1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 nullptr); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 MangleNumberingContext * 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC, 277 Decl *&ManglingContextDecl) { 278 // Compute the context for allocating mangling numbers in the current 279 // expression, if the ABI requires them. 280 ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 281 282 enum ContextKind { 283 Normal, 284 DefaultArgument, 285 DataMember, 286 StaticDataMember, 287 InlineVariable, 288 VariableTemplate 289 } Kind = Normal; 290 291 // Default arguments of member function parameters that appear in a class 292 // definition, as well as the initializers of data members, receive special 293 // treatment. Identify them. 294 if (ManglingContextDecl) { 295 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 296 if (const DeclContext *LexicalDC 297 = Param->getDeclContext()->getLexicalParent()) 298 if (LexicalDC->isRecord()) 299 Kind = DefaultArgument; 300 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 301 if (Var->getDeclContext()->isRecord()) 302 Kind = StaticDataMember; 303 else if (Var->getMostRecentDecl()->isInline()) 304 Kind = InlineVariable; 305 else if (Var->getDescribedVarTemplate()) 306 Kind = VariableTemplate; 307 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 308 if (!VTS->isExplicitSpecialization()) 309 Kind = VariableTemplate; 310 } 311 } else if (isa<FieldDecl>(ManglingContextDecl)) { 312 Kind = DataMember; 313 } 314 } 315 316 // Itanium ABI [5.1.7]: 317 // In the following contexts [...] the one-definition rule requires closure 318 // types in different translation units to "correspond": 319 bool IsInNonspecializedTemplate = 320 inTemplateInstantiation() || CurContext->isDependentContext(); 321 switch (Kind) { 322 case Normal: { 323 // -- the bodies of non-exported nonspecialized template functions 324 // -- the bodies of inline functions 325 if ((IsInNonspecializedTemplate && 326 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 327 isInInlineFunction(CurContext)) { 328 ManglingContextDecl = nullptr; 329 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 330 DC = CD->getParent(); 331 return &Context.getManglingNumberContext(DC); 332 } 333 334 ManglingContextDecl = nullptr; 335 return nullptr; 336 } 337 338 case StaticDataMember: 339 // -- the initializers of nonspecialized static members of template classes 340 if (!IsInNonspecializedTemplate) { 341 ManglingContextDecl = nullptr; 342 return nullptr; 343 } 344 // Fall through to get the current context. 345 LLVM_FALLTHROUGH; 346 347 case DataMember: 348 // -- the in-class initializers of class members 349 case DefaultArgument: 350 // -- default arguments appearing in class definitions 351 case InlineVariable: 352 // -- the initializers of inline variables 353 case VariableTemplate: 354 // -- the initializers of templated variables 355 return &ExprEvalContexts.back().getMangleNumberingContext(Context); 356 } 357 358 llvm_unreachable("unexpected context"); 359 } 360 361 MangleNumberingContext & 362 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext( 363 ASTContext &Ctx) { 364 assert(ManglingContextDecl && "Need to have a context declaration"); 365 if (!MangleNumbering) 366 MangleNumbering = Ctx.createMangleNumberingContext(); 367 return *MangleNumbering; 368 } 369 370 CXXMethodDecl *Sema::startLambdaDefinition( 371 CXXRecordDecl *Class, SourceRange IntroducerRange, 372 TypeSourceInfo *MethodTypeInfo, SourceLocation EndLoc, 373 ArrayRef<ParmVarDecl *> Params, ConstexprSpecKind ConstexprKind, 374 Optional<std::pair<unsigned, Decl *>> Mangling) { 375 QualType MethodType = MethodTypeInfo->getType(); 376 TemplateParameterList *TemplateParams = 377 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 378 // If a lambda appears in a dependent context or is a generic lambda (has 379 // template parameters) and has an 'auto' return type, deduce it to a 380 // dependent type. 381 if (Class->isDependentContext() || TemplateParams) { 382 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 383 QualType Result = FPT->getReturnType(); 384 if (Result->isUndeducedType()) { 385 Result = SubstAutoType(Result, Context.DependentTy); 386 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 387 FPT->getExtProtoInfo()); 388 } 389 } 390 391 // C++11 [expr.prim.lambda]p5: 392 // The closure type for a lambda-expression has a public inline function 393 // call operator (13.5.4) whose parameters and return type are described by 394 // the lambda-expression's parameter-declaration-clause and 395 // trailing-return-type respectively. 396 DeclarationName MethodName 397 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 398 DeclarationNameLoc MethodNameLoc; 399 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 400 = IntroducerRange.getBegin().getRawEncoding(); 401 MethodNameLoc.CXXOperatorName.EndOpNameLoc 402 = IntroducerRange.getEnd().getRawEncoding(); 403 CXXMethodDecl *Method = CXXMethodDecl::Create( 404 Context, Class, EndLoc, 405 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 406 MethodNameLoc), 407 MethodType, MethodTypeInfo, SC_None, 408 /*isInline=*/true, ConstexprKind, EndLoc); 409 Method->setAccess(AS_public); 410 411 // Temporarily set the lexical declaration context to the current 412 // context, so that the Scope stack matches the lexical nesting. 413 Method->setLexicalDeclContext(CurContext); 414 // Create a function template if we have a template parameter list 415 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 416 FunctionTemplateDecl::Create(Context, Class, 417 Method->getLocation(), MethodName, 418 TemplateParams, 419 Method) : nullptr; 420 if (TemplateMethod) { 421 TemplateMethod->setLexicalDeclContext(CurContext); 422 TemplateMethod->setAccess(AS_public); 423 Method->setDescribedFunctionTemplate(TemplateMethod); 424 } 425 426 // Add parameters. 427 if (!Params.empty()) { 428 Method->setParams(Params); 429 CheckParmsForFunctionDef(Params, 430 /*CheckParameterNames=*/false); 431 432 for (auto P : Method->parameters()) 433 P->setOwningFunction(Method); 434 } 435 436 if (Mangling) { 437 Class->setLambdaMangling(Mangling->first, Mangling->second); 438 } else { 439 Decl *ManglingContextDecl; 440 if (MangleNumberingContext *MCtx = 441 getCurrentMangleNumberContext(Class->getDeclContext(), 442 ManglingContextDecl)) { 443 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 444 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl); 445 } 446 } 447 448 return Method; 449 } 450 451 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 452 CXXMethodDecl *CallOperator, 453 SourceRange IntroducerRange, 454 LambdaCaptureDefault CaptureDefault, 455 SourceLocation CaptureDefaultLoc, 456 bool ExplicitParams, 457 bool ExplicitResultType, 458 bool Mutable) { 459 LSI->CallOperator = CallOperator; 460 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 461 LSI->Lambda = LambdaClass; 462 if (CaptureDefault == LCD_ByCopy) 463 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 464 else if (CaptureDefault == LCD_ByRef) 465 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 466 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 467 LSI->IntroducerRange = IntroducerRange; 468 LSI->ExplicitParams = ExplicitParams; 469 LSI->Mutable = Mutable; 470 471 if (ExplicitResultType) { 472 LSI->ReturnType = CallOperator->getReturnType(); 473 474 if (!LSI->ReturnType->isDependentType() && 475 !LSI->ReturnType->isVoidType()) { 476 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 477 diag::err_lambda_incomplete_result)) { 478 // Do nothing. 479 } 480 } 481 } else { 482 LSI->HasImplicitReturnType = true; 483 } 484 } 485 486 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 487 LSI->finishedExplicitCaptures(); 488 } 489 490 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 491 ArrayRef<NamedDecl *> TParams, 492 SourceLocation RAngleLoc) { 493 LambdaScopeInfo *LSI = getCurLambda(); 494 assert(LSI && "Expected a lambda scope"); 495 assert(LSI->NumExplicitTemplateParams == 0 && 496 "Already acted on explicit template parameters"); 497 assert(LSI->TemplateParams.empty() && 498 "Explicit template parameters should come " 499 "before invented (auto) ones"); 500 assert(!TParams.empty() && 501 "No template parameters to act on"); 502 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 503 LSI->NumExplicitTemplateParams = TParams.size(); 504 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 505 } 506 507 void Sema::addLambdaParameters( 508 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 509 CXXMethodDecl *CallOperator, Scope *CurScope) { 510 // Introduce our parameters into the function scope 511 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 512 p < NumParams; ++p) { 513 ParmVarDecl *Param = CallOperator->getParamDecl(p); 514 515 // If this has an identifier, add it to the scope stack. 516 if (CurScope && Param->getIdentifier()) { 517 bool Error = false; 518 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 519 // retroactively apply it. 520 for (const auto &Capture : Captures) { 521 if (Capture.Id == Param->getIdentifier()) { 522 Error = true; 523 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 524 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 525 << Capture.Id << true; 526 } 527 } 528 if (!Error) 529 CheckShadow(CurScope, Param); 530 531 PushOnScopeChains(Param, CurScope); 532 } 533 } 534 } 535 536 /// If this expression is an enumerator-like expression of some type 537 /// T, return the type T; otherwise, return null. 538 /// 539 /// Pointer comparisons on the result here should always work because 540 /// it's derived from either the parent of an EnumConstantDecl 541 /// (i.e. the definition) or the declaration returned by 542 /// EnumType::getDecl() (i.e. the definition). 543 static EnumDecl *findEnumForBlockReturn(Expr *E) { 544 // An expression is an enumerator-like expression of type T if, 545 // ignoring parens and parens-like expressions: 546 E = E->IgnoreParens(); 547 548 // - it is an enumerator whose enum type is T or 549 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 550 if (EnumConstantDecl *D 551 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 552 return cast<EnumDecl>(D->getDeclContext()); 553 } 554 return nullptr; 555 } 556 557 // - it is a comma expression whose RHS is an enumerator-like 558 // expression of type T or 559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 560 if (BO->getOpcode() == BO_Comma) 561 return findEnumForBlockReturn(BO->getRHS()); 562 return nullptr; 563 } 564 565 // - it is a statement-expression whose value expression is an 566 // enumerator-like expression of type T or 567 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 568 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 569 return findEnumForBlockReturn(last); 570 return nullptr; 571 } 572 573 // - it is a ternary conditional operator (not the GNU ?: 574 // extension) whose second and third operands are 575 // enumerator-like expressions of type T or 576 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 577 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 578 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 579 return ED; 580 return nullptr; 581 } 582 583 // (implicitly:) 584 // - it is an implicit integral conversion applied to an 585 // enumerator-like expression of type T or 586 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 587 // We can sometimes see integral conversions in valid 588 // enumerator-like expressions. 589 if (ICE->getCastKind() == CK_IntegralCast) 590 return findEnumForBlockReturn(ICE->getSubExpr()); 591 592 // Otherwise, just rely on the type. 593 } 594 595 // - it is an expression of that formal enum type. 596 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 597 return ET->getDecl(); 598 } 599 600 // Otherwise, nope. 601 return nullptr; 602 } 603 604 /// Attempt to find a type T for which the returned expression of the 605 /// given statement is an enumerator-like expression of that type. 606 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 607 if (Expr *retValue = ret->getRetValue()) 608 return findEnumForBlockReturn(retValue); 609 return nullptr; 610 } 611 612 /// Attempt to find a common type T for which all of the returned 613 /// expressions in a block are enumerator-like expressions of that 614 /// type. 615 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 616 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 617 618 // Try to find one for the first return. 619 EnumDecl *ED = findEnumForBlockReturn(*i); 620 if (!ED) return nullptr; 621 622 // Check that the rest of the returns have the same enum. 623 for (++i; i != e; ++i) { 624 if (findEnumForBlockReturn(*i) != ED) 625 return nullptr; 626 } 627 628 // Never infer an anonymous enum type. 629 if (!ED->hasNameForLinkage()) return nullptr; 630 631 return ED; 632 } 633 634 /// Adjust the given return statements so that they formally return 635 /// the given type. It should require, at most, an IntegralCast. 636 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 637 QualType returnType) { 638 for (ArrayRef<ReturnStmt*>::iterator 639 i = returns.begin(), e = returns.end(); i != e; ++i) { 640 ReturnStmt *ret = *i; 641 Expr *retValue = ret->getRetValue(); 642 if (S.Context.hasSameType(retValue->getType(), returnType)) 643 continue; 644 645 // Right now we only support integral fixup casts. 646 assert(returnType->isIntegralOrUnscopedEnumerationType()); 647 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 648 649 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 650 651 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 652 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, 653 E, /*base path*/ nullptr, VK_RValue); 654 if (cleanups) { 655 cleanups->setSubExpr(E); 656 } else { 657 ret->setRetValue(E); 658 } 659 } 660 } 661 662 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 663 assert(CSI.HasImplicitReturnType); 664 // If it was ever a placeholder, it had to been deduced to DependentTy. 665 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 666 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 667 "lambda expressions use auto deduction in C++14 onwards"); 668 669 // C++ core issue 975: 670 // If a lambda-expression does not include a trailing-return-type, 671 // it is as if the trailing-return-type denotes the following type: 672 // - if there are no return statements in the compound-statement, 673 // or all return statements return either an expression of type 674 // void or no expression or braced-init-list, the type void; 675 // - otherwise, if all return statements return an expression 676 // and the types of the returned expressions after 677 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 678 // array-to-pointer conversion (4.2 [conv.array]), and 679 // function-to-pointer conversion (4.3 [conv.func]) are the 680 // same, that common type; 681 // - otherwise, the program is ill-formed. 682 // 683 // C++ core issue 1048 additionally removes top-level cv-qualifiers 684 // from the types of returned expressions to match the C++14 auto 685 // deduction rules. 686 // 687 // In addition, in blocks in non-C++ modes, if all of the return 688 // statements are enumerator-like expressions of some type T, where 689 // T has a name for linkage, then we infer the return type of the 690 // block to be that type. 691 692 // First case: no return statements, implicit void return type. 693 ASTContext &Ctx = getASTContext(); 694 if (CSI.Returns.empty()) { 695 // It's possible there were simply no /valid/ return statements. 696 // In this case, the first one we found may have at least given us a type. 697 if (CSI.ReturnType.isNull()) 698 CSI.ReturnType = Ctx.VoidTy; 699 return; 700 } 701 702 // Second case: at least one return statement has dependent type. 703 // Delay type checking until instantiation. 704 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 705 if (CSI.ReturnType->isDependentType()) 706 return; 707 708 // Try to apply the enum-fuzz rule. 709 if (!getLangOpts().CPlusPlus) { 710 assert(isa<BlockScopeInfo>(CSI)); 711 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 712 if (ED) { 713 CSI.ReturnType = Context.getTypeDeclType(ED); 714 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 715 return; 716 } 717 } 718 719 // Third case: only one return statement. Don't bother doing extra work! 720 if (CSI.Returns.size() == 1) 721 return; 722 723 // General case: many return statements. 724 // Check that they all have compatible return types. 725 726 // We require the return types to strictly match here. 727 // Note that we've already done the required promotions as part of 728 // processing the return statement. 729 for (const ReturnStmt *RS : CSI.Returns) { 730 const Expr *RetE = RS->getRetValue(); 731 732 QualType ReturnType = 733 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 734 if (Context.getCanonicalFunctionResultType(ReturnType) == 735 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 736 // Use the return type with the strictest possible nullability annotation. 737 auto RetTyNullability = ReturnType->getNullability(Ctx); 738 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 739 if (BlockNullability && 740 (!RetTyNullability || 741 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 742 CSI.ReturnType = ReturnType; 743 continue; 744 } 745 746 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 747 // TODO: It's possible that the *first* return is the divergent one. 748 Diag(RS->getBeginLoc(), 749 diag::err_typecheck_missing_return_type_incompatible) 750 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 751 // Continue iterating so that we keep emitting diagnostics. 752 } 753 } 754 755 QualType Sema::buildLambdaInitCaptureInitialization( 756 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 757 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 758 Expr *&Init) { 759 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 760 // deduce against. 761 QualType DeductType = Context.getAutoDeductType(); 762 TypeLocBuilder TLB; 763 TLB.pushTypeSpec(DeductType).setNameLoc(Loc); 764 if (ByRef) { 765 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 766 assert(!DeductType.isNull() && "can't build reference to auto"); 767 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 768 } 769 if (EllipsisLoc.isValid()) { 770 if (Init->containsUnexpandedParameterPack()) { 771 Diag(EllipsisLoc, getLangOpts().CPlusPlus2a 772 ? diag::warn_cxx17_compat_init_capture_pack 773 : diag::ext_init_capture_pack); 774 DeductType = Context.getPackExpansionType(DeductType, NumExpansions); 775 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 776 } else { 777 // Just ignore the ellipsis for now and form a non-pack variable. We'll 778 // diagnose this later when we try to capture it. 779 } 780 } 781 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 782 783 // Deduce the type of the init capture. 784 QualType DeducedType = deduceVarTypeFromInitializer( 785 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 786 SourceRange(Loc, Loc), IsDirectInit, Init); 787 if (DeducedType.isNull()) 788 return QualType(); 789 790 // Are we a non-list direct initialization? 791 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 792 793 // Perform initialization analysis and ensure any implicit conversions 794 // (such as lvalue-to-rvalue) are enforced. 795 InitializedEntity Entity = 796 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 797 InitializationKind Kind = 798 IsDirectInit 799 ? (CXXDirectInit ? InitializationKind::CreateDirect( 800 Loc, Init->getBeginLoc(), Init->getEndLoc()) 801 : InitializationKind::CreateDirectList(Loc)) 802 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 803 804 MultiExprArg Args = Init; 805 if (CXXDirectInit) 806 Args = 807 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 808 QualType DclT; 809 InitializationSequence InitSeq(*this, Entity, Kind, Args); 810 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 811 812 if (Result.isInvalid()) 813 return QualType(); 814 815 Init = Result.getAs<Expr>(); 816 return DeducedType; 817 } 818 819 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 820 QualType InitCaptureType, 821 SourceLocation EllipsisLoc, 822 IdentifierInfo *Id, 823 unsigned InitStyle, Expr *Init) { 824 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 825 // rather than reconstructing it here. 826 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 827 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 828 PETL.setEllipsisLoc(EllipsisLoc); 829 830 // Create a dummy variable representing the init-capture. This is not actually 831 // used as a variable, and only exists as a way to name and refer to the 832 // init-capture. 833 // FIXME: Pass in separate source locations for '&' and identifier. 834 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 835 Loc, Id, InitCaptureType, TSI, SC_Auto); 836 NewVD->setInitCapture(true); 837 NewVD->setReferenced(true); 838 // FIXME: Pass in a VarDecl::InitializationStyle. 839 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 840 NewVD->markUsed(Context); 841 NewVD->setInit(Init); 842 return NewVD; 843 } 844 845 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 846 assert(Var->isInitCapture() && "init capture flag should be set"); 847 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 848 /*isNested*/false, Var->getLocation(), SourceLocation(), 849 Var->getType(), /*Invalid*/false); 850 } 851 852 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 853 Declarator &ParamInfo, 854 Scope *CurScope) { 855 LambdaScopeInfo *const LSI = getCurLambda(); 856 assert(LSI && "LambdaScopeInfo should be on stack!"); 857 858 // Determine if we're within a context where we know that the lambda will 859 // be dependent, because there are template parameters in scope. 860 bool KnownDependent; 861 if (LSI->NumExplicitTemplateParams > 0) { 862 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 863 assert(TemplateParamScope && 864 "Lambda with explicit template param list should establish a " 865 "template param scope"); 866 assert(TemplateParamScope->getParent()); 867 KnownDependent = TemplateParamScope->getParent() 868 ->getTemplateParamParent() != nullptr; 869 } else { 870 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 871 } 872 873 // Determine the signature of the call operator. 874 TypeSourceInfo *MethodTyInfo; 875 bool ExplicitParams = true; 876 bool ExplicitResultType = true; 877 bool ContainsUnexpandedParameterPack = false; 878 SourceLocation EndLoc; 879 SmallVector<ParmVarDecl *, 8> Params; 880 if (ParamInfo.getNumTypeObjects() == 0) { 881 // C++11 [expr.prim.lambda]p4: 882 // If a lambda-expression does not include a lambda-declarator, it is as 883 // if the lambda-declarator were (). 884 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 885 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 886 EPI.HasTrailingReturn = true; 887 EPI.TypeQuals.addConst(); 888 // C++1y [expr.prim.lambda]: 889 // The lambda return type is 'auto', which is replaced by the 890 // trailing-return type if provided and/or deduced from 'return' 891 // statements 892 // We don't do this before C++1y, because we don't support deduced return 893 // types there. 894 QualType DefaultTypeForNoTrailingReturn = 895 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 896 : Context.DependentTy; 897 QualType MethodTy = 898 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 899 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 900 ExplicitParams = false; 901 ExplicitResultType = false; 902 EndLoc = Intro.Range.getEnd(); 903 } else { 904 assert(ParamInfo.isFunctionDeclarator() && 905 "lambda-declarator is a function"); 906 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 907 908 // C++11 [expr.prim.lambda]p5: 909 // This function call operator is declared const (9.3.1) if and only if 910 // the lambda-expression's parameter-declaration-clause is not followed 911 // by mutable. It is neither virtual nor declared volatile. [...] 912 if (!FTI.hasMutableQualifier()) { 913 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 914 SourceLocation()); 915 } 916 917 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 918 assert(MethodTyInfo && "no type from lambda-declarator"); 919 EndLoc = ParamInfo.getSourceRange().getEnd(); 920 921 ExplicitResultType = FTI.hasTrailingReturnType(); 922 923 if (FTIHasNonVoidParameters(FTI)) { 924 Params.reserve(FTI.NumParams); 925 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 926 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 927 } 928 929 // Check for unexpanded parameter packs in the method type. 930 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 931 ContainsUnexpandedParameterPack = true; 932 } 933 934 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 935 KnownDependent, Intro.Default); 936 937 CXXMethodDecl *Method = 938 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 939 ParamInfo.getDeclSpec().getConstexprSpecifier()); 940 if (ExplicitParams) 941 CheckCXXDefaultArguments(Method); 942 943 // This represents the function body for the lambda function, check if we 944 // have to apply optnone due to a pragma. 945 AddRangeBasedOptnone(Method); 946 947 // code_seg attribute on lambda apply to the method. 948 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 949 Method->addAttr(A); 950 951 // Attributes on the lambda apply to the method. 952 ProcessDeclAttributes(CurScope, Method, ParamInfo); 953 954 // CUDA lambdas get implicit attributes based on the scope in which they're 955 // declared. 956 if (getLangOpts().CUDA) 957 CUDASetLambdaAttrs(Method); 958 959 // Introduce the function call operator as the current declaration context. 960 PushDeclContext(CurScope, Method); 961 962 // Build the lambda scope. 963 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 964 ExplicitParams, ExplicitResultType, !Method->isConst()); 965 966 // C++11 [expr.prim.lambda]p9: 967 // A lambda-expression whose smallest enclosing scope is a block scope is a 968 // local lambda expression; any other lambda expression shall not have a 969 // capture-default or simple-capture in its lambda-introducer. 970 // 971 // For simple-captures, this is covered by the check below that any named 972 // entity is a variable that can be captured. 973 // 974 // For DR1632, we also allow a capture-default in any context where we can 975 // odr-use 'this' (in particular, in a default initializer for a non-static 976 // data member). 977 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 978 (getCurrentThisType().isNull() || 979 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 980 /*BuildAndDiagnose*/false))) 981 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 982 983 // Distinct capture names, for diagnostics. 984 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 985 986 // Handle explicit captures. 987 SourceLocation PrevCaptureLoc 988 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 989 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 990 PrevCaptureLoc = C->Loc, ++C) { 991 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 992 if (C->Kind == LCK_StarThis) 993 Diag(C->Loc, !getLangOpts().CPlusPlus17 994 ? diag::ext_star_this_lambda_capture_cxx17 995 : diag::warn_cxx14_compat_star_this_lambda_capture); 996 997 // C++11 [expr.prim.lambda]p8: 998 // An identifier or this shall not appear more than once in a 999 // lambda-capture. 1000 if (LSI->isCXXThisCaptured()) { 1001 Diag(C->Loc, diag::err_capture_more_than_once) 1002 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1003 << FixItHint::CreateRemoval( 1004 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1005 continue; 1006 } 1007 1008 // C++2a [expr.prim.lambda]p8: 1009 // If a lambda-capture includes a capture-default that is =, 1010 // each simple-capture of that lambda-capture shall be of the form 1011 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1012 // redundant but accepted for compatibility with ISO C++14. --end note ] 1013 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1014 Diag(C->Loc, !getLangOpts().CPlusPlus2a 1015 ? diag::ext_equals_this_lambda_capture_cxx2a 1016 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1017 1018 // C++11 [expr.prim.lambda]p12: 1019 // If this is captured by a local lambda expression, its nearest 1020 // enclosing function shall be a non-static member function. 1021 QualType ThisCaptureType = getCurrentThisType(); 1022 if (ThisCaptureType.isNull()) { 1023 Diag(C->Loc, diag::err_this_capture) << true; 1024 continue; 1025 } 1026 1027 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1028 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1029 C->Kind == LCK_StarThis); 1030 if (!LSI->Captures.empty()) 1031 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1032 continue; 1033 } 1034 1035 assert(C->Id && "missing identifier for capture"); 1036 1037 if (C->Init.isInvalid()) 1038 continue; 1039 1040 VarDecl *Var = nullptr; 1041 if (C->Init.isUsable()) { 1042 Diag(C->Loc, getLangOpts().CPlusPlus14 1043 ? diag::warn_cxx11_compat_init_capture 1044 : diag::ext_init_capture); 1045 1046 // If the initializer expression is usable, but the InitCaptureType 1047 // is not, then an error has occurred - so ignore the capture for now. 1048 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1049 // FIXME: we should create the init capture variable and mark it invalid 1050 // in this case. 1051 if (C->InitCaptureType.get().isNull()) 1052 continue; 1053 1054 if (C->Init.get()->containsUnexpandedParameterPack() && 1055 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1056 ContainsUnexpandedParameterPack = true; 1057 1058 unsigned InitStyle; 1059 switch (C->InitKind) { 1060 case LambdaCaptureInitKind::NoInit: 1061 llvm_unreachable("not an init-capture?"); 1062 case LambdaCaptureInitKind::CopyInit: 1063 InitStyle = VarDecl::CInit; 1064 break; 1065 case LambdaCaptureInitKind::DirectInit: 1066 InitStyle = VarDecl::CallInit; 1067 break; 1068 case LambdaCaptureInitKind::ListInit: 1069 InitStyle = VarDecl::ListInit; 1070 break; 1071 } 1072 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1073 C->EllipsisLoc, C->Id, InitStyle, 1074 C->Init.get()); 1075 // C++1y [expr.prim.lambda]p11: 1076 // An init-capture behaves as if it declares and explicitly 1077 // captures a variable [...] whose declarative region is the 1078 // lambda-expression's compound-statement 1079 if (Var) 1080 PushOnScopeChains(Var, CurScope, false); 1081 } else { 1082 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1083 "init capture has valid but null init?"); 1084 1085 // C++11 [expr.prim.lambda]p8: 1086 // If a lambda-capture includes a capture-default that is &, the 1087 // identifiers in the lambda-capture shall not be preceded by &. 1088 // If a lambda-capture includes a capture-default that is =, [...] 1089 // each identifier it contains shall be preceded by &. 1090 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1091 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1092 << FixItHint::CreateRemoval( 1093 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1094 continue; 1095 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1096 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1097 << FixItHint::CreateRemoval( 1098 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1099 continue; 1100 } 1101 1102 // C++11 [expr.prim.lambda]p10: 1103 // The identifiers in a capture-list are looked up using the usual 1104 // rules for unqualified name lookup (3.4.1) 1105 DeclarationNameInfo Name(C->Id, C->Loc); 1106 LookupResult R(*this, Name, LookupOrdinaryName); 1107 LookupName(R, CurScope); 1108 if (R.isAmbiguous()) 1109 continue; 1110 if (R.empty()) { 1111 // FIXME: Disable corrections that would add qualification? 1112 CXXScopeSpec ScopeSpec; 1113 DeclFilterCCC<VarDecl> Validator{}; 1114 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1115 continue; 1116 } 1117 1118 Var = R.getAsSingle<VarDecl>(); 1119 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1120 continue; 1121 } 1122 1123 // C++11 [expr.prim.lambda]p8: 1124 // An identifier or this shall not appear more than once in a 1125 // lambda-capture. 1126 if (!CaptureNames.insert(C->Id).second) { 1127 if (Var && LSI->isCaptured(Var)) { 1128 Diag(C->Loc, diag::err_capture_more_than_once) 1129 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1130 << FixItHint::CreateRemoval( 1131 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1132 } else 1133 // Previous capture captured something different (one or both was 1134 // an init-cpature): no fixit. 1135 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1136 continue; 1137 } 1138 1139 // C++11 [expr.prim.lambda]p10: 1140 // [...] each such lookup shall find a variable with automatic storage 1141 // duration declared in the reaching scope of the local lambda expression. 1142 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1143 if (!Var) { 1144 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1145 continue; 1146 } 1147 1148 // Ignore invalid decls; they'll just confuse the code later. 1149 if (Var->isInvalidDecl()) 1150 continue; 1151 1152 if (!Var->hasLocalStorage()) { 1153 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1154 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1155 continue; 1156 } 1157 1158 // C++11 [expr.prim.lambda]p23: 1159 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1160 SourceLocation EllipsisLoc; 1161 if (C->EllipsisLoc.isValid()) { 1162 if (Var->isParameterPack()) { 1163 EllipsisLoc = C->EllipsisLoc; 1164 } else { 1165 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1166 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1167 : SourceRange(C->Loc)); 1168 1169 // Just ignore the ellipsis. 1170 } 1171 } else if (Var->isParameterPack()) { 1172 ContainsUnexpandedParameterPack = true; 1173 } 1174 1175 if (C->Init.isUsable()) { 1176 addInitCapture(LSI, Var); 1177 } else { 1178 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1179 TryCapture_ExplicitByVal; 1180 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1181 } 1182 if (!LSI->Captures.empty()) 1183 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1184 } 1185 finishLambdaExplicitCaptures(LSI); 1186 1187 LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack; 1188 1189 // Add lambda parameters into scope. 1190 addLambdaParameters(Intro.Captures, Method, CurScope); 1191 1192 // Enter a new evaluation context to insulate the lambda from any 1193 // cleanups from the enclosing full-expression. 1194 PushExpressionEvaluationContext( 1195 ExpressionEvaluationContext::PotentiallyEvaluated); 1196 } 1197 1198 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1199 bool IsInstantiation) { 1200 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1201 1202 // Leave the expression-evaluation context. 1203 DiscardCleanupsInEvaluationContext(); 1204 PopExpressionEvaluationContext(); 1205 1206 // Leave the context of the lambda. 1207 if (!IsInstantiation) 1208 PopDeclContext(); 1209 1210 // Finalize the lambda. 1211 CXXRecordDecl *Class = LSI->Lambda; 1212 Class->setInvalidDecl(); 1213 SmallVector<Decl*, 4> Fields(Class->fields()); 1214 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1215 SourceLocation(), ParsedAttributesView()); 1216 CheckCompletedCXXClass(Class); 1217 1218 PopFunctionScopeInfo(); 1219 } 1220 1221 QualType Sema::getLambdaConversionFunctionResultType( 1222 const FunctionProtoType *CallOpProto) { 1223 // The function type inside the pointer type is the same as the call 1224 // operator with some tweaks. The calling convention is the default free 1225 // function convention, and the type qualifications are lost. 1226 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1227 CallOpProto->getExtProtoInfo(); 1228 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1229 CallingConv CC = Context.getDefaultCallingConvention( 1230 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1231 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1232 InvokerExtInfo.TypeQuals = Qualifiers(); 1233 assert(InvokerExtInfo.RefQualifier == RQ_None && 1234 "Lambda's call operator should not have a reference qualifier"); 1235 return Context.getFunctionType(CallOpProto->getReturnType(), 1236 CallOpProto->getParamTypes(), InvokerExtInfo); 1237 } 1238 1239 /// Add a lambda's conversion to function pointer, as described in 1240 /// C++11 [expr.prim.lambda]p6. 1241 static void addFunctionPointerConversion(Sema &S, 1242 SourceRange IntroducerRange, 1243 CXXRecordDecl *Class, 1244 CXXMethodDecl *CallOperator) { 1245 // This conversion is explicitly disabled if the lambda's function has 1246 // pass_object_size attributes on any of its parameters. 1247 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1248 return P->hasAttr<PassObjectSizeAttr>(); 1249 }; 1250 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1251 return; 1252 1253 // Add the conversion to function pointer. 1254 QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType( 1255 CallOperator->getType()->castAs<FunctionProtoType>()); 1256 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1257 1258 // Create the type of the conversion function. 1259 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1260 S.Context.getDefaultCallingConvention( 1261 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1262 // The conversion function is always const and noexcept. 1263 ConvExtInfo.TypeQuals = Qualifiers(); 1264 ConvExtInfo.TypeQuals.addConst(); 1265 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1266 QualType ConvTy = 1267 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1268 1269 SourceLocation Loc = IntroducerRange.getBegin(); 1270 DeclarationName ConversionName 1271 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1272 S.Context.getCanonicalType(PtrToFunctionTy)); 1273 DeclarationNameLoc ConvNameLoc; 1274 // Construct a TypeSourceInfo for the conversion function, and wire 1275 // all the parameters appropriately for the FunctionProtoTypeLoc 1276 // so that everything works during transformation/instantiation of 1277 // generic lambdas. 1278 // The main reason for wiring up the parameters of the conversion 1279 // function with that of the call operator is so that constructs 1280 // like the following work: 1281 // auto L = [](auto b) { <-- 1 1282 // return [](auto a) -> decltype(a) { <-- 2 1283 // return a; 1284 // }; 1285 // }; 1286 // int (*fp)(int) = L(5); 1287 // Because the trailing return type can contain DeclRefExprs that refer 1288 // to the original call operator's variables, we hijack the call 1289 // operators ParmVarDecls below. 1290 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1291 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1292 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1293 1294 // The conversion function is a conversion to a pointer-to-function. 1295 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1296 FunctionProtoTypeLoc ConvTL = 1297 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1298 // Get the result of the conversion function which is a pointer-to-function. 1299 PointerTypeLoc PtrToFunctionTL = 1300 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1301 // Do the same for the TypeSourceInfo that is used to name the conversion 1302 // operator. 1303 PointerTypeLoc ConvNamePtrToFunctionTL = 1304 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1305 1306 // Get the underlying function types that the conversion function will 1307 // be converting to (should match the type of the call operator). 1308 FunctionProtoTypeLoc CallOpConvTL = 1309 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1310 FunctionProtoTypeLoc CallOpConvNameTL = 1311 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1312 1313 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1314 // These parameter's are essentially used to transform the name and 1315 // the type of the conversion operator. By using the same parameters 1316 // as the call operator's we don't have to fix any back references that 1317 // the trailing return type of the call operator's uses (such as 1318 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1319 // - we can simply use the return type of the call operator, and 1320 // everything should work. 1321 SmallVector<ParmVarDecl *, 4> InvokerParams; 1322 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1323 ParmVarDecl *From = CallOperator->getParamDecl(I); 1324 1325 InvokerParams.push_back(ParmVarDecl::Create( 1326 S.Context, 1327 // Temporarily add to the TU. This is set to the invoker below. 1328 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1329 From->getLocation(), From->getIdentifier(), From->getType(), 1330 From->getTypeSourceInfo(), From->getStorageClass(), 1331 /*DefArg=*/nullptr)); 1332 CallOpConvTL.setParam(I, From); 1333 CallOpConvNameTL.setParam(I, From); 1334 } 1335 1336 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1337 S.Context, Class, Loc, 1338 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1339 /*isInline=*/true, ExplicitSpecifier(), 1340 S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified, 1341 CallOperator->getBody()->getEndLoc()); 1342 Conversion->setAccess(AS_public); 1343 Conversion->setImplicit(true); 1344 1345 if (Class->isGenericLambda()) { 1346 // Create a template version of the conversion operator, using the template 1347 // parameter list of the function call operator. 1348 FunctionTemplateDecl *TemplateCallOperator = 1349 CallOperator->getDescribedFunctionTemplate(); 1350 FunctionTemplateDecl *ConversionTemplate = 1351 FunctionTemplateDecl::Create(S.Context, Class, 1352 Loc, ConversionName, 1353 TemplateCallOperator->getTemplateParameters(), 1354 Conversion); 1355 ConversionTemplate->setAccess(AS_public); 1356 ConversionTemplate->setImplicit(true); 1357 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1358 Class->addDecl(ConversionTemplate); 1359 } else 1360 Class->addDecl(Conversion); 1361 // Add a non-static member function that will be the result of 1362 // the conversion with a certain unique ID. 1363 DeclarationName InvokerName = &S.Context.Idents.get( 1364 getLambdaStaticInvokerName()); 1365 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1366 // we should get a prebuilt TrivialTypeSourceInfo from Context 1367 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1368 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1369 // loop below and then use its Params to set Invoke->setParams(...) below. 1370 // This would avoid the 'const' qualifier of the calloperator from 1371 // contaminating the type of the invoker, which is currently adjusted 1372 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1373 // trailing return type of the invoker would require a visitor to rebuild 1374 // the trailing return type and adjusting all back DeclRefExpr's to refer 1375 // to the new static invoker parameters - not the call operator's. 1376 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1377 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1378 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1379 /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc()); 1380 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1381 InvokerParams[I]->setOwningFunction(Invoke); 1382 Invoke->setParams(InvokerParams); 1383 Invoke->setAccess(AS_private); 1384 Invoke->setImplicit(true); 1385 if (Class->isGenericLambda()) { 1386 FunctionTemplateDecl *TemplateCallOperator = 1387 CallOperator->getDescribedFunctionTemplate(); 1388 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1389 S.Context, Class, Loc, InvokerName, 1390 TemplateCallOperator->getTemplateParameters(), 1391 Invoke); 1392 StaticInvokerTemplate->setAccess(AS_private); 1393 StaticInvokerTemplate->setImplicit(true); 1394 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1395 Class->addDecl(StaticInvokerTemplate); 1396 } else 1397 Class->addDecl(Invoke); 1398 } 1399 1400 /// Add a lambda's conversion to block pointer. 1401 static void addBlockPointerConversion(Sema &S, 1402 SourceRange IntroducerRange, 1403 CXXRecordDecl *Class, 1404 CXXMethodDecl *CallOperator) { 1405 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1406 CallOperator->getType()->castAs<FunctionProtoType>()); 1407 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1408 1409 FunctionProtoType::ExtProtoInfo ConversionEPI( 1410 S.Context.getDefaultCallingConvention( 1411 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1412 ConversionEPI.TypeQuals = Qualifiers(); 1413 ConversionEPI.TypeQuals.addConst(); 1414 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1415 1416 SourceLocation Loc = IntroducerRange.getBegin(); 1417 DeclarationName Name 1418 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1419 S.Context.getCanonicalType(BlockPtrTy)); 1420 DeclarationNameLoc NameLoc; 1421 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1422 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1423 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1424 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1425 /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified, 1426 CallOperator->getBody()->getEndLoc()); 1427 Conversion->setAccess(AS_public); 1428 Conversion->setImplicit(true); 1429 Class->addDecl(Conversion); 1430 } 1431 1432 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1433 SourceLocation ImplicitCaptureLoc, 1434 bool IsOpenMPMapping) { 1435 // VLA captures don't have a stored initialization expression. 1436 if (Cap.isVLATypeCapture()) 1437 return ExprResult(); 1438 1439 // An init-capture is initialized directly from its stored initializer. 1440 if (Cap.isInitCapture()) 1441 return Cap.getVariable()->getInit(); 1442 1443 // For anything else, build an initialization expression. For an implicit 1444 // capture, the capture notionally happens at the capture-default, so use 1445 // that location here. 1446 SourceLocation Loc = 1447 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1448 1449 // C++11 [expr.prim.lambda]p21: 1450 // When the lambda-expression is evaluated, the entities that 1451 // are captured by copy are used to direct-initialize each 1452 // corresponding non-static data member of the resulting closure 1453 // object. (For array members, the array elements are 1454 // direct-initialized in increasing subscript order.) These 1455 // initializations are performed in the (unspecified) order in 1456 // which the non-static data members are declared. 1457 1458 // C++ [expr.prim.lambda]p12: 1459 // An entity captured by a lambda-expression is odr-used (3.2) in 1460 // the scope containing the lambda-expression. 1461 ExprResult Init; 1462 IdentifierInfo *Name = nullptr; 1463 if (Cap.isThisCapture()) { 1464 QualType ThisTy = getCurrentThisType(); 1465 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1466 if (Cap.isCopyCapture()) 1467 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1468 else 1469 Init = This; 1470 } else { 1471 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1472 VarDecl *Var = Cap.getVariable(); 1473 Name = Var->getIdentifier(); 1474 Init = BuildDeclarationNameExpr( 1475 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1476 } 1477 1478 // In OpenMP, the capture kind doesn't actually describe how to capture: 1479 // variables are "mapped" onto the device in a process that does not formally 1480 // make a copy, even for a "copy capture". 1481 if (IsOpenMPMapping) 1482 return Init; 1483 1484 if (Init.isInvalid()) 1485 return ExprError(); 1486 1487 Expr *InitExpr = Init.get(); 1488 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1489 Name, Cap.getCaptureType(), Loc); 1490 InitializationKind InitKind = 1491 InitializationKind::CreateDirect(Loc, Loc, Loc); 1492 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1493 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1494 } 1495 1496 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1497 Scope *CurScope) { 1498 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1499 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1500 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1501 } 1502 1503 static LambdaCaptureDefault 1504 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1505 switch (ICS) { 1506 case CapturingScopeInfo::ImpCap_None: 1507 return LCD_None; 1508 case CapturingScopeInfo::ImpCap_LambdaByval: 1509 return LCD_ByCopy; 1510 case CapturingScopeInfo::ImpCap_CapturedRegion: 1511 case CapturingScopeInfo::ImpCap_LambdaByref: 1512 return LCD_ByRef; 1513 case CapturingScopeInfo::ImpCap_Block: 1514 llvm_unreachable("block capture in lambda"); 1515 } 1516 llvm_unreachable("Unknown implicit capture style"); 1517 } 1518 1519 bool Sema::CaptureHasSideEffects(const Capture &From) { 1520 if (From.isInitCapture()) { 1521 Expr *Init = From.getVariable()->getInit(); 1522 if (Init && Init->HasSideEffects(Context)) 1523 return true; 1524 } 1525 1526 if (!From.isCopyCapture()) 1527 return false; 1528 1529 const QualType T = From.isThisCapture() 1530 ? getCurrentThisType()->getPointeeType() 1531 : From.getCaptureType(); 1532 1533 if (T.isVolatileQualified()) 1534 return true; 1535 1536 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1537 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1538 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1539 !RD->hasTrivialDestructor(); 1540 1541 return false; 1542 } 1543 1544 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1545 const Capture &From) { 1546 if (CaptureHasSideEffects(From)) 1547 return false; 1548 1549 if (From.isVLATypeCapture()) 1550 return false; 1551 1552 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1553 if (From.isThisCapture()) 1554 diag << "'this'"; 1555 else 1556 diag << From.getVariable(); 1557 diag << From.isNonODRUsed(); 1558 diag << FixItHint::CreateRemoval(CaptureRange); 1559 return true; 1560 } 1561 1562 /// Create a field within the lambda class or captured statement record for the 1563 /// given capture. 1564 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1565 const sema::Capture &Capture) { 1566 SourceLocation Loc = Capture.getLocation(); 1567 QualType FieldType = Capture.getCaptureType(); 1568 1569 TypeSourceInfo *TSI = nullptr; 1570 if (Capture.isVariableCapture()) { 1571 auto *Var = Capture.getVariable(); 1572 if (Var->isInitCapture()) 1573 TSI = Capture.getVariable()->getTypeSourceInfo(); 1574 } 1575 1576 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1577 // appropriate, at least for an implicit capture. 1578 if (!TSI) 1579 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1580 1581 // Build the non-static data member. 1582 FieldDecl *Field = 1583 FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr, 1584 false, ICIS_NoInit); 1585 // If the variable being captured has an invalid type, mark the class as 1586 // invalid as well. 1587 if (!FieldType->isDependentType()) { 1588 if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) { 1589 RD->setInvalidDecl(); 1590 Field->setInvalidDecl(); 1591 } else { 1592 NamedDecl *Def; 1593 FieldType->isIncompleteType(&Def); 1594 if (Def && Def->isInvalidDecl()) { 1595 RD->setInvalidDecl(); 1596 Field->setInvalidDecl(); 1597 } 1598 } 1599 } 1600 Field->setImplicit(true); 1601 Field->setAccess(AS_private); 1602 RD->addDecl(Field); 1603 1604 if (Capture.isVLATypeCapture()) 1605 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1606 1607 return Field; 1608 } 1609 1610 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1611 LambdaScopeInfo *LSI) { 1612 // Collect information from the lambda scope. 1613 SmallVector<LambdaCapture, 4> Captures; 1614 SmallVector<Expr *, 4> CaptureInits; 1615 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1616 LambdaCaptureDefault CaptureDefault = 1617 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1618 CXXRecordDecl *Class; 1619 CXXMethodDecl *CallOperator; 1620 SourceRange IntroducerRange; 1621 bool ExplicitParams; 1622 bool ExplicitResultType; 1623 CleanupInfo LambdaCleanup; 1624 bool ContainsUnexpandedParameterPack; 1625 bool IsGenericLambda; 1626 { 1627 CallOperator = LSI->CallOperator; 1628 Class = LSI->Lambda; 1629 IntroducerRange = LSI->IntroducerRange; 1630 ExplicitParams = LSI->ExplicitParams; 1631 ExplicitResultType = !LSI->HasImplicitReturnType; 1632 LambdaCleanup = LSI->Cleanup; 1633 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1634 IsGenericLambda = Class->isGenericLambda(); 1635 1636 CallOperator->setLexicalDeclContext(Class); 1637 Decl *TemplateOrNonTemplateCallOperatorDecl = 1638 CallOperator->getDescribedFunctionTemplate() 1639 ? CallOperator->getDescribedFunctionTemplate() 1640 : cast<Decl>(CallOperator); 1641 1642 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1643 Class->addDecl(TemplateOrNonTemplateCallOperatorDecl); 1644 1645 PopExpressionEvaluationContext(); 1646 1647 // True if the current capture has a used capture or default before it. 1648 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1649 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1650 CaptureDefaultLoc : IntroducerRange.getBegin(); 1651 1652 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1653 const Capture &From = LSI->Captures[I]; 1654 1655 if (From.isInvalid()) 1656 return ExprError(); 1657 1658 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1659 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1660 SourceLocation ImplicitCaptureLoc = 1661 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1662 1663 // Use source ranges of explicit captures for fixits where available. 1664 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1665 1666 // Warn about unused explicit captures. 1667 bool IsCaptureUsed = true; 1668 if (!CurContext->isDependentContext() && !IsImplicit && 1669 !From.isODRUsed()) { 1670 // Initialized captures that are non-ODR used may not be eliminated. 1671 // FIXME: Where did the IsGenericLambda here come from? 1672 bool NonODRUsedInitCapture = 1673 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1674 if (!NonODRUsedInitCapture) { 1675 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1676 SourceRange FixItRange; 1677 if (CaptureRange.isValid()) { 1678 if (!CurHasPreviousCapture && !IsLast) { 1679 // If there are no captures preceding this capture, remove the 1680 // following comma. 1681 FixItRange = SourceRange(CaptureRange.getBegin(), 1682 getLocForEndOfToken(CaptureRange.getEnd())); 1683 } else { 1684 // Otherwise, remove the comma since the last used capture. 1685 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1686 CaptureRange.getEnd()); 1687 } 1688 } 1689 1690 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1691 } 1692 } 1693 1694 if (CaptureRange.isValid()) { 1695 CurHasPreviousCapture |= IsCaptureUsed; 1696 PrevCaptureLoc = CaptureRange.getEnd(); 1697 } 1698 1699 // Map the capture to our AST representation. 1700 LambdaCapture Capture = [&] { 1701 if (From.isThisCapture()) { 1702 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1703 // because it results in a reference capture. Don't warn prior to 1704 // C++2a; there's nothing that can be done about it before then. 1705 if (getLangOpts().CPlusPlus2a && IsImplicit && 1706 CaptureDefault == LCD_ByCopy) { 1707 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1708 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1709 << FixItHint::CreateInsertion( 1710 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1711 } 1712 return LambdaCapture(From.getLocation(), IsImplicit, 1713 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1714 } else if (From.isVLATypeCapture()) { 1715 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1716 } else { 1717 assert(From.isVariableCapture() && "unknown kind of capture"); 1718 VarDecl *Var = From.getVariable(); 1719 LambdaCaptureKind Kind = 1720 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1721 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1722 From.getEllipsisLoc()); 1723 } 1724 }(); 1725 1726 // Form the initializer for the capture field. 1727 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1728 1729 // FIXME: Skip this capture if the capture is not used, the initializer 1730 // has no side-effects, the type of the capture is trivial, and the 1731 // lambda is not externally visible. 1732 1733 // Add a FieldDecl for the capture and form its initializer. 1734 BuildCaptureField(Class, From); 1735 Captures.push_back(Capture); 1736 CaptureInits.push_back(Init.get()); 1737 } 1738 1739 // C++11 [expr.prim.lambda]p6: 1740 // The closure type for a lambda-expression with no lambda-capture 1741 // has a public non-virtual non-explicit const conversion function 1742 // to pointer to function having the same parameter and return 1743 // types as the closure type's function call operator. 1744 if (Captures.empty() && CaptureDefault == LCD_None) 1745 addFunctionPointerConversion(*this, IntroducerRange, Class, 1746 CallOperator); 1747 1748 // Objective-C++: 1749 // The closure type for a lambda-expression has a public non-virtual 1750 // non-explicit const conversion function to a block pointer having the 1751 // same parameter and return types as the closure type's function call 1752 // operator. 1753 // FIXME: Fix generic lambda to block conversions. 1754 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1755 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1756 1757 // Finalize the lambda class. 1758 SmallVector<Decl*, 4> Fields(Class->fields()); 1759 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1760 SourceLocation(), ParsedAttributesView()); 1761 CheckCompletedCXXClass(Class); 1762 } 1763 1764 Cleanup.mergeFrom(LambdaCleanup); 1765 1766 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1767 CaptureDefault, CaptureDefaultLoc, 1768 Captures, 1769 ExplicitParams, ExplicitResultType, 1770 CaptureInits, EndLoc, 1771 ContainsUnexpandedParameterPack); 1772 // If the lambda expression's call operator is not explicitly marked constexpr 1773 // and we are not in a dependent context, analyze the call operator to infer 1774 // its constexpr-ness, suppressing diagnostics while doing so. 1775 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1776 !CallOperator->isConstexpr() && 1777 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1778 !Class->getDeclContext()->isDependentContext()) { 1779 TentativeAnalysisScope DiagnosticScopeGuard(*this); 1780 CallOperator->setConstexprKind( 1781 (CheckConstexprFunctionDecl(CallOperator) && 1782 CheckConstexprFunctionBody(CallOperator, CallOperator->getBody())) 1783 ? CSK_constexpr 1784 : CSK_unspecified); 1785 } 1786 1787 // Emit delayed shadowing warnings now that the full capture list is known. 1788 DiagnoseShadowingLambdaDecls(LSI); 1789 1790 if (!CurContext->isDependentContext()) { 1791 switch (ExprEvalContexts.back().Context) { 1792 // C++11 [expr.prim.lambda]p2: 1793 // A lambda-expression shall not appear in an unevaluated operand 1794 // (Clause 5). 1795 case ExpressionEvaluationContext::Unevaluated: 1796 case ExpressionEvaluationContext::UnevaluatedList: 1797 case ExpressionEvaluationContext::UnevaluatedAbstract: 1798 // C++1y [expr.const]p2: 1799 // A conditional-expression e is a core constant expression unless the 1800 // evaluation of e, following the rules of the abstract machine, would 1801 // evaluate [...] a lambda-expression. 1802 // 1803 // This is technically incorrect, there are some constant evaluated contexts 1804 // where this should be allowed. We should probably fix this when DR1607 is 1805 // ratified, it lays out the exact set of conditions where we shouldn't 1806 // allow a lambda-expression. 1807 case ExpressionEvaluationContext::ConstantEvaluated: 1808 // We don't actually diagnose this case immediately, because we 1809 // could be within a context where we might find out later that 1810 // the expression is potentially evaluated (e.g., for typeid). 1811 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1812 break; 1813 1814 case ExpressionEvaluationContext::DiscardedStatement: 1815 case ExpressionEvaluationContext::PotentiallyEvaluated: 1816 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1817 break; 1818 } 1819 } 1820 1821 return MaybeBindToTemporary(Lambda); 1822 } 1823 1824 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1825 SourceLocation ConvLocation, 1826 CXXConversionDecl *Conv, 1827 Expr *Src) { 1828 // Make sure that the lambda call operator is marked used. 1829 CXXRecordDecl *Lambda = Conv->getParent(); 1830 CXXMethodDecl *CallOperator 1831 = cast<CXXMethodDecl>( 1832 Lambda->lookup( 1833 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1834 CallOperator->setReferenced(); 1835 CallOperator->markUsed(Context); 1836 1837 ExprResult Init = PerformCopyInitialization( 1838 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(), 1839 /*NRVO=*/false), 1840 CurrentLocation, Src); 1841 if (!Init.isInvalid()) 1842 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1843 1844 if (Init.isInvalid()) 1845 return ExprError(); 1846 1847 // Create the new block to be returned. 1848 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1849 1850 // Set the type information. 1851 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1852 Block->setIsVariadic(CallOperator->isVariadic()); 1853 Block->setBlockMissingReturnType(false); 1854 1855 // Add parameters. 1856 SmallVector<ParmVarDecl *, 4> BlockParams; 1857 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1858 ParmVarDecl *From = CallOperator->getParamDecl(I); 1859 BlockParams.push_back(ParmVarDecl::Create( 1860 Context, Block, From->getBeginLoc(), From->getLocation(), 1861 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 1862 From->getStorageClass(), 1863 /*DefArg=*/nullptr)); 1864 } 1865 Block->setParams(BlockParams); 1866 1867 Block->setIsConversionFromLambda(true); 1868 1869 // Add capture. The capture uses a fake variable, which doesn't correspond 1870 // to any actual memory location. However, the initializer copy-initializes 1871 // the lambda object. 1872 TypeSourceInfo *CapVarTSI = 1873 Context.getTrivialTypeSourceInfo(Src->getType()); 1874 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 1875 ConvLocation, nullptr, 1876 Src->getType(), CapVarTSI, 1877 SC_None); 1878 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 1879 /*nested=*/false, /*copy=*/Init.get()); 1880 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 1881 1882 // Add a fake function body to the block. IR generation is responsible 1883 // for filling in the actual body, which cannot be expressed as an AST. 1884 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 1885 1886 // Create the block literal expression. 1887 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 1888 ExprCleanupObjects.push_back(Block); 1889 Cleanup.setExprNeedsCleanups(true); 1890 1891 return BuildBlock; 1892 } 1893