1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 LSI->RequiresClause.get()); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 else if (Var->getMostRecentDecl()->isInline()) 303 Kind = InlineVariable; 304 else if (Var->getDescribedVarTemplate()) 305 Kind = VariableTemplate; 306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 307 if (!VTS->isExplicitSpecialization()) 308 Kind = VariableTemplate; 309 } 310 } else if (isa<FieldDecl>(ManglingContextDecl)) { 311 Kind = DataMember; 312 } 313 } 314 315 // Itanium ABI [5.1.7]: 316 // In the following contexts [...] the one-definition rule requires closure 317 // types in different translation units to "correspond": 318 bool IsInNonspecializedTemplate = 319 inTemplateInstantiation() || CurContext->isDependentContext(); 320 switch (Kind) { 321 case Normal: { 322 // -- the bodies of non-exported nonspecialized template functions 323 // -- the bodies of inline functions 324 if ((IsInNonspecializedTemplate && 325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 326 isInInlineFunction(CurContext)) { 327 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 328 DC = CD->getParent(); 329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 330 } 331 332 return std::make_tuple(nullptr, nullptr); 333 } 334 335 case StaticDataMember: 336 // -- the initializers of nonspecialized static members of template classes 337 if (!IsInNonspecializedTemplate) 338 return std::make_tuple(nullptr, ManglingContextDecl); 339 // Fall through to get the current context. 340 LLVM_FALLTHROUGH; 341 342 case DataMember: 343 // -- the in-class initializers of class members 344 case DefaultArgument: 345 // -- default arguments appearing in class definitions 346 case InlineVariable: 347 // -- the initializers of inline variables 348 case VariableTemplate: 349 // -- the initializers of templated variables 350 return std::make_tuple( 351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 352 ManglingContextDecl), 353 ManglingContextDecl); 354 } 355 356 llvm_unreachable("unexpected context"); 357 } 358 359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 360 SourceRange IntroducerRange, 361 TypeSourceInfo *MethodTypeInfo, 362 SourceLocation EndLoc, 363 ArrayRef<ParmVarDecl *> Params, 364 ConstexprSpecKind ConstexprKind, 365 Expr *TrailingRequiresClause) { 366 QualType MethodType = MethodTypeInfo->getType(); 367 TemplateParameterList *TemplateParams = 368 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 369 // If a lambda appears in a dependent context or is a generic lambda (has 370 // template parameters) and has an 'auto' return type, deduce it to a 371 // dependent type. 372 if (Class->isDependentContext() || TemplateParams) { 373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 374 QualType Result = FPT->getReturnType(); 375 if (Result->isUndeducedType()) { 376 Result = SubstAutoType(Result, Context.DependentTy); 377 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 378 FPT->getExtProtoInfo()); 379 } 380 } 381 382 // C++11 [expr.prim.lambda]p5: 383 // The closure type for a lambda-expression has a public inline function 384 // call operator (13.5.4) whose parameters and return type are described by 385 // the lambda-expression's parameter-declaration-clause and 386 // trailing-return-type respectively. 387 DeclarationName MethodName 388 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 389 DeclarationNameLoc MethodNameLoc; 390 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 391 = IntroducerRange.getBegin().getRawEncoding(); 392 MethodNameLoc.CXXOperatorName.EndOpNameLoc 393 = IntroducerRange.getEnd().getRawEncoding(); 394 CXXMethodDecl *Method = CXXMethodDecl::Create( 395 Context, Class, EndLoc, 396 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 397 MethodNameLoc), 398 MethodType, MethodTypeInfo, SC_None, 399 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 400 Method->setAccess(AS_public); 401 if (!TemplateParams) 402 Class->addDecl(Method); 403 404 // Temporarily set the lexical declaration context to the current 405 // context, so that the Scope stack matches the lexical nesting. 406 Method->setLexicalDeclContext(CurContext); 407 // Create a function template if we have a template parameter list 408 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 409 FunctionTemplateDecl::Create(Context, Class, 410 Method->getLocation(), MethodName, 411 TemplateParams, 412 Method) : nullptr; 413 if (TemplateMethod) { 414 TemplateMethod->setAccess(AS_public); 415 Method->setDescribedFunctionTemplate(TemplateMethod); 416 Class->addDecl(TemplateMethod); 417 TemplateMethod->setLexicalDeclContext(CurContext); 418 } 419 420 // Add parameters. 421 if (!Params.empty()) { 422 Method->setParams(Params); 423 CheckParmsForFunctionDef(Params, 424 /*CheckParameterNames=*/false); 425 426 for (auto P : Method->parameters()) 427 P->setOwningFunction(Method); 428 } 429 430 return Method; 431 } 432 433 void Sema::handleLambdaNumbering( 434 CXXRecordDecl *Class, CXXMethodDecl *Method, 435 Optional<std::tuple<unsigned, bool, Decl *>> Mangling) { 436 if (Mangling) { 437 unsigned ManglingNumber; 438 bool HasKnownInternalLinkage; 439 Decl *ManglingContextDecl; 440 std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) = 441 Mangling.getValue(); 442 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 443 HasKnownInternalLinkage); 444 return; 445 } 446 447 auto getMangleNumberingContext = 448 [this](CXXRecordDecl *Class, 449 Decl *ManglingContextDecl) -> MangleNumberingContext * { 450 // Get mangle numbering context if there's any extra decl context. 451 if (ManglingContextDecl) 452 return &Context.getManglingNumberContext( 453 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 454 // Otherwise, from that lambda's decl context. 455 auto DC = Class->getDeclContext(); 456 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 457 DC = CD->getParent(); 458 return &Context.getManglingNumberContext(DC); 459 }; 460 461 MangleNumberingContext *MCtx; 462 Decl *ManglingContextDecl; 463 std::tie(MCtx, ManglingContextDecl) = 464 getCurrentMangleNumberContext(Class->getDeclContext()); 465 bool HasKnownInternalLinkage = false; 466 if (!MCtx && getLangOpts().CUDA) { 467 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 468 // ODR. Both device- and host-compilation need to have a consistent naming 469 // on kernel functions. As lambdas are potential part of these `__global__` 470 // function names, they needs numbering following ODR. 471 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 472 assert(MCtx && "Retrieving mangle numbering context failed!"); 473 HasKnownInternalLinkage = true; 474 } 475 if (MCtx) { 476 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 477 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 478 HasKnownInternalLinkage); 479 } 480 } 481 482 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 483 CXXMethodDecl *CallOperator, 484 SourceRange IntroducerRange, 485 LambdaCaptureDefault CaptureDefault, 486 SourceLocation CaptureDefaultLoc, 487 bool ExplicitParams, 488 bool ExplicitResultType, 489 bool Mutable) { 490 LSI->CallOperator = CallOperator; 491 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 492 LSI->Lambda = LambdaClass; 493 if (CaptureDefault == LCD_ByCopy) 494 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 495 else if (CaptureDefault == LCD_ByRef) 496 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 497 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 498 LSI->IntroducerRange = IntroducerRange; 499 LSI->ExplicitParams = ExplicitParams; 500 LSI->Mutable = Mutable; 501 502 if (ExplicitResultType) { 503 LSI->ReturnType = CallOperator->getReturnType(); 504 505 if (!LSI->ReturnType->isDependentType() && 506 !LSI->ReturnType->isVoidType()) { 507 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 508 diag::err_lambda_incomplete_result)) { 509 // Do nothing. 510 } 511 } 512 } else { 513 LSI->HasImplicitReturnType = true; 514 } 515 } 516 517 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 518 LSI->finishedExplicitCaptures(); 519 } 520 521 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 522 ArrayRef<NamedDecl *> TParams, 523 SourceLocation RAngleLoc, 524 ExprResult RequiresClause) { 525 LambdaScopeInfo *LSI = getCurLambda(); 526 assert(LSI && "Expected a lambda scope"); 527 assert(LSI->NumExplicitTemplateParams == 0 && 528 "Already acted on explicit template parameters"); 529 assert(LSI->TemplateParams.empty() && 530 "Explicit template parameters should come " 531 "before invented (auto) ones"); 532 assert(!TParams.empty() && 533 "No template parameters to act on"); 534 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 535 LSI->NumExplicitTemplateParams = TParams.size(); 536 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 537 LSI->RequiresClause = RequiresClause; 538 } 539 540 void Sema::addLambdaParameters( 541 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 542 CXXMethodDecl *CallOperator, Scope *CurScope) { 543 // Introduce our parameters into the function scope 544 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 545 p < NumParams; ++p) { 546 ParmVarDecl *Param = CallOperator->getParamDecl(p); 547 548 // If this has an identifier, add it to the scope stack. 549 if (CurScope && Param->getIdentifier()) { 550 bool Error = false; 551 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 552 // retroactively apply it. 553 for (const auto &Capture : Captures) { 554 if (Capture.Id == Param->getIdentifier()) { 555 Error = true; 556 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 557 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 558 << Capture.Id << true; 559 } 560 } 561 if (!Error) 562 CheckShadow(CurScope, Param); 563 564 PushOnScopeChains(Param, CurScope); 565 } 566 } 567 } 568 569 /// If this expression is an enumerator-like expression of some type 570 /// T, return the type T; otherwise, return null. 571 /// 572 /// Pointer comparisons on the result here should always work because 573 /// it's derived from either the parent of an EnumConstantDecl 574 /// (i.e. the definition) or the declaration returned by 575 /// EnumType::getDecl() (i.e. the definition). 576 static EnumDecl *findEnumForBlockReturn(Expr *E) { 577 // An expression is an enumerator-like expression of type T if, 578 // ignoring parens and parens-like expressions: 579 E = E->IgnoreParens(); 580 581 // - it is an enumerator whose enum type is T or 582 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 583 if (EnumConstantDecl *D 584 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 585 return cast<EnumDecl>(D->getDeclContext()); 586 } 587 return nullptr; 588 } 589 590 // - it is a comma expression whose RHS is an enumerator-like 591 // expression of type T or 592 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 593 if (BO->getOpcode() == BO_Comma) 594 return findEnumForBlockReturn(BO->getRHS()); 595 return nullptr; 596 } 597 598 // - it is a statement-expression whose value expression is an 599 // enumerator-like expression of type T or 600 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 601 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 602 return findEnumForBlockReturn(last); 603 return nullptr; 604 } 605 606 // - it is a ternary conditional operator (not the GNU ?: 607 // extension) whose second and third operands are 608 // enumerator-like expressions of type T or 609 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 610 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 611 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 612 return ED; 613 return nullptr; 614 } 615 616 // (implicitly:) 617 // - it is an implicit integral conversion applied to an 618 // enumerator-like expression of type T or 619 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 620 // We can sometimes see integral conversions in valid 621 // enumerator-like expressions. 622 if (ICE->getCastKind() == CK_IntegralCast) 623 return findEnumForBlockReturn(ICE->getSubExpr()); 624 625 // Otherwise, just rely on the type. 626 } 627 628 // - it is an expression of that formal enum type. 629 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 630 return ET->getDecl(); 631 } 632 633 // Otherwise, nope. 634 return nullptr; 635 } 636 637 /// Attempt to find a type T for which the returned expression of the 638 /// given statement is an enumerator-like expression of that type. 639 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 640 if (Expr *retValue = ret->getRetValue()) 641 return findEnumForBlockReturn(retValue); 642 return nullptr; 643 } 644 645 /// Attempt to find a common type T for which all of the returned 646 /// expressions in a block are enumerator-like expressions of that 647 /// type. 648 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 649 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 650 651 // Try to find one for the first return. 652 EnumDecl *ED = findEnumForBlockReturn(*i); 653 if (!ED) return nullptr; 654 655 // Check that the rest of the returns have the same enum. 656 for (++i; i != e; ++i) { 657 if (findEnumForBlockReturn(*i) != ED) 658 return nullptr; 659 } 660 661 // Never infer an anonymous enum type. 662 if (!ED->hasNameForLinkage()) return nullptr; 663 664 return ED; 665 } 666 667 /// Adjust the given return statements so that they formally return 668 /// the given type. It should require, at most, an IntegralCast. 669 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 670 QualType returnType) { 671 for (ArrayRef<ReturnStmt*>::iterator 672 i = returns.begin(), e = returns.end(); i != e; ++i) { 673 ReturnStmt *ret = *i; 674 Expr *retValue = ret->getRetValue(); 675 if (S.Context.hasSameType(retValue->getType(), returnType)) 676 continue; 677 678 // Right now we only support integral fixup casts. 679 assert(returnType->isIntegralOrUnscopedEnumerationType()); 680 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 681 682 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 683 684 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 685 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 686 /*base path*/ nullptr, VK_RValue, 687 FPOptionsOverride()); 688 if (cleanups) { 689 cleanups->setSubExpr(E); 690 } else { 691 ret->setRetValue(E); 692 } 693 } 694 } 695 696 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 697 assert(CSI.HasImplicitReturnType); 698 // If it was ever a placeholder, it had to been deduced to DependentTy. 699 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 700 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 701 "lambda expressions use auto deduction in C++14 onwards"); 702 703 // C++ core issue 975: 704 // If a lambda-expression does not include a trailing-return-type, 705 // it is as if the trailing-return-type denotes the following type: 706 // - if there are no return statements in the compound-statement, 707 // or all return statements return either an expression of type 708 // void or no expression or braced-init-list, the type void; 709 // - otherwise, if all return statements return an expression 710 // and the types of the returned expressions after 711 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 712 // array-to-pointer conversion (4.2 [conv.array]), and 713 // function-to-pointer conversion (4.3 [conv.func]) are the 714 // same, that common type; 715 // - otherwise, the program is ill-formed. 716 // 717 // C++ core issue 1048 additionally removes top-level cv-qualifiers 718 // from the types of returned expressions to match the C++14 auto 719 // deduction rules. 720 // 721 // In addition, in blocks in non-C++ modes, if all of the return 722 // statements are enumerator-like expressions of some type T, where 723 // T has a name for linkage, then we infer the return type of the 724 // block to be that type. 725 726 // First case: no return statements, implicit void return type. 727 ASTContext &Ctx = getASTContext(); 728 if (CSI.Returns.empty()) { 729 // It's possible there were simply no /valid/ return statements. 730 // In this case, the first one we found may have at least given us a type. 731 if (CSI.ReturnType.isNull()) 732 CSI.ReturnType = Ctx.VoidTy; 733 return; 734 } 735 736 // Second case: at least one return statement has dependent type. 737 // Delay type checking until instantiation. 738 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 739 if (CSI.ReturnType->isDependentType()) 740 return; 741 742 // Try to apply the enum-fuzz rule. 743 if (!getLangOpts().CPlusPlus) { 744 assert(isa<BlockScopeInfo>(CSI)); 745 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 746 if (ED) { 747 CSI.ReturnType = Context.getTypeDeclType(ED); 748 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 749 return; 750 } 751 } 752 753 // Third case: only one return statement. Don't bother doing extra work! 754 if (CSI.Returns.size() == 1) 755 return; 756 757 // General case: many return statements. 758 // Check that they all have compatible return types. 759 760 // We require the return types to strictly match here. 761 // Note that we've already done the required promotions as part of 762 // processing the return statement. 763 for (const ReturnStmt *RS : CSI.Returns) { 764 const Expr *RetE = RS->getRetValue(); 765 766 QualType ReturnType = 767 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 768 if (Context.getCanonicalFunctionResultType(ReturnType) == 769 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 770 // Use the return type with the strictest possible nullability annotation. 771 auto RetTyNullability = ReturnType->getNullability(Ctx); 772 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 773 if (BlockNullability && 774 (!RetTyNullability || 775 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 776 CSI.ReturnType = ReturnType; 777 continue; 778 } 779 780 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 781 // TODO: It's possible that the *first* return is the divergent one. 782 Diag(RS->getBeginLoc(), 783 diag::err_typecheck_missing_return_type_incompatible) 784 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 785 // Continue iterating so that we keep emitting diagnostics. 786 } 787 } 788 789 QualType Sema::buildLambdaInitCaptureInitialization( 790 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 791 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 792 Expr *&Init) { 793 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 794 // deduce against. 795 QualType DeductType = Context.getAutoDeductType(); 796 TypeLocBuilder TLB; 797 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 798 TL.setNameLoc(Loc); 799 if (ByRef) { 800 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 801 assert(!DeductType.isNull() && "can't build reference to auto"); 802 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 803 } 804 if (EllipsisLoc.isValid()) { 805 if (Init->containsUnexpandedParameterPack()) { 806 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 807 ? diag::warn_cxx17_compat_init_capture_pack 808 : diag::ext_init_capture_pack); 809 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 810 /*ExpectPackInType=*/false); 811 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 812 } else { 813 // Just ignore the ellipsis for now and form a non-pack variable. We'll 814 // diagnose this later when we try to capture it. 815 } 816 } 817 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 818 819 // Deduce the type of the init capture. 820 QualType DeducedType = deduceVarTypeFromInitializer( 821 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 822 SourceRange(Loc, Loc), IsDirectInit, Init); 823 if (DeducedType.isNull()) 824 return QualType(); 825 826 // Are we a non-list direct initialization? 827 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 828 829 // Perform initialization analysis and ensure any implicit conversions 830 // (such as lvalue-to-rvalue) are enforced. 831 InitializedEntity Entity = 832 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 833 InitializationKind Kind = 834 IsDirectInit 835 ? (CXXDirectInit ? InitializationKind::CreateDirect( 836 Loc, Init->getBeginLoc(), Init->getEndLoc()) 837 : InitializationKind::CreateDirectList(Loc)) 838 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 839 840 MultiExprArg Args = Init; 841 if (CXXDirectInit) 842 Args = 843 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 844 QualType DclT; 845 InitializationSequence InitSeq(*this, Entity, Kind, Args); 846 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 847 848 if (Result.isInvalid()) 849 return QualType(); 850 851 Init = Result.getAs<Expr>(); 852 return DeducedType; 853 } 854 855 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 856 QualType InitCaptureType, 857 SourceLocation EllipsisLoc, 858 IdentifierInfo *Id, 859 unsigned InitStyle, Expr *Init) { 860 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 861 // rather than reconstructing it here. 862 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 863 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 864 PETL.setEllipsisLoc(EllipsisLoc); 865 866 // Create a dummy variable representing the init-capture. This is not actually 867 // used as a variable, and only exists as a way to name and refer to the 868 // init-capture. 869 // FIXME: Pass in separate source locations for '&' and identifier. 870 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 871 Loc, Id, InitCaptureType, TSI, SC_Auto); 872 NewVD->setInitCapture(true); 873 NewVD->setReferenced(true); 874 // FIXME: Pass in a VarDecl::InitializationStyle. 875 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 876 NewVD->markUsed(Context); 877 NewVD->setInit(Init); 878 if (NewVD->isParameterPack()) 879 getCurLambda()->LocalPacks.push_back(NewVD); 880 return NewVD; 881 } 882 883 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 884 assert(Var->isInitCapture() && "init capture flag should be set"); 885 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 886 /*isNested*/false, Var->getLocation(), SourceLocation(), 887 Var->getType(), /*Invalid*/false); 888 } 889 890 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 891 Declarator &ParamInfo, 892 Scope *CurScope) { 893 LambdaScopeInfo *const LSI = getCurLambda(); 894 assert(LSI && "LambdaScopeInfo should be on stack!"); 895 896 // Determine if we're within a context where we know that the lambda will 897 // be dependent, because there are template parameters in scope. 898 bool KnownDependent; 899 if (LSI->NumExplicitTemplateParams > 0) { 900 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 901 assert(TemplateParamScope && 902 "Lambda with explicit template param list should establish a " 903 "template param scope"); 904 assert(TemplateParamScope->getParent()); 905 KnownDependent = TemplateParamScope->getParent() 906 ->getTemplateParamParent() != nullptr; 907 } else { 908 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 909 } 910 911 // Determine the signature of the call operator. 912 TypeSourceInfo *MethodTyInfo; 913 bool ExplicitParams = true; 914 bool ExplicitResultType = true; 915 bool ContainsUnexpandedParameterPack = false; 916 SourceLocation EndLoc; 917 SmallVector<ParmVarDecl *, 8> Params; 918 if (ParamInfo.getNumTypeObjects() == 0) { 919 // C++11 [expr.prim.lambda]p4: 920 // If a lambda-expression does not include a lambda-declarator, it is as 921 // if the lambda-declarator were (). 922 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 923 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 924 EPI.HasTrailingReturn = true; 925 EPI.TypeQuals.addConst(); 926 LangAS AS = getDefaultCXXMethodAddrSpace(); 927 if (AS != LangAS::Default) 928 EPI.TypeQuals.addAddressSpace(AS); 929 930 // C++1y [expr.prim.lambda]: 931 // The lambda return type is 'auto', which is replaced by the 932 // trailing-return type if provided and/or deduced from 'return' 933 // statements 934 // We don't do this before C++1y, because we don't support deduced return 935 // types there. 936 QualType DefaultTypeForNoTrailingReturn = 937 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 938 : Context.DependentTy; 939 QualType MethodTy = 940 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 941 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 942 ExplicitParams = false; 943 ExplicitResultType = false; 944 EndLoc = Intro.Range.getEnd(); 945 } else { 946 assert(ParamInfo.isFunctionDeclarator() && 947 "lambda-declarator is a function"); 948 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 949 950 // C++11 [expr.prim.lambda]p5: 951 // This function call operator is declared const (9.3.1) if and only if 952 // the lambda-expression's parameter-declaration-clause is not followed 953 // by mutable. It is neither virtual nor declared volatile. [...] 954 if (!FTI.hasMutableQualifier()) { 955 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 956 SourceLocation()); 957 } 958 959 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 960 assert(MethodTyInfo && "no type from lambda-declarator"); 961 EndLoc = ParamInfo.getSourceRange().getEnd(); 962 963 ExplicitResultType = FTI.hasTrailingReturnType(); 964 965 if (FTIHasNonVoidParameters(FTI)) { 966 Params.reserve(FTI.NumParams); 967 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 968 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 969 } 970 971 // Check for unexpanded parameter packs in the method type. 972 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 973 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 974 UPPC_DeclarationType); 975 } 976 977 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 978 KnownDependent, Intro.Default); 979 CXXMethodDecl *Method = 980 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 981 ParamInfo.getDeclSpec().getConstexprSpecifier(), 982 ParamInfo.getTrailingRequiresClause()); 983 if (ExplicitParams) 984 CheckCXXDefaultArguments(Method); 985 986 // This represents the function body for the lambda function, check if we 987 // have to apply optnone due to a pragma. 988 AddRangeBasedOptnone(Method); 989 990 // code_seg attribute on lambda apply to the method. 991 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 992 Method->addAttr(A); 993 994 // Attributes on the lambda apply to the method. 995 ProcessDeclAttributes(CurScope, Method, ParamInfo); 996 997 // CUDA lambdas get implicit host and device attributes. 998 if (getLangOpts().CUDA) 999 CUDASetLambdaAttrs(Method); 1000 1001 // OpenMP lambdas might get assumumption attributes. 1002 if (LangOpts.OpenMP) 1003 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1004 1005 // Number the lambda for linkage purposes if necessary. 1006 handleLambdaNumbering(Class, Method); 1007 1008 // Introduce the function call operator as the current declaration context. 1009 PushDeclContext(CurScope, Method); 1010 1011 // Build the lambda scope. 1012 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1013 ExplicitParams, ExplicitResultType, !Method->isConst()); 1014 1015 // C++11 [expr.prim.lambda]p9: 1016 // A lambda-expression whose smallest enclosing scope is a block scope is a 1017 // local lambda expression; any other lambda expression shall not have a 1018 // capture-default or simple-capture in its lambda-introducer. 1019 // 1020 // For simple-captures, this is covered by the check below that any named 1021 // entity is a variable that can be captured. 1022 // 1023 // For DR1632, we also allow a capture-default in any context where we can 1024 // odr-use 'this' (in particular, in a default initializer for a non-static 1025 // data member). 1026 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1027 (getCurrentThisType().isNull() || 1028 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1029 /*BuildAndDiagnose*/false))) 1030 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1031 1032 // Distinct capture names, for diagnostics. 1033 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1034 1035 // Handle explicit captures. 1036 SourceLocation PrevCaptureLoc 1037 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1038 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1039 PrevCaptureLoc = C->Loc, ++C) { 1040 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1041 if (C->Kind == LCK_StarThis) 1042 Diag(C->Loc, !getLangOpts().CPlusPlus17 1043 ? diag::ext_star_this_lambda_capture_cxx17 1044 : diag::warn_cxx14_compat_star_this_lambda_capture); 1045 1046 // C++11 [expr.prim.lambda]p8: 1047 // An identifier or this shall not appear more than once in a 1048 // lambda-capture. 1049 if (LSI->isCXXThisCaptured()) { 1050 Diag(C->Loc, diag::err_capture_more_than_once) 1051 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1052 << FixItHint::CreateRemoval( 1053 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1054 continue; 1055 } 1056 1057 // C++2a [expr.prim.lambda]p8: 1058 // If a lambda-capture includes a capture-default that is =, 1059 // each simple-capture of that lambda-capture shall be of the form 1060 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1061 // redundant but accepted for compatibility with ISO C++14. --end note ] 1062 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1063 Diag(C->Loc, !getLangOpts().CPlusPlus20 1064 ? diag::ext_equals_this_lambda_capture_cxx20 1065 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1066 1067 // C++11 [expr.prim.lambda]p12: 1068 // If this is captured by a local lambda expression, its nearest 1069 // enclosing function shall be a non-static member function. 1070 QualType ThisCaptureType = getCurrentThisType(); 1071 if (ThisCaptureType.isNull()) { 1072 Diag(C->Loc, diag::err_this_capture) << true; 1073 continue; 1074 } 1075 1076 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1077 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1078 C->Kind == LCK_StarThis); 1079 if (!LSI->Captures.empty()) 1080 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1081 continue; 1082 } 1083 1084 assert(C->Id && "missing identifier for capture"); 1085 1086 if (C->Init.isInvalid()) 1087 continue; 1088 1089 VarDecl *Var = nullptr; 1090 if (C->Init.isUsable()) { 1091 Diag(C->Loc, getLangOpts().CPlusPlus14 1092 ? diag::warn_cxx11_compat_init_capture 1093 : diag::ext_init_capture); 1094 1095 // If the initializer expression is usable, but the InitCaptureType 1096 // is not, then an error has occurred - so ignore the capture for now. 1097 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1098 // FIXME: we should create the init capture variable and mark it invalid 1099 // in this case. 1100 if (C->InitCaptureType.get().isNull()) 1101 continue; 1102 1103 if (C->Init.get()->containsUnexpandedParameterPack() && 1104 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1105 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1106 1107 unsigned InitStyle; 1108 switch (C->InitKind) { 1109 case LambdaCaptureInitKind::NoInit: 1110 llvm_unreachable("not an init-capture?"); 1111 case LambdaCaptureInitKind::CopyInit: 1112 InitStyle = VarDecl::CInit; 1113 break; 1114 case LambdaCaptureInitKind::DirectInit: 1115 InitStyle = VarDecl::CallInit; 1116 break; 1117 case LambdaCaptureInitKind::ListInit: 1118 InitStyle = VarDecl::ListInit; 1119 break; 1120 } 1121 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1122 C->EllipsisLoc, C->Id, InitStyle, 1123 C->Init.get()); 1124 // C++1y [expr.prim.lambda]p11: 1125 // An init-capture behaves as if it declares and explicitly 1126 // captures a variable [...] whose declarative region is the 1127 // lambda-expression's compound-statement 1128 if (Var) 1129 PushOnScopeChains(Var, CurScope, false); 1130 } else { 1131 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1132 "init capture has valid but null init?"); 1133 1134 // C++11 [expr.prim.lambda]p8: 1135 // If a lambda-capture includes a capture-default that is &, the 1136 // identifiers in the lambda-capture shall not be preceded by &. 1137 // If a lambda-capture includes a capture-default that is =, [...] 1138 // each identifier it contains shall be preceded by &. 1139 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1140 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1141 << FixItHint::CreateRemoval( 1142 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1143 continue; 1144 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1145 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1146 << FixItHint::CreateRemoval( 1147 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1148 continue; 1149 } 1150 1151 // C++11 [expr.prim.lambda]p10: 1152 // The identifiers in a capture-list are looked up using the usual 1153 // rules for unqualified name lookup (3.4.1) 1154 DeclarationNameInfo Name(C->Id, C->Loc); 1155 LookupResult R(*this, Name, LookupOrdinaryName); 1156 LookupName(R, CurScope); 1157 if (R.isAmbiguous()) 1158 continue; 1159 if (R.empty()) { 1160 // FIXME: Disable corrections that would add qualification? 1161 CXXScopeSpec ScopeSpec; 1162 DeclFilterCCC<VarDecl> Validator{}; 1163 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1164 continue; 1165 } 1166 1167 Var = R.getAsSingle<VarDecl>(); 1168 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1169 continue; 1170 } 1171 1172 // C++11 [expr.prim.lambda]p8: 1173 // An identifier or this shall not appear more than once in a 1174 // lambda-capture. 1175 if (!CaptureNames.insert(C->Id).second) { 1176 if (Var && LSI->isCaptured(Var)) { 1177 Diag(C->Loc, diag::err_capture_more_than_once) 1178 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1179 << FixItHint::CreateRemoval( 1180 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1181 } else 1182 // Previous capture captured something different (one or both was 1183 // an init-cpature): no fixit. 1184 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1185 continue; 1186 } 1187 1188 // C++11 [expr.prim.lambda]p10: 1189 // [...] each such lookup shall find a variable with automatic storage 1190 // duration declared in the reaching scope of the local lambda expression. 1191 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1192 if (!Var) { 1193 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1194 continue; 1195 } 1196 1197 // Ignore invalid decls; they'll just confuse the code later. 1198 if (Var->isInvalidDecl()) 1199 continue; 1200 1201 if (!Var->hasLocalStorage()) { 1202 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1203 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1204 continue; 1205 } 1206 1207 // C++11 [expr.prim.lambda]p23: 1208 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1209 SourceLocation EllipsisLoc; 1210 if (C->EllipsisLoc.isValid()) { 1211 if (Var->isParameterPack()) { 1212 EllipsisLoc = C->EllipsisLoc; 1213 } else { 1214 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1215 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1216 : SourceRange(C->Loc)); 1217 1218 // Just ignore the ellipsis. 1219 } 1220 } else if (Var->isParameterPack()) { 1221 ContainsUnexpandedParameterPack = true; 1222 } 1223 1224 if (C->Init.isUsable()) { 1225 addInitCapture(LSI, Var); 1226 } else { 1227 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1228 TryCapture_ExplicitByVal; 1229 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1230 } 1231 if (!LSI->Captures.empty()) 1232 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1233 } 1234 finishLambdaExplicitCaptures(LSI); 1235 1236 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1237 1238 // Add lambda parameters into scope. 1239 addLambdaParameters(Intro.Captures, Method, CurScope); 1240 1241 // Enter a new evaluation context to insulate the lambda from any 1242 // cleanups from the enclosing full-expression. 1243 PushExpressionEvaluationContext( 1244 LSI->CallOperator->isConsteval() 1245 ? ExpressionEvaluationContext::ConstantEvaluated 1246 : ExpressionEvaluationContext::PotentiallyEvaluated); 1247 } 1248 1249 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1250 bool IsInstantiation) { 1251 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1252 1253 // Leave the expression-evaluation context. 1254 DiscardCleanupsInEvaluationContext(); 1255 PopExpressionEvaluationContext(); 1256 1257 // Leave the context of the lambda. 1258 if (!IsInstantiation) 1259 PopDeclContext(); 1260 1261 // Finalize the lambda. 1262 CXXRecordDecl *Class = LSI->Lambda; 1263 Class->setInvalidDecl(); 1264 SmallVector<Decl*, 4> Fields(Class->fields()); 1265 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1266 SourceLocation(), ParsedAttributesView()); 1267 CheckCompletedCXXClass(nullptr, Class); 1268 1269 PopFunctionScopeInfo(); 1270 } 1271 1272 template <typename Func> 1273 static void repeatForLambdaConversionFunctionCallingConvs( 1274 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1275 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1276 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1277 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1278 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1279 CallingConv CallOpCC = CallOpProto.getCallConv(); 1280 1281 /// Implement emitting a version of the operator for many of the calling 1282 /// conventions for MSVC, as described here: 1283 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1284 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1285 /// vectorcall are generated by MSVC when it is supported by the target. 1286 /// Additionally, we are ensuring that the default-free/default-member and 1287 /// call-operator calling convention are generated as well. 1288 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1289 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1290 /// that someone who intentionally places 'thiscall' on the lambda call 1291 /// operator will still get that overload, since we don't have the a way of 1292 /// detecting the attribute by the time we get here. 1293 if (S.getLangOpts().MSVCCompat) { 1294 CallingConv Convs[] = { 1295 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1296 DefaultFree, DefaultMember, CallOpCC}; 1297 llvm::sort(Convs); 1298 llvm::iterator_range<CallingConv *> Range( 1299 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1300 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1301 1302 for (CallingConv C : Range) { 1303 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1304 F(C); 1305 } 1306 return; 1307 } 1308 1309 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1310 F(DefaultFree); 1311 F(DefaultMember); 1312 } else { 1313 F(CallOpCC); 1314 } 1315 } 1316 1317 // Returns the 'standard' calling convention to be used for the lambda 1318 // conversion function, that is, the 'free' function calling convention unless 1319 // it is overridden by a non-default calling convention attribute. 1320 static CallingConv 1321 getLambdaConversionFunctionCallConv(Sema &S, 1322 const FunctionProtoType *CallOpProto) { 1323 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1324 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1325 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1326 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1327 CallingConv CallOpCC = CallOpProto->getCallConv(); 1328 1329 // If the call-operator hasn't been changed, return both the 'free' and 1330 // 'member' function calling convention. 1331 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1332 return DefaultFree; 1333 return CallOpCC; 1334 } 1335 1336 QualType Sema::getLambdaConversionFunctionResultType( 1337 const FunctionProtoType *CallOpProto, CallingConv CC) { 1338 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1339 CallOpProto->getExtProtoInfo(); 1340 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1341 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1342 InvokerExtInfo.TypeQuals = Qualifiers(); 1343 assert(InvokerExtInfo.RefQualifier == RQ_None && 1344 "Lambda's call operator should not have a reference qualifier"); 1345 return Context.getFunctionType(CallOpProto->getReturnType(), 1346 CallOpProto->getParamTypes(), InvokerExtInfo); 1347 } 1348 1349 /// Add a lambda's conversion to function pointer, as described in 1350 /// C++11 [expr.prim.lambda]p6. 1351 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1352 CXXRecordDecl *Class, 1353 CXXMethodDecl *CallOperator, 1354 QualType InvokerFunctionTy) { 1355 // This conversion is explicitly disabled if the lambda's function has 1356 // pass_object_size attributes on any of its parameters. 1357 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1358 return P->hasAttr<PassObjectSizeAttr>(); 1359 }; 1360 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1361 return; 1362 1363 // Add the conversion to function pointer. 1364 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1365 1366 // Create the type of the conversion function. 1367 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1368 S.Context.getDefaultCallingConvention( 1369 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1370 // The conversion function is always const and noexcept. 1371 ConvExtInfo.TypeQuals = Qualifiers(); 1372 ConvExtInfo.TypeQuals.addConst(); 1373 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1374 QualType ConvTy = 1375 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1376 1377 SourceLocation Loc = IntroducerRange.getBegin(); 1378 DeclarationName ConversionName 1379 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1380 S.Context.getCanonicalType(PtrToFunctionTy)); 1381 DeclarationNameLoc ConvNameLoc; 1382 // Construct a TypeSourceInfo for the conversion function, and wire 1383 // all the parameters appropriately for the FunctionProtoTypeLoc 1384 // so that everything works during transformation/instantiation of 1385 // generic lambdas. 1386 // The main reason for wiring up the parameters of the conversion 1387 // function with that of the call operator is so that constructs 1388 // like the following work: 1389 // auto L = [](auto b) { <-- 1 1390 // return [](auto a) -> decltype(a) { <-- 2 1391 // return a; 1392 // }; 1393 // }; 1394 // int (*fp)(int) = L(5); 1395 // Because the trailing return type can contain DeclRefExprs that refer 1396 // to the original call operator's variables, we hijack the call 1397 // operators ParmVarDecls below. 1398 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1399 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1400 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1401 1402 // The conversion function is a conversion to a pointer-to-function. 1403 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1404 FunctionProtoTypeLoc ConvTL = 1405 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1406 // Get the result of the conversion function which is a pointer-to-function. 1407 PointerTypeLoc PtrToFunctionTL = 1408 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1409 // Do the same for the TypeSourceInfo that is used to name the conversion 1410 // operator. 1411 PointerTypeLoc ConvNamePtrToFunctionTL = 1412 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1413 1414 // Get the underlying function types that the conversion function will 1415 // be converting to (should match the type of the call operator). 1416 FunctionProtoTypeLoc CallOpConvTL = 1417 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1418 FunctionProtoTypeLoc CallOpConvNameTL = 1419 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1420 1421 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1422 // These parameter's are essentially used to transform the name and 1423 // the type of the conversion operator. By using the same parameters 1424 // as the call operator's we don't have to fix any back references that 1425 // the trailing return type of the call operator's uses (such as 1426 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1427 // - we can simply use the return type of the call operator, and 1428 // everything should work. 1429 SmallVector<ParmVarDecl *, 4> InvokerParams; 1430 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1431 ParmVarDecl *From = CallOperator->getParamDecl(I); 1432 1433 InvokerParams.push_back(ParmVarDecl::Create( 1434 S.Context, 1435 // Temporarily add to the TU. This is set to the invoker below. 1436 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1437 From->getLocation(), From->getIdentifier(), From->getType(), 1438 From->getTypeSourceInfo(), From->getStorageClass(), 1439 /*DefArg=*/nullptr)); 1440 CallOpConvTL.setParam(I, From); 1441 CallOpConvNameTL.setParam(I, From); 1442 } 1443 1444 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1445 S.Context, Class, Loc, 1446 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1447 /*isInline=*/true, ExplicitSpecifier(), 1448 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1449 : ConstexprSpecKind::Unspecified, 1450 CallOperator->getBody()->getEndLoc()); 1451 Conversion->setAccess(AS_public); 1452 Conversion->setImplicit(true); 1453 1454 if (Class->isGenericLambda()) { 1455 // Create a template version of the conversion operator, using the template 1456 // parameter list of the function call operator. 1457 FunctionTemplateDecl *TemplateCallOperator = 1458 CallOperator->getDescribedFunctionTemplate(); 1459 FunctionTemplateDecl *ConversionTemplate = 1460 FunctionTemplateDecl::Create(S.Context, Class, 1461 Loc, ConversionName, 1462 TemplateCallOperator->getTemplateParameters(), 1463 Conversion); 1464 ConversionTemplate->setAccess(AS_public); 1465 ConversionTemplate->setImplicit(true); 1466 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1467 Class->addDecl(ConversionTemplate); 1468 } else 1469 Class->addDecl(Conversion); 1470 // Add a non-static member function that will be the result of 1471 // the conversion with a certain unique ID. 1472 DeclarationName InvokerName = &S.Context.Idents.get( 1473 getLambdaStaticInvokerName()); 1474 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1475 // we should get a prebuilt TrivialTypeSourceInfo from Context 1476 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1477 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1478 // loop below and then use its Params to set Invoke->setParams(...) below. 1479 // This would avoid the 'const' qualifier of the calloperator from 1480 // contaminating the type of the invoker, which is currently adjusted 1481 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1482 // trailing return type of the invoker would require a visitor to rebuild 1483 // the trailing return type and adjusting all back DeclRefExpr's to refer 1484 // to the new static invoker parameters - not the call operator's. 1485 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1486 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1487 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1488 /*isInline=*/true, ConstexprSpecKind::Unspecified, 1489 CallOperator->getBody()->getEndLoc()); 1490 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1491 InvokerParams[I]->setOwningFunction(Invoke); 1492 Invoke->setParams(InvokerParams); 1493 Invoke->setAccess(AS_private); 1494 Invoke->setImplicit(true); 1495 if (Class->isGenericLambda()) { 1496 FunctionTemplateDecl *TemplateCallOperator = 1497 CallOperator->getDescribedFunctionTemplate(); 1498 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1499 S.Context, Class, Loc, InvokerName, 1500 TemplateCallOperator->getTemplateParameters(), 1501 Invoke); 1502 StaticInvokerTemplate->setAccess(AS_private); 1503 StaticInvokerTemplate->setImplicit(true); 1504 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1505 Class->addDecl(StaticInvokerTemplate); 1506 } else 1507 Class->addDecl(Invoke); 1508 } 1509 1510 /// Add a lambda's conversion to function pointers, as described in 1511 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1512 /// single pointer conversion. In the event that the default calling convention 1513 /// for free and member functions is different, it will emit both conventions. 1514 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1515 CXXRecordDecl *Class, 1516 CXXMethodDecl *CallOperator) { 1517 const FunctionProtoType *CallOpProto = 1518 CallOperator->getType()->castAs<FunctionProtoType>(); 1519 1520 repeatForLambdaConversionFunctionCallingConvs( 1521 S, *CallOpProto, [&](CallingConv CC) { 1522 QualType InvokerFunctionTy = 1523 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1524 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1525 InvokerFunctionTy); 1526 }); 1527 } 1528 1529 /// Add a lambda's conversion to block pointer. 1530 static void addBlockPointerConversion(Sema &S, 1531 SourceRange IntroducerRange, 1532 CXXRecordDecl *Class, 1533 CXXMethodDecl *CallOperator) { 1534 const FunctionProtoType *CallOpProto = 1535 CallOperator->getType()->castAs<FunctionProtoType>(); 1536 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1537 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1538 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1539 1540 FunctionProtoType::ExtProtoInfo ConversionEPI( 1541 S.Context.getDefaultCallingConvention( 1542 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1543 ConversionEPI.TypeQuals = Qualifiers(); 1544 ConversionEPI.TypeQuals.addConst(); 1545 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1546 1547 SourceLocation Loc = IntroducerRange.getBegin(); 1548 DeclarationName Name 1549 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1550 S.Context.getCanonicalType(BlockPtrTy)); 1551 DeclarationNameLoc NameLoc; 1552 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1553 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1554 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1555 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1556 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1557 CallOperator->getBody()->getEndLoc()); 1558 Conversion->setAccess(AS_public); 1559 Conversion->setImplicit(true); 1560 Class->addDecl(Conversion); 1561 } 1562 1563 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1564 SourceLocation ImplicitCaptureLoc, 1565 bool IsOpenMPMapping) { 1566 // VLA captures don't have a stored initialization expression. 1567 if (Cap.isVLATypeCapture()) 1568 return ExprResult(); 1569 1570 // An init-capture is initialized directly from its stored initializer. 1571 if (Cap.isInitCapture()) 1572 return Cap.getVariable()->getInit(); 1573 1574 // For anything else, build an initialization expression. For an implicit 1575 // capture, the capture notionally happens at the capture-default, so use 1576 // that location here. 1577 SourceLocation Loc = 1578 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1579 1580 // C++11 [expr.prim.lambda]p21: 1581 // When the lambda-expression is evaluated, the entities that 1582 // are captured by copy are used to direct-initialize each 1583 // corresponding non-static data member of the resulting closure 1584 // object. (For array members, the array elements are 1585 // direct-initialized in increasing subscript order.) These 1586 // initializations are performed in the (unspecified) order in 1587 // which the non-static data members are declared. 1588 1589 // C++ [expr.prim.lambda]p12: 1590 // An entity captured by a lambda-expression is odr-used (3.2) in 1591 // the scope containing the lambda-expression. 1592 ExprResult Init; 1593 IdentifierInfo *Name = nullptr; 1594 if (Cap.isThisCapture()) { 1595 QualType ThisTy = getCurrentThisType(); 1596 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1597 if (Cap.isCopyCapture()) 1598 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1599 else 1600 Init = This; 1601 } else { 1602 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1603 VarDecl *Var = Cap.getVariable(); 1604 Name = Var->getIdentifier(); 1605 Init = BuildDeclarationNameExpr( 1606 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1607 } 1608 1609 // In OpenMP, the capture kind doesn't actually describe how to capture: 1610 // variables are "mapped" onto the device in a process that does not formally 1611 // make a copy, even for a "copy capture". 1612 if (IsOpenMPMapping) 1613 return Init; 1614 1615 if (Init.isInvalid()) 1616 return ExprError(); 1617 1618 Expr *InitExpr = Init.get(); 1619 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1620 Name, Cap.getCaptureType(), Loc); 1621 InitializationKind InitKind = 1622 InitializationKind::CreateDirect(Loc, Loc, Loc); 1623 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1624 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1625 } 1626 1627 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1628 Scope *CurScope) { 1629 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1630 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1631 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1632 } 1633 1634 static LambdaCaptureDefault 1635 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1636 switch (ICS) { 1637 case CapturingScopeInfo::ImpCap_None: 1638 return LCD_None; 1639 case CapturingScopeInfo::ImpCap_LambdaByval: 1640 return LCD_ByCopy; 1641 case CapturingScopeInfo::ImpCap_CapturedRegion: 1642 case CapturingScopeInfo::ImpCap_LambdaByref: 1643 return LCD_ByRef; 1644 case CapturingScopeInfo::ImpCap_Block: 1645 llvm_unreachable("block capture in lambda"); 1646 } 1647 llvm_unreachable("Unknown implicit capture style"); 1648 } 1649 1650 bool Sema::CaptureHasSideEffects(const Capture &From) { 1651 if (From.isInitCapture()) { 1652 Expr *Init = From.getVariable()->getInit(); 1653 if (Init && Init->HasSideEffects(Context)) 1654 return true; 1655 } 1656 1657 if (!From.isCopyCapture()) 1658 return false; 1659 1660 const QualType T = From.isThisCapture() 1661 ? getCurrentThisType()->getPointeeType() 1662 : From.getCaptureType(); 1663 1664 if (T.isVolatileQualified()) 1665 return true; 1666 1667 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1668 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1669 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1670 !RD->hasTrivialDestructor(); 1671 1672 return false; 1673 } 1674 1675 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1676 const Capture &From) { 1677 if (CaptureHasSideEffects(From)) 1678 return false; 1679 1680 if (From.isVLATypeCapture()) 1681 return false; 1682 1683 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1684 if (From.isThisCapture()) 1685 diag << "'this'"; 1686 else 1687 diag << From.getVariable(); 1688 diag << From.isNonODRUsed(); 1689 diag << FixItHint::CreateRemoval(CaptureRange); 1690 return true; 1691 } 1692 1693 /// Create a field within the lambda class or captured statement record for the 1694 /// given capture. 1695 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1696 const sema::Capture &Capture) { 1697 SourceLocation Loc = Capture.getLocation(); 1698 QualType FieldType = Capture.getCaptureType(); 1699 1700 TypeSourceInfo *TSI = nullptr; 1701 if (Capture.isVariableCapture()) { 1702 auto *Var = Capture.getVariable(); 1703 if (Var->isInitCapture()) 1704 TSI = Capture.getVariable()->getTypeSourceInfo(); 1705 } 1706 1707 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1708 // appropriate, at least for an implicit capture. 1709 if (!TSI) 1710 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1711 1712 // Build the non-static data member. 1713 FieldDecl *Field = 1714 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1715 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1716 /*Mutable=*/false, ICIS_NoInit); 1717 // If the variable being captured has an invalid type, mark the class as 1718 // invalid as well. 1719 if (!FieldType->isDependentType()) { 1720 if (RequireCompleteSizedType(Loc, FieldType, 1721 diag::err_field_incomplete_or_sizeless)) { 1722 RD->setInvalidDecl(); 1723 Field->setInvalidDecl(); 1724 } else { 1725 NamedDecl *Def; 1726 FieldType->isIncompleteType(&Def); 1727 if (Def && Def->isInvalidDecl()) { 1728 RD->setInvalidDecl(); 1729 Field->setInvalidDecl(); 1730 } 1731 } 1732 } 1733 Field->setImplicit(true); 1734 Field->setAccess(AS_private); 1735 RD->addDecl(Field); 1736 1737 if (Capture.isVLATypeCapture()) 1738 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1739 1740 return Field; 1741 } 1742 1743 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1744 LambdaScopeInfo *LSI) { 1745 // Collect information from the lambda scope. 1746 SmallVector<LambdaCapture, 4> Captures; 1747 SmallVector<Expr *, 4> CaptureInits; 1748 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1749 LambdaCaptureDefault CaptureDefault = 1750 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1751 CXXRecordDecl *Class; 1752 CXXMethodDecl *CallOperator; 1753 SourceRange IntroducerRange; 1754 bool ExplicitParams; 1755 bool ExplicitResultType; 1756 CleanupInfo LambdaCleanup; 1757 bool ContainsUnexpandedParameterPack; 1758 bool IsGenericLambda; 1759 { 1760 CallOperator = LSI->CallOperator; 1761 Class = LSI->Lambda; 1762 IntroducerRange = LSI->IntroducerRange; 1763 ExplicitParams = LSI->ExplicitParams; 1764 ExplicitResultType = !LSI->HasImplicitReturnType; 1765 LambdaCleanup = LSI->Cleanup; 1766 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1767 IsGenericLambda = Class->isGenericLambda(); 1768 1769 CallOperator->setLexicalDeclContext(Class); 1770 Decl *TemplateOrNonTemplateCallOperatorDecl = 1771 CallOperator->getDescribedFunctionTemplate() 1772 ? CallOperator->getDescribedFunctionTemplate() 1773 : cast<Decl>(CallOperator); 1774 1775 // FIXME: Is this really the best choice? Keeping the lexical decl context 1776 // set as CurContext seems more faithful to the source. 1777 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1778 1779 PopExpressionEvaluationContext(); 1780 1781 // True if the current capture has a used capture or default before it. 1782 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1783 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1784 CaptureDefaultLoc : IntroducerRange.getBegin(); 1785 1786 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1787 const Capture &From = LSI->Captures[I]; 1788 1789 if (From.isInvalid()) 1790 return ExprError(); 1791 1792 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1793 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1794 SourceLocation ImplicitCaptureLoc = 1795 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1796 1797 // Use source ranges of explicit captures for fixits where available. 1798 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1799 1800 // Warn about unused explicit captures. 1801 bool IsCaptureUsed = true; 1802 if (!CurContext->isDependentContext() && !IsImplicit && 1803 !From.isODRUsed()) { 1804 // Initialized captures that are non-ODR used may not be eliminated. 1805 // FIXME: Where did the IsGenericLambda here come from? 1806 bool NonODRUsedInitCapture = 1807 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1808 if (!NonODRUsedInitCapture) { 1809 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1810 SourceRange FixItRange; 1811 if (CaptureRange.isValid()) { 1812 if (!CurHasPreviousCapture && !IsLast) { 1813 // If there are no captures preceding this capture, remove the 1814 // following comma. 1815 FixItRange = SourceRange(CaptureRange.getBegin(), 1816 getLocForEndOfToken(CaptureRange.getEnd())); 1817 } else { 1818 // Otherwise, remove the comma since the last used capture. 1819 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1820 CaptureRange.getEnd()); 1821 } 1822 } 1823 1824 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1825 } 1826 } 1827 1828 if (CaptureRange.isValid()) { 1829 CurHasPreviousCapture |= IsCaptureUsed; 1830 PrevCaptureLoc = CaptureRange.getEnd(); 1831 } 1832 1833 // Map the capture to our AST representation. 1834 LambdaCapture Capture = [&] { 1835 if (From.isThisCapture()) { 1836 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1837 // because it results in a reference capture. Don't warn prior to 1838 // C++2a; there's nothing that can be done about it before then. 1839 if (getLangOpts().CPlusPlus20 && IsImplicit && 1840 CaptureDefault == LCD_ByCopy) { 1841 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1842 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1843 << FixItHint::CreateInsertion( 1844 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1845 } 1846 return LambdaCapture(From.getLocation(), IsImplicit, 1847 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1848 } else if (From.isVLATypeCapture()) { 1849 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1850 } else { 1851 assert(From.isVariableCapture() && "unknown kind of capture"); 1852 VarDecl *Var = From.getVariable(); 1853 LambdaCaptureKind Kind = 1854 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1855 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1856 From.getEllipsisLoc()); 1857 } 1858 }(); 1859 1860 // Form the initializer for the capture field. 1861 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1862 1863 // FIXME: Skip this capture if the capture is not used, the initializer 1864 // has no side-effects, the type of the capture is trivial, and the 1865 // lambda is not externally visible. 1866 1867 // Add a FieldDecl for the capture and form its initializer. 1868 BuildCaptureField(Class, From); 1869 Captures.push_back(Capture); 1870 CaptureInits.push_back(Init.get()); 1871 1872 if (LangOpts.CUDA) 1873 CUDACheckLambdaCapture(CallOperator, From); 1874 } 1875 1876 Class->setCaptures(Context, Captures); 1877 1878 // C++11 [expr.prim.lambda]p6: 1879 // The closure type for a lambda-expression with no lambda-capture 1880 // has a public non-virtual non-explicit const conversion function 1881 // to pointer to function having the same parameter and return 1882 // types as the closure type's function call operator. 1883 if (Captures.empty() && CaptureDefault == LCD_None) 1884 addFunctionPointerConversions(*this, IntroducerRange, Class, 1885 CallOperator); 1886 1887 // Objective-C++: 1888 // The closure type for a lambda-expression has a public non-virtual 1889 // non-explicit const conversion function to a block pointer having the 1890 // same parameter and return types as the closure type's function call 1891 // operator. 1892 // FIXME: Fix generic lambda to block conversions. 1893 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1894 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1895 1896 // Finalize the lambda class. 1897 SmallVector<Decl*, 4> Fields(Class->fields()); 1898 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1899 SourceLocation(), ParsedAttributesView()); 1900 CheckCompletedCXXClass(nullptr, Class); 1901 } 1902 1903 Cleanup.mergeFrom(LambdaCleanup); 1904 1905 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1906 CaptureDefault, CaptureDefaultLoc, 1907 ExplicitParams, ExplicitResultType, 1908 CaptureInits, EndLoc, 1909 ContainsUnexpandedParameterPack); 1910 // If the lambda expression's call operator is not explicitly marked constexpr 1911 // and we are not in a dependent context, analyze the call operator to infer 1912 // its constexpr-ness, suppressing diagnostics while doing so. 1913 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1914 !CallOperator->isConstexpr() && 1915 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1916 !Class->getDeclContext()->isDependentContext()) { 1917 CallOperator->setConstexprKind( 1918 CheckConstexprFunctionDefinition(CallOperator, 1919 CheckConstexprKind::CheckValid) 1920 ? ConstexprSpecKind::Constexpr 1921 : ConstexprSpecKind::Unspecified); 1922 } 1923 1924 // Emit delayed shadowing warnings now that the full capture list is known. 1925 DiagnoseShadowingLambdaDecls(LSI); 1926 1927 if (!CurContext->isDependentContext()) { 1928 switch (ExprEvalContexts.back().Context) { 1929 // C++11 [expr.prim.lambda]p2: 1930 // A lambda-expression shall not appear in an unevaluated operand 1931 // (Clause 5). 1932 case ExpressionEvaluationContext::Unevaluated: 1933 case ExpressionEvaluationContext::UnevaluatedList: 1934 case ExpressionEvaluationContext::UnevaluatedAbstract: 1935 // C++1y [expr.const]p2: 1936 // A conditional-expression e is a core constant expression unless the 1937 // evaluation of e, following the rules of the abstract machine, would 1938 // evaluate [...] a lambda-expression. 1939 // 1940 // This is technically incorrect, there are some constant evaluated contexts 1941 // where this should be allowed. We should probably fix this when DR1607 is 1942 // ratified, it lays out the exact set of conditions where we shouldn't 1943 // allow a lambda-expression. 1944 case ExpressionEvaluationContext::ConstantEvaluated: 1945 // We don't actually diagnose this case immediately, because we 1946 // could be within a context where we might find out later that 1947 // the expression is potentially evaluated (e.g., for typeid). 1948 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1949 break; 1950 1951 case ExpressionEvaluationContext::DiscardedStatement: 1952 case ExpressionEvaluationContext::PotentiallyEvaluated: 1953 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1954 break; 1955 } 1956 } 1957 1958 return MaybeBindToTemporary(Lambda); 1959 } 1960 1961 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1962 SourceLocation ConvLocation, 1963 CXXConversionDecl *Conv, 1964 Expr *Src) { 1965 // Make sure that the lambda call operator is marked used. 1966 CXXRecordDecl *Lambda = Conv->getParent(); 1967 CXXMethodDecl *CallOperator 1968 = cast<CXXMethodDecl>( 1969 Lambda->lookup( 1970 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1971 CallOperator->setReferenced(); 1972 CallOperator->markUsed(Context); 1973 1974 ExprResult Init = PerformCopyInitialization( 1975 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(), 1976 /*NRVO=*/false), 1977 CurrentLocation, Src); 1978 if (!Init.isInvalid()) 1979 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1980 1981 if (Init.isInvalid()) 1982 return ExprError(); 1983 1984 // Create the new block to be returned. 1985 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1986 1987 // Set the type information. 1988 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1989 Block->setIsVariadic(CallOperator->isVariadic()); 1990 Block->setBlockMissingReturnType(false); 1991 1992 // Add parameters. 1993 SmallVector<ParmVarDecl *, 4> BlockParams; 1994 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1995 ParmVarDecl *From = CallOperator->getParamDecl(I); 1996 BlockParams.push_back(ParmVarDecl::Create( 1997 Context, Block, From->getBeginLoc(), From->getLocation(), 1998 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 1999 From->getStorageClass(), 2000 /*DefArg=*/nullptr)); 2001 } 2002 Block->setParams(BlockParams); 2003 2004 Block->setIsConversionFromLambda(true); 2005 2006 // Add capture. The capture uses a fake variable, which doesn't correspond 2007 // to any actual memory location. However, the initializer copy-initializes 2008 // the lambda object. 2009 TypeSourceInfo *CapVarTSI = 2010 Context.getTrivialTypeSourceInfo(Src->getType()); 2011 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2012 ConvLocation, nullptr, 2013 Src->getType(), CapVarTSI, 2014 SC_None); 2015 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2016 /*nested=*/false, /*copy=*/Init.get()); 2017 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2018 2019 // Add a fake function body to the block. IR generation is responsible 2020 // for filling in the actual body, which cannot be expressed as an AST. 2021 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2022 2023 // Create the block literal expression. 2024 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2025 ExprCleanupObjects.push_back(Block); 2026 Cleanup.setExprNeedsCleanups(true); 2027 2028 return BuildBlock; 2029 } 2030