1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "clang/Sema/TypoCorrection.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/TinyPtrVector.h" 42 #include "llvm/ADT/edit_distance.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include <algorithm> 46 #include <iterator> 47 #include <list> 48 #include <optional> 49 #include <set> 50 #include <utility> 51 #include <vector> 52 53 #include "OpenCLBuiltins.inc" 54 55 using namespace clang; 56 using namespace sema; 57 58 namespace { 59 class UnqualUsingEntry { 60 const DeclContext *Nominated; 61 const DeclContext *CommonAncestor; 62 63 public: 64 UnqualUsingEntry(const DeclContext *Nominated, 65 const DeclContext *CommonAncestor) 66 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 67 } 68 69 const DeclContext *getCommonAncestor() const { 70 return CommonAncestor; 71 } 72 73 const DeclContext *getNominatedNamespace() const { 74 return Nominated; 75 } 76 77 // Sort by the pointer value of the common ancestor. 78 struct Comparator { 79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 80 return L.getCommonAncestor() < R.getCommonAncestor(); 81 } 82 83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 84 return E.getCommonAncestor() < DC; 85 } 86 87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 88 return DC < E.getCommonAncestor(); 89 } 90 }; 91 }; 92 93 /// A collection of using directives, as used by C++ unqualified 94 /// lookup. 95 class UnqualUsingDirectiveSet { 96 Sema &SemaRef; 97 98 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 99 100 ListTy list; 101 llvm::SmallPtrSet<DeclContext*, 8> visited; 102 103 public: 104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 105 106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 107 // C++ [namespace.udir]p1: 108 // During unqualified name lookup, the names appear as if they 109 // were declared in the nearest enclosing namespace which contains 110 // both the using-directive and the nominated namespace. 111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 112 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 113 114 for (; S; S = S->getParent()) { 115 // C++ [namespace.udir]p1: 116 // A using-directive shall not appear in class scope, but may 117 // appear in namespace scope or in block scope. 118 DeclContext *Ctx = S->getEntity(); 119 if (Ctx && Ctx->isFileContext()) { 120 visit(Ctx, Ctx); 121 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 122 for (auto *I : S->using_directives()) 123 if (SemaRef.isVisible(I)) 124 visit(I, InnermostFileDC); 125 } 126 } 127 } 128 129 // Visits a context and collect all of its using directives 130 // recursively. Treats all using directives as if they were 131 // declared in the context. 132 // 133 // A given context is only every visited once, so it is important 134 // that contexts be visited from the inside out in order to get 135 // the effective DCs right. 136 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 137 if (!visited.insert(DC).second) 138 return; 139 140 addUsingDirectives(DC, EffectiveDC); 141 } 142 143 // Visits a using directive and collects all of its using 144 // directives recursively. Treats all using directives as if they 145 // were declared in the effective DC. 146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 147 DeclContext *NS = UD->getNominatedNamespace(); 148 if (!visited.insert(NS).second) 149 return; 150 151 addUsingDirective(UD, EffectiveDC); 152 addUsingDirectives(NS, EffectiveDC); 153 } 154 155 // Adds all the using directives in a context (and those nominated 156 // by its using directives, transitively) as if they appeared in 157 // the given effective context. 158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 159 SmallVector<DeclContext*, 4> queue; 160 while (true) { 161 for (auto *UD : DC->using_directives()) { 162 DeclContext *NS = UD->getNominatedNamespace(); 163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 164 addUsingDirective(UD, EffectiveDC); 165 queue.push_back(NS); 166 } 167 } 168 169 if (queue.empty()) 170 return; 171 172 DC = queue.pop_back_val(); 173 } 174 } 175 176 // Add a using directive as if it had been declared in the given 177 // context. This helps implement C++ [namespace.udir]p3: 178 // The using-directive is transitive: if a scope contains a 179 // using-directive that nominates a second namespace that itself 180 // contains using-directives, the effect is as if the 181 // using-directives from the second namespace also appeared in 182 // the first. 183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 184 // Find the common ancestor between the effective context and 185 // the nominated namespace. 186 DeclContext *Common = UD->getNominatedNamespace(); 187 while (!Common->Encloses(EffectiveDC)) 188 Common = Common->getParent(); 189 Common = Common->getPrimaryContext(); 190 191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 192 } 193 194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 195 196 typedef ListTy::const_iterator const_iterator; 197 198 const_iterator begin() const { return list.begin(); } 199 const_iterator end() const { return list.end(); } 200 201 llvm::iterator_range<const_iterator> 202 getNamespacesFor(const DeclContext *DC) const { 203 return llvm::make_range(std::equal_range(begin(), end(), 204 DC->getPrimaryContext(), 205 UnqualUsingEntry::Comparator())); 206 } 207 }; 208 } // end anonymous namespace 209 210 // Retrieve the set of identifier namespaces that correspond to a 211 // specific kind of name lookup. 212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 213 bool CPlusPlus, 214 bool Redeclaration) { 215 unsigned IDNS = 0; 216 switch (NameKind) { 217 case Sema::LookupObjCImplicitSelfParam: 218 case Sema::LookupOrdinaryName: 219 case Sema::LookupRedeclarationWithLinkage: 220 case Sema::LookupLocalFriendName: 221 case Sema::LookupDestructorName: 222 IDNS = Decl::IDNS_Ordinary; 223 if (CPlusPlus) { 224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 225 if (Redeclaration) 226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 227 } 228 if (Redeclaration) 229 IDNS |= Decl::IDNS_LocalExtern; 230 break; 231 232 case Sema::LookupOperatorName: 233 // Operator lookup is its own crazy thing; it is not the same 234 // as (e.g.) looking up an operator name for redeclaration. 235 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 236 IDNS = Decl::IDNS_NonMemberOperator; 237 break; 238 239 case Sema::LookupTagName: 240 if (CPlusPlus) { 241 IDNS = Decl::IDNS_Type; 242 243 // When looking for a redeclaration of a tag name, we add: 244 // 1) TagFriend to find undeclared friend decls 245 // 2) Namespace because they can't "overload" with tag decls. 246 // 3) Tag because it includes class templates, which can't 247 // "overload" with tag decls. 248 if (Redeclaration) 249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 250 } else { 251 IDNS = Decl::IDNS_Tag; 252 } 253 break; 254 255 case Sema::LookupLabel: 256 IDNS = Decl::IDNS_Label; 257 break; 258 259 case Sema::LookupMemberName: 260 IDNS = Decl::IDNS_Member; 261 if (CPlusPlus) 262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 263 break; 264 265 case Sema::LookupNestedNameSpecifierName: 266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 267 break; 268 269 case Sema::LookupNamespaceName: 270 IDNS = Decl::IDNS_Namespace; 271 break; 272 273 case Sema::LookupUsingDeclName: 274 assert(Redeclaration && "should only be used for redecl lookup"); 275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 277 Decl::IDNS_LocalExtern; 278 break; 279 280 case Sema::LookupObjCProtocolName: 281 IDNS = Decl::IDNS_ObjCProtocol; 282 break; 283 284 case Sema::LookupOMPReductionName: 285 IDNS = Decl::IDNS_OMPReduction; 286 break; 287 288 case Sema::LookupOMPMapperName: 289 IDNS = Decl::IDNS_OMPMapper; 290 break; 291 292 case Sema::LookupAnyName: 293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 295 | Decl::IDNS_Type; 296 break; 297 } 298 return IDNS; 299 } 300 301 void LookupResult::configure() { 302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 303 isForRedeclaration()); 304 305 // If we're looking for one of the allocation or deallocation 306 // operators, make sure that the implicitly-declared new and delete 307 // operators can be found. 308 switch (NameInfo.getName().getCXXOverloadedOperator()) { 309 case OO_New: 310 case OO_Delete: 311 case OO_Array_New: 312 case OO_Array_Delete: 313 getSema().DeclareGlobalNewDelete(); 314 break; 315 316 default: 317 break; 318 } 319 320 // Compiler builtins are always visible, regardless of where they end 321 // up being declared. 322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 323 if (unsigned BuiltinID = Id->getBuiltinID()) { 324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 325 AllowHidden = true; 326 } 327 } 328 } 329 330 bool LookupResult::checkDebugAssumptions() const { 331 // This function is never called by NDEBUG builds. 332 assert(ResultKind != NotFound || Decls.size() == 0); 333 assert(ResultKind != Found || Decls.size() == 1); 334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 335 (Decls.size() == 1 && 336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 338 assert(ResultKind != Ambiguous || Decls.size() > 1 || 339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 340 Ambiguity == AmbiguousBaseSubobjectTypes))); 341 assert((Paths != nullptr) == (ResultKind == Ambiguous && 342 (Ambiguity == AmbiguousBaseSubobjectTypes || 343 Ambiguity == AmbiguousBaseSubobjects))); 344 return true; 345 } 346 347 // Necessary because CXXBasePaths is not complete in Sema.h 348 void LookupResult::deletePaths(CXXBasePaths *Paths) { 349 delete Paths; 350 } 351 352 /// Get a representative context for a declaration such that two declarations 353 /// will have the same context if they were found within the same scope. 354 static const DeclContext *getContextForScopeMatching(const Decl *D) { 355 // For function-local declarations, use that function as the context. This 356 // doesn't account for scopes within the function; the caller must deal with 357 // those. 358 if (const DeclContext *DC = D->getLexicalDeclContext(); 359 DC->isFunctionOrMethod()) 360 return DC; 361 362 // Otherwise, look at the semantic context of the declaration. The 363 // declaration must have been found there. 364 return D->getDeclContext()->getRedeclContext(); 365 } 366 367 /// Determine whether \p D is a better lookup result than \p Existing, 368 /// given that they declare the same entity. 369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 370 const NamedDecl *D, 371 const NamedDecl *Existing) { 372 // When looking up redeclarations of a using declaration, prefer a using 373 // shadow declaration over any other declaration of the same entity. 374 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 375 !isa<UsingShadowDecl>(Existing)) 376 return true; 377 378 const auto *DUnderlying = D->getUnderlyingDecl(); 379 const auto *EUnderlying = Existing->getUnderlyingDecl(); 380 381 // If they have different underlying declarations, prefer a typedef over the 382 // original type (this happens when two type declarations denote the same 383 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 384 // might carry additional semantic information, such as an alignment override. 385 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 386 // declaration over a typedef. Also prefer a tag over a typedef for 387 // destructor name lookup because in some contexts we only accept a 388 // class-name in a destructor declaration. 389 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 390 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 391 bool HaveTag = isa<TagDecl>(EUnderlying); 392 bool WantTag = 393 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 394 return HaveTag != WantTag; 395 } 396 397 // Pick the function with more default arguments. 398 // FIXME: In the presence of ambiguous default arguments, we should keep both, 399 // so we can diagnose the ambiguity if the default argument is needed. 400 // See C++ [over.match.best]p3. 401 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 402 const auto *EFD = cast<FunctionDecl>(EUnderlying); 403 unsigned DMin = DFD->getMinRequiredArguments(); 404 unsigned EMin = EFD->getMinRequiredArguments(); 405 // If D has more default arguments, it is preferred. 406 if (DMin != EMin) 407 return DMin < EMin; 408 // FIXME: When we track visibility for default function arguments, check 409 // that we pick the declaration with more visible default arguments. 410 } 411 412 // Pick the template with more default template arguments. 413 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 414 const auto *ETD = cast<TemplateDecl>(EUnderlying); 415 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 416 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 417 // If D has more default arguments, it is preferred. Note that default 418 // arguments (and their visibility) is monotonically increasing across the 419 // redeclaration chain, so this is a quick proxy for "is more recent". 420 if (DMin != EMin) 421 return DMin < EMin; 422 // If D has more *visible* default arguments, it is preferred. Note, an 423 // earlier default argument being visible does not imply that a later 424 // default argument is visible, so we can't just check the first one. 425 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 426 I != N; ++I) { 427 if (!S.hasVisibleDefaultArgument( 428 ETD->getTemplateParameters()->getParam(I)) && 429 S.hasVisibleDefaultArgument( 430 DTD->getTemplateParameters()->getParam(I))) 431 return true; 432 } 433 } 434 435 // VarDecl can have incomplete array types, prefer the one with more complete 436 // array type. 437 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { 438 const auto *EVD = cast<VarDecl>(EUnderlying); 439 if (EVD->getType()->isIncompleteType() && 440 !DVD->getType()->isIncompleteType()) { 441 // Prefer the decl with a more complete type if visible. 442 return S.isVisible(DVD); 443 } 444 return false; // Avoid picking up a newer decl, just because it was newer. 445 } 446 447 // For most kinds of declaration, it doesn't really matter which one we pick. 448 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 449 // If the existing declaration is hidden, prefer the new one. Otherwise, 450 // keep what we've got. 451 return !S.isVisible(Existing); 452 } 453 454 // Pick the newer declaration; it might have a more precise type. 455 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 456 Prev = Prev->getPreviousDecl()) 457 if (Prev == EUnderlying) 458 return true; 459 return false; 460 } 461 462 /// Determine whether \p D can hide a tag declaration. 463 static bool canHideTag(const NamedDecl *D) { 464 // C++ [basic.scope.declarative]p4: 465 // Given a set of declarations in a single declarative region [...] 466 // exactly one declaration shall declare a class name or enumeration name 467 // that is not a typedef name and the other declarations shall all refer to 468 // the same variable, non-static data member, or enumerator, or all refer 469 // to functions and function templates; in this case the class name or 470 // enumeration name is hidden. 471 // C++ [basic.scope.hiding]p2: 472 // A class name or enumeration name can be hidden by the name of a 473 // variable, data member, function, or enumerator declared in the same 474 // scope. 475 // An UnresolvedUsingValueDecl always instantiates to one of these. 476 D = D->getUnderlyingDecl(); 477 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 478 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 479 isa<UnresolvedUsingValueDecl>(D); 480 } 481 482 /// Resolves the result kind of this lookup. 483 void LookupResult::resolveKind() { 484 unsigned N = Decls.size(); 485 486 // Fast case: no possible ambiguity. 487 if (N == 0) { 488 assert(ResultKind == NotFound || 489 ResultKind == NotFoundInCurrentInstantiation); 490 return; 491 } 492 493 // If there's a single decl, we need to examine it to decide what 494 // kind of lookup this is. 495 if (N == 1) { 496 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 497 if (isa<FunctionTemplateDecl>(D)) 498 ResultKind = FoundOverloaded; 499 else if (isa<UnresolvedUsingValueDecl>(D)) 500 ResultKind = FoundUnresolvedValue; 501 return; 502 } 503 504 // Don't do any extra resolution if we've already resolved as ambiguous. 505 if (ResultKind == Ambiguous) return; 506 507 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; 508 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 509 510 bool Ambiguous = false; 511 bool ReferenceToPlaceHolderVariable = false; 512 bool HasTag = false, HasFunction = false; 513 bool HasFunctionTemplate = false, HasUnresolved = false; 514 const NamedDecl *HasNonFunction = nullptr; 515 516 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; 517 llvm::BitVector RemovedDecls(N); 518 519 for (unsigned I = 0; I < N; I++) { 520 const NamedDecl *D = Decls[I]->getUnderlyingDecl(); 521 D = cast<NamedDecl>(D->getCanonicalDecl()); 522 523 // Ignore an invalid declaration unless it's the only one left. 524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 525 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && 526 N - RemovedDecls.count() > 1) { 527 RemovedDecls.set(I); 528 continue; 529 } 530 531 // C++ [basic.scope.hiding]p2: 532 // A class name or enumeration name can be hidden by the name of 533 // an object, function, or enumerator declared in the same 534 // scope. If a class or enumeration name and an object, function, 535 // or enumerator are declared in the same scope (in any order) 536 // with the same name, the class or enumeration name is hidden 537 // wherever the object, function, or enumerator name is visible. 538 if (HideTags && isa<TagDecl>(D)) { 539 bool Hidden = false; 540 for (auto *OtherDecl : Decls) { 541 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && 542 getContextForScopeMatching(OtherDecl)->Equals( 543 getContextForScopeMatching(Decls[I]))) { 544 RemovedDecls.set(I); 545 Hidden = true; 546 break; 547 } 548 } 549 if (Hidden) 550 continue; 551 } 552 553 std::optional<unsigned> ExistingI; 554 555 // Redeclarations of types via typedef can occur both within a scope 556 // and, through using declarations and directives, across scopes. There is 557 // no ambiguity if they all refer to the same type, so unique based on the 558 // canonical type. 559 if (const auto *TD = dyn_cast<TypeDecl>(D)) { 560 QualType T = getSema().Context.getTypeDeclType(TD); 561 auto UniqueResult = UniqueTypes.insert( 562 std::make_pair(getSema().Context.getCanonicalType(T), I)); 563 if (!UniqueResult.second) { 564 // The type is not unique. 565 ExistingI = UniqueResult.first->second; 566 } 567 } 568 569 // For non-type declarations, check for a prior lookup result naming this 570 // canonical declaration. 571 if (!D->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI) { 572 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 573 if (!UniqueResult.second) { 574 // We've seen this entity before. 575 ExistingI = UniqueResult.first->second; 576 } 577 } 578 579 if (ExistingI) { 580 // This is not a unique lookup result. Pick one of the results and 581 // discard the other. 582 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 583 Decls[*ExistingI])) 584 Decls[*ExistingI] = Decls[I]; 585 RemovedDecls.set(I); 586 continue; 587 } 588 589 // Otherwise, do some decl type analysis and then continue. 590 591 if (isa<UnresolvedUsingValueDecl>(D)) { 592 HasUnresolved = true; 593 } else if (isa<TagDecl>(D)) { 594 if (HasTag) 595 Ambiguous = true; 596 HasTag = true; 597 } else if (isa<FunctionTemplateDecl>(D)) { 598 HasFunction = true; 599 HasFunctionTemplate = true; 600 } else if (isa<FunctionDecl>(D)) { 601 HasFunction = true; 602 } else { 603 if (HasNonFunction) { 604 // If we're about to create an ambiguity between two declarations that 605 // are equivalent, but one is an internal linkage declaration from one 606 // module and the other is an internal linkage declaration from another 607 // module, just skip it. 608 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 609 D)) { 610 EquivalentNonFunctions.push_back(D); 611 RemovedDecls.set(I); 612 continue; 613 } 614 if (D->isPlaceholderVar(getSema().getLangOpts()) && 615 getContextForScopeMatching(D) == 616 getContextForScopeMatching(Decls[I])) { 617 ReferenceToPlaceHolderVariable = true; 618 } 619 Ambiguous = true; 620 } 621 HasNonFunction = D; 622 } 623 } 624 625 // FIXME: This diagnostic should really be delayed until we're done with 626 // the lookup result, in case the ambiguity is resolved by the caller. 627 if (!EquivalentNonFunctions.empty() && !Ambiguous) 628 getSema().diagnoseEquivalentInternalLinkageDeclarations( 629 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 630 631 // Remove decls by replacing them with decls from the end (which 632 // means that we need to iterate from the end) and then truncating 633 // to the new size. 634 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) 635 Decls[I] = Decls[--N]; 636 Decls.truncate(N); 637 638 if ((HasNonFunction && (HasFunction || HasUnresolved)) || 639 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) 640 Ambiguous = true; 641 642 if (Ambiguous && ReferenceToPlaceHolderVariable) 643 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); 644 else if (Ambiguous) 645 setAmbiguous(LookupResult::AmbiguousReference); 646 else if (HasUnresolved) 647 ResultKind = LookupResult::FoundUnresolvedValue; 648 else if (N > 1 || HasFunctionTemplate) 649 ResultKind = LookupResult::FoundOverloaded; 650 else 651 ResultKind = LookupResult::Found; 652 } 653 654 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 655 CXXBasePaths::const_paths_iterator I, E; 656 for (I = P.begin(), E = P.end(); I != E; ++I) 657 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 658 ++DI) 659 addDecl(*DI); 660 } 661 662 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 663 Paths = new CXXBasePaths; 664 Paths->swap(P); 665 addDeclsFromBasePaths(*Paths); 666 resolveKind(); 667 setAmbiguous(AmbiguousBaseSubobjects); 668 } 669 670 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 671 Paths = new CXXBasePaths; 672 Paths->swap(P); 673 addDeclsFromBasePaths(*Paths); 674 resolveKind(); 675 setAmbiguous(AmbiguousBaseSubobjectTypes); 676 } 677 678 void LookupResult::print(raw_ostream &Out) { 679 Out << Decls.size() << " result(s)"; 680 if (isAmbiguous()) Out << ", ambiguous"; 681 if (Paths) Out << ", base paths present"; 682 683 for (iterator I = begin(), E = end(); I != E; ++I) { 684 Out << "\n"; 685 (*I)->print(Out, 2); 686 } 687 } 688 689 LLVM_DUMP_METHOD void LookupResult::dump() { 690 llvm::errs() << "lookup results for " << getLookupName().getAsString() 691 << ":\n"; 692 for (NamedDecl *D : *this) 693 D->dump(); 694 } 695 696 /// Diagnose a missing builtin type. 697 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 698 llvm::StringRef Name) { 699 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 700 << TypeClass << Name; 701 return S.Context.VoidTy; 702 } 703 704 /// Lookup an OpenCL enum type. 705 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 706 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 707 Sema::LookupTagName); 708 S.LookupName(Result, S.TUScope); 709 if (Result.empty()) 710 return diagOpenCLBuiltinTypeError(S, "enum", Name); 711 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 712 if (!Decl) 713 return diagOpenCLBuiltinTypeError(S, "enum", Name); 714 return S.Context.getEnumType(Decl); 715 } 716 717 /// Lookup an OpenCL typedef type. 718 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 719 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 720 Sema::LookupOrdinaryName); 721 S.LookupName(Result, S.TUScope); 722 if (Result.empty()) 723 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 724 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 725 if (!Decl) 726 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 727 return S.Context.getTypedefType(Decl); 728 } 729 730 /// Get the QualType instances of the return type and arguments for an OpenCL 731 /// builtin function signature. 732 /// \param S (in) The Sema instance. 733 /// \param OpenCLBuiltin (in) The signature currently handled. 734 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 735 /// type used as return type or as argument. 736 /// Only meaningful for generic types, otherwise equals 1. 737 /// \param RetTypes (out) List of the possible return types. 738 /// \param ArgTypes (out) List of the possible argument types. For each 739 /// argument, ArgTypes contains QualTypes for the Cartesian product 740 /// of (vector sizes) x (types) . 741 static void GetQualTypesForOpenCLBuiltin( 742 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 743 SmallVector<QualType, 1> &RetTypes, 744 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 745 // Get the QualType instances of the return types. 746 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 747 OCL2Qual(S, TypeTable[Sig], RetTypes); 748 GenTypeMaxCnt = RetTypes.size(); 749 750 // Get the QualType instances of the arguments. 751 // First type is the return type, skip it. 752 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 753 SmallVector<QualType, 1> Ty; 754 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 755 Ty); 756 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 757 ArgTypes.push_back(std::move(Ty)); 758 } 759 } 760 761 /// Create a list of the candidate function overloads for an OpenCL builtin 762 /// function. 763 /// \param Context (in) The ASTContext instance. 764 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 765 /// type used as return type or as argument. 766 /// Only meaningful for generic types, otherwise equals 1. 767 /// \param FunctionList (out) List of FunctionTypes. 768 /// \param RetTypes (in) List of the possible return types. 769 /// \param ArgTypes (in) List of the possible types for the arguments. 770 static void GetOpenCLBuiltinFctOverloads( 771 ASTContext &Context, unsigned GenTypeMaxCnt, 772 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 773 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 774 FunctionProtoType::ExtProtoInfo PI( 775 Context.getDefaultCallingConvention(false, false, true)); 776 PI.Variadic = false; 777 778 // Do not attempt to create any FunctionTypes if there are no return types, 779 // which happens when a type belongs to a disabled extension. 780 if (RetTypes.size() == 0) 781 return; 782 783 // Create FunctionTypes for each (gen)type. 784 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 785 SmallVector<QualType, 5> ArgList; 786 787 for (unsigned A = 0; A < ArgTypes.size(); A++) { 788 // Bail out if there is an argument that has no available types. 789 if (ArgTypes[A].size() == 0) 790 return; 791 792 // Builtins such as "max" have an "sgentype" argument that represents 793 // the corresponding scalar type of a gentype. The number of gentypes 794 // must be a multiple of the number of sgentypes. 795 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 796 "argument type count not compatible with gentype type count"); 797 unsigned Idx = IGenType % ArgTypes[A].size(); 798 ArgList.push_back(ArgTypes[A][Idx]); 799 } 800 801 FunctionList.push_back(Context.getFunctionType( 802 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 803 } 804 } 805 806 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 807 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 808 /// builtin function. Add all candidate signatures to the LookUpResult. 809 /// 810 /// \param S (in) The Sema instance. 811 /// \param LR (inout) The LookupResult instance. 812 /// \param II (in) The identifier being resolved. 813 /// \param FctIndex (in) Starting index in the BuiltinTable. 814 /// \param Len (in) The signature list has Len elements. 815 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 816 IdentifierInfo *II, 817 const unsigned FctIndex, 818 const unsigned Len) { 819 // The builtin function declaration uses generic types (gentype). 820 bool HasGenType = false; 821 822 // Maximum number of types contained in a generic type used as return type or 823 // as argument. Only meaningful for generic types, otherwise equals 1. 824 unsigned GenTypeMaxCnt; 825 826 ASTContext &Context = S.Context; 827 828 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 829 const OpenCLBuiltinStruct &OpenCLBuiltin = 830 BuiltinTable[FctIndex + SignatureIndex]; 831 832 // Ignore this builtin function if it is not available in the currently 833 // selected language version. 834 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 835 OpenCLBuiltin.Versions)) 836 continue; 837 838 // Ignore this builtin function if it carries an extension macro that is 839 // not defined. This indicates that the extension is not supported by the 840 // target, so the builtin function should not be available. 841 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 842 if (!Extensions.empty()) { 843 SmallVector<StringRef, 2> ExtVec; 844 Extensions.split(ExtVec, " "); 845 bool AllExtensionsDefined = true; 846 for (StringRef Ext : ExtVec) { 847 if (!S.getPreprocessor().isMacroDefined(Ext)) { 848 AllExtensionsDefined = false; 849 break; 850 } 851 } 852 if (!AllExtensionsDefined) 853 continue; 854 } 855 856 SmallVector<QualType, 1> RetTypes; 857 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 858 859 // Obtain QualType lists for the function signature. 860 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 861 ArgTypes); 862 if (GenTypeMaxCnt > 1) { 863 HasGenType = true; 864 } 865 866 // Create function overload for each type combination. 867 std::vector<QualType> FunctionList; 868 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 869 ArgTypes); 870 871 SourceLocation Loc = LR.getNameLoc(); 872 DeclContext *Parent = Context.getTranslationUnitDecl(); 873 FunctionDecl *NewOpenCLBuiltin; 874 875 for (const auto &FTy : FunctionList) { 876 NewOpenCLBuiltin = FunctionDecl::Create( 877 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 878 S.getCurFPFeatures().isFPConstrained(), false, 879 FTy->isFunctionProtoType()); 880 NewOpenCLBuiltin->setImplicit(); 881 882 // Create Decl objects for each parameter, adding them to the 883 // FunctionDecl. 884 const auto *FP = cast<FunctionProtoType>(FTy); 885 SmallVector<ParmVarDecl *, 4> ParmList; 886 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 887 ParmVarDecl *Parm = ParmVarDecl::Create( 888 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 889 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 890 Parm->setScopeInfo(0, IParm); 891 ParmList.push_back(Parm); 892 } 893 NewOpenCLBuiltin->setParams(ParmList); 894 895 // Add function attributes. 896 if (OpenCLBuiltin.IsPure) 897 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 898 if (OpenCLBuiltin.IsConst) 899 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 900 if (OpenCLBuiltin.IsConv) 901 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 902 903 if (!S.getLangOpts().OpenCLCPlusPlus) 904 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 905 906 LR.addDecl(NewOpenCLBuiltin); 907 } 908 } 909 910 // If we added overloads, need to resolve the lookup result. 911 if (Len > 1 || HasGenType) 912 LR.resolveKind(); 913 } 914 915 /// Lookup a builtin function, when name lookup would otherwise 916 /// fail. 917 bool Sema::LookupBuiltin(LookupResult &R) { 918 Sema::LookupNameKind NameKind = R.getLookupKind(); 919 920 // If we didn't find a use of this identifier, and if the identifier 921 // corresponds to a compiler builtin, create the decl object for the builtin 922 // now, injecting it into translation unit scope, and return it. 923 if (NameKind == Sema::LookupOrdinaryName || 924 NameKind == Sema::LookupRedeclarationWithLinkage) { 925 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 926 if (II) { 927 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 928 if (II == getASTContext().getMakeIntegerSeqName()) { 929 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 930 return true; 931 } else if (II == getASTContext().getTypePackElementName()) { 932 R.addDecl(getASTContext().getTypePackElementDecl()); 933 return true; 934 } 935 } 936 937 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 938 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 939 auto Index = isOpenCLBuiltin(II->getName()); 940 if (Index.first) { 941 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 942 Index.second); 943 return true; 944 } 945 } 946 947 if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) { 948 if (!RVIntrinsicManager) 949 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this); 950 951 RVIntrinsicManager->InitIntrinsicList(); 952 953 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 954 return true; 955 } 956 957 // If this is a builtin on this (or all) targets, create the decl. 958 if (unsigned BuiltinID = II->getBuiltinID()) { 959 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 960 // library functions like 'malloc'. Instead, we'll just error. 961 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 962 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 963 return false; 964 965 if (NamedDecl *D = 966 LazilyCreateBuiltin(II, BuiltinID, TUScope, 967 R.isForRedeclaration(), R.getNameLoc())) { 968 R.addDecl(D); 969 return true; 970 } 971 } 972 } 973 } 974 975 return false; 976 } 977 978 /// Looks up the declaration of "struct objc_super" and 979 /// saves it for later use in building builtin declaration of 980 /// objc_msgSendSuper and objc_msgSendSuper_stret. 981 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 982 ASTContext &Context = Sema.Context; 983 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 984 Sema::LookupTagName); 985 Sema.LookupName(Result, S); 986 if (Result.getResultKind() == LookupResult::Found) 987 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 988 Context.setObjCSuperType(Context.getTagDeclType(TD)); 989 } 990 991 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 992 if (ID == Builtin::BIobjc_msgSendSuper) 993 LookupPredefedObjCSuperType(*this, S); 994 } 995 996 /// Determine whether we can declare a special member function within 997 /// the class at this point. 998 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 999 // We need to have a definition for the class. 1000 if (!Class->getDefinition() || Class->isDependentContext()) 1001 return false; 1002 1003 // We can't be in the middle of defining the class. 1004 return !Class->isBeingDefined(); 1005 } 1006 1007 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 1008 if (!CanDeclareSpecialMemberFunction(Class)) 1009 return; 1010 1011 // If the default constructor has not yet been declared, do so now. 1012 if (Class->needsImplicitDefaultConstructor()) 1013 DeclareImplicitDefaultConstructor(Class); 1014 1015 // If the copy constructor has not yet been declared, do so now. 1016 if (Class->needsImplicitCopyConstructor()) 1017 DeclareImplicitCopyConstructor(Class); 1018 1019 // If the copy assignment operator has not yet been declared, do so now. 1020 if (Class->needsImplicitCopyAssignment()) 1021 DeclareImplicitCopyAssignment(Class); 1022 1023 if (getLangOpts().CPlusPlus11) { 1024 // If the move constructor has not yet been declared, do so now. 1025 if (Class->needsImplicitMoveConstructor()) 1026 DeclareImplicitMoveConstructor(Class); 1027 1028 // If the move assignment operator has not yet been declared, do so now. 1029 if (Class->needsImplicitMoveAssignment()) 1030 DeclareImplicitMoveAssignment(Class); 1031 } 1032 1033 // If the destructor has not yet been declared, do so now. 1034 if (Class->needsImplicitDestructor()) 1035 DeclareImplicitDestructor(Class); 1036 } 1037 1038 /// Determine whether this is the name of an implicitly-declared 1039 /// special member function. 1040 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1041 switch (Name.getNameKind()) { 1042 case DeclarationName::CXXConstructorName: 1043 case DeclarationName::CXXDestructorName: 1044 return true; 1045 1046 case DeclarationName::CXXOperatorName: 1047 return Name.getCXXOverloadedOperator() == OO_Equal; 1048 1049 default: 1050 break; 1051 } 1052 1053 return false; 1054 } 1055 1056 /// If there are any implicit member functions with the given name 1057 /// that need to be declared in the given declaration context, do so. 1058 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1059 DeclarationName Name, 1060 SourceLocation Loc, 1061 const DeclContext *DC) { 1062 if (!DC) 1063 return; 1064 1065 switch (Name.getNameKind()) { 1066 case DeclarationName::CXXConstructorName: 1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1068 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1069 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1070 if (Record->needsImplicitDefaultConstructor()) 1071 S.DeclareImplicitDefaultConstructor(Class); 1072 if (Record->needsImplicitCopyConstructor()) 1073 S.DeclareImplicitCopyConstructor(Class); 1074 if (S.getLangOpts().CPlusPlus11 && 1075 Record->needsImplicitMoveConstructor()) 1076 S.DeclareImplicitMoveConstructor(Class); 1077 } 1078 break; 1079 1080 case DeclarationName::CXXDestructorName: 1081 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1082 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1083 CanDeclareSpecialMemberFunction(Record)) 1084 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1085 break; 1086 1087 case DeclarationName::CXXOperatorName: 1088 if (Name.getCXXOverloadedOperator() != OO_Equal) 1089 break; 1090 1091 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1092 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1093 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1094 if (Record->needsImplicitCopyAssignment()) 1095 S.DeclareImplicitCopyAssignment(Class); 1096 if (S.getLangOpts().CPlusPlus11 && 1097 Record->needsImplicitMoveAssignment()) 1098 S.DeclareImplicitMoveAssignment(Class); 1099 } 1100 } 1101 break; 1102 1103 case DeclarationName::CXXDeductionGuideName: 1104 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1105 break; 1106 1107 default: 1108 break; 1109 } 1110 } 1111 1112 // Adds all qualifying matches for a name within a decl context to the 1113 // given lookup result. Returns true if any matches were found. 1114 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1115 bool Found = false; 1116 1117 // Lazily declare C++ special member functions. 1118 if (S.getLangOpts().CPlusPlus) 1119 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1120 DC); 1121 1122 // Perform lookup into this declaration context. 1123 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1124 for (NamedDecl *D : DR) { 1125 if ((D = R.getAcceptableDecl(D))) { 1126 R.addDecl(D); 1127 Found = true; 1128 } 1129 } 1130 1131 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1132 return true; 1133 1134 if (R.getLookupName().getNameKind() 1135 != DeclarationName::CXXConversionFunctionName || 1136 R.getLookupName().getCXXNameType()->isDependentType() || 1137 !isa<CXXRecordDecl>(DC)) 1138 return Found; 1139 1140 // C++ [temp.mem]p6: 1141 // A specialization of a conversion function template is not found by 1142 // name lookup. Instead, any conversion function templates visible in the 1143 // context of the use are considered. [...] 1144 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1145 if (!Record->isCompleteDefinition()) 1146 return Found; 1147 1148 // For conversion operators, 'operator auto' should only match 1149 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1150 // as a candidate for template substitution. 1151 auto *ContainedDeducedType = 1152 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1153 if (R.getLookupName().getNameKind() == 1154 DeclarationName::CXXConversionFunctionName && 1155 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1156 return Found; 1157 1158 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1159 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1160 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1161 if (!ConvTemplate) 1162 continue; 1163 1164 // When we're performing lookup for the purposes of redeclaration, just 1165 // add the conversion function template. When we deduce template 1166 // arguments for specializations, we'll end up unifying the return 1167 // type of the new declaration with the type of the function template. 1168 if (R.isForRedeclaration()) { 1169 R.addDecl(ConvTemplate); 1170 Found = true; 1171 continue; 1172 } 1173 1174 // C++ [temp.mem]p6: 1175 // [...] For each such operator, if argument deduction succeeds 1176 // (14.9.2.3), the resulting specialization is used as if found by 1177 // name lookup. 1178 // 1179 // When referencing a conversion function for any purpose other than 1180 // a redeclaration (such that we'll be building an expression with the 1181 // result), perform template argument deduction and place the 1182 // specialization into the result set. We do this to avoid forcing all 1183 // callers to perform special deduction for conversion functions. 1184 TemplateDeductionInfo Info(R.getNameLoc()); 1185 FunctionDecl *Specialization = nullptr; 1186 1187 const FunctionProtoType *ConvProto 1188 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1189 assert(ConvProto && "Nonsensical conversion function template type"); 1190 1191 // Compute the type of the function that we would expect the conversion 1192 // function to have, if it were to match the name given. 1193 // FIXME: Calling convention! 1194 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1195 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1196 EPI.ExceptionSpec = EST_None; 1197 QualType ExpectedType = R.getSema().Context.getFunctionType( 1198 R.getLookupName().getCXXNameType(), std::nullopt, EPI); 1199 1200 // Perform template argument deduction against the type that we would 1201 // expect the function to have. 1202 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1203 Specialization, Info) 1204 == Sema::TDK_Success) { 1205 R.addDecl(Specialization); 1206 Found = true; 1207 } 1208 } 1209 1210 return Found; 1211 } 1212 1213 // Performs C++ unqualified lookup into the given file context. 1214 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1215 const DeclContext *NS, 1216 UnqualUsingDirectiveSet &UDirs) { 1217 1218 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1219 1220 // Perform direct name lookup into the LookupCtx. 1221 bool Found = LookupDirect(S, R, NS); 1222 1223 // Perform direct name lookup into the namespaces nominated by the 1224 // using directives whose common ancestor is this namespace. 1225 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1226 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1227 Found = true; 1228 1229 R.resolveKind(); 1230 1231 return Found; 1232 } 1233 1234 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1235 if (DeclContext *Ctx = S->getEntity()) 1236 return Ctx->isFileContext(); 1237 return false; 1238 } 1239 1240 /// Find the outer declaration context from this scope. This indicates the 1241 /// context that we should search up to (exclusive) before considering the 1242 /// parent of the specified scope. 1243 static DeclContext *findOuterContext(Scope *S) { 1244 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1245 if (DeclContext *DC = OuterS->getLookupEntity()) 1246 return DC; 1247 return nullptr; 1248 } 1249 1250 namespace { 1251 /// An RAII object to specify that we want to find block scope extern 1252 /// declarations. 1253 struct FindLocalExternScope { 1254 FindLocalExternScope(LookupResult &R) 1255 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1256 Decl::IDNS_LocalExtern) { 1257 R.setFindLocalExtern(R.getIdentifierNamespace() & 1258 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1259 } 1260 void restore() { 1261 R.setFindLocalExtern(OldFindLocalExtern); 1262 } 1263 ~FindLocalExternScope() { 1264 restore(); 1265 } 1266 LookupResult &R; 1267 bool OldFindLocalExtern; 1268 }; 1269 } // end anonymous namespace 1270 1271 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1272 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1273 1274 DeclarationName Name = R.getLookupName(); 1275 Sema::LookupNameKind NameKind = R.getLookupKind(); 1276 1277 // If this is the name of an implicitly-declared special member function, 1278 // go through the scope stack to implicitly declare 1279 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1280 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1281 if (DeclContext *DC = PreS->getEntity()) 1282 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1283 } 1284 1285 // Implicitly declare member functions with the name we're looking for, if in 1286 // fact we are in a scope where it matters. 1287 1288 Scope *Initial = S; 1289 IdentifierResolver::iterator 1290 I = IdResolver.begin(Name), 1291 IEnd = IdResolver.end(); 1292 1293 // First we lookup local scope. 1294 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1295 // ...During unqualified name lookup (3.4.1), the names appear as if 1296 // they were declared in the nearest enclosing namespace which contains 1297 // both the using-directive and the nominated namespace. 1298 // [Note: in this context, "contains" means "contains directly or 1299 // indirectly". 1300 // 1301 // For example: 1302 // namespace A { int i; } 1303 // void foo() { 1304 // int i; 1305 // { 1306 // using namespace A; 1307 // ++i; // finds local 'i', A::i appears at global scope 1308 // } 1309 // } 1310 // 1311 UnqualUsingDirectiveSet UDirs(*this); 1312 bool VisitedUsingDirectives = false; 1313 bool LeftStartingScope = false; 1314 1315 // When performing a scope lookup, we want to find local extern decls. 1316 FindLocalExternScope FindLocals(R); 1317 1318 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1319 bool SearchNamespaceScope = true; 1320 // Check whether the IdResolver has anything in this scope. 1321 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1322 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1323 if (NameKind == LookupRedeclarationWithLinkage && 1324 !(*I)->isTemplateParameter()) { 1325 // If it's a template parameter, we still find it, so we can diagnose 1326 // the invalid redeclaration. 1327 1328 // Determine whether this (or a previous) declaration is 1329 // out-of-scope. 1330 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1331 LeftStartingScope = true; 1332 1333 // If we found something outside of our starting scope that 1334 // does not have linkage, skip it. 1335 if (LeftStartingScope && !((*I)->hasLinkage())) { 1336 R.setShadowed(); 1337 continue; 1338 } 1339 } else { 1340 // We found something in this scope, we should not look at the 1341 // namespace scope 1342 SearchNamespaceScope = false; 1343 } 1344 R.addDecl(ND); 1345 } 1346 } 1347 if (!SearchNamespaceScope) { 1348 R.resolveKind(); 1349 if (S->isClassScope()) 1350 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) 1351 R.setNamingClass(Record); 1352 return true; 1353 } 1354 1355 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1356 // C++11 [class.friend]p11: 1357 // If a friend declaration appears in a local class and the name 1358 // specified is an unqualified name, a prior declaration is 1359 // looked up without considering scopes that are outside the 1360 // innermost enclosing non-class scope. 1361 return false; 1362 } 1363 1364 if (DeclContext *Ctx = S->getLookupEntity()) { 1365 DeclContext *OuterCtx = findOuterContext(S); 1366 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1367 // We do not directly look into transparent contexts, since 1368 // those entities will be found in the nearest enclosing 1369 // non-transparent context. 1370 if (Ctx->isTransparentContext()) 1371 continue; 1372 1373 // We do not look directly into function or method contexts, 1374 // since all of the local variables and parameters of the 1375 // function/method are present within the Scope. 1376 if (Ctx->isFunctionOrMethod()) { 1377 // If we have an Objective-C instance method, look for ivars 1378 // in the corresponding interface. 1379 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1380 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1381 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1382 ObjCInterfaceDecl *ClassDeclared; 1383 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1384 Name.getAsIdentifierInfo(), 1385 ClassDeclared)) { 1386 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1387 R.addDecl(ND); 1388 R.resolveKind(); 1389 return true; 1390 } 1391 } 1392 } 1393 } 1394 1395 continue; 1396 } 1397 1398 // If this is a file context, we need to perform unqualified name 1399 // lookup considering using directives. 1400 if (Ctx->isFileContext()) { 1401 // If we haven't handled using directives yet, do so now. 1402 if (!VisitedUsingDirectives) { 1403 // Add using directives from this context up to the top level. 1404 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1405 if (UCtx->isTransparentContext()) 1406 continue; 1407 1408 UDirs.visit(UCtx, UCtx); 1409 } 1410 1411 // Find the innermost file scope, so we can add using directives 1412 // from local scopes. 1413 Scope *InnermostFileScope = S; 1414 while (InnermostFileScope && 1415 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1416 InnermostFileScope = InnermostFileScope->getParent(); 1417 UDirs.visitScopeChain(Initial, InnermostFileScope); 1418 1419 UDirs.done(); 1420 1421 VisitedUsingDirectives = true; 1422 } 1423 1424 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1425 R.resolveKind(); 1426 return true; 1427 } 1428 1429 continue; 1430 } 1431 1432 // Perform qualified name lookup into this context. 1433 // FIXME: In some cases, we know that every name that could be found by 1434 // this qualified name lookup will also be on the identifier chain. For 1435 // example, inside a class without any base classes, we never need to 1436 // perform qualified lookup because all of the members are on top of the 1437 // identifier chain. 1438 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1439 return true; 1440 } 1441 } 1442 } 1443 1444 // Stop if we ran out of scopes. 1445 // FIXME: This really, really shouldn't be happening. 1446 if (!S) return false; 1447 1448 // If we are looking for members, no need to look into global/namespace scope. 1449 if (NameKind == LookupMemberName) 1450 return false; 1451 1452 // Collect UsingDirectiveDecls in all scopes, and recursively all 1453 // nominated namespaces by those using-directives. 1454 // 1455 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1456 // don't build it for each lookup! 1457 if (!VisitedUsingDirectives) { 1458 UDirs.visitScopeChain(Initial, S); 1459 UDirs.done(); 1460 } 1461 1462 // If we're not performing redeclaration lookup, do not look for local 1463 // extern declarations outside of a function scope. 1464 if (!R.isForRedeclaration()) 1465 FindLocals.restore(); 1466 1467 // Lookup namespace scope, and global scope. 1468 // Unqualified name lookup in C++ requires looking into scopes 1469 // that aren't strictly lexical, and therefore we walk through the 1470 // context as well as walking through the scopes. 1471 for (; S; S = S->getParent()) { 1472 // Check whether the IdResolver has anything in this scope. 1473 bool Found = false; 1474 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1475 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1476 // We found something. Look for anything else in our scope 1477 // with this same name and in an acceptable identifier 1478 // namespace, so that we can construct an overload set if we 1479 // need to. 1480 Found = true; 1481 R.addDecl(ND); 1482 } 1483 } 1484 1485 if (Found && S->isTemplateParamScope()) { 1486 R.resolveKind(); 1487 return true; 1488 } 1489 1490 DeclContext *Ctx = S->getLookupEntity(); 1491 if (Ctx) { 1492 DeclContext *OuterCtx = findOuterContext(S); 1493 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1494 // We do not directly look into transparent contexts, since 1495 // those entities will be found in the nearest enclosing 1496 // non-transparent context. 1497 if (Ctx->isTransparentContext()) 1498 continue; 1499 1500 // If we have a context, and it's not a context stashed in the 1501 // template parameter scope for an out-of-line definition, also 1502 // look into that context. 1503 if (!(Found && S->isTemplateParamScope())) { 1504 assert(Ctx->isFileContext() && 1505 "We should have been looking only at file context here already."); 1506 1507 // Look into context considering using-directives. 1508 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1509 Found = true; 1510 } 1511 1512 if (Found) { 1513 R.resolveKind(); 1514 return true; 1515 } 1516 1517 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1518 return false; 1519 } 1520 } 1521 1522 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1523 return false; 1524 } 1525 1526 return !R.empty(); 1527 } 1528 1529 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1530 if (auto *M = getCurrentModule()) 1531 Context.mergeDefinitionIntoModule(ND, M); 1532 else 1533 // We're not building a module; just make the definition visible. 1534 ND->setVisibleDespiteOwningModule(); 1535 1536 // If ND is a template declaration, make the template parameters 1537 // visible too. They're not (necessarily) within a mergeable DeclContext. 1538 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1539 for (auto *Param : *TD->getTemplateParameters()) 1540 makeMergedDefinitionVisible(Param); 1541 } 1542 1543 /// Find the module in which the given declaration was defined. 1544 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1545 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1546 // If this function was instantiated from a template, the defining module is 1547 // the module containing the pattern. 1548 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1549 Entity = Pattern; 1550 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1551 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1552 Entity = Pattern; 1553 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1554 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1555 Entity = Pattern; 1556 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1557 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1558 Entity = Pattern; 1559 } 1560 1561 // Walk up to the containing context. That might also have been instantiated 1562 // from a template. 1563 DeclContext *Context = Entity->getLexicalDeclContext(); 1564 if (Context->isFileContext()) 1565 return S.getOwningModule(Entity); 1566 return getDefiningModule(S, cast<Decl>(Context)); 1567 } 1568 1569 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1570 unsigned N = CodeSynthesisContexts.size(); 1571 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1572 I != N; ++I) { 1573 Module *M = CodeSynthesisContexts[I].Entity ? 1574 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1575 nullptr; 1576 if (M && !LookupModulesCache.insert(M).second) 1577 M = nullptr; 1578 CodeSynthesisContextLookupModules.push_back(M); 1579 } 1580 return LookupModulesCache; 1581 } 1582 1583 /// Determine if we could use all the declarations in the module. 1584 bool Sema::isUsableModule(const Module *M) { 1585 assert(M && "We shouldn't check nullness for module here"); 1586 // Return quickly if we cached the result. 1587 if (UsableModuleUnitsCache.count(M)) 1588 return true; 1589 1590 // If M is the global module fragment of the current translation unit. So it 1591 // should be usable. 1592 // [module.global.frag]p1: 1593 // The global module fragment can be used to provide declarations that are 1594 // attached to the global module and usable within the module unit. 1595 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment || 1596 // If M is the module we're parsing, it should be usable. This covers the 1597 // private module fragment. The private module fragment is usable only if 1598 // it is within the current module unit. And it must be the current 1599 // parsing module unit if it is within the current module unit according 1600 // to the grammar of the private module fragment. NOTE: This is covered by 1601 // the following condition. The intention of the check is to avoid string 1602 // comparison as much as possible. 1603 M == getCurrentModule() || 1604 // The module unit which is in the same module with the current module 1605 // unit is usable. 1606 // 1607 // FIXME: Here we judge if they are in the same module by comparing the 1608 // string. Is there any better solution? 1609 M->getPrimaryModuleInterfaceName() == 1610 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) { 1611 UsableModuleUnitsCache.insert(M); 1612 return true; 1613 } 1614 1615 return false; 1616 } 1617 1618 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { 1619 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1620 if (isModuleVisible(Merged)) 1621 return true; 1622 return false; 1623 } 1624 1625 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { 1626 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1627 if (isUsableModule(Merged)) 1628 return true; 1629 return false; 1630 } 1631 1632 template <typename ParmDecl> 1633 static bool 1634 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1635 llvm::SmallVectorImpl<Module *> *Modules, 1636 Sema::AcceptableKind Kind) { 1637 if (!D->hasDefaultArgument()) 1638 return false; 1639 1640 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1641 while (D && Visited.insert(D).second) { 1642 auto &DefaultArg = D->getDefaultArgStorage(); 1643 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1644 return true; 1645 1646 if (!DefaultArg.isInherited() && Modules) { 1647 auto *NonConstD = const_cast<ParmDecl*>(D); 1648 Modules->push_back(S.getOwningModule(NonConstD)); 1649 } 1650 1651 // If there was a previous default argument, maybe its parameter is 1652 // acceptable. 1653 D = DefaultArg.getInheritedFrom(); 1654 } 1655 return false; 1656 } 1657 1658 bool Sema::hasAcceptableDefaultArgument( 1659 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1660 Sema::AcceptableKind Kind) { 1661 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1662 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1663 1664 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1665 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1666 1667 return ::hasAcceptableDefaultArgument( 1668 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1669 } 1670 1671 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1672 llvm::SmallVectorImpl<Module *> *Modules) { 1673 return hasAcceptableDefaultArgument(D, Modules, 1674 Sema::AcceptableKind::Visible); 1675 } 1676 1677 bool Sema::hasReachableDefaultArgument( 1678 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1679 return hasAcceptableDefaultArgument(D, Modules, 1680 Sema::AcceptableKind::Reachable); 1681 } 1682 1683 template <typename Filter> 1684 static bool 1685 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1686 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1687 Sema::AcceptableKind Kind) { 1688 bool HasFilteredRedecls = false; 1689 1690 for (auto *Redecl : D->redecls()) { 1691 auto *R = cast<NamedDecl>(Redecl); 1692 if (!F(R)) 1693 continue; 1694 1695 if (S.isAcceptable(R, Kind)) 1696 return true; 1697 1698 HasFilteredRedecls = true; 1699 1700 if (Modules) 1701 Modules->push_back(R->getOwningModule()); 1702 } 1703 1704 // Only return false if there is at least one redecl that is not filtered out. 1705 if (HasFilteredRedecls) 1706 return false; 1707 1708 return true; 1709 } 1710 1711 static bool 1712 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1713 llvm::SmallVectorImpl<Module *> *Modules, 1714 Sema::AcceptableKind Kind) { 1715 return hasAcceptableDeclarationImpl( 1716 S, D, Modules, 1717 [](const NamedDecl *D) { 1718 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1719 return RD->getTemplateSpecializationKind() == 1720 TSK_ExplicitSpecialization; 1721 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1722 return FD->getTemplateSpecializationKind() == 1723 TSK_ExplicitSpecialization; 1724 if (auto *VD = dyn_cast<VarDecl>(D)) 1725 return VD->getTemplateSpecializationKind() == 1726 TSK_ExplicitSpecialization; 1727 llvm_unreachable("unknown explicit specialization kind"); 1728 }, 1729 Kind); 1730 } 1731 1732 bool Sema::hasVisibleExplicitSpecialization( 1733 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1734 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1735 Sema::AcceptableKind::Visible); 1736 } 1737 1738 bool Sema::hasReachableExplicitSpecialization( 1739 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1740 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1741 Sema::AcceptableKind::Reachable); 1742 } 1743 1744 static bool 1745 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1746 llvm::SmallVectorImpl<Module *> *Modules, 1747 Sema::AcceptableKind Kind) { 1748 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1749 "not a member specialization"); 1750 return hasAcceptableDeclarationImpl( 1751 S, D, Modules, 1752 [](const NamedDecl *D) { 1753 // If the specialization is declared at namespace scope, then it's a 1754 // member specialization declaration. If it's lexically inside the class 1755 // definition then it was instantiated. 1756 // 1757 // FIXME: This is a hack. There should be a better way to determine 1758 // this. 1759 // FIXME: What about MS-style explicit specializations declared within a 1760 // class definition? 1761 return D->getLexicalDeclContext()->isFileContext(); 1762 }, 1763 Kind); 1764 } 1765 1766 bool Sema::hasVisibleMemberSpecialization( 1767 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1768 return hasAcceptableMemberSpecialization(*this, D, Modules, 1769 Sema::AcceptableKind::Visible); 1770 } 1771 1772 bool Sema::hasReachableMemberSpecialization( 1773 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1774 return hasAcceptableMemberSpecialization(*this, D, Modules, 1775 Sema::AcceptableKind::Reachable); 1776 } 1777 1778 /// Determine whether a declaration is acceptable to name lookup. 1779 /// 1780 /// This routine determines whether the declaration D is acceptable in the 1781 /// current lookup context, taking into account the current template 1782 /// instantiation stack. During template instantiation, a declaration is 1783 /// acceptable if it is acceptable from a module containing any entity on the 1784 /// template instantiation path (by instantiating a template, you allow it to 1785 /// see the declarations that your module can see, including those later on in 1786 /// your module). 1787 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1788 Sema::AcceptableKind Kind) { 1789 assert(!D->isUnconditionallyVisible() && 1790 "should not call this: not in slow case"); 1791 1792 Module *DeclModule = SemaRef.getOwningModule(D); 1793 assert(DeclModule && "hidden decl has no owning module"); 1794 1795 // If the owning module is visible, the decl is acceptable. 1796 if (SemaRef.isModuleVisible(DeclModule, 1797 D->isInvisibleOutsideTheOwningModule())) 1798 return true; 1799 1800 // Determine whether a decl context is a file context for the purpose of 1801 // visibility/reachability. This looks through some (export and linkage spec) 1802 // transparent contexts, but not others (enums). 1803 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1804 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1805 isa<ExportDecl>(DC); 1806 }; 1807 1808 // If this declaration is not at namespace scope 1809 // then it is acceptable if its lexical parent has a acceptable definition. 1810 DeclContext *DC = D->getLexicalDeclContext(); 1811 if (DC && !IsEffectivelyFileContext(DC)) { 1812 // For a parameter, check whether our current template declaration's 1813 // lexical context is acceptable, not whether there's some other acceptable 1814 // definition of it, because parameters aren't "within" the definition. 1815 // 1816 // In C++ we need to check for a acceptable definition due to ODR merging, 1817 // and in C we must not because each declaration of a function gets its own 1818 // set of declarations for tags in prototype scope. 1819 bool AcceptableWithinParent; 1820 if (D->isTemplateParameter()) { 1821 bool SearchDefinitions = true; 1822 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1823 if (const auto *TD = DCD->getDescribedTemplate()) { 1824 TemplateParameterList *TPL = TD->getTemplateParameters(); 1825 auto Index = getDepthAndIndex(D).second; 1826 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1827 } 1828 } 1829 if (SearchDefinitions) 1830 AcceptableWithinParent = 1831 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1832 else 1833 AcceptableWithinParent = 1834 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1835 } else if (isa<ParmVarDecl>(D) || 1836 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1837 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1838 else if (D->isModulePrivate()) { 1839 // A module-private declaration is only acceptable if an enclosing lexical 1840 // parent was merged with another definition in the current module. 1841 AcceptableWithinParent = false; 1842 do { 1843 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1844 AcceptableWithinParent = true; 1845 break; 1846 } 1847 DC = DC->getLexicalParent(); 1848 } while (!IsEffectivelyFileContext(DC)); 1849 } else { 1850 AcceptableWithinParent = 1851 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1852 } 1853 1854 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1855 Kind == Sema::AcceptableKind::Visible && 1856 // FIXME: Do something better in this case. 1857 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1858 // Cache the fact that this declaration is implicitly visible because 1859 // its parent has a visible definition. 1860 D->setVisibleDespiteOwningModule(); 1861 } 1862 return AcceptableWithinParent; 1863 } 1864 1865 if (Kind == Sema::AcceptableKind::Visible) 1866 return false; 1867 1868 assert(Kind == Sema::AcceptableKind::Reachable && 1869 "Additional Sema::AcceptableKind?"); 1870 return isReachableSlow(SemaRef, D); 1871 } 1872 1873 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1874 // The module might be ordinarily visible. For a module-private query, that 1875 // means it is part of the current module. 1876 if (ModulePrivate && isUsableModule(M)) 1877 return true; 1878 1879 // For a query which is not module-private, that means it is in our visible 1880 // module set. 1881 if (!ModulePrivate && VisibleModules.isVisible(M)) 1882 return true; 1883 1884 // Otherwise, it might be visible by virtue of the query being within a 1885 // template instantiation or similar that is permitted to look inside M. 1886 1887 // Find the extra places where we need to look. 1888 const auto &LookupModules = getLookupModules(); 1889 if (LookupModules.empty()) 1890 return false; 1891 1892 // If our lookup set contains the module, it's visible. 1893 if (LookupModules.count(M)) 1894 return true; 1895 1896 // The global module fragments are visible to its corresponding module unit. 1897 // So the global module fragment should be visible if the its corresponding 1898 // module unit is visible. 1899 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) 1900 return true; 1901 1902 // For a module-private query, that's everywhere we get to look. 1903 if (ModulePrivate) 1904 return false; 1905 1906 // Check whether M is transitively exported to an import of the lookup set. 1907 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1908 return LookupM->isModuleVisible(M); 1909 }); 1910 } 1911 1912 // FIXME: Return false directly if we don't have an interface dependency on the 1913 // translation unit containing D. 1914 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1915 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1916 1917 Module *DeclModule = SemaRef.getOwningModule(D); 1918 assert(DeclModule && "hidden decl has no owning module"); 1919 1920 // Entities in header like modules are reachable only if they're visible. 1921 if (DeclModule->isHeaderLikeModule()) 1922 return false; 1923 1924 if (!D->isInAnotherModuleUnit()) 1925 return true; 1926 1927 // [module.reach]/p3: 1928 // A declaration D is reachable from a point P if: 1929 // ... 1930 // - D is not discarded ([module.global.frag]), appears in a translation unit 1931 // that is reachable from P, and does not appear within a private module 1932 // fragment. 1933 // 1934 // A declaration that's discarded in the GMF should be module-private. 1935 if (D->isModulePrivate()) 1936 return false; 1937 1938 // [module.reach]/p1 1939 // A translation unit U is necessarily reachable from a point P if U is a 1940 // module interface unit on which the translation unit containing P has an 1941 // interface dependency, or the translation unit containing P imports U, in 1942 // either case prior to P ([module.import]). 1943 // 1944 // [module.import]/p10 1945 // A translation unit has an interface dependency on a translation unit U if 1946 // it contains a declaration (possibly a module-declaration) that imports U 1947 // or if it has an interface dependency on a translation unit that has an 1948 // interface dependency on U. 1949 // 1950 // So we could conclude the module unit U is necessarily reachable if: 1951 // (1) The module unit U is module interface unit. 1952 // (2) The current unit has an interface dependency on the module unit U. 1953 // 1954 // Here we only check for the first condition. Since we couldn't see 1955 // DeclModule if it isn't (transitively) imported. 1956 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1957 return true; 1958 1959 // [module.reach]/p2 1960 // Additional translation units on 1961 // which the point within the program has an interface dependency may be 1962 // considered reachable, but it is unspecified which are and under what 1963 // circumstances. 1964 // 1965 // The decision here is to treat all additional tranditional units as 1966 // unreachable. 1967 return false; 1968 } 1969 1970 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1971 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1972 } 1973 1974 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 1975 // FIXME: If there are both visible and hidden declarations, we need to take 1976 // into account whether redeclaration is possible. Example: 1977 // 1978 // Non-imported module: 1979 // int f(T); // #1 1980 // Some TU: 1981 // static int f(U); // #2, not a redeclaration of #1 1982 // int f(T); // #3, finds both, should link with #1 if T != U, but 1983 // // with #2 if T == U; neither should be ambiguous. 1984 for (auto *D : R) { 1985 if (isVisible(D)) 1986 return true; 1987 assert(D->isExternallyDeclarable() && 1988 "should not have hidden, non-externally-declarable result here"); 1989 } 1990 1991 // This function is called once "New" is essentially complete, but before a 1992 // previous declaration is attached. We can't query the linkage of "New" in 1993 // general, because attaching the previous declaration can change the 1994 // linkage of New to match the previous declaration. 1995 // 1996 // However, because we've just determined that there is no *visible* prior 1997 // declaration, we can compute the linkage here. There are two possibilities: 1998 // 1999 // * This is not a redeclaration; it's safe to compute the linkage now. 2000 // 2001 // * This is a redeclaration of a prior declaration that is externally 2002 // redeclarable. In that case, the linkage of the declaration is not 2003 // changed by attaching the prior declaration, because both are externally 2004 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2005 // 2006 // FIXME: This is subtle and fragile. 2007 return New->isExternallyDeclarable(); 2008 } 2009 2010 /// Retrieve the visible declaration corresponding to D, if any. 2011 /// 2012 /// This routine determines whether the declaration D is visible in the current 2013 /// module, with the current imports. If not, it checks whether any 2014 /// redeclaration of D is visible, and if so, returns that declaration. 2015 /// 2016 /// \returns D, or a visible previous declaration of D, whichever is more recent 2017 /// and visible. If no declaration of D is visible, returns null. 2018 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2019 unsigned IDNS) { 2020 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2021 2022 for (auto *RD : D->redecls()) { 2023 // Don't bother with extra checks if we already know this one isn't visible. 2024 if (RD == D) 2025 continue; 2026 2027 auto ND = cast<NamedDecl>(RD); 2028 // FIXME: This is wrong in the case where the previous declaration is not 2029 // visible in the same scope as D. This needs to be done much more 2030 // carefully. 2031 if (ND->isInIdentifierNamespace(IDNS) && 2032 LookupResult::isAvailableForLookup(SemaRef, ND)) 2033 return ND; 2034 } 2035 2036 return nullptr; 2037 } 2038 2039 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2040 llvm::SmallVectorImpl<Module *> *Modules) { 2041 assert(!isVisible(D) && "not in slow case"); 2042 return hasAcceptableDeclarationImpl( 2043 *this, D, Modules, [](const NamedDecl *) { return true; }, 2044 Sema::AcceptableKind::Visible); 2045 } 2046 2047 bool Sema::hasReachableDeclarationSlow( 2048 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2049 assert(!isReachable(D) && "not in slow case"); 2050 return hasAcceptableDeclarationImpl( 2051 *this, D, Modules, [](const NamedDecl *) { return true; }, 2052 Sema::AcceptableKind::Reachable); 2053 } 2054 2055 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2056 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2057 // Namespaces are a bit of a special case: we expect there to be a lot of 2058 // redeclarations of some namespaces, all declarations of a namespace are 2059 // essentially interchangeable, all declarations are found by name lookup 2060 // if any is, and namespaces are never looked up during template 2061 // instantiation. So we benefit from caching the check in this case, and 2062 // it is correct to do so. 2063 auto *Key = ND->getCanonicalDecl(); 2064 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2065 return Acceptable; 2066 auto *Acceptable = isVisible(getSema(), Key) 2067 ? Key 2068 : findAcceptableDecl(getSema(), Key, IDNS); 2069 if (Acceptable) 2070 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2071 return Acceptable; 2072 } 2073 2074 return findAcceptableDecl(getSema(), D, IDNS); 2075 } 2076 2077 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2078 // If this declaration is already visible, return it directly. 2079 if (D->isUnconditionallyVisible()) 2080 return true; 2081 2082 // During template instantiation, we can refer to hidden declarations, if 2083 // they were visible in any module along the path of instantiation. 2084 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2085 } 2086 2087 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2088 if (D->isUnconditionallyVisible()) 2089 return true; 2090 2091 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2092 } 2093 2094 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2095 // We should check the visibility at the callsite already. 2096 if (isVisible(SemaRef, ND)) 2097 return true; 2098 2099 // Deduction guide lives in namespace scope generally, but it is just a 2100 // hint to the compilers. What we actually lookup for is the generated member 2101 // of the corresponding template. So it is sufficient to check the 2102 // reachability of the template decl. 2103 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2104 return SemaRef.hasReachableDefinition(DeductionGuide); 2105 2106 // FIXME: The lookup for allocation function is a standalone process. 2107 // (We can find the logics in Sema::FindAllocationFunctions) 2108 // 2109 // Such structure makes it a problem when we instantiate a template 2110 // declaration using placement allocation function if the placement 2111 // allocation function is invisible. 2112 // (See https://github.com/llvm/llvm-project/issues/59601) 2113 // 2114 // Here we workaround it by making the placement allocation functions 2115 // always acceptable. The downside is that we can't diagnose the direct 2116 // use of the invisible placement allocation functions. (Although such uses 2117 // should be rare). 2118 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2119 FD && FD->isReservedGlobalPlacementOperator()) 2120 return true; 2121 2122 auto *DC = ND->getDeclContext(); 2123 // If ND is not visible and it is at namespace scope, it shouldn't be found 2124 // by name lookup. 2125 if (DC->isFileContext()) 2126 return false; 2127 2128 // [module.interface]p7 2129 // Class and enumeration member names can be found by name lookup in any 2130 // context in which a definition of the type is reachable. 2131 // 2132 // FIXME: The current implementation didn't consider about scope. For example, 2133 // ``` 2134 // // m.cppm 2135 // export module m; 2136 // enum E1 { e1 }; 2137 // // Use.cpp 2138 // import m; 2139 // void test() { 2140 // auto a = E1::e1; // Error as expected. 2141 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2142 // } 2143 // ``` 2144 // For the above example, the current implementation would emit error for `a` 2145 // correctly. However, the implementation wouldn't diagnose about `b` now. 2146 // Since we only check the reachability for the parent only. 2147 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2148 if (auto *TD = dyn_cast<TagDecl>(DC)) 2149 return SemaRef.hasReachableDefinition(TD); 2150 2151 return false; 2152 } 2153 2154 /// Perform unqualified name lookup starting from a given 2155 /// scope. 2156 /// 2157 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is 2158 /// used to find names within the current scope. For example, 'x' in 2159 /// @code 2160 /// int x; 2161 /// int f() { 2162 /// return x; // unqualified name look finds 'x' in the global scope 2163 /// } 2164 /// @endcode 2165 /// 2166 /// Different lookup criteria can find different names. For example, a 2167 /// particular scope can have both a struct and a function of the same 2168 /// name, and each can be found by certain lookup criteria. For more 2169 /// information about lookup criteria, see the documentation for the 2170 /// class LookupCriteria. 2171 /// 2172 /// @param S The scope from which unqualified name lookup will 2173 /// begin. If the lookup criteria permits, name lookup may also search 2174 /// in the parent scopes. 2175 /// 2176 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to 2177 /// look up and the lookup kind), and is updated with the results of lookup 2178 /// including zero or more declarations and possibly additional information 2179 /// used to diagnose ambiguities. 2180 /// 2181 /// @returns \c true if lookup succeeded and false otherwise. 2182 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2183 bool ForceNoCPlusPlus) { 2184 DeclarationName Name = R.getLookupName(); 2185 if (!Name) return false; 2186 2187 LookupNameKind NameKind = R.getLookupKind(); 2188 2189 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2190 // Unqualified name lookup in C/Objective-C is purely lexical, so 2191 // search in the declarations attached to the name. 2192 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2193 // Find the nearest non-transparent declaration scope. 2194 while (!(S->getFlags() & Scope::DeclScope) || 2195 (S->getEntity() && S->getEntity()->isTransparentContext())) 2196 S = S->getParent(); 2197 } 2198 2199 // When performing a scope lookup, we want to find local extern decls. 2200 FindLocalExternScope FindLocals(R); 2201 2202 // Scan up the scope chain looking for a decl that matches this 2203 // identifier that is in the appropriate namespace. This search 2204 // should not take long, as shadowing of names is uncommon, and 2205 // deep shadowing is extremely uncommon. 2206 bool LeftStartingScope = false; 2207 2208 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2209 IEnd = IdResolver.end(); 2210 I != IEnd; ++I) 2211 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2212 if (NameKind == LookupRedeclarationWithLinkage) { 2213 // Determine whether this (or a previous) declaration is 2214 // out-of-scope. 2215 if (!LeftStartingScope && !S->isDeclScope(*I)) 2216 LeftStartingScope = true; 2217 2218 // If we found something outside of our starting scope that 2219 // does not have linkage, skip it. 2220 if (LeftStartingScope && !((*I)->hasLinkage())) { 2221 R.setShadowed(); 2222 continue; 2223 } 2224 } 2225 else if (NameKind == LookupObjCImplicitSelfParam && 2226 !isa<ImplicitParamDecl>(*I)) 2227 continue; 2228 2229 R.addDecl(D); 2230 2231 // Check whether there are any other declarations with the same name 2232 // and in the same scope. 2233 if (I != IEnd) { 2234 // Find the scope in which this declaration was declared (if it 2235 // actually exists in a Scope). 2236 while (S && !S->isDeclScope(D)) 2237 S = S->getParent(); 2238 2239 // If the scope containing the declaration is the translation unit, 2240 // then we'll need to perform our checks based on the matching 2241 // DeclContexts rather than matching scopes. 2242 if (S && isNamespaceOrTranslationUnitScope(S)) 2243 S = nullptr; 2244 2245 // Compute the DeclContext, if we need it. 2246 DeclContext *DC = nullptr; 2247 if (!S) 2248 DC = (*I)->getDeclContext()->getRedeclContext(); 2249 2250 IdentifierResolver::iterator LastI = I; 2251 for (++LastI; LastI != IEnd; ++LastI) { 2252 if (S) { 2253 // Match based on scope. 2254 if (!S->isDeclScope(*LastI)) 2255 break; 2256 } else { 2257 // Match based on DeclContext. 2258 DeclContext *LastDC 2259 = (*LastI)->getDeclContext()->getRedeclContext(); 2260 if (!LastDC->Equals(DC)) 2261 break; 2262 } 2263 2264 // If the declaration is in the right namespace and visible, add it. 2265 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2266 R.addDecl(LastD); 2267 } 2268 2269 R.resolveKind(); 2270 } 2271 2272 return true; 2273 } 2274 } else { 2275 // Perform C++ unqualified name lookup. 2276 if (CppLookupName(R, S)) 2277 return true; 2278 } 2279 2280 // If we didn't find a use of this identifier, and if the identifier 2281 // corresponds to a compiler builtin, create the decl object for the builtin 2282 // now, injecting it into translation unit scope, and return it. 2283 if (AllowBuiltinCreation && LookupBuiltin(R)) 2284 return true; 2285 2286 // If we didn't find a use of this identifier, the ExternalSource 2287 // may be able to handle the situation. 2288 // Note: some lookup failures are expected! 2289 // See e.g. R.isForRedeclaration(). 2290 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2291 } 2292 2293 /// Perform qualified name lookup in the namespaces nominated by 2294 /// using directives by the given context. 2295 /// 2296 /// C++98 [namespace.qual]p2: 2297 /// Given X::m (where X is a user-declared namespace), or given \::m 2298 /// (where X is the global namespace), let S be the set of all 2299 /// declarations of m in X and in the transitive closure of all 2300 /// namespaces nominated by using-directives in X and its used 2301 /// namespaces, except that using-directives are ignored in any 2302 /// namespace, including X, directly containing one or more 2303 /// declarations of m. No namespace is searched more than once in 2304 /// the lookup of a name. If S is the empty set, the program is 2305 /// ill-formed. Otherwise, if S has exactly one member, or if the 2306 /// context of the reference is a using-declaration 2307 /// (namespace.udecl), S is the required set of declarations of 2308 /// m. Otherwise if the use of m is not one that allows a unique 2309 /// declaration to be chosen from S, the program is ill-formed. 2310 /// 2311 /// C++98 [namespace.qual]p5: 2312 /// During the lookup of a qualified namespace member name, if the 2313 /// lookup finds more than one declaration of the member, and if one 2314 /// declaration introduces a class name or enumeration name and the 2315 /// other declarations either introduce the same object, the same 2316 /// enumerator or a set of functions, the non-type name hides the 2317 /// class or enumeration name if and only if the declarations are 2318 /// from the same namespace; otherwise (the declarations are from 2319 /// different namespaces), the program is ill-formed. 2320 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2321 DeclContext *StartDC) { 2322 assert(StartDC->isFileContext() && "start context is not a file context"); 2323 2324 // We have not yet looked into these namespaces, much less added 2325 // their "using-children" to the queue. 2326 SmallVector<NamespaceDecl*, 8> Queue; 2327 2328 // We have at least added all these contexts to the queue. 2329 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2330 Visited.insert(StartDC); 2331 2332 // We have already looked into the initial namespace; seed the queue 2333 // with its using-children. 2334 for (auto *I : StartDC->using_directives()) { 2335 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); 2336 if (S.isVisible(I) && Visited.insert(ND).second) 2337 Queue.push_back(ND); 2338 } 2339 2340 // The easiest way to implement the restriction in [namespace.qual]p5 2341 // is to check whether any of the individual results found a tag 2342 // and, if so, to declare an ambiguity if the final result is not 2343 // a tag. 2344 bool FoundTag = false; 2345 bool FoundNonTag = false; 2346 2347 LookupResult LocalR(LookupResult::Temporary, R); 2348 2349 bool Found = false; 2350 while (!Queue.empty()) { 2351 NamespaceDecl *ND = Queue.pop_back_val(); 2352 2353 // We go through some convolutions here to avoid copying results 2354 // between LookupResults. 2355 bool UseLocal = !R.empty(); 2356 LookupResult &DirectR = UseLocal ? LocalR : R; 2357 bool FoundDirect = LookupDirect(S, DirectR, ND); 2358 2359 if (FoundDirect) { 2360 // First do any local hiding. 2361 DirectR.resolveKind(); 2362 2363 // If the local result is a tag, remember that. 2364 if (DirectR.isSingleTagDecl()) 2365 FoundTag = true; 2366 else 2367 FoundNonTag = true; 2368 2369 // Append the local results to the total results if necessary. 2370 if (UseLocal) { 2371 R.addAllDecls(LocalR); 2372 LocalR.clear(); 2373 } 2374 } 2375 2376 // If we find names in this namespace, ignore its using directives. 2377 if (FoundDirect) { 2378 Found = true; 2379 continue; 2380 } 2381 2382 for (auto *I : ND->using_directives()) { 2383 NamespaceDecl *Nom = I->getNominatedNamespace(); 2384 if (S.isVisible(I) && Visited.insert(Nom).second) 2385 Queue.push_back(Nom); 2386 } 2387 } 2388 2389 if (Found) { 2390 if (FoundTag && FoundNonTag) 2391 R.setAmbiguousQualifiedTagHiding(); 2392 else 2393 R.resolveKind(); 2394 } 2395 2396 return Found; 2397 } 2398 2399 /// Perform qualified name lookup into a given context. 2400 /// 2401 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find 2402 /// names when the context of those names is explicit specified, e.g., 2403 /// "std::vector" or "x->member", or as part of unqualified name lookup. 2404 /// 2405 /// Different lookup criteria can find different names. For example, a 2406 /// particular scope can have both a struct and a function of the same 2407 /// name, and each can be found by certain lookup criteria. For more 2408 /// information about lookup criteria, see the documentation for the 2409 /// class LookupCriteria. 2410 /// 2411 /// \param R captures both the lookup criteria and any lookup results found. 2412 /// 2413 /// \param LookupCtx The context in which qualified name lookup will 2414 /// search. If the lookup criteria permits, name lookup may also search 2415 /// in the parent contexts or (for C++ classes) base classes. 2416 /// 2417 /// \param InUnqualifiedLookup true if this is qualified name lookup that 2418 /// occurs as part of unqualified name lookup. 2419 /// 2420 /// \returns true if lookup succeeded, false if it failed. 2421 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2422 bool InUnqualifiedLookup) { 2423 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2424 2425 if (!R.getLookupName()) 2426 return false; 2427 2428 // Make sure that the declaration context is complete. 2429 assert((!isa<TagDecl>(LookupCtx) || 2430 LookupCtx->isDependentContext() || 2431 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2432 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2433 "Declaration context must already be complete!"); 2434 2435 struct QualifiedLookupInScope { 2436 bool oldVal; 2437 DeclContext *Context; 2438 // Set flag in DeclContext informing debugger that we're looking for qualified name 2439 QualifiedLookupInScope(DeclContext *ctx) 2440 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { 2441 ctx->setUseQualifiedLookup(); 2442 } 2443 ~QualifiedLookupInScope() { 2444 Context->setUseQualifiedLookup(oldVal); 2445 } 2446 } QL(LookupCtx); 2447 2448 if (LookupDirect(*this, R, LookupCtx)) { 2449 R.resolveKind(); 2450 if (isa<CXXRecordDecl>(LookupCtx)) 2451 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); 2452 return true; 2453 } 2454 2455 // Don't descend into implied contexts for redeclarations. 2456 // C++98 [namespace.qual]p6: 2457 // In a declaration for a namespace member in which the 2458 // declarator-id is a qualified-id, given that the qualified-id 2459 // for the namespace member has the form 2460 // nested-name-specifier unqualified-id 2461 // the unqualified-id shall name a member of the namespace 2462 // designated by the nested-name-specifier. 2463 // See also [class.mfct]p5 and [class.static.data]p2. 2464 if (R.isForRedeclaration()) 2465 return false; 2466 2467 // If this is a namespace, look it up in the implied namespaces. 2468 if (LookupCtx->isFileContext()) 2469 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2470 2471 // If this isn't a C++ class, we aren't allowed to look into base 2472 // classes, we're done. 2473 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2474 if (!LookupRec || !LookupRec->getDefinition()) 2475 return false; 2476 2477 // We're done for lookups that can never succeed for C++ classes. 2478 if (R.getLookupKind() == LookupOperatorName || 2479 R.getLookupKind() == LookupNamespaceName || 2480 R.getLookupKind() == LookupObjCProtocolName || 2481 R.getLookupKind() == LookupLabel) 2482 return false; 2483 2484 // If we're performing qualified name lookup into a dependent class, 2485 // then we are actually looking into a current instantiation. If we have any 2486 // dependent base classes, then we either have to delay lookup until 2487 // template instantiation time (at which point all bases will be available) 2488 // or we have to fail. 2489 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2490 LookupRec->hasAnyDependentBases()) { 2491 R.setNotFoundInCurrentInstantiation(); 2492 return false; 2493 } 2494 2495 // Perform lookup into our base classes. 2496 2497 DeclarationName Name = R.getLookupName(); 2498 unsigned IDNS = R.getIdentifierNamespace(); 2499 2500 // Look for this member in our base classes. 2501 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2502 CXXBasePath &Path) -> bool { 2503 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2504 // Drop leading non-matching lookup results from the declaration list so 2505 // we don't need to consider them again below. 2506 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2507 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2508 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2509 return true; 2510 } 2511 return false; 2512 }; 2513 2514 CXXBasePaths Paths; 2515 Paths.setOrigin(LookupRec); 2516 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2517 return false; 2518 2519 R.setNamingClass(LookupRec); 2520 2521 // C++ [class.member.lookup]p2: 2522 // [...] If the resulting set of declarations are not all from 2523 // sub-objects of the same type, or the set has a nonstatic member 2524 // and includes members from distinct sub-objects, there is an 2525 // ambiguity and the program is ill-formed. Otherwise that set is 2526 // the result of the lookup. 2527 QualType SubobjectType; 2528 int SubobjectNumber = 0; 2529 AccessSpecifier SubobjectAccess = AS_none; 2530 2531 // Check whether the given lookup result contains only static members. 2532 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2533 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2534 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2535 return false; 2536 return true; 2537 }; 2538 2539 bool TemplateNameLookup = R.isTemplateNameLookup(); 2540 2541 // Determine whether two sets of members contain the same members, as 2542 // required by C++ [class.member.lookup]p6. 2543 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2544 DeclContext::lookup_iterator B) { 2545 using Iterator = DeclContextLookupResult::iterator; 2546 using Result = const void *; 2547 2548 auto Next = [&](Iterator &It, Iterator End) -> Result { 2549 while (It != End) { 2550 NamedDecl *ND = *It++; 2551 if (!ND->isInIdentifierNamespace(IDNS)) 2552 continue; 2553 2554 // C++ [temp.local]p3: 2555 // A lookup that finds an injected-class-name (10.2) can result in 2556 // an ambiguity in certain cases (for example, if it is found in 2557 // more than one base class). If all of the injected-class-names 2558 // that are found refer to specializations of the same class 2559 // template, and if the name is used as a template-name, the 2560 // reference refers to the class template itself and not a 2561 // specialization thereof, and is not ambiguous. 2562 if (TemplateNameLookup) 2563 if (auto *TD = getAsTemplateNameDecl(ND)) 2564 ND = TD; 2565 2566 // C++ [class.member.lookup]p3: 2567 // type declarations (including injected-class-names) are replaced by 2568 // the types they designate 2569 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2570 QualType T = Context.getTypeDeclType(TD); 2571 return T.getCanonicalType().getAsOpaquePtr(); 2572 } 2573 2574 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2575 } 2576 return nullptr; 2577 }; 2578 2579 // We'll often find the declarations are in the same order. Handle this 2580 // case (and the special case of only one declaration) efficiently. 2581 Iterator AIt = A, BIt = B, AEnd, BEnd; 2582 while (true) { 2583 Result AResult = Next(AIt, AEnd); 2584 Result BResult = Next(BIt, BEnd); 2585 if (!AResult && !BResult) 2586 return true; 2587 if (!AResult || !BResult) 2588 return false; 2589 if (AResult != BResult) { 2590 // Found a mismatch; carefully check both lists, accounting for the 2591 // possibility of declarations appearing more than once. 2592 llvm::SmallDenseMap<Result, bool, 32> AResults; 2593 for (; AResult; AResult = Next(AIt, AEnd)) 2594 AResults.insert({AResult, /*FoundInB*/false}); 2595 unsigned Found = 0; 2596 for (; BResult; BResult = Next(BIt, BEnd)) { 2597 auto It = AResults.find(BResult); 2598 if (It == AResults.end()) 2599 return false; 2600 if (!It->second) { 2601 It->second = true; 2602 ++Found; 2603 } 2604 } 2605 return AResults.size() == Found; 2606 } 2607 } 2608 }; 2609 2610 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2611 Path != PathEnd; ++Path) { 2612 const CXXBasePathElement &PathElement = Path->back(); 2613 2614 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2615 // across all paths. 2616 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2617 2618 // Determine whether we're looking at a distinct sub-object or not. 2619 if (SubobjectType.isNull()) { 2620 // This is the first subobject we've looked at. Record its type. 2621 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2622 SubobjectNumber = PathElement.SubobjectNumber; 2623 continue; 2624 } 2625 2626 if (SubobjectType != 2627 Context.getCanonicalType(PathElement.Base->getType())) { 2628 // We found members of the given name in two subobjects of 2629 // different types. If the declaration sets aren't the same, this 2630 // lookup is ambiguous. 2631 // 2632 // FIXME: The language rule says that this applies irrespective of 2633 // whether the sets contain only static members. 2634 if (HasOnlyStaticMembers(Path->Decls) && 2635 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2636 continue; 2637 2638 R.setAmbiguousBaseSubobjectTypes(Paths); 2639 return true; 2640 } 2641 2642 // FIXME: This language rule no longer exists. Checking for ambiguous base 2643 // subobjects should be done as part of formation of a class member access 2644 // expression (when converting the object parameter to the member's type). 2645 if (SubobjectNumber != PathElement.SubobjectNumber) { 2646 // We have a different subobject of the same type. 2647 2648 // C++ [class.member.lookup]p5: 2649 // A static member, a nested type or an enumerator defined in 2650 // a base class T can unambiguously be found even if an object 2651 // has more than one base class subobject of type T. 2652 if (HasOnlyStaticMembers(Path->Decls)) 2653 continue; 2654 2655 // We have found a nonstatic member name in multiple, distinct 2656 // subobjects. Name lookup is ambiguous. 2657 R.setAmbiguousBaseSubobjects(Paths); 2658 return true; 2659 } 2660 } 2661 2662 // Lookup in a base class succeeded; return these results. 2663 2664 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2665 I != E; ++I) { 2666 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2667 (*I)->getAccess()); 2668 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2669 R.addDecl(ND, AS); 2670 } 2671 R.resolveKind(); 2672 return true; 2673 } 2674 2675 /// Performs qualified name lookup or special type of lookup for 2676 /// "__super::" scope specifier. 2677 /// 2678 /// This routine is a convenience overload meant to be called from contexts 2679 /// that need to perform a qualified name lookup with an optional C++ scope 2680 /// specifier that might require special kind of lookup. 2681 /// 2682 /// \param R captures both the lookup criteria and any lookup results found. 2683 /// 2684 /// \param LookupCtx The context in which qualified name lookup will 2685 /// search. 2686 /// 2687 /// \param SS An optional C++ scope-specifier. 2688 /// 2689 /// \returns true if lookup succeeded, false if it failed. 2690 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2691 CXXScopeSpec &SS) { 2692 auto *NNS = SS.getScopeRep(); 2693 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2694 return LookupInSuper(R, NNS->getAsRecordDecl()); 2695 else 2696 2697 return LookupQualifiedName(R, LookupCtx); 2698 } 2699 2700 /// Performs name lookup for a name that was parsed in the 2701 /// source code, and may contain a C++ scope specifier. 2702 /// 2703 /// This routine is a convenience routine meant to be called from 2704 /// contexts that receive a name and an optional C++ scope specifier 2705 /// (e.g., "N::M::x"). It will then perform either qualified or 2706 /// unqualified name lookup (with LookupQualifiedName or LookupName, 2707 /// respectively) on the given name and return those results. It will 2708 /// perform a special type of lookup for "__super::" scope specifier. 2709 /// 2710 /// @param S The scope from which unqualified name lookup will 2711 /// begin. 2712 /// 2713 /// @param SS An optional C++ scope-specifier, e.g., "::N::M". 2714 /// 2715 /// @param EnteringContext Indicates whether we are going to enter the 2716 /// context of the scope-specifier SS (if present). 2717 /// 2718 /// @returns True if any decls were found (but possibly ambiguous) 2719 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2720 bool AllowBuiltinCreation, bool EnteringContext) { 2721 if (SS && SS->isInvalid()) { 2722 // When the scope specifier is invalid, don't even look for 2723 // anything. 2724 return false; 2725 } 2726 2727 if (SS && SS->isSet()) { 2728 NestedNameSpecifier *NNS = SS->getScopeRep(); 2729 if (NNS->getKind() == NestedNameSpecifier::Super) 2730 return LookupInSuper(R, NNS->getAsRecordDecl()); 2731 2732 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { 2733 // We have resolved the scope specifier to a particular declaration 2734 // contex, and will perform name lookup in that context. 2735 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2736 return false; 2737 2738 R.setContextRange(SS->getRange()); 2739 return LookupQualifiedName(R, DC); 2740 } 2741 2742 // We could not resolve the scope specified to a specific declaration 2743 // context, which means that SS refers to an unknown specialization. 2744 // Name lookup can't find anything in this case. 2745 R.setNotFoundInCurrentInstantiation(); 2746 R.setContextRange(SS->getRange()); 2747 return false; 2748 } 2749 2750 // Perform unqualified name lookup starting in the given scope. 2751 return LookupName(R, S, AllowBuiltinCreation); 2752 } 2753 2754 /// Perform qualified name lookup into all base classes of the given 2755 /// class. 2756 /// 2757 /// \param R captures both the lookup criteria and any lookup results found. 2758 /// 2759 /// \param Class The context in which qualified name lookup will 2760 /// search. Name lookup will search in all base classes merging the results. 2761 /// 2762 /// @returns True if any decls were found (but possibly ambiguous) 2763 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2764 // The access-control rules we use here are essentially the rules for 2765 // doing a lookup in Class that just magically skipped the direct 2766 // members of Class itself. That is, the naming class is Class, and the 2767 // access includes the access of the base. 2768 for (const auto &BaseSpec : Class->bases()) { 2769 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2770 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2771 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2772 Result.setBaseObjectType(Context.getRecordType(Class)); 2773 LookupQualifiedName(Result, RD); 2774 2775 // Copy the lookup results into the target, merging the base's access into 2776 // the path access. 2777 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2778 R.addDecl(I.getDecl(), 2779 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2780 I.getAccess())); 2781 } 2782 2783 Result.suppressDiagnostics(); 2784 } 2785 2786 R.resolveKind(); 2787 R.setNamingClass(Class); 2788 2789 return !R.empty(); 2790 } 2791 2792 /// Produce a diagnostic describing the ambiguity that resulted 2793 /// from name lookup. 2794 /// 2795 /// \param Result The result of the ambiguous lookup to be diagnosed. 2796 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2797 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2798 2799 DeclarationName Name = Result.getLookupName(); 2800 SourceLocation NameLoc = Result.getNameLoc(); 2801 SourceRange LookupRange = Result.getContextRange(); 2802 2803 switch (Result.getAmbiguityKind()) { 2804 case LookupResult::AmbiguousBaseSubobjects: { 2805 CXXBasePaths *Paths = Result.getBasePaths(); 2806 QualType SubobjectType = Paths->front().back().Base->getType(); 2807 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2808 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2809 << LookupRange; 2810 2811 DeclContext::lookup_iterator Found = Paths->front().Decls; 2812 while (isa<CXXMethodDecl>(*Found) && 2813 cast<CXXMethodDecl>(*Found)->isStatic()) 2814 ++Found; 2815 2816 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2817 break; 2818 } 2819 2820 case LookupResult::AmbiguousBaseSubobjectTypes: { 2821 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2822 << Name << LookupRange; 2823 2824 CXXBasePaths *Paths = Result.getBasePaths(); 2825 std::set<const NamedDecl *> DeclsPrinted; 2826 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2827 PathEnd = Paths->end(); 2828 Path != PathEnd; ++Path) { 2829 const NamedDecl *D = *Path->Decls; 2830 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2831 continue; 2832 if (DeclsPrinted.insert(D).second) { 2833 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2834 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2835 << TD->getUnderlyingType(); 2836 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2837 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2838 << Context.getTypeDeclType(TD); 2839 else 2840 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2841 } 2842 } 2843 break; 2844 } 2845 2846 case LookupResult::AmbiguousTagHiding: { 2847 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2848 2849 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2850 2851 for (auto *D : Result) 2852 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2853 TagDecls.insert(TD); 2854 Diag(TD->getLocation(), diag::note_hidden_tag); 2855 } 2856 2857 for (auto *D : Result) 2858 if (!isa<TagDecl>(D)) 2859 Diag(D->getLocation(), diag::note_hiding_object); 2860 2861 // For recovery purposes, go ahead and implement the hiding. 2862 LookupResult::Filter F = Result.makeFilter(); 2863 while (F.hasNext()) { 2864 if (TagDecls.count(F.next())) 2865 F.erase(); 2866 } 2867 F.done(); 2868 break; 2869 } 2870 2871 case LookupResult::AmbiguousReferenceToPlaceholderVariable: { 2872 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; 2873 DeclContext *DC = nullptr; 2874 for (auto *D : Result) { 2875 Diag(D->getLocation(), diag::note_reference_placeholder) << D; 2876 if (DC != nullptr && DC != D->getDeclContext()) 2877 break; 2878 DC = D->getDeclContext(); 2879 } 2880 break; 2881 } 2882 2883 case LookupResult::AmbiguousReference: { 2884 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2885 2886 for (auto *D : Result) 2887 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2888 break; 2889 } 2890 } 2891 } 2892 2893 namespace { 2894 struct AssociatedLookup { 2895 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2896 Sema::AssociatedNamespaceSet &Namespaces, 2897 Sema::AssociatedClassSet &Classes) 2898 : S(S), Namespaces(Namespaces), Classes(Classes), 2899 InstantiationLoc(InstantiationLoc) { 2900 } 2901 2902 bool addClassTransitive(CXXRecordDecl *RD) { 2903 Classes.insert(RD); 2904 return ClassesTransitive.insert(RD); 2905 } 2906 2907 Sema &S; 2908 Sema::AssociatedNamespaceSet &Namespaces; 2909 Sema::AssociatedClassSet &Classes; 2910 SourceLocation InstantiationLoc; 2911 2912 private: 2913 Sema::AssociatedClassSet ClassesTransitive; 2914 }; 2915 } // end anonymous namespace 2916 2917 static void 2918 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2919 2920 // Given the declaration context \param Ctx of a class, class template or 2921 // enumeration, add the associated namespaces to \param Namespaces as described 2922 // in [basic.lookup.argdep]p2. 2923 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2924 DeclContext *Ctx) { 2925 // The exact wording has been changed in C++14 as a result of 2926 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2927 // to all language versions since it is possible to return a local type 2928 // from a lambda in C++11. 2929 // 2930 // C++14 [basic.lookup.argdep]p2: 2931 // If T is a class type [...]. Its associated namespaces are the innermost 2932 // enclosing namespaces of its associated classes. [...] 2933 // 2934 // If T is an enumeration type, its associated namespace is the innermost 2935 // enclosing namespace of its declaration. [...] 2936 2937 // We additionally skip inline namespaces. The innermost non-inline namespace 2938 // contains all names of all its nested inline namespaces anyway, so we can 2939 // replace the entire inline namespace tree with its root. 2940 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2941 Ctx = Ctx->getParent(); 2942 2943 Namespaces.insert(Ctx->getPrimaryContext()); 2944 } 2945 2946 // Add the associated classes and namespaces for argument-dependent 2947 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2948 static void 2949 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2950 const TemplateArgument &Arg) { 2951 // C++ [basic.lookup.argdep]p2, last bullet: 2952 // -- [...] ; 2953 switch (Arg.getKind()) { 2954 case TemplateArgument::Null: 2955 break; 2956 2957 case TemplateArgument::Type: 2958 // [...] the namespaces and classes associated with the types of the 2959 // template arguments provided for template type parameters (excluding 2960 // template template parameters) 2961 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2962 break; 2963 2964 case TemplateArgument::Template: 2965 case TemplateArgument::TemplateExpansion: { 2966 // [...] the namespaces in which any template template arguments are 2967 // defined; and the classes in which any member templates used as 2968 // template template arguments are defined. 2969 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2970 if (ClassTemplateDecl *ClassTemplate 2971 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2972 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2973 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2974 Result.Classes.insert(EnclosingClass); 2975 // Add the associated namespace for this class. 2976 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2977 } 2978 break; 2979 } 2980 2981 case TemplateArgument::Declaration: 2982 case TemplateArgument::Integral: 2983 case TemplateArgument::Expression: 2984 case TemplateArgument::NullPtr: 2985 // [Note: non-type template arguments do not contribute to the set of 2986 // associated namespaces. ] 2987 break; 2988 2989 case TemplateArgument::Pack: 2990 for (const auto &P : Arg.pack_elements()) 2991 addAssociatedClassesAndNamespaces(Result, P); 2992 break; 2993 } 2994 } 2995 2996 // Add the associated classes and namespaces for argument-dependent lookup 2997 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2998 static void 2999 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 3000 CXXRecordDecl *Class) { 3001 3002 // Just silently ignore anything whose name is __va_list_tag. 3003 if (Class->getDeclName() == Result.S.VAListTagName) 3004 return; 3005 3006 // C++ [basic.lookup.argdep]p2: 3007 // [...] 3008 // -- If T is a class type (including unions), its associated 3009 // classes are: the class itself; the class of which it is a 3010 // member, if any; and its direct and indirect base classes. 3011 // Its associated namespaces are the innermost enclosing 3012 // namespaces of its associated classes. 3013 3014 // Add the class of which it is a member, if any. 3015 DeclContext *Ctx = Class->getDeclContext(); 3016 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3017 Result.Classes.insert(EnclosingClass); 3018 3019 // Add the associated namespace for this class. 3020 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3021 3022 // -- If T is a template-id, its associated namespaces and classes are 3023 // the namespace in which the template is defined; for member 3024 // templates, the member template's class; the namespaces and classes 3025 // associated with the types of the template arguments provided for 3026 // template type parameters (excluding template template parameters); the 3027 // namespaces in which any template template arguments are defined; and 3028 // the classes in which any member templates used as template template 3029 // arguments are defined. [Note: non-type template arguments do not 3030 // contribute to the set of associated namespaces. ] 3031 if (ClassTemplateSpecializationDecl *Spec 3032 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3033 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3034 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3035 Result.Classes.insert(EnclosingClass); 3036 // Add the associated namespace for this class. 3037 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3038 3039 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3040 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3041 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3042 } 3043 3044 // Add the class itself. If we've already transitively visited this class, 3045 // we don't need to visit base classes. 3046 if (!Result.addClassTransitive(Class)) 3047 return; 3048 3049 // Only recurse into base classes for complete types. 3050 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3051 Result.S.Context.getRecordType(Class))) 3052 return; 3053 3054 // Add direct and indirect base classes along with their associated 3055 // namespaces. 3056 SmallVector<CXXRecordDecl *, 32> Bases; 3057 Bases.push_back(Class); 3058 while (!Bases.empty()) { 3059 // Pop this class off the stack. 3060 Class = Bases.pop_back_val(); 3061 3062 // Visit the base classes. 3063 for (const auto &Base : Class->bases()) { 3064 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3065 // In dependent contexts, we do ADL twice, and the first time around, 3066 // the base type might be a dependent TemplateSpecializationType, or a 3067 // TemplateTypeParmType. If that happens, simply ignore it. 3068 // FIXME: If we want to support export, we probably need to add the 3069 // namespace of the template in a TemplateSpecializationType, or even 3070 // the classes and namespaces of known non-dependent arguments. 3071 if (!BaseType) 3072 continue; 3073 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3074 if (Result.addClassTransitive(BaseDecl)) { 3075 // Find the associated namespace for this base class. 3076 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3077 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3078 3079 // Make sure we visit the bases of this base class. 3080 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3081 Bases.push_back(BaseDecl); 3082 } 3083 } 3084 } 3085 } 3086 3087 // Add the associated classes and namespaces for 3088 // argument-dependent lookup with an argument of type T 3089 // (C++ [basic.lookup.koenig]p2). 3090 static void 3091 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3092 // C++ [basic.lookup.koenig]p2: 3093 // 3094 // For each argument type T in the function call, there is a set 3095 // of zero or more associated namespaces and a set of zero or more 3096 // associated classes to be considered. The sets of namespaces and 3097 // classes is determined entirely by the types of the function 3098 // arguments (and the namespace of any template template 3099 // argument). Typedef names and using-declarations used to specify 3100 // the types do not contribute to this set. The sets of namespaces 3101 // and classes are determined in the following way: 3102 3103 SmallVector<const Type *, 16> Queue; 3104 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3105 3106 while (true) { 3107 switch (T->getTypeClass()) { 3108 3109 #define TYPE(Class, Base) 3110 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3111 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3112 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3113 #define ABSTRACT_TYPE(Class, Base) 3114 #include "clang/AST/TypeNodes.inc" 3115 // T is canonical. We can also ignore dependent types because 3116 // we don't need to do ADL at the definition point, but if we 3117 // wanted to implement template export (or if we find some other 3118 // use for associated classes and namespaces...) this would be 3119 // wrong. 3120 break; 3121 3122 // -- If T is a pointer to U or an array of U, its associated 3123 // namespaces and classes are those associated with U. 3124 case Type::Pointer: 3125 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3126 continue; 3127 case Type::ConstantArray: 3128 case Type::IncompleteArray: 3129 case Type::VariableArray: 3130 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3131 continue; 3132 3133 // -- If T is a fundamental type, its associated sets of 3134 // namespaces and classes are both empty. 3135 case Type::Builtin: 3136 break; 3137 3138 // -- If T is a class type (including unions), its associated 3139 // classes are: the class itself; the class of which it is 3140 // a member, if any; and its direct and indirect base classes. 3141 // Its associated namespaces are the innermost enclosing 3142 // namespaces of its associated classes. 3143 case Type::Record: { 3144 CXXRecordDecl *Class = 3145 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3146 addAssociatedClassesAndNamespaces(Result, Class); 3147 break; 3148 } 3149 3150 // -- If T is an enumeration type, its associated namespace 3151 // is the innermost enclosing namespace of its declaration. 3152 // If it is a class member, its associated class is the 3153 // member’s class; else it has no associated class. 3154 case Type::Enum: { 3155 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3156 3157 DeclContext *Ctx = Enum->getDeclContext(); 3158 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3159 Result.Classes.insert(EnclosingClass); 3160 3161 // Add the associated namespace for this enumeration. 3162 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3163 3164 break; 3165 } 3166 3167 // -- If T is a function type, its associated namespaces and 3168 // classes are those associated with the function parameter 3169 // types and those associated with the return type. 3170 case Type::FunctionProto: { 3171 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3172 for (const auto &Arg : Proto->param_types()) 3173 Queue.push_back(Arg.getTypePtr()); 3174 // fallthrough 3175 [[fallthrough]]; 3176 } 3177 case Type::FunctionNoProto: { 3178 const FunctionType *FnType = cast<FunctionType>(T); 3179 T = FnType->getReturnType().getTypePtr(); 3180 continue; 3181 } 3182 3183 // -- If T is a pointer to a member function of a class X, its 3184 // associated namespaces and classes are those associated 3185 // with the function parameter types and return type, 3186 // together with those associated with X. 3187 // 3188 // -- If T is a pointer to a data member of class X, its 3189 // associated namespaces and classes are those associated 3190 // with the member type together with those associated with 3191 // X. 3192 case Type::MemberPointer: { 3193 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3194 3195 // Queue up the class type into which this points. 3196 Queue.push_back(MemberPtr->getClass()); 3197 3198 // And directly continue with the pointee type. 3199 T = MemberPtr->getPointeeType().getTypePtr(); 3200 continue; 3201 } 3202 3203 // As an extension, treat this like a normal pointer. 3204 case Type::BlockPointer: 3205 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3206 continue; 3207 3208 // References aren't covered by the standard, but that's such an 3209 // obvious defect that we cover them anyway. 3210 case Type::LValueReference: 3211 case Type::RValueReference: 3212 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3213 continue; 3214 3215 // These are fundamental types. 3216 case Type::Vector: 3217 case Type::ExtVector: 3218 case Type::ConstantMatrix: 3219 case Type::Complex: 3220 case Type::BitInt: 3221 break; 3222 3223 // Non-deduced auto types only get here for error cases. 3224 case Type::Auto: 3225 case Type::DeducedTemplateSpecialization: 3226 break; 3227 3228 // If T is an Objective-C object or interface type, or a pointer to an 3229 // object or interface type, the associated namespace is the global 3230 // namespace. 3231 case Type::ObjCObject: 3232 case Type::ObjCInterface: 3233 case Type::ObjCObjectPointer: 3234 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3235 break; 3236 3237 // Atomic types are just wrappers; use the associations of the 3238 // contained type. 3239 case Type::Atomic: 3240 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3241 continue; 3242 case Type::Pipe: 3243 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3244 continue; 3245 } 3246 3247 if (Queue.empty()) 3248 break; 3249 T = Queue.pop_back_val(); 3250 } 3251 } 3252 3253 /// Find the associated classes and namespaces for 3254 /// argument-dependent lookup for a call with the given set of 3255 /// arguments. 3256 /// 3257 /// This routine computes the sets of associated classes and associated 3258 /// namespaces searched by argument-dependent lookup 3259 /// (C++ [basic.lookup.argdep]) for a given set of arguments. 3260 void Sema::FindAssociatedClassesAndNamespaces( 3261 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3262 AssociatedNamespaceSet &AssociatedNamespaces, 3263 AssociatedClassSet &AssociatedClasses) { 3264 AssociatedNamespaces.clear(); 3265 AssociatedClasses.clear(); 3266 3267 AssociatedLookup Result(*this, InstantiationLoc, 3268 AssociatedNamespaces, AssociatedClasses); 3269 3270 // C++ [basic.lookup.koenig]p2: 3271 // For each argument type T in the function call, there is a set 3272 // of zero or more associated namespaces and a set of zero or more 3273 // associated classes to be considered. The sets of namespaces and 3274 // classes is determined entirely by the types of the function 3275 // arguments (and the namespace of any template template 3276 // argument). 3277 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3278 Expr *Arg = Args[ArgIdx]; 3279 3280 if (Arg->getType() != Context.OverloadTy) { 3281 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3282 continue; 3283 } 3284 3285 // [...] In addition, if the argument is the name or address of a 3286 // set of overloaded functions and/or function templates, its 3287 // associated classes and namespaces are the union of those 3288 // associated with each of the members of the set: the namespace 3289 // in which the function or function template is defined and the 3290 // classes and namespaces associated with its (non-dependent) 3291 // parameter types and return type. 3292 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3293 3294 for (const NamedDecl *D : OE->decls()) { 3295 // Look through any using declarations to find the underlying function. 3296 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3297 3298 // Add the classes and namespaces associated with the parameter 3299 // types and return type of this function. 3300 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3301 } 3302 } 3303 } 3304 3305 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3306 SourceLocation Loc, 3307 LookupNameKind NameKind, 3308 RedeclarationKind Redecl) { 3309 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3310 LookupName(R, S); 3311 return R.getAsSingle<NamedDecl>(); 3312 } 3313 3314 /// Find the protocol with the given name, if any. 3315 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, 3316 SourceLocation IdLoc, 3317 RedeclarationKind Redecl) { 3318 Decl *D = LookupSingleName(TUScope, II, IdLoc, 3319 LookupObjCProtocolName, Redecl); 3320 return cast_or_null<ObjCProtocolDecl>(D); 3321 } 3322 3323 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3324 UnresolvedSetImpl &Functions) { 3325 // C++ [over.match.oper]p3: 3326 // -- The set of non-member candidates is the result of the 3327 // unqualified lookup of operator@ in the context of the 3328 // expression according to the usual rules for name lookup in 3329 // unqualified function calls (3.4.2) except that all member 3330 // functions are ignored. 3331 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3332 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3333 LookupName(Operators, S); 3334 3335 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3336 Functions.append(Operators.begin(), Operators.end()); 3337 } 3338 3339 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, 3340 CXXSpecialMember SM, 3341 bool ConstArg, 3342 bool VolatileArg, 3343 bool RValueThis, 3344 bool ConstThis, 3345 bool VolatileThis) { 3346 assert(CanDeclareSpecialMemberFunction(RD) && 3347 "doing special member lookup into record that isn't fully complete"); 3348 RD = RD->getDefinition(); 3349 if (RValueThis || ConstThis || VolatileThis) 3350 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && 3351 "constructors and destructors always have unqualified lvalue this"); 3352 if (ConstArg || VolatileArg) 3353 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && 3354 "parameter-less special members can't have qualified arguments"); 3355 3356 // FIXME: Get the caller to pass in a location for the lookup. 3357 SourceLocation LookupLoc = RD->getLocation(); 3358 3359 llvm::FoldingSetNodeID ID; 3360 ID.AddPointer(RD); 3361 ID.AddInteger(SM); 3362 ID.AddInteger(ConstArg); 3363 ID.AddInteger(VolatileArg); 3364 ID.AddInteger(RValueThis); 3365 ID.AddInteger(ConstThis); 3366 ID.AddInteger(VolatileThis); 3367 3368 void *InsertPoint; 3369 SpecialMemberOverloadResultEntry *Result = 3370 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3371 3372 // This was already cached 3373 if (Result) 3374 return *Result; 3375 3376 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3377 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3378 SpecialMemberCache.InsertNode(Result, InsertPoint); 3379 3380 if (SM == CXXDestructor) { 3381 if (RD->needsImplicitDestructor()) { 3382 runWithSufficientStackSpace(RD->getLocation(), [&] { 3383 DeclareImplicitDestructor(RD); 3384 }); 3385 } 3386 CXXDestructorDecl *DD = RD->getDestructor(); 3387 Result->setMethod(DD); 3388 Result->setKind(DD && !DD->isDeleted() 3389 ? SpecialMemberOverloadResult::Success 3390 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3391 return *Result; 3392 } 3393 3394 // Prepare for overload resolution. Here we construct a synthetic argument 3395 // if necessary and make sure that implicit functions are declared. 3396 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3397 DeclarationName Name; 3398 Expr *Arg = nullptr; 3399 unsigned NumArgs; 3400 3401 QualType ArgType = CanTy; 3402 ExprValueKind VK = VK_LValue; 3403 3404 if (SM == CXXDefaultConstructor) { 3405 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3406 NumArgs = 0; 3407 if (RD->needsImplicitDefaultConstructor()) { 3408 runWithSufficientStackSpace(RD->getLocation(), [&] { 3409 DeclareImplicitDefaultConstructor(RD); 3410 }); 3411 } 3412 } else { 3413 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { 3414 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3415 if (RD->needsImplicitCopyConstructor()) { 3416 runWithSufficientStackSpace(RD->getLocation(), [&] { 3417 DeclareImplicitCopyConstructor(RD); 3418 }); 3419 } 3420 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3421 runWithSufficientStackSpace(RD->getLocation(), [&] { 3422 DeclareImplicitMoveConstructor(RD); 3423 }); 3424 } 3425 } else { 3426 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3427 if (RD->needsImplicitCopyAssignment()) { 3428 runWithSufficientStackSpace(RD->getLocation(), [&] { 3429 DeclareImplicitCopyAssignment(RD); 3430 }); 3431 } 3432 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3433 runWithSufficientStackSpace(RD->getLocation(), [&] { 3434 DeclareImplicitMoveAssignment(RD); 3435 }); 3436 } 3437 } 3438 3439 if (ConstArg) 3440 ArgType.addConst(); 3441 if (VolatileArg) 3442 ArgType.addVolatile(); 3443 3444 // This isn't /really/ specified by the standard, but it's implied 3445 // we should be working from a PRValue in the case of move to ensure 3446 // that we prefer to bind to rvalue references, and an LValue in the 3447 // case of copy to ensure we don't bind to rvalue references. 3448 // Possibly an XValue is actually correct in the case of move, but 3449 // there is no semantic difference for class types in this restricted 3450 // case. 3451 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) 3452 VK = VK_LValue; 3453 else 3454 VK = VK_PRValue; 3455 } 3456 3457 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3458 3459 if (SM != CXXDefaultConstructor) { 3460 NumArgs = 1; 3461 Arg = &FakeArg; 3462 } 3463 3464 // Create the object argument 3465 QualType ThisTy = CanTy; 3466 if (ConstThis) 3467 ThisTy.addConst(); 3468 if (VolatileThis) 3469 ThisTy.addVolatile(); 3470 Expr::Classification Classification = 3471 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3472 .Classify(Context); 3473 3474 // Now we perform lookup on the name we computed earlier and do overload 3475 // resolution. Lookup is only performed directly into the class since there 3476 // will always be a (possibly implicit) declaration to shadow any others. 3477 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3478 DeclContext::lookup_result R = RD->lookup(Name); 3479 3480 if (R.empty()) { 3481 // We might have no default constructor because we have a lambda's closure 3482 // type, rather than because there's some other declared constructor. 3483 // Every class has a copy/move constructor, copy/move assignment, and 3484 // destructor. 3485 assert(SM == CXXDefaultConstructor && 3486 "lookup for a constructor or assignment operator was empty"); 3487 Result->setMethod(nullptr); 3488 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3489 return *Result; 3490 } 3491 3492 // Copy the candidates as our processing of them may load new declarations 3493 // from an external source and invalidate lookup_result. 3494 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3495 3496 for (NamedDecl *CandDecl : Candidates) { 3497 if (CandDecl->isInvalidDecl()) 3498 continue; 3499 3500 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3501 auto CtorInfo = getConstructorInfo(Cand); 3502 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3503 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3504 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3505 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3506 else if (CtorInfo) 3507 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3508 llvm::ArrayRef(&Arg, NumArgs), OCS, 3509 /*SuppressUserConversions*/ true); 3510 else 3511 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3512 /*SuppressUserConversions*/ true); 3513 } else if (FunctionTemplateDecl *Tmpl = 3514 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3515 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3516 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3517 Classification, 3518 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3519 else if (CtorInfo) 3520 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3521 CtorInfo.FoundDecl, nullptr, 3522 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3523 else 3524 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3525 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3526 } else { 3527 assert(isa<UsingDecl>(Cand.getDecl()) && 3528 "illegal Kind of operator = Decl"); 3529 } 3530 } 3531 3532 OverloadCandidateSet::iterator Best; 3533 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3534 case OR_Success: 3535 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3536 Result->setKind(SpecialMemberOverloadResult::Success); 3537 break; 3538 3539 case OR_Deleted: 3540 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3541 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3542 break; 3543 3544 case OR_Ambiguous: 3545 Result->setMethod(nullptr); 3546 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3547 break; 3548 3549 case OR_No_Viable_Function: 3550 Result->setMethod(nullptr); 3551 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3552 break; 3553 } 3554 3555 return *Result; 3556 } 3557 3558 /// Look up the default constructor for the given class. 3559 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3560 SpecialMemberOverloadResult Result = 3561 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, 3562 false, false); 3563 3564 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3565 } 3566 3567 /// Look up the copying constructor for the given class. 3568 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3569 unsigned Quals) { 3570 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3571 "non-const, non-volatile qualifiers for copy ctor arg"); 3572 SpecialMemberOverloadResult Result = 3573 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, 3574 Quals & Qualifiers::Volatile, false, false, false); 3575 3576 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3577 } 3578 3579 /// Look up the moving constructor for the given class. 3580 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3581 unsigned Quals) { 3582 SpecialMemberOverloadResult Result = 3583 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, 3584 Quals & Qualifiers::Volatile, false, false, false); 3585 3586 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3587 } 3588 3589 /// Look up the constructors for the given class. 3590 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3591 // If the implicit constructors have not yet been declared, do so now. 3592 if (CanDeclareSpecialMemberFunction(Class)) { 3593 runWithSufficientStackSpace(Class->getLocation(), [&] { 3594 if (Class->needsImplicitDefaultConstructor()) 3595 DeclareImplicitDefaultConstructor(Class); 3596 if (Class->needsImplicitCopyConstructor()) 3597 DeclareImplicitCopyConstructor(Class); 3598 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3599 DeclareImplicitMoveConstructor(Class); 3600 }); 3601 } 3602 3603 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3604 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3605 return Class->lookup(Name); 3606 } 3607 3608 /// Look up the copying assignment operator for the given class. 3609 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3610 unsigned Quals, bool RValueThis, 3611 unsigned ThisQuals) { 3612 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3613 "non-const, non-volatile qualifiers for copy assignment arg"); 3614 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3615 "non-const, non-volatile qualifiers for copy assignment this"); 3616 SpecialMemberOverloadResult Result = 3617 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, 3618 Quals & Qualifiers::Volatile, RValueThis, 3619 ThisQuals & Qualifiers::Const, 3620 ThisQuals & Qualifiers::Volatile); 3621 3622 return Result.getMethod(); 3623 } 3624 3625 /// Look up the moving assignment operator for the given class. 3626 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3627 unsigned Quals, 3628 bool RValueThis, 3629 unsigned ThisQuals) { 3630 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3631 "non-const, non-volatile qualifiers for copy assignment this"); 3632 SpecialMemberOverloadResult Result = 3633 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, 3634 Quals & Qualifiers::Volatile, RValueThis, 3635 ThisQuals & Qualifiers::Const, 3636 ThisQuals & Qualifiers::Volatile); 3637 3638 return Result.getMethod(); 3639 } 3640 3641 /// Look for the destructor of the given class. 3642 /// 3643 /// During semantic analysis, this routine should be used in lieu of 3644 /// CXXRecordDecl::getDestructor(). 3645 /// 3646 /// \returns The destructor for this class. 3647 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3648 return cast_or_null<CXXDestructorDecl>( 3649 LookupSpecialMember(Class, CXXDestructor, false, false, false, false, 3650 false) 3651 .getMethod()); 3652 } 3653 3654 /// LookupLiteralOperator - Determine which literal operator should be used for 3655 /// a user-defined literal, per C++11 [lex.ext]. 3656 /// 3657 /// Normal overload resolution is not used to select which literal operator to 3658 /// call for a user-defined literal. Look up the provided literal operator name, 3659 /// and filter the results to the appropriate set for the given argument types. 3660 Sema::LiteralOperatorLookupResult 3661 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3662 ArrayRef<QualType> ArgTys, bool AllowRaw, 3663 bool AllowTemplate, bool AllowStringTemplatePack, 3664 bool DiagnoseMissing, StringLiteral *StringLit) { 3665 LookupName(R, S); 3666 assert(R.getResultKind() != LookupResult::Ambiguous && 3667 "literal operator lookup can't be ambiguous"); 3668 3669 // Filter the lookup results appropriately. 3670 LookupResult::Filter F = R.makeFilter(); 3671 3672 bool AllowCooked = true; 3673 bool FoundRaw = false; 3674 bool FoundTemplate = false; 3675 bool FoundStringTemplatePack = false; 3676 bool FoundCooked = false; 3677 3678 while (F.hasNext()) { 3679 Decl *D = F.next(); 3680 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3681 D = USD->getTargetDecl(); 3682 3683 // If the declaration we found is invalid, skip it. 3684 if (D->isInvalidDecl()) { 3685 F.erase(); 3686 continue; 3687 } 3688 3689 bool IsRaw = false; 3690 bool IsTemplate = false; 3691 bool IsStringTemplatePack = false; 3692 bool IsCooked = false; 3693 3694 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3695 if (FD->getNumParams() == 1 && 3696 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3697 IsRaw = true; 3698 else if (FD->getNumParams() == ArgTys.size()) { 3699 IsCooked = true; 3700 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3701 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3702 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3703 IsCooked = false; 3704 break; 3705 } 3706 } 3707 } 3708 } 3709 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3710 TemplateParameterList *Params = FD->getTemplateParameters(); 3711 if (Params->size() == 1) { 3712 IsTemplate = true; 3713 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3714 // Implied but not stated: user-defined integer and floating literals 3715 // only ever use numeric literal operator templates, not templates 3716 // taking a parameter of class type. 3717 F.erase(); 3718 continue; 3719 } 3720 3721 // A string literal template is only considered if the string literal 3722 // is a well-formed template argument for the template parameter. 3723 if (StringLit) { 3724 SFINAETrap Trap(*this); 3725 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; 3726 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3727 if (CheckTemplateArgument( 3728 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3729 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || 3730 Trap.hasErrorOccurred()) 3731 IsTemplate = false; 3732 } 3733 } else { 3734 IsStringTemplatePack = true; 3735 } 3736 } 3737 3738 if (AllowTemplate && StringLit && IsTemplate) { 3739 FoundTemplate = true; 3740 AllowRaw = false; 3741 AllowCooked = false; 3742 AllowStringTemplatePack = false; 3743 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3744 F.restart(); 3745 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3746 } 3747 } else if (AllowCooked && IsCooked) { 3748 FoundCooked = true; 3749 AllowRaw = false; 3750 AllowTemplate = StringLit; 3751 AllowStringTemplatePack = false; 3752 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3753 // Go through again and remove the raw and template decls we've 3754 // already found. 3755 F.restart(); 3756 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3757 } 3758 } else if (AllowRaw && IsRaw) { 3759 FoundRaw = true; 3760 } else if (AllowTemplate && IsTemplate) { 3761 FoundTemplate = true; 3762 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3763 FoundStringTemplatePack = true; 3764 } else { 3765 F.erase(); 3766 } 3767 } 3768 3769 F.done(); 3770 3771 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3772 // form for string literal operator templates. 3773 if (StringLit && FoundTemplate) 3774 return LOLR_Template; 3775 3776 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3777 // parameter type, that is used in preference to a raw literal operator 3778 // or literal operator template. 3779 if (FoundCooked) 3780 return LOLR_Cooked; 3781 3782 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3783 // operator template, but not both. 3784 if (FoundRaw && FoundTemplate) { 3785 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3786 for (const NamedDecl *D : R) 3787 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); 3788 return LOLR_Error; 3789 } 3790 3791 if (FoundRaw) 3792 return LOLR_Raw; 3793 3794 if (FoundTemplate) 3795 return LOLR_Template; 3796 3797 if (FoundStringTemplatePack) 3798 return LOLR_StringTemplatePack; 3799 3800 // Didn't find anything we could use. 3801 if (DiagnoseMissing) { 3802 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3803 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3804 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3805 << (AllowTemplate || AllowStringTemplatePack); 3806 return LOLR_Error; 3807 } 3808 3809 return LOLR_ErrorNoDiagnostic; 3810 } 3811 3812 void ADLResult::insert(NamedDecl *New) { 3813 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3814 3815 // If we haven't yet seen a decl for this key, or the last decl 3816 // was exactly this one, we're done. 3817 if (Old == nullptr || Old == New) { 3818 Old = New; 3819 return; 3820 } 3821 3822 // Otherwise, decide which is a more recent redeclaration. 3823 FunctionDecl *OldFD = Old->getAsFunction(); 3824 FunctionDecl *NewFD = New->getAsFunction(); 3825 3826 FunctionDecl *Cursor = NewFD; 3827 while (true) { 3828 Cursor = Cursor->getPreviousDecl(); 3829 3830 // If we got to the end without finding OldFD, OldFD is the newer 3831 // declaration; leave things as they are. 3832 if (!Cursor) return; 3833 3834 // If we do find OldFD, then NewFD is newer. 3835 if (Cursor == OldFD) break; 3836 3837 // Otherwise, keep looking. 3838 } 3839 3840 Old = New; 3841 } 3842 3843 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3844 ArrayRef<Expr *> Args, ADLResult &Result) { 3845 // Find all of the associated namespaces and classes based on the 3846 // arguments we have. 3847 AssociatedNamespaceSet AssociatedNamespaces; 3848 AssociatedClassSet AssociatedClasses; 3849 FindAssociatedClassesAndNamespaces(Loc, Args, 3850 AssociatedNamespaces, 3851 AssociatedClasses); 3852 3853 // C++ [basic.lookup.argdep]p3: 3854 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3855 // and let Y be the lookup set produced by argument dependent 3856 // lookup (defined as follows). If X contains [...] then Y is 3857 // empty. Otherwise Y is the set of declarations found in the 3858 // namespaces associated with the argument types as described 3859 // below. The set of declarations found by the lookup of the name 3860 // is the union of X and Y. 3861 // 3862 // Here, we compute Y and add its members to the overloaded 3863 // candidate set. 3864 for (auto *NS : AssociatedNamespaces) { 3865 // When considering an associated namespace, the lookup is the 3866 // same as the lookup performed when the associated namespace is 3867 // used as a qualifier (3.4.3.2) except that: 3868 // 3869 // -- Any using-directives in the associated namespace are 3870 // ignored. 3871 // 3872 // -- Any namespace-scope friend functions declared in 3873 // associated classes are visible within their respective 3874 // namespaces even if they are not visible during an ordinary 3875 // lookup (11.4). 3876 // 3877 // C++20 [basic.lookup.argdep] p4.3 3878 // -- are exported, are attached to a named module M, do not appear 3879 // in the translation unit containing the point of the lookup, and 3880 // have the same innermost enclosing non-inline namespace scope as 3881 // a declaration of an associated entity attached to M. 3882 DeclContext::lookup_result R = NS->lookup(Name); 3883 for (auto *D : R) { 3884 auto *Underlying = D; 3885 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3886 Underlying = USD->getTargetDecl(); 3887 3888 if (!isa<FunctionDecl>(Underlying) && 3889 !isa<FunctionTemplateDecl>(Underlying)) 3890 continue; 3891 3892 // The declaration is visible to argument-dependent lookup if either 3893 // it's ordinarily visible or declared as a friend in an associated 3894 // class. 3895 bool Visible = false; 3896 for (D = D->getMostRecentDecl(); D; 3897 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3898 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3899 if (isVisible(D)) { 3900 Visible = true; 3901 break; 3902 } 3903 3904 if (!getLangOpts().CPlusPlusModules) 3905 continue; 3906 3907 if (D->isInExportDeclContext()) { 3908 Module *FM = D->getOwningModule(); 3909 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3910 // exports are only valid in module purview and outside of any 3911 // PMF (although a PMF should not even be present in a module 3912 // with an import). 3913 assert(FM && FM->isNamedModule() && !FM->isPrivateModule() && 3914 "bad export context"); 3915 // .. are attached to a named module M, do not appear in the 3916 // translation unit containing the point of the lookup.. 3917 if (D->isInAnotherModuleUnit() && 3918 llvm::any_of(AssociatedClasses, [&](auto *E) { 3919 // ... and have the same innermost enclosing non-inline 3920 // namespace scope as a declaration of an associated entity 3921 // attached to M 3922 if (E->getOwningModule() != FM) 3923 return false; 3924 // TODO: maybe this could be cached when generating the 3925 // associated namespaces / entities. 3926 DeclContext *Ctx = E->getDeclContext(); 3927 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3928 Ctx = Ctx->getParent(); 3929 return Ctx == NS; 3930 })) { 3931 Visible = true; 3932 break; 3933 } 3934 } 3935 } else if (D->getFriendObjectKind()) { 3936 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3937 // [basic.lookup.argdep]p4: 3938 // Argument-dependent lookup finds all declarations of functions and 3939 // function templates that 3940 // - ... 3941 // - are declared as a friend ([class.friend]) of any class with a 3942 // reachable definition in the set of associated entities, 3943 // 3944 // FIXME: If there's a merged definition of D that is reachable, then 3945 // the friend declaration should be considered. 3946 if (AssociatedClasses.count(RD) && isReachable(D)) { 3947 Visible = true; 3948 break; 3949 } 3950 } 3951 } 3952 3953 // FIXME: Preserve D as the FoundDecl. 3954 if (Visible) 3955 Result.insert(Underlying); 3956 } 3957 } 3958 } 3959 3960 //---------------------------------------------------------------------------- 3961 // Search for all visible declarations. 3962 //---------------------------------------------------------------------------- 3963 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3964 3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3966 3967 namespace { 3968 3969 class ShadowContextRAII; 3970 3971 class VisibleDeclsRecord { 3972 public: 3973 /// An entry in the shadow map, which is optimized to store a 3974 /// single declaration (the common case) but can also store a list 3975 /// of declarations. 3976 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3977 3978 private: 3979 /// A mapping from declaration names to the declarations that have 3980 /// this name within a particular scope. 3981 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3982 3983 /// A list of shadow maps, which is used to model name hiding. 3984 std::list<ShadowMap> ShadowMaps; 3985 3986 /// The declaration contexts we have already visited. 3987 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3988 3989 friend class ShadowContextRAII; 3990 3991 public: 3992 /// Determine whether we have already visited this context 3993 /// (and, if not, note that we are going to visit that context now). 3994 bool visitedContext(DeclContext *Ctx) { 3995 return !VisitedContexts.insert(Ctx).second; 3996 } 3997 3998 bool alreadyVisitedContext(DeclContext *Ctx) { 3999 return VisitedContexts.count(Ctx); 4000 } 4001 4002 /// Determine whether the given declaration is hidden in the 4003 /// current scope. 4004 /// 4005 /// \returns the declaration that hides the given declaration, or 4006 /// NULL if no such declaration exists. 4007 NamedDecl *checkHidden(NamedDecl *ND); 4008 4009 /// Add a declaration to the current shadow map. 4010 void add(NamedDecl *ND) { 4011 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 4012 } 4013 }; 4014 4015 /// RAII object that records when we've entered a shadow context. 4016 class ShadowContextRAII { 4017 VisibleDeclsRecord &Visible; 4018 4019 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 4020 4021 public: 4022 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 4023 Visible.ShadowMaps.emplace_back(); 4024 } 4025 4026 ~ShadowContextRAII() { 4027 Visible.ShadowMaps.pop_back(); 4028 } 4029 }; 4030 4031 } // end anonymous namespace 4032 4033 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 4034 unsigned IDNS = ND->getIdentifierNamespace(); 4035 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 4036 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 4037 SM != SMEnd; ++SM) { 4038 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 4039 if (Pos == SM->end()) 4040 continue; 4041 4042 for (auto *D : Pos->second) { 4043 // A tag declaration does not hide a non-tag declaration. 4044 if (D->hasTagIdentifierNamespace() && 4045 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 4046 Decl::IDNS_ObjCProtocol))) 4047 continue; 4048 4049 // Protocols are in distinct namespaces from everything else. 4050 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 4051 || (IDNS & Decl::IDNS_ObjCProtocol)) && 4052 D->getIdentifierNamespace() != IDNS) 4053 continue; 4054 4055 // Functions and function templates in the same scope overload 4056 // rather than hide. FIXME: Look for hiding based on function 4057 // signatures! 4058 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4059 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4060 SM == ShadowMaps.rbegin()) 4061 continue; 4062 4063 // A shadow declaration that's created by a resolved using declaration 4064 // is not hidden by the same using declaration. 4065 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4066 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4067 continue; 4068 4069 // We've found a declaration that hides this one. 4070 return D; 4071 } 4072 } 4073 4074 return nullptr; 4075 } 4076 4077 namespace { 4078 class LookupVisibleHelper { 4079 public: 4080 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4081 bool LoadExternal) 4082 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4083 LoadExternal(LoadExternal) {} 4084 4085 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4086 bool IncludeGlobalScope) { 4087 // Determine the set of using directives available during 4088 // unqualified name lookup. 4089 Scope *Initial = S; 4090 UnqualUsingDirectiveSet UDirs(SemaRef); 4091 if (SemaRef.getLangOpts().CPlusPlus) { 4092 // Find the first namespace or translation-unit scope. 4093 while (S && !isNamespaceOrTranslationUnitScope(S)) 4094 S = S->getParent(); 4095 4096 UDirs.visitScopeChain(Initial, S); 4097 } 4098 UDirs.done(); 4099 4100 // Look for visible declarations. 4101 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4102 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4103 if (!IncludeGlobalScope) 4104 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4105 ShadowContextRAII Shadow(Visited); 4106 lookupInScope(Initial, Result, UDirs); 4107 } 4108 4109 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4110 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4111 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4112 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4113 if (!IncludeGlobalScope) 4114 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4115 4116 ShadowContextRAII Shadow(Visited); 4117 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4118 /*InBaseClass=*/false); 4119 } 4120 4121 private: 4122 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4123 bool QualifiedNameLookup, bool InBaseClass) { 4124 if (!Ctx) 4125 return; 4126 4127 // Make sure we don't visit the same context twice. 4128 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4129 return; 4130 4131 Consumer.EnteredContext(Ctx); 4132 4133 // Outside C++, lookup results for the TU live on identifiers. 4134 if (isa<TranslationUnitDecl>(Ctx) && 4135 !Result.getSema().getLangOpts().CPlusPlus) { 4136 auto &S = Result.getSema(); 4137 auto &Idents = S.Context.Idents; 4138 4139 // Ensure all external identifiers are in the identifier table. 4140 if (LoadExternal) 4141 if (IdentifierInfoLookup *External = 4142 Idents.getExternalIdentifierLookup()) { 4143 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4144 for (StringRef Name = Iter->Next(); !Name.empty(); 4145 Name = Iter->Next()) 4146 Idents.get(Name); 4147 } 4148 4149 // Walk all lookup results in the TU for each identifier. 4150 for (const auto &Ident : Idents) { 4151 for (auto I = S.IdResolver.begin(Ident.getValue()), 4152 E = S.IdResolver.end(); 4153 I != E; ++I) { 4154 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4155 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4156 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4157 Visited.add(ND); 4158 } 4159 } 4160 } 4161 } 4162 4163 return; 4164 } 4165 4166 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4167 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4168 4169 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4170 // We sometimes skip loading namespace-level results (they tend to be huge). 4171 bool Load = LoadExternal || 4172 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4173 // Enumerate all of the results in this context. 4174 for (DeclContextLookupResult R : 4175 Load ? Ctx->lookups() 4176 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) 4177 for (auto *D : R) 4178 // Rather than visit immediately, we put ND into a vector and visit 4179 // all decls, in order, outside of this loop. The reason is that 4180 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) 4181 // may invalidate the iterators used in the two 4182 // loops above. 4183 DeclsToVisit.push_back(D); 4184 4185 for (auto *D : DeclsToVisit) 4186 if (auto *ND = Result.getAcceptableDecl(D)) { 4187 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4188 Visited.add(ND); 4189 } 4190 4191 DeclsToVisit.clear(); 4192 4193 // Traverse using directives for qualified name lookup. 4194 if (QualifiedNameLookup) { 4195 ShadowContextRAII Shadow(Visited); 4196 for (auto *I : Ctx->using_directives()) { 4197 if (!Result.getSema().isVisible(I)) 4198 continue; 4199 lookupInDeclContext(I->getNominatedNamespace(), Result, 4200 QualifiedNameLookup, InBaseClass); 4201 } 4202 } 4203 4204 // Traverse the contexts of inherited C++ classes. 4205 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4206 if (!Record->hasDefinition()) 4207 return; 4208 4209 for (const auto &B : Record->bases()) { 4210 QualType BaseType = B.getType(); 4211 4212 RecordDecl *RD; 4213 if (BaseType->isDependentType()) { 4214 if (!IncludeDependentBases) { 4215 // Don't look into dependent bases, because name lookup can't look 4216 // there anyway. 4217 continue; 4218 } 4219 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4220 if (!TST) 4221 continue; 4222 TemplateName TN = TST->getTemplateName(); 4223 const auto *TD = 4224 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4225 if (!TD) 4226 continue; 4227 RD = TD->getTemplatedDecl(); 4228 } else { 4229 const auto *Record = BaseType->getAs<RecordType>(); 4230 if (!Record) 4231 continue; 4232 RD = Record->getDecl(); 4233 } 4234 4235 // FIXME: It would be nice to be able to determine whether referencing 4236 // a particular member would be ambiguous. For example, given 4237 // 4238 // struct A { int member; }; 4239 // struct B { int member; }; 4240 // struct C : A, B { }; 4241 // 4242 // void f(C *c) { c->### } 4243 // 4244 // accessing 'member' would result in an ambiguity. However, we 4245 // could be smart enough to qualify the member with the base 4246 // class, e.g., 4247 // 4248 // c->B::member 4249 // 4250 // or 4251 // 4252 // c->A::member 4253 4254 // Find results in this base class (and its bases). 4255 ShadowContextRAII Shadow(Visited); 4256 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4257 /*InBaseClass=*/true); 4258 } 4259 } 4260 4261 // Traverse the contexts of Objective-C classes. 4262 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4263 // Traverse categories. 4264 for (auto *Cat : IFace->visible_categories()) { 4265 ShadowContextRAII Shadow(Visited); 4266 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4267 /*InBaseClass=*/false); 4268 } 4269 4270 // Traverse protocols. 4271 for (auto *I : IFace->all_referenced_protocols()) { 4272 ShadowContextRAII Shadow(Visited); 4273 lookupInDeclContext(I, Result, QualifiedNameLookup, 4274 /*InBaseClass=*/false); 4275 } 4276 4277 // Traverse the superclass. 4278 if (IFace->getSuperClass()) { 4279 ShadowContextRAII Shadow(Visited); 4280 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4281 /*InBaseClass=*/true); 4282 } 4283 4284 // If there is an implementation, traverse it. We do this to find 4285 // synthesized ivars. 4286 if (IFace->getImplementation()) { 4287 ShadowContextRAII Shadow(Visited); 4288 lookupInDeclContext(IFace->getImplementation(), Result, 4289 QualifiedNameLookup, InBaseClass); 4290 } 4291 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4292 for (auto *I : Protocol->protocols()) { 4293 ShadowContextRAII Shadow(Visited); 4294 lookupInDeclContext(I, Result, QualifiedNameLookup, 4295 /*InBaseClass=*/false); 4296 } 4297 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4298 for (auto *I : Category->protocols()) { 4299 ShadowContextRAII Shadow(Visited); 4300 lookupInDeclContext(I, Result, QualifiedNameLookup, 4301 /*InBaseClass=*/false); 4302 } 4303 4304 // If there is an implementation, traverse it. 4305 if (Category->getImplementation()) { 4306 ShadowContextRAII Shadow(Visited); 4307 lookupInDeclContext(Category->getImplementation(), Result, 4308 QualifiedNameLookup, /*InBaseClass=*/true); 4309 } 4310 } 4311 } 4312 4313 void lookupInScope(Scope *S, LookupResult &Result, 4314 UnqualUsingDirectiveSet &UDirs) { 4315 // No clients run in this mode and it's not supported. Please add tests and 4316 // remove the assertion if you start relying on it. 4317 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4318 4319 if (!S) 4320 return; 4321 4322 if (!S->getEntity() || 4323 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4324 (S->getEntity())->isFunctionOrMethod()) { 4325 FindLocalExternScope FindLocals(Result); 4326 // Walk through the declarations in this Scope. The consumer might add new 4327 // decls to the scope as part of deserialization, so make a copy first. 4328 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4329 for (Decl *D : ScopeDecls) { 4330 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4331 if ((ND = Result.getAcceptableDecl(ND))) { 4332 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4333 Visited.add(ND); 4334 } 4335 } 4336 } 4337 4338 DeclContext *Entity = S->getLookupEntity(); 4339 if (Entity) { 4340 // Look into this scope's declaration context, along with any of its 4341 // parent lookup contexts (e.g., enclosing classes), up to the point 4342 // where we hit the context stored in the next outer scope. 4343 DeclContext *OuterCtx = findOuterContext(S); 4344 4345 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4346 Ctx = Ctx->getLookupParent()) { 4347 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4348 if (Method->isInstanceMethod()) { 4349 // For instance methods, look for ivars in the method's interface. 4350 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4351 Result.getNameLoc(), 4352 Sema::LookupMemberName); 4353 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4354 lookupInDeclContext(IFace, IvarResult, 4355 /*QualifiedNameLookup=*/false, 4356 /*InBaseClass=*/false); 4357 } 4358 } 4359 4360 // We've already performed all of the name lookup that we need 4361 // to for Objective-C methods; the next context will be the 4362 // outer scope. 4363 break; 4364 } 4365 4366 if (Ctx->isFunctionOrMethod()) 4367 continue; 4368 4369 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4370 /*InBaseClass=*/false); 4371 } 4372 } else if (!S->getParent()) { 4373 // Look into the translation unit scope. We walk through the translation 4374 // unit's declaration context, because the Scope itself won't have all of 4375 // the declarations if we loaded a precompiled header. 4376 // FIXME: We would like the translation unit's Scope object to point to 4377 // the translation unit, so we don't need this special "if" branch. 4378 // However, doing so would force the normal C++ name-lookup code to look 4379 // into the translation unit decl when the IdentifierInfo chains would 4380 // suffice. Once we fix that problem (which is part of a more general 4381 // "don't look in DeclContexts unless we have to" optimization), we can 4382 // eliminate this. 4383 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4384 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4385 /*InBaseClass=*/false); 4386 } 4387 4388 if (Entity) { 4389 // Lookup visible declarations in any namespaces found by using 4390 // directives. 4391 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4392 lookupInDeclContext( 4393 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4394 /*QualifiedNameLookup=*/false, 4395 /*InBaseClass=*/false); 4396 } 4397 4398 // Lookup names in the parent scope. 4399 ShadowContextRAII Shadow(Visited); 4400 lookupInScope(S->getParent(), Result, UDirs); 4401 } 4402 4403 private: 4404 VisibleDeclsRecord Visited; 4405 VisibleDeclConsumer &Consumer; 4406 bool IncludeDependentBases; 4407 bool LoadExternal; 4408 }; 4409 } // namespace 4410 4411 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4412 VisibleDeclConsumer &Consumer, 4413 bool IncludeGlobalScope, bool LoadExternal) { 4414 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4415 LoadExternal); 4416 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4417 } 4418 4419 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4420 VisibleDeclConsumer &Consumer, 4421 bool IncludeGlobalScope, 4422 bool IncludeDependentBases, bool LoadExternal) { 4423 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4424 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4425 } 4426 4427 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. 4428 /// If GnuLabelLoc is a valid source location, then this is a definition 4429 /// of an __label__ label name, otherwise it is a normal label definition 4430 /// or use. 4431 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4432 SourceLocation GnuLabelLoc) { 4433 // Do a lookup to see if we have a label with this name already. 4434 NamedDecl *Res = nullptr; 4435 4436 if (GnuLabelLoc.isValid()) { 4437 // Local label definitions always shadow existing labels. 4438 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4439 Scope *S = CurScope; 4440 PushOnScopeChains(Res, S, true); 4441 return cast<LabelDecl>(Res); 4442 } 4443 4444 // Not a GNU local label. 4445 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); 4446 // If we found a label, check to see if it is in the same context as us. 4447 // When in a Block, we don't want to reuse a label in an enclosing function. 4448 if (Res && Res->getDeclContext() != CurContext) 4449 Res = nullptr; 4450 if (!Res) { 4451 // If not forward referenced or defined already, create the backing decl. 4452 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4453 Scope *S = CurScope->getFnParent(); 4454 assert(S && "Not in a function?"); 4455 PushOnScopeChains(Res, S, true); 4456 } 4457 return cast<LabelDecl>(Res); 4458 } 4459 4460 //===----------------------------------------------------------------------===// 4461 // Typo correction 4462 //===----------------------------------------------------------------------===// 4463 4464 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4465 TypoCorrection &Candidate) { 4466 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4467 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4468 } 4469 4470 static void LookupPotentialTypoResult(Sema &SemaRef, 4471 LookupResult &Res, 4472 IdentifierInfo *Name, 4473 Scope *S, CXXScopeSpec *SS, 4474 DeclContext *MemberContext, 4475 bool EnteringContext, 4476 bool isObjCIvarLookup, 4477 bool FindHidden); 4478 4479 /// Check whether the declarations found for a typo correction are 4480 /// visible. Set the correction's RequiresImport flag to true if none of the 4481 /// declarations are visible, false otherwise. 4482 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4483 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4484 4485 for (/**/; DI != DE; ++DI) 4486 if (!LookupResult::isVisible(SemaRef, *DI)) 4487 break; 4488 // No filtering needed if all decls are visible. 4489 if (DI == DE) { 4490 TC.setRequiresImport(false); 4491 return; 4492 } 4493 4494 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4495 bool AnyVisibleDecls = !NewDecls.empty(); 4496 4497 for (/**/; DI != DE; ++DI) { 4498 if (LookupResult::isVisible(SemaRef, *DI)) { 4499 if (!AnyVisibleDecls) { 4500 // Found a visible decl, discard all hidden ones. 4501 AnyVisibleDecls = true; 4502 NewDecls.clear(); 4503 } 4504 NewDecls.push_back(*DI); 4505 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4506 NewDecls.push_back(*DI); 4507 } 4508 4509 if (NewDecls.empty()) 4510 TC = TypoCorrection(); 4511 else { 4512 TC.setCorrectionDecls(NewDecls); 4513 TC.setRequiresImport(!AnyVisibleDecls); 4514 } 4515 } 4516 4517 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4518 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4519 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4520 static void getNestedNameSpecifierIdentifiers( 4521 NestedNameSpecifier *NNS, 4522 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4523 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4524 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4525 else 4526 Identifiers.clear(); 4527 4528 const IdentifierInfo *II = nullptr; 4529 4530 switch (NNS->getKind()) { 4531 case NestedNameSpecifier::Identifier: 4532 II = NNS->getAsIdentifier(); 4533 break; 4534 4535 case NestedNameSpecifier::Namespace: 4536 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4537 return; 4538 II = NNS->getAsNamespace()->getIdentifier(); 4539 break; 4540 4541 case NestedNameSpecifier::NamespaceAlias: 4542 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4543 break; 4544 4545 case NestedNameSpecifier::TypeSpecWithTemplate: 4546 case NestedNameSpecifier::TypeSpec: 4547 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4548 break; 4549 4550 case NestedNameSpecifier::Global: 4551 case NestedNameSpecifier::Super: 4552 return; 4553 } 4554 4555 if (II) 4556 Identifiers.push_back(II); 4557 } 4558 4559 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4560 DeclContext *Ctx, bool InBaseClass) { 4561 // Don't consider hidden names for typo correction. 4562 if (Hiding) 4563 return; 4564 4565 // Only consider entities with identifiers for names, ignoring 4566 // special names (constructors, overloaded operators, selectors, 4567 // etc.). 4568 IdentifierInfo *Name = ND->getIdentifier(); 4569 if (!Name) 4570 return; 4571 4572 // Only consider visible declarations and declarations from modules with 4573 // names that exactly match. 4574 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4575 return; 4576 4577 FoundName(Name->getName()); 4578 } 4579 4580 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4581 // Compute the edit distance between the typo and the name of this 4582 // entity, and add the identifier to the list of results. 4583 addName(Name, nullptr); 4584 } 4585 4586 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4587 // Compute the edit distance between the typo and this keyword, 4588 // and add the keyword to the list of results. 4589 addName(Keyword, nullptr, nullptr, true); 4590 } 4591 4592 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4593 NestedNameSpecifier *NNS, bool isKeyword) { 4594 // Use a simple length-based heuristic to determine the minimum possible 4595 // edit distance. If the minimum isn't good enough, bail out early. 4596 StringRef TypoStr = Typo->getName(); 4597 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4598 if (MinED && TypoStr.size() / MinED < 3) 4599 return; 4600 4601 // Compute an upper bound on the allowable edit distance, so that the 4602 // edit-distance algorithm can short-circuit. 4603 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4604 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4605 if (ED > UpperBound) return; 4606 4607 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4608 if (isKeyword) TC.makeKeyword(); 4609 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4610 addCorrection(TC); 4611 } 4612 4613 static const unsigned MaxTypoDistanceResultSets = 5; 4614 4615 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4616 StringRef TypoStr = Typo->getName(); 4617 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4618 4619 // For very short typos, ignore potential corrections that have a different 4620 // base identifier from the typo or which have a normalized edit distance 4621 // longer than the typo itself. 4622 if (TypoStr.size() < 3 && 4623 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4624 return; 4625 4626 // If the correction is resolved but is not viable, ignore it. 4627 if (Correction.isResolved()) { 4628 checkCorrectionVisibility(SemaRef, Correction); 4629 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4630 return; 4631 } 4632 4633 TypoResultList &CList = 4634 CorrectionResults[Correction.getEditDistance(false)][Name]; 4635 4636 if (!CList.empty() && !CList.back().isResolved()) 4637 CList.pop_back(); 4638 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4639 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4640 return TypoCorr.getCorrectionDecl() == NewND; 4641 }); 4642 if (RI != CList.end()) { 4643 // The Correction refers to a decl already in the list. No insertion is 4644 // necessary and all further cases will return. 4645 4646 auto IsDeprecated = [](Decl *D) { 4647 while (D) { 4648 if (D->isDeprecated()) 4649 return true; 4650 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4651 } 4652 return false; 4653 }; 4654 4655 // Prefer non deprecated Corrections over deprecated and only then 4656 // sort using an alphabetical order. 4657 std::pair<bool, std::string> NewKey = { 4658 IsDeprecated(Correction.getFoundDecl()), 4659 Correction.getAsString(SemaRef.getLangOpts())}; 4660 4661 std::pair<bool, std::string> PrevKey = { 4662 IsDeprecated(RI->getFoundDecl()), 4663 RI->getAsString(SemaRef.getLangOpts())}; 4664 4665 if (NewKey < PrevKey) 4666 *RI = Correction; 4667 return; 4668 } 4669 } 4670 if (CList.empty() || Correction.isResolved()) 4671 CList.push_back(Correction); 4672 4673 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4674 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4675 } 4676 4677 void TypoCorrectionConsumer::addNamespaces( 4678 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4679 SearchNamespaces = true; 4680 4681 for (auto KNPair : KnownNamespaces) 4682 Namespaces.addNameSpecifier(KNPair.first); 4683 4684 bool SSIsTemplate = false; 4685 if (NestedNameSpecifier *NNS = 4686 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4687 if (const Type *T = NNS->getAsType()) 4688 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4689 } 4690 // Do not transform this into an iterator-based loop. The loop body can 4691 // trigger the creation of further types (through lazy deserialization) and 4692 // invalid iterators into this list. 4693 auto &Types = SemaRef.getASTContext().getTypes(); 4694 for (unsigned I = 0; I != Types.size(); ++I) { 4695 const auto *TI = Types[I]; 4696 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4697 CD = CD->getCanonicalDecl(); 4698 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4699 !CD->isUnion() && CD->getIdentifier() && 4700 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4701 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4702 Namespaces.addNameSpecifier(CD); 4703 } 4704 } 4705 } 4706 4707 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4708 if (++CurrentTCIndex < ValidatedCorrections.size()) 4709 return ValidatedCorrections[CurrentTCIndex]; 4710 4711 CurrentTCIndex = ValidatedCorrections.size(); 4712 while (!CorrectionResults.empty()) { 4713 auto DI = CorrectionResults.begin(); 4714 if (DI->second.empty()) { 4715 CorrectionResults.erase(DI); 4716 continue; 4717 } 4718 4719 auto RI = DI->second.begin(); 4720 if (RI->second.empty()) { 4721 DI->second.erase(RI); 4722 performQualifiedLookups(); 4723 continue; 4724 } 4725 4726 TypoCorrection TC = RI->second.pop_back_val(); 4727 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4728 ValidatedCorrections.push_back(TC); 4729 return ValidatedCorrections[CurrentTCIndex]; 4730 } 4731 } 4732 return ValidatedCorrections[0]; // The empty correction. 4733 } 4734 4735 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4736 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4737 DeclContext *TempMemberContext = MemberContext; 4738 CXXScopeSpec *TempSS = SS.get(); 4739 retry_lookup: 4740 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4741 EnteringContext, 4742 CorrectionValidator->IsObjCIvarLookup, 4743 Name == Typo && !Candidate.WillReplaceSpecifier()); 4744 switch (Result.getResultKind()) { 4745 case LookupResult::NotFound: 4746 case LookupResult::NotFoundInCurrentInstantiation: 4747 case LookupResult::FoundUnresolvedValue: 4748 if (TempSS) { 4749 // Immediately retry the lookup without the given CXXScopeSpec 4750 TempSS = nullptr; 4751 Candidate.WillReplaceSpecifier(true); 4752 goto retry_lookup; 4753 } 4754 if (TempMemberContext) { 4755 if (SS && !TempSS) 4756 TempSS = SS.get(); 4757 TempMemberContext = nullptr; 4758 goto retry_lookup; 4759 } 4760 if (SearchNamespaces) 4761 QualifiedResults.push_back(Candidate); 4762 break; 4763 4764 case LookupResult::Ambiguous: 4765 // We don't deal with ambiguities. 4766 break; 4767 4768 case LookupResult::Found: 4769 case LookupResult::FoundOverloaded: 4770 // Store all of the Decls for overloaded symbols 4771 for (auto *TRD : Result) 4772 Candidate.addCorrectionDecl(TRD); 4773 checkCorrectionVisibility(SemaRef, Candidate); 4774 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4775 if (SearchNamespaces) 4776 QualifiedResults.push_back(Candidate); 4777 break; 4778 } 4779 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4780 return true; 4781 } 4782 return false; 4783 } 4784 4785 void TypoCorrectionConsumer::performQualifiedLookups() { 4786 unsigned TypoLen = Typo->getName().size(); 4787 for (const TypoCorrection &QR : QualifiedResults) { 4788 for (const auto &NSI : Namespaces) { 4789 DeclContext *Ctx = NSI.DeclCtx; 4790 const Type *NSType = NSI.NameSpecifier->getAsType(); 4791 4792 // If the current NestedNameSpecifier refers to a class and the 4793 // current correction candidate is the name of that class, then skip 4794 // it as it is unlikely a qualified version of the class' constructor 4795 // is an appropriate correction. 4796 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4797 nullptr) { 4798 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4799 continue; 4800 } 4801 4802 TypoCorrection TC(QR); 4803 TC.ClearCorrectionDecls(); 4804 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4805 TC.setQualifierDistance(NSI.EditDistance); 4806 TC.setCallbackDistance(0); // Reset the callback distance 4807 4808 // If the current correction candidate and namespace combination are 4809 // too far away from the original typo based on the normalized edit 4810 // distance, then skip performing a qualified name lookup. 4811 unsigned TmpED = TC.getEditDistance(true); 4812 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4813 TypoLen / TmpED < 3) 4814 continue; 4815 4816 Result.clear(); 4817 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4818 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4819 continue; 4820 4821 // Any corrections added below will be validated in subsequent 4822 // iterations of the main while() loop over the Consumer's contents. 4823 switch (Result.getResultKind()) { 4824 case LookupResult::Found: 4825 case LookupResult::FoundOverloaded: { 4826 if (SS && SS->isValid()) { 4827 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4828 std::string OldQualified; 4829 llvm::raw_string_ostream OldOStream(OldQualified); 4830 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4831 OldOStream << Typo->getName(); 4832 // If correction candidate would be an identical written qualified 4833 // identifier, then the existing CXXScopeSpec probably included a 4834 // typedef that didn't get accounted for properly. 4835 if (OldOStream.str() == NewQualified) 4836 break; 4837 } 4838 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4839 TRD != TRDEnd; ++TRD) { 4840 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4841 NSType ? NSType->getAsCXXRecordDecl() 4842 : nullptr, 4843 TRD.getPair()) == Sema::AR_accessible) 4844 TC.addCorrectionDecl(*TRD); 4845 } 4846 if (TC.isResolved()) { 4847 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4848 addCorrection(TC); 4849 } 4850 break; 4851 } 4852 case LookupResult::NotFound: 4853 case LookupResult::NotFoundInCurrentInstantiation: 4854 case LookupResult::Ambiguous: 4855 case LookupResult::FoundUnresolvedValue: 4856 break; 4857 } 4858 } 4859 } 4860 QualifiedResults.clear(); 4861 } 4862 4863 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4864 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4865 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4866 if (NestedNameSpecifier *NNS = 4867 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4868 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4869 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4870 4871 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4872 } 4873 // Build the list of identifiers that would be used for an absolute 4874 // (from the global context) NestedNameSpecifier referring to the current 4875 // context. 4876 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4877 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4878 CurContextIdentifiers.push_back(ND->getIdentifier()); 4879 } 4880 4881 // Add the global context as a NestedNameSpecifier 4882 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4883 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4884 DistanceMap[1].push_back(SI); 4885 } 4886 4887 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4888 DeclContext *Start) -> DeclContextList { 4889 assert(Start && "Building a context chain from a null context"); 4890 DeclContextList Chain; 4891 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4892 DC = DC->getLookupParent()) { 4893 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4894 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4895 !(ND && ND->isAnonymousNamespace())) 4896 Chain.push_back(DC->getPrimaryContext()); 4897 } 4898 return Chain; 4899 } 4900 4901 unsigned 4902 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4903 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4904 unsigned NumSpecifiers = 0; 4905 for (DeclContext *C : llvm::reverse(DeclChain)) { 4906 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4907 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4908 ++NumSpecifiers; 4909 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4910 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4911 RD->getTypeForDecl()); 4912 ++NumSpecifiers; 4913 } 4914 } 4915 return NumSpecifiers; 4916 } 4917 4918 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4919 DeclContext *Ctx) { 4920 NestedNameSpecifier *NNS = nullptr; 4921 unsigned NumSpecifiers = 0; 4922 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4923 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4924 4925 // Eliminate common elements from the two DeclContext chains. 4926 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4927 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4928 break; 4929 NamespaceDeclChain.pop_back(); 4930 } 4931 4932 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4933 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4934 4935 // Add an explicit leading '::' specifier if needed. 4936 if (NamespaceDeclChain.empty()) { 4937 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4938 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4939 NumSpecifiers = 4940 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4941 } else if (NamedDecl *ND = 4942 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4943 IdentifierInfo *Name = ND->getIdentifier(); 4944 bool SameNameSpecifier = false; 4945 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4946 std::string NewNameSpecifier; 4947 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4948 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4949 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4950 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4951 SpecifierOStream.flush(); 4952 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4953 } 4954 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4955 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4956 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4957 NumSpecifiers = 4958 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4959 } 4960 } 4961 4962 // If the built NestedNameSpecifier would be replacing an existing 4963 // NestedNameSpecifier, use the number of component identifiers that 4964 // would need to be changed as the edit distance instead of the number 4965 // of components in the built NestedNameSpecifier. 4966 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4967 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4968 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4969 NumSpecifiers = 4970 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4971 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4972 } 4973 4974 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4975 DistanceMap[NumSpecifiers].push_back(SI); 4976 } 4977 4978 /// Perform name lookup for a possible result for typo correction. 4979 static void LookupPotentialTypoResult(Sema &SemaRef, 4980 LookupResult &Res, 4981 IdentifierInfo *Name, 4982 Scope *S, CXXScopeSpec *SS, 4983 DeclContext *MemberContext, 4984 bool EnteringContext, 4985 bool isObjCIvarLookup, 4986 bool FindHidden) { 4987 Res.suppressDiagnostics(); 4988 Res.clear(); 4989 Res.setLookupName(Name); 4990 Res.setAllowHidden(FindHidden); 4991 if (MemberContext) { 4992 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4993 if (isObjCIvarLookup) { 4994 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4995 Res.addDecl(Ivar); 4996 Res.resolveKind(); 4997 return; 4998 } 4999 } 5000 5001 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 5002 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 5003 Res.addDecl(Prop); 5004 Res.resolveKind(); 5005 return; 5006 } 5007 } 5008 5009 SemaRef.LookupQualifiedName(Res, MemberContext); 5010 return; 5011 } 5012 5013 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, 5014 EnteringContext); 5015 5016 // Fake ivar lookup; this should really be part of 5017 // LookupParsedName. 5018 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 5019 if (Method->isInstanceMethod() && Method->getClassInterface() && 5020 (Res.empty() || 5021 (Res.isSingleResult() && 5022 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 5023 if (ObjCIvarDecl *IV 5024 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 5025 Res.addDecl(IV); 5026 Res.resolveKind(); 5027 } 5028 } 5029 } 5030 } 5031 5032 /// Add keywords to the consumer as possible typo corrections. 5033 static void AddKeywordsToConsumer(Sema &SemaRef, 5034 TypoCorrectionConsumer &Consumer, 5035 Scope *S, CorrectionCandidateCallback &CCC, 5036 bool AfterNestedNameSpecifier) { 5037 if (AfterNestedNameSpecifier) { 5038 // For 'X::', we know exactly which keywords can appear next. 5039 Consumer.addKeywordResult("template"); 5040 if (CCC.WantExpressionKeywords) 5041 Consumer.addKeywordResult("operator"); 5042 return; 5043 } 5044 5045 if (CCC.WantObjCSuper) 5046 Consumer.addKeywordResult("super"); 5047 5048 if (CCC.WantTypeSpecifiers) { 5049 // Add type-specifier keywords to the set of results. 5050 static const char *const CTypeSpecs[] = { 5051 "char", "const", "double", "enum", "float", "int", "long", "short", 5052 "signed", "struct", "union", "unsigned", "void", "volatile", 5053 "_Complex", "_Imaginary", 5054 // storage-specifiers as well 5055 "extern", "inline", "static", "typedef" 5056 }; 5057 5058 for (const auto *CTS : CTypeSpecs) 5059 Consumer.addKeywordResult(CTS); 5060 5061 if (SemaRef.getLangOpts().C99) 5062 Consumer.addKeywordResult("restrict"); 5063 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5064 Consumer.addKeywordResult("bool"); 5065 else if (SemaRef.getLangOpts().C99) 5066 Consumer.addKeywordResult("_Bool"); 5067 5068 if (SemaRef.getLangOpts().CPlusPlus) { 5069 Consumer.addKeywordResult("class"); 5070 Consumer.addKeywordResult("typename"); 5071 Consumer.addKeywordResult("wchar_t"); 5072 5073 if (SemaRef.getLangOpts().CPlusPlus11) { 5074 Consumer.addKeywordResult("char16_t"); 5075 Consumer.addKeywordResult("char32_t"); 5076 Consumer.addKeywordResult("constexpr"); 5077 Consumer.addKeywordResult("decltype"); 5078 Consumer.addKeywordResult("thread_local"); 5079 } 5080 } 5081 5082 if (SemaRef.getLangOpts().GNUKeywords) 5083 Consumer.addKeywordResult("typeof"); 5084 } else if (CCC.WantFunctionLikeCasts) { 5085 static const char *const CastableTypeSpecs[] = { 5086 "char", "double", "float", "int", "long", "short", 5087 "signed", "unsigned", "void" 5088 }; 5089 for (auto *kw : CastableTypeSpecs) 5090 Consumer.addKeywordResult(kw); 5091 } 5092 5093 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5094 Consumer.addKeywordResult("const_cast"); 5095 Consumer.addKeywordResult("dynamic_cast"); 5096 Consumer.addKeywordResult("reinterpret_cast"); 5097 Consumer.addKeywordResult("static_cast"); 5098 } 5099 5100 if (CCC.WantExpressionKeywords) { 5101 Consumer.addKeywordResult("sizeof"); 5102 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5103 Consumer.addKeywordResult("false"); 5104 Consumer.addKeywordResult("true"); 5105 } 5106 5107 if (SemaRef.getLangOpts().CPlusPlus) { 5108 static const char *const CXXExprs[] = { 5109 "delete", "new", "operator", "throw", "typeid" 5110 }; 5111 for (const auto *CE : CXXExprs) 5112 Consumer.addKeywordResult(CE); 5113 5114 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5115 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5116 Consumer.addKeywordResult("this"); 5117 5118 if (SemaRef.getLangOpts().CPlusPlus11) { 5119 Consumer.addKeywordResult("alignof"); 5120 Consumer.addKeywordResult("nullptr"); 5121 } 5122 } 5123 5124 if (SemaRef.getLangOpts().C11) { 5125 // FIXME: We should not suggest _Alignof if the alignof macro 5126 // is present. 5127 Consumer.addKeywordResult("_Alignof"); 5128 } 5129 } 5130 5131 if (CCC.WantRemainingKeywords) { 5132 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5133 // Statements. 5134 static const char *const CStmts[] = { 5135 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5136 for (const auto *CS : CStmts) 5137 Consumer.addKeywordResult(CS); 5138 5139 if (SemaRef.getLangOpts().CPlusPlus) { 5140 Consumer.addKeywordResult("catch"); 5141 Consumer.addKeywordResult("try"); 5142 } 5143 5144 if (S && S->getBreakParent()) 5145 Consumer.addKeywordResult("break"); 5146 5147 if (S && S->getContinueParent()) 5148 Consumer.addKeywordResult("continue"); 5149 5150 if (SemaRef.getCurFunction() && 5151 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5152 Consumer.addKeywordResult("case"); 5153 Consumer.addKeywordResult("default"); 5154 } 5155 } else { 5156 if (SemaRef.getLangOpts().CPlusPlus) { 5157 Consumer.addKeywordResult("namespace"); 5158 Consumer.addKeywordResult("template"); 5159 } 5160 5161 if (S && S->isClassScope()) { 5162 Consumer.addKeywordResult("explicit"); 5163 Consumer.addKeywordResult("friend"); 5164 Consumer.addKeywordResult("mutable"); 5165 Consumer.addKeywordResult("private"); 5166 Consumer.addKeywordResult("protected"); 5167 Consumer.addKeywordResult("public"); 5168 Consumer.addKeywordResult("virtual"); 5169 } 5170 } 5171 5172 if (SemaRef.getLangOpts().CPlusPlus) { 5173 Consumer.addKeywordResult("using"); 5174 5175 if (SemaRef.getLangOpts().CPlusPlus11) 5176 Consumer.addKeywordResult("static_assert"); 5177 } 5178 } 5179 } 5180 5181 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5182 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5183 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5184 DeclContext *MemberContext, bool EnteringContext, 5185 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5186 5187 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5188 DisableTypoCorrection) 5189 return nullptr; 5190 5191 // In Microsoft mode, don't perform typo correction in a template member 5192 // function dependent context because it interferes with the "lookup into 5193 // dependent bases of class templates" feature. 5194 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5195 isa<CXXMethodDecl>(CurContext)) 5196 return nullptr; 5197 5198 // We only attempt to correct typos for identifiers. 5199 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5200 if (!Typo) 5201 return nullptr; 5202 5203 // If the scope specifier itself was invalid, don't try to correct 5204 // typos. 5205 if (SS && SS->isInvalid()) 5206 return nullptr; 5207 5208 // Never try to correct typos during any kind of code synthesis. 5209 if (!CodeSynthesisContexts.empty()) 5210 return nullptr; 5211 5212 // Don't try to correct 'super'. 5213 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5214 return nullptr; 5215 5216 // Abort if typo correction already failed for this specific typo. 5217 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5218 if (locs != TypoCorrectionFailures.end() && 5219 locs->second.count(TypoName.getLoc())) 5220 return nullptr; 5221 5222 // Don't try to correct the identifier "vector" when in AltiVec mode. 5223 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5224 // remove this workaround. 5225 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5226 return nullptr; 5227 5228 // Provide a stop gap for files that are just seriously broken. Trying 5229 // to correct all typos can turn into a HUGE performance penalty, causing 5230 // some files to take minutes to get rejected by the parser. 5231 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5232 if (Limit && TyposCorrected >= Limit) 5233 return nullptr; 5234 ++TyposCorrected; 5235 5236 // If we're handling a missing symbol error, using modules, and the 5237 // special search all modules option is used, look for a missing import. 5238 if (ErrorRecovery && getLangOpts().Modules && 5239 getLangOpts().ModulesSearchAll) { 5240 // The following has the side effect of loading the missing module. 5241 getModuleLoader().lookupMissingImports(Typo->getName(), 5242 TypoName.getBeginLoc()); 5243 } 5244 5245 // Extend the lifetime of the callback. We delayed this until here 5246 // to avoid allocations in the hot path (which is where no typo correction 5247 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5248 // initially stack-allocated. 5249 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5250 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5251 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5252 EnteringContext); 5253 5254 // Perform name lookup to find visible, similarly-named entities. 5255 bool IsUnqualifiedLookup = false; 5256 DeclContext *QualifiedDC = MemberContext; 5257 if (MemberContext) { 5258 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5259 5260 // Look in qualified interfaces. 5261 if (OPT) { 5262 for (auto *I : OPT->quals()) 5263 LookupVisibleDecls(I, LookupKind, *Consumer); 5264 } 5265 } else if (SS && SS->isSet()) { 5266 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5267 if (!QualifiedDC) 5268 return nullptr; 5269 5270 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5271 } else { 5272 IsUnqualifiedLookup = true; 5273 } 5274 5275 // Determine whether we are going to search in the various namespaces for 5276 // corrections. 5277 bool SearchNamespaces 5278 = getLangOpts().CPlusPlus && 5279 (IsUnqualifiedLookup || (SS && SS->isSet())); 5280 5281 if (IsUnqualifiedLookup || SearchNamespaces) { 5282 // For unqualified lookup, look through all of the names that we have 5283 // seen in this translation unit. 5284 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5285 for (const auto &I : Context.Idents) 5286 Consumer->FoundName(I.getKey()); 5287 5288 // Walk through identifiers in external identifier sources. 5289 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5290 if (IdentifierInfoLookup *External 5291 = Context.Idents.getExternalIdentifierLookup()) { 5292 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5293 do { 5294 StringRef Name = Iter->Next(); 5295 if (Name.empty()) 5296 break; 5297 5298 Consumer->FoundName(Name); 5299 } while (true); 5300 } 5301 } 5302 5303 AddKeywordsToConsumer(*this, *Consumer, S, 5304 *Consumer->getCorrectionValidator(), 5305 SS && SS->isNotEmpty()); 5306 5307 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5308 // to search those namespaces. 5309 if (SearchNamespaces) { 5310 // Load any externally-known namespaces. 5311 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5312 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5313 LoadedExternalKnownNamespaces = true; 5314 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5315 for (auto *N : ExternalKnownNamespaces) 5316 KnownNamespaces[N] = true; 5317 } 5318 5319 Consumer->addNamespaces(KnownNamespaces); 5320 } 5321 5322 return Consumer; 5323 } 5324 5325 /// Try to "correct" a typo in the source code by finding 5326 /// visible declarations whose names are similar to the name that was 5327 /// present in the source code. 5328 /// 5329 /// \param TypoName the \c DeclarationNameInfo structure that contains 5330 /// the name that was present in the source code along with its location. 5331 /// 5332 /// \param LookupKind the name-lookup criteria used to search for the name. 5333 /// 5334 /// \param S the scope in which name lookup occurs. 5335 /// 5336 /// \param SS the nested-name-specifier that precedes the name we're 5337 /// looking for, if present. 5338 /// 5339 /// \param CCC A CorrectionCandidateCallback object that provides further 5340 /// validation of typo correction candidates. It also provides flags for 5341 /// determining the set of keywords permitted. 5342 /// 5343 /// \param MemberContext if non-NULL, the context in which to look for 5344 /// a member access expression. 5345 /// 5346 /// \param EnteringContext whether we're entering the context described by 5347 /// the nested-name-specifier SS. 5348 /// 5349 /// \param OPT when non-NULL, the search for visible declarations will 5350 /// also walk the protocols in the qualified interfaces of \p OPT. 5351 /// 5352 /// \returns a \c TypoCorrection containing the corrected name if the typo 5353 /// along with information such as the \c NamedDecl where the corrected name 5354 /// was declared, and any additional \c NestedNameSpecifier needed to access 5355 /// it (C++ only). The \c TypoCorrection is empty if there is no correction. 5356 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5357 Sema::LookupNameKind LookupKind, 5358 Scope *S, CXXScopeSpec *SS, 5359 CorrectionCandidateCallback &CCC, 5360 CorrectTypoKind Mode, 5361 DeclContext *MemberContext, 5362 bool EnteringContext, 5363 const ObjCObjectPointerType *OPT, 5364 bool RecordFailure) { 5365 // Always let the ExternalSource have the first chance at correction, even 5366 // if we would otherwise have given up. 5367 if (ExternalSource) { 5368 if (TypoCorrection Correction = 5369 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5370 MemberContext, EnteringContext, OPT)) 5371 return Correction; 5372 } 5373 5374 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5375 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5376 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5377 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5378 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5379 5380 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5381 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5382 MemberContext, EnteringContext, 5383 OPT, Mode == CTK_ErrorRecovery); 5384 5385 if (!Consumer) 5386 return TypoCorrection(); 5387 5388 // If we haven't found anything, we're done. 5389 if (Consumer->empty()) 5390 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5391 5392 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5393 // is not more that about a third of the length of the typo's identifier. 5394 unsigned ED = Consumer->getBestEditDistance(true); 5395 unsigned TypoLen = Typo->getName().size(); 5396 if (ED > 0 && TypoLen / ED < 3) 5397 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5398 5399 TypoCorrection BestTC = Consumer->getNextCorrection(); 5400 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5401 if (!BestTC) 5402 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5403 5404 ED = BestTC.getEditDistance(); 5405 5406 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5407 // If this was an unqualified lookup and we believe the callback 5408 // object wouldn't have filtered out possible corrections, note 5409 // that no correction was found. 5410 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5411 } 5412 5413 // If only a single name remains, return that result. 5414 if (!SecondBestTC || 5415 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5416 const TypoCorrection &Result = BestTC; 5417 5418 // Don't correct to a keyword that's the same as the typo; the keyword 5419 // wasn't actually in scope. 5420 if (ED == 0 && Result.isKeyword()) 5421 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5422 5423 TypoCorrection TC = Result; 5424 TC.setCorrectionRange(SS, TypoName); 5425 checkCorrectionVisibility(*this, TC); 5426 return TC; 5427 } else if (SecondBestTC && ObjCMessageReceiver) { 5428 // Prefer 'super' when we're completing in a message-receiver 5429 // context. 5430 5431 if (BestTC.getCorrection().getAsString() != "super") { 5432 if (SecondBestTC.getCorrection().getAsString() == "super") 5433 BestTC = SecondBestTC; 5434 else if ((*Consumer)["super"].front().isKeyword()) 5435 BestTC = (*Consumer)["super"].front(); 5436 } 5437 // Don't correct to a keyword that's the same as the typo; the keyword 5438 // wasn't actually in scope. 5439 if (BestTC.getEditDistance() == 0 || 5440 BestTC.getCorrection().getAsString() != "super") 5441 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5442 5443 BestTC.setCorrectionRange(SS, TypoName); 5444 return BestTC; 5445 } 5446 5447 // Record the failure's location if needed and return an empty correction. If 5448 // this was an unqualified lookup and we believe the callback object did not 5449 // filter out possible corrections, also cache the failure for the typo. 5450 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5451 } 5452 5453 /// Try to "correct" a typo in the source code by finding 5454 /// visible declarations whose names are similar to the name that was 5455 /// present in the source code. 5456 /// 5457 /// \param TypoName the \c DeclarationNameInfo structure that contains 5458 /// the name that was present in the source code along with its location. 5459 /// 5460 /// \param LookupKind the name-lookup criteria used to search for the name. 5461 /// 5462 /// \param S the scope in which name lookup occurs. 5463 /// 5464 /// \param SS the nested-name-specifier that precedes the name we're 5465 /// looking for, if present. 5466 /// 5467 /// \param CCC A CorrectionCandidateCallback object that provides further 5468 /// validation of typo correction candidates. It also provides flags for 5469 /// determining the set of keywords permitted. 5470 /// 5471 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print 5472 /// diagnostics when the actual typo correction is attempted. 5473 /// 5474 /// \param TRC A TypoRecoveryCallback functor that will be used to build an 5475 /// Expr from a typo correction candidate. 5476 /// 5477 /// \param MemberContext if non-NULL, the context in which to look for 5478 /// a member access expression. 5479 /// 5480 /// \param EnteringContext whether we're entering the context described by 5481 /// the nested-name-specifier SS. 5482 /// 5483 /// \param OPT when non-NULL, the search for visible declarations will 5484 /// also walk the protocols in the qualified interfaces of \p OPT. 5485 /// 5486 /// \returns a new \c TypoExpr that will later be replaced in the AST with an 5487 /// Expr representing the result of performing typo correction, or nullptr if 5488 /// typo correction is not possible. If nullptr is returned, no diagnostics will 5489 /// be emitted and it is the responsibility of the caller to emit any that are 5490 /// needed. 5491 TypoExpr *Sema::CorrectTypoDelayed( 5492 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5493 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5494 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5495 DeclContext *MemberContext, bool EnteringContext, 5496 const ObjCObjectPointerType *OPT) { 5497 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5498 MemberContext, EnteringContext, 5499 OPT, Mode == CTK_ErrorRecovery); 5500 5501 // Give the external sema source a chance to correct the typo. 5502 TypoCorrection ExternalTypo; 5503 if (ExternalSource && Consumer) { 5504 ExternalTypo = ExternalSource->CorrectTypo( 5505 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5506 MemberContext, EnteringContext, OPT); 5507 if (ExternalTypo) 5508 Consumer->addCorrection(ExternalTypo); 5509 } 5510 5511 if (!Consumer || Consumer->empty()) 5512 return nullptr; 5513 5514 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5515 // is not more that about a third of the length of the typo's identifier. 5516 unsigned ED = Consumer->getBestEditDistance(true); 5517 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5518 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5519 return nullptr; 5520 ExprEvalContexts.back().NumTypos++; 5521 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5522 TypoName.getLoc()); 5523 } 5524 5525 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5526 if (!CDecl) return; 5527 5528 if (isKeyword()) 5529 CorrectionDecls.clear(); 5530 5531 CorrectionDecls.push_back(CDecl); 5532 5533 if (!CorrectionName) 5534 CorrectionName = CDecl->getDeclName(); 5535 } 5536 5537 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5538 if (CorrectionNameSpec) { 5539 std::string tmpBuffer; 5540 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5541 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5542 PrefixOStream << CorrectionName; 5543 return PrefixOStream.str(); 5544 } 5545 5546 return CorrectionName.getAsString(); 5547 } 5548 5549 bool CorrectionCandidateCallback::ValidateCandidate( 5550 const TypoCorrection &candidate) { 5551 if (!candidate.isResolved()) 5552 return true; 5553 5554 if (candidate.isKeyword()) 5555 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5556 WantRemainingKeywords || WantObjCSuper; 5557 5558 bool HasNonType = false; 5559 bool HasStaticMethod = false; 5560 bool HasNonStaticMethod = false; 5561 for (Decl *D : candidate) { 5562 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5563 D = FTD->getTemplatedDecl(); 5564 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5565 if (Method->isStatic()) 5566 HasStaticMethod = true; 5567 else 5568 HasNonStaticMethod = true; 5569 } 5570 if (!isa<TypeDecl>(D)) 5571 HasNonType = true; 5572 } 5573 5574 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5575 !candidate.getCorrectionSpecifier()) 5576 return false; 5577 5578 return WantTypeSpecifiers || HasNonType; 5579 } 5580 5581 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5582 bool HasExplicitTemplateArgs, 5583 MemberExpr *ME) 5584 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5585 CurContext(SemaRef.CurContext), MemberFn(ME) { 5586 WantTypeSpecifiers = false; 5587 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5588 !HasExplicitTemplateArgs && NumArgs == 1; 5589 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5590 WantRemainingKeywords = false; 5591 } 5592 5593 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5594 if (!candidate.getCorrectionDecl()) 5595 return candidate.isKeyword(); 5596 5597 for (auto *C : candidate) { 5598 FunctionDecl *FD = nullptr; 5599 NamedDecl *ND = C->getUnderlyingDecl(); 5600 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5601 FD = FTD->getTemplatedDecl(); 5602 if (!HasExplicitTemplateArgs && !FD) { 5603 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5604 // If the Decl is neither a function nor a template function, 5605 // determine if it is a pointer or reference to a function. If so, 5606 // check against the number of arguments expected for the pointee. 5607 QualType ValType = cast<ValueDecl>(ND)->getType(); 5608 if (ValType.isNull()) 5609 continue; 5610 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5611 ValType = ValType->getPointeeType(); 5612 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5613 if (FPT->getNumParams() == NumArgs) 5614 return true; 5615 } 5616 } 5617 5618 // A typo for a function-style cast can look like a function call in C++. 5619 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5620 : isa<TypeDecl>(ND)) && 5621 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5622 // Only a class or class template can take two or more arguments. 5623 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5624 5625 // Skip the current candidate if it is not a FunctionDecl or does not accept 5626 // the current number of arguments. 5627 if (!FD || !(FD->getNumParams() >= NumArgs && 5628 FD->getMinRequiredArguments() <= NumArgs)) 5629 continue; 5630 5631 // If the current candidate is a non-static C++ method, skip the candidate 5632 // unless the method being corrected--or the current DeclContext, if the 5633 // function being corrected is not a method--is a method in the same class 5634 // or a descendent class of the candidate's parent class. 5635 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 5636 if (MemberFn || !MD->isStatic()) { 5637 const auto *CurMD = 5638 MemberFn 5639 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) 5640 : dyn_cast_if_present<CXXMethodDecl>(CurContext); 5641 const CXXRecordDecl *CurRD = 5642 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5643 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5644 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5645 continue; 5646 } 5647 } 5648 return true; 5649 } 5650 return false; 5651 } 5652 5653 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5654 const PartialDiagnostic &TypoDiag, 5655 bool ErrorRecovery) { 5656 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5657 ErrorRecovery); 5658 } 5659 5660 /// Find which declaration we should import to provide the definition of 5661 /// the given declaration. 5662 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { 5663 if (const auto *VD = dyn_cast<VarDecl>(D)) 5664 return VD->getDefinition(); 5665 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 5666 return FD->getDefinition(); 5667 if (const auto *TD = dyn_cast<TagDecl>(D)) 5668 return TD->getDefinition(); 5669 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5670 return ID->getDefinition(); 5671 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) 5672 return PD->getDefinition(); 5673 if (const auto *TD = dyn_cast<TemplateDecl>(D)) 5674 if (const NamedDecl *TTD = TD->getTemplatedDecl()) 5675 return getDefinitionToImport(TTD); 5676 return nullptr; 5677 } 5678 5679 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, 5680 MissingImportKind MIK, bool Recover) { 5681 // Suggest importing a module providing the definition of this entity, if 5682 // possible. 5683 const NamedDecl *Def = getDefinitionToImport(Decl); 5684 if (!Def) 5685 Def = Decl; 5686 5687 Module *Owner = getOwningModule(Def); 5688 assert(Owner && "definition of hidden declaration is not in a module"); 5689 5690 llvm::SmallVector<Module*, 8> OwningModules; 5691 OwningModules.push_back(Owner); 5692 auto Merged = Context.getModulesWithMergedDefinition(Def); 5693 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5694 5695 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5696 Recover); 5697 } 5698 5699 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5700 /// suggesting the addition of a #include of the specified file. 5701 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, 5702 llvm::StringRef IncludingFile) { 5703 bool IsAngled = false; 5704 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5705 E, IncludingFile, &IsAngled); 5706 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); 5707 } 5708 5709 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, 5710 SourceLocation DeclLoc, 5711 ArrayRef<Module *> Modules, 5712 MissingImportKind MIK, bool Recover) { 5713 assert(!Modules.empty()); 5714 5715 // See https://github.com/llvm/llvm-project/issues/73893. It is generally 5716 // confusing than helpful to show the namespace is not visible. 5717 if (isa<NamespaceDecl>(Decl)) 5718 return; 5719 5720 auto NotePrevious = [&] { 5721 // FIXME: Suppress the note backtrace even under 5722 // -fdiagnostics-show-note-include-stack. We don't care how this 5723 // declaration was previously reached. 5724 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5725 }; 5726 5727 // Weed out duplicates from module list. 5728 llvm::SmallVector<Module*, 8> UniqueModules; 5729 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5730 for (auto *M : Modules) { 5731 if (M->isExplicitGlobalModule() || M->isPrivateModule()) 5732 continue; 5733 if (UniqueModuleSet.insert(M).second) 5734 UniqueModules.push_back(M); 5735 } 5736 5737 // Try to find a suitable header-name to #include. 5738 std::string HeaderName; 5739 if (OptionalFileEntryRef Header = 5740 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5741 if (const FileEntry *FE = 5742 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5743 HeaderName = 5744 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); 5745 } 5746 5747 // If we have a #include we should suggest, or if all definition locations 5748 // were in global module fragments, don't suggest an import. 5749 if (!HeaderName.empty() || UniqueModules.empty()) { 5750 // FIXME: Find a smart place to suggest inserting a #include, and add 5751 // a FixItHint there. 5752 Diag(UseLoc, diag::err_module_unimported_use_header) 5753 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5754 // Produce a note showing where the entity was declared. 5755 NotePrevious(); 5756 if (Recover) 5757 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5758 return; 5759 } 5760 5761 Modules = UniqueModules; 5762 5763 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { 5764 if (M->isModuleMapModule()) 5765 return M->getFullModuleName(); 5766 5767 Module *CurrentModule = getCurrentModule(); 5768 5769 if (M->isImplicitGlobalModule()) 5770 M = M->getTopLevelModule(); 5771 5772 bool IsInTheSameModule = 5773 CurrentModule && CurrentModule->getPrimaryModuleInterfaceName() == 5774 M->getPrimaryModuleInterfaceName(); 5775 5776 // If the current module unit is in the same module with M, it is OK to show 5777 // the partition name. Otherwise, it'll be sufficient to show the primary 5778 // module name. 5779 if (IsInTheSameModule) 5780 return M->getTopLevelModuleName().str(); 5781 else 5782 return M->getPrimaryModuleInterfaceName().str(); 5783 }; 5784 5785 if (Modules.size() > 1) { 5786 std::string ModuleList; 5787 unsigned N = 0; 5788 for (const auto *M : Modules) { 5789 ModuleList += "\n "; 5790 if (++N == 5 && N != Modules.size()) { 5791 ModuleList += "[...]"; 5792 break; 5793 } 5794 ModuleList += GetModuleNameForDiagnostic(M); 5795 } 5796 5797 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5798 << (int)MIK << Decl << ModuleList; 5799 } else { 5800 // FIXME: Add a FixItHint that imports the corresponding module. 5801 Diag(UseLoc, diag::err_module_unimported_use) 5802 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); 5803 } 5804 5805 NotePrevious(); 5806 5807 // Try to recover by implicitly importing this module. 5808 if (Recover) 5809 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5810 } 5811 5812 /// Diagnose a successfully-corrected typo. Separated from the correction 5813 /// itself to allow external validation of the result, etc. 5814 /// 5815 /// \param Correction The result of performing typo correction. 5816 /// \param TypoDiag The diagnostic to produce. This will have the corrected 5817 /// string added to it (and usually also a fixit). 5818 /// \param PrevNote A note to use when indicating the location of the entity to 5819 /// which we are correcting. Will have the correction string added to it. 5820 /// \param ErrorRecovery If \c true (the default), the caller is going to 5821 /// recover from the typo as if the corrected string had been typed. 5822 /// In this case, \c PDiag must be an error, and we will attach a fixit 5823 /// to it. 5824 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5825 const PartialDiagnostic &TypoDiag, 5826 const PartialDiagnostic &PrevNote, 5827 bool ErrorRecovery) { 5828 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5829 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5830 FixItHint FixTypo = FixItHint::CreateReplacement( 5831 Correction.getCorrectionRange(), CorrectedStr); 5832 5833 // Maybe we're just missing a module import. 5834 if (Correction.requiresImport()) { 5835 NamedDecl *Decl = Correction.getFoundDecl(); 5836 assert(Decl && "import required but no declaration to import"); 5837 5838 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5839 MissingImportKind::Declaration, ErrorRecovery); 5840 return; 5841 } 5842 5843 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5844 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5845 5846 NamedDecl *ChosenDecl = 5847 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5848 if (PrevNote.getDiagID() && ChosenDecl) 5849 Diag(ChosenDecl->getLocation(), PrevNote) 5850 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5851 5852 // Add any extra diagnostics. 5853 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5854 Diag(Correction.getCorrectionRange().getBegin(), PD); 5855 } 5856 5857 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5858 TypoDiagnosticGenerator TDG, 5859 TypoRecoveryCallback TRC, 5860 SourceLocation TypoLoc) { 5861 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5862 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5863 auto &State = DelayedTypos[TE]; 5864 State.Consumer = std::move(TCC); 5865 State.DiagHandler = std::move(TDG); 5866 State.RecoveryHandler = std::move(TRC); 5867 if (TE) 5868 TypoExprs.push_back(TE); 5869 return TE; 5870 } 5871 5872 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5873 auto Entry = DelayedTypos.find(TE); 5874 assert(Entry != DelayedTypos.end() && 5875 "Failed to get the state for a TypoExpr!"); 5876 return Entry->second; 5877 } 5878 5879 void Sema::clearDelayedTypo(TypoExpr *TE) { 5880 DelayedTypos.erase(TE); 5881 } 5882 5883 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5884 DeclarationNameInfo Name(II, IILoc); 5885 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); 5886 R.suppressDiagnostics(); 5887 R.setHideTags(false); 5888 LookupName(R, S); 5889 R.dump(); 5890 } 5891 5892 void Sema::ActOnPragmaDump(Expr *E) { 5893 E->dump(); 5894 } 5895