xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <algorithm>
46 #include <iterator>
47 #include <list>
48 #include <optional>
49 #include <set>
50 #include <utility>
51 #include <vector>
52 
53 #include "OpenCLBuiltins.inc"
54 
55 using namespace clang;
56 using namespace sema;
57 
58 namespace {
59   class UnqualUsingEntry {
60     const DeclContext *Nominated;
61     const DeclContext *CommonAncestor;
62 
63   public:
64     UnqualUsingEntry(const DeclContext *Nominated,
65                      const DeclContext *CommonAncestor)
66       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67     }
68 
69     const DeclContext *getCommonAncestor() const {
70       return CommonAncestor;
71     }
72 
73     const DeclContext *getNominatedNamespace() const {
74       return Nominated;
75     }
76 
77     // Sort by the pointer value of the common ancestor.
78     struct Comparator {
79       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80         return L.getCommonAncestor() < R.getCommonAncestor();
81       }
82 
83       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84         return E.getCommonAncestor() < DC;
85       }
86 
87       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88         return DC < E.getCommonAncestor();
89       }
90     };
91   };
92 
93   /// A collection of using directives, as used by C++ unqualified
94   /// lookup.
95   class UnqualUsingDirectiveSet {
96     Sema &SemaRef;
97 
98     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99 
100     ListTy list;
101     llvm::SmallPtrSet<DeclContext*, 8> visited;
102 
103   public:
104     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105 
106     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107       // C++ [namespace.udir]p1:
108       //   During unqualified name lookup, the names appear as if they
109       //   were declared in the nearest enclosing namespace which contains
110       //   both the using-directive and the nominated namespace.
111       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112       assert(InnermostFileDC && InnermostFileDC->isFileContext());
113 
114       for (; S; S = S->getParent()) {
115         // C++ [namespace.udir]p1:
116         //   A using-directive shall not appear in class scope, but may
117         //   appear in namespace scope or in block scope.
118         DeclContext *Ctx = S->getEntity();
119         if (Ctx && Ctx->isFileContext()) {
120           visit(Ctx, Ctx);
121         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122           for (auto *I : S->using_directives())
123             if (SemaRef.isVisible(I))
124               visit(I, InnermostFileDC);
125         }
126       }
127     }
128 
129     // Visits a context and collect all of its using directives
130     // recursively.  Treats all using directives as if they were
131     // declared in the context.
132     //
133     // A given context is only every visited once, so it is important
134     // that contexts be visited from the inside out in order to get
135     // the effective DCs right.
136     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137       if (!visited.insert(DC).second)
138         return;
139 
140       addUsingDirectives(DC, EffectiveDC);
141     }
142 
143     // Visits a using directive and collects all of its using
144     // directives recursively.  Treats all using directives as if they
145     // were declared in the effective DC.
146     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147       DeclContext *NS = UD->getNominatedNamespace();
148       if (!visited.insert(NS).second)
149         return;
150 
151       addUsingDirective(UD, EffectiveDC);
152       addUsingDirectives(NS, EffectiveDC);
153     }
154 
155     // Adds all the using directives in a context (and those nominated
156     // by its using directives, transitively) as if they appeared in
157     // the given effective context.
158     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159       SmallVector<DeclContext*, 4> queue;
160       while (true) {
161         for (auto *UD : DC->using_directives()) {
162           DeclContext *NS = UD->getNominatedNamespace();
163           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164             addUsingDirective(UD, EffectiveDC);
165             queue.push_back(NS);
166           }
167         }
168 
169         if (queue.empty())
170           return;
171 
172         DC = queue.pop_back_val();
173       }
174     }
175 
176     // Add a using directive as if it had been declared in the given
177     // context.  This helps implement C++ [namespace.udir]p3:
178     //   The using-directive is transitive: if a scope contains a
179     //   using-directive that nominates a second namespace that itself
180     //   contains using-directives, the effect is as if the
181     //   using-directives from the second namespace also appeared in
182     //   the first.
183     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184       // Find the common ancestor between the effective context and
185       // the nominated namespace.
186       DeclContext *Common = UD->getNominatedNamespace();
187       while (!Common->Encloses(EffectiveDC))
188         Common = Common->getParent();
189       Common = Common->getPrimaryContext();
190 
191       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192     }
193 
194     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195 
196     typedef ListTy::const_iterator const_iterator;
197 
198     const_iterator begin() const { return list.begin(); }
199     const_iterator end() const { return list.end(); }
200 
201     llvm::iterator_range<const_iterator>
202     getNamespacesFor(const DeclContext *DC) const {
203       return llvm::make_range(std::equal_range(begin(), end(),
204                                                DC->getPrimaryContext(),
205                                                UnqualUsingEntry::Comparator()));
206     }
207   };
208 } // end anonymous namespace
209 
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                                bool CPlusPlus,
214                                bool Redeclaration) {
215   unsigned IDNS = 0;
216   switch (NameKind) {
217   case Sema::LookupObjCImplicitSelfParam:
218   case Sema::LookupOrdinaryName:
219   case Sema::LookupRedeclarationWithLinkage:
220   case Sema::LookupLocalFriendName:
221   case Sema::LookupDestructorName:
222     IDNS = Decl::IDNS_Ordinary;
223     if (CPlusPlus) {
224       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225       if (Redeclaration)
226         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227     }
228     if (Redeclaration)
229       IDNS |= Decl::IDNS_LocalExtern;
230     break;
231 
232   case Sema::LookupOperatorName:
233     // Operator lookup is its own crazy thing;  it is not the same
234     // as (e.g.) looking up an operator name for redeclaration.
235     assert(!Redeclaration && "cannot do redeclaration operator lookup");
236     IDNS = Decl::IDNS_NonMemberOperator;
237     break;
238 
239   case Sema::LookupTagName:
240     if (CPlusPlus) {
241       IDNS = Decl::IDNS_Type;
242 
243       // When looking for a redeclaration of a tag name, we add:
244       // 1) TagFriend to find undeclared friend decls
245       // 2) Namespace because they can't "overload" with tag decls.
246       // 3) Tag because it includes class templates, which can't
247       //    "overload" with tag decls.
248       if (Redeclaration)
249         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250     } else {
251       IDNS = Decl::IDNS_Tag;
252     }
253     break;
254 
255   case Sema::LookupLabel:
256     IDNS = Decl::IDNS_Label;
257     break;
258 
259   case Sema::LookupMemberName:
260     IDNS = Decl::IDNS_Member;
261     if (CPlusPlus)
262       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263     break;
264 
265   case Sema::LookupNestedNameSpecifierName:
266     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267     break;
268 
269   case Sema::LookupNamespaceName:
270     IDNS = Decl::IDNS_Namespace;
271     break;
272 
273   case Sema::LookupUsingDeclName:
274     assert(Redeclaration && "should only be used for redecl lookup");
275     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277            Decl::IDNS_LocalExtern;
278     break;
279 
280   case Sema::LookupObjCProtocolName:
281     IDNS = Decl::IDNS_ObjCProtocol;
282     break;
283 
284   case Sema::LookupOMPReductionName:
285     IDNS = Decl::IDNS_OMPReduction;
286     break;
287 
288   case Sema::LookupOMPMapperName:
289     IDNS = Decl::IDNS_OMPMapper;
290     break;
291 
292   case Sema::LookupAnyName:
293     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295       | Decl::IDNS_Type;
296     break;
297   }
298   return IDNS;
299 }
300 
301 void LookupResult::configure() {
302   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303                  isForRedeclaration());
304 
305   // If we're looking for one of the allocation or deallocation
306   // operators, make sure that the implicitly-declared new and delete
307   // operators can be found.
308   switch (NameInfo.getName().getCXXOverloadedOperator()) {
309   case OO_New:
310   case OO_Delete:
311   case OO_Array_New:
312   case OO_Array_Delete:
313     getSema().DeclareGlobalNewDelete();
314     break;
315 
316   default:
317     break;
318   }
319 
320   // Compiler builtins are always visible, regardless of where they end
321   // up being declared.
322   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323     if (unsigned BuiltinID = Id->getBuiltinID()) {
324       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325         AllowHidden = true;
326     }
327   }
328 }
329 
330 bool LookupResult::checkDebugAssumptions() const {
331   // This function is never called by NDEBUG builds.
332   assert(ResultKind != NotFound || Decls.size() == 0);
333   assert(ResultKind != Found || Decls.size() == 1);
334   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
335          (Decls.size() == 1 &&
336           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
337   assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
338   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
339          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
340                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
341   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
342                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
343                                  Ambiguity == AmbiguousBaseSubobjects)));
344   return true;
345 }
346 
347 // Necessary because CXXBasePaths is not complete in Sema.h
348 void LookupResult::deletePaths(CXXBasePaths *Paths) {
349   delete Paths;
350 }
351 
352 /// Get a representative context for a declaration such that two declarations
353 /// will have the same context if they were found within the same scope.
354 static const DeclContext *getContextForScopeMatching(const Decl *D) {
355   // For function-local declarations, use that function as the context. This
356   // doesn't account for scopes within the function; the caller must deal with
357   // those.
358   if (const DeclContext *DC = D->getLexicalDeclContext();
359       DC->isFunctionOrMethod())
360     return DC;
361 
362   // Otherwise, look at the semantic context of the declaration. The
363   // declaration must have been found there.
364   return D->getDeclContext()->getRedeclContext();
365 }
366 
367 /// Determine whether \p D is a better lookup result than \p Existing,
368 /// given that they declare the same entity.
369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370                                     const NamedDecl *D,
371                                     const NamedDecl *Existing) {
372   // When looking up redeclarations of a using declaration, prefer a using
373   // shadow declaration over any other declaration of the same entity.
374   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
375       !isa<UsingShadowDecl>(Existing))
376     return true;
377 
378   const auto *DUnderlying = D->getUnderlyingDecl();
379   const auto *EUnderlying = Existing->getUnderlyingDecl();
380 
381   // If they have different underlying declarations, prefer a typedef over the
382   // original type (this happens when two type declarations denote the same
383   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
384   // might carry additional semantic information, such as an alignment override.
385   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
386   // declaration over a typedef. Also prefer a tag over a typedef for
387   // destructor name lookup because in some contexts we only accept a
388   // class-name in a destructor declaration.
389   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
390     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
391     bool HaveTag = isa<TagDecl>(EUnderlying);
392     bool WantTag =
393         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
394     return HaveTag != WantTag;
395   }
396 
397   // Pick the function with more default arguments.
398   // FIXME: In the presence of ambiguous default arguments, we should keep both,
399   //        so we can diagnose the ambiguity if the default argument is needed.
400   //        See C++ [over.match.best]p3.
401   if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
402     const auto *EFD = cast<FunctionDecl>(EUnderlying);
403     unsigned DMin = DFD->getMinRequiredArguments();
404     unsigned EMin = EFD->getMinRequiredArguments();
405     // If D has more default arguments, it is preferred.
406     if (DMin != EMin)
407       return DMin < EMin;
408     // FIXME: When we track visibility for default function arguments, check
409     // that we pick the declaration with more visible default arguments.
410   }
411 
412   // Pick the template with more default template arguments.
413   if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
414     const auto *ETD = cast<TemplateDecl>(EUnderlying);
415     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
416     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
417     // If D has more default arguments, it is preferred. Note that default
418     // arguments (and their visibility) is monotonically increasing across the
419     // redeclaration chain, so this is a quick proxy for "is more recent".
420     if (DMin != EMin)
421       return DMin < EMin;
422     // If D has more *visible* default arguments, it is preferred. Note, an
423     // earlier default argument being visible does not imply that a later
424     // default argument is visible, so we can't just check the first one.
425     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
426         I != N; ++I) {
427       if (!S.hasVisibleDefaultArgument(
428               ETD->getTemplateParameters()->getParam(I)) &&
429           S.hasVisibleDefaultArgument(
430               DTD->getTemplateParameters()->getParam(I)))
431         return true;
432     }
433   }
434 
435   // VarDecl can have incomplete array types, prefer the one with more complete
436   // array type.
437   if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
438     const auto *EVD = cast<VarDecl>(EUnderlying);
439     if (EVD->getType()->isIncompleteType() &&
440         !DVD->getType()->isIncompleteType()) {
441       // Prefer the decl with a more complete type if visible.
442       return S.isVisible(DVD);
443     }
444     return false; // Avoid picking up a newer decl, just because it was newer.
445   }
446 
447   // For most kinds of declaration, it doesn't really matter which one we pick.
448   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
449     // If the existing declaration is hidden, prefer the new one. Otherwise,
450     // keep what we've got.
451     return !S.isVisible(Existing);
452   }
453 
454   // Pick the newer declaration; it might have a more precise type.
455   for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
456        Prev = Prev->getPreviousDecl())
457     if (Prev == EUnderlying)
458       return true;
459   return false;
460 }
461 
462 /// Determine whether \p D can hide a tag declaration.
463 static bool canHideTag(const NamedDecl *D) {
464   // C++ [basic.scope.declarative]p4:
465   //   Given a set of declarations in a single declarative region [...]
466   //   exactly one declaration shall declare a class name or enumeration name
467   //   that is not a typedef name and the other declarations shall all refer to
468   //   the same variable, non-static data member, or enumerator, or all refer
469   //   to functions and function templates; in this case the class name or
470   //   enumeration name is hidden.
471   // C++ [basic.scope.hiding]p2:
472   //   A class name or enumeration name can be hidden by the name of a
473   //   variable, data member, function, or enumerator declared in the same
474   //   scope.
475   // An UnresolvedUsingValueDecl always instantiates to one of these.
476   D = D->getUnderlyingDecl();
477   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
478          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
479          isa<UnresolvedUsingValueDecl>(D);
480 }
481 
482 /// Resolves the result kind of this lookup.
483 void LookupResult::resolveKind() {
484   unsigned N = Decls.size();
485 
486   // Fast case: no possible ambiguity.
487   if (N == 0) {
488     assert(ResultKind == NotFound ||
489            ResultKind == NotFoundInCurrentInstantiation);
490     return;
491   }
492 
493   // If there's a single decl, we need to examine it to decide what
494   // kind of lookup this is.
495   if (N == 1) {
496     const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
497     if (isa<FunctionTemplateDecl>(D))
498       ResultKind = FoundOverloaded;
499     else if (isa<UnresolvedUsingValueDecl>(D))
500       ResultKind = FoundUnresolvedValue;
501     return;
502   }
503 
504   // Don't do any extra resolution if we've already resolved as ambiguous.
505   if (ResultKind == Ambiguous) return;
506 
507   llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
508   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
509 
510   bool Ambiguous = false;
511   bool ReferenceToPlaceHolderVariable = false;
512   bool HasTag = false, HasFunction = false;
513   bool HasFunctionTemplate = false, HasUnresolved = false;
514   const NamedDecl *HasNonFunction = nullptr;
515 
516   llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
517   llvm::BitVector RemovedDecls(N);
518 
519   for (unsigned I = 0; I < N; I++) {
520     const NamedDecl *D = Decls[I]->getUnderlyingDecl();
521     D = cast<NamedDecl>(D->getCanonicalDecl());
522 
523     // Ignore an invalid declaration unless it's the only one left.
524     // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525     if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
526         N - RemovedDecls.count() > 1) {
527       RemovedDecls.set(I);
528       continue;
529     }
530 
531     // C++ [basic.scope.hiding]p2:
532     //   A class name or enumeration name can be hidden by the name of
533     //   an object, function, or enumerator declared in the same
534     //   scope. If a class or enumeration name and an object, function,
535     //   or enumerator are declared in the same scope (in any order)
536     //   with the same name, the class or enumeration name is hidden
537     //   wherever the object, function, or enumerator name is visible.
538     if (HideTags && isa<TagDecl>(D)) {
539       bool Hidden = false;
540       for (auto *OtherDecl : Decls) {
541         if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
542             getContextForScopeMatching(OtherDecl)->Equals(
543                 getContextForScopeMatching(Decls[I]))) {
544           RemovedDecls.set(I);
545           Hidden = true;
546           break;
547         }
548       }
549       if (Hidden)
550         continue;
551     }
552 
553     std::optional<unsigned> ExistingI;
554 
555     // Redeclarations of types via typedef can occur both within a scope
556     // and, through using declarations and directives, across scopes. There is
557     // no ambiguity if they all refer to the same type, so unique based on the
558     // canonical type.
559     if (const auto *TD = dyn_cast<TypeDecl>(D)) {
560       QualType T = getSema().Context.getTypeDeclType(TD);
561       auto UniqueResult = UniqueTypes.insert(
562           std::make_pair(getSema().Context.getCanonicalType(T), I));
563       if (!UniqueResult.second) {
564         // The type is not unique.
565         ExistingI = UniqueResult.first->second;
566       }
567     }
568 
569     // For non-type declarations, check for a prior lookup result naming this
570     // canonical declaration.
571     if (!D->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI) {
572       auto UniqueResult = Unique.insert(std::make_pair(D, I));
573       if (!UniqueResult.second) {
574         // We've seen this entity before.
575         ExistingI = UniqueResult.first->second;
576       }
577     }
578 
579     if (ExistingI) {
580       // This is not a unique lookup result. Pick one of the results and
581       // discard the other.
582       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
583                                   Decls[*ExistingI]))
584         Decls[*ExistingI] = Decls[I];
585       RemovedDecls.set(I);
586       continue;
587     }
588 
589     // Otherwise, do some decl type analysis and then continue.
590 
591     if (isa<UnresolvedUsingValueDecl>(D)) {
592       HasUnresolved = true;
593     } else if (isa<TagDecl>(D)) {
594       if (HasTag)
595         Ambiguous = true;
596       HasTag = true;
597     } else if (isa<FunctionTemplateDecl>(D)) {
598       HasFunction = true;
599       HasFunctionTemplate = true;
600     } else if (isa<FunctionDecl>(D)) {
601       HasFunction = true;
602     } else {
603       if (HasNonFunction) {
604         // If we're about to create an ambiguity between two declarations that
605         // are equivalent, but one is an internal linkage declaration from one
606         // module and the other is an internal linkage declaration from another
607         // module, just skip it.
608         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
609                                                              D)) {
610           EquivalentNonFunctions.push_back(D);
611           RemovedDecls.set(I);
612           continue;
613         }
614         if (D->isPlaceholderVar(getSema().getLangOpts()) &&
615             getContextForScopeMatching(D) ==
616                 getContextForScopeMatching(Decls[I])) {
617           ReferenceToPlaceHolderVariable = true;
618         }
619         Ambiguous = true;
620       }
621       HasNonFunction = D;
622     }
623   }
624 
625   // FIXME: This diagnostic should really be delayed until we're done with
626   // the lookup result, in case the ambiguity is resolved by the caller.
627   if (!EquivalentNonFunctions.empty() && !Ambiguous)
628     getSema().diagnoseEquivalentInternalLinkageDeclarations(
629         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
630 
631   // Remove decls by replacing them with decls from the end (which
632   // means that we need to iterate from the end) and then truncating
633   // to the new size.
634   for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
635     Decls[I] = Decls[--N];
636   Decls.truncate(N);
637 
638   if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
639       (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
640     Ambiguous = true;
641 
642   if (Ambiguous && ReferenceToPlaceHolderVariable)
643     setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable);
644   else if (Ambiguous)
645     setAmbiguous(LookupResult::AmbiguousReference);
646   else if (HasUnresolved)
647     ResultKind = LookupResult::FoundUnresolvedValue;
648   else if (N > 1 || HasFunctionTemplate)
649     ResultKind = LookupResult::FoundOverloaded;
650   else
651     ResultKind = LookupResult::Found;
652 }
653 
654 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
655   CXXBasePaths::const_paths_iterator I, E;
656   for (I = P.begin(), E = P.end(); I != E; ++I)
657     for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
658          ++DI)
659       addDecl(*DI);
660 }
661 
662 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
663   Paths = new CXXBasePaths;
664   Paths->swap(P);
665   addDeclsFromBasePaths(*Paths);
666   resolveKind();
667   setAmbiguous(AmbiguousBaseSubobjects);
668 }
669 
670 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
671   Paths = new CXXBasePaths;
672   Paths->swap(P);
673   addDeclsFromBasePaths(*Paths);
674   resolveKind();
675   setAmbiguous(AmbiguousBaseSubobjectTypes);
676 }
677 
678 void LookupResult::print(raw_ostream &Out) {
679   Out << Decls.size() << " result(s)";
680   if (isAmbiguous()) Out << ", ambiguous";
681   if (Paths) Out << ", base paths present";
682 
683   for (iterator I = begin(), E = end(); I != E; ++I) {
684     Out << "\n";
685     (*I)->print(Out, 2);
686   }
687 }
688 
689 LLVM_DUMP_METHOD void LookupResult::dump() {
690   llvm::errs() << "lookup results for " << getLookupName().getAsString()
691                << ":\n";
692   for (NamedDecl *D : *this)
693     D->dump();
694 }
695 
696 /// Diagnose a missing builtin type.
697 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
698                                            llvm::StringRef Name) {
699   S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
700       << TypeClass << Name;
701   return S.Context.VoidTy;
702 }
703 
704 /// Lookup an OpenCL enum type.
705 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
706   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
707                       Sema::LookupTagName);
708   S.LookupName(Result, S.TUScope);
709   if (Result.empty())
710     return diagOpenCLBuiltinTypeError(S, "enum", Name);
711   EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
712   if (!Decl)
713     return diagOpenCLBuiltinTypeError(S, "enum", Name);
714   return S.Context.getEnumType(Decl);
715 }
716 
717 /// Lookup an OpenCL typedef type.
718 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
719   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
720                       Sema::LookupOrdinaryName);
721   S.LookupName(Result, S.TUScope);
722   if (Result.empty())
723     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
724   TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
725   if (!Decl)
726     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
727   return S.Context.getTypedefType(Decl);
728 }
729 
730 /// Get the QualType instances of the return type and arguments for an OpenCL
731 /// builtin function signature.
732 /// \param S (in) The Sema instance.
733 /// \param OpenCLBuiltin (in) The signature currently handled.
734 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
735 ///        type used as return type or as argument.
736 ///        Only meaningful for generic types, otherwise equals 1.
737 /// \param RetTypes (out) List of the possible return types.
738 /// \param ArgTypes (out) List of the possible argument types.  For each
739 ///        argument, ArgTypes contains QualTypes for the Cartesian product
740 ///        of (vector sizes) x (types) .
741 static void GetQualTypesForOpenCLBuiltin(
742     Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
743     SmallVector<QualType, 1> &RetTypes,
744     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
745   // Get the QualType instances of the return types.
746   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
747   OCL2Qual(S, TypeTable[Sig], RetTypes);
748   GenTypeMaxCnt = RetTypes.size();
749 
750   // Get the QualType instances of the arguments.
751   // First type is the return type, skip it.
752   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
753     SmallVector<QualType, 1> Ty;
754     OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
755              Ty);
756     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
757     ArgTypes.push_back(std::move(Ty));
758   }
759 }
760 
761 /// Create a list of the candidate function overloads for an OpenCL builtin
762 /// function.
763 /// \param Context (in) The ASTContext instance.
764 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
765 ///        type used as return type or as argument.
766 ///        Only meaningful for generic types, otherwise equals 1.
767 /// \param FunctionList (out) List of FunctionTypes.
768 /// \param RetTypes (in) List of the possible return types.
769 /// \param ArgTypes (in) List of the possible types for the arguments.
770 static void GetOpenCLBuiltinFctOverloads(
771     ASTContext &Context, unsigned GenTypeMaxCnt,
772     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
773     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
774   FunctionProtoType::ExtProtoInfo PI(
775       Context.getDefaultCallingConvention(false, false, true));
776   PI.Variadic = false;
777 
778   // Do not attempt to create any FunctionTypes if there are no return types,
779   // which happens when a type belongs to a disabled extension.
780   if (RetTypes.size() == 0)
781     return;
782 
783   // Create FunctionTypes for each (gen)type.
784   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
785     SmallVector<QualType, 5> ArgList;
786 
787     for (unsigned A = 0; A < ArgTypes.size(); A++) {
788       // Bail out if there is an argument that has no available types.
789       if (ArgTypes[A].size() == 0)
790         return;
791 
792       // Builtins such as "max" have an "sgentype" argument that represents
793       // the corresponding scalar type of a gentype.  The number of gentypes
794       // must be a multiple of the number of sgentypes.
795       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
796              "argument type count not compatible with gentype type count");
797       unsigned Idx = IGenType % ArgTypes[A].size();
798       ArgList.push_back(ArgTypes[A][Idx]);
799     }
800 
801     FunctionList.push_back(Context.getFunctionType(
802         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
803   }
804 }
805 
806 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
807 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
808 /// builtin function.  Add all candidate signatures to the LookUpResult.
809 ///
810 /// \param S (in) The Sema instance.
811 /// \param LR (inout) The LookupResult instance.
812 /// \param II (in) The identifier being resolved.
813 /// \param FctIndex (in) Starting index in the BuiltinTable.
814 /// \param Len (in) The signature list has Len elements.
815 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
816                                                   IdentifierInfo *II,
817                                                   const unsigned FctIndex,
818                                                   const unsigned Len) {
819   // The builtin function declaration uses generic types (gentype).
820   bool HasGenType = false;
821 
822   // Maximum number of types contained in a generic type used as return type or
823   // as argument.  Only meaningful for generic types, otherwise equals 1.
824   unsigned GenTypeMaxCnt;
825 
826   ASTContext &Context = S.Context;
827 
828   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
829     const OpenCLBuiltinStruct &OpenCLBuiltin =
830         BuiltinTable[FctIndex + SignatureIndex];
831 
832     // Ignore this builtin function if it is not available in the currently
833     // selected language version.
834     if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
835                                         OpenCLBuiltin.Versions))
836       continue;
837 
838     // Ignore this builtin function if it carries an extension macro that is
839     // not defined. This indicates that the extension is not supported by the
840     // target, so the builtin function should not be available.
841     StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
842     if (!Extensions.empty()) {
843       SmallVector<StringRef, 2> ExtVec;
844       Extensions.split(ExtVec, " ");
845       bool AllExtensionsDefined = true;
846       for (StringRef Ext : ExtVec) {
847         if (!S.getPreprocessor().isMacroDefined(Ext)) {
848           AllExtensionsDefined = false;
849           break;
850         }
851       }
852       if (!AllExtensionsDefined)
853         continue;
854     }
855 
856     SmallVector<QualType, 1> RetTypes;
857     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
858 
859     // Obtain QualType lists for the function signature.
860     GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
861                                  ArgTypes);
862     if (GenTypeMaxCnt > 1) {
863       HasGenType = true;
864     }
865 
866     // Create function overload for each type combination.
867     std::vector<QualType> FunctionList;
868     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
869                                  ArgTypes);
870 
871     SourceLocation Loc = LR.getNameLoc();
872     DeclContext *Parent = Context.getTranslationUnitDecl();
873     FunctionDecl *NewOpenCLBuiltin;
874 
875     for (const auto &FTy : FunctionList) {
876       NewOpenCLBuiltin = FunctionDecl::Create(
877           Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
878           S.getCurFPFeatures().isFPConstrained(), false,
879           FTy->isFunctionProtoType());
880       NewOpenCLBuiltin->setImplicit();
881 
882       // Create Decl objects for each parameter, adding them to the
883       // FunctionDecl.
884       const auto *FP = cast<FunctionProtoType>(FTy);
885       SmallVector<ParmVarDecl *, 4> ParmList;
886       for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
887         ParmVarDecl *Parm = ParmVarDecl::Create(
888             Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
889             nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
890         Parm->setScopeInfo(0, IParm);
891         ParmList.push_back(Parm);
892       }
893       NewOpenCLBuiltin->setParams(ParmList);
894 
895       // Add function attributes.
896       if (OpenCLBuiltin.IsPure)
897         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
898       if (OpenCLBuiltin.IsConst)
899         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
900       if (OpenCLBuiltin.IsConv)
901         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
902 
903       if (!S.getLangOpts().OpenCLCPlusPlus)
904         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
905 
906       LR.addDecl(NewOpenCLBuiltin);
907     }
908   }
909 
910   // If we added overloads, need to resolve the lookup result.
911   if (Len > 1 || HasGenType)
912     LR.resolveKind();
913 }
914 
915 /// Lookup a builtin function, when name lookup would otherwise
916 /// fail.
917 bool Sema::LookupBuiltin(LookupResult &R) {
918   Sema::LookupNameKind NameKind = R.getLookupKind();
919 
920   // If we didn't find a use of this identifier, and if the identifier
921   // corresponds to a compiler builtin, create the decl object for the builtin
922   // now, injecting it into translation unit scope, and return it.
923   if (NameKind == Sema::LookupOrdinaryName ||
924       NameKind == Sema::LookupRedeclarationWithLinkage) {
925     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
926     if (II) {
927       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
928         if (II == getASTContext().getMakeIntegerSeqName()) {
929           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
930           return true;
931         } else if (II == getASTContext().getTypePackElementName()) {
932           R.addDecl(getASTContext().getTypePackElementDecl());
933           return true;
934         }
935       }
936 
937       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
938       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
939         auto Index = isOpenCLBuiltin(II->getName());
940         if (Index.first) {
941           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
942                                                 Index.second);
943           return true;
944         }
945       }
946 
947       if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) {
948         if (!RVIntrinsicManager)
949           RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
950 
951         RVIntrinsicManager->InitIntrinsicList();
952 
953         if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
954           return true;
955       }
956 
957       // If this is a builtin on this (or all) targets, create the decl.
958       if (unsigned BuiltinID = II->getBuiltinID()) {
959         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
960         // library functions like 'malloc'. Instead, we'll just error.
961         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
962             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
963           return false;
964 
965         if (NamedDecl *D =
966                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
967                                     R.isForRedeclaration(), R.getNameLoc())) {
968           R.addDecl(D);
969           return true;
970         }
971       }
972     }
973   }
974 
975   return false;
976 }
977 
978 /// Looks up the declaration of "struct objc_super" and
979 /// saves it for later use in building builtin declaration of
980 /// objc_msgSendSuper and objc_msgSendSuper_stret.
981 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
982   ASTContext &Context = Sema.Context;
983   LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
984                       Sema::LookupTagName);
985   Sema.LookupName(Result, S);
986   if (Result.getResultKind() == LookupResult::Found)
987     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
988       Context.setObjCSuperType(Context.getTagDeclType(TD));
989 }
990 
991 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
992   if (ID == Builtin::BIobjc_msgSendSuper)
993     LookupPredefedObjCSuperType(*this, S);
994 }
995 
996 /// Determine whether we can declare a special member function within
997 /// the class at this point.
998 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
999   // We need to have a definition for the class.
1000   if (!Class->getDefinition() || Class->isDependentContext())
1001     return false;
1002 
1003   // We can't be in the middle of defining the class.
1004   return !Class->isBeingDefined();
1005 }
1006 
1007 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1008   if (!CanDeclareSpecialMemberFunction(Class))
1009     return;
1010 
1011   // If the default constructor has not yet been declared, do so now.
1012   if (Class->needsImplicitDefaultConstructor())
1013     DeclareImplicitDefaultConstructor(Class);
1014 
1015   // If the copy constructor has not yet been declared, do so now.
1016   if (Class->needsImplicitCopyConstructor())
1017     DeclareImplicitCopyConstructor(Class);
1018 
1019   // If the copy assignment operator has not yet been declared, do so now.
1020   if (Class->needsImplicitCopyAssignment())
1021     DeclareImplicitCopyAssignment(Class);
1022 
1023   if (getLangOpts().CPlusPlus11) {
1024     // If the move constructor has not yet been declared, do so now.
1025     if (Class->needsImplicitMoveConstructor())
1026       DeclareImplicitMoveConstructor(Class);
1027 
1028     // If the move assignment operator has not yet been declared, do so now.
1029     if (Class->needsImplicitMoveAssignment())
1030       DeclareImplicitMoveAssignment(Class);
1031   }
1032 
1033   // If the destructor has not yet been declared, do so now.
1034   if (Class->needsImplicitDestructor())
1035     DeclareImplicitDestructor(Class);
1036 }
1037 
1038 /// Determine whether this is the name of an implicitly-declared
1039 /// special member function.
1040 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1041   switch (Name.getNameKind()) {
1042   case DeclarationName::CXXConstructorName:
1043   case DeclarationName::CXXDestructorName:
1044     return true;
1045 
1046   case DeclarationName::CXXOperatorName:
1047     return Name.getCXXOverloadedOperator() == OO_Equal;
1048 
1049   default:
1050     break;
1051   }
1052 
1053   return false;
1054 }
1055 
1056 /// If there are any implicit member functions with the given name
1057 /// that need to be declared in the given declaration context, do so.
1058 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1059                                                    DeclarationName Name,
1060                                                    SourceLocation Loc,
1061                                                    const DeclContext *DC) {
1062   if (!DC)
1063     return;
1064 
1065   switch (Name.getNameKind()) {
1066   case DeclarationName::CXXConstructorName:
1067     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1068       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1069         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1070         if (Record->needsImplicitDefaultConstructor())
1071           S.DeclareImplicitDefaultConstructor(Class);
1072         if (Record->needsImplicitCopyConstructor())
1073           S.DeclareImplicitCopyConstructor(Class);
1074         if (S.getLangOpts().CPlusPlus11 &&
1075             Record->needsImplicitMoveConstructor())
1076           S.DeclareImplicitMoveConstructor(Class);
1077       }
1078     break;
1079 
1080   case DeclarationName::CXXDestructorName:
1081     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1082       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1083           CanDeclareSpecialMemberFunction(Record))
1084         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1085     break;
1086 
1087   case DeclarationName::CXXOperatorName:
1088     if (Name.getCXXOverloadedOperator() != OO_Equal)
1089       break;
1090 
1091     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1092       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1093         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1094         if (Record->needsImplicitCopyAssignment())
1095           S.DeclareImplicitCopyAssignment(Class);
1096         if (S.getLangOpts().CPlusPlus11 &&
1097             Record->needsImplicitMoveAssignment())
1098           S.DeclareImplicitMoveAssignment(Class);
1099       }
1100     }
1101     break;
1102 
1103   case DeclarationName::CXXDeductionGuideName:
1104     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1105     break;
1106 
1107   default:
1108     break;
1109   }
1110 }
1111 
1112 // Adds all qualifying matches for a name within a decl context to the
1113 // given lookup result.  Returns true if any matches were found.
1114 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1115   bool Found = false;
1116 
1117   // Lazily declare C++ special member functions.
1118   if (S.getLangOpts().CPlusPlus)
1119     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1120                                            DC);
1121 
1122   // Perform lookup into this declaration context.
1123   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1124   for (NamedDecl *D : DR) {
1125     if ((D = R.getAcceptableDecl(D))) {
1126       R.addDecl(D);
1127       Found = true;
1128     }
1129   }
1130 
1131   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1132     return true;
1133 
1134   if (R.getLookupName().getNameKind()
1135         != DeclarationName::CXXConversionFunctionName ||
1136       R.getLookupName().getCXXNameType()->isDependentType() ||
1137       !isa<CXXRecordDecl>(DC))
1138     return Found;
1139 
1140   // C++ [temp.mem]p6:
1141   //   A specialization of a conversion function template is not found by
1142   //   name lookup. Instead, any conversion function templates visible in the
1143   //   context of the use are considered. [...]
1144   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1145   if (!Record->isCompleteDefinition())
1146     return Found;
1147 
1148   // For conversion operators, 'operator auto' should only match
1149   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1150   // as a candidate for template substitution.
1151   auto *ContainedDeducedType =
1152       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1153   if (R.getLookupName().getNameKind() ==
1154           DeclarationName::CXXConversionFunctionName &&
1155       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1156     return Found;
1157 
1158   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1159          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1160     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1161     if (!ConvTemplate)
1162       continue;
1163 
1164     // When we're performing lookup for the purposes of redeclaration, just
1165     // add the conversion function template. When we deduce template
1166     // arguments for specializations, we'll end up unifying the return
1167     // type of the new declaration with the type of the function template.
1168     if (R.isForRedeclaration()) {
1169       R.addDecl(ConvTemplate);
1170       Found = true;
1171       continue;
1172     }
1173 
1174     // C++ [temp.mem]p6:
1175     //   [...] For each such operator, if argument deduction succeeds
1176     //   (14.9.2.3), the resulting specialization is used as if found by
1177     //   name lookup.
1178     //
1179     // When referencing a conversion function for any purpose other than
1180     // a redeclaration (such that we'll be building an expression with the
1181     // result), perform template argument deduction and place the
1182     // specialization into the result set. We do this to avoid forcing all
1183     // callers to perform special deduction for conversion functions.
1184     TemplateDeductionInfo Info(R.getNameLoc());
1185     FunctionDecl *Specialization = nullptr;
1186 
1187     const FunctionProtoType *ConvProto
1188       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1189     assert(ConvProto && "Nonsensical conversion function template type");
1190 
1191     // Compute the type of the function that we would expect the conversion
1192     // function to have, if it were to match the name given.
1193     // FIXME: Calling convention!
1194     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1195     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1196     EPI.ExceptionSpec = EST_None;
1197     QualType ExpectedType = R.getSema().Context.getFunctionType(
1198         R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1199 
1200     // Perform template argument deduction against the type that we would
1201     // expect the function to have.
1202     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1203                                             Specialization, Info)
1204           == Sema::TDK_Success) {
1205       R.addDecl(Specialization);
1206       Found = true;
1207     }
1208   }
1209 
1210   return Found;
1211 }
1212 
1213 // Performs C++ unqualified lookup into the given file context.
1214 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1215                                const DeclContext *NS,
1216                                UnqualUsingDirectiveSet &UDirs) {
1217 
1218   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1219 
1220   // Perform direct name lookup into the LookupCtx.
1221   bool Found = LookupDirect(S, R, NS);
1222 
1223   // Perform direct name lookup into the namespaces nominated by the
1224   // using directives whose common ancestor is this namespace.
1225   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1226     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1227       Found = true;
1228 
1229   R.resolveKind();
1230 
1231   return Found;
1232 }
1233 
1234 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1235   if (DeclContext *Ctx = S->getEntity())
1236     return Ctx->isFileContext();
1237   return false;
1238 }
1239 
1240 /// Find the outer declaration context from this scope. This indicates the
1241 /// context that we should search up to (exclusive) before considering the
1242 /// parent of the specified scope.
1243 static DeclContext *findOuterContext(Scope *S) {
1244   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1245     if (DeclContext *DC = OuterS->getLookupEntity())
1246       return DC;
1247   return nullptr;
1248 }
1249 
1250 namespace {
1251 /// An RAII object to specify that we want to find block scope extern
1252 /// declarations.
1253 struct FindLocalExternScope {
1254   FindLocalExternScope(LookupResult &R)
1255       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1256                                  Decl::IDNS_LocalExtern) {
1257     R.setFindLocalExtern(R.getIdentifierNamespace() &
1258                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1259   }
1260   void restore() {
1261     R.setFindLocalExtern(OldFindLocalExtern);
1262   }
1263   ~FindLocalExternScope() {
1264     restore();
1265   }
1266   LookupResult &R;
1267   bool OldFindLocalExtern;
1268 };
1269 } // end anonymous namespace
1270 
1271 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1272   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1273 
1274   DeclarationName Name = R.getLookupName();
1275   Sema::LookupNameKind NameKind = R.getLookupKind();
1276 
1277   // If this is the name of an implicitly-declared special member function,
1278   // go through the scope stack to implicitly declare
1279   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1280     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1281       if (DeclContext *DC = PreS->getEntity())
1282         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1283   }
1284 
1285   // Implicitly declare member functions with the name we're looking for, if in
1286   // fact we are in a scope where it matters.
1287 
1288   Scope *Initial = S;
1289   IdentifierResolver::iterator
1290     I = IdResolver.begin(Name),
1291     IEnd = IdResolver.end();
1292 
1293   // First we lookup local scope.
1294   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1295   // ...During unqualified name lookup (3.4.1), the names appear as if
1296   // they were declared in the nearest enclosing namespace which contains
1297   // both the using-directive and the nominated namespace.
1298   // [Note: in this context, "contains" means "contains directly or
1299   // indirectly".
1300   //
1301   // For example:
1302   // namespace A { int i; }
1303   // void foo() {
1304   //   int i;
1305   //   {
1306   //     using namespace A;
1307   //     ++i; // finds local 'i', A::i appears at global scope
1308   //   }
1309   // }
1310   //
1311   UnqualUsingDirectiveSet UDirs(*this);
1312   bool VisitedUsingDirectives = false;
1313   bool LeftStartingScope = false;
1314 
1315   // When performing a scope lookup, we want to find local extern decls.
1316   FindLocalExternScope FindLocals(R);
1317 
1318   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1319     bool SearchNamespaceScope = true;
1320     // Check whether the IdResolver has anything in this scope.
1321     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1322       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1323         if (NameKind == LookupRedeclarationWithLinkage &&
1324             !(*I)->isTemplateParameter()) {
1325           // If it's a template parameter, we still find it, so we can diagnose
1326           // the invalid redeclaration.
1327 
1328           // Determine whether this (or a previous) declaration is
1329           // out-of-scope.
1330           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1331             LeftStartingScope = true;
1332 
1333           // If we found something outside of our starting scope that
1334           // does not have linkage, skip it.
1335           if (LeftStartingScope && !((*I)->hasLinkage())) {
1336             R.setShadowed();
1337             continue;
1338           }
1339         } else {
1340           // We found something in this scope, we should not look at the
1341           // namespace scope
1342           SearchNamespaceScope = false;
1343         }
1344         R.addDecl(ND);
1345       }
1346     }
1347     if (!SearchNamespaceScope) {
1348       R.resolveKind();
1349       if (S->isClassScope())
1350         if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1351           R.setNamingClass(Record);
1352       return true;
1353     }
1354 
1355     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1356       // C++11 [class.friend]p11:
1357       //   If a friend declaration appears in a local class and the name
1358       //   specified is an unqualified name, a prior declaration is
1359       //   looked up without considering scopes that are outside the
1360       //   innermost enclosing non-class scope.
1361       return false;
1362     }
1363 
1364     if (DeclContext *Ctx = S->getLookupEntity()) {
1365       DeclContext *OuterCtx = findOuterContext(S);
1366       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1367         // We do not directly look into transparent contexts, since
1368         // those entities will be found in the nearest enclosing
1369         // non-transparent context.
1370         if (Ctx->isTransparentContext())
1371           continue;
1372 
1373         // We do not look directly into function or method contexts,
1374         // since all of the local variables and parameters of the
1375         // function/method are present within the Scope.
1376         if (Ctx->isFunctionOrMethod()) {
1377           // If we have an Objective-C instance method, look for ivars
1378           // in the corresponding interface.
1379           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1380             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1381               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1382                 ObjCInterfaceDecl *ClassDeclared;
1383                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1384                                                  Name.getAsIdentifierInfo(),
1385                                                              ClassDeclared)) {
1386                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1387                     R.addDecl(ND);
1388                     R.resolveKind();
1389                     return true;
1390                   }
1391                 }
1392               }
1393           }
1394 
1395           continue;
1396         }
1397 
1398         // If this is a file context, we need to perform unqualified name
1399         // lookup considering using directives.
1400         if (Ctx->isFileContext()) {
1401           // If we haven't handled using directives yet, do so now.
1402           if (!VisitedUsingDirectives) {
1403             // Add using directives from this context up to the top level.
1404             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1405               if (UCtx->isTransparentContext())
1406                 continue;
1407 
1408               UDirs.visit(UCtx, UCtx);
1409             }
1410 
1411             // Find the innermost file scope, so we can add using directives
1412             // from local scopes.
1413             Scope *InnermostFileScope = S;
1414             while (InnermostFileScope &&
1415                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1416               InnermostFileScope = InnermostFileScope->getParent();
1417             UDirs.visitScopeChain(Initial, InnermostFileScope);
1418 
1419             UDirs.done();
1420 
1421             VisitedUsingDirectives = true;
1422           }
1423 
1424           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1425             R.resolveKind();
1426             return true;
1427           }
1428 
1429           continue;
1430         }
1431 
1432         // Perform qualified name lookup into this context.
1433         // FIXME: In some cases, we know that every name that could be found by
1434         // this qualified name lookup will also be on the identifier chain. For
1435         // example, inside a class without any base classes, we never need to
1436         // perform qualified lookup because all of the members are on top of the
1437         // identifier chain.
1438         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1439           return true;
1440       }
1441     }
1442   }
1443 
1444   // Stop if we ran out of scopes.
1445   // FIXME:  This really, really shouldn't be happening.
1446   if (!S) return false;
1447 
1448   // If we are looking for members, no need to look into global/namespace scope.
1449   if (NameKind == LookupMemberName)
1450     return false;
1451 
1452   // Collect UsingDirectiveDecls in all scopes, and recursively all
1453   // nominated namespaces by those using-directives.
1454   //
1455   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1456   // don't build it for each lookup!
1457   if (!VisitedUsingDirectives) {
1458     UDirs.visitScopeChain(Initial, S);
1459     UDirs.done();
1460   }
1461 
1462   // If we're not performing redeclaration lookup, do not look for local
1463   // extern declarations outside of a function scope.
1464   if (!R.isForRedeclaration())
1465     FindLocals.restore();
1466 
1467   // Lookup namespace scope, and global scope.
1468   // Unqualified name lookup in C++ requires looking into scopes
1469   // that aren't strictly lexical, and therefore we walk through the
1470   // context as well as walking through the scopes.
1471   for (; S; S = S->getParent()) {
1472     // Check whether the IdResolver has anything in this scope.
1473     bool Found = false;
1474     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1475       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1476         // We found something.  Look for anything else in our scope
1477         // with this same name and in an acceptable identifier
1478         // namespace, so that we can construct an overload set if we
1479         // need to.
1480         Found = true;
1481         R.addDecl(ND);
1482       }
1483     }
1484 
1485     if (Found && S->isTemplateParamScope()) {
1486       R.resolveKind();
1487       return true;
1488     }
1489 
1490     DeclContext *Ctx = S->getLookupEntity();
1491     if (Ctx) {
1492       DeclContext *OuterCtx = findOuterContext(S);
1493       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1494         // We do not directly look into transparent contexts, since
1495         // those entities will be found in the nearest enclosing
1496         // non-transparent context.
1497         if (Ctx->isTransparentContext())
1498           continue;
1499 
1500         // If we have a context, and it's not a context stashed in the
1501         // template parameter scope for an out-of-line definition, also
1502         // look into that context.
1503         if (!(Found && S->isTemplateParamScope())) {
1504           assert(Ctx->isFileContext() &&
1505               "We should have been looking only at file context here already.");
1506 
1507           // Look into context considering using-directives.
1508           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1509             Found = true;
1510         }
1511 
1512         if (Found) {
1513           R.resolveKind();
1514           return true;
1515         }
1516 
1517         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1518           return false;
1519       }
1520     }
1521 
1522     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1523       return false;
1524   }
1525 
1526   return !R.empty();
1527 }
1528 
1529 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1530   if (auto *M = getCurrentModule())
1531     Context.mergeDefinitionIntoModule(ND, M);
1532   else
1533     // We're not building a module; just make the definition visible.
1534     ND->setVisibleDespiteOwningModule();
1535 
1536   // If ND is a template declaration, make the template parameters
1537   // visible too. They're not (necessarily) within a mergeable DeclContext.
1538   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1539     for (auto *Param : *TD->getTemplateParameters())
1540       makeMergedDefinitionVisible(Param);
1541 }
1542 
1543 /// Find the module in which the given declaration was defined.
1544 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1545   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1546     // If this function was instantiated from a template, the defining module is
1547     // the module containing the pattern.
1548     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1549       Entity = Pattern;
1550   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1551     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1552       Entity = Pattern;
1553   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1554     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1555       Entity = Pattern;
1556   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1557     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1558       Entity = Pattern;
1559   }
1560 
1561   // Walk up to the containing context. That might also have been instantiated
1562   // from a template.
1563   DeclContext *Context = Entity->getLexicalDeclContext();
1564   if (Context->isFileContext())
1565     return S.getOwningModule(Entity);
1566   return getDefiningModule(S, cast<Decl>(Context));
1567 }
1568 
1569 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1570   unsigned N = CodeSynthesisContexts.size();
1571   for (unsigned I = CodeSynthesisContextLookupModules.size();
1572        I != N; ++I) {
1573     Module *M = CodeSynthesisContexts[I].Entity ?
1574                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1575                 nullptr;
1576     if (M && !LookupModulesCache.insert(M).second)
1577       M = nullptr;
1578     CodeSynthesisContextLookupModules.push_back(M);
1579   }
1580   return LookupModulesCache;
1581 }
1582 
1583 /// Determine if we could use all the declarations in the module.
1584 bool Sema::isUsableModule(const Module *M) {
1585   assert(M && "We shouldn't check nullness for module here");
1586   // Return quickly if we cached the result.
1587   if (UsableModuleUnitsCache.count(M))
1588     return true;
1589 
1590   // If M is the global module fragment of the current translation unit. So it
1591   // should be usable.
1592   // [module.global.frag]p1:
1593   //   The global module fragment can be used to provide declarations that are
1594   //   attached to the global module and usable within the module unit.
1595   if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1596       // If M is the module we're parsing, it should be usable. This covers the
1597       // private module fragment. The private module fragment is usable only if
1598       // it is within the current module unit. And it must be the current
1599       // parsing module unit if it is within the current module unit according
1600       // to the grammar of the private module fragment. NOTE: This is covered by
1601       // the following condition. The intention of the check is to avoid string
1602       // comparison as much as possible.
1603       M == getCurrentModule() ||
1604       // The module unit which is in the same module with the current module
1605       // unit is usable.
1606       //
1607       // FIXME: Here we judge if they are in the same module by comparing the
1608       // string. Is there any better solution?
1609       M->getPrimaryModuleInterfaceName() ==
1610           llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1611     UsableModuleUnitsCache.insert(M);
1612     return true;
1613   }
1614 
1615   return false;
1616 }
1617 
1618 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1619   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1620     if (isModuleVisible(Merged))
1621       return true;
1622   return false;
1623 }
1624 
1625 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1626   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1627     if (isUsableModule(Merged))
1628       return true;
1629   return false;
1630 }
1631 
1632 template <typename ParmDecl>
1633 static bool
1634 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1635                              llvm::SmallVectorImpl<Module *> *Modules,
1636                              Sema::AcceptableKind Kind) {
1637   if (!D->hasDefaultArgument())
1638     return false;
1639 
1640   llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1641   while (D && Visited.insert(D).second) {
1642     auto &DefaultArg = D->getDefaultArgStorage();
1643     if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1644       return true;
1645 
1646     if (!DefaultArg.isInherited() && Modules) {
1647       auto *NonConstD = const_cast<ParmDecl*>(D);
1648       Modules->push_back(S.getOwningModule(NonConstD));
1649     }
1650 
1651     // If there was a previous default argument, maybe its parameter is
1652     // acceptable.
1653     D = DefaultArg.getInheritedFrom();
1654   }
1655   return false;
1656 }
1657 
1658 bool Sema::hasAcceptableDefaultArgument(
1659     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1660     Sema::AcceptableKind Kind) {
1661   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1662     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1663 
1664   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1665     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1666 
1667   return ::hasAcceptableDefaultArgument(
1668       *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1669 }
1670 
1671 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1672                                      llvm::SmallVectorImpl<Module *> *Modules) {
1673   return hasAcceptableDefaultArgument(D, Modules,
1674                                       Sema::AcceptableKind::Visible);
1675 }
1676 
1677 bool Sema::hasReachableDefaultArgument(
1678     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1679   return hasAcceptableDefaultArgument(D, Modules,
1680                                       Sema::AcceptableKind::Reachable);
1681 }
1682 
1683 template <typename Filter>
1684 static bool
1685 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1686                              llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1687                              Sema::AcceptableKind Kind) {
1688   bool HasFilteredRedecls = false;
1689 
1690   for (auto *Redecl : D->redecls()) {
1691     auto *R = cast<NamedDecl>(Redecl);
1692     if (!F(R))
1693       continue;
1694 
1695     if (S.isAcceptable(R, Kind))
1696       return true;
1697 
1698     HasFilteredRedecls = true;
1699 
1700     if (Modules)
1701       Modules->push_back(R->getOwningModule());
1702   }
1703 
1704   // Only return false if there is at least one redecl that is not filtered out.
1705   if (HasFilteredRedecls)
1706     return false;
1707 
1708   return true;
1709 }
1710 
1711 static bool
1712 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1713                                     llvm::SmallVectorImpl<Module *> *Modules,
1714                                     Sema::AcceptableKind Kind) {
1715   return hasAcceptableDeclarationImpl(
1716       S, D, Modules,
1717       [](const NamedDecl *D) {
1718         if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1719           return RD->getTemplateSpecializationKind() ==
1720                  TSK_ExplicitSpecialization;
1721         if (auto *FD = dyn_cast<FunctionDecl>(D))
1722           return FD->getTemplateSpecializationKind() ==
1723                  TSK_ExplicitSpecialization;
1724         if (auto *VD = dyn_cast<VarDecl>(D))
1725           return VD->getTemplateSpecializationKind() ==
1726                  TSK_ExplicitSpecialization;
1727         llvm_unreachable("unknown explicit specialization kind");
1728       },
1729       Kind);
1730 }
1731 
1732 bool Sema::hasVisibleExplicitSpecialization(
1733     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1734   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1735                                                Sema::AcceptableKind::Visible);
1736 }
1737 
1738 bool Sema::hasReachableExplicitSpecialization(
1739     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1740   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1741                                                Sema::AcceptableKind::Reachable);
1742 }
1743 
1744 static bool
1745 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1746                                   llvm::SmallVectorImpl<Module *> *Modules,
1747                                   Sema::AcceptableKind Kind) {
1748   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1749          "not a member specialization");
1750   return hasAcceptableDeclarationImpl(
1751       S, D, Modules,
1752       [](const NamedDecl *D) {
1753         // If the specialization is declared at namespace scope, then it's a
1754         // member specialization declaration. If it's lexically inside the class
1755         // definition then it was instantiated.
1756         //
1757         // FIXME: This is a hack. There should be a better way to determine
1758         // this.
1759         // FIXME: What about MS-style explicit specializations declared within a
1760         //        class definition?
1761         return D->getLexicalDeclContext()->isFileContext();
1762       },
1763       Kind);
1764 }
1765 
1766 bool Sema::hasVisibleMemberSpecialization(
1767     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1768   return hasAcceptableMemberSpecialization(*this, D, Modules,
1769                                            Sema::AcceptableKind::Visible);
1770 }
1771 
1772 bool Sema::hasReachableMemberSpecialization(
1773     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1774   return hasAcceptableMemberSpecialization(*this, D, Modules,
1775                                            Sema::AcceptableKind::Reachable);
1776 }
1777 
1778 /// Determine whether a declaration is acceptable to name lookup.
1779 ///
1780 /// This routine determines whether the declaration D is acceptable in the
1781 /// current lookup context, taking into account the current template
1782 /// instantiation stack. During template instantiation, a declaration is
1783 /// acceptable if it is acceptable from a module containing any entity on the
1784 /// template instantiation path (by instantiating a template, you allow it to
1785 /// see the declarations that your module can see, including those later on in
1786 /// your module).
1787 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1788                                     Sema::AcceptableKind Kind) {
1789   assert(!D->isUnconditionallyVisible() &&
1790          "should not call this: not in slow case");
1791 
1792   Module *DeclModule = SemaRef.getOwningModule(D);
1793   assert(DeclModule && "hidden decl has no owning module");
1794 
1795   // If the owning module is visible, the decl is acceptable.
1796   if (SemaRef.isModuleVisible(DeclModule,
1797                               D->isInvisibleOutsideTheOwningModule()))
1798     return true;
1799 
1800   // Determine whether a decl context is a file context for the purpose of
1801   // visibility/reachability. This looks through some (export and linkage spec)
1802   // transparent contexts, but not others (enums).
1803   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1804     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1805            isa<ExportDecl>(DC);
1806   };
1807 
1808   // If this declaration is not at namespace scope
1809   // then it is acceptable if its lexical parent has a acceptable definition.
1810   DeclContext *DC = D->getLexicalDeclContext();
1811   if (DC && !IsEffectivelyFileContext(DC)) {
1812     // For a parameter, check whether our current template declaration's
1813     // lexical context is acceptable, not whether there's some other acceptable
1814     // definition of it, because parameters aren't "within" the definition.
1815     //
1816     // In C++ we need to check for a acceptable definition due to ODR merging,
1817     // and in C we must not because each declaration of a function gets its own
1818     // set of declarations for tags in prototype scope.
1819     bool AcceptableWithinParent;
1820     if (D->isTemplateParameter()) {
1821       bool SearchDefinitions = true;
1822       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1823         if (const auto *TD = DCD->getDescribedTemplate()) {
1824           TemplateParameterList *TPL = TD->getTemplateParameters();
1825           auto Index = getDepthAndIndex(D).second;
1826           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1827         }
1828       }
1829       if (SearchDefinitions)
1830         AcceptableWithinParent =
1831             SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1832       else
1833         AcceptableWithinParent =
1834             isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1835     } else if (isa<ParmVarDecl>(D) ||
1836                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1837       AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1838     else if (D->isModulePrivate()) {
1839       // A module-private declaration is only acceptable if an enclosing lexical
1840       // parent was merged with another definition in the current module.
1841       AcceptableWithinParent = false;
1842       do {
1843         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1844           AcceptableWithinParent = true;
1845           break;
1846         }
1847         DC = DC->getLexicalParent();
1848       } while (!IsEffectivelyFileContext(DC));
1849     } else {
1850       AcceptableWithinParent =
1851           SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1852     }
1853 
1854     if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1855         Kind == Sema::AcceptableKind::Visible &&
1856         // FIXME: Do something better in this case.
1857         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1858       // Cache the fact that this declaration is implicitly visible because
1859       // its parent has a visible definition.
1860       D->setVisibleDespiteOwningModule();
1861     }
1862     return AcceptableWithinParent;
1863   }
1864 
1865   if (Kind == Sema::AcceptableKind::Visible)
1866     return false;
1867 
1868   assert(Kind == Sema::AcceptableKind::Reachable &&
1869          "Additional Sema::AcceptableKind?");
1870   return isReachableSlow(SemaRef, D);
1871 }
1872 
1873 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1874   // The module might be ordinarily visible. For a module-private query, that
1875   // means it is part of the current module.
1876   if (ModulePrivate && isUsableModule(M))
1877     return true;
1878 
1879   // For a query which is not module-private, that means it is in our visible
1880   // module set.
1881   if (!ModulePrivate && VisibleModules.isVisible(M))
1882     return true;
1883 
1884   // Otherwise, it might be visible by virtue of the query being within a
1885   // template instantiation or similar that is permitted to look inside M.
1886 
1887   // Find the extra places where we need to look.
1888   const auto &LookupModules = getLookupModules();
1889   if (LookupModules.empty())
1890     return false;
1891 
1892   // If our lookup set contains the module, it's visible.
1893   if (LookupModules.count(M))
1894     return true;
1895 
1896   // The global module fragments are visible to its corresponding module unit.
1897   // So the global module fragment should be visible if the its corresponding
1898   // module unit is visible.
1899   if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1900     return true;
1901 
1902   // For a module-private query, that's everywhere we get to look.
1903   if (ModulePrivate)
1904     return false;
1905 
1906   // Check whether M is transitively exported to an import of the lookup set.
1907   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1908     return LookupM->isModuleVisible(M);
1909   });
1910 }
1911 
1912 // FIXME: Return false directly if we don't have an interface dependency on the
1913 // translation unit containing D.
1914 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1915   assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1916 
1917   Module *DeclModule = SemaRef.getOwningModule(D);
1918   assert(DeclModule && "hidden decl has no owning module");
1919 
1920   // Entities in header like modules are reachable only if they're visible.
1921   if (DeclModule->isHeaderLikeModule())
1922     return false;
1923 
1924   if (!D->isInAnotherModuleUnit())
1925     return true;
1926 
1927   // [module.reach]/p3:
1928   // A declaration D is reachable from a point P if:
1929   // ...
1930   // - D is not discarded ([module.global.frag]), appears in a translation unit
1931   //   that is reachable from P, and does not appear within a private module
1932   //   fragment.
1933   //
1934   // A declaration that's discarded in the GMF should be module-private.
1935   if (D->isModulePrivate())
1936     return false;
1937 
1938   // [module.reach]/p1
1939   //   A translation unit U is necessarily reachable from a point P if U is a
1940   //   module interface unit on which the translation unit containing P has an
1941   //   interface dependency, or the translation unit containing P imports U, in
1942   //   either case prior to P ([module.import]).
1943   //
1944   // [module.import]/p10
1945   //   A translation unit has an interface dependency on a translation unit U if
1946   //   it contains a declaration (possibly a module-declaration) that imports U
1947   //   or if it has an interface dependency on a translation unit that has an
1948   //   interface dependency on U.
1949   //
1950   // So we could conclude the module unit U is necessarily reachable if:
1951   // (1) The module unit U is module interface unit.
1952   // (2) The current unit has an interface dependency on the module unit U.
1953   //
1954   // Here we only check for the first condition. Since we couldn't see
1955   // DeclModule if it isn't (transitively) imported.
1956   if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1957     return true;
1958 
1959   // [module.reach]/p2
1960   //   Additional translation units on
1961   //   which the point within the program has an interface dependency may be
1962   //   considered reachable, but it is unspecified which are and under what
1963   //   circumstances.
1964   //
1965   // The decision here is to treat all additional tranditional units as
1966   // unreachable.
1967   return false;
1968 }
1969 
1970 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1971   return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1972 }
1973 
1974 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1975   // FIXME: If there are both visible and hidden declarations, we need to take
1976   // into account whether redeclaration is possible. Example:
1977   //
1978   // Non-imported module:
1979   //   int f(T);        // #1
1980   // Some TU:
1981   //   static int f(U); // #2, not a redeclaration of #1
1982   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1983   //                    // with #2 if T == U; neither should be ambiguous.
1984   for (auto *D : R) {
1985     if (isVisible(D))
1986       return true;
1987     assert(D->isExternallyDeclarable() &&
1988            "should not have hidden, non-externally-declarable result here");
1989   }
1990 
1991   // This function is called once "New" is essentially complete, but before a
1992   // previous declaration is attached. We can't query the linkage of "New" in
1993   // general, because attaching the previous declaration can change the
1994   // linkage of New to match the previous declaration.
1995   //
1996   // However, because we've just determined that there is no *visible* prior
1997   // declaration, we can compute the linkage here. There are two possibilities:
1998   //
1999   //  * This is not a redeclaration; it's safe to compute the linkage now.
2000   //
2001   //  * This is a redeclaration of a prior declaration that is externally
2002   //    redeclarable. In that case, the linkage of the declaration is not
2003   //    changed by attaching the prior declaration, because both are externally
2004   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
2005   //
2006   // FIXME: This is subtle and fragile.
2007   return New->isExternallyDeclarable();
2008 }
2009 
2010 /// Retrieve the visible declaration corresponding to D, if any.
2011 ///
2012 /// This routine determines whether the declaration D is visible in the current
2013 /// module, with the current imports. If not, it checks whether any
2014 /// redeclaration of D is visible, and if so, returns that declaration.
2015 ///
2016 /// \returns D, or a visible previous declaration of D, whichever is more recent
2017 /// and visible. If no declaration of D is visible, returns null.
2018 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2019                                      unsigned IDNS) {
2020   assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2021 
2022   for (auto *RD : D->redecls()) {
2023     // Don't bother with extra checks if we already know this one isn't visible.
2024     if (RD == D)
2025       continue;
2026 
2027     auto ND = cast<NamedDecl>(RD);
2028     // FIXME: This is wrong in the case where the previous declaration is not
2029     // visible in the same scope as D. This needs to be done much more
2030     // carefully.
2031     if (ND->isInIdentifierNamespace(IDNS) &&
2032         LookupResult::isAvailableForLookup(SemaRef, ND))
2033       return ND;
2034   }
2035 
2036   return nullptr;
2037 }
2038 
2039 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2040                                      llvm::SmallVectorImpl<Module *> *Modules) {
2041   assert(!isVisible(D) && "not in slow case");
2042   return hasAcceptableDeclarationImpl(
2043       *this, D, Modules, [](const NamedDecl *) { return true; },
2044       Sema::AcceptableKind::Visible);
2045 }
2046 
2047 bool Sema::hasReachableDeclarationSlow(
2048     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2049   assert(!isReachable(D) && "not in slow case");
2050   return hasAcceptableDeclarationImpl(
2051       *this, D, Modules, [](const NamedDecl *) { return true; },
2052       Sema::AcceptableKind::Reachable);
2053 }
2054 
2055 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2056   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2057     // Namespaces are a bit of a special case: we expect there to be a lot of
2058     // redeclarations of some namespaces, all declarations of a namespace are
2059     // essentially interchangeable, all declarations are found by name lookup
2060     // if any is, and namespaces are never looked up during template
2061     // instantiation. So we benefit from caching the check in this case, and
2062     // it is correct to do so.
2063     auto *Key = ND->getCanonicalDecl();
2064     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2065       return Acceptable;
2066     auto *Acceptable = isVisible(getSema(), Key)
2067                            ? Key
2068                            : findAcceptableDecl(getSema(), Key, IDNS);
2069     if (Acceptable)
2070       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2071     return Acceptable;
2072   }
2073 
2074   return findAcceptableDecl(getSema(), D, IDNS);
2075 }
2076 
2077 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2078   // If this declaration is already visible, return it directly.
2079   if (D->isUnconditionallyVisible())
2080     return true;
2081 
2082   // During template instantiation, we can refer to hidden declarations, if
2083   // they were visible in any module along the path of instantiation.
2084   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2085 }
2086 
2087 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2088   if (D->isUnconditionallyVisible())
2089     return true;
2090 
2091   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2092 }
2093 
2094 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2095   // We should check the visibility at the callsite already.
2096   if (isVisible(SemaRef, ND))
2097     return true;
2098 
2099   // Deduction guide lives in namespace scope generally, but it is just a
2100   // hint to the compilers. What we actually lookup for is the generated member
2101   // of the corresponding template. So it is sufficient to check the
2102   // reachability of the template decl.
2103   if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2104     return SemaRef.hasReachableDefinition(DeductionGuide);
2105 
2106   // FIXME: The lookup for allocation function is a standalone process.
2107   // (We can find the logics in Sema::FindAllocationFunctions)
2108   //
2109   // Such structure makes it a problem when we instantiate a template
2110   // declaration using placement allocation function if the placement
2111   // allocation function is invisible.
2112   // (See https://github.com/llvm/llvm-project/issues/59601)
2113   //
2114   // Here we workaround it by making the placement allocation functions
2115   // always acceptable. The downside is that we can't diagnose the direct
2116   // use of the invisible placement allocation functions. (Although such uses
2117   // should be rare).
2118   if (auto *FD = dyn_cast<FunctionDecl>(ND);
2119       FD && FD->isReservedGlobalPlacementOperator())
2120     return true;
2121 
2122   auto *DC = ND->getDeclContext();
2123   // If ND is not visible and it is at namespace scope, it shouldn't be found
2124   // by name lookup.
2125   if (DC->isFileContext())
2126     return false;
2127 
2128   // [module.interface]p7
2129   // Class and enumeration member names can be found by name lookup in any
2130   // context in which a definition of the type is reachable.
2131   //
2132   // FIXME: The current implementation didn't consider about scope. For example,
2133   // ```
2134   // // m.cppm
2135   // export module m;
2136   // enum E1 { e1 };
2137   // // Use.cpp
2138   // import m;
2139   // void test() {
2140   //   auto a = E1::e1; // Error as expected.
2141   //   auto b = e1; // Should be error. namespace-scope name e1 is not visible
2142   // }
2143   // ```
2144   // For the above example, the current implementation would emit error for `a`
2145   // correctly. However, the implementation wouldn't diagnose about `b` now.
2146   // Since we only check the reachability for the parent only.
2147   // See clang/test/CXX/module/module.interface/p7.cpp for example.
2148   if (auto *TD = dyn_cast<TagDecl>(DC))
2149     return SemaRef.hasReachableDefinition(TD);
2150 
2151   return false;
2152 }
2153 
2154 /// Perform unqualified name lookup starting from a given
2155 /// scope.
2156 ///
2157 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2158 /// used to find names within the current scope. For example, 'x' in
2159 /// @code
2160 /// int x;
2161 /// int f() {
2162 ///   return x; // unqualified name look finds 'x' in the global scope
2163 /// }
2164 /// @endcode
2165 ///
2166 /// Different lookup criteria can find different names. For example, a
2167 /// particular scope can have both a struct and a function of the same
2168 /// name, and each can be found by certain lookup criteria. For more
2169 /// information about lookup criteria, see the documentation for the
2170 /// class LookupCriteria.
2171 ///
2172 /// @param S        The scope from which unqualified name lookup will
2173 /// begin. If the lookup criteria permits, name lookup may also search
2174 /// in the parent scopes.
2175 ///
2176 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2177 /// look up and the lookup kind), and is updated with the results of lookup
2178 /// including zero or more declarations and possibly additional information
2179 /// used to diagnose ambiguities.
2180 ///
2181 /// @returns \c true if lookup succeeded and false otherwise.
2182 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2183                       bool ForceNoCPlusPlus) {
2184   DeclarationName Name = R.getLookupName();
2185   if (!Name) return false;
2186 
2187   LookupNameKind NameKind = R.getLookupKind();
2188 
2189   if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2190     // Unqualified name lookup in C/Objective-C is purely lexical, so
2191     // search in the declarations attached to the name.
2192     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2193       // Find the nearest non-transparent declaration scope.
2194       while (!(S->getFlags() & Scope::DeclScope) ||
2195              (S->getEntity() && S->getEntity()->isTransparentContext()))
2196         S = S->getParent();
2197     }
2198 
2199     // When performing a scope lookup, we want to find local extern decls.
2200     FindLocalExternScope FindLocals(R);
2201 
2202     // Scan up the scope chain looking for a decl that matches this
2203     // identifier that is in the appropriate namespace.  This search
2204     // should not take long, as shadowing of names is uncommon, and
2205     // deep shadowing is extremely uncommon.
2206     bool LeftStartingScope = false;
2207 
2208     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2209                                    IEnd = IdResolver.end();
2210          I != IEnd; ++I)
2211       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2212         if (NameKind == LookupRedeclarationWithLinkage) {
2213           // Determine whether this (or a previous) declaration is
2214           // out-of-scope.
2215           if (!LeftStartingScope && !S->isDeclScope(*I))
2216             LeftStartingScope = true;
2217 
2218           // If we found something outside of our starting scope that
2219           // does not have linkage, skip it.
2220           if (LeftStartingScope && !((*I)->hasLinkage())) {
2221             R.setShadowed();
2222             continue;
2223           }
2224         }
2225         else if (NameKind == LookupObjCImplicitSelfParam &&
2226                  !isa<ImplicitParamDecl>(*I))
2227           continue;
2228 
2229         R.addDecl(D);
2230 
2231         // Check whether there are any other declarations with the same name
2232         // and in the same scope.
2233         if (I != IEnd) {
2234           // Find the scope in which this declaration was declared (if it
2235           // actually exists in a Scope).
2236           while (S && !S->isDeclScope(D))
2237             S = S->getParent();
2238 
2239           // If the scope containing the declaration is the translation unit,
2240           // then we'll need to perform our checks based on the matching
2241           // DeclContexts rather than matching scopes.
2242           if (S && isNamespaceOrTranslationUnitScope(S))
2243             S = nullptr;
2244 
2245           // Compute the DeclContext, if we need it.
2246           DeclContext *DC = nullptr;
2247           if (!S)
2248             DC = (*I)->getDeclContext()->getRedeclContext();
2249 
2250           IdentifierResolver::iterator LastI = I;
2251           for (++LastI; LastI != IEnd; ++LastI) {
2252             if (S) {
2253               // Match based on scope.
2254               if (!S->isDeclScope(*LastI))
2255                 break;
2256             } else {
2257               // Match based on DeclContext.
2258               DeclContext *LastDC
2259                 = (*LastI)->getDeclContext()->getRedeclContext();
2260               if (!LastDC->Equals(DC))
2261                 break;
2262             }
2263 
2264             // If the declaration is in the right namespace and visible, add it.
2265             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2266               R.addDecl(LastD);
2267           }
2268 
2269           R.resolveKind();
2270         }
2271 
2272         return true;
2273       }
2274   } else {
2275     // Perform C++ unqualified name lookup.
2276     if (CppLookupName(R, S))
2277       return true;
2278   }
2279 
2280   // If we didn't find a use of this identifier, and if the identifier
2281   // corresponds to a compiler builtin, create the decl object for the builtin
2282   // now, injecting it into translation unit scope, and return it.
2283   if (AllowBuiltinCreation && LookupBuiltin(R))
2284     return true;
2285 
2286   // If we didn't find a use of this identifier, the ExternalSource
2287   // may be able to handle the situation.
2288   // Note: some lookup failures are expected!
2289   // See e.g. R.isForRedeclaration().
2290   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2291 }
2292 
2293 /// Perform qualified name lookup in the namespaces nominated by
2294 /// using directives by the given context.
2295 ///
2296 /// C++98 [namespace.qual]p2:
2297 ///   Given X::m (where X is a user-declared namespace), or given \::m
2298 ///   (where X is the global namespace), let S be the set of all
2299 ///   declarations of m in X and in the transitive closure of all
2300 ///   namespaces nominated by using-directives in X and its used
2301 ///   namespaces, except that using-directives are ignored in any
2302 ///   namespace, including X, directly containing one or more
2303 ///   declarations of m. No namespace is searched more than once in
2304 ///   the lookup of a name. If S is the empty set, the program is
2305 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2306 ///   context of the reference is a using-declaration
2307 ///   (namespace.udecl), S is the required set of declarations of
2308 ///   m. Otherwise if the use of m is not one that allows a unique
2309 ///   declaration to be chosen from S, the program is ill-formed.
2310 ///
2311 /// C++98 [namespace.qual]p5:
2312 ///   During the lookup of a qualified namespace member name, if the
2313 ///   lookup finds more than one declaration of the member, and if one
2314 ///   declaration introduces a class name or enumeration name and the
2315 ///   other declarations either introduce the same object, the same
2316 ///   enumerator or a set of functions, the non-type name hides the
2317 ///   class or enumeration name if and only if the declarations are
2318 ///   from the same namespace; otherwise (the declarations are from
2319 ///   different namespaces), the program is ill-formed.
2320 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2321                                                  DeclContext *StartDC) {
2322   assert(StartDC->isFileContext() && "start context is not a file context");
2323 
2324   // We have not yet looked into these namespaces, much less added
2325   // their "using-children" to the queue.
2326   SmallVector<NamespaceDecl*, 8> Queue;
2327 
2328   // We have at least added all these contexts to the queue.
2329   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2330   Visited.insert(StartDC);
2331 
2332   // We have already looked into the initial namespace; seed the queue
2333   // with its using-children.
2334   for (auto *I : StartDC->using_directives()) {
2335     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2336     if (S.isVisible(I) && Visited.insert(ND).second)
2337       Queue.push_back(ND);
2338   }
2339 
2340   // The easiest way to implement the restriction in [namespace.qual]p5
2341   // is to check whether any of the individual results found a tag
2342   // and, if so, to declare an ambiguity if the final result is not
2343   // a tag.
2344   bool FoundTag = false;
2345   bool FoundNonTag = false;
2346 
2347   LookupResult LocalR(LookupResult::Temporary, R);
2348 
2349   bool Found = false;
2350   while (!Queue.empty()) {
2351     NamespaceDecl *ND = Queue.pop_back_val();
2352 
2353     // We go through some convolutions here to avoid copying results
2354     // between LookupResults.
2355     bool UseLocal = !R.empty();
2356     LookupResult &DirectR = UseLocal ? LocalR : R;
2357     bool FoundDirect = LookupDirect(S, DirectR, ND);
2358 
2359     if (FoundDirect) {
2360       // First do any local hiding.
2361       DirectR.resolveKind();
2362 
2363       // If the local result is a tag, remember that.
2364       if (DirectR.isSingleTagDecl())
2365         FoundTag = true;
2366       else
2367         FoundNonTag = true;
2368 
2369       // Append the local results to the total results if necessary.
2370       if (UseLocal) {
2371         R.addAllDecls(LocalR);
2372         LocalR.clear();
2373       }
2374     }
2375 
2376     // If we find names in this namespace, ignore its using directives.
2377     if (FoundDirect) {
2378       Found = true;
2379       continue;
2380     }
2381 
2382     for (auto *I : ND->using_directives()) {
2383       NamespaceDecl *Nom = I->getNominatedNamespace();
2384       if (S.isVisible(I) && Visited.insert(Nom).second)
2385         Queue.push_back(Nom);
2386     }
2387   }
2388 
2389   if (Found) {
2390     if (FoundTag && FoundNonTag)
2391       R.setAmbiguousQualifiedTagHiding();
2392     else
2393       R.resolveKind();
2394   }
2395 
2396   return Found;
2397 }
2398 
2399 /// Perform qualified name lookup into a given context.
2400 ///
2401 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2402 /// names when the context of those names is explicit specified, e.g.,
2403 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2404 ///
2405 /// Different lookup criteria can find different names. For example, a
2406 /// particular scope can have both a struct and a function of the same
2407 /// name, and each can be found by certain lookup criteria. For more
2408 /// information about lookup criteria, see the documentation for the
2409 /// class LookupCriteria.
2410 ///
2411 /// \param R captures both the lookup criteria and any lookup results found.
2412 ///
2413 /// \param LookupCtx The context in which qualified name lookup will
2414 /// search. If the lookup criteria permits, name lookup may also search
2415 /// in the parent contexts or (for C++ classes) base classes.
2416 ///
2417 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2418 /// occurs as part of unqualified name lookup.
2419 ///
2420 /// \returns true if lookup succeeded, false if it failed.
2421 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2422                                bool InUnqualifiedLookup) {
2423   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2424 
2425   if (!R.getLookupName())
2426     return false;
2427 
2428   // Make sure that the declaration context is complete.
2429   assert((!isa<TagDecl>(LookupCtx) ||
2430           LookupCtx->isDependentContext() ||
2431           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2432           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2433          "Declaration context must already be complete!");
2434 
2435   struct QualifiedLookupInScope {
2436     bool oldVal;
2437     DeclContext *Context;
2438     // Set flag in DeclContext informing debugger that we're looking for qualified name
2439     QualifiedLookupInScope(DeclContext *ctx)
2440         : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2441       ctx->setUseQualifiedLookup();
2442     }
2443     ~QualifiedLookupInScope() {
2444       Context->setUseQualifiedLookup(oldVal);
2445     }
2446   } QL(LookupCtx);
2447 
2448   if (LookupDirect(*this, R, LookupCtx)) {
2449     R.resolveKind();
2450     if (isa<CXXRecordDecl>(LookupCtx))
2451       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2452     return true;
2453   }
2454 
2455   // Don't descend into implied contexts for redeclarations.
2456   // C++98 [namespace.qual]p6:
2457   //   In a declaration for a namespace member in which the
2458   //   declarator-id is a qualified-id, given that the qualified-id
2459   //   for the namespace member has the form
2460   //     nested-name-specifier unqualified-id
2461   //   the unqualified-id shall name a member of the namespace
2462   //   designated by the nested-name-specifier.
2463   // See also [class.mfct]p5 and [class.static.data]p2.
2464   if (R.isForRedeclaration())
2465     return false;
2466 
2467   // If this is a namespace, look it up in the implied namespaces.
2468   if (LookupCtx->isFileContext())
2469     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2470 
2471   // If this isn't a C++ class, we aren't allowed to look into base
2472   // classes, we're done.
2473   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2474   if (!LookupRec || !LookupRec->getDefinition())
2475     return false;
2476 
2477   // We're done for lookups that can never succeed for C++ classes.
2478   if (R.getLookupKind() == LookupOperatorName ||
2479       R.getLookupKind() == LookupNamespaceName ||
2480       R.getLookupKind() == LookupObjCProtocolName ||
2481       R.getLookupKind() == LookupLabel)
2482     return false;
2483 
2484   // If we're performing qualified name lookup into a dependent class,
2485   // then we are actually looking into a current instantiation. If we have any
2486   // dependent base classes, then we either have to delay lookup until
2487   // template instantiation time (at which point all bases will be available)
2488   // or we have to fail.
2489   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2490       LookupRec->hasAnyDependentBases()) {
2491     R.setNotFoundInCurrentInstantiation();
2492     return false;
2493   }
2494 
2495   // Perform lookup into our base classes.
2496 
2497   DeclarationName Name = R.getLookupName();
2498   unsigned IDNS = R.getIdentifierNamespace();
2499 
2500   // Look for this member in our base classes.
2501   auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2502                                    CXXBasePath &Path) -> bool {
2503     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2504     // Drop leading non-matching lookup results from the declaration list so
2505     // we don't need to consider them again below.
2506     for (Path.Decls = BaseRecord->lookup(Name).begin();
2507          Path.Decls != Path.Decls.end(); ++Path.Decls) {
2508       if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2509         return true;
2510     }
2511     return false;
2512   };
2513 
2514   CXXBasePaths Paths;
2515   Paths.setOrigin(LookupRec);
2516   if (!LookupRec->lookupInBases(BaseCallback, Paths))
2517     return false;
2518 
2519   R.setNamingClass(LookupRec);
2520 
2521   // C++ [class.member.lookup]p2:
2522   //   [...] If the resulting set of declarations are not all from
2523   //   sub-objects of the same type, or the set has a nonstatic member
2524   //   and includes members from distinct sub-objects, there is an
2525   //   ambiguity and the program is ill-formed. Otherwise that set is
2526   //   the result of the lookup.
2527   QualType SubobjectType;
2528   int SubobjectNumber = 0;
2529   AccessSpecifier SubobjectAccess = AS_none;
2530 
2531   // Check whether the given lookup result contains only static members.
2532   auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2533     for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2534       if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2535         return false;
2536     return true;
2537   };
2538 
2539   bool TemplateNameLookup = R.isTemplateNameLookup();
2540 
2541   // Determine whether two sets of members contain the same members, as
2542   // required by C++ [class.member.lookup]p6.
2543   auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2544                                  DeclContext::lookup_iterator B) {
2545     using Iterator = DeclContextLookupResult::iterator;
2546     using Result = const void *;
2547 
2548     auto Next = [&](Iterator &It, Iterator End) -> Result {
2549       while (It != End) {
2550         NamedDecl *ND = *It++;
2551         if (!ND->isInIdentifierNamespace(IDNS))
2552           continue;
2553 
2554         // C++ [temp.local]p3:
2555         //   A lookup that finds an injected-class-name (10.2) can result in
2556         //   an ambiguity in certain cases (for example, if it is found in
2557         //   more than one base class). If all of the injected-class-names
2558         //   that are found refer to specializations of the same class
2559         //   template, and if the name is used as a template-name, the
2560         //   reference refers to the class template itself and not a
2561         //   specialization thereof, and is not ambiguous.
2562         if (TemplateNameLookup)
2563           if (auto *TD = getAsTemplateNameDecl(ND))
2564             ND = TD;
2565 
2566         // C++ [class.member.lookup]p3:
2567         //   type declarations (including injected-class-names) are replaced by
2568         //   the types they designate
2569         if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2570           QualType T = Context.getTypeDeclType(TD);
2571           return T.getCanonicalType().getAsOpaquePtr();
2572         }
2573 
2574         return ND->getUnderlyingDecl()->getCanonicalDecl();
2575       }
2576       return nullptr;
2577     };
2578 
2579     // We'll often find the declarations are in the same order. Handle this
2580     // case (and the special case of only one declaration) efficiently.
2581     Iterator AIt = A, BIt = B, AEnd, BEnd;
2582     while (true) {
2583       Result AResult = Next(AIt, AEnd);
2584       Result BResult = Next(BIt, BEnd);
2585       if (!AResult && !BResult)
2586         return true;
2587       if (!AResult || !BResult)
2588         return false;
2589       if (AResult != BResult) {
2590         // Found a mismatch; carefully check both lists, accounting for the
2591         // possibility of declarations appearing more than once.
2592         llvm::SmallDenseMap<Result, bool, 32> AResults;
2593         for (; AResult; AResult = Next(AIt, AEnd))
2594           AResults.insert({AResult, /*FoundInB*/false});
2595         unsigned Found = 0;
2596         for (; BResult; BResult = Next(BIt, BEnd)) {
2597           auto It = AResults.find(BResult);
2598           if (It == AResults.end())
2599             return false;
2600           if (!It->second) {
2601             It->second = true;
2602             ++Found;
2603           }
2604         }
2605         return AResults.size() == Found;
2606       }
2607     }
2608   };
2609 
2610   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2611        Path != PathEnd; ++Path) {
2612     const CXXBasePathElement &PathElement = Path->back();
2613 
2614     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2615     // across all paths.
2616     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2617 
2618     // Determine whether we're looking at a distinct sub-object or not.
2619     if (SubobjectType.isNull()) {
2620       // This is the first subobject we've looked at. Record its type.
2621       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2622       SubobjectNumber = PathElement.SubobjectNumber;
2623       continue;
2624     }
2625 
2626     if (SubobjectType !=
2627         Context.getCanonicalType(PathElement.Base->getType())) {
2628       // We found members of the given name in two subobjects of
2629       // different types. If the declaration sets aren't the same, this
2630       // lookup is ambiguous.
2631       //
2632       // FIXME: The language rule says that this applies irrespective of
2633       // whether the sets contain only static members.
2634       if (HasOnlyStaticMembers(Path->Decls) &&
2635           HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2636         continue;
2637 
2638       R.setAmbiguousBaseSubobjectTypes(Paths);
2639       return true;
2640     }
2641 
2642     // FIXME: This language rule no longer exists. Checking for ambiguous base
2643     // subobjects should be done as part of formation of a class member access
2644     // expression (when converting the object parameter to the member's type).
2645     if (SubobjectNumber != PathElement.SubobjectNumber) {
2646       // We have a different subobject of the same type.
2647 
2648       // C++ [class.member.lookup]p5:
2649       //   A static member, a nested type or an enumerator defined in
2650       //   a base class T can unambiguously be found even if an object
2651       //   has more than one base class subobject of type T.
2652       if (HasOnlyStaticMembers(Path->Decls))
2653         continue;
2654 
2655       // We have found a nonstatic member name in multiple, distinct
2656       // subobjects. Name lookup is ambiguous.
2657       R.setAmbiguousBaseSubobjects(Paths);
2658       return true;
2659     }
2660   }
2661 
2662   // Lookup in a base class succeeded; return these results.
2663 
2664   for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2665        I != E; ++I) {
2666     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2667                                                     (*I)->getAccess());
2668     if (NamedDecl *ND = R.getAcceptableDecl(*I))
2669       R.addDecl(ND, AS);
2670   }
2671   R.resolveKind();
2672   return true;
2673 }
2674 
2675 /// Performs qualified name lookup or special type of lookup for
2676 /// "__super::" scope specifier.
2677 ///
2678 /// This routine is a convenience overload meant to be called from contexts
2679 /// that need to perform a qualified name lookup with an optional C++ scope
2680 /// specifier that might require special kind of lookup.
2681 ///
2682 /// \param R captures both the lookup criteria and any lookup results found.
2683 ///
2684 /// \param LookupCtx The context in which qualified name lookup will
2685 /// search.
2686 ///
2687 /// \param SS An optional C++ scope-specifier.
2688 ///
2689 /// \returns true if lookup succeeded, false if it failed.
2690 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2691                                CXXScopeSpec &SS) {
2692   auto *NNS = SS.getScopeRep();
2693   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2694     return LookupInSuper(R, NNS->getAsRecordDecl());
2695   else
2696 
2697     return LookupQualifiedName(R, LookupCtx);
2698 }
2699 
2700 /// Performs name lookup for a name that was parsed in the
2701 /// source code, and may contain a C++ scope specifier.
2702 ///
2703 /// This routine is a convenience routine meant to be called from
2704 /// contexts that receive a name and an optional C++ scope specifier
2705 /// (e.g., "N::M::x"). It will then perform either qualified or
2706 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2707 /// respectively) on the given name and return those results. It will
2708 /// perform a special type of lookup for "__super::" scope specifier.
2709 ///
2710 /// @param S        The scope from which unqualified name lookup will
2711 /// begin.
2712 ///
2713 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2714 ///
2715 /// @param EnteringContext Indicates whether we are going to enter the
2716 /// context of the scope-specifier SS (if present).
2717 ///
2718 /// @returns True if any decls were found (but possibly ambiguous)
2719 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2720                             bool AllowBuiltinCreation, bool EnteringContext) {
2721   if (SS && SS->isInvalid()) {
2722     // When the scope specifier is invalid, don't even look for
2723     // anything.
2724     return false;
2725   }
2726 
2727   if (SS && SS->isSet()) {
2728     NestedNameSpecifier *NNS = SS->getScopeRep();
2729     if (NNS->getKind() == NestedNameSpecifier::Super)
2730       return LookupInSuper(R, NNS->getAsRecordDecl());
2731 
2732     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2733       // We have resolved the scope specifier to a particular declaration
2734       // contex, and will perform name lookup in that context.
2735       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2736         return false;
2737 
2738       R.setContextRange(SS->getRange());
2739       return LookupQualifiedName(R, DC);
2740     }
2741 
2742     // We could not resolve the scope specified to a specific declaration
2743     // context, which means that SS refers to an unknown specialization.
2744     // Name lookup can't find anything in this case.
2745     R.setNotFoundInCurrentInstantiation();
2746     R.setContextRange(SS->getRange());
2747     return false;
2748   }
2749 
2750   // Perform unqualified name lookup starting in the given scope.
2751   return LookupName(R, S, AllowBuiltinCreation);
2752 }
2753 
2754 /// Perform qualified name lookup into all base classes of the given
2755 /// class.
2756 ///
2757 /// \param R captures both the lookup criteria and any lookup results found.
2758 ///
2759 /// \param Class The context in which qualified name lookup will
2760 /// search. Name lookup will search in all base classes merging the results.
2761 ///
2762 /// @returns True if any decls were found (but possibly ambiguous)
2763 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2764   // The access-control rules we use here are essentially the rules for
2765   // doing a lookup in Class that just magically skipped the direct
2766   // members of Class itself.  That is, the naming class is Class, and the
2767   // access includes the access of the base.
2768   for (const auto &BaseSpec : Class->bases()) {
2769     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2770         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2771     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2772     Result.setBaseObjectType(Context.getRecordType(Class));
2773     LookupQualifiedName(Result, RD);
2774 
2775     // Copy the lookup results into the target, merging the base's access into
2776     // the path access.
2777     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2778       R.addDecl(I.getDecl(),
2779                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2780                                            I.getAccess()));
2781     }
2782 
2783     Result.suppressDiagnostics();
2784   }
2785 
2786   R.resolveKind();
2787   R.setNamingClass(Class);
2788 
2789   return !R.empty();
2790 }
2791 
2792 /// Produce a diagnostic describing the ambiguity that resulted
2793 /// from name lookup.
2794 ///
2795 /// \param Result The result of the ambiguous lookup to be diagnosed.
2796 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2797   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2798 
2799   DeclarationName Name = Result.getLookupName();
2800   SourceLocation NameLoc = Result.getNameLoc();
2801   SourceRange LookupRange = Result.getContextRange();
2802 
2803   switch (Result.getAmbiguityKind()) {
2804   case LookupResult::AmbiguousBaseSubobjects: {
2805     CXXBasePaths *Paths = Result.getBasePaths();
2806     QualType SubobjectType = Paths->front().back().Base->getType();
2807     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2808       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2809       << LookupRange;
2810 
2811     DeclContext::lookup_iterator Found = Paths->front().Decls;
2812     while (isa<CXXMethodDecl>(*Found) &&
2813            cast<CXXMethodDecl>(*Found)->isStatic())
2814       ++Found;
2815 
2816     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2817     break;
2818   }
2819 
2820   case LookupResult::AmbiguousBaseSubobjectTypes: {
2821     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2822       << Name << LookupRange;
2823 
2824     CXXBasePaths *Paths = Result.getBasePaths();
2825     std::set<const NamedDecl *> DeclsPrinted;
2826     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2827                                       PathEnd = Paths->end();
2828          Path != PathEnd; ++Path) {
2829       const NamedDecl *D = *Path->Decls;
2830       if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2831         continue;
2832       if (DeclsPrinted.insert(D).second) {
2833         if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2834           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2835               << TD->getUnderlyingType();
2836         else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2837           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2838               << Context.getTypeDeclType(TD);
2839         else
2840           Diag(D->getLocation(), diag::note_ambiguous_member_found);
2841       }
2842     }
2843     break;
2844   }
2845 
2846   case LookupResult::AmbiguousTagHiding: {
2847     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2848 
2849     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2850 
2851     for (auto *D : Result)
2852       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2853         TagDecls.insert(TD);
2854         Diag(TD->getLocation(), diag::note_hidden_tag);
2855       }
2856 
2857     for (auto *D : Result)
2858       if (!isa<TagDecl>(D))
2859         Diag(D->getLocation(), diag::note_hiding_object);
2860 
2861     // For recovery purposes, go ahead and implement the hiding.
2862     LookupResult::Filter F = Result.makeFilter();
2863     while (F.hasNext()) {
2864       if (TagDecls.count(F.next()))
2865         F.erase();
2866     }
2867     F.done();
2868     break;
2869   }
2870 
2871   case LookupResult::AmbiguousReferenceToPlaceholderVariable: {
2872     Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2873     DeclContext *DC = nullptr;
2874     for (auto *D : Result) {
2875       Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2876       if (DC != nullptr && DC != D->getDeclContext())
2877         break;
2878       DC = D->getDeclContext();
2879     }
2880     break;
2881   }
2882 
2883   case LookupResult::AmbiguousReference: {
2884     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2885 
2886     for (auto *D : Result)
2887       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2888     break;
2889   }
2890   }
2891 }
2892 
2893 namespace {
2894   struct AssociatedLookup {
2895     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2896                      Sema::AssociatedNamespaceSet &Namespaces,
2897                      Sema::AssociatedClassSet &Classes)
2898       : S(S), Namespaces(Namespaces), Classes(Classes),
2899         InstantiationLoc(InstantiationLoc) {
2900     }
2901 
2902     bool addClassTransitive(CXXRecordDecl *RD) {
2903       Classes.insert(RD);
2904       return ClassesTransitive.insert(RD);
2905     }
2906 
2907     Sema &S;
2908     Sema::AssociatedNamespaceSet &Namespaces;
2909     Sema::AssociatedClassSet &Classes;
2910     SourceLocation InstantiationLoc;
2911 
2912   private:
2913     Sema::AssociatedClassSet ClassesTransitive;
2914   };
2915 } // end anonymous namespace
2916 
2917 static void
2918 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2919 
2920 // Given the declaration context \param Ctx of a class, class template or
2921 // enumeration, add the associated namespaces to \param Namespaces as described
2922 // in [basic.lookup.argdep]p2.
2923 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2924                                       DeclContext *Ctx) {
2925   // The exact wording has been changed in C++14 as a result of
2926   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2927   // to all language versions since it is possible to return a local type
2928   // from a lambda in C++11.
2929   //
2930   // C++14 [basic.lookup.argdep]p2:
2931   //   If T is a class type [...]. Its associated namespaces are the innermost
2932   //   enclosing namespaces of its associated classes. [...]
2933   //
2934   //   If T is an enumeration type, its associated namespace is the innermost
2935   //   enclosing namespace of its declaration. [...]
2936 
2937   // We additionally skip inline namespaces. The innermost non-inline namespace
2938   // contains all names of all its nested inline namespaces anyway, so we can
2939   // replace the entire inline namespace tree with its root.
2940   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2941     Ctx = Ctx->getParent();
2942 
2943   Namespaces.insert(Ctx->getPrimaryContext());
2944 }
2945 
2946 // Add the associated classes and namespaces for argument-dependent
2947 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2948 static void
2949 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2950                                   const TemplateArgument &Arg) {
2951   // C++ [basic.lookup.argdep]p2, last bullet:
2952   //   -- [...] ;
2953   switch (Arg.getKind()) {
2954     case TemplateArgument::Null:
2955       break;
2956 
2957     case TemplateArgument::Type:
2958       // [...] the namespaces and classes associated with the types of the
2959       // template arguments provided for template type parameters (excluding
2960       // template template parameters)
2961       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2962       break;
2963 
2964     case TemplateArgument::Template:
2965     case TemplateArgument::TemplateExpansion: {
2966       // [...] the namespaces in which any template template arguments are
2967       // defined; and the classes in which any member templates used as
2968       // template template arguments are defined.
2969       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2970       if (ClassTemplateDecl *ClassTemplate
2971                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2972         DeclContext *Ctx = ClassTemplate->getDeclContext();
2973         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2974           Result.Classes.insert(EnclosingClass);
2975         // Add the associated namespace for this class.
2976         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2977       }
2978       break;
2979     }
2980 
2981     case TemplateArgument::Declaration:
2982     case TemplateArgument::Integral:
2983     case TemplateArgument::Expression:
2984     case TemplateArgument::NullPtr:
2985       // [Note: non-type template arguments do not contribute to the set of
2986       //  associated namespaces. ]
2987       break;
2988 
2989     case TemplateArgument::Pack:
2990       for (const auto &P : Arg.pack_elements())
2991         addAssociatedClassesAndNamespaces(Result, P);
2992       break;
2993   }
2994 }
2995 
2996 // Add the associated classes and namespaces for argument-dependent lookup
2997 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2998 static void
2999 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
3000                                   CXXRecordDecl *Class) {
3001 
3002   // Just silently ignore anything whose name is __va_list_tag.
3003   if (Class->getDeclName() == Result.S.VAListTagName)
3004     return;
3005 
3006   // C++ [basic.lookup.argdep]p2:
3007   //   [...]
3008   //     -- If T is a class type (including unions), its associated
3009   //        classes are: the class itself; the class of which it is a
3010   //        member, if any; and its direct and indirect base classes.
3011   //        Its associated namespaces are the innermost enclosing
3012   //        namespaces of its associated classes.
3013 
3014   // Add the class of which it is a member, if any.
3015   DeclContext *Ctx = Class->getDeclContext();
3016   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3017     Result.Classes.insert(EnclosingClass);
3018 
3019   // Add the associated namespace for this class.
3020   CollectEnclosingNamespace(Result.Namespaces, Ctx);
3021 
3022   // -- If T is a template-id, its associated namespaces and classes are
3023   //    the namespace in which the template is defined; for member
3024   //    templates, the member template's class; the namespaces and classes
3025   //    associated with the types of the template arguments provided for
3026   //    template type parameters (excluding template template parameters); the
3027   //    namespaces in which any template template arguments are defined; and
3028   //    the classes in which any member templates used as template template
3029   //    arguments are defined. [Note: non-type template arguments do not
3030   //    contribute to the set of associated namespaces. ]
3031   if (ClassTemplateSpecializationDecl *Spec
3032         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3033     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3034     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3035       Result.Classes.insert(EnclosingClass);
3036     // Add the associated namespace for this class.
3037     CollectEnclosingNamespace(Result.Namespaces, Ctx);
3038 
3039     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3040     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3041       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3042   }
3043 
3044   // Add the class itself. If we've already transitively visited this class,
3045   // we don't need to visit base classes.
3046   if (!Result.addClassTransitive(Class))
3047     return;
3048 
3049   // Only recurse into base classes for complete types.
3050   if (!Result.S.isCompleteType(Result.InstantiationLoc,
3051                                Result.S.Context.getRecordType(Class)))
3052     return;
3053 
3054   // Add direct and indirect base classes along with their associated
3055   // namespaces.
3056   SmallVector<CXXRecordDecl *, 32> Bases;
3057   Bases.push_back(Class);
3058   while (!Bases.empty()) {
3059     // Pop this class off the stack.
3060     Class = Bases.pop_back_val();
3061 
3062     // Visit the base classes.
3063     for (const auto &Base : Class->bases()) {
3064       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3065       // In dependent contexts, we do ADL twice, and the first time around,
3066       // the base type might be a dependent TemplateSpecializationType, or a
3067       // TemplateTypeParmType. If that happens, simply ignore it.
3068       // FIXME: If we want to support export, we probably need to add the
3069       // namespace of the template in a TemplateSpecializationType, or even
3070       // the classes and namespaces of known non-dependent arguments.
3071       if (!BaseType)
3072         continue;
3073       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3074       if (Result.addClassTransitive(BaseDecl)) {
3075         // Find the associated namespace for this base class.
3076         DeclContext *BaseCtx = BaseDecl->getDeclContext();
3077         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3078 
3079         // Make sure we visit the bases of this base class.
3080         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3081           Bases.push_back(BaseDecl);
3082       }
3083     }
3084   }
3085 }
3086 
3087 // Add the associated classes and namespaces for
3088 // argument-dependent lookup with an argument of type T
3089 // (C++ [basic.lookup.koenig]p2).
3090 static void
3091 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3092   // C++ [basic.lookup.koenig]p2:
3093   //
3094   //   For each argument type T in the function call, there is a set
3095   //   of zero or more associated namespaces and a set of zero or more
3096   //   associated classes to be considered. The sets of namespaces and
3097   //   classes is determined entirely by the types of the function
3098   //   arguments (and the namespace of any template template
3099   //   argument). Typedef names and using-declarations used to specify
3100   //   the types do not contribute to this set. The sets of namespaces
3101   //   and classes are determined in the following way:
3102 
3103   SmallVector<const Type *, 16> Queue;
3104   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3105 
3106   while (true) {
3107     switch (T->getTypeClass()) {
3108 
3109 #define TYPE(Class, Base)
3110 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3111 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3112 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3113 #define ABSTRACT_TYPE(Class, Base)
3114 #include "clang/AST/TypeNodes.inc"
3115       // T is canonical.  We can also ignore dependent types because
3116       // we don't need to do ADL at the definition point, but if we
3117       // wanted to implement template export (or if we find some other
3118       // use for associated classes and namespaces...) this would be
3119       // wrong.
3120       break;
3121 
3122     //    -- If T is a pointer to U or an array of U, its associated
3123     //       namespaces and classes are those associated with U.
3124     case Type::Pointer:
3125       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3126       continue;
3127     case Type::ConstantArray:
3128     case Type::IncompleteArray:
3129     case Type::VariableArray:
3130       T = cast<ArrayType>(T)->getElementType().getTypePtr();
3131       continue;
3132 
3133     //     -- If T is a fundamental type, its associated sets of
3134     //        namespaces and classes are both empty.
3135     case Type::Builtin:
3136       break;
3137 
3138     //     -- If T is a class type (including unions), its associated
3139     //        classes are: the class itself; the class of which it is
3140     //        a member, if any; and its direct and indirect base classes.
3141     //        Its associated namespaces are the innermost enclosing
3142     //        namespaces of its associated classes.
3143     case Type::Record: {
3144       CXXRecordDecl *Class =
3145           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3146       addAssociatedClassesAndNamespaces(Result, Class);
3147       break;
3148     }
3149 
3150     //     -- If T is an enumeration type, its associated namespace
3151     //        is the innermost enclosing namespace of its declaration.
3152     //        If it is a class member, its associated class is the
3153     //        member’s class; else it has no associated class.
3154     case Type::Enum: {
3155       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3156 
3157       DeclContext *Ctx = Enum->getDeclContext();
3158       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3159         Result.Classes.insert(EnclosingClass);
3160 
3161       // Add the associated namespace for this enumeration.
3162       CollectEnclosingNamespace(Result.Namespaces, Ctx);
3163 
3164       break;
3165     }
3166 
3167     //     -- If T is a function type, its associated namespaces and
3168     //        classes are those associated with the function parameter
3169     //        types and those associated with the return type.
3170     case Type::FunctionProto: {
3171       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3172       for (const auto &Arg : Proto->param_types())
3173         Queue.push_back(Arg.getTypePtr());
3174       // fallthrough
3175       [[fallthrough]];
3176     }
3177     case Type::FunctionNoProto: {
3178       const FunctionType *FnType = cast<FunctionType>(T);
3179       T = FnType->getReturnType().getTypePtr();
3180       continue;
3181     }
3182 
3183     //     -- If T is a pointer to a member function of a class X, its
3184     //        associated namespaces and classes are those associated
3185     //        with the function parameter types and return type,
3186     //        together with those associated with X.
3187     //
3188     //     -- If T is a pointer to a data member of class X, its
3189     //        associated namespaces and classes are those associated
3190     //        with the member type together with those associated with
3191     //        X.
3192     case Type::MemberPointer: {
3193       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3194 
3195       // Queue up the class type into which this points.
3196       Queue.push_back(MemberPtr->getClass());
3197 
3198       // And directly continue with the pointee type.
3199       T = MemberPtr->getPointeeType().getTypePtr();
3200       continue;
3201     }
3202 
3203     // As an extension, treat this like a normal pointer.
3204     case Type::BlockPointer:
3205       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3206       continue;
3207 
3208     // References aren't covered by the standard, but that's such an
3209     // obvious defect that we cover them anyway.
3210     case Type::LValueReference:
3211     case Type::RValueReference:
3212       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3213       continue;
3214 
3215     // These are fundamental types.
3216     case Type::Vector:
3217     case Type::ExtVector:
3218     case Type::ConstantMatrix:
3219     case Type::Complex:
3220     case Type::BitInt:
3221       break;
3222 
3223     // Non-deduced auto types only get here for error cases.
3224     case Type::Auto:
3225     case Type::DeducedTemplateSpecialization:
3226       break;
3227 
3228     // If T is an Objective-C object or interface type, or a pointer to an
3229     // object or interface type, the associated namespace is the global
3230     // namespace.
3231     case Type::ObjCObject:
3232     case Type::ObjCInterface:
3233     case Type::ObjCObjectPointer:
3234       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3235       break;
3236 
3237     // Atomic types are just wrappers; use the associations of the
3238     // contained type.
3239     case Type::Atomic:
3240       T = cast<AtomicType>(T)->getValueType().getTypePtr();
3241       continue;
3242     case Type::Pipe:
3243       T = cast<PipeType>(T)->getElementType().getTypePtr();
3244       continue;
3245     }
3246 
3247     if (Queue.empty())
3248       break;
3249     T = Queue.pop_back_val();
3250   }
3251 }
3252 
3253 /// Find the associated classes and namespaces for
3254 /// argument-dependent lookup for a call with the given set of
3255 /// arguments.
3256 ///
3257 /// This routine computes the sets of associated classes and associated
3258 /// namespaces searched by argument-dependent lookup
3259 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3260 void Sema::FindAssociatedClassesAndNamespaces(
3261     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3262     AssociatedNamespaceSet &AssociatedNamespaces,
3263     AssociatedClassSet &AssociatedClasses) {
3264   AssociatedNamespaces.clear();
3265   AssociatedClasses.clear();
3266 
3267   AssociatedLookup Result(*this, InstantiationLoc,
3268                           AssociatedNamespaces, AssociatedClasses);
3269 
3270   // C++ [basic.lookup.koenig]p2:
3271   //   For each argument type T in the function call, there is a set
3272   //   of zero or more associated namespaces and a set of zero or more
3273   //   associated classes to be considered. The sets of namespaces and
3274   //   classes is determined entirely by the types of the function
3275   //   arguments (and the namespace of any template template
3276   //   argument).
3277   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3278     Expr *Arg = Args[ArgIdx];
3279 
3280     if (Arg->getType() != Context.OverloadTy) {
3281       addAssociatedClassesAndNamespaces(Result, Arg->getType());
3282       continue;
3283     }
3284 
3285     // [...] In addition, if the argument is the name or address of a
3286     // set of overloaded functions and/or function templates, its
3287     // associated classes and namespaces are the union of those
3288     // associated with each of the members of the set: the namespace
3289     // in which the function or function template is defined and the
3290     // classes and namespaces associated with its (non-dependent)
3291     // parameter types and return type.
3292     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3293 
3294     for (const NamedDecl *D : OE->decls()) {
3295       // Look through any using declarations to find the underlying function.
3296       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3297 
3298       // Add the classes and namespaces associated with the parameter
3299       // types and return type of this function.
3300       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3301     }
3302   }
3303 }
3304 
3305 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3306                                   SourceLocation Loc,
3307                                   LookupNameKind NameKind,
3308                                   RedeclarationKind Redecl) {
3309   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3310   LookupName(R, S);
3311   return R.getAsSingle<NamedDecl>();
3312 }
3313 
3314 /// Find the protocol with the given name, if any.
3315 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3316                                        SourceLocation IdLoc,
3317                                        RedeclarationKind Redecl) {
3318   Decl *D = LookupSingleName(TUScope, II, IdLoc,
3319                              LookupObjCProtocolName, Redecl);
3320   return cast_or_null<ObjCProtocolDecl>(D);
3321 }
3322 
3323 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3324                                         UnresolvedSetImpl &Functions) {
3325   // C++ [over.match.oper]p3:
3326   //     -- The set of non-member candidates is the result of the
3327   //        unqualified lookup of operator@ in the context of the
3328   //        expression according to the usual rules for name lookup in
3329   //        unqualified function calls (3.4.2) except that all member
3330   //        functions are ignored.
3331   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3332   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3333   LookupName(Operators, S);
3334 
3335   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3336   Functions.append(Operators.begin(), Operators.end());
3337 }
3338 
3339 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3340                                                            CXXSpecialMember SM,
3341                                                            bool ConstArg,
3342                                                            bool VolatileArg,
3343                                                            bool RValueThis,
3344                                                            bool ConstThis,
3345                                                            bool VolatileThis) {
3346   assert(CanDeclareSpecialMemberFunction(RD) &&
3347          "doing special member lookup into record that isn't fully complete");
3348   RD = RD->getDefinition();
3349   if (RValueThis || ConstThis || VolatileThis)
3350     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3351            "constructors and destructors always have unqualified lvalue this");
3352   if (ConstArg || VolatileArg)
3353     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3354            "parameter-less special members can't have qualified arguments");
3355 
3356   // FIXME: Get the caller to pass in a location for the lookup.
3357   SourceLocation LookupLoc = RD->getLocation();
3358 
3359   llvm::FoldingSetNodeID ID;
3360   ID.AddPointer(RD);
3361   ID.AddInteger(SM);
3362   ID.AddInteger(ConstArg);
3363   ID.AddInteger(VolatileArg);
3364   ID.AddInteger(RValueThis);
3365   ID.AddInteger(ConstThis);
3366   ID.AddInteger(VolatileThis);
3367 
3368   void *InsertPoint;
3369   SpecialMemberOverloadResultEntry *Result =
3370     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3371 
3372   // This was already cached
3373   if (Result)
3374     return *Result;
3375 
3376   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3377   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3378   SpecialMemberCache.InsertNode(Result, InsertPoint);
3379 
3380   if (SM == CXXDestructor) {
3381     if (RD->needsImplicitDestructor()) {
3382       runWithSufficientStackSpace(RD->getLocation(), [&] {
3383         DeclareImplicitDestructor(RD);
3384       });
3385     }
3386     CXXDestructorDecl *DD = RD->getDestructor();
3387     Result->setMethod(DD);
3388     Result->setKind(DD && !DD->isDeleted()
3389                         ? SpecialMemberOverloadResult::Success
3390                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3391     return *Result;
3392   }
3393 
3394   // Prepare for overload resolution. Here we construct a synthetic argument
3395   // if necessary and make sure that implicit functions are declared.
3396   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3397   DeclarationName Name;
3398   Expr *Arg = nullptr;
3399   unsigned NumArgs;
3400 
3401   QualType ArgType = CanTy;
3402   ExprValueKind VK = VK_LValue;
3403 
3404   if (SM == CXXDefaultConstructor) {
3405     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3406     NumArgs = 0;
3407     if (RD->needsImplicitDefaultConstructor()) {
3408       runWithSufficientStackSpace(RD->getLocation(), [&] {
3409         DeclareImplicitDefaultConstructor(RD);
3410       });
3411     }
3412   } else {
3413     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3414       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3415       if (RD->needsImplicitCopyConstructor()) {
3416         runWithSufficientStackSpace(RD->getLocation(), [&] {
3417           DeclareImplicitCopyConstructor(RD);
3418         });
3419       }
3420       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3421         runWithSufficientStackSpace(RD->getLocation(), [&] {
3422           DeclareImplicitMoveConstructor(RD);
3423         });
3424       }
3425     } else {
3426       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3427       if (RD->needsImplicitCopyAssignment()) {
3428         runWithSufficientStackSpace(RD->getLocation(), [&] {
3429           DeclareImplicitCopyAssignment(RD);
3430         });
3431       }
3432       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3433         runWithSufficientStackSpace(RD->getLocation(), [&] {
3434           DeclareImplicitMoveAssignment(RD);
3435         });
3436       }
3437     }
3438 
3439     if (ConstArg)
3440       ArgType.addConst();
3441     if (VolatileArg)
3442       ArgType.addVolatile();
3443 
3444     // This isn't /really/ specified by the standard, but it's implied
3445     // we should be working from a PRValue in the case of move to ensure
3446     // that we prefer to bind to rvalue references, and an LValue in the
3447     // case of copy to ensure we don't bind to rvalue references.
3448     // Possibly an XValue is actually correct in the case of move, but
3449     // there is no semantic difference for class types in this restricted
3450     // case.
3451     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3452       VK = VK_LValue;
3453     else
3454       VK = VK_PRValue;
3455   }
3456 
3457   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3458 
3459   if (SM != CXXDefaultConstructor) {
3460     NumArgs = 1;
3461     Arg = &FakeArg;
3462   }
3463 
3464   // Create the object argument
3465   QualType ThisTy = CanTy;
3466   if (ConstThis)
3467     ThisTy.addConst();
3468   if (VolatileThis)
3469     ThisTy.addVolatile();
3470   Expr::Classification Classification =
3471       OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3472           .Classify(Context);
3473 
3474   // Now we perform lookup on the name we computed earlier and do overload
3475   // resolution. Lookup is only performed directly into the class since there
3476   // will always be a (possibly implicit) declaration to shadow any others.
3477   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3478   DeclContext::lookup_result R = RD->lookup(Name);
3479 
3480   if (R.empty()) {
3481     // We might have no default constructor because we have a lambda's closure
3482     // type, rather than because there's some other declared constructor.
3483     // Every class has a copy/move constructor, copy/move assignment, and
3484     // destructor.
3485     assert(SM == CXXDefaultConstructor &&
3486            "lookup for a constructor or assignment operator was empty");
3487     Result->setMethod(nullptr);
3488     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3489     return *Result;
3490   }
3491 
3492   // Copy the candidates as our processing of them may load new declarations
3493   // from an external source and invalidate lookup_result.
3494   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3495 
3496   for (NamedDecl *CandDecl : Candidates) {
3497     if (CandDecl->isInvalidDecl())
3498       continue;
3499 
3500     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3501     auto CtorInfo = getConstructorInfo(Cand);
3502     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3503       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3504         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3505                            llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3506       else if (CtorInfo)
3507         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3508                              llvm::ArrayRef(&Arg, NumArgs), OCS,
3509                              /*SuppressUserConversions*/ true);
3510       else
3511         AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3512                              /*SuppressUserConversions*/ true);
3513     } else if (FunctionTemplateDecl *Tmpl =
3514                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3515       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3516         AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3517                                    Classification,
3518                                    llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3519       else if (CtorInfo)
3520         AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3521                                      CtorInfo.FoundDecl, nullptr,
3522                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3523       else
3524         AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3525                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3526     } else {
3527       assert(isa<UsingDecl>(Cand.getDecl()) &&
3528              "illegal Kind of operator = Decl");
3529     }
3530   }
3531 
3532   OverloadCandidateSet::iterator Best;
3533   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3534     case OR_Success:
3535       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3536       Result->setKind(SpecialMemberOverloadResult::Success);
3537       break;
3538 
3539     case OR_Deleted:
3540       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3541       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3542       break;
3543 
3544     case OR_Ambiguous:
3545       Result->setMethod(nullptr);
3546       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3547       break;
3548 
3549     case OR_No_Viable_Function:
3550       Result->setMethod(nullptr);
3551       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3552       break;
3553   }
3554 
3555   return *Result;
3556 }
3557 
3558 /// Look up the default constructor for the given class.
3559 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3560   SpecialMemberOverloadResult Result =
3561     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3562                         false, false);
3563 
3564   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3565 }
3566 
3567 /// Look up the copying constructor for the given class.
3568 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3569                                                    unsigned Quals) {
3570   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3571          "non-const, non-volatile qualifiers for copy ctor arg");
3572   SpecialMemberOverloadResult Result =
3573     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3574                         Quals & Qualifiers::Volatile, false, false, false);
3575 
3576   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3577 }
3578 
3579 /// Look up the moving constructor for the given class.
3580 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3581                                                   unsigned Quals) {
3582   SpecialMemberOverloadResult Result =
3583     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3584                         Quals & Qualifiers::Volatile, false, false, false);
3585 
3586   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3587 }
3588 
3589 /// Look up the constructors for the given class.
3590 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3591   // If the implicit constructors have not yet been declared, do so now.
3592   if (CanDeclareSpecialMemberFunction(Class)) {
3593     runWithSufficientStackSpace(Class->getLocation(), [&] {
3594       if (Class->needsImplicitDefaultConstructor())
3595         DeclareImplicitDefaultConstructor(Class);
3596       if (Class->needsImplicitCopyConstructor())
3597         DeclareImplicitCopyConstructor(Class);
3598       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3599         DeclareImplicitMoveConstructor(Class);
3600     });
3601   }
3602 
3603   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3604   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3605   return Class->lookup(Name);
3606 }
3607 
3608 /// Look up the copying assignment operator for the given class.
3609 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3610                                              unsigned Quals, bool RValueThis,
3611                                              unsigned ThisQuals) {
3612   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3613          "non-const, non-volatile qualifiers for copy assignment arg");
3614   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3615          "non-const, non-volatile qualifiers for copy assignment this");
3616   SpecialMemberOverloadResult Result =
3617     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3618                         Quals & Qualifiers::Volatile, RValueThis,
3619                         ThisQuals & Qualifiers::Const,
3620                         ThisQuals & Qualifiers::Volatile);
3621 
3622   return Result.getMethod();
3623 }
3624 
3625 /// Look up the moving assignment operator for the given class.
3626 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3627                                             unsigned Quals,
3628                                             bool RValueThis,
3629                                             unsigned ThisQuals) {
3630   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3631          "non-const, non-volatile qualifiers for copy assignment this");
3632   SpecialMemberOverloadResult Result =
3633     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3634                         Quals & Qualifiers::Volatile, RValueThis,
3635                         ThisQuals & Qualifiers::Const,
3636                         ThisQuals & Qualifiers::Volatile);
3637 
3638   return Result.getMethod();
3639 }
3640 
3641 /// Look for the destructor of the given class.
3642 ///
3643 /// During semantic analysis, this routine should be used in lieu of
3644 /// CXXRecordDecl::getDestructor().
3645 ///
3646 /// \returns The destructor for this class.
3647 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3648   return cast_or_null<CXXDestructorDecl>(
3649       LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3650                           false)
3651           .getMethod());
3652 }
3653 
3654 /// LookupLiteralOperator - Determine which literal operator should be used for
3655 /// a user-defined literal, per C++11 [lex.ext].
3656 ///
3657 /// Normal overload resolution is not used to select which literal operator to
3658 /// call for a user-defined literal. Look up the provided literal operator name,
3659 /// and filter the results to the appropriate set for the given argument types.
3660 Sema::LiteralOperatorLookupResult
3661 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3662                             ArrayRef<QualType> ArgTys, bool AllowRaw,
3663                             bool AllowTemplate, bool AllowStringTemplatePack,
3664                             bool DiagnoseMissing, StringLiteral *StringLit) {
3665   LookupName(R, S);
3666   assert(R.getResultKind() != LookupResult::Ambiguous &&
3667          "literal operator lookup can't be ambiguous");
3668 
3669   // Filter the lookup results appropriately.
3670   LookupResult::Filter F = R.makeFilter();
3671 
3672   bool AllowCooked = true;
3673   bool FoundRaw = false;
3674   bool FoundTemplate = false;
3675   bool FoundStringTemplatePack = false;
3676   bool FoundCooked = false;
3677 
3678   while (F.hasNext()) {
3679     Decl *D = F.next();
3680     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3681       D = USD->getTargetDecl();
3682 
3683     // If the declaration we found is invalid, skip it.
3684     if (D->isInvalidDecl()) {
3685       F.erase();
3686       continue;
3687     }
3688 
3689     bool IsRaw = false;
3690     bool IsTemplate = false;
3691     bool IsStringTemplatePack = false;
3692     bool IsCooked = false;
3693 
3694     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3695       if (FD->getNumParams() == 1 &&
3696           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3697         IsRaw = true;
3698       else if (FD->getNumParams() == ArgTys.size()) {
3699         IsCooked = true;
3700         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3701           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3702           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3703             IsCooked = false;
3704             break;
3705           }
3706         }
3707       }
3708     }
3709     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3710       TemplateParameterList *Params = FD->getTemplateParameters();
3711       if (Params->size() == 1) {
3712         IsTemplate = true;
3713         if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3714           // Implied but not stated: user-defined integer and floating literals
3715           // only ever use numeric literal operator templates, not templates
3716           // taking a parameter of class type.
3717           F.erase();
3718           continue;
3719         }
3720 
3721         // A string literal template is only considered if the string literal
3722         // is a well-formed template argument for the template parameter.
3723         if (StringLit) {
3724           SFINAETrap Trap(*this);
3725           SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3726           TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3727           if (CheckTemplateArgument(
3728                   Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3729                   0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3730               Trap.hasErrorOccurred())
3731             IsTemplate = false;
3732         }
3733       } else {
3734         IsStringTemplatePack = true;
3735       }
3736     }
3737 
3738     if (AllowTemplate && StringLit && IsTemplate) {
3739       FoundTemplate = true;
3740       AllowRaw = false;
3741       AllowCooked = false;
3742       AllowStringTemplatePack = false;
3743       if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3744         F.restart();
3745         FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3746       }
3747     } else if (AllowCooked && IsCooked) {
3748       FoundCooked = true;
3749       AllowRaw = false;
3750       AllowTemplate = StringLit;
3751       AllowStringTemplatePack = false;
3752       if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3753         // Go through again and remove the raw and template decls we've
3754         // already found.
3755         F.restart();
3756         FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3757       }
3758     } else if (AllowRaw && IsRaw) {
3759       FoundRaw = true;
3760     } else if (AllowTemplate && IsTemplate) {
3761       FoundTemplate = true;
3762     } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3763       FoundStringTemplatePack = true;
3764     } else {
3765       F.erase();
3766     }
3767   }
3768 
3769   F.done();
3770 
3771   // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3772   // form for string literal operator templates.
3773   if (StringLit && FoundTemplate)
3774     return LOLR_Template;
3775 
3776   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3777   // parameter type, that is used in preference to a raw literal operator
3778   // or literal operator template.
3779   if (FoundCooked)
3780     return LOLR_Cooked;
3781 
3782   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3783   // operator template, but not both.
3784   if (FoundRaw && FoundTemplate) {
3785     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3786     for (const NamedDecl *D : R)
3787       NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3788     return LOLR_Error;
3789   }
3790 
3791   if (FoundRaw)
3792     return LOLR_Raw;
3793 
3794   if (FoundTemplate)
3795     return LOLR_Template;
3796 
3797   if (FoundStringTemplatePack)
3798     return LOLR_StringTemplatePack;
3799 
3800   // Didn't find anything we could use.
3801   if (DiagnoseMissing) {
3802     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3803         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3804         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3805         << (AllowTemplate || AllowStringTemplatePack);
3806     return LOLR_Error;
3807   }
3808 
3809   return LOLR_ErrorNoDiagnostic;
3810 }
3811 
3812 void ADLResult::insert(NamedDecl *New) {
3813   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3814 
3815   // If we haven't yet seen a decl for this key, or the last decl
3816   // was exactly this one, we're done.
3817   if (Old == nullptr || Old == New) {
3818     Old = New;
3819     return;
3820   }
3821 
3822   // Otherwise, decide which is a more recent redeclaration.
3823   FunctionDecl *OldFD = Old->getAsFunction();
3824   FunctionDecl *NewFD = New->getAsFunction();
3825 
3826   FunctionDecl *Cursor = NewFD;
3827   while (true) {
3828     Cursor = Cursor->getPreviousDecl();
3829 
3830     // If we got to the end without finding OldFD, OldFD is the newer
3831     // declaration;  leave things as they are.
3832     if (!Cursor) return;
3833 
3834     // If we do find OldFD, then NewFD is newer.
3835     if (Cursor == OldFD) break;
3836 
3837     // Otherwise, keep looking.
3838   }
3839 
3840   Old = New;
3841 }
3842 
3843 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3844                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3845   // Find all of the associated namespaces and classes based on the
3846   // arguments we have.
3847   AssociatedNamespaceSet AssociatedNamespaces;
3848   AssociatedClassSet AssociatedClasses;
3849   FindAssociatedClassesAndNamespaces(Loc, Args,
3850                                      AssociatedNamespaces,
3851                                      AssociatedClasses);
3852 
3853   // C++ [basic.lookup.argdep]p3:
3854   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3855   //   and let Y be the lookup set produced by argument dependent
3856   //   lookup (defined as follows). If X contains [...] then Y is
3857   //   empty. Otherwise Y is the set of declarations found in the
3858   //   namespaces associated with the argument types as described
3859   //   below. The set of declarations found by the lookup of the name
3860   //   is the union of X and Y.
3861   //
3862   // Here, we compute Y and add its members to the overloaded
3863   // candidate set.
3864   for (auto *NS : AssociatedNamespaces) {
3865     //   When considering an associated namespace, the lookup is the
3866     //   same as the lookup performed when the associated namespace is
3867     //   used as a qualifier (3.4.3.2) except that:
3868     //
3869     //     -- Any using-directives in the associated namespace are
3870     //        ignored.
3871     //
3872     //     -- Any namespace-scope friend functions declared in
3873     //        associated classes are visible within their respective
3874     //        namespaces even if they are not visible during an ordinary
3875     //        lookup (11.4).
3876     //
3877     // C++20 [basic.lookup.argdep] p4.3
3878     //     -- are exported, are attached to a named module M, do not appear
3879     //        in the translation unit containing the point of the lookup, and
3880     //        have the same innermost enclosing non-inline namespace scope as
3881     //        a declaration of an associated entity attached to M.
3882     DeclContext::lookup_result R = NS->lookup(Name);
3883     for (auto *D : R) {
3884       auto *Underlying = D;
3885       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3886         Underlying = USD->getTargetDecl();
3887 
3888       if (!isa<FunctionDecl>(Underlying) &&
3889           !isa<FunctionTemplateDecl>(Underlying))
3890         continue;
3891 
3892       // The declaration is visible to argument-dependent lookup if either
3893       // it's ordinarily visible or declared as a friend in an associated
3894       // class.
3895       bool Visible = false;
3896       for (D = D->getMostRecentDecl(); D;
3897            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3898         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3899           if (isVisible(D)) {
3900             Visible = true;
3901             break;
3902           }
3903 
3904           if (!getLangOpts().CPlusPlusModules)
3905             continue;
3906 
3907           if (D->isInExportDeclContext()) {
3908             Module *FM = D->getOwningModule();
3909             // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3910             // exports are only valid in module purview and outside of any
3911             // PMF (although a PMF should not even be present in a module
3912             // with an import).
3913             assert(FM && FM->isNamedModule() && !FM->isPrivateModule() &&
3914                    "bad export context");
3915             // .. are attached to a named module M, do not appear in the
3916             // translation unit containing the point of the lookup..
3917             if (D->isInAnotherModuleUnit() &&
3918                 llvm::any_of(AssociatedClasses, [&](auto *E) {
3919                   // ... and have the same innermost enclosing non-inline
3920                   // namespace scope as a declaration of an associated entity
3921                   // attached to M
3922                   if (E->getOwningModule() != FM)
3923                     return false;
3924                   // TODO: maybe this could be cached when generating the
3925                   // associated namespaces / entities.
3926                   DeclContext *Ctx = E->getDeclContext();
3927                   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3928                     Ctx = Ctx->getParent();
3929                   return Ctx == NS;
3930                 })) {
3931               Visible = true;
3932               break;
3933             }
3934           }
3935         } else if (D->getFriendObjectKind()) {
3936           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3937           // [basic.lookup.argdep]p4:
3938           //   Argument-dependent lookup finds all declarations of functions and
3939           //   function templates that
3940           //  - ...
3941           //  - are declared as a friend ([class.friend]) of any class with a
3942           //  reachable definition in the set of associated entities,
3943           //
3944           // FIXME: If there's a merged definition of D that is reachable, then
3945           // the friend declaration should be considered.
3946           if (AssociatedClasses.count(RD) && isReachable(D)) {
3947             Visible = true;
3948             break;
3949           }
3950         }
3951       }
3952 
3953       // FIXME: Preserve D as the FoundDecl.
3954       if (Visible)
3955         Result.insert(Underlying);
3956     }
3957   }
3958 }
3959 
3960 //----------------------------------------------------------------------------
3961 // Search for all visible declarations.
3962 //----------------------------------------------------------------------------
3963 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3964 
3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3966 
3967 namespace {
3968 
3969 class ShadowContextRAII;
3970 
3971 class VisibleDeclsRecord {
3972 public:
3973   /// An entry in the shadow map, which is optimized to store a
3974   /// single declaration (the common case) but can also store a list
3975   /// of declarations.
3976   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3977 
3978 private:
3979   /// A mapping from declaration names to the declarations that have
3980   /// this name within a particular scope.
3981   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3982 
3983   /// A list of shadow maps, which is used to model name hiding.
3984   std::list<ShadowMap> ShadowMaps;
3985 
3986   /// The declaration contexts we have already visited.
3987   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3988 
3989   friend class ShadowContextRAII;
3990 
3991 public:
3992   /// Determine whether we have already visited this context
3993   /// (and, if not, note that we are going to visit that context now).
3994   bool visitedContext(DeclContext *Ctx) {
3995     return !VisitedContexts.insert(Ctx).second;
3996   }
3997 
3998   bool alreadyVisitedContext(DeclContext *Ctx) {
3999     return VisitedContexts.count(Ctx);
4000   }
4001 
4002   /// Determine whether the given declaration is hidden in the
4003   /// current scope.
4004   ///
4005   /// \returns the declaration that hides the given declaration, or
4006   /// NULL if no such declaration exists.
4007   NamedDecl *checkHidden(NamedDecl *ND);
4008 
4009   /// Add a declaration to the current shadow map.
4010   void add(NamedDecl *ND) {
4011     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
4012   }
4013 };
4014 
4015 /// RAII object that records when we've entered a shadow context.
4016 class ShadowContextRAII {
4017   VisibleDeclsRecord &Visible;
4018 
4019   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4020 
4021 public:
4022   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4023     Visible.ShadowMaps.emplace_back();
4024   }
4025 
4026   ~ShadowContextRAII() {
4027     Visible.ShadowMaps.pop_back();
4028   }
4029 };
4030 
4031 } // end anonymous namespace
4032 
4033 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4034   unsigned IDNS = ND->getIdentifierNamespace();
4035   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4036   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4037        SM != SMEnd; ++SM) {
4038     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4039     if (Pos == SM->end())
4040       continue;
4041 
4042     for (auto *D : Pos->second) {
4043       // A tag declaration does not hide a non-tag declaration.
4044       if (D->hasTagIdentifierNamespace() &&
4045           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4046                    Decl::IDNS_ObjCProtocol)))
4047         continue;
4048 
4049       // Protocols are in distinct namespaces from everything else.
4050       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4051            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4052           D->getIdentifierNamespace() != IDNS)
4053         continue;
4054 
4055       // Functions and function templates in the same scope overload
4056       // rather than hide.  FIXME: Look for hiding based on function
4057       // signatures!
4058       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4059           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4060           SM == ShadowMaps.rbegin())
4061         continue;
4062 
4063       // A shadow declaration that's created by a resolved using declaration
4064       // is not hidden by the same using declaration.
4065       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4066           cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4067         continue;
4068 
4069       // We've found a declaration that hides this one.
4070       return D;
4071     }
4072   }
4073 
4074   return nullptr;
4075 }
4076 
4077 namespace {
4078 class LookupVisibleHelper {
4079 public:
4080   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4081                       bool LoadExternal)
4082       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4083         LoadExternal(LoadExternal) {}
4084 
4085   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4086                           bool IncludeGlobalScope) {
4087     // Determine the set of using directives available during
4088     // unqualified name lookup.
4089     Scope *Initial = S;
4090     UnqualUsingDirectiveSet UDirs(SemaRef);
4091     if (SemaRef.getLangOpts().CPlusPlus) {
4092       // Find the first namespace or translation-unit scope.
4093       while (S && !isNamespaceOrTranslationUnitScope(S))
4094         S = S->getParent();
4095 
4096       UDirs.visitScopeChain(Initial, S);
4097     }
4098     UDirs.done();
4099 
4100     // Look for visible declarations.
4101     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4102     Result.setAllowHidden(Consumer.includeHiddenDecls());
4103     if (!IncludeGlobalScope)
4104       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4105     ShadowContextRAII Shadow(Visited);
4106     lookupInScope(Initial, Result, UDirs);
4107   }
4108 
4109   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4110                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4111     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4112     Result.setAllowHidden(Consumer.includeHiddenDecls());
4113     if (!IncludeGlobalScope)
4114       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4115 
4116     ShadowContextRAII Shadow(Visited);
4117     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4118                         /*InBaseClass=*/false);
4119   }
4120 
4121 private:
4122   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4123                            bool QualifiedNameLookup, bool InBaseClass) {
4124     if (!Ctx)
4125       return;
4126 
4127     // Make sure we don't visit the same context twice.
4128     if (Visited.visitedContext(Ctx->getPrimaryContext()))
4129       return;
4130 
4131     Consumer.EnteredContext(Ctx);
4132 
4133     // Outside C++, lookup results for the TU live on identifiers.
4134     if (isa<TranslationUnitDecl>(Ctx) &&
4135         !Result.getSema().getLangOpts().CPlusPlus) {
4136       auto &S = Result.getSema();
4137       auto &Idents = S.Context.Idents;
4138 
4139       // Ensure all external identifiers are in the identifier table.
4140       if (LoadExternal)
4141         if (IdentifierInfoLookup *External =
4142                 Idents.getExternalIdentifierLookup()) {
4143           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4144           for (StringRef Name = Iter->Next(); !Name.empty();
4145                Name = Iter->Next())
4146             Idents.get(Name);
4147         }
4148 
4149       // Walk all lookup results in the TU for each identifier.
4150       for (const auto &Ident : Idents) {
4151         for (auto I = S.IdResolver.begin(Ident.getValue()),
4152                   E = S.IdResolver.end();
4153              I != E; ++I) {
4154           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4155             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4156               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4157               Visited.add(ND);
4158             }
4159           }
4160         }
4161       }
4162 
4163       return;
4164     }
4165 
4166     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4167       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4168 
4169     llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4170     // We sometimes skip loading namespace-level results (they tend to be huge).
4171     bool Load = LoadExternal ||
4172                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4173     // Enumerate all of the results in this context.
4174     for (DeclContextLookupResult R :
4175          Load ? Ctx->lookups()
4176               : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4177       for (auto *D : R)
4178         // Rather than visit immediately, we put ND into a vector and visit
4179         // all decls, in order, outside of this loop. The reason is that
4180         // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4181         // may invalidate the iterators used in the two
4182         // loops above.
4183         DeclsToVisit.push_back(D);
4184 
4185     for (auto *D : DeclsToVisit)
4186       if (auto *ND = Result.getAcceptableDecl(D)) {
4187         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4188         Visited.add(ND);
4189       }
4190 
4191     DeclsToVisit.clear();
4192 
4193     // Traverse using directives for qualified name lookup.
4194     if (QualifiedNameLookup) {
4195       ShadowContextRAII Shadow(Visited);
4196       for (auto *I : Ctx->using_directives()) {
4197         if (!Result.getSema().isVisible(I))
4198           continue;
4199         lookupInDeclContext(I->getNominatedNamespace(), Result,
4200                             QualifiedNameLookup, InBaseClass);
4201       }
4202     }
4203 
4204     // Traverse the contexts of inherited C++ classes.
4205     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4206       if (!Record->hasDefinition())
4207         return;
4208 
4209       for (const auto &B : Record->bases()) {
4210         QualType BaseType = B.getType();
4211 
4212         RecordDecl *RD;
4213         if (BaseType->isDependentType()) {
4214           if (!IncludeDependentBases) {
4215             // Don't look into dependent bases, because name lookup can't look
4216             // there anyway.
4217             continue;
4218           }
4219           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4220           if (!TST)
4221             continue;
4222           TemplateName TN = TST->getTemplateName();
4223           const auto *TD =
4224               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4225           if (!TD)
4226             continue;
4227           RD = TD->getTemplatedDecl();
4228         } else {
4229           const auto *Record = BaseType->getAs<RecordType>();
4230           if (!Record)
4231             continue;
4232           RD = Record->getDecl();
4233         }
4234 
4235         // FIXME: It would be nice to be able to determine whether referencing
4236         // a particular member would be ambiguous. For example, given
4237         //
4238         //   struct A { int member; };
4239         //   struct B { int member; };
4240         //   struct C : A, B { };
4241         //
4242         //   void f(C *c) { c->### }
4243         //
4244         // accessing 'member' would result in an ambiguity. However, we
4245         // could be smart enough to qualify the member with the base
4246         // class, e.g.,
4247         //
4248         //   c->B::member
4249         //
4250         // or
4251         //
4252         //   c->A::member
4253 
4254         // Find results in this base class (and its bases).
4255         ShadowContextRAII Shadow(Visited);
4256         lookupInDeclContext(RD, Result, QualifiedNameLookup,
4257                             /*InBaseClass=*/true);
4258       }
4259     }
4260 
4261     // Traverse the contexts of Objective-C classes.
4262     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4263       // Traverse categories.
4264       for (auto *Cat : IFace->visible_categories()) {
4265         ShadowContextRAII Shadow(Visited);
4266         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4267                             /*InBaseClass=*/false);
4268       }
4269 
4270       // Traverse protocols.
4271       for (auto *I : IFace->all_referenced_protocols()) {
4272         ShadowContextRAII Shadow(Visited);
4273         lookupInDeclContext(I, Result, QualifiedNameLookup,
4274                             /*InBaseClass=*/false);
4275       }
4276 
4277       // Traverse the superclass.
4278       if (IFace->getSuperClass()) {
4279         ShadowContextRAII Shadow(Visited);
4280         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4281                             /*InBaseClass=*/true);
4282       }
4283 
4284       // If there is an implementation, traverse it. We do this to find
4285       // synthesized ivars.
4286       if (IFace->getImplementation()) {
4287         ShadowContextRAII Shadow(Visited);
4288         lookupInDeclContext(IFace->getImplementation(), Result,
4289                             QualifiedNameLookup, InBaseClass);
4290       }
4291     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4292       for (auto *I : Protocol->protocols()) {
4293         ShadowContextRAII Shadow(Visited);
4294         lookupInDeclContext(I, Result, QualifiedNameLookup,
4295                             /*InBaseClass=*/false);
4296       }
4297     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4298       for (auto *I : Category->protocols()) {
4299         ShadowContextRAII Shadow(Visited);
4300         lookupInDeclContext(I, Result, QualifiedNameLookup,
4301                             /*InBaseClass=*/false);
4302       }
4303 
4304       // If there is an implementation, traverse it.
4305       if (Category->getImplementation()) {
4306         ShadowContextRAII Shadow(Visited);
4307         lookupInDeclContext(Category->getImplementation(), Result,
4308                             QualifiedNameLookup, /*InBaseClass=*/true);
4309       }
4310     }
4311   }
4312 
4313   void lookupInScope(Scope *S, LookupResult &Result,
4314                      UnqualUsingDirectiveSet &UDirs) {
4315     // No clients run in this mode and it's not supported. Please add tests and
4316     // remove the assertion if you start relying on it.
4317     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4318 
4319     if (!S)
4320       return;
4321 
4322     if (!S->getEntity() ||
4323         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4324         (S->getEntity())->isFunctionOrMethod()) {
4325       FindLocalExternScope FindLocals(Result);
4326       // Walk through the declarations in this Scope. The consumer might add new
4327       // decls to the scope as part of deserialization, so make a copy first.
4328       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4329       for (Decl *D : ScopeDecls) {
4330         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4331           if ((ND = Result.getAcceptableDecl(ND))) {
4332             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4333             Visited.add(ND);
4334           }
4335       }
4336     }
4337 
4338     DeclContext *Entity = S->getLookupEntity();
4339     if (Entity) {
4340       // Look into this scope's declaration context, along with any of its
4341       // parent lookup contexts (e.g., enclosing classes), up to the point
4342       // where we hit the context stored in the next outer scope.
4343       DeclContext *OuterCtx = findOuterContext(S);
4344 
4345       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4346            Ctx = Ctx->getLookupParent()) {
4347         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4348           if (Method->isInstanceMethod()) {
4349             // For instance methods, look for ivars in the method's interface.
4350             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4351                                     Result.getNameLoc(),
4352                                     Sema::LookupMemberName);
4353             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4354               lookupInDeclContext(IFace, IvarResult,
4355                                   /*QualifiedNameLookup=*/false,
4356                                   /*InBaseClass=*/false);
4357             }
4358           }
4359 
4360           // We've already performed all of the name lookup that we need
4361           // to for Objective-C methods; the next context will be the
4362           // outer scope.
4363           break;
4364         }
4365 
4366         if (Ctx->isFunctionOrMethod())
4367           continue;
4368 
4369         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4370                             /*InBaseClass=*/false);
4371       }
4372     } else if (!S->getParent()) {
4373       // Look into the translation unit scope. We walk through the translation
4374       // unit's declaration context, because the Scope itself won't have all of
4375       // the declarations if we loaded a precompiled header.
4376       // FIXME: We would like the translation unit's Scope object to point to
4377       // the translation unit, so we don't need this special "if" branch.
4378       // However, doing so would force the normal C++ name-lookup code to look
4379       // into the translation unit decl when the IdentifierInfo chains would
4380       // suffice. Once we fix that problem (which is part of a more general
4381       // "don't look in DeclContexts unless we have to" optimization), we can
4382       // eliminate this.
4383       Entity = Result.getSema().Context.getTranslationUnitDecl();
4384       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4385                           /*InBaseClass=*/false);
4386     }
4387 
4388     if (Entity) {
4389       // Lookup visible declarations in any namespaces found by using
4390       // directives.
4391       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4392         lookupInDeclContext(
4393             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4394             /*QualifiedNameLookup=*/false,
4395             /*InBaseClass=*/false);
4396     }
4397 
4398     // Lookup names in the parent scope.
4399     ShadowContextRAII Shadow(Visited);
4400     lookupInScope(S->getParent(), Result, UDirs);
4401   }
4402 
4403 private:
4404   VisibleDeclsRecord Visited;
4405   VisibleDeclConsumer &Consumer;
4406   bool IncludeDependentBases;
4407   bool LoadExternal;
4408 };
4409 } // namespace
4410 
4411 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4412                               VisibleDeclConsumer &Consumer,
4413                               bool IncludeGlobalScope, bool LoadExternal) {
4414   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4415                         LoadExternal);
4416   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4417 }
4418 
4419 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4420                               VisibleDeclConsumer &Consumer,
4421                               bool IncludeGlobalScope,
4422                               bool IncludeDependentBases, bool LoadExternal) {
4423   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4424   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4425 }
4426 
4427 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4428 /// If GnuLabelLoc is a valid source location, then this is a definition
4429 /// of an __label__ label name, otherwise it is a normal label definition
4430 /// or use.
4431 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4432                                      SourceLocation GnuLabelLoc) {
4433   // Do a lookup to see if we have a label with this name already.
4434   NamedDecl *Res = nullptr;
4435 
4436   if (GnuLabelLoc.isValid()) {
4437     // Local label definitions always shadow existing labels.
4438     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4439     Scope *S = CurScope;
4440     PushOnScopeChains(Res, S, true);
4441     return cast<LabelDecl>(Res);
4442   }
4443 
4444   // Not a GNU local label.
4445   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4446   // If we found a label, check to see if it is in the same context as us.
4447   // When in a Block, we don't want to reuse a label in an enclosing function.
4448   if (Res && Res->getDeclContext() != CurContext)
4449     Res = nullptr;
4450   if (!Res) {
4451     // If not forward referenced or defined already, create the backing decl.
4452     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4453     Scope *S = CurScope->getFnParent();
4454     assert(S && "Not in a function?");
4455     PushOnScopeChains(Res, S, true);
4456   }
4457   return cast<LabelDecl>(Res);
4458 }
4459 
4460 //===----------------------------------------------------------------------===//
4461 // Typo correction
4462 //===----------------------------------------------------------------------===//
4463 
4464 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4465                               TypoCorrection &Candidate) {
4466   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4467   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4468 }
4469 
4470 static void LookupPotentialTypoResult(Sema &SemaRef,
4471                                       LookupResult &Res,
4472                                       IdentifierInfo *Name,
4473                                       Scope *S, CXXScopeSpec *SS,
4474                                       DeclContext *MemberContext,
4475                                       bool EnteringContext,
4476                                       bool isObjCIvarLookup,
4477                                       bool FindHidden);
4478 
4479 /// Check whether the declarations found for a typo correction are
4480 /// visible. Set the correction's RequiresImport flag to true if none of the
4481 /// declarations are visible, false otherwise.
4482 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4483   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4484 
4485   for (/**/; DI != DE; ++DI)
4486     if (!LookupResult::isVisible(SemaRef, *DI))
4487       break;
4488   // No filtering needed if all decls are visible.
4489   if (DI == DE) {
4490     TC.setRequiresImport(false);
4491     return;
4492   }
4493 
4494   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4495   bool AnyVisibleDecls = !NewDecls.empty();
4496 
4497   for (/**/; DI != DE; ++DI) {
4498     if (LookupResult::isVisible(SemaRef, *DI)) {
4499       if (!AnyVisibleDecls) {
4500         // Found a visible decl, discard all hidden ones.
4501         AnyVisibleDecls = true;
4502         NewDecls.clear();
4503       }
4504       NewDecls.push_back(*DI);
4505     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4506       NewDecls.push_back(*DI);
4507   }
4508 
4509   if (NewDecls.empty())
4510     TC = TypoCorrection();
4511   else {
4512     TC.setCorrectionDecls(NewDecls);
4513     TC.setRequiresImport(!AnyVisibleDecls);
4514   }
4515 }
4516 
4517 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4518 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4519 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4520 static void getNestedNameSpecifierIdentifiers(
4521     NestedNameSpecifier *NNS,
4522     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4523   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4524     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4525   else
4526     Identifiers.clear();
4527 
4528   const IdentifierInfo *II = nullptr;
4529 
4530   switch (NNS->getKind()) {
4531   case NestedNameSpecifier::Identifier:
4532     II = NNS->getAsIdentifier();
4533     break;
4534 
4535   case NestedNameSpecifier::Namespace:
4536     if (NNS->getAsNamespace()->isAnonymousNamespace())
4537       return;
4538     II = NNS->getAsNamespace()->getIdentifier();
4539     break;
4540 
4541   case NestedNameSpecifier::NamespaceAlias:
4542     II = NNS->getAsNamespaceAlias()->getIdentifier();
4543     break;
4544 
4545   case NestedNameSpecifier::TypeSpecWithTemplate:
4546   case NestedNameSpecifier::TypeSpec:
4547     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4548     break;
4549 
4550   case NestedNameSpecifier::Global:
4551   case NestedNameSpecifier::Super:
4552     return;
4553   }
4554 
4555   if (II)
4556     Identifiers.push_back(II);
4557 }
4558 
4559 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4560                                        DeclContext *Ctx, bool InBaseClass) {
4561   // Don't consider hidden names for typo correction.
4562   if (Hiding)
4563     return;
4564 
4565   // Only consider entities with identifiers for names, ignoring
4566   // special names (constructors, overloaded operators, selectors,
4567   // etc.).
4568   IdentifierInfo *Name = ND->getIdentifier();
4569   if (!Name)
4570     return;
4571 
4572   // Only consider visible declarations and declarations from modules with
4573   // names that exactly match.
4574   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4575     return;
4576 
4577   FoundName(Name->getName());
4578 }
4579 
4580 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4581   // Compute the edit distance between the typo and the name of this
4582   // entity, and add the identifier to the list of results.
4583   addName(Name, nullptr);
4584 }
4585 
4586 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4587   // Compute the edit distance between the typo and this keyword,
4588   // and add the keyword to the list of results.
4589   addName(Keyword, nullptr, nullptr, true);
4590 }
4591 
4592 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4593                                      NestedNameSpecifier *NNS, bool isKeyword) {
4594   // Use a simple length-based heuristic to determine the minimum possible
4595   // edit distance. If the minimum isn't good enough, bail out early.
4596   StringRef TypoStr = Typo->getName();
4597   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4598   if (MinED && TypoStr.size() / MinED < 3)
4599     return;
4600 
4601   // Compute an upper bound on the allowable edit distance, so that the
4602   // edit-distance algorithm can short-circuit.
4603   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4604   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4605   if (ED > UpperBound) return;
4606 
4607   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4608   if (isKeyword) TC.makeKeyword();
4609   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4610   addCorrection(TC);
4611 }
4612 
4613 static const unsigned MaxTypoDistanceResultSets = 5;
4614 
4615 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4616   StringRef TypoStr = Typo->getName();
4617   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4618 
4619   // For very short typos, ignore potential corrections that have a different
4620   // base identifier from the typo or which have a normalized edit distance
4621   // longer than the typo itself.
4622   if (TypoStr.size() < 3 &&
4623       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4624     return;
4625 
4626   // If the correction is resolved but is not viable, ignore it.
4627   if (Correction.isResolved()) {
4628     checkCorrectionVisibility(SemaRef, Correction);
4629     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4630       return;
4631   }
4632 
4633   TypoResultList &CList =
4634       CorrectionResults[Correction.getEditDistance(false)][Name];
4635 
4636   if (!CList.empty() && !CList.back().isResolved())
4637     CList.pop_back();
4638   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4639     auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4640       return TypoCorr.getCorrectionDecl() == NewND;
4641     });
4642     if (RI != CList.end()) {
4643       // The Correction refers to a decl already in the list. No insertion is
4644       // necessary and all further cases will return.
4645 
4646       auto IsDeprecated = [](Decl *D) {
4647         while (D) {
4648           if (D->isDeprecated())
4649             return true;
4650           D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4651         }
4652         return false;
4653       };
4654 
4655       // Prefer non deprecated Corrections over deprecated and only then
4656       // sort using an alphabetical order.
4657       std::pair<bool, std::string> NewKey = {
4658           IsDeprecated(Correction.getFoundDecl()),
4659           Correction.getAsString(SemaRef.getLangOpts())};
4660 
4661       std::pair<bool, std::string> PrevKey = {
4662           IsDeprecated(RI->getFoundDecl()),
4663           RI->getAsString(SemaRef.getLangOpts())};
4664 
4665       if (NewKey < PrevKey)
4666         *RI = Correction;
4667       return;
4668     }
4669   }
4670   if (CList.empty() || Correction.isResolved())
4671     CList.push_back(Correction);
4672 
4673   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4674     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4675 }
4676 
4677 void TypoCorrectionConsumer::addNamespaces(
4678     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4679   SearchNamespaces = true;
4680 
4681   for (auto KNPair : KnownNamespaces)
4682     Namespaces.addNameSpecifier(KNPair.first);
4683 
4684   bool SSIsTemplate = false;
4685   if (NestedNameSpecifier *NNS =
4686           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4687     if (const Type *T = NNS->getAsType())
4688       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4689   }
4690   // Do not transform this into an iterator-based loop. The loop body can
4691   // trigger the creation of further types (through lazy deserialization) and
4692   // invalid iterators into this list.
4693   auto &Types = SemaRef.getASTContext().getTypes();
4694   for (unsigned I = 0; I != Types.size(); ++I) {
4695     const auto *TI = Types[I];
4696     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4697       CD = CD->getCanonicalDecl();
4698       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4699           !CD->isUnion() && CD->getIdentifier() &&
4700           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4701           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4702         Namespaces.addNameSpecifier(CD);
4703     }
4704   }
4705 }
4706 
4707 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4708   if (++CurrentTCIndex < ValidatedCorrections.size())
4709     return ValidatedCorrections[CurrentTCIndex];
4710 
4711   CurrentTCIndex = ValidatedCorrections.size();
4712   while (!CorrectionResults.empty()) {
4713     auto DI = CorrectionResults.begin();
4714     if (DI->second.empty()) {
4715       CorrectionResults.erase(DI);
4716       continue;
4717     }
4718 
4719     auto RI = DI->second.begin();
4720     if (RI->second.empty()) {
4721       DI->second.erase(RI);
4722       performQualifiedLookups();
4723       continue;
4724     }
4725 
4726     TypoCorrection TC = RI->second.pop_back_val();
4727     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4728       ValidatedCorrections.push_back(TC);
4729       return ValidatedCorrections[CurrentTCIndex];
4730     }
4731   }
4732   return ValidatedCorrections[0];  // The empty correction.
4733 }
4734 
4735 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4736   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4737   DeclContext *TempMemberContext = MemberContext;
4738   CXXScopeSpec *TempSS = SS.get();
4739 retry_lookup:
4740   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4741                             EnteringContext,
4742                             CorrectionValidator->IsObjCIvarLookup,
4743                             Name == Typo && !Candidate.WillReplaceSpecifier());
4744   switch (Result.getResultKind()) {
4745   case LookupResult::NotFound:
4746   case LookupResult::NotFoundInCurrentInstantiation:
4747   case LookupResult::FoundUnresolvedValue:
4748     if (TempSS) {
4749       // Immediately retry the lookup without the given CXXScopeSpec
4750       TempSS = nullptr;
4751       Candidate.WillReplaceSpecifier(true);
4752       goto retry_lookup;
4753     }
4754     if (TempMemberContext) {
4755       if (SS && !TempSS)
4756         TempSS = SS.get();
4757       TempMemberContext = nullptr;
4758       goto retry_lookup;
4759     }
4760     if (SearchNamespaces)
4761       QualifiedResults.push_back(Candidate);
4762     break;
4763 
4764   case LookupResult::Ambiguous:
4765     // We don't deal with ambiguities.
4766     break;
4767 
4768   case LookupResult::Found:
4769   case LookupResult::FoundOverloaded:
4770     // Store all of the Decls for overloaded symbols
4771     for (auto *TRD : Result)
4772       Candidate.addCorrectionDecl(TRD);
4773     checkCorrectionVisibility(SemaRef, Candidate);
4774     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4775       if (SearchNamespaces)
4776         QualifiedResults.push_back(Candidate);
4777       break;
4778     }
4779     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4780     return true;
4781   }
4782   return false;
4783 }
4784 
4785 void TypoCorrectionConsumer::performQualifiedLookups() {
4786   unsigned TypoLen = Typo->getName().size();
4787   for (const TypoCorrection &QR : QualifiedResults) {
4788     for (const auto &NSI : Namespaces) {
4789       DeclContext *Ctx = NSI.DeclCtx;
4790       const Type *NSType = NSI.NameSpecifier->getAsType();
4791 
4792       // If the current NestedNameSpecifier refers to a class and the
4793       // current correction candidate is the name of that class, then skip
4794       // it as it is unlikely a qualified version of the class' constructor
4795       // is an appropriate correction.
4796       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4797                                            nullptr) {
4798         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4799           continue;
4800       }
4801 
4802       TypoCorrection TC(QR);
4803       TC.ClearCorrectionDecls();
4804       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4805       TC.setQualifierDistance(NSI.EditDistance);
4806       TC.setCallbackDistance(0); // Reset the callback distance
4807 
4808       // If the current correction candidate and namespace combination are
4809       // too far away from the original typo based on the normalized edit
4810       // distance, then skip performing a qualified name lookup.
4811       unsigned TmpED = TC.getEditDistance(true);
4812       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4813           TypoLen / TmpED < 3)
4814         continue;
4815 
4816       Result.clear();
4817       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4818       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4819         continue;
4820 
4821       // Any corrections added below will be validated in subsequent
4822       // iterations of the main while() loop over the Consumer's contents.
4823       switch (Result.getResultKind()) {
4824       case LookupResult::Found:
4825       case LookupResult::FoundOverloaded: {
4826         if (SS && SS->isValid()) {
4827           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4828           std::string OldQualified;
4829           llvm::raw_string_ostream OldOStream(OldQualified);
4830           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4831           OldOStream << Typo->getName();
4832           // If correction candidate would be an identical written qualified
4833           // identifier, then the existing CXXScopeSpec probably included a
4834           // typedef that didn't get accounted for properly.
4835           if (OldOStream.str() == NewQualified)
4836             break;
4837         }
4838         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4839              TRD != TRDEnd; ++TRD) {
4840           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4841                                         NSType ? NSType->getAsCXXRecordDecl()
4842                                                : nullptr,
4843                                         TRD.getPair()) == Sema::AR_accessible)
4844             TC.addCorrectionDecl(*TRD);
4845         }
4846         if (TC.isResolved()) {
4847           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4848           addCorrection(TC);
4849         }
4850         break;
4851       }
4852       case LookupResult::NotFound:
4853       case LookupResult::NotFoundInCurrentInstantiation:
4854       case LookupResult::Ambiguous:
4855       case LookupResult::FoundUnresolvedValue:
4856         break;
4857       }
4858     }
4859   }
4860   QualifiedResults.clear();
4861 }
4862 
4863 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4864     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4865     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4866   if (NestedNameSpecifier *NNS =
4867           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4868     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4869     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4870 
4871     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4872   }
4873   // Build the list of identifiers that would be used for an absolute
4874   // (from the global context) NestedNameSpecifier referring to the current
4875   // context.
4876   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4877     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4878       CurContextIdentifiers.push_back(ND->getIdentifier());
4879   }
4880 
4881   // Add the global context as a NestedNameSpecifier
4882   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4883                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4884   DistanceMap[1].push_back(SI);
4885 }
4886 
4887 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4888     DeclContext *Start) -> DeclContextList {
4889   assert(Start && "Building a context chain from a null context");
4890   DeclContextList Chain;
4891   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4892        DC = DC->getLookupParent()) {
4893     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4894     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4895         !(ND && ND->isAnonymousNamespace()))
4896       Chain.push_back(DC->getPrimaryContext());
4897   }
4898   return Chain;
4899 }
4900 
4901 unsigned
4902 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4903     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4904   unsigned NumSpecifiers = 0;
4905   for (DeclContext *C : llvm::reverse(DeclChain)) {
4906     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4907       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4908       ++NumSpecifiers;
4909     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4910       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4911                                         RD->getTypeForDecl());
4912       ++NumSpecifiers;
4913     }
4914   }
4915   return NumSpecifiers;
4916 }
4917 
4918 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4919     DeclContext *Ctx) {
4920   NestedNameSpecifier *NNS = nullptr;
4921   unsigned NumSpecifiers = 0;
4922   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4923   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4924 
4925   // Eliminate common elements from the two DeclContext chains.
4926   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4927     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4928       break;
4929     NamespaceDeclChain.pop_back();
4930   }
4931 
4932   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4933   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4934 
4935   // Add an explicit leading '::' specifier if needed.
4936   if (NamespaceDeclChain.empty()) {
4937     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4938     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4939     NumSpecifiers =
4940         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4941   } else if (NamedDecl *ND =
4942                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4943     IdentifierInfo *Name = ND->getIdentifier();
4944     bool SameNameSpecifier = false;
4945     if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4946       std::string NewNameSpecifier;
4947       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4948       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4949       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4950       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4951       SpecifierOStream.flush();
4952       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4953     }
4954     if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4955       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4956       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4957       NumSpecifiers =
4958           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4959     }
4960   }
4961 
4962   // If the built NestedNameSpecifier would be replacing an existing
4963   // NestedNameSpecifier, use the number of component identifiers that
4964   // would need to be changed as the edit distance instead of the number
4965   // of components in the built NestedNameSpecifier.
4966   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4967     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4968     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4969     NumSpecifiers =
4970         llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4971                                   llvm::ArrayRef(NewNameSpecifierIdentifiers));
4972   }
4973 
4974   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4975   DistanceMap[NumSpecifiers].push_back(SI);
4976 }
4977 
4978 /// Perform name lookup for a possible result for typo correction.
4979 static void LookupPotentialTypoResult(Sema &SemaRef,
4980                                       LookupResult &Res,
4981                                       IdentifierInfo *Name,
4982                                       Scope *S, CXXScopeSpec *SS,
4983                                       DeclContext *MemberContext,
4984                                       bool EnteringContext,
4985                                       bool isObjCIvarLookup,
4986                                       bool FindHidden) {
4987   Res.suppressDiagnostics();
4988   Res.clear();
4989   Res.setLookupName(Name);
4990   Res.setAllowHidden(FindHidden);
4991   if (MemberContext) {
4992     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4993       if (isObjCIvarLookup) {
4994         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4995           Res.addDecl(Ivar);
4996           Res.resolveKind();
4997           return;
4998         }
4999       }
5000 
5001       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
5002               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
5003         Res.addDecl(Prop);
5004         Res.resolveKind();
5005         return;
5006       }
5007     }
5008 
5009     SemaRef.LookupQualifiedName(Res, MemberContext);
5010     return;
5011   }
5012 
5013   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
5014                            EnteringContext);
5015 
5016   // Fake ivar lookup; this should really be part of
5017   // LookupParsedName.
5018   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5019     if (Method->isInstanceMethod() && Method->getClassInterface() &&
5020         (Res.empty() ||
5021          (Res.isSingleResult() &&
5022           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5023        if (ObjCIvarDecl *IV
5024              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5025          Res.addDecl(IV);
5026          Res.resolveKind();
5027        }
5028      }
5029   }
5030 }
5031 
5032 /// Add keywords to the consumer as possible typo corrections.
5033 static void AddKeywordsToConsumer(Sema &SemaRef,
5034                                   TypoCorrectionConsumer &Consumer,
5035                                   Scope *S, CorrectionCandidateCallback &CCC,
5036                                   bool AfterNestedNameSpecifier) {
5037   if (AfterNestedNameSpecifier) {
5038     // For 'X::', we know exactly which keywords can appear next.
5039     Consumer.addKeywordResult("template");
5040     if (CCC.WantExpressionKeywords)
5041       Consumer.addKeywordResult("operator");
5042     return;
5043   }
5044 
5045   if (CCC.WantObjCSuper)
5046     Consumer.addKeywordResult("super");
5047 
5048   if (CCC.WantTypeSpecifiers) {
5049     // Add type-specifier keywords to the set of results.
5050     static const char *const CTypeSpecs[] = {
5051       "char", "const", "double", "enum", "float", "int", "long", "short",
5052       "signed", "struct", "union", "unsigned", "void", "volatile",
5053       "_Complex", "_Imaginary",
5054       // storage-specifiers as well
5055       "extern", "inline", "static", "typedef"
5056     };
5057 
5058     for (const auto *CTS : CTypeSpecs)
5059       Consumer.addKeywordResult(CTS);
5060 
5061     if (SemaRef.getLangOpts().C99)
5062       Consumer.addKeywordResult("restrict");
5063     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5064       Consumer.addKeywordResult("bool");
5065     else if (SemaRef.getLangOpts().C99)
5066       Consumer.addKeywordResult("_Bool");
5067 
5068     if (SemaRef.getLangOpts().CPlusPlus) {
5069       Consumer.addKeywordResult("class");
5070       Consumer.addKeywordResult("typename");
5071       Consumer.addKeywordResult("wchar_t");
5072 
5073       if (SemaRef.getLangOpts().CPlusPlus11) {
5074         Consumer.addKeywordResult("char16_t");
5075         Consumer.addKeywordResult("char32_t");
5076         Consumer.addKeywordResult("constexpr");
5077         Consumer.addKeywordResult("decltype");
5078         Consumer.addKeywordResult("thread_local");
5079       }
5080     }
5081 
5082     if (SemaRef.getLangOpts().GNUKeywords)
5083       Consumer.addKeywordResult("typeof");
5084   } else if (CCC.WantFunctionLikeCasts) {
5085     static const char *const CastableTypeSpecs[] = {
5086       "char", "double", "float", "int", "long", "short",
5087       "signed", "unsigned", "void"
5088     };
5089     for (auto *kw : CastableTypeSpecs)
5090       Consumer.addKeywordResult(kw);
5091   }
5092 
5093   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5094     Consumer.addKeywordResult("const_cast");
5095     Consumer.addKeywordResult("dynamic_cast");
5096     Consumer.addKeywordResult("reinterpret_cast");
5097     Consumer.addKeywordResult("static_cast");
5098   }
5099 
5100   if (CCC.WantExpressionKeywords) {
5101     Consumer.addKeywordResult("sizeof");
5102     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5103       Consumer.addKeywordResult("false");
5104       Consumer.addKeywordResult("true");
5105     }
5106 
5107     if (SemaRef.getLangOpts().CPlusPlus) {
5108       static const char *const CXXExprs[] = {
5109         "delete", "new", "operator", "throw", "typeid"
5110       };
5111       for (const auto *CE : CXXExprs)
5112         Consumer.addKeywordResult(CE);
5113 
5114       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5115           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5116         Consumer.addKeywordResult("this");
5117 
5118       if (SemaRef.getLangOpts().CPlusPlus11) {
5119         Consumer.addKeywordResult("alignof");
5120         Consumer.addKeywordResult("nullptr");
5121       }
5122     }
5123 
5124     if (SemaRef.getLangOpts().C11) {
5125       // FIXME: We should not suggest _Alignof if the alignof macro
5126       // is present.
5127       Consumer.addKeywordResult("_Alignof");
5128     }
5129   }
5130 
5131   if (CCC.WantRemainingKeywords) {
5132     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5133       // Statements.
5134       static const char *const CStmts[] = {
5135         "do", "else", "for", "goto", "if", "return", "switch", "while" };
5136       for (const auto *CS : CStmts)
5137         Consumer.addKeywordResult(CS);
5138 
5139       if (SemaRef.getLangOpts().CPlusPlus) {
5140         Consumer.addKeywordResult("catch");
5141         Consumer.addKeywordResult("try");
5142       }
5143 
5144       if (S && S->getBreakParent())
5145         Consumer.addKeywordResult("break");
5146 
5147       if (S && S->getContinueParent())
5148         Consumer.addKeywordResult("continue");
5149 
5150       if (SemaRef.getCurFunction() &&
5151           !SemaRef.getCurFunction()->SwitchStack.empty()) {
5152         Consumer.addKeywordResult("case");
5153         Consumer.addKeywordResult("default");
5154       }
5155     } else {
5156       if (SemaRef.getLangOpts().CPlusPlus) {
5157         Consumer.addKeywordResult("namespace");
5158         Consumer.addKeywordResult("template");
5159       }
5160 
5161       if (S && S->isClassScope()) {
5162         Consumer.addKeywordResult("explicit");
5163         Consumer.addKeywordResult("friend");
5164         Consumer.addKeywordResult("mutable");
5165         Consumer.addKeywordResult("private");
5166         Consumer.addKeywordResult("protected");
5167         Consumer.addKeywordResult("public");
5168         Consumer.addKeywordResult("virtual");
5169       }
5170     }
5171 
5172     if (SemaRef.getLangOpts().CPlusPlus) {
5173       Consumer.addKeywordResult("using");
5174 
5175       if (SemaRef.getLangOpts().CPlusPlus11)
5176         Consumer.addKeywordResult("static_assert");
5177     }
5178   }
5179 }
5180 
5181 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5182     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5183     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5184     DeclContext *MemberContext, bool EnteringContext,
5185     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5186 
5187   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5188       DisableTypoCorrection)
5189     return nullptr;
5190 
5191   // In Microsoft mode, don't perform typo correction in a template member
5192   // function dependent context because it interferes with the "lookup into
5193   // dependent bases of class templates" feature.
5194   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5195       isa<CXXMethodDecl>(CurContext))
5196     return nullptr;
5197 
5198   // We only attempt to correct typos for identifiers.
5199   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5200   if (!Typo)
5201     return nullptr;
5202 
5203   // If the scope specifier itself was invalid, don't try to correct
5204   // typos.
5205   if (SS && SS->isInvalid())
5206     return nullptr;
5207 
5208   // Never try to correct typos during any kind of code synthesis.
5209   if (!CodeSynthesisContexts.empty())
5210     return nullptr;
5211 
5212   // Don't try to correct 'super'.
5213   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5214     return nullptr;
5215 
5216   // Abort if typo correction already failed for this specific typo.
5217   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5218   if (locs != TypoCorrectionFailures.end() &&
5219       locs->second.count(TypoName.getLoc()))
5220     return nullptr;
5221 
5222   // Don't try to correct the identifier "vector" when in AltiVec mode.
5223   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5224   // remove this workaround.
5225   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5226     return nullptr;
5227 
5228   // Provide a stop gap for files that are just seriously broken.  Trying
5229   // to correct all typos can turn into a HUGE performance penalty, causing
5230   // some files to take minutes to get rejected by the parser.
5231   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5232   if (Limit && TyposCorrected >= Limit)
5233     return nullptr;
5234   ++TyposCorrected;
5235 
5236   // If we're handling a missing symbol error, using modules, and the
5237   // special search all modules option is used, look for a missing import.
5238   if (ErrorRecovery && getLangOpts().Modules &&
5239       getLangOpts().ModulesSearchAll) {
5240     // The following has the side effect of loading the missing module.
5241     getModuleLoader().lookupMissingImports(Typo->getName(),
5242                                            TypoName.getBeginLoc());
5243   }
5244 
5245   // Extend the lifetime of the callback. We delayed this until here
5246   // to avoid allocations in the hot path (which is where no typo correction
5247   // occurs). Note that CorrectionCandidateCallback is polymorphic and
5248   // initially stack-allocated.
5249   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5250   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5251       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5252       EnteringContext);
5253 
5254   // Perform name lookup to find visible, similarly-named entities.
5255   bool IsUnqualifiedLookup = false;
5256   DeclContext *QualifiedDC = MemberContext;
5257   if (MemberContext) {
5258     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5259 
5260     // Look in qualified interfaces.
5261     if (OPT) {
5262       for (auto *I : OPT->quals())
5263         LookupVisibleDecls(I, LookupKind, *Consumer);
5264     }
5265   } else if (SS && SS->isSet()) {
5266     QualifiedDC = computeDeclContext(*SS, EnteringContext);
5267     if (!QualifiedDC)
5268       return nullptr;
5269 
5270     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5271   } else {
5272     IsUnqualifiedLookup = true;
5273   }
5274 
5275   // Determine whether we are going to search in the various namespaces for
5276   // corrections.
5277   bool SearchNamespaces
5278     = getLangOpts().CPlusPlus &&
5279       (IsUnqualifiedLookup || (SS && SS->isSet()));
5280 
5281   if (IsUnqualifiedLookup || SearchNamespaces) {
5282     // For unqualified lookup, look through all of the names that we have
5283     // seen in this translation unit.
5284     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5285     for (const auto &I : Context.Idents)
5286       Consumer->FoundName(I.getKey());
5287 
5288     // Walk through identifiers in external identifier sources.
5289     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5290     if (IdentifierInfoLookup *External
5291                             = Context.Idents.getExternalIdentifierLookup()) {
5292       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5293       do {
5294         StringRef Name = Iter->Next();
5295         if (Name.empty())
5296           break;
5297 
5298         Consumer->FoundName(Name);
5299       } while (true);
5300     }
5301   }
5302 
5303   AddKeywordsToConsumer(*this, *Consumer, S,
5304                         *Consumer->getCorrectionValidator(),
5305                         SS && SS->isNotEmpty());
5306 
5307   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5308   // to search those namespaces.
5309   if (SearchNamespaces) {
5310     // Load any externally-known namespaces.
5311     if (ExternalSource && !LoadedExternalKnownNamespaces) {
5312       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5313       LoadedExternalKnownNamespaces = true;
5314       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5315       for (auto *N : ExternalKnownNamespaces)
5316         KnownNamespaces[N] = true;
5317     }
5318 
5319     Consumer->addNamespaces(KnownNamespaces);
5320   }
5321 
5322   return Consumer;
5323 }
5324 
5325 /// Try to "correct" a typo in the source code by finding
5326 /// visible declarations whose names are similar to the name that was
5327 /// present in the source code.
5328 ///
5329 /// \param TypoName the \c DeclarationNameInfo structure that contains
5330 /// the name that was present in the source code along with its location.
5331 ///
5332 /// \param LookupKind the name-lookup criteria used to search for the name.
5333 ///
5334 /// \param S the scope in which name lookup occurs.
5335 ///
5336 /// \param SS the nested-name-specifier that precedes the name we're
5337 /// looking for, if present.
5338 ///
5339 /// \param CCC A CorrectionCandidateCallback object that provides further
5340 /// validation of typo correction candidates. It also provides flags for
5341 /// determining the set of keywords permitted.
5342 ///
5343 /// \param MemberContext if non-NULL, the context in which to look for
5344 /// a member access expression.
5345 ///
5346 /// \param EnteringContext whether we're entering the context described by
5347 /// the nested-name-specifier SS.
5348 ///
5349 /// \param OPT when non-NULL, the search for visible declarations will
5350 /// also walk the protocols in the qualified interfaces of \p OPT.
5351 ///
5352 /// \returns a \c TypoCorrection containing the corrected name if the typo
5353 /// along with information such as the \c NamedDecl where the corrected name
5354 /// was declared, and any additional \c NestedNameSpecifier needed to access
5355 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5356 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5357                                  Sema::LookupNameKind LookupKind,
5358                                  Scope *S, CXXScopeSpec *SS,
5359                                  CorrectionCandidateCallback &CCC,
5360                                  CorrectTypoKind Mode,
5361                                  DeclContext *MemberContext,
5362                                  bool EnteringContext,
5363                                  const ObjCObjectPointerType *OPT,
5364                                  bool RecordFailure) {
5365   // Always let the ExternalSource have the first chance at correction, even
5366   // if we would otherwise have given up.
5367   if (ExternalSource) {
5368     if (TypoCorrection Correction =
5369             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5370                                         MemberContext, EnteringContext, OPT))
5371       return Correction;
5372   }
5373 
5374   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5375   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5376   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5377   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5378   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5379 
5380   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5381   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5382                                              MemberContext, EnteringContext,
5383                                              OPT, Mode == CTK_ErrorRecovery);
5384 
5385   if (!Consumer)
5386     return TypoCorrection();
5387 
5388   // If we haven't found anything, we're done.
5389   if (Consumer->empty())
5390     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5391 
5392   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5393   // is not more that about a third of the length of the typo's identifier.
5394   unsigned ED = Consumer->getBestEditDistance(true);
5395   unsigned TypoLen = Typo->getName().size();
5396   if (ED > 0 && TypoLen / ED < 3)
5397     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5398 
5399   TypoCorrection BestTC = Consumer->getNextCorrection();
5400   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5401   if (!BestTC)
5402     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5403 
5404   ED = BestTC.getEditDistance();
5405 
5406   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5407     // If this was an unqualified lookup and we believe the callback
5408     // object wouldn't have filtered out possible corrections, note
5409     // that no correction was found.
5410     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5411   }
5412 
5413   // If only a single name remains, return that result.
5414   if (!SecondBestTC ||
5415       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5416     const TypoCorrection &Result = BestTC;
5417 
5418     // Don't correct to a keyword that's the same as the typo; the keyword
5419     // wasn't actually in scope.
5420     if (ED == 0 && Result.isKeyword())
5421       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5422 
5423     TypoCorrection TC = Result;
5424     TC.setCorrectionRange(SS, TypoName);
5425     checkCorrectionVisibility(*this, TC);
5426     return TC;
5427   } else if (SecondBestTC && ObjCMessageReceiver) {
5428     // Prefer 'super' when we're completing in a message-receiver
5429     // context.
5430 
5431     if (BestTC.getCorrection().getAsString() != "super") {
5432       if (SecondBestTC.getCorrection().getAsString() == "super")
5433         BestTC = SecondBestTC;
5434       else if ((*Consumer)["super"].front().isKeyword())
5435         BestTC = (*Consumer)["super"].front();
5436     }
5437     // Don't correct to a keyword that's the same as the typo; the keyword
5438     // wasn't actually in scope.
5439     if (BestTC.getEditDistance() == 0 ||
5440         BestTC.getCorrection().getAsString() != "super")
5441       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5442 
5443     BestTC.setCorrectionRange(SS, TypoName);
5444     return BestTC;
5445   }
5446 
5447   // Record the failure's location if needed and return an empty correction. If
5448   // this was an unqualified lookup and we believe the callback object did not
5449   // filter out possible corrections, also cache the failure for the typo.
5450   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5451 }
5452 
5453 /// Try to "correct" a typo in the source code by finding
5454 /// visible declarations whose names are similar to the name that was
5455 /// present in the source code.
5456 ///
5457 /// \param TypoName the \c DeclarationNameInfo structure that contains
5458 /// the name that was present in the source code along with its location.
5459 ///
5460 /// \param LookupKind the name-lookup criteria used to search for the name.
5461 ///
5462 /// \param S the scope in which name lookup occurs.
5463 ///
5464 /// \param SS the nested-name-specifier that precedes the name we're
5465 /// looking for, if present.
5466 ///
5467 /// \param CCC A CorrectionCandidateCallback object that provides further
5468 /// validation of typo correction candidates. It also provides flags for
5469 /// determining the set of keywords permitted.
5470 ///
5471 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5472 /// diagnostics when the actual typo correction is attempted.
5473 ///
5474 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5475 /// Expr from a typo correction candidate.
5476 ///
5477 /// \param MemberContext if non-NULL, the context in which to look for
5478 /// a member access expression.
5479 ///
5480 /// \param EnteringContext whether we're entering the context described by
5481 /// the nested-name-specifier SS.
5482 ///
5483 /// \param OPT when non-NULL, the search for visible declarations will
5484 /// also walk the protocols in the qualified interfaces of \p OPT.
5485 ///
5486 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5487 /// Expr representing the result of performing typo correction, or nullptr if
5488 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5489 /// be emitted and it is the responsibility of the caller to emit any that are
5490 /// needed.
5491 TypoExpr *Sema::CorrectTypoDelayed(
5492     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5493     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5494     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5495     DeclContext *MemberContext, bool EnteringContext,
5496     const ObjCObjectPointerType *OPT) {
5497   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5498                                              MemberContext, EnteringContext,
5499                                              OPT, Mode == CTK_ErrorRecovery);
5500 
5501   // Give the external sema source a chance to correct the typo.
5502   TypoCorrection ExternalTypo;
5503   if (ExternalSource && Consumer) {
5504     ExternalTypo = ExternalSource->CorrectTypo(
5505         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5506         MemberContext, EnteringContext, OPT);
5507     if (ExternalTypo)
5508       Consumer->addCorrection(ExternalTypo);
5509   }
5510 
5511   if (!Consumer || Consumer->empty())
5512     return nullptr;
5513 
5514   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5515   // is not more that about a third of the length of the typo's identifier.
5516   unsigned ED = Consumer->getBestEditDistance(true);
5517   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5518   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5519     return nullptr;
5520   ExprEvalContexts.back().NumTypos++;
5521   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5522                            TypoName.getLoc());
5523 }
5524 
5525 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5526   if (!CDecl) return;
5527 
5528   if (isKeyword())
5529     CorrectionDecls.clear();
5530 
5531   CorrectionDecls.push_back(CDecl);
5532 
5533   if (!CorrectionName)
5534     CorrectionName = CDecl->getDeclName();
5535 }
5536 
5537 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5538   if (CorrectionNameSpec) {
5539     std::string tmpBuffer;
5540     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5541     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5542     PrefixOStream << CorrectionName;
5543     return PrefixOStream.str();
5544   }
5545 
5546   return CorrectionName.getAsString();
5547 }
5548 
5549 bool CorrectionCandidateCallback::ValidateCandidate(
5550     const TypoCorrection &candidate) {
5551   if (!candidate.isResolved())
5552     return true;
5553 
5554   if (candidate.isKeyword())
5555     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5556            WantRemainingKeywords || WantObjCSuper;
5557 
5558   bool HasNonType = false;
5559   bool HasStaticMethod = false;
5560   bool HasNonStaticMethod = false;
5561   for (Decl *D : candidate) {
5562     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5563       D = FTD->getTemplatedDecl();
5564     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5565       if (Method->isStatic())
5566         HasStaticMethod = true;
5567       else
5568         HasNonStaticMethod = true;
5569     }
5570     if (!isa<TypeDecl>(D))
5571       HasNonType = true;
5572   }
5573 
5574   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5575       !candidate.getCorrectionSpecifier())
5576     return false;
5577 
5578   return WantTypeSpecifiers || HasNonType;
5579 }
5580 
5581 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5582                                              bool HasExplicitTemplateArgs,
5583                                              MemberExpr *ME)
5584     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5585       CurContext(SemaRef.CurContext), MemberFn(ME) {
5586   WantTypeSpecifiers = false;
5587   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5588                           !HasExplicitTemplateArgs && NumArgs == 1;
5589   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5590   WantRemainingKeywords = false;
5591 }
5592 
5593 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5594   if (!candidate.getCorrectionDecl())
5595     return candidate.isKeyword();
5596 
5597   for (auto *C : candidate) {
5598     FunctionDecl *FD = nullptr;
5599     NamedDecl *ND = C->getUnderlyingDecl();
5600     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5601       FD = FTD->getTemplatedDecl();
5602     if (!HasExplicitTemplateArgs && !FD) {
5603       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5604         // If the Decl is neither a function nor a template function,
5605         // determine if it is a pointer or reference to a function. If so,
5606         // check against the number of arguments expected for the pointee.
5607         QualType ValType = cast<ValueDecl>(ND)->getType();
5608         if (ValType.isNull())
5609           continue;
5610         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5611           ValType = ValType->getPointeeType();
5612         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5613           if (FPT->getNumParams() == NumArgs)
5614             return true;
5615       }
5616     }
5617 
5618     // A typo for a function-style cast can look like a function call in C++.
5619     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5620                                  : isa<TypeDecl>(ND)) &&
5621         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5622       // Only a class or class template can take two or more arguments.
5623       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5624 
5625     // Skip the current candidate if it is not a FunctionDecl or does not accept
5626     // the current number of arguments.
5627     if (!FD || !(FD->getNumParams() >= NumArgs &&
5628                  FD->getMinRequiredArguments() <= NumArgs))
5629       continue;
5630 
5631     // If the current candidate is a non-static C++ method, skip the candidate
5632     // unless the method being corrected--or the current DeclContext, if the
5633     // function being corrected is not a method--is a method in the same class
5634     // or a descendent class of the candidate's parent class.
5635     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5636       if (MemberFn || !MD->isStatic()) {
5637         const auto *CurMD =
5638             MemberFn
5639                 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5640                 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5641         const CXXRecordDecl *CurRD =
5642             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5643         const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5644         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5645           continue;
5646       }
5647     }
5648     return true;
5649   }
5650   return false;
5651 }
5652 
5653 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5654                         const PartialDiagnostic &TypoDiag,
5655                         bool ErrorRecovery) {
5656   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5657                ErrorRecovery);
5658 }
5659 
5660 /// Find which declaration we should import to provide the definition of
5661 /// the given declaration.
5662 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5663   if (const auto *VD = dyn_cast<VarDecl>(D))
5664     return VD->getDefinition();
5665   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5666     return FD->getDefinition();
5667   if (const auto *TD = dyn_cast<TagDecl>(D))
5668     return TD->getDefinition();
5669   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5670     return ID->getDefinition();
5671   if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5672     return PD->getDefinition();
5673   if (const auto *TD = dyn_cast<TemplateDecl>(D))
5674     if (const NamedDecl *TTD = TD->getTemplatedDecl())
5675       return getDefinitionToImport(TTD);
5676   return nullptr;
5677 }
5678 
5679 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5680                                  MissingImportKind MIK, bool Recover) {
5681   // Suggest importing a module providing the definition of this entity, if
5682   // possible.
5683   const NamedDecl *Def = getDefinitionToImport(Decl);
5684   if (!Def)
5685     Def = Decl;
5686 
5687   Module *Owner = getOwningModule(Def);
5688   assert(Owner && "definition of hidden declaration is not in a module");
5689 
5690   llvm::SmallVector<Module*, 8> OwningModules;
5691   OwningModules.push_back(Owner);
5692   auto Merged = Context.getModulesWithMergedDefinition(Def);
5693   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5694 
5695   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5696                         Recover);
5697 }
5698 
5699 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5700 /// suggesting the addition of a #include of the specified file.
5701 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E,
5702                                           llvm::StringRef IncludingFile) {
5703   bool IsAngled = false;
5704   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5705       E, IncludingFile, &IsAngled);
5706   return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5707 }
5708 
5709 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5710                                  SourceLocation DeclLoc,
5711                                  ArrayRef<Module *> Modules,
5712                                  MissingImportKind MIK, bool Recover) {
5713   assert(!Modules.empty());
5714 
5715   // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5716   // confusing than helpful to show the namespace is not visible.
5717   if (isa<NamespaceDecl>(Decl))
5718     return;
5719 
5720   auto NotePrevious = [&] {
5721     // FIXME: Suppress the note backtrace even under
5722     // -fdiagnostics-show-note-include-stack. We don't care how this
5723     // declaration was previously reached.
5724     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5725   };
5726 
5727   // Weed out duplicates from module list.
5728   llvm::SmallVector<Module*, 8> UniqueModules;
5729   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5730   for (auto *M : Modules) {
5731     if (M->isExplicitGlobalModule() || M->isPrivateModule())
5732       continue;
5733     if (UniqueModuleSet.insert(M).second)
5734       UniqueModules.push_back(M);
5735   }
5736 
5737   // Try to find a suitable header-name to #include.
5738   std::string HeaderName;
5739   if (OptionalFileEntryRef Header =
5740           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5741     if (const FileEntry *FE =
5742             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5743       HeaderName =
5744           getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5745   }
5746 
5747   // If we have a #include we should suggest, or if all definition locations
5748   // were in global module fragments, don't suggest an import.
5749   if (!HeaderName.empty() || UniqueModules.empty()) {
5750     // FIXME: Find a smart place to suggest inserting a #include, and add
5751     // a FixItHint there.
5752     Diag(UseLoc, diag::err_module_unimported_use_header)
5753         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5754     // Produce a note showing where the entity was declared.
5755     NotePrevious();
5756     if (Recover)
5757       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5758     return;
5759   }
5760 
5761   Modules = UniqueModules;
5762 
5763   auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5764     if (M->isModuleMapModule())
5765       return M->getFullModuleName();
5766 
5767     Module *CurrentModule = getCurrentModule();
5768 
5769     if (M->isImplicitGlobalModule())
5770       M = M->getTopLevelModule();
5771 
5772     bool IsInTheSameModule =
5773         CurrentModule && CurrentModule->getPrimaryModuleInterfaceName() ==
5774                              M->getPrimaryModuleInterfaceName();
5775 
5776     // If the current module unit is in the same module with M, it is OK to show
5777     // the partition name. Otherwise, it'll be sufficient to show the primary
5778     // module name.
5779     if (IsInTheSameModule)
5780       return M->getTopLevelModuleName().str();
5781     else
5782       return M->getPrimaryModuleInterfaceName().str();
5783   };
5784 
5785   if (Modules.size() > 1) {
5786     std::string ModuleList;
5787     unsigned N = 0;
5788     for (const auto *M : Modules) {
5789       ModuleList += "\n        ";
5790       if (++N == 5 && N != Modules.size()) {
5791         ModuleList += "[...]";
5792         break;
5793       }
5794       ModuleList += GetModuleNameForDiagnostic(M);
5795     }
5796 
5797     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5798       << (int)MIK << Decl << ModuleList;
5799   } else {
5800     // FIXME: Add a FixItHint that imports the corresponding module.
5801     Diag(UseLoc, diag::err_module_unimported_use)
5802         << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5803   }
5804 
5805   NotePrevious();
5806 
5807   // Try to recover by implicitly importing this module.
5808   if (Recover)
5809     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5810 }
5811 
5812 /// Diagnose a successfully-corrected typo. Separated from the correction
5813 /// itself to allow external validation of the result, etc.
5814 ///
5815 /// \param Correction The result of performing typo correction.
5816 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5817 ///        string added to it (and usually also a fixit).
5818 /// \param PrevNote A note to use when indicating the location of the entity to
5819 ///        which we are correcting. Will have the correction string added to it.
5820 /// \param ErrorRecovery If \c true (the default), the caller is going to
5821 ///        recover from the typo as if the corrected string had been typed.
5822 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5823 ///        to it.
5824 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5825                         const PartialDiagnostic &TypoDiag,
5826                         const PartialDiagnostic &PrevNote,
5827                         bool ErrorRecovery) {
5828   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5829   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5830   FixItHint FixTypo = FixItHint::CreateReplacement(
5831       Correction.getCorrectionRange(), CorrectedStr);
5832 
5833   // Maybe we're just missing a module import.
5834   if (Correction.requiresImport()) {
5835     NamedDecl *Decl = Correction.getFoundDecl();
5836     assert(Decl && "import required but no declaration to import");
5837 
5838     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5839                           MissingImportKind::Declaration, ErrorRecovery);
5840     return;
5841   }
5842 
5843   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5844     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5845 
5846   NamedDecl *ChosenDecl =
5847       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5848   if (PrevNote.getDiagID() && ChosenDecl)
5849     Diag(ChosenDecl->getLocation(), PrevNote)
5850       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5851 
5852   // Add any extra diagnostics.
5853   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5854     Diag(Correction.getCorrectionRange().getBegin(), PD);
5855 }
5856 
5857 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5858                                   TypoDiagnosticGenerator TDG,
5859                                   TypoRecoveryCallback TRC,
5860                                   SourceLocation TypoLoc) {
5861   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5862   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5863   auto &State = DelayedTypos[TE];
5864   State.Consumer = std::move(TCC);
5865   State.DiagHandler = std::move(TDG);
5866   State.RecoveryHandler = std::move(TRC);
5867   if (TE)
5868     TypoExprs.push_back(TE);
5869   return TE;
5870 }
5871 
5872 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5873   auto Entry = DelayedTypos.find(TE);
5874   assert(Entry != DelayedTypos.end() &&
5875          "Failed to get the state for a TypoExpr!");
5876   return Entry->second;
5877 }
5878 
5879 void Sema::clearDelayedTypo(TypoExpr *TE) {
5880   DelayedTypos.erase(TE);
5881 }
5882 
5883 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5884   DeclarationNameInfo Name(II, IILoc);
5885   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5886   R.suppressDiagnostics();
5887   R.setHideTags(false);
5888   LookupName(R, S);
5889   R.dump();
5890 }
5891 
5892 void Sema::ActOnPragmaDump(Expr *E) {
5893   E->dump();
5894 }
5895