameKind == LookupRedeclarationWithLinkage) { 2201 // Determine whether this (or a previous) declaration is 2202 // out-of-scope. 2203 if (!LeftStartingScope && !S->isDeclScope(*I)) 2204 LeftStartingScope = true; 2205 2206 // If we found something outside of our starting scope that 2207 // does not have linkage, skip it. 2208 if (LeftStartingScope && !((*I)->hasLinkage())) { 2209 R.setShadowed(); 2210 continue; 2211 } 2212 } 2213 else if (NameKind == LookupObjCImplicitSelfParam && 2214 !isa<ImplicitParamDecl>(*I)) 2215 continue; 2216 2217 R.addDecl(D); 2218 2219 // Check whether there are any other declarations with the same name 2220 // and in the same scope. 2221 if (I != IEnd) { 2222 // Find the scope in which this declaration was declared (if it 2223 // actually exists in a Scope). 2224 while (S && !S->isDeclScope(D)) 2225 S = S->getParent(); 2226 2227 // If the scope containing the declaration is the translation unit, 2228 // then we'll need to perform our checks based on the matching 2229 // DeclContexts rather than matching scopes. 2230 if (S && isNamespaceOrTranslationUnitScope(S)) 2231 S = nullptr; 2232 2233 // Compute the DeclContext, if we need it. 2234 DeclContext *DC = nullptr; 2235 if (!S) 2236 DC = (*I)->getDeclContext()->getRedeclContext(); 2237 2238 IdentifierResolver::iterator LastI = I; 2239 for (++LastI; LastI != IEnd; ++LastI) { 2240 if (S) { 2241 // Match based on scope. 2242 if (!S->isDeclScope(*LastI)) 2243 break; 2244 } else { 2245 // Match based on DeclContext. 2246 DeclContext *LastDC 2247 = (*LastI)->getDeclContext()->getRedeclContext(); 2248 if (!LastDC->Equals(DC)) 2249 break; 2250 } 2251 2252 // If the declaration is in the right namespace and visible, add it. 2253 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2254 R.addDecl(LastD); 2255 } 2256 2257 R.resolveKind(); 2258 } 2259 2260 return true; 2261 } 2262 } else { 2263 // Perform C++ unqualified name lookup. 2264 if (CppLookupName(R, S)) 2265 return true; 2266 } 2267 2268 // If we didn't find a use of this identifier, and if the identifier 2269 // corresponds to a compiler builtin, create the decl object for the builtin 2270 // now, injecting it into translation unit scope, and return it. 2271 if (AllowBuiltinCreation && LookupBuiltin(R)) 2272 return true; 2273 2274 // If we didn't find a use of this identifier, the ExternalSource 2275 // may be able to handle the situation. 2276 // Note: some lookup failures are expected! 2277 // See e.g. R.isForRedeclaration(). 2278 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2279 } 2280 2281 /// Perform qualified name lookup in the namespaces nominated by 2282 /// using directives by the given context. 2283 /// 2284 /// C++98 [namespace.qual]p2: 2285 /// Given X::m (where X is a user-declared namespace), or given \::m 2286 /// (where X is the global namespace), let S be the set of all 2287 /// declarations of m in X and in the transitive closure of all 2288 /// namespaces nominated by using-directives in X and its used 2289 /// namespaces, except that using-directives are ignored in any 2290 /// namespace, including X, directly containing one or more 2291 /// declarations of m. No namespace is searched more than once in 2292 /// the lookup of a name. If S is the empty set, the program is 2293 /// ill-formed. Otherwise, if S has exactly one member, or if the 2294 /// context of the reference is a using-declaration 2295 /// (namespace.udecl), S is the required set of declarations of 2296 /// m. Otherwise if the use of m is not one that allows a unique 2297 /// declaration to be chosen from S, the program is ill-formed. 2298 /// 2299 /// C++98 [namespace.qual]p5: 2300 /// During the lookup of a qualified namespace member name, if the 2301 /// lookup finds more than one declaration of the member, and if one 2302 /// declaration introduces a class name or enumeration name and the 2303 /// other declarations either introduce the same object, the same 2304 /// enumerator or a set of functions, the non-type name hides the 2305 /// class or enumeration name if and only if the declarations are 2306 /// from the same namespace; otherwise (the declarations are from 2307 /// different namespaces), the program is ill-formed. 2308 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2309 DeclContext *StartDC) { 2310 assert(StartDC->isFileContext() && "start context is not a file context"); 2311 2312 // We have not yet looked into these namespaces, much less added 2313 // their "using-children" to the queue. 2314 SmallVector<NamespaceDecl*, 8> Queue; 2315 2316 // We have at least added all these contexts to the queue. 2317 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2318 Visited.insert(StartDC); 2319 2320 // We have already looked into the initial namespace; seed the queue 2321 // with its using-children. 2322 for (auto *I : StartDC->using_directives()) { 2323 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); 2324 if (S.isVisible(I) && Visited.insert(ND).second) 2325 Queue.push_back(ND); 2326 } 2327 2328 // The easiest way to implement the restriction in [namespace.qual]p5 2329 // is to check whether any of the individual results found a tag 2330 // and, if so, to declare an ambiguity if the final result is not 2331 // a tag. 2332 bool FoundTag = false; 2333 bool FoundNonTag = false; 2334 2335 LookupResult LocalR(LookupResult::Temporary, R); 2336 2337 bool Found = false; 2338 while (!Queue.empty()) { 2339 NamespaceDecl *ND = Queue.pop_back_val(); 2340 2341 // We go through some convolutions here to avoid copying results 2342 // between LookupResults. 2343 bool UseLocal = !R.empty(); 2344 LookupResult &DirectR = UseLocal ? LocalR : R; 2345 bool FoundDirect = LookupDirect(S, DirectR, ND); 2346 2347 if (FoundDirect) { 2348 // First do any local hiding. 2349 DirectR.resolveKind(); 2350 2351 // If the local result is a tag, remember that. 2352 if (DirectR.isSingleTagDecl()) 2353 FoundTag = true; 2354 else 2355 FoundNonTag = true; 2356 2357 // Append the local results to the total results if necessary. 2358 if (UseLocal) { 2359 R.addAllDecls(LocalR); 2360 LocalR.clear(); 2361 } 2362 } 2363 2364 // If we find names in this namespace, ignore its using directives. 2365 if (FoundDirect) { 2366 Found = true; 2367 continue; 2368 } 2369 2370 for (auto I : ND->using_directives()) { 2371 NamespaceDecl *Nom = I->getNominatedNamespace(); 2372 if (S.isVisible(I) && Visited.insert(Nom).second) 2373 Queue.push_back(Nom); 2374 } 2375 } 2376 2377 if (Found) { 2378 if (FoundTag && FoundNonTag) 2379 R.setAmbiguousQualifiedTagHiding(); 2380 else 2381 R.resolveKind(); 2382 } 2383 2384 return Found; 2385 } 2386 2387 /// Perform qualified name lookup into a given context. 2388 /// 2389 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find 2390 /// names when the context of those names is explicit specified, e.g., 2391 /// "std::vector" or "x->member", or as part of unqualified name lookup. 2392 /// 2393 /// Different lookup criteria can find different names. For example, a 2394 /// particular scope can have both a struct and a function of the same 2395 /// name, and each can be found by certain lookup criteria. For more 2396 /// information about lookup criteria, see the documentation for the 2397 /// class LookupCriteria. 2398 /// 2399 /// \param R captures both the lookup criteria and any lookup results found. 2400 /// 2401 /// \param LookupCtx The context in which qualified name lookup will 2402 /// search. If the lookup criteria permits, name lookup may also search 2403 /// in the parent contexts or (for C++ classes) base classes. 2404 /// 2405 /// \param InUnqualifiedLookup true if this is qualified name lookup that 2406 /// occurs as part of unqualified name lookup. 2407 /// 2408 /// \returns true if lookup succeeded, false if it failed. 2409 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2410 bool InUnqualifiedLookup) { 2411 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2412 2413 if (!R.getLookupName()) 2414 return false; 2415 2416 // Make sure that the declaration context is complete. 2417 assert((!isa<TagDecl>(LookupCtx) || 2418 LookupCtx->isDependentContext() || 2419 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2420 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2421 "Declaration context must already be complete!"); 2422 2423 struct QualifiedLookupInScope { 2424 bool oldVal; 2425 DeclContext *Context; 2426 // Set flag in DeclContext informing debugger that we're looking for qualified name 2427 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { 2428 oldVal = ctx->setUseQualifiedLookup(); 2429 } 2430 ~QualifiedLookupInScope() { 2431 Context->setUseQualifiedLookup(oldVal); 2432 } 2433 } QL(LookupCtx); 2434 2435 if (LookupDirect(*this, R, LookupCtx)) { 2436 R.resolveKind(); 2437 if (isa<CXXRecordDecl>(LookupCtx)) 2438 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); 2439 return true; 2440 } 2441 2442 // Don't descend into implied contexts for redeclarations. 2443 // C++98 [namespace.qual]p6: 2444 // In a declaration for a namespace member in which the 2445 // declarator-id is a qualified-id, given that the qualified-id 2446 // for the namespace member has the form 2447 // nested-name-specifier unqualified-id 2448 // the unqualified-id shall name a member of the namespace 2449 // designated by the nested-name-specifier. 2450 // See also [class.mfct]p5 and [class.static.data]p2. 2451 if (R.isForRedeclaration()) 2452 return false; 2453 2454 // If this is a namespace, look it up in the implied namespaces. 2455 if (LookupCtx->isFileContext()) 2456 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2457 2458 // If this isn't a C++ class, we aren't allowed to look into base 2459 // classes, we're done. 2460 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2461 if (!LookupRec || !LookupRec->getDefinition()) 2462 return false; 2463 2464 // We're done for lookups that can never succeed for C++ classes. 2465 if (R.getLookupKind() == LookupOperatorName || 2466 R.getLookupKind() == LookupNamespaceName || 2467 R.getLookupKind() == LookupObjCProtocolName || 2468 R.getLookupKind() == LookupLabel) 2469 return false; 2470 2471 // If we're performing qualified name lookup into a dependent class, 2472 // then we are actually looking into a current instantiation. If we have any 2473 // dependent base classes, then we either have to delay lookup until 2474 // template instantiation time (at which point all bases will be available) 2475 // or we have to fail. 2476 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2477 LookupRec->hasAnyDependentBases()) { 2478 R.setNotFoundInCurrentInstantiation(); 2479 return false; 2480 } 2481 2482 // Perform lookup into our base classes. 2483 2484 DeclarationName Name = R.getLookupName(); 2485 unsigned IDNS = R.getIdentifierNamespace(); 2486 2487 // Look for this member in our base classes. 2488 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2489 CXXBasePath &Path) -> bool { 2490 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2491 // Drop leading non-matching lookup results from the declaration list so 2492 // we don't need to consider them again below. 2493 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2494 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2495 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2496 return true; 2497 } 2498 return false; 2499 }; 2500 2501 CXXBasePaths Paths; 2502 Paths.setOrigin(LookupRec); 2503 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2504 return false; 2505 2506 R.setNamingClass(LookupRec); 2507 2508 // C++ [class.member.lookup]p2: 2509 // [...] If the resulting set of declarations are not all from 2510 // sub-objects of the same type, or the set has a nonstatic member 2511 // and includes members from distinct sub-objects, there is an 2512 // ambiguity and the program is ill-formed. Otherwise that set is 2513 // the result of the lookup. 2514 QualType SubobjectType; 2515 int SubobjectNumber = 0; 2516 AccessSpecifier SubobjectAccess = AS_none; 2517 2518 // Check whether the given lookup result contains only static members. 2519 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2520 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2521 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2522 return false; 2523 return true; 2524 }; 2525 2526 bool TemplateNameLookup = R.isTemplateNameLookup(); 2527 2528 // Determine whether two sets of members contain the same members, as 2529 // required by C++ [class.member.lookup]p6. 2530 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2531 DeclContext::lookup_iterator B) { 2532 using Iterator = DeclContextLookupResult::iterator; 2533 using Result = const void *; 2534 2535 auto Next = [&](Iterator &It, Iterator End) -> Result { 2536 while (It != End) { 2537 NamedDecl *ND = *It++; 2538 if (!ND->isInIdentifierNamespace(IDNS)) 2539 continue; 2540 2541 // C++ [temp.local]p3: 2542 // A lookup that finds an injected-class-name (10.2) can result in 2543 // an ambiguity in certain cases (for example, if it is found in 2544 // more than one base class). If all of the injected-class-names 2545 // that are found refer to specializations of the same class 2546 // template, and if the name is used as a template-name, the 2547 // reference refers to the class template itself and not a 2548 // specialization thereof, and is not ambiguous. 2549 if (TemplateNameLookup) 2550 if (auto *TD = getAsTemplateNameDecl(ND)) 2551 ND = TD; 2552 2553 // C++ [class.member.lookup]p3: 2554 // type declarations (including injected-class-names) are replaced by 2555 // the types they designate 2556 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2557 QualType T = Context.getTypeDeclType(TD); 2558 return T.getCanonicalType().getAsOpaquePtr(); 2559 } 2560 2561 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2562 } 2563 return nullptr; 2564 }; 2565 2566 // We'll often find the declarations are in the same order. Handle this 2567 // case (and the special case of only one declaration) efficiently. 2568 Iterator AIt = A, BIt = B, AEnd, BEnd; 2569 while (true) { 2570 Result AResult = Next(AIt, AEnd); 2571 Result BResult = Next(BIt, BEnd); 2572 if (!AResult && !BResult) 2573 return true; 2574 if (!AResult || !BResult) 2575 return false; 2576 if (AResult != BResult) { 2577 // Found a mismatch; carefully check both lists, accounting for the 2578 // possibility of declarations appearing more than once. 2579 llvm::SmallDenseMap<Result, bool, 32> AResults; 2580 for (; AResult; AResult = Next(AIt, AEnd)) 2581 AResults.insert({AResult, /*FoundInB*/false}); 2582 unsigned Found = 0; 2583 for (; BResult; BResult = Next(BIt, BEnd)) { 2584 auto It = AResults.find(BResult); 2585 if (It == AResults.end()) 2586 return false; 2587 if (!It->second) { 2588 It->second = true; 2589 ++Found; 2590 } 2591 } 2592 return AResults.size() == Found; 2593 } 2594 } 2595 }; 2596 2597 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2598 Path != PathEnd; ++Path) { 2599 const CXXBasePathElement &PathElement = Path->back(); 2600 2601 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2602 // across all paths. 2603 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2604 2605 // Determine whether we're looking at a distinct sub-object or not. 2606 if (SubobjectType.isNull()) { 2607 // This is the first subobject we've looked at. Record its type. 2608 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2609 SubobjectNumber = PathElement.SubobjectNumber; 2610 continue; 2611 } 2612 2613 if (SubobjectType != 2614 Context.getCanonicalType(PathElement.Base->getType())) { 2615 // We found members of the given name in two subobjects of 2616 // different types. If the declaration sets aren't the same, this 2617 // lookup is ambiguous. 2618 // 2619 // FIXME: The language rule says that this applies irrespective of 2620 // whether the sets contain only static members. 2621 if (HasOnlyStaticMembers(Path->Decls) && 2622 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2623 continue; 2624 2625 R.setAmbiguousBaseSubobjectTypes(Paths); 2626 return true; 2627 } 2628 2629 // FIXME: This language rule no longer exists. Checking for ambiguous base 2630 // subobjects should be done as part of formation of a class member access 2631 // expression (when converting the object parameter to the member's type). 2632 if (SubobjectNumber != PathElement.SubobjectNumber) { 2633 // We have a different subobject of the same type. 2634 2635 // C++ [class.member.lookup]p5: 2636 // A static member, a nested type or an enumerator defined in 2637 // a base class T can unambiguously be found even if an object 2638 // has more than one base class subobject of type T. 2639 if (HasOnlyStaticMembers(Path->Decls)) 2640 continue; 2641 2642 // We have found a nonstatic member name in multiple, distinct 2643 // subobjects. Name lookup is ambiguous. 2644 R.setAmbiguousBaseSubobjects(Paths); 2645 return true; 2646 } 2647 } 2648 2649 // Lookup in a base class succeeded; return these results. 2650 2651 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2652 I != E; ++I) { 2653 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2654 (*I)->getAccess()); 2655 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2656 R.addDecl(ND, AS); 2657 } 2658 R.resolveKind(); 2659 return true; 2660 } 2661 2662 /// Performs qualified name lookup or special type of lookup for 2663 /// "__super::" scope specifier. 2664 /// 2665 /// This routine is a convenience overload meant to be called from contexts 2666 /// that need to perform a qualified name lookup with an optional C++ scope 2667 /// specifier that might require special kind of lookup. 2668 /// 2669 /// \param R captures both the lookup criteria and any lookup results found. 2670 /// 2671 /// \param LookupCtx The context in which qualified name lookup will 2672 /// search. 2673 /// 2674 /// \param SS An optional C++ scope-specifier. 2675 /// 2676 /// \returns true if lookup succeeded, false if it failed. 2677 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2678 CXXScopeSpec &SS) { 2679 auto *NNS = SS.getScopeRep(); 2680 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2681 return LookupInSuper(R, NNS->getAsRecordDecl()); 2682 else 2683 2684 return LookupQualifiedName(R, LookupCtx); 2685 } 2686 2687 /// Performs name lookup for a name that was parsed in the 2688 /// source code, and may contain a C++ scope specifier. 2689 /// 2690 /// This routine is a convenience routine meant to be called from 2691 /// contexts that receive a name and an optional C++ scope specifier 2692 /// (e.g., "N::M::x"). It will then perform either qualified or 2693 /// unqualified name lookup (with LookupQualifiedName or LookupName, 2694 /// respectively) on the given name and return those results. It will 2695 /// perform a special type of lookup for "__super::" scope specifier. 2696 /// 2697 /// @param S The scope from which unqualified name lookup will 2698 /// begin. 2699 /// 2700 /// @param SS An optional C++ scope-specifier, e.g., "::N::M". 2701 /// 2702 /// @param EnteringContext Indicates whether we are going to enter the 2703 /// context of the scope-specifier SS (if present). 2704 /// 2705 /// @returns True if any decls were found (but possibly ambiguous) 2706 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2707 bool AllowBuiltinCreation, bool EnteringContext) { 2708 if (SS && SS->isInvalid()) { 2709 // When the scope specifier is invalid, don't even look for 2710 // anything. 2711 return false; 2712 } 2713 2714 if (SS && SS->isSet()) { 2715 NestedNameSpecifier *NNS = SS->getScopeRep(); 2716 if (NNS->getKind() == NestedNameSpecifier::Super) 2717 return LookupInSuper(R, NNS->getAsRecordDecl()); 2718 2719 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { 2720 // We have resolved the scope specifier to a particular declaration 2721 // contex, and will perform name lookup in that context. 2722 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2723 return false; 2724 2725 R.setContextRange(SS->getRange()); 2726 return LookupQualifiedName(R, DC); 2727 } 2728 2729 // We could not resolve the scope specified to a specific declaration 2730 // context, which means that SS refers to an unknown specialization. 2731 // Name lookup can't find anything in this case. 2732 R.setNotFoundInCurrentInstantiation(); 2733 R.setContextRange(SS->getRange()); 2734 return false; 2735 } 2736 2737 // Perform unqualified name lookup starting in the given scope. 2738 return LookupName(R, S, AllowBuiltinCreation); 2739 } 2740 2741 /// Perform qualified name lookup into all base classes of the given 2742 /// class. 2743 /// 2744 /// \param R captures both the lookup criteria and any lookup results found. 2745 /// 2746 /// \param Class The context in which qualified name lookup will 2747 /// search. Name lookup will search in all base classes merging the results. 2748 /// 2749 /// @returns True if any decls were found (but possibly ambiguous) 2750 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2751 // The access-control rules we use here are essentially the rules for 2752 // doing a lookup in Class that just magically skipped the direct 2753 // members of Class itself. That is, the naming class is Class, and the 2754 // access includes the access of the base. 2755 for (const auto &BaseSpec : Class->bases()) { 2756 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2757 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2758 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2759 Result.setBaseObjectType(Context.getRecordType(Class)); 2760 LookupQualifiedName(Result, RD); 2761 2762 // Copy the lookup results into the target, merging the base's access into 2763 // the path access. 2764 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2765 R.addDecl(I.getDecl(), 2766 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2767 I.getAccess())); 2768 } 2769 2770 Result.suppressDiagnostics(); 2771 } 2772 2773 R.resolveKind(); 2774 R.setNamingClass(Class); 2775 2776 return !R.empty(); 2777 } 2778 2779 /// Produce a diagnostic describing the ambiguity that resulted 2780 /// from name lookup. 2781 /// 2782 /// \param Result The result of the ambiguous lookup to be diagnosed. 2783 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2784 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2785 2786 DeclarationName Name = Result.getLookupName(); 2787 SourceLocation NameLoc = Result.getNameLoc(); 2788 SourceRange LookupRange = Result.getContextRange(); 2789 2790 switch (Result.getAmbiguityKind()) { 2791 case LookupResult::AmbiguousBaseSubobjects: { 2792 CXXBasePaths *Paths = Result.getBasePaths(); 2793 QualType SubobjectType = Paths->front().back().Base->getType(); 2794 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2795 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2796 << LookupRange; 2797 2798 DeclContext::lookup_iterator Found = Paths->front().Decls; 2799 while (isa<CXXMethodDecl>(*Found) && 2800 cast<CXXMethodDecl>(*Found)->isStatic()) 2801 ++Found; 2802 2803 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2804 break; 2805 } 2806 2807 case LookupResult::AmbiguousBaseSubobjectTypes: { 2808 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2809 << Name << LookupRange; 2810 2811 CXXBasePaths *Paths = Result.getBasePaths(); 2812 std::set<const NamedDecl *> DeclsPrinted; 2813 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2814 PathEnd = Paths->end(); 2815 Path != PathEnd; ++Path) { 2816 const NamedDecl *D = *Path->Decls; 2817 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2818 continue; 2819 if (DeclsPrinted.insert(D).second) { 2820 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2821 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2822 << TD->getUnderlyingType(); 2823 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2824 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2825 << Context.getTypeDeclType(TD); 2826 else 2827 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2828 } 2829 } 2830 break; 2831 } 2832 2833 case LookupResult::AmbiguousTagHiding: { 2834 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2835 2836 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2837 2838 for (auto *D : Result) 2839 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2840 TagDecls.insert(TD); 2841 Diag(TD->getLocation(), diag::note_hidden_tag); 2842 } 2843 2844 for (auto *D : Result) 2845 if (!isa<TagDecl>(D)) 2846 Diag(D->getLocation(), diag::note_hiding_object); 2847 2848 // For recovery purposes, go ahead and implement the hiding. 2849 LookupResult::Filter F = Result.makeFilter(); 2850 while (F.hasNext()) { 2851 if (TagDecls.count(F.next())) 2852 F.erase(); 2853 } 2854 F.done(); 2855 break; 2856 } 2857 2858 case LookupResult::AmbiguousReference: { 2859 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2860 2861 for (auto *D : Result) 2862 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2863 break; 2864 } 2865 } 2866 } 2867 2868 namespace { 2869 struct AssociatedLookup { 2870 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2871 Sema::AssociatedNamespaceSet &Namespaces, 2872 Sema::AssociatedClassSet &Classes) 2873 : S(S), Namespaces(Namespaces), Classes(Classes), 2874 InstantiationLoc(InstantiationLoc) { 2875 } 2876 2877 bool addClassTransitive(CXXRecordDecl *RD) { 2878 Classes.insert(RD); 2879 return ClassesTransitive.insert(RD); 2880 } 2881 2882 Sema &S; 2883 Sema::AssociatedNamespaceSet &Namespaces; 2884 Sema::AssociatedClassSet &Classes; 2885 SourceLocation InstantiationLoc; 2886 2887 private: 2888 Sema::AssociatedClassSet ClassesTransitive; 2889 }; 2890 } // end anonymous namespace 2891 2892 static void 2893 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2894 2895 // Given the declaration context \param Ctx of a class, class template or 2896 // enumeration, add the associated namespaces to \param Namespaces as described 2897 // in [basic.lookup.argdep]p2. 2898 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2899 DeclContext *Ctx) { 2900 // The exact wording has been changed in C++14 as a result of 2901 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2902 // to all language versions since it is possible to return a local type 2903 // from a lambda in C++11. 2904 // 2905 // C++14 [basic.lookup.argdep]p2: 2906 // If T is a class type [...]. Its associated namespaces are the innermost 2907 // enclosing namespaces of its associated classes. [...] 2908 // 2909 // If T is an enumeration type, its associated namespace is the innermost 2910 // enclosing namespace of its declaration. [...] 2911 2912 // We additionally skip inline namespaces. The innermost non-inline namespace 2913 // contains all names of all its nested inline namespaces anyway, so we can 2914 // replace the entire inline namespace tree with its root. 2915 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2916 Ctx = Ctx->getParent(); 2917 2918 Namespaces.insert(Ctx->getPrimaryContext()); 2919 } 2920 2921 // Add the associated classes and namespaces for argument-dependent 2922 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2923 static void 2924 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2925 const TemplateArgument &Arg) { 2926 // C++ [basic.lookup.argdep]p2, last bullet: 2927 // -- [...] ; 2928 switch (Arg.getKind()) { 2929 case TemplateArgument::Null: 2930 break; 2931 2932 case TemplateArgument::Type: 2933 // [...] the namespaces and classes associated with the types of the 2934 // template arguments provided for template type parameters (excluding 2935 // template template parameters) 2936 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2937 break; 2938 2939 case TemplateArgument::Template: 2940 case TemplateArgument::TemplateExpansion: { 2941 // [...] the namespaces in which any template template arguments are 2942 // defined; and the classes in which any member templates used as 2943 // template template arguments are defined. 2944 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2945 if (ClassTemplateDecl *ClassTemplate 2946 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2947 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2948 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2949 Result.Classes.insert(EnclosingClass); 2950 // Add the associated namespace for this class. 2951 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2952 } 2953 break; 2954 } 2955 2956 case TemplateArgument::Declaration: 2957 case TemplateArgument::Integral: 2958 case TemplateArgument::Expression: 2959 case TemplateArgument::NullPtr: 2960 // [Note: non-type template arguments do not contribute to the set of 2961 // associated namespaces. ] 2962 break; 2963 2964 case TemplateArgument::Pack: 2965 for (const auto &P : Arg.pack_elements()) 2966 addAssociatedClassesAndNamespaces(Result, P); 2967 break; 2968 } 2969 } 2970 2971 // Add the associated classes and namespaces for argument-dependent lookup 2972 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2973 static void 2974 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2975 CXXRecordDecl *Class) { 2976 2977 // Just silently ignore anything whose name is __va_list_tag. 2978 if (Class->getDeclName() == Result.S.VAListTagName) 2979 return; 2980 2981 // C++ [basic.lookup.argdep]p2: 2982 // [...] 2983 // -- If T is a class type (including unions), its associated 2984 // classes are: the class itself; the class of which it is a 2985 // member, if any; and its direct and indirect base classes. 2986 // Its associated namespaces are the innermost enclosing 2987 // namespaces of its associated classes. 2988 2989 // Add the class of which it is a member, if any. 2990 DeclContext *Ctx = Class->getDeclContext(); 2991 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2992 Result.Classes.insert(EnclosingClass); 2993 2994 // Add the associated namespace for this class. 2995 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2996 2997 // -- If T is a template-id, its associated namespaces and classes are 2998 // the namespace in which the template is defined; for member 2999 // templates, the member template's class; the namespaces and classes 3000 // associated with the types of the template arguments provided for 3001 // template type parameters (excluding template template parameters); the 3002 // namespaces in which any template template arguments are defined; and 3003 // the classes in which any member templates used as template template 3004 // arguments are defined. [Note: non-type template arguments do not 3005 // contribute to the set of associated namespaces. ] 3006 if (ClassTemplateSpecializationDecl *Spec 3007 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3008 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3009 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3010 Result.Classes.insert(EnclosingClass); 3011 // Add the associated namespace for this class. 3012 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3013 3014 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3015 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3016 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3017 } 3018 3019 // Add the class itself. If we've already transitively visited this class, 3020 // we don't need to visit base classes. 3021 if (!Result.addClassTransitive(Class)) 3022 return; 3023 3024 // Only recurse into base classes for complete types. 3025 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3026 Result.S.Context.getRecordType(Class))) 3027 return; 3028 3029 // Add direct and indirect base classes along with their associated 3030 // namespaces. 3031 SmallVector<CXXRecordDecl *, 32> Bases; 3032 Bases.push_back(Class); 3033 while (!Bases.empty()) { 3034 // Pop this class off the stack. 3035 Class = Bases.pop_back_val(); 3036 3037 // Visit the base classes. 3038 for (const auto &Base : Class->bases()) { 3039 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3040 // In dependent contexts, we do ADL twice, and the first time around, 3041 // the base type might be a dependent TemplateSpecializationType, or a 3042 // TemplateTypeParmType. If that happens, simply ignore it. 3043 // FIXME: If we want to support export, we probably need to add the 3044 // namespace of the template in a TemplateSpecializationType, or even 3045 // the classes and namespaces of known non-dependent arguments. 3046 if (!BaseType) 3047 continue; 3048 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3049 if (Result.addClassTransitive(BaseDecl)) { 3050 // Find the associated namespace for this base class. 3051 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3052 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3053 3054 // Make sure we visit the bases of this base class. 3055 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3056 Bases.push_back(BaseDecl); 3057 } 3058 } 3059 } 3060 } 3061 3062 // Add the associated classes and namespaces for 3063 // argument-dependent lookup with an argument of type T 3064 // (C++ [basic.lookup.koenig]p2). 3065 static void 3066 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3067 // C++ [basic.lookup.koenig]p2: 3068 // 3069 // For each argument type T in the function call, there is a set 3070 // of zero or more associated namespaces and a set of zero or more 3071 // associated classes to be considered. The sets of namespaces and 3072 // classes is determined entirely by the types of the function 3073 // arguments (and the namespace of any template template 3074 // argument). Typedef names and using-declarations used to specify 3075 // the types do not contribute to this set. The sets of namespaces 3076 // and classes are determined in the following way: 3077 3078 SmallVector<const Type *, 16> Queue; 3079 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3080 3081 while (true) { 3082 switch (T->getTypeClass()) { 3083 3084 #define TYPE(Class, Base) 3085 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3086 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3087 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3088 #define ABSTRACT_TYPE(Class, Base) 3089 #include "clang/AST/TypeNodes.inc" 3090 // T is canonical. We can also ignore dependent types because 3091 // we don't need to do ADL at the definition point, but if we 3092 // wanted to implement template export (or if we find some other 3093 // use for associated classes and namespaces...) this would be 3094 // wrong. 3095 break; 3096 3097 // -- If T is a pointer to U or an array of U, its associated 3098 // namespaces and classes are those associated with U. 3099 case Type::Pointer: 3100 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3101 continue; 3102 case Type::ConstantArray: 3103 case Type::IncompleteArray: 3104 case Type::VariableArray: 3105 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3106 continue; 3107 3108 // -- If T is a fundamental type, its associated sets of 3109 // namespaces and classes are both empty. 3110 case Type::Builtin: 3111 break; 3112 3113 // -- If T is a class type (including unions), its associated 3114 // classes are: the class itself; the class of which it is 3115 // a member, if any; and its direct and indirect base classes. 3116 // Its associated namespaces are the innermost enclosing 3117 // namespaces of its associated classes. 3118 case Type::Record: { 3119 CXXRecordDecl *Class = 3120 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3121 addAssociatedClassesAndNamespaces(Result, Class); 3122 break; 3123 } 3124 3125 // -- If T is an enumeration type, its associated namespace 3126 // is the innermost enclosing namespace of its declaration. 3127 // If it is a class member, its associated class is the 3128 // member’s class; else it has no associated class. 3129 case Type::Enum: { 3130 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3131 3132 DeclContext *Ctx = Enum->getDeclContext(); 3133 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3134 Result.Classes.insert(EnclosingClass); 3135 3136 // Add the associated namespace for this enumeration. 3137 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3138 3139 break; 3140 } 3141 3142 // -- If T is a function type, its associated namespaces and 3143 // classes are those associated with the function parameter 3144 // types and those associated with the return type. 3145 case Type::FunctionProto: { 3146 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3147 for (const auto &Arg : Proto->param_types()) 3148 Queue.push_back(Arg.getTypePtr()); 3149 // fallthrough 3150 LLVM_FALLTHROUGH; 3151 } 3152 case Type::FunctionNoProto: { 3153 const FunctionType *FnType = cast<FunctionType>(T); 3154 T = FnType->getReturnType().getTypePtr(); 3155 continue; 3156 } 3157 3158 // -- If T is a pointer to a member function of a class X, its 3159 // associated namespaces and classes are those associated 3160 // with the function parameter types and return type, 3161 // together with those associated with X. 3162 // 3163 // -- If T is a pointer to a data member of class X, its 3164 // associated namespaces and classes are those associated 3165 // with the member type together with those associated with 3166 // X. 3167 case Type::MemberPointer: { 3168 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3169 3170 // Queue up the class type into which this points. 3171 Queue.push_back(MemberPtr->getClass()); 3172 3173 // And directly continue with the pointee type. 3174 T = MemberPtr->getPointeeType().getTypePtr(); 3175 continue; 3176 } 3177 3178 // As an extension, treat this like a normal pointer. 3179 case Type::BlockPointer: 3180 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3181 continue; 3182 3183 // References aren't covered by the standard, but that's such an 3184 // obvious defect that we cover them anyway. 3185 case Type::LValueReference: 3186 case Type::RValueReference: 3187 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3188 continue; 3189 3190 // These are fundamental types. 3191 case Type::Vector: 3192 case Type::ExtVector: 3193 case Type::ConstantMatrix: 3194 case Type::Complex: 3195 case Type::BitInt: 3196 break; 3197 3198 // Non-deduced auto types only get here for error cases. 3199 case Type::Auto: 3200 case Type::DeducedTemplateSpecialization: 3201 break; 3202 3203 // If T is an Objective-C object or interface type, or a pointer to an 3204 // object or interface type, the associated namespace is the global 3205 // namespace. 3206 case Type::ObjCObject: 3207 case Type::ObjCInterface: 3208 case Type::ObjCObjectPointer: 3209 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3210 break; 3211 3212 // Atomic types are just wrappers; use the associations of the 3213 // contained type. 3214 case Type::Atomic: 3215 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3216 continue; 3217 case Type::Pipe: 3218 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3219 continue; 3220 } 3221 3222 if (Queue.empty()) 3223 break; 3224 T = Queue.pop_back_val(); 3225 } 3226 } 3227 3228 /// Find the associated classes and namespaces for 3229 /// argument-dependent lookup for a call with the given set of 3230 /// arguments. 3231 /// 3232 /// This routine computes the sets of associated classes and associated 3233 /// namespaces searched by argument-dependent lookup 3234 /// (C++ [basic.lookup.argdep]) for a given set of arguments. 3235 void Sema::FindAssociatedClassesAndNamespaces( 3236 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3237 AssociatedNamespaceSet &AssociatedNamespaces, 3238 AssociatedClassSet &AssociatedClasses) { 3239 AssociatedNamespaces.clear(); 3240 AssociatedClasses.clear(); 3241 3242 AssociatedLookup Result(*this, InstantiationLoc, 3243 AssociatedNamespaces, AssociatedClasses); 3244 3245 // C++ [basic.lookup.koenig]p2: 3246 // For each argument type T in the function call, there is a set 3247 // of zero or more associated namespaces and a set of zero or more 3248 // associated classes to be considered. The sets of namespaces and 3249 // classes is determined entirely by the types of the function 3250 // arguments (and the namespace of any template template 3251 // argument). 3252 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3253 Expr *Arg = Args[ArgIdx]; 3254 3255 if (Arg->getType() != Context.OverloadTy) { 3256 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3257 continue; 3258 } 3259 3260 // [...] In addition, if the argument is the name or address of a 3261 // set of overloaded functions and/or function templates, its 3262 // associated classes and namespaces are the union of those 3263 // associated with each of the members of the set: the namespace 3264 // in which the function or function template is defined and the 3265 // classes and namespaces associated with its (non-dependent) 3266 // parameter types and return type. 3267 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3268 3269 for (const NamedDecl *D : OE->decls()) { 3270 // Look through any using declarations to find the underlying function. 3271 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3272 3273 // Add the classes and namespaces associated with the parameter 3274 // types and return type of this function. 3275 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3276 } 3277 } 3278 } 3279 3280 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3281 SourceLocation Loc, 3282 LookupNameKind NameKind, 3283 RedeclarationKind Redecl) { 3284 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3285 LookupName(R, S); 3286 return R.getAsSingle<NamedDecl>(); 3287 } 3288 3289 /// Find the protocol with the given name, if any. 3290 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, 3291 SourceLocation IdLoc, 3292 RedeclarationKind Redecl) { 3293 Decl *D = LookupSingleName(TUScope, II, IdLoc, 3294 LookupObjCProtocolName, Redecl); 3295 return cast_or_null<ObjCProtocolDecl>(D); 3296 } 3297 3298 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3299 UnresolvedSetImpl &Functions) { 3300 // C++ [over.match.oper]p3: 3301 // -- The set of non-member candidates is the result of the 3302 // unqualified lookup of operator@ in the context of the 3303 // expression according to the usual rules for name lookup in 3304 // unqualified function calls (3.4.2) except that all member 3305 // functions are ignored. 3306 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3307 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3308 LookupName(Operators, S); 3309 3310 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3311 Functions.append(Operators.begin(), Operators.end()); 3312 } 3313 3314 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, 3315 CXXSpecialMember SM, 3316 bool ConstArg, 3317 bool VolatileArg, 3318 bool RValueThis, 3319 bool ConstThis, 3320 bool VolatileThis) { 3321 assert(CanDeclareSpecialMemberFunction(RD) && 3322 "doing special member lookup into record that isn't fully complete"); 3323 RD = RD->getDefinition(); 3324 if (RValueThis || ConstThis || VolatileThis) 3325 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && 3326 "constructors and destructors always have unqualified lvalue this"); 3327 if (ConstArg || VolatileArg) 3328 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && 3329 "parameter-less special members can't have qualified arguments"); 3330 3331 // FIXME: Get the caller to pass in a location for the lookup. 3332 SourceLocation LookupLoc = RD->getLocation(); 3333 3334 llvm::FoldingSetNodeID ID; 3335 ID.AddPointer(RD); 3336 ID.AddInteger(SM); 3337 ID.AddInteger(ConstArg); 3338 ID.AddInteger(VolatileArg); 3339 ID.AddInteger(RValueThis); 3340 ID.AddInteger(ConstThis); 3341 ID.AddInteger(VolatileThis); 3342 3343 void *InsertPoint; 3344 SpecialMemberOverloadResultEntry *Result = 3345 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3346 3347 // This was already cached 3348 if (Result) 3349 return *Result; 3350 3351 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3352 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3353 SpecialMemberCache.InsertNode(Result, InsertPoint); 3354 3355 if (SM == CXXDestructor) { 3356 if (RD->needsImplicitDestructor()) { 3357 runWithSufficientStackSpace(RD->getLocation(), [&] { 3358 DeclareImplicitDestructor(RD); 3359 }); 3360 } 3361 CXXDestructorDecl *DD = RD->getDestructor(); 3362 Result->setMethod(DD); 3363 Result->setKind(DD && !DD->isDeleted() 3364 ? SpecialMemberOverloadResult::Success 3365 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3366 return *Result; 3367 } 3368 3369 // Prepare for overload resolution. Here we construct a synthetic argument 3370 // if necessary and make sure that implicit functions are declared. 3371 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3372 DeclarationName Name; 3373 Expr *Arg = nullptr; 3374 unsigned NumArgs; 3375 3376 QualType ArgType = CanTy; 3377 ExprValueKind VK = VK_LValue; 3378 3379 if (SM == CXXDefaultConstructor) { 3380 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3381 NumArgs = 0; 3382 if (RD->needsImplicitDefaultConstructor()) { 3383 runWithSufficientStackSpace(RD->getLocation(), [&] { 3384 DeclareImplicitDefaultConstructor(RD); 3385 }); 3386 } 3387 } else { 3388 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { 3389 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3390 if (RD->needsImplicitCopyConstructor()) { 3391 runWithSufficientStackSpace(RD->getLocation(), [&] { 3392 DeclareImplicitCopyConstructor(RD); 3393 }); 3394 } 3395 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3396 runWithSufficientStackSpace(RD->getLocation(), [&] { 3397 DeclareImplicitMoveConstructor(RD); 3398 }); 3399 } 3400 } else { 3401 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3402 if (RD->needsImplicitCopyAssignment()) { 3403 runWithSufficientStackSpace(RD->getLocation(), [&] { 3404 DeclareImplicitCopyAssignment(RD); 3405 }); 3406 } 3407 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3408 runWithSufficientStackSpace(RD->getLocation(), [&] { 3409 DeclareImplicitMoveAssignment(RD); 3410 }); 3411 } 3412 } 3413 3414 if (ConstArg) 3415 ArgType.addConst(); 3416 if (VolatileArg) 3417 ArgType.addVolatile(); 3418 3419 // This isn't /really/ specified by the standard, but it's implied 3420 // we should be working from a PRValue in the case of move to ensure 3421 // that we prefer to bind to rvalue references, and an LValue in the 3422 // case of copy to ensure we don't bind to rvalue references. 3423 // Possibly an XValue is actually correct in the case of move, but 3424 // there is no semantic difference for class types in this restricted 3425 // case. 3426 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) 3427 VK = VK_LValue; 3428 else 3429 VK = VK_PRValue; 3430 } 3431 3432 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3433 3434 if (SM != CXXDefaultConstructor) { 3435 NumArgs = 1; 3436 Arg = &FakeArg; 3437 } 3438 3439 // Create the object argument 3440 QualType ThisTy = CanTy; 3441 if (ConstThis) 3442 ThisTy.addConst(); 3443 if (VolatileThis) 3444 ThisTy.addVolatile(); 3445 Expr::Classification Classification = 3446 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3447 .Classify(Context); 3448 3449 // Now we perform lookup on the name we computed earlier and do overload 3450 // resolution. Lookup is only performed directly into the class since there 3451 // will always be a (possibly implicit) declaration to shadow any others. 3452 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3453 DeclContext::lookup_result R = RD->lookup(Name); 3454 3455 if (R.empty()) { 3456 // We might have no default constructor because we have a lambda's closure 3457 // type, rather than because there's some other declared constructor. 3458 // Every class has a copy/move constructor, copy/move assignment, and 3459 // destructor. 3460 assert(SM == CXXDefaultConstructor && 3461 "lookup for a constructor or assignment operator was empty"); 3462 Result->setMethod(nullptr); 3463 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3464 return *Result; 3465 } 3466 3467 // Copy the candidates as our processing of them may load new declarations 3468 // from an external source and invalidate lookup_result. 3469 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3470 3471 for (NamedDecl *CandDecl : Candidates) { 3472 if (CandDecl->isInvalidDecl()) 3473 continue; 3474 3475 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3476 auto CtorInfo = getConstructorInfo(Cand); 3477 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3478 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3479 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3480 llvm::makeArrayRef(&Arg, NumArgs), OCS, true); 3481 else if (CtorInfo) 3482 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3483 llvm::makeArrayRef(&Arg, NumArgs), OCS, 3484 /*SuppressUserConversions*/ true); 3485 else 3486 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS, 3487 /*SuppressUserConversions*/ true); 3488 } else if (FunctionTemplateDecl *Tmpl = 3489 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3490 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3491 AddMethodTemplateCandidate( 3492 Tmpl, Cand, RD, nullptr, ThisTy, Classification, 3493 llvm::makeArrayRef(&Arg, NumArgs), OCS, true); 3494 else if (CtorInfo) 3495 AddTemplateOverloadCandidate( 3496 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr, 3497 llvm::makeArrayRef(&Arg, NumArgs), OCS, true); 3498 else 3499 AddTemplateOverloadCandidate( 3500 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); 3501 } else { 3502 assert(isa<UsingDecl>(Cand.getDecl()) && 3503 "illegal Kind of operator = Decl"); 3504 } 3505 } 3506 3507 OverloadCandidateSet::iterator Best; 3508 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3509 case OR_Success: 3510 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3511 Result->setKind(SpecialMemberOverloadResult::Success); 3512 break; 3513 3514 case OR_Deleted: 3515 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3516 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3517 break; 3518 3519 case OR_Ambiguous: 3520 Result->setMethod(nullptr); 3521 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3522 break; 3523 3524 case OR_No_Viable_Function: 3525 Result->setMethod(nullptr); 3526 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3527 break; 3528 } 3529 3530 return *Result; 3531 } 3532 3533 /// Look up the default constructor for the given class. 3534 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3535 SpecialMemberOverloadResult Result = 3536 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, 3537 false, false); 3538 3539 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3540 } 3541 3542 /// Look up the copying constructor for the given class. 3543 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3544 unsigned Quals) { 3545 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3546 "non-const, non-volatile qualifiers for copy ctor arg"); 3547 SpecialMemberOverloadResult Result = 3548 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, 3549 Quals & Qualifiers::Volatile, false, false, false); 3550 3551 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3552 } 3553 3554 /// Look up the moving constructor for the given class. 3555 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3556 unsigned Quals) { 3557 SpecialMemberOverloadResult Result = 3558 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, 3559 Quals & Qualifiers::Volatile, false, false, false); 3560 3561 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3562 } 3563 3564 /// Look up the constructors for the given class. 3565 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3566 // If the implicit constructors have not yet been declared, do so now. 3567 if (CanDeclareSpecialMemberFunction(Class)) { 3568 runWithSufficientStackSpace(Class->getLocation(), [&] { 3569 if (Class->needsImplicitDefaultConstructor()) 3570 DeclareImplicitDefaultConstructor(Class); 3571 if (Class->needsImplicitCopyConstructor()) 3572 DeclareImplicitCopyConstructor(Class); 3573 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3574 DeclareImplicitMoveConstructor(Class); 3575 }); 3576 } 3577 3578 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3579 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3580 return Class->lookup(Name); 3581 } 3582 3583 /// Look up the copying assignment operator for the given class. 3584 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3585 unsigned Quals, bool RValueThis, 3586 unsigned ThisQuals) { 3587 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3588 "non-const, non-volatile qualifiers for copy assignment arg"); 3589 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3590 "non-const, non-volatile qualifiers for copy assignment this"); 3591 SpecialMemberOverloadResult Result = 3592 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, 3593 Quals & Qualifiers::Volatile, RValueThis, 3594 ThisQuals & Qualifiers::Const, 3595 ThisQuals & Qualifiers::Volatile); 3596 3597 return Result.getMethod(); 3598 } 3599 3600 /// Look up the moving assignment operator for the given class. 3601 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3602 unsigned Quals, 3603 bool RValueThis, 3604 unsigned ThisQuals) { 3605 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3606 "non-const, non-volatile qualifiers for copy assignment this"); 3607 SpecialMemberOverloadResult Result = 3608 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, 3609 Quals & Qualifiers::Volatile, RValueThis, 3610 ThisQuals & Qualifiers::Const, 3611 ThisQuals & Qualifiers::Volatile); 3612 3613 return Result.getMethod(); 3614 } 3615 3616 /// Look for the destructor of the given class. 3617 /// 3618 /// During semantic analysis, this routine should be used in lieu of 3619 /// CXXRecordDecl::getDestructor(). 3620 /// 3621 /// \returns The destructor for this class. 3622 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3623 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, 3624 false, false, false, 3625 false, false).getMethod()); 3626 } 3627 3628 /// LookupLiteralOperator - Determine which literal operator should be used for 3629 /// a user-defined literal, per C++11 [lex.ext]. 3630 /// 3631 /// Normal overload resolution is not used to select which literal operator to 3632 /// call for a user-defined literal. Look up the provided literal operator name, 3633 /// and filter the results to the appropriate set for the given argument types. 3634 Sema::LiteralOperatorLookupResult 3635 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3636 ArrayRef<QualType> ArgTys, bool AllowRaw, 3637 bool AllowTemplate, bool AllowStringTemplatePack, 3638 bool DiagnoseMissing, StringLiteral *StringLit) { 3639 LookupName(R, S); 3640 assert(R.getResultKind() != LookupResult::Ambiguous && 3641 "literal operator lookup can't be ambiguous"); 3642 3643 // Filter the lookup results appropriately. 3644 LookupResult::Filter F = R.makeFilter(); 3645 3646 bool AllowCooked = true; 3647 bool FoundRaw = false; 3648 bool FoundTemplate = false; 3649 bool FoundStringTemplatePack = false; 3650 bool FoundCooked = false; 3651 3652 while (F.hasNext()) { 3653 Decl *D = F.next(); 3654 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3655 D = USD->getTargetDecl(); 3656 3657 // If the declaration we found is invalid, skip it. 3658 if (D->isInvalidDecl()) { 3659 F.erase(); 3660 continue; 3661 } 3662 3663 bool IsRaw = false; 3664 bool IsTemplate = false; 3665 bool IsStringTemplatePack = false; 3666 bool IsCooked = false; 3667 3668 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3669 if (FD->getNumParams() == 1 && 3670 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3671 IsRaw = true; 3672 else if (FD->getNumParams() == ArgTys.size()) { 3673 IsCooked = true; 3674 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3675 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3676 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3677 IsCooked = false; 3678 break; 3679 } 3680 } 3681 } 3682 } 3683 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3684 TemplateParameterList *Params = FD->getTemplateParameters(); 3685 if (Params->size() == 1) { 3686 IsTemplate = true; 3687 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3688 // Implied but not stated: user-defined integer and floating literals 3689 // only ever use numeric literal operator templates, not templates 3690 // taking a parameter of class type. 3691 F.erase(); 3692 continue; 3693 } 3694 3695 // A string literal template is only considered if the string literal 3696 // is a well-formed template argument for the template parameter. 3697 if (StringLit) { 3698 SFINAETrap Trap(*this); 3699 SmallVector<TemplateArgument, 1> Checked; 3700 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3701 if (CheckTemplateArgument(Params->getParam(0), Arg, FD, 3702 R.getNameLoc(), R.getNameLoc(), 0, 3703 Checked) || 3704 Trap.hasErrorOccurred()) 3705 IsTemplate = false; 3706 } 3707 } else { 3708 IsStringTemplatePack = true; 3709 } 3710 } 3711 3712 if (AllowTemplate && StringLit && IsTemplate) { 3713 FoundTemplate = true; 3714 AllowRaw = false; 3715 AllowCooked = false; 3716 AllowStringTemplatePack = false; 3717 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3718 F.restart(); 3719 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3720 } 3721 } else if (AllowCooked && IsCooked) { 3722 FoundCooked = true; 3723 AllowRaw = false; 3724 AllowTemplate = StringLit; 3725 AllowStringTemplatePack = false; 3726 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3727 // Go through again and remove the raw and template decls we've 3728 // already found. 3729 F.restart(); 3730 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3731 } 3732 } else if (AllowRaw && IsRaw) { 3733 FoundRaw = true; 3734 } else if (AllowTemplate && IsTemplate) { 3735 FoundTemplate = true; 3736 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3737 FoundStringTemplatePack = true; 3738 } else { 3739 F.erase(); 3740 } 3741 } 3742 3743 F.done(); 3744 3745 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3746 // form for string literal operator templates. 3747 if (StringLit && FoundTemplate) 3748 return LOLR_Template; 3749 3750 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3751 // parameter type, that is used in preference to a raw literal operator 3752 // or literal operator template. 3753 if (FoundCooked) 3754 return LOLR_Cooked; 3755 3756 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3757 // operator template, but not both. 3758 if (FoundRaw && FoundTemplate) { 3759 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3760 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 3761 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction()); 3762 return LOLR_Error; 3763 } 3764 3765 if (FoundRaw) 3766 return LOLR_Raw; 3767 3768 if (FoundTemplate) 3769 return LOLR_Template; 3770 3771 if (FoundStringTemplatePack) 3772 return LOLR_StringTemplatePack; 3773 3774 // Didn't find anything we could use. 3775 if (DiagnoseMissing) { 3776 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3777 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3778 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3779 << (AllowTemplate || AllowStringTemplatePack); 3780 return LOLR_Error; 3781 } 3782 3783 return LOLR_ErrorNoDiagnostic; 3784 } 3785 3786 void ADLResult::insert(NamedDecl *New) { 3787 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3788 3789 // If we haven't yet seen a decl for this key, or the last decl 3790 // was exactly this one, we're done. 3791 if (Old == nullptr || Old == New) { 3792 Old = New; 3793 return; 3794 } 3795 3796 // Otherwise, decide which is a more recent redeclaration. 3797 FunctionDecl *OldFD = Old->getAsFunction(); 3798 FunctionDecl *NewFD = New->getAsFunction(); 3799 3800 FunctionDecl *Cursor = NewFD; 3801 while (true) { 3802 Cursor = Cursor->getPreviousDecl(); 3803 3804 // If we got to the end without finding OldFD, OldFD is the newer 3805 // declaration; leave things as they are. 3806 if (!Cursor) return; 3807 3808 // If we do find OldFD, then NewFD is newer. 3809 if (Cursor == OldFD) break; 3810 3811 // Otherwise, keep looking. 3812 } 3813 3814 Old = New; 3815 } 3816 3817 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3818 ArrayRef<Expr *> Args, ADLResult &Result) { 3819 // Find all of the associated namespaces and classes based on the 3820 // arguments we have. 3821 AssociatedNamespaceSet AssociatedNamespaces; 3822 AssociatedClassSet AssociatedClasses; 3823 FindAssociatedClassesAndNamespaces(Loc, Args, 3824 AssociatedNamespaces, 3825 AssociatedClasses); 3826 3827 // C++ [basic.lookup.argdep]p3: 3828 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3829 // and let Y be the lookup set produced by argument dependent 3830 // lookup (defined as follows). If X contains [...] then Y is 3831 // empty. Otherwise Y is the set of declarations found in the 3832 // namespaces associated with the argument types as described 3833 // below. The set of declarations found by the lookup of the name 3834 // is the union of X and Y. 3835 // 3836 // Here, we compute Y and add its members to the overloaded 3837 // candidate set. 3838 for (auto *NS : AssociatedNamespaces) { 3839 // When considering an associated namespace, the lookup is the 3840 // same as the lookup performed when the associated namespace is 3841 // used as a qualifier (3.4.3.2) except that: 3842 // 3843 // -- Any using-directives in the associated namespace are 3844 // ignored. 3845 // 3846 // -- Any namespace-scope friend functions declared in 3847 // associated classes are visible within their respective 3848 // namespaces even if they are not visible during an ordinary 3849 // lookup (11.4). 3850 // 3851 // C++20 [basic.lookup.argdep] p4.3 3852 // -- are exported, are attached to a named module M, do not appear 3853 // in the translation unit containing the point of the lookup, and 3854 // have the same innermost enclosing non-inline namespace scope as 3855 // a declaration of an associated entity attached to M. 3856 DeclContext::lookup_result R = NS->lookup(Name); 3857 for (auto *D : R) { 3858 auto *Underlying = D; 3859 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3860 Underlying = USD->getTargetDecl(); 3861 3862 if (!isa<FunctionDecl>(Underlying) && 3863 !isa<FunctionTemplateDecl>(Underlying)) 3864 continue; 3865 3866 // The declaration is visible to argument-dependent lookup if either 3867 // it's ordinarily visible or declared as a friend in an associated 3868 // class. 3869 bool Visible = false; 3870 for (D = D->getMostRecentDecl(); D; 3871 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3872 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3873 if (isVisible(D)) { 3874 Visible = true; 3875 break; 3876 } else if (getLangOpts().CPlusPlusModules && 3877 D->isInExportDeclContext()) { 3878 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3879 Module *FM = D->getOwningModule(); 3880 // exports are only valid in module purview and outside of any 3881 // PMF (although a PMF should not even be present in a module 3882 // with an import). 3883 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() && 3884 "bad export context"); 3885 // .. are attached to a named module M, do not appear in the 3886 // translation unit containing the point of the lookup.. 3887 if (!isModuleUnitOfCurrentTU(FM) && 3888 llvm::any_of(AssociatedClasses, [&](auto *E) { 3889 // ... and have the same innermost enclosing non-inline 3890 // namespace scope as a declaration of an associated entity 3891 // attached to M 3892 if (!E->hasOwningModule() || 3893 E->getOwningModule()->getTopLevelModuleName() != 3894 FM->getTopLevelModuleName()) 3895 return false; 3896 // TODO: maybe this could be cached when generating the 3897 // associated namespaces / entities. 3898 DeclContext *Ctx = E->getDeclContext(); 3899 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3900 Ctx = Ctx->getParent(); 3901 return Ctx == NS; 3902 })) { 3903 Visible = true; 3904 break; 3905 } 3906 } 3907 } else if (D->getFriendObjectKind()) { 3908 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3909 // [basic.lookup.argdep]p4: 3910 // Argument-dependent lookup finds all declarations of functions and 3911 // function templates that 3912 // - ... 3913 // - are declared as a friend ([class.friend]) of any class with a 3914 // reachable definition in the set of associated entities, 3915 // 3916 // FIXME: If there's a merged definition of D that is reachable, then 3917 // the friend declaration should be considered. 3918 if (AssociatedClasses.count(RD) && isReachable(D)) { 3919 Visible = true; 3920 break; 3921 } 3922 } 3923 } 3924 3925 // FIXME: Preserve D as the FoundDecl. 3926 if (Visible) 3927 Result.insert(Underlying); 3928 } 3929 } 3930 } 3931 3932 //---------------------------------------------------------------------------- 3933 // Search for all visible declarations. 3934 //---------------------------------------------------------------------------- 3935 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3936 3937 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3938 3939 namespace { 3940 3941 class ShadowContextRAII; 3942 3943 class VisibleDeclsRecord { 3944 public: 3945 /// An entry in the shadow map, which is optimized to store a 3946 /// single declaration (the common case) but can also store a list 3947 /// of declarations. 3948 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3949 3950 private: 3951 /// A mapping from declaration names to the declarations that have 3952 /// this name within a particular scope. 3953 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3954 3955 /// A list of shadow maps, which is used to model name hiding. 3956 std::list<ShadowMap> ShadowMaps; 3957 3958 /// The declaration contexts we have already visited. 3959 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3960 3961 friend class ShadowContextRAII; 3962 3963 public: 3964 /// Determine whether we have already visited this context 3965 /// (and, if not, note that we are going to visit that context now). 3966 bool visitedContext(DeclContext *Ctx) { 3967 return !VisitedContexts.insert(Ctx).second; 3968 } 3969 3970 bool alreadyVisitedContext(DeclContext *Ctx) { 3971 return VisitedContexts.count(Ctx); 3972 } 3973 3974 /// Determine whether the given declaration is hidden in the 3975 /// current scope. 3976 /// 3977 /// \returns the declaration that hides the given declaration, or 3978 /// NULL if no such declaration exists. 3979 NamedDecl *checkHidden(NamedDecl *ND); 3980 3981 /// Add a declaration to the current shadow map. 3982 void add(NamedDecl *ND) { 3983 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 3984 } 3985 }; 3986 3987 /// RAII object that records when we've entered a shadow context. 3988 class ShadowContextRAII { 3989 VisibleDeclsRecord &Visible; 3990 3991 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 3992 3993 public: 3994 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 3995 Visible.ShadowMaps.emplace_back(); 3996 } 3997 3998 ~ShadowContextRAII() { 3999 Visible.ShadowMaps.pop_back(); 4000 } 4001 }; 4002 4003 } // end anonymous namespace 4004 4005 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 4006 unsigned IDNS = ND->getIdentifierNamespace(); 4007 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 4008 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 4009 SM != SMEnd; ++SM) { 4010 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 4011 if (Pos == SM->end()) 4012 continue; 4013 4014 for (auto *D : Pos->second) { 4015 // A tag declaration does not hide a non-tag declaration. 4016 if (D->hasTagIdentifierNamespace() && 4017 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 4018 Decl::IDNS_ObjCProtocol))) 4019 continue; 4020 4021 // Protocols are in distinct namespaces from everything else. 4022 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 4023 || (IDNS & Decl::IDNS_ObjCProtocol)) && 4024 D->getIdentifierNamespace() != IDNS) 4025 continue; 4026 4027 // Functions and function templates in the same scope overload 4028 // rather than hide. FIXME: Look for hiding based on function 4029 // signatures! 4030 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4031 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4032 SM == ShadowMaps.rbegin()) 4033 continue; 4034 4035 // A shadow declaration that's created by a resolved using declaration 4036 // is not hidden by the same using declaration. 4037 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4038 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4039 continue; 4040 4041 // We've found a declaration that hides this one. 4042 return D; 4043 } 4044 } 4045 4046 return nullptr; 4047 } 4048 4049 namespace { 4050 class LookupVisibleHelper { 4051 public: 4052 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4053 bool LoadExternal) 4054 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4055 LoadExternal(LoadExternal) {} 4056 4057 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4058 bool IncludeGlobalScope) { 4059 // Determine the set of using directives available during 4060 // unqualified name lookup. 4061 Scope *Initial = S; 4062 UnqualUsingDirectiveSet UDirs(SemaRef); 4063 if (SemaRef.getLangOpts().CPlusPlus) { 4064 // Find the first namespace or translation-unit scope. 4065 while (S && !isNamespaceOrTranslationUnitScope(S)) 4066 S = S->getParent(); 4067 4068 UDirs.visitScopeChain(Initial, S); 4069 } 4070 UDirs.done(); 4071 4072 // Look for visible declarations. 4073 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4074 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4075 if (!IncludeGlobalScope) 4076 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4077 ShadowContextRAII Shadow(Visited); 4078 lookupInScope(Initial, Result, UDirs); 4079 } 4080 4081 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4082 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4083 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4084 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4085 if (!IncludeGlobalScope) 4086 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4087 4088 ShadowContextRAII Shadow(Visited); 4089 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4090 /*InBaseClass=*/false); 4091 } 4092 4093 private: 4094 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4095 bool QualifiedNameLookup, bool InBaseClass) { 4096 if (!Ctx) 4097 return; 4098 4099 // Make sure we don't visit the same context twice. 4100 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4101 return; 4102 4103 Consumer.EnteredContext(Ctx); 4104 4105 // Outside C++, lookup results for the TU live on identifiers. 4106 if (isa<TranslationUnitDecl>(Ctx) && 4107 !Result.getSema().getLangOpts().CPlusPlus) { 4108 auto &S = Result.getSema(); 4109 auto &Idents = S.Context.Idents; 4110 4111 // Ensure all external identifiers are in the identifier table. 4112 if (LoadExternal) 4113 if (IdentifierInfoLookup *External = 4114 Idents.getExternalIdentifierLookup()) { 4115 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4116 for (StringRef Name = Iter->Next(); !Name.empty(); 4117 Name = Iter->Next()) 4118 Idents.get(Name); 4119 } 4120 4121 // Walk all lookup results in the TU for each identifier. 4122 for (const auto &Ident : Idents) { 4123 for (auto I = S.IdResolver.begin(Ident.getValue()), 4124 E = S.IdResolver.end(); 4125 I != E; ++I) { 4126 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4127 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4128 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4129 Visited.add(ND); 4130 } 4131 } 4132 } 4133 } 4134 4135 return; 4136 } 4137 4138 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4139 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4140 4141 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4142 // We sometimes skip loading namespace-level results (they tend to be huge). 4143 bool Load = LoadExternal || 4144 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4145 // Enumerate all of the results in this context. 4146 for (DeclContextLookupResult R : 4147 Load ? Ctx->lookups() 4148 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) { 4149 for (auto *D : R) { 4150 if (auto *ND = Result.getAcceptableDecl(D)) { 4151 // Rather than visit immediately, we put ND into a vector and visit 4152 // all decls, in order, outside of this loop. The reason is that 4153 // Consumer.FoundDecl() may invalidate the iterators used in the two 4154 // loops above. 4155 DeclsToVisit.push_back(ND); 4156 } 4157 } 4158 } 4159 4160 for (auto *ND : DeclsToVisit) { 4161 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4162 Visited.add(ND); 4163 } 4164 DeclsToVisit.clear(); 4165 4166 // Traverse using directives for qualified name lookup. 4167 if (QualifiedNameLookup) { 4168 ShadowContextRAII Shadow(Visited); 4169 for (auto I : Ctx->using_directives()) { 4170 if (!Result.getSema().isVisible(I)) 4171 continue; 4172 lookupInDeclContext(I->getNominatedNamespace(), Result, 4173 QualifiedNameLookup, InBaseClass); 4174 } 4175 } 4176 4177 // Traverse the contexts of inherited C++ classes. 4178 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4179 if (!Record->hasDefinition()) 4180 return; 4181 4182 for (const auto &B : Record->bases()) { 4183 QualType BaseType = B.getType(); 4184 4185 RecordDecl *RD; 4186 if (BaseType->isDependentType()) { 4187 if (!IncludeDependentBases) { 4188 // Don't look into dependent bases, because name lookup can't look 4189 // there anyway. 4190 continue; 4191 } 4192 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4193 if (!TST) 4194 continue; 4195 TemplateName TN = TST->getTemplateName(); 4196 const auto *TD = 4197 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4198 if (!TD) 4199 continue; 4200 RD = TD->getTemplatedDecl(); 4201 } else { 4202 const auto *Record = BaseType->getAs<RecordType>(); 4203 if (!Record) 4204 continue; 4205 RD = Record->getDecl(); 4206 } 4207 4208 // FIXME: It would be nice to be able to determine whether referencing 4209 // a particular member would be ambiguous. For example, given 4210 // 4211 // struct A { int member; }; 4212 // struct B { int member; }; 4213 // struct C : A, B { }; 4214 // 4215 // void f(C *c) { c->### } 4216 // 4217 // accessing 'member' would result in an ambiguity. However, we 4218 // could be smart enough to qualify the member with the base 4219 // class, e.g., 4220 // 4221 // c->B::member 4222 // 4223 // or 4224 // 4225 // c->A::member 4226 4227 // Find results in this base class (and its bases). 4228 ShadowContextRAII Shadow(Visited); 4229 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4230 /*InBaseClass=*/true); 4231 } 4232 } 4233 4234 // Traverse the contexts of Objective-C classes. 4235 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4236 // Traverse categories. 4237 for (auto *Cat : IFace->visible_categories()) { 4238 ShadowContextRAII Shadow(Visited); 4239 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4240 /*InBaseClass=*/false); 4241 } 4242 4243 // Traverse protocols. 4244 for (auto *I : IFace->all_referenced_protocols()) { 4245 ShadowContextRAII Shadow(Visited); 4246 lookupInDeclContext(I, Result, QualifiedNameLookup, 4247 /*InBaseClass=*/false); 4248 } 4249 4250 // Traverse the superclass. 4251 if (IFace->getSuperClass()) { 4252 ShadowContextRAII Shadow(Visited); 4253 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4254 /*InBaseClass=*/true); 4255 } 4256 4257 // If there is an implementation, traverse it. We do this to find 4258 // synthesized ivars. 4259 if (IFace->getImplementation()) { 4260 ShadowContextRAII Shadow(Visited); 4261 lookupInDeclContext(IFace->getImplementation(), Result, 4262 QualifiedNameLookup, InBaseClass); 4263 } 4264 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4265 for (auto *I : Protocol->protocols()) { 4266 ShadowContextRAII Shadow(Visited); 4267 lookupInDeclContext(I, Result, QualifiedNameLookup, 4268 /*InBaseClass=*/false); 4269 } 4270 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4271 for (auto *I : Category->protocols()) { 4272 ShadowContextRAII Shadow(Visited); 4273 lookupInDeclContext(I, Result, QualifiedNameLookup, 4274 /*InBaseClass=*/false); 4275 } 4276 4277 // If there is an implementation, traverse it. 4278 if (Category->getImplementation()) { 4279 ShadowContextRAII Shadow(Visited); 4280 lookupInDeclContext(Category->getImplementation(), Result, 4281 QualifiedNameLookup, /*InBaseClass=*/true); 4282 } 4283 } 4284 } 4285 4286 void lookupInScope(Scope *S, LookupResult &Result, 4287 UnqualUsingDirectiveSet &UDirs) { 4288 // No clients run in this mode and it's not supported. Please add tests and 4289 // remove the assertion if you start relying on it. 4290 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4291 4292 if (!S) 4293 return; 4294 4295 if (!S->getEntity() || 4296 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4297 (S->getEntity())->isFunctionOrMethod()) { 4298 FindLocalExternScope FindLocals(Result); 4299 // Walk through the declarations in this Scope. The consumer might add new 4300 // decls to the scope as part of deserialization, so make a copy first. 4301 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4302 for (Decl *D : ScopeDecls) { 4303 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4304 if ((ND = Result.getAcceptableDecl(ND))) { 4305 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4306 Visited.add(ND); 4307 } 4308 } 4309 } 4310 4311 DeclContext *Entity = S->getLookupEntity(); 4312 if (Entity) { 4313 // Look into this scope's declaration context, along with any of its 4314 // parent lookup contexts (e.g., enclosing classes), up to the point 4315 // where we hit the context stored in the next outer scope. 4316 DeclContext *OuterCtx = findOuterContext(S); 4317 4318 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4319 Ctx = Ctx->getLookupParent()) { 4320 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4321 if (Method->isInstanceMethod()) { 4322 // For instance methods, look for ivars in the method's interface. 4323 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4324 Result.getNameLoc(), 4325 Sema::LookupMemberName); 4326 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4327 lookupInDeclContext(IFace, IvarResult, 4328 /*QualifiedNameLookup=*/false, 4329 /*InBaseClass=*/false); 4330 } 4331 } 4332 4333 // We've already performed all of the name lookup that we need 4334 // to for Objective-C methods; the next context will be the 4335 // outer scope. 4336 break; 4337 } 4338 4339 if (Ctx->isFunctionOrMethod()) 4340 continue; 4341 4342 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4343 /*InBaseClass=*/false); 4344 } 4345 } else if (!S->getParent()) { 4346 // Look into the translation unit scope. We walk through the translation 4347 // unit's declaration context, because the Scope itself won't have all of 4348 // the declarations if we loaded a precompiled header. 4349 // FIXME: We would like the translation unit's Scope object to point to 4350 // the translation unit, so we don't need this special "if" branch. 4351 // However, doing so would force the normal C++ name-lookup code to look 4352 // into the translation unit decl when the IdentifierInfo chains would 4353 // suffice. Once we fix that problem (which is part of a more general 4354 // "don't look in DeclContexts unless we have to" optimization), we can 4355 // eliminate this. 4356 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4357 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4358 /*InBaseClass=*/false); 4359 } 4360 4361 if (Entity) { 4362 // Lookup visible declarations in any namespaces found by using 4363 // directives. 4364 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4365 lookupInDeclContext( 4366 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4367 /*QualifiedNameLookup=*/false, 4368 /*InBaseClass=*/false); 4369 } 4370 4371 // Lookup names in the parent scope. 4372 ShadowContextRAII Shadow(Visited); 4373 lookupInScope(S->getParent(), Result, UDirs); 4374 } 4375 4376 private: 4377 VisibleDeclsRecord Visited; 4378 VisibleDeclConsumer &Consumer; 4379 bool IncludeDependentBases; 4380 bool LoadExternal; 4381 }; 4382 } // namespace 4383 4384 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4385 VisibleDeclConsumer &Consumer, 4386 bool IncludeGlobalScope, bool LoadExternal) { 4387 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4388 LoadExternal); 4389 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4390 } 4391 4392 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4393 VisibleDeclConsumer &Consumer, 4394 bool IncludeGlobalScope, 4395 bool IncludeDependentBases, bool LoadExternal) { 4396 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4397 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4398 } 4399 4400 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. 4401 /// If GnuLabelLoc is a valid source location, then this is a definition 4402 /// of an __label__ label name, otherwise it is a normal label definition 4403 /// or use. 4404 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4405 SourceLocation GnuLabelLoc) { 4406 // Do a lookup to see if we have a label with this name already. 4407 NamedDecl *Res = nullptr; 4408 4409 if (GnuLabelLoc.isValid()) { 4410 // Local label definitions always shadow existing labels. 4411 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4412 Scope *S = CurScope; 4413 PushOnScopeChains(Res, S, true); 4414 return cast<LabelDecl>(Res); 4415 } 4416 4417 // Not a GNU local label. 4418 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); 4419 // If we found a label, check to see if it is in the same context as us. 4420 // When in a Block, we don't want to reuse a label in an enclosing function. 4421 if (Res && Res->getDeclContext() != CurContext) 4422 Res = nullptr; 4423 if (!Res) { 4424 // If not forward referenced or defined already, create the backing decl. 4425 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4426 Scope *S = CurScope->getFnParent(); 4427 assert(S && "Not in a function?"); 4428 PushOnScopeChains(Res, S, true); 4429 } 4430 return cast<LabelDecl>(Res); 4431 } 4432 4433 //===----------------------------------------------------------------------===// 4434 // Typo correction 4435 //===----------------------------------------------------------------------===// 4436 4437 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4438 TypoCorrection &Candidate) { 4439 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4440 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4441 } 4442 4443 static void LookupPotentialTypoResult(Sema &SemaRef, 4444 LookupResult &Res, 4445 IdentifierInfo *Name, 4446 Scope *S, CXXScopeSpec *SS, 4447 DeclContext *MemberContext, 4448 bool EnteringContext, 4449 bool isObjCIvarLookup, 4450 bool FindHidden); 4451 4452 /// Check whether the declarations found for a typo correction are 4453 /// visible. Set the correction's RequiresImport flag to true if none of the 4454 /// declarations are visible, false otherwise. 4455 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4456 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4457 4458 for (/**/; DI != DE; ++DI) 4459 if (!LookupResult::isVisible(SemaRef, *DI)) 4460 break; 4461 // No filtering needed if all decls are visible. 4462 if (DI == DE) { 4463 TC.setRequiresImport(false); 4464 return; 4465 } 4466 4467 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4468 bool AnyVisibleDecls = !NewDecls.empty(); 4469 4470 for (/**/; DI != DE; ++DI) { 4471 if (LookupResult::isVisible(SemaRef, *DI)) { 4472 if (!AnyVisibleDecls) { 4473 // Found a visible decl, discard all hidden ones. 4474 AnyVisibleDecls = true; 4475 NewDecls.clear(); 4476 } 4477 NewDecls.push_back(*DI); 4478 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4479 NewDecls.push_back(*DI); 4480 } 4481 4482 if (NewDecls.empty()) 4483 TC = TypoCorrection(); 4484 else { 4485 TC.setCorrectionDecls(NewDecls); 4486 TC.setRequiresImport(!AnyVisibleDecls); 4487 } 4488 } 4489 4490 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4491 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4492 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4493 static void getNestedNameSpecifierIdentifiers( 4494 NestedNameSpecifier *NNS, 4495 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4496 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4497 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4498 else 4499 Identifiers.clear(); 4500 4501 const IdentifierInfo *II = nullptr; 4502 4503 switch (NNS->getKind()) { 4504 case NestedNameSpecifier::Identifier: 4505 II = NNS->getAsIdentifier(); 4506 break; 4507 4508 case NestedNameSpecifier::Namespace: 4509 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4510 return; 4511 II = NNS->getAsNamespace()->getIdentifier(); 4512 break; 4513 4514 case NestedNameSpecifier::NamespaceAlias: 4515 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4516 break; 4517 4518 case NestedNameSpecifier::TypeSpecWithTemplate: 4519 case NestedNameSpecifier::TypeSpec: 4520 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4521 break; 4522 4523 case NestedNameSpecifier::Global: 4524 case NestedNameSpecifier::Super: 4525 return; 4526 } 4527 4528 if (II) 4529 Identifiers.push_back(II); 4530 } 4531 4532 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4533 DeclContext *Ctx, bool InBaseClass) { 4534 // Don't consider hidden names for typo correction. 4535 if (Hiding) 4536 return; 4537 4538 // Only consider entities with identifiers for names, ignoring 4539 // special names (constructors, overloaded operators, selectors, 4540 // etc.). 4541 IdentifierInfo *Name = ND->getIdentifier(); 4542 if (!Name) 4543 return; 4544 4545 // Only consider visible declarations and declarations from modules with 4546 // names that exactly match. 4547 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4548 return; 4549 4550 FoundName(Name->getName()); 4551 } 4552 4553 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4554 // Compute the edit distance between the typo and the name of this 4555 // entity, and add the identifier to the list of results. 4556 addName(Name, nullptr); 4557 } 4558 4559 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4560 // Compute the edit distance between the typo and this keyword, 4561 // and add the keyword to the list of results. 4562 addName(Keyword, nullptr, nullptr, true); 4563 } 4564 4565 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4566 NestedNameSpecifier *NNS, bool isKeyword) { 4567 // Use a simple length-based heuristic to determine the minimum possible 4568 // edit distance. If the minimum isn't good enough, bail out early. 4569 StringRef TypoStr = Typo->getName(); 4570 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4571 if (MinED && TypoStr.size() / MinED < 3) 4572 return; 4573 4574 // Compute an upper bound on the allowable edit distance, so that the 4575 // edit-distance algorithm can short-circuit. 4576 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4577 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4578 if (ED > UpperBound) return; 4579 4580 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4581 if (isKeyword) TC.makeKeyword(); 4582 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4583 addCorrection(TC); 4584 } 4585 4586 static const unsigned MaxTypoDistanceResultSets = 5; 4587 4588 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4589 StringRef TypoStr = Typo->getName(); 4590 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4591 4592 // For very short typos, ignore potential corrections that have a different 4593 // base identifier from the typo or which have a normalized edit distance 4594 // longer than the typo itself. 4595 if (TypoStr.size() < 3 && 4596 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4597 return; 4598 4599 // If the correction is resolved but is not viable, ignore it. 4600 if (Correction.isResolved()) { 4601 checkCorrectionVisibility(SemaRef, Correction); 4602 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4603 return; 4604 } 4605 4606 TypoResultList &CList = 4607 CorrectionResults[Correction.getEditDistance(false)][Name]; 4608 4609 if (!CList.empty() && !CList.back().isResolved()) 4610 CList.pop_back(); 4611 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4612 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4613 return TypoCorr.getCorrectionDecl() == NewND; 4614 }); 4615 if (RI != CList.end()) { 4616 // The Correction refers to a decl already in the list. No insertion is 4617 // necessary and all further cases will return. 4618 4619 auto IsDeprecated = [](Decl *D) { 4620 while (D) { 4621 if (D->isDeprecated()) 4622 return true; 4623 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4624 } 4625 return false; 4626 }; 4627 4628 // Prefer non deprecated Corrections over deprecated and only then 4629 // sort using an alphabetical order. 4630 std::pair<bool, std::string> NewKey = { 4631 IsDeprecated(Correction.getFoundDecl()), 4632 Correction.getAsString(SemaRef.getLangOpts())}; 4633 4634 std::pair<bool, std::string> PrevKey = { 4635 IsDeprecated(RI->getFoundDecl()), 4636 RI->getAsString(SemaRef.getLangOpts())}; 4637 4638 if (NewKey < PrevKey) 4639 *RI = Correction; 4640 return; 4641 } 4642 } 4643 if (CList.empty() || Correction.isResolved()) 4644 CList.push_back(Correction); 4645 4646 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4647 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4648 } 4649 4650 void TypoCorrectionConsumer::addNamespaces( 4651 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4652 SearchNamespaces = true; 4653 4654 for (auto KNPair : KnownNamespaces) 4655 Namespaces.addNameSpecifier(KNPair.first); 4656 4657 bool SSIsTemplate = false; 4658 if (NestedNameSpecifier *NNS = 4659 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4660 if (const Type *T = NNS->getAsType()) 4661 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4662 } 4663 // Do not transform this into an iterator-based loop. The loop body can 4664 // trigger the creation of further types (through lazy deserialization) and 4665 // invalid iterators into this list. 4666 auto &Types = SemaRef.getASTContext().getTypes(); 4667 for (unsigned I = 0; I != Types.size(); ++I) { 4668 const auto *TI = Types[I]; 4669 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4670 CD = CD->getCanonicalDecl(); 4671 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4672 !CD->isUnion() && CD->getIdentifier() && 4673 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4674 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4675 Namespaces.addNameSpecifier(CD); 4676 } 4677 } 4678 } 4679 4680 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4681 if (++CurrentTCIndex < ValidatedCorrections.size()) 4682 return ValidatedCorrections[CurrentTCIndex]; 4683 4684 CurrentTCIndex = ValidatedCorrections.size(); 4685 while (!CorrectionResults.empty()) { 4686 auto DI = CorrectionResults.begin(); 4687 if (DI->second.empty()) { 4688 CorrectionResults.erase(DI); 4689 continue; 4690 } 4691 4692 auto RI = DI->second.begin(); 4693 if (RI->second.empty()) { 4694 DI->second.erase(RI); 4695 performQualifiedLookups(); 4696 continue; 4697 } 4698 4699 TypoCorrection TC = RI->second.pop_back_val(); 4700 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4701 ValidatedCorrections.push_back(TC); 4702 return ValidatedCorrections[CurrentTCIndex]; 4703 } 4704 } 4705 return ValidatedCorrections[0]; // The empty correction. 4706 } 4707 4708 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4709 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4710 DeclContext *TempMemberContext = MemberContext; 4711 CXXScopeSpec *TempSS = SS.get(); 4712 retry_lookup: 4713 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4714 EnteringContext, 4715 CorrectionValidator->IsObjCIvarLookup, 4716 Name == Typo && !Candidate.WillReplaceSpecifier()); 4717 switch (Result.getResultKind()) { 4718 case LookupResult::NotFound: 4719 case LookupResult::NotFoundInCurrentInstantiation: 4720 case LookupResult::FoundUnresolvedValue: 4721 if (TempSS) { 4722 // Immediately retry the lookup without the given CXXScopeSpec 4723 TempSS = nullptr; 4724 Candidate.WillReplaceSpecifier(true); 4725 goto retry_lookup; 4726 } 4727 if (TempMemberContext) { 4728 if (SS && !TempSS) 4729 TempSS = SS.get(); 4730 TempMemberContext = nullptr; 4731 goto retry_lookup; 4732 } 4733 if (SearchNamespaces) 4734 QualifiedResults.push_back(Candidate); 4735 break; 4736 4737 case LookupResult::Ambiguous: 4738 // We don't deal with ambiguities. 4739 break; 4740 4741 case LookupResult::Found: 4742 case LookupResult::FoundOverloaded: 4743 // Store all of the Decls for overloaded symbols 4744 for (auto *TRD : Result) 4745 Candidate.addCorrectionDecl(TRD); 4746 checkCorrectionVisibility(SemaRef, Candidate); 4747 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4748 if (SearchNamespaces) 4749 QualifiedResults.push_back(Candidate); 4750 break; 4751 } 4752 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4753 return true; 4754 } 4755 return false; 4756 } 4757 4758 void TypoCorrectionConsumer::performQualifiedLookups() { 4759 unsigned TypoLen = Typo->getName().size(); 4760 for (const TypoCorrection &QR : QualifiedResults) { 4761 for (const auto &NSI : Namespaces) { 4762 DeclContext *Ctx = NSI.DeclCtx; 4763 const Type *NSType = NSI.NameSpecifier->getAsType(); 4764 4765 // If the current NestedNameSpecifier refers to a class and the 4766 // current correction candidate is the name of that class, then skip 4767 // it as it is unlikely a qualified version of the class' constructor 4768 // is an appropriate correction. 4769 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4770 nullptr) { 4771 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4772 continue; 4773 } 4774 4775 TypoCorrection TC(QR); 4776 TC.ClearCorrectionDecls(); 4777 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4778 TC.setQualifierDistance(NSI.EditDistance); 4779 TC.setCallbackDistance(0); // Reset the callback distance 4780 4781 // If the current correction candidate and namespace combination are 4782 // too far away from the original typo based on the normalized edit 4783 // distance, then skip performing a qualified name lookup. 4784 unsigned TmpED = TC.getEditDistance(true); 4785 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4786 TypoLen / TmpED < 3) 4787 continue; 4788 4789 Result.clear(); 4790 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4791 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4792 continue; 4793 4794 // Any corrections added below will be validated in subsequent 4795 // iterations of the main while() loop over the Consumer's contents. 4796 switch (Result.getResultKind()) { 4797 case LookupResult::Found: 4798 case LookupResult::FoundOverloaded: { 4799 if (SS && SS->isValid()) { 4800 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4801 std::string OldQualified; 4802 llvm::raw_string_ostream OldOStream(OldQualified); 4803 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4804 OldOStream << Typo->getName(); 4805 // If correction candidate would be an identical written qualified 4806 // identifier, then the existing CXXScopeSpec probably included a 4807 // typedef that didn't get accounted for properly. 4808 if (OldOStream.str() == NewQualified) 4809 break; 4810 } 4811 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4812 TRD != TRDEnd; ++TRD) { 4813 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4814 NSType ? NSType->getAsCXXRecordDecl() 4815 : nullptr, 4816 TRD.getPair()) == Sema::AR_accessible) 4817 TC.addCorrectionDecl(*TRD); 4818 } 4819 if (TC.isResolved()) { 4820 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4821 addCorrection(TC); 4822 } 4823 break; 4824 } 4825 case LookupResult::NotFound: 4826 case LookupResult::NotFoundInCurrentInstantiation: 4827 case LookupResult::Ambiguous: 4828 case LookupResult::FoundUnresolvedValue: 4829 break; 4830 } 4831 } 4832 } 4833 QualifiedResults.clear(); 4834 } 4835 4836 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4837 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4838 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4839 if (NestedNameSpecifier *NNS = 4840 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4841 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4842 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4843 4844 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4845 } 4846 // Build the list of identifiers that would be used for an absolute 4847 // (from the global context) NestedNameSpecifier referring to the current 4848 // context. 4849 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4850 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4851 CurContextIdentifiers.push_back(ND->getIdentifier()); 4852 } 4853 4854 // Add the global context as a NestedNameSpecifier 4855 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4856 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4857 DistanceMap[1].push_back(SI); 4858 } 4859 4860 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4861 DeclContext *Start) -> DeclContextList { 4862 assert(Start && "Building a context chain from a null context"); 4863 DeclContextList Chain; 4864 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4865 DC = DC->getLookupParent()) { 4866 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4867 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4868 !(ND && ND->isAnonymousNamespace())) 4869 Chain.push_back(DC->getPrimaryContext()); 4870 } 4871 return Chain; 4872 } 4873 4874 unsigned 4875 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4876 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4877 unsigned NumSpecifiers = 0; 4878 for (DeclContext *C : llvm::reverse(DeclChain)) { 4879 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4880 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4881 ++NumSpecifiers; 4882 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4883 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4884 RD->getTypeForDecl()); 4885 ++NumSpecifiers; 4886 } 4887 } 4888 return NumSpecifiers; 4889 } 4890 4891 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4892 DeclContext *Ctx) { 4893 NestedNameSpecifier *NNS = nullptr; 4894 unsigned NumSpecifiers = 0; 4895 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4896 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4897 4898 // Eliminate common elements from the two DeclContext chains. 4899 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4900 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4901 break; 4902 NamespaceDeclChain.pop_back(); 4903 } 4904 4905 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4906 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4907 4908 // Add an explicit leading '::' specifier if needed. 4909 if (NamespaceDeclChain.empty()) { 4910 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4911 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4912 NumSpecifiers = 4913 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4914 } else if (NamedDecl *ND = 4915 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4916 IdentifierInfo *Name = ND->getIdentifier(); 4917 bool SameNameSpecifier = false; 4918 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4919 std::string NewNameSpecifier; 4920 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4921 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4922 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4923 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4924 SpecifierOStream.flush(); 4925 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4926 } 4927 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4928 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4929 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4930 NumSpecifiers = 4931 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4932 } 4933 } 4934 4935 // If the built NestedNameSpecifier would be replacing an existing 4936 // NestedNameSpecifier, use the number of component identifiers that 4937 // would need to be changed as the edit distance instead of the number 4938 // of components in the built NestedNameSpecifier. 4939 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4940 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4941 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4942 NumSpecifiers = llvm::ComputeEditDistance( 4943 llvm::makeArrayRef(CurNameSpecifierIdentifiers), 4944 llvm::makeArrayRef(NewNameSpecifierIdentifiers)); 4945 } 4946 4947 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4948 DistanceMap[NumSpecifiers].push_back(SI); 4949 } 4950 4951 /// Perform name lookup for a possible result for typo correction. 4952 static void LookupPotentialTypoResult(Sema &SemaRef, 4953 LookupResult &Res, 4954 IdentifierInfo *Name, 4955 Scope *S, CXXScopeSpec *SS, 4956 DeclContext *MemberContext, 4957 bool EnteringContext, 4958 bool isObjCIvarLookup, 4959 bool FindHidden) { 4960 Res.suppressDiagnostics(); 4961 Res.clear(); 4962 Res.setLookupName(Name); 4963 Res.setAllowHidden(FindHidden); 4964 if (MemberContext) { 4965 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4966 if (isObjCIvarLookup) { 4967 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4968 Res.addDecl(Ivar); 4969 Res.resolveKind(); 4970 return; 4971 } 4972 } 4973 4974 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4975 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4976 Res.addDecl(Prop); 4977 Res.resolveKind(); 4978 return; 4979 } 4980 } 4981 4982 SemaRef.LookupQualifiedName(Res, MemberContext); 4983 return; 4984 } 4985 4986 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, 4987 EnteringContext); 4988 4989 // Fake ivar lookup; this should really be part of 4990 // LookupParsedName. 4991 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 4992 if (Method->isInstanceMethod() && Method->getClassInterface() && 4993 (Res.empty() || 4994 (Res.isSingleResult() && 4995 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 4996 if (ObjCIvarDecl *IV 4997 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 4998 Res.addDecl(IV); 4999 Res.resolveKind(); 5000 } 5001 } 5002 } 5003 } 5004 5005 /// Add keywords to the consumer as possible typo corrections. 5006 static void AddKeywordsToConsumer(Sema &SemaRef, 5007 TypoCorrectionConsumer &Consumer, 5008 Scope *S, CorrectionCandidateCallback &CCC, 5009 bool AfterNestedNameSpecifier) { 5010 if (AfterNestedNameSpecifier) { 5011 // For 'X::', we know exactly which keywords can appear next. 5012 Consumer.addKeywordResult("template"); 5013 if (CCC.WantExpressionKeywords) 5014 Consumer.addKeywordResult("operator"); 5015 return; 5016 } 5017 5018 if (CCC.WantObjCSuper) 5019 Consumer.addKeywordResult("super"); 5020 5021 if (CCC.WantTypeSpecifiers) { 5022 // Add type-specifier keywords to the set of results. 5023 static const char *const CTypeSpecs[] = { 5024 "char", "const", "double", "enum", "float", "int", "long", "short", 5025 "signed", "struct", "union", "unsigned", "void", "volatile", 5026 "_Complex", "_Imaginary", 5027 // storage-specifiers as well 5028 "extern", "inline", "static", "typedef" 5029 }; 5030 5031 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs); 5032 for (unsigned I = 0; I != NumCTypeSpecs; ++I) 5033 Consumer.addKeywordResult(CTypeSpecs[I]); 5034 5035 if (SemaRef.getLangOpts().C99) 5036 Consumer.addKeywordResult("restrict"); 5037 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5038 Consumer.addKeywordResult("bool"); 5039 else if (SemaRef.getLangOpts().C99) 5040 Consumer.addKeywordResult("_Bool"); 5041 5042 if (SemaRef.getLangOpts().CPlusPlus) { 5043 Consumer.addKeywordResult("class"); 5044 Consumer.addKeywordResult("typename"); 5045 Consumer.addKeywordResult("wchar_t"); 5046 5047 if (SemaRef.getLangOpts().CPlusPlus11) { 5048 Consumer.addKeywordResult("char16_t"); 5049 Consumer.addKeywordResult("char32_t"); 5050 Consumer.addKeywordResult("constexpr"); 5051 Consumer.addKeywordResult("decltype"); 5052 Consumer.addKeywordResult("thread_local"); 5053 } 5054 } 5055 5056 if (SemaRef.getLangOpts().GNUKeywords) 5057 Consumer.addKeywordResult("typeof"); 5058 } else if (CCC.WantFunctionLikeCasts) { 5059 static const char *const CastableTypeSpecs[] = { 5060 "char", "double", "float", "int", "long", "short", 5061 "signed", "unsigned", "void" 5062 }; 5063 for (auto *kw : CastableTypeSpecs) 5064 Consumer.addKeywordResult(kw); 5065 } 5066 5067 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5068 Consumer.addKeywordResult("const_cast"); 5069 Consumer.addKeywordResult("dynamic_cast"); 5070 Consumer.addKeywordResult("reinterpret_cast"); 5071 Consumer.addKeywordResult("static_cast"); 5072 } 5073 5074 if (CCC.WantExpressionKeywords) { 5075 Consumer.addKeywordResult("sizeof"); 5076 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5077 Consumer.addKeywordResult("false"); 5078 Consumer.addKeywordResult("true"); 5079 } 5080 5081 if (SemaRef.getLangOpts().CPlusPlus) { 5082 static const char *const CXXExprs[] = { 5083 "delete", "new", "operator", "throw", "typeid" 5084 }; 5085 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs); 5086 for (unsigned I = 0; I != NumCXXExprs; ++I) 5087 Consumer.addKeywordResult(CXXExprs[I]); 5088 5089 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5090 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5091 Consumer.addKeywordResult("this"); 5092 5093 if (SemaRef.getLangOpts().CPlusPlus11) { 5094 Consumer.addKeywordResult("alignof"); 5095 Consumer.addKeywordResult("nullptr"); 5096 } 5097 } 5098 5099 if (SemaRef.getLangOpts().C11) { 5100 // FIXME: We should not suggest _Alignof if the alignof macro 5101 // is present. 5102 Consumer.addKeywordResult("_Alignof"); 5103 } 5104 } 5105 5106 if (CCC.WantRemainingKeywords) { 5107 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5108 // Statements. 5109 static const char *const CStmts[] = { 5110 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5111 const unsigned NumCStmts = llvm::array_lengthof(CStmts); 5112 for (unsigned I = 0; I != NumCStmts; ++I) 5113 Consumer.addKeywordResult(CStmts[I]); 5114 5115 if (SemaRef.getLangOpts().CPlusPlus) { 5116 Consumer.addKeywordResult("catch"); 5117 Consumer.addKeywordResult("try"); 5118 } 5119 5120 if (S && S->getBreakParent()) 5121 Consumer.addKeywordResult("break"); 5122 5123 if (S && S->getContinueParent()) 5124 Consumer.addKeywordResult("continue"); 5125 5126 if (SemaRef.getCurFunction() && 5127 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5128 Consumer.addKeywordResult("case"); 5129 Consumer.addKeywordResult("default"); 5130 } 5131 } else { 5132 if (SemaRef.getLangOpts().CPlusPlus) { 5133 Consumer.addKeywordResult("namespace"); 5134 Consumer.addKeywordResult("template"); 5135 } 5136 5137 if (S && S->isClassScope()) { 5138 Consumer.addKeywordResult("explicit"); 5139 Consumer.addKeywordResult("friend"); 5140 Consumer.addKeywordResult("mutable"); 5141 Consumer.addKeywordResult("private"); 5142 Consumer.addKeywordResult("protected"); 5143 Consumer.addKeywordResult("public"); 5144 Consumer.addKeywordResult("virtual"); 5145 } 5146 } 5147 5148 if (SemaRef.getLangOpts().CPlusPlus) { 5149 Consumer.addKeywordResult("using"); 5150 5151 if (SemaRef.getLangOpts().CPlusPlus11) 5152 Consumer.addKeywordResult("static_assert"); 5153 } 5154 } 5155 } 5156 5157 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5158 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5159 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5160 DeclContext *MemberContext, bool EnteringContext, 5161 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5162 5163 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5164 DisableTypoCorrection) 5165 return nullptr; 5166 5167 // In Microsoft mode, don't perform typo correction in a template member 5168 // function dependent context because it interferes with the "lookup into 5169 // dependent bases of class templates" feature. 5170 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5171 isa<CXXMethodDecl>(CurContext)) 5172 return nullptr; 5173 5174 // We only attempt to correct typos for identifiers. 5175 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5176 if (!Typo) 5177 return nullptr; 5178 5179 // If the scope specifier itself was invalid, don't try to correct 5180 // typos. 5181 if (SS && SS->isInvalid()) 5182 return nullptr; 5183 5184 // Never try to correct typos during any kind of code synthesis. 5185 if (!CodeSynthesisContexts.empty()) 5186 return nullptr; 5187 5188 // Don't try to correct 'super'. 5189 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5190 return nullptr; 5191 5192 // Abort if typo correction already failed for this specific typo. 5193 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5194 if (locs != TypoCorrectionFailures.end() && 5195 locs->second.count(TypoName.getLoc())) 5196 return nullptr; 5197 5198 // Don't try to correct the identifier "vector" when in AltiVec mode. 5199 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5200 // remove this workaround. 5201 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5202 return nullptr; 5203 5204 // Provide a stop gap for files that are just seriously broken. Trying 5205 // to correct all typos can turn into a HUGE performance penalty, causing 5206 // some files to take minutes to get rejected by the parser. 5207 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5208 if (Limit && TyposCorrected >= Limit) 5209 return nullptr; 5210 ++TyposCorrected; 5211 5212 // If we're handling a missing symbol error, using modules, and the 5213 // special search all modules option is used, look for a missing import. 5214 if (ErrorRecovery && getLangOpts().Modules && 5215 getLangOpts().ModulesSearchAll) { 5216 // The following has the side effect of loading the missing module. 5217 getModuleLoader().lookupMissingImports(Typo->getName(), 5218 TypoName.getBeginLoc()); 5219 } 5220 5221 // Extend the lifetime of the callback. We delayed this until here 5222 // to avoid allocations in the hot path (which is where no typo correction 5223 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5224 // initially stack-allocated. 5225 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5226 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5227 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5228 EnteringContext); 5229 5230 // Perform name lookup to find visible, similarly-named entities. 5231 bool IsUnqualifiedLookup = false; 5232 DeclContext *QualifiedDC = MemberContext; 5233 if (MemberContext) { 5234 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5235 5236 // Look in qualified interfaces. 5237 if (OPT) { 5238 for (auto *I : OPT->quals()) 5239 LookupVisibleDecls(I, LookupKind, *Consumer); 5240 } 5241 } else if (SS && SS->isSet()) { 5242 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5243 if (!QualifiedDC) 5244 return nullptr; 5245 5246 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5247 } else { 5248 IsUnqualifiedLookup = true; 5249 } 5250 5251 // Determine whether we are going to search in the various namespaces for 5252 // corrections. 5253 bool SearchNamespaces 5254 = getLangOpts().CPlusPlus && 5255 (IsUnqualifiedLookup || (SS && SS->isSet())); 5256 5257 if (IsUnqualifiedLookup || SearchNamespaces) { 5258 // For unqualified lookup, look through all of the names that we have 5259 // seen in this translation unit. 5260 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5261 for (const auto &I : Context.Idents) 5262 Consumer->FoundName(I.getKey()); 5263 5264 // Walk through identifiers in external identifier sources. 5265 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5266 if (IdentifierInfoLookup *External 5267 = Context.Idents.getExternalIdentifierLookup()) { 5268 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5269 do { 5270 StringRef Name = Iter->Next(); 5271 if (Name.empty()) 5272 break; 5273 5274 Consumer->FoundName(Name); 5275 } while (true); 5276 } 5277 } 5278 5279 AddKeywordsToConsumer(*this, *Consumer, S, 5280 *Consumer->getCorrectionValidator(), 5281 SS && SS->isNotEmpty()); 5282 5283 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5284 // to search those namespaces. 5285 if (SearchNamespaces) { 5286 // Load any externally-known namespaces. 5287 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5288 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5289 LoadedExternalKnownNamespaces = true; 5290 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5291 for (auto *N : ExternalKnownNamespaces) 5292 KnownNamespaces[N] = true; 5293 } 5294 5295 Consumer->addNamespaces(KnownNamespaces); 5296 } 5297 5298 return Consumer; 5299 } 5300 5301 /// Try to "correct" a typo in the source code by finding 5302 /// visible declarations whose names are similar to the name that was 5303 /// present in the source code. 5304 /// 5305 /// \param TypoName the \c DeclarationNameInfo structure that contains 5306 /// the name that was present in the source code along with its location. 5307 /// 5308 /// \param LookupKind the name-lookup criteria used to search for the name. 5309 /// 5310 /// \param S the scope in which name lookup occurs. 5311 /// 5312 /// \param SS the nested-name-specifier that precedes the name we're 5313 /// looking for, if present. 5314 /// 5315 /// \param CCC A CorrectionCandidateCallback object that provides further 5316 /// validation of typo correction candidates. It also provides flags for 5317 /// determining the set of keywords permitted. 5318 /// 5319 /// \param MemberContext if non-NULL, the context in which to look for 5320 /// a member access expression. 5321 /// 5322 /// \param EnteringContext whether we're entering the context described by 5323 /// the nested-name-specifier SS. 5324 /// 5325 /// \param OPT when non-NULL, the search for visible declarations will 5326 /// also walk the protocols in the qualified interfaces of \p OPT. 5327 /// 5328 /// \returns a \c TypoCorrection containing the corrected name if the typo 5329 /// along with information such as the \c NamedDecl where the corrected name 5330 /// was declared, and any additional \c NestedNameSpecifier needed to access 5331 /// it (C++ only). The \c TypoCorrection is empty if there is no correction. 5332 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5333 Sema::LookupNameKind LookupKind, 5334 Scope *S, CXXScopeSpec *SS, 5335 CorrectionCandidateCallback &CCC, 5336 CorrectTypoKind Mode, 5337 DeclContext *MemberContext, 5338 bool EnteringContext, 5339 const ObjCObjectPointerType *OPT, 5340 bool RecordFailure) { 5341 // Always let the ExternalSource have the first chance at correction, even 5342 // if we would otherwise have given up. 5343 if (ExternalSource) { 5344 if (TypoCorrection Correction = 5345 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5346 MemberContext, EnteringContext, OPT)) 5347 return Correction; 5348 } 5349 5350 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5351 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5352 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5353 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5354 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5355 5356 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5357 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5358 MemberContext, EnteringContext, 5359 OPT, Mode == CTK_ErrorRecovery); 5360 5361 if (!Consumer) 5362 return TypoCorrection(); 5363 5364 // If we haven't found anything, we're done. 5365 if (Consumer->empty()) 5366 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5367 5368 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5369 // is not more that about a third of the length of the typo's identifier. 5370 unsigned ED = Consumer->getBestEditDistance(true); 5371 unsigned TypoLen = Typo->getName().size(); 5372 if (ED > 0 && TypoLen / ED < 3) 5373 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5374 5375 TypoCorrection BestTC = Consumer->getNextCorrection(); 5376 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5377 if (!BestTC) 5378 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5379 5380 ED = BestTC.getEditDistance(); 5381 5382 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5383 // If this was an unqualified lookup and we believe the callback 5384 // object wouldn't have filtered out possible corrections, note 5385 // that no correction was found. 5386 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5387 } 5388 5389 // If only a single name remains, return that result. 5390 if (!SecondBestTC || 5391 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5392 const TypoCorrection &Result = BestTC; 5393 5394 // Don't correct to a keyword that's the same as the typo; the keyword 5395 // wasn't actually in scope. 5396 if (ED == 0 && Result.isKeyword()) 5397 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5398 5399 TypoCorrection TC = Result; 5400 TC.setCorrectionRange(SS, TypoName); 5401 checkCorrectionVisibility(*this, TC); 5402 return TC; 5403 } else if (SecondBestTC && ObjCMessageReceiver) { 5404 // Prefer 'super' when we're completing in a message-receiver 5405 // context. 5406 5407 if (BestTC.getCorrection().getAsString() != "super") { 5408 if (SecondBestTC.getCorrection().getAsString() == "super") 5409 BestTC = SecondBestTC; 5410 else if ((*Consumer)["super"].front().isKeyword()) 5411 BestTC = (*Consumer)["super"].front(); 5412 } 5413 // Don't correct to a keyword that's the same as the typo; the keyword 5414 // wasn't actually in scope. 5415 if (BestTC.getEditDistance() == 0 || 5416 BestTC.getCorrection().getAsString() != "super") 5417 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5418 5419 BestTC.setCorrectionRange(SS, TypoName); 5420 return BestTC; 5421 } 5422 5423 // Record the failure's location if needed and return an empty correction. If 5424 // this was an unqualified lookup and we believe the callback object did not 5425 // filter out possible corrections, also cache the failure for the typo. 5426 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5427 } 5428 5429 /// Try to "correct" a typo in the source code by finding 5430 /// visible declarations whose names are similar to the name that was 5431 /// present in the source code. 5432 /// 5433 /// \param TypoName the \c DeclarationNameInfo structure that contains 5434 /// the name that was present in the source code along with its location. 5435 /// 5436 /// \param LookupKind the name-lookup criteria used to search for the name. 5437 /// 5438 /// \param S the scope in which name lookup occurs. 5439 /// 5440 /// \param SS the nested-name-specifier that precedes the name we're 5441 /// looking for, if present. 5442 /// 5443 /// \param CCC A CorrectionCandidateCallback object that provides further 5444 /// validation of typo correction candidates. It also provides flags for 5445 /// determining the set of keywords permitted. 5446 /// 5447 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print 5448 /// diagnostics when the actual typo correction is attempted. 5449 /// 5450 /// \param TRC A TypoRecoveryCallback functor that will be used to build an 5451 /// Expr from a typo correction candidate. 5452 /// 5453 /// \param MemberContext if non-NULL, the context in which to look for 5454 /// a member access expression. 5455 /// 5456 /// \param EnteringContext whether we're entering the context described by 5457 /// the nested-name-specifier SS. 5458 /// 5459 /// \param OPT when non-NULL, the search for visible declarations will 5460 /// also walk the protocols in the qualified interfaces of \p OPT. 5461 /// 5462 /// \returns a new \c TypoExpr that will later be replaced in the AST with an 5463 /// Expr representing the result of performing typo correction, or nullptr if 5464 /// typo correction is not possible. If nullptr is returned, no diagnostics will 5465 /// be emitted and it is the responsibility of the caller to emit any that are 5466 /// needed. 5467 TypoExpr *Sema::CorrectTypoDelayed( 5468 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5469 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5470 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5471 DeclContext *MemberContext, bool EnteringContext, 5472 const ObjCObjectPointerType *OPT) { 5473 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5474 MemberContext, EnteringContext, 5475 OPT, Mode == CTK_ErrorRecovery); 5476 5477 // Give the external sema source a chance to correct the typo. 5478 TypoCorrection ExternalTypo; 5479 if (ExternalSource && Consumer) { 5480 ExternalTypo = ExternalSource->CorrectTypo( 5481 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5482 MemberContext, EnteringContext, OPT); 5483 if (ExternalTypo) 5484 Consumer->addCorrection(ExternalTypo); 5485 } 5486 5487 if (!Consumer || Consumer->empty()) 5488 return nullptr; 5489 5490 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5491 // is not more that about a third of the length of the typo's identifier. 5492 unsigned ED = Consumer->getBestEditDistance(true); 5493 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5494 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5495 return nullptr; 5496 ExprEvalContexts.back().NumTypos++; 5497 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5498 TypoName.getLoc()); 5499 } 5500 5501 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5502 if (!CDecl) return; 5503 5504 if (isKeyword()) 5505 CorrectionDecls.clear(); 5506 5507 CorrectionDecls.push_back(CDecl); 5508 5509 if (!CorrectionName) 5510 CorrectionName = CDecl->getDeclName(); 5511 } 5512 5513 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5514 if (CorrectionNameSpec) { 5515 std::string tmpBuffer; 5516 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5517 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5518 PrefixOStream << CorrectionName; 5519 return PrefixOStream.str(); 5520 } 5521 5522 return CorrectionName.getAsString(); 5523 } 5524 5525 bool CorrectionCandidateCallback::ValidateCandidate( 5526 const TypoCorrection &candidate) { 5527 if (!candidate.isResolved()) 5528 return true; 5529 5530 if (candidate.isKeyword()) 5531 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5532 WantRemainingKeywords || WantObjCSuper; 5533 5534 bool HasNonType = false; 5535 bool HasStaticMethod = false; 5536 bool HasNonStaticMethod = false; 5537 for (Decl *D : candidate) { 5538 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5539 D = FTD->getTemplatedDecl(); 5540 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5541 if (Method->isStatic()) 5542 HasStaticMethod = true; 5543 else 5544 HasNonStaticMethod = true; 5545 } 5546 if (!isa<TypeDecl>(D)) 5547 HasNonType = true; 5548 } 5549 5550 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5551 !candidate.getCorrectionSpecifier()) 5552 return false; 5553 5554 return WantTypeSpecifiers || HasNonType; 5555 } 5556 5557 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5558 bool HasExplicitTemplateArgs, 5559 MemberExpr *ME) 5560 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5561 CurContext(SemaRef.CurContext), MemberFn(ME) { 5562 WantTypeSpecifiers = false; 5563 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5564 !HasExplicitTemplateArgs && NumArgs == 1; 5565 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5566 WantRemainingKeywords = false; 5567 } 5568 5569 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5570 if (!candidate.getCorrectionDecl()) 5571 return candidate.isKeyword(); 5572 5573 for (auto *C : candidate) { 5574 FunctionDecl *FD = nullptr; 5575 NamedDecl *ND = C->getUnderlyingDecl(); 5576 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5577 FD = FTD->getTemplatedDecl(); 5578 if (!HasExplicitTemplateArgs && !FD) { 5579 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5580 // If the Decl is neither a function nor a template function, 5581 // determine if it is a pointer or reference to a function. If so, 5582 // check against the number of arguments expected for the pointee. 5583 QualType ValType = cast<ValueDecl>(ND)->getType(); 5584 if (ValType.isNull()) 5585 continue; 5586 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5587 ValType = ValType->getPointeeType(); 5588 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5589 if (FPT->getNumParams() == NumArgs) 5590 return true; 5591 } 5592 } 5593 5594 // A typo for a function-style cast can look like a function call in C++. 5595 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5596 : isa<TypeDecl>(ND)) && 5597 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5598 // Only a class or class template can take two or more arguments. 5599 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5600 5601 // Skip the current candidate if it is not a FunctionDecl or does not accept 5602 // the current number of arguments. 5603 if (!FD || !(FD->getNumParams() >= NumArgs && 5604 FD->getMinRequiredArguments() <= NumArgs)) 5605 continue; 5606 5607 // If the current candidate is a non-static C++ method, skip the candidate 5608 // unless the method being corrected--or the current DeclContext, if the 5609 // function being corrected is not a method--is a method in the same class 5610 // or a descendent class of the candidate's parent class. 5611 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 5612 if (MemberFn || !MD->isStatic()) { 5613 CXXMethodDecl *CurMD = 5614 MemberFn 5615 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl()) 5616 : dyn_cast_or_null<CXXMethodDecl>(CurContext); 5617 CXXRecordDecl *CurRD = 5618 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5619 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5620 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5621 continue; 5622 } 5623 } 5624 return true; 5625 } 5626 return false; 5627 } 5628 5629 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5630 const PartialDiagnostic &TypoDiag, 5631 bool ErrorRecovery) { 5632 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5633 ErrorRecovery); 5634 } 5635 5636 /// Find which declaration we should import to provide the definition of 5637 /// the given declaration. 5638 static NamedDecl *getDefinitionToImport(NamedDecl *D) { 5639 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 5640 return VD->getDefinition(); 5641 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 5642 return FD->getDefinition(); 5643 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 5644 return TD->getDefinition(); 5645 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5646 return ID->getDefinition(); 5647 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) 5648 return PD->getDefinition(); 5649 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 5650 if (NamedDecl *TTD = TD->getTemplatedDecl()) 5651 return getDefinitionToImport(TTD); 5652 return nullptr; 5653 } 5654 5655 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, 5656 MissingImportKind MIK, bool Recover) { 5657 // Suggest importing a module providing the definition of this entity, if 5658 // possible. 5659 NamedDecl *Def = getDefinitionToImport(Decl); 5660 if (!Def) 5661 Def = Decl; 5662 5663 Module *Owner = getOwningModule(Def); 5664 assert(Owner && "definition of hidden declaration is not in a module"); 5665 5666 llvm::SmallVector<Module*, 8> OwningModules; 5667 OwningModules.push_back(Owner); 5668 auto Merged = Context.getModulesWithMergedDefinition(Def); 5669 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5670 5671 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5672 Recover); 5673 } 5674 5675 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5676 /// suggesting the addition of a #include of the specified file. 5677 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E, 5678 llvm::StringRef IncludingFile) { 5679 bool IsSystem = false; 5680 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5681 E, IncludingFile, &IsSystem); 5682 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); 5683 } 5684 5685 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl, 5686 SourceLocation DeclLoc, 5687 ArrayRef<Module *> Modules, 5688 MissingImportKind MIK, bool Recover) { 5689 assert(!Modules.empty()); 5690 5691 auto NotePrevious = [&] { 5692 // FIXME: Suppress the note backtrace even under 5693 // -fdiagnostics-show-note-include-stack. We don't care how this 5694 // declaration was previously reached. 5695 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5696 }; 5697 5698 // Weed out duplicates from module list. 5699 llvm::SmallVector<Module*, 8> UniqueModules; 5700 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5701 for (auto *M : Modules) { 5702 if (M->Kind == Module::GlobalModuleFragment) 5703 continue; 5704 if (UniqueModuleSet.insert(M).second) 5705 UniqueModules.push_back(M); 5706 } 5707 5708 // Try to find a suitable header-name to #include. 5709 std::string HeaderName; 5710 if (const FileEntry *Header = 5711 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5712 if (const FileEntry *FE = 5713 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5714 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName()); 5715 } 5716 5717 // If we have a #include we should suggest, or if all definition locations 5718 // were in global module fragments, don't suggest an import. 5719 if (!HeaderName.empty() || UniqueModules.empty()) { 5720 // FIXME: Find a smart place to suggest inserting a #include, and add 5721 // a FixItHint there. 5722 Diag(UseLoc, diag::err_module_unimported_use_header) 5723 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5724 // Produce a note showing where the entity was declared. 5725 NotePrevious(); 5726 if (Recover) 5727 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5728 return; 5729 } 5730 5731 Modules = UniqueModules; 5732 5733 if (Modules.size() > 1) { 5734 std::string ModuleList; 5735 unsigned N = 0; 5736 for (Module *M : Modules) { 5737 ModuleList += "\n "; 5738 if (++N == 5 && N != Modules.size()) { 5739 ModuleList += "[...]"; 5740 break; 5741 } 5742 ModuleList += M->getFullModuleName(); 5743 } 5744 5745 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5746 << (int)MIK << Decl << ModuleList; 5747 } else { 5748 // FIXME: Add a FixItHint that imports the corresponding module. 5749 Diag(UseLoc, diag::err_module_unimported_use) 5750 << (int)MIK << Decl << Modules[0]->getFullModuleName(); 5751 } 5752 5753 NotePrevious(); 5754 5755 // Try to recover by implicitly importing this module. 5756 if (Recover) 5757 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5758 } 5759 5760 /// Diagnose a successfully-corrected typo. Separated from the correction 5761 /// itself to allow external validation of the result, etc. 5762 /// 5763 /// \param Correction The result of performing typo correction. 5764 /// \param TypoDiag The diagnostic to produce. This will have the corrected 5765 /// string added to it (and usually also a fixit). 5766 /// \param PrevNote A note to use when indicating the location of the entity to 5767 /// which we are correcting. Will have the correction string added to it. 5768 /// \param ErrorRecovery If \c true (the default), the caller is going to 5769 /// recover from the typo as if the corrected string had been typed. 5770 /// In this case, \c PDiag must be an error, and we will attach a fixit 5771 /// to it. 5772 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5773 const PartialDiagnostic &TypoDiag, 5774 const PartialDiagnostic &PrevNote, 5775 bool ErrorRecovery) { 5776 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5777 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5778 FixItHint FixTypo = FixItHint::CreateReplacement( 5779 Correction.getCorrectionRange(), CorrectedStr); 5780 5781 // Maybe we're just missing a module import. 5782 if (Correction.requiresImport()) { 5783 NamedDecl *Decl = Correction.getFoundDecl(); 5784 assert(Decl && "import required but no declaration to import"); 5785 5786 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5787 MissingImportKind::Declaration, ErrorRecovery); 5788 return; 5789 } 5790 5791 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5792 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5793 5794 NamedDecl *ChosenDecl = 5795 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5796 if (PrevNote.getDiagID() && ChosenDecl) 5797 Diag(ChosenDecl->getLocation(), PrevNote) 5798 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5799 5800 // Add any extra diagnostics. 5801 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5802 Diag(Correction.getCorrectionRange().getBegin(), PD); 5803 } 5804 5805 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5806 TypoDiagnosticGenerator TDG, 5807 TypoRecoveryCallback TRC, 5808 SourceLocation TypoLoc) { 5809 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5810 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5811 auto &State = DelayedTypos[TE]; 5812 State.Consumer = std::move(TCC); 5813 State.DiagHandler = std::move(TDG); 5814 State.RecoveryHandler = std::move(TRC); 5815 if (TE) 5816 TypoExprs.push_back(TE); 5817 return TE; 5818 } 5819 5820 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5821 auto Entry = DelayedTypos.find(TE); 5822 assert(Entry != DelayedTypos.end() && 5823 "Failed to get the state for a TypoExpr!"); 5824 return Entry->second; 5825 } 5826 5827 void Sema::clearDelayedTypo(TypoExpr *TE) { 5828 DelayedTypos.erase(TE); 5829 } 5830 5831 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5832 DeclarationNameInfo Name(II, IILoc); 5833 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); 5834 R.suppressDiagnostics(); 5835 R.setHideTags(false); 5836 LookupName(R, S); 5837 R.dump(); 5838 } 5839