1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis member access expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/Overload.h" 13 #include "clang/AST/ASTLambda.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/Lex/Preprocessor.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 25 using namespace clang; 26 using namespace sema; 27 28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; 29 30 /// Determines if the given class is provably not derived from all of 31 /// the prospective base classes. 32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, 33 const BaseSet &Bases) { 34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { 35 return !Bases.count(Base->getCanonicalDecl()); 36 }; 37 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); 38 } 39 40 enum IMAKind { 41 /// The reference is definitely not an instance member access. 42 IMA_Static, 43 44 /// The reference may be an implicit instance member access. 45 IMA_Mixed, 46 47 /// The reference may be to an instance member, but it might be invalid if 48 /// so, because the context is not an instance method. 49 IMA_Mixed_StaticContext, 50 51 /// The reference may be to an instance member, but it is invalid if 52 /// so, because the context is from an unrelated class. 53 IMA_Mixed_Unrelated, 54 55 /// The reference is definitely an implicit instance member access. 56 IMA_Instance, 57 58 /// The reference may be to an unresolved using declaration. 59 IMA_Unresolved, 60 61 /// The reference is a contextually-permitted abstract member reference. 62 IMA_Abstract, 63 64 /// The reference may be to an unresolved using declaration and the 65 /// context is not an instance method. 66 IMA_Unresolved_StaticContext, 67 68 // The reference refers to a field which is not a member of the containing 69 // class, which is allowed because we're in C++11 mode and the context is 70 // unevaluated. 71 IMA_Field_Uneval_Context, 72 73 /// All possible referrents are instance members and the current 74 /// context is not an instance method. 75 IMA_Error_StaticContext, 76 77 /// All possible referrents are instance members of an unrelated 78 /// class. 79 IMA_Error_Unrelated 80 }; 81 82 /// The given lookup names class member(s) and is not being used for 83 /// an address-of-member expression. Classify the type of access 84 /// according to whether it's possible that this reference names an 85 /// instance member. This is best-effort in dependent contexts; it is okay to 86 /// conservatively answer "yes", in which case some errors will simply 87 /// not be caught until template-instantiation. 88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, 89 const LookupResult &R) { 90 assert(!R.empty() && (*R.begin())->isCXXClassMember()); 91 92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); 93 94 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() && 95 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic()); 96 97 if (R.isUnresolvableResult()) 98 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; 99 100 // Collect all the declaring classes of instance members we find. 101 bool hasNonInstance = false; 102 bool isField = false; 103 BaseSet Classes; 104 for (NamedDecl *D : R) { 105 // Look through any using decls. 106 D = D->getUnderlyingDecl(); 107 108 if (D->isCXXInstanceMember()) { 109 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) || 110 isa<IndirectFieldDecl>(D); 111 112 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); 113 Classes.insert(R->getCanonicalDecl()); 114 } else 115 hasNonInstance = true; 116 } 117 118 // If we didn't find any instance members, it can't be an implicit 119 // member reference. 120 if (Classes.empty()) 121 return IMA_Static; 122 123 // C++11 [expr.prim.general]p12: 124 // An id-expression that denotes a non-static data member or non-static 125 // member function of a class can only be used: 126 // (...) 127 // - if that id-expression denotes a non-static data member and it 128 // appears in an unevaluated operand. 129 // 130 // This rule is specific to C++11. However, we also permit this form 131 // in unevaluated inline assembly operands, like the operand to a SIZE. 132 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' 133 assert(!AbstractInstanceResult); 134 switch (SemaRef.ExprEvalContexts.back().Context) { 135 case Sema::ExpressionEvaluationContext::Unevaluated: 136 case Sema::ExpressionEvaluationContext::UnevaluatedList: 137 if (isField && SemaRef.getLangOpts().CPlusPlus11) 138 AbstractInstanceResult = IMA_Field_Uneval_Context; 139 break; 140 141 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: 142 AbstractInstanceResult = IMA_Abstract; 143 break; 144 145 case Sema::ExpressionEvaluationContext::DiscardedStatement: 146 case Sema::ExpressionEvaluationContext::ConstantEvaluated: 147 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: 148 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: 149 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 150 break; 151 } 152 153 // If the current context is not an instance method, it can't be 154 // an implicit member reference. 155 if (isStaticContext) { 156 if (hasNonInstance) 157 return IMA_Mixed_StaticContext; 158 159 return AbstractInstanceResult ? AbstractInstanceResult 160 : IMA_Error_StaticContext; 161 } 162 163 CXXRecordDecl *contextClass; 164 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) 165 contextClass = MD->getParent()->getCanonicalDecl(); 166 else 167 contextClass = cast<CXXRecordDecl>(DC); 168 169 // [class.mfct.non-static]p3: 170 // ...is used in the body of a non-static member function of class X, 171 // if name lookup (3.4.1) resolves the name in the id-expression to a 172 // non-static non-type member of some class C [...] 173 // ...if C is not X or a base class of X, the class member access expression 174 // is ill-formed. 175 if (R.getNamingClass() && 176 contextClass->getCanonicalDecl() != 177 R.getNamingClass()->getCanonicalDecl()) { 178 // If the naming class is not the current context, this was a qualified 179 // member name lookup, and it's sufficient to check that we have the naming 180 // class as a base class. 181 Classes.clear(); 182 Classes.insert(R.getNamingClass()->getCanonicalDecl()); 183 } 184 185 // If we can prove that the current context is unrelated to all the 186 // declaring classes, it can't be an implicit member reference (in 187 // which case it's an error if any of those members are selected). 188 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) 189 return hasNonInstance ? IMA_Mixed_Unrelated : 190 AbstractInstanceResult ? AbstractInstanceResult : 191 IMA_Error_Unrelated; 192 193 return (hasNonInstance ? IMA_Mixed : IMA_Instance); 194 } 195 196 /// Diagnose a reference to a field with no object available. 197 static void diagnoseInstanceReference(Sema &SemaRef, 198 const CXXScopeSpec &SS, 199 NamedDecl *Rep, 200 const DeclarationNameInfo &nameInfo) { 201 SourceLocation Loc = nameInfo.getLoc(); 202 SourceRange Range(Loc); 203 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); 204 205 // Look through using shadow decls and aliases. 206 Rep = Rep->getUnderlyingDecl(); 207 208 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); 209 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); 210 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; 211 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); 212 213 bool InStaticMethod = Method && Method->isStatic(); 214 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); 215 216 if (IsField && InStaticMethod) 217 // "invalid use of member 'x' in static member function" 218 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) 219 << Range << nameInfo.getName(); 220 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod && 221 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass)) 222 // Unqualified lookup in a non-static member function found a member of an 223 // enclosing class. 224 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) 225 << IsField << RepClass << nameInfo.getName() << ContextClass << Range; 226 else if (IsField) 227 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) 228 << nameInfo.getName() << Range; 229 else 230 SemaRef.Diag(Loc, diag::err_member_call_without_object) 231 << Range; 232 } 233 234 /// Builds an expression which might be an implicit member expression. 235 ExprResult Sema::BuildPossibleImplicitMemberExpr( 236 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, 237 const TemplateArgumentListInfo *TemplateArgs, const Scope *S, 238 UnresolvedLookupExpr *AsULE) { 239 switch (ClassifyImplicitMemberAccess(*this, R)) { 240 case IMA_Instance: 241 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S); 242 243 case IMA_Mixed: 244 case IMA_Mixed_Unrelated: 245 case IMA_Unresolved: 246 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false, 247 S); 248 249 case IMA_Field_Uneval_Context: 250 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) 251 << R.getLookupNameInfo().getName(); 252 LLVM_FALLTHROUGH; 253 case IMA_Static: 254 case IMA_Abstract: 255 case IMA_Mixed_StaticContext: 256 case IMA_Unresolved_StaticContext: 257 if (TemplateArgs || TemplateKWLoc.isValid()) 258 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); 259 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false); 260 261 case IMA_Error_StaticContext: 262 case IMA_Error_Unrelated: 263 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), 264 R.getLookupNameInfo()); 265 return ExprError(); 266 } 267 268 llvm_unreachable("unexpected instance member access kind"); 269 } 270 271 /// Determine whether input char is from rgba component set. 272 static bool 273 IsRGBA(char c) { 274 switch (c) { 275 case 'r': 276 case 'g': 277 case 'b': 278 case 'a': 279 return true; 280 default: 281 return false; 282 } 283 } 284 285 // OpenCL v1.1, s6.1.7 286 // The component swizzle length must be in accordance with the acceptable 287 // vector sizes. 288 static bool IsValidOpenCLComponentSwizzleLength(unsigned len) 289 { 290 return (len >= 1 && len <= 4) || len == 8 || len == 16; 291 } 292 293 /// Check an ext-vector component access expression. 294 /// 295 /// VK should be set in advance to the value kind of the base 296 /// expression. 297 static QualType 298 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, 299 SourceLocation OpLoc, const IdentifierInfo *CompName, 300 SourceLocation CompLoc) { 301 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, 302 // see FIXME there. 303 // 304 // FIXME: This logic can be greatly simplified by splitting it along 305 // halving/not halving and reworking the component checking. 306 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); 307 308 // The vector accessor can't exceed the number of elements. 309 const char *compStr = CompName->getNameStart(); 310 311 // This flag determines whether or not the component is one of the four 312 // special names that indicate a subset of exactly half the elements are 313 // to be selected. 314 bool HalvingSwizzle = false; 315 316 // This flag determines whether or not CompName has an 's' char prefix, 317 // indicating that it is a string of hex values to be used as vector indices. 318 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; 319 320 bool HasRepeated = false; 321 bool HasIndex[16] = {}; 322 323 int Idx; 324 325 // Check that we've found one of the special components, or that the component 326 // names must come from the same set. 327 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 328 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { 329 HalvingSwizzle = true; 330 } else if (!HexSwizzle && 331 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { 332 bool HasRGBA = IsRGBA(*compStr); 333 do { 334 // Ensure that xyzw and rgba components don't intermingle. 335 if (HasRGBA != IsRGBA(*compStr)) 336 break; 337 if (HasIndex[Idx]) HasRepeated = true; 338 HasIndex[Idx] = true; 339 compStr++; 340 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); 341 342 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. 343 if (HasRGBA || (*compStr && IsRGBA(*compStr))) { 344 if (S.getLangOpts().OpenCL && 345 S.getLangOpts().getOpenCLCompatibleVersion() < 300) { 346 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; 347 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) 348 << StringRef(DiagBegin, 1) << SourceRange(CompLoc); 349 } 350 } 351 } else { 352 if (HexSwizzle) compStr++; 353 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { 354 if (HasIndex[Idx]) HasRepeated = true; 355 HasIndex[Idx] = true; 356 compStr++; 357 } 358 } 359 360 if (!HalvingSwizzle && *compStr) { 361 // We didn't get to the end of the string. This means the component names 362 // didn't come from the same set *or* we encountered an illegal name. 363 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) 364 << StringRef(compStr, 1) << SourceRange(CompLoc); 365 return QualType(); 366 } 367 368 // Ensure no component accessor exceeds the width of the vector type it 369 // operates on. 370 if (!HalvingSwizzle) { 371 compStr = CompName->getNameStart(); 372 373 if (HexSwizzle) 374 compStr++; 375 376 while (*compStr) { 377 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { 378 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) 379 << baseType << SourceRange(CompLoc); 380 return QualType(); 381 } 382 } 383 } 384 385 // OpenCL mode requires swizzle length to be in accordance with accepted 386 // sizes. Clang however supports arbitrary lengths for other languages. 387 if (S.getLangOpts().OpenCL && !HalvingSwizzle) { 388 unsigned SwizzleLength = CompName->getLength(); 389 390 if (HexSwizzle) 391 SwizzleLength--; 392 393 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) { 394 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) 395 << SwizzleLength << SourceRange(CompLoc); 396 return QualType(); 397 } 398 } 399 400 // The component accessor looks fine - now we need to compute the actual type. 401 // The vector type is implied by the component accessor. For example, 402 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. 403 // vec4.s0 is a float, vec4.s23 is a vec3, etc. 404 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. 405 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 406 : CompName->getLength(); 407 if (HexSwizzle) 408 CompSize--; 409 410 if (CompSize == 1) 411 return vecType->getElementType(); 412 413 if (HasRepeated) 414 VK = VK_PRValue; 415 416 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); 417 // Now look up the TypeDefDecl from the vector type. Without this, 418 // diagostics look bad. We want extended vector types to appear built-in. 419 for (Sema::ExtVectorDeclsType::iterator 420 I = S.ExtVectorDecls.begin(S.getExternalSource()), 421 E = S.ExtVectorDecls.end(); 422 I != E; ++I) { 423 if ((*I)->getUnderlyingType() == VT) 424 return S.Context.getTypedefType(*I); 425 } 426 427 return VT; // should never get here (a typedef type should always be found). 428 } 429 430 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, 431 IdentifierInfo *Member, 432 const Selector &Sel, 433 ASTContext &Context) { 434 if (Member) 435 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( 436 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) 437 return PD; 438 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) 439 return OMD; 440 441 for (const auto *I : PDecl->protocols()) { 442 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, 443 Context)) 444 return D; 445 } 446 return nullptr; 447 } 448 449 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, 450 IdentifierInfo *Member, 451 const Selector &Sel, 452 ASTContext &Context) { 453 // Check protocols on qualified interfaces. 454 Decl *GDecl = nullptr; 455 for (const auto *I : QIdTy->quals()) { 456 if (Member) 457 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 458 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 459 GDecl = PD; 460 break; 461 } 462 // Also must look for a getter or setter name which uses property syntax. 463 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { 464 GDecl = OMD; 465 break; 466 } 467 } 468 if (!GDecl) { 469 for (const auto *I : QIdTy->quals()) { 470 // Search in the protocol-qualifier list of current protocol. 471 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); 472 if (GDecl) 473 return GDecl; 474 } 475 } 476 return GDecl; 477 } 478 479 ExprResult 480 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, 481 bool IsArrow, SourceLocation OpLoc, 482 const CXXScopeSpec &SS, 483 SourceLocation TemplateKWLoc, 484 NamedDecl *FirstQualifierInScope, 485 const DeclarationNameInfo &NameInfo, 486 const TemplateArgumentListInfo *TemplateArgs) { 487 // Even in dependent contexts, try to diagnose base expressions with 488 // obviously wrong types, e.g.: 489 // 490 // T* t; 491 // t.f; 492 // 493 // In Obj-C++, however, the above expression is valid, since it could be 494 // accessing the 'f' property if T is an Obj-C interface. The extra check 495 // allows this, while still reporting an error if T is a struct pointer. 496 if (!IsArrow) { 497 const PointerType *PT = BaseType->getAs<PointerType>(); 498 if (PT && (!getLangOpts().ObjC || 499 PT->getPointeeType()->isRecordType())) { 500 assert(BaseExpr && "cannot happen with implicit member accesses"); 501 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 502 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); 503 return ExprError(); 504 } 505 } 506 507 assert(BaseType->isDependentType() || 508 NameInfo.getName().isDependentName() || 509 isDependentScopeSpecifier(SS)); 510 511 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr 512 // must have pointer type, and the accessed type is the pointee. 513 return CXXDependentScopeMemberExpr::Create( 514 Context, BaseExpr, BaseType, IsArrow, OpLoc, 515 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, 516 NameInfo, TemplateArgs); 517 } 518 519 /// We know that the given qualified member reference points only to 520 /// declarations which do not belong to the static type of the base 521 /// expression. Diagnose the problem. 522 static void DiagnoseQualifiedMemberReference(Sema &SemaRef, 523 Expr *BaseExpr, 524 QualType BaseType, 525 const CXXScopeSpec &SS, 526 NamedDecl *rep, 527 const DeclarationNameInfo &nameInfo) { 528 // If this is an implicit member access, use a different set of 529 // diagnostics. 530 if (!BaseExpr) 531 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); 532 533 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) 534 << SS.getRange() << rep << BaseType; 535 } 536 537 // Check whether the declarations we found through a nested-name 538 // specifier in a member expression are actually members of the base 539 // type. The restriction here is: 540 // 541 // C++ [expr.ref]p2: 542 // ... In these cases, the id-expression shall name a 543 // member of the class or of one of its base classes. 544 // 545 // So it's perfectly legitimate for the nested-name specifier to name 546 // an unrelated class, and for us to find an overload set including 547 // decls from classes which are not superclasses, as long as the decl 548 // we actually pick through overload resolution is from a superclass. 549 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, 550 QualType BaseType, 551 const CXXScopeSpec &SS, 552 const LookupResult &R) { 553 CXXRecordDecl *BaseRecord = 554 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); 555 if (!BaseRecord) { 556 // We can't check this yet because the base type is still 557 // dependent. 558 assert(BaseType->isDependentType()); 559 return false; 560 } 561 562 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 563 // If this is an implicit member reference and we find a 564 // non-instance member, it's not an error. 565 if (!BaseExpr && !(*I)->isCXXInstanceMember()) 566 return false; 567 568 // Note that we use the DC of the decl, not the underlying decl. 569 DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext(); 570 if (!DC->isRecord()) 571 continue; 572 573 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); 574 if (BaseRecord->getCanonicalDecl() == MemberRecord || 575 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) 576 return false; 577 } 578 579 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, 580 R.getRepresentativeDecl(), 581 R.getLookupNameInfo()); 582 return true; 583 } 584 585 namespace { 586 587 // Callback to only accept typo corrections that are either a ValueDecl or a 588 // FunctionTemplateDecl and are declared in the current record or, for a C++ 589 // classes, one of its base classes. 590 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { 591 public: 592 explicit RecordMemberExprValidatorCCC(const RecordType *RTy) 593 : Record(RTy->getDecl()) { 594 // Don't add bare keywords to the consumer since they will always fail 595 // validation by virtue of not being associated with any decls. 596 WantTypeSpecifiers = false; 597 WantExpressionKeywords = false; 598 WantCXXNamedCasts = false; 599 WantFunctionLikeCasts = false; 600 WantRemainingKeywords = false; 601 } 602 603 bool ValidateCandidate(const TypoCorrection &candidate) override { 604 NamedDecl *ND = candidate.getCorrectionDecl(); 605 // Don't accept candidates that cannot be member functions, constants, 606 // variables, or templates. 607 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) 608 return false; 609 610 // Accept candidates that occur in the current record. 611 if (Record->containsDecl(ND)) 612 return true; 613 614 if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) { 615 // Accept candidates that occur in any of the current class' base classes. 616 for (const auto &BS : RD->bases()) { 617 if (const auto *BSTy = BS.getType()->getAs<RecordType>()) { 618 if (BSTy->getDecl()->containsDecl(ND)) 619 return true; 620 } 621 } 622 } 623 624 return false; 625 } 626 627 std::unique_ptr<CorrectionCandidateCallback> clone() override { 628 return std::make_unique<RecordMemberExprValidatorCCC>(*this); 629 } 630 631 private: 632 const RecordDecl *const Record; 633 }; 634 635 } 636 637 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 638 Expr *BaseExpr, 639 const RecordType *RTy, 640 SourceLocation OpLoc, bool IsArrow, 641 CXXScopeSpec &SS, bool HasTemplateArgs, 642 SourceLocation TemplateKWLoc, 643 TypoExpr *&TE) { 644 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); 645 RecordDecl *RDecl = RTy->getDecl(); 646 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && 647 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), 648 diag::err_typecheck_incomplete_tag, 649 BaseRange)) 650 return true; 651 652 if (HasTemplateArgs || TemplateKWLoc.isValid()) { 653 // LookupTemplateName doesn't expect these both to exist simultaneously. 654 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); 655 656 bool MOUS; 657 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS, 658 TemplateKWLoc); 659 } 660 661 DeclContext *DC = RDecl; 662 if (SS.isSet()) { 663 // If the member name was a qualified-id, look into the 664 // nested-name-specifier. 665 DC = SemaRef.computeDeclContext(SS, false); 666 667 if (SemaRef.RequireCompleteDeclContext(SS, DC)) { 668 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) 669 << SS.getRange() << DC; 670 return true; 671 } 672 673 assert(DC && "Cannot handle non-computable dependent contexts in lookup"); 674 675 if (!isa<TypeDecl>(DC)) { 676 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) 677 << DC << SS.getRange(); 678 return true; 679 } 680 } 681 682 // The record definition is complete, now look up the member. 683 SemaRef.LookupQualifiedName(R, DC, SS); 684 685 if (!R.empty()) 686 return false; 687 688 DeclarationName Typo = R.getLookupName(); 689 SourceLocation TypoLoc = R.getNameLoc(); 690 691 struct QueryState { 692 Sema &SemaRef; 693 DeclarationNameInfo NameInfo; 694 Sema::LookupNameKind LookupKind; 695 Sema::RedeclarationKind Redecl; 696 }; 697 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), 698 R.redeclarationKind()}; 699 RecordMemberExprValidatorCCC CCC(RTy); 700 TE = SemaRef.CorrectTypoDelayed( 701 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC, 702 [=, &SemaRef](const TypoCorrection &TC) { 703 if (TC) { 704 assert(!TC.isKeyword() && 705 "Got a keyword as a correction for a member!"); 706 bool DroppedSpecifier = 707 TC.WillReplaceSpecifier() && 708 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); 709 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) 710 << Typo << DC << DroppedSpecifier 711 << SS.getRange()); 712 } else { 713 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; 714 } 715 }, 716 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { 717 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); 718 R.clear(); // Ensure there's no decls lingering in the shared state. 719 R.suppressDiagnostics(); 720 R.setLookupName(TC.getCorrection()); 721 for (NamedDecl *ND : TC) 722 R.addDecl(ND); 723 R.resolveKind(); 724 return SemaRef.BuildMemberReferenceExpr( 725 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), 726 nullptr, R, nullptr, nullptr); 727 }, 728 Sema::CTK_ErrorRecovery, DC); 729 730 return false; 731 } 732 733 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 734 ExprResult &BaseExpr, bool &IsArrow, 735 SourceLocation OpLoc, CXXScopeSpec &SS, 736 Decl *ObjCImpDecl, bool HasTemplateArgs, 737 SourceLocation TemplateKWLoc); 738 739 ExprResult 740 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, 741 SourceLocation OpLoc, bool IsArrow, 742 CXXScopeSpec &SS, 743 SourceLocation TemplateKWLoc, 744 NamedDecl *FirstQualifierInScope, 745 const DeclarationNameInfo &NameInfo, 746 const TemplateArgumentListInfo *TemplateArgs, 747 const Scope *S, 748 ActOnMemberAccessExtraArgs *ExtraArgs) { 749 if (BaseType->isDependentType() || 750 (SS.isSet() && isDependentScopeSpecifier(SS))) 751 return ActOnDependentMemberExpr(Base, BaseType, 752 IsArrow, OpLoc, 753 SS, TemplateKWLoc, FirstQualifierInScope, 754 NameInfo, TemplateArgs); 755 756 LookupResult R(*this, NameInfo, LookupMemberName); 757 758 // Implicit member accesses. 759 if (!Base) { 760 TypoExpr *TE = nullptr; 761 QualType RecordTy = BaseType; 762 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); 763 if (LookupMemberExprInRecord( 764 *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow, 765 SS, TemplateArgs != nullptr, TemplateKWLoc, TE)) 766 return ExprError(); 767 if (TE) 768 return TE; 769 770 // Explicit member accesses. 771 } else { 772 ExprResult BaseResult = Base; 773 ExprResult Result = 774 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS, 775 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, 776 TemplateArgs != nullptr, TemplateKWLoc); 777 778 if (BaseResult.isInvalid()) 779 return ExprError(); 780 Base = BaseResult.get(); 781 782 if (Result.isInvalid()) 783 return ExprError(); 784 785 if (Result.get()) 786 return Result; 787 788 // LookupMemberExpr can modify Base, and thus change BaseType 789 BaseType = Base->getType(); 790 } 791 792 return BuildMemberReferenceExpr(Base, BaseType, 793 OpLoc, IsArrow, SS, TemplateKWLoc, 794 FirstQualifierInScope, R, TemplateArgs, S, 795 false, ExtraArgs); 796 } 797 798 ExprResult 799 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, 800 SourceLocation loc, 801 IndirectFieldDecl *indirectField, 802 DeclAccessPair foundDecl, 803 Expr *baseObjectExpr, 804 SourceLocation opLoc) { 805 // First, build the expression that refers to the base object. 806 807 // Case 1: the base of the indirect field is not a field. 808 VarDecl *baseVariable = indirectField->getVarDecl(); 809 CXXScopeSpec EmptySS; 810 if (baseVariable) { 811 assert(baseVariable->getType()->isRecordType()); 812 813 // In principle we could have a member access expression that 814 // accesses an anonymous struct/union that's a static member of 815 // the base object's class. However, under the current standard, 816 // static data members cannot be anonymous structs or unions. 817 // Supporting this is as easy as building a MemberExpr here. 818 assert(!baseObjectExpr && "anonymous struct/union is static data member?"); 819 820 DeclarationNameInfo baseNameInfo(DeclarationName(), loc); 821 822 ExprResult result 823 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); 824 if (result.isInvalid()) return ExprError(); 825 826 baseObjectExpr = result.get(); 827 } 828 829 assert((baseVariable || baseObjectExpr) && 830 "referencing anonymous struct/union without a base variable or " 831 "expression"); 832 833 // Build the implicit member references to the field of the 834 // anonymous struct/union. 835 Expr *result = baseObjectExpr; 836 IndirectFieldDecl::chain_iterator 837 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); 838 839 // Case 2: the base of the indirect field is a field and the user 840 // wrote a member expression. 841 if (!baseVariable) { 842 FieldDecl *field = cast<FieldDecl>(*FI); 843 844 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); 845 846 // Make a nameInfo that properly uses the anonymous name. 847 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 848 849 // Build the first member access in the chain with full information. 850 result = 851 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(), 852 SS, field, foundDecl, memberNameInfo) 853 .get(); 854 if (!result) 855 return ExprError(); 856 } 857 858 // In all cases, we should now skip the first declaration in the chain. 859 ++FI; 860 861 while (FI != FEnd) { 862 FieldDecl *field = cast<FieldDecl>(*FI++); 863 864 // FIXME: these are somewhat meaningless 865 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 866 DeclAccessPair fakeFoundDecl = 867 DeclAccessPair::make(field, field->getAccess()); 868 869 result = 870 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(), 871 (FI == FEnd ? SS : EmptySS), field, 872 fakeFoundDecl, memberNameInfo) 873 .get(); 874 } 875 876 return result; 877 } 878 879 static ExprResult 880 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, 881 const CXXScopeSpec &SS, 882 MSPropertyDecl *PD, 883 const DeclarationNameInfo &NameInfo) { 884 // Property names are always simple identifiers and therefore never 885 // require any interesting additional storage. 886 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, 887 S.Context.PseudoObjectTy, VK_LValue, 888 SS.getWithLocInContext(S.Context), 889 NameInfo.getLoc()); 890 } 891 892 MemberExpr *Sema::BuildMemberExpr( 893 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, 894 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 895 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 896 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 897 const TemplateArgumentListInfo *TemplateArgs) { 898 NestedNameSpecifierLoc NNS = 899 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); 900 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member, 901 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty, 902 VK, OK, TemplateArgs); 903 } 904 905 MemberExpr *Sema::BuildMemberExpr( 906 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, 907 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 908 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 909 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 910 const TemplateArgumentListInfo *TemplateArgs) { 911 assert((!IsArrow || Base->isPRValue()) && 912 "-> base must be a pointer prvalue"); 913 MemberExpr *E = 914 MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc, 915 Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, 916 VK, OK, getNonOdrUseReasonInCurrentContext(Member)); 917 E->setHadMultipleCandidates(HadMultipleCandidates); 918 MarkMemberReferenced(E); 919 920 // C++ [except.spec]p17: 921 // An exception-specification is considered to be needed when: 922 // - in an expression the function is the unique lookup result or the 923 // selected member of a set of overloaded functions 924 if (auto *FPT = Ty->getAs<FunctionProtoType>()) { 925 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 926 if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT)) 927 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); 928 } 929 } 930 931 return E; 932 } 933 934 /// Determine if the given scope is within a function-try-block handler. 935 static bool IsInFnTryBlockHandler(const Scope *S) { 936 // Walk the scope stack until finding a FnTryCatchScope, or leave the 937 // function scope. If a FnTryCatchScope is found, check whether the TryScope 938 // flag is set. If it is not, it's a function-try-block handler. 939 for (; S != S->getFnParent(); S = S->getParent()) { 940 if (S->getFlags() & Scope::FnTryCatchScope) 941 return (S->getFlags() & Scope::TryScope) != Scope::TryScope; 942 } 943 return false; 944 } 945 946 ExprResult 947 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, 948 SourceLocation OpLoc, bool IsArrow, 949 const CXXScopeSpec &SS, 950 SourceLocation TemplateKWLoc, 951 NamedDecl *FirstQualifierInScope, 952 LookupResult &R, 953 const TemplateArgumentListInfo *TemplateArgs, 954 const Scope *S, 955 bool SuppressQualifierCheck, 956 ActOnMemberAccessExtraArgs *ExtraArgs) { 957 QualType BaseType = BaseExprType; 958 if (IsArrow) { 959 assert(BaseType->isPointerType()); 960 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 961 } 962 R.setBaseObjectType(BaseType); 963 964 // C++1z [expr.ref]p2: 965 // For the first option (dot) the first expression shall be a glvalue [...] 966 if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) { 967 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr); 968 if (Converted.isInvalid()) 969 return ExprError(); 970 BaseExpr = Converted.get(); 971 } 972 973 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); 974 DeclarationName MemberName = MemberNameInfo.getName(); 975 SourceLocation MemberLoc = MemberNameInfo.getLoc(); 976 977 if (R.isAmbiguous()) 978 return ExprError(); 979 980 // [except.handle]p10: Referring to any non-static member or base class of an 981 // object in the handler for a function-try-block of a constructor or 982 // destructor for that object results in undefined behavior. 983 const auto *FD = getCurFunctionDecl(); 984 if (S && BaseExpr && FD && 985 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && 986 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && 987 IsInFnTryBlockHandler(S)) 988 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) 989 << isa<CXXDestructorDecl>(FD); 990 991 if (R.empty()) { 992 // Rederive where we looked up. 993 DeclContext *DC = (SS.isSet() 994 ? computeDeclContext(SS, false) 995 : BaseType->castAs<RecordType>()->getDecl()); 996 997 if (ExtraArgs) { 998 ExprResult RetryExpr; 999 if (!IsArrow && BaseExpr) { 1000 SFINAETrap Trap(*this, true); 1001 ParsedType ObjectType; 1002 bool MayBePseudoDestructor = false; 1003 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, 1004 OpLoc, tok::arrow, ObjectType, 1005 MayBePseudoDestructor); 1006 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { 1007 CXXScopeSpec TempSS(SS); 1008 RetryExpr = ActOnMemberAccessExpr( 1009 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, 1010 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); 1011 } 1012 if (Trap.hasErrorOccurred()) 1013 RetryExpr = ExprError(); 1014 } 1015 if (RetryExpr.isUsable()) { 1016 Diag(OpLoc, diag::err_no_member_overloaded_arrow) 1017 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); 1018 return RetryExpr; 1019 } 1020 } 1021 1022 Diag(R.getNameLoc(), diag::err_no_member) 1023 << MemberName << DC 1024 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); 1025 return ExprError(); 1026 } 1027 1028 // Diagnose lookups that find only declarations from a non-base 1029 // type. This is possible for either qualified lookups (which may 1030 // have been qualified with an unrelated type) or implicit member 1031 // expressions (which were found with unqualified lookup and thus 1032 // may have come from an enclosing scope). Note that it's okay for 1033 // lookup to find declarations from a non-base type as long as those 1034 // aren't the ones picked by overload resolution. 1035 if ((SS.isSet() || !BaseExpr || 1036 (isa<CXXThisExpr>(BaseExpr) && 1037 cast<CXXThisExpr>(BaseExpr)->isImplicit())) && 1038 !SuppressQualifierCheck && 1039 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) 1040 return ExprError(); 1041 1042 // Construct an unresolved result if we in fact got an unresolved 1043 // result. 1044 if (R.isOverloadedResult() || R.isUnresolvableResult()) { 1045 // Suppress any lookup-related diagnostics; we'll do these when we 1046 // pick a member. 1047 R.suppressDiagnostics(); 1048 1049 UnresolvedMemberExpr *MemExpr 1050 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), 1051 BaseExpr, BaseExprType, 1052 IsArrow, OpLoc, 1053 SS.getWithLocInContext(Context), 1054 TemplateKWLoc, MemberNameInfo, 1055 TemplateArgs, R.begin(), R.end()); 1056 1057 return MemExpr; 1058 } 1059 1060 assert(R.isSingleResult()); 1061 DeclAccessPair FoundDecl = R.begin().getPair(); 1062 NamedDecl *MemberDecl = R.getFoundDecl(); 1063 1064 // FIXME: diagnose the presence of template arguments now. 1065 1066 // If the decl being referenced had an error, return an error for this 1067 // sub-expr without emitting another error, in order to avoid cascading 1068 // error cases. 1069 if (MemberDecl->isInvalidDecl()) 1070 return ExprError(); 1071 1072 // Handle the implicit-member-access case. 1073 if (!BaseExpr) { 1074 // If this is not an instance member, convert to a non-member access. 1075 if (!MemberDecl->isCXXInstanceMember()) { 1076 // We might have a variable template specialization (or maybe one day a 1077 // member concept-id). 1078 if (TemplateArgs || TemplateKWLoc.isValid()) 1079 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs); 1080 1081 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, 1082 FoundDecl, TemplateArgs); 1083 } 1084 SourceLocation Loc = R.getNameLoc(); 1085 if (SS.getRange().isValid()) 1086 Loc = SS.getRange().getBegin(); 1087 BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true); 1088 } 1089 1090 // Check the use of this member. 1091 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) 1092 return ExprError(); 1093 1094 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) 1095 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, 1096 MemberNameInfo); 1097 1098 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) 1099 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, 1100 MemberNameInfo); 1101 1102 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) 1103 // We may have found a field within an anonymous union or struct 1104 // (C++ [class.union]). 1105 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, 1106 FoundDecl, BaseExpr, 1107 OpLoc); 1108 1109 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { 1110 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1111 FoundDecl, /*HadMultipleCandidates=*/false, 1112 MemberNameInfo, Var->getType().getNonReferenceType(), 1113 VK_LValue, OK_Ordinary); 1114 } 1115 1116 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { 1117 ExprValueKind valueKind; 1118 QualType type; 1119 if (MemberFn->isInstance()) { 1120 valueKind = VK_PRValue; 1121 type = Context.BoundMemberTy; 1122 } else { 1123 valueKind = VK_LValue; 1124 type = MemberFn->getType(); 1125 } 1126 1127 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, 1128 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, 1129 MemberNameInfo, type, valueKind, OK_Ordinary); 1130 } 1131 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); 1132 1133 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { 1134 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum, 1135 FoundDecl, /*HadMultipleCandidates=*/false, 1136 MemberNameInfo, Enum->getType(), VK_PRValue, 1137 OK_Ordinary); 1138 } 1139 1140 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) { 1141 if (!TemplateArgs) { 1142 diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc); 1143 return ExprError(); 1144 } 1145 1146 DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc, 1147 MemberNameInfo.getLoc(), *TemplateArgs); 1148 if (VDecl.isInvalid()) 1149 return ExprError(); 1150 1151 // Non-dependent member, but dependent template arguments. 1152 if (!VDecl.get()) 1153 return ActOnDependentMemberExpr( 1154 BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, 1155 FirstQualifierInScope, MemberNameInfo, TemplateArgs); 1156 1157 VarDecl *Var = cast<VarDecl>(VDecl.get()); 1158 if (!Var->getTemplateSpecializationKind()) 1159 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc); 1160 1161 return BuildMemberExpr( 1162 BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl, 1163 /*HadMultipleCandidates=*/false, MemberNameInfo, 1164 Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary); 1165 } 1166 1167 // We found something that we didn't expect. Complain. 1168 if (isa<TypeDecl>(MemberDecl)) 1169 Diag(MemberLoc, diag::err_typecheck_member_reference_type) 1170 << MemberName << BaseType << int(IsArrow); 1171 else 1172 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) 1173 << MemberName << BaseType << int(IsArrow); 1174 1175 Diag(MemberDecl->getLocation(), diag::note_member_declared_here) 1176 << MemberName; 1177 R.suppressDiagnostics(); 1178 return ExprError(); 1179 } 1180 1181 /// Given that normal member access failed on the given expression, 1182 /// and given that the expression's type involves builtin-id or 1183 /// builtin-Class, decide whether substituting in the redefinition 1184 /// types would be profitable. The redefinition type is whatever 1185 /// this translation unit tried to typedef to id/Class; we store 1186 /// it to the side and then re-use it in places like this. 1187 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { 1188 const ObjCObjectPointerType *opty 1189 = base.get()->getType()->getAs<ObjCObjectPointerType>(); 1190 if (!opty) return false; 1191 1192 const ObjCObjectType *ty = opty->getObjectType(); 1193 1194 QualType redef; 1195 if (ty->isObjCId()) { 1196 redef = S.Context.getObjCIdRedefinitionType(); 1197 } else if (ty->isObjCClass()) { 1198 redef = S.Context.getObjCClassRedefinitionType(); 1199 } else { 1200 return false; 1201 } 1202 1203 // Do the substitution as long as the redefinition type isn't just a 1204 // possibly-qualified pointer to builtin-id or builtin-Class again. 1205 opty = redef->getAs<ObjCObjectPointerType>(); 1206 if (opty && !opty->getObjectType()->getInterface()) 1207 return false; 1208 1209 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); 1210 return true; 1211 } 1212 1213 static bool isRecordType(QualType T) { 1214 return T->isRecordType(); 1215 } 1216 static bool isPointerToRecordType(QualType T) { 1217 if (const PointerType *PT = T->getAs<PointerType>()) 1218 return PT->getPointeeType()->isRecordType(); 1219 return false; 1220 } 1221 1222 /// Perform conversions on the LHS of a member access expression. 1223 ExprResult 1224 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { 1225 if (IsArrow && !Base->getType()->isFunctionType()) 1226 return DefaultFunctionArrayLvalueConversion(Base); 1227 1228 return CheckPlaceholderExpr(Base); 1229 } 1230 1231 /// Look up the given member of the given non-type-dependent 1232 /// expression. This can return in one of two ways: 1233 /// * If it returns a sentinel null-but-valid result, the caller will 1234 /// assume that lookup was performed and the results written into 1235 /// the provided structure. It will take over from there. 1236 /// * Otherwise, the returned expression will be produced in place of 1237 /// an ordinary member expression. 1238 /// 1239 /// The ObjCImpDecl bit is a gross hack that will need to be properly 1240 /// fixed for ObjC++. 1241 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 1242 ExprResult &BaseExpr, bool &IsArrow, 1243 SourceLocation OpLoc, CXXScopeSpec &SS, 1244 Decl *ObjCImpDecl, bool HasTemplateArgs, 1245 SourceLocation TemplateKWLoc) { 1246 assert(BaseExpr.get() && "no base expression"); 1247 1248 // Perform default conversions. 1249 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); 1250 if (BaseExpr.isInvalid()) 1251 return ExprError(); 1252 1253 QualType BaseType = BaseExpr.get()->getType(); 1254 assert(!BaseType->isDependentType()); 1255 1256 DeclarationName MemberName = R.getLookupName(); 1257 SourceLocation MemberLoc = R.getNameLoc(); 1258 1259 // For later type-checking purposes, turn arrow accesses into dot 1260 // accesses. The only access type we support that doesn't follow 1261 // the C equivalence "a->b === (*a).b" is ObjC property accesses, 1262 // and those never use arrows, so this is unaffected. 1263 if (IsArrow) { 1264 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 1265 BaseType = Ptr->getPointeeType(); 1266 else if (const ObjCObjectPointerType *Ptr 1267 = BaseType->getAs<ObjCObjectPointerType>()) 1268 BaseType = Ptr->getPointeeType(); 1269 else if (BaseType->isRecordType()) { 1270 // Recover from arrow accesses to records, e.g.: 1271 // struct MyRecord foo; 1272 // foo->bar 1273 // This is actually well-formed in C++ if MyRecord has an 1274 // overloaded operator->, but that should have been dealt with 1275 // by now--or a diagnostic message already issued if a problem 1276 // was encountered while looking for the overloaded operator->. 1277 if (!S.getLangOpts().CPlusPlus) { 1278 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1279 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1280 << FixItHint::CreateReplacement(OpLoc, "."); 1281 } 1282 IsArrow = false; 1283 } else if (BaseType->isFunctionType()) { 1284 goto fail; 1285 } else { 1286 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) 1287 << BaseType << BaseExpr.get()->getSourceRange(); 1288 return ExprError(); 1289 } 1290 } 1291 1292 // Handle field access to simple records. 1293 if (const RecordType *RTy = BaseType->getAs<RecordType>()) { 1294 TypoExpr *TE = nullptr; 1295 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS, 1296 HasTemplateArgs, TemplateKWLoc, TE)) 1297 return ExprError(); 1298 1299 // Returning valid-but-null is how we indicate to the caller that 1300 // the lookup result was filled in. If typo correction was attempted and 1301 // failed, the lookup result will have been cleared--that combined with the 1302 // valid-but-null ExprResult will trigger the appropriate diagnostics. 1303 return ExprResult(TE); 1304 } 1305 1306 // Handle ivar access to Objective-C objects. 1307 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { 1308 if (!SS.isEmpty() && !SS.isInvalid()) { 1309 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1310 << 1 << SS.getScopeRep() 1311 << FixItHint::CreateRemoval(SS.getRange()); 1312 SS.clear(); 1313 } 1314 1315 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1316 1317 // There are three cases for the base type: 1318 // - builtin id (qualified or unqualified) 1319 // - builtin Class (qualified or unqualified) 1320 // - an interface 1321 ObjCInterfaceDecl *IDecl = OTy->getInterface(); 1322 if (!IDecl) { 1323 if (S.getLangOpts().ObjCAutoRefCount && 1324 (OTy->isObjCId() || OTy->isObjCClass())) 1325 goto fail; 1326 // There's an implicit 'isa' ivar on all objects. 1327 // But we only actually find it this way on objects of type 'id', 1328 // apparently. 1329 if (OTy->isObjCId() && Member->isStr("isa")) 1330 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, 1331 OpLoc, S.Context.getObjCClassType()); 1332 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1333 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1334 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1335 goto fail; 1336 } 1337 1338 if (S.RequireCompleteType(OpLoc, BaseType, 1339 diag::err_typecheck_incomplete_tag, 1340 BaseExpr.get())) 1341 return ExprError(); 1342 1343 ObjCInterfaceDecl *ClassDeclared = nullptr; 1344 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); 1345 1346 if (!IV) { 1347 // Attempt to correct for typos in ivar names. 1348 DeclFilterCCC<ObjCIvarDecl> Validator{}; 1349 Validator.IsObjCIvarLookup = IsArrow; 1350 if (TypoCorrection Corrected = S.CorrectTypo( 1351 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, 1352 Validator, Sema::CTK_ErrorRecovery, IDecl)) { 1353 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); 1354 S.diagnoseTypo( 1355 Corrected, 1356 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) 1357 << IDecl->getDeclName() << MemberName); 1358 1359 // Figure out the class that declares the ivar. 1360 assert(!ClassDeclared); 1361 1362 Decl *D = cast<Decl>(IV->getDeclContext()); 1363 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) 1364 D = Category->getClassInterface(); 1365 1366 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) 1367 ClassDeclared = Implementation->getClassInterface(); 1368 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) 1369 ClassDeclared = Interface; 1370 1371 assert(ClassDeclared && "cannot query interface"); 1372 } else { 1373 if (IsArrow && 1374 IDecl->FindPropertyDeclaration( 1375 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1376 S.Diag(MemberLoc, diag::err_property_found_suggest) 1377 << Member << BaseExpr.get()->getType() 1378 << FixItHint::CreateReplacement(OpLoc, "."); 1379 return ExprError(); 1380 } 1381 1382 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) 1383 << IDecl->getDeclName() << MemberName 1384 << BaseExpr.get()->getSourceRange(); 1385 return ExprError(); 1386 } 1387 } 1388 1389 assert(ClassDeclared); 1390 1391 // If the decl being referenced had an error, return an error for this 1392 // sub-expr without emitting another error, in order to avoid cascading 1393 // error cases. 1394 if (IV->isInvalidDecl()) 1395 return ExprError(); 1396 1397 // Check whether we can reference this field. 1398 if (S.DiagnoseUseOfDecl(IV, MemberLoc)) 1399 return ExprError(); 1400 if (IV->getAccessControl() != ObjCIvarDecl::Public && 1401 IV->getAccessControl() != ObjCIvarDecl::Package) { 1402 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; 1403 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) 1404 ClassOfMethodDecl = MD->getClassInterface(); 1405 else if (ObjCImpDecl && S.getCurFunctionDecl()) { 1406 // Case of a c-function declared inside an objc implementation. 1407 // FIXME: For a c-style function nested inside an objc implementation 1408 // class, there is no implementation context available, so we pass 1409 // down the context as argument to this routine. Ideally, this context 1410 // need be passed down in the AST node and somehow calculated from the 1411 // AST for a function decl. 1412 if (ObjCImplementationDecl *IMPD = 1413 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) 1414 ClassOfMethodDecl = IMPD->getClassInterface(); 1415 else if (ObjCCategoryImplDecl* CatImplClass = 1416 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) 1417 ClassOfMethodDecl = CatImplClass->getClassInterface(); 1418 } 1419 if (!S.getLangOpts().DebuggerSupport) { 1420 if (IV->getAccessControl() == ObjCIvarDecl::Private) { 1421 if (!declaresSameEntity(ClassDeclared, IDecl) || 1422 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) 1423 S.Diag(MemberLoc, diag::err_private_ivar_access) 1424 << IV->getDeclName(); 1425 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) 1426 // @protected 1427 S.Diag(MemberLoc, diag::err_protected_ivar_access) 1428 << IV->getDeclName(); 1429 } 1430 } 1431 bool warn = true; 1432 if (S.getLangOpts().ObjCWeak) { 1433 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); 1434 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) 1435 if (UO->getOpcode() == UO_Deref) 1436 BaseExp = UO->getSubExpr()->IgnoreParenCasts(); 1437 1438 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) 1439 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1440 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); 1441 warn = false; 1442 } 1443 } 1444 if (warn) { 1445 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { 1446 ObjCMethodFamily MF = MD->getMethodFamily(); 1447 warn = (MF != OMF_init && MF != OMF_dealloc && 1448 MF != OMF_finalize && 1449 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); 1450 } 1451 if (warn) 1452 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); 1453 } 1454 1455 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( 1456 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), 1457 IsArrow); 1458 1459 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1460 if (!S.isUnevaluatedContext() && 1461 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) 1462 S.getCurFunction()->recordUseOfWeak(Result); 1463 } 1464 1465 return Result; 1466 } 1467 1468 // Objective-C property access. 1469 const ObjCObjectPointerType *OPT; 1470 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { 1471 if (!SS.isEmpty() && !SS.isInvalid()) { 1472 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1473 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); 1474 SS.clear(); 1475 } 1476 1477 // This actually uses the base as an r-value. 1478 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); 1479 if (BaseExpr.isInvalid()) 1480 return ExprError(); 1481 1482 assert(S.Context.hasSameUnqualifiedType(BaseType, 1483 BaseExpr.get()->getType())); 1484 1485 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1486 1487 const ObjCObjectType *OT = OPT->getObjectType(); 1488 1489 // id, with and without qualifiers. 1490 if (OT->isObjCId()) { 1491 // Check protocols on qualified interfaces. 1492 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1493 if (Decl *PMDecl = 1494 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { 1495 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { 1496 // Check the use of this declaration 1497 if (S.DiagnoseUseOfDecl(PD, MemberLoc)) 1498 return ExprError(); 1499 1500 return new (S.Context) 1501 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, 1502 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1503 } 1504 1505 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { 1506 Selector SetterSel = 1507 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1508 S.PP.getSelectorTable(), 1509 Member); 1510 ObjCMethodDecl *SMD = nullptr; 1511 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, 1512 /*Property id*/ nullptr, 1513 SetterSel, S.Context)) 1514 SMD = dyn_cast<ObjCMethodDecl>(SDecl); 1515 1516 return new (S.Context) 1517 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, 1518 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1519 } 1520 } 1521 // Use of id.member can only be for a property reference. Do not 1522 // use the 'id' redefinition in this case. 1523 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1524 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1525 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1526 1527 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1528 << MemberName << BaseType); 1529 } 1530 1531 // 'Class', unqualified only. 1532 if (OT->isObjCClass()) { 1533 // Only works in a method declaration (??!). 1534 ObjCMethodDecl *MD = S.getCurMethodDecl(); 1535 if (!MD) { 1536 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1537 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1538 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1539 1540 goto fail; 1541 } 1542 1543 // Also must look for a getter name which uses property syntax. 1544 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1545 ObjCInterfaceDecl *IFace = MD->getClassInterface(); 1546 if (!IFace) 1547 goto fail; 1548 1549 ObjCMethodDecl *Getter; 1550 if ((Getter = IFace->lookupClassMethod(Sel))) { 1551 // Check the use of this method. 1552 if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) 1553 return ExprError(); 1554 } else 1555 Getter = IFace->lookupPrivateMethod(Sel, false); 1556 // If we found a getter then this may be a valid dot-reference, we 1557 // will look for the matching setter, in case it is needed. 1558 Selector SetterSel = 1559 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1560 S.PP.getSelectorTable(), 1561 Member); 1562 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1563 if (!Setter) { 1564 // If this reference is in an @implementation, also check for 'private' 1565 // methods. 1566 Setter = IFace->lookupPrivateMethod(SetterSel, false); 1567 } 1568 1569 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) 1570 return ExprError(); 1571 1572 if (Getter || Setter) { 1573 return new (S.Context) ObjCPropertyRefExpr( 1574 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, 1575 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1576 } 1577 1578 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1579 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1580 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1581 1582 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1583 << MemberName << BaseType); 1584 } 1585 1586 // Normal property access. 1587 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName, 1588 MemberLoc, SourceLocation(), QualType(), 1589 false); 1590 } 1591 1592 // Handle 'field access' to vectors, such as 'V.xx'. 1593 if (BaseType->isExtVectorType()) { 1594 // FIXME: this expr should store IsArrow. 1595 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1596 ExprValueKind VK; 1597 if (IsArrow) 1598 VK = VK_LValue; 1599 else { 1600 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get())) 1601 VK = POE->getSyntacticForm()->getValueKind(); 1602 else 1603 VK = BaseExpr.get()->getValueKind(); 1604 } 1605 1606 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, 1607 Member, MemberLoc); 1608 if (ret.isNull()) 1609 return ExprError(); 1610 Qualifiers BaseQ = 1611 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers(); 1612 ret = S.Context.getQualifiedType(ret, BaseQ); 1613 1614 return new (S.Context) 1615 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); 1616 } 1617 1618 // Adjust builtin-sel to the appropriate redefinition type if that's 1619 // not just a pointer to builtin-sel again. 1620 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && 1621 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { 1622 BaseExpr = S.ImpCastExprToType( 1623 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); 1624 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1625 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1626 } 1627 1628 // Failure cases. 1629 fail: 1630 1631 // Recover from dot accesses to pointers, e.g.: 1632 // type *foo; 1633 // foo.bar 1634 // This is actually well-formed in two cases: 1635 // - 'type' is an Objective C type 1636 // - 'bar' is a pseudo-destructor name which happens to refer to 1637 // the appropriate pointer type 1638 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 1639 if (!IsArrow && Ptr->getPointeeType()->isRecordType() && 1640 MemberName.getNameKind() != DeclarationName::CXXDestructorName) { 1641 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1642 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1643 << FixItHint::CreateReplacement(OpLoc, "->"); 1644 1645 // Recurse as an -> access. 1646 IsArrow = true; 1647 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1648 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1649 } 1650 } 1651 1652 // If the user is trying to apply -> or . to a function name, it's probably 1653 // because they forgot parentheses to call that function. 1654 if (S.tryToRecoverWithCall( 1655 BaseExpr, S.PDiag(diag::err_member_reference_needs_call), 1656 /*complain*/ false, 1657 IsArrow ? &isPointerToRecordType : &isRecordType)) { 1658 if (BaseExpr.isInvalid()) 1659 return ExprError(); 1660 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); 1661 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1662 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1663 } 1664 1665 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 1666 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; 1667 1668 return ExprError(); 1669 } 1670 1671 /// The main callback when the parser finds something like 1672 /// expression . [nested-name-specifier] identifier 1673 /// expression -> [nested-name-specifier] identifier 1674 /// where 'identifier' encompasses a fairly broad spectrum of 1675 /// possibilities, including destructor and operator references. 1676 /// 1677 /// \param OpKind either tok::arrow or tok::period 1678 /// \param ObjCImpDecl the current Objective-C \@implementation 1679 /// decl; this is an ugly hack around the fact that Objective-C 1680 /// \@implementations aren't properly put in the context chain 1681 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, 1682 SourceLocation OpLoc, 1683 tok::TokenKind OpKind, 1684 CXXScopeSpec &SS, 1685 SourceLocation TemplateKWLoc, 1686 UnqualifiedId &Id, 1687 Decl *ObjCImpDecl) { 1688 if (SS.isSet() && SS.isInvalid()) 1689 return ExprError(); 1690 1691 // Warn about the explicit constructor calls Microsoft extension. 1692 if (getLangOpts().MicrosoftExt && 1693 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) 1694 Diag(Id.getSourceRange().getBegin(), 1695 diag::ext_ms_explicit_constructor_call); 1696 1697 TemplateArgumentListInfo TemplateArgsBuffer; 1698 1699 // Decompose the name into its component parts. 1700 DeclarationNameInfo NameInfo; 1701 const TemplateArgumentListInfo *TemplateArgs; 1702 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, 1703 NameInfo, TemplateArgs); 1704 1705 DeclarationName Name = NameInfo.getName(); 1706 bool IsArrow = (OpKind == tok::arrow); 1707 1708 NamedDecl *FirstQualifierInScope 1709 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); 1710 1711 // This is a postfix expression, so get rid of ParenListExprs. 1712 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 1713 if (Result.isInvalid()) return ExprError(); 1714 Base = Result.get(); 1715 1716 if (Base->getType()->isDependentType() || Name.isDependentName() || 1717 isDependentScopeSpecifier(SS)) { 1718 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, 1719 TemplateKWLoc, FirstQualifierInScope, 1720 NameInfo, TemplateArgs); 1721 } 1722 1723 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; 1724 ExprResult Res = BuildMemberReferenceExpr( 1725 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, 1726 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); 1727 1728 if (!Res.isInvalid() && isa<MemberExpr>(Res.get())) 1729 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get())); 1730 1731 return Res; 1732 } 1733 1734 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { 1735 if (isUnevaluatedContext()) 1736 return; 1737 1738 QualType ResultTy = E->getType(); 1739 1740 // Member accesses have four cases: 1741 // 1: non-array member via "->": dereferences 1742 // 2: non-array member via ".": nothing interesting happens 1743 // 3: array member access via "->": nothing interesting happens 1744 // (this returns an array lvalue and does not actually dereference memory) 1745 // 4: array member access via ".": *adds* a layer of indirection 1746 if (ResultTy->isArrayType()) { 1747 if (!E->isArrow()) { 1748 // This might be something like: 1749 // (*structPtr).arrayMember 1750 // which behaves roughly like: 1751 // &(*structPtr).pointerMember 1752 // in that the apparent dereference in the base expression does not 1753 // actually happen. 1754 CheckAddressOfNoDeref(E->getBase()); 1755 } 1756 } else if (E->isArrow()) { 1757 if (const auto *Ptr = dyn_cast<PointerType>( 1758 E->getBase()->getType().getDesugaredType(Context))) { 1759 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) 1760 ExprEvalContexts.back().PossibleDerefs.insert(E); 1761 } 1762 } 1763 } 1764 1765 ExprResult 1766 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, 1767 SourceLocation OpLoc, const CXXScopeSpec &SS, 1768 FieldDecl *Field, DeclAccessPair FoundDecl, 1769 const DeclarationNameInfo &MemberNameInfo) { 1770 // x.a is an l-value if 'a' has a reference type. Otherwise: 1771 // x.a is an l-value/x-value/pr-value if the base is (and note 1772 // that *x is always an l-value), except that if the base isn't 1773 // an ordinary object then we must have an rvalue. 1774 ExprValueKind VK = VK_LValue; 1775 ExprObjectKind OK = OK_Ordinary; 1776 if (!IsArrow) { 1777 if (BaseExpr->getObjectKind() == OK_Ordinary) 1778 VK = BaseExpr->getValueKind(); 1779 else 1780 VK = VK_PRValue; 1781 } 1782 if (VK != VK_PRValue && Field->isBitField()) 1783 OK = OK_BitField; 1784 1785 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] 1786 QualType MemberType = Field->getType(); 1787 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { 1788 MemberType = Ref->getPointeeType(); 1789 VK = VK_LValue; 1790 } else { 1791 QualType BaseType = BaseExpr->getType(); 1792 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 1793 1794 Qualifiers BaseQuals = BaseType.getQualifiers(); 1795 1796 // GC attributes are never picked up by members. 1797 BaseQuals.removeObjCGCAttr(); 1798 1799 // CVR attributes from the base are picked up by members, 1800 // except that 'mutable' members don't pick up 'const'. 1801 if (Field->isMutable()) BaseQuals.removeConst(); 1802 1803 Qualifiers MemberQuals = 1804 Context.getCanonicalType(MemberType).getQualifiers(); 1805 1806 assert(!MemberQuals.hasAddressSpace()); 1807 1808 Qualifiers Combined = BaseQuals + MemberQuals; 1809 if (Combined != MemberQuals) 1810 MemberType = Context.getQualifiedType(MemberType, Combined); 1811 1812 // Pick up NoDeref from the base in case we end up using AddrOf on the 1813 // result. E.g. the expression 1814 // &someNoDerefPtr->pointerMember 1815 // should be a noderef pointer again. 1816 if (BaseType->hasAttr(attr::NoDeref)) 1817 MemberType = 1818 Context.getAttributedType(attr::NoDeref, MemberType, MemberType); 1819 } 1820 1821 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); 1822 if (!(CurMethod && CurMethod->isDefaulted())) 1823 UnusedPrivateFields.remove(Field); 1824 1825 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), 1826 FoundDecl, Field); 1827 if (Base.isInvalid()) 1828 return ExprError(); 1829 1830 // Build a reference to a private copy for non-static data members in 1831 // non-static member functions, privatized by OpenMP constructs. 1832 if (getLangOpts().OpenMP && IsArrow && 1833 !CurContext->isDependentContext() && 1834 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) { 1835 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) { 1836 return getOpenMPCapturedExpr(PrivateCopy, VK, OK, 1837 MemberNameInfo.getLoc()); 1838 } 1839 } 1840 1841 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS, 1842 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, 1843 /*HadMultipleCandidates=*/false, MemberNameInfo, 1844 MemberType, VK, OK); 1845 } 1846 1847 /// Builds an implicit member access expression. The current context 1848 /// is known to be an instance method, and the given unqualified lookup 1849 /// set is known to contain only instance members, at least one of which 1850 /// is from an appropriate type. 1851 ExprResult 1852 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, 1853 SourceLocation TemplateKWLoc, 1854 LookupResult &R, 1855 const TemplateArgumentListInfo *TemplateArgs, 1856 bool IsKnownInstance, const Scope *S) { 1857 assert(!R.empty() && !R.isAmbiguous()); 1858 1859 SourceLocation loc = R.getNameLoc(); 1860 1861 // If this is known to be an instance access, go ahead and build an 1862 // implicit 'this' expression now. 1863 QualType ThisTy = getCurrentThisType(); 1864 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); 1865 1866 Expr *baseExpr = nullptr; // null signifies implicit access 1867 if (IsKnownInstance) { 1868 SourceLocation Loc = R.getNameLoc(); 1869 if (SS.getRange().isValid()) 1870 Loc = SS.getRange().getBegin(); 1871 baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true); 1872 } 1873 1874 return BuildMemberReferenceExpr(baseExpr, ThisTy, 1875 /*OpLoc*/ SourceLocation(), 1876 /*IsArrow*/ true, 1877 SS, TemplateKWLoc, 1878 /*FirstQualifierInScope*/ nullptr, 1879 R, TemplateArgs, S); 1880 } 1881