xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 6e516c87b6d779911edde7481d8aef165b837a03)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CheckExprLifetime.h"
14 #include "TreeTransform.h"
15 #include "UsedDeclVisitor.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/OperationKinds.h"
29 #include "clang/AST/ParentMapContext.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/TypeLoc.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/DiagnosticSema.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/TypeTraits.h"
40 #include "clang/Lex/LiteralSupport.h"
41 #include "clang/Lex/Preprocessor.h"
42 #include "clang/Sema/AnalysisBasedWarnings.h"
43 #include "clang/Sema/DeclSpec.h"
44 #include "clang/Sema/DelayedDiagnostic.h"
45 #include "clang/Sema/Designator.h"
46 #include "clang/Sema/EnterExpressionEvaluationContext.h"
47 #include "clang/Sema/Initialization.h"
48 #include "clang/Sema/Lookup.h"
49 #include "clang/Sema/Overload.h"
50 #include "clang/Sema/ParsedTemplate.h"
51 #include "clang/Sema/Scope.h"
52 #include "clang/Sema/ScopeInfo.h"
53 #include "clang/Sema/SemaCUDA.h"
54 #include "clang/Sema/SemaFixItUtils.h"
55 #include "clang/Sema/SemaInternal.h"
56 #include "clang/Sema/SemaObjC.h"
57 #include "clang/Sema/SemaOpenMP.h"
58 #include "clang/Sema/SemaPseudoObject.h"
59 #include "clang/Sema/Template.h"
60 #include "llvm/ADT/STLExtras.h"
61 #include "llvm/ADT/STLForwardCompat.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/SaveAndRestore.h"
66 #include "llvm/Support/TypeSize.h"
67 #include <optional>
68 
69 using namespace clang;
70 using namespace sema;
71 
72 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
73   // See if this is an auto-typed variable whose initializer we are parsing.
74   if (ParsingInitForAutoVars.count(D))
75     return false;
76 
77   // See if this is a deleted function.
78   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
79     if (FD->isDeleted())
80       return false;
81 
82     // If the function has a deduced return type, and we can't deduce it,
83     // then we can't use it either.
84     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
85         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
86       return false;
87 
88     // See if this is an aligned allocation/deallocation function that is
89     // unavailable.
90     if (TreatUnavailableAsInvalid &&
91         isUnavailableAlignedAllocationFunction(*FD))
92       return false;
93   }
94 
95   // See if this function is unavailable.
96   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
97       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
98     return false;
99 
100   if (isa<UnresolvedUsingIfExistsDecl>(D))
101     return false;
102 
103   return true;
104 }
105 
106 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
107   // Warn if this is used but marked unused.
108   if (const auto *A = D->getAttr<UnusedAttr>()) {
109     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
110     // should diagnose them.
111     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
112         A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
113       const Decl *DC = cast_or_null<Decl>(S.ObjC().getCurObjCLexicalContext());
114       if (DC && !DC->hasAttr<UnusedAttr>())
115         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
116     }
117   }
118 }
119 
120 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
121   assert(Decl && Decl->isDeleted());
122 
123   if (Decl->isDefaulted()) {
124     // If the method was explicitly defaulted, point at that declaration.
125     if (!Decl->isImplicit())
126       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
127 
128     // Try to diagnose why this special member function was implicitly
129     // deleted. This might fail, if that reason no longer applies.
130     DiagnoseDeletedDefaultedFunction(Decl);
131     return;
132   }
133 
134   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
135   if (Ctor && Ctor->isInheritingConstructor())
136     return NoteDeletedInheritingConstructor(Ctor);
137 
138   Diag(Decl->getLocation(), diag::note_availability_specified_here)
139     << Decl << 1;
140 }
141 
142 /// Determine whether a FunctionDecl was ever declared with an
143 /// explicit storage class.
144 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145   for (auto *I : D->redecls()) {
146     if (I->getStorageClass() != SC_None)
147       return true;
148   }
149   return false;
150 }
151 
152 /// Check whether we're in an extern inline function and referring to a
153 /// variable or function with internal linkage (C11 6.7.4p3).
154 ///
155 /// This is only a warning because we used to silently accept this code, but
156 /// in many cases it will not behave correctly. This is not enabled in C++ mode
157 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
158 /// and so while there may still be user mistakes, most of the time we can't
159 /// prove that there are errors.
160 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
161                                                       const NamedDecl *D,
162                                                       SourceLocation Loc) {
163   // This is disabled under C++; there are too many ways for this to fire in
164   // contexts where the warning is a false positive, or where it is technically
165   // correct but benign.
166   if (S.getLangOpts().CPlusPlus)
167     return;
168 
169   // Check if this is an inlined function or method.
170   FunctionDecl *Current = S.getCurFunctionDecl();
171   if (!Current)
172     return;
173   if (!Current->isInlined())
174     return;
175   if (!Current->isExternallyVisible())
176     return;
177 
178   // Check if the decl has internal linkage.
179   if (D->getFormalLinkage() != Linkage::Internal)
180     return;
181 
182   // Downgrade from ExtWarn to Extension if
183   //  (1) the supposedly external inline function is in the main file,
184   //      and probably won't be included anywhere else.
185   //  (2) the thing we're referencing is a pure function.
186   //  (3) the thing we're referencing is another inline function.
187   // This last can give us false negatives, but it's better than warning on
188   // wrappers for simple C library functions.
189   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
190   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
191   if (!DowngradeWarning && UsedFn)
192     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
193 
194   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
195                                : diag::ext_internal_in_extern_inline)
196     << /*IsVar=*/!UsedFn << D;
197 
198   S.MaybeSuggestAddingStaticToDecl(Current);
199 
200   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
201       << D;
202 }
203 
204 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
205   const FunctionDecl *First = Cur->getFirstDecl();
206 
207   // Suggest "static" on the function, if possible.
208   if (!hasAnyExplicitStorageClass(First)) {
209     SourceLocation DeclBegin = First->getSourceRange().getBegin();
210     Diag(DeclBegin, diag::note_convert_inline_to_static)
211       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
212   }
213 }
214 
215 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
216                              const ObjCInterfaceDecl *UnknownObjCClass,
217                              bool ObjCPropertyAccess,
218                              bool AvoidPartialAvailabilityChecks,
219                              ObjCInterfaceDecl *ClassReceiver,
220                              bool SkipTrailingRequiresClause) {
221   SourceLocation Loc = Locs.front();
222   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
223     // If there were any diagnostics suppressed by template argument deduction,
224     // emit them now.
225     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
226     if (Pos != SuppressedDiagnostics.end()) {
227       for (const PartialDiagnosticAt &Suppressed : Pos->second)
228         Diag(Suppressed.first, Suppressed.second);
229 
230       // Clear out the list of suppressed diagnostics, so that we don't emit
231       // them again for this specialization. However, we don't obsolete this
232       // entry from the table, because we want to avoid ever emitting these
233       // diagnostics again.
234       Pos->second.clear();
235     }
236 
237     // C++ [basic.start.main]p3:
238     //   The function 'main' shall not be used within a program.
239     if (cast<FunctionDecl>(D)->isMain())
240       Diag(Loc, diag::ext_main_used);
241 
242     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
243   }
244 
245   // See if this is an auto-typed variable whose initializer we are parsing.
246   if (ParsingInitForAutoVars.count(D)) {
247     if (isa<BindingDecl>(D)) {
248       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
249         << D->getDeclName();
250     } else {
251       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
252         << D->getDeclName() << cast<VarDecl>(D)->getType();
253     }
254     return true;
255   }
256 
257   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
258     // See if this is a deleted function.
259     if (FD->isDeleted()) {
260       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
261       if (Ctor && Ctor->isInheritingConstructor())
262         Diag(Loc, diag::err_deleted_inherited_ctor_use)
263             << Ctor->getParent()
264             << Ctor->getInheritedConstructor().getConstructor()->getParent();
265       else {
266         StringLiteral *Msg = FD->getDeletedMessage();
267         Diag(Loc, diag::err_deleted_function_use)
268             << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
269       }
270       NoteDeletedFunction(FD);
271       return true;
272     }
273 
274     // [expr.prim.id]p4
275     //   A program that refers explicitly or implicitly to a function with a
276     //   trailing requires-clause whose constraint-expression is not satisfied,
277     //   other than to declare it, is ill-formed. [...]
278     //
279     // See if this is a function with constraints that need to be satisfied.
280     // Check this before deducing the return type, as it might instantiate the
281     // definition.
282     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
283       ConstraintSatisfaction Satisfaction;
284       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
285                                    /*ForOverloadResolution*/ true))
286         // A diagnostic will have already been generated (non-constant
287         // constraint expression, for example)
288         return true;
289       if (!Satisfaction.IsSatisfied) {
290         Diag(Loc,
291              diag::err_reference_to_function_with_unsatisfied_constraints)
292             << D;
293         DiagnoseUnsatisfiedConstraint(Satisfaction);
294         return true;
295       }
296     }
297 
298     // If the function has a deduced return type, and we can't deduce it,
299     // then we can't use it either.
300     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
301         DeduceReturnType(FD, Loc))
302       return true;
303 
304     if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, FD))
305       return true;
306 
307   }
308 
309   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
310     // Lambdas are only default-constructible or assignable in C++2a onwards.
311     if (MD->getParent()->isLambda() &&
312         ((isa<CXXConstructorDecl>(MD) &&
313           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
314          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
315       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
316         << !isa<CXXConstructorDecl>(MD);
317     }
318   }
319 
320   auto getReferencedObjCProp = [](const NamedDecl *D) ->
321                                       const ObjCPropertyDecl * {
322     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
323       return MD->findPropertyDecl();
324     return nullptr;
325   };
326   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
327     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
328       return true;
329   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
330       return true;
331   }
332 
333   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
334   // Only the variables omp_in and omp_out are allowed in the combiner.
335   // Only the variables omp_priv and omp_orig are allowed in the
336   // initializer-clause.
337   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
338   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
339       isa<VarDecl>(D)) {
340     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
341         << getCurFunction()->HasOMPDeclareReductionCombiner;
342     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
343     return true;
344   }
345 
346   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
347   //  List-items in map clauses on this construct may only refer to the declared
348   //  variable var and entities that could be referenced by a procedure defined
349   //  at the same location.
350   // [OpenMP 5.2] Also allow iterator declared variables.
351   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
352       !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
353     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
354         << OpenMP().getOpenMPDeclareMapperVarName();
355     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
356     return true;
357   }
358 
359   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
360     Diag(Loc, diag::err_use_of_empty_using_if_exists);
361     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
362     return true;
363   }
364 
365   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
366                              AvoidPartialAvailabilityChecks, ClassReceiver);
367 
368   DiagnoseUnusedOfDecl(*this, D, Loc);
369 
370   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
371 
372   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
373     if (getLangOpts().getFPEvalMethod() !=
374             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
375         PP.getLastFPEvalPragmaLocation().isValid() &&
376         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
377       Diag(D->getLocation(),
378            diag::err_type_available_only_in_default_eval_method)
379           << D->getName();
380   }
381 
382   if (auto *VD = dyn_cast<ValueDecl>(D))
383     checkTypeSupport(VD->getType(), Loc, VD);
384 
385   if (LangOpts.SYCLIsDevice ||
386       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
387     if (!Context.getTargetInfo().isTLSSupported())
388       if (const auto *VD = dyn_cast<VarDecl>(D))
389         if (VD->getTLSKind() != VarDecl::TLS_None)
390           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
391   }
392 
393   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
394       !isUnevaluatedContext()) {
395     // C++ [expr.prim.req.nested] p3
396     //   A local parameter shall only appear as an unevaluated operand
397     //   (Clause 8) within the constraint-expression.
398     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
399         << D;
400     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
401     return true;
402   }
403 
404   return false;
405 }
406 
407 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
408                                  ArrayRef<Expr *> Args) {
409   const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
410   if (!Attr)
411     return;
412 
413   // The number of formal parameters of the declaration.
414   unsigned NumFormalParams;
415 
416   // The kind of declaration.  This is also an index into a %select in
417   // the diagnostic.
418   enum { CK_Function, CK_Method, CK_Block } CalleeKind;
419 
420   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
421     NumFormalParams = MD->param_size();
422     CalleeKind = CK_Method;
423   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
424     NumFormalParams = FD->param_size();
425     CalleeKind = CK_Function;
426   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
427     QualType Ty = VD->getType();
428     const FunctionType *Fn = nullptr;
429     if (const auto *PtrTy = Ty->getAs<PointerType>()) {
430       Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
431       if (!Fn)
432         return;
433       CalleeKind = CK_Function;
434     } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
435       Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
436       CalleeKind = CK_Block;
437     } else {
438       return;
439     }
440 
441     if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
442       NumFormalParams = proto->getNumParams();
443     else
444       NumFormalParams = 0;
445   } else {
446     return;
447   }
448 
449   // "NullPos" is the number of formal parameters at the end which
450   // effectively count as part of the variadic arguments.  This is
451   // useful if you would prefer to not have *any* formal parameters,
452   // but the language forces you to have at least one.
453   unsigned NullPos = Attr->getNullPos();
454   assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
455   NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
456 
457   // The number of arguments which should follow the sentinel.
458   unsigned NumArgsAfterSentinel = Attr->getSentinel();
459 
460   // If there aren't enough arguments for all the formal parameters,
461   // the sentinel, and the args after the sentinel, complain.
462   if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
463     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
464     Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
465     return;
466   }
467 
468   // Otherwise, find the sentinel expression.
469   const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
470   if (!SentinelExpr)
471     return;
472   if (SentinelExpr->isValueDependent())
473     return;
474   if (Context.isSentinelNullExpr(SentinelExpr))
475     return;
476 
477   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
478   // or 'NULL' if those are actually defined in the context.  Only use
479   // 'nil' for ObjC methods, where it's much more likely that the
480   // variadic arguments form a list of object pointers.
481   SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
482   std::string NullValue;
483   if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
484     NullValue = "nil";
485   else if (getLangOpts().CPlusPlus11)
486     NullValue = "nullptr";
487   else if (PP.isMacroDefined("NULL"))
488     NullValue = "NULL";
489   else
490     NullValue = "(void*) 0";
491 
492   if (MissingNilLoc.isInvalid())
493     Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
494   else
495     Diag(MissingNilLoc, diag::warn_missing_sentinel)
496         << int(CalleeKind)
497         << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
498   Diag(D->getLocation(), diag::note_sentinel_here)
499       << int(CalleeKind) << Attr->getRange();
500 }
501 
502 SourceRange Sema::getExprRange(Expr *E) const {
503   return E ? E->getSourceRange() : SourceRange();
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Standard Promotions and Conversions
508 //===----------------------------------------------------------------------===//
509 
510 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
511 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
512   // Handle any placeholder expressions which made it here.
513   if (E->hasPlaceholderType()) {
514     ExprResult result = CheckPlaceholderExpr(E);
515     if (result.isInvalid()) return ExprError();
516     E = result.get();
517   }
518 
519   QualType Ty = E->getType();
520   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
521 
522   if (Ty->isFunctionType()) {
523     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
524       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
525         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
526           return ExprError();
527 
528     E = ImpCastExprToType(E, Context.getPointerType(Ty),
529                           CK_FunctionToPointerDecay).get();
530   } else if (Ty->isArrayType()) {
531     // In C90 mode, arrays only promote to pointers if the array expression is
532     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
533     // type 'array of type' is converted to an expression that has type 'pointer
534     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
535     // that has type 'array of type' ...".  The relevant change is "an lvalue"
536     // (C90) to "an expression" (C99).
537     //
538     // C++ 4.2p1:
539     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
540     // T" can be converted to an rvalue of type "pointer to T".
541     //
542     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
543       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
544                                          CK_ArrayToPointerDecay);
545       if (Res.isInvalid())
546         return ExprError();
547       E = Res.get();
548     }
549   }
550   return E;
551 }
552 
553 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
554   // Check to see if we are dereferencing a null pointer.  If so,
555   // and if not volatile-qualified, this is undefined behavior that the
556   // optimizer will delete, so warn about it.  People sometimes try to use this
557   // to get a deterministic trap and are surprised by clang's behavior.  This
558   // only handles the pattern "*null", which is a very syntactic check.
559   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
560   if (UO && UO->getOpcode() == UO_Deref &&
561       UO->getSubExpr()->getType()->isPointerType()) {
562     const LangAS AS =
563         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
564     if ((!isTargetAddressSpace(AS) ||
565          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
566         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
567             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
568         !UO->getType().isVolatileQualified()) {
569       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
570                             S.PDiag(diag::warn_indirection_through_null)
571                                 << UO->getSubExpr()->getSourceRange());
572       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
573                             S.PDiag(diag::note_indirection_through_null));
574     }
575   }
576 }
577 
578 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
579                                     SourceLocation AssignLoc,
580                                     const Expr* RHS) {
581   const ObjCIvarDecl *IV = OIRE->getDecl();
582   if (!IV)
583     return;
584 
585   DeclarationName MemberName = IV->getDeclName();
586   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
587   if (!Member || !Member->isStr("isa"))
588     return;
589 
590   const Expr *Base = OIRE->getBase();
591   QualType BaseType = Base->getType();
592   if (OIRE->isArrow())
593     BaseType = BaseType->getPointeeType();
594   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
595     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
596       ObjCInterfaceDecl *ClassDeclared = nullptr;
597       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
598       if (!ClassDeclared->getSuperClass()
599           && (*ClassDeclared->ivar_begin()) == IV) {
600         if (RHS) {
601           NamedDecl *ObjectSetClass =
602             S.LookupSingleName(S.TUScope,
603                                &S.Context.Idents.get("object_setClass"),
604                                SourceLocation(), S.LookupOrdinaryName);
605           if (ObjectSetClass) {
606             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
607             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
608                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
609                                               "object_setClass(")
610                 << FixItHint::CreateReplacement(
611                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
612                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
613           }
614           else
615             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
616         } else {
617           NamedDecl *ObjectGetClass =
618             S.LookupSingleName(S.TUScope,
619                                &S.Context.Idents.get("object_getClass"),
620                                SourceLocation(), S.LookupOrdinaryName);
621           if (ObjectGetClass)
622             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
623                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
624                                               "object_getClass(")
625                 << FixItHint::CreateReplacement(
626                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
627           else
628             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
629         }
630         S.Diag(IV->getLocation(), diag::note_ivar_decl);
631       }
632     }
633 }
634 
635 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
636   // Handle any placeholder expressions which made it here.
637   if (E->hasPlaceholderType()) {
638     ExprResult result = CheckPlaceholderExpr(E);
639     if (result.isInvalid()) return ExprError();
640     E = result.get();
641   }
642 
643   // C++ [conv.lval]p1:
644   //   A glvalue of a non-function, non-array type T can be
645   //   converted to a prvalue.
646   if (!E->isGLValue()) return E;
647 
648   QualType T = E->getType();
649   assert(!T.isNull() && "r-value conversion on typeless expression?");
650 
651   // lvalue-to-rvalue conversion cannot be applied to types that decay to
652   // pointers (i.e. function or array types).
653   if (T->canDecayToPointerType())
654     return E;
655 
656   // We don't want to throw lvalue-to-rvalue casts on top of
657   // expressions of certain types in C++.
658   if (getLangOpts().CPlusPlus) {
659     if (T == Context.OverloadTy || T->isRecordType() ||
660         (T->isDependentType() && !T->isAnyPointerType() &&
661          !T->isMemberPointerType()))
662       return E;
663   }
664 
665   // The C standard is actually really unclear on this point, and
666   // DR106 tells us what the result should be but not why.  It's
667   // generally best to say that void types just doesn't undergo
668   // lvalue-to-rvalue at all.  Note that expressions of unqualified
669   // 'void' type are never l-values, but qualified void can be.
670   if (T->isVoidType())
671     return E;
672 
673   // OpenCL usually rejects direct accesses to values of 'half' type.
674   if (getLangOpts().OpenCL &&
675       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
676       T->isHalfType()) {
677     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
678       << 0 << T;
679     return ExprError();
680   }
681 
682   CheckForNullPointerDereference(*this, E);
683   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
684     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
685                                      &Context.Idents.get("object_getClass"),
686                                      SourceLocation(), LookupOrdinaryName);
687     if (ObjectGetClass)
688       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
689           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
690           << FixItHint::CreateReplacement(
691                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
692     else
693       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
694   }
695   else if (const ObjCIvarRefExpr *OIRE =
696             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
697     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
698 
699   // C++ [conv.lval]p1:
700   //   [...] If T is a non-class type, the type of the prvalue is the
701   //   cv-unqualified version of T. Otherwise, the type of the
702   //   rvalue is T.
703   //
704   // C99 6.3.2.1p2:
705   //   If the lvalue has qualified type, the value has the unqualified
706   //   version of the type of the lvalue; otherwise, the value has the
707   //   type of the lvalue.
708   if (T.hasQualifiers())
709     T = T.getUnqualifiedType();
710 
711   // Under the MS ABI, lock down the inheritance model now.
712   if (T->isMemberPointerType() &&
713       Context.getTargetInfo().getCXXABI().isMicrosoft())
714     (void)isCompleteType(E->getExprLoc(), T);
715 
716   ExprResult Res = CheckLValueToRValueConversionOperand(E);
717   if (Res.isInvalid())
718     return Res;
719   E = Res.get();
720 
721   // Loading a __weak object implicitly retains the value, so we need a cleanup to
722   // balance that.
723   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
724     Cleanup.setExprNeedsCleanups(true);
725 
726   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
727     Cleanup.setExprNeedsCleanups(true);
728 
729   // C++ [conv.lval]p3:
730   //   If T is cv std::nullptr_t, the result is a null pointer constant.
731   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
732   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
733                                  CurFPFeatureOverrides());
734 
735   // C11 6.3.2.1p2:
736   //   ... if the lvalue has atomic type, the value has the non-atomic version
737   //   of the type of the lvalue ...
738   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
739     T = Atomic->getValueType().getUnqualifiedType();
740     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
741                                    nullptr, VK_PRValue, FPOptionsOverride());
742   }
743 
744   return Res;
745 }
746 
747 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
748   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
749   if (Res.isInvalid())
750     return ExprError();
751   Res = DefaultLvalueConversion(Res.get());
752   if (Res.isInvalid())
753     return ExprError();
754   return Res;
755 }
756 
757 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
758   QualType Ty = E->getType();
759   ExprResult Res = E;
760   // Only do implicit cast for a function type, but not for a pointer
761   // to function type.
762   if (Ty->isFunctionType()) {
763     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
764                             CK_FunctionToPointerDecay);
765     if (Res.isInvalid())
766       return ExprError();
767   }
768   Res = DefaultLvalueConversion(Res.get());
769   if (Res.isInvalid())
770     return ExprError();
771   return Res.get();
772 }
773 
774 /// UsualUnaryConversions - Performs various conversions that are common to most
775 /// operators (C99 6.3). The conversions of array and function types are
776 /// sometimes suppressed. For example, the array->pointer conversion doesn't
777 /// apply if the array is an argument to the sizeof or address (&) operators.
778 /// In these instances, this routine should *not* be called.
779 ExprResult Sema::UsualUnaryConversions(Expr *E) {
780   // First, convert to an r-value.
781   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
782   if (Res.isInvalid())
783     return ExprError();
784   E = Res.get();
785 
786   QualType Ty = E->getType();
787   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
788 
789   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
790   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
791       (getLangOpts().getFPEvalMethod() !=
792            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
793        PP.getLastFPEvalPragmaLocation().isValid())) {
794     switch (EvalMethod) {
795     default:
796       llvm_unreachable("Unrecognized float evaluation method");
797       break;
798     case LangOptions::FEM_UnsetOnCommandLine:
799       llvm_unreachable("Float evaluation method should be set by now");
800       break;
801     case LangOptions::FEM_Double:
802       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
803         // Widen the expression to double.
804         return Ty->isComplexType()
805                    ? ImpCastExprToType(E,
806                                        Context.getComplexType(Context.DoubleTy),
807                                        CK_FloatingComplexCast)
808                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
809       break;
810     case LangOptions::FEM_Extended:
811       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
812         // Widen the expression to long double.
813         return Ty->isComplexType()
814                    ? ImpCastExprToType(
815                          E, Context.getComplexType(Context.LongDoubleTy),
816                          CK_FloatingComplexCast)
817                    : ImpCastExprToType(E, Context.LongDoubleTy,
818                                        CK_FloatingCast);
819       break;
820     }
821   }
822 
823   // Half FP have to be promoted to float unless it is natively supported
824   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
825     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
826 
827   // Try to perform integral promotions if the object has a theoretically
828   // promotable type.
829   if (Ty->isIntegralOrUnscopedEnumerationType()) {
830     // C99 6.3.1.1p2:
831     //
832     //   The following may be used in an expression wherever an int or
833     //   unsigned int may be used:
834     //     - an object or expression with an integer type whose integer
835     //       conversion rank is less than or equal to the rank of int
836     //       and unsigned int.
837     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
838     //
839     //   If an int can represent all values of the original type, the
840     //   value is converted to an int; otherwise, it is converted to an
841     //   unsigned int. These are called the integer promotions. All
842     //   other types are unchanged by the integer promotions.
843 
844     QualType PTy = Context.isPromotableBitField(E);
845     if (!PTy.isNull()) {
846       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
847       return E;
848     }
849     if (Context.isPromotableIntegerType(Ty)) {
850       QualType PT = Context.getPromotedIntegerType(Ty);
851       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
852       return E;
853     }
854   }
855   return E;
856 }
857 
858 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
859 /// do not have a prototype. Arguments that have type float or __fp16
860 /// are promoted to double. All other argument types are converted by
861 /// UsualUnaryConversions().
862 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
863   QualType Ty = E->getType();
864   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
865 
866   ExprResult Res = UsualUnaryConversions(E);
867   if (Res.isInvalid())
868     return ExprError();
869   E = Res.get();
870 
871   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
872   // promote to double.
873   // Note that default argument promotion applies only to float (and
874   // half/fp16); it does not apply to _Float16.
875   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
876   if (BTy && (BTy->getKind() == BuiltinType::Half ||
877               BTy->getKind() == BuiltinType::Float)) {
878     if (getLangOpts().OpenCL &&
879         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
880       if (BTy->getKind() == BuiltinType::Half) {
881         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
882       }
883     } else {
884       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
885     }
886   }
887   if (BTy &&
888       getLangOpts().getExtendIntArgs() ==
889           LangOptions::ExtendArgsKind::ExtendTo64 &&
890       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
891       Context.getTypeSizeInChars(BTy) <
892           Context.getTypeSizeInChars(Context.LongLongTy)) {
893     E = (Ty->isUnsignedIntegerType())
894             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
895                   .get()
896             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
897     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
898            "Unexpected typesize for LongLongTy");
899   }
900 
901   // C++ performs lvalue-to-rvalue conversion as a default argument
902   // promotion, even on class types, but note:
903   //   C++11 [conv.lval]p2:
904   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
905   //     operand or a subexpression thereof the value contained in the
906   //     referenced object is not accessed. Otherwise, if the glvalue
907   //     has a class type, the conversion copy-initializes a temporary
908   //     of type T from the glvalue and the result of the conversion
909   //     is a prvalue for the temporary.
910   // FIXME: add some way to gate this entire thing for correctness in
911   // potentially potentially evaluated contexts.
912   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
913     ExprResult Temp = PerformCopyInitialization(
914                        InitializedEntity::InitializeTemporary(E->getType()),
915                                                 E->getExprLoc(), E);
916     if (Temp.isInvalid())
917       return ExprError();
918     E = Temp.get();
919   }
920 
921   return E;
922 }
923 
924 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
925   if (Ty->isIncompleteType()) {
926     // C++11 [expr.call]p7:
927     //   After these conversions, if the argument does not have arithmetic,
928     //   enumeration, pointer, pointer to member, or class type, the program
929     //   is ill-formed.
930     //
931     // Since we've already performed array-to-pointer and function-to-pointer
932     // decay, the only such type in C++ is cv void. This also handles
933     // initializer lists as variadic arguments.
934     if (Ty->isVoidType())
935       return VAK_Invalid;
936 
937     if (Ty->isObjCObjectType())
938       return VAK_Invalid;
939     return VAK_Valid;
940   }
941 
942   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
943     return VAK_Invalid;
944 
945   if (Context.getTargetInfo().getTriple().isWasm() &&
946       Ty.isWebAssemblyReferenceType()) {
947     return VAK_Invalid;
948   }
949 
950   if (Ty.isCXX98PODType(Context))
951     return VAK_Valid;
952 
953   // C++11 [expr.call]p7:
954   //   Passing a potentially-evaluated argument of class type (Clause 9)
955   //   having a non-trivial copy constructor, a non-trivial move constructor,
956   //   or a non-trivial destructor, with no corresponding parameter,
957   //   is conditionally-supported with implementation-defined semantics.
958   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
959     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
960       if (!Record->hasNonTrivialCopyConstructor() &&
961           !Record->hasNonTrivialMoveConstructor() &&
962           !Record->hasNonTrivialDestructor())
963         return VAK_ValidInCXX11;
964 
965   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
966     return VAK_Valid;
967 
968   if (Ty->isObjCObjectType())
969     return VAK_Invalid;
970 
971   if (getLangOpts().MSVCCompat)
972     return VAK_MSVCUndefined;
973 
974   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
975   // permitted to reject them. We should consider doing so.
976   return VAK_Undefined;
977 }
978 
979 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
980   // Don't allow one to pass an Objective-C interface to a vararg.
981   const QualType &Ty = E->getType();
982   VarArgKind VAK = isValidVarArgType(Ty);
983 
984   // Complain about passing non-POD types through varargs.
985   switch (VAK) {
986   case VAK_ValidInCXX11:
987     DiagRuntimeBehavior(
988         E->getBeginLoc(), nullptr,
989         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
990     [[fallthrough]];
991   case VAK_Valid:
992     if (Ty->isRecordType()) {
993       // This is unlikely to be what the user intended. If the class has a
994       // 'c_str' member function, the user probably meant to call that.
995       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
996                           PDiag(diag::warn_pass_class_arg_to_vararg)
997                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
998     }
999     break;
1000 
1001   case VAK_Undefined:
1002   case VAK_MSVCUndefined:
1003     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1004                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1005                             << getLangOpts().CPlusPlus11 << Ty << CT);
1006     break;
1007 
1008   case VAK_Invalid:
1009     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1010       Diag(E->getBeginLoc(),
1011            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1012           << Ty << CT;
1013     else if (Ty->isObjCObjectType())
1014       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1015                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1016                               << Ty << CT);
1017     else
1018       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1019           << isa<InitListExpr>(E) << Ty << CT;
1020     break;
1021   }
1022 }
1023 
1024 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1025                                                   FunctionDecl *FDecl) {
1026   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1027     // Strip the unbridged-cast placeholder expression off, if applicable.
1028     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1029         (CT == VariadicMethod ||
1030          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1031       E = ObjC().stripARCUnbridgedCast(E);
1032 
1033       // Otherwise, do normal placeholder checking.
1034     } else {
1035       ExprResult ExprRes = CheckPlaceholderExpr(E);
1036       if (ExprRes.isInvalid())
1037         return ExprError();
1038       E = ExprRes.get();
1039     }
1040   }
1041 
1042   ExprResult ExprRes = DefaultArgumentPromotion(E);
1043   if (ExprRes.isInvalid())
1044     return ExprError();
1045 
1046   // Copy blocks to the heap.
1047   if (ExprRes.get()->getType()->isBlockPointerType())
1048     maybeExtendBlockObject(ExprRes);
1049 
1050   E = ExprRes.get();
1051 
1052   // Diagnostics regarding non-POD argument types are
1053   // emitted along with format string checking in Sema::CheckFunctionCall().
1054   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1055     // Turn this into a trap.
1056     CXXScopeSpec SS;
1057     SourceLocation TemplateKWLoc;
1058     UnqualifiedId Name;
1059     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1060                        E->getBeginLoc());
1061     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1062                                           /*HasTrailingLParen=*/true,
1063                                           /*IsAddressOfOperand=*/false);
1064     if (TrapFn.isInvalid())
1065       return ExprError();
1066 
1067     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1068                                     std::nullopt, E->getEndLoc());
1069     if (Call.isInvalid())
1070       return ExprError();
1071 
1072     ExprResult Comma =
1073         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1074     if (Comma.isInvalid())
1075       return ExprError();
1076     return Comma.get();
1077   }
1078 
1079   if (!getLangOpts().CPlusPlus &&
1080       RequireCompleteType(E->getExprLoc(), E->getType(),
1081                           diag::err_call_incomplete_argument))
1082     return ExprError();
1083 
1084   return E;
1085 }
1086 
1087 /// Convert complex integers to complex floats and real integers to
1088 /// real floats as required for complex arithmetic. Helper function of
1089 /// UsualArithmeticConversions()
1090 ///
1091 /// \return false if the integer expression is an integer type and is
1092 /// successfully converted to the (complex) float type.
1093 static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1094                                                   ExprResult &ComplexExpr,
1095                                                   QualType IntTy,
1096                                                   QualType ComplexTy,
1097                                                   bool SkipCast) {
1098   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1099   if (SkipCast) return false;
1100   if (IntTy->isIntegerType()) {
1101     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1102     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1103   } else {
1104     assert(IntTy->isComplexIntegerType());
1105     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1106                                   CK_IntegralComplexToFloatingComplex);
1107   }
1108   return false;
1109 }
1110 
1111 // This handles complex/complex, complex/float, or float/complex.
1112 // When both operands are complex, the shorter operand is converted to the
1113 // type of the longer, and that is the type of the result. This corresponds
1114 // to what is done when combining two real floating-point operands.
1115 // The fun begins when size promotion occur across type domains.
1116 // From H&S 6.3.4: When one operand is complex and the other is a real
1117 // floating-point type, the less precise type is converted, within it's
1118 // real or complex domain, to the precision of the other type. For example,
1119 // when combining a "long double" with a "double _Complex", the
1120 // "double _Complex" is promoted to "long double _Complex".
1121 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1122                                              QualType ShorterType,
1123                                              QualType LongerType,
1124                                              bool PromotePrecision) {
1125   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1126   QualType Result =
1127       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1128 
1129   if (PromotePrecision) {
1130     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1131       Shorter =
1132           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1133     } else {
1134       if (LongerIsComplex)
1135         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1136       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1137     }
1138   }
1139   return Result;
1140 }
1141 
1142 /// Handle arithmetic conversion with complex types.  Helper function of
1143 /// UsualArithmeticConversions()
1144 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1145                                         ExprResult &RHS, QualType LHSType,
1146                                         QualType RHSType, bool IsCompAssign) {
1147   // Handle (complex) integer types.
1148   if (!handleComplexIntegerToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1149                                              /*SkipCast=*/false))
1150     return LHSType;
1151   if (!handleComplexIntegerToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1152                                              /*SkipCast=*/IsCompAssign))
1153     return RHSType;
1154 
1155   // Compute the rank of the two types, regardless of whether they are complex.
1156   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1157   if (Order < 0)
1158     // Promote the precision of the LHS if not an assignment.
1159     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1160                                         /*PromotePrecision=*/!IsCompAssign);
1161   // Promote the precision of the RHS unless it is already the same as the LHS.
1162   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1163                                       /*PromotePrecision=*/Order > 0);
1164 }
1165 
1166 /// Handle arithmetic conversion from integer to float.  Helper function
1167 /// of UsualArithmeticConversions()
1168 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1169                                            ExprResult &IntExpr,
1170                                            QualType FloatTy, QualType IntTy,
1171                                            bool ConvertFloat, bool ConvertInt) {
1172   if (IntTy->isIntegerType()) {
1173     if (ConvertInt)
1174       // Convert intExpr to the lhs floating point type.
1175       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1176                                     CK_IntegralToFloating);
1177     return FloatTy;
1178   }
1179 
1180   // Convert both sides to the appropriate complex float.
1181   assert(IntTy->isComplexIntegerType());
1182   QualType result = S.Context.getComplexType(FloatTy);
1183 
1184   // _Complex int -> _Complex float
1185   if (ConvertInt)
1186     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1187                                   CK_IntegralComplexToFloatingComplex);
1188 
1189   // float -> _Complex float
1190   if (ConvertFloat)
1191     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1192                                     CK_FloatingRealToComplex);
1193 
1194   return result;
1195 }
1196 
1197 /// Handle arithmethic conversion with floating point types.  Helper
1198 /// function of UsualArithmeticConversions()
1199 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1200                                       ExprResult &RHS, QualType LHSType,
1201                                       QualType RHSType, bool IsCompAssign) {
1202   bool LHSFloat = LHSType->isRealFloatingType();
1203   bool RHSFloat = RHSType->isRealFloatingType();
1204 
1205   // N1169 4.1.4: If one of the operands has a floating type and the other
1206   //              operand has a fixed-point type, the fixed-point operand
1207   //              is converted to the floating type [...]
1208   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1209     if (LHSFloat)
1210       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1211     else if (!IsCompAssign)
1212       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1213     return LHSFloat ? LHSType : RHSType;
1214   }
1215 
1216   // If we have two real floating types, convert the smaller operand
1217   // to the bigger result.
1218   if (LHSFloat && RHSFloat) {
1219     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1220     if (order > 0) {
1221       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1222       return LHSType;
1223     }
1224 
1225     assert(order < 0 && "illegal float comparison");
1226     if (!IsCompAssign)
1227       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1228     return RHSType;
1229   }
1230 
1231   if (LHSFloat) {
1232     // Half FP has to be promoted to float unless it is natively supported
1233     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1234       LHSType = S.Context.FloatTy;
1235 
1236     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1237                                       /*ConvertFloat=*/!IsCompAssign,
1238                                       /*ConvertInt=*/ true);
1239   }
1240   assert(RHSFloat);
1241   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1242                                     /*ConvertFloat=*/ true,
1243                                     /*ConvertInt=*/!IsCompAssign);
1244 }
1245 
1246 /// Diagnose attempts to convert between __float128, __ibm128 and
1247 /// long double if there is no support for such conversion.
1248 /// Helper function of UsualArithmeticConversions().
1249 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1250                                       QualType RHSType) {
1251   // No issue if either is not a floating point type.
1252   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1253     return false;
1254 
1255   // No issue if both have the same 128-bit float semantics.
1256   auto *LHSComplex = LHSType->getAs<ComplexType>();
1257   auto *RHSComplex = RHSType->getAs<ComplexType>();
1258 
1259   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1260   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1261 
1262   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1263   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1264 
1265   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1266        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1267       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1268        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1269     return false;
1270 
1271   return true;
1272 }
1273 
1274 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1275 
1276 namespace {
1277 /// These helper callbacks are placed in an anonymous namespace to
1278 /// permit their use as function template parameters.
1279 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1280   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1281 }
1282 
1283 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1284   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1285                              CK_IntegralComplexCast);
1286 }
1287 }
1288 
1289 /// Handle integer arithmetic conversions.  Helper function of
1290 /// UsualArithmeticConversions()
1291 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1292 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1293                                         ExprResult &RHS, QualType LHSType,
1294                                         QualType RHSType, bool IsCompAssign) {
1295   // The rules for this case are in C99 6.3.1.8
1296   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1297   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1298   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1299   if (LHSSigned == RHSSigned) {
1300     // Same signedness; use the higher-ranked type
1301     if (order >= 0) {
1302       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1303       return LHSType;
1304     } else if (!IsCompAssign)
1305       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1306     return RHSType;
1307   } else if (order != (LHSSigned ? 1 : -1)) {
1308     // The unsigned type has greater than or equal rank to the
1309     // signed type, so use the unsigned type
1310     if (RHSSigned) {
1311       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1312       return LHSType;
1313     } else if (!IsCompAssign)
1314       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1315     return RHSType;
1316   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1317     // The two types are different widths; if we are here, that
1318     // means the signed type is larger than the unsigned type, so
1319     // use the signed type.
1320     if (LHSSigned) {
1321       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1322       return LHSType;
1323     } else if (!IsCompAssign)
1324       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1325     return RHSType;
1326   } else {
1327     // The signed type is higher-ranked than the unsigned type,
1328     // but isn't actually any bigger (like unsigned int and long
1329     // on most 32-bit systems).  Use the unsigned type corresponding
1330     // to the signed type.
1331     QualType result =
1332       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1333     RHS = (*doRHSCast)(S, RHS.get(), result);
1334     if (!IsCompAssign)
1335       LHS = (*doLHSCast)(S, LHS.get(), result);
1336     return result;
1337   }
1338 }
1339 
1340 /// Handle conversions with GCC complex int extension.  Helper function
1341 /// of UsualArithmeticConversions()
1342 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1343                                            ExprResult &RHS, QualType LHSType,
1344                                            QualType RHSType,
1345                                            bool IsCompAssign) {
1346   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1347   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1348 
1349   if (LHSComplexInt && RHSComplexInt) {
1350     QualType LHSEltType = LHSComplexInt->getElementType();
1351     QualType RHSEltType = RHSComplexInt->getElementType();
1352     QualType ScalarType =
1353       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1354         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1355 
1356     return S.Context.getComplexType(ScalarType);
1357   }
1358 
1359   if (LHSComplexInt) {
1360     QualType LHSEltType = LHSComplexInt->getElementType();
1361     QualType ScalarType =
1362       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1363         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1364     QualType ComplexType = S.Context.getComplexType(ScalarType);
1365     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1366                               CK_IntegralRealToComplex);
1367 
1368     return ComplexType;
1369   }
1370 
1371   assert(RHSComplexInt);
1372 
1373   QualType RHSEltType = RHSComplexInt->getElementType();
1374   QualType ScalarType =
1375     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1376       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1377   QualType ComplexType = S.Context.getComplexType(ScalarType);
1378 
1379   if (!IsCompAssign)
1380     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1381                               CK_IntegralRealToComplex);
1382   return ComplexType;
1383 }
1384 
1385 /// Return the rank of a given fixed point or integer type. The value itself
1386 /// doesn't matter, but the values must be increasing with proper increasing
1387 /// rank as described in N1169 4.1.1.
1388 static unsigned GetFixedPointRank(QualType Ty) {
1389   const auto *BTy = Ty->getAs<BuiltinType>();
1390   assert(BTy && "Expected a builtin type.");
1391 
1392   switch (BTy->getKind()) {
1393   case BuiltinType::ShortFract:
1394   case BuiltinType::UShortFract:
1395   case BuiltinType::SatShortFract:
1396   case BuiltinType::SatUShortFract:
1397     return 1;
1398   case BuiltinType::Fract:
1399   case BuiltinType::UFract:
1400   case BuiltinType::SatFract:
1401   case BuiltinType::SatUFract:
1402     return 2;
1403   case BuiltinType::LongFract:
1404   case BuiltinType::ULongFract:
1405   case BuiltinType::SatLongFract:
1406   case BuiltinType::SatULongFract:
1407     return 3;
1408   case BuiltinType::ShortAccum:
1409   case BuiltinType::UShortAccum:
1410   case BuiltinType::SatShortAccum:
1411   case BuiltinType::SatUShortAccum:
1412     return 4;
1413   case BuiltinType::Accum:
1414   case BuiltinType::UAccum:
1415   case BuiltinType::SatAccum:
1416   case BuiltinType::SatUAccum:
1417     return 5;
1418   case BuiltinType::LongAccum:
1419   case BuiltinType::ULongAccum:
1420   case BuiltinType::SatLongAccum:
1421   case BuiltinType::SatULongAccum:
1422     return 6;
1423   default:
1424     if (BTy->isInteger())
1425       return 0;
1426     llvm_unreachable("Unexpected fixed point or integer type");
1427   }
1428 }
1429 
1430 /// handleFixedPointConversion - Fixed point operations between fixed
1431 /// point types and integers or other fixed point types do not fall under
1432 /// usual arithmetic conversion since these conversions could result in loss
1433 /// of precsision (N1169 4.1.4). These operations should be calculated with
1434 /// the full precision of their result type (N1169 4.1.6.2.1).
1435 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1436                                            QualType RHSTy) {
1437   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1438          "Expected at least one of the operands to be a fixed point type");
1439   assert((LHSTy->isFixedPointOrIntegerType() ||
1440           RHSTy->isFixedPointOrIntegerType()) &&
1441          "Special fixed point arithmetic operation conversions are only "
1442          "applied to ints or other fixed point types");
1443 
1444   // If one operand has signed fixed-point type and the other operand has
1445   // unsigned fixed-point type, then the unsigned fixed-point operand is
1446   // converted to its corresponding signed fixed-point type and the resulting
1447   // type is the type of the converted operand.
1448   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1449     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1450   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1451     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1452 
1453   // The result type is the type with the highest rank, whereby a fixed-point
1454   // conversion rank is always greater than an integer conversion rank; if the
1455   // type of either of the operands is a saturating fixedpoint type, the result
1456   // type shall be the saturating fixed-point type corresponding to the type
1457   // with the highest rank; the resulting value is converted (taking into
1458   // account rounding and overflow) to the precision of the resulting type.
1459   // Same ranks between signed and unsigned types are resolved earlier, so both
1460   // types are either signed or both unsigned at this point.
1461   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1462   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1463 
1464   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1465 
1466   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1467     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1468 
1469   return ResultTy;
1470 }
1471 
1472 /// Check that the usual arithmetic conversions can be performed on this pair of
1473 /// expressions that might be of enumeration type.
1474 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1475                                            SourceLocation Loc,
1476                                            Sema::ArithConvKind ACK) {
1477   // C++2a [expr.arith.conv]p1:
1478   //   If one operand is of enumeration type and the other operand is of a
1479   //   different enumeration type or a floating-point type, this behavior is
1480   //   deprecated ([depr.arith.conv.enum]).
1481   //
1482   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1483   // Eventually we will presumably reject these cases (in C++23 onwards?).
1484   QualType L = LHS->getEnumCoercedType(S.Context),
1485            R = RHS->getEnumCoercedType(S.Context);
1486   bool LEnum = L->isUnscopedEnumerationType(),
1487        REnum = R->isUnscopedEnumerationType();
1488   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1489   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1490       (REnum && L->isFloatingType())) {
1491     S.Diag(Loc, S.getLangOpts().CPlusPlus26
1492                     ? diag::err_arith_conv_enum_float_cxx26
1493                 : S.getLangOpts().CPlusPlus20
1494                     ? diag::warn_arith_conv_enum_float_cxx20
1495                     : diag::warn_arith_conv_enum_float)
1496         << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1497         << L << R;
1498   } else if (!IsCompAssign && LEnum && REnum &&
1499              !S.Context.hasSameUnqualifiedType(L, R)) {
1500     unsigned DiagID;
1501     // In C++ 26, usual arithmetic conversions between 2 different enum types
1502     // are ill-formed.
1503     if (S.getLangOpts().CPlusPlus26)
1504       DiagID = diag::err_conv_mixed_enum_types_cxx26;
1505     else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1506              !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1507       // If either enumeration type is unnamed, it's less likely that the
1508       // user cares about this, but this situation is still deprecated in
1509       // C++2a. Use a different warning group.
1510       DiagID = S.getLangOpts().CPlusPlus20
1511                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1512                     : diag::warn_arith_conv_mixed_anon_enum_types;
1513     } else if (ACK == Sema::ACK_Conditional) {
1514       // Conditional expressions are separated out because they have
1515       // historically had a different warning flag.
1516       DiagID = S.getLangOpts().CPlusPlus20
1517                    ? diag::warn_conditional_mixed_enum_types_cxx20
1518                    : diag::warn_conditional_mixed_enum_types;
1519     } else if (ACK == Sema::ACK_Comparison) {
1520       // Comparison expressions are separated out because they have
1521       // historically had a different warning flag.
1522       DiagID = S.getLangOpts().CPlusPlus20
1523                    ? diag::warn_comparison_mixed_enum_types_cxx20
1524                    : diag::warn_comparison_mixed_enum_types;
1525     } else {
1526       DiagID = S.getLangOpts().CPlusPlus20
1527                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1528                    : diag::warn_arith_conv_mixed_enum_types;
1529     }
1530     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1531                         << (int)ACK << L << R;
1532   }
1533 }
1534 
1535 /// UsualArithmeticConversions - Performs various conversions that are common to
1536 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1537 /// routine returns the first non-arithmetic type found. The client is
1538 /// responsible for emitting appropriate error diagnostics.
1539 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1540                                           SourceLocation Loc,
1541                                           ArithConvKind ACK) {
1542   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1543 
1544   if (ACK != ACK_CompAssign) {
1545     LHS = UsualUnaryConversions(LHS.get());
1546     if (LHS.isInvalid())
1547       return QualType();
1548   }
1549 
1550   RHS = UsualUnaryConversions(RHS.get());
1551   if (RHS.isInvalid())
1552     return QualType();
1553 
1554   // For conversion purposes, we ignore any qualifiers.
1555   // For example, "const float" and "float" are equivalent.
1556   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1557   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1558 
1559   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1560   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1561     LHSType = AtomicLHS->getValueType();
1562 
1563   // If both types are identical, no conversion is needed.
1564   if (Context.hasSameType(LHSType, RHSType))
1565     return Context.getCommonSugaredType(LHSType, RHSType);
1566 
1567   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1568   // The caller can deal with this (e.g. pointer + int).
1569   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1570     return QualType();
1571 
1572   // Apply unary and bitfield promotions to the LHS's type.
1573   QualType LHSUnpromotedType = LHSType;
1574   if (Context.isPromotableIntegerType(LHSType))
1575     LHSType = Context.getPromotedIntegerType(LHSType);
1576   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1577   if (!LHSBitfieldPromoteTy.isNull())
1578     LHSType = LHSBitfieldPromoteTy;
1579   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1580     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1581 
1582   // If both types are identical, no conversion is needed.
1583   if (Context.hasSameType(LHSType, RHSType))
1584     return Context.getCommonSugaredType(LHSType, RHSType);
1585 
1586   // At this point, we have two different arithmetic types.
1587 
1588   // Diagnose attempts to convert between __ibm128, __float128 and long double
1589   // where such conversions currently can't be handled.
1590   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1591     return QualType();
1592 
1593   // Handle complex types first (C99 6.3.1.8p1).
1594   if (LHSType->isComplexType() || RHSType->isComplexType())
1595     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1596                                    ACK == ACK_CompAssign);
1597 
1598   // Now handle "real" floating types (i.e. float, double, long double).
1599   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1600     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1601                                  ACK == ACK_CompAssign);
1602 
1603   // Handle GCC complex int extension.
1604   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1605     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1606                                       ACK == ACK_CompAssign);
1607 
1608   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1609     return handleFixedPointConversion(*this, LHSType, RHSType);
1610 
1611   // Finally, we have two differing integer types.
1612   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1613            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1614 }
1615 
1616 //===----------------------------------------------------------------------===//
1617 //  Semantic Analysis for various Expression Types
1618 //===----------------------------------------------------------------------===//
1619 
1620 
1621 ExprResult Sema::ActOnGenericSelectionExpr(
1622     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1623     bool PredicateIsExpr, void *ControllingExprOrType,
1624     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1625   unsigned NumAssocs = ArgTypes.size();
1626   assert(NumAssocs == ArgExprs.size());
1627 
1628   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1629   for (unsigned i = 0; i < NumAssocs; ++i) {
1630     if (ArgTypes[i])
1631       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1632     else
1633       Types[i] = nullptr;
1634   }
1635 
1636   // If we have a controlling type, we need to convert it from a parsed type
1637   // into a semantic type and then pass that along.
1638   if (!PredicateIsExpr) {
1639     TypeSourceInfo *ControllingType;
1640     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1641                             &ControllingType);
1642     assert(ControllingType && "couldn't get the type out of the parser");
1643     ControllingExprOrType = ControllingType;
1644   }
1645 
1646   ExprResult ER = CreateGenericSelectionExpr(
1647       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1648       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1649   delete [] Types;
1650   return ER;
1651 }
1652 
1653 ExprResult Sema::CreateGenericSelectionExpr(
1654     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1655     bool PredicateIsExpr, void *ControllingExprOrType,
1656     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1657   unsigned NumAssocs = Types.size();
1658   assert(NumAssocs == Exprs.size());
1659   assert(ControllingExprOrType &&
1660          "Must have either a controlling expression or a controlling type");
1661 
1662   Expr *ControllingExpr = nullptr;
1663   TypeSourceInfo *ControllingType = nullptr;
1664   if (PredicateIsExpr) {
1665     // Decay and strip qualifiers for the controlling expression type, and
1666     // handle placeholder type replacement. See committee discussion from WG14
1667     // DR423.
1668     EnterExpressionEvaluationContext Unevaluated(
1669         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1670     ExprResult R = DefaultFunctionArrayLvalueConversion(
1671         reinterpret_cast<Expr *>(ControllingExprOrType));
1672     if (R.isInvalid())
1673       return ExprError();
1674     ControllingExpr = R.get();
1675   } else {
1676     // The extension form uses the type directly rather than converting it.
1677     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1678     if (!ControllingType)
1679       return ExprError();
1680   }
1681 
1682   bool TypeErrorFound = false,
1683        IsResultDependent = ControllingExpr
1684                                ? ControllingExpr->isTypeDependent()
1685                                : ControllingType->getType()->isDependentType(),
1686        ContainsUnexpandedParameterPack =
1687            ControllingExpr
1688                ? ControllingExpr->containsUnexpandedParameterPack()
1689                : ControllingType->getType()->containsUnexpandedParameterPack();
1690 
1691   // The controlling expression is an unevaluated operand, so side effects are
1692   // likely unintended.
1693   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1694       ControllingExpr->HasSideEffects(Context, false))
1695     Diag(ControllingExpr->getExprLoc(),
1696          diag::warn_side_effects_unevaluated_context);
1697 
1698   for (unsigned i = 0; i < NumAssocs; ++i) {
1699     if (Exprs[i]->containsUnexpandedParameterPack())
1700       ContainsUnexpandedParameterPack = true;
1701 
1702     if (Types[i]) {
1703       if (Types[i]->getType()->containsUnexpandedParameterPack())
1704         ContainsUnexpandedParameterPack = true;
1705 
1706       if (Types[i]->getType()->isDependentType()) {
1707         IsResultDependent = true;
1708       } else {
1709         // We relax the restriction on use of incomplete types and non-object
1710         // types with the type-based extension of _Generic. Allowing incomplete
1711         // objects means those can be used as "tags" for a type-safe way to map
1712         // to a value. Similarly, matching on function types rather than
1713         // function pointer types can be useful. However, the restriction on VM
1714         // types makes sense to retain as there are open questions about how
1715         // the selection can be made at compile time.
1716         //
1717         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1718         // complete object type other than a variably modified type."
1719         unsigned D = 0;
1720         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1721           D = diag::err_assoc_type_incomplete;
1722         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1723           D = diag::err_assoc_type_nonobject;
1724         else if (Types[i]->getType()->isVariablyModifiedType())
1725           D = diag::err_assoc_type_variably_modified;
1726         else if (ControllingExpr) {
1727           // Because the controlling expression undergoes lvalue conversion,
1728           // array conversion, and function conversion, an association which is
1729           // of array type, function type, or is qualified can never be
1730           // reached. We will warn about this so users are less surprised by
1731           // the unreachable association. However, we don't have to handle
1732           // function types; that's not an object type, so it's handled above.
1733           //
1734           // The logic is somewhat different for C++ because C++ has different
1735           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1736           // If T is a non-class type, the type of the prvalue is the cv-
1737           // unqualified version of T. Otherwise, the type of the prvalue is T.
1738           // The result of these rules is that all qualified types in an
1739           // association in C are unreachable, and in C++, only qualified non-
1740           // class types are unreachable.
1741           //
1742           // NB: this does not apply when the first operand is a type rather
1743           // than an expression, because the type form does not undergo
1744           // conversion.
1745           unsigned Reason = 0;
1746           QualType QT = Types[i]->getType();
1747           if (QT->isArrayType())
1748             Reason = 1;
1749           else if (QT.hasQualifiers() &&
1750                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1751             Reason = 2;
1752 
1753           if (Reason)
1754             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1755                  diag::warn_unreachable_association)
1756                 << QT << (Reason - 1);
1757         }
1758 
1759         if (D != 0) {
1760           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1761             << Types[i]->getTypeLoc().getSourceRange()
1762             << Types[i]->getType();
1763           TypeErrorFound = true;
1764         }
1765 
1766         // C11 6.5.1.1p2 "No two generic associations in the same generic
1767         // selection shall specify compatible types."
1768         for (unsigned j = i+1; j < NumAssocs; ++j)
1769           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1770               Context.typesAreCompatible(Types[i]->getType(),
1771                                          Types[j]->getType())) {
1772             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1773                  diag::err_assoc_compatible_types)
1774               << Types[j]->getTypeLoc().getSourceRange()
1775               << Types[j]->getType()
1776               << Types[i]->getType();
1777             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1778                  diag::note_compat_assoc)
1779               << Types[i]->getTypeLoc().getSourceRange()
1780               << Types[i]->getType();
1781             TypeErrorFound = true;
1782           }
1783       }
1784     }
1785   }
1786   if (TypeErrorFound)
1787     return ExprError();
1788 
1789   // If we determined that the generic selection is result-dependent, don't
1790   // try to compute the result expression.
1791   if (IsResultDependent) {
1792     if (ControllingExpr)
1793       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1794                                           Types, Exprs, DefaultLoc, RParenLoc,
1795                                           ContainsUnexpandedParameterPack);
1796     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1797                                         Exprs, DefaultLoc, RParenLoc,
1798                                         ContainsUnexpandedParameterPack);
1799   }
1800 
1801   SmallVector<unsigned, 1> CompatIndices;
1802   unsigned DefaultIndex = -1U;
1803   // Look at the canonical type of the controlling expression in case it was a
1804   // deduced type like __auto_type. However, when issuing diagnostics, use the
1805   // type the user wrote in source rather than the canonical one.
1806   for (unsigned i = 0; i < NumAssocs; ++i) {
1807     if (!Types[i])
1808       DefaultIndex = i;
1809     else if (ControllingExpr &&
1810              Context.typesAreCompatible(
1811                  ControllingExpr->getType().getCanonicalType(),
1812                  Types[i]->getType()))
1813       CompatIndices.push_back(i);
1814     else if (ControllingType &&
1815              Context.typesAreCompatible(
1816                  ControllingType->getType().getCanonicalType(),
1817                  Types[i]->getType()))
1818       CompatIndices.push_back(i);
1819   }
1820 
1821   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1822                                        TypeSourceInfo *ControllingType) {
1823     // We strip parens here because the controlling expression is typically
1824     // parenthesized in macro definitions.
1825     if (ControllingExpr)
1826       ControllingExpr = ControllingExpr->IgnoreParens();
1827 
1828     SourceRange SR = ControllingExpr
1829                          ? ControllingExpr->getSourceRange()
1830                          : ControllingType->getTypeLoc().getSourceRange();
1831     QualType QT = ControllingExpr ? ControllingExpr->getType()
1832                                   : ControllingType->getType();
1833 
1834     return std::make_pair(SR, QT);
1835   };
1836 
1837   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1838   // type compatible with at most one of the types named in its generic
1839   // association list."
1840   if (CompatIndices.size() > 1) {
1841     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1842     SourceRange SR = P.first;
1843     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1844         << SR << P.second << (unsigned)CompatIndices.size();
1845     for (unsigned I : CompatIndices) {
1846       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1847            diag::note_compat_assoc)
1848         << Types[I]->getTypeLoc().getSourceRange()
1849         << Types[I]->getType();
1850     }
1851     return ExprError();
1852   }
1853 
1854   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1855   // its controlling expression shall have type compatible with exactly one of
1856   // the types named in its generic association list."
1857   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1858     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1859     SourceRange SR = P.first;
1860     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1861     return ExprError();
1862   }
1863 
1864   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1865   // type name that is compatible with the type of the controlling expression,
1866   // then the result expression of the generic selection is the expression
1867   // in that generic association. Otherwise, the result expression of the
1868   // generic selection is the expression in the default generic association."
1869   unsigned ResultIndex =
1870     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1871 
1872   if (ControllingExpr) {
1873     return GenericSelectionExpr::Create(
1874         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1875         ContainsUnexpandedParameterPack, ResultIndex);
1876   }
1877   return GenericSelectionExpr::Create(
1878       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1879       ContainsUnexpandedParameterPack, ResultIndex);
1880 }
1881 
1882 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1883   switch (Kind) {
1884   default:
1885     llvm_unreachable("unexpected TokenKind");
1886   case tok::kw___func__:
1887     return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1888   case tok::kw___FUNCTION__:
1889     return PredefinedIdentKind::Function;
1890   case tok::kw___FUNCDNAME__:
1891     return PredefinedIdentKind::FuncDName; // [MS]
1892   case tok::kw___FUNCSIG__:
1893     return PredefinedIdentKind::FuncSig; // [MS]
1894   case tok::kw_L__FUNCTION__:
1895     return PredefinedIdentKind::LFunction; // [MS]
1896   case tok::kw_L__FUNCSIG__:
1897     return PredefinedIdentKind::LFuncSig; // [MS]
1898   case tok::kw___PRETTY_FUNCTION__:
1899     return PredefinedIdentKind::PrettyFunction; // [GNU]
1900   }
1901 }
1902 
1903 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1904 /// to determine the value of a PredefinedExpr. This can be either a
1905 /// block, lambda, captured statement, function, otherwise a nullptr.
1906 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1907   while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1908     DC = DC->getParent();
1909   return cast_or_null<Decl>(DC);
1910 }
1911 
1912 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1913 /// location of the token and the offset of the ud-suffix within it.
1914 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1915                                      unsigned Offset) {
1916   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1917                                         S.getLangOpts());
1918 }
1919 
1920 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1921 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1922 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1923                                                  IdentifierInfo *UDSuffix,
1924                                                  SourceLocation UDSuffixLoc,
1925                                                  ArrayRef<Expr*> Args,
1926                                                  SourceLocation LitEndLoc) {
1927   assert(Args.size() <= 2 && "too many arguments for literal operator");
1928 
1929   QualType ArgTy[2];
1930   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1931     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1932     if (ArgTy[ArgIdx]->isArrayType())
1933       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1934   }
1935 
1936   DeclarationName OpName =
1937     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1938   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1939   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1940 
1941   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1942   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1943                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1944                               /*AllowStringTemplatePack*/ false,
1945                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1946     return ExprError();
1947 
1948   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1949 }
1950 
1951 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1952   // StringToks needs backing storage as it doesn't hold array elements itself
1953   std::vector<Token> ExpandedToks;
1954   if (getLangOpts().MicrosoftExt)
1955     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1956 
1957   StringLiteralParser Literal(StringToks, PP,
1958                               StringLiteralEvalMethod::Unevaluated);
1959   if (Literal.hadError)
1960     return ExprError();
1961 
1962   SmallVector<SourceLocation, 4> StringTokLocs;
1963   for (const Token &Tok : StringToks)
1964     StringTokLocs.push_back(Tok.getLocation());
1965 
1966   StringLiteral *Lit = StringLiteral::Create(
1967       Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1968       &StringTokLocs[0], StringTokLocs.size());
1969 
1970   if (!Literal.getUDSuffix().empty()) {
1971     SourceLocation UDSuffixLoc =
1972         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1973                        Literal.getUDSuffixOffset());
1974     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1975   }
1976 
1977   return Lit;
1978 }
1979 
1980 std::vector<Token>
1981 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1982   // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1983   // local macros that expand to string literals that may be concatenated.
1984   // These macros are expanded here (in Sema), because StringLiteralParser
1985   // (in Lex) doesn't know the enclosing function (because it hasn't been
1986   // parsed yet).
1987   assert(getLangOpts().MicrosoftExt);
1988 
1989   // Note: Although function local macros are defined only inside functions,
1990   // we ensure a valid `CurrentDecl` even outside of a function. This allows
1991   // expansion of macros into empty string literals without additional checks.
1992   Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
1993   if (!CurrentDecl)
1994     CurrentDecl = Context.getTranslationUnitDecl();
1995 
1996   std::vector<Token> ExpandedToks;
1997   ExpandedToks.reserve(Toks.size());
1998   for (const Token &Tok : Toks) {
1999     if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2000       assert(tok::isStringLiteral(Tok.getKind()));
2001       ExpandedToks.emplace_back(Tok);
2002       continue;
2003     }
2004     if (isa<TranslationUnitDecl>(CurrentDecl))
2005       Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2006     // Stringify predefined expression
2007     Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2008         << Tok.getKind();
2009     SmallString<64> Str;
2010     llvm::raw_svector_ostream OS(Str);
2011     Token &Exp = ExpandedToks.emplace_back();
2012     Exp.startToken();
2013     if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2014         Tok.getKind() == tok::kw_L__FUNCSIG__) {
2015       OS << 'L';
2016       Exp.setKind(tok::wide_string_literal);
2017     } else {
2018       Exp.setKind(tok::string_literal);
2019     }
2020     OS << '"'
2021        << Lexer::Stringify(PredefinedExpr::ComputeName(
2022               getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2023        << '"';
2024     PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2025   }
2026   return ExpandedToks;
2027 }
2028 
2029 ExprResult
2030 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2031   assert(!StringToks.empty() && "Must have at least one string!");
2032 
2033   // StringToks needs backing storage as it doesn't hold array elements itself
2034   std::vector<Token> ExpandedToks;
2035   if (getLangOpts().MicrosoftExt)
2036     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2037 
2038   StringLiteralParser Literal(StringToks, PP);
2039   if (Literal.hadError)
2040     return ExprError();
2041 
2042   SmallVector<SourceLocation, 4> StringTokLocs;
2043   for (const Token &Tok : StringToks)
2044     StringTokLocs.push_back(Tok.getLocation());
2045 
2046   QualType CharTy = Context.CharTy;
2047   StringLiteralKind Kind = StringLiteralKind::Ordinary;
2048   if (Literal.isWide()) {
2049     CharTy = Context.getWideCharType();
2050     Kind = StringLiteralKind::Wide;
2051   } else if (Literal.isUTF8()) {
2052     if (getLangOpts().Char8)
2053       CharTy = Context.Char8Ty;
2054     else if (getLangOpts().C23)
2055       CharTy = Context.UnsignedCharTy;
2056     Kind = StringLiteralKind::UTF8;
2057   } else if (Literal.isUTF16()) {
2058     CharTy = Context.Char16Ty;
2059     Kind = StringLiteralKind::UTF16;
2060   } else if (Literal.isUTF32()) {
2061     CharTy = Context.Char32Ty;
2062     Kind = StringLiteralKind::UTF32;
2063   } else if (Literal.isPascal()) {
2064     CharTy = Context.UnsignedCharTy;
2065   }
2066 
2067   // Warn on u8 string literals before C++20 and C23, whose type
2068   // was an array of char before but becomes an array of char8_t.
2069   // In C++20, it cannot be used where a pointer to char is expected.
2070   // In C23, it might have an unexpected value if char was signed.
2071   if (Kind == StringLiteralKind::UTF8 &&
2072       (getLangOpts().CPlusPlus
2073            ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2074            : !getLangOpts().C23)) {
2075     Diag(StringTokLocs.front(), getLangOpts().CPlusPlus
2076                                     ? diag::warn_cxx20_compat_utf8_string
2077                                     : diag::warn_c23_compat_utf8_string);
2078 
2079     // Create removals for all 'u8' prefixes in the string literal(s). This
2080     // ensures C++20/C23 compatibility (but may change the program behavior when
2081     // built by non-Clang compilers for which the execution character set is
2082     // not always UTF-8).
2083     auto RemovalDiag = PDiag(diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2084     SourceLocation RemovalDiagLoc;
2085     for (const Token &Tok : StringToks) {
2086       if (Tok.getKind() == tok::utf8_string_literal) {
2087         if (RemovalDiagLoc.isInvalid())
2088           RemovalDiagLoc = Tok.getLocation();
2089         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2090             Tok.getLocation(),
2091             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2092                                            getSourceManager(), getLangOpts())));
2093       }
2094     }
2095     Diag(RemovalDiagLoc, RemovalDiag);
2096   }
2097 
2098   QualType StrTy =
2099       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2100 
2101   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2102   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2103                                              Kind, Literal.Pascal, StrTy,
2104                                              &StringTokLocs[0],
2105                                              StringTokLocs.size());
2106   if (Literal.getUDSuffix().empty())
2107     return Lit;
2108 
2109   // We're building a user-defined literal.
2110   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2111   SourceLocation UDSuffixLoc =
2112     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2113                    Literal.getUDSuffixOffset());
2114 
2115   // Make sure we're allowed user-defined literals here.
2116   if (!UDLScope)
2117     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2118 
2119   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2120   //   operator "" X (str, len)
2121   QualType SizeType = Context.getSizeType();
2122 
2123   DeclarationName OpName =
2124     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2125   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2126   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2127 
2128   QualType ArgTy[] = {
2129     Context.getArrayDecayedType(StrTy), SizeType
2130   };
2131 
2132   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2133   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2134                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2135                                 /*AllowStringTemplatePack*/ true,
2136                                 /*DiagnoseMissing*/ true, Lit)) {
2137 
2138   case LOLR_Cooked: {
2139     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2140     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2141                                                     StringTokLocs[0]);
2142     Expr *Args[] = { Lit, LenArg };
2143 
2144     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2145   }
2146 
2147   case LOLR_Template: {
2148     TemplateArgumentListInfo ExplicitArgs;
2149     TemplateArgument Arg(Lit);
2150     TemplateArgumentLocInfo ArgInfo(Lit);
2151     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2152     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2153                                     StringTokLocs.back(), &ExplicitArgs);
2154   }
2155 
2156   case LOLR_StringTemplatePack: {
2157     TemplateArgumentListInfo ExplicitArgs;
2158 
2159     unsigned CharBits = Context.getIntWidth(CharTy);
2160     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2161     llvm::APSInt Value(CharBits, CharIsUnsigned);
2162 
2163     TemplateArgument TypeArg(CharTy);
2164     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2165     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2166 
2167     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2168       Value = Lit->getCodeUnit(I);
2169       TemplateArgument Arg(Context, Value, CharTy);
2170       TemplateArgumentLocInfo ArgInfo;
2171       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2172     }
2173     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2174                                     StringTokLocs.back(), &ExplicitArgs);
2175   }
2176   case LOLR_Raw:
2177   case LOLR_ErrorNoDiagnostic:
2178     llvm_unreachable("unexpected literal operator lookup result");
2179   case LOLR_Error:
2180     return ExprError();
2181   }
2182   llvm_unreachable("unexpected literal operator lookup result");
2183 }
2184 
2185 DeclRefExpr *
2186 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2187                        SourceLocation Loc,
2188                        const CXXScopeSpec *SS) {
2189   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2190   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2191 }
2192 
2193 DeclRefExpr *
2194 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2195                        const DeclarationNameInfo &NameInfo,
2196                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2197                        SourceLocation TemplateKWLoc,
2198                        const TemplateArgumentListInfo *TemplateArgs) {
2199   NestedNameSpecifierLoc NNS =
2200       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2201   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2202                           TemplateArgs);
2203 }
2204 
2205 // CUDA/HIP: Check whether a captured reference variable is referencing a
2206 // host variable in a device or host device lambda.
2207 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2208                                                             VarDecl *VD) {
2209   if (!S.getLangOpts().CUDA || !VD->hasInit())
2210     return false;
2211   assert(VD->getType()->isReferenceType());
2212 
2213   // Check whether the reference variable is referencing a host variable.
2214   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2215   if (!DRE)
2216     return false;
2217   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2218   if (!Referee || !Referee->hasGlobalStorage() ||
2219       Referee->hasAttr<CUDADeviceAttr>())
2220     return false;
2221 
2222   // Check whether the current function is a device or host device lambda.
2223   // Check whether the reference variable is a capture by getDeclContext()
2224   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2225   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2226   if (MD && MD->getParent()->isLambda() &&
2227       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2228       VD->getDeclContext() != MD)
2229     return true;
2230 
2231   return false;
2232 }
2233 
2234 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2235   // A declaration named in an unevaluated operand never constitutes an odr-use.
2236   if (isUnevaluatedContext())
2237     return NOUR_Unevaluated;
2238 
2239   // C++2a [basic.def.odr]p4:
2240   //   A variable x whose name appears as a potentially-evaluated expression e
2241   //   is odr-used by e unless [...] x is a reference that is usable in
2242   //   constant expressions.
2243   // CUDA/HIP:
2244   //   If a reference variable referencing a host variable is captured in a
2245   //   device or host device lambda, the value of the referee must be copied
2246   //   to the capture and the reference variable must be treated as odr-use
2247   //   since the value of the referee is not known at compile time and must
2248   //   be loaded from the captured.
2249   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2250     if (VD->getType()->isReferenceType() &&
2251         !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2252         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2253         VD->isUsableInConstantExpressions(Context))
2254       return NOUR_Constant;
2255   }
2256 
2257   // All remaining non-variable cases constitute an odr-use. For variables, we
2258   // need to wait and see how the expression is used.
2259   return NOUR_None;
2260 }
2261 
2262 DeclRefExpr *
2263 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2264                        const DeclarationNameInfo &NameInfo,
2265                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2266                        SourceLocation TemplateKWLoc,
2267                        const TemplateArgumentListInfo *TemplateArgs) {
2268   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2269                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2270 
2271   DeclRefExpr *E = DeclRefExpr::Create(
2272       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2273       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2274   MarkDeclRefReferenced(E);
2275 
2276   // C++ [except.spec]p17:
2277   //   An exception-specification is considered to be needed when:
2278   //   - in an expression, the function is the unique lookup result or
2279   //     the selected member of a set of overloaded functions.
2280   //
2281   // We delay doing this until after we've built the function reference and
2282   // marked it as used so that:
2283   //  a) if the function is defaulted, we get errors from defining it before /
2284   //     instead of errors from computing its exception specification, and
2285   //  b) if the function is a defaulted comparison, we can use the body we
2286   //     build when defining it as input to the exception specification
2287   //     computation rather than computing a new body.
2288   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2289     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2290       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2291         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2292     }
2293   }
2294 
2295   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2296       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2297       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2298     getCurFunction()->recordUseOfWeak(E);
2299 
2300   const auto *FD = dyn_cast<FieldDecl>(D);
2301   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2302     FD = IFD->getAnonField();
2303   if (FD) {
2304     UnusedPrivateFields.remove(FD);
2305     // Just in case we're building an illegal pointer-to-member.
2306     if (FD->isBitField())
2307       E->setObjectKind(OK_BitField);
2308   }
2309 
2310   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2311   // designates a bit-field.
2312   if (const auto *BD = dyn_cast<BindingDecl>(D))
2313     if (const auto *BE = BD->getBinding())
2314       E->setObjectKind(BE->getObjectKind());
2315 
2316   return E;
2317 }
2318 
2319 void
2320 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2321                              TemplateArgumentListInfo &Buffer,
2322                              DeclarationNameInfo &NameInfo,
2323                              const TemplateArgumentListInfo *&TemplateArgs) {
2324   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2325     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2326     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2327 
2328     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2329                                        Id.TemplateId->NumArgs);
2330     translateTemplateArguments(TemplateArgsPtr, Buffer);
2331 
2332     TemplateName TName = Id.TemplateId->Template.get();
2333     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2334     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2335     TemplateArgs = &Buffer;
2336   } else {
2337     NameInfo = GetNameFromUnqualifiedId(Id);
2338     TemplateArgs = nullptr;
2339   }
2340 }
2341 
2342 static void emitEmptyLookupTypoDiagnostic(
2343     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2344     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2345     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2346   DeclContext *Ctx =
2347       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2348   if (!TC) {
2349     // Emit a special diagnostic for failed member lookups.
2350     // FIXME: computing the declaration context might fail here (?)
2351     if (Ctx)
2352       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2353                                                  << SS.getRange();
2354     else
2355       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2356     return;
2357   }
2358 
2359   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2360   bool DroppedSpecifier =
2361       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2362   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2363                         ? diag::note_implicit_param_decl
2364                         : diag::note_previous_decl;
2365   if (!Ctx)
2366     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2367                          SemaRef.PDiag(NoteID));
2368   else
2369     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2370                                  << Typo << Ctx << DroppedSpecifier
2371                                  << SS.getRange(),
2372                          SemaRef.PDiag(NoteID));
2373 }
2374 
2375 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2376   // During a default argument instantiation the CurContext points
2377   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2378   // function parameter list, hence add an explicit check.
2379   bool isDefaultArgument =
2380       !CodeSynthesisContexts.empty() &&
2381       CodeSynthesisContexts.back().Kind ==
2382           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2383   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2384   bool isInstance = CurMethod && CurMethod->isInstance() &&
2385                     R.getNamingClass() == CurMethod->getParent() &&
2386                     !isDefaultArgument;
2387 
2388   // There are two ways we can find a class-scope declaration during template
2389   // instantiation that we did not find in the template definition: if it is a
2390   // member of a dependent base class, or if it is declared after the point of
2391   // use in the same class. Distinguish these by comparing the class in which
2392   // the member was found to the naming class of the lookup.
2393   unsigned DiagID = diag::err_found_in_dependent_base;
2394   unsigned NoteID = diag::note_member_declared_at;
2395   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2396     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2397                                       : diag::err_found_later_in_class;
2398   } else if (getLangOpts().MSVCCompat) {
2399     DiagID = diag::ext_found_in_dependent_base;
2400     NoteID = diag::note_dependent_member_use;
2401   }
2402 
2403   if (isInstance) {
2404     // Give a code modification hint to insert 'this->'.
2405     Diag(R.getNameLoc(), DiagID)
2406         << R.getLookupName()
2407         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2408     CheckCXXThisCapture(R.getNameLoc());
2409   } else {
2410     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2411     // they're not shadowed).
2412     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2413   }
2414 
2415   for (const NamedDecl *D : R)
2416     Diag(D->getLocation(), NoteID);
2417 
2418   // Return true if we are inside a default argument instantiation
2419   // and the found name refers to an instance member function, otherwise
2420   // the caller will try to create an implicit member call and this is wrong
2421   // for default arguments.
2422   //
2423   // FIXME: Is this special case necessary? We could allow the caller to
2424   // diagnose this.
2425   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2426     Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2427     return true;
2428   }
2429 
2430   // Tell the callee to try to recover.
2431   return false;
2432 }
2433 
2434 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2435                                CorrectionCandidateCallback &CCC,
2436                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2437                                ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2438                                TypoExpr **Out) {
2439   DeclarationName Name = R.getLookupName();
2440 
2441   unsigned diagnostic = diag::err_undeclared_var_use;
2442   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2443   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2444       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2445       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2446     diagnostic = diag::err_undeclared_use;
2447     diagnostic_suggest = diag::err_undeclared_use_suggest;
2448   }
2449 
2450   // If the original lookup was an unqualified lookup, fake an
2451   // unqualified lookup.  This is useful when (for example) the
2452   // original lookup would not have found something because it was a
2453   // dependent name.
2454   DeclContext *DC =
2455       LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2456   while (DC) {
2457     if (isa<CXXRecordDecl>(DC)) {
2458       LookupQualifiedName(R, DC);
2459 
2460       if (!R.empty()) {
2461         // Don't give errors about ambiguities in this lookup.
2462         R.suppressDiagnostics();
2463 
2464         // If there's a best viable function among the results, only mention
2465         // that one in the notes.
2466         OverloadCandidateSet Candidates(R.getNameLoc(),
2467                                         OverloadCandidateSet::CSK_Normal);
2468         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2469         OverloadCandidateSet::iterator Best;
2470         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2471             OR_Success) {
2472           R.clear();
2473           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2474           R.resolveKind();
2475         }
2476 
2477         return DiagnoseDependentMemberLookup(R);
2478       }
2479 
2480       R.clear();
2481     }
2482 
2483     DC = DC->getLookupParent();
2484   }
2485 
2486   // We didn't find anything, so try to correct for a typo.
2487   TypoCorrection Corrected;
2488   if (S && Out) {
2489     SourceLocation TypoLoc = R.getNameLoc();
2490     assert(!ExplicitTemplateArgs &&
2491            "Diagnosing an empty lookup with explicit template args!");
2492     *Out = CorrectTypoDelayed(
2493         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2494         [=](const TypoCorrection &TC) {
2495           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2496                                         diagnostic, diagnostic_suggest);
2497         },
2498         nullptr, CTK_ErrorRecovery, LookupCtx);
2499     if (*Out)
2500       return true;
2501   } else if (S && (Corrected =
2502                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2503                                    &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2504     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2505     bool DroppedSpecifier =
2506         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2507     R.setLookupName(Corrected.getCorrection());
2508 
2509     bool AcceptableWithRecovery = false;
2510     bool AcceptableWithoutRecovery = false;
2511     NamedDecl *ND = Corrected.getFoundDecl();
2512     if (ND) {
2513       if (Corrected.isOverloaded()) {
2514         OverloadCandidateSet OCS(R.getNameLoc(),
2515                                  OverloadCandidateSet::CSK_Normal);
2516         OverloadCandidateSet::iterator Best;
2517         for (NamedDecl *CD : Corrected) {
2518           if (FunctionTemplateDecl *FTD =
2519                    dyn_cast<FunctionTemplateDecl>(CD))
2520             AddTemplateOverloadCandidate(
2521                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2522                 Args, OCS);
2523           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2524             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2525               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2526                                    Args, OCS);
2527         }
2528         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2529         case OR_Success:
2530           ND = Best->FoundDecl;
2531           Corrected.setCorrectionDecl(ND);
2532           break;
2533         default:
2534           // FIXME: Arbitrarily pick the first declaration for the note.
2535           Corrected.setCorrectionDecl(ND);
2536           break;
2537         }
2538       }
2539       R.addDecl(ND);
2540       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2541         CXXRecordDecl *Record = nullptr;
2542         if (Corrected.getCorrectionSpecifier()) {
2543           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2544           Record = Ty->getAsCXXRecordDecl();
2545         }
2546         if (!Record)
2547           Record = cast<CXXRecordDecl>(
2548               ND->getDeclContext()->getRedeclContext());
2549         R.setNamingClass(Record);
2550       }
2551 
2552       auto *UnderlyingND = ND->getUnderlyingDecl();
2553       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2554                                isa<FunctionTemplateDecl>(UnderlyingND);
2555       // FIXME: If we ended up with a typo for a type name or
2556       // Objective-C class name, we're in trouble because the parser
2557       // is in the wrong place to recover. Suggest the typo
2558       // correction, but don't make it a fix-it since we're not going
2559       // to recover well anyway.
2560       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2561                                   getAsTypeTemplateDecl(UnderlyingND) ||
2562                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2563     } else {
2564       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2565       // because we aren't able to recover.
2566       AcceptableWithoutRecovery = true;
2567     }
2568 
2569     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2570       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2571                             ? diag::note_implicit_param_decl
2572                             : diag::note_previous_decl;
2573       if (SS.isEmpty())
2574         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2575                      PDiag(NoteID), AcceptableWithRecovery);
2576       else
2577         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2578                                   << Name << computeDeclContext(SS, false)
2579                                   << DroppedSpecifier << SS.getRange(),
2580                      PDiag(NoteID), AcceptableWithRecovery);
2581 
2582       // Tell the callee whether to try to recover.
2583       return !AcceptableWithRecovery;
2584     }
2585   }
2586   R.clear();
2587 
2588   // Emit a special diagnostic for failed member lookups.
2589   // FIXME: computing the declaration context might fail here (?)
2590   if (!SS.isEmpty()) {
2591     Diag(R.getNameLoc(), diag::err_no_member)
2592       << Name << computeDeclContext(SS, false)
2593       << SS.getRange();
2594     return true;
2595   }
2596 
2597   // Give up, we can't recover.
2598   Diag(R.getNameLoc(), diagnostic) << Name;
2599   return true;
2600 }
2601 
2602 /// In Microsoft mode, if we are inside a template class whose parent class has
2603 /// dependent base classes, and we can't resolve an unqualified identifier, then
2604 /// assume the identifier is a member of a dependent base class.  We can only
2605 /// recover successfully in static methods, instance methods, and other contexts
2606 /// where 'this' is available.  This doesn't precisely match MSVC's
2607 /// instantiation model, but it's close enough.
2608 static Expr *
2609 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2610                                DeclarationNameInfo &NameInfo,
2611                                SourceLocation TemplateKWLoc,
2612                                const TemplateArgumentListInfo *TemplateArgs) {
2613   // Only try to recover from lookup into dependent bases in static methods or
2614   // contexts where 'this' is available.
2615   QualType ThisType = S.getCurrentThisType();
2616   const CXXRecordDecl *RD = nullptr;
2617   if (!ThisType.isNull())
2618     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2619   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2620     RD = MD->getParent();
2621   if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2622     return nullptr;
2623 
2624   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2625   // is available, suggest inserting 'this->' as a fixit.
2626   SourceLocation Loc = NameInfo.getLoc();
2627   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2628   DB << NameInfo.getName() << RD;
2629 
2630   if (!ThisType.isNull()) {
2631     DB << FixItHint::CreateInsertion(Loc, "this->");
2632     return CXXDependentScopeMemberExpr::Create(
2633         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2634         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2635         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2636   }
2637 
2638   // Synthesize a fake NNS that points to the derived class.  This will
2639   // perform name lookup during template instantiation.
2640   CXXScopeSpec SS;
2641   auto *NNS =
2642       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2643   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2644   return DependentScopeDeclRefExpr::Create(
2645       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2646       TemplateArgs);
2647 }
2648 
2649 ExprResult
2650 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2651                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2652                         bool HasTrailingLParen, bool IsAddressOfOperand,
2653                         CorrectionCandidateCallback *CCC,
2654                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2655   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2656          "cannot be direct & operand and have a trailing lparen");
2657   if (SS.isInvalid())
2658     return ExprError();
2659 
2660   TemplateArgumentListInfo TemplateArgsBuffer;
2661 
2662   // Decompose the UnqualifiedId into the following data.
2663   DeclarationNameInfo NameInfo;
2664   const TemplateArgumentListInfo *TemplateArgs;
2665   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2666 
2667   DeclarationName Name = NameInfo.getName();
2668   IdentifierInfo *II = Name.getAsIdentifierInfo();
2669   SourceLocation NameLoc = NameInfo.getLoc();
2670 
2671   if (II && II->isEditorPlaceholder()) {
2672     // FIXME: When typed placeholders are supported we can create a typed
2673     // placeholder expression node.
2674     return ExprError();
2675   }
2676 
2677   // This specially handles arguments of attributes appertains to a type of C
2678   // struct field such that the name lookup within a struct finds the member
2679   // name, which is not the case for other contexts in C.
2680   if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2681     // See if this is reference to a field of struct.
2682     LookupResult R(*this, NameInfo, LookupMemberName);
2683     // LookupName handles a name lookup from within anonymous struct.
2684     if (LookupName(R, S)) {
2685       if (auto *VD = dyn_cast<ValueDecl>(R.getFoundDecl())) {
2686         QualType type = VD->getType().getNonReferenceType();
2687         // This will eventually be translated into MemberExpr upon
2688         // the use of instantiated struct fields.
2689         return BuildDeclRefExpr(VD, type, VK_LValue, NameLoc);
2690       }
2691     }
2692   }
2693 
2694   // Perform the required lookup.
2695   LookupResult R(*this, NameInfo,
2696                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2697                      ? LookupObjCImplicitSelfParam
2698                      : LookupOrdinaryName);
2699   if (TemplateKWLoc.isValid() || TemplateArgs) {
2700     // Lookup the template name again to correctly establish the context in
2701     // which it was found. This is really unfortunate as we already did the
2702     // lookup to determine that it was a template name in the first place. If
2703     // this becomes a performance hit, we can work harder to preserve those
2704     // results until we get here but it's likely not worth it.
2705     AssumedTemplateKind AssumedTemplate;
2706     if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2707                            /*EnteringContext=*/false, TemplateKWLoc,
2708                            &AssumedTemplate))
2709       return ExprError();
2710 
2711     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2712       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2713                                         IsAddressOfOperand, TemplateArgs);
2714   } else {
2715     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2716     LookupParsedName(R, S, &SS, /*ObjectType=*/QualType(),
2717                      /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2718 
2719     // If the result might be in a dependent base class, this is a dependent
2720     // id-expression.
2721     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2722       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2723                                         IsAddressOfOperand, TemplateArgs);
2724 
2725     // If this reference is in an Objective-C method, then we need to do
2726     // some special Objective-C lookup, too.
2727     if (IvarLookupFollowUp) {
2728       ExprResult E(ObjC().LookupInObjCMethod(R, S, II, true));
2729       if (E.isInvalid())
2730         return ExprError();
2731 
2732       if (Expr *Ex = E.getAs<Expr>())
2733         return Ex;
2734     }
2735   }
2736 
2737   if (R.isAmbiguous())
2738     return ExprError();
2739 
2740   // This could be an implicitly declared function reference if the language
2741   // mode allows it as a feature.
2742   if (R.empty() && HasTrailingLParen && II &&
2743       getLangOpts().implicitFunctionsAllowed()) {
2744     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2745     if (D) R.addDecl(D);
2746   }
2747 
2748   // Determine whether this name might be a candidate for
2749   // argument-dependent lookup.
2750   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2751 
2752   if (R.empty() && !ADL) {
2753     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2754       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2755                                                    TemplateKWLoc, TemplateArgs))
2756         return E;
2757     }
2758 
2759     // Don't diagnose an empty lookup for inline assembly.
2760     if (IsInlineAsmIdentifier)
2761       return ExprError();
2762 
2763     // If this name wasn't predeclared and if this is not a function
2764     // call, diagnose the problem.
2765     TypoExpr *TE = nullptr;
2766     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2767                                                        : nullptr);
2768     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2769     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2770            "Typo correction callback misconfigured");
2771     if (CCC) {
2772       // Make sure the callback knows what the typo being diagnosed is.
2773       CCC->setTypoName(II);
2774       if (SS.isValid())
2775         CCC->setTypoNNS(SS.getScopeRep());
2776     }
2777     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2778     // a template name, but we happen to have always already looked up the name
2779     // before we get here if it must be a template name.
2780     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2781                             std::nullopt, nullptr, &TE)) {
2782       if (TE && KeywordReplacement) {
2783         auto &State = getTypoExprState(TE);
2784         auto BestTC = State.Consumer->getNextCorrection();
2785         if (BestTC.isKeyword()) {
2786           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2787           if (State.DiagHandler)
2788             State.DiagHandler(BestTC);
2789           KeywordReplacement->startToken();
2790           KeywordReplacement->setKind(II->getTokenID());
2791           KeywordReplacement->setIdentifierInfo(II);
2792           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2793           // Clean up the state associated with the TypoExpr, since it has
2794           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2795           clearDelayedTypo(TE);
2796           // Signal that a correction to a keyword was performed by returning a
2797           // valid-but-null ExprResult.
2798           return (Expr*)nullptr;
2799         }
2800         State.Consumer->resetCorrectionStream();
2801       }
2802       return TE ? TE : ExprError();
2803     }
2804 
2805     assert(!R.empty() &&
2806            "DiagnoseEmptyLookup returned false but added no results");
2807 
2808     // If we found an Objective-C instance variable, let
2809     // LookupInObjCMethod build the appropriate expression to
2810     // reference the ivar.
2811     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2812       R.clear();
2813       ExprResult E(ObjC().LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2814       // In a hopelessly buggy code, Objective-C instance variable
2815       // lookup fails and no expression will be built to reference it.
2816       if (!E.isInvalid() && !E.get())
2817         return ExprError();
2818       return E;
2819     }
2820   }
2821 
2822   // This is guaranteed from this point on.
2823   assert(!R.empty() || ADL);
2824 
2825   // Check whether this might be a C++ implicit instance member access.
2826   // C++ [class.mfct.non-static]p3:
2827   //   When an id-expression that is not part of a class member access
2828   //   syntax and not used to form a pointer to member is used in the
2829   //   body of a non-static member function of class X, if name lookup
2830   //   resolves the name in the id-expression to a non-static non-type
2831   //   member of some class C, the id-expression is transformed into a
2832   //   class member access expression using (*this) as the
2833   //   postfix-expression to the left of the . operator.
2834   //
2835   // But we don't actually need to do this for '&' operands if R
2836   // resolved to a function or overloaded function set, because the
2837   // expression is ill-formed if it actually works out to be a
2838   // non-static member function:
2839   //
2840   // C++ [expr.ref]p4:
2841   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2842   //   [t]he expression can be used only as the left-hand operand of a
2843   //   member function call.
2844   //
2845   // There are other safeguards against such uses, but it's important
2846   // to get this right here so that we don't end up making a
2847   // spuriously dependent expression if we're inside a dependent
2848   // instance method.
2849   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2850     return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2851                                            S);
2852 
2853   if (TemplateArgs || TemplateKWLoc.isValid()) {
2854 
2855     // In C++1y, if this is a variable template id, then check it
2856     // in BuildTemplateIdExpr().
2857     // The single lookup result must be a variable template declaration.
2858     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2859         Id.TemplateId->Kind == TNK_Var_template) {
2860       assert(R.getAsSingle<VarTemplateDecl>() &&
2861              "There should only be one declaration found.");
2862     }
2863 
2864     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2865   }
2866 
2867   return BuildDeclarationNameExpr(SS, R, ADL);
2868 }
2869 
2870 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2871     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2872     bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2873   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2874   LookupParsedName(R, /*S=*/nullptr, &SS, /*ObjectType=*/QualType());
2875 
2876   if (R.isAmbiguous())
2877     return ExprError();
2878 
2879   if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2880     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2881                                      NameInfo, /*TemplateArgs=*/nullptr);
2882 
2883   if (R.empty()) {
2884     // Don't diagnose problems with invalid record decl, the secondary no_member
2885     // diagnostic during template instantiation is likely bogus, e.g. if a class
2886     // is invalid because it's derived from an invalid base class, then missing
2887     // members were likely supposed to be inherited.
2888     DeclContext *DC = computeDeclContext(SS);
2889     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2890       if (CD->isInvalidDecl())
2891         return ExprError();
2892     Diag(NameInfo.getLoc(), diag::err_no_member)
2893       << NameInfo.getName() << DC << SS.getRange();
2894     return ExprError();
2895   }
2896 
2897   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2898     // Diagnose a missing typename if this resolved unambiguously to a type in
2899     // a dependent context.  If we can recover with a type, downgrade this to
2900     // a warning in Microsoft compatibility mode.
2901     unsigned DiagID = diag::err_typename_missing;
2902     if (RecoveryTSI && getLangOpts().MSVCCompat)
2903       DiagID = diag::ext_typename_missing;
2904     SourceLocation Loc = SS.getBeginLoc();
2905     auto D = Diag(Loc, DiagID);
2906     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2907       << SourceRange(Loc, NameInfo.getEndLoc());
2908 
2909     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2910     // context.
2911     if (!RecoveryTSI)
2912       return ExprError();
2913 
2914     // Only issue the fixit if we're prepared to recover.
2915     D << FixItHint::CreateInsertion(Loc, "typename ");
2916 
2917     // Recover by pretending this was an elaborated type.
2918     QualType Ty = Context.getTypeDeclType(TD);
2919     TypeLocBuilder TLB;
2920     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2921 
2922     QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2923     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2924     QTL.setElaboratedKeywordLoc(SourceLocation());
2925     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2926 
2927     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2928 
2929     return ExprEmpty();
2930   }
2931 
2932   // If necessary, build an implicit class member access.
2933   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2934     return BuildPossibleImplicitMemberExpr(SS,
2935                                            /*TemplateKWLoc=*/SourceLocation(),
2936                                            R, /*TemplateArgs=*/nullptr,
2937                                            /*S=*/nullptr);
2938 
2939   return BuildDeclarationNameExpr(SS, R, /*ADL=*/false);
2940 }
2941 
2942 ExprResult
2943 Sema::PerformObjectMemberConversion(Expr *From,
2944                                     NestedNameSpecifier *Qualifier,
2945                                     NamedDecl *FoundDecl,
2946                                     NamedDecl *Member) {
2947   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2948   if (!RD)
2949     return From;
2950 
2951   QualType DestRecordType;
2952   QualType DestType;
2953   QualType FromRecordType;
2954   QualType FromType = From->getType();
2955   bool PointerConversions = false;
2956   if (isa<FieldDecl>(Member)) {
2957     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2958     auto FromPtrType = FromType->getAs<PointerType>();
2959     DestRecordType = Context.getAddrSpaceQualType(
2960         DestRecordType, FromPtrType
2961                             ? FromType->getPointeeType().getAddressSpace()
2962                             : FromType.getAddressSpace());
2963 
2964     if (FromPtrType) {
2965       DestType = Context.getPointerType(DestRecordType);
2966       FromRecordType = FromPtrType->getPointeeType();
2967       PointerConversions = true;
2968     } else {
2969       DestType = DestRecordType;
2970       FromRecordType = FromType;
2971     }
2972   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
2973     if (!Method->isImplicitObjectMemberFunction())
2974       return From;
2975 
2976     DestType = Method->getThisType().getNonReferenceType();
2977     DestRecordType = Method->getFunctionObjectParameterType();
2978 
2979     if (FromType->getAs<PointerType>()) {
2980       FromRecordType = FromType->getPointeeType();
2981       PointerConversions = true;
2982     } else {
2983       FromRecordType = FromType;
2984       DestType = DestRecordType;
2985     }
2986 
2987     LangAS FromAS = FromRecordType.getAddressSpace();
2988     LangAS DestAS = DestRecordType.getAddressSpace();
2989     if (FromAS != DestAS) {
2990       QualType FromRecordTypeWithoutAS =
2991           Context.removeAddrSpaceQualType(FromRecordType);
2992       QualType FromTypeWithDestAS =
2993           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2994       if (PointerConversions)
2995         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2996       From = ImpCastExprToType(From, FromTypeWithDestAS,
2997                                CK_AddressSpaceConversion, From->getValueKind())
2998                  .get();
2999     }
3000   } else {
3001     // No conversion necessary.
3002     return From;
3003   }
3004 
3005   if (DestType->isDependentType() || FromType->isDependentType())
3006     return From;
3007 
3008   // If the unqualified types are the same, no conversion is necessary.
3009   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3010     return From;
3011 
3012   SourceRange FromRange = From->getSourceRange();
3013   SourceLocation FromLoc = FromRange.getBegin();
3014 
3015   ExprValueKind VK = From->getValueKind();
3016 
3017   // C++ [class.member.lookup]p8:
3018   //   [...] Ambiguities can often be resolved by qualifying a name with its
3019   //   class name.
3020   //
3021   // If the member was a qualified name and the qualified referred to a
3022   // specific base subobject type, we'll cast to that intermediate type
3023   // first and then to the object in which the member is declared. That allows
3024   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3025   //
3026   //   class Base { public: int x; };
3027   //   class Derived1 : public Base { };
3028   //   class Derived2 : public Base { };
3029   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3030   //
3031   //   void VeryDerived::f() {
3032   //     x = 17; // error: ambiguous base subobjects
3033   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3034   //   }
3035   if (Qualifier && Qualifier->getAsType()) {
3036     QualType QType = QualType(Qualifier->getAsType(), 0);
3037     assert(QType->isRecordType() && "lookup done with non-record type");
3038 
3039     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3040 
3041     // In C++98, the qualifier type doesn't actually have to be a base
3042     // type of the object type, in which case we just ignore it.
3043     // Otherwise build the appropriate casts.
3044     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3045       CXXCastPath BasePath;
3046       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3047                                        FromLoc, FromRange, &BasePath))
3048         return ExprError();
3049 
3050       if (PointerConversions)
3051         QType = Context.getPointerType(QType);
3052       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3053                                VK, &BasePath).get();
3054 
3055       FromType = QType;
3056       FromRecordType = QRecordType;
3057 
3058       // If the qualifier type was the same as the destination type,
3059       // we're done.
3060       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3061         return From;
3062     }
3063   }
3064 
3065   CXXCastPath BasePath;
3066   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3067                                    FromLoc, FromRange, &BasePath,
3068                                    /*IgnoreAccess=*/true))
3069     return ExprError();
3070 
3071   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3072                            VK, &BasePath);
3073 }
3074 
3075 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3076                                       const LookupResult &R,
3077                                       bool HasTrailingLParen) {
3078   // Only when used directly as the postfix-expression of a call.
3079   if (!HasTrailingLParen)
3080     return false;
3081 
3082   // Never if a scope specifier was provided.
3083   if (SS.isNotEmpty())
3084     return false;
3085 
3086   // Only in C++ or ObjC++.
3087   if (!getLangOpts().CPlusPlus)
3088     return false;
3089 
3090   // Turn off ADL when we find certain kinds of declarations during
3091   // normal lookup:
3092   for (const NamedDecl *D : R) {
3093     // C++0x [basic.lookup.argdep]p3:
3094     //     -- a declaration of a class member
3095     // Since using decls preserve this property, we check this on the
3096     // original decl.
3097     if (D->isCXXClassMember())
3098       return false;
3099 
3100     // C++0x [basic.lookup.argdep]p3:
3101     //     -- a block-scope function declaration that is not a
3102     //        using-declaration
3103     // NOTE: we also trigger this for function templates (in fact, we
3104     // don't check the decl type at all, since all other decl types
3105     // turn off ADL anyway).
3106     if (isa<UsingShadowDecl>(D))
3107       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3108     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3109       return false;
3110 
3111     // C++0x [basic.lookup.argdep]p3:
3112     //     -- a declaration that is neither a function or a function
3113     //        template
3114     // And also for builtin functions.
3115     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3116       // But also builtin functions.
3117       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3118         return false;
3119     } else if (!isa<FunctionTemplateDecl>(D))
3120       return false;
3121   }
3122 
3123   return true;
3124 }
3125 
3126 
3127 /// Diagnoses obvious problems with the use of the given declaration
3128 /// as an expression.  This is only actually called for lookups that
3129 /// were not overloaded, and it doesn't promise that the declaration
3130 /// will in fact be used.
3131 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3132                             bool AcceptInvalid) {
3133   if (D->isInvalidDecl() && !AcceptInvalid)
3134     return true;
3135 
3136   if (isa<TypedefNameDecl>(D)) {
3137     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3138     return true;
3139   }
3140 
3141   if (isa<ObjCInterfaceDecl>(D)) {
3142     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3143     return true;
3144   }
3145 
3146   if (isa<NamespaceDecl>(D)) {
3147     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3148     return true;
3149   }
3150 
3151   return false;
3152 }
3153 
3154 // Certain multiversion types should be treated as overloaded even when there is
3155 // only one result.
3156 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3157   assert(R.isSingleResult() && "Expected only a single result");
3158   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3159   return FD &&
3160          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3161 }
3162 
3163 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3164                                           LookupResult &R, bool NeedsADL,
3165                                           bool AcceptInvalidDecl) {
3166   // If this is a single, fully-resolved result and we don't need ADL,
3167   // just build an ordinary singleton decl ref.
3168   if (!NeedsADL && R.isSingleResult() &&
3169       !R.getAsSingle<FunctionTemplateDecl>() &&
3170       !ShouldLookupResultBeMultiVersionOverload(R))
3171     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3172                                     R.getRepresentativeDecl(), nullptr,
3173                                     AcceptInvalidDecl);
3174 
3175   // We only need to check the declaration if there's exactly one
3176   // result, because in the overloaded case the results can only be
3177   // functions and function templates.
3178   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3179       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3180                       AcceptInvalidDecl))
3181     return ExprError();
3182 
3183   // Otherwise, just build an unresolved lookup expression.  Suppress
3184   // any lookup-related diagnostics; we'll hash these out later, when
3185   // we've picked a target.
3186   R.suppressDiagnostics();
3187 
3188   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3189       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
3190       R.getLookupNameInfo(), NeedsADL, R.begin(), R.end(),
3191       /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3192 
3193   return ULE;
3194 }
3195 
3196 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3197                                                         SourceLocation loc,
3198                                                         ValueDecl *var);
3199 
3200 ExprResult Sema::BuildDeclarationNameExpr(
3201     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3202     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3203     bool AcceptInvalidDecl) {
3204   assert(D && "Cannot refer to a NULL declaration");
3205   assert(!isa<FunctionTemplateDecl>(D) &&
3206          "Cannot refer unambiguously to a function template");
3207 
3208   SourceLocation Loc = NameInfo.getLoc();
3209   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3210     // Recovery from invalid cases (e.g. D is an invalid Decl).
3211     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3212     // diagnostics, as invalid decls use int as a fallback type.
3213     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3214   }
3215 
3216   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
3217     // Specifically diagnose references to class templates that are missing
3218     // a template argument list.
3219     diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3220     return ExprError();
3221   }
3222 
3223   // Make sure that we're referring to a value.
3224   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3225     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3226     Diag(D->getLocation(), diag::note_declared_at);
3227     return ExprError();
3228   }
3229 
3230   // Check whether this declaration can be used. Note that we suppress
3231   // this check when we're going to perform argument-dependent lookup
3232   // on this function name, because this might not be the function
3233   // that overload resolution actually selects.
3234   if (DiagnoseUseOfDecl(D, Loc))
3235     return ExprError();
3236 
3237   auto *VD = cast<ValueDecl>(D);
3238 
3239   // Only create DeclRefExpr's for valid Decl's.
3240   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3241     return ExprError();
3242 
3243   // Handle members of anonymous structs and unions.  If we got here,
3244   // and the reference is to a class member indirect field, then this
3245   // must be the subject of a pointer-to-member expression.
3246   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3247       IndirectField && !IndirectField->isCXXClassMember())
3248     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3249                                                     IndirectField);
3250 
3251   QualType type = VD->getType();
3252   if (type.isNull())
3253     return ExprError();
3254   ExprValueKind valueKind = VK_PRValue;
3255 
3256   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3257   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3258   // is expanded by some outer '...' in the context of the use.
3259   type = type.getNonPackExpansionType();
3260 
3261   switch (D->getKind()) {
3262     // Ignore all the non-ValueDecl kinds.
3263 #define ABSTRACT_DECL(kind)
3264 #define VALUE(type, base)
3265 #define DECL(type, base) case Decl::type:
3266 #include "clang/AST/DeclNodes.inc"
3267     llvm_unreachable("invalid value decl kind");
3268 
3269   // These shouldn't make it here.
3270   case Decl::ObjCAtDefsField:
3271     llvm_unreachable("forming non-member reference to ivar?");
3272 
3273   // Enum constants are always r-values and never references.
3274   // Unresolved using declarations are dependent.
3275   case Decl::EnumConstant:
3276   case Decl::UnresolvedUsingValue:
3277   case Decl::OMPDeclareReduction:
3278   case Decl::OMPDeclareMapper:
3279     valueKind = VK_PRValue;
3280     break;
3281 
3282   // Fields and indirect fields that got here must be for
3283   // pointer-to-member expressions; we just call them l-values for
3284   // internal consistency, because this subexpression doesn't really
3285   // exist in the high-level semantics.
3286   case Decl::Field:
3287   case Decl::IndirectField:
3288   case Decl::ObjCIvar:
3289     assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3290            "building reference to field in C?");
3291 
3292     // These can't have reference type in well-formed programs, but
3293     // for internal consistency we do this anyway.
3294     type = type.getNonReferenceType();
3295     valueKind = VK_LValue;
3296     break;
3297 
3298   // Non-type template parameters are either l-values or r-values
3299   // depending on the type.
3300   case Decl::NonTypeTemplateParm: {
3301     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3302       type = reftype->getPointeeType();
3303       valueKind = VK_LValue; // even if the parameter is an r-value reference
3304       break;
3305     }
3306 
3307     // [expr.prim.id.unqual]p2:
3308     //   If the entity is a template parameter object for a template
3309     //   parameter of type T, the type of the expression is const T.
3310     //   [...] The expression is an lvalue if the entity is a [...] template
3311     //   parameter object.
3312     if (type->isRecordType()) {
3313       type = type.getUnqualifiedType().withConst();
3314       valueKind = VK_LValue;
3315       break;
3316     }
3317 
3318     // For non-references, we need to strip qualifiers just in case
3319     // the template parameter was declared as 'const int' or whatever.
3320     valueKind = VK_PRValue;
3321     type = type.getUnqualifiedType();
3322     break;
3323   }
3324 
3325   case Decl::Var:
3326   case Decl::VarTemplateSpecialization:
3327   case Decl::VarTemplatePartialSpecialization:
3328   case Decl::Decomposition:
3329   case Decl::OMPCapturedExpr:
3330     // In C, "extern void blah;" is valid and is an r-value.
3331     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3332         type->isVoidType()) {
3333       valueKind = VK_PRValue;
3334       break;
3335     }
3336     [[fallthrough]];
3337 
3338   case Decl::ImplicitParam:
3339   case Decl::ParmVar: {
3340     // These are always l-values.
3341     valueKind = VK_LValue;
3342     type = type.getNonReferenceType();
3343 
3344     // FIXME: Does the addition of const really only apply in
3345     // potentially-evaluated contexts? Since the variable isn't actually
3346     // captured in an unevaluated context, it seems that the answer is no.
3347     if (!isUnevaluatedContext()) {
3348       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3349       if (!CapturedType.isNull())
3350         type = CapturedType;
3351     }
3352 
3353     break;
3354   }
3355 
3356   case Decl::Binding:
3357     // These are always lvalues.
3358     valueKind = VK_LValue;
3359     type = type.getNonReferenceType();
3360     break;
3361 
3362   case Decl::Function: {
3363     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3364       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3365         type = Context.BuiltinFnTy;
3366         valueKind = VK_PRValue;
3367         break;
3368       }
3369     }
3370 
3371     const FunctionType *fty = type->castAs<FunctionType>();
3372 
3373     // If we're referring to a function with an __unknown_anytype
3374     // result type, make the entire expression __unknown_anytype.
3375     if (fty->getReturnType() == Context.UnknownAnyTy) {
3376       type = Context.UnknownAnyTy;
3377       valueKind = VK_PRValue;
3378       break;
3379     }
3380 
3381     // Functions are l-values in C++.
3382     if (getLangOpts().CPlusPlus) {
3383       valueKind = VK_LValue;
3384       break;
3385     }
3386 
3387     // C99 DR 316 says that, if a function type comes from a
3388     // function definition (without a prototype), that type is only
3389     // used for checking compatibility. Therefore, when referencing
3390     // the function, we pretend that we don't have the full function
3391     // type.
3392     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3393       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3394                                             fty->getExtInfo());
3395 
3396     // Functions are r-values in C.
3397     valueKind = VK_PRValue;
3398     break;
3399   }
3400 
3401   case Decl::CXXDeductionGuide:
3402     llvm_unreachable("building reference to deduction guide");
3403 
3404   case Decl::MSProperty:
3405   case Decl::MSGuid:
3406   case Decl::TemplateParamObject:
3407     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3408     // capture in OpenMP, or duplicated between host and device?
3409     valueKind = VK_LValue;
3410     break;
3411 
3412   case Decl::UnnamedGlobalConstant:
3413     valueKind = VK_LValue;
3414     break;
3415 
3416   case Decl::CXXMethod:
3417     // If we're referring to a method with an __unknown_anytype
3418     // result type, make the entire expression __unknown_anytype.
3419     // This should only be possible with a type written directly.
3420     if (const FunctionProtoType *proto =
3421             dyn_cast<FunctionProtoType>(VD->getType()))
3422       if (proto->getReturnType() == Context.UnknownAnyTy) {
3423         type = Context.UnknownAnyTy;
3424         valueKind = VK_PRValue;
3425         break;
3426       }
3427 
3428     // C++ methods are l-values if static, r-values if non-static.
3429     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3430       valueKind = VK_LValue;
3431       break;
3432     }
3433     [[fallthrough]];
3434 
3435   case Decl::CXXConversion:
3436   case Decl::CXXDestructor:
3437   case Decl::CXXConstructor:
3438     valueKind = VK_PRValue;
3439     break;
3440   }
3441 
3442   auto *E =
3443       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3444                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3445   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3446   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3447   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3448   // diagnostics).
3449   if (VD->isInvalidDecl() && E)
3450     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3451   return E;
3452 }
3453 
3454 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3455                                     SmallString<32> &Target) {
3456   Target.resize(CharByteWidth * (Source.size() + 1));
3457   char *ResultPtr = &Target[0];
3458   const llvm::UTF8 *ErrorPtr;
3459   bool success =
3460       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3461   (void)success;
3462   assert(success);
3463   Target.resize(ResultPtr - &Target[0]);
3464 }
3465 
3466 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3467                                      PredefinedIdentKind IK) {
3468   Decl *currentDecl = getPredefinedExprDecl(CurContext);
3469   if (!currentDecl) {
3470     Diag(Loc, diag::ext_predef_outside_function);
3471     currentDecl = Context.getTranslationUnitDecl();
3472   }
3473 
3474   QualType ResTy;
3475   StringLiteral *SL = nullptr;
3476   if (cast<DeclContext>(currentDecl)->isDependentContext())
3477     ResTy = Context.DependentTy;
3478   else {
3479     // Pre-defined identifiers are of type char[x], where x is the length of
3480     // the string.
3481     bool ForceElaboratedPrinting =
3482         IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3483     auto Str =
3484         PredefinedExpr::ComputeName(IK, currentDecl, ForceElaboratedPrinting);
3485     unsigned Length = Str.length();
3486 
3487     llvm::APInt LengthI(32, Length + 1);
3488     if (IK == PredefinedIdentKind::LFunction ||
3489         IK == PredefinedIdentKind::LFuncSig) {
3490       ResTy =
3491           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3492       SmallString<32> RawChars;
3493       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3494                               Str, RawChars);
3495       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3496                                            ArraySizeModifier::Normal,
3497                                            /*IndexTypeQuals*/ 0);
3498       SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3499                                  /*Pascal*/ false, ResTy, Loc);
3500     } else {
3501       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3502       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3503                                            ArraySizeModifier::Normal,
3504                                            /*IndexTypeQuals*/ 0);
3505       SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3506                                  /*Pascal*/ false, ResTy, Loc);
3507     }
3508   }
3509 
3510   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3511                                 SL);
3512 }
3513 
3514 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3515   return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3516 }
3517 
3518 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3519   SmallString<16> CharBuffer;
3520   bool Invalid = false;
3521   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3522   if (Invalid)
3523     return ExprError();
3524 
3525   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3526                             PP, Tok.getKind());
3527   if (Literal.hadError())
3528     return ExprError();
3529 
3530   QualType Ty;
3531   if (Literal.isWide())
3532     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3533   else if (Literal.isUTF8() && getLangOpts().C23)
3534     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3535   else if (Literal.isUTF8() && getLangOpts().Char8)
3536     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3537   else if (Literal.isUTF16())
3538     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3539   else if (Literal.isUTF32())
3540     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3541   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3542     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3543   else
3544     Ty = Context.CharTy; // 'x' -> char in C++;
3545                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3546 
3547   CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3548   if (Literal.isWide())
3549     Kind = CharacterLiteralKind::Wide;
3550   else if (Literal.isUTF16())
3551     Kind = CharacterLiteralKind::UTF16;
3552   else if (Literal.isUTF32())
3553     Kind = CharacterLiteralKind::UTF32;
3554   else if (Literal.isUTF8())
3555     Kind = CharacterLiteralKind::UTF8;
3556 
3557   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3558                                              Tok.getLocation());
3559 
3560   if (Literal.getUDSuffix().empty())
3561     return Lit;
3562 
3563   // We're building a user-defined literal.
3564   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3565   SourceLocation UDSuffixLoc =
3566     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3567 
3568   // Make sure we're allowed user-defined literals here.
3569   if (!UDLScope)
3570     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3571 
3572   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3573   //   operator "" X (ch)
3574   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3575                                         Lit, Tok.getLocation());
3576 }
3577 
3578 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3579   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3580   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3581                                 Context.IntTy, Loc);
3582 }
3583 
3584 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3585                                   QualType Ty, SourceLocation Loc) {
3586   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3587 
3588   using llvm::APFloat;
3589   APFloat Val(Format);
3590 
3591   llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3592   if (RM == llvm::RoundingMode::Dynamic)
3593     RM = llvm::RoundingMode::NearestTiesToEven;
3594   APFloat::opStatus result = Literal.GetFloatValue(Val, RM);
3595 
3596   // Overflow is always an error, but underflow is only an error if
3597   // we underflowed to zero (APFloat reports denormals as underflow).
3598   if ((result & APFloat::opOverflow) ||
3599       ((result & APFloat::opUnderflow) && Val.isZero())) {
3600     unsigned diagnostic;
3601     SmallString<20> buffer;
3602     if (result & APFloat::opOverflow) {
3603       diagnostic = diag::warn_float_overflow;
3604       APFloat::getLargest(Format).toString(buffer);
3605     } else {
3606       diagnostic = diag::warn_float_underflow;
3607       APFloat::getSmallest(Format).toString(buffer);
3608     }
3609 
3610     S.Diag(Loc, diagnostic) << Ty << buffer.str();
3611   }
3612 
3613   bool isExact = (result == APFloat::opOK);
3614   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3615 }
3616 
3617 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3618   assert(E && "Invalid expression");
3619 
3620   if (E->isValueDependent())
3621     return false;
3622 
3623   QualType QT = E->getType();
3624   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3625     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3626     return true;
3627   }
3628 
3629   llvm::APSInt ValueAPS;
3630   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3631 
3632   if (R.isInvalid())
3633     return true;
3634 
3635   // GCC allows the value of unroll count to be 0.
3636   // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3637   // "The values of 0 and 1 block any unrolling of the loop."
3638   // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3639   // '#pragma unroll' cases.
3640   bool ValueIsPositive =
3641       AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3642   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3643     Diag(E->getExprLoc(), diag::err_requires_positive_value)
3644         << toString(ValueAPS, 10) << ValueIsPositive;
3645     return true;
3646   }
3647 
3648   return false;
3649 }
3650 
3651 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3652   // Fast path for a single digit (which is quite common).  A single digit
3653   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3654   if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3655     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3656     return ActOnIntegerConstant(Tok.getLocation(), Val);
3657   }
3658 
3659   SmallString<128> SpellingBuffer;
3660   // NumericLiteralParser wants to overread by one character.  Add padding to
3661   // the buffer in case the token is copied to the buffer.  If getSpelling()
3662   // returns a StringRef to the memory buffer, it should have a null char at
3663   // the EOF, so it is also safe.
3664   SpellingBuffer.resize(Tok.getLength() + 1);
3665 
3666   // Get the spelling of the token, which eliminates trigraphs, etc.
3667   bool Invalid = false;
3668   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3669   if (Invalid)
3670     return ExprError();
3671 
3672   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3673                                PP.getSourceManager(), PP.getLangOpts(),
3674                                PP.getTargetInfo(), PP.getDiagnostics());
3675   if (Literal.hadError)
3676     return ExprError();
3677 
3678   if (Literal.hasUDSuffix()) {
3679     // We're building a user-defined literal.
3680     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3681     SourceLocation UDSuffixLoc =
3682       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3683 
3684     // Make sure we're allowed user-defined literals here.
3685     if (!UDLScope)
3686       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3687 
3688     QualType CookedTy;
3689     if (Literal.isFloatingLiteral()) {
3690       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3691       // long double, the literal is treated as a call of the form
3692       //   operator "" X (f L)
3693       CookedTy = Context.LongDoubleTy;
3694     } else {
3695       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3696       // unsigned long long, the literal is treated as a call of the form
3697       //   operator "" X (n ULL)
3698       CookedTy = Context.UnsignedLongLongTy;
3699     }
3700 
3701     DeclarationName OpName =
3702       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3703     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3704     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3705 
3706     SourceLocation TokLoc = Tok.getLocation();
3707 
3708     // Perform literal operator lookup to determine if we're building a raw
3709     // literal or a cooked one.
3710     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3711     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3712                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3713                                   /*AllowStringTemplatePack*/ false,
3714                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3715     case LOLR_ErrorNoDiagnostic:
3716       // Lookup failure for imaginary constants isn't fatal, there's still the
3717       // GNU extension producing _Complex types.
3718       break;
3719     case LOLR_Error:
3720       return ExprError();
3721     case LOLR_Cooked: {
3722       Expr *Lit;
3723       if (Literal.isFloatingLiteral()) {
3724         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3725       } else {
3726         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3727         if (Literal.GetIntegerValue(ResultVal))
3728           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3729               << /* Unsigned */ 1;
3730         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3731                                      Tok.getLocation());
3732       }
3733       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3734     }
3735 
3736     case LOLR_Raw: {
3737       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3738       // literal is treated as a call of the form
3739       //   operator "" X ("n")
3740       unsigned Length = Literal.getUDSuffixOffset();
3741       QualType StrTy = Context.getConstantArrayType(
3742           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3743           llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
3744       Expr *Lit =
3745           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3746                                 StringLiteralKind::Ordinary,
3747                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3748       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3749     }
3750 
3751     case LOLR_Template: {
3752       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3753       // template), L is treated as a call fo the form
3754       //   operator "" X <'c1', 'c2', ... 'ck'>()
3755       // where n is the source character sequence c1 c2 ... ck.
3756       TemplateArgumentListInfo ExplicitArgs;
3757       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3758       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3759       llvm::APSInt Value(CharBits, CharIsUnsigned);
3760       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3761         Value = TokSpelling[I];
3762         TemplateArgument Arg(Context, Value, Context.CharTy);
3763         TemplateArgumentLocInfo ArgInfo;
3764         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3765       }
3766       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
3767                                       &ExplicitArgs);
3768     }
3769     case LOLR_StringTemplatePack:
3770       llvm_unreachable("unexpected literal operator lookup result");
3771     }
3772   }
3773 
3774   Expr *Res;
3775 
3776   if (Literal.isFixedPointLiteral()) {
3777     QualType Ty;
3778 
3779     if (Literal.isAccum) {
3780       if (Literal.isHalf) {
3781         Ty = Context.ShortAccumTy;
3782       } else if (Literal.isLong) {
3783         Ty = Context.LongAccumTy;
3784       } else {
3785         Ty = Context.AccumTy;
3786       }
3787     } else if (Literal.isFract) {
3788       if (Literal.isHalf) {
3789         Ty = Context.ShortFractTy;
3790       } else if (Literal.isLong) {
3791         Ty = Context.LongFractTy;
3792       } else {
3793         Ty = Context.FractTy;
3794       }
3795     }
3796 
3797     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3798 
3799     bool isSigned = !Literal.isUnsigned;
3800     unsigned scale = Context.getFixedPointScale(Ty);
3801     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3802 
3803     llvm::APInt Val(bit_width, 0, isSigned);
3804     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3805     bool ValIsZero = Val.isZero() && !Overflowed;
3806 
3807     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3808     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3809       // Clause 6.4.4 - The value of a constant shall be in the range of
3810       // representable values for its type, with exception for constants of a
3811       // fract type with a value of exactly 1; such a constant shall denote
3812       // the maximal value for the type.
3813       --Val;
3814     else if (Val.ugt(MaxVal) || Overflowed)
3815       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3816 
3817     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3818                                               Tok.getLocation(), scale);
3819   } else if (Literal.isFloatingLiteral()) {
3820     QualType Ty;
3821     if (Literal.isHalf){
3822       if (getLangOpts().HLSL ||
3823           getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3824         Ty = Context.HalfTy;
3825       else {
3826         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3827         return ExprError();
3828       }
3829     } else if (Literal.isFloat)
3830       Ty = Context.FloatTy;
3831     else if (Literal.isLong)
3832       Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3833     else if (Literal.isFloat16)
3834       Ty = Context.Float16Ty;
3835     else if (Literal.isFloat128)
3836       Ty = Context.Float128Ty;
3837     else if (getLangOpts().HLSL)
3838       Ty = Context.FloatTy;
3839     else
3840       Ty = Context.DoubleTy;
3841 
3842     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3843 
3844     if (Ty == Context.DoubleTy) {
3845       if (getLangOpts().SinglePrecisionConstants) {
3846         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3847           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3848         }
3849       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3850                                              "cl_khr_fp64", getLangOpts())) {
3851         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3852         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3853             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3854         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3855       }
3856     }
3857   } else if (!Literal.isIntegerLiteral()) {
3858     return ExprError();
3859   } else {
3860     QualType Ty;
3861 
3862     // 'z/uz' literals are a C++23 feature.
3863     if (Literal.isSizeT)
3864       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3865                                   ? getLangOpts().CPlusPlus23
3866                                         ? diag::warn_cxx20_compat_size_t_suffix
3867                                         : diag::ext_cxx23_size_t_suffix
3868                                   : diag::err_cxx23_size_t_suffix);
3869 
3870     // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3871     // but we do not currently support the suffix in C++ mode because it's not
3872     // entirely clear whether WG21 will prefer this suffix to return a library
3873     // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3874     // literals are a C++ extension.
3875     if (Literal.isBitInt)
3876       PP.Diag(Tok.getLocation(),
3877               getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3878               : getLangOpts().C23     ? diag::warn_c23_compat_bitint_suffix
3879                                       : diag::ext_c23_bitint_suffix);
3880 
3881     // Get the value in the widest-possible width. What is "widest" depends on
3882     // whether the literal is a bit-precise integer or not. For a bit-precise
3883     // integer type, try to scan the source to determine how many bits are
3884     // needed to represent the value. This may seem a bit expensive, but trying
3885     // to get the integer value from an overly-wide APInt is *extremely*
3886     // expensive, so the naive approach of assuming
3887     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3888     unsigned BitsNeeded =
3889         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3890                                Literal.getLiteralDigits(), Literal.getRadix())
3891                          : Context.getTargetInfo().getIntMaxTWidth();
3892     llvm::APInt ResultVal(BitsNeeded, 0);
3893 
3894     if (Literal.GetIntegerValue(ResultVal)) {
3895       // If this value didn't fit into uintmax_t, error and force to ull.
3896       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3897           << /* Unsigned */ 1;
3898       Ty = Context.UnsignedLongLongTy;
3899       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3900              "long long is not intmax_t?");
3901     } else {
3902       // If this value fits into a ULL, try to figure out what else it fits into
3903       // according to the rules of C99 6.4.4.1p5.
3904 
3905       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3906       // be an unsigned int.
3907       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3908 
3909       // HLSL doesn't really have `long` or `long long`. We support the `ll`
3910       // suffix for portability of code with C++, but both `l` and `ll` are
3911       // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3912       // same.
3913       if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3914         Literal.isLong = true;
3915         Literal.isLongLong = false;
3916       }
3917 
3918       // Check from smallest to largest, picking the smallest type we can.
3919       unsigned Width = 0;
3920 
3921       // Microsoft specific integer suffixes are explicitly sized.
3922       if (Literal.MicrosoftInteger) {
3923         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3924           Width = 8;
3925           Ty = Context.CharTy;
3926         } else {
3927           Width = Literal.MicrosoftInteger;
3928           Ty = Context.getIntTypeForBitwidth(Width,
3929                                              /*Signed=*/!Literal.isUnsigned);
3930         }
3931       }
3932 
3933       // Bit-precise integer literals are automagically-sized based on the
3934       // width required by the literal.
3935       if (Literal.isBitInt) {
3936         // The signed version has one more bit for the sign value. There are no
3937         // zero-width bit-precise integers, even if the literal value is 0.
3938         Width = std::max(ResultVal.getActiveBits(), 1u) +
3939                 (Literal.isUnsigned ? 0u : 1u);
3940 
3941         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3942         // and reset the type to the largest supported width.
3943         unsigned int MaxBitIntWidth =
3944             Context.getTargetInfo().getMaxBitIntWidth();
3945         if (Width > MaxBitIntWidth) {
3946           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3947               << Literal.isUnsigned;
3948           Width = MaxBitIntWidth;
3949         }
3950 
3951         // Reset the result value to the smaller APInt and select the correct
3952         // type to be used. Note, we zext even for signed values because the
3953         // literal itself is always an unsigned value (a preceeding - is a
3954         // unary operator, not part of the literal).
3955         ResultVal = ResultVal.zextOrTrunc(Width);
3956         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
3957       }
3958 
3959       // Check C++23 size_t literals.
3960       if (Literal.isSizeT) {
3961         assert(!Literal.MicrosoftInteger &&
3962                "size_t literals can't be Microsoft literals");
3963         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3964             Context.getTargetInfo().getSizeType());
3965 
3966         // Does it fit in size_t?
3967         if (ResultVal.isIntN(SizeTSize)) {
3968           // Does it fit in ssize_t?
3969           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3970             Ty = Context.getSignedSizeType();
3971           else if (AllowUnsigned)
3972             Ty = Context.getSizeType();
3973           Width = SizeTSize;
3974         }
3975       }
3976 
3977       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3978           !Literal.isSizeT) {
3979         // Are int/unsigned possibilities?
3980         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3981 
3982         // Does it fit in a unsigned int?
3983         if (ResultVal.isIntN(IntSize)) {
3984           // Does it fit in a signed int?
3985           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3986             Ty = Context.IntTy;
3987           else if (AllowUnsigned)
3988             Ty = Context.UnsignedIntTy;
3989           Width = IntSize;
3990         }
3991       }
3992 
3993       // Are long/unsigned long possibilities?
3994       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3995         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3996 
3997         // Does it fit in a unsigned long?
3998         if (ResultVal.isIntN(LongSize)) {
3999           // Does it fit in a signed long?
4000           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4001             Ty = Context.LongTy;
4002           else if (AllowUnsigned)
4003             Ty = Context.UnsignedLongTy;
4004           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4005           // is compatible.
4006           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4007             const unsigned LongLongSize =
4008                 Context.getTargetInfo().getLongLongWidth();
4009             Diag(Tok.getLocation(),
4010                  getLangOpts().CPlusPlus
4011                      ? Literal.isLong
4012                            ? diag::warn_old_implicitly_unsigned_long_cxx
4013                            : /*C++98 UB*/ diag::
4014                                  ext_old_implicitly_unsigned_long_cxx
4015                      : diag::warn_old_implicitly_unsigned_long)
4016                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4017                                             : /*will be ill-formed*/ 1);
4018             Ty = Context.UnsignedLongTy;
4019           }
4020           Width = LongSize;
4021         }
4022       }
4023 
4024       // Check long long if needed.
4025       if (Ty.isNull() && !Literal.isSizeT) {
4026         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4027 
4028         // Does it fit in a unsigned long long?
4029         if (ResultVal.isIntN(LongLongSize)) {
4030           // Does it fit in a signed long long?
4031           // To be compatible with MSVC, hex integer literals ending with the
4032           // LL or i64 suffix are always signed in Microsoft mode.
4033           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4034               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4035             Ty = Context.LongLongTy;
4036           else if (AllowUnsigned)
4037             Ty = Context.UnsignedLongLongTy;
4038           Width = LongLongSize;
4039 
4040           // 'long long' is a C99 or C++11 feature, whether the literal
4041           // explicitly specified 'long long' or we needed the extra width.
4042           if (getLangOpts().CPlusPlus)
4043             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4044                                         ? diag::warn_cxx98_compat_longlong
4045                                         : diag::ext_cxx11_longlong);
4046           else if (!getLangOpts().C99)
4047             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4048         }
4049       }
4050 
4051       // If we still couldn't decide a type, we either have 'size_t' literal
4052       // that is out of range, or a decimal literal that does not fit in a
4053       // signed long long and has no U suffix.
4054       if (Ty.isNull()) {
4055         if (Literal.isSizeT)
4056           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4057               << Literal.isUnsigned;
4058         else
4059           Diag(Tok.getLocation(),
4060                diag::ext_integer_literal_too_large_for_signed);
4061         Ty = Context.UnsignedLongLongTy;
4062         Width = Context.getTargetInfo().getLongLongWidth();
4063       }
4064 
4065       if (ResultVal.getBitWidth() != Width)
4066         ResultVal = ResultVal.trunc(Width);
4067     }
4068     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4069   }
4070 
4071   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4072   if (Literal.isImaginary) {
4073     Res = new (Context) ImaginaryLiteral(Res,
4074                                         Context.getComplexType(Res->getType()));
4075 
4076     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4077   }
4078   return Res;
4079 }
4080 
4081 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4082   assert(E && "ActOnParenExpr() missing expr");
4083   QualType ExprTy = E->getType();
4084   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4085       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4086     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4087   return new (Context) ParenExpr(L, R, E);
4088 }
4089 
4090 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4091                                          SourceLocation Loc,
4092                                          SourceRange ArgRange) {
4093   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4094   // scalar or vector data type argument..."
4095   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4096   // type (C99 6.2.5p18) or void.
4097   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4098     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4099       << T << ArgRange;
4100     return true;
4101   }
4102 
4103   assert((T->isVoidType() || !T->isIncompleteType()) &&
4104          "Scalar types should always be complete");
4105   return false;
4106 }
4107 
4108 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4109                                                 SourceLocation Loc,
4110                                                 SourceRange ArgRange) {
4111   // builtin_vectorelements supports both fixed-sized and scalable vectors.
4112   if (!T->isVectorType() && !T->isSizelessVectorType())
4113     return S.Diag(Loc, diag::err_builtin_non_vector_type)
4114            << ""
4115            << "__builtin_vectorelements" << T << ArgRange;
4116 
4117   return false;
4118 }
4119 
4120 static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4121                                                      SourceLocation Loc,
4122                                                      SourceRange ArgRange) {
4123   if (S.checkPointerAuthEnabled(Loc, ArgRange))
4124     return true;
4125 
4126   if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4127       !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4128     S.Diag(Loc, diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4129     return true;
4130   }
4131 
4132   return false;
4133 }
4134 
4135 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4136                                            SourceLocation Loc,
4137                                            SourceRange ArgRange,
4138                                            UnaryExprOrTypeTrait TraitKind) {
4139   // Invalid types must be hard errors for SFINAE in C++.
4140   if (S.LangOpts.CPlusPlus)
4141     return true;
4142 
4143   // C99 6.5.3.4p1:
4144   if (T->isFunctionType() &&
4145       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4146        TraitKind == UETT_PreferredAlignOf)) {
4147     // sizeof(function)/alignof(function) is allowed as an extension.
4148     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4149         << getTraitSpelling(TraitKind) << ArgRange;
4150     return false;
4151   }
4152 
4153   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4154   // this is an error (OpenCL v1.1 s6.3.k)
4155   if (T->isVoidType()) {
4156     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4157                                         : diag::ext_sizeof_alignof_void_type;
4158     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4159     return false;
4160   }
4161 
4162   return true;
4163 }
4164 
4165 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4166                                              SourceLocation Loc,
4167                                              SourceRange ArgRange,
4168                                              UnaryExprOrTypeTrait TraitKind) {
4169   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4170   // runtime doesn't allow it.
4171   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4172     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4173       << T << (TraitKind == UETT_SizeOf)
4174       << ArgRange;
4175     return true;
4176   }
4177 
4178   return false;
4179 }
4180 
4181 /// Check whether E is a pointer from a decayed array type (the decayed
4182 /// pointer type is equal to T) and emit a warning if it is.
4183 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4184                                      const Expr *E) {
4185   // Don't warn if the operation changed the type.
4186   if (T != E->getType())
4187     return;
4188 
4189   // Now look for array decays.
4190   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4191   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4192     return;
4193 
4194   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4195                                              << ICE->getType()
4196                                              << ICE->getSubExpr()->getType();
4197 }
4198 
4199 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4200                                             UnaryExprOrTypeTrait ExprKind) {
4201   QualType ExprTy = E->getType();
4202   assert(!ExprTy->isReferenceType());
4203 
4204   bool IsUnevaluatedOperand =
4205       (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4206        ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4207        ExprKind == UETT_VecStep);
4208   if (IsUnevaluatedOperand) {
4209     ExprResult Result = CheckUnevaluatedOperand(E);
4210     if (Result.isInvalid())
4211       return true;
4212     E = Result.get();
4213   }
4214 
4215   // The operand for sizeof and alignof is in an unevaluated expression context,
4216   // so side effects could result in unintended consequences.
4217   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4218   // used to build SFINAE gadgets.
4219   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4220   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4221       !E->isInstantiationDependent() &&
4222       !E->getType()->isVariableArrayType() &&
4223       E->HasSideEffects(Context, false))
4224     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4225 
4226   if (ExprKind == UETT_VecStep)
4227     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4228                                         E->getSourceRange());
4229 
4230   if (ExprKind == UETT_VectorElements)
4231     return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4232                                                E->getSourceRange());
4233 
4234   // Explicitly list some types as extensions.
4235   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4236                                       E->getSourceRange(), ExprKind))
4237     return false;
4238 
4239   // WebAssembly tables are always illegal operands to unary expressions and
4240   // type traits.
4241   if (Context.getTargetInfo().getTriple().isWasm() &&
4242       E->getType()->isWebAssemblyTableType()) {
4243     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4244         << getTraitSpelling(ExprKind);
4245     return true;
4246   }
4247 
4248   // 'alignof' applied to an expression only requires the base element type of
4249   // the expression to be complete. 'sizeof' requires the expression's type to
4250   // be complete (and will attempt to complete it if it's an array of unknown
4251   // bound).
4252   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4253     if (RequireCompleteSizedType(
4254             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4255             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4256             getTraitSpelling(ExprKind), E->getSourceRange()))
4257       return true;
4258   } else {
4259     if (RequireCompleteSizedExprType(
4260             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4261             getTraitSpelling(ExprKind), E->getSourceRange()))
4262       return true;
4263   }
4264 
4265   // Completing the expression's type may have changed it.
4266   ExprTy = E->getType();
4267   assert(!ExprTy->isReferenceType());
4268 
4269   if (ExprTy->isFunctionType()) {
4270     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4271         << getTraitSpelling(ExprKind) << E->getSourceRange();
4272     return true;
4273   }
4274 
4275   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4276                                        E->getSourceRange(), ExprKind))
4277     return true;
4278 
4279   if (ExprKind == UETT_SizeOf) {
4280     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4281       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4282         QualType OType = PVD->getOriginalType();
4283         QualType Type = PVD->getType();
4284         if (Type->isPointerType() && OType->isArrayType()) {
4285           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4286             << Type << OType;
4287           Diag(PVD->getLocation(), diag::note_declared_at);
4288         }
4289       }
4290     }
4291 
4292     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4293     // decays into a pointer and returns an unintended result. This is most
4294     // likely a typo for "sizeof(array) op x".
4295     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4296       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4297                                BO->getLHS());
4298       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4299                                BO->getRHS());
4300     }
4301   }
4302 
4303   return false;
4304 }
4305 
4306 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4307   // Cannot know anything else if the expression is dependent.
4308   if (E->isTypeDependent())
4309     return false;
4310 
4311   if (E->getObjectKind() == OK_BitField) {
4312     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4313        << 1 << E->getSourceRange();
4314     return true;
4315   }
4316 
4317   ValueDecl *D = nullptr;
4318   Expr *Inner = E->IgnoreParens();
4319   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4320     D = DRE->getDecl();
4321   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4322     D = ME->getMemberDecl();
4323   }
4324 
4325   // If it's a field, require the containing struct to have a
4326   // complete definition so that we can compute the layout.
4327   //
4328   // This can happen in C++11 onwards, either by naming the member
4329   // in a way that is not transformed into a member access expression
4330   // (in an unevaluated operand, for instance), or by naming the member
4331   // in a trailing-return-type.
4332   //
4333   // For the record, since __alignof__ on expressions is a GCC
4334   // extension, GCC seems to permit this but always gives the
4335   // nonsensical answer 0.
4336   //
4337   // We don't really need the layout here --- we could instead just
4338   // directly check for all the appropriate alignment-lowing
4339   // attributes --- but that would require duplicating a lot of
4340   // logic that just isn't worth duplicating for such a marginal
4341   // use-case.
4342   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4343     // Fast path this check, since we at least know the record has a
4344     // definition if we can find a member of it.
4345     if (!FD->getParent()->isCompleteDefinition()) {
4346       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4347         << E->getSourceRange();
4348       return true;
4349     }
4350 
4351     // Otherwise, if it's a field, and the field doesn't have
4352     // reference type, then it must have a complete type (or be a
4353     // flexible array member, which we explicitly want to
4354     // white-list anyway), which makes the following checks trivial.
4355     if (!FD->getType()->isReferenceType())
4356       return false;
4357   }
4358 
4359   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4360 }
4361 
4362 bool Sema::CheckVecStepExpr(Expr *E) {
4363   E = E->IgnoreParens();
4364 
4365   // Cannot know anything else if the expression is dependent.
4366   if (E->isTypeDependent())
4367     return false;
4368 
4369   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4370 }
4371 
4372 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4373                                         CapturingScopeInfo *CSI) {
4374   assert(T->isVariablyModifiedType());
4375   assert(CSI != nullptr);
4376 
4377   // We're going to walk down into the type and look for VLA expressions.
4378   do {
4379     const Type *Ty = T.getTypePtr();
4380     switch (Ty->getTypeClass()) {
4381 #define TYPE(Class, Base)
4382 #define ABSTRACT_TYPE(Class, Base)
4383 #define NON_CANONICAL_TYPE(Class, Base)
4384 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4385 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4386 #include "clang/AST/TypeNodes.inc"
4387       T = QualType();
4388       break;
4389     // These types are never variably-modified.
4390     case Type::Builtin:
4391     case Type::Complex:
4392     case Type::Vector:
4393     case Type::ExtVector:
4394     case Type::ConstantMatrix:
4395     case Type::Record:
4396     case Type::Enum:
4397     case Type::TemplateSpecialization:
4398     case Type::ObjCObject:
4399     case Type::ObjCInterface:
4400     case Type::ObjCObjectPointer:
4401     case Type::ObjCTypeParam:
4402     case Type::Pipe:
4403     case Type::BitInt:
4404       llvm_unreachable("type class is never variably-modified!");
4405     case Type::Elaborated:
4406       T = cast<ElaboratedType>(Ty)->getNamedType();
4407       break;
4408     case Type::Adjusted:
4409       T = cast<AdjustedType>(Ty)->getOriginalType();
4410       break;
4411     case Type::Decayed:
4412       T = cast<DecayedType>(Ty)->getPointeeType();
4413       break;
4414     case Type::ArrayParameter:
4415       T = cast<ArrayParameterType>(Ty)->getElementType();
4416       break;
4417     case Type::Pointer:
4418       T = cast<PointerType>(Ty)->getPointeeType();
4419       break;
4420     case Type::BlockPointer:
4421       T = cast<BlockPointerType>(Ty)->getPointeeType();
4422       break;
4423     case Type::LValueReference:
4424     case Type::RValueReference:
4425       T = cast<ReferenceType>(Ty)->getPointeeType();
4426       break;
4427     case Type::MemberPointer:
4428       T = cast<MemberPointerType>(Ty)->getPointeeType();
4429       break;
4430     case Type::ConstantArray:
4431     case Type::IncompleteArray:
4432       // Losing element qualification here is fine.
4433       T = cast<ArrayType>(Ty)->getElementType();
4434       break;
4435     case Type::VariableArray: {
4436       // Losing element qualification here is fine.
4437       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4438 
4439       // Unknown size indication requires no size computation.
4440       // Otherwise, evaluate and record it.
4441       auto Size = VAT->getSizeExpr();
4442       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4443           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4444         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4445 
4446       T = VAT->getElementType();
4447       break;
4448     }
4449     case Type::FunctionProto:
4450     case Type::FunctionNoProto:
4451       T = cast<FunctionType>(Ty)->getReturnType();
4452       break;
4453     case Type::Paren:
4454     case Type::TypeOf:
4455     case Type::UnaryTransform:
4456     case Type::Attributed:
4457     case Type::BTFTagAttributed:
4458     case Type::SubstTemplateTypeParm:
4459     case Type::MacroQualified:
4460     case Type::CountAttributed:
4461       // Keep walking after single level desugaring.
4462       T = T.getSingleStepDesugaredType(Context);
4463       break;
4464     case Type::Typedef:
4465       T = cast<TypedefType>(Ty)->desugar();
4466       break;
4467     case Type::Decltype:
4468       T = cast<DecltypeType>(Ty)->desugar();
4469       break;
4470     case Type::PackIndexing:
4471       T = cast<PackIndexingType>(Ty)->desugar();
4472       break;
4473     case Type::Using:
4474       T = cast<UsingType>(Ty)->desugar();
4475       break;
4476     case Type::Auto:
4477     case Type::DeducedTemplateSpecialization:
4478       T = cast<DeducedType>(Ty)->getDeducedType();
4479       break;
4480     case Type::TypeOfExpr:
4481       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4482       break;
4483     case Type::Atomic:
4484       T = cast<AtomicType>(Ty)->getValueType();
4485       break;
4486     }
4487   } while (!T.isNull() && T->isVariablyModifiedType());
4488 }
4489 
4490 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4491                                             SourceLocation OpLoc,
4492                                             SourceRange ExprRange,
4493                                             UnaryExprOrTypeTrait ExprKind,
4494                                             StringRef KWName) {
4495   if (ExprType->isDependentType())
4496     return false;
4497 
4498   // C++ [expr.sizeof]p2:
4499   //     When applied to a reference or a reference type, the result
4500   //     is the size of the referenced type.
4501   // C++11 [expr.alignof]p3:
4502   //     When alignof is applied to a reference type, the result
4503   //     shall be the alignment of the referenced type.
4504   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4505     ExprType = Ref->getPointeeType();
4506 
4507   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4508   //   When alignof or _Alignof is applied to an array type, the result
4509   //   is the alignment of the element type.
4510   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4511       ExprKind == UETT_OpenMPRequiredSimdAlign) {
4512     // If the trait is 'alignof' in C before C2y, the ability to apply the
4513     // trait to an incomplete array is an extension.
4514     if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4515         ExprType->isIncompleteArrayType())
4516       Diag(OpLoc, getLangOpts().C2y
4517                       ? diag::warn_c2y_compat_alignof_incomplete_array
4518                       : diag::ext_c2y_alignof_incomplete_array);
4519     ExprType = Context.getBaseElementType(ExprType);
4520   }
4521 
4522   if (ExprKind == UETT_VecStep)
4523     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4524 
4525   if (ExprKind == UETT_VectorElements)
4526     return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4527                                                ExprRange);
4528 
4529   if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4530     return checkPtrAuthTypeDiscriminatorOperandType(*this, ExprType, OpLoc,
4531                                                     ExprRange);
4532 
4533   // Explicitly list some types as extensions.
4534   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4535                                       ExprKind))
4536     return false;
4537 
4538   if (RequireCompleteSizedType(
4539           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4540           KWName, ExprRange))
4541     return true;
4542 
4543   if (ExprType->isFunctionType()) {
4544     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4545     return true;
4546   }
4547 
4548   // WebAssembly tables are always illegal operands to unary expressions and
4549   // type traits.
4550   if (Context.getTargetInfo().getTriple().isWasm() &&
4551       ExprType->isWebAssemblyTableType()) {
4552     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4553         << getTraitSpelling(ExprKind);
4554     return true;
4555   }
4556 
4557   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4558                                        ExprKind))
4559     return true;
4560 
4561   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4562     if (auto *TT = ExprType->getAs<TypedefType>()) {
4563       for (auto I = FunctionScopes.rbegin(),
4564                 E = std::prev(FunctionScopes.rend());
4565            I != E; ++I) {
4566         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4567         if (CSI == nullptr)
4568           break;
4569         DeclContext *DC = nullptr;
4570         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4571           DC = LSI->CallOperator;
4572         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4573           DC = CRSI->TheCapturedDecl;
4574         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4575           DC = BSI->TheDecl;
4576         if (DC) {
4577           if (DC->containsDecl(TT->getDecl()))
4578             break;
4579           captureVariablyModifiedType(Context, ExprType, CSI);
4580         }
4581       }
4582     }
4583   }
4584 
4585   return false;
4586 }
4587 
4588 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4589                                                 SourceLocation OpLoc,
4590                                                 UnaryExprOrTypeTrait ExprKind,
4591                                                 SourceRange R) {
4592   if (!TInfo)
4593     return ExprError();
4594 
4595   QualType T = TInfo->getType();
4596 
4597   if (!T->isDependentType() &&
4598       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4599                                        getTraitSpelling(ExprKind)))
4600     return ExprError();
4601 
4602   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4603   // properly deal with VLAs in nested calls of sizeof and typeof.
4604   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4605       TInfo->getType()->isVariablyModifiedType())
4606     TInfo = TransformToPotentiallyEvaluated(TInfo);
4607 
4608   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4609   return new (Context) UnaryExprOrTypeTraitExpr(
4610       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4611 }
4612 
4613 ExprResult
4614 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4615                                      UnaryExprOrTypeTrait ExprKind) {
4616   ExprResult PE = CheckPlaceholderExpr(E);
4617   if (PE.isInvalid())
4618     return ExprError();
4619 
4620   E = PE.get();
4621 
4622   // Verify that the operand is valid.
4623   bool isInvalid = false;
4624   if (E->isTypeDependent()) {
4625     // Delay type-checking for type-dependent expressions.
4626   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4627     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4628   } else if (ExprKind == UETT_VecStep) {
4629     isInvalid = CheckVecStepExpr(E);
4630   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4631       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4632       isInvalid = true;
4633   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4634     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4635     isInvalid = true;
4636   } else if (ExprKind == UETT_VectorElements) {
4637     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4638   } else {
4639     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4640   }
4641 
4642   if (isInvalid)
4643     return ExprError();
4644 
4645   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4646     PE = TransformToPotentiallyEvaluated(E);
4647     if (PE.isInvalid()) return ExprError();
4648     E = PE.get();
4649   }
4650 
4651   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4652   return new (Context) UnaryExprOrTypeTraitExpr(
4653       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4654 }
4655 
4656 ExprResult
4657 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4658                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4659                                     void *TyOrEx, SourceRange ArgRange) {
4660   // If error parsing type, ignore.
4661   if (!TyOrEx) return ExprError();
4662 
4663   if (IsType) {
4664     TypeSourceInfo *TInfo;
4665     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4666     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4667   }
4668 
4669   Expr *ArgEx = (Expr *)TyOrEx;
4670   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4671   return Result;
4672 }
4673 
4674 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4675                                     SourceLocation OpLoc, SourceRange R) {
4676   if (!TInfo)
4677     return true;
4678   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4679                                           UETT_AlignOf, KWName);
4680 }
4681 
4682 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4683                                     SourceLocation OpLoc, SourceRange R) {
4684   TypeSourceInfo *TInfo;
4685   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4686                           &TInfo);
4687   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4688 }
4689 
4690 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4691                                      bool IsReal) {
4692   if (V.get()->isTypeDependent())
4693     return S.Context.DependentTy;
4694 
4695   // _Real and _Imag are only l-values for normal l-values.
4696   if (V.get()->getObjectKind() != OK_Ordinary) {
4697     V = S.DefaultLvalueConversion(V.get());
4698     if (V.isInvalid())
4699       return QualType();
4700   }
4701 
4702   // These operators return the element type of a complex type.
4703   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4704     return CT->getElementType();
4705 
4706   // Otherwise they pass through real integer and floating point types here.
4707   if (V.get()->getType()->isArithmeticType())
4708     return V.get()->getType();
4709 
4710   // Test for placeholders.
4711   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4712   if (PR.isInvalid()) return QualType();
4713   if (PR.get() != V.get()) {
4714     V = PR;
4715     return CheckRealImagOperand(S, V, Loc, IsReal);
4716   }
4717 
4718   // Reject anything else.
4719   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4720     << (IsReal ? "__real" : "__imag");
4721   return QualType();
4722 }
4723 
4724 
4725 
4726 ExprResult
4727 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4728                           tok::TokenKind Kind, Expr *Input) {
4729   UnaryOperatorKind Opc;
4730   switch (Kind) {
4731   default: llvm_unreachable("Unknown unary op!");
4732   case tok::plusplus:   Opc = UO_PostInc; break;
4733   case tok::minusminus: Opc = UO_PostDec; break;
4734   }
4735 
4736   // Since this might is a postfix expression, get rid of ParenListExprs.
4737   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4738   if (Result.isInvalid()) return ExprError();
4739   Input = Result.get();
4740 
4741   return BuildUnaryOp(S, OpLoc, Opc, Input);
4742 }
4743 
4744 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4745 ///
4746 /// \return true on error
4747 static bool checkArithmeticOnObjCPointer(Sema &S,
4748                                          SourceLocation opLoc,
4749                                          Expr *op) {
4750   assert(op->getType()->isObjCObjectPointerType());
4751   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4752       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4753     return false;
4754 
4755   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4756     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4757     << op->getSourceRange();
4758   return true;
4759 }
4760 
4761 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4762   auto *BaseNoParens = Base->IgnoreParens();
4763   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4764     return MSProp->getPropertyDecl()->getType()->isArrayType();
4765   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4766 }
4767 
4768 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4769 // Typically this is DependentTy, but can sometimes be more precise.
4770 //
4771 // There are cases when we could determine a non-dependent type:
4772 //  - LHS and RHS may have non-dependent types despite being type-dependent
4773 //    (e.g. unbounded array static members of the current instantiation)
4774 //  - one may be a dependent-sized array with known element type
4775 //  - one may be a dependent-typed valid index (enum in current instantiation)
4776 //
4777 // We *always* return a dependent type, in such cases it is DependentTy.
4778 // This avoids creating type-dependent expressions with non-dependent types.
4779 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4780 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4781                                                const ASTContext &Ctx) {
4782   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4783   QualType LTy = LHS->getType(), RTy = RHS->getType();
4784   QualType Result = Ctx.DependentTy;
4785   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4786     if (const PointerType *PT = LTy->getAs<PointerType>())
4787       Result = PT->getPointeeType();
4788     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4789       Result = AT->getElementType();
4790   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4791     if (const PointerType *PT = RTy->getAs<PointerType>())
4792       Result = PT->getPointeeType();
4793     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4794       Result = AT->getElementType();
4795   }
4796   // Ensure we return a dependent type.
4797   return Result->isDependentType() ? Result : Ctx.DependentTy;
4798 }
4799 
4800 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4801                                          SourceLocation lbLoc,
4802                                          MultiExprArg ArgExprs,
4803                                          SourceLocation rbLoc) {
4804 
4805   if (base && !base->getType().isNull() &&
4806       base->hasPlaceholderType(BuiltinType::ArraySection)) {
4807     auto *AS = cast<ArraySectionExpr>(base);
4808     if (AS->isOMPArraySection())
4809       return OpenMP().ActOnOMPArraySectionExpr(
4810           base, lbLoc, ArgExprs.front(), SourceLocation(), SourceLocation(),
4811           /*Length*/ nullptr,
4812           /*Stride=*/nullptr, rbLoc);
4813 
4814     return OpenACC().ActOnArraySectionExpr(base, lbLoc, ArgExprs.front(),
4815                                            SourceLocation(), /*Length*/ nullptr,
4816                                            rbLoc);
4817   }
4818 
4819   // Since this might be a postfix expression, get rid of ParenListExprs.
4820   if (isa<ParenListExpr>(base)) {
4821     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4822     if (result.isInvalid())
4823       return ExprError();
4824     base = result.get();
4825   }
4826 
4827   // Check if base and idx form a MatrixSubscriptExpr.
4828   //
4829   // Helper to check for comma expressions, which are not allowed as indices for
4830   // matrix subscript expressions.
4831   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4832     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4833       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4834           << SourceRange(base->getBeginLoc(), rbLoc);
4835       return true;
4836     }
4837     return false;
4838   };
4839   // The matrix subscript operator ([][])is considered a single operator.
4840   // Separating the index expressions by parenthesis is not allowed.
4841   if (base && !base->getType().isNull() &&
4842       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4843       !isa<MatrixSubscriptExpr>(base)) {
4844     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4845         << SourceRange(base->getBeginLoc(), rbLoc);
4846     return ExprError();
4847   }
4848   // If the base is a MatrixSubscriptExpr, try to create a new
4849   // MatrixSubscriptExpr.
4850   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4851   if (matSubscriptE) {
4852     assert(ArgExprs.size() == 1);
4853     if (CheckAndReportCommaError(ArgExprs.front()))
4854       return ExprError();
4855 
4856     assert(matSubscriptE->isIncomplete() &&
4857            "base has to be an incomplete matrix subscript");
4858     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4859                                             matSubscriptE->getRowIdx(),
4860                                             ArgExprs.front(), rbLoc);
4861   }
4862   if (base->getType()->isWebAssemblyTableType()) {
4863     Diag(base->getExprLoc(), diag::err_wasm_table_art)
4864         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4865     return ExprError();
4866   }
4867 
4868   // Handle any non-overload placeholder types in the base and index
4869   // expressions.  We can't handle overloads here because the other
4870   // operand might be an overloadable type, in which case the overload
4871   // resolution for the operator overload should get the first crack
4872   // at the overload.
4873   bool IsMSPropertySubscript = false;
4874   if (base->getType()->isNonOverloadPlaceholderType()) {
4875     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4876     if (!IsMSPropertySubscript) {
4877       ExprResult result = CheckPlaceholderExpr(base);
4878       if (result.isInvalid())
4879         return ExprError();
4880       base = result.get();
4881     }
4882   }
4883 
4884   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4885   if (base->getType()->isMatrixType()) {
4886     assert(ArgExprs.size() == 1);
4887     if (CheckAndReportCommaError(ArgExprs.front()))
4888       return ExprError();
4889 
4890     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4891                                             rbLoc);
4892   }
4893 
4894   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4895     Expr *idx = ArgExprs[0];
4896     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4897         (isa<CXXOperatorCallExpr>(idx) &&
4898          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4899       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4900           << SourceRange(base->getBeginLoc(), rbLoc);
4901     }
4902   }
4903 
4904   if (ArgExprs.size() == 1 &&
4905       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4906     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4907     if (result.isInvalid())
4908       return ExprError();
4909     ArgExprs[0] = result.get();
4910   } else {
4911     if (CheckArgsForPlaceholders(ArgExprs))
4912       return ExprError();
4913   }
4914 
4915   // Build an unanalyzed expression if either operand is type-dependent.
4916   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4917       (base->isTypeDependent() ||
4918        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
4919       !isa<PackExpansionExpr>(ArgExprs[0])) {
4920     return new (Context) ArraySubscriptExpr(
4921         base, ArgExprs.front(),
4922         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4923         VK_LValue, OK_Ordinary, rbLoc);
4924   }
4925 
4926   // MSDN, property (C++)
4927   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4928   // This attribute can also be used in the declaration of an empty array in a
4929   // class or structure definition. For example:
4930   // __declspec(property(get=GetX, put=PutX)) int x[];
4931   // The above statement indicates that x[] can be used with one or more array
4932   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4933   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4934   if (IsMSPropertySubscript) {
4935     assert(ArgExprs.size() == 1);
4936     // Build MS property subscript expression if base is MS property reference
4937     // or MS property subscript.
4938     return new (Context)
4939         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4940                                 VK_LValue, OK_Ordinary, rbLoc);
4941   }
4942 
4943   // Use C++ overloaded-operator rules if either operand has record
4944   // type.  The spec says to do this if either type is *overloadable*,
4945   // but enum types can't declare subscript operators or conversion
4946   // operators, so there's nothing interesting for overload resolution
4947   // to do if there aren't any record types involved.
4948   //
4949   // ObjC pointers have their own subscripting logic that is not tied
4950   // to overload resolution and so should not take this path.
4951   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4952       ((base->getType()->isRecordType() ||
4953         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
4954          ArgExprs[0]->getType()->isRecordType())))) {
4955     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4956   }
4957 
4958   ExprResult Res =
4959       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4960 
4961   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4962     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4963 
4964   return Res;
4965 }
4966 
4967 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4968   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4969   InitializationKind Kind =
4970       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4971   InitializationSequence InitSeq(*this, Entity, Kind, E);
4972   return InitSeq.Perform(*this, Entity, Kind, E);
4973 }
4974 
4975 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4976                                                   Expr *ColumnIdx,
4977                                                   SourceLocation RBLoc) {
4978   ExprResult BaseR = CheckPlaceholderExpr(Base);
4979   if (BaseR.isInvalid())
4980     return BaseR;
4981   Base = BaseR.get();
4982 
4983   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4984   if (RowR.isInvalid())
4985     return RowR;
4986   RowIdx = RowR.get();
4987 
4988   if (!ColumnIdx)
4989     return new (Context) MatrixSubscriptExpr(
4990         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4991 
4992   // Build an unanalyzed expression if any of the operands is type-dependent.
4993   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4994       ColumnIdx->isTypeDependent())
4995     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4996                                              Context.DependentTy, RBLoc);
4997 
4998   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4999   if (ColumnR.isInvalid())
5000     return ColumnR;
5001   ColumnIdx = ColumnR.get();
5002 
5003   // Check that IndexExpr is an integer expression. If it is a constant
5004   // expression, check that it is less than Dim (= the number of elements in the
5005   // corresponding dimension).
5006   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5007                           bool IsColumnIdx) -> Expr * {
5008     if (!IndexExpr->getType()->isIntegerType() &&
5009         !IndexExpr->isTypeDependent()) {
5010       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5011           << IsColumnIdx;
5012       return nullptr;
5013     }
5014 
5015     if (std::optional<llvm::APSInt> Idx =
5016             IndexExpr->getIntegerConstantExpr(Context)) {
5017       if ((*Idx < 0 || *Idx >= Dim)) {
5018         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5019             << IsColumnIdx << Dim;
5020         return nullptr;
5021       }
5022     }
5023 
5024     ExprResult ConvExpr =
5025         tryConvertExprToType(IndexExpr, Context.getSizeType());
5026     assert(!ConvExpr.isInvalid() &&
5027            "should be able to convert any integer type to size type");
5028     return ConvExpr.get();
5029   };
5030 
5031   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5032   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5033   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5034   if (!RowIdx || !ColumnIdx)
5035     return ExprError();
5036 
5037   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5038                                            MTy->getElementType(), RBLoc);
5039 }
5040 
5041 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5042   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5043   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5044 
5045   // For expressions like `&(*s).b`, the base is recorded and what should be
5046   // checked.
5047   const MemberExpr *Member = nullptr;
5048   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5049     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5050 
5051   LastRecord.PossibleDerefs.erase(StrippedExpr);
5052 }
5053 
5054 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5055   if (isUnevaluatedContext())
5056     return;
5057 
5058   QualType ResultTy = E->getType();
5059   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5060 
5061   // Bail if the element is an array since it is not memory access.
5062   if (isa<ArrayType>(ResultTy))
5063     return;
5064 
5065   if (ResultTy->hasAttr(attr::NoDeref)) {
5066     LastRecord.PossibleDerefs.insert(E);
5067     return;
5068   }
5069 
5070   // Check if the base type is a pointer to a member access of a struct
5071   // marked with noderef.
5072   const Expr *Base = E->getBase();
5073   QualType BaseTy = Base->getType();
5074   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5075     // Not a pointer access
5076     return;
5077 
5078   const MemberExpr *Member = nullptr;
5079   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5080          Member->isArrow())
5081     Base = Member->getBase();
5082 
5083   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5084     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5085       LastRecord.PossibleDerefs.insert(E);
5086   }
5087 }
5088 
5089 ExprResult
5090 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5091                                       Expr *Idx, SourceLocation RLoc) {
5092   Expr *LHSExp = Base;
5093   Expr *RHSExp = Idx;
5094 
5095   ExprValueKind VK = VK_LValue;
5096   ExprObjectKind OK = OK_Ordinary;
5097 
5098   // Per C++ core issue 1213, the result is an xvalue if either operand is
5099   // a non-lvalue array, and an lvalue otherwise.
5100   if (getLangOpts().CPlusPlus11) {
5101     for (auto *Op : {LHSExp, RHSExp}) {
5102       Op = Op->IgnoreImplicit();
5103       if (Op->getType()->isArrayType() && !Op->isLValue())
5104         VK = VK_XValue;
5105     }
5106   }
5107 
5108   // Perform default conversions.
5109   if (!LHSExp->getType()->isSubscriptableVectorType()) {
5110     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5111     if (Result.isInvalid())
5112       return ExprError();
5113     LHSExp = Result.get();
5114   }
5115   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5116   if (Result.isInvalid())
5117     return ExprError();
5118   RHSExp = Result.get();
5119 
5120   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5121 
5122   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5123   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5124   // in the subscript position. As a result, we need to derive the array base
5125   // and index from the expression types.
5126   Expr *BaseExpr, *IndexExpr;
5127   QualType ResultType;
5128   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5129     BaseExpr = LHSExp;
5130     IndexExpr = RHSExp;
5131     ResultType =
5132         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5133   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5134     BaseExpr = LHSExp;
5135     IndexExpr = RHSExp;
5136     ResultType = PTy->getPointeeType();
5137   } else if (const ObjCObjectPointerType *PTy =
5138                LHSTy->getAs<ObjCObjectPointerType>()) {
5139     BaseExpr = LHSExp;
5140     IndexExpr = RHSExp;
5141 
5142     // Use custom logic if this should be the pseudo-object subscript
5143     // expression.
5144     if (!LangOpts.isSubscriptPointerArithmetic())
5145       return ObjC().BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr,
5146                                                  nullptr, nullptr);
5147 
5148     ResultType = PTy->getPointeeType();
5149   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5150      // Handle the uncommon case of "123[Ptr]".
5151     BaseExpr = RHSExp;
5152     IndexExpr = LHSExp;
5153     ResultType = PTy->getPointeeType();
5154   } else if (const ObjCObjectPointerType *PTy =
5155                RHSTy->getAs<ObjCObjectPointerType>()) {
5156      // Handle the uncommon case of "123[Ptr]".
5157     BaseExpr = RHSExp;
5158     IndexExpr = LHSExp;
5159     ResultType = PTy->getPointeeType();
5160     if (!LangOpts.isSubscriptPointerArithmetic()) {
5161       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5162         << ResultType << BaseExpr->getSourceRange();
5163       return ExprError();
5164     }
5165   } else if (LHSTy->isSubscriptableVectorType()) {
5166     if (LHSTy->isBuiltinType() &&
5167         LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5168       const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5169       if (BTy->isSVEBool())
5170         return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5171                          << LHSExp->getSourceRange()
5172                          << RHSExp->getSourceRange());
5173       ResultType = BTy->getSveEltType(Context);
5174     } else {
5175       const VectorType *VTy = LHSTy->getAs<VectorType>();
5176       ResultType = VTy->getElementType();
5177     }
5178     BaseExpr = LHSExp; // vectors: V[123]
5179     IndexExpr = RHSExp;
5180     // We apply C++ DR1213 to vector subscripting too.
5181     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5182       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5183       if (Materialized.isInvalid())
5184         return ExprError();
5185       LHSExp = Materialized.get();
5186     }
5187     VK = LHSExp->getValueKind();
5188     if (VK != VK_PRValue)
5189       OK = OK_VectorComponent;
5190 
5191     QualType BaseType = BaseExpr->getType();
5192     Qualifiers BaseQuals = BaseType.getQualifiers();
5193     Qualifiers MemberQuals = ResultType.getQualifiers();
5194     Qualifiers Combined = BaseQuals + MemberQuals;
5195     if (Combined != MemberQuals)
5196       ResultType = Context.getQualifiedType(ResultType, Combined);
5197   } else if (LHSTy->isArrayType()) {
5198     // If we see an array that wasn't promoted by
5199     // DefaultFunctionArrayLvalueConversion, it must be an array that
5200     // wasn't promoted because of the C90 rule that doesn't
5201     // allow promoting non-lvalue arrays.  Warn, then
5202     // force the promotion here.
5203     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5204         << LHSExp->getSourceRange();
5205     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5206                                CK_ArrayToPointerDecay).get();
5207     LHSTy = LHSExp->getType();
5208 
5209     BaseExpr = LHSExp;
5210     IndexExpr = RHSExp;
5211     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5212   } else if (RHSTy->isArrayType()) {
5213     // Same as previous, except for 123[f().a] case
5214     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5215         << RHSExp->getSourceRange();
5216     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5217                                CK_ArrayToPointerDecay).get();
5218     RHSTy = RHSExp->getType();
5219 
5220     BaseExpr = RHSExp;
5221     IndexExpr = LHSExp;
5222     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5223   } else {
5224     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5225        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5226   }
5227   // C99 6.5.2.1p1
5228   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5229     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5230                      << IndexExpr->getSourceRange());
5231 
5232   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5233        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
5234       !IndexExpr->isTypeDependent()) {
5235     std::optional<llvm::APSInt> IntegerContantExpr =
5236         IndexExpr->getIntegerConstantExpr(getASTContext());
5237     if (!IntegerContantExpr.has_value() ||
5238         IntegerContantExpr.value().isNegative())
5239       Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5240   }
5241 
5242   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5243   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5244   // type. Note that Functions are not objects, and that (in C99 parlance)
5245   // incomplete types are not object types.
5246   if (ResultType->isFunctionType()) {
5247     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5248         << ResultType << BaseExpr->getSourceRange();
5249     return ExprError();
5250   }
5251 
5252   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5253     // GNU extension: subscripting on pointer to void
5254     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5255       << BaseExpr->getSourceRange();
5256 
5257     // C forbids expressions of unqualified void type from being l-values.
5258     // See IsCForbiddenLValueType.
5259     if (!ResultType.hasQualifiers())
5260       VK = VK_PRValue;
5261   } else if (!ResultType->isDependentType() &&
5262              !ResultType.isWebAssemblyReferenceType() &&
5263              RequireCompleteSizedType(
5264                  LLoc, ResultType,
5265                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5266     return ExprError();
5267 
5268   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5269          !ResultType.isCForbiddenLValueType());
5270 
5271   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5272       FunctionScopes.size() > 1) {
5273     if (auto *TT =
5274             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5275       for (auto I = FunctionScopes.rbegin(),
5276                 E = std::prev(FunctionScopes.rend());
5277            I != E; ++I) {
5278         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5279         if (CSI == nullptr)
5280           break;
5281         DeclContext *DC = nullptr;
5282         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5283           DC = LSI->CallOperator;
5284         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5285           DC = CRSI->TheCapturedDecl;
5286         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5287           DC = BSI->TheDecl;
5288         if (DC) {
5289           if (DC->containsDecl(TT->getDecl()))
5290             break;
5291           captureVariablyModifiedType(
5292               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5293         }
5294       }
5295     }
5296   }
5297 
5298   return new (Context)
5299       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5300 }
5301 
5302 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5303                                   ParmVarDecl *Param, Expr *RewrittenInit,
5304                                   bool SkipImmediateInvocations) {
5305   if (Param->hasUnparsedDefaultArg()) {
5306     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5307     // If we've already cleared out the location for the default argument,
5308     // that means we're parsing it right now.
5309     if (!UnparsedDefaultArgLocs.count(Param)) {
5310       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5311       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5312       Param->setInvalidDecl();
5313       return true;
5314     }
5315 
5316     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5317         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5318     Diag(UnparsedDefaultArgLocs[Param],
5319          diag::note_default_argument_declared_here);
5320     return true;
5321   }
5322 
5323   if (Param->hasUninstantiatedDefaultArg()) {
5324     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5325     if (InstantiateDefaultArgument(CallLoc, FD, Param))
5326       return true;
5327   }
5328 
5329   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5330   assert(Init && "default argument but no initializer?");
5331 
5332   // If the default expression creates temporaries, we need to
5333   // push them to the current stack of expression temporaries so they'll
5334   // be properly destroyed.
5335   // FIXME: We should really be rebuilding the default argument with new
5336   // bound temporaries; see the comment in PR5810.
5337   // We don't need to do that with block decls, though, because
5338   // blocks in default argument expression can never capture anything.
5339   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5340     // Set the "needs cleanups" bit regardless of whether there are
5341     // any explicit objects.
5342     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5343     // Append all the objects to the cleanup list.  Right now, this
5344     // should always be a no-op, because blocks in default argument
5345     // expressions should never be able to capture anything.
5346     assert(!InitWithCleanup->getNumObjects() &&
5347            "default argument expression has capturing blocks?");
5348   }
5349   // C++ [expr.const]p15.1:
5350   //   An expression or conversion is in an immediate function context if it is
5351   //   potentially evaluated and [...] its innermost enclosing non-block scope
5352   //   is a function parameter scope of an immediate function.
5353   EnterExpressionEvaluationContext EvalContext(
5354       *this,
5355       FD->isImmediateFunction()
5356           ? ExpressionEvaluationContext::ImmediateFunctionContext
5357           : ExpressionEvaluationContext::PotentiallyEvaluated,
5358       Param);
5359   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5360       SkipImmediateInvocations;
5361   runWithSufficientStackSpace(CallLoc, [&] {
5362     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
5363   });
5364   return false;
5365 }
5366 
5367 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
5368   const ASTContext &Context;
5369   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
5370 
5371   bool HasImmediateCalls = false;
5372   bool shouldVisitImplicitCode() const { return true; }
5373 
5374   bool VisitCallExpr(CallExpr *E) {
5375     if (const FunctionDecl *FD = E->getDirectCallee())
5376       HasImmediateCalls |= FD->isImmediateFunction();
5377     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5378   }
5379 
5380   bool VisitCXXConstructExpr(CXXConstructExpr *E) {
5381     if (const FunctionDecl *FD = E->getConstructor())
5382       HasImmediateCalls |= FD->isImmediateFunction();
5383     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5384   }
5385 
5386   // SourceLocExpr are not immediate invocations
5387   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5388   // need to be rebuilt so that they refer to the correct SourceLocation and
5389   // DeclContext.
5390   bool VisitSourceLocExpr(SourceLocExpr *E) {
5391     HasImmediateCalls = true;
5392     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5393   }
5394 
5395   // A nested lambda might have parameters with immediate invocations
5396   // in their default arguments.
5397   // The compound statement is not visited (as it does not constitute a
5398   // subexpression).
5399   // FIXME: We should consider visiting and transforming captures
5400   // with init expressions.
5401   bool VisitLambdaExpr(LambdaExpr *E) {
5402     return VisitCXXMethodDecl(E->getCallOperator());
5403   }
5404 
5405   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
5406     return TraverseStmt(E->getExpr());
5407   }
5408 
5409   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
5410     return TraverseStmt(E->getExpr());
5411   }
5412 };
5413 
5414 struct EnsureImmediateInvocationInDefaultArgs
5415     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5416   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5417       : TreeTransform(SemaRef) {}
5418 
5419   // Lambda can only have immediate invocations in the default
5420   // args of their parameters, which is transformed upon calling the closure.
5421   // The body is not a subexpression, so we have nothing to do.
5422   // FIXME: Immediate calls in capture initializers should be transformed.
5423   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5424   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5425 
5426   // Make sure we don't rebuild the this pointer as it would
5427   // cause it to incorrectly point it to the outermost class
5428   // in the case of nested struct initialization.
5429   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5430 
5431   // Rewrite to source location to refer to the context in which they are used.
5432   ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5433     DeclContext *DC = E->getParentContext();
5434     if (DC == SemaRef.CurContext)
5435       return E;
5436 
5437     // FIXME: During instantiation, because the rebuild of defaults arguments
5438     // is not always done in the context of the template instantiator,
5439     // we run the risk of producing a dependent source location
5440     // that would never be rebuilt.
5441     // This usually happens during overload resolution, or in contexts
5442     // where the value of the source location does not matter.
5443     // However, we should find a better way to deal with source location
5444     // of function templates.
5445     if (!SemaRef.CurrentInstantiationScope ||
5446         !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5447       DC = SemaRef.CurContext;
5448 
5449     return getDerived().RebuildSourceLocExpr(
5450         E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), DC);
5451   }
5452 };
5453 
5454 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5455                                         FunctionDecl *FD, ParmVarDecl *Param,
5456                                         Expr *Init) {
5457   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5458 
5459   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5460   bool InLifetimeExtendingContext = isInLifetimeExtendingContext();
5461   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5462       InitializationContext =
5463           OutermostDeclarationWithDelayedImmediateInvocations();
5464   if (!InitializationContext.has_value())
5465     InitializationContext.emplace(CallLoc, Param, CurContext);
5466 
5467   if (!Init && !Param->hasUnparsedDefaultArg()) {
5468     // Mark that we are replacing a default argument first.
5469     // If we are instantiating a template we won't have to
5470     // retransform immediate calls.
5471     // C++ [expr.const]p15.1:
5472     //   An expression or conversion is in an immediate function context if it
5473     //   is potentially evaluated and [...] its innermost enclosing non-block
5474     //   scope is a function parameter scope of an immediate function.
5475     EnterExpressionEvaluationContext EvalContext(
5476         *this,
5477         FD->isImmediateFunction()
5478             ? ExpressionEvaluationContext::ImmediateFunctionContext
5479             : ExpressionEvaluationContext::PotentiallyEvaluated,
5480         Param);
5481 
5482     if (Param->hasUninstantiatedDefaultArg()) {
5483       if (InstantiateDefaultArgument(CallLoc, FD, Param))
5484         return ExprError();
5485     }
5486     // CWG2631
5487     // An immediate invocation that is not evaluated where it appears is
5488     // evaluated and checked for whether it is a constant expression at the
5489     // point where the enclosing initializer is used in a function call.
5490     ImmediateCallVisitor V(getASTContext());
5491     if (!NestedDefaultChecking)
5492       V.TraverseDecl(Param);
5493 
5494     // Rewrite the call argument that was created from the corresponding
5495     // parameter's default argument.
5496     if (V.HasImmediateCalls || InLifetimeExtendingContext) {
5497       if (V.HasImmediateCalls)
5498         ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5499             CallLoc, Param, CurContext};
5500       // Pass down lifetime extending flag, and collect temporaries in
5501       // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5502       keepInLifetimeExtendingContext();
5503       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5504       ExprResult Res;
5505       runWithSufficientStackSpace(CallLoc, [&] {
5506         Res = Immediate.TransformInitializer(Param->getInit(),
5507                                              /*NotCopy=*/false);
5508       });
5509       if (Res.isInvalid())
5510         return ExprError();
5511       Res = ConvertParamDefaultArgument(Param, Res.get(),
5512                                         Res.get()->getBeginLoc());
5513       if (Res.isInvalid())
5514         return ExprError();
5515       Init = Res.get();
5516     }
5517   }
5518 
5519   if (CheckCXXDefaultArgExpr(
5520           CallLoc, FD, Param, Init,
5521           /*SkipImmediateInvocations=*/NestedDefaultChecking))
5522     return ExprError();
5523 
5524   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
5525                                    Init, InitializationContext->Context);
5526 }
5527 
5528 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5529   assert(Field->hasInClassInitializer());
5530 
5531   // If we might have already tried and failed to instantiate, don't try again.
5532   if (Field->isInvalidDecl())
5533     return ExprError();
5534 
5535   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5536 
5537   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5538 
5539   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5540       InitializationContext =
5541           OutermostDeclarationWithDelayedImmediateInvocations();
5542   if (!InitializationContext.has_value())
5543     InitializationContext.emplace(Loc, Field, CurContext);
5544 
5545   Expr *Init = nullptr;
5546 
5547   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5548 
5549   EnterExpressionEvaluationContext EvalContext(
5550       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5551 
5552   if (!Field->getInClassInitializer()) {
5553     // Maybe we haven't instantiated the in-class initializer. Go check the
5554     // pattern FieldDecl to see if it has one.
5555     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
5556       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5557       DeclContext::lookup_result Lookup =
5558           ClassPattern->lookup(Field->getDeclName());
5559 
5560       FieldDecl *Pattern = nullptr;
5561       for (auto *L : Lookup) {
5562         if ((Pattern = dyn_cast<FieldDecl>(L)))
5563           break;
5564       }
5565       assert(Pattern && "We must have set the Pattern!");
5566       if (!Pattern->hasInClassInitializer() ||
5567           InstantiateInClassInitializer(Loc, Field, Pattern,
5568                                         getTemplateInstantiationArgs(Field))) {
5569         Field->setInvalidDecl();
5570         return ExprError();
5571       }
5572     }
5573   }
5574 
5575   // CWG2631
5576   // An immediate invocation that is not evaluated where it appears is
5577   // evaluated and checked for whether it is a constant expression at the
5578   // point where the enclosing initializer is used in a [...] a constructor
5579   // definition, or an aggregate initialization.
5580   ImmediateCallVisitor V(getASTContext());
5581   if (!NestedDefaultChecking)
5582     V.TraverseDecl(Field);
5583   if (V.HasImmediateCalls) {
5584     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5585                                                                    CurContext};
5586     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5587         NestedDefaultChecking;
5588 
5589     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5590     ExprResult Res;
5591     runWithSufficientStackSpace(Loc, [&] {
5592       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
5593                                            /*CXXDirectInit=*/false);
5594     });
5595     if (!Res.isInvalid())
5596       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
5597     if (Res.isInvalid()) {
5598       Field->setInvalidDecl();
5599       return ExprError();
5600     }
5601     Init = Res.get();
5602   }
5603 
5604   if (Field->getInClassInitializer()) {
5605     Expr *E = Init ? Init : Field->getInClassInitializer();
5606     if (!NestedDefaultChecking)
5607       runWithSufficientStackSpace(Loc, [&] {
5608         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5609       });
5610     // C++11 [class.base.init]p7:
5611     //   The initialization of each base and member constitutes a
5612     //   full-expression.
5613     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
5614     if (Res.isInvalid()) {
5615       Field->setInvalidDecl();
5616       return ExprError();
5617     }
5618     Init = Res.get();
5619 
5620     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
5621                                       Field, InitializationContext->Context,
5622                                       Init);
5623   }
5624 
5625   // DR1351:
5626   //   If the brace-or-equal-initializer of a non-static data member
5627   //   invokes a defaulted default constructor of its class or of an
5628   //   enclosing class in a potentially evaluated subexpression, the
5629   //   program is ill-formed.
5630   //
5631   // This resolution is unworkable: the exception specification of the
5632   // default constructor can be needed in an unevaluated context, in
5633   // particular, in the operand of a noexcept-expression, and we can be
5634   // unable to compute an exception specification for an enclosed class.
5635   //
5636   // Any attempt to resolve the exception specification of a defaulted default
5637   // constructor before the initializer is lexically complete will ultimately
5638   // come here at which point we can diagnose it.
5639   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5640   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
5641       << OutermostClass << Field;
5642   Diag(Field->getEndLoc(),
5643        diag::note_default_member_initializer_not_yet_parsed);
5644   // Recover by marking the field invalid, unless we're in a SFINAE context.
5645   if (!isSFINAEContext())
5646     Field->setInvalidDecl();
5647   return ExprError();
5648 }
5649 
5650 Sema::VariadicCallType
5651 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5652                           Expr *Fn) {
5653   if (Proto && Proto->isVariadic()) {
5654     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5655       return VariadicConstructor;
5656     else if (Fn && Fn->getType()->isBlockPointerType())
5657       return VariadicBlock;
5658     else if (FDecl) {
5659       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5660         if (Method->isInstance())
5661           return VariadicMethod;
5662     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5663       return VariadicMethod;
5664     return VariadicFunction;
5665   }
5666   return VariadicDoesNotApply;
5667 }
5668 
5669 namespace {
5670 class FunctionCallCCC final : public FunctionCallFilterCCC {
5671 public:
5672   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5673                   unsigned NumArgs, MemberExpr *ME)
5674       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5675         FunctionName(FuncName) {}
5676 
5677   bool ValidateCandidate(const TypoCorrection &candidate) override {
5678     if (!candidate.getCorrectionSpecifier() ||
5679         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5680       return false;
5681     }
5682 
5683     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5684   }
5685 
5686   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5687     return std::make_unique<FunctionCallCCC>(*this);
5688   }
5689 
5690 private:
5691   const IdentifierInfo *const FunctionName;
5692 };
5693 }
5694 
5695 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5696                                                FunctionDecl *FDecl,
5697                                                ArrayRef<Expr *> Args) {
5698   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5699   DeclarationName FuncName = FDecl->getDeclName();
5700   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5701 
5702   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5703   if (TypoCorrection Corrected = S.CorrectTypo(
5704           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5705           S.getScopeForContext(S.CurContext), nullptr, CCC,
5706           Sema::CTK_ErrorRecovery)) {
5707     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5708       if (Corrected.isOverloaded()) {
5709         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5710         OverloadCandidateSet::iterator Best;
5711         for (NamedDecl *CD : Corrected) {
5712           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5713             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5714                                    OCS);
5715         }
5716         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5717         case OR_Success:
5718           ND = Best->FoundDecl;
5719           Corrected.setCorrectionDecl(ND);
5720           break;
5721         default:
5722           break;
5723         }
5724       }
5725       ND = ND->getUnderlyingDecl();
5726       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5727         return Corrected;
5728     }
5729   }
5730   return TypoCorrection();
5731 }
5732 
5733 // [C++26][[expr.unary.op]/p4
5734 // A pointer to member is only formed when an explicit &
5735 // is used and its operand is a qualified-id not enclosed in parentheses.
5736 static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5737   if (!isa<ParenExpr>(Fn))
5738     return false;
5739 
5740   Fn = Fn->IgnoreParens();
5741 
5742   auto *UO = dyn_cast<UnaryOperator>(Fn);
5743   if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5744     return false;
5745   if (auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
5746     return DRE->hasQualifier();
5747   }
5748   if (auto *OVL = dyn_cast<OverloadExpr>(UO->getSubExpr()->IgnoreParens()))
5749     return OVL->getQualifier();
5750   return false;
5751 }
5752 
5753 bool
5754 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5755                               FunctionDecl *FDecl,
5756                               const FunctionProtoType *Proto,
5757                               ArrayRef<Expr *> Args,
5758                               SourceLocation RParenLoc,
5759                               bool IsExecConfig) {
5760   // Bail out early if calling a builtin with custom typechecking.
5761   if (FDecl)
5762     if (unsigned ID = FDecl->getBuiltinID())
5763       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5764         return false;
5765 
5766   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5767   // assignment, to the types of the corresponding parameter, ...
5768 
5769   bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5770   bool HasExplicitObjectParameter =
5771       !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5772   unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5773   unsigned NumParams = Proto->getNumParams();
5774   bool Invalid = false;
5775   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5776   unsigned FnKind = Fn->getType()->isBlockPointerType()
5777                        ? 1 /* block */
5778                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5779                                        : 0 /* function */);
5780 
5781   // If too few arguments are available (and we don't have default
5782   // arguments for the remaining parameters), don't make the call.
5783   if (Args.size() < NumParams) {
5784     if (Args.size() < MinArgs) {
5785       TypoCorrection TC;
5786       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5787         unsigned diag_id =
5788             MinArgs == NumParams && !Proto->isVariadic()
5789                 ? diag::err_typecheck_call_too_few_args_suggest
5790                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5791         diagnoseTypo(
5792             TC, PDiag(diag_id)
5793                     << FnKind << MinArgs - ExplicitObjectParameterOffset
5794                     << static_cast<unsigned>(Args.size()) -
5795                            ExplicitObjectParameterOffset
5796                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5797       } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5798                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5799                      ->getDeclName())
5800         Diag(RParenLoc,
5801              MinArgs == NumParams && !Proto->isVariadic()
5802                  ? diag::err_typecheck_call_too_few_args_one
5803                  : diag::err_typecheck_call_too_few_args_at_least_one)
5804             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5805             << HasExplicitObjectParameter << Fn->getSourceRange();
5806       else
5807         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5808                             ? diag::err_typecheck_call_too_few_args
5809                             : diag::err_typecheck_call_too_few_args_at_least)
5810             << FnKind << MinArgs - ExplicitObjectParameterOffset
5811             << static_cast<unsigned>(Args.size()) -
5812                    ExplicitObjectParameterOffset
5813             << HasExplicitObjectParameter << Fn->getSourceRange();
5814 
5815       // Emit the location of the prototype.
5816       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5817         Diag(FDecl->getLocation(), diag::note_callee_decl)
5818             << FDecl << FDecl->getParametersSourceRange();
5819 
5820       return true;
5821     }
5822     // We reserve space for the default arguments when we create
5823     // the call expression, before calling ConvertArgumentsForCall.
5824     assert((Call->getNumArgs() == NumParams) &&
5825            "We should have reserved space for the default arguments before!");
5826   }
5827 
5828   // If too many are passed and not variadic, error on the extras and drop
5829   // them.
5830   if (Args.size() > NumParams) {
5831     if (!Proto->isVariadic()) {
5832       TypoCorrection TC;
5833       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5834         unsigned diag_id =
5835             MinArgs == NumParams && !Proto->isVariadic()
5836                 ? diag::err_typecheck_call_too_many_args_suggest
5837                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5838         diagnoseTypo(
5839             TC, PDiag(diag_id)
5840                     << FnKind << NumParams - ExplicitObjectParameterOffset
5841                     << static_cast<unsigned>(Args.size()) -
5842                            ExplicitObjectParameterOffset
5843                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5844       } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5845                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5846                      ->getDeclName())
5847         Diag(Args[NumParams]->getBeginLoc(),
5848              MinArgs == NumParams
5849                  ? diag::err_typecheck_call_too_many_args_one
5850                  : diag::err_typecheck_call_too_many_args_at_most_one)
5851             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5852             << static_cast<unsigned>(Args.size()) -
5853                    ExplicitObjectParameterOffset
5854             << HasExplicitObjectParameter << Fn->getSourceRange()
5855             << SourceRange(Args[NumParams]->getBeginLoc(),
5856                            Args.back()->getEndLoc());
5857       else
5858         Diag(Args[NumParams]->getBeginLoc(),
5859              MinArgs == NumParams
5860                  ? diag::err_typecheck_call_too_many_args
5861                  : diag::err_typecheck_call_too_many_args_at_most)
5862             << FnKind << NumParams - ExplicitObjectParameterOffset
5863             << static_cast<unsigned>(Args.size()) -
5864                    ExplicitObjectParameterOffset
5865             << HasExplicitObjectParameter << Fn->getSourceRange()
5866             << SourceRange(Args[NumParams]->getBeginLoc(),
5867                            Args.back()->getEndLoc());
5868 
5869       // Emit the location of the prototype.
5870       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5871         Diag(FDecl->getLocation(), diag::note_callee_decl)
5872             << FDecl << FDecl->getParametersSourceRange();
5873 
5874       // This deletes the extra arguments.
5875       Call->shrinkNumArgs(NumParams);
5876       return true;
5877     }
5878   }
5879   SmallVector<Expr *, 8> AllArgs;
5880   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5881 
5882   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5883                                    AllArgs, CallType);
5884   if (Invalid)
5885     return true;
5886   unsigned TotalNumArgs = AllArgs.size();
5887   for (unsigned i = 0; i < TotalNumArgs; ++i)
5888     Call->setArg(i, AllArgs[i]);
5889 
5890   Call->computeDependence();
5891   return false;
5892 }
5893 
5894 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5895                                   const FunctionProtoType *Proto,
5896                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5897                                   SmallVectorImpl<Expr *> &AllArgs,
5898                                   VariadicCallType CallType, bool AllowExplicit,
5899                                   bool IsListInitialization) {
5900   unsigned NumParams = Proto->getNumParams();
5901   bool Invalid = false;
5902   size_t ArgIx = 0;
5903   // Continue to check argument types (even if we have too few/many args).
5904   for (unsigned i = FirstParam; i < NumParams; i++) {
5905     QualType ProtoArgType = Proto->getParamType(i);
5906 
5907     Expr *Arg;
5908     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5909     if (ArgIx < Args.size()) {
5910       Arg = Args[ArgIx++];
5911 
5912       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5913                               diag::err_call_incomplete_argument, Arg))
5914         return true;
5915 
5916       // Strip the unbridged-cast placeholder expression off, if applicable.
5917       bool CFAudited = false;
5918       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5919           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5920           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5921         Arg = ObjC().stripARCUnbridgedCast(Arg);
5922       else if (getLangOpts().ObjCAutoRefCount &&
5923                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5924                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5925         CFAudited = true;
5926 
5927       if (Proto->getExtParameterInfo(i).isNoEscape() &&
5928           ProtoArgType->isBlockPointerType())
5929         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5930           BE->getBlockDecl()->setDoesNotEscape();
5931 
5932       InitializedEntity Entity =
5933           Param ? InitializedEntity::InitializeParameter(Context, Param,
5934                                                          ProtoArgType)
5935                 : InitializedEntity::InitializeParameter(
5936                       Context, ProtoArgType, Proto->isParamConsumed(i));
5937 
5938       // Remember that parameter belongs to a CF audited API.
5939       if (CFAudited)
5940         Entity.setParameterCFAudited();
5941 
5942       ExprResult ArgE = PerformCopyInitialization(
5943           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5944       if (ArgE.isInvalid())
5945         return true;
5946 
5947       Arg = ArgE.getAs<Expr>();
5948     } else {
5949       assert(Param && "can't use default arguments without a known callee");
5950 
5951       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5952       if (ArgExpr.isInvalid())
5953         return true;
5954 
5955       Arg = ArgExpr.getAs<Expr>();
5956     }
5957 
5958     // Check for array bounds violations for each argument to the call. This
5959     // check only triggers warnings when the argument isn't a more complex Expr
5960     // with its own checking, such as a BinaryOperator.
5961     CheckArrayAccess(Arg);
5962 
5963     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5964     CheckStaticArrayArgument(CallLoc, Param, Arg);
5965 
5966     AllArgs.push_back(Arg);
5967   }
5968 
5969   // If this is a variadic call, handle args passed through "...".
5970   if (CallType != VariadicDoesNotApply) {
5971     // Assume that extern "C" functions with variadic arguments that
5972     // return __unknown_anytype aren't *really* variadic.
5973     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5974         FDecl->isExternC()) {
5975       for (Expr *A : Args.slice(ArgIx)) {
5976         QualType paramType; // ignored
5977         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5978         Invalid |= arg.isInvalid();
5979         AllArgs.push_back(arg.get());
5980       }
5981 
5982     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5983     } else {
5984       for (Expr *A : Args.slice(ArgIx)) {
5985         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5986         Invalid |= Arg.isInvalid();
5987         AllArgs.push_back(Arg.get());
5988       }
5989     }
5990 
5991     // Check for array bounds violations.
5992     for (Expr *A : Args.slice(ArgIx))
5993       CheckArrayAccess(A);
5994   }
5995   return Invalid;
5996 }
5997 
5998 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5999   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6000   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6001     TL = DTL.getOriginalLoc();
6002   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6003     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6004       << ATL.getLocalSourceRange();
6005 }
6006 
6007 void
6008 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6009                                ParmVarDecl *Param,
6010                                const Expr *ArgExpr) {
6011   // Static array parameters are not supported in C++.
6012   if (!Param || getLangOpts().CPlusPlus)
6013     return;
6014 
6015   QualType OrigTy = Param->getOriginalType();
6016 
6017   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6018   if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6019     return;
6020 
6021   if (ArgExpr->isNullPointerConstant(Context,
6022                                      Expr::NPC_NeverValueDependent)) {
6023     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6024     DiagnoseCalleeStaticArrayParam(*this, Param);
6025     return;
6026   }
6027 
6028   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6029   if (!CAT)
6030     return;
6031 
6032   const ConstantArrayType *ArgCAT =
6033     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6034   if (!ArgCAT)
6035     return;
6036 
6037   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6038                                              ArgCAT->getElementType())) {
6039     if (ArgCAT->getSize().ult(CAT->getSize())) {
6040       Diag(CallLoc, diag::warn_static_array_too_small)
6041           << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6042           << (unsigned)CAT->getZExtSize() << 0;
6043       DiagnoseCalleeStaticArrayParam(*this, Param);
6044     }
6045     return;
6046   }
6047 
6048   std::optional<CharUnits> ArgSize =
6049       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6050   std::optional<CharUnits> ParmSize =
6051       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6052   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6053     Diag(CallLoc, diag::warn_static_array_too_small)
6054         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6055         << (unsigned)ParmSize->getQuantity() << 1;
6056     DiagnoseCalleeStaticArrayParam(*this, Param);
6057   }
6058 }
6059 
6060 /// Given a function expression of unknown-any type, try to rebuild it
6061 /// to have a function type.
6062 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6063 
6064 /// Is the given type a placeholder that we need to lower out
6065 /// immediately during argument processing?
6066 static bool isPlaceholderToRemoveAsArg(QualType type) {
6067   // Placeholders are never sugared.
6068   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6069   if (!placeholder) return false;
6070 
6071   switch (placeholder->getKind()) {
6072   // Ignore all the non-placeholder types.
6073 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6074   case BuiltinType::Id:
6075 #include "clang/Basic/OpenCLImageTypes.def"
6076 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6077   case BuiltinType::Id:
6078 #include "clang/Basic/OpenCLExtensionTypes.def"
6079   // In practice we'll never use this, since all SVE types are sugared
6080   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6081 #define SVE_TYPE(Name, Id, SingletonId) \
6082   case BuiltinType::Id:
6083 #include "clang/Basic/AArch64SVEACLETypes.def"
6084 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6085   case BuiltinType::Id:
6086 #include "clang/Basic/PPCTypes.def"
6087 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6088 #include "clang/Basic/RISCVVTypes.def"
6089 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6090 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6091 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6092 #include "clang/Basic/AMDGPUTypes.def"
6093 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6094 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6095 #include "clang/AST/BuiltinTypes.def"
6096     return false;
6097 
6098   case BuiltinType::UnresolvedTemplate:
6099   // We cannot lower out overload sets; they might validly be resolved
6100   // by the call machinery.
6101   case BuiltinType::Overload:
6102     return false;
6103 
6104   // Unbridged casts in ARC can be handled in some call positions and
6105   // should be left in place.
6106   case BuiltinType::ARCUnbridgedCast:
6107     return false;
6108 
6109   // Pseudo-objects should be converted as soon as possible.
6110   case BuiltinType::PseudoObject:
6111     return true;
6112 
6113   // The debugger mode could theoretically but currently does not try
6114   // to resolve unknown-typed arguments based on known parameter types.
6115   case BuiltinType::UnknownAny:
6116     return true;
6117 
6118   // These are always invalid as call arguments and should be reported.
6119   case BuiltinType::BoundMember:
6120   case BuiltinType::BuiltinFn:
6121   case BuiltinType::IncompleteMatrixIdx:
6122   case BuiltinType::ArraySection:
6123   case BuiltinType::OMPArrayShaping:
6124   case BuiltinType::OMPIterator:
6125     return true;
6126 
6127   }
6128   llvm_unreachable("bad builtin type kind");
6129 }
6130 
6131 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6132   // Apply this processing to all the arguments at once instead of
6133   // dying at the first failure.
6134   bool hasInvalid = false;
6135   for (size_t i = 0, e = args.size(); i != e; i++) {
6136     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6137       ExprResult result = CheckPlaceholderExpr(args[i]);
6138       if (result.isInvalid()) hasInvalid = true;
6139       else args[i] = result.get();
6140     }
6141   }
6142   return hasInvalid;
6143 }
6144 
6145 /// If a builtin function has a pointer argument with no explicit address
6146 /// space, then it should be able to accept a pointer to any address
6147 /// space as input.  In order to do this, we need to replace the
6148 /// standard builtin declaration with one that uses the same address space
6149 /// as the call.
6150 ///
6151 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6152 ///                  it does not contain any pointer arguments without
6153 ///                  an address space qualifer.  Otherwise the rewritten
6154 ///                  FunctionDecl is returned.
6155 /// TODO: Handle pointer return types.
6156 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6157                                                 FunctionDecl *FDecl,
6158                                                 MultiExprArg ArgExprs) {
6159 
6160   QualType DeclType = FDecl->getType();
6161   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6162 
6163   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6164       ArgExprs.size() < FT->getNumParams())
6165     return nullptr;
6166 
6167   bool NeedsNewDecl = false;
6168   unsigned i = 0;
6169   SmallVector<QualType, 8> OverloadParams;
6170 
6171   for (QualType ParamType : FT->param_types()) {
6172 
6173     // Convert array arguments to pointer to simplify type lookup.
6174     ExprResult ArgRes =
6175         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6176     if (ArgRes.isInvalid())
6177       return nullptr;
6178     Expr *Arg = ArgRes.get();
6179     QualType ArgType = Arg->getType();
6180     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6181         !ArgType->isPointerType() ||
6182         !ArgType->getPointeeType().hasAddressSpace() ||
6183         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6184       OverloadParams.push_back(ParamType);
6185       continue;
6186     }
6187 
6188     QualType PointeeType = ParamType->getPointeeType();
6189     if (PointeeType.hasAddressSpace())
6190       continue;
6191 
6192     NeedsNewDecl = true;
6193     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6194 
6195     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6196     OverloadParams.push_back(Context.getPointerType(PointeeType));
6197   }
6198 
6199   if (!NeedsNewDecl)
6200     return nullptr;
6201 
6202   FunctionProtoType::ExtProtoInfo EPI;
6203   EPI.Variadic = FT->isVariadic();
6204   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6205                                                 OverloadParams, EPI);
6206   DeclContext *Parent = FDecl->getParent();
6207   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6208       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6209       FDecl->getIdentifier(), OverloadTy,
6210       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6211       false,
6212       /*hasPrototype=*/true);
6213   SmallVector<ParmVarDecl*, 16> Params;
6214   FT = cast<FunctionProtoType>(OverloadTy);
6215   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6216     QualType ParamType = FT->getParamType(i);
6217     ParmVarDecl *Parm =
6218         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6219                                 SourceLocation(), nullptr, ParamType,
6220                                 /*TInfo=*/nullptr, SC_None, nullptr);
6221     Parm->setScopeInfo(0, i);
6222     Params.push_back(Parm);
6223   }
6224   OverloadDecl->setParams(Params);
6225   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6226   return OverloadDecl;
6227 }
6228 
6229 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6230                                     FunctionDecl *Callee,
6231                                     MultiExprArg ArgExprs) {
6232   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6233   // similar attributes) really don't like it when functions are called with an
6234   // invalid number of args.
6235   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6236                          /*PartialOverloading=*/false) &&
6237       !Callee->isVariadic())
6238     return;
6239   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6240     return;
6241 
6242   if (const EnableIfAttr *Attr =
6243           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6244     S.Diag(Fn->getBeginLoc(),
6245            isa<CXXMethodDecl>(Callee)
6246                ? diag::err_ovl_no_viable_member_function_in_call
6247                : diag::err_ovl_no_viable_function_in_call)
6248         << Callee << Callee->getSourceRange();
6249     S.Diag(Callee->getLocation(),
6250            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6251         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6252     return;
6253   }
6254 }
6255 
6256 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6257     const UnresolvedMemberExpr *const UME, Sema &S) {
6258 
6259   const auto GetFunctionLevelDCIfCXXClass =
6260       [](Sema &S) -> const CXXRecordDecl * {
6261     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6262     if (!DC || !DC->getParent())
6263       return nullptr;
6264 
6265     // If the call to some member function was made from within a member
6266     // function body 'M' return return 'M's parent.
6267     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6268       return MD->getParent()->getCanonicalDecl();
6269     // else the call was made from within a default member initializer of a
6270     // class, so return the class.
6271     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6272       return RD->getCanonicalDecl();
6273     return nullptr;
6274   };
6275   // If our DeclContext is neither a member function nor a class (in the
6276   // case of a lambda in a default member initializer), we can't have an
6277   // enclosing 'this'.
6278 
6279   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6280   if (!CurParentClass)
6281     return false;
6282 
6283   // The naming class for implicit member functions call is the class in which
6284   // name lookup starts.
6285   const CXXRecordDecl *const NamingClass =
6286       UME->getNamingClass()->getCanonicalDecl();
6287   assert(NamingClass && "Must have naming class even for implicit access");
6288 
6289   // If the unresolved member functions were found in a 'naming class' that is
6290   // related (either the same or derived from) to the class that contains the
6291   // member function that itself contained the implicit member access.
6292 
6293   return CurParentClass == NamingClass ||
6294          CurParentClass->isDerivedFrom(NamingClass);
6295 }
6296 
6297 static void
6298 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6299     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6300 
6301   if (!UME)
6302     return;
6303 
6304   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6305   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6306   // already been captured, or if this is an implicit member function call (if
6307   // it isn't, an attempt to capture 'this' should already have been made).
6308   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6309       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6310     return;
6311 
6312   // Check if the naming class in which the unresolved members were found is
6313   // related (same as or is a base of) to the enclosing class.
6314 
6315   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6316     return;
6317 
6318 
6319   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6320   // If the enclosing function is not dependent, then this lambda is
6321   // capture ready, so if we can capture this, do so.
6322   if (!EnclosingFunctionCtx->isDependentContext()) {
6323     // If the current lambda and all enclosing lambdas can capture 'this' -
6324     // then go ahead and capture 'this' (since our unresolved overload set
6325     // contains at least one non-static member function).
6326     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6327       S.CheckCXXThisCapture(CallLoc);
6328   } else if (S.CurContext->isDependentContext()) {
6329     // ... since this is an implicit member reference, that might potentially
6330     // involve a 'this' capture, mark 'this' for potential capture in
6331     // enclosing lambdas.
6332     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6333       CurLSI->addPotentialThisCapture(CallLoc);
6334   }
6335 }
6336 
6337 // Once a call is fully resolved, warn for unqualified calls to specific
6338 // C++ standard functions, like move and forward.
6339 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6340                                                     const CallExpr *Call) {
6341   // We are only checking unary move and forward so exit early here.
6342   if (Call->getNumArgs() != 1)
6343     return;
6344 
6345   const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6346   if (!E || isa<UnresolvedLookupExpr>(E))
6347     return;
6348   const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
6349   if (!DRE || !DRE->getLocation().isValid())
6350     return;
6351 
6352   if (DRE->getQualifier())
6353     return;
6354 
6355   const FunctionDecl *FD = Call->getDirectCallee();
6356   if (!FD)
6357     return;
6358 
6359   // Only warn for some functions deemed more frequent or problematic.
6360   unsigned BuiltinID = FD->getBuiltinID();
6361   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6362     return;
6363 
6364   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6365       << FD->getQualifiedNameAsString()
6366       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6367 }
6368 
6369 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6370                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6371                                Expr *ExecConfig) {
6372   ExprResult Call =
6373       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6374                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6375   if (Call.isInvalid())
6376     return Call;
6377 
6378   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6379   // language modes.
6380   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
6381       ULE && ULE->hasExplicitTemplateArgs() &&
6382       ULE->decls_begin() == ULE->decls_end()) {
6383     Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6384                                ? diag::warn_cxx17_compat_adl_only_template_id
6385                                : diag::ext_adl_only_template_id)
6386         << ULE->getName();
6387   }
6388 
6389   if (LangOpts.OpenMP)
6390     Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6391                                     ExecConfig);
6392   if (LangOpts.CPlusPlus) {
6393     if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
6394       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6395 
6396     // If we previously found that the id-expression of this call refers to a
6397     // consteval function but the call is dependent, we should not treat is an
6398     // an invalid immediate call.
6399     if (auto *DRE = dyn_cast<DeclRefExpr>(Fn->IgnoreParens());
6400         DRE && Call.get()->isValueDependent()) {
6401       currentEvaluationContext().ReferenceToConsteval.erase(DRE);
6402     }
6403   }
6404   return Call;
6405 }
6406 
6407 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6408                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6409                                Expr *ExecConfig, bool IsExecConfig,
6410                                bool AllowRecovery) {
6411   // Since this might be a postfix expression, get rid of ParenListExprs.
6412   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6413   if (Result.isInvalid()) return ExprError();
6414   Fn = Result.get();
6415 
6416   if (CheckArgsForPlaceholders(ArgExprs))
6417     return ExprError();
6418 
6419   if (getLangOpts().CPlusPlus) {
6420     // If this is a pseudo-destructor expression, build the call immediately.
6421     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6422       if (!ArgExprs.empty()) {
6423         // Pseudo-destructor calls should not have any arguments.
6424         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6425             << FixItHint::CreateRemoval(
6426                    SourceRange(ArgExprs.front()->getBeginLoc(),
6427                                ArgExprs.back()->getEndLoc()));
6428       }
6429 
6430       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6431                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6432     }
6433     if (Fn->getType() == Context.PseudoObjectTy) {
6434       ExprResult result = CheckPlaceholderExpr(Fn);
6435       if (result.isInvalid()) return ExprError();
6436       Fn = result.get();
6437     }
6438 
6439     // Determine whether this is a dependent call inside a C++ template,
6440     // in which case we won't do any semantic analysis now.
6441     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6442       if (ExecConfig) {
6443         return CUDAKernelCallExpr::Create(Context, Fn,
6444                                           cast<CallExpr>(ExecConfig), ArgExprs,
6445                                           Context.DependentTy, VK_PRValue,
6446                                           RParenLoc, CurFPFeatureOverrides());
6447       } else {
6448 
6449         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6450             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6451             Fn->getBeginLoc());
6452 
6453         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6454                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6455       }
6456     }
6457 
6458     // Determine whether this is a call to an object (C++ [over.call.object]).
6459     if (Fn->getType()->isRecordType())
6460       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6461                                           RParenLoc);
6462 
6463     if (Fn->getType() == Context.UnknownAnyTy) {
6464       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6465       if (result.isInvalid()) return ExprError();
6466       Fn = result.get();
6467     }
6468 
6469     if (Fn->getType() == Context.BoundMemberTy) {
6470       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6471                                        RParenLoc, ExecConfig, IsExecConfig,
6472                                        AllowRecovery);
6473     }
6474   }
6475 
6476   // Check for overloaded calls.  This can happen even in C due to extensions.
6477   if (Fn->getType() == Context.OverloadTy) {
6478     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6479 
6480     // We aren't supposed to apply this logic if there's an '&' involved.
6481     if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6482       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6483         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6484                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6485       OverloadExpr *ovl = find.Expression;
6486       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6487         return BuildOverloadedCallExpr(
6488             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6489             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6490       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6491                                        RParenLoc, ExecConfig, IsExecConfig,
6492                                        AllowRecovery);
6493     }
6494   }
6495 
6496   // If we're directly calling a function, get the appropriate declaration.
6497   if (Fn->getType() == Context.UnknownAnyTy) {
6498     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6499     if (result.isInvalid()) return ExprError();
6500     Fn = result.get();
6501   }
6502 
6503   Expr *NakedFn = Fn->IgnoreParens();
6504 
6505   bool CallingNDeclIndirectly = false;
6506   NamedDecl *NDecl = nullptr;
6507   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6508     if (UnOp->getOpcode() == UO_AddrOf) {
6509       CallingNDeclIndirectly = true;
6510       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6511     }
6512   }
6513 
6514   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6515     NDecl = DRE->getDecl();
6516 
6517     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6518     if (FDecl && FDecl->getBuiltinID()) {
6519       // Rewrite the function decl for this builtin by replacing parameters
6520       // with no explicit address space with the address space of the arguments
6521       // in ArgExprs.
6522       if ((FDecl =
6523                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6524         NDecl = FDecl;
6525         Fn = DeclRefExpr::Create(
6526             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6527             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6528             nullptr, DRE->isNonOdrUse());
6529       }
6530     }
6531   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
6532     NDecl = ME->getMemberDecl();
6533 
6534   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6535     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6536                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6537       return ExprError();
6538 
6539     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6540 
6541     // If this expression is a call to a builtin function in HIP device
6542     // compilation, allow a pointer-type argument to default address space to be
6543     // passed as a pointer-type parameter to a non-default address space.
6544     // If Arg is declared in the default address space and Param is declared
6545     // in a non-default address space, perform an implicit address space cast to
6546     // the parameter type.
6547     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6548         FD->getBuiltinID()) {
6549       for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6550           ++Idx) {
6551         ParmVarDecl *Param = FD->getParamDecl(Idx);
6552         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6553             !ArgExprs[Idx]->getType()->isPointerType())
6554           continue;
6555 
6556         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6557         auto ArgTy = ArgExprs[Idx]->getType();
6558         auto ArgPtTy = ArgTy->getPointeeType();
6559         auto ArgAS = ArgPtTy.getAddressSpace();
6560 
6561         // Add address space cast if target address spaces are different
6562         bool NeedImplicitASC =
6563           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
6564           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
6565                                               // or from specific AS which has target AS matching that of Param.
6566           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6567         if (!NeedImplicitASC)
6568           continue;
6569 
6570         // First, ensure that the Arg is an RValue.
6571         if (ArgExprs[Idx]->isGLValue()) {
6572           ArgExprs[Idx] = ImplicitCastExpr::Create(
6573               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6574               nullptr, VK_PRValue, FPOptionsOverride());
6575         }
6576 
6577         // Construct a new arg type with address space of Param
6578         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6579         ArgPtQuals.setAddressSpace(ParamAS);
6580         auto NewArgPtTy =
6581             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6582         auto NewArgTy =
6583             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6584                                      ArgTy.getQualifiers());
6585 
6586         // Finally perform an implicit address space cast
6587         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6588                                           CK_AddressSpaceConversion)
6589                             .get();
6590       }
6591     }
6592   }
6593 
6594   if (Context.isDependenceAllowed() &&
6595       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6596     assert(!getLangOpts().CPlusPlus);
6597     assert((Fn->containsErrors() ||
6598             llvm::any_of(ArgExprs,
6599                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6600            "should only occur in error-recovery path.");
6601     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6602                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6603   }
6604   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6605                                ExecConfig, IsExecConfig);
6606 }
6607 
6608 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6609                                  MultiExprArg CallArgs) {
6610   StringRef Name = Context.BuiltinInfo.getName(Id);
6611   LookupResult R(*this, &Context.Idents.get(Name), Loc,
6612                  Sema::LookupOrdinaryName);
6613   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6614 
6615   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6616   assert(BuiltInDecl && "failed to find builtin declaration");
6617 
6618   ExprResult DeclRef =
6619       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6620   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6621 
6622   ExprResult Call =
6623       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6624 
6625   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6626   return Call.get();
6627 }
6628 
6629 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6630                                  SourceLocation BuiltinLoc,
6631                                  SourceLocation RParenLoc) {
6632   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6633   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6634 }
6635 
6636 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6637                                  SourceLocation BuiltinLoc,
6638                                  SourceLocation RParenLoc) {
6639   ExprValueKind VK = VK_PRValue;
6640   ExprObjectKind OK = OK_Ordinary;
6641   QualType SrcTy = E->getType();
6642   if (!SrcTy->isDependentType() &&
6643       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6644     return ExprError(
6645         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6646         << DestTy << SrcTy << E->getSourceRange());
6647   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6648 }
6649 
6650 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6651                                         SourceLocation BuiltinLoc,
6652                                         SourceLocation RParenLoc) {
6653   TypeSourceInfo *TInfo;
6654   GetTypeFromParser(ParsedDestTy, &TInfo);
6655   return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6656 }
6657 
6658 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6659                                        SourceLocation LParenLoc,
6660                                        ArrayRef<Expr *> Args,
6661                                        SourceLocation RParenLoc, Expr *Config,
6662                                        bool IsExecConfig, ADLCallKind UsesADL) {
6663   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6664   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6665 
6666   // Functions with 'interrupt' attribute cannot be called directly.
6667   if (FDecl) {
6668     if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6669       Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6670       return ExprError();
6671     }
6672     if (FDecl->hasAttr<ARMInterruptAttr>()) {
6673       Diag(Fn->getExprLoc(), diag::err_arm_interrupt_called);
6674       return ExprError();
6675     }
6676   }
6677 
6678   // X86 interrupt handlers may only call routines with attribute
6679   // no_caller_saved_registers since there is no efficient way to
6680   // save and restore the non-GPR state.
6681   if (auto *Caller = getCurFunctionDecl()) {
6682     if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6683         Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6684       const TargetInfo &TI = Context.getTargetInfo();
6685       bool HasNonGPRRegisters =
6686           TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
6687       if (HasNonGPRRegisters &&
6688           (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6689         Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
6690             << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6691         if (FDecl)
6692           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6693       }
6694     }
6695   }
6696 
6697   // Promote the function operand.
6698   // We special-case function promotion here because we only allow promoting
6699   // builtin functions to function pointers in the callee of a call.
6700   ExprResult Result;
6701   QualType ResultTy;
6702   if (BuiltinID &&
6703       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6704     // Extract the return type from the (builtin) function pointer type.
6705     // FIXME Several builtins still have setType in
6706     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6707     // Builtins.td to ensure they are correct before removing setType calls.
6708     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6709     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6710     ResultTy = FDecl->getCallResultType();
6711   } else {
6712     Result = CallExprUnaryConversions(Fn);
6713     ResultTy = Context.BoolTy;
6714   }
6715   if (Result.isInvalid())
6716     return ExprError();
6717   Fn = Result.get();
6718 
6719   // Check for a valid function type, but only if it is not a builtin which
6720   // requires custom type checking. These will be handled by
6721   // CheckBuiltinFunctionCall below just after creation of the call expression.
6722   const FunctionType *FuncT = nullptr;
6723   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6724   retry:
6725     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6726       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6727       // have type pointer to function".
6728       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6729       if (!FuncT)
6730         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6731                          << Fn->getType() << Fn->getSourceRange());
6732     } else if (const BlockPointerType *BPT =
6733                    Fn->getType()->getAs<BlockPointerType>()) {
6734       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6735     } else {
6736       // Handle calls to expressions of unknown-any type.
6737       if (Fn->getType() == Context.UnknownAnyTy) {
6738         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6739         if (rewrite.isInvalid())
6740           return ExprError();
6741         Fn = rewrite.get();
6742         goto retry;
6743       }
6744 
6745       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6746                        << Fn->getType() << Fn->getSourceRange());
6747     }
6748   }
6749 
6750   // Get the number of parameters in the function prototype, if any.
6751   // We will allocate space for max(Args.size(), NumParams) arguments
6752   // in the call expression.
6753   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6754   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6755 
6756   CallExpr *TheCall;
6757   if (Config) {
6758     assert(UsesADL == ADLCallKind::NotADL &&
6759            "CUDAKernelCallExpr should not use ADL");
6760     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6761                                          Args, ResultTy, VK_PRValue, RParenLoc,
6762                                          CurFPFeatureOverrides(), NumParams);
6763   } else {
6764     TheCall =
6765         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6766                          CurFPFeatureOverrides(), NumParams, UsesADL);
6767   }
6768 
6769   if (!Context.isDependenceAllowed()) {
6770     // Forget about the nulled arguments since typo correction
6771     // do not handle them well.
6772     TheCall->shrinkNumArgs(Args.size());
6773     // C cannot always handle TypoExpr nodes in builtin calls and direct
6774     // function calls as their argument checking don't necessarily handle
6775     // dependent types properly, so make sure any TypoExprs have been
6776     // dealt with.
6777     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6778     if (!Result.isUsable()) return ExprError();
6779     CallExpr *TheOldCall = TheCall;
6780     TheCall = dyn_cast<CallExpr>(Result.get());
6781     bool CorrectedTypos = TheCall != TheOldCall;
6782     if (!TheCall) return Result;
6783     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6784 
6785     // A new call expression node was created if some typos were corrected.
6786     // However it may not have been constructed with enough storage. In this
6787     // case, rebuild the node with enough storage. The waste of space is
6788     // immaterial since this only happens when some typos were corrected.
6789     if (CorrectedTypos && Args.size() < NumParams) {
6790       if (Config)
6791         TheCall = CUDAKernelCallExpr::Create(
6792             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6793             RParenLoc, CurFPFeatureOverrides(), NumParams);
6794       else
6795         TheCall =
6796             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6797                              CurFPFeatureOverrides(), NumParams, UsesADL);
6798     }
6799     // We can now handle the nulled arguments for the default arguments.
6800     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6801   }
6802 
6803   // Bail out early if calling a builtin with custom type checking.
6804   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6805     ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6806     if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(BuiltinID))
6807       E = CheckForImmediateInvocation(E, FDecl);
6808     return E;
6809   }
6810 
6811   if (getLangOpts().CUDA) {
6812     if (Config) {
6813       // CUDA: Kernel calls must be to global functions
6814       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6815         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6816             << FDecl << Fn->getSourceRange());
6817 
6818       // CUDA: Kernel function must have 'void' return type
6819       if (!FuncT->getReturnType()->isVoidType() &&
6820           !FuncT->getReturnType()->getAs<AutoType>() &&
6821           !FuncT->getReturnType()->isInstantiationDependentType())
6822         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6823             << Fn->getType() << Fn->getSourceRange());
6824     } else {
6825       // CUDA: Calls to global functions must be configured
6826       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6827         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6828             << FDecl << Fn->getSourceRange());
6829     }
6830   }
6831 
6832   // Check for a valid return type
6833   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6834                           FDecl))
6835     return ExprError();
6836 
6837   // We know the result type of the call, set it.
6838   TheCall->setType(FuncT->getCallResultType(Context));
6839   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6840 
6841   // WebAssembly tables can't be used as arguments.
6842   if (Context.getTargetInfo().getTriple().isWasm()) {
6843     for (const Expr *Arg : Args) {
6844       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6845         return ExprError(Diag(Arg->getExprLoc(),
6846                               diag::err_wasm_table_as_function_parameter));
6847       }
6848     }
6849   }
6850 
6851   if (Proto) {
6852     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6853                                 IsExecConfig))
6854       return ExprError();
6855   } else {
6856     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6857 
6858     if (FDecl) {
6859       // Check if we have too few/too many template arguments, based
6860       // on our knowledge of the function definition.
6861       const FunctionDecl *Def = nullptr;
6862       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6863         Proto = Def->getType()->getAs<FunctionProtoType>();
6864        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6865           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6866           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6867       }
6868 
6869       // If the function we're calling isn't a function prototype, but we have
6870       // a function prototype from a prior declaratiom, use that prototype.
6871       if (!FDecl->hasPrototype())
6872         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6873     }
6874 
6875     // If we still haven't found a prototype to use but there are arguments to
6876     // the call, diagnose this as calling a function without a prototype.
6877     // However, if we found a function declaration, check to see if
6878     // -Wdeprecated-non-prototype was disabled where the function was declared.
6879     // If so, we will silence the diagnostic here on the assumption that this
6880     // interface is intentional and the user knows what they're doing. We will
6881     // also silence the diagnostic if there is a function declaration but it
6882     // was implicitly defined (the user already gets diagnostics about the
6883     // creation of the implicit function declaration, so the additional warning
6884     // is not helpful).
6885     if (!Proto && !Args.empty() &&
6886         (!FDecl || (!FDecl->isImplicit() &&
6887                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
6888                                      FDecl->getLocation()))))
6889       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
6890           << (FDecl != nullptr) << FDecl;
6891 
6892     // Promote the arguments (C99 6.5.2.2p6).
6893     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6894       Expr *Arg = Args[i];
6895 
6896       if (Proto && i < Proto->getNumParams()) {
6897         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6898             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6899         ExprResult ArgE =
6900             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6901         if (ArgE.isInvalid())
6902           return true;
6903 
6904         Arg = ArgE.getAs<Expr>();
6905 
6906       } else {
6907         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6908 
6909         if (ArgE.isInvalid())
6910           return true;
6911 
6912         Arg = ArgE.getAs<Expr>();
6913       }
6914 
6915       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6916                               diag::err_call_incomplete_argument, Arg))
6917         return ExprError();
6918 
6919       TheCall->setArg(i, Arg);
6920     }
6921     TheCall->computeDependence();
6922   }
6923 
6924   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6925     if (!isa<RequiresExprBodyDecl>(CurContext) &&
6926         Method->isImplicitObjectMemberFunction())
6927       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6928                        << Fn->getSourceRange() << 0);
6929 
6930   // Check for sentinels
6931   if (NDecl)
6932     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6933 
6934   // Warn for unions passing across security boundary (CMSE).
6935   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6936     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6937       if (const auto *RT =
6938               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6939         if (RT->getDecl()->isOrContainsUnion())
6940           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6941               << 0 << i;
6942       }
6943     }
6944   }
6945 
6946   // Do special checking on direct calls to functions.
6947   if (FDecl) {
6948     if (CheckFunctionCall(FDecl, TheCall, Proto))
6949       return ExprError();
6950 
6951     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6952 
6953     if (BuiltinID)
6954       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6955   } else if (NDecl) {
6956     if (CheckPointerCall(NDecl, TheCall, Proto))
6957       return ExprError();
6958   } else {
6959     if (CheckOtherCall(TheCall, Proto))
6960       return ExprError();
6961   }
6962 
6963   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6964 }
6965 
6966 ExprResult
6967 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6968                            SourceLocation RParenLoc, Expr *InitExpr) {
6969   assert(Ty && "ActOnCompoundLiteral(): missing type");
6970   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6971 
6972   TypeSourceInfo *TInfo;
6973   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6974   if (!TInfo)
6975     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6976 
6977   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6978 }
6979 
6980 ExprResult
6981 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6982                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6983   QualType literalType = TInfo->getType();
6984 
6985   if (literalType->isArrayType()) {
6986     if (RequireCompleteSizedType(
6987             LParenLoc, Context.getBaseElementType(literalType),
6988             diag::err_array_incomplete_or_sizeless_type,
6989             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6990       return ExprError();
6991     if (literalType->isVariableArrayType()) {
6992       // C23 6.7.10p4: An entity of variable length array type shall not be
6993       // initialized except by an empty initializer.
6994       //
6995       // The C extension warnings are issued from ParseBraceInitializer() and
6996       // do not need to be issued here. However, we continue to issue an error
6997       // in the case there are initializers or we are compiling C++. We allow
6998       // use of VLAs in C++, but it's not clear we want to allow {} to zero
6999       // init a VLA in C++ in all cases (such as with non-trivial constructors).
7000       // FIXME: should we allow this construct in C++ when it makes sense to do
7001       // so?
7002       //
7003       // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7004       // shall specify an object type or an array of unknown size, but not a
7005       // variable length array type. This seems odd, as it allows 'int a[size] =
7006       // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7007       // says, this is what's implemented here for C (except for the extension
7008       // that permits constant foldable size arrays)
7009 
7010       auto diagID = LangOpts.CPlusPlus
7011                         ? diag::err_variable_object_no_init
7012                         : diag::err_compound_literal_with_vla_type;
7013       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7014                                            diagID))
7015         return ExprError();
7016     }
7017   } else if (!literalType->isDependentType() &&
7018              RequireCompleteType(LParenLoc, literalType,
7019                diag::err_typecheck_decl_incomplete_type,
7020                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7021     return ExprError();
7022 
7023   InitializedEntity Entity
7024     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7025   InitializationKind Kind
7026     = InitializationKind::CreateCStyleCast(LParenLoc,
7027                                            SourceRange(LParenLoc, RParenLoc),
7028                                            /*InitList=*/true);
7029   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7030   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7031                                       &literalType);
7032   if (Result.isInvalid())
7033     return ExprError();
7034   LiteralExpr = Result.get();
7035 
7036   bool isFileScope = !CurContext->isFunctionOrMethod();
7037 
7038   // In C, compound literals are l-values for some reason.
7039   // For GCC compatibility, in C++, file-scope array compound literals with
7040   // constant initializers are also l-values, and compound literals are
7041   // otherwise prvalues.
7042   //
7043   // (GCC also treats C++ list-initialized file-scope array prvalues with
7044   // constant initializers as l-values, but that's non-conforming, so we don't
7045   // follow it there.)
7046   //
7047   // FIXME: It would be better to handle the lvalue cases as materializing and
7048   // lifetime-extending a temporary object, but our materialized temporaries
7049   // representation only supports lifetime extension from a variable, not "out
7050   // of thin air".
7051   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7052   // is bound to the result of applying array-to-pointer decay to the compound
7053   // literal.
7054   // FIXME: GCC supports compound literals of reference type, which should
7055   // obviously have a value kind derived from the kind of reference involved.
7056   ExprValueKind VK =
7057       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7058           ? VK_PRValue
7059           : VK_LValue;
7060 
7061   if (isFileScope)
7062     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7063       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7064         Expr *Init = ILE->getInit(i);
7065         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7066       }
7067 
7068   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7069                                               VK, LiteralExpr, isFileScope);
7070   if (isFileScope) {
7071     if (!LiteralExpr->isTypeDependent() &&
7072         !LiteralExpr->isValueDependent() &&
7073         !literalType->isDependentType()) // C99 6.5.2.5p3
7074       if (CheckForConstantInitializer(LiteralExpr))
7075         return ExprError();
7076   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7077              literalType.getAddressSpace() != LangAS::Default) {
7078     // Embedded-C extensions to C99 6.5.2.5:
7079     //   "If the compound literal occurs inside the body of a function, the
7080     //   type name shall not be qualified by an address-space qualifier."
7081     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7082       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7083     return ExprError();
7084   }
7085 
7086   if (!isFileScope && !getLangOpts().CPlusPlus) {
7087     // Compound literals that have automatic storage duration are destroyed at
7088     // the end of the scope in C; in C++, they're just temporaries.
7089 
7090     // Emit diagnostics if it is or contains a C union type that is non-trivial
7091     // to destruct.
7092     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7093       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7094                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7095 
7096     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7097     if (literalType.isDestructedType()) {
7098       Cleanup.setExprNeedsCleanups(true);
7099       ExprCleanupObjects.push_back(E);
7100       getCurFunction()->setHasBranchProtectedScope();
7101     }
7102   }
7103 
7104   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7105       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7106     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7107                                        E->getInitializer()->getExprLoc());
7108 
7109   return MaybeBindToTemporary(E);
7110 }
7111 
7112 ExprResult
7113 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7114                     SourceLocation RBraceLoc) {
7115   // Only produce each kind of designated initialization diagnostic once.
7116   SourceLocation FirstDesignator;
7117   bool DiagnosedArrayDesignator = false;
7118   bool DiagnosedNestedDesignator = false;
7119   bool DiagnosedMixedDesignator = false;
7120 
7121   // Check that any designated initializers are syntactically valid in the
7122   // current language mode.
7123   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7124     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7125       if (FirstDesignator.isInvalid())
7126         FirstDesignator = DIE->getBeginLoc();
7127 
7128       if (!getLangOpts().CPlusPlus)
7129         break;
7130 
7131       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7132         DiagnosedNestedDesignator = true;
7133         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7134           << DIE->getDesignatorsSourceRange();
7135       }
7136 
7137       for (auto &Desig : DIE->designators()) {
7138         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7139           DiagnosedArrayDesignator = true;
7140           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7141             << Desig.getSourceRange();
7142         }
7143       }
7144 
7145       if (!DiagnosedMixedDesignator &&
7146           !isa<DesignatedInitExpr>(InitArgList[0])) {
7147         DiagnosedMixedDesignator = true;
7148         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7149           << DIE->getSourceRange();
7150         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7151           << InitArgList[0]->getSourceRange();
7152       }
7153     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7154                isa<DesignatedInitExpr>(InitArgList[0])) {
7155       DiagnosedMixedDesignator = true;
7156       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7157       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7158         << DIE->getSourceRange();
7159       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7160         << InitArgList[I]->getSourceRange();
7161     }
7162   }
7163 
7164   if (FirstDesignator.isValid()) {
7165     // Only diagnose designated initiaization as a C++20 extension if we didn't
7166     // already diagnose use of (non-C++20) C99 designator syntax.
7167     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7168         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7169       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7170                                 ? diag::warn_cxx17_compat_designated_init
7171                                 : diag::ext_cxx_designated_init);
7172     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7173       Diag(FirstDesignator, diag::ext_designated_init);
7174     }
7175   }
7176 
7177   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7178 }
7179 
7180 ExprResult
7181 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7182                     SourceLocation RBraceLoc) {
7183   // Semantic analysis for initializers is done by ActOnDeclarator() and
7184   // CheckInitializer() - it requires knowledge of the object being initialized.
7185 
7186   // Immediately handle non-overload placeholders.  Overloads can be
7187   // resolved contextually, but everything else here can't.
7188   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7189     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7190       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7191 
7192       // Ignore failures; dropping the entire initializer list because
7193       // of one failure would be terrible for indexing/etc.
7194       if (result.isInvalid()) continue;
7195 
7196       InitArgList[I] = result.get();
7197     }
7198   }
7199 
7200   InitListExpr *E =
7201       new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7202   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7203   return E;
7204 }
7205 
7206 void Sema::maybeExtendBlockObject(ExprResult &E) {
7207   assert(E.get()->getType()->isBlockPointerType());
7208   assert(E.get()->isPRValue());
7209 
7210   // Only do this in an r-value context.
7211   if (!getLangOpts().ObjCAutoRefCount) return;
7212 
7213   E = ImplicitCastExpr::Create(
7214       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7215       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7216   Cleanup.setExprNeedsCleanups(true);
7217 }
7218 
7219 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7220   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7221   // Also, callers should have filtered out the invalid cases with
7222   // pointers.  Everything else should be possible.
7223 
7224   QualType SrcTy = Src.get()->getType();
7225   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7226     return CK_NoOp;
7227 
7228   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7229   case Type::STK_MemberPointer:
7230     llvm_unreachable("member pointer type in C");
7231 
7232   case Type::STK_CPointer:
7233   case Type::STK_BlockPointer:
7234   case Type::STK_ObjCObjectPointer:
7235     switch (DestTy->getScalarTypeKind()) {
7236     case Type::STK_CPointer: {
7237       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7238       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7239       if (SrcAS != DestAS)
7240         return CK_AddressSpaceConversion;
7241       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7242         return CK_NoOp;
7243       return CK_BitCast;
7244     }
7245     case Type::STK_BlockPointer:
7246       return (SrcKind == Type::STK_BlockPointer
7247                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7248     case Type::STK_ObjCObjectPointer:
7249       if (SrcKind == Type::STK_ObjCObjectPointer)
7250         return CK_BitCast;
7251       if (SrcKind == Type::STK_CPointer)
7252         return CK_CPointerToObjCPointerCast;
7253       maybeExtendBlockObject(Src);
7254       return CK_BlockPointerToObjCPointerCast;
7255     case Type::STK_Bool:
7256       return CK_PointerToBoolean;
7257     case Type::STK_Integral:
7258       return CK_PointerToIntegral;
7259     case Type::STK_Floating:
7260     case Type::STK_FloatingComplex:
7261     case Type::STK_IntegralComplex:
7262     case Type::STK_MemberPointer:
7263     case Type::STK_FixedPoint:
7264       llvm_unreachable("illegal cast from pointer");
7265     }
7266     llvm_unreachable("Should have returned before this");
7267 
7268   case Type::STK_FixedPoint:
7269     switch (DestTy->getScalarTypeKind()) {
7270     case Type::STK_FixedPoint:
7271       return CK_FixedPointCast;
7272     case Type::STK_Bool:
7273       return CK_FixedPointToBoolean;
7274     case Type::STK_Integral:
7275       return CK_FixedPointToIntegral;
7276     case Type::STK_Floating:
7277       return CK_FixedPointToFloating;
7278     case Type::STK_IntegralComplex:
7279     case Type::STK_FloatingComplex:
7280       Diag(Src.get()->getExprLoc(),
7281            diag::err_unimplemented_conversion_with_fixed_point_type)
7282           << DestTy;
7283       return CK_IntegralCast;
7284     case Type::STK_CPointer:
7285     case Type::STK_ObjCObjectPointer:
7286     case Type::STK_BlockPointer:
7287     case Type::STK_MemberPointer:
7288       llvm_unreachable("illegal cast to pointer type");
7289     }
7290     llvm_unreachable("Should have returned before this");
7291 
7292   case Type::STK_Bool: // casting from bool is like casting from an integer
7293   case Type::STK_Integral:
7294     switch (DestTy->getScalarTypeKind()) {
7295     case Type::STK_CPointer:
7296     case Type::STK_ObjCObjectPointer:
7297     case Type::STK_BlockPointer:
7298       if (Src.get()->isNullPointerConstant(Context,
7299                                            Expr::NPC_ValueDependentIsNull))
7300         return CK_NullToPointer;
7301       return CK_IntegralToPointer;
7302     case Type::STK_Bool:
7303       return CK_IntegralToBoolean;
7304     case Type::STK_Integral:
7305       return CK_IntegralCast;
7306     case Type::STK_Floating:
7307       return CK_IntegralToFloating;
7308     case Type::STK_IntegralComplex:
7309       Src = ImpCastExprToType(Src.get(),
7310                       DestTy->castAs<ComplexType>()->getElementType(),
7311                       CK_IntegralCast);
7312       return CK_IntegralRealToComplex;
7313     case Type::STK_FloatingComplex:
7314       Src = ImpCastExprToType(Src.get(),
7315                       DestTy->castAs<ComplexType>()->getElementType(),
7316                       CK_IntegralToFloating);
7317       return CK_FloatingRealToComplex;
7318     case Type::STK_MemberPointer:
7319       llvm_unreachable("member pointer type in C");
7320     case Type::STK_FixedPoint:
7321       return CK_IntegralToFixedPoint;
7322     }
7323     llvm_unreachable("Should have returned before this");
7324 
7325   case Type::STK_Floating:
7326     switch (DestTy->getScalarTypeKind()) {
7327     case Type::STK_Floating:
7328       return CK_FloatingCast;
7329     case Type::STK_Bool:
7330       return CK_FloatingToBoolean;
7331     case Type::STK_Integral:
7332       return CK_FloatingToIntegral;
7333     case Type::STK_FloatingComplex:
7334       Src = ImpCastExprToType(Src.get(),
7335                               DestTy->castAs<ComplexType>()->getElementType(),
7336                               CK_FloatingCast);
7337       return CK_FloatingRealToComplex;
7338     case Type::STK_IntegralComplex:
7339       Src = ImpCastExprToType(Src.get(),
7340                               DestTy->castAs<ComplexType>()->getElementType(),
7341                               CK_FloatingToIntegral);
7342       return CK_IntegralRealToComplex;
7343     case Type::STK_CPointer:
7344     case Type::STK_ObjCObjectPointer:
7345     case Type::STK_BlockPointer:
7346       llvm_unreachable("valid float->pointer cast?");
7347     case Type::STK_MemberPointer:
7348       llvm_unreachable("member pointer type in C");
7349     case Type::STK_FixedPoint:
7350       return CK_FloatingToFixedPoint;
7351     }
7352     llvm_unreachable("Should have returned before this");
7353 
7354   case Type::STK_FloatingComplex:
7355     switch (DestTy->getScalarTypeKind()) {
7356     case Type::STK_FloatingComplex:
7357       return CK_FloatingComplexCast;
7358     case Type::STK_IntegralComplex:
7359       return CK_FloatingComplexToIntegralComplex;
7360     case Type::STK_Floating: {
7361       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7362       if (Context.hasSameType(ET, DestTy))
7363         return CK_FloatingComplexToReal;
7364       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7365       return CK_FloatingCast;
7366     }
7367     case Type::STK_Bool:
7368       return CK_FloatingComplexToBoolean;
7369     case Type::STK_Integral:
7370       Src = ImpCastExprToType(Src.get(),
7371                               SrcTy->castAs<ComplexType>()->getElementType(),
7372                               CK_FloatingComplexToReal);
7373       return CK_FloatingToIntegral;
7374     case Type::STK_CPointer:
7375     case Type::STK_ObjCObjectPointer:
7376     case Type::STK_BlockPointer:
7377       llvm_unreachable("valid complex float->pointer cast?");
7378     case Type::STK_MemberPointer:
7379       llvm_unreachable("member pointer type in C");
7380     case Type::STK_FixedPoint:
7381       Diag(Src.get()->getExprLoc(),
7382            diag::err_unimplemented_conversion_with_fixed_point_type)
7383           << SrcTy;
7384       return CK_IntegralCast;
7385     }
7386     llvm_unreachable("Should have returned before this");
7387 
7388   case Type::STK_IntegralComplex:
7389     switch (DestTy->getScalarTypeKind()) {
7390     case Type::STK_FloatingComplex:
7391       return CK_IntegralComplexToFloatingComplex;
7392     case Type::STK_IntegralComplex:
7393       return CK_IntegralComplexCast;
7394     case Type::STK_Integral: {
7395       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7396       if (Context.hasSameType(ET, DestTy))
7397         return CK_IntegralComplexToReal;
7398       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7399       return CK_IntegralCast;
7400     }
7401     case Type::STK_Bool:
7402       return CK_IntegralComplexToBoolean;
7403     case Type::STK_Floating:
7404       Src = ImpCastExprToType(Src.get(),
7405                               SrcTy->castAs<ComplexType>()->getElementType(),
7406                               CK_IntegralComplexToReal);
7407       return CK_IntegralToFloating;
7408     case Type::STK_CPointer:
7409     case Type::STK_ObjCObjectPointer:
7410     case Type::STK_BlockPointer:
7411       llvm_unreachable("valid complex int->pointer cast?");
7412     case Type::STK_MemberPointer:
7413       llvm_unreachable("member pointer type in C");
7414     case Type::STK_FixedPoint:
7415       Diag(Src.get()->getExprLoc(),
7416            diag::err_unimplemented_conversion_with_fixed_point_type)
7417           << SrcTy;
7418       return CK_IntegralCast;
7419     }
7420     llvm_unreachable("Should have returned before this");
7421   }
7422 
7423   llvm_unreachable("Unhandled scalar cast");
7424 }
7425 
7426 static bool breakDownVectorType(QualType type, uint64_t &len,
7427                                 QualType &eltType) {
7428   // Vectors are simple.
7429   if (const VectorType *vecType = type->getAs<VectorType>()) {
7430     len = vecType->getNumElements();
7431     eltType = vecType->getElementType();
7432     assert(eltType->isScalarType());
7433     return true;
7434   }
7435 
7436   // We allow lax conversion to and from non-vector types, but only if
7437   // they're real types (i.e. non-complex, non-pointer scalar types).
7438   if (!type->isRealType()) return false;
7439 
7440   len = 1;
7441   eltType = type;
7442   return true;
7443 }
7444 
7445 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7446   assert(srcTy->isVectorType() || destTy->isVectorType());
7447 
7448   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7449     if (!FirstType->isSVESizelessBuiltinType())
7450       return false;
7451 
7452     const auto *VecTy = SecondType->getAs<VectorType>();
7453     return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7454   };
7455 
7456   return ValidScalableConversion(srcTy, destTy) ||
7457          ValidScalableConversion(destTy, srcTy);
7458 }
7459 
7460 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7461   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7462     return false;
7463 
7464   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7465   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7466 
7467   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7468          matSrcType->getNumColumns() == matDestType->getNumColumns();
7469 }
7470 
7471 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7472   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7473 
7474   uint64_t SrcLen, DestLen;
7475   QualType SrcEltTy, DestEltTy;
7476   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7477     return false;
7478   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7479     return false;
7480 
7481   // ASTContext::getTypeSize will return the size rounded up to a
7482   // power of 2, so instead of using that, we need to use the raw
7483   // element size multiplied by the element count.
7484   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7485   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7486 
7487   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7488 }
7489 
7490 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7491   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7492          "expected at least one type to be a vector here");
7493 
7494   bool IsSrcTyAltivec =
7495       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7496                                  VectorKind::AltiVecVector) ||
7497                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7498                                  VectorKind::AltiVecBool) ||
7499                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7500                                  VectorKind::AltiVecPixel));
7501 
7502   bool IsDestTyAltivec = DestTy->isVectorType() &&
7503                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
7504                            VectorKind::AltiVecVector) ||
7505                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7506                            VectorKind::AltiVecBool) ||
7507                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7508                            VectorKind::AltiVecPixel));
7509 
7510   return (IsSrcTyAltivec || IsDestTyAltivec);
7511 }
7512 
7513 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7514   assert(destTy->isVectorType() || srcTy->isVectorType());
7515 
7516   // Disallow lax conversions between scalars and ExtVectors (these
7517   // conversions are allowed for other vector types because common headers
7518   // depend on them).  Most scalar OP ExtVector cases are handled by the
7519   // splat path anyway, which does what we want (convert, not bitcast).
7520   // What this rules out for ExtVectors is crazy things like char4*float.
7521   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7522   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7523 
7524   return areVectorTypesSameSize(srcTy, destTy);
7525 }
7526 
7527 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7528   assert(destTy->isVectorType() || srcTy->isVectorType());
7529 
7530   switch (Context.getLangOpts().getLaxVectorConversions()) {
7531   case LangOptions::LaxVectorConversionKind::None:
7532     return false;
7533 
7534   case LangOptions::LaxVectorConversionKind::Integer:
7535     if (!srcTy->isIntegralOrEnumerationType()) {
7536       auto *Vec = srcTy->getAs<VectorType>();
7537       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7538         return false;
7539     }
7540     if (!destTy->isIntegralOrEnumerationType()) {
7541       auto *Vec = destTy->getAs<VectorType>();
7542       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7543         return false;
7544     }
7545     // OK, integer (vector) -> integer (vector) bitcast.
7546     break;
7547 
7548     case LangOptions::LaxVectorConversionKind::All:
7549     break;
7550   }
7551 
7552   return areLaxCompatibleVectorTypes(srcTy, destTy);
7553 }
7554 
7555 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7556                            CastKind &Kind) {
7557   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7558     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7559       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7560              << DestTy << SrcTy << R;
7561     }
7562   } else if (SrcTy->isMatrixType()) {
7563     return Diag(R.getBegin(),
7564                 diag::err_invalid_conversion_between_matrix_and_type)
7565            << SrcTy << DestTy << R;
7566   } else if (DestTy->isMatrixType()) {
7567     return Diag(R.getBegin(),
7568                 diag::err_invalid_conversion_between_matrix_and_type)
7569            << DestTy << SrcTy << R;
7570   }
7571 
7572   Kind = CK_MatrixCast;
7573   return false;
7574 }
7575 
7576 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7577                            CastKind &Kind) {
7578   assert(VectorTy->isVectorType() && "Not a vector type!");
7579 
7580   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7581     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7582       return Diag(R.getBegin(),
7583                   Ty->isVectorType() ?
7584                   diag::err_invalid_conversion_between_vectors :
7585                   diag::err_invalid_conversion_between_vector_and_integer)
7586         << VectorTy << Ty << R;
7587   } else
7588     return Diag(R.getBegin(),
7589                 diag::err_invalid_conversion_between_vector_and_scalar)
7590       << VectorTy << Ty << R;
7591 
7592   Kind = CK_BitCast;
7593   return false;
7594 }
7595 
7596 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7597   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7598 
7599   if (DestElemTy == SplattedExpr->getType())
7600     return SplattedExpr;
7601 
7602   assert(DestElemTy->isFloatingType() ||
7603          DestElemTy->isIntegralOrEnumerationType());
7604 
7605   CastKind CK;
7606   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7607     // OpenCL requires that we convert `true` boolean expressions to -1, but
7608     // only when splatting vectors.
7609     if (DestElemTy->isFloatingType()) {
7610       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7611       // in two steps: boolean to signed integral, then to floating.
7612       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7613                                                  CK_BooleanToSignedIntegral);
7614       SplattedExpr = CastExprRes.get();
7615       CK = CK_IntegralToFloating;
7616     } else {
7617       CK = CK_BooleanToSignedIntegral;
7618     }
7619   } else {
7620     ExprResult CastExprRes = SplattedExpr;
7621     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7622     if (CastExprRes.isInvalid())
7623       return ExprError();
7624     SplattedExpr = CastExprRes.get();
7625   }
7626   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7627 }
7628 
7629 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7630                                     Expr *CastExpr, CastKind &Kind) {
7631   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7632 
7633   QualType SrcTy = CastExpr->getType();
7634 
7635   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7636   // an ExtVectorType.
7637   // In OpenCL, casts between vectors of different types are not allowed.
7638   // (See OpenCL 6.2).
7639   if (SrcTy->isVectorType()) {
7640     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7641         (getLangOpts().OpenCL &&
7642          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7643       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7644         << DestTy << SrcTy << R;
7645       return ExprError();
7646     }
7647     Kind = CK_BitCast;
7648     return CastExpr;
7649   }
7650 
7651   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7652   // conversion will take place first from scalar to elt type, and then
7653   // splat from elt type to vector.
7654   if (SrcTy->isPointerType())
7655     return Diag(R.getBegin(),
7656                 diag::err_invalid_conversion_between_vector_and_scalar)
7657       << DestTy << SrcTy << R;
7658 
7659   Kind = CK_VectorSplat;
7660   return prepareVectorSplat(DestTy, CastExpr);
7661 }
7662 
7663 ExprResult
7664 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7665                     Declarator &D, ParsedType &Ty,
7666                     SourceLocation RParenLoc, Expr *CastExpr) {
7667   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7668          "ActOnCastExpr(): missing type or expr");
7669 
7670   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7671   if (D.isInvalidType())
7672     return ExprError();
7673 
7674   if (getLangOpts().CPlusPlus) {
7675     // Check that there are no default arguments (C++ only).
7676     CheckExtraCXXDefaultArguments(D);
7677   } else {
7678     // Make sure any TypoExprs have been dealt with.
7679     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7680     if (!Res.isUsable())
7681       return ExprError();
7682     CastExpr = Res.get();
7683   }
7684 
7685   checkUnusedDeclAttributes(D);
7686 
7687   QualType castType = castTInfo->getType();
7688   Ty = CreateParsedType(castType, castTInfo);
7689 
7690   bool isVectorLiteral = false;
7691 
7692   // Check for an altivec or OpenCL literal,
7693   // i.e. all the elements are integer constants.
7694   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7695   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7696   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7697        && castType->isVectorType() && (PE || PLE)) {
7698     if (PLE && PLE->getNumExprs() == 0) {
7699       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7700       return ExprError();
7701     }
7702     if (PE || PLE->getNumExprs() == 1) {
7703       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7704       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7705         isVectorLiteral = true;
7706     }
7707     else
7708       isVectorLiteral = true;
7709   }
7710 
7711   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7712   // then handle it as such.
7713   if (isVectorLiteral)
7714     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7715 
7716   // If the Expr being casted is a ParenListExpr, handle it specially.
7717   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7718   // sequence of BinOp comma operators.
7719   if (isa<ParenListExpr>(CastExpr)) {
7720     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7721     if (Result.isInvalid()) return ExprError();
7722     CastExpr = Result.get();
7723   }
7724 
7725   if (getLangOpts().CPlusPlus && !castType->isVoidType())
7726     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7727 
7728   ObjC().CheckTollFreeBridgeCast(castType, CastExpr);
7729 
7730   ObjC().CheckObjCBridgeRelatedCast(castType, CastExpr);
7731 
7732   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7733 
7734   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7735 }
7736 
7737 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7738                                     SourceLocation RParenLoc, Expr *E,
7739                                     TypeSourceInfo *TInfo) {
7740   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7741          "Expected paren or paren list expression");
7742 
7743   Expr **exprs;
7744   unsigned numExprs;
7745   Expr *subExpr;
7746   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7747   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7748     LiteralLParenLoc = PE->getLParenLoc();
7749     LiteralRParenLoc = PE->getRParenLoc();
7750     exprs = PE->getExprs();
7751     numExprs = PE->getNumExprs();
7752   } else { // isa<ParenExpr> by assertion at function entrance
7753     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7754     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7755     subExpr = cast<ParenExpr>(E)->getSubExpr();
7756     exprs = &subExpr;
7757     numExprs = 1;
7758   }
7759 
7760   QualType Ty = TInfo->getType();
7761   assert(Ty->isVectorType() && "Expected vector type");
7762 
7763   SmallVector<Expr *, 8> initExprs;
7764   const VectorType *VTy = Ty->castAs<VectorType>();
7765   unsigned numElems = VTy->getNumElements();
7766 
7767   // '(...)' form of vector initialization in AltiVec: the number of
7768   // initializers must be one or must match the size of the vector.
7769   // If a single value is specified in the initializer then it will be
7770   // replicated to all the components of the vector
7771   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7772                                  VTy->getElementType()))
7773     return ExprError();
7774   if (ShouldSplatAltivecScalarInCast(VTy)) {
7775     // The number of initializers must be one or must match the size of the
7776     // vector. If a single value is specified in the initializer then it will
7777     // be replicated to all the components of the vector
7778     if (numExprs == 1) {
7779       QualType ElemTy = VTy->getElementType();
7780       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7781       if (Literal.isInvalid())
7782         return ExprError();
7783       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7784                                   PrepareScalarCast(Literal, ElemTy));
7785       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7786     }
7787     else if (numExprs < numElems) {
7788       Diag(E->getExprLoc(),
7789            diag::err_incorrect_number_of_vector_initializers);
7790       return ExprError();
7791     }
7792     else
7793       initExprs.append(exprs, exprs + numExprs);
7794   }
7795   else {
7796     // For OpenCL, when the number of initializers is a single value,
7797     // it will be replicated to all components of the vector.
7798     if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7799         numExprs == 1) {
7800       QualType ElemTy = VTy->getElementType();
7801       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7802       if (Literal.isInvalid())
7803         return ExprError();
7804       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7805                                   PrepareScalarCast(Literal, ElemTy));
7806       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7807     }
7808 
7809     initExprs.append(exprs, exprs + numExprs);
7810   }
7811   // FIXME: This means that pretty-printing the final AST will produce curly
7812   // braces instead of the original commas.
7813   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7814                                                    initExprs, LiteralRParenLoc);
7815   initE->setType(Ty);
7816   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7817 }
7818 
7819 ExprResult
7820 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7821   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7822   if (!E)
7823     return OrigExpr;
7824 
7825   ExprResult Result(E->getExpr(0));
7826 
7827   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7828     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7829                         E->getExpr(i));
7830 
7831   if (Result.isInvalid()) return ExprError();
7832 
7833   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7834 }
7835 
7836 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7837                                     SourceLocation R,
7838                                     MultiExprArg Val) {
7839   return ParenListExpr::Create(Context, L, Val, R);
7840 }
7841 
7842 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7843                                       SourceLocation QuestionLoc) {
7844   const Expr *NullExpr = LHSExpr;
7845   const Expr *NonPointerExpr = RHSExpr;
7846   Expr::NullPointerConstantKind NullKind =
7847       NullExpr->isNullPointerConstant(Context,
7848                                       Expr::NPC_ValueDependentIsNotNull);
7849 
7850   if (NullKind == Expr::NPCK_NotNull) {
7851     NullExpr = RHSExpr;
7852     NonPointerExpr = LHSExpr;
7853     NullKind =
7854         NullExpr->isNullPointerConstant(Context,
7855                                         Expr::NPC_ValueDependentIsNotNull);
7856   }
7857 
7858   if (NullKind == Expr::NPCK_NotNull)
7859     return false;
7860 
7861   if (NullKind == Expr::NPCK_ZeroExpression)
7862     return false;
7863 
7864   if (NullKind == Expr::NPCK_ZeroLiteral) {
7865     // In this case, check to make sure that we got here from a "NULL"
7866     // string in the source code.
7867     NullExpr = NullExpr->IgnoreParenImpCasts();
7868     SourceLocation loc = NullExpr->getExprLoc();
7869     if (!findMacroSpelling(loc, "NULL"))
7870       return false;
7871   }
7872 
7873   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7874   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7875       << NonPointerExpr->getType() << DiagType
7876       << NonPointerExpr->getSourceRange();
7877   return true;
7878 }
7879 
7880 /// Return false if the condition expression is valid, true otherwise.
7881 static bool checkCondition(Sema &S, const Expr *Cond,
7882                            SourceLocation QuestionLoc) {
7883   QualType CondTy = Cond->getType();
7884 
7885   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7886   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7887     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7888       << CondTy << Cond->getSourceRange();
7889     return true;
7890   }
7891 
7892   // C99 6.5.15p2
7893   if (CondTy->isScalarType()) return false;
7894 
7895   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7896     << CondTy << Cond->getSourceRange();
7897   return true;
7898 }
7899 
7900 /// Return false if the NullExpr can be promoted to PointerTy,
7901 /// true otherwise.
7902 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7903                                         QualType PointerTy) {
7904   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7905       !NullExpr.get()->isNullPointerConstant(S.Context,
7906                                             Expr::NPC_ValueDependentIsNull))
7907     return true;
7908 
7909   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7910   return false;
7911 }
7912 
7913 /// Checks compatibility between two pointers and return the resulting
7914 /// type.
7915 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7916                                                      ExprResult &RHS,
7917                                                      SourceLocation Loc) {
7918   QualType LHSTy = LHS.get()->getType();
7919   QualType RHSTy = RHS.get()->getType();
7920 
7921   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7922     // Two identical pointers types are always compatible.
7923     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
7924   }
7925 
7926   QualType lhptee, rhptee;
7927 
7928   // Get the pointee types.
7929   bool IsBlockPointer = false;
7930   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7931     lhptee = LHSBTy->getPointeeType();
7932     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7933     IsBlockPointer = true;
7934   } else {
7935     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7936     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7937   }
7938 
7939   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7940   // differently qualified versions of compatible types, the result type is
7941   // a pointer to an appropriately qualified version of the composite
7942   // type.
7943 
7944   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7945   // clause doesn't make sense for our extensions. E.g. address space 2 should
7946   // be incompatible with address space 3: they may live on different devices or
7947   // anything.
7948   Qualifiers lhQual = lhptee.getQualifiers();
7949   Qualifiers rhQual = rhptee.getQualifiers();
7950 
7951   LangAS ResultAddrSpace = LangAS::Default;
7952   LangAS LAddrSpace = lhQual.getAddressSpace();
7953   LangAS RAddrSpace = rhQual.getAddressSpace();
7954 
7955   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7956   // spaces is disallowed.
7957   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7958     ResultAddrSpace = LAddrSpace;
7959   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7960     ResultAddrSpace = RAddrSpace;
7961   else {
7962     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7963         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7964         << RHS.get()->getSourceRange();
7965     return QualType();
7966   }
7967 
7968   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7969   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7970   lhQual.removeCVRQualifiers();
7971   rhQual.removeCVRQualifiers();
7972 
7973   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7974   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7975   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7976   // qual types are compatible iff
7977   //  * corresponded types are compatible
7978   //  * CVR qualifiers are equal
7979   //  * address spaces are equal
7980   // Thus for conditional operator we merge CVR and address space unqualified
7981   // pointees and if there is a composite type we return a pointer to it with
7982   // merged qualifiers.
7983   LHSCastKind =
7984       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7985   RHSCastKind =
7986       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7987   lhQual.removeAddressSpace();
7988   rhQual.removeAddressSpace();
7989 
7990   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7991   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7992 
7993   QualType CompositeTy = S.Context.mergeTypes(
7994       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
7995       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
7996 
7997   if (CompositeTy.isNull()) {
7998     // In this situation, we assume void* type. No especially good
7999     // reason, but this is what gcc does, and we do have to pick
8000     // to get a consistent AST.
8001     QualType incompatTy;
8002     incompatTy = S.Context.getPointerType(
8003         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8004     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8005     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8006 
8007     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8008     // for casts between types with incompatible address space qualifiers.
8009     // For the following code the compiler produces casts between global and
8010     // local address spaces of the corresponded innermost pointees:
8011     // local int *global *a;
8012     // global int *global *b;
8013     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8014     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8015         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8016         << RHS.get()->getSourceRange();
8017 
8018     return incompatTy;
8019   }
8020 
8021   // The pointer types are compatible.
8022   // In case of OpenCL ResultTy should have the address space qualifier
8023   // which is a superset of address spaces of both the 2nd and the 3rd
8024   // operands of the conditional operator.
8025   QualType ResultTy = [&, ResultAddrSpace]() {
8026     if (S.getLangOpts().OpenCL) {
8027       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8028       CompositeQuals.setAddressSpace(ResultAddrSpace);
8029       return S.Context
8030           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8031           .withCVRQualifiers(MergedCVRQual);
8032     }
8033     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8034   }();
8035   if (IsBlockPointer)
8036     ResultTy = S.Context.getBlockPointerType(ResultTy);
8037   else
8038     ResultTy = S.Context.getPointerType(ResultTy);
8039 
8040   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8041   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8042   return ResultTy;
8043 }
8044 
8045 /// Return the resulting type when the operands are both block pointers.
8046 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8047                                                           ExprResult &LHS,
8048                                                           ExprResult &RHS,
8049                                                           SourceLocation Loc) {
8050   QualType LHSTy = LHS.get()->getType();
8051   QualType RHSTy = RHS.get()->getType();
8052 
8053   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8054     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8055       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8056       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8057       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8058       return destType;
8059     }
8060     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8061       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8062       << RHS.get()->getSourceRange();
8063     return QualType();
8064   }
8065 
8066   // We have 2 block pointer types.
8067   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8068 }
8069 
8070 /// Return the resulting type when the operands are both pointers.
8071 static QualType
8072 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8073                                             ExprResult &RHS,
8074                                             SourceLocation Loc) {
8075   // get the pointer types
8076   QualType LHSTy = LHS.get()->getType();
8077   QualType RHSTy = RHS.get()->getType();
8078 
8079   // get the "pointed to" types
8080   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8081   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8082 
8083   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8084   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8085     // Figure out necessary qualifiers (C99 6.5.15p6)
8086     QualType destPointee
8087       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8088     QualType destType = S.Context.getPointerType(destPointee);
8089     // Add qualifiers if necessary.
8090     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8091     // Promote to void*.
8092     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8093     return destType;
8094   }
8095   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8096     QualType destPointee
8097       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8098     QualType destType = S.Context.getPointerType(destPointee);
8099     // Add qualifiers if necessary.
8100     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8101     // Promote to void*.
8102     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8103     return destType;
8104   }
8105 
8106   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8107 }
8108 
8109 /// Return false if the first expression is not an integer and the second
8110 /// expression is not a pointer, true otherwise.
8111 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8112                                         Expr* PointerExpr, SourceLocation Loc,
8113                                         bool IsIntFirstExpr) {
8114   if (!PointerExpr->getType()->isPointerType() ||
8115       !Int.get()->getType()->isIntegerType())
8116     return false;
8117 
8118   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8119   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8120 
8121   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8122     << Expr1->getType() << Expr2->getType()
8123     << Expr1->getSourceRange() << Expr2->getSourceRange();
8124   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8125                             CK_IntegralToPointer);
8126   return true;
8127 }
8128 
8129 /// Simple conversion between integer and floating point types.
8130 ///
8131 /// Used when handling the OpenCL conditional operator where the
8132 /// condition is a vector while the other operands are scalar.
8133 ///
8134 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8135 /// types are either integer or floating type. Between the two
8136 /// operands, the type with the higher rank is defined as the "result
8137 /// type". The other operand needs to be promoted to the same type. No
8138 /// other type promotion is allowed. We cannot use
8139 /// UsualArithmeticConversions() for this purpose, since it always
8140 /// promotes promotable types.
8141 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8142                                             ExprResult &RHS,
8143                                             SourceLocation QuestionLoc) {
8144   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8145   if (LHS.isInvalid())
8146     return QualType();
8147   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8148   if (RHS.isInvalid())
8149     return QualType();
8150 
8151   // For conversion purposes, we ignore any qualifiers.
8152   // For example, "const float" and "float" are equivalent.
8153   QualType LHSType =
8154     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8155   QualType RHSType =
8156     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8157 
8158   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8159     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8160       << LHSType << LHS.get()->getSourceRange();
8161     return QualType();
8162   }
8163 
8164   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8165     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8166       << RHSType << RHS.get()->getSourceRange();
8167     return QualType();
8168   }
8169 
8170   // If both types are identical, no conversion is needed.
8171   if (LHSType == RHSType)
8172     return LHSType;
8173 
8174   // Now handle "real" floating types (i.e. float, double, long double).
8175   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8176     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8177                                  /*IsCompAssign = */ false);
8178 
8179   // Finally, we have two differing integer types.
8180   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8181   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8182 }
8183 
8184 /// Convert scalar operands to a vector that matches the
8185 ///        condition in length.
8186 ///
8187 /// Used when handling the OpenCL conditional operator where the
8188 /// condition is a vector while the other operands are scalar.
8189 ///
8190 /// We first compute the "result type" for the scalar operands
8191 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8192 /// into a vector of that type where the length matches the condition
8193 /// vector type. s6.11.6 requires that the element types of the result
8194 /// and the condition must have the same number of bits.
8195 static QualType
8196 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8197                               QualType CondTy, SourceLocation QuestionLoc) {
8198   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8199   if (ResTy.isNull()) return QualType();
8200 
8201   const VectorType *CV = CondTy->getAs<VectorType>();
8202   assert(CV);
8203 
8204   // Determine the vector result type
8205   unsigned NumElements = CV->getNumElements();
8206   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8207 
8208   // Ensure that all types have the same number of bits
8209   if (S.Context.getTypeSize(CV->getElementType())
8210       != S.Context.getTypeSize(ResTy)) {
8211     // Since VectorTy is created internally, it does not pretty print
8212     // with an OpenCL name. Instead, we just print a description.
8213     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8214     SmallString<64> Str;
8215     llvm::raw_svector_ostream OS(Str);
8216     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8217     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8218       << CondTy << OS.str();
8219     return QualType();
8220   }
8221 
8222   // Convert operands to the vector result type
8223   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8224   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8225 
8226   return VectorTy;
8227 }
8228 
8229 /// Return false if this is a valid OpenCL condition vector
8230 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8231                                        SourceLocation QuestionLoc) {
8232   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8233   // integral type.
8234   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8235   assert(CondTy);
8236   QualType EleTy = CondTy->getElementType();
8237   if (EleTy->isIntegerType()) return false;
8238 
8239   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8240     << Cond->getType() << Cond->getSourceRange();
8241   return true;
8242 }
8243 
8244 /// Return false if the vector condition type and the vector
8245 ///        result type are compatible.
8246 ///
8247 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8248 /// number of elements, and their element types have the same number
8249 /// of bits.
8250 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8251                               SourceLocation QuestionLoc) {
8252   const VectorType *CV = CondTy->getAs<VectorType>();
8253   const VectorType *RV = VecResTy->getAs<VectorType>();
8254   assert(CV && RV);
8255 
8256   if (CV->getNumElements() != RV->getNumElements()) {
8257     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8258       << CondTy << VecResTy;
8259     return true;
8260   }
8261 
8262   QualType CVE = CV->getElementType();
8263   QualType RVE = RV->getElementType();
8264 
8265   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8266     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8267       << CondTy << VecResTy;
8268     return true;
8269   }
8270 
8271   return false;
8272 }
8273 
8274 /// Return the resulting type for the conditional operator in
8275 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8276 ///        s6.3.i) when the condition is a vector type.
8277 static QualType
8278 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8279                              ExprResult &LHS, ExprResult &RHS,
8280                              SourceLocation QuestionLoc) {
8281   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8282   if (Cond.isInvalid())
8283     return QualType();
8284   QualType CondTy = Cond.get()->getType();
8285 
8286   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8287     return QualType();
8288 
8289   // If either operand is a vector then find the vector type of the
8290   // result as specified in OpenCL v1.1 s6.3.i.
8291   if (LHS.get()->getType()->isVectorType() ||
8292       RHS.get()->getType()->isVectorType()) {
8293     bool IsBoolVecLang =
8294         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8295     QualType VecResTy =
8296         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8297                               /*isCompAssign*/ false,
8298                               /*AllowBothBool*/ true,
8299                               /*AllowBoolConversions*/ false,
8300                               /*AllowBooleanOperation*/ IsBoolVecLang,
8301                               /*ReportInvalid*/ true);
8302     if (VecResTy.isNull())
8303       return QualType();
8304     // The result type must match the condition type as specified in
8305     // OpenCL v1.1 s6.11.6.
8306     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8307       return QualType();
8308     return VecResTy;
8309   }
8310 
8311   // Both operands are scalar.
8312   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8313 }
8314 
8315 /// Return true if the Expr is block type
8316 static bool checkBlockType(Sema &S, const Expr *E) {
8317   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8318     QualType Ty = CE->getCallee()->getType();
8319     if (Ty->isBlockPointerType()) {
8320       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8321       return true;
8322     }
8323   }
8324   return false;
8325 }
8326 
8327 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8328 /// In that case, LHS = cond.
8329 /// C99 6.5.15
8330 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8331                                         ExprResult &RHS, ExprValueKind &VK,
8332                                         ExprObjectKind &OK,
8333                                         SourceLocation QuestionLoc) {
8334 
8335   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8336   if (!LHSResult.isUsable()) return QualType();
8337   LHS = LHSResult;
8338 
8339   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8340   if (!RHSResult.isUsable()) return QualType();
8341   RHS = RHSResult;
8342 
8343   // C++ is sufficiently different to merit its own checker.
8344   if (getLangOpts().CPlusPlus)
8345     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8346 
8347   VK = VK_PRValue;
8348   OK = OK_Ordinary;
8349 
8350   if (Context.isDependenceAllowed() &&
8351       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8352        RHS.get()->isTypeDependent())) {
8353     assert(!getLangOpts().CPlusPlus);
8354     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8355             RHS.get()->containsErrors()) &&
8356            "should only occur in error-recovery path.");
8357     return Context.DependentTy;
8358   }
8359 
8360   // The OpenCL operator with a vector condition is sufficiently
8361   // different to merit its own checker.
8362   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8363       Cond.get()->getType()->isExtVectorType())
8364     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8365 
8366   // First, check the condition.
8367   Cond = UsualUnaryConversions(Cond.get());
8368   if (Cond.isInvalid())
8369     return QualType();
8370   if (checkCondition(*this, Cond.get(), QuestionLoc))
8371     return QualType();
8372 
8373   // Handle vectors.
8374   if (LHS.get()->getType()->isVectorType() ||
8375       RHS.get()->getType()->isVectorType())
8376     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8377                                /*AllowBothBool*/ true,
8378                                /*AllowBoolConversions*/ false,
8379                                /*AllowBooleanOperation*/ false,
8380                                /*ReportInvalid*/ true);
8381 
8382   QualType ResTy =
8383       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8384   if (LHS.isInvalid() || RHS.isInvalid())
8385     return QualType();
8386 
8387   // WebAssembly tables are not allowed as conditional LHS or RHS.
8388   QualType LHSTy = LHS.get()->getType();
8389   QualType RHSTy = RHS.get()->getType();
8390   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8391     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
8392         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8393     return QualType();
8394   }
8395 
8396   // Diagnose attempts to convert between __ibm128, __float128 and long double
8397   // where such conversions currently can't be handled.
8398   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8399     Diag(QuestionLoc,
8400          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8401       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8402     return QualType();
8403   }
8404 
8405   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8406   // selection operator (?:).
8407   if (getLangOpts().OpenCL &&
8408       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8409     return QualType();
8410   }
8411 
8412   // If both operands have arithmetic type, do the usual arithmetic conversions
8413   // to find a common type: C99 6.5.15p3,5.
8414   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8415     // Disallow invalid arithmetic conversions, such as those between bit-
8416     // precise integers types of different sizes, or between a bit-precise
8417     // integer and another type.
8418     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8419       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8420           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8421           << RHS.get()->getSourceRange();
8422       return QualType();
8423     }
8424 
8425     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8426     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8427 
8428     return ResTy;
8429   }
8430 
8431   // If both operands are the same structure or union type, the result is that
8432   // type.
8433   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8434     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8435       if (LHSRT->getDecl() == RHSRT->getDecl())
8436         // "If both the operands have structure or union type, the result has
8437         // that type."  This implies that CV qualifiers are dropped.
8438         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8439                                             RHSTy.getUnqualifiedType());
8440     // FIXME: Type of conditional expression must be complete in C mode.
8441   }
8442 
8443   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8444   // The following || allows only one side to be void (a GCC-ism).
8445   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8446     QualType ResTy;
8447     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8448       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8449     } else if (RHSTy->isVoidType()) {
8450       ResTy = RHSTy;
8451       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8452           << RHS.get()->getSourceRange();
8453     } else {
8454       ResTy = LHSTy;
8455       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8456           << LHS.get()->getSourceRange();
8457     }
8458     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8459     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8460     return ResTy;
8461   }
8462 
8463   // C23 6.5.15p7:
8464   //   ... if both the second and third operands have nullptr_t type, the
8465   //   result also has that type.
8466   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8467     return ResTy;
8468 
8469   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8470   // the type of the other operand."
8471   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8472   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8473 
8474   // All objective-c pointer type analysis is done here.
8475   QualType compositeType =
8476       ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8477   if (LHS.isInvalid() || RHS.isInvalid())
8478     return QualType();
8479   if (!compositeType.isNull())
8480     return compositeType;
8481 
8482 
8483   // Handle block pointer types.
8484   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8485     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8486                                                      QuestionLoc);
8487 
8488   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8489   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8490     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8491                                                        QuestionLoc);
8492 
8493   // GCC compatibility: soften pointer/integer mismatch.  Note that
8494   // null pointers have been filtered out by this point.
8495   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8496       /*IsIntFirstExpr=*/true))
8497     return RHSTy;
8498   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8499       /*IsIntFirstExpr=*/false))
8500     return LHSTy;
8501 
8502   // Emit a better diagnostic if one of the expressions is a null pointer
8503   // constant and the other is not a pointer type. In this case, the user most
8504   // likely forgot to take the address of the other expression.
8505   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8506     return QualType();
8507 
8508   // Finally, if the LHS and RHS types are canonically the same type, we can
8509   // use the common sugared type.
8510   if (Context.hasSameType(LHSTy, RHSTy))
8511     return Context.getCommonSugaredType(LHSTy, RHSTy);
8512 
8513   // Otherwise, the operands are not compatible.
8514   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8515     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8516     << RHS.get()->getSourceRange();
8517   return QualType();
8518 }
8519 
8520 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8521 /// ParenRange in parentheses.
8522 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8523                                const PartialDiagnostic &Note,
8524                                SourceRange ParenRange) {
8525   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8526   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8527       EndLoc.isValid()) {
8528     Self.Diag(Loc, Note)
8529       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8530       << FixItHint::CreateInsertion(EndLoc, ")");
8531   } else {
8532     // We can't display the parentheses, so just show the bare note.
8533     Self.Diag(Loc, Note) << ParenRange;
8534   }
8535 }
8536 
8537 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8538   return BinaryOperator::isAdditiveOp(Opc) ||
8539          BinaryOperator::isMultiplicativeOp(Opc) ||
8540          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8541   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8542   // not any of the logical operators.  Bitwise-xor is commonly used as a
8543   // logical-xor because there is no logical-xor operator.  The logical
8544   // operators, including uses of xor, have a high false positive rate for
8545   // precedence warnings.
8546 }
8547 
8548 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8549 /// expression, either using a built-in or overloaded operator,
8550 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8551 /// expression.
8552 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8553                                    const Expr **RHSExprs) {
8554   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8555   E = E->IgnoreImpCasts();
8556   E = E->IgnoreConversionOperatorSingleStep();
8557   E = E->IgnoreImpCasts();
8558   if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8559     E = MTE->getSubExpr();
8560     E = E->IgnoreImpCasts();
8561   }
8562 
8563   // Built-in binary operator.
8564   if (const auto *OP = dyn_cast<BinaryOperator>(E);
8565       OP && IsArithmeticOp(OP->getOpcode())) {
8566     *Opcode = OP->getOpcode();
8567     *RHSExprs = OP->getRHS();
8568     return true;
8569   }
8570 
8571   // Overloaded operator.
8572   if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8573     if (Call->getNumArgs() != 2)
8574       return false;
8575 
8576     // Make sure this is really a binary operator that is safe to pass into
8577     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8578     OverloadedOperatorKind OO = Call->getOperator();
8579     if (OO < OO_Plus || OO > OO_Arrow ||
8580         OO == OO_PlusPlus || OO == OO_MinusMinus)
8581       return false;
8582 
8583     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8584     if (IsArithmeticOp(OpKind)) {
8585       *Opcode = OpKind;
8586       *RHSExprs = Call->getArg(1);
8587       return true;
8588     }
8589   }
8590 
8591   return false;
8592 }
8593 
8594 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8595 /// or is a logical expression such as (x==y) which has int type, but is
8596 /// commonly interpreted as boolean.
8597 static bool ExprLooksBoolean(const Expr *E) {
8598   E = E->IgnoreParenImpCasts();
8599 
8600   if (E->getType()->isBooleanType())
8601     return true;
8602   if (const auto *OP = dyn_cast<BinaryOperator>(E))
8603     return OP->isComparisonOp() || OP->isLogicalOp();
8604   if (const auto *OP = dyn_cast<UnaryOperator>(E))
8605     return OP->getOpcode() == UO_LNot;
8606   if (E->getType()->isPointerType())
8607     return true;
8608   // FIXME: What about overloaded operator calls returning "unspecified boolean
8609   // type"s (commonly pointer-to-members)?
8610 
8611   return false;
8612 }
8613 
8614 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8615 /// and binary operator are mixed in a way that suggests the programmer assumed
8616 /// the conditional operator has higher precedence, for example:
8617 /// "int x = a + someBinaryCondition ? 1 : 2".
8618 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8619                                           Expr *Condition, const Expr *LHSExpr,
8620                                           const Expr *RHSExpr) {
8621   BinaryOperatorKind CondOpcode;
8622   const Expr *CondRHS;
8623 
8624   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8625     return;
8626   if (!ExprLooksBoolean(CondRHS))
8627     return;
8628 
8629   // The condition is an arithmetic binary expression, with a right-
8630   // hand side that looks boolean, so warn.
8631 
8632   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8633                         ? diag::warn_precedence_bitwise_conditional
8634                         : diag::warn_precedence_conditional;
8635 
8636   Self.Diag(OpLoc, DiagID)
8637       << Condition->getSourceRange()
8638       << BinaryOperator::getOpcodeStr(CondOpcode);
8639 
8640   SuggestParentheses(
8641       Self, OpLoc,
8642       Self.PDiag(diag::note_precedence_silence)
8643           << BinaryOperator::getOpcodeStr(CondOpcode),
8644       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8645 
8646   SuggestParentheses(Self, OpLoc,
8647                      Self.PDiag(diag::note_precedence_conditional_first),
8648                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8649 }
8650 
8651 /// Compute the nullability of a conditional expression.
8652 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8653                                               QualType LHSTy, QualType RHSTy,
8654                                               ASTContext &Ctx) {
8655   if (!ResTy->isAnyPointerType())
8656     return ResTy;
8657 
8658   auto GetNullability = [](QualType Ty) {
8659     std::optional<NullabilityKind> Kind = Ty->getNullability();
8660     if (Kind) {
8661       // For our purposes, treat _Nullable_result as _Nullable.
8662       if (*Kind == NullabilityKind::NullableResult)
8663         return NullabilityKind::Nullable;
8664       return *Kind;
8665     }
8666     return NullabilityKind::Unspecified;
8667   };
8668 
8669   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8670   NullabilityKind MergedKind;
8671 
8672   // Compute nullability of a binary conditional expression.
8673   if (IsBin) {
8674     if (LHSKind == NullabilityKind::NonNull)
8675       MergedKind = NullabilityKind::NonNull;
8676     else
8677       MergedKind = RHSKind;
8678   // Compute nullability of a normal conditional expression.
8679   } else {
8680     if (LHSKind == NullabilityKind::Nullable ||
8681         RHSKind == NullabilityKind::Nullable)
8682       MergedKind = NullabilityKind::Nullable;
8683     else if (LHSKind == NullabilityKind::NonNull)
8684       MergedKind = RHSKind;
8685     else if (RHSKind == NullabilityKind::NonNull)
8686       MergedKind = LHSKind;
8687     else
8688       MergedKind = NullabilityKind::Unspecified;
8689   }
8690 
8691   // Return if ResTy already has the correct nullability.
8692   if (GetNullability(ResTy) == MergedKind)
8693     return ResTy;
8694 
8695   // Strip all nullability from ResTy.
8696   while (ResTy->getNullability())
8697     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8698 
8699   // Create a new AttributedType with the new nullability kind.
8700   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8701   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8702 }
8703 
8704 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8705                                     SourceLocation ColonLoc,
8706                                     Expr *CondExpr, Expr *LHSExpr,
8707                                     Expr *RHSExpr) {
8708   if (!Context.isDependenceAllowed()) {
8709     // C cannot handle TypoExpr nodes in the condition because it
8710     // doesn't handle dependent types properly, so make sure any TypoExprs have
8711     // been dealt with before checking the operands.
8712     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8713     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8714     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8715 
8716     if (!CondResult.isUsable())
8717       return ExprError();
8718 
8719     if (LHSExpr) {
8720       if (!LHSResult.isUsable())
8721         return ExprError();
8722     }
8723 
8724     if (!RHSResult.isUsable())
8725       return ExprError();
8726 
8727     CondExpr = CondResult.get();
8728     LHSExpr = LHSResult.get();
8729     RHSExpr = RHSResult.get();
8730   }
8731 
8732   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8733   // was the condition.
8734   OpaqueValueExpr *opaqueValue = nullptr;
8735   Expr *commonExpr = nullptr;
8736   if (!LHSExpr) {
8737     commonExpr = CondExpr;
8738     // Lower out placeholder types first.  This is important so that we don't
8739     // try to capture a placeholder. This happens in few cases in C++; such
8740     // as Objective-C++'s dictionary subscripting syntax.
8741     if (commonExpr->hasPlaceholderType()) {
8742       ExprResult result = CheckPlaceholderExpr(commonExpr);
8743       if (!result.isUsable()) return ExprError();
8744       commonExpr = result.get();
8745     }
8746     // We usually want to apply unary conversions *before* saving, except
8747     // in the special case of a C++ l-value conditional.
8748     if (!(getLangOpts().CPlusPlus
8749           && !commonExpr->isTypeDependent()
8750           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8751           && commonExpr->isGLValue()
8752           && commonExpr->isOrdinaryOrBitFieldObject()
8753           && RHSExpr->isOrdinaryOrBitFieldObject()
8754           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8755       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8756       if (commonRes.isInvalid())
8757         return ExprError();
8758       commonExpr = commonRes.get();
8759     }
8760 
8761     // If the common expression is a class or array prvalue, materialize it
8762     // so that we can safely refer to it multiple times.
8763     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8764                                     commonExpr->getType()->isArrayType())) {
8765       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8766       if (MatExpr.isInvalid())
8767         return ExprError();
8768       commonExpr = MatExpr.get();
8769     }
8770 
8771     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8772                                                 commonExpr->getType(),
8773                                                 commonExpr->getValueKind(),
8774                                                 commonExpr->getObjectKind(),
8775                                                 commonExpr);
8776     LHSExpr = CondExpr = opaqueValue;
8777   }
8778 
8779   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8780   ExprValueKind VK = VK_PRValue;
8781   ExprObjectKind OK = OK_Ordinary;
8782   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8783   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8784                                              VK, OK, QuestionLoc);
8785   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8786       RHS.isInvalid())
8787     return ExprError();
8788 
8789   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8790                                 RHS.get());
8791 
8792   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8793 
8794   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8795                                          Context);
8796 
8797   if (!commonExpr)
8798     return new (Context)
8799         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8800                             RHS.get(), result, VK, OK);
8801 
8802   return new (Context) BinaryConditionalOperator(
8803       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8804       ColonLoc, result, VK, OK);
8805 }
8806 
8807 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8808   unsigned FromAttributes = 0, ToAttributes = 0;
8809   if (const auto *FromFn =
8810           dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
8811     FromAttributes =
8812         FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8813   if (const auto *ToFn =
8814           dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
8815     ToAttributes =
8816         ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8817 
8818   return FromAttributes != ToAttributes;
8819 }
8820 
8821 // Check if we have a conversion between incompatible cmse function pointer
8822 // types, that is, a conversion between a function pointer with the
8823 // cmse_nonsecure_call attribute and one without.
8824 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8825                                           QualType ToType) {
8826   if (const auto *ToFn =
8827           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8828     if (const auto *FromFn =
8829             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8830       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8831       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8832 
8833       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8834     }
8835   }
8836   return false;
8837 }
8838 
8839 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8840 // being closely modeled after the C99 spec:-). The odd characteristic of this
8841 // routine is it effectively iqnores the qualifiers on the top level pointee.
8842 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8843 // FIXME: add a couple examples in this comment.
8844 static Sema::AssignConvertType
8845 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
8846                                SourceLocation Loc) {
8847   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8848   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8849 
8850   // get the "pointed to" type (ignoring qualifiers at the top level)
8851   const Type *lhptee, *rhptee;
8852   Qualifiers lhq, rhq;
8853   std::tie(lhptee, lhq) =
8854       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8855   std::tie(rhptee, rhq) =
8856       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8857 
8858   Sema::AssignConvertType ConvTy = Sema::Compatible;
8859 
8860   // C99 6.5.16.1p1: This following citation is common to constraints
8861   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8862   // qualifiers of the type *pointed to* by the right;
8863 
8864   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8865   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8866       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8867     // Ignore lifetime for further calculation.
8868     lhq.removeObjCLifetime();
8869     rhq.removeObjCLifetime();
8870   }
8871 
8872   if (!lhq.compatiblyIncludes(rhq)) {
8873     // Treat address-space mismatches as fatal.
8874     if (!lhq.isAddressSpaceSupersetOf(rhq))
8875       return Sema::IncompatiblePointerDiscardsQualifiers;
8876 
8877     // It's okay to add or remove GC or lifetime qualifiers when converting to
8878     // and from void*.
8879     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8880                         .compatiblyIncludes(
8881                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8882              && (lhptee->isVoidType() || rhptee->isVoidType()))
8883       ; // keep old
8884 
8885     // Treat lifetime mismatches as fatal.
8886     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8887       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8888 
8889     // For GCC/MS compatibility, other qualifier mismatches are treated
8890     // as still compatible in C.
8891     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8892   }
8893 
8894   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8895   // incomplete type and the other is a pointer to a qualified or unqualified
8896   // version of void...
8897   if (lhptee->isVoidType()) {
8898     if (rhptee->isIncompleteOrObjectType())
8899       return ConvTy;
8900 
8901     // As an extension, we allow cast to/from void* to function pointer.
8902     assert(rhptee->isFunctionType());
8903     return Sema::FunctionVoidPointer;
8904   }
8905 
8906   if (rhptee->isVoidType()) {
8907     if (lhptee->isIncompleteOrObjectType())
8908       return ConvTy;
8909 
8910     // As an extension, we allow cast to/from void* to function pointer.
8911     assert(lhptee->isFunctionType());
8912     return Sema::FunctionVoidPointer;
8913   }
8914 
8915   if (!S.Diags.isIgnored(
8916           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
8917           Loc) &&
8918       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
8919       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
8920     return Sema::IncompatibleFunctionPointerStrict;
8921 
8922   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8923   // unqualified versions of compatible types, ...
8924   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8925   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8926     // Check if the pointee types are compatible ignoring the sign.
8927     // We explicitly check for char so that we catch "char" vs
8928     // "unsigned char" on systems where "char" is unsigned.
8929     if (lhptee->isCharType())
8930       ltrans = S.Context.UnsignedCharTy;
8931     else if (lhptee->hasSignedIntegerRepresentation())
8932       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8933 
8934     if (rhptee->isCharType())
8935       rtrans = S.Context.UnsignedCharTy;
8936     else if (rhptee->hasSignedIntegerRepresentation())
8937       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8938 
8939     if (ltrans == rtrans) {
8940       // Types are compatible ignoring the sign. Qualifier incompatibility
8941       // takes priority over sign incompatibility because the sign
8942       // warning can be disabled.
8943       if (ConvTy != Sema::Compatible)
8944         return ConvTy;
8945 
8946       return Sema::IncompatiblePointerSign;
8947     }
8948 
8949     // If we are a multi-level pointer, it's possible that our issue is simply
8950     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8951     // the eventual target type is the same and the pointers have the same
8952     // level of indirection, this must be the issue.
8953     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8954       do {
8955         std::tie(lhptee, lhq) =
8956           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8957         std::tie(rhptee, rhq) =
8958           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8959 
8960         // Inconsistent address spaces at this point is invalid, even if the
8961         // address spaces would be compatible.
8962         // FIXME: This doesn't catch address space mismatches for pointers of
8963         // different nesting levels, like:
8964         //   __local int *** a;
8965         //   int ** b = a;
8966         // It's not clear how to actually determine when such pointers are
8967         // invalidly incompatible.
8968         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8969           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8970 
8971       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8972 
8973       if (lhptee == rhptee)
8974         return Sema::IncompatibleNestedPointerQualifiers;
8975     }
8976 
8977     // General pointer incompatibility takes priority over qualifiers.
8978     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8979       return Sema::IncompatibleFunctionPointer;
8980     return Sema::IncompatiblePointer;
8981   }
8982   if (!S.getLangOpts().CPlusPlus &&
8983       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8984     return Sema::IncompatibleFunctionPointer;
8985   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8986     return Sema::IncompatibleFunctionPointer;
8987   if (S.IsInvalidSMECallConversion(rtrans, ltrans))
8988     return Sema::IncompatibleFunctionPointer;
8989   return ConvTy;
8990 }
8991 
8992 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8993 /// block pointer types are compatible or whether a block and normal pointer
8994 /// are compatible. It is more restrict than comparing two function pointer
8995 // types.
8996 static Sema::AssignConvertType
8997 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8998                                     QualType RHSType) {
8999   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9000   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9001 
9002   QualType lhptee, rhptee;
9003 
9004   // get the "pointed to" type (ignoring qualifiers at the top level)
9005   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9006   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9007 
9008   // In C++, the types have to match exactly.
9009   if (S.getLangOpts().CPlusPlus)
9010     return Sema::IncompatibleBlockPointer;
9011 
9012   Sema::AssignConvertType ConvTy = Sema::Compatible;
9013 
9014   // For blocks we enforce that qualifiers are identical.
9015   Qualifiers LQuals = lhptee.getLocalQualifiers();
9016   Qualifiers RQuals = rhptee.getLocalQualifiers();
9017   if (S.getLangOpts().OpenCL) {
9018     LQuals.removeAddressSpace();
9019     RQuals.removeAddressSpace();
9020   }
9021   if (LQuals != RQuals)
9022     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9023 
9024   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9025   // assignment.
9026   // The current behavior is similar to C++ lambdas. A block might be
9027   // assigned to a variable iff its return type and parameters are compatible
9028   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9029   // an assignment. Presumably it should behave in way that a function pointer
9030   // assignment does in C, so for each parameter and return type:
9031   //  * CVR and address space of LHS should be a superset of CVR and address
9032   //  space of RHS.
9033   //  * unqualified types should be compatible.
9034   if (S.getLangOpts().OpenCL) {
9035     if (!S.Context.typesAreBlockPointerCompatible(
9036             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9037             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9038       return Sema::IncompatibleBlockPointer;
9039   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9040     return Sema::IncompatibleBlockPointer;
9041 
9042   return ConvTy;
9043 }
9044 
9045 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9046 /// for assignment compatibility.
9047 static Sema::AssignConvertType
9048 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9049                                    QualType RHSType) {
9050   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9051   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9052 
9053   if (LHSType->isObjCBuiltinType()) {
9054     // Class is not compatible with ObjC object pointers.
9055     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9056         !RHSType->isObjCQualifiedClassType())
9057       return Sema::IncompatiblePointer;
9058     return Sema::Compatible;
9059   }
9060   if (RHSType->isObjCBuiltinType()) {
9061     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9062         !LHSType->isObjCQualifiedClassType())
9063       return Sema::IncompatiblePointer;
9064     return Sema::Compatible;
9065   }
9066   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9067   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9068 
9069   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9070       // make an exception for id<P>
9071       !LHSType->isObjCQualifiedIdType())
9072     return Sema::CompatiblePointerDiscardsQualifiers;
9073 
9074   if (S.Context.typesAreCompatible(LHSType, RHSType))
9075     return Sema::Compatible;
9076   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9077     return Sema::IncompatibleObjCQualifiedId;
9078   return Sema::IncompatiblePointer;
9079 }
9080 
9081 Sema::AssignConvertType
9082 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9083                                  QualType LHSType, QualType RHSType) {
9084   // Fake up an opaque expression.  We don't actually care about what
9085   // cast operations are required, so if CheckAssignmentConstraints
9086   // adds casts to this they'll be wasted, but fortunately that doesn't
9087   // usually happen on valid code.
9088   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9089   ExprResult RHSPtr = &RHSExpr;
9090   CastKind K;
9091 
9092   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9093 }
9094 
9095 /// This helper function returns true if QT is a vector type that has element
9096 /// type ElementType.
9097 static bool isVector(QualType QT, QualType ElementType) {
9098   if (const VectorType *VT = QT->getAs<VectorType>())
9099     return VT->getElementType().getCanonicalType() == ElementType;
9100   return false;
9101 }
9102 
9103 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9104 /// has code to accommodate several GCC extensions when type checking
9105 /// pointers. Here are some objectionable examples that GCC considers warnings:
9106 ///
9107 ///  int a, *pint;
9108 ///  short *pshort;
9109 ///  struct foo *pfoo;
9110 ///
9111 ///  pint = pshort; // warning: assignment from incompatible pointer type
9112 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9113 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9114 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9115 ///
9116 /// As a result, the code for dealing with pointers is more complex than the
9117 /// C99 spec dictates.
9118 ///
9119 /// Sets 'Kind' for any result kind except Incompatible.
9120 Sema::AssignConvertType
9121 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9122                                  CastKind &Kind, bool ConvertRHS) {
9123   QualType RHSType = RHS.get()->getType();
9124   QualType OrigLHSType = LHSType;
9125 
9126   // Get canonical types.  We're not formatting these types, just comparing
9127   // them.
9128   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9129   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9130 
9131   // Common case: no conversion required.
9132   if (LHSType == RHSType) {
9133     Kind = CK_NoOp;
9134     return Compatible;
9135   }
9136 
9137   // If the LHS has an __auto_type, there are no additional type constraints
9138   // to be worried about.
9139   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9140     if (AT->isGNUAutoType()) {
9141       Kind = CK_NoOp;
9142       return Compatible;
9143     }
9144   }
9145 
9146   // If we have an atomic type, try a non-atomic assignment, then just add an
9147   // atomic qualification step.
9148   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9149     Sema::AssignConvertType result =
9150       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9151     if (result != Compatible)
9152       return result;
9153     if (Kind != CK_NoOp && ConvertRHS)
9154       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9155     Kind = CK_NonAtomicToAtomic;
9156     return Compatible;
9157   }
9158 
9159   // If the left-hand side is a reference type, then we are in a
9160   // (rare!) case where we've allowed the use of references in C,
9161   // e.g., as a parameter type in a built-in function. In this case,
9162   // just make sure that the type referenced is compatible with the
9163   // right-hand side type. The caller is responsible for adjusting
9164   // LHSType so that the resulting expression does not have reference
9165   // type.
9166   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9167     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9168       Kind = CK_LValueBitCast;
9169       return Compatible;
9170     }
9171     return Incompatible;
9172   }
9173 
9174   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9175   // to the same ExtVector type.
9176   if (LHSType->isExtVectorType()) {
9177     if (RHSType->isExtVectorType())
9178       return Incompatible;
9179     if (RHSType->isArithmeticType()) {
9180       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9181       if (ConvertRHS)
9182         RHS = prepareVectorSplat(LHSType, RHS.get());
9183       Kind = CK_VectorSplat;
9184       return Compatible;
9185     }
9186   }
9187 
9188   // Conversions to or from vector type.
9189   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9190     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9191       // Allow assignments of an AltiVec vector type to an equivalent GCC
9192       // vector type and vice versa
9193       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9194         Kind = CK_BitCast;
9195         return Compatible;
9196       }
9197 
9198       // If we are allowing lax vector conversions, and LHS and RHS are both
9199       // vectors, the total size only needs to be the same. This is a bitcast;
9200       // no bits are changed but the result type is different.
9201       if (isLaxVectorConversion(RHSType, LHSType)) {
9202         // The default for lax vector conversions with Altivec vectors will
9203         // change, so if we are converting between vector types where
9204         // at least one is an Altivec vector, emit a warning.
9205         if (Context.getTargetInfo().getTriple().isPPC() &&
9206             anyAltivecTypes(RHSType, LHSType) &&
9207             !Context.areCompatibleVectorTypes(RHSType, LHSType))
9208           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9209               << RHSType << LHSType;
9210         Kind = CK_BitCast;
9211         return IncompatibleVectors;
9212       }
9213     }
9214 
9215     // When the RHS comes from another lax conversion (e.g. binops between
9216     // scalars and vectors) the result is canonicalized as a vector. When the
9217     // LHS is also a vector, the lax is allowed by the condition above. Handle
9218     // the case where LHS is a scalar.
9219     if (LHSType->isScalarType()) {
9220       const VectorType *VecType = RHSType->getAs<VectorType>();
9221       if (VecType && VecType->getNumElements() == 1 &&
9222           isLaxVectorConversion(RHSType, LHSType)) {
9223         if (Context.getTargetInfo().getTriple().isPPC() &&
9224             (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9225              VecType->getVectorKind() == VectorKind::AltiVecBool ||
9226              VecType->getVectorKind() == VectorKind::AltiVecPixel))
9227           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9228               << RHSType << LHSType;
9229         ExprResult *VecExpr = &RHS;
9230         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9231         Kind = CK_BitCast;
9232         return Compatible;
9233       }
9234     }
9235 
9236     // Allow assignments between fixed-length and sizeless SVE vectors.
9237     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9238         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9239       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9240           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9241         Kind = CK_BitCast;
9242         return Compatible;
9243       }
9244 
9245     // Allow assignments between fixed-length and sizeless RVV vectors.
9246     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9247         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9248       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
9249           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
9250         Kind = CK_BitCast;
9251         return Compatible;
9252       }
9253     }
9254 
9255     return Incompatible;
9256   }
9257 
9258   // Diagnose attempts to convert between __ibm128, __float128 and long double
9259   // where such conversions currently can't be handled.
9260   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9261     return Incompatible;
9262 
9263   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9264   // discards the imaginary part.
9265   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9266       !LHSType->getAs<ComplexType>())
9267     return Incompatible;
9268 
9269   // Arithmetic conversions.
9270   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9271       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9272     if (ConvertRHS)
9273       Kind = PrepareScalarCast(RHS, LHSType);
9274     return Compatible;
9275   }
9276 
9277   // Conversions to normal pointers.
9278   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9279     // U* -> T*
9280     if (isa<PointerType>(RHSType)) {
9281       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9282       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9283       if (AddrSpaceL != AddrSpaceR)
9284         Kind = CK_AddressSpaceConversion;
9285       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9286         Kind = CK_NoOp;
9287       else
9288         Kind = CK_BitCast;
9289       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9290                                             RHS.get()->getBeginLoc());
9291     }
9292 
9293     // int -> T*
9294     if (RHSType->isIntegerType()) {
9295       Kind = CK_IntegralToPointer; // FIXME: null?
9296       return IntToPointer;
9297     }
9298 
9299     // C pointers are not compatible with ObjC object pointers,
9300     // with two exceptions:
9301     if (isa<ObjCObjectPointerType>(RHSType)) {
9302       //  - conversions to void*
9303       if (LHSPointer->getPointeeType()->isVoidType()) {
9304         Kind = CK_BitCast;
9305         return Compatible;
9306       }
9307 
9308       //  - conversions from 'Class' to the redefinition type
9309       if (RHSType->isObjCClassType() &&
9310           Context.hasSameType(LHSType,
9311                               Context.getObjCClassRedefinitionType())) {
9312         Kind = CK_BitCast;
9313         return Compatible;
9314       }
9315 
9316       Kind = CK_BitCast;
9317       return IncompatiblePointer;
9318     }
9319 
9320     // U^ -> void*
9321     if (RHSType->getAs<BlockPointerType>()) {
9322       if (LHSPointer->getPointeeType()->isVoidType()) {
9323         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9324         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9325                                 ->getPointeeType()
9326                                 .getAddressSpace();
9327         Kind =
9328             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9329         return Compatible;
9330       }
9331     }
9332 
9333     return Incompatible;
9334   }
9335 
9336   // Conversions to block pointers.
9337   if (isa<BlockPointerType>(LHSType)) {
9338     // U^ -> T^
9339     if (RHSType->isBlockPointerType()) {
9340       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9341                               ->getPointeeType()
9342                               .getAddressSpace();
9343       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9344                               ->getPointeeType()
9345                               .getAddressSpace();
9346       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9347       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9348     }
9349 
9350     // int or null -> T^
9351     if (RHSType->isIntegerType()) {
9352       Kind = CK_IntegralToPointer; // FIXME: null
9353       return IntToBlockPointer;
9354     }
9355 
9356     // id -> T^
9357     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9358       Kind = CK_AnyPointerToBlockPointerCast;
9359       return Compatible;
9360     }
9361 
9362     // void* -> T^
9363     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9364       if (RHSPT->getPointeeType()->isVoidType()) {
9365         Kind = CK_AnyPointerToBlockPointerCast;
9366         return Compatible;
9367       }
9368 
9369     return Incompatible;
9370   }
9371 
9372   // Conversions to Objective-C pointers.
9373   if (isa<ObjCObjectPointerType>(LHSType)) {
9374     // A* -> B*
9375     if (RHSType->isObjCObjectPointerType()) {
9376       Kind = CK_BitCast;
9377       Sema::AssignConvertType result =
9378         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9379       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9380           result == Compatible &&
9381           !ObjC().CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9382         result = IncompatibleObjCWeakRef;
9383       return result;
9384     }
9385 
9386     // int or null -> A*
9387     if (RHSType->isIntegerType()) {
9388       Kind = CK_IntegralToPointer; // FIXME: null
9389       return IntToPointer;
9390     }
9391 
9392     // In general, C pointers are not compatible with ObjC object pointers,
9393     // with two exceptions:
9394     if (isa<PointerType>(RHSType)) {
9395       Kind = CK_CPointerToObjCPointerCast;
9396 
9397       //  - conversions from 'void*'
9398       if (RHSType->isVoidPointerType()) {
9399         return Compatible;
9400       }
9401 
9402       //  - conversions to 'Class' from its redefinition type
9403       if (LHSType->isObjCClassType() &&
9404           Context.hasSameType(RHSType,
9405                               Context.getObjCClassRedefinitionType())) {
9406         return Compatible;
9407       }
9408 
9409       return IncompatiblePointer;
9410     }
9411 
9412     // Only under strict condition T^ is compatible with an Objective-C pointer.
9413     if (RHSType->isBlockPointerType() &&
9414         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9415       if (ConvertRHS)
9416         maybeExtendBlockObject(RHS);
9417       Kind = CK_BlockPointerToObjCPointerCast;
9418       return Compatible;
9419     }
9420 
9421     return Incompatible;
9422   }
9423 
9424   // Conversion to nullptr_t (C23 only)
9425   if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9426       RHS.get()->isNullPointerConstant(Context,
9427                                        Expr::NPC_ValueDependentIsNull)) {
9428     // null -> nullptr_t
9429     Kind = CK_NullToPointer;
9430     return Compatible;
9431   }
9432 
9433   // Conversions from pointers that are not covered by the above.
9434   if (isa<PointerType>(RHSType)) {
9435     // T* -> _Bool
9436     if (LHSType == Context.BoolTy) {
9437       Kind = CK_PointerToBoolean;
9438       return Compatible;
9439     }
9440 
9441     // T* -> int
9442     if (LHSType->isIntegerType()) {
9443       Kind = CK_PointerToIntegral;
9444       return PointerToInt;
9445     }
9446 
9447     return Incompatible;
9448   }
9449 
9450   // Conversions from Objective-C pointers that are not covered by the above.
9451   if (isa<ObjCObjectPointerType>(RHSType)) {
9452     // T* -> _Bool
9453     if (LHSType == Context.BoolTy) {
9454       Kind = CK_PointerToBoolean;
9455       return Compatible;
9456     }
9457 
9458     // T* -> int
9459     if (LHSType->isIntegerType()) {
9460       Kind = CK_PointerToIntegral;
9461       return PointerToInt;
9462     }
9463 
9464     return Incompatible;
9465   }
9466 
9467   // struct A -> struct B
9468   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9469     if (Context.typesAreCompatible(LHSType, RHSType)) {
9470       Kind = CK_NoOp;
9471       return Compatible;
9472     }
9473   }
9474 
9475   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9476     Kind = CK_IntToOCLSampler;
9477     return Compatible;
9478   }
9479 
9480   return Incompatible;
9481 }
9482 
9483 /// Constructs a transparent union from an expression that is
9484 /// used to initialize the transparent union.
9485 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9486                                       ExprResult &EResult, QualType UnionType,
9487                                       FieldDecl *Field) {
9488   // Build an initializer list that designates the appropriate member
9489   // of the transparent union.
9490   Expr *E = EResult.get();
9491   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9492                                                    E, SourceLocation());
9493   Initializer->setType(UnionType);
9494   Initializer->setInitializedFieldInUnion(Field);
9495 
9496   // Build a compound literal constructing a value of the transparent
9497   // union type from this initializer list.
9498   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9499   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9500                                         VK_PRValue, Initializer, false);
9501 }
9502 
9503 Sema::AssignConvertType
9504 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9505                                                ExprResult &RHS) {
9506   QualType RHSType = RHS.get()->getType();
9507 
9508   // If the ArgType is a Union type, we want to handle a potential
9509   // transparent_union GCC extension.
9510   const RecordType *UT = ArgType->getAsUnionType();
9511   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9512     return Incompatible;
9513 
9514   // The field to initialize within the transparent union.
9515   RecordDecl *UD = UT->getDecl();
9516   FieldDecl *InitField = nullptr;
9517   // It's compatible if the expression matches any of the fields.
9518   for (auto *it : UD->fields()) {
9519     if (it->getType()->isPointerType()) {
9520       // If the transparent union contains a pointer type, we allow:
9521       // 1) void pointer
9522       // 2) null pointer constant
9523       if (RHSType->isPointerType())
9524         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9525           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9526           InitField = it;
9527           break;
9528         }
9529 
9530       if (RHS.get()->isNullPointerConstant(Context,
9531                                            Expr::NPC_ValueDependentIsNull)) {
9532         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9533                                 CK_NullToPointer);
9534         InitField = it;
9535         break;
9536       }
9537     }
9538 
9539     CastKind Kind;
9540     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9541           == Compatible) {
9542       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9543       InitField = it;
9544       break;
9545     }
9546   }
9547 
9548   if (!InitField)
9549     return Incompatible;
9550 
9551   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9552   return Compatible;
9553 }
9554 
9555 Sema::AssignConvertType
9556 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9557                                        bool Diagnose,
9558                                        bool DiagnoseCFAudited,
9559                                        bool ConvertRHS) {
9560   // We need to be able to tell the caller whether we diagnosed a problem, if
9561   // they ask us to issue diagnostics.
9562   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9563 
9564   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9565   // we can't avoid *all* modifications at the moment, so we need some somewhere
9566   // to put the updated value.
9567   ExprResult LocalRHS = CallerRHS;
9568   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9569 
9570   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9571     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9572       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9573           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9574         Diag(RHS.get()->getExprLoc(),
9575              diag::warn_noderef_to_dereferenceable_pointer)
9576             << RHS.get()->getSourceRange();
9577       }
9578     }
9579   }
9580 
9581   if (getLangOpts().CPlusPlus) {
9582     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9583       // C++ 5.17p3: If the left operand is not of class type, the
9584       // expression is implicitly converted (C++ 4) to the
9585       // cv-unqualified type of the left operand.
9586       QualType RHSType = RHS.get()->getType();
9587       if (Diagnose) {
9588         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9589                                         AA_Assigning);
9590       } else {
9591         ImplicitConversionSequence ICS =
9592             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9593                                   /*SuppressUserConversions=*/false,
9594                                   AllowedExplicit::None,
9595                                   /*InOverloadResolution=*/false,
9596                                   /*CStyle=*/false,
9597                                   /*AllowObjCWritebackConversion=*/false);
9598         if (ICS.isFailure())
9599           return Incompatible;
9600         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9601                                         ICS, AA_Assigning);
9602       }
9603       if (RHS.isInvalid())
9604         return Incompatible;
9605       Sema::AssignConvertType result = Compatible;
9606       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9607           !ObjC().CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9608         result = IncompatibleObjCWeakRef;
9609       return result;
9610     }
9611 
9612     // FIXME: Currently, we fall through and treat C++ classes like C
9613     // structures.
9614     // FIXME: We also fall through for atomics; not sure what should
9615     // happen there, though.
9616   } else if (RHS.get()->getType() == Context.OverloadTy) {
9617     // As a set of extensions to C, we support overloading on functions. These
9618     // functions need to be resolved here.
9619     DeclAccessPair DAP;
9620     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9621             RHS.get(), LHSType, /*Complain=*/false, DAP))
9622       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9623     else
9624       return Incompatible;
9625   }
9626 
9627   // This check seems unnatural, however it is necessary to ensure the proper
9628   // conversion of functions/arrays. If the conversion were done for all
9629   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9630   // expressions that suppress this implicit conversion (&, sizeof). This needs
9631   // to happen before we check for null pointer conversions because C does not
9632   // undergo the same implicit conversions as C++ does above (by the calls to
9633   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9634   // lvalue to rvalue cast before checking for null pointer constraints. This
9635   // addresses code like: nullptr_t val; int *ptr; ptr = val;
9636   //
9637   // Suppress this for references: C++ 8.5.3p5.
9638   if (!LHSType->isReferenceType()) {
9639     // FIXME: We potentially allocate here even if ConvertRHS is false.
9640     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9641     if (RHS.isInvalid())
9642       return Incompatible;
9643   }
9644 
9645   // The constraints are expressed in terms of the atomic, qualified, or
9646   // unqualified type of the LHS.
9647   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9648 
9649   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9650   // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9651   if ((LHSTypeAfterConversion->isPointerType() ||
9652        LHSTypeAfterConversion->isObjCObjectPointerType() ||
9653        LHSTypeAfterConversion->isBlockPointerType()) &&
9654       ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9655        RHS.get()->isNullPointerConstant(Context,
9656                                         Expr::NPC_ValueDependentIsNull))) {
9657     if (Diagnose || ConvertRHS) {
9658       CastKind Kind;
9659       CXXCastPath Path;
9660       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9661                              /*IgnoreBaseAccess=*/false, Diagnose);
9662       if (ConvertRHS)
9663         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9664     }
9665     return Compatible;
9666   }
9667   // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9668   // unqualified bool, and the right operand is a pointer or its type is
9669   // nullptr_t.
9670   if (getLangOpts().C23 && LHSType->isBooleanType() &&
9671       RHS.get()->getType()->isNullPtrType()) {
9672     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9673     // only handles nullptr -> _Bool due to needing an extra conversion
9674     // step.
9675     // We model this by converting from nullptr -> void * and then let the
9676     // conversion from void * -> _Bool happen naturally.
9677     if (Diagnose || ConvertRHS) {
9678       CastKind Kind;
9679       CXXCastPath Path;
9680       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
9681                              /*IgnoreBaseAccess=*/false, Diagnose);
9682       if (ConvertRHS)
9683         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
9684                                 &Path);
9685     }
9686   }
9687 
9688   // OpenCL queue_t type assignment.
9689   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9690                                  Context, Expr::NPC_ValueDependentIsNull)) {
9691     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9692     return Compatible;
9693   }
9694 
9695   CastKind Kind;
9696   Sema::AssignConvertType result =
9697     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9698 
9699   // C99 6.5.16.1p2: The value of the right operand is converted to the
9700   // type of the assignment expression.
9701   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9702   // so that we can use references in built-in functions even in C.
9703   // The getNonReferenceType() call makes sure that the resulting expression
9704   // does not have reference type.
9705   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9706     QualType Ty = LHSType.getNonLValueExprType(Context);
9707     Expr *E = RHS.get();
9708 
9709     // Check for various Objective-C errors. If we are not reporting
9710     // diagnostics and just checking for errors, e.g., during overload
9711     // resolution, return Incompatible to indicate the failure.
9712     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9713         ObjC().CheckObjCConversion(SourceRange(), Ty, E,
9714                                    CheckedConversionKind::Implicit, Diagnose,
9715                                    DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9716       if (!Diagnose)
9717         return Incompatible;
9718     }
9719     if (getLangOpts().ObjC &&
9720         (ObjC().CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9721                                                   E->getType(), E, Diagnose) ||
9722          ObjC().CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9723       if (!Diagnose)
9724         return Incompatible;
9725       // Replace the expression with a corrected version and continue so we
9726       // can find further errors.
9727       RHS = E;
9728       return Compatible;
9729     }
9730 
9731     if (ConvertRHS)
9732       RHS = ImpCastExprToType(E, Ty, Kind);
9733   }
9734 
9735   return result;
9736 }
9737 
9738 namespace {
9739 /// The original operand to an operator, prior to the application of the usual
9740 /// arithmetic conversions and converting the arguments of a builtin operator
9741 /// candidate.
9742 struct OriginalOperand {
9743   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9744     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9745       Op = MTE->getSubExpr();
9746     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9747       Op = BTE->getSubExpr();
9748     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9749       Orig = ICE->getSubExprAsWritten();
9750       Conversion = ICE->getConversionFunction();
9751     }
9752   }
9753 
9754   QualType getType() const { return Orig->getType(); }
9755 
9756   Expr *Orig;
9757   NamedDecl *Conversion;
9758 };
9759 }
9760 
9761 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9762                                ExprResult &RHS) {
9763   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9764 
9765   Diag(Loc, diag::err_typecheck_invalid_operands)
9766     << OrigLHS.getType() << OrigRHS.getType()
9767     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9768 
9769   // If a user-defined conversion was applied to either of the operands prior
9770   // to applying the built-in operator rules, tell the user about it.
9771   if (OrigLHS.Conversion) {
9772     Diag(OrigLHS.Conversion->getLocation(),
9773          diag::note_typecheck_invalid_operands_converted)
9774       << 0 << LHS.get()->getType();
9775   }
9776   if (OrigRHS.Conversion) {
9777     Diag(OrigRHS.Conversion->getLocation(),
9778          diag::note_typecheck_invalid_operands_converted)
9779       << 1 << RHS.get()->getType();
9780   }
9781 
9782   return QualType();
9783 }
9784 
9785 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9786                                             ExprResult &RHS) {
9787   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9788   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9789 
9790   bool LHSNatVec = LHSType->isVectorType();
9791   bool RHSNatVec = RHSType->isVectorType();
9792 
9793   if (!(LHSNatVec && RHSNatVec)) {
9794     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9795     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9796     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9797         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9798         << Vector->getSourceRange();
9799     return QualType();
9800   }
9801 
9802   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9803       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9804       << RHS.get()->getSourceRange();
9805 
9806   return QualType();
9807 }
9808 
9809 /// Try to convert a value of non-vector type to a vector type by converting
9810 /// the type to the element type of the vector and then performing a splat.
9811 /// If the language is OpenCL, we only use conversions that promote scalar
9812 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9813 /// for float->int.
9814 ///
9815 /// OpenCL V2.0 6.2.6.p2:
9816 /// An error shall occur if any scalar operand type has greater rank
9817 /// than the type of the vector element.
9818 ///
9819 /// \param scalar - if non-null, actually perform the conversions
9820 /// \return true if the operation fails (but without diagnosing the failure)
9821 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9822                                      QualType scalarTy,
9823                                      QualType vectorEltTy,
9824                                      QualType vectorTy,
9825                                      unsigned &DiagID) {
9826   // The conversion to apply to the scalar before splatting it,
9827   // if necessary.
9828   CastKind scalarCast = CK_NoOp;
9829 
9830   if (vectorEltTy->isIntegralType(S.Context)) {
9831     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9832         (scalarTy->isIntegerType() &&
9833          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9834       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9835       return true;
9836     }
9837     if (!scalarTy->isIntegralType(S.Context))
9838       return true;
9839     scalarCast = CK_IntegralCast;
9840   } else if (vectorEltTy->isRealFloatingType()) {
9841     if (scalarTy->isRealFloatingType()) {
9842       if (S.getLangOpts().OpenCL &&
9843           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9844         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9845         return true;
9846       }
9847       scalarCast = CK_FloatingCast;
9848     }
9849     else if (scalarTy->isIntegralType(S.Context))
9850       scalarCast = CK_IntegralToFloating;
9851     else
9852       return true;
9853   } else {
9854     return true;
9855   }
9856 
9857   // Adjust scalar if desired.
9858   if (scalar) {
9859     if (scalarCast != CK_NoOp)
9860       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9861     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9862   }
9863   return false;
9864 }
9865 
9866 /// Convert vector E to a vector with the same number of elements but different
9867 /// element type.
9868 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9869   const auto *VecTy = E->getType()->getAs<VectorType>();
9870   assert(VecTy && "Expression E must be a vector");
9871   QualType NewVecTy =
9872       VecTy->isExtVectorType()
9873           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
9874           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
9875                                     VecTy->getVectorKind());
9876 
9877   // Look through the implicit cast. Return the subexpression if its type is
9878   // NewVecTy.
9879   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9880     if (ICE->getSubExpr()->getType() == NewVecTy)
9881       return ICE->getSubExpr();
9882 
9883   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9884   return S.ImpCastExprToType(E, NewVecTy, Cast);
9885 }
9886 
9887 /// Test if a (constant) integer Int can be casted to another integer type
9888 /// IntTy without losing precision.
9889 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9890                                       QualType OtherIntTy) {
9891   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9892 
9893   // Reject cases where the value of the Int is unknown as that would
9894   // possibly cause truncation, but accept cases where the scalar can be
9895   // demoted without loss of precision.
9896   Expr::EvalResult EVResult;
9897   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9898   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9899   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9900   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9901 
9902   if (CstInt) {
9903     // If the scalar is constant and is of a higher order and has more active
9904     // bits that the vector element type, reject it.
9905     llvm::APSInt Result = EVResult.Val.getInt();
9906     unsigned NumBits = IntSigned
9907                            ? (Result.isNegative() ? Result.getSignificantBits()
9908                                                   : Result.getActiveBits())
9909                            : Result.getActiveBits();
9910     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9911       return true;
9912 
9913     // If the signedness of the scalar type and the vector element type
9914     // differs and the number of bits is greater than that of the vector
9915     // element reject it.
9916     return (IntSigned != OtherIntSigned &&
9917             NumBits > S.Context.getIntWidth(OtherIntTy));
9918   }
9919 
9920   // Reject cases where the value of the scalar is not constant and it's
9921   // order is greater than that of the vector element type.
9922   return (Order < 0);
9923 }
9924 
9925 /// Test if a (constant) integer Int can be casted to floating point type
9926 /// FloatTy without losing precision.
9927 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9928                                      QualType FloatTy) {
9929   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9930 
9931   // Determine if the integer constant can be expressed as a floating point
9932   // number of the appropriate type.
9933   Expr::EvalResult EVResult;
9934   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9935 
9936   uint64_t Bits = 0;
9937   if (CstInt) {
9938     // Reject constants that would be truncated if they were converted to
9939     // the floating point type. Test by simple to/from conversion.
9940     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9941     //        could be avoided if there was a convertFromAPInt method
9942     //        which could signal back if implicit truncation occurred.
9943     llvm::APSInt Result = EVResult.Val.getInt();
9944     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9945     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9946                            llvm::APFloat::rmTowardZero);
9947     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9948                              !IntTy->hasSignedIntegerRepresentation());
9949     bool Ignored = false;
9950     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9951                            &Ignored);
9952     if (Result != ConvertBack)
9953       return true;
9954   } else {
9955     // Reject types that cannot be fully encoded into the mantissa of
9956     // the float.
9957     Bits = S.Context.getTypeSize(IntTy);
9958     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9959         S.Context.getFloatTypeSemantics(FloatTy));
9960     if (Bits > FloatPrec)
9961       return true;
9962   }
9963 
9964   return false;
9965 }
9966 
9967 /// Attempt to convert and splat Scalar into a vector whose types matches
9968 /// Vector following GCC conversion rules. The rule is that implicit
9969 /// conversion can occur when Scalar can be casted to match Vector's element
9970 /// type without causing truncation of Scalar.
9971 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9972                                         ExprResult *Vector) {
9973   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9974   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9975   QualType VectorEltTy;
9976 
9977   if (const auto *VT = VectorTy->getAs<VectorType>()) {
9978     assert(!isa<ExtVectorType>(VT) &&
9979            "ExtVectorTypes should not be handled here!");
9980     VectorEltTy = VT->getElementType();
9981   } else if (VectorTy->isSveVLSBuiltinType()) {
9982     VectorEltTy =
9983         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
9984   } else {
9985     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
9986   }
9987 
9988   // Reject cases where the vector element type or the scalar element type are
9989   // not integral or floating point types.
9990   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9991     return true;
9992 
9993   // The conversion to apply to the scalar before splatting it,
9994   // if necessary.
9995   CastKind ScalarCast = CK_NoOp;
9996 
9997   // Accept cases where the vector elements are integers and the scalar is
9998   // an integer.
9999   // FIXME: Notionally if the scalar was a floating point value with a precise
10000   //        integral representation, we could cast it to an appropriate integer
10001   //        type and then perform the rest of the checks here. GCC will perform
10002   //        this conversion in some cases as determined by the input language.
10003   //        We should accept it on a language independent basis.
10004   if (VectorEltTy->isIntegralType(S.Context) &&
10005       ScalarTy->isIntegralType(S.Context) &&
10006       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10007 
10008     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10009       return true;
10010 
10011     ScalarCast = CK_IntegralCast;
10012   } else if (VectorEltTy->isIntegralType(S.Context) &&
10013              ScalarTy->isRealFloatingType()) {
10014     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10015       ScalarCast = CK_FloatingToIntegral;
10016     else
10017       return true;
10018   } else if (VectorEltTy->isRealFloatingType()) {
10019     if (ScalarTy->isRealFloatingType()) {
10020 
10021       // Reject cases where the scalar type is not a constant and has a higher
10022       // Order than the vector element type.
10023       llvm::APFloat Result(0.0);
10024 
10025       // Determine whether this is a constant scalar. In the event that the
10026       // value is dependent (and thus cannot be evaluated by the constant
10027       // evaluator), skip the evaluation. This will then diagnose once the
10028       // expression is instantiated.
10029       bool CstScalar = Scalar->get()->isValueDependent() ||
10030                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10031       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10032       if (!CstScalar && Order < 0)
10033         return true;
10034 
10035       // If the scalar cannot be safely casted to the vector element type,
10036       // reject it.
10037       if (CstScalar) {
10038         bool Truncated = false;
10039         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10040                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10041         if (Truncated)
10042           return true;
10043       }
10044 
10045       ScalarCast = CK_FloatingCast;
10046     } else if (ScalarTy->isIntegralType(S.Context)) {
10047       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10048         return true;
10049 
10050       ScalarCast = CK_IntegralToFloating;
10051     } else
10052       return true;
10053   } else if (ScalarTy->isEnumeralType())
10054     return true;
10055 
10056   // Adjust scalar if desired.
10057   if (ScalarCast != CK_NoOp)
10058     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10059   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10060   return false;
10061 }
10062 
10063 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10064                                    SourceLocation Loc, bool IsCompAssign,
10065                                    bool AllowBothBool,
10066                                    bool AllowBoolConversions,
10067                                    bool AllowBoolOperation,
10068                                    bool ReportInvalid) {
10069   if (!IsCompAssign) {
10070     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10071     if (LHS.isInvalid())
10072       return QualType();
10073   }
10074   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10075   if (RHS.isInvalid())
10076     return QualType();
10077 
10078   // For conversion purposes, we ignore any qualifiers.
10079   // For example, "const float" and "float" are equivalent.
10080   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10081   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10082 
10083   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10084   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10085   assert(LHSVecType || RHSVecType);
10086 
10087   // AltiVec-style "vector bool op vector bool" combinations are allowed
10088   // for some operators but not others.
10089   if (!AllowBothBool && LHSVecType &&
10090       LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10091       RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10092     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10093 
10094   // This operation may not be performed on boolean vectors.
10095   if (!AllowBoolOperation &&
10096       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10097     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10098 
10099   // If the vector types are identical, return.
10100   if (Context.hasSameType(LHSType, RHSType))
10101     return Context.getCommonSugaredType(LHSType, RHSType);
10102 
10103   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10104   if (LHSVecType && RHSVecType &&
10105       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10106     if (isa<ExtVectorType>(LHSVecType)) {
10107       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10108       return LHSType;
10109     }
10110 
10111     if (!IsCompAssign)
10112       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10113     return RHSType;
10114   }
10115 
10116   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10117   // can be mixed, with the result being the non-bool type.  The non-bool
10118   // operand must have integer element type.
10119   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10120       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10121       (Context.getTypeSize(LHSVecType->getElementType()) ==
10122        Context.getTypeSize(RHSVecType->getElementType()))) {
10123     if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10124         LHSVecType->getElementType()->isIntegerType() &&
10125         RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10126       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10127       return LHSType;
10128     }
10129     if (!IsCompAssign &&
10130         LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10131         RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10132         RHSVecType->getElementType()->isIntegerType()) {
10133       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10134       return RHSType;
10135     }
10136   }
10137 
10138   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10139   // invalid since the ambiguity can affect the ABI.
10140   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10141                                unsigned &SVEorRVV) {
10142     const VectorType *VecType = SecondType->getAs<VectorType>();
10143     SVEorRVV = 0;
10144     if (FirstType->isSizelessBuiltinType() && VecType) {
10145       if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10146           VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10147         return true;
10148       if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10149           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10150         SVEorRVV = 1;
10151         return true;
10152       }
10153     }
10154 
10155     return false;
10156   };
10157 
10158   unsigned SVEorRVV;
10159   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10160       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10161     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
10162         << SVEorRVV << LHSType << RHSType;
10163     return QualType();
10164   }
10165 
10166   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10167   // invalid since the ambiguity can affect the ABI.
10168   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10169                                   unsigned &SVEorRVV) {
10170     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10171     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10172 
10173     SVEorRVV = 0;
10174     if (FirstVecType && SecondVecType) {
10175       if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10176         if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10177             SecondVecType->getVectorKind() ==
10178                 VectorKind::SveFixedLengthPredicate)
10179           return true;
10180         if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10181             SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10182           SVEorRVV = 1;
10183           return true;
10184         }
10185       }
10186       return false;
10187     }
10188 
10189     if (SecondVecType &&
10190         SecondVecType->getVectorKind() == VectorKind::Generic) {
10191       if (FirstType->isSVESizelessBuiltinType())
10192         return true;
10193       if (FirstType->isRVVSizelessBuiltinType()) {
10194         SVEorRVV = 1;
10195         return true;
10196       }
10197     }
10198 
10199     return false;
10200   };
10201 
10202   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10203       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10204     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
10205         << SVEorRVV << LHSType << RHSType;
10206     return QualType();
10207   }
10208 
10209   // If there's a vector type and a scalar, try to convert the scalar to
10210   // the vector element type and splat.
10211   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10212   if (!RHSVecType) {
10213     if (isa<ExtVectorType>(LHSVecType)) {
10214       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10215                                     LHSVecType->getElementType(), LHSType,
10216                                     DiagID))
10217         return LHSType;
10218     } else {
10219       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10220         return LHSType;
10221     }
10222   }
10223   if (!LHSVecType) {
10224     if (isa<ExtVectorType>(RHSVecType)) {
10225       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10226                                     LHSType, RHSVecType->getElementType(),
10227                                     RHSType, DiagID))
10228         return RHSType;
10229     } else {
10230       if (LHS.get()->isLValue() ||
10231           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10232         return RHSType;
10233     }
10234   }
10235 
10236   // FIXME: The code below also handles conversion between vectors and
10237   // non-scalars, we should break this down into fine grained specific checks
10238   // and emit proper diagnostics.
10239   QualType VecType = LHSVecType ? LHSType : RHSType;
10240   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10241   QualType OtherType = LHSVecType ? RHSType : LHSType;
10242   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10243   if (isLaxVectorConversion(OtherType, VecType)) {
10244     if (Context.getTargetInfo().getTriple().isPPC() &&
10245         anyAltivecTypes(RHSType, LHSType) &&
10246         !Context.areCompatibleVectorTypes(RHSType, LHSType))
10247       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10248     // If we're allowing lax vector conversions, only the total (data) size
10249     // needs to be the same. For non compound assignment, if one of the types is
10250     // scalar, the result is always the vector type.
10251     if (!IsCompAssign) {
10252       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10253       return VecType;
10254     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10255     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10256     // type. Note that this is already done by non-compound assignments in
10257     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10258     // <1 x T> -> T. The result is also a vector type.
10259     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10260                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10261       ExprResult *RHSExpr = &RHS;
10262       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10263       return VecType;
10264     }
10265   }
10266 
10267   // Okay, the expression is invalid.
10268 
10269   // If there's a non-vector, non-real operand, diagnose that.
10270   if ((!RHSVecType && !RHSType->isRealType()) ||
10271       (!LHSVecType && !LHSType->isRealType())) {
10272     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10273       << LHSType << RHSType
10274       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10275     return QualType();
10276   }
10277 
10278   // OpenCL V1.1 6.2.6.p1:
10279   // If the operands are of more than one vector type, then an error shall
10280   // occur. Implicit conversions between vector types are not permitted, per
10281   // section 6.2.1.
10282   if (getLangOpts().OpenCL &&
10283       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10284       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10285     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10286                                                            << RHSType;
10287     return QualType();
10288   }
10289 
10290 
10291   // If there is a vector type that is not a ExtVector and a scalar, we reach
10292   // this point if scalar could not be converted to the vector's element type
10293   // without truncation.
10294   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10295       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10296     QualType Scalar = LHSVecType ? RHSType : LHSType;
10297     QualType Vector = LHSVecType ? LHSType : RHSType;
10298     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10299     Diag(Loc,
10300          diag::err_typecheck_vector_not_convertable_implict_truncation)
10301         << ScalarOrVector << Scalar << Vector;
10302 
10303     return QualType();
10304   }
10305 
10306   // Otherwise, use the generic diagnostic.
10307   Diag(Loc, DiagID)
10308     << LHSType << RHSType
10309     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10310   return QualType();
10311 }
10312 
10313 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10314                                            SourceLocation Loc,
10315                                            bool IsCompAssign,
10316                                            ArithConvKind OperationKind) {
10317   if (!IsCompAssign) {
10318     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10319     if (LHS.isInvalid())
10320       return QualType();
10321   }
10322   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10323   if (RHS.isInvalid())
10324     return QualType();
10325 
10326   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10327   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10328 
10329   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10330   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10331 
10332   unsigned DiagID = diag::err_typecheck_invalid_operands;
10333   if ((OperationKind == ACK_Arithmetic) &&
10334       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10335        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10336     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10337                       << RHS.get()->getSourceRange();
10338     return QualType();
10339   }
10340 
10341   if (Context.hasSameType(LHSType, RHSType))
10342     return LHSType;
10343 
10344   if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10345     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10346       return LHSType;
10347   }
10348   if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10349     if (LHS.get()->isLValue() ||
10350         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10351       return RHSType;
10352   }
10353 
10354   if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10355       (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10356     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10357         << LHSType << RHSType << LHS.get()->getSourceRange()
10358         << RHS.get()->getSourceRange();
10359     return QualType();
10360   }
10361 
10362   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10363       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10364           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10365     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10366         << LHSType << RHSType << LHS.get()->getSourceRange()
10367         << RHS.get()->getSourceRange();
10368     return QualType();
10369   }
10370 
10371   if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10372     QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10373     QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10374     bool ScalarOrVector =
10375         LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10376 
10377     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10378         << ScalarOrVector << Scalar << Vector;
10379 
10380     return QualType();
10381   }
10382 
10383   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10384                     << RHS.get()->getSourceRange();
10385   return QualType();
10386 }
10387 
10388 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10389 // expression.  These are mainly cases where the null pointer is used as an
10390 // integer instead of a pointer.
10391 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10392                                 SourceLocation Loc, bool IsCompare) {
10393   // The canonical way to check for a GNU null is with isNullPointerConstant,
10394   // but we use a bit of a hack here for speed; this is a relatively
10395   // hot path, and isNullPointerConstant is slow.
10396   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10397   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10398 
10399   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10400 
10401   // Avoid analyzing cases where the result will either be invalid (and
10402   // diagnosed as such) or entirely valid and not something to warn about.
10403   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10404       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10405     return;
10406 
10407   // Comparison operations would not make sense with a null pointer no matter
10408   // what the other expression is.
10409   if (!IsCompare) {
10410     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10411         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10412         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10413     return;
10414   }
10415 
10416   // The rest of the operations only make sense with a null pointer
10417   // if the other expression is a pointer.
10418   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10419       NonNullType->canDecayToPointerType())
10420     return;
10421 
10422   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10423       << LHSNull /* LHS is NULL */ << NonNullType
10424       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10425 }
10426 
10427 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10428                                           SourceLocation Loc) {
10429   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10430   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10431   if (!LUE || !RUE)
10432     return;
10433   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10434       RUE->getKind() != UETT_SizeOf)
10435     return;
10436 
10437   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10438   QualType LHSTy = LHSArg->getType();
10439   QualType RHSTy;
10440 
10441   if (RUE->isArgumentType())
10442     RHSTy = RUE->getArgumentType().getNonReferenceType();
10443   else
10444     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10445 
10446   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10447     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10448       return;
10449 
10450     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10451     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10452       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10453         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10454             << LHSArgDecl;
10455     }
10456   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10457     QualType ArrayElemTy = ArrayTy->getElementType();
10458     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10459         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10460         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10461         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10462       return;
10463     S.Diag(Loc, diag::warn_division_sizeof_array)
10464         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10465     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10466       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10467         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10468             << LHSArgDecl;
10469     }
10470 
10471     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10472   }
10473 }
10474 
10475 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10476                                                ExprResult &RHS,
10477                                                SourceLocation Loc, bool IsDiv) {
10478   // Check for division/remainder by zero.
10479   Expr::EvalResult RHSValue;
10480   if (!RHS.get()->isValueDependent() &&
10481       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10482       RHSValue.Val.getInt() == 0)
10483     S.DiagRuntimeBehavior(Loc, RHS.get(),
10484                           S.PDiag(diag::warn_remainder_division_by_zero)
10485                             << IsDiv << RHS.get()->getSourceRange());
10486 }
10487 
10488 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10489                                            SourceLocation Loc,
10490                                            bool IsCompAssign, bool IsDiv) {
10491   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10492 
10493   QualType LHSTy = LHS.get()->getType();
10494   QualType RHSTy = RHS.get()->getType();
10495   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10496     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10497                                /*AllowBothBool*/ getLangOpts().AltiVec,
10498                                /*AllowBoolConversions*/ false,
10499                                /*AllowBooleanOperation*/ false,
10500                                /*ReportInvalid*/ true);
10501   if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10502     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10503                                        ACK_Arithmetic);
10504   if (!IsDiv &&
10505       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10506     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10507   // For division, only matrix-by-scalar is supported. Other combinations with
10508   // matrix types are invalid.
10509   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10510     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10511 
10512   QualType compType = UsualArithmeticConversions(
10513       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10514   if (LHS.isInvalid() || RHS.isInvalid())
10515     return QualType();
10516 
10517 
10518   if (compType.isNull() || !compType->isArithmeticType())
10519     return InvalidOperands(Loc, LHS, RHS);
10520   if (IsDiv) {
10521     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10522     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10523   }
10524   return compType;
10525 }
10526 
10527 QualType Sema::CheckRemainderOperands(
10528   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10529   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10530 
10531   if (LHS.get()->getType()->isVectorType() ||
10532       RHS.get()->getType()->isVectorType()) {
10533     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10534         RHS.get()->getType()->hasIntegerRepresentation())
10535       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10536                                  /*AllowBothBool*/ getLangOpts().AltiVec,
10537                                  /*AllowBoolConversions*/ false,
10538                                  /*AllowBooleanOperation*/ false,
10539                                  /*ReportInvalid*/ true);
10540     return InvalidOperands(Loc, LHS, RHS);
10541   }
10542 
10543   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10544       RHS.get()->getType()->isSveVLSBuiltinType()) {
10545     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10546         RHS.get()->getType()->hasIntegerRepresentation())
10547       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10548                                          ACK_Arithmetic);
10549 
10550     return InvalidOperands(Loc, LHS, RHS);
10551   }
10552 
10553   QualType compType = UsualArithmeticConversions(
10554       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10555   if (LHS.isInvalid() || RHS.isInvalid())
10556     return QualType();
10557 
10558   if (compType.isNull() || !compType->isIntegerType())
10559     return InvalidOperands(Loc, LHS, RHS);
10560   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10561   return compType;
10562 }
10563 
10564 /// Diagnose invalid arithmetic on two void pointers.
10565 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10566                                                 Expr *LHSExpr, Expr *RHSExpr) {
10567   S.Diag(Loc, S.getLangOpts().CPlusPlus
10568                 ? diag::err_typecheck_pointer_arith_void_type
10569                 : diag::ext_gnu_void_ptr)
10570     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10571                             << RHSExpr->getSourceRange();
10572 }
10573 
10574 /// Diagnose invalid arithmetic on a void pointer.
10575 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10576                                             Expr *Pointer) {
10577   S.Diag(Loc, S.getLangOpts().CPlusPlus
10578                 ? diag::err_typecheck_pointer_arith_void_type
10579                 : diag::ext_gnu_void_ptr)
10580     << 0 /* one pointer */ << Pointer->getSourceRange();
10581 }
10582 
10583 /// Diagnose invalid arithmetic on a null pointer.
10584 ///
10585 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10586 /// idiom, which we recognize as a GNU extension.
10587 ///
10588 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10589                                             Expr *Pointer, bool IsGNUIdiom) {
10590   if (IsGNUIdiom)
10591     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10592       << Pointer->getSourceRange();
10593   else
10594     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10595       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10596 }
10597 
10598 /// Diagnose invalid subraction on a null pointer.
10599 ///
10600 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10601                                              Expr *Pointer, bool BothNull) {
10602   // Null - null is valid in C++ [expr.add]p7
10603   if (BothNull && S.getLangOpts().CPlusPlus)
10604     return;
10605 
10606   // Is this s a macro from a system header?
10607   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10608     return;
10609 
10610   S.DiagRuntimeBehavior(Loc, Pointer,
10611                         S.PDiag(diag::warn_pointer_sub_null_ptr)
10612                             << S.getLangOpts().CPlusPlus
10613                             << Pointer->getSourceRange());
10614 }
10615 
10616 /// Diagnose invalid arithmetic on two function pointers.
10617 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10618                                                     Expr *LHS, Expr *RHS) {
10619   assert(LHS->getType()->isAnyPointerType());
10620   assert(RHS->getType()->isAnyPointerType());
10621   S.Diag(Loc, S.getLangOpts().CPlusPlus
10622                 ? diag::err_typecheck_pointer_arith_function_type
10623                 : diag::ext_gnu_ptr_func_arith)
10624     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10625     // We only show the second type if it differs from the first.
10626     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10627                                                    RHS->getType())
10628     << RHS->getType()->getPointeeType()
10629     << LHS->getSourceRange() << RHS->getSourceRange();
10630 }
10631 
10632 /// Diagnose invalid arithmetic on a function pointer.
10633 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10634                                                 Expr *Pointer) {
10635   assert(Pointer->getType()->isAnyPointerType());
10636   S.Diag(Loc, S.getLangOpts().CPlusPlus
10637                 ? diag::err_typecheck_pointer_arith_function_type
10638                 : diag::ext_gnu_ptr_func_arith)
10639     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10640     << 0 /* one pointer, so only one type */
10641     << Pointer->getSourceRange();
10642 }
10643 
10644 /// Emit error if Operand is incomplete pointer type
10645 ///
10646 /// \returns True if pointer has incomplete type
10647 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10648                                                  Expr *Operand) {
10649   QualType ResType = Operand->getType();
10650   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10651     ResType = ResAtomicType->getValueType();
10652 
10653   assert(ResType->isAnyPointerType());
10654   QualType PointeeTy = ResType->getPointeeType();
10655   return S.RequireCompleteSizedType(
10656       Loc, PointeeTy,
10657       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10658       Operand->getSourceRange());
10659 }
10660 
10661 /// Check the validity of an arithmetic pointer operand.
10662 ///
10663 /// If the operand has pointer type, this code will check for pointer types
10664 /// which are invalid in arithmetic operations. These will be diagnosed
10665 /// appropriately, including whether or not the use is supported as an
10666 /// extension.
10667 ///
10668 /// \returns True when the operand is valid to use (even if as an extension).
10669 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10670                                             Expr *Operand) {
10671   QualType ResType = Operand->getType();
10672   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10673     ResType = ResAtomicType->getValueType();
10674 
10675   if (!ResType->isAnyPointerType()) return true;
10676 
10677   QualType PointeeTy = ResType->getPointeeType();
10678   if (PointeeTy->isVoidType()) {
10679     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10680     return !S.getLangOpts().CPlusPlus;
10681   }
10682   if (PointeeTy->isFunctionType()) {
10683     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10684     return !S.getLangOpts().CPlusPlus;
10685   }
10686 
10687   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10688 
10689   return true;
10690 }
10691 
10692 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10693 /// operands.
10694 ///
10695 /// This routine will diagnose any invalid arithmetic on pointer operands much
10696 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10697 /// for emitting a single diagnostic even for operations where both LHS and RHS
10698 /// are (potentially problematic) pointers.
10699 ///
10700 /// \returns True when the operand is valid to use (even if as an extension).
10701 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10702                                                 Expr *LHSExpr, Expr *RHSExpr) {
10703   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10704   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10705   if (!isLHSPointer && !isRHSPointer) return true;
10706 
10707   QualType LHSPointeeTy, RHSPointeeTy;
10708   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10709   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10710 
10711   // if both are pointers check if operation is valid wrt address spaces
10712   if (isLHSPointer && isRHSPointer) {
10713     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10714       S.Diag(Loc,
10715              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10716           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10717           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10718       return false;
10719     }
10720   }
10721 
10722   // Check for arithmetic on pointers to incomplete types.
10723   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10724   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10725   if (isLHSVoidPtr || isRHSVoidPtr) {
10726     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10727     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10728     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10729 
10730     return !S.getLangOpts().CPlusPlus;
10731   }
10732 
10733   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10734   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10735   if (isLHSFuncPtr || isRHSFuncPtr) {
10736     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10737     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10738                                                                 RHSExpr);
10739     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10740 
10741     return !S.getLangOpts().CPlusPlus;
10742   }
10743 
10744   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10745     return false;
10746   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10747     return false;
10748 
10749   return true;
10750 }
10751 
10752 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10753 /// literal.
10754 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10755                                   Expr *LHSExpr, Expr *RHSExpr) {
10756   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10757   Expr* IndexExpr = RHSExpr;
10758   if (!StrExpr) {
10759     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10760     IndexExpr = LHSExpr;
10761   }
10762 
10763   bool IsStringPlusInt = StrExpr &&
10764       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10765   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10766     return;
10767 
10768   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10769   Self.Diag(OpLoc, diag::warn_string_plus_int)
10770       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10771 
10772   // Only print a fixit for "str" + int, not for int + "str".
10773   if (IndexExpr == RHSExpr) {
10774     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10775     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10776         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10777         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10778         << FixItHint::CreateInsertion(EndLoc, "]");
10779   } else
10780     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10781 }
10782 
10783 /// Emit a warning when adding a char literal to a string.
10784 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10785                                    Expr *LHSExpr, Expr *RHSExpr) {
10786   const Expr *StringRefExpr = LHSExpr;
10787   const CharacterLiteral *CharExpr =
10788       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10789 
10790   if (!CharExpr) {
10791     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10792     StringRefExpr = RHSExpr;
10793   }
10794 
10795   if (!CharExpr || !StringRefExpr)
10796     return;
10797 
10798   const QualType StringType = StringRefExpr->getType();
10799 
10800   // Return if not a PointerType.
10801   if (!StringType->isAnyPointerType())
10802     return;
10803 
10804   // Return if not a CharacterType.
10805   if (!StringType->getPointeeType()->isAnyCharacterType())
10806     return;
10807 
10808   ASTContext &Ctx = Self.getASTContext();
10809   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10810 
10811   const QualType CharType = CharExpr->getType();
10812   if (!CharType->isAnyCharacterType() &&
10813       CharType->isIntegerType() &&
10814       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10815     Self.Diag(OpLoc, diag::warn_string_plus_char)
10816         << DiagRange << Ctx.CharTy;
10817   } else {
10818     Self.Diag(OpLoc, diag::warn_string_plus_char)
10819         << DiagRange << CharExpr->getType();
10820   }
10821 
10822   // Only print a fixit for str + char, not for char + str.
10823   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10824     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10825     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10826         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10827         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10828         << FixItHint::CreateInsertion(EndLoc, "]");
10829   } else {
10830     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10831   }
10832 }
10833 
10834 /// Emit error when two pointers are incompatible.
10835 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10836                                            Expr *LHSExpr, Expr *RHSExpr) {
10837   assert(LHSExpr->getType()->isAnyPointerType());
10838   assert(RHSExpr->getType()->isAnyPointerType());
10839   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10840     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10841     << RHSExpr->getSourceRange();
10842 }
10843 
10844 // C99 6.5.6
10845 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10846                                      SourceLocation Loc, BinaryOperatorKind Opc,
10847                                      QualType* CompLHSTy) {
10848   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10849 
10850   if (LHS.get()->getType()->isVectorType() ||
10851       RHS.get()->getType()->isVectorType()) {
10852     QualType compType =
10853         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10854                             /*AllowBothBool*/ getLangOpts().AltiVec,
10855                             /*AllowBoolConversions*/ getLangOpts().ZVector,
10856                             /*AllowBooleanOperation*/ false,
10857                             /*ReportInvalid*/ true);
10858     if (CompLHSTy) *CompLHSTy = compType;
10859     return compType;
10860   }
10861 
10862   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10863       RHS.get()->getType()->isSveVLSBuiltinType()) {
10864     QualType compType =
10865         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10866     if (CompLHSTy)
10867       *CompLHSTy = compType;
10868     return compType;
10869   }
10870 
10871   if (LHS.get()->getType()->isConstantMatrixType() ||
10872       RHS.get()->getType()->isConstantMatrixType()) {
10873     QualType compType =
10874         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10875     if (CompLHSTy)
10876       *CompLHSTy = compType;
10877     return compType;
10878   }
10879 
10880   QualType compType = UsualArithmeticConversions(
10881       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10882   if (LHS.isInvalid() || RHS.isInvalid())
10883     return QualType();
10884 
10885   // Diagnose "string literal" '+' int and string '+' "char literal".
10886   if (Opc == BO_Add) {
10887     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10888     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10889   }
10890 
10891   // handle the common case first (both operands are arithmetic).
10892   if (!compType.isNull() && compType->isArithmeticType()) {
10893     if (CompLHSTy) *CompLHSTy = compType;
10894     return compType;
10895   }
10896 
10897   // Type-checking.  Ultimately the pointer's going to be in PExp;
10898   // note that we bias towards the LHS being the pointer.
10899   Expr *PExp = LHS.get(), *IExp = RHS.get();
10900 
10901   bool isObjCPointer;
10902   if (PExp->getType()->isPointerType()) {
10903     isObjCPointer = false;
10904   } else if (PExp->getType()->isObjCObjectPointerType()) {
10905     isObjCPointer = true;
10906   } else {
10907     std::swap(PExp, IExp);
10908     if (PExp->getType()->isPointerType()) {
10909       isObjCPointer = false;
10910     } else if (PExp->getType()->isObjCObjectPointerType()) {
10911       isObjCPointer = true;
10912     } else {
10913       return InvalidOperands(Loc, LHS, RHS);
10914     }
10915   }
10916   assert(PExp->getType()->isAnyPointerType());
10917 
10918   if (!IExp->getType()->isIntegerType())
10919     return InvalidOperands(Loc, LHS, RHS);
10920 
10921   // Adding to a null pointer results in undefined behavior.
10922   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10923           Context, Expr::NPC_ValueDependentIsNotNull)) {
10924     // In C++ adding zero to a null pointer is defined.
10925     Expr::EvalResult KnownVal;
10926     if (!getLangOpts().CPlusPlus ||
10927         (!IExp->isValueDependent() &&
10928          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10929           KnownVal.Val.getInt() != 0))) {
10930       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10931       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10932           Context, BO_Add, PExp, IExp);
10933       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10934     }
10935   }
10936 
10937   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10938     return QualType();
10939 
10940   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10941     return QualType();
10942 
10943   // Arithmetic on label addresses is normally allowed, except when we add
10944   // a ptrauth signature to the addresses.
10945   if (isa<AddrLabelExpr>(PExp) && getLangOpts().PointerAuthIndirectGotos) {
10946     Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
10947         << /*addition*/ 1;
10948     return QualType();
10949   }
10950 
10951   // Check array bounds for pointer arithemtic
10952   CheckArrayAccess(PExp, IExp);
10953 
10954   if (CompLHSTy) {
10955     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10956     if (LHSTy.isNull()) {
10957       LHSTy = LHS.get()->getType();
10958       if (Context.isPromotableIntegerType(LHSTy))
10959         LHSTy = Context.getPromotedIntegerType(LHSTy);
10960     }
10961     *CompLHSTy = LHSTy;
10962   }
10963 
10964   return PExp->getType();
10965 }
10966 
10967 // C99 6.5.6
10968 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10969                                         SourceLocation Loc,
10970                                         QualType* CompLHSTy) {
10971   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10972 
10973   if (LHS.get()->getType()->isVectorType() ||
10974       RHS.get()->getType()->isVectorType()) {
10975     QualType compType =
10976         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10977                             /*AllowBothBool*/ getLangOpts().AltiVec,
10978                             /*AllowBoolConversions*/ getLangOpts().ZVector,
10979                             /*AllowBooleanOperation*/ false,
10980                             /*ReportInvalid*/ true);
10981     if (CompLHSTy) *CompLHSTy = compType;
10982     return compType;
10983   }
10984 
10985   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10986       RHS.get()->getType()->isSveVLSBuiltinType()) {
10987     QualType compType =
10988         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10989     if (CompLHSTy)
10990       *CompLHSTy = compType;
10991     return compType;
10992   }
10993 
10994   if (LHS.get()->getType()->isConstantMatrixType() ||
10995       RHS.get()->getType()->isConstantMatrixType()) {
10996     QualType compType =
10997         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10998     if (CompLHSTy)
10999       *CompLHSTy = compType;
11000     return compType;
11001   }
11002 
11003   QualType compType = UsualArithmeticConversions(
11004       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11005   if (LHS.isInvalid() || RHS.isInvalid())
11006     return QualType();
11007 
11008   // Enforce type constraints: C99 6.5.6p3.
11009 
11010   // Handle the common case first (both operands are arithmetic).
11011   if (!compType.isNull() && compType->isArithmeticType()) {
11012     if (CompLHSTy) *CompLHSTy = compType;
11013     return compType;
11014   }
11015 
11016   // Either ptr - int   or   ptr - ptr.
11017   if (LHS.get()->getType()->isAnyPointerType()) {
11018     QualType lpointee = LHS.get()->getType()->getPointeeType();
11019 
11020     // Diagnose bad cases where we step over interface counts.
11021     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11022         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11023       return QualType();
11024 
11025     // Arithmetic on label addresses is normally allowed, except when we add
11026     // a ptrauth signature to the addresses.
11027     if (isa<AddrLabelExpr>(LHS.get()) &&
11028         getLangOpts().PointerAuthIndirectGotos) {
11029       Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11030           << /*subtraction*/ 0;
11031       return QualType();
11032     }
11033 
11034     // The result type of a pointer-int computation is the pointer type.
11035     if (RHS.get()->getType()->isIntegerType()) {
11036       // Subtracting from a null pointer should produce a warning.
11037       // The last argument to the diagnose call says this doesn't match the
11038       // GNU int-to-pointer idiom.
11039       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11040                                            Expr::NPC_ValueDependentIsNotNull)) {
11041         // In C++ adding zero to a null pointer is defined.
11042         Expr::EvalResult KnownVal;
11043         if (!getLangOpts().CPlusPlus ||
11044             (!RHS.get()->isValueDependent() &&
11045              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11046               KnownVal.Val.getInt() != 0))) {
11047           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11048         }
11049       }
11050 
11051       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11052         return QualType();
11053 
11054       // Check array bounds for pointer arithemtic
11055       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11056                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11057 
11058       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11059       return LHS.get()->getType();
11060     }
11061 
11062     // Handle pointer-pointer subtractions.
11063     if (const PointerType *RHSPTy
11064           = RHS.get()->getType()->getAs<PointerType>()) {
11065       QualType rpointee = RHSPTy->getPointeeType();
11066 
11067       if (getLangOpts().CPlusPlus) {
11068         // Pointee types must be the same: C++ [expr.add]
11069         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11070           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11071         }
11072       } else {
11073         // Pointee types must be compatible C99 6.5.6p3
11074         if (!Context.typesAreCompatible(
11075                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11076                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11077           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11078           return QualType();
11079         }
11080       }
11081 
11082       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11083                                                LHS.get(), RHS.get()))
11084         return QualType();
11085 
11086       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11087           Context, Expr::NPC_ValueDependentIsNotNull);
11088       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11089           Context, Expr::NPC_ValueDependentIsNotNull);
11090 
11091       // Subtracting nullptr or from nullptr is suspect
11092       if (LHSIsNullPtr)
11093         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11094       if (RHSIsNullPtr)
11095         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11096 
11097       // The pointee type may have zero size.  As an extension, a structure or
11098       // union may have zero size or an array may have zero length.  In this
11099       // case subtraction does not make sense.
11100       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11101         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11102         if (ElementSize.isZero()) {
11103           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11104             << rpointee.getUnqualifiedType()
11105             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11106         }
11107       }
11108 
11109       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11110       return Context.getPointerDiffType();
11111     }
11112   }
11113 
11114   return InvalidOperands(Loc, LHS, RHS);
11115 }
11116 
11117 static bool isScopedEnumerationType(QualType T) {
11118   if (const EnumType *ET = T->getAs<EnumType>())
11119     return ET->getDecl()->isScoped();
11120   return false;
11121 }
11122 
11123 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11124                                    SourceLocation Loc, BinaryOperatorKind Opc,
11125                                    QualType LHSType) {
11126   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11127   // so skip remaining warnings as we don't want to modify values within Sema.
11128   if (S.getLangOpts().OpenCL)
11129     return;
11130 
11131   // Check right/shifter operand
11132   Expr::EvalResult RHSResult;
11133   if (RHS.get()->isValueDependent() ||
11134       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11135     return;
11136   llvm::APSInt Right = RHSResult.Val.getInt();
11137 
11138   if (Right.isNegative()) {
11139     S.DiagRuntimeBehavior(Loc, RHS.get(),
11140                           S.PDiag(diag::warn_shift_negative)
11141                               << RHS.get()->getSourceRange());
11142     return;
11143   }
11144 
11145   QualType LHSExprType = LHS.get()->getType();
11146   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11147   if (LHSExprType->isBitIntType())
11148     LeftSize = S.Context.getIntWidth(LHSExprType);
11149   else if (LHSExprType->isFixedPointType()) {
11150     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11151     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11152   }
11153   if (Right.uge(LeftSize)) {
11154     S.DiagRuntimeBehavior(Loc, RHS.get(),
11155                           S.PDiag(diag::warn_shift_gt_typewidth)
11156                               << RHS.get()->getSourceRange());
11157     return;
11158   }
11159 
11160   // FIXME: We probably need to handle fixed point types specially here.
11161   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11162     return;
11163 
11164   // When left shifting an ICE which is signed, we can check for overflow which
11165   // according to C++ standards prior to C++2a has undefined behavior
11166   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11167   // more than the maximum value representable in the result type, so never
11168   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11169   // expression is still probably a bug.)
11170   Expr::EvalResult LHSResult;
11171   if (LHS.get()->isValueDependent() ||
11172       LHSType->hasUnsignedIntegerRepresentation() ||
11173       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11174     return;
11175   llvm::APSInt Left = LHSResult.Val.getInt();
11176 
11177   // Don't warn if signed overflow is defined, then all the rest of the
11178   // diagnostics will not be triggered because the behavior is defined.
11179   // Also don't warn in C++20 mode (and newer), as signed left shifts
11180   // always wrap and never overflow.
11181   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11182     return;
11183 
11184   // If LHS does not have a non-negative value then, the
11185   // behavior is undefined before C++2a. Warn about it.
11186   if (Left.isNegative()) {
11187     S.DiagRuntimeBehavior(Loc, LHS.get(),
11188                           S.PDiag(diag::warn_shift_lhs_negative)
11189                               << LHS.get()->getSourceRange());
11190     return;
11191   }
11192 
11193   llvm::APInt ResultBits =
11194       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11195   if (ResultBits.ule(LeftSize))
11196     return;
11197   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11198   Result = Result.shl(Right);
11199 
11200   // Print the bit representation of the signed integer as an unsigned
11201   // hexadecimal number.
11202   SmallString<40> HexResult;
11203   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11204 
11205   // If we are only missing a sign bit, this is less likely to result in actual
11206   // bugs -- if the result is cast back to an unsigned type, it will have the
11207   // expected value. Thus we place this behind a different warning that can be
11208   // turned off separately if needed.
11209   if (ResultBits - 1 == LeftSize) {
11210     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11211         << HexResult << LHSType
11212         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11213     return;
11214   }
11215 
11216   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11217       << HexResult.str() << Result.getSignificantBits() << LHSType
11218       << Left.getBitWidth() << LHS.get()->getSourceRange()
11219       << RHS.get()->getSourceRange();
11220 }
11221 
11222 /// Return the resulting type when a vector is shifted
11223 ///        by a scalar or vector shift amount.
11224 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11225                                  SourceLocation Loc, bool IsCompAssign) {
11226   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11227   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11228       !LHS.get()->getType()->isVectorType()) {
11229     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11230       << RHS.get()->getType() << LHS.get()->getType()
11231       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11232     return QualType();
11233   }
11234 
11235   if (!IsCompAssign) {
11236     LHS = S.UsualUnaryConversions(LHS.get());
11237     if (LHS.isInvalid()) return QualType();
11238   }
11239 
11240   RHS = S.UsualUnaryConversions(RHS.get());
11241   if (RHS.isInvalid()) return QualType();
11242 
11243   QualType LHSType = LHS.get()->getType();
11244   // Note that LHS might be a scalar because the routine calls not only in
11245   // OpenCL case.
11246   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11247   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11248 
11249   // Note that RHS might not be a vector.
11250   QualType RHSType = RHS.get()->getType();
11251   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11252   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11253 
11254   // Do not allow shifts for boolean vectors.
11255   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11256       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11257     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11258         << LHS.get()->getType() << RHS.get()->getType()
11259         << LHS.get()->getSourceRange();
11260     return QualType();
11261   }
11262 
11263   // The operands need to be integers.
11264   if (!LHSEleType->isIntegerType()) {
11265     S.Diag(Loc, diag::err_typecheck_expect_int)
11266       << LHS.get()->getType() << LHS.get()->getSourceRange();
11267     return QualType();
11268   }
11269 
11270   if (!RHSEleType->isIntegerType()) {
11271     S.Diag(Loc, diag::err_typecheck_expect_int)
11272       << RHS.get()->getType() << RHS.get()->getSourceRange();
11273     return QualType();
11274   }
11275 
11276   if (!LHSVecTy) {
11277     assert(RHSVecTy);
11278     if (IsCompAssign)
11279       return RHSType;
11280     if (LHSEleType != RHSEleType) {
11281       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11282       LHSEleType = RHSEleType;
11283     }
11284     QualType VecTy =
11285         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11286     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11287     LHSType = VecTy;
11288   } else if (RHSVecTy) {
11289     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11290     // are applied component-wise. So if RHS is a vector, then ensure
11291     // that the number of elements is the same as LHS...
11292     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11293       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11294         << LHS.get()->getType() << RHS.get()->getType()
11295         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11296       return QualType();
11297     }
11298     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11299       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11300       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11301       if (LHSBT != RHSBT &&
11302           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11303         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11304             << LHS.get()->getType() << RHS.get()->getType()
11305             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11306       }
11307     }
11308   } else {
11309     // ...else expand RHS to match the number of elements in LHS.
11310     QualType VecTy =
11311       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11312     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11313   }
11314 
11315   return LHSType;
11316 }
11317 
11318 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11319                                          ExprResult &RHS, SourceLocation Loc,
11320                                          bool IsCompAssign) {
11321   if (!IsCompAssign) {
11322     LHS = S.UsualUnaryConversions(LHS.get());
11323     if (LHS.isInvalid())
11324       return QualType();
11325   }
11326 
11327   RHS = S.UsualUnaryConversions(RHS.get());
11328   if (RHS.isInvalid())
11329     return QualType();
11330 
11331   QualType LHSType = LHS.get()->getType();
11332   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11333   QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11334                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11335                             : LHSType;
11336 
11337   // Note that RHS might not be a vector
11338   QualType RHSType = RHS.get()->getType();
11339   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11340   QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11341                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11342                             : RHSType;
11343 
11344   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11345       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11346     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11347         << LHSType << RHSType << LHS.get()->getSourceRange();
11348     return QualType();
11349   }
11350 
11351   if (!LHSEleType->isIntegerType()) {
11352     S.Diag(Loc, diag::err_typecheck_expect_int)
11353         << LHS.get()->getType() << LHS.get()->getSourceRange();
11354     return QualType();
11355   }
11356 
11357   if (!RHSEleType->isIntegerType()) {
11358     S.Diag(Loc, diag::err_typecheck_expect_int)
11359         << RHS.get()->getType() << RHS.get()->getSourceRange();
11360     return QualType();
11361   }
11362 
11363   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11364       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11365        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11366     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11367         << LHSType << RHSType << LHS.get()->getSourceRange()
11368         << RHS.get()->getSourceRange();
11369     return QualType();
11370   }
11371 
11372   if (!LHSType->isSveVLSBuiltinType()) {
11373     assert(RHSType->isSveVLSBuiltinType());
11374     if (IsCompAssign)
11375       return RHSType;
11376     if (LHSEleType != RHSEleType) {
11377       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11378       LHSEleType = RHSEleType;
11379     }
11380     const llvm::ElementCount VecSize =
11381         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11382     QualType VecTy =
11383         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11384     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11385     LHSType = VecTy;
11386   } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11387     if (S.Context.getTypeSize(RHSBuiltinTy) !=
11388         S.Context.getTypeSize(LHSBuiltinTy)) {
11389       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11390           << LHSType << RHSType << LHS.get()->getSourceRange()
11391           << RHS.get()->getSourceRange();
11392       return QualType();
11393     }
11394   } else {
11395     const llvm::ElementCount VecSize =
11396         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11397     if (LHSEleType != RHSEleType) {
11398       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11399       RHSEleType = LHSEleType;
11400     }
11401     QualType VecTy =
11402         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11403     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11404   }
11405 
11406   return LHSType;
11407 }
11408 
11409 // C99 6.5.7
11410 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11411                                   SourceLocation Loc, BinaryOperatorKind Opc,
11412                                   bool IsCompAssign) {
11413   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11414 
11415   // Vector shifts promote their scalar inputs to vector type.
11416   if (LHS.get()->getType()->isVectorType() ||
11417       RHS.get()->getType()->isVectorType()) {
11418     if (LangOpts.ZVector) {
11419       // The shift operators for the z vector extensions work basically
11420       // like general shifts, except that neither the LHS nor the RHS is
11421       // allowed to be a "vector bool".
11422       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11423         if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11424           return InvalidOperands(Loc, LHS, RHS);
11425       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11426         if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11427           return InvalidOperands(Loc, LHS, RHS);
11428     }
11429     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11430   }
11431 
11432   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11433       RHS.get()->getType()->isSveVLSBuiltinType())
11434     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11435 
11436   // Shifts don't perform usual arithmetic conversions, they just do integer
11437   // promotions on each operand. C99 6.5.7p3
11438 
11439   // For the LHS, do usual unary conversions, but then reset them away
11440   // if this is a compound assignment.
11441   ExprResult OldLHS = LHS;
11442   LHS = UsualUnaryConversions(LHS.get());
11443   if (LHS.isInvalid())
11444     return QualType();
11445   QualType LHSType = LHS.get()->getType();
11446   if (IsCompAssign) LHS = OldLHS;
11447 
11448   // The RHS is simpler.
11449   RHS = UsualUnaryConversions(RHS.get());
11450   if (RHS.isInvalid())
11451     return QualType();
11452   QualType RHSType = RHS.get()->getType();
11453 
11454   // C99 6.5.7p2: Each of the operands shall have integer type.
11455   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11456   if ((!LHSType->isFixedPointOrIntegerType() &&
11457        !LHSType->hasIntegerRepresentation()) ||
11458       !RHSType->hasIntegerRepresentation())
11459     return InvalidOperands(Loc, LHS, RHS);
11460 
11461   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11462   // hasIntegerRepresentation() above instead of this.
11463   if (isScopedEnumerationType(LHSType) ||
11464       isScopedEnumerationType(RHSType)) {
11465     return InvalidOperands(Loc, LHS, RHS);
11466   }
11467   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11468 
11469   // "The type of the result is that of the promoted left operand."
11470   return LHSType;
11471 }
11472 
11473 /// Diagnose bad pointer comparisons.
11474 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11475                                               ExprResult &LHS, ExprResult &RHS,
11476                                               bool IsError) {
11477   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11478                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11479     << LHS.get()->getType() << RHS.get()->getType()
11480     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11481 }
11482 
11483 /// Returns false if the pointers are converted to a composite type,
11484 /// true otherwise.
11485 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11486                                            ExprResult &LHS, ExprResult &RHS) {
11487   // C++ [expr.rel]p2:
11488   //   [...] Pointer conversions (4.10) and qualification
11489   //   conversions (4.4) are performed on pointer operands (or on
11490   //   a pointer operand and a null pointer constant) to bring
11491   //   them to their composite pointer type. [...]
11492   //
11493   // C++ [expr.eq]p1 uses the same notion for (in)equality
11494   // comparisons of pointers.
11495 
11496   QualType LHSType = LHS.get()->getType();
11497   QualType RHSType = RHS.get()->getType();
11498   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11499          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11500 
11501   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11502   if (T.isNull()) {
11503     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11504         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11505       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11506     else
11507       S.InvalidOperands(Loc, LHS, RHS);
11508     return true;
11509   }
11510 
11511   return false;
11512 }
11513 
11514 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11515                                                     ExprResult &LHS,
11516                                                     ExprResult &RHS,
11517                                                     bool IsError) {
11518   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11519                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11520     << LHS.get()->getType() << RHS.get()->getType()
11521     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11522 }
11523 
11524 static bool isObjCObjectLiteral(ExprResult &E) {
11525   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11526   case Stmt::ObjCArrayLiteralClass:
11527   case Stmt::ObjCDictionaryLiteralClass:
11528   case Stmt::ObjCStringLiteralClass:
11529   case Stmt::ObjCBoxedExprClass:
11530     return true;
11531   default:
11532     // Note that ObjCBoolLiteral is NOT an object literal!
11533     return false;
11534   }
11535 }
11536 
11537 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11538   const ObjCObjectPointerType *Type =
11539     LHS->getType()->getAs<ObjCObjectPointerType>();
11540 
11541   // If this is not actually an Objective-C object, bail out.
11542   if (!Type)
11543     return false;
11544 
11545   // Get the LHS object's interface type.
11546   QualType InterfaceType = Type->getPointeeType();
11547 
11548   // If the RHS isn't an Objective-C object, bail out.
11549   if (!RHS->getType()->isObjCObjectPointerType())
11550     return false;
11551 
11552   // Try to find the -isEqual: method.
11553   Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11554   ObjCMethodDecl *Method =
11555       S.ObjC().LookupMethodInObjectType(IsEqualSel, InterfaceType,
11556                                         /*IsInstance=*/true);
11557   if (!Method) {
11558     if (Type->isObjCIdType()) {
11559       // For 'id', just check the global pool.
11560       Method =
11561           S.ObjC().LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11562                                                     /*receiverId=*/true);
11563     } else {
11564       // Check protocols.
11565       Method = S.ObjC().LookupMethodInQualifiedType(IsEqualSel, Type,
11566                                                     /*IsInstance=*/true);
11567     }
11568   }
11569 
11570   if (!Method)
11571     return false;
11572 
11573   QualType T = Method->parameters()[0]->getType();
11574   if (!T->isObjCObjectPointerType())
11575     return false;
11576 
11577   QualType R = Method->getReturnType();
11578   if (!R->isScalarType())
11579     return false;
11580 
11581   return true;
11582 }
11583 
11584 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11585                                           ExprResult &LHS, ExprResult &RHS,
11586                                           BinaryOperator::Opcode Opc){
11587   Expr *Literal;
11588   Expr *Other;
11589   if (isObjCObjectLiteral(LHS)) {
11590     Literal = LHS.get();
11591     Other = RHS.get();
11592   } else {
11593     Literal = RHS.get();
11594     Other = LHS.get();
11595   }
11596 
11597   // Don't warn on comparisons against nil.
11598   Other = Other->IgnoreParenCasts();
11599   if (Other->isNullPointerConstant(S.getASTContext(),
11600                                    Expr::NPC_ValueDependentIsNotNull))
11601     return;
11602 
11603   // This should be kept in sync with warn_objc_literal_comparison.
11604   // LK_String should always be after the other literals, since it has its own
11605   // warning flag.
11606   SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(Literal);
11607   assert(LiteralKind != SemaObjC::LK_Block);
11608   if (LiteralKind == SemaObjC::LK_None) {
11609     llvm_unreachable("Unknown Objective-C object literal kind");
11610   }
11611 
11612   if (LiteralKind == SemaObjC::LK_String)
11613     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11614       << Literal->getSourceRange();
11615   else
11616     S.Diag(Loc, diag::warn_objc_literal_comparison)
11617       << LiteralKind << Literal->getSourceRange();
11618 
11619   if (BinaryOperator::isEqualityOp(Opc) &&
11620       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11621     SourceLocation Start = LHS.get()->getBeginLoc();
11622     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11623     CharSourceRange OpRange =
11624       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11625 
11626     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11627       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11628       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11629       << FixItHint::CreateInsertion(End, "]");
11630   }
11631 }
11632 
11633 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11634 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11635                                            ExprResult &RHS, SourceLocation Loc,
11636                                            BinaryOperatorKind Opc) {
11637   // Check that left hand side is !something.
11638   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11639   if (!UO || UO->getOpcode() != UO_LNot) return;
11640 
11641   // Only check if the right hand side is non-bool arithmetic type.
11642   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11643 
11644   // Make sure that the something in !something is not bool.
11645   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11646   if (SubExpr->isKnownToHaveBooleanValue()) return;
11647 
11648   // Emit warning.
11649   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11650   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11651       << Loc << IsBitwiseOp;
11652 
11653   // First note suggest !(x < y)
11654   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11655   SourceLocation FirstClose = RHS.get()->getEndLoc();
11656   FirstClose = S.getLocForEndOfToken(FirstClose);
11657   if (FirstClose.isInvalid())
11658     FirstOpen = SourceLocation();
11659   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11660       << IsBitwiseOp
11661       << FixItHint::CreateInsertion(FirstOpen, "(")
11662       << FixItHint::CreateInsertion(FirstClose, ")");
11663 
11664   // Second note suggests (!x) < y
11665   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11666   SourceLocation SecondClose = LHS.get()->getEndLoc();
11667   SecondClose = S.getLocForEndOfToken(SecondClose);
11668   if (SecondClose.isInvalid())
11669     SecondOpen = SourceLocation();
11670   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11671       << FixItHint::CreateInsertion(SecondOpen, "(")
11672       << FixItHint::CreateInsertion(SecondClose, ")");
11673 }
11674 
11675 // Returns true if E refers to a non-weak array.
11676 static bool checkForArray(const Expr *E) {
11677   const ValueDecl *D = nullptr;
11678   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11679     D = DR->getDecl();
11680   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11681     if (Mem->isImplicitAccess())
11682       D = Mem->getMemberDecl();
11683   }
11684   if (!D)
11685     return false;
11686   return D->getType()->isArrayType() && !D->isWeak();
11687 }
11688 
11689 /// Diagnose some forms of syntactically-obvious tautological comparison.
11690 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11691                                            Expr *LHS, Expr *RHS,
11692                                            BinaryOperatorKind Opc) {
11693   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11694   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11695 
11696   QualType LHSType = LHS->getType();
11697   QualType RHSType = RHS->getType();
11698   if (LHSType->hasFloatingRepresentation() ||
11699       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11700       S.inTemplateInstantiation())
11701     return;
11702 
11703   // WebAssembly Tables cannot be compared, therefore shouldn't emit
11704   // Tautological diagnostics.
11705   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
11706     return;
11707 
11708   // Comparisons between two array types are ill-formed for operator<=>, so
11709   // we shouldn't emit any additional warnings about it.
11710   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11711     return;
11712 
11713   // For non-floating point types, check for self-comparisons of the form
11714   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11715   // often indicate logic errors in the program.
11716   //
11717   // NOTE: Don't warn about comparison expressions resulting from macro
11718   // expansion. Also don't warn about comparisons which are only self
11719   // comparisons within a template instantiation. The warnings should catch
11720   // obvious cases in the definition of the template anyways. The idea is to
11721   // warn when the typed comparison operator will always evaluate to the same
11722   // result.
11723 
11724   // Used for indexing into %select in warn_comparison_always
11725   enum {
11726     AlwaysConstant,
11727     AlwaysTrue,
11728     AlwaysFalse,
11729     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11730   };
11731 
11732   // C++2a [depr.array.comp]:
11733   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11734   //   operands of array type are deprecated.
11735   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11736       RHSStripped->getType()->isArrayType()) {
11737     S.Diag(Loc, diag::warn_depr_array_comparison)
11738         << LHS->getSourceRange() << RHS->getSourceRange()
11739         << LHSStripped->getType() << RHSStripped->getType();
11740     // Carry on to produce the tautological comparison warning, if this
11741     // expression is potentially-evaluated, we can resolve the array to a
11742     // non-weak declaration, and so on.
11743   }
11744 
11745   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11746     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11747       unsigned Result;
11748       switch (Opc) {
11749       case BO_EQ:
11750       case BO_LE:
11751       case BO_GE:
11752         Result = AlwaysTrue;
11753         break;
11754       case BO_NE:
11755       case BO_LT:
11756       case BO_GT:
11757         Result = AlwaysFalse;
11758         break;
11759       case BO_Cmp:
11760         Result = AlwaysEqual;
11761         break;
11762       default:
11763         Result = AlwaysConstant;
11764         break;
11765       }
11766       S.DiagRuntimeBehavior(Loc, nullptr,
11767                             S.PDiag(diag::warn_comparison_always)
11768                                 << 0 /*self-comparison*/
11769                                 << Result);
11770     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11771       // What is it always going to evaluate to?
11772       unsigned Result;
11773       switch (Opc) {
11774       case BO_EQ: // e.g. array1 == array2
11775         Result = AlwaysFalse;
11776         break;
11777       case BO_NE: // e.g. array1 != array2
11778         Result = AlwaysTrue;
11779         break;
11780       default: // e.g. array1 <= array2
11781         // The best we can say is 'a constant'
11782         Result = AlwaysConstant;
11783         break;
11784       }
11785       S.DiagRuntimeBehavior(Loc, nullptr,
11786                             S.PDiag(diag::warn_comparison_always)
11787                                 << 1 /*array comparison*/
11788                                 << Result);
11789     }
11790   }
11791 
11792   if (isa<CastExpr>(LHSStripped))
11793     LHSStripped = LHSStripped->IgnoreParenCasts();
11794   if (isa<CastExpr>(RHSStripped))
11795     RHSStripped = RHSStripped->IgnoreParenCasts();
11796 
11797   // Warn about comparisons against a string constant (unless the other
11798   // operand is null); the user probably wants string comparison function.
11799   Expr *LiteralString = nullptr;
11800   Expr *LiteralStringStripped = nullptr;
11801   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11802       !RHSStripped->isNullPointerConstant(S.Context,
11803                                           Expr::NPC_ValueDependentIsNull)) {
11804     LiteralString = LHS;
11805     LiteralStringStripped = LHSStripped;
11806   } else if ((isa<StringLiteral>(RHSStripped) ||
11807               isa<ObjCEncodeExpr>(RHSStripped)) &&
11808              !LHSStripped->isNullPointerConstant(S.Context,
11809                                           Expr::NPC_ValueDependentIsNull)) {
11810     LiteralString = RHS;
11811     LiteralStringStripped = RHSStripped;
11812   }
11813 
11814   if (LiteralString) {
11815     S.DiagRuntimeBehavior(Loc, nullptr,
11816                           S.PDiag(diag::warn_stringcompare)
11817                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11818                               << LiteralString->getSourceRange());
11819   }
11820 }
11821 
11822 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11823   switch (CK) {
11824   default: {
11825 #ifndef NDEBUG
11826     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11827                  << "\n";
11828 #endif
11829     llvm_unreachable("unhandled cast kind");
11830   }
11831   case CK_UserDefinedConversion:
11832     return ICK_Identity;
11833   case CK_LValueToRValue:
11834     return ICK_Lvalue_To_Rvalue;
11835   case CK_ArrayToPointerDecay:
11836     return ICK_Array_To_Pointer;
11837   case CK_FunctionToPointerDecay:
11838     return ICK_Function_To_Pointer;
11839   case CK_IntegralCast:
11840     return ICK_Integral_Conversion;
11841   case CK_FloatingCast:
11842     return ICK_Floating_Conversion;
11843   case CK_IntegralToFloating:
11844   case CK_FloatingToIntegral:
11845     return ICK_Floating_Integral;
11846   case CK_IntegralComplexCast:
11847   case CK_FloatingComplexCast:
11848   case CK_FloatingComplexToIntegralComplex:
11849   case CK_IntegralComplexToFloatingComplex:
11850     return ICK_Complex_Conversion;
11851   case CK_FloatingComplexToReal:
11852   case CK_FloatingRealToComplex:
11853   case CK_IntegralComplexToReal:
11854   case CK_IntegralRealToComplex:
11855     return ICK_Complex_Real;
11856   case CK_HLSLArrayRValue:
11857     return ICK_HLSL_Array_RValue;
11858   }
11859 }
11860 
11861 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11862                                              QualType FromType,
11863                                              SourceLocation Loc) {
11864   // Check for a narrowing implicit conversion.
11865   StandardConversionSequence SCS;
11866   SCS.setAsIdentityConversion();
11867   SCS.setToType(0, FromType);
11868   SCS.setToType(1, ToType);
11869   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11870     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11871 
11872   APValue PreNarrowingValue;
11873   QualType PreNarrowingType;
11874   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11875                                PreNarrowingType,
11876                                /*IgnoreFloatToIntegralConversion*/ true)) {
11877   case NK_Dependent_Narrowing:
11878     // Implicit conversion to a narrower type, but the expression is
11879     // value-dependent so we can't tell whether it's actually narrowing.
11880   case NK_Not_Narrowing:
11881     return false;
11882 
11883   case NK_Constant_Narrowing:
11884     // Implicit conversion to a narrower type, and the value is not a constant
11885     // expression.
11886     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11887         << /*Constant*/ 1
11888         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11889     return true;
11890 
11891   case NK_Variable_Narrowing:
11892     // Implicit conversion to a narrower type, and the value is not a constant
11893     // expression.
11894   case NK_Type_Narrowing:
11895     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11896         << /*Constant*/ 0 << FromType << ToType;
11897     // TODO: It's not a constant expression, but what if the user intended it
11898     // to be? Can we produce notes to help them figure out why it isn't?
11899     return true;
11900   }
11901   llvm_unreachable("unhandled case in switch");
11902 }
11903 
11904 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11905                                                          ExprResult &LHS,
11906                                                          ExprResult &RHS,
11907                                                          SourceLocation Loc) {
11908   QualType LHSType = LHS.get()->getType();
11909   QualType RHSType = RHS.get()->getType();
11910   // Dig out the original argument type and expression before implicit casts
11911   // were applied. These are the types/expressions we need to check the
11912   // [expr.spaceship] requirements against.
11913   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11914   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11915   QualType LHSStrippedType = LHSStripped.get()->getType();
11916   QualType RHSStrippedType = RHSStripped.get()->getType();
11917 
11918   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11919   // other is not, the program is ill-formed.
11920   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11921     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11922     return QualType();
11923   }
11924 
11925   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11926   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11927                     RHSStrippedType->isEnumeralType();
11928   if (NumEnumArgs == 1) {
11929     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11930     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11931     if (OtherTy->hasFloatingRepresentation()) {
11932       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11933       return QualType();
11934     }
11935   }
11936   if (NumEnumArgs == 2) {
11937     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11938     // type E, the operator yields the result of converting the operands
11939     // to the underlying type of E and applying <=> to the converted operands.
11940     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11941       S.InvalidOperands(Loc, LHS, RHS);
11942       return QualType();
11943     }
11944     QualType IntType =
11945         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11946     assert(IntType->isArithmeticType());
11947 
11948     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11949     // promote the boolean type, and all other promotable integer types, to
11950     // avoid this.
11951     if (S.Context.isPromotableIntegerType(IntType))
11952       IntType = S.Context.getPromotedIntegerType(IntType);
11953 
11954     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11955     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11956     LHSType = RHSType = IntType;
11957   }
11958 
11959   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11960   // usual arithmetic conversions are applied to the operands.
11961   QualType Type =
11962       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11963   if (LHS.isInvalid() || RHS.isInvalid())
11964     return QualType();
11965   if (Type.isNull())
11966     return S.InvalidOperands(Loc, LHS, RHS);
11967 
11968   std::optional<ComparisonCategoryType> CCT =
11969       getComparisonCategoryForBuiltinCmp(Type);
11970   if (!CCT)
11971     return S.InvalidOperands(Loc, LHS, RHS);
11972 
11973   bool HasNarrowing = checkThreeWayNarrowingConversion(
11974       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11975   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11976                                                    RHS.get()->getBeginLoc());
11977   if (HasNarrowing)
11978     return QualType();
11979 
11980   assert(!Type.isNull() && "composite type for <=> has not been set");
11981 
11982   return S.CheckComparisonCategoryType(
11983       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11984 }
11985 
11986 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11987                                                  ExprResult &RHS,
11988                                                  SourceLocation Loc,
11989                                                  BinaryOperatorKind Opc) {
11990   if (Opc == BO_Cmp)
11991     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11992 
11993   // C99 6.5.8p3 / C99 6.5.9p4
11994   QualType Type =
11995       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11996   if (LHS.isInvalid() || RHS.isInvalid())
11997     return QualType();
11998   if (Type.isNull())
11999     return S.InvalidOperands(Loc, LHS, RHS);
12000   assert(Type->isArithmeticType() || Type->isEnumeralType());
12001 
12002   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12003     return S.InvalidOperands(Loc, LHS, RHS);
12004 
12005   // Check for comparisons of floating point operands using != and ==.
12006   if (Type->hasFloatingRepresentation())
12007     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12008 
12009   // The result of comparisons is 'bool' in C++, 'int' in C.
12010   return S.Context.getLogicalOperationType();
12011 }
12012 
12013 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12014   if (!NullE.get()->getType()->isAnyPointerType())
12015     return;
12016   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12017   if (!E.get()->getType()->isAnyPointerType() &&
12018       E.get()->isNullPointerConstant(Context,
12019                                      Expr::NPC_ValueDependentIsNotNull) ==
12020         Expr::NPCK_ZeroExpression) {
12021     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12022       if (CL->getValue() == 0)
12023         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12024             << NullValue
12025             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12026                                             NullValue ? "NULL" : "(void *)0");
12027     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12028         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12029         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12030         if (T == Context.CharTy)
12031           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12032               << NullValue
12033               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12034                                               NullValue ? "NULL" : "(void *)0");
12035       }
12036   }
12037 }
12038 
12039 // C99 6.5.8, C++ [expr.rel]
12040 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12041                                     SourceLocation Loc,
12042                                     BinaryOperatorKind Opc) {
12043   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12044   bool IsThreeWay = Opc == BO_Cmp;
12045   bool IsOrdered = IsRelational || IsThreeWay;
12046   auto IsAnyPointerType = [](ExprResult E) {
12047     QualType Ty = E.get()->getType();
12048     return Ty->isPointerType() || Ty->isMemberPointerType();
12049   };
12050 
12051   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12052   // type, array-to-pointer, ..., conversions are performed on both operands to
12053   // bring them to their composite type.
12054   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12055   // any type-related checks.
12056   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12057     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12058     if (LHS.isInvalid())
12059       return QualType();
12060     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12061     if (RHS.isInvalid())
12062       return QualType();
12063   } else {
12064     LHS = DefaultLvalueConversion(LHS.get());
12065     if (LHS.isInvalid())
12066       return QualType();
12067     RHS = DefaultLvalueConversion(RHS.get());
12068     if (RHS.isInvalid())
12069       return QualType();
12070   }
12071 
12072   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12073   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12074     CheckPtrComparisonWithNullChar(LHS, RHS);
12075     CheckPtrComparisonWithNullChar(RHS, LHS);
12076   }
12077 
12078   // Handle vector comparisons separately.
12079   if (LHS.get()->getType()->isVectorType() ||
12080       RHS.get()->getType()->isVectorType())
12081     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12082 
12083   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12084       RHS.get()->getType()->isSveVLSBuiltinType())
12085     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12086 
12087   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12088   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12089 
12090   QualType LHSType = LHS.get()->getType();
12091   QualType RHSType = RHS.get()->getType();
12092   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12093       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12094     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12095 
12096   if ((LHSType->isPointerType() &&
12097        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12098       (RHSType->isPointerType() &&
12099        RHSType->getPointeeType().isWebAssemblyReferenceType()))
12100     return InvalidOperands(Loc, LHS, RHS);
12101 
12102   const Expr::NullPointerConstantKind LHSNullKind =
12103       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12104   const Expr::NullPointerConstantKind RHSNullKind =
12105       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12106   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12107   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12108 
12109   auto computeResultTy = [&]() {
12110     if (Opc != BO_Cmp)
12111       return Context.getLogicalOperationType();
12112     assert(getLangOpts().CPlusPlus);
12113     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12114 
12115     QualType CompositeTy = LHS.get()->getType();
12116     assert(!CompositeTy->isReferenceType());
12117 
12118     std::optional<ComparisonCategoryType> CCT =
12119         getComparisonCategoryForBuiltinCmp(CompositeTy);
12120     if (!CCT)
12121       return InvalidOperands(Loc, LHS, RHS);
12122 
12123     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12124       // P0946R0: Comparisons between a null pointer constant and an object
12125       // pointer result in std::strong_equality, which is ill-formed under
12126       // P1959R0.
12127       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12128           << (LHSIsNull ? LHS.get()->getSourceRange()
12129                         : RHS.get()->getSourceRange());
12130       return QualType();
12131     }
12132 
12133     return CheckComparisonCategoryType(
12134         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12135   };
12136 
12137   if (!IsOrdered && LHSIsNull != RHSIsNull) {
12138     bool IsEquality = Opc == BO_EQ;
12139     if (RHSIsNull)
12140       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12141                                    RHS.get()->getSourceRange());
12142     else
12143       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12144                                    LHS.get()->getSourceRange());
12145   }
12146 
12147   if (IsOrdered && LHSType->isFunctionPointerType() &&
12148       RHSType->isFunctionPointerType()) {
12149     // Valid unless a relational comparison of function pointers
12150     bool IsError = Opc == BO_Cmp;
12151     auto DiagID =
12152         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12153         : getLangOpts().CPlusPlus
12154             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12155             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12156     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12157                       << RHS.get()->getSourceRange();
12158     if (IsError)
12159       return QualType();
12160   }
12161 
12162   if ((LHSType->isIntegerType() && !LHSIsNull) ||
12163       (RHSType->isIntegerType() && !RHSIsNull)) {
12164     // Skip normal pointer conversion checks in this case; we have better
12165     // diagnostics for this below.
12166   } else if (getLangOpts().CPlusPlus) {
12167     // Equality comparison of a function pointer to a void pointer is invalid,
12168     // but we allow it as an extension.
12169     // FIXME: If we really want to allow this, should it be part of composite
12170     // pointer type computation so it works in conditionals too?
12171     if (!IsOrdered &&
12172         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12173          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12174       // This is a gcc extension compatibility comparison.
12175       // In a SFINAE context, we treat this as a hard error to maintain
12176       // conformance with the C++ standard.
12177       diagnoseFunctionPointerToVoidComparison(
12178           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12179 
12180       if (isSFINAEContext())
12181         return QualType();
12182 
12183       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12184       return computeResultTy();
12185     }
12186 
12187     // C++ [expr.eq]p2:
12188     //   If at least one operand is a pointer [...] bring them to their
12189     //   composite pointer type.
12190     // C++ [expr.spaceship]p6
12191     //  If at least one of the operands is of pointer type, [...] bring them
12192     //  to their composite pointer type.
12193     // C++ [expr.rel]p2:
12194     //   If both operands are pointers, [...] bring them to their composite
12195     //   pointer type.
12196     // For <=>, the only valid non-pointer types are arrays and functions, and
12197     // we already decayed those, so this is really the same as the relational
12198     // comparison rule.
12199     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12200             (IsOrdered ? 2 : 1) &&
12201         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12202                                          RHSType->isObjCObjectPointerType()))) {
12203       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12204         return QualType();
12205       return computeResultTy();
12206     }
12207   } else if (LHSType->isPointerType() &&
12208              RHSType->isPointerType()) { // C99 6.5.8p2
12209     // All of the following pointer-related warnings are GCC extensions, except
12210     // when handling null pointer constants.
12211     QualType LCanPointeeTy =
12212       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12213     QualType RCanPointeeTy =
12214       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12215 
12216     // C99 6.5.9p2 and C99 6.5.8p2
12217     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12218                                    RCanPointeeTy.getUnqualifiedType())) {
12219       if (IsRelational) {
12220         // Pointers both need to point to complete or incomplete types
12221         if ((LCanPointeeTy->isIncompleteType() !=
12222              RCanPointeeTy->isIncompleteType()) &&
12223             !getLangOpts().C11) {
12224           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12225               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12226               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12227               << RCanPointeeTy->isIncompleteType();
12228         }
12229       }
12230     } else if (!IsRelational &&
12231                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12232       // Valid unless comparison between non-null pointer and function pointer
12233       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12234           && !LHSIsNull && !RHSIsNull)
12235         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12236                                                 /*isError*/false);
12237     } else {
12238       // Invalid
12239       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12240     }
12241     if (LCanPointeeTy != RCanPointeeTy) {
12242       // Treat NULL constant as a special case in OpenCL.
12243       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12244         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12245           Diag(Loc,
12246                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12247               << LHSType << RHSType << 0 /* comparison */
12248               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12249         }
12250       }
12251       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12252       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12253       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12254                                                : CK_BitCast;
12255       if (LHSIsNull && !RHSIsNull)
12256         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12257       else
12258         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12259     }
12260     return computeResultTy();
12261   }
12262 
12263 
12264   // C++ [expr.eq]p4:
12265   //   Two operands of type std::nullptr_t or one operand of type
12266   //   std::nullptr_t and the other a null pointer constant compare
12267   //   equal.
12268   // C23 6.5.9p5:
12269   //   If both operands have type nullptr_t or one operand has type nullptr_t
12270   //   and the other is a null pointer constant, they compare equal if the
12271   //   former is a null pointer.
12272   if (!IsOrdered && LHSIsNull && RHSIsNull) {
12273     if (LHSType->isNullPtrType()) {
12274       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12275       return computeResultTy();
12276     }
12277     if (RHSType->isNullPtrType()) {
12278       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12279       return computeResultTy();
12280     }
12281   }
12282 
12283   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12284     // C23 6.5.9p6:
12285     //   Otherwise, at least one operand is a pointer. If one is a pointer and
12286     //   the other is a null pointer constant or has type nullptr_t, they
12287     //   compare equal
12288     if (LHSIsNull && RHSType->isPointerType()) {
12289       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12290       return computeResultTy();
12291     }
12292     if (RHSIsNull && LHSType->isPointerType()) {
12293       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12294       return computeResultTy();
12295     }
12296   }
12297 
12298   // Comparison of Objective-C pointers and block pointers against nullptr_t.
12299   // These aren't covered by the composite pointer type rules.
12300   if (!IsOrdered && RHSType->isNullPtrType() &&
12301       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12302     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12303     return computeResultTy();
12304   }
12305   if (!IsOrdered && LHSType->isNullPtrType() &&
12306       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12307     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12308     return computeResultTy();
12309   }
12310 
12311   if (getLangOpts().CPlusPlus) {
12312     if (IsRelational &&
12313         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12314          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12315       // HACK: Relational comparison of nullptr_t against a pointer type is
12316       // invalid per DR583, but we allow it within std::less<> and friends,
12317       // since otherwise common uses of it break.
12318       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12319       // friends to have std::nullptr_t overload candidates.
12320       DeclContext *DC = CurContext;
12321       if (isa<FunctionDecl>(DC))
12322         DC = DC->getParent();
12323       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12324         if (CTSD->isInStdNamespace() &&
12325             llvm::StringSwitch<bool>(CTSD->getName())
12326                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12327                 .Default(false)) {
12328           if (RHSType->isNullPtrType())
12329             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12330           else
12331             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12332           return computeResultTy();
12333         }
12334       }
12335     }
12336 
12337     // C++ [expr.eq]p2:
12338     //   If at least one operand is a pointer to member, [...] bring them to
12339     //   their composite pointer type.
12340     if (!IsOrdered &&
12341         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12342       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12343         return QualType();
12344       else
12345         return computeResultTy();
12346     }
12347   }
12348 
12349   // Handle block pointer types.
12350   if (!IsOrdered && LHSType->isBlockPointerType() &&
12351       RHSType->isBlockPointerType()) {
12352     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12353     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12354 
12355     if (!LHSIsNull && !RHSIsNull &&
12356         !Context.typesAreCompatible(lpointee, rpointee)) {
12357       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12358         << LHSType << RHSType << LHS.get()->getSourceRange()
12359         << RHS.get()->getSourceRange();
12360     }
12361     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12362     return computeResultTy();
12363   }
12364 
12365   // Allow block pointers to be compared with null pointer constants.
12366   if (!IsOrdered
12367       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12368           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12369     if (!LHSIsNull && !RHSIsNull) {
12370       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12371              ->getPointeeType()->isVoidType())
12372             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12373                 ->getPointeeType()->isVoidType())))
12374         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12375           << LHSType << RHSType << LHS.get()->getSourceRange()
12376           << RHS.get()->getSourceRange();
12377     }
12378     if (LHSIsNull && !RHSIsNull)
12379       LHS = ImpCastExprToType(LHS.get(), RHSType,
12380                               RHSType->isPointerType() ? CK_BitCast
12381                                 : CK_AnyPointerToBlockPointerCast);
12382     else
12383       RHS = ImpCastExprToType(RHS.get(), LHSType,
12384                               LHSType->isPointerType() ? CK_BitCast
12385                                 : CK_AnyPointerToBlockPointerCast);
12386     return computeResultTy();
12387   }
12388 
12389   if (LHSType->isObjCObjectPointerType() ||
12390       RHSType->isObjCObjectPointerType()) {
12391     const PointerType *LPT = LHSType->getAs<PointerType>();
12392     const PointerType *RPT = RHSType->getAs<PointerType>();
12393     if (LPT || RPT) {
12394       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12395       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12396 
12397       if (!LPtrToVoid && !RPtrToVoid &&
12398           !Context.typesAreCompatible(LHSType, RHSType)) {
12399         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12400                                           /*isError*/false);
12401       }
12402       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12403       // the RHS, but we have test coverage for this behavior.
12404       // FIXME: Consider using convertPointersToCompositeType in C++.
12405       if (LHSIsNull && !RHSIsNull) {
12406         Expr *E = LHS.get();
12407         if (getLangOpts().ObjCAutoRefCount)
12408           ObjC().CheckObjCConversion(SourceRange(), RHSType, E,
12409                                      CheckedConversionKind::Implicit);
12410         LHS = ImpCastExprToType(E, RHSType,
12411                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12412       }
12413       else {
12414         Expr *E = RHS.get();
12415         if (getLangOpts().ObjCAutoRefCount)
12416           ObjC().CheckObjCConversion(SourceRange(), LHSType, E,
12417                                      CheckedConversionKind::Implicit,
12418                                      /*Diagnose=*/true,
12419                                      /*DiagnoseCFAudited=*/false, Opc);
12420         RHS = ImpCastExprToType(E, LHSType,
12421                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12422       }
12423       return computeResultTy();
12424     }
12425     if (LHSType->isObjCObjectPointerType() &&
12426         RHSType->isObjCObjectPointerType()) {
12427       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12428         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12429                                           /*isError*/false);
12430       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12431         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12432 
12433       if (LHSIsNull && !RHSIsNull)
12434         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12435       else
12436         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12437       return computeResultTy();
12438     }
12439 
12440     if (!IsOrdered && LHSType->isBlockPointerType() &&
12441         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12442       LHS = ImpCastExprToType(LHS.get(), RHSType,
12443                               CK_BlockPointerToObjCPointerCast);
12444       return computeResultTy();
12445     } else if (!IsOrdered &&
12446                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12447                RHSType->isBlockPointerType()) {
12448       RHS = ImpCastExprToType(RHS.get(), LHSType,
12449                               CK_BlockPointerToObjCPointerCast);
12450       return computeResultTy();
12451     }
12452   }
12453   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12454       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12455     unsigned DiagID = 0;
12456     bool isError = false;
12457     if (LangOpts.DebuggerSupport) {
12458       // Under a debugger, allow the comparison of pointers to integers,
12459       // since users tend to want to compare addresses.
12460     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12461                (RHSIsNull && RHSType->isIntegerType())) {
12462       if (IsOrdered) {
12463         isError = getLangOpts().CPlusPlus;
12464         DiagID =
12465           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12466                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12467       }
12468     } else if (getLangOpts().CPlusPlus) {
12469       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12470       isError = true;
12471     } else if (IsOrdered)
12472       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12473     else
12474       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12475 
12476     if (DiagID) {
12477       Diag(Loc, DiagID)
12478         << LHSType << RHSType << LHS.get()->getSourceRange()
12479         << RHS.get()->getSourceRange();
12480       if (isError)
12481         return QualType();
12482     }
12483 
12484     if (LHSType->isIntegerType())
12485       LHS = ImpCastExprToType(LHS.get(), RHSType,
12486                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12487     else
12488       RHS = ImpCastExprToType(RHS.get(), LHSType,
12489                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12490     return computeResultTy();
12491   }
12492 
12493   // Handle block pointers.
12494   if (!IsOrdered && RHSIsNull
12495       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12496     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12497     return computeResultTy();
12498   }
12499   if (!IsOrdered && LHSIsNull
12500       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12501     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12502     return computeResultTy();
12503   }
12504 
12505   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12506     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12507       return computeResultTy();
12508     }
12509 
12510     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12511       return computeResultTy();
12512     }
12513 
12514     if (LHSIsNull && RHSType->isQueueT()) {
12515       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12516       return computeResultTy();
12517     }
12518 
12519     if (LHSType->isQueueT() && RHSIsNull) {
12520       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12521       return computeResultTy();
12522     }
12523   }
12524 
12525   return InvalidOperands(Loc, LHS, RHS);
12526 }
12527 
12528 QualType Sema::GetSignedVectorType(QualType V) {
12529   const VectorType *VTy = V->castAs<VectorType>();
12530   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12531 
12532   if (isa<ExtVectorType>(VTy)) {
12533     if (VTy->isExtVectorBoolType())
12534       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12535     if (TypeSize == Context.getTypeSize(Context.CharTy))
12536       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12537     if (TypeSize == Context.getTypeSize(Context.ShortTy))
12538       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12539     if (TypeSize == Context.getTypeSize(Context.IntTy))
12540       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12541     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12542       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12543     if (TypeSize == Context.getTypeSize(Context.LongTy))
12544       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12545     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12546            "Unhandled vector element size in vector compare");
12547     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12548   }
12549 
12550   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12551     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12552                                  VectorKind::Generic);
12553   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12554     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12555                                  VectorKind::Generic);
12556   if (TypeSize == Context.getTypeSize(Context.LongTy))
12557     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12558                                  VectorKind::Generic);
12559   if (TypeSize == Context.getTypeSize(Context.IntTy))
12560     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12561                                  VectorKind::Generic);
12562   if (TypeSize == Context.getTypeSize(Context.ShortTy))
12563     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12564                                  VectorKind::Generic);
12565   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12566          "Unhandled vector element size in vector compare");
12567   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12568                                VectorKind::Generic);
12569 }
12570 
12571 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12572   const BuiltinType *VTy = V->castAs<BuiltinType>();
12573   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12574 
12575   const QualType ETy = V->getSveEltType(Context);
12576   const auto TypeSize = Context.getTypeSize(ETy);
12577 
12578   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12579   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12580   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12581 }
12582 
12583 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12584                                           SourceLocation Loc,
12585                                           BinaryOperatorKind Opc) {
12586   if (Opc == BO_Cmp) {
12587     Diag(Loc, diag::err_three_way_vector_comparison);
12588     return QualType();
12589   }
12590 
12591   // Check to make sure we're operating on vectors of the same type and width,
12592   // Allowing one side to be a scalar of element type.
12593   QualType vType =
12594       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12595                           /*AllowBothBool*/ true,
12596                           /*AllowBoolConversions*/ getLangOpts().ZVector,
12597                           /*AllowBooleanOperation*/ true,
12598                           /*ReportInvalid*/ true);
12599   if (vType.isNull())
12600     return vType;
12601 
12602   QualType LHSType = LHS.get()->getType();
12603 
12604   // Determine the return type of a vector compare. By default clang will return
12605   // a scalar for all vector compares except vector bool and vector pixel.
12606   // With the gcc compiler we will always return a vector type and with the xl
12607   // compiler we will always return a scalar type. This switch allows choosing
12608   // which behavior is prefered.
12609   if (getLangOpts().AltiVec) {
12610     switch (getLangOpts().getAltivecSrcCompat()) {
12611     case LangOptions::AltivecSrcCompatKind::Mixed:
12612       // If AltiVec, the comparison results in a numeric type, i.e.
12613       // bool for C++, int for C
12614       if (vType->castAs<VectorType>()->getVectorKind() ==
12615           VectorKind::AltiVecVector)
12616         return Context.getLogicalOperationType();
12617       else
12618         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12619       break;
12620     case LangOptions::AltivecSrcCompatKind::GCC:
12621       // For GCC we always return the vector type.
12622       break;
12623     case LangOptions::AltivecSrcCompatKind::XL:
12624       return Context.getLogicalOperationType();
12625       break;
12626     }
12627   }
12628 
12629   // For non-floating point types, check for self-comparisons of the form
12630   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12631   // often indicate logic errors in the program.
12632   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12633 
12634   // Check for comparisons of floating point operands using != and ==.
12635   if (LHSType->hasFloatingRepresentation()) {
12636     assert(RHS.get()->getType()->hasFloatingRepresentation());
12637     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12638   }
12639 
12640   // Return a signed type for the vector.
12641   return GetSignedVectorType(vType);
12642 }
12643 
12644 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12645                                                   ExprResult &RHS,
12646                                                   SourceLocation Loc,
12647                                                   BinaryOperatorKind Opc) {
12648   if (Opc == BO_Cmp) {
12649     Diag(Loc, diag::err_three_way_vector_comparison);
12650     return QualType();
12651   }
12652 
12653   // Check to make sure we're operating on vectors of the same type and width,
12654   // Allowing one side to be a scalar of element type.
12655   QualType vType = CheckSizelessVectorOperands(
12656       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12657 
12658   if (vType.isNull())
12659     return vType;
12660 
12661   QualType LHSType = LHS.get()->getType();
12662 
12663   // For non-floating point types, check for self-comparisons of the form
12664   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12665   // often indicate logic errors in the program.
12666   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12667 
12668   // Check for comparisons of floating point operands using != and ==.
12669   if (LHSType->hasFloatingRepresentation()) {
12670     assert(RHS.get()->getType()->hasFloatingRepresentation());
12671     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12672   }
12673 
12674   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12675   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12676 
12677   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12678       RHSBuiltinTy->isSVEBool())
12679     return LHSType;
12680 
12681   // Return a signed type for the vector.
12682   return GetSignedSizelessVectorType(vType);
12683 }
12684 
12685 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12686                                     const ExprResult &XorRHS,
12687                                     const SourceLocation Loc) {
12688   // Do not diagnose macros.
12689   if (Loc.isMacroID())
12690     return;
12691 
12692   // Do not diagnose if both LHS and RHS are macros.
12693   if (XorLHS.get()->getExprLoc().isMacroID() &&
12694       XorRHS.get()->getExprLoc().isMacroID())
12695     return;
12696 
12697   bool Negative = false;
12698   bool ExplicitPlus = false;
12699   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12700   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12701 
12702   if (!LHSInt)
12703     return;
12704   if (!RHSInt) {
12705     // Check negative literals.
12706     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12707       UnaryOperatorKind Opc = UO->getOpcode();
12708       if (Opc != UO_Minus && Opc != UO_Plus)
12709         return;
12710       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12711       if (!RHSInt)
12712         return;
12713       Negative = (Opc == UO_Minus);
12714       ExplicitPlus = !Negative;
12715     } else {
12716       return;
12717     }
12718   }
12719 
12720   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12721   llvm::APInt RightSideValue = RHSInt->getValue();
12722   if (LeftSideValue != 2 && LeftSideValue != 10)
12723     return;
12724 
12725   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12726     return;
12727 
12728   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12729       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12730   llvm::StringRef ExprStr =
12731       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12732 
12733   CharSourceRange XorRange =
12734       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12735   llvm::StringRef XorStr =
12736       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12737   // Do not diagnose if xor keyword/macro is used.
12738   if (XorStr == "xor")
12739     return;
12740 
12741   std::string LHSStr = std::string(Lexer::getSourceText(
12742       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12743       S.getSourceManager(), S.getLangOpts()));
12744   std::string RHSStr = std::string(Lexer::getSourceText(
12745       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12746       S.getSourceManager(), S.getLangOpts()));
12747 
12748   if (Negative) {
12749     RightSideValue = -RightSideValue;
12750     RHSStr = "-" + RHSStr;
12751   } else if (ExplicitPlus) {
12752     RHSStr = "+" + RHSStr;
12753   }
12754 
12755   StringRef LHSStrRef = LHSStr;
12756   StringRef RHSStrRef = RHSStr;
12757   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12758   // literals.
12759   if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
12760       RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
12761       LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
12762       RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
12763       (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
12764       (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
12765       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
12766     return;
12767 
12768   bool SuggestXor =
12769       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12770   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12771   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12772   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12773     std::string SuggestedExpr = "1 << " + RHSStr;
12774     bool Overflow = false;
12775     llvm::APInt One = (LeftSideValue - 1);
12776     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12777     if (Overflow) {
12778       if (RightSideIntValue < 64)
12779         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12780             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12781             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12782       else if (RightSideIntValue == 64)
12783         S.Diag(Loc, diag::warn_xor_used_as_pow)
12784             << ExprStr << toString(XorValue, 10, true);
12785       else
12786         return;
12787     } else {
12788       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12789           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12790           << toString(PowValue, 10, true)
12791           << FixItHint::CreateReplacement(
12792                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12793     }
12794 
12795     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12796         << ("0x2 ^ " + RHSStr) << SuggestXor;
12797   } else if (LeftSideValue == 10) {
12798     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12799     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12800         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12801         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12802     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12803         << ("0xA ^ " + RHSStr) << SuggestXor;
12804   }
12805 }
12806 
12807 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12808                                           SourceLocation Loc) {
12809   // Ensure that either both operands are of the same vector type, or
12810   // one operand is of a vector type and the other is of its element type.
12811   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12812                                        /*AllowBothBool*/ true,
12813                                        /*AllowBoolConversions*/ false,
12814                                        /*AllowBooleanOperation*/ false,
12815                                        /*ReportInvalid*/ false);
12816   if (vType.isNull())
12817     return InvalidOperands(Loc, LHS, RHS);
12818   if (getLangOpts().OpenCL &&
12819       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12820       vType->hasFloatingRepresentation())
12821     return InvalidOperands(Loc, LHS, RHS);
12822   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12823   //        usage of the logical operators && and || with vectors in C. This
12824   //        check could be notionally dropped.
12825   if (!getLangOpts().CPlusPlus &&
12826       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12827     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12828 
12829   return GetSignedVectorType(LHS.get()->getType());
12830 }
12831 
12832 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12833                                               SourceLocation Loc,
12834                                               bool IsCompAssign) {
12835   if (!IsCompAssign) {
12836     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12837     if (LHS.isInvalid())
12838       return QualType();
12839   }
12840   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12841   if (RHS.isInvalid())
12842     return QualType();
12843 
12844   // For conversion purposes, we ignore any qualifiers.
12845   // For example, "const float" and "float" are equivalent.
12846   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12847   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12848 
12849   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12850   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12851   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12852 
12853   if (Context.hasSameType(LHSType, RHSType))
12854     return Context.getCommonSugaredType(LHSType, RHSType);
12855 
12856   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12857   // case we have to return InvalidOperands.
12858   ExprResult OriginalLHS = LHS;
12859   ExprResult OriginalRHS = RHS;
12860   if (LHSMatType && !RHSMatType) {
12861     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12862     if (!RHS.isInvalid())
12863       return LHSType;
12864 
12865     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12866   }
12867 
12868   if (!LHSMatType && RHSMatType) {
12869     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12870     if (!LHS.isInvalid())
12871       return RHSType;
12872     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12873   }
12874 
12875   return InvalidOperands(Loc, LHS, RHS);
12876 }
12877 
12878 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12879                                            SourceLocation Loc,
12880                                            bool IsCompAssign) {
12881   if (!IsCompAssign) {
12882     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12883     if (LHS.isInvalid())
12884       return QualType();
12885   }
12886   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12887   if (RHS.isInvalid())
12888     return QualType();
12889 
12890   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12891   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12892   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12893 
12894   if (LHSMatType && RHSMatType) {
12895     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12896       return InvalidOperands(Loc, LHS, RHS);
12897 
12898     if (Context.hasSameType(LHSMatType, RHSMatType))
12899       return Context.getCommonSugaredType(
12900           LHS.get()->getType().getUnqualifiedType(),
12901           RHS.get()->getType().getUnqualifiedType());
12902 
12903     QualType LHSELTy = LHSMatType->getElementType(),
12904              RHSELTy = RHSMatType->getElementType();
12905     if (!Context.hasSameType(LHSELTy, RHSELTy))
12906       return InvalidOperands(Loc, LHS, RHS);
12907 
12908     return Context.getConstantMatrixType(
12909         Context.getCommonSugaredType(LHSELTy, RHSELTy),
12910         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
12911   }
12912   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12913 }
12914 
12915 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
12916   switch (Opc) {
12917   default:
12918     return false;
12919   case BO_And:
12920   case BO_AndAssign:
12921   case BO_Or:
12922   case BO_OrAssign:
12923   case BO_Xor:
12924   case BO_XorAssign:
12925     return true;
12926   }
12927 }
12928 
12929 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12930                                            SourceLocation Loc,
12931                                            BinaryOperatorKind Opc) {
12932   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12933 
12934   bool IsCompAssign =
12935       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12936 
12937   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
12938 
12939   if (LHS.get()->getType()->isVectorType() ||
12940       RHS.get()->getType()->isVectorType()) {
12941     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12942         RHS.get()->getType()->hasIntegerRepresentation())
12943       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12944                                  /*AllowBothBool*/ true,
12945                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
12946                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
12947                                  /*ReportInvalid*/ true);
12948     return InvalidOperands(Loc, LHS, RHS);
12949   }
12950 
12951   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12952       RHS.get()->getType()->isSveVLSBuiltinType()) {
12953     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12954         RHS.get()->getType()->hasIntegerRepresentation())
12955       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12956                                          ACK_BitwiseOp);
12957     return InvalidOperands(Loc, LHS, RHS);
12958   }
12959 
12960   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12961       RHS.get()->getType()->isSveVLSBuiltinType()) {
12962     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12963         RHS.get()->getType()->hasIntegerRepresentation())
12964       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12965                                          ACK_BitwiseOp);
12966     return InvalidOperands(Loc, LHS, RHS);
12967   }
12968 
12969   if (Opc == BO_And)
12970     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12971 
12972   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12973       RHS.get()->getType()->hasFloatingRepresentation())
12974     return InvalidOperands(Loc, LHS, RHS);
12975 
12976   ExprResult LHSResult = LHS, RHSResult = RHS;
12977   QualType compType = UsualArithmeticConversions(
12978       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12979   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12980     return QualType();
12981   LHS = LHSResult.get();
12982   RHS = RHSResult.get();
12983 
12984   if (Opc == BO_Xor)
12985     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12986 
12987   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12988     return compType;
12989   return InvalidOperands(Loc, LHS, RHS);
12990 }
12991 
12992 // C99 6.5.[13,14]
12993 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12994                                            SourceLocation Loc,
12995                                            BinaryOperatorKind Opc) {
12996   // Check vector operands differently.
12997   if (LHS.get()->getType()->isVectorType() ||
12998       RHS.get()->getType()->isVectorType())
12999     return CheckVectorLogicalOperands(LHS, RHS, Loc);
13000 
13001   bool EnumConstantInBoolContext = false;
13002   for (const ExprResult &HS : {LHS, RHS}) {
13003     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13004       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13005       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13006         EnumConstantInBoolContext = true;
13007     }
13008   }
13009 
13010   if (EnumConstantInBoolContext)
13011     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13012 
13013   // WebAssembly tables can't be used with logical operators.
13014   QualType LHSTy = LHS.get()->getType();
13015   QualType RHSTy = RHS.get()->getType();
13016   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
13017   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
13018   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13019       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13020     return InvalidOperands(Loc, LHS, RHS);
13021   }
13022 
13023   // Diagnose cases where the user write a logical and/or but probably meant a
13024   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13025   // is a constant.
13026   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13027       !LHS.get()->getType()->isBooleanType() &&
13028       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13029       // Don't warn in macros or template instantiations.
13030       !Loc.isMacroID() && !inTemplateInstantiation()) {
13031     // If the RHS can be constant folded, and if it constant folds to something
13032     // that isn't 0 or 1 (which indicate a potential logical operation that
13033     // happened to fold to true/false) then warn.
13034     // Parens on the RHS are ignored.
13035     Expr::EvalResult EVResult;
13036     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13037       llvm::APSInt Result = EVResult.Val.getInt();
13038       if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13039            !RHS.get()->getExprLoc().isMacroID()) ||
13040           (Result != 0 && Result != 1)) {
13041         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13042             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13043         // Suggest replacing the logical operator with the bitwise version
13044         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13045             << (Opc == BO_LAnd ? "&" : "|")
13046             << FixItHint::CreateReplacement(
13047                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13048                    Opc == BO_LAnd ? "&" : "|");
13049         if (Opc == BO_LAnd)
13050           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13051           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13052               << FixItHint::CreateRemoval(
13053                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13054                                  RHS.get()->getEndLoc()));
13055       }
13056     }
13057   }
13058 
13059   if (!Context.getLangOpts().CPlusPlus) {
13060     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13061     // not operate on the built-in scalar and vector float types.
13062     if (Context.getLangOpts().OpenCL &&
13063         Context.getLangOpts().OpenCLVersion < 120) {
13064       if (LHS.get()->getType()->isFloatingType() ||
13065           RHS.get()->getType()->isFloatingType())
13066         return InvalidOperands(Loc, LHS, RHS);
13067     }
13068 
13069     LHS = UsualUnaryConversions(LHS.get());
13070     if (LHS.isInvalid())
13071       return QualType();
13072 
13073     RHS = UsualUnaryConversions(RHS.get());
13074     if (RHS.isInvalid())
13075       return QualType();
13076 
13077     if (!LHS.get()->getType()->isScalarType() ||
13078         !RHS.get()->getType()->isScalarType())
13079       return InvalidOperands(Loc, LHS, RHS);
13080 
13081     return Context.IntTy;
13082   }
13083 
13084   // The following is safe because we only use this method for
13085   // non-overloadable operands.
13086 
13087   // C++ [expr.log.and]p1
13088   // C++ [expr.log.or]p1
13089   // The operands are both contextually converted to type bool.
13090   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13091   if (LHSRes.isInvalid())
13092     return InvalidOperands(Loc, LHS, RHS);
13093   LHS = LHSRes;
13094 
13095   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13096   if (RHSRes.isInvalid())
13097     return InvalidOperands(Loc, LHS, RHS);
13098   RHS = RHSRes;
13099 
13100   // C++ [expr.log.and]p2
13101   // C++ [expr.log.or]p2
13102   // The result is a bool.
13103   return Context.BoolTy;
13104 }
13105 
13106 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13107   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13108   if (!ME) return false;
13109   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13110   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13111       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13112   if (!Base) return false;
13113   return Base->getMethodDecl() != nullptr;
13114 }
13115 
13116 /// Is the given expression (which must be 'const') a reference to a
13117 /// variable which was originally non-const, but which has become
13118 /// 'const' due to being captured within a block?
13119 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13120 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13121   assert(E->isLValue() && E->getType().isConstQualified());
13122   E = E->IgnoreParens();
13123 
13124   // Must be a reference to a declaration from an enclosing scope.
13125   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13126   if (!DRE) return NCCK_None;
13127   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13128 
13129   // The declaration must be a variable which is not declared 'const'.
13130   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13131   if (!var) return NCCK_None;
13132   if (var->getType().isConstQualified()) return NCCK_None;
13133   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13134 
13135   // Decide whether the first capture was for a block or a lambda.
13136   DeclContext *DC = S.CurContext, *Prev = nullptr;
13137   // Decide whether the first capture was for a block or a lambda.
13138   while (DC) {
13139     // For init-capture, it is possible that the variable belongs to the
13140     // template pattern of the current context.
13141     if (auto *FD = dyn_cast<FunctionDecl>(DC))
13142       if (var->isInitCapture() &&
13143           FD->getTemplateInstantiationPattern() == var->getDeclContext())
13144         break;
13145     if (DC == var->getDeclContext())
13146       break;
13147     Prev = DC;
13148     DC = DC->getParent();
13149   }
13150   // Unless we have an init-capture, we've gone one step too far.
13151   if (!var->isInitCapture())
13152     DC = Prev;
13153   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13154 }
13155 
13156 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13157   Ty = Ty.getNonReferenceType();
13158   if (IsDereference && Ty->isPointerType())
13159     Ty = Ty->getPointeeType();
13160   return !Ty.isConstQualified();
13161 }
13162 
13163 // Update err_typecheck_assign_const and note_typecheck_assign_const
13164 // when this enum is changed.
13165 enum {
13166   ConstFunction,
13167   ConstVariable,
13168   ConstMember,
13169   ConstMethod,
13170   NestedConstMember,
13171   ConstUnknown,  // Keep as last element
13172 };
13173 
13174 /// Emit the "read-only variable not assignable" error and print notes to give
13175 /// more information about why the variable is not assignable, such as pointing
13176 /// to the declaration of a const variable, showing that a method is const, or
13177 /// that the function is returning a const reference.
13178 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13179                                     SourceLocation Loc) {
13180   SourceRange ExprRange = E->getSourceRange();
13181 
13182   // Only emit one error on the first const found.  All other consts will emit
13183   // a note to the error.
13184   bool DiagnosticEmitted = false;
13185 
13186   // Track if the current expression is the result of a dereference, and if the
13187   // next checked expression is the result of a dereference.
13188   bool IsDereference = false;
13189   bool NextIsDereference = false;
13190 
13191   // Loop to process MemberExpr chains.
13192   while (true) {
13193     IsDereference = NextIsDereference;
13194 
13195     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13196     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13197       NextIsDereference = ME->isArrow();
13198       const ValueDecl *VD = ME->getMemberDecl();
13199       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13200         // Mutable fields can be modified even if the class is const.
13201         if (Field->isMutable()) {
13202           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13203           break;
13204         }
13205 
13206         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13207           if (!DiagnosticEmitted) {
13208             S.Diag(Loc, diag::err_typecheck_assign_const)
13209                 << ExprRange << ConstMember << false /*static*/ << Field
13210                 << Field->getType();
13211             DiagnosticEmitted = true;
13212           }
13213           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13214               << ConstMember << false /*static*/ << Field << Field->getType()
13215               << Field->getSourceRange();
13216         }
13217         E = ME->getBase();
13218         continue;
13219       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13220         if (VDecl->getType().isConstQualified()) {
13221           if (!DiagnosticEmitted) {
13222             S.Diag(Loc, diag::err_typecheck_assign_const)
13223                 << ExprRange << ConstMember << true /*static*/ << VDecl
13224                 << VDecl->getType();
13225             DiagnosticEmitted = true;
13226           }
13227           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13228               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13229               << VDecl->getSourceRange();
13230         }
13231         // Static fields do not inherit constness from parents.
13232         break;
13233       }
13234       break; // End MemberExpr
13235     } else if (const ArraySubscriptExpr *ASE =
13236                    dyn_cast<ArraySubscriptExpr>(E)) {
13237       E = ASE->getBase()->IgnoreParenImpCasts();
13238       continue;
13239     } else if (const ExtVectorElementExpr *EVE =
13240                    dyn_cast<ExtVectorElementExpr>(E)) {
13241       E = EVE->getBase()->IgnoreParenImpCasts();
13242       continue;
13243     }
13244     break;
13245   }
13246 
13247   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13248     // Function calls
13249     const FunctionDecl *FD = CE->getDirectCallee();
13250     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13251       if (!DiagnosticEmitted) {
13252         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13253                                                       << ConstFunction << FD;
13254         DiagnosticEmitted = true;
13255       }
13256       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13257              diag::note_typecheck_assign_const)
13258           << ConstFunction << FD << FD->getReturnType()
13259           << FD->getReturnTypeSourceRange();
13260     }
13261   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13262     // Point to variable declaration.
13263     if (const ValueDecl *VD = DRE->getDecl()) {
13264       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13265         if (!DiagnosticEmitted) {
13266           S.Diag(Loc, diag::err_typecheck_assign_const)
13267               << ExprRange << ConstVariable << VD << VD->getType();
13268           DiagnosticEmitted = true;
13269         }
13270         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13271             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13272       }
13273     }
13274   } else if (isa<CXXThisExpr>(E)) {
13275     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13276       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13277         if (MD->isConst()) {
13278           if (!DiagnosticEmitted) {
13279             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13280                                                           << ConstMethod << MD;
13281             DiagnosticEmitted = true;
13282           }
13283           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13284               << ConstMethod << MD << MD->getSourceRange();
13285         }
13286       }
13287     }
13288   }
13289 
13290   if (DiagnosticEmitted)
13291     return;
13292 
13293   // Can't determine a more specific message, so display the generic error.
13294   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13295 }
13296 
13297 enum OriginalExprKind {
13298   OEK_Variable,
13299   OEK_Member,
13300   OEK_LValue
13301 };
13302 
13303 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13304                                          const RecordType *Ty,
13305                                          SourceLocation Loc, SourceRange Range,
13306                                          OriginalExprKind OEK,
13307                                          bool &DiagnosticEmitted) {
13308   std::vector<const RecordType *> RecordTypeList;
13309   RecordTypeList.push_back(Ty);
13310   unsigned NextToCheckIndex = 0;
13311   // We walk the record hierarchy breadth-first to ensure that we print
13312   // diagnostics in field nesting order.
13313   while (RecordTypeList.size() > NextToCheckIndex) {
13314     bool IsNested = NextToCheckIndex > 0;
13315     for (const FieldDecl *Field :
13316          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13317       // First, check every field for constness.
13318       QualType FieldTy = Field->getType();
13319       if (FieldTy.isConstQualified()) {
13320         if (!DiagnosticEmitted) {
13321           S.Diag(Loc, diag::err_typecheck_assign_const)
13322               << Range << NestedConstMember << OEK << VD
13323               << IsNested << Field;
13324           DiagnosticEmitted = true;
13325         }
13326         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13327             << NestedConstMember << IsNested << Field
13328             << FieldTy << Field->getSourceRange();
13329       }
13330 
13331       // Then we append it to the list to check next in order.
13332       FieldTy = FieldTy.getCanonicalType();
13333       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13334         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13335           RecordTypeList.push_back(FieldRecTy);
13336       }
13337     }
13338     ++NextToCheckIndex;
13339   }
13340 }
13341 
13342 /// Emit an error for the case where a record we are trying to assign to has a
13343 /// const-qualified field somewhere in its hierarchy.
13344 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13345                                          SourceLocation Loc) {
13346   QualType Ty = E->getType();
13347   assert(Ty->isRecordType() && "lvalue was not record?");
13348   SourceRange Range = E->getSourceRange();
13349   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13350   bool DiagEmitted = false;
13351 
13352   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13353     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13354             Range, OEK_Member, DiagEmitted);
13355   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13356     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13357             Range, OEK_Variable, DiagEmitted);
13358   else
13359     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13360             Range, OEK_LValue, DiagEmitted);
13361   if (!DiagEmitted)
13362     DiagnoseConstAssignment(S, E, Loc);
13363 }
13364 
13365 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
13366 /// emit an error and return true.  If so, return false.
13367 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13368   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13369 
13370   S.CheckShadowingDeclModification(E, Loc);
13371 
13372   SourceLocation OrigLoc = Loc;
13373   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13374                                                               &Loc);
13375   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13376     IsLV = Expr::MLV_InvalidMessageExpression;
13377   if (IsLV == Expr::MLV_Valid)
13378     return false;
13379 
13380   unsigned DiagID = 0;
13381   bool NeedType = false;
13382   switch (IsLV) { // C99 6.5.16p2
13383   case Expr::MLV_ConstQualified:
13384     // Use a specialized diagnostic when we're assigning to an object
13385     // from an enclosing function or block.
13386     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13387       if (NCCK == NCCK_Block)
13388         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13389       else
13390         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13391       break;
13392     }
13393 
13394     // In ARC, use some specialized diagnostics for occasions where we
13395     // infer 'const'.  These are always pseudo-strong variables.
13396     if (S.getLangOpts().ObjCAutoRefCount) {
13397       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13398       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13399         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13400 
13401         // Use the normal diagnostic if it's pseudo-__strong but the
13402         // user actually wrote 'const'.
13403         if (var->isARCPseudoStrong() &&
13404             (!var->getTypeSourceInfo() ||
13405              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13406           // There are three pseudo-strong cases:
13407           //  - self
13408           ObjCMethodDecl *method = S.getCurMethodDecl();
13409           if (method && var == method->getSelfDecl()) {
13410             DiagID = method->isClassMethod()
13411               ? diag::err_typecheck_arc_assign_self_class_method
13412               : diag::err_typecheck_arc_assign_self;
13413 
13414           //  - Objective-C externally_retained attribute.
13415           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13416                      isa<ParmVarDecl>(var)) {
13417             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13418 
13419           //  - fast enumeration variables
13420           } else {
13421             DiagID = diag::err_typecheck_arr_assign_enumeration;
13422           }
13423 
13424           SourceRange Assign;
13425           if (Loc != OrigLoc)
13426             Assign = SourceRange(OrigLoc, OrigLoc);
13427           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13428           // We need to preserve the AST regardless, so migration tool
13429           // can do its job.
13430           return false;
13431         }
13432       }
13433     }
13434 
13435     // If none of the special cases above are triggered, then this is a
13436     // simple const assignment.
13437     if (DiagID == 0) {
13438       DiagnoseConstAssignment(S, E, Loc);
13439       return true;
13440     }
13441 
13442     break;
13443   case Expr::MLV_ConstAddrSpace:
13444     DiagnoseConstAssignment(S, E, Loc);
13445     return true;
13446   case Expr::MLV_ConstQualifiedField:
13447     DiagnoseRecursiveConstFields(S, E, Loc);
13448     return true;
13449   case Expr::MLV_ArrayType:
13450   case Expr::MLV_ArrayTemporary:
13451     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13452     NeedType = true;
13453     break;
13454   case Expr::MLV_NotObjectType:
13455     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13456     NeedType = true;
13457     break;
13458   case Expr::MLV_LValueCast:
13459     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13460     break;
13461   case Expr::MLV_Valid:
13462     llvm_unreachable("did not take early return for MLV_Valid");
13463   case Expr::MLV_InvalidExpression:
13464   case Expr::MLV_MemberFunction:
13465   case Expr::MLV_ClassTemporary:
13466     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13467     break;
13468   case Expr::MLV_IncompleteType:
13469   case Expr::MLV_IncompleteVoidType:
13470     return S.RequireCompleteType(Loc, E->getType(),
13471              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13472   case Expr::MLV_DuplicateVectorComponents:
13473     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13474     break;
13475   case Expr::MLV_NoSetterProperty:
13476     llvm_unreachable("readonly properties should be processed differently");
13477   case Expr::MLV_InvalidMessageExpression:
13478     DiagID = diag::err_readonly_message_assignment;
13479     break;
13480   case Expr::MLV_SubObjCPropertySetting:
13481     DiagID = diag::err_no_subobject_property_setting;
13482     break;
13483   }
13484 
13485   SourceRange Assign;
13486   if (Loc != OrigLoc)
13487     Assign = SourceRange(OrigLoc, OrigLoc);
13488   if (NeedType)
13489     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13490   else
13491     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13492   return true;
13493 }
13494 
13495 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13496                                          SourceLocation Loc,
13497                                          Sema &Sema) {
13498   if (Sema.inTemplateInstantiation())
13499     return;
13500   if (Sema.isUnevaluatedContext())
13501     return;
13502   if (Loc.isInvalid() || Loc.isMacroID())
13503     return;
13504   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13505     return;
13506 
13507   // C / C++ fields
13508   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13509   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13510   if (ML && MR) {
13511     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13512       return;
13513     const ValueDecl *LHSDecl =
13514         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13515     const ValueDecl *RHSDecl =
13516         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13517     if (LHSDecl != RHSDecl)
13518       return;
13519     if (LHSDecl->getType().isVolatileQualified())
13520       return;
13521     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13522       if (RefTy->getPointeeType().isVolatileQualified())
13523         return;
13524 
13525     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13526   }
13527 
13528   // Objective-C instance variables
13529   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13530   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13531   if (OL && OR && OL->getDecl() == OR->getDecl()) {
13532     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13533     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13534     if (RL && RR && RL->getDecl() == RR->getDecl())
13535       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13536   }
13537 }
13538 
13539 // C99 6.5.16.1
13540 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13541                                        SourceLocation Loc,
13542                                        QualType CompoundType,
13543                                        BinaryOperatorKind Opc) {
13544   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13545 
13546   // Verify that LHS is a modifiable lvalue, and emit error if not.
13547   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13548     return QualType();
13549 
13550   QualType LHSType = LHSExpr->getType();
13551   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13552                                              CompoundType;
13553   // OpenCL v1.2 s6.1.1.1 p2:
13554   // The half data type can only be used to declare a pointer to a buffer that
13555   // contains half values
13556   if (getLangOpts().OpenCL &&
13557       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13558       LHSType->isHalfType()) {
13559     Diag(Loc, diag::err_opencl_half_load_store) << 1
13560         << LHSType.getUnqualifiedType();
13561     return QualType();
13562   }
13563 
13564   // WebAssembly tables can't be used on RHS of an assignment expression.
13565   if (RHSType->isWebAssemblyTableType()) {
13566     Diag(Loc, diag::err_wasm_table_art) << 0;
13567     return QualType();
13568   }
13569 
13570   AssignConvertType ConvTy;
13571   if (CompoundType.isNull()) {
13572     Expr *RHSCheck = RHS.get();
13573 
13574     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13575 
13576     QualType LHSTy(LHSType);
13577     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13578     if (RHS.isInvalid())
13579       return QualType();
13580     // Special case of NSObject attributes on c-style pointer types.
13581     if (ConvTy == IncompatiblePointer &&
13582         ((Context.isObjCNSObjectType(LHSType) &&
13583           RHSType->isObjCObjectPointerType()) ||
13584          (Context.isObjCNSObjectType(RHSType) &&
13585           LHSType->isObjCObjectPointerType())))
13586       ConvTy = Compatible;
13587 
13588     if (ConvTy == Compatible &&
13589         LHSType->isObjCObjectType())
13590         Diag(Loc, diag::err_objc_object_assignment)
13591           << LHSType;
13592 
13593     // If the RHS is a unary plus or minus, check to see if they = and + are
13594     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13595     // instead of "x += 4".
13596     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13597       RHSCheck = ICE->getSubExpr();
13598     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13599       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13600           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13601           // Only if the two operators are exactly adjacent.
13602           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13603           // And there is a space or other character before the subexpr of the
13604           // unary +/-.  We don't want to warn on "x=-1".
13605           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13606           UO->getSubExpr()->getBeginLoc().isFileID()) {
13607         Diag(Loc, diag::warn_not_compound_assign)
13608           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13609           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13610       }
13611     }
13612 
13613     if (ConvTy == Compatible) {
13614       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13615         // Warn about retain cycles where a block captures the LHS, but
13616         // not if the LHS is a simple variable into which the block is
13617         // being stored...unless that variable can be captured by reference!
13618         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13619         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13620         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13621           ObjC().checkRetainCycles(LHSExpr, RHS.get());
13622       }
13623 
13624       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13625           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13626         // It is safe to assign a weak reference into a strong variable.
13627         // Although this code can still have problems:
13628         //   id x = self.weakProp;
13629         //   id y = self.weakProp;
13630         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13631         // paths through the function. This should be revisited if
13632         // -Wrepeated-use-of-weak is made flow-sensitive.
13633         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13634         // variable, which will be valid for the current autorelease scope.
13635         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13636                              RHS.get()->getBeginLoc()))
13637           getCurFunction()->markSafeWeakUse(RHS.get());
13638 
13639       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13640         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13641       }
13642     }
13643   } else {
13644     // Compound assignment "x += y"
13645     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13646   }
13647 
13648   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13649                                RHS.get(), AA_Assigning))
13650     return QualType();
13651 
13652   CheckForNullPointerDereference(*this, LHSExpr);
13653 
13654   AssignedEntity AE{LHSExpr};
13655   checkExprLifetime(*this, AE, RHS.get());
13656 
13657   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13658     if (CompoundType.isNull()) {
13659       // C++2a [expr.ass]p5:
13660       //   A simple-assignment whose left operand is of a volatile-qualified
13661       //   type is deprecated unless the assignment is either a discarded-value
13662       //   expression or an unevaluated operand
13663       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13664     }
13665   }
13666 
13667   // C11 6.5.16p3: The type of an assignment expression is the type of the
13668   // left operand would have after lvalue conversion.
13669   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13670   // qualified type, the value has the unqualified version of the type of the
13671   // lvalue; additionally, if the lvalue has atomic type, the value has the
13672   // non-atomic version of the type of the lvalue.
13673   // C++ 5.17p1: the type of the assignment expression is that of its left
13674   // operand.
13675   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13676 }
13677 
13678 // Scenarios to ignore if expression E is:
13679 // 1. an explicit cast expression into void
13680 // 2. a function call expression that returns void
13681 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13682   E = E->IgnoreParens();
13683 
13684   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13685     if (CE->getCastKind() == CK_ToVoid) {
13686       return true;
13687     }
13688 
13689     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13690     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13691         CE->getSubExpr()->getType()->isDependentType()) {
13692       return true;
13693     }
13694   }
13695 
13696   if (const auto *CE = dyn_cast<CallExpr>(E))
13697     return CE->getCallReturnType(Context)->isVoidType();
13698   return false;
13699 }
13700 
13701 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13702   // No warnings in macros
13703   if (Loc.isMacroID())
13704     return;
13705 
13706   // Don't warn in template instantiations.
13707   if (inTemplateInstantiation())
13708     return;
13709 
13710   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13711   // instead, skip more than needed, then call back into here with the
13712   // CommaVisitor in SemaStmt.cpp.
13713   // The listed locations are the initialization and increment portions
13714   // of a for loop.  The additional checks are on the condition of
13715   // if statements, do/while loops, and for loops.
13716   // Differences in scope flags for C89 mode requires the extra logic.
13717   const unsigned ForIncrementFlags =
13718       getLangOpts().C99 || getLangOpts().CPlusPlus
13719           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13720           : Scope::ContinueScope | Scope::BreakScope;
13721   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13722   const unsigned ScopeFlags = getCurScope()->getFlags();
13723   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13724       (ScopeFlags & ForInitFlags) == ForInitFlags)
13725     return;
13726 
13727   // If there are multiple comma operators used together, get the RHS of the
13728   // of the comma operator as the LHS.
13729   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13730     if (BO->getOpcode() != BO_Comma)
13731       break;
13732     LHS = BO->getRHS();
13733   }
13734 
13735   // Only allow some expressions on LHS to not warn.
13736   if (IgnoreCommaOperand(LHS, Context))
13737     return;
13738 
13739   Diag(Loc, diag::warn_comma_operator);
13740   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13741       << LHS->getSourceRange()
13742       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13743                                     LangOpts.CPlusPlus ? "static_cast<void>("
13744                                                        : "(void)(")
13745       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13746                                     ")");
13747 }
13748 
13749 // C99 6.5.17
13750 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13751                                    SourceLocation Loc) {
13752   LHS = S.CheckPlaceholderExpr(LHS.get());
13753   RHS = S.CheckPlaceholderExpr(RHS.get());
13754   if (LHS.isInvalid() || RHS.isInvalid())
13755     return QualType();
13756 
13757   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13758   // operands, but not unary promotions.
13759   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13760 
13761   // So we treat the LHS as a ignored value, and in C++ we allow the
13762   // containing site to determine what should be done with the RHS.
13763   LHS = S.IgnoredValueConversions(LHS.get());
13764   if (LHS.isInvalid())
13765     return QualType();
13766 
13767   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13768 
13769   if (!S.getLangOpts().CPlusPlus) {
13770     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13771     if (RHS.isInvalid())
13772       return QualType();
13773     if (!RHS.get()->getType()->isVoidType())
13774       S.RequireCompleteType(Loc, RHS.get()->getType(),
13775                             diag::err_incomplete_type);
13776   }
13777 
13778   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13779     S.DiagnoseCommaOperator(LHS.get(), Loc);
13780 
13781   return RHS.get()->getType();
13782 }
13783 
13784 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13785 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13786 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13787                                                ExprValueKind &VK,
13788                                                ExprObjectKind &OK,
13789                                                SourceLocation OpLoc, bool IsInc,
13790                                                bool IsPrefix) {
13791   QualType ResType = Op->getType();
13792   // Atomic types can be used for increment / decrement where the non-atomic
13793   // versions can, so ignore the _Atomic() specifier for the purpose of
13794   // checking.
13795   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13796     ResType = ResAtomicType->getValueType();
13797 
13798   assert(!ResType.isNull() && "no type for increment/decrement expression");
13799 
13800   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13801     // Decrement of bool is not allowed.
13802     if (!IsInc) {
13803       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13804       return QualType();
13805     }
13806     // Increment of bool sets it to true, but is deprecated.
13807     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13808                                               : diag::warn_increment_bool)
13809       << Op->getSourceRange();
13810   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13811     // Error on enum increments and decrements in C++ mode
13812     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13813     return QualType();
13814   } else if (ResType->isRealType()) {
13815     // OK!
13816   } else if (ResType->isPointerType()) {
13817     // C99 6.5.2.4p2, 6.5.6p2
13818     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13819       return QualType();
13820   } else if (ResType->isObjCObjectPointerType()) {
13821     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13822     // Otherwise, we just need a complete type.
13823     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13824         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13825       return QualType();
13826   } else if (ResType->isAnyComplexType()) {
13827     // C99 does not support ++/-- on complex types, we allow as an extension.
13828     S.Diag(OpLoc, S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
13829                                       : diag::ext_c2y_increment_complex)
13830         << IsInc << Op->getSourceRange();
13831   } else if (ResType->isPlaceholderType()) {
13832     ExprResult PR = S.CheckPlaceholderExpr(Op);
13833     if (PR.isInvalid()) return QualType();
13834     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13835                                           IsInc, IsPrefix);
13836   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13837     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13838   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13839              (ResType->castAs<VectorType>()->getVectorKind() !=
13840               VectorKind::AltiVecBool)) {
13841     // The z vector extensions allow ++ and -- for non-bool vectors.
13842   } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
13843              ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13844     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13845   } else {
13846     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13847       << ResType << int(IsInc) << Op->getSourceRange();
13848     return QualType();
13849   }
13850   // At this point, we know we have a real, complex or pointer type.
13851   // Now make sure the operand is a modifiable lvalue.
13852   if (CheckForModifiableLvalue(Op, OpLoc, S))
13853     return QualType();
13854   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13855     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13856     //   An operand with volatile-qualified type is deprecated
13857     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13858         << IsInc << ResType;
13859   }
13860   // In C++, a prefix increment is the same type as the operand. Otherwise
13861   // (in C or with postfix), the increment is the unqualified type of the
13862   // operand.
13863   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13864     VK = VK_LValue;
13865     OK = Op->getObjectKind();
13866     return ResType;
13867   } else {
13868     VK = VK_PRValue;
13869     return ResType.getUnqualifiedType();
13870   }
13871 }
13872 
13873 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13874 /// This routine allows us to typecheck complex/recursive expressions
13875 /// where the declaration is needed for type checking. We only need to
13876 /// handle cases when the expression references a function designator
13877 /// or is an lvalue. Here are some examples:
13878 ///  - &(x) => x
13879 ///  - &*****f => f for f a function designator.
13880 ///  - &s.xx => s
13881 ///  - &s.zz[1].yy -> s, if zz is an array
13882 ///  - *(x + 1) -> x, if x is an array
13883 ///  - &"123"[2] -> 0
13884 ///  - & __real__ x -> x
13885 ///
13886 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13887 /// members.
13888 static ValueDecl *getPrimaryDecl(Expr *E) {
13889   switch (E->getStmtClass()) {
13890   case Stmt::DeclRefExprClass:
13891     return cast<DeclRefExpr>(E)->getDecl();
13892   case Stmt::MemberExprClass:
13893     // If this is an arrow operator, the address is an offset from
13894     // the base's value, so the object the base refers to is
13895     // irrelevant.
13896     if (cast<MemberExpr>(E)->isArrow())
13897       return nullptr;
13898     // Otherwise, the expression refers to a part of the base
13899     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13900   case Stmt::ArraySubscriptExprClass: {
13901     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13902     // promotion of register arrays earlier.
13903     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13904     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13905       if (ICE->getSubExpr()->getType()->isArrayType())
13906         return getPrimaryDecl(ICE->getSubExpr());
13907     }
13908     return nullptr;
13909   }
13910   case Stmt::UnaryOperatorClass: {
13911     UnaryOperator *UO = cast<UnaryOperator>(E);
13912 
13913     switch(UO->getOpcode()) {
13914     case UO_Real:
13915     case UO_Imag:
13916     case UO_Extension:
13917       return getPrimaryDecl(UO->getSubExpr());
13918     default:
13919       return nullptr;
13920     }
13921   }
13922   case Stmt::ParenExprClass:
13923     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13924   case Stmt::ImplicitCastExprClass:
13925     // If the result of an implicit cast is an l-value, we care about
13926     // the sub-expression; otherwise, the result here doesn't matter.
13927     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13928   case Stmt::CXXUuidofExprClass:
13929     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13930   default:
13931     return nullptr;
13932   }
13933 }
13934 
13935 namespace {
13936 enum {
13937   AO_Bit_Field = 0,
13938   AO_Vector_Element = 1,
13939   AO_Property_Expansion = 2,
13940   AO_Register_Variable = 3,
13941   AO_Matrix_Element = 4,
13942   AO_No_Error = 5
13943 };
13944 }
13945 /// Diagnose invalid operand for address of operations.
13946 ///
13947 /// \param Type The type of operand which cannot have its address taken.
13948 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13949                                          Expr *E, unsigned Type) {
13950   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13951 }
13952 
13953 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
13954                                                  const Expr *Op,
13955                                                  const CXXMethodDecl *MD) {
13956   const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
13957 
13958   if (Op != DRE)
13959     return Diag(OpLoc, diag::err_parens_pointer_member_function)
13960            << Op->getSourceRange();
13961 
13962   // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13963   if (isa<CXXDestructorDecl>(MD))
13964     return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
13965            << DRE->getSourceRange();
13966 
13967   if (DRE->getQualifier())
13968     return false;
13969 
13970   if (MD->getParent()->getName().empty())
13971     return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13972            << DRE->getSourceRange();
13973 
13974   SmallString<32> Str;
13975   StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13976   return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13977          << DRE->getSourceRange()
13978          << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
13979 }
13980 
13981 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13982   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13983     if (PTy->getKind() == BuiltinType::Overload) {
13984       Expr *E = OrigOp.get()->IgnoreParens();
13985       if (!isa<OverloadExpr>(E)) {
13986         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13987         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13988           << OrigOp.get()->getSourceRange();
13989         return QualType();
13990       }
13991 
13992       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13993       if (isa<UnresolvedMemberExpr>(Ovl))
13994         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13995           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13996             << OrigOp.get()->getSourceRange();
13997           return QualType();
13998         }
13999 
14000       return Context.OverloadTy;
14001     }
14002 
14003     if (PTy->getKind() == BuiltinType::UnknownAny)
14004       return Context.UnknownAnyTy;
14005 
14006     if (PTy->getKind() == BuiltinType::BoundMember) {
14007       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14008         << OrigOp.get()->getSourceRange();
14009       return QualType();
14010     }
14011 
14012     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14013     if (OrigOp.isInvalid()) return QualType();
14014   }
14015 
14016   if (OrigOp.get()->isTypeDependent())
14017     return Context.DependentTy;
14018 
14019   assert(!OrigOp.get()->hasPlaceholderType());
14020 
14021   // Make sure to ignore parentheses in subsequent checks
14022   Expr *op = OrigOp.get()->IgnoreParens();
14023 
14024   // In OpenCL captures for blocks called as lambda functions
14025   // are located in the private address space. Blocks used in
14026   // enqueue_kernel can be located in a different address space
14027   // depending on a vendor implementation. Thus preventing
14028   // taking an address of the capture to avoid invalid AS casts.
14029   if (LangOpts.OpenCL) {
14030     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14031     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14032       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14033       return QualType();
14034     }
14035   }
14036 
14037   if (getLangOpts().C99) {
14038     // Implement C99-only parts of addressof rules.
14039     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14040       if (uOp->getOpcode() == UO_Deref)
14041         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14042         // (assuming the deref expression is valid).
14043         return uOp->getSubExpr()->getType();
14044     }
14045     // Technically, there should be a check for array subscript
14046     // expressions here, but the result of one is always an lvalue anyway.
14047   }
14048   ValueDecl *dcl = getPrimaryDecl(op);
14049 
14050   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14051     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14052                                            op->getBeginLoc()))
14053       return QualType();
14054 
14055   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14056   unsigned AddressOfError = AO_No_Error;
14057 
14058   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14059     bool sfinae = (bool)isSFINAEContext();
14060     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14061                                   : diag::ext_typecheck_addrof_temporary)
14062       << op->getType() << op->getSourceRange();
14063     if (sfinae)
14064       return QualType();
14065     // Materialize the temporary as an lvalue so that we can take its address.
14066     OrigOp = op =
14067         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14068   } else if (isa<ObjCSelectorExpr>(op)) {
14069     return Context.getPointerType(op->getType());
14070   } else if (lval == Expr::LV_MemberFunction) {
14071     // If it's an instance method, make a member pointer.
14072     // The expression must have exactly the form &A::foo.
14073 
14074     // If the underlying expression isn't a decl ref, give up.
14075     if (!isa<DeclRefExpr>(op)) {
14076       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14077         << OrigOp.get()->getSourceRange();
14078       return QualType();
14079     }
14080     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14081     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14082 
14083     CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14084 
14085     QualType MPTy = Context.getMemberPointerType(
14086         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14087 
14088     if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14089         !isUnevaluatedContext() && !MPTy->isDependentType()) {
14090       // When pointer authentication is enabled, argument and return types of
14091       // vitual member functions must be complete. This is because vitrual
14092       // member function pointers are implemented using virtual dispatch
14093       // thunks and the thunks cannot be emitted if the argument or return
14094       // types are incomplete.
14095       auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14096                                                SourceLocation DeclRefLoc,
14097                                                SourceLocation RetArgTypeLoc) {
14098         if (RequireCompleteType(DeclRefLoc, T, diag::err_incomplete_type)) {
14099           Diag(DeclRefLoc,
14100                diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14101           Diag(RetArgTypeLoc,
14102                diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14103               << T;
14104           return true;
14105         }
14106         return false;
14107       };
14108       QualType RetTy = MD->getReturnType();
14109       bool IsIncomplete =
14110           !RetTy->isVoidType() &&
14111           ReturnOrParamTypeIsIncomplete(
14112               RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14113       for (auto *PVD : MD->parameters())
14114         IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14115                                                       PVD->getBeginLoc());
14116       if (IsIncomplete)
14117         return QualType();
14118     }
14119 
14120     // Under the MS ABI, lock down the inheritance model now.
14121     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14122       (void)isCompleteType(OpLoc, MPTy);
14123     return MPTy;
14124   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14125     // C99 6.5.3.2p1
14126     // The operand must be either an l-value or a function designator
14127     if (!op->getType()->isFunctionType()) {
14128       // Use a special diagnostic for loads from property references.
14129       if (isa<PseudoObjectExpr>(op)) {
14130         AddressOfError = AO_Property_Expansion;
14131       } else {
14132         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14133           << op->getType() << op->getSourceRange();
14134         return QualType();
14135       }
14136     } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
14137       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
14138         CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14139     }
14140 
14141   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14142     // The operand cannot be a bit-field
14143     AddressOfError = AO_Bit_Field;
14144   } else if (op->getObjectKind() == OK_VectorComponent) {
14145     // The operand cannot be an element of a vector
14146     AddressOfError = AO_Vector_Element;
14147   } else if (op->getObjectKind() == OK_MatrixComponent) {
14148     // The operand cannot be an element of a matrix.
14149     AddressOfError = AO_Matrix_Element;
14150   } else if (dcl) { // C99 6.5.3.2p1
14151     // We have an lvalue with a decl. Make sure the decl is not declared
14152     // with the register storage-class specifier.
14153     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14154       // in C++ it is not error to take address of a register
14155       // variable (c++03 7.1.1P3)
14156       if (vd->getStorageClass() == SC_Register &&
14157           !getLangOpts().CPlusPlus) {
14158         AddressOfError = AO_Register_Variable;
14159       }
14160     } else if (isa<MSPropertyDecl>(dcl)) {
14161       AddressOfError = AO_Property_Expansion;
14162     } else if (isa<FunctionTemplateDecl>(dcl)) {
14163       return Context.OverloadTy;
14164     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14165       // Okay: we can take the address of a field.
14166       // Could be a pointer to member, though, if there is an explicit
14167       // scope qualifier for the class.
14168 
14169       // [C++26] [expr.prim.id.general]
14170       // If an id-expression E denotes a non-static non-type member
14171       // of some class C [...] and if E is a qualified-id, E is
14172       // not the un-parenthesized operand of the unary & operator [...]
14173       // the id-expression is transformed into a class member access expression.
14174       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
14175           !isa<ParenExpr>(OrigOp.get())) {
14176         DeclContext *Ctx = dcl->getDeclContext();
14177         if (Ctx && Ctx->isRecord()) {
14178           if (dcl->getType()->isReferenceType()) {
14179             Diag(OpLoc,
14180                  diag::err_cannot_form_pointer_to_member_of_reference_type)
14181               << dcl->getDeclName() << dcl->getType();
14182             return QualType();
14183           }
14184 
14185           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14186             Ctx = Ctx->getParent();
14187 
14188           QualType MPTy = Context.getMemberPointerType(
14189               op->getType(),
14190               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14191           // Under the MS ABI, lock down the inheritance model now.
14192           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14193             (void)isCompleteType(OpLoc, MPTy);
14194           return MPTy;
14195         }
14196       }
14197     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14198                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14199       llvm_unreachable("Unknown/unexpected decl type");
14200   }
14201 
14202   if (AddressOfError != AO_No_Error) {
14203     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14204     return QualType();
14205   }
14206 
14207   if (lval == Expr::LV_IncompleteVoidType) {
14208     // Taking the address of a void variable is technically illegal, but we
14209     // allow it in cases which are otherwise valid.
14210     // Example: "extern void x; void* y = &x;".
14211     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14212   }
14213 
14214   // If the operand has type "type", the result has type "pointer to type".
14215   if (op->getType()->isObjCObjectType())
14216     return Context.getObjCObjectPointerType(op->getType());
14217 
14218   // Cannot take the address of WebAssembly references or tables.
14219   if (Context.getTargetInfo().getTriple().isWasm()) {
14220     QualType OpTy = op->getType();
14221     if (OpTy.isWebAssemblyReferenceType()) {
14222       Diag(OpLoc, diag::err_wasm_ca_reference)
14223           << 1 << OrigOp.get()->getSourceRange();
14224       return QualType();
14225     }
14226     if (OpTy->isWebAssemblyTableType()) {
14227       Diag(OpLoc, diag::err_wasm_table_pr)
14228           << 1 << OrigOp.get()->getSourceRange();
14229       return QualType();
14230     }
14231   }
14232 
14233   CheckAddressOfPackedMember(op);
14234 
14235   return Context.getPointerType(op->getType());
14236 }
14237 
14238 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14239   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14240   if (!DRE)
14241     return;
14242   const Decl *D = DRE->getDecl();
14243   if (!D)
14244     return;
14245   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14246   if (!Param)
14247     return;
14248   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14249     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14250       return;
14251   if (FunctionScopeInfo *FD = S.getCurFunction())
14252     FD->ModifiedNonNullParams.insert(Param);
14253 }
14254 
14255 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14256 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14257                                         SourceLocation OpLoc,
14258                                         bool IsAfterAmp = false) {
14259   ExprResult ConvResult = S.UsualUnaryConversions(Op);
14260   if (ConvResult.isInvalid())
14261     return QualType();
14262   Op = ConvResult.get();
14263   QualType OpTy = Op->getType();
14264   QualType Result;
14265 
14266   if (isa<CXXReinterpretCastExpr>(Op)) {
14267     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14268     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14269                                      Op->getSourceRange());
14270   }
14271 
14272   if (const PointerType *PT = OpTy->getAs<PointerType>())
14273   {
14274     Result = PT->getPointeeType();
14275   }
14276   else if (const ObjCObjectPointerType *OPT =
14277              OpTy->getAs<ObjCObjectPointerType>())
14278     Result = OPT->getPointeeType();
14279   else {
14280     ExprResult PR = S.CheckPlaceholderExpr(Op);
14281     if (PR.isInvalid()) return QualType();
14282     if (PR.get() != Op)
14283       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14284   }
14285 
14286   if (Result.isNull()) {
14287     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14288       << OpTy << Op->getSourceRange();
14289     return QualType();
14290   }
14291 
14292   if (Result->isVoidType()) {
14293     // C++ [expr.unary.op]p1:
14294     //   [...] the expression to which [the unary * operator] is applied shall
14295     //   be a pointer to an object type, or a pointer to a function type
14296     LangOptions LO = S.getLangOpts();
14297     if (LO.CPlusPlus)
14298       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
14299           << OpTy << Op->getSourceRange();
14300     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14301       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14302           << OpTy << Op->getSourceRange();
14303   }
14304 
14305   // Dereferences are usually l-values...
14306   VK = VK_LValue;
14307 
14308   // ...except that certain expressions are never l-values in C.
14309   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14310     VK = VK_PRValue;
14311 
14312   return Result;
14313 }
14314 
14315 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14316   BinaryOperatorKind Opc;
14317   switch (Kind) {
14318   default: llvm_unreachable("Unknown binop!");
14319   case tok::periodstar:           Opc = BO_PtrMemD; break;
14320   case tok::arrowstar:            Opc = BO_PtrMemI; break;
14321   case tok::star:                 Opc = BO_Mul; break;
14322   case tok::slash:                Opc = BO_Div; break;
14323   case tok::percent:              Opc = BO_Rem; break;
14324   case tok::plus:                 Opc = BO_Add; break;
14325   case tok::minus:                Opc = BO_Sub; break;
14326   case tok::lessless:             Opc = BO_Shl; break;
14327   case tok::greatergreater:       Opc = BO_Shr; break;
14328   case tok::lessequal:            Opc = BO_LE; break;
14329   case tok::less:                 Opc = BO_LT; break;
14330   case tok::greaterequal:         Opc = BO_GE; break;
14331   case tok::greater:              Opc = BO_GT; break;
14332   case tok::exclaimequal:         Opc = BO_NE; break;
14333   case tok::equalequal:           Opc = BO_EQ; break;
14334   case tok::spaceship:            Opc = BO_Cmp; break;
14335   case tok::amp:                  Opc = BO_And; break;
14336   case tok::caret:                Opc = BO_Xor; break;
14337   case tok::pipe:                 Opc = BO_Or; break;
14338   case tok::ampamp:               Opc = BO_LAnd; break;
14339   case tok::pipepipe:             Opc = BO_LOr; break;
14340   case tok::equal:                Opc = BO_Assign; break;
14341   case tok::starequal:            Opc = BO_MulAssign; break;
14342   case tok::slashequal:           Opc = BO_DivAssign; break;
14343   case tok::percentequal:         Opc = BO_RemAssign; break;
14344   case tok::plusequal:            Opc = BO_AddAssign; break;
14345   case tok::minusequal:           Opc = BO_SubAssign; break;
14346   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
14347   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
14348   case tok::ampequal:             Opc = BO_AndAssign; break;
14349   case tok::caretequal:           Opc = BO_XorAssign; break;
14350   case tok::pipeequal:            Opc = BO_OrAssign; break;
14351   case tok::comma:                Opc = BO_Comma; break;
14352   }
14353   return Opc;
14354 }
14355 
14356 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14357   tok::TokenKind Kind) {
14358   UnaryOperatorKind Opc;
14359   switch (Kind) {
14360   default: llvm_unreachable("Unknown unary op!");
14361   case tok::plusplus:     Opc = UO_PreInc; break;
14362   case tok::minusminus:   Opc = UO_PreDec; break;
14363   case tok::amp:          Opc = UO_AddrOf; break;
14364   case tok::star:         Opc = UO_Deref; break;
14365   case tok::plus:         Opc = UO_Plus; break;
14366   case tok::minus:        Opc = UO_Minus; break;
14367   case tok::tilde:        Opc = UO_Not; break;
14368   case tok::exclaim:      Opc = UO_LNot; break;
14369   case tok::kw___real:    Opc = UO_Real; break;
14370   case tok::kw___imag:    Opc = UO_Imag; break;
14371   case tok::kw___extension__: Opc = UO_Extension; break;
14372   }
14373   return Opc;
14374 }
14375 
14376 const FieldDecl *
14377 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14378   // Explore the case for adding 'this->' to the LHS of a self assignment, very
14379   // common for setters.
14380   // struct A {
14381   // int X;
14382   // -void setX(int X) { X = X; }
14383   // +void setX(int X) { this->X = X; }
14384   // };
14385 
14386   // Only consider parameters for self assignment fixes.
14387   if (!isa<ParmVarDecl>(SelfAssigned))
14388     return nullptr;
14389   const auto *Method =
14390       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14391   if (!Method)
14392     return nullptr;
14393 
14394   const CXXRecordDecl *Parent = Method->getParent();
14395   // In theory this is fixable if the lambda explicitly captures this, but
14396   // that's added complexity that's rarely going to be used.
14397   if (Parent->isLambda())
14398     return nullptr;
14399 
14400   // FIXME: Use an actual Lookup operation instead of just traversing fields
14401   // in order to get base class fields.
14402   auto Field =
14403       llvm::find_if(Parent->fields(),
14404                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14405                       return F->getDeclName() == Name;
14406                     });
14407   return (Field != Parent->field_end()) ? *Field : nullptr;
14408 }
14409 
14410 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14411 /// This warning suppressed in the event of macro expansions.
14412 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14413                                    SourceLocation OpLoc, bool IsBuiltin) {
14414   if (S.inTemplateInstantiation())
14415     return;
14416   if (S.isUnevaluatedContext())
14417     return;
14418   if (OpLoc.isInvalid() || OpLoc.isMacroID())
14419     return;
14420   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14421   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14422   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14423   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14424   if (!LHSDeclRef || !RHSDeclRef ||
14425       LHSDeclRef->getLocation().isMacroID() ||
14426       RHSDeclRef->getLocation().isMacroID())
14427     return;
14428   const ValueDecl *LHSDecl =
14429     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14430   const ValueDecl *RHSDecl =
14431     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14432   if (LHSDecl != RHSDecl)
14433     return;
14434   if (LHSDecl->getType().isVolatileQualified())
14435     return;
14436   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14437     if (RefTy->getPointeeType().isVolatileQualified())
14438       return;
14439 
14440   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14441                                       : diag::warn_self_assignment_overloaded)
14442               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14443               << RHSExpr->getSourceRange();
14444   if (const FieldDecl *SelfAssignField =
14445           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14446     Diag << 1 << SelfAssignField
14447          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14448   else
14449     Diag << 0;
14450 }
14451 
14452 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
14453 /// is usually indicative of introspection within the Objective-C pointer.
14454 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14455                                           SourceLocation OpLoc) {
14456   if (!S.getLangOpts().ObjC)
14457     return;
14458 
14459   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14460   const Expr *LHS = L.get();
14461   const Expr *RHS = R.get();
14462 
14463   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14464     ObjCPointerExpr = LHS;
14465     OtherExpr = RHS;
14466   }
14467   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14468     ObjCPointerExpr = RHS;
14469     OtherExpr = LHS;
14470   }
14471 
14472   // This warning is deliberately made very specific to reduce false
14473   // positives with logic that uses '&' for hashing.  This logic mainly
14474   // looks for code trying to introspect into tagged pointers, which
14475   // code should generally never do.
14476   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14477     unsigned Diag = diag::warn_objc_pointer_masking;
14478     // Determine if we are introspecting the result of performSelectorXXX.
14479     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14480     // Special case messages to -performSelector and friends, which
14481     // can return non-pointer values boxed in a pointer value.
14482     // Some clients may wish to silence warnings in this subcase.
14483     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14484       Selector S = ME->getSelector();
14485       StringRef SelArg0 = S.getNameForSlot(0);
14486       if (SelArg0.starts_with("performSelector"))
14487         Diag = diag::warn_objc_pointer_masking_performSelector;
14488     }
14489 
14490     S.Diag(OpLoc, Diag)
14491       << ObjCPointerExpr->getSourceRange();
14492   }
14493 }
14494 
14495 static NamedDecl *getDeclFromExpr(Expr *E) {
14496   if (!E)
14497     return nullptr;
14498   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14499     return DRE->getDecl();
14500   if (auto *ME = dyn_cast<MemberExpr>(E))
14501     return ME->getMemberDecl();
14502   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14503     return IRE->getDecl();
14504   return nullptr;
14505 }
14506 
14507 // This helper function promotes a binary operator's operands (which are of a
14508 // half vector type) to a vector of floats and then truncates the result to
14509 // a vector of either half or short.
14510 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14511                                       BinaryOperatorKind Opc, QualType ResultTy,
14512                                       ExprValueKind VK, ExprObjectKind OK,
14513                                       bool IsCompAssign, SourceLocation OpLoc,
14514                                       FPOptionsOverride FPFeatures) {
14515   auto &Context = S.getASTContext();
14516   assert((isVector(ResultTy, Context.HalfTy) ||
14517           isVector(ResultTy, Context.ShortTy)) &&
14518          "Result must be a vector of half or short");
14519   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14520          isVector(RHS.get()->getType(), Context.HalfTy) &&
14521          "both operands expected to be a half vector");
14522 
14523   RHS = convertVector(RHS.get(), Context.FloatTy, S);
14524   QualType BinOpResTy = RHS.get()->getType();
14525 
14526   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14527   // change BinOpResTy to a vector of ints.
14528   if (isVector(ResultTy, Context.ShortTy))
14529     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14530 
14531   if (IsCompAssign)
14532     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14533                                           ResultTy, VK, OK, OpLoc, FPFeatures,
14534                                           BinOpResTy, BinOpResTy);
14535 
14536   LHS = convertVector(LHS.get(), Context.FloatTy, S);
14537   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14538                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
14539   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14540 }
14541 
14542 static std::pair<ExprResult, ExprResult>
14543 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14544                            Expr *RHSExpr) {
14545   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14546   if (!S.Context.isDependenceAllowed()) {
14547     // C cannot handle TypoExpr nodes on either side of a binop because it
14548     // doesn't handle dependent types properly, so make sure any TypoExprs have
14549     // been dealt with before checking the operands.
14550     LHS = S.CorrectDelayedTyposInExpr(LHS);
14551     RHS = S.CorrectDelayedTyposInExpr(
14552         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14553         [Opc, LHS](Expr *E) {
14554           if (Opc != BO_Assign)
14555             return ExprResult(E);
14556           // Avoid correcting the RHS to the same Expr as the LHS.
14557           Decl *D = getDeclFromExpr(E);
14558           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14559         });
14560   }
14561   return std::make_pair(LHS, RHS);
14562 }
14563 
14564 /// Returns true if conversion between vectors of halfs and vectors of floats
14565 /// is needed.
14566 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14567                                      Expr *E0, Expr *E1 = nullptr) {
14568   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14569       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14570     return false;
14571 
14572   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14573     QualType Ty = E->IgnoreImplicit()->getType();
14574 
14575     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14576     // to vectors of floats. Although the element type of the vectors is __fp16,
14577     // the vectors shouldn't be treated as storage-only types. See the
14578     // discussion here: https://reviews.llvm.org/rG825235c140e7
14579     if (const VectorType *VT = Ty->getAs<VectorType>()) {
14580       if (VT->getVectorKind() == VectorKind::Neon)
14581         return false;
14582       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14583     }
14584     return false;
14585   };
14586 
14587   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14588 }
14589 
14590 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14591                                     BinaryOperatorKind Opc,
14592                                     Expr *LHSExpr, Expr *RHSExpr) {
14593   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14594     // The syntax only allows initializer lists on the RHS of assignment,
14595     // so we don't need to worry about accepting invalid code for
14596     // non-assignment operators.
14597     // C++11 5.17p9:
14598     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14599     //   of x = {} is x = T().
14600     InitializationKind Kind = InitializationKind::CreateDirectList(
14601         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14602     InitializedEntity Entity =
14603         InitializedEntity::InitializeTemporary(LHSExpr->getType());
14604     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14605     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14606     if (Init.isInvalid())
14607       return Init;
14608     RHSExpr = Init.get();
14609   }
14610 
14611   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14612   QualType ResultTy;     // Result type of the binary operator.
14613   // The following two variables are used for compound assignment operators
14614   QualType CompLHSTy;    // Type of LHS after promotions for computation
14615   QualType CompResultTy; // Type of computation result
14616   ExprValueKind VK = VK_PRValue;
14617   ExprObjectKind OK = OK_Ordinary;
14618   bool ConvertHalfVec = false;
14619 
14620   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14621   if (!LHS.isUsable() || !RHS.isUsable())
14622     return ExprError();
14623 
14624   if (getLangOpts().OpenCL) {
14625     QualType LHSTy = LHSExpr->getType();
14626     QualType RHSTy = RHSExpr->getType();
14627     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14628     // the ATOMIC_VAR_INIT macro.
14629     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14630       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14631       if (BO_Assign == Opc)
14632         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14633       else
14634         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14635       return ExprError();
14636     }
14637 
14638     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14639     // only with a builtin functions and therefore should be disallowed here.
14640     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14641         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14642         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14643         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14644       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14645       return ExprError();
14646     }
14647   }
14648 
14649   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14650   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14651 
14652   switch (Opc) {
14653   case BO_Assign:
14654     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14655     if (getLangOpts().CPlusPlus &&
14656         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14657       VK = LHS.get()->getValueKind();
14658       OK = LHS.get()->getObjectKind();
14659     }
14660     if (!ResultTy.isNull()) {
14661       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14662       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14663 
14664       // Avoid copying a block to the heap if the block is assigned to a local
14665       // auto variable that is declared in the same scope as the block. This
14666       // optimization is unsafe if the local variable is declared in an outer
14667       // scope. For example:
14668       //
14669       // BlockTy b;
14670       // {
14671       //   b = ^{...};
14672       // }
14673       // // It is unsafe to invoke the block here if it wasn't copied to the
14674       // // heap.
14675       // b();
14676 
14677       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14678         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14679           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14680             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14681               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14682 
14683       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14684         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14685                               NTCUC_Assignment, NTCUK_Copy);
14686     }
14687     RecordModifiableNonNullParam(*this, LHS.get());
14688     break;
14689   case BO_PtrMemD:
14690   case BO_PtrMemI:
14691     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14692                                             Opc == BO_PtrMemI);
14693     break;
14694   case BO_Mul:
14695   case BO_Div:
14696     ConvertHalfVec = true;
14697     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14698                                            Opc == BO_Div);
14699     break;
14700   case BO_Rem:
14701     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14702     break;
14703   case BO_Add:
14704     ConvertHalfVec = true;
14705     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14706     break;
14707   case BO_Sub:
14708     ConvertHalfVec = true;
14709     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14710     break;
14711   case BO_Shl:
14712   case BO_Shr:
14713     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14714     break;
14715   case BO_LE:
14716   case BO_LT:
14717   case BO_GE:
14718   case BO_GT:
14719     ConvertHalfVec = true;
14720     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14721 
14722     if (const auto *BI = dyn_cast<BinaryOperator>(LHSExpr);
14723         BI && BI->isComparisonOp())
14724       Diag(OpLoc, diag::warn_consecutive_comparison);
14725 
14726     break;
14727   case BO_EQ:
14728   case BO_NE:
14729     ConvertHalfVec = true;
14730     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14731     break;
14732   case BO_Cmp:
14733     ConvertHalfVec = true;
14734     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14735     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14736     break;
14737   case BO_And:
14738     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14739     [[fallthrough]];
14740   case BO_Xor:
14741   case BO_Or:
14742     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14743     break;
14744   case BO_LAnd:
14745   case BO_LOr:
14746     ConvertHalfVec = true;
14747     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14748     break;
14749   case BO_MulAssign:
14750   case BO_DivAssign:
14751     ConvertHalfVec = true;
14752     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14753                                                Opc == BO_DivAssign);
14754     CompLHSTy = CompResultTy;
14755     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14756       ResultTy =
14757           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14758     break;
14759   case BO_RemAssign:
14760     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14761     CompLHSTy = CompResultTy;
14762     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14763       ResultTy =
14764           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14765     break;
14766   case BO_AddAssign:
14767     ConvertHalfVec = true;
14768     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14769     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14770       ResultTy =
14771           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14772     break;
14773   case BO_SubAssign:
14774     ConvertHalfVec = true;
14775     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14776     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14777       ResultTy =
14778           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14779     break;
14780   case BO_ShlAssign:
14781   case BO_ShrAssign:
14782     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14783     CompLHSTy = CompResultTy;
14784     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14785       ResultTy =
14786           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14787     break;
14788   case BO_AndAssign:
14789   case BO_OrAssign: // fallthrough
14790     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14791     [[fallthrough]];
14792   case BO_XorAssign:
14793     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14794     CompLHSTy = CompResultTy;
14795     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14796       ResultTy =
14797           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14798     break;
14799   case BO_Comma:
14800     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14801     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14802       VK = RHS.get()->getValueKind();
14803       OK = RHS.get()->getObjectKind();
14804     }
14805     break;
14806   }
14807   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14808     return ExprError();
14809 
14810   // Some of the binary operations require promoting operands of half vector to
14811   // float vectors and truncating the result back to half vector. For now, we do
14812   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14813   // arm64).
14814   assert(
14815       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14816                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
14817       "both sides are half vectors or neither sides are");
14818   ConvertHalfVec =
14819       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14820 
14821   // Check for array bounds violations for both sides of the BinaryOperator
14822   CheckArrayAccess(LHS.get());
14823   CheckArrayAccess(RHS.get());
14824 
14825   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14826     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14827                                                  &Context.Idents.get("object_setClass"),
14828                                                  SourceLocation(), LookupOrdinaryName);
14829     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14830       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14831       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14832           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14833                                         "object_setClass(")
14834           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14835                                           ",")
14836           << FixItHint::CreateInsertion(RHSLocEnd, ")");
14837     }
14838     else
14839       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14840   }
14841   else if (const ObjCIvarRefExpr *OIRE =
14842            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14843     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14844 
14845   // Opc is not a compound assignment if CompResultTy is null.
14846   if (CompResultTy.isNull()) {
14847     if (ConvertHalfVec)
14848       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14849                                  OpLoc, CurFPFeatureOverrides());
14850     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14851                                   VK, OK, OpLoc, CurFPFeatureOverrides());
14852   }
14853 
14854   // Handle compound assignments.
14855   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14856       OK_ObjCProperty) {
14857     VK = VK_LValue;
14858     OK = LHS.get()->getObjectKind();
14859   }
14860 
14861   // The LHS is not converted to the result type for fixed-point compound
14862   // assignment as the common type is computed on demand. Reset the CompLHSTy
14863   // to the LHS type we would have gotten after unary conversions.
14864   if (CompResultTy->isFixedPointType())
14865     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14866 
14867   if (ConvertHalfVec)
14868     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14869                                OpLoc, CurFPFeatureOverrides());
14870 
14871   return CompoundAssignOperator::Create(
14872       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14873       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14874 }
14875 
14876 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14877 /// operators are mixed in a way that suggests that the programmer forgot that
14878 /// comparison operators have higher precedence. The most typical example of
14879 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14880 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14881                                       SourceLocation OpLoc, Expr *LHSExpr,
14882                                       Expr *RHSExpr) {
14883   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14884   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14885 
14886   // Check that one of the sides is a comparison operator and the other isn't.
14887   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14888   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14889   if (isLeftComp == isRightComp)
14890     return;
14891 
14892   // Bitwise operations are sometimes used as eager logical ops.
14893   // Don't diagnose this.
14894   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14895   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14896   if (isLeftBitwise || isRightBitwise)
14897     return;
14898 
14899   SourceRange DiagRange = isLeftComp
14900                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14901                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
14902   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14903   SourceRange ParensRange =
14904       isLeftComp
14905           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14906           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14907 
14908   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14909     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14910   SuggestParentheses(Self, OpLoc,
14911     Self.PDiag(diag::note_precedence_silence) << OpStr,
14912     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14913   SuggestParentheses(Self, OpLoc,
14914     Self.PDiag(diag::note_precedence_bitwise_first)
14915       << BinaryOperator::getOpcodeStr(Opc),
14916     ParensRange);
14917 }
14918 
14919 /// It accepts a '&&' expr that is inside a '||' one.
14920 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14921 /// in parentheses.
14922 static void
14923 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14924                                        BinaryOperator *Bop) {
14925   assert(Bop->getOpcode() == BO_LAnd);
14926   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14927       << Bop->getSourceRange() << OpLoc;
14928   SuggestParentheses(Self, Bop->getOperatorLoc(),
14929     Self.PDiag(diag::note_precedence_silence)
14930       << Bop->getOpcodeStr(),
14931     Bop->getSourceRange());
14932 }
14933 
14934 /// Look for '&&' in the left hand of a '||' expr.
14935 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14936                                              Expr *LHSExpr, Expr *RHSExpr) {
14937   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14938     if (Bop->getOpcode() == BO_LAnd) {
14939       // If it's "string_literal && a || b" don't warn since the precedence
14940       // doesn't matter.
14941       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
14942         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14943     } else if (Bop->getOpcode() == BO_LOr) {
14944       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14945         // If it's "a || b && string_literal || c" we didn't warn earlier for
14946         // "a || b && string_literal", but warn now.
14947         if (RBop->getOpcode() == BO_LAnd &&
14948             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
14949           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14950       }
14951     }
14952   }
14953 }
14954 
14955 /// Look for '&&' in the right hand of a '||' expr.
14956 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14957                                              Expr *LHSExpr, Expr *RHSExpr) {
14958   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14959     if (Bop->getOpcode() == BO_LAnd) {
14960       // If it's "a || b && string_literal" don't warn since the precedence
14961       // doesn't matter.
14962       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
14963         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14964     }
14965   }
14966 }
14967 
14968 /// Look for bitwise op in the left or right hand of a bitwise op with
14969 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14970 /// the '&' expression in parentheses.
14971 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14972                                          SourceLocation OpLoc, Expr *SubExpr) {
14973   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14974     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14975       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14976         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14977         << Bop->getSourceRange() << OpLoc;
14978       SuggestParentheses(S, Bop->getOperatorLoc(),
14979         S.PDiag(diag::note_precedence_silence)
14980           << Bop->getOpcodeStr(),
14981         Bop->getSourceRange());
14982     }
14983   }
14984 }
14985 
14986 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14987                                     Expr *SubExpr, StringRef Shift) {
14988   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14989     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14990       StringRef Op = Bop->getOpcodeStr();
14991       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14992           << Bop->getSourceRange() << OpLoc << Shift << Op;
14993       SuggestParentheses(S, Bop->getOperatorLoc(),
14994           S.PDiag(diag::note_precedence_silence) << Op,
14995           Bop->getSourceRange());
14996     }
14997   }
14998 }
14999 
15000 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15001                                  Expr *LHSExpr, Expr *RHSExpr) {
15002   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15003   if (!OCE)
15004     return;
15005 
15006   FunctionDecl *FD = OCE->getDirectCallee();
15007   if (!FD || !FD->isOverloadedOperator())
15008     return;
15009 
15010   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15011   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15012     return;
15013 
15014   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15015       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15016       << (Kind == OO_LessLess);
15017   SuggestParentheses(S, OCE->getOperatorLoc(),
15018                      S.PDiag(diag::note_precedence_silence)
15019                          << (Kind == OO_LessLess ? "<<" : ">>"),
15020                      OCE->getSourceRange());
15021   SuggestParentheses(
15022       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15023       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15024 }
15025 
15026 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15027 /// precedence.
15028 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15029                                     SourceLocation OpLoc, Expr *LHSExpr,
15030                                     Expr *RHSExpr){
15031   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15032   if (BinaryOperator::isBitwiseOp(Opc))
15033     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15034 
15035   // Diagnose "arg1 & arg2 | arg3"
15036   if ((Opc == BO_Or || Opc == BO_Xor) &&
15037       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15038     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15039     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15040   }
15041 
15042   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15043   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15044   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15045     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15046     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15047   }
15048 
15049   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15050       || Opc == BO_Shr) {
15051     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15052     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15053     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15054   }
15055 
15056   // Warn on overloaded shift operators and comparisons, such as:
15057   // cout << 5 == 4;
15058   if (BinaryOperator::isComparisonOp(Opc))
15059     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15060 }
15061 
15062 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15063                             tok::TokenKind Kind,
15064                             Expr *LHSExpr, Expr *RHSExpr) {
15065   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15066   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15067   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15068 
15069   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15070   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15071 
15072   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15073 }
15074 
15075 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15076                        UnresolvedSetImpl &Functions) {
15077   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15078   if (OverOp != OO_None && OverOp != OO_Equal)
15079     LookupOverloadedOperatorName(OverOp, S, Functions);
15080 
15081   // In C++20 onwards, we may have a second operator to look up.
15082   if (getLangOpts().CPlusPlus20) {
15083     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15084       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15085   }
15086 }
15087 
15088 /// Build an overloaded binary operator expression in the given scope.
15089 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15090                                        BinaryOperatorKind Opc,
15091                                        Expr *LHS, Expr *RHS) {
15092   switch (Opc) {
15093   case BO_Assign:
15094     // In the non-overloaded case, we warn about self-assignment (x = x) for
15095     // both simple assignment and certain compound assignments where algebra
15096     // tells us the operation yields a constant result.  When the operator is
15097     // overloaded, we can't do the latter because we don't want to assume that
15098     // those algebraic identities still apply; for example, a path-building
15099     // library might use operator/= to append paths.  But it's still reasonable
15100     // to assume that simple assignment is just moving/copying values around
15101     // and so self-assignment is likely a bug.
15102     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15103     [[fallthrough]];
15104   case BO_DivAssign:
15105   case BO_RemAssign:
15106   case BO_SubAssign:
15107   case BO_AndAssign:
15108   case BO_OrAssign:
15109   case BO_XorAssign:
15110     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15111     break;
15112   default:
15113     break;
15114   }
15115 
15116   // Find all of the overloaded operators visible from this point.
15117   UnresolvedSet<16> Functions;
15118   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15119 
15120   // Build the (potentially-overloaded, potentially-dependent)
15121   // binary operation.
15122   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15123 }
15124 
15125 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15126                             BinaryOperatorKind Opc,
15127                             Expr *LHSExpr, Expr *RHSExpr) {
15128   ExprResult LHS, RHS;
15129   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15130   if (!LHS.isUsable() || !RHS.isUsable())
15131     return ExprError();
15132   LHSExpr = LHS.get();
15133   RHSExpr = RHS.get();
15134 
15135   // We want to end up calling one of SemaPseudoObject::checkAssignment
15136   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15137   // both expressions are overloadable or either is type-dependent),
15138   // or CreateBuiltinBinOp (in any other case).  We also want to get
15139   // any placeholder types out of the way.
15140 
15141   // Handle pseudo-objects in the LHS.
15142   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15143     // Assignments with a pseudo-object l-value need special analysis.
15144     if (pty->getKind() == BuiltinType::PseudoObject &&
15145         BinaryOperator::isAssignmentOp(Opc))
15146       return PseudoObject().checkAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15147 
15148     // Don't resolve overloads if the other type is overloadable.
15149     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15150       // We can't actually test that if we still have a placeholder,
15151       // though.  Fortunately, none of the exceptions we see in that
15152       // code below are valid when the LHS is an overload set.  Note
15153       // that an overload set can be dependently-typed, but it never
15154       // instantiates to having an overloadable type.
15155       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15156       if (resolvedRHS.isInvalid()) return ExprError();
15157       RHSExpr = resolvedRHS.get();
15158 
15159       if (RHSExpr->isTypeDependent() ||
15160           RHSExpr->getType()->isOverloadableType())
15161         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15162     }
15163 
15164     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15165     // template, diagnose the missing 'template' keyword instead of diagnosing
15166     // an invalid use of a bound member function.
15167     //
15168     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15169     // to C++1z [over.over]/1.4, but we already checked for that case above.
15170     if (Opc == BO_LT && inTemplateInstantiation() &&
15171         (pty->getKind() == BuiltinType::BoundMember ||
15172          pty->getKind() == BuiltinType::Overload)) {
15173       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15174       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15175           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15176             return isa<FunctionTemplateDecl>(ND);
15177           })) {
15178         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15179                                 : OE->getNameLoc(),
15180              diag::err_template_kw_missing)
15181           << OE->getName().getAsString() << "";
15182         return ExprError();
15183       }
15184     }
15185 
15186     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15187     if (LHS.isInvalid()) return ExprError();
15188     LHSExpr = LHS.get();
15189   }
15190 
15191   // Handle pseudo-objects in the RHS.
15192   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15193     // An overload in the RHS can potentially be resolved by the type
15194     // being assigned to.
15195     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15196       if (getLangOpts().CPlusPlus &&
15197           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15198            LHSExpr->getType()->isOverloadableType()))
15199         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15200 
15201       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15202     }
15203 
15204     // Don't resolve overloads if the other type is overloadable.
15205     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15206         LHSExpr->getType()->isOverloadableType())
15207       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15208 
15209     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15210     if (!resolvedRHS.isUsable()) return ExprError();
15211     RHSExpr = resolvedRHS.get();
15212   }
15213 
15214   if (getLangOpts().CPlusPlus) {
15215     // Otherwise, build an overloaded op if either expression is type-dependent
15216     // or has an overloadable type.
15217     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15218         LHSExpr->getType()->isOverloadableType() ||
15219         RHSExpr->getType()->isOverloadableType())
15220       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15221   }
15222 
15223   if (getLangOpts().RecoveryAST &&
15224       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15225     assert(!getLangOpts().CPlusPlus);
15226     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15227            "Should only occur in error-recovery path.");
15228     if (BinaryOperator::isCompoundAssignmentOp(Opc))
15229       // C [6.15.16] p3:
15230       // An assignment expression has the value of the left operand after the
15231       // assignment, but is not an lvalue.
15232       return CompoundAssignOperator::Create(
15233           Context, LHSExpr, RHSExpr, Opc,
15234           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15235           OpLoc, CurFPFeatureOverrides());
15236     QualType ResultType;
15237     switch (Opc) {
15238     case BO_Assign:
15239       ResultType = LHSExpr->getType().getUnqualifiedType();
15240       break;
15241     case BO_LT:
15242     case BO_GT:
15243     case BO_LE:
15244     case BO_GE:
15245     case BO_EQ:
15246     case BO_NE:
15247     case BO_LAnd:
15248     case BO_LOr:
15249       // These operators have a fixed result type regardless of operands.
15250       ResultType = Context.IntTy;
15251       break;
15252     case BO_Comma:
15253       ResultType = RHSExpr->getType();
15254       break;
15255     default:
15256       ResultType = Context.DependentTy;
15257       break;
15258     }
15259     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15260                                   VK_PRValue, OK_Ordinary, OpLoc,
15261                                   CurFPFeatureOverrides());
15262   }
15263 
15264   // Build a built-in binary operation.
15265   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15266 }
15267 
15268 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15269   if (T.isNull() || T->isDependentType())
15270     return false;
15271 
15272   if (!Ctx.isPromotableIntegerType(T))
15273     return true;
15274 
15275   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15276 }
15277 
15278 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15279                                       UnaryOperatorKind Opc, Expr *InputExpr,
15280                                       bool IsAfterAmp) {
15281   ExprResult Input = InputExpr;
15282   ExprValueKind VK = VK_PRValue;
15283   ExprObjectKind OK = OK_Ordinary;
15284   QualType resultType;
15285   bool CanOverflow = false;
15286 
15287   bool ConvertHalfVec = false;
15288   if (getLangOpts().OpenCL) {
15289     QualType Ty = InputExpr->getType();
15290     // The only legal unary operation for atomics is '&'.
15291     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15292     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15293     // only with a builtin functions and therefore should be disallowed here.
15294         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15295         || Ty->isBlockPointerType())) {
15296       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15297                        << InputExpr->getType()
15298                        << Input.get()->getSourceRange());
15299     }
15300   }
15301 
15302   if (getLangOpts().HLSL && OpLoc.isValid()) {
15303     if (Opc == UO_AddrOf)
15304       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15305     if (Opc == UO_Deref)
15306       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15307   }
15308 
15309   if (InputExpr->isTypeDependent() &&
15310       InputExpr->getType()->isSpecificBuiltinType(BuiltinType::Dependent)) {
15311     resultType = Context.DependentTy;
15312   } else {
15313     switch (Opc) {
15314     case UO_PreInc:
15315     case UO_PreDec:
15316     case UO_PostInc:
15317     case UO_PostDec:
15318       resultType =
15319           CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, OpLoc,
15320                                          Opc == UO_PreInc || Opc == UO_PostInc,
15321                                          Opc == UO_PreInc || Opc == UO_PreDec);
15322       CanOverflow = isOverflowingIntegerType(Context, resultType);
15323       break;
15324     case UO_AddrOf:
15325       resultType = CheckAddressOfOperand(Input, OpLoc);
15326       CheckAddressOfNoDeref(InputExpr);
15327       RecordModifiableNonNullParam(*this, InputExpr);
15328       break;
15329     case UO_Deref: {
15330       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15331       if (Input.isInvalid())
15332         return ExprError();
15333       resultType =
15334           CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15335       break;
15336     }
15337     case UO_Plus:
15338     case UO_Minus:
15339       CanOverflow = Opc == UO_Minus &&
15340                     isOverflowingIntegerType(Context, Input.get()->getType());
15341       Input = UsualUnaryConversions(Input.get());
15342       if (Input.isInvalid())
15343         return ExprError();
15344       // Unary plus and minus require promoting an operand of half vector to a
15345       // float vector and truncating the result back to a half vector. For now,
15346       // we do this only when HalfArgsAndReturns is set (that is, when the
15347       // target is arm or arm64).
15348       ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15349 
15350       // If the operand is a half vector, promote it to a float vector.
15351       if (ConvertHalfVec)
15352         Input = convertVector(Input.get(), Context.FloatTy, *this);
15353       resultType = Input.get()->getType();
15354       if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15355         break;
15356       else if (resultType->isVectorType() &&
15357                // The z vector extensions don't allow + or - with bool vectors.
15358                (!Context.getLangOpts().ZVector ||
15359                 resultType->castAs<VectorType>()->getVectorKind() !=
15360                     VectorKind::AltiVecBool))
15361         break;
15362       else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15363         break;
15364       else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15365                Opc == UO_Plus && resultType->isPointerType())
15366         break;
15367 
15368       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15369                        << resultType << Input.get()->getSourceRange());
15370 
15371     case UO_Not: // bitwise complement
15372       Input = UsualUnaryConversions(Input.get());
15373       if (Input.isInvalid())
15374         return ExprError();
15375       resultType = Input.get()->getType();
15376       // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15377       if (resultType->isComplexType() || resultType->isComplexIntegerType())
15378         // C99 does not support '~' for complex conjugation.
15379         Diag(OpLoc, diag::ext_integer_complement_complex)
15380             << resultType << Input.get()->getSourceRange();
15381       else if (resultType->hasIntegerRepresentation())
15382         break;
15383       else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15384         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15385         // on vector float types.
15386         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15387         if (!T->isIntegerType())
15388           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15389                            << resultType << Input.get()->getSourceRange());
15390       } else {
15391         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15392                          << resultType << Input.get()->getSourceRange());
15393       }
15394       break;
15395 
15396     case UO_LNot: // logical negation
15397       // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15398       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15399       if (Input.isInvalid())
15400         return ExprError();
15401       resultType = Input.get()->getType();
15402 
15403       // Though we still have to promote half FP to float...
15404       if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15405         Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast)
15406                     .get();
15407         resultType = Context.FloatTy;
15408       }
15409 
15410       // WebAsembly tables can't be used in unary expressions.
15411       if (resultType->isPointerType() &&
15412           resultType->getPointeeType().isWebAssemblyReferenceType()) {
15413         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15414                          << resultType << Input.get()->getSourceRange());
15415       }
15416 
15417       if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15418         // C99 6.5.3.3p1: ok, fallthrough;
15419         if (Context.getLangOpts().CPlusPlus) {
15420           // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15421           // operand contextually converted to bool.
15422           Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15423                                     ScalarTypeToBooleanCastKind(resultType));
15424         } else if (Context.getLangOpts().OpenCL &&
15425                    Context.getLangOpts().OpenCLVersion < 120) {
15426           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15427           // operate on scalar float types.
15428           if (!resultType->isIntegerType() && !resultType->isPointerType())
15429             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15430                              << resultType << Input.get()->getSourceRange());
15431         }
15432       } else if (resultType->isExtVectorType()) {
15433         if (Context.getLangOpts().OpenCL &&
15434             Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15435           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15436           // operate on vector float types.
15437           QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15438           if (!T->isIntegerType())
15439             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15440                              << resultType << Input.get()->getSourceRange());
15441         }
15442         // Vector logical not returns the signed variant of the operand type.
15443         resultType = GetSignedVectorType(resultType);
15444         break;
15445       } else if (Context.getLangOpts().CPlusPlus &&
15446                  resultType->isVectorType()) {
15447         const VectorType *VTy = resultType->castAs<VectorType>();
15448         if (VTy->getVectorKind() != VectorKind::Generic)
15449           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15450                            << resultType << Input.get()->getSourceRange());
15451 
15452         // Vector logical not returns the signed variant of the operand type.
15453         resultType = GetSignedVectorType(resultType);
15454         break;
15455       } else {
15456         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15457                          << resultType << Input.get()->getSourceRange());
15458       }
15459 
15460       // LNot always has type int. C99 6.5.3.3p5.
15461       // In C++, it's bool. C++ 5.3.1p8
15462       resultType = Context.getLogicalOperationType();
15463       break;
15464     case UO_Real:
15465     case UO_Imag:
15466       resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15467       // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15468       // ordinary complex l-values to ordinary l-values and all other values to
15469       // r-values.
15470       if (Input.isInvalid())
15471         return ExprError();
15472       if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15473         if (Input.get()->isGLValue() &&
15474             Input.get()->getObjectKind() == OK_Ordinary)
15475           VK = Input.get()->getValueKind();
15476       } else if (!getLangOpts().CPlusPlus) {
15477         // In C, a volatile scalar is read by __imag. In C++, it is not.
15478         Input = DefaultLvalueConversion(Input.get());
15479       }
15480       break;
15481     case UO_Extension:
15482       resultType = Input.get()->getType();
15483       VK = Input.get()->getValueKind();
15484       OK = Input.get()->getObjectKind();
15485       break;
15486     case UO_Coawait:
15487       // It's unnecessary to represent the pass-through operator co_await in the
15488       // AST; just return the input expression instead.
15489       assert(!Input.get()->getType()->isDependentType() &&
15490              "the co_await expression must be non-dependant before "
15491              "building operator co_await");
15492       return Input;
15493     }
15494   }
15495   if (resultType.isNull() || Input.isInvalid())
15496     return ExprError();
15497 
15498   // Check for array bounds violations in the operand of the UnaryOperator,
15499   // except for the '*' and '&' operators that have to be handled specially
15500   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15501   // that are explicitly defined as valid by the standard).
15502   if (Opc != UO_AddrOf && Opc != UO_Deref)
15503     CheckArrayAccess(Input.get());
15504 
15505   auto *UO =
15506       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15507                             OpLoc, CanOverflow, CurFPFeatureOverrides());
15508 
15509   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15510       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15511       !isUnevaluatedContext())
15512     ExprEvalContexts.back().PossibleDerefs.insert(UO);
15513 
15514   // Convert the result back to a half vector.
15515   if (ConvertHalfVec)
15516     return convertVector(UO, Context.HalfTy, *this);
15517   return UO;
15518 }
15519 
15520 bool Sema::isQualifiedMemberAccess(Expr *E) {
15521   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15522     if (!DRE->getQualifier())
15523       return false;
15524 
15525     ValueDecl *VD = DRE->getDecl();
15526     if (!VD->isCXXClassMember())
15527       return false;
15528 
15529     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15530       return true;
15531     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15532       return Method->isImplicitObjectMemberFunction();
15533 
15534     return false;
15535   }
15536 
15537   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15538     if (!ULE->getQualifier())
15539       return false;
15540 
15541     for (NamedDecl *D : ULE->decls()) {
15542       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15543         if (Method->isImplicitObjectMemberFunction())
15544           return true;
15545       } else {
15546         // Overload set does not contain methods.
15547         break;
15548       }
15549     }
15550 
15551     return false;
15552   }
15553 
15554   return false;
15555 }
15556 
15557 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15558                               UnaryOperatorKind Opc, Expr *Input,
15559                               bool IsAfterAmp) {
15560   // First things first: handle placeholders so that the
15561   // overloaded-operator check considers the right type.
15562   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15563     // Increment and decrement of pseudo-object references.
15564     if (pty->getKind() == BuiltinType::PseudoObject &&
15565         UnaryOperator::isIncrementDecrementOp(Opc))
15566       return PseudoObject().checkIncDec(S, OpLoc, Opc, Input);
15567 
15568     // extension is always a builtin operator.
15569     if (Opc == UO_Extension)
15570       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15571 
15572     // & gets special logic for several kinds of placeholder.
15573     // The builtin code knows what to do.
15574     if (Opc == UO_AddrOf &&
15575         (pty->getKind() == BuiltinType::Overload ||
15576          pty->getKind() == BuiltinType::UnknownAny ||
15577          pty->getKind() == BuiltinType::BoundMember))
15578       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15579 
15580     // Anything else needs to be handled now.
15581     ExprResult Result = CheckPlaceholderExpr(Input);
15582     if (Result.isInvalid()) return ExprError();
15583     Input = Result.get();
15584   }
15585 
15586   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15587       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15588       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15589     // Find all of the overloaded operators visible from this point.
15590     UnresolvedSet<16> Functions;
15591     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15592     if (S && OverOp != OO_None)
15593       LookupOverloadedOperatorName(OverOp, S, Functions);
15594 
15595     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15596   }
15597 
15598   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
15599 }
15600 
15601 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15602                               Expr *Input, bool IsAfterAmp) {
15603   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
15604                       IsAfterAmp);
15605 }
15606 
15607 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15608                                 LabelDecl *TheDecl) {
15609   TheDecl->markUsed(Context);
15610   // Create the AST node.  The address of a label always has type 'void*'.
15611   auto *Res = new (Context) AddrLabelExpr(
15612       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
15613 
15614   if (getCurFunction())
15615     getCurFunction()->AddrLabels.push_back(Res);
15616 
15617   return Res;
15618 }
15619 
15620 void Sema::ActOnStartStmtExpr() {
15621   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15622   // Make sure we diagnose jumping into a statement expression.
15623   setFunctionHasBranchProtectedScope();
15624 }
15625 
15626 void Sema::ActOnStmtExprError() {
15627   // Note that function is also called by TreeTransform when leaving a
15628   // StmtExpr scope without rebuilding anything.
15629 
15630   DiscardCleanupsInEvaluationContext();
15631   PopExpressionEvaluationContext();
15632 }
15633 
15634 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15635                                SourceLocation RPLoc) {
15636   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15637 }
15638 
15639 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15640                                SourceLocation RPLoc, unsigned TemplateDepth) {
15641   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15642   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15643 
15644   if (hasAnyUnrecoverableErrorsInThisFunction())
15645     DiscardCleanupsInEvaluationContext();
15646   assert(!Cleanup.exprNeedsCleanups() &&
15647          "cleanups within StmtExpr not correctly bound!");
15648   PopExpressionEvaluationContext();
15649 
15650   // FIXME: there are a variety of strange constraints to enforce here, for
15651   // example, it is not possible to goto into a stmt expression apparently.
15652   // More semantic analysis is needed.
15653 
15654   // If there are sub-stmts in the compound stmt, take the type of the last one
15655   // as the type of the stmtexpr.
15656   QualType Ty = Context.VoidTy;
15657   bool StmtExprMayBindToTemp = false;
15658   if (!Compound->body_empty()) {
15659     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15660     if (const auto *LastStmt =
15661             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15662       if (const Expr *Value = LastStmt->getExprStmt()) {
15663         StmtExprMayBindToTemp = true;
15664         Ty = Value->getType();
15665       }
15666     }
15667   }
15668 
15669   // FIXME: Check that expression type is complete/non-abstract; statement
15670   // expressions are not lvalues.
15671   Expr *ResStmtExpr =
15672       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15673   if (StmtExprMayBindToTemp)
15674     return MaybeBindToTemporary(ResStmtExpr);
15675   return ResStmtExpr;
15676 }
15677 
15678 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15679   if (ER.isInvalid())
15680     return ExprError();
15681 
15682   // Do function/array conversion on the last expression, but not
15683   // lvalue-to-rvalue.  However, initialize an unqualified type.
15684   ER = DefaultFunctionArrayConversion(ER.get());
15685   if (ER.isInvalid())
15686     return ExprError();
15687   Expr *E = ER.get();
15688 
15689   if (E->isTypeDependent())
15690     return E;
15691 
15692   // In ARC, if the final expression ends in a consume, splice
15693   // the consume out and bind it later.  In the alternate case
15694   // (when dealing with a retainable type), the result
15695   // initialization will create a produce.  In both cases the
15696   // result will be +1, and we'll need to balance that out with
15697   // a bind.
15698   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15699   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15700     return Cast->getSubExpr();
15701 
15702   // FIXME: Provide a better location for the initialization.
15703   return PerformCopyInitialization(
15704       InitializedEntity::InitializeStmtExprResult(
15705           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15706       SourceLocation(), E);
15707 }
15708 
15709 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15710                                       TypeSourceInfo *TInfo,
15711                                       ArrayRef<OffsetOfComponent> Components,
15712                                       SourceLocation RParenLoc) {
15713   QualType ArgTy = TInfo->getType();
15714   bool Dependent = ArgTy->isDependentType();
15715   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15716 
15717   // We must have at least one component that refers to the type, and the first
15718   // one is known to be a field designator.  Verify that the ArgTy represents
15719   // a struct/union/class.
15720   if (!Dependent && !ArgTy->isRecordType())
15721     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15722                        << ArgTy << TypeRange);
15723 
15724   // Type must be complete per C99 7.17p3 because a declaring a variable
15725   // with an incomplete type would be ill-formed.
15726   if (!Dependent
15727       && RequireCompleteType(BuiltinLoc, ArgTy,
15728                              diag::err_offsetof_incomplete_type, TypeRange))
15729     return ExprError();
15730 
15731   bool DidWarnAboutNonPOD = false;
15732   QualType CurrentType = ArgTy;
15733   SmallVector<OffsetOfNode, 4> Comps;
15734   SmallVector<Expr*, 4> Exprs;
15735   for (const OffsetOfComponent &OC : Components) {
15736     if (OC.isBrackets) {
15737       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15738       if (!CurrentType->isDependentType()) {
15739         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15740         if(!AT)
15741           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15742                            << CurrentType);
15743         CurrentType = AT->getElementType();
15744       } else
15745         CurrentType = Context.DependentTy;
15746 
15747       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15748       if (IdxRval.isInvalid())
15749         return ExprError();
15750       Expr *Idx = IdxRval.get();
15751 
15752       // The expression must be an integral expression.
15753       // FIXME: An integral constant expression?
15754       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15755           !Idx->getType()->isIntegerType())
15756         return ExprError(
15757             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15758             << Idx->getSourceRange());
15759 
15760       // Record this array index.
15761       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15762       Exprs.push_back(Idx);
15763       continue;
15764     }
15765 
15766     // Offset of a field.
15767     if (CurrentType->isDependentType()) {
15768       // We have the offset of a field, but we can't look into the dependent
15769       // type. Just record the identifier of the field.
15770       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15771       CurrentType = Context.DependentTy;
15772       continue;
15773     }
15774 
15775     // We need to have a complete type to look into.
15776     if (RequireCompleteType(OC.LocStart, CurrentType,
15777                             diag::err_offsetof_incomplete_type))
15778       return ExprError();
15779 
15780     // Look for the designated field.
15781     const RecordType *RC = CurrentType->getAs<RecordType>();
15782     if (!RC)
15783       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15784                        << CurrentType);
15785     RecordDecl *RD = RC->getDecl();
15786 
15787     // C++ [lib.support.types]p5:
15788     //   The macro offsetof accepts a restricted set of type arguments in this
15789     //   International Standard. type shall be a POD structure or a POD union
15790     //   (clause 9).
15791     // C++11 [support.types]p4:
15792     //   If type is not a standard-layout class (Clause 9), the results are
15793     //   undefined.
15794     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15795       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15796       unsigned DiagID =
15797         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15798                             : diag::ext_offsetof_non_pod_type;
15799 
15800       if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
15801         Diag(BuiltinLoc, DiagID)
15802             << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
15803         DidWarnAboutNonPOD = true;
15804       }
15805     }
15806 
15807     // Look for the field.
15808     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15809     LookupQualifiedName(R, RD);
15810     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15811     IndirectFieldDecl *IndirectMemberDecl = nullptr;
15812     if (!MemberDecl) {
15813       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15814         MemberDecl = IndirectMemberDecl->getAnonField();
15815     }
15816 
15817     if (!MemberDecl) {
15818       // Lookup could be ambiguous when looking up a placeholder variable
15819       // __builtin_offsetof(S, _).
15820       // In that case we would already have emitted a diagnostic
15821       if (!R.isAmbiguous())
15822         Diag(BuiltinLoc, diag::err_no_member)
15823             << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
15824       return ExprError();
15825     }
15826 
15827     // C99 7.17p3:
15828     //   (If the specified member is a bit-field, the behavior is undefined.)
15829     //
15830     // We diagnose this as an error.
15831     if (MemberDecl->isBitField()) {
15832       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15833         << MemberDecl->getDeclName()
15834         << SourceRange(BuiltinLoc, RParenLoc);
15835       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15836       return ExprError();
15837     }
15838 
15839     RecordDecl *Parent = MemberDecl->getParent();
15840     if (IndirectMemberDecl)
15841       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15842 
15843     // If the member was found in a base class, introduce OffsetOfNodes for
15844     // the base class indirections.
15845     CXXBasePaths Paths;
15846     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15847                       Paths)) {
15848       if (Paths.getDetectedVirtual()) {
15849         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15850           << MemberDecl->getDeclName()
15851           << SourceRange(BuiltinLoc, RParenLoc);
15852         return ExprError();
15853       }
15854 
15855       CXXBasePath &Path = Paths.front();
15856       for (const CXXBasePathElement &B : Path)
15857         Comps.push_back(OffsetOfNode(B.Base));
15858     }
15859 
15860     if (IndirectMemberDecl) {
15861       for (auto *FI : IndirectMemberDecl->chain()) {
15862         assert(isa<FieldDecl>(FI));
15863         Comps.push_back(OffsetOfNode(OC.LocStart,
15864                                      cast<FieldDecl>(FI), OC.LocEnd));
15865       }
15866     } else
15867       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15868 
15869     CurrentType = MemberDecl->getType().getNonReferenceType();
15870   }
15871 
15872   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15873                               Comps, Exprs, RParenLoc);
15874 }
15875 
15876 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15877                                       SourceLocation BuiltinLoc,
15878                                       SourceLocation TypeLoc,
15879                                       ParsedType ParsedArgTy,
15880                                       ArrayRef<OffsetOfComponent> Components,
15881                                       SourceLocation RParenLoc) {
15882 
15883   TypeSourceInfo *ArgTInfo;
15884   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15885   if (ArgTy.isNull())
15886     return ExprError();
15887 
15888   if (!ArgTInfo)
15889     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15890 
15891   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15892 }
15893 
15894 
15895 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15896                                  Expr *CondExpr,
15897                                  Expr *LHSExpr, Expr *RHSExpr,
15898                                  SourceLocation RPLoc) {
15899   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15900 
15901   ExprValueKind VK = VK_PRValue;
15902   ExprObjectKind OK = OK_Ordinary;
15903   QualType resType;
15904   bool CondIsTrue = false;
15905   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15906     resType = Context.DependentTy;
15907   } else {
15908     // The conditional expression is required to be a constant expression.
15909     llvm::APSInt condEval(32);
15910     ExprResult CondICE = VerifyIntegerConstantExpression(
15911         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15912     if (CondICE.isInvalid())
15913       return ExprError();
15914     CondExpr = CondICE.get();
15915     CondIsTrue = condEval.getZExtValue();
15916 
15917     // If the condition is > zero, then the AST type is the same as the LHSExpr.
15918     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15919 
15920     resType = ActiveExpr->getType();
15921     VK = ActiveExpr->getValueKind();
15922     OK = ActiveExpr->getObjectKind();
15923   }
15924 
15925   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15926                                   resType, VK, OK, RPLoc, CondIsTrue);
15927 }
15928 
15929 //===----------------------------------------------------------------------===//
15930 // Clang Extensions.
15931 //===----------------------------------------------------------------------===//
15932 
15933 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15934   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15935 
15936   if (LangOpts.CPlusPlus) {
15937     MangleNumberingContext *MCtx;
15938     Decl *ManglingContextDecl;
15939     std::tie(MCtx, ManglingContextDecl) =
15940         getCurrentMangleNumberContext(Block->getDeclContext());
15941     if (MCtx) {
15942       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15943       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15944     }
15945   }
15946 
15947   PushBlockScope(CurScope, Block);
15948   CurContext->addDecl(Block);
15949   if (CurScope)
15950     PushDeclContext(CurScope, Block);
15951   else
15952     CurContext = Block;
15953 
15954   getCurBlock()->HasImplicitReturnType = true;
15955 
15956   // Enter a new evaluation context to insulate the block from any
15957   // cleanups from the enclosing full-expression.
15958   PushExpressionEvaluationContext(
15959       ExpressionEvaluationContext::PotentiallyEvaluated);
15960 }
15961 
15962 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15963                                Scope *CurScope) {
15964   assert(ParamInfo.getIdentifier() == nullptr &&
15965          "block-id should have no identifier!");
15966   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15967   BlockScopeInfo *CurBlock = getCurBlock();
15968 
15969   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
15970   QualType T = Sig->getType();
15971 
15972   // FIXME: We should allow unexpanded parameter packs here, but that would,
15973   // in turn, make the block expression contain unexpanded parameter packs.
15974   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15975     // Drop the parameters.
15976     FunctionProtoType::ExtProtoInfo EPI;
15977     EPI.HasTrailingReturn = false;
15978     EPI.TypeQuals.addConst();
15979     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
15980     Sig = Context.getTrivialTypeSourceInfo(T);
15981   }
15982 
15983   // GetTypeForDeclarator always produces a function type for a block
15984   // literal signature.  Furthermore, it is always a FunctionProtoType
15985   // unless the function was written with a typedef.
15986   assert(T->isFunctionType() &&
15987          "GetTypeForDeclarator made a non-function block signature");
15988 
15989   // Look for an explicit signature in that function type.
15990   FunctionProtoTypeLoc ExplicitSignature;
15991 
15992   if ((ExplicitSignature = Sig->getTypeLoc()
15993                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15994 
15995     // Check whether that explicit signature was synthesized by
15996     // GetTypeForDeclarator.  If so, don't save that as part of the
15997     // written signature.
15998     if (ExplicitSignature.getLocalRangeBegin() ==
15999         ExplicitSignature.getLocalRangeEnd()) {
16000       // This would be much cheaper if we stored TypeLocs instead of
16001       // TypeSourceInfos.
16002       TypeLoc Result = ExplicitSignature.getReturnLoc();
16003       unsigned Size = Result.getFullDataSize();
16004       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16005       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16006 
16007       ExplicitSignature = FunctionProtoTypeLoc();
16008     }
16009   }
16010 
16011   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16012   CurBlock->FunctionType = T;
16013 
16014   const auto *Fn = T->castAs<FunctionType>();
16015   QualType RetTy = Fn->getReturnType();
16016   bool isVariadic =
16017       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16018 
16019   CurBlock->TheDecl->setIsVariadic(isVariadic);
16020 
16021   // Context.DependentTy is used as a placeholder for a missing block
16022   // return type.  TODO:  what should we do with declarators like:
16023   //   ^ * { ... }
16024   // If the answer is "apply template argument deduction"....
16025   if (RetTy != Context.DependentTy) {
16026     CurBlock->ReturnType = RetTy;
16027     CurBlock->TheDecl->setBlockMissingReturnType(false);
16028     CurBlock->HasImplicitReturnType = false;
16029   }
16030 
16031   // Push block parameters from the declarator if we had them.
16032   SmallVector<ParmVarDecl*, 8> Params;
16033   if (ExplicitSignature) {
16034     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16035       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16036       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16037           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16038         // Diagnose this as an extension in C17 and earlier.
16039         if (!getLangOpts().C23)
16040           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
16041       }
16042       Params.push_back(Param);
16043     }
16044 
16045   // Fake up parameter variables if we have a typedef, like
16046   //   ^ fntype { ... }
16047   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16048     for (const auto &I : Fn->param_types()) {
16049       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16050           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16051       Params.push_back(Param);
16052     }
16053   }
16054 
16055   // Set the parameters on the block decl.
16056   if (!Params.empty()) {
16057     CurBlock->TheDecl->setParams(Params);
16058     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16059                              /*CheckParameterNames=*/false);
16060   }
16061 
16062   // Finally we can process decl attributes.
16063   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16064 
16065   // Put the parameter variables in scope.
16066   for (auto *AI : CurBlock->TheDecl->parameters()) {
16067     AI->setOwningFunction(CurBlock->TheDecl);
16068 
16069     // If this has an identifier, add it to the scope stack.
16070     if (AI->getIdentifier()) {
16071       CheckShadow(CurBlock->TheScope, AI);
16072 
16073       PushOnScopeChains(AI, CurBlock->TheScope);
16074     }
16075 
16076     if (AI->isInvalidDecl())
16077       CurBlock->TheDecl->setInvalidDecl();
16078   }
16079 }
16080 
16081 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16082   // Leave the expression-evaluation context.
16083   DiscardCleanupsInEvaluationContext();
16084   PopExpressionEvaluationContext();
16085 
16086   // Pop off CurBlock, handle nested blocks.
16087   PopDeclContext();
16088   PopFunctionScopeInfo();
16089 }
16090 
16091 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16092                                     Stmt *Body, Scope *CurScope) {
16093   // If blocks are disabled, emit an error.
16094   if (!LangOpts.Blocks)
16095     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16096 
16097   // Leave the expression-evaluation context.
16098   if (hasAnyUnrecoverableErrorsInThisFunction())
16099     DiscardCleanupsInEvaluationContext();
16100   assert(!Cleanup.exprNeedsCleanups() &&
16101          "cleanups within block not correctly bound!");
16102   PopExpressionEvaluationContext();
16103 
16104   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16105   BlockDecl *BD = BSI->TheDecl;
16106 
16107   if (BSI->HasImplicitReturnType)
16108     deduceClosureReturnType(*BSI);
16109 
16110   QualType RetTy = Context.VoidTy;
16111   if (!BSI->ReturnType.isNull())
16112     RetTy = BSI->ReturnType;
16113 
16114   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16115   QualType BlockTy;
16116 
16117   // If the user wrote a function type in some form, try to use that.
16118   if (!BSI->FunctionType.isNull()) {
16119     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16120 
16121     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16122     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16123 
16124     // Turn protoless block types into nullary block types.
16125     if (isa<FunctionNoProtoType>(FTy)) {
16126       FunctionProtoType::ExtProtoInfo EPI;
16127       EPI.ExtInfo = Ext;
16128       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16129 
16130       // Otherwise, if we don't need to change anything about the function type,
16131       // preserve its sugar structure.
16132     } else if (FTy->getReturnType() == RetTy &&
16133                (!NoReturn || FTy->getNoReturnAttr())) {
16134       BlockTy = BSI->FunctionType;
16135 
16136     // Otherwise, make the minimal modifications to the function type.
16137     } else {
16138       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16139       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16140       EPI.TypeQuals = Qualifiers();
16141       EPI.ExtInfo = Ext;
16142       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16143     }
16144 
16145   // If we don't have a function type, just build one from nothing.
16146   } else {
16147     FunctionProtoType::ExtProtoInfo EPI;
16148     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16149     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16150   }
16151 
16152   DiagnoseUnusedParameters(BD->parameters());
16153   BlockTy = Context.getBlockPointerType(BlockTy);
16154 
16155   // If needed, diagnose invalid gotos and switches in the block.
16156   if (getCurFunction()->NeedsScopeChecking() &&
16157       !PP.isCodeCompletionEnabled())
16158     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16159 
16160   BD->setBody(cast<CompoundStmt>(Body));
16161 
16162   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16163     DiagnoseUnguardedAvailabilityViolations(BD);
16164 
16165   // Try to apply the named return value optimization. We have to check again
16166   // if we can do this, though, because blocks keep return statements around
16167   // to deduce an implicit return type.
16168   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16169       !BD->isDependentContext())
16170     computeNRVO(Body, BSI);
16171 
16172   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16173       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16174     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16175                           NTCUK_Destruct|NTCUK_Copy);
16176 
16177   PopDeclContext();
16178 
16179   // Set the captured variables on the block.
16180   SmallVector<BlockDecl::Capture, 4> Captures;
16181   for (Capture &Cap : BSI->Captures) {
16182     if (Cap.isInvalid() || Cap.isThisCapture())
16183       continue;
16184     // Cap.getVariable() is always a VarDecl because
16185     // blocks cannot capture structured bindings or other ValueDecl kinds.
16186     auto *Var = cast<VarDecl>(Cap.getVariable());
16187     Expr *CopyExpr = nullptr;
16188     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16189       if (const RecordType *Record =
16190               Cap.getCaptureType()->getAs<RecordType>()) {
16191         // The capture logic needs the destructor, so make sure we mark it.
16192         // Usually this is unnecessary because most local variables have
16193         // their destructors marked at declaration time, but parameters are
16194         // an exception because it's technically only the call site that
16195         // actually requires the destructor.
16196         if (isa<ParmVarDecl>(Var))
16197           FinalizeVarWithDestructor(Var, Record);
16198 
16199         // Enter a separate potentially-evaluated context while building block
16200         // initializers to isolate their cleanups from those of the block
16201         // itself.
16202         // FIXME: Is this appropriate even when the block itself occurs in an
16203         // unevaluated operand?
16204         EnterExpressionEvaluationContext EvalContext(
16205             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16206 
16207         SourceLocation Loc = Cap.getLocation();
16208 
16209         ExprResult Result = BuildDeclarationNameExpr(
16210             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16211 
16212         // According to the blocks spec, the capture of a variable from
16213         // the stack requires a const copy constructor.  This is not true
16214         // of the copy/move done to move a __block variable to the heap.
16215         if (!Result.isInvalid() &&
16216             !Result.get()->getType().isConstQualified()) {
16217           Result = ImpCastExprToType(Result.get(),
16218                                      Result.get()->getType().withConst(),
16219                                      CK_NoOp, VK_LValue);
16220         }
16221 
16222         if (!Result.isInvalid()) {
16223           Result = PerformCopyInitialization(
16224               InitializedEntity::InitializeBlock(Var->getLocation(),
16225                                                  Cap.getCaptureType()),
16226               Loc, Result.get());
16227         }
16228 
16229         // Build a full-expression copy expression if initialization
16230         // succeeded and used a non-trivial constructor.  Recover from
16231         // errors by pretending that the copy isn't necessary.
16232         if (!Result.isInvalid() &&
16233             !cast<CXXConstructExpr>(Result.get())->getConstructor()
16234                 ->isTrivial()) {
16235           Result = MaybeCreateExprWithCleanups(Result);
16236           CopyExpr = Result.get();
16237         }
16238       }
16239     }
16240 
16241     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16242                               CopyExpr);
16243     Captures.push_back(NewCap);
16244   }
16245   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16246 
16247   // Pop the block scope now but keep it alive to the end of this function.
16248   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16249   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16250 
16251   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16252 
16253   // If the block isn't obviously global, i.e. it captures anything at
16254   // all, then we need to do a few things in the surrounding context:
16255   if (Result->getBlockDecl()->hasCaptures()) {
16256     // First, this expression has a new cleanup object.
16257     ExprCleanupObjects.push_back(Result->getBlockDecl());
16258     Cleanup.setExprNeedsCleanups(true);
16259 
16260     // It also gets a branch-protected scope if any of the captured
16261     // variables needs destruction.
16262     for (const auto &CI : Result->getBlockDecl()->captures()) {
16263       const VarDecl *var = CI.getVariable();
16264       if (var->getType().isDestructedType() != QualType::DK_none) {
16265         setFunctionHasBranchProtectedScope();
16266         break;
16267       }
16268     }
16269   }
16270 
16271   if (getCurFunction())
16272     getCurFunction()->addBlock(BD);
16273 
16274   if (BD->isInvalidDecl())
16275     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
16276                               {Result}, Result->getType());
16277   return Result;
16278 }
16279 
16280 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16281                             SourceLocation RPLoc) {
16282   TypeSourceInfo *TInfo;
16283   GetTypeFromParser(Ty, &TInfo);
16284   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16285 }
16286 
16287 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16288                                 Expr *E, TypeSourceInfo *TInfo,
16289                                 SourceLocation RPLoc) {
16290   Expr *OrigExpr = E;
16291   bool IsMS = false;
16292 
16293   // CUDA device code does not support varargs.
16294   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16295     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16296       CUDAFunctionTarget T = CUDA().IdentifyTarget(F);
16297       if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16298           T == CUDAFunctionTarget::HostDevice)
16299         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16300     }
16301   }
16302 
16303   // NVPTX does not support va_arg expression.
16304   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16305       Context.getTargetInfo().getTriple().isNVPTX())
16306     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16307 
16308   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16309   // as Microsoft ABI on an actual Microsoft platform, where
16310   // __builtin_ms_va_list and __builtin_va_list are the same.)
16311   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16312       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16313     QualType MSVaListType = Context.getBuiltinMSVaListType();
16314     if (Context.hasSameType(MSVaListType, E->getType())) {
16315       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16316         return ExprError();
16317       IsMS = true;
16318     }
16319   }
16320 
16321   // Get the va_list type
16322   QualType VaListType = Context.getBuiltinVaListType();
16323   if (!IsMS) {
16324     if (VaListType->isArrayType()) {
16325       // Deal with implicit array decay; for example, on x86-64,
16326       // va_list is an array, but it's supposed to decay to
16327       // a pointer for va_arg.
16328       VaListType = Context.getArrayDecayedType(VaListType);
16329       // Make sure the input expression also decays appropriately.
16330       ExprResult Result = UsualUnaryConversions(E);
16331       if (Result.isInvalid())
16332         return ExprError();
16333       E = Result.get();
16334     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16335       // If va_list is a record type and we are compiling in C++ mode,
16336       // check the argument using reference binding.
16337       InitializedEntity Entity = InitializedEntity::InitializeParameter(
16338           Context, Context.getLValueReferenceType(VaListType), false);
16339       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16340       if (Init.isInvalid())
16341         return ExprError();
16342       E = Init.getAs<Expr>();
16343     } else {
16344       // Otherwise, the va_list argument must be an l-value because
16345       // it is modified by va_arg.
16346       if (!E->isTypeDependent() &&
16347           CheckForModifiableLvalue(E, BuiltinLoc, *this))
16348         return ExprError();
16349     }
16350   }
16351 
16352   if (!IsMS && !E->isTypeDependent() &&
16353       !Context.hasSameType(VaListType, E->getType()))
16354     return ExprError(
16355         Diag(E->getBeginLoc(),
16356              diag::err_first_argument_to_va_arg_not_of_type_va_list)
16357         << OrigExpr->getType() << E->getSourceRange());
16358 
16359   if (!TInfo->getType()->isDependentType()) {
16360     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16361                             diag::err_second_parameter_to_va_arg_incomplete,
16362                             TInfo->getTypeLoc()))
16363       return ExprError();
16364 
16365     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16366                                TInfo->getType(),
16367                                diag::err_second_parameter_to_va_arg_abstract,
16368                                TInfo->getTypeLoc()))
16369       return ExprError();
16370 
16371     if (!TInfo->getType().isPODType(Context)) {
16372       Diag(TInfo->getTypeLoc().getBeginLoc(),
16373            TInfo->getType()->isObjCLifetimeType()
16374              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16375              : diag::warn_second_parameter_to_va_arg_not_pod)
16376         << TInfo->getType()
16377         << TInfo->getTypeLoc().getSourceRange();
16378     }
16379 
16380     // Check for va_arg where arguments of the given type will be promoted
16381     // (i.e. this va_arg is guaranteed to have undefined behavior).
16382     QualType PromoteType;
16383     if (Context.isPromotableIntegerType(TInfo->getType())) {
16384       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16385       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16386       // and C23 7.16.1.1p2 says, in part:
16387       //   If type is not compatible with the type of the actual next argument
16388       //   (as promoted according to the default argument promotions), the
16389       //   behavior is undefined, except for the following cases:
16390       //     - both types are pointers to qualified or unqualified versions of
16391       //       compatible types;
16392       //     - one type is compatible with a signed integer type, the other
16393       //       type is compatible with the corresponding unsigned integer type,
16394       //       and the value is representable in both types;
16395       //     - one type is pointer to qualified or unqualified void and the
16396       //       other is a pointer to a qualified or unqualified character type;
16397       //     - or, the type of the next argument is nullptr_t and type is a
16398       //       pointer type that has the same representation and alignment
16399       //       requirements as a pointer to a character type.
16400       // Given that type compatibility is the primary requirement (ignoring
16401       // qualifications), you would think we could call typesAreCompatible()
16402       // directly to test this. However, in C++, that checks for *same type*,
16403       // which causes false positives when passing an enumeration type to
16404       // va_arg. Instead, get the underlying type of the enumeration and pass
16405       // that.
16406       QualType UnderlyingType = TInfo->getType();
16407       if (const auto *ET = UnderlyingType->getAs<EnumType>())
16408         UnderlyingType = ET->getDecl()->getIntegerType();
16409       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16410                                      /*CompareUnqualified*/ true))
16411         PromoteType = QualType();
16412 
16413       // If the types are still not compatible, we need to test whether the
16414       // promoted type and the underlying type are the same except for
16415       // signedness. Ask the AST for the correctly corresponding type and see
16416       // if that's compatible.
16417       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16418           PromoteType->isUnsignedIntegerType() !=
16419               UnderlyingType->isUnsignedIntegerType()) {
16420         UnderlyingType =
16421             UnderlyingType->isUnsignedIntegerType()
16422                 ? Context.getCorrespondingSignedType(UnderlyingType)
16423                 : Context.getCorrespondingUnsignedType(UnderlyingType);
16424         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16425                                        /*CompareUnqualified*/ true))
16426           PromoteType = QualType();
16427       }
16428     }
16429     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16430       PromoteType = Context.DoubleTy;
16431     if (!PromoteType.isNull())
16432       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16433                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16434                           << TInfo->getType()
16435                           << PromoteType
16436                           << TInfo->getTypeLoc().getSourceRange());
16437   }
16438 
16439   QualType T = TInfo->getType().getNonLValueExprType(Context);
16440   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16441 }
16442 
16443 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16444   // The type of __null will be int or long, depending on the size of
16445   // pointers on the target.
16446   QualType Ty;
16447   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16448   if (pw == Context.getTargetInfo().getIntWidth())
16449     Ty = Context.IntTy;
16450   else if (pw == Context.getTargetInfo().getLongWidth())
16451     Ty = Context.LongTy;
16452   else if (pw == Context.getTargetInfo().getLongLongWidth())
16453     Ty = Context.LongLongTy;
16454   else {
16455     llvm_unreachable("I don't know size of pointer!");
16456   }
16457 
16458   return new (Context) GNUNullExpr(Ty, TokenLoc);
16459 }
16460 
16461 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16462   CXXRecordDecl *ImplDecl = nullptr;
16463 
16464   // Fetch the std::source_location::__impl decl.
16465   if (NamespaceDecl *Std = S.getStdNamespace()) {
16466     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16467                           Loc, Sema::LookupOrdinaryName);
16468     if (S.LookupQualifiedName(ResultSL, Std)) {
16469       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16470         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16471                                 Loc, Sema::LookupOrdinaryName);
16472         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16473             S.LookupQualifiedName(ResultImpl, SLDecl)) {
16474           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16475         }
16476       }
16477     }
16478   }
16479 
16480   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16481     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16482     return nullptr;
16483   }
16484 
16485   // Verify that __impl is a trivial struct type, with no base classes, and with
16486   // only the four expected fields.
16487   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16488       ImplDecl->getNumBases() != 0) {
16489     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16490     return nullptr;
16491   }
16492 
16493   unsigned Count = 0;
16494   for (FieldDecl *F : ImplDecl->fields()) {
16495     StringRef Name = F->getName();
16496 
16497     if (Name == "_M_file_name") {
16498       if (F->getType() !=
16499           S.Context.getPointerType(S.Context.CharTy.withConst()))
16500         break;
16501       Count++;
16502     } else if (Name == "_M_function_name") {
16503       if (F->getType() !=
16504           S.Context.getPointerType(S.Context.CharTy.withConst()))
16505         break;
16506       Count++;
16507     } else if (Name == "_M_line") {
16508       if (!F->getType()->isIntegerType())
16509         break;
16510       Count++;
16511     } else if (Name == "_M_column") {
16512       if (!F->getType()->isIntegerType())
16513         break;
16514       Count++;
16515     } else {
16516       Count = 100; // invalid
16517       break;
16518     }
16519   }
16520   if (Count != 4) {
16521     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16522     return nullptr;
16523   }
16524 
16525   return ImplDecl;
16526 }
16527 
16528 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16529                                     SourceLocation BuiltinLoc,
16530                                     SourceLocation RPLoc) {
16531   QualType ResultTy;
16532   switch (Kind) {
16533   case SourceLocIdentKind::File:
16534   case SourceLocIdentKind::FileName:
16535   case SourceLocIdentKind::Function:
16536   case SourceLocIdentKind::FuncSig: {
16537     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16538     ResultTy =
16539         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16540     break;
16541   }
16542   case SourceLocIdentKind::Line:
16543   case SourceLocIdentKind::Column:
16544     ResultTy = Context.UnsignedIntTy;
16545     break;
16546   case SourceLocIdentKind::SourceLocStruct:
16547     if (!StdSourceLocationImplDecl) {
16548       StdSourceLocationImplDecl =
16549           LookupStdSourceLocationImpl(*this, BuiltinLoc);
16550       if (!StdSourceLocationImplDecl)
16551         return ExprError();
16552     }
16553     ResultTy = Context.getPointerType(
16554         Context.getRecordType(StdSourceLocationImplDecl).withConst());
16555     break;
16556   }
16557 
16558   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16559 }
16560 
16561 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16562                                     SourceLocation BuiltinLoc,
16563                                     SourceLocation RPLoc,
16564                                     DeclContext *ParentContext) {
16565   return new (Context)
16566       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16567 }
16568 
16569 ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16570                                 StringLiteral *BinaryData) {
16571   EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16572   Data->BinaryData = BinaryData;
16573   return new (Context)
16574       EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16575                 Data->getDataElementCount());
16576 }
16577 
16578 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16579                                               const Expr *SrcExpr) {
16580   if (!DstType->isFunctionPointerType() ||
16581       !SrcExpr->getType()->isFunctionType())
16582     return false;
16583 
16584   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16585   if (!DRE)
16586     return false;
16587 
16588   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16589   if (!FD)
16590     return false;
16591 
16592   return !S.checkAddressOfFunctionIsAvailable(FD,
16593                                               /*Complain=*/true,
16594                                               SrcExpr->getBeginLoc());
16595 }
16596 
16597 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16598                                     SourceLocation Loc,
16599                                     QualType DstType, QualType SrcType,
16600                                     Expr *SrcExpr, AssignmentAction Action,
16601                                     bool *Complained) {
16602   if (Complained)
16603     *Complained = false;
16604 
16605   // Decode the result (notice that AST's are still created for extensions).
16606   bool CheckInferredResultType = false;
16607   bool isInvalid = false;
16608   unsigned DiagKind = 0;
16609   ConversionFixItGenerator ConvHints;
16610   bool MayHaveConvFixit = false;
16611   bool MayHaveFunctionDiff = false;
16612   const ObjCInterfaceDecl *IFace = nullptr;
16613   const ObjCProtocolDecl *PDecl = nullptr;
16614 
16615   switch (ConvTy) {
16616   case Compatible:
16617       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16618       return false;
16619 
16620   case PointerToInt:
16621     if (getLangOpts().CPlusPlus) {
16622       DiagKind = diag::err_typecheck_convert_pointer_int;
16623       isInvalid = true;
16624     } else {
16625       DiagKind = diag::ext_typecheck_convert_pointer_int;
16626     }
16627     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16628     MayHaveConvFixit = true;
16629     break;
16630   case IntToPointer:
16631     if (getLangOpts().CPlusPlus) {
16632       DiagKind = diag::err_typecheck_convert_int_pointer;
16633       isInvalid = true;
16634     } else {
16635       DiagKind = diag::ext_typecheck_convert_int_pointer;
16636     }
16637     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16638     MayHaveConvFixit = true;
16639     break;
16640   case IncompatibleFunctionPointerStrict:
16641     DiagKind =
16642         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
16643     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16644     MayHaveConvFixit = true;
16645     break;
16646   case IncompatibleFunctionPointer:
16647     if (getLangOpts().CPlusPlus) {
16648       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16649       isInvalid = true;
16650     } else {
16651       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16652     }
16653     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16654     MayHaveConvFixit = true;
16655     break;
16656   case IncompatiblePointer:
16657     if (Action == AA_Passing_CFAudited) {
16658       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16659     } else if (getLangOpts().CPlusPlus) {
16660       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16661       isInvalid = true;
16662     } else {
16663       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16664     }
16665     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16666       SrcType->isObjCObjectPointerType();
16667     if (CheckInferredResultType) {
16668       SrcType = SrcType.getUnqualifiedType();
16669       DstType = DstType.getUnqualifiedType();
16670     } else {
16671       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16672     }
16673     MayHaveConvFixit = true;
16674     break;
16675   case IncompatiblePointerSign:
16676     if (getLangOpts().CPlusPlus) {
16677       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16678       isInvalid = true;
16679     } else {
16680       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16681     }
16682     break;
16683   case FunctionVoidPointer:
16684     if (getLangOpts().CPlusPlus) {
16685       DiagKind = diag::err_typecheck_convert_pointer_void_func;
16686       isInvalid = true;
16687     } else {
16688       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16689     }
16690     break;
16691   case IncompatiblePointerDiscardsQualifiers: {
16692     // Perform array-to-pointer decay if necessary.
16693     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16694 
16695     isInvalid = true;
16696 
16697     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16698     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16699     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16700       DiagKind = diag::err_typecheck_incompatible_address_space;
16701       break;
16702     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16703       DiagKind = diag::err_typecheck_incompatible_ownership;
16704       break;
16705     }
16706 
16707     llvm_unreachable("unknown error case for discarding qualifiers!");
16708     // fallthrough
16709   }
16710   case CompatiblePointerDiscardsQualifiers:
16711     // If the qualifiers lost were because we were applying the
16712     // (deprecated) C++ conversion from a string literal to a char*
16713     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
16714     // Ideally, this check would be performed in
16715     // checkPointerTypesForAssignment. However, that would require a
16716     // bit of refactoring (so that the second argument is an
16717     // expression, rather than a type), which should be done as part
16718     // of a larger effort to fix checkPointerTypesForAssignment for
16719     // C++ semantics.
16720     if (getLangOpts().CPlusPlus &&
16721         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16722       return false;
16723     if (getLangOpts().CPlusPlus) {
16724       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
16725       isInvalid = true;
16726     } else {
16727       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
16728     }
16729 
16730     break;
16731   case IncompatibleNestedPointerQualifiers:
16732     if (getLangOpts().CPlusPlus) {
16733       isInvalid = true;
16734       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16735     } else {
16736       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16737     }
16738     break;
16739   case IncompatibleNestedPointerAddressSpaceMismatch:
16740     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16741     isInvalid = true;
16742     break;
16743   case IntToBlockPointer:
16744     DiagKind = diag::err_int_to_block_pointer;
16745     isInvalid = true;
16746     break;
16747   case IncompatibleBlockPointer:
16748     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16749     isInvalid = true;
16750     break;
16751   case IncompatibleObjCQualifiedId: {
16752     if (SrcType->isObjCQualifiedIdType()) {
16753       const ObjCObjectPointerType *srcOPT =
16754                 SrcType->castAs<ObjCObjectPointerType>();
16755       for (auto *srcProto : srcOPT->quals()) {
16756         PDecl = srcProto;
16757         break;
16758       }
16759       if (const ObjCInterfaceType *IFaceT =
16760             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16761         IFace = IFaceT->getDecl();
16762     }
16763     else if (DstType->isObjCQualifiedIdType()) {
16764       const ObjCObjectPointerType *dstOPT =
16765         DstType->castAs<ObjCObjectPointerType>();
16766       for (auto *dstProto : dstOPT->quals()) {
16767         PDecl = dstProto;
16768         break;
16769       }
16770       if (const ObjCInterfaceType *IFaceT =
16771             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16772         IFace = IFaceT->getDecl();
16773     }
16774     if (getLangOpts().CPlusPlus) {
16775       DiagKind = diag::err_incompatible_qualified_id;
16776       isInvalid = true;
16777     } else {
16778       DiagKind = diag::warn_incompatible_qualified_id;
16779     }
16780     break;
16781   }
16782   case IncompatibleVectors:
16783     if (getLangOpts().CPlusPlus) {
16784       DiagKind = diag::err_incompatible_vectors;
16785       isInvalid = true;
16786     } else {
16787       DiagKind = diag::warn_incompatible_vectors;
16788     }
16789     break;
16790   case IncompatibleObjCWeakRef:
16791     DiagKind = diag::err_arc_weak_unavailable_assign;
16792     isInvalid = true;
16793     break;
16794   case Incompatible:
16795     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16796       if (Complained)
16797         *Complained = true;
16798       return true;
16799     }
16800 
16801     DiagKind = diag::err_typecheck_convert_incompatible;
16802     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16803     MayHaveConvFixit = true;
16804     isInvalid = true;
16805     MayHaveFunctionDiff = true;
16806     break;
16807   }
16808 
16809   QualType FirstType, SecondType;
16810   switch (Action) {
16811   case AA_Assigning:
16812   case AA_Initializing:
16813     // The destination type comes first.
16814     FirstType = DstType;
16815     SecondType = SrcType;
16816     break;
16817 
16818   case AA_Returning:
16819   case AA_Passing:
16820   case AA_Passing_CFAudited:
16821   case AA_Converting:
16822   case AA_Sending:
16823   case AA_Casting:
16824     // The source type comes first.
16825     FirstType = SrcType;
16826     SecondType = DstType;
16827     break;
16828   }
16829 
16830   PartialDiagnostic FDiag = PDiag(DiagKind);
16831   AssignmentAction ActionForDiag = Action;
16832   if (Action == AA_Passing_CFAudited)
16833     ActionForDiag = AA_Passing;
16834 
16835   FDiag << FirstType << SecondType << ActionForDiag
16836         << SrcExpr->getSourceRange();
16837 
16838   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16839       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16840     auto isPlainChar = [](const clang::Type *Type) {
16841       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16842              Type->isSpecificBuiltinType(BuiltinType::Char_U);
16843     };
16844     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16845               isPlainChar(SecondType->getPointeeOrArrayElementType()));
16846   }
16847 
16848   // If we can fix the conversion, suggest the FixIts.
16849   if (!ConvHints.isNull()) {
16850     for (FixItHint &H : ConvHints.Hints)
16851       FDiag << H;
16852   }
16853 
16854   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16855 
16856   if (MayHaveFunctionDiff)
16857     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16858 
16859   Diag(Loc, FDiag);
16860   if ((DiagKind == diag::warn_incompatible_qualified_id ||
16861        DiagKind == diag::err_incompatible_qualified_id) &&
16862       PDecl && IFace && !IFace->hasDefinition())
16863     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16864         << IFace << PDecl;
16865 
16866   if (SecondType == Context.OverloadTy)
16867     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16868                               FirstType, /*TakingAddress=*/true);
16869 
16870   if (CheckInferredResultType)
16871     ObjC().EmitRelatedResultTypeNote(SrcExpr);
16872 
16873   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16874     ObjC().EmitRelatedResultTypeNoteForReturn(DstType);
16875 
16876   if (Complained)
16877     *Complained = true;
16878   return isInvalid;
16879 }
16880 
16881 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16882                                                  llvm::APSInt *Result,
16883                                                  AllowFoldKind CanFold) {
16884   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16885   public:
16886     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16887                                              QualType T) override {
16888       return S.Diag(Loc, diag::err_ice_not_integral)
16889              << T << S.LangOpts.CPlusPlus;
16890     }
16891     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16892       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16893     }
16894   } Diagnoser;
16895 
16896   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16897 }
16898 
16899 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16900                                                  llvm::APSInt *Result,
16901                                                  unsigned DiagID,
16902                                                  AllowFoldKind CanFold) {
16903   class IDDiagnoser : public VerifyICEDiagnoser {
16904     unsigned DiagID;
16905 
16906   public:
16907     IDDiagnoser(unsigned DiagID)
16908       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16909 
16910     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16911       return S.Diag(Loc, DiagID);
16912     }
16913   } Diagnoser(DiagID);
16914 
16915   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16916 }
16917 
16918 Sema::SemaDiagnosticBuilder
16919 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16920                                              QualType T) {
16921   return diagnoseNotICE(S, Loc);
16922 }
16923 
16924 Sema::SemaDiagnosticBuilder
16925 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16926   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16927 }
16928 
16929 ExprResult
16930 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16931                                       VerifyICEDiagnoser &Diagnoser,
16932                                       AllowFoldKind CanFold) {
16933   SourceLocation DiagLoc = E->getBeginLoc();
16934 
16935   if (getLangOpts().CPlusPlus11) {
16936     // C++11 [expr.const]p5:
16937     //   If an expression of literal class type is used in a context where an
16938     //   integral constant expression is required, then that class type shall
16939     //   have a single non-explicit conversion function to an integral or
16940     //   unscoped enumeration type
16941     ExprResult Converted;
16942     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16943       VerifyICEDiagnoser &BaseDiagnoser;
16944     public:
16945       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16946           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16947                                 BaseDiagnoser.Suppress, true),
16948             BaseDiagnoser(BaseDiagnoser) {}
16949 
16950       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16951                                            QualType T) override {
16952         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16953       }
16954 
16955       SemaDiagnosticBuilder diagnoseIncomplete(
16956           Sema &S, SourceLocation Loc, QualType T) override {
16957         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16958       }
16959 
16960       SemaDiagnosticBuilder diagnoseExplicitConv(
16961           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16962         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16963       }
16964 
16965       SemaDiagnosticBuilder noteExplicitConv(
16966           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16967         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16968                  << ConvTy->isEnumeralType() << ConvTy;
16969       }
16970 
16971       SemaDiagnosticBuilder diagnoseAmbiguous(
16972           Sema &S, SourceLocation Loc, QualType T) override {
16973         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16974       }
16975 
16976       SemaDiagnosticBuilder noteAmbiguous(
16977           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16978         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16979                  << ConvTy->isEnumeralType() << ConvTy;
16980       }
16981 
16982       SemaDiagnosticBuilder diagnoseConversion(
16983           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16984         llvm_unreachable("conversion functions are permitted");
16985       }
16986     } ConvertDiagnoser(Diagnoser);
16987 
16988     Converted = PerformContextualImplicitConversion(DiagLoc, E,
16989                                                     ConvertDiagnoser);
16990     if (Converted.isInvalid())
16991       return Converted;
16992     E = Converted.get();
16993     // The 'explicit' case causes us to get a RecoveryExpr.  Give up here so we
16994     // don't try to evaluate it later. We also don't want to return the
16995     // RecoveryExpr here, as it results in this call succeeding, thus callers of
16996     // this function will attempt to use 'Value'.
16997     if (isa<RecoveryExpr>(E))
16998       return ExprError();
16999     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17000       return ExprError();
17001   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17002     // An ICE must be of integral or unscoped enumeration type.
17003     if (!Diagnoser.Suppress)
17004       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17005           << E->getSourceRange();
17006     return ExprError();
17007   }
17008 
17009   ExprResult RValueExpr = DefaultLvalueConversion(E);
17010   if (RValueExpr.isInvalid())
17011     return ExprError();
17012 
17013   E = RValueExpr.get();
17014 
17015   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17016   // in the non-ICE case.
17017   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17018     SmallVector<PartialDiagnosticAt, 8> Notes;
17019     if (Result)
17020       *Result = E->EvaluateKnownConstIntCheckOverflow(Context, &Notes);
17021     if (!isa<ConstantExpr>(E))
17022       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17023                  : ConstantExpr::Create(Context, E);
17024 
17025     if (Notes.empty())
17026       return E;
17027 
17028     // If our only note is the usual "invalid subexpression" note, just point
17029     // the caret at its location rather than producing an essentially
17030     // redundant note.
17031     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17032           diag::note_invalid_subexpr_in_const_expr) {
17033       DiagLoc = Notes[0].first;
17034       Notes.clear();
17035     }
17036 
17037     if (getLangOpts().CPlusPlus) {
17038       if (!Diagnoser.Suppress) {
17039         Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17040         for (const PartialDiagnosticAt &Note : Notes)
17041           Diag(Note.first, Note.second);
17042       }
17043       return ExprError();
17044     }
17045 
17046     Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17047     for (const PartialDiagnosticAt &Note : Notes)
17048       Diag(Note.first, Note.second);
17049 
17050     return E;
17051   }
17052 
17053   Expr::EvalResult EvalResult;
17054   SmallVector<PartialDiagnosticAt, 8> Notes;
17055   EvalResult.Diag = &Notes;
17056 
17057   // Try to evaluate the expression, and produce diagnostics explaining why it's
17058   // not a constant expression as a side-effect.
17059   bool Folded =
17060       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17061       EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17062       (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17063 
17064   if (!isa<ConstantExpr>(E))
17065     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17066 
17067   // In C++11, we can rely on diagnostics being produced for any expression
17068   // which is not a constant expression. If no diagnostics were produced, then
17069   // this is a constant expression.
17070   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17071     if (Result)
17072       *Result = EvalResult.Val.getInt();
17073     return E;
17074   }
17075 
17076   // If our only note is the usual "invalid subexpression" note, just point
17077   // the caret at its location rather than producing an essentially
17078   // redundant note.
17079   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17080         diag::note_invalid_subexpr_in_const_expr) {
17081     DiagLoc = Notes[0].first;
17082     Notes.clear();
17083   }
17084 
17085   if (!Folded || !CanFold) {
17086     if (!Diagnoser.Suppress) {
17087       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17088       for (const PartialDiagnosticAt &Note : Notes)
17089         Diag(Note.first, Note.second);
17090     }
17091 
17092     return ExprError();
17093   }
17094 
17095   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17096   for (const PartialDiagnosticAt &Note : Notes)
17097     Diag(Note.first, Note.second);
17098 
17099   if (Result)
17100     *Result = EvalResult.Val.getInt();
17101   return E;
17102 }
17103 
17104 namespace {
17105   // Handle the case where we conclude a expression which we speculatively
17106   // considered to be unevaluated is actually evaluated.
17107   class TransformToPE : public TreeTransform<TransformToPE> {
17108     typedef TreeTransform<TransformToPE> BaseTransform;
17109 
17110   public:
17111     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17112 
17113     // Make sure we redo semantic analysis
17114     bool AlwaysRebuild() { return true; }
17115     bool ReplacingOriginal() { return true; }
17116 
17117     // We need to special-case DeclRefExprs referring to FieldDecls which
17118     // are not part of a member pointer formation; normal TreeTransforming
17119     // doesn't catch this case because of the way we represent them in the AST.
17120     // FIXME: This is a bit ugly; is it really the best way to handle this
17121     // case?
17122     //
17123     // Error on DeclRefExprs referring to FieldDecls.
17124     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17125       if (isa<FieldDecl>(E->getDecl()) &&
17126           !SemaRef.isUnevaluatedContext())
17127         return SemaRef.Diag(E->getLocation(),
17128                             diag::err_invalid_non_static_member_use)
17129             << E->getDecl() << E->getSourceRange();
17130 
17131       return BaseTransform::TransformDeclRefExpr(E);
17132     }
17133 
17134     // Exception: filter out member pointer formation
17135     ExprResult TransformUnaryOperator(UnaryOperator *E) {
17136       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17137         return E;
17138 
17139       return BaseTransform::TransformUnaryOperator(E);
17140     }
17141 
17142     // The body of a lambda-expression is in a separate expression evaluation
17143     // context so never needs to be transformed.
17144     // FIXME: Ideally we wouldn't transform the closure type either, and would
17145     // just recreate the capture expressions and lambda expression.
17146     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17147       return SkipLambdaBody(E, Body);
17148     }
17149   };
17150 }
17151 
17152 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17153   assert(isUnevaluatedContext() &&
17154          "Should only transform unevaluated expressions");
17155   ExprEvalContexts.back().Context =
17156       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17157   if (isUnevaluatedContext())
17158     return E;
17159   return TransformToPE(*this).TransformExpr(E);
17160 }
17161 
17162 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17163   assert(isUnevaluatedContext() &&
17164          "Should only transform unevaluated expressions");
17165   ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17166   if (isUnevaluatedContext())
17167     return TInfo;
17168   return TransformToPE(*this).TransformType(TInfo);
17169 }
17170 
17171 void
17172 Sema::PushExpressionEvaluationContext(
17173     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17174     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17175   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17176                                 LambdaContextDecl, ExprContext);
17177 
17178   // Discarded statements and immediate contexts nested in other
17179   // discarded statements or immediate context are themselves
17180   // a discarded statement or an immediate context, respectively.
17181   ExprEvalContexts.back().InDiscardedStatement =
17182       parentEvaluationContext().isDiscardedStatementContext();
17183 
17184   // C++23 [expr.const]/p15
17185   // An expression or conversion is in an immediate function context if [...]
17186   // it is a subexpression of a manifestly constant-evaluated expression or
17187   // conversion.
17188   const auto &Prev = parentEvaluationContext();
17189   ExprEvalContexts.back().InImmediateFunctionContext =
17190       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17191 
17192   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17193       Prev.InImmediateEscalatingFunctionContext;
17194 
17195   Cleanup.reset();
17196   if (!MaybeODRUseExprs.empty())
17197     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17198 }
17199 
17200 void
17201 Sema::PushExpressionEvaluationContext(
17202     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17203     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17204   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17205   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17206 }
17207 
17208 namespace {
17209 
17210 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17211   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17212   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17213     if (E->getOpcode() == UO_Deref)
17214       return CheckPossibleDeref(S, E->getSubExpr());
17215   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17216     return CheckPossibleDeref(S, E->getBase());
17217   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17218     return CheckPossibleDeref(S, E->getBase());
17219   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17220     QualType Inner;
17221     QualType Ty = E->getType();
17222     if (const auto *Ptr = Ty->getAs<PointerType>())
17223       Inner = Ptr->getPointeeType();
17224     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17225       Inner = Arr->getElementType();
17226     else
17227       return nullptr;
17228 
17229     if (Inner->hasAttr(attr::NoDeref))
17230       return E;
17231   }
17232   return nullptr;
17233 }
17234 
17235 } // namespace
17236 
17237 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17238   for (const Expr *E : Rec.PossibleDerefs) {
17239     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17240     if (DeclRef) {
17241       const ValueDecl *Decl = DeclRef->getDecl();
17242       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17243           << Decl->getName() << E->getSourceRange();
17244       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17245     } else {
17246       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17247           << E->getSourceRange();
17248     }
17249   }
17250   Rec.PossibleDerefs.clear();
17251 }
17252 
17253 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17254   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17255     return;
17256 
17257   // Note: ignoring parens here is not justified by the standard rules, but
17258   // ignoring parentheses seems like a more reasonable approach, and this only
17259   // drives a deprecation warning so doesn't affect conformance.
17260   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17261     if (BO->getOpcode() == BO_Assign) {
17262       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17263       llvm::erase(LHSs, BO->getLHS());
17264     }
17265   }
17266 }
17267 
17268 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17269   assert(getLangOpts().CPlusPlus20 &&
17270          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17271          "Cannot mark an immediate escalating expression outside of an "
17272          "immediate escalating context");
17273   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
17274       Call && Call->getCallee()) {
17275     if (auto *DeclRef =
17276             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17277       DeclRef->setIsImmediateEscalating(true);
17278   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
17279     Ctr->setIsImmediateEscalating(true);
17280   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
17281     DeclRef->setIsImmediateEscalating(true);
17282   } else {
17283     assert(false && "expected an immediately escalating expression");
17284   }
17285   if (FunctionScopeInfo *FI = getCurFunction())
17286     FI->FoundImmediateEscalatingExpression = true;
17287 }
17288 
17289 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17290   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17291       !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17292       isCheckingDefaultArgumentOrInitializer() ||
17293       RebuildingImmediateInvocation || isImmediateFunctionContext())
17294     return E;
17295 
17296   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17297   /// It's OK if this fails; we'll also remove this in
17298   /// HandleImmediateInvocations, but catching it here allows us to avoid
17299   /// walking the AST looking for it in simple cases.
17300   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17301     if (auto *DeclRef =
17302             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17303       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17304 
17305   // C++23 [expr.const]/p16
17306   // An expression or conversion is immediate-escalating if it is not initially
17307   // in an immediate function context and it is [...] an immediate invocation
17308   // that is not a constant expression and is not a subexpression of an
17309   // immediate invocation.
17310   APValue Cached;
17311   auto CheckConstantExpressionAndKeepResult = [&]() {
17312     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17313     Expr::EvalResult Eval;
17314     Eval.Diag = &Notes;
17315     bool Res = E.get()->EvaluateAsConstantExpr(
17316         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
17317     if (Res && Notes.empty()) {
17318       Cached = std::move(Eval.Val);
17319       return true;
17320     }
17321     return false;
17322   };
17323 
17324   if (!E.get()->isValueDependent() &&
17325       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17326       !CheckConstantExpressionAndKeepResult()) {
17327     MarkExpressionAsImmediateEscalating(E.get());
17328     return E;
17329   }
17330 
17331   if (Cleanup.exprNeedsCleanups()) {
17332     // Since an immediate invocation is a full expression itself - it requires
17333     // an additional ExprWithCleanups node, but it can participate to a bigger
17334     // full expression which actually requires cleanups to be run after so
17335     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17336     // may discard cleanups for outer expression too early.
17337 
17338     // Note that ExprWithCleanups created here must always have empty cleanup
17339     // objects:
17340     // - compound literals do not create cleanup objects in C++ and immediate
17341     // invocations are C++-only.
17342     // - blocks are not allowed inside constant expressions and compiler will
17343     // issue an error if they appear there.
17344     //
17345     // Hence, in correct code any cleanup objects created inside current
17346     // evaluation context must be outside the immediate invocation.
17347     E = ExprWithCleanups::Create(getASTContext(), E.get(),
17348                                  Cleanup.cleanupsHaveSideEffects(), {});
17349   }
17350 
17351   ConstantExpr *Res = ConstantExpr::Create(
17352       getASTContext(), E.get(),
17353       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17354                                    getASTContext()),
17355       /*IsImmediateInvocation*/ true);
17356   if (Cached.hasValue())
17357     Res->MoveIntoResult(Cached, getASTContext());
17358   /// Value-dependent constant expressions should not be immediately
17359   /// evaluated until they are instantiated.
17360   if (!Res->isValueDependent())
17361     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17362   return Res;
17363 }
17364 
17365 static void EvaluateAndDiagnoseImmediateInvocation(
17366     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17367   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17368   Expr::EvalResult Eval;
17369   Eval.Diag = &Notes;
17370   ConstantExpr *CE = Candidate.getPointer();
17371   bool Result = CE->EvaluateAsConstantExpr(
17372       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17373   if (!Result || !Notes.empty()) {
17374     SemaRef.FailedImmediateInvocations.insert(CE);
17375     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17376     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17377       InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17378     FunctionDecl *FD = nullptr;
17379     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17380       FD = cast<FunctionDecl>(Call->getCalleeDecl());
17381     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17382       FD = Call->getConstructor();
17383     else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
17384       FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
17385 
17386     assert(FD && FD->isImmediateFunction() &&
17387            "could not find an immediate function in this expression");
17388     if (FD->isInvalidDecl())
17389       return;
17390     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
17391         << FD << FD->isConsteval();
17392     if (auto Context =
17393             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17394       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17395           << Context->Decl;
17396       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17397     }
17398     if (!FD->isConsteval())
17399       SemaRef.DiagnoseImmediateEscalatingReason(FD);
17400     for (auto &Note : Notes)
17401       SemaRef.Diag(Note.first, Note.second);
17402     return;
17403   }
17404   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17405 }
17406 
17407 static void RemoveNestedImmediateInvocation(
17408     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17409     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17410   struct ComplexRemove : TreeTransform<ComplexRemove> {
17411     using Base = TreeTransform<ComplexRemove>;
17412     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17413     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17414     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17415         CurrentII;
17416     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17417                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17418                   SmallVector<Sema::ImmediateInvocationCandidate,
17419                               4>::reverse_iterator Current)
17420         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17421     void RemoveImmediateInvocation(ConstantExpr* E) {
17422       auto It = std::find_if(CurrentII, IISet.rend(),
17423                              [E](Sema::ImmediateInvocationCandidate Elem) {
17424                                return Elem.getPointer() == E;
17425                              });
17426       // It is possible that some subexpression of the current immediate
17427       // invocation was handled from another expression evaluation context. Do
17428       // not handle the current immediate invocation if some of its
17429       // subexpressions failed before.
17430       if (It == IISet.rend()) {
17431         if (SemaRef.FailedImmediateInvocations.contains(E))
17432           CurrentII->setInt(1);
17433       } else {
17434         It->setInt(1); // Mark as deleted
17435       }
17436     }
17437     ExprResult TransformConstantExpr(ConstantExpr *E) {
17438       if (!E->isImmediateInvocation())
17439         return Base::TransformConstantExpr(E);
17440       RemoveImmediateInvocation(E);
17441       return Base::TransformExpr(E->getSubExpr());
17442     }
17443     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17444     /// we need to remove its DeclRefExpr from the DRSet.
17445     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17446       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17447       return Base::TransformCXXOperatorCallExpr(E);
17448     }
17449     /// Base::TransformUserDefinedLiteral doesn't preserve the
17450     /// UserDefinedLiteral node.
17451     ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17452     /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17453     /// here.
17454     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17455       if (!Init)
17456         return Init;
17457       /// ConstantExpr are the first layer of implicit node to be removed so if
17458       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17459       if (auto *CE = dyn_cast<ConstantExpr>(Init))
17460         if (CE->isImmediateInvocation())
17461           RemoveImmediateInvocation(CE);
17462       return Base::TransformInitializer(Init, NotCopyInit);
17463     }
17464     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17465       DRSet.erase(E);
17466       return E;
17467     }
17468     ExprResult TransformLambdaExpr(LambdaExpr *E) {
17469       // Do not rebuild lambdas to avoid creating a new type.
17470       // Lambdas have already been processed inside their eval context.
17471       return E;
17472     }
17473     bool AlwaysRebuild() { return false; }
17474     bool ReplacingOriginal() { return true; }
17475     bool AllowSkippingCXXConstructExpr() {
17476       bool Res = AllowSkippingFirstCXXConstructExpr;
17477       AllowSkippingFirstCXXConstructExpr = true;
17478       return Res;
17479     }
17480     bool AllowSkippingFirstCXXConstructExpr = true;
17481   } Transformer(SemaRef, Rec.ReferenceToConsteval,
17482                 Rec.ImmediateInvocationCandidates, It);
17483 
17484   /// CXXConstructExpr with a single argument are getting skipped by
17485   /// TreeTransform in some situtation because they could be implicit. This
17486   /// can only occur for the top-level CXXConstructExpr because it is used
17487   /// nowhere in the expression being transformed therefore will not be rebuilt.
17488   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17489   /// skipping the first CXXConstructExpr.
17490   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17491     Transformer.AllowSkippingFirstCXXConstructExpr = false;
17492 
17493   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17494   // The result may not be usable in case of previous compilation errors.
17495   // In this case evaluation of the expression may result in crash so just
17496   // don't do anything further with the result.
17497   if (Res.isUsable()) {
17498     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17499     It->getPointer()->setSubExpr(Res.get());
17500   }
17501 }
17502 
17503 static void
17504 HandleImmediateInvocations(Sema &SemaRef,
17505                            Sema::ExpressionEvaluationContextRecord &Rec) {
17506   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17507        Rec.ReferenceToConsteval.size() == 0) ||
17508       Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17509     return;
17510 
17511   /// When we have more than 1 ImmediateInvocationCandidates or previously
17512   /// failed immediate invocations, we need to check for nested
17513   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17514   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17515   /// invocation.
17516   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17517       !SemaRef.FailedImmediateInvocations.empty()) {
17518 
17519     /// Prevent sema calls during the tree transform from adding pointers that
17520     /// are already in the sets.
17521     llvm::SaveAndRestore DisableIITracking(
17522         SemaRef.RebuildingImmediateInvocation, true);
17523 
17524     /// Prevent diagnostic during tree transfrom as they are duplicates
17525     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17526 
17527     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17528          It != Rec.ImmediateInvocationCandidates.rend(); It++)
17529       if (!It->getInt())
17530         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17531   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17532              Rec.ReferenceToConsteval.size()) {
17533     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17534       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17535       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17536       bool VisitDeclRefExpr(DeclRefExpr *E) {
17537         DRSet.erase(E);
17538         return DRSet.size();
17539       }
17540     } Visitor(Rec.ReferenceToConsteval);
17541     Visitor.TraverseStmt(
17542         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17543   }
17544   for (auto CE : Rec.ImmediateInvocationCandidates)
17545     if (!CE.getInt())
17546       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17547   for (auto *DR : Rec.ReferenceToConsteval) {
17548     // If the expression is immediate escalating, it is not an error;
17549     // The outer context itself becomes immediate and further errors,
17550     // if any, will be handled by DiagnoseImmediateEscalatingReason.
17551     if (DR->isImmediateEscalating())
17552       continue;
17553     auto *FD = cast<FunctionDecl>(DR->getDecl());
17554     const NamedDecl *ND = FD;
17555     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
17556         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17557       ND = MD->getParent();
17558 
17559     // C++23 [expr.const]/p16
17560     // An expression or conversion is immediate-escalating if it is not
17561     // initially in an immediate function context and it is [...] a
17562     // potentially-evaluated id-expression that denotes an immediate function
17563     // that is not a subexpression of an immediate invocation.
17564     bool ImmediateEscalating = false;
17565     bool IsPotentiallyEvaluated =
17566         Rec.Context ==
17567             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17568         Rec.Context ==
17569             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17570     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17571       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17572 
17573     if (!Rec.InImmediateEscalatingFunctionContext ||
17574         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
17575       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17576           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
17577       SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
17578       if (auto Context =
17579               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17580         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17581             << Context->Decl;
17582         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17583       }
17584       if (FD->isImmediateEscalating() && !FD->isConsteval())
17585         SemaRef.DiagnoseImmediateEscalatingReason(FD);
17586 
17587     } else {
17588       SemaRef.MarkExpressionAsImmediateEscalating(DR);
17589     }
17590   }
17591 }
17592 
17593 void Sema::PopExpressionEvaluationContext() {
17594   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17595   unsigned NumTypos = Rec.NumTypos;
17596 
17597   if (!Rec.Lambdas.empty()) {
17598     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17599     if (!getLangOpts().CPlusPlus20 &&
17600         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17601          Rec.isUnevaluated() ||
17602          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17603       unsigned D;
17604       if (Rec.isUnevaluated()) {
17605         // C++11 [expr.prim.lambda]p2:
17606         //   A lambda-expression shall not appear in an unevaluated operand
17607         //   (Clause 5).
17608         D = diag::err_lambda_unevaluated_operand;
17609       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17610         // C++1y [expr.const]p2:
17611         //   A conditional-expression e is a core constant expression unless the
17612         //   evaluation of e, following the rules of the abstract machine, would
17613         //   evaluate [...] a lambda-expression.
17614         D = diag::err_lambda_in_constant_expression;
17615       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17616         // C++17 [expr.prim.lamda]p2:
17617         // A lambda-expression shall not appear [...] in a template-argument.
17618         D = diag::err_lambda_in_invalid_context;
17619       } else
17620         llvm_unreachable("Couldn't infer lambda error message.");
17621 
17622       for (const auto *L : Rec.Lambdas)
17623         Diag(L->getBeginLoc(), D);
17624     }
17625   }
17626 
17627   // Append the collected materialized temporaries into previous context before
17628   // exit if the previous also is a lifetime extending context.
17629   auto &PrevRecord = parentEvaluationContext();
17630   if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
17631       PrevRecord.InLifetimeExtendingContext &&
17632       !Rec.ForRangeLifetimeExtendTemps.empty()) {
17633     PrevRecord.ForRangeLifetimeExtendTemps.append(
17634         Rec.ForRangeLifetimeExtendTemps);
17635   }
17636 
17637   WarnOnPendingNoDerefs(Rec);
17638   HandleImmediateInvocations(*this, Rec);
17639 
17640   // Warn on any volatile-qualified simple-assignments that are not discarded-
17641   // value expressions nor unevaluated operands (those cases get removed from
17642   // this list by CheckUnusedVolatileAssignment).
17643   for (auto *BO : Rec.VolatileAssignmentLHSs)
17644     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17645         << BO->getType();
17646 
17647   // When are coming out of an unevaluated context, clear out any
17648   // temporaries that we may have created as part of the evaluation of
17649   // the expression in that context: they aren't relevant because they
17650   // will never be constructed.
17651   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17652     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17653                              ExprCleanupObjects.end());
17654     Cleanup = Rec.ParentCleanup;
17655     CleanupVarDeclMarking();
17656     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17657   // Otherwise, merge the contexts together.
17658   } else {
17659     Cleanup.mergeFrom(Rec.ParentCleanup);
17660     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17661                             Rec.SavedMaybeODRUseExprs.end());
17662   }
17663 
17664   // Pop the current expression evaluation context off the stack.
17665   ExprEvalContexts.pop_back();
17666 
17667   // The global expression evaluation context record is never popped.
17668   ExprEvalContexts.back().NumTypos += NumTypos;
17669 }
17670 
17671 void Sema::DiscardCleanupsInEvaluationContext() {
17672   ExprCleanupObjects.erase(
17673          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17674          ExprCleanupObjects.end());
17675   Cleanup.reset();
17676   MaybeODRUseExprs.clear();
17677 }
17678 
17679 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17680   ExprResult Result = CheckPlaceholderExpr(E);
17681   if (Result.isInvalid())
17682     return ExprError();
17683   E = Result.get();
17684   if (!E->getType()->isVariablyModifiedType())
17685     return E;
17686   return TransformToPotentiallyEvaluated(E);
17687 }
17688 
17689 /// Are we in a context that is potentially constant evaluated per C++20
17690 /// [expr.const]p12?
17691 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17692   /// C++2a [expr.const]p12:
17693   //   An expression or conversion is potentially constant evaluated if it is
17694   switch (SemaRef.ExprEvalContexts.back().Context) {
17695     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17696     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17697 
17698       // -- a manifestly constant-evaluated expression,
17699     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17700     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17701     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17702       // -- a potentially-evaluated expression,
17703     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17704       // -- an immediate subexpression of a braced-init-list,
17705 
17706       // -- [FIXME] an expression of the form & cast-expression that occurs
17707       //    within a templated entity
17708       // -- a subexpression of one of the above that is not a subexpression of
17709       // a nested unevaluated operand.
17710       return true;
17711 
17712     case Sema::ExpressionEvaluationContext::Unevaluated:
17713     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17714       // Expressions in this context are never evaluated.
17715       return false;
17716   }
17717   llvm_unreachable("Invalid context");
17718 }
17719 
17720 /// Return true if this function has a calling convention that requires mangling
17721 /// in the size of the parameter pack.
17722 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17723   // These manglings don't do anything on non-Windows or non-x86 platforms, so
17724   // we don't need parameter type sizes.
17725   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17726   if (!TT.isOSWindows() || !TT.isX86())
17727     return false;
17728 
17729   // If this is C++ and this isn't an extern "C" function, parameters do not
17730   // need to be complete. In this case, C++ mangling will apply, which doesn't
17731   // use the size of the parameters.
17732   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17733     return false;
17734 
17735   // Stdcall, fastcall, and vectorcall need this special treatment.
17736   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17737   switch (CC) {
17738   case CC_X86StdCall:
17739   case CC_X86FastCall:
17740   case CC_X86VectorCall:
17741     return true;
17742   default:
17743     break;
17744   }
17745   return false;
17746 }
17747 
17748 /// Require that all of the parameter types of function be complete. Normally,
17749 /// parameter types are only required to be complete when a function is called
17750 /// or defined, but to mangle functions with certain calling conventions, the
17751 /// mangler needs to know the size of the parameter list. In this situation,
17752 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17753 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17754 /// result in a linker error. Clang doesn't implement this behavior, and instead
17755 /// attempts to error at compile time.
17756 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17757                                                   SourceLocation Loc) {
17758   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17759     FunctionDecl *FD;
17760     ParmVarDecl *Param;
17761 
17762   public:
17763     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17764         : FD(FD), Param(Param) {}
17765 
17766     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17767       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17768       StringRef CCName;
17769       switch (CC) {
17770       case CC_X86StdCall:
17771         CCName = "stdcall";
17772         break;
17773       case CC_X86FastCall:
17774         CCName = "fastcall";
17775         break;
17776       case CC_X86VectorCall:
17777         CCName = "vectorcall";
17778         break;
17779       default:
17780         llvm_unreachable("CC does not need mangling");
17781       }
17782 
17783       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17784           << Param->getDeclName() << FD->getDeclName() << CCName;
17785     }
17786   };
17787 
17788   for (ParmVarDecl *Param : FD->parameters()) {
17789     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17790     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17791   }
17792 }
17793 
17794 namespace {
17795 enum class OdrUseContext {
17796   /// Declarations in this context are not odr-used.
17797   None,
17798   /// Declarations in this context are formally odr-used, but this is a
17799   /// dependent context.
17800   Dependent,
17801   /// Declarations in this context are odr-used but not actually used (yet).
17802   FormallyOdrUsed,
17803   /// Declarations in this context are used.
17804   Used
17805 };
17806 }
17807 
17808 /// Are we within a context in which references to resolved functions or to
17809 /// variables result in odr-use?
17810 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17811   OdrUseContext Result;
17812 
17813   switch (SemaRef.ExprEvalContexts.back().Context) {
17814     case Sema::ExpressionEvaluationContext::Unevaluated:
17815     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17816     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17817       return OdrUseContext::None;
17818 
17819     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17820     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17821     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17822       Result = OdrUseContext::Used;
17823       break;
17824 
17825     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17826       Result = OdrUseContext::FormallyOdrUsed;
17827       break;
17828 
17829     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17830       // A default argument formally results in odr-use, but doesn't actually
17831       // result in a use in any real sense until it itself is used.
17832       Result = OdrUseContext::FormallyOdrUsed;
17833       break;
17834   }
17835 
17836   if (SemaRef.CurContext->isDependentContext())
17837     return OdrUseContext::Dependent;
17838 
17839   return Result;
17840 }
17841 
17842 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17843   if (!Func->isConstexpr())
17844     return false;
17845 
17846   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17847     return true;
17848   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17849   return CCD && CCD->getInheritedConstructor();
17850 }
17851 
17852 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17853                                   bool MightBeOdrUse) {
17854   assert(Func && "No function?");
17855 
17856   Func->setReferenced();
17857 
17858   // Recursive functions aren't really used until they're used from some other
17859   // context.
17860   bool IsRecursiveCall = CurContext == Func;
17861 
17862   // C++11 [basic.def.odr]p3:
17863   //   A function whose name appears as a potentially-evaluated expression is
17864   //   odr-used if it is the unique lookup result or the selected member of a
17865   //   set of overloaded functions [...].
17866   //
17867   // We (incorrectly) mark overload resolution as an unevaluated context, so we
17868   // can just check that here.
17869   OdrUseContext OdrUse =
17870       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17871   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17872     OdrUse = OdrUseContext::FormallyOdrUsed;
17873 
17874   // Trivial default constructors and destructors are never actually used.
17875   // FIXME: What about other special members?
17876   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17877       OdrUse == OdrUseContext::Used) {
17878     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17879       if (Constructor->isDefaultConstructor())
17880         OdrUse = OdrUseContext::FormallyOdrUsed;
17881     if (isa<CXXDestructorDecl>(Func))
17882       OdrUse = OdrUseContext::FormallyOdrUsed;
17883   }
17884 
17885   // C++20 [expr.const]p12:
17886   //   A function [...] is needed for constant evaluation if it is [...] a
17887   //   constexpr function that is named by an expression that is potentially
17888   //   constant evaluated
17889   bool NeededForConstantEvaluation =
17890       isPotentiallyConstantEvaluatedContext(*this) &&
17891       isImplicitlyDefinableConstexprFunction(Func);
17892 
17893   // Determine whether we require a function definition to exist, per
17894   // C++11 [temp.inst]p3:
17895   //   Unless a function template specialization has been explicitly
17896   //   instantiated or explicitly specialized, the function template
17897   //   specialization is implicitly instantiated when the specialization is
17898   //   referenced in a context that requires a function definition to exist.
17899   // C++20 [temp.inst]p7:
17900   //   The existence of a definition of a [...] function is considered to
17901   //   affect the semantics of the program if the [...] function is needed for
17902   //   constant evaluation by an expression
17903   // C++20 [basic.def.odr]p10:
17904   //   Every program shall contain exactly one definition of every non-inline
17905   //   function or variable that is odr-used in that program outside of a
17906   //   discarded statement
17907   // C++20 [special]p1:
17908   //   The implementation will implicitly define [defaulted special members]
17909   //   if they are odr-used or needed for constant evaluation.
17910   //
17911   // Note that we skip the implicit instantiation of templates that are only
17912   // used in unused default arguments or by recursive calls to themselves.
17913   // This is formally non-conforming, but seems reasonable in practice.
17914   bool NeedDefinition =
17915       !IsRecursiveCall &&
17916       (OdrUse == OdrUseContext::Used ||
17917        (NeededForConstantEvaluation && !Func->isPureVirtual()));
17918 
17919   // C++14 [temp.expl.spec]p6:
17920   //   If a template [...] is explicitly specialized then that specialization
17921   //   shall be declared before the first use of that specialization that would
17922   //   cause an implicit instantiation to take place, in every translation unit
17923   //   in which such a use occurs
17924   if (NeedDefinition &&
17925       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17926        Func->getMemberSpecializationInfo()))
17927     checkSpecializationReachability(Loc, Func);
17928 
17929   if (getLangOpts().CUDA)
17930     CUDA().CheckCall(Loc, Func);
17931 
17932   // If we need a definition, try to create one.
17933   if (NeedDefinition && !Func->getBody()) {
17934     runWithSufficientStackSpace(Loc, [&] {
17935       if (CXXConstructorDecl *Constructor =
17936               dyn_cast<CXXConstructorDecl>(Func)) {
17937         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
17938         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17939           if (Constructor->isDefaultConstructor()) {
17940             if (Constructor->isTrivial() &&
17941                 !Constructor->hasAttr<DLLExportAttr>())
17942               return;
17943             DefineImplicitDefaultConstructor(Loc, Constructor);
17944           } else if (Constructor->isCopyConstructor()) {
17945             DefineImplicitCopyConstructor(Loc, Constructor);
17946           } else if (Constructor->isMoveConstructor()) {
17947             DefineImplicitMoveConstructor(Loc, Constructor);
17948           }
17949         } else if (Constructor->getInheritedConstructor()) {
17950           DefineInheritingConstructor(Loc, Constructor);
17951         }
17952       } else if (CXXDestructorDecl *Destructor =
17953                      dyn_cast<CXXDestructorDecl>(Func)) {
17954         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
17955         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17956           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17957             return;
17958           DefineImplicitDestructor(Loc, Destructor);
17959         }
17960         if (Destructor->isVirtual() && getLangOpts().AppleKext)
17961           MarkVTableUsed(Loc, Destructor->getParent());
17962       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
17963         if (MethodDecl->isOverloadedOperator() &&
17964             MethodDecl->getOverloadedOperator() == OO_Equal) {
17965           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
17966           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17967             if (MethodDecl->isCopyAssignmentOperator())
17968               DefineImplicitCopyAssignment(Loc, MethodDecl);
17969             else if (MethodDecl->isMoveAssignmentOperator())
17970               DefineImplicitMoveAssignment(Loc, MethodDecl);
17971           }
17972         } else if (isa<CXXConversionDecl>(MethodDecl) &&
17973                    MethodDecl->getParent()->isLambda()) {
17974           CXXConversionDecl *Conversion =
17975               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17976           if (Conversion->isLambdaToBlockPointerConversion())
17977             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17978           else
17979             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17980         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17981           MarkVTableUsed(Loc, MethodDecl->getParent());
17982       }
17983 
17984       if (Func->isDefaulted() && !Func->isDeleted()) {
17985         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17986         if (DCK != DefaultedComparisonKind::None)
17987           DefineDefaultedComparison(Loc, Func, DCK);
17988       }
17989 
17990       // Implicit instantiation of function templates and member functions of
17991       // class templates.
17992       if (Func->isImplicitlyInstantiable()) {
17993         TemplateSpecializationKind TSK =
17994             Func->getTemplateSpecializationKindForInstantiation();
17995         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17996         bool FirstInstantiation = PointOfInstantiation.isInvalid();
17997         if (FirstInstantiation) {
17998           PointOfInstantiation = Loc;
17999           if (auto *MSI = Func->getMemberSpecializationInfo())
18000             MSI->setPointOfInstantiation(Loc);
18001             // FIXME: Notify listener.
18002           else
18003             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18004         } else if (TSK != TSK_ImplicitInstantiation) {
18005           // Use the point of use as the point of instantiation, instead of the
18006           // point of explicit instantiation (which we track as the actual point
18007           // of instantiation). This gives better backtraces in diagnostics.
18008           PointOfInstantiation = Loc;
18009         }
18010 
18011         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18012             Func->isConstexpr()) {
18013           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18014               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18015               CodeSynthesisContexts.size())
18016             PendingLocalImplicitInstantiations.push_back(
18017                 std::make_pair(Func, PointOfInstantiation));
18018           else if (Func->isConstexpr())
18019             // Do not defer instantiations of constexpr functions, to avoid the
18020             // expression evaluator needing to call back into Sema if it sees a
18021             // call to such a function.
18022             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18023           else {
18024             Func->setInstantiationIsPending(true);
18025             PendingInstantiations.push_back(
18026                 std::make_pair(Func, PointOfInstantiation));
18027             // Notify the consumer that a function was implicitly instantiated.
18028             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18029           }
18030         }
18031       } else {
18032         // Walk redefinitions, as some of them may be instantiable.
18033         for (auto *i : Func->redecls()) {
18034           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18035             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18036         }
18037       }
18038     });
18039   }
18040 
18041   // If a constructor was defined in the context of a default parameter
18042   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18043   // context), its initializers may not be referenced yet.
18044   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18045     EnterExpressionEvaluationContext EvalContext(
18046         *this,
18047         Constructor->isImmediateFunction()
18048             ? ExpressionEvaluationContext::ImmediateFunctionContext
18049             : ExpressionEvaluationContext::PotentiallyEvaluated,
18050         Constructor);
18051     for (CXXCtorInitializer *Init : Constructor->inits()) {
18052       if (Init->isInClassMemberInitializer())
18053         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
18054           MarkDeclarationsReferencedInExpr(Init->getInit());
18055         });
18056     }
18057   }
18058 
18059   // C++14 [except.spec]p17:
18060   //   An exception-specification is considered to be needed when:
18061   //   - the function is odr-used or, if it appears in an unevaluated operand,
18062   //     would be odr-used if the expression were potentially-evaluated;
18063   //
18064   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18065   // function is a pure virtual function we're calling, and in that case the
18066   // function was selected by overload resolution and we need to resolve its
18067   // exception specification for a different reason.
18068   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18069   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18070     ResolveExceptionSpec(Loc, FPT);
18071 
18072   // A callee could be called by a host function then by a device function.
18073   // If we only try recording once, we will miss recording the use on device
18074   // side. Therefore keep trying until it is recorded.
18075   if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18076       !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
18077     CUDA().RecordImplicitHostDeviceFuncUsedByDevice(Func);
18078 
18079   // If this is the first "real" use, act on that.
18080   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18081     // Keep track of used but undefined functions.
18082     if (!Func->isDefined()) {
18083       if (mightHaveNonExternalLinkage(Func))
18084         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18085       else if (Func->getMostRecentDecl()->isInlined() &&
18086                !LangOpts.GNUInline &&
18087                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18088         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18089       else if (isExternalWithNoLinkageType(Func))
18090         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18091     }
18092 
18093     // Some x86 Windows calling conventions mangle the size of the parameter
18094     // pack into the name. Computing the size of the parameters requires the
18095     // parameter types to be complete. Check that now.
18096     if (funcHasParameterSizeMangling(*this, Func))
18097       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18098 
18099     // In the MS C++ ABI, the compiler emits destructor variants where they are
18100     // used. If the destructor is used here but defined elsewhere, mark the
18101     // virtual base destructors referenced. If those virtual base destructors
18102     // are inline, this will ensure they are defined when emitting the complete
18103     // destructor variant. This checking may be redundant if the destructor is
18104     // provided later in this TU.
18105     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18106       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18107         CXXRecordDecl *Parent = Dtor->getParent();
18108         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18109           CheckCompleteDestructorVariant(Loc, Dtor);
18110       }
18111     }
18112 
18113     Func->markUsed(Context);
18114   }
18115 }
18116 
18117 /// Directly mark a variable odr-used. Given a choice, prefer to use
18118 /// MarkVariableReferenced since it does additional checks and then
18119 /// calls MarkVarDeclODRUsed.
18120 /// If the variable must be captured:
18121 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18122 ///  - else capture it in the DeclContext that maps to the
18123 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18124 static void
18125 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18126                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18127   // Keep track of used but undefined variables.
18128   // FIXME: We shouldn't suppress this warning for static data members.
18129   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18130   assert(Var && "expected a capturable variable");
18131 
18132   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18133       (!Var->isExternallyVisible() || Var->isInline() ||
18134        SemaRef.isExternalWithNoLinkageType(Var)) &&
18135       !(Var->isStaticDataMember() && Var->hasInit())) {
18136     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18137     if (old.isInvalid())
18138       old = Loc;
18139   }
18140   QualType CaptureType, DeclRefType;
18141   if (SemaRef.LangOpts.OpenMP)
18142     SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18143   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18144                              /*EllipsisLoc*/ SourceLocation(),
18145                              /*BuildAndDiagnose*/ true, CaptureType,
18146                              DeclRefType, FunctionScopeIndexToStopAt);
18147 
18148   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18149     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18150     auto VarTarget = SemaRef.CUDA().IdentifyTarget(Var);
18151     auto UserTarget = SemaRef.CUDA().IdentifyTarget(FD);
18152     if (VarTarget == SemaCUDA::CVT_Host &&
18153         (UserTarget == CUDAFunctionTarget::Device ||
18154          UserTarget == CUDAFunctionTarget::HostDevice ||
18155          UserTarget == CUDAFunctionTarget::Global)) {
18156       // Diagnose ODR-use of host global variables in device functions.
18157       // Reference of device global variables in host functions is allowed
18158       // through shadow variables therefore it is not diagnosed.
18159       if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18160         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18161             << /*host*/ 2 << /*variable*/ 1 << Var
18162             << llvm::to_underlying(UserTarget);
18163         SemaRef.targetDiag(Var->getLocation(),
18164                            Var->getType().isConstQualified()
18165                                ? diag::note_cuda_const_var_unpromoted
18166                                : diag::note_cuda_host_var);
18167       }
18168     } else if (VarTarget == SemaCUDA::CVT_Device &&
18169                !Var->hasAttr<CUDASharedAttr>() &&
18170                (UserTarget == CUDAFunctionTarget::Host ||
18171                 UserTarget == CUDAFunctionTarget::HostDevice)) {
18172       // Record a CUDA/HIP device side variable if it is ODR-used
18173       // by host code. This is done conservatively, when the variable is
18174       // referenced in any of the following contexts:
18175       //   - a non-function context
18176       //   - a host function
18177       //   - a host device function
18178       // This makes the ODR-use of the device side variable by host code to
18179       // be visible in the device compilation for the compiler to be able to
18180       // emit template variables instantiated by host code only and to
18181       // externalize the static device side variable ODR-used by host code.
18182       if (!Var->hasExternalStorage())
18183         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18184       else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18185                (!FD || (!FD->getDescribedFunctionTemplate() &&
18186                         SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18187                             GVA_StrongExternal)))
18188         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18189     }
18190   }
18191 
18192   V->markUsed(SemaRef.Context);
18193 }
18194 
18195 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18196                                              SourceLocation Loc,
18197                                              unsigned CapturingScopeIndex) {
18198   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18199 }
18200 
18201 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18202                                                  ValueDecl *var) {
18203   DeclContext *VarDC = var->getDeclContext();
18204 
18205   //  If the parameter still belongs to the translation unit, then
18206   //  we're actually just using one parameter in the declaration of
18207   //  the next.
18208   if (isa<ParmVarDecl>(var) &&
18209       isa<TranslationUnitDecl>(VarDC))
18210     return;
18211 
18212   // For C code, don't diagnose about capture if we're not actually in code
18213   // right now; it's impossible to write a non-constant expression outside of
18214   // function context, so we'll get other (more useful) diagnostics later.
18215   //
18216   // For C++, things get a bit more nasty... it would be nice to suppress this
18217   // diagnostic for certain cases like using a local variable in an array bound
18218   // for a member of a local class, but the correct predicate is not obvious.
18219   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18220     return;
18221 
18222   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18223   unsigned ContextKind = 3; // unknown
18224   if (isa<CXXMethodDecl>(VarDC) &&
18225       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18226     ContextKind = 2;
18227   } else if (isa<FunctionDecl>(VarDC)) {
18228     ContextKind = 0;
18229   } else if (isa<BlockDecl>(VarDC)) {
18230     ContextKind = 1;
18231   }
18232 
18233   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18234     << var << ValueKind << ContextKind << VarDC;
18235   S.Diag(var->getLocation(), diag::note_entity_declared_at)
18236       << var;
18237 
18238   // FIXME: Add additional diagnostic info about class etc. which prevents
18239   // capture.
18240 }
18241 
18242 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18243                                                  ValueDecl *Var,
18244                                                  bool &SubCapturesAreNested,
18245                                                  QualType &CaptureType,
18246                                                  QualType &DeclRefType) {
18247   // Check whether we've already captured it.
18248   if (CSI->CaptureMap.count(Var)) {
18249     // If we found a capture, any subcaptures are nested.
18250     SubCapturesAreNested = true;
18251 
18252     // Retrieve the capture type for this variable.
18253     CaptureType = CSI->getCapture(Var).getCaptureType();
18254 
18255     // Compute the type of an expression that refers to this variable.
18256     DeclRefType = CaptureType.getNonReferenceType();
18257 
18258     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18259     // are mutable in the sense that user can change their value - they are
18260     // private instances of the captured declarations.
18261     const Capture &Cap = CSI->getCapture(Var);
18262     if (Cap.isCopyCapture() &&
18263         !(isa<LambdaScopeInfo>(CSI) &&
18264           !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
18265         !(isa<CapturedRegionScopeInfo>(CSI) &&
18266           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18267       DeclRefType.addConst();
18268     return true;
18269   }
18270   return false;
18271 }
18272 
18273 // Only block literals, captured statements, and lambda expressions can
18274 // capture; other scopes don't work.
18275 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18276                                                       ValueDecl *Var,
18277                                                       SourceLocation Loc,
18278                                                       const bool Diagnose,
18279                                                       Sema &S) {
18280   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18281     return getLambdaAwareParentOfDeclContext(DC);
18282 
18283   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18284   if (Underlying) {
18285     if (Underlying->hasLocalStorage() && Diagnose)
18286       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18287   }
18288   return nullptr;
18289 }
18290 
18291 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18292 // certain types of variables (unnamed, variably modified types etc.)
18293 // so check for eligibility.
18294 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18295                                  SourceLocation Loc, const bool Diagnose,
18296                                  Sema &S) {
18297 
18298   assert((isa<VarDecl, BindingDecl>(Var)) &&
18299          "Only variables and structured bindings can be captured");
18300 
18301   bool IsBlock = isa<BlockScopeInfo>(CSI);
18302   bool IsLambda = isa<LambdaScopeInfo>(CSI);
18303 
18304   // Lambdas are not allowed to capture unnamed variables
18305   // (e.g. anonymous unions).
18306   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18307   // assuming that's the intent.
18308   if (IsLambda && !Var->getDeclName()) {
18309     if (Diagnose) {
18310       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18311       S.Diag(Var->getLocation(), diag::note_declared_at);
18312     }
18313     return false;
18314   }
18315 
18316   // Prohibit variably-modified types in blocks; they're difficult to deal with.
18317   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18318     if (Diagnose) {
18319       S.Diag(Loc, diag::err_ref_vm_type);
18320       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18321     }
18322     return false;
18323   }
18324   // Prohibit structs with flexible array members too.
18325   // We cannot capture what is in the tail end of the struct.
18326   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18327     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18328       if (Diagnose) {
18329         if (IsBlock)
18330           S.Diag(Loc, diag::err_ref_flexarray_type);
18331         else
18332           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18333         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18334       }
18335       return false;
18336     }
18337   }
18338   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18339   // Lambdas and captured statements are not allowed to capture __block
18340   // variables; they don't support the expected semantics.
18341   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18342     if (Diagnose) {
18343       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18344       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18345     }
18346     return false;
18347   }
18348   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18349   if (S.getLangOpts().OpenCL && IsBlock &&
18350       Var->getType()->isBlockPointerType()) {
18351     if (Diagnose)
18352       S.Diag(Loc, diag::err_opencl_block_ref_block);
18353     return false;
18354   }
18355 
18356   if (isa<BindingDecl>(Var)) {
18357     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18358       if (Diagnose)
18359         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18360       return false;
18361     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18362       S.Diag(Loc, S.LangOpts.CPlusPlus20
18363                       ? diag::warn_cxx17_compat_capture_binding
18364                       : diag::ext_capture_binding)
18365           << Var;
18366       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18367     }
18368   }
18369 
18370   return true;
18371 }
18372 
18373 // Returns true if the capture by block was successful.
18374 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18375                            SourceLocation Loc, const bool BuildAndDiagnose,
18376                            QualType &CaptureType, QualType &DeclRefType,
18377                            const bool Nested, Sema &S, bool Invalid) {
18378   bool ByRef = false;
18379 
18380   // Blocks are not allowed to capture arrays, excepting OpenCL.
18381   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18382   // (decayed to pointers).
18383   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18384     if (BuildAndDiagnose) {
18385       S.Diag(Loc, diag::err_ref_array_type);
18386       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18387       Invalid = true;
18388     } else {
18389       return false;
18390     }
18391   }
18392 
18393   // Forbid the block-capture of autoreleasing variables.
18394   if (!Invalid &&
18395       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18396     if (BuildAndDiagnose) {
18397       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18398         << /*block*/ 0;
18399       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18400       Invalid = true;
18401     } else {
18402       return false;
18403     }
18404   }
18405 
18406   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18407   if (const auto *PT = CaptureType->getAs<PointerType>()) {
18408     QualType PointeeTy = PT->getPointeeType();
18409 
18410     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18411         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18412         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18413       if (BuildAndDiagnose) {
18414         SourceLocation VarLoc = Var->getLocation();
18415         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18416         S.Diag(VarLoc, diag::note_declare_parameter_strong);
18417       }
18418     }
18419   }
18420 
18421   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18422   if (HasBlocksAttr || CaptureType->isReferenceType() ||
18423       (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(Var))) {
18424     // Block capture by reference does not change the capture or
18425     // declaration reference types.
18426     ByRef = true;
18427   } else {
18428     // Block capture by copy introduces 'const'.
18429     CaptureType = CaptureType.getNonReferenceType().withConst();
18430     DeclRefType = CaptureType;
18431   }
18432 
18433   // Actually capture the variable.
18434   if (BuildAndDiagnose)
18435     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18436                     CaptureType, Invalid);
18437 
18438   return !Invalid;
18439 }
18440 
18441 /// Capture the given variable in the captured region.
18442 static bool captureInCapturedRegion(
18443     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18444     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18445     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18446     bool IsTopScope, Sema &S, bool Invalid) {
18447   // By default, capture variables by reference.
18448   bool ByRef = true;
18449   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18450     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18451   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18452     // Using an LValue reference type is consistent with Lambdas (see below).
18453     if (S.OpenMP().isOpenMPCapturedDecl(Var)) {
18454       bool HasConst = DeclRefType.isConstQualified();
18455       DeclRefType = DeclRefType.getUnqualifiedType();
18456       // Don't lose diagnostics about assignments to const.
18457       if (HasConst)
18458         DeclRefType.addConst();
18459     }
18460     // Do not capture firstprivates in tasks.
18461     if (S.OpenMP().isOpenMPPrivateDecl(Var, RSI->OpenMPLevel,
18462                                        RSI->OpenMPCaptureLevel) != OMPC_unknown)
18463       return true;
18464     ByRef = S.OpenMP().isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18465                                              RSI->OpenMPCaptureLevel);
18466   }
18467 
18468   if (ByRef)
18469     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18470   else
18471     CaptureType = DeclRefType;
18472 
18473   // Actually capture the variable.
18474   if (BuildAndDiagnose)
18475     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18476                     Loc, SourceLocation(), CaptureType, Invalid);
18477 
18478   return !Invalid;
18479 }
18480 
18481 /// Capture the given variable in the lambda.
18482 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18483                             SourceLocation Loc, const bool BuildAndDiagnose,
18484                             QualType &CaptureType, QualType &DeclRefType,
18485                             const bool RefersToCapturedVariable,
18486                             const Sema::TryCaptureKind Kind,
18487                             SourceLocation EllipsisLoc, const bool IsTopScope,
18488                             Sema &S, bool Invalid) {
18489   // Determine whether we are capturing by reference or by value.
18490   bool ByRef = false;
18491   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18492     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18493   } else {
18494     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18495   }
18496 
18497   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18498       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18499     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
18500     Invalid = true;
18501   }
18502 
18503   // Compute the type of the field that will capture this variable.
18504   if (ByRef) {
18505     // C++11 [expr.prim.lambda]p15:
18506     //   An entity is captured by reference if it is implicitly or
18507     //   explicitly captured but not captured by copy. It is
18508     //   unspecified whether additional unnamed non-static data
18509     //   members are declared in the closure type for entities
18510     //   captured by reference.
18511     //
18512     // FIXME: It is not clear whether we want to build an lvalue reference
18513     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18514     // to do the former, while EDG does the latter. Core issue 1249 will
18515     // clarify, but for now we follow GCC because it's a more permissive and
18516     // easily defensible position.
18517     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18518   } else {
18519     // C++11 [expr.prim.lambda]p14:
18520     //   For each entity captured by copy, an unnamed non-static
18521     //   data member is declared in the closure type. The
18522     //   declaration order of these members is unspecified. The type
18523     //   of such a data member is the type of the corresponding
18524     //   captured entity if the entity is not a reference to an
18525     //   object, or the referenced type otherwise. [Note: If the
18526     //   captured entity is a reference to a function, the
18527     //   corresponding data member is also a reference to a
18528     //   function. - end note ]
18529     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18530       if (!RefType->getPointeeType()->isFunctionType())
18531         CaptureType = RefType->getPointeeType();
18532     }
18533 
18534     // Forbid the lambda copy-capture of autoreleasing variables.
18535     if (!Invalid &&
18536         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18537       if (BuildAndDiagnose) {
18538         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18539         S.Diag(Var->getLocation(), diag::note_previous_decl)
18540           << Var->getDeclName();
18541         Invalid = true;
18542       } else {
18543         return false;
18544       }
18545     }
18546 
18547     // Make sure that by-copy captures are of a complete and non-abstract type.
18548     if (!Invalid && BuildAndDiagnose) {
18549       if (!CaptureType->isDependentType() &&
18550           S.RequireCompleteSizedType(
18551               Loc, CaptureType,
18552               diag::err_capture_of_incomplete_or_sizeless_type,
18553               Var->getDeclName()))
18554         Invalid = true;
18555       else if (S.RequireNonAbstractType(Loc, CaptureType,
18556                                         diag::err_capture_of_abstract_type))
18557         Invalid = true;
18558     }
18559   }
18560 
18561   // Compute the type of a reference to this captured variable.
18562   if (ByRef)
18563     DeclRefType = CaptureType.getNonReferenceType();
18564   else {
18565     // C++ [expr.prim.lambda]p5:
18566     //   The closure type for a lambda-expression has a public inline
18567     //   function call operator [...]. This function call operator is
18568     //   declared const (9.3.1) if and only if the lambda-expression's
18569     //   parameter-declaration-clause is not followed by mutable.
18570     DeclRefType = CaptureType.getNonReferenceType();
18571     bool Const = LSI->lambdaCaptureShouldBeConst();
18572     if (Const && !CaptureType->isReferenceType())
18573       DeclRefType.addConst();
18574   }
18575 
18576   // Add the capture.
18577   if (BuildAndDiagnose)
18578     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18579                     Loc, EllipsisLoc, CaptureType, Invalid);
18580 
18581   return !Invalid;
18582 }
18583 
18584 static bool canCaptureVariableByCopy(ValueDecl *Var,
18585                                      const ASTContext &Context) {
18586   // Offer a Copy fix even if the type is dependent.
18587   if (Var->getType()->isDependentType())
18588     return true;
18589   QualType T = Var->getType().getNonReferenceType();
18590   if (T.isTriviallyCopyableType(Context))
18591     return true;
18592   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18593 
18594     if (!(RD = RD->getDefinition()))
18595       return false;
18596     if (RD->hasSimpleCopyConstructor())
18597       return true;
18598     if (RD->hasUserDeclaredCopyConstructor())
18599       for (CXXConstructorDecl *Ctor : RD->ctors())
18600         if (Ctor->isCopyConstructor())
18601           return !Ctor->isDeleted();
18602   }
18603   return false;
18604 }
18605 
18606 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18607 /// default capture. Fixes may be omitted if they aren't allowed by the
18608 /// standard, for example we can't emit a default copy capture fix-it if we
18609 /// already explicitly copy capture capture another variable.
18610 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18611                                     ValueDecl *Var) {
18612   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18613   // Don't offer Capture by copy of default capture by copy fixes if Var is
18614   // known not to be copy constructible.
18615   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18616 
18617   SmallString<32> FixBuffer;
18618   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18619   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18620     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18621     if (ShouldOfferCopyFix) {
18622       // Offer fixes to insert an explicit capture for the variable.
18623       // [] -> [VarName]
18624       // [OtherCapture] -> [OtherCapture, VarName]
18625       FixBuffer.assign({Separator, Var->getName()});
18626       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18627           << Var << /*value*/ 0
18628           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18629     }
18630     // As above but capture by reference.
18631     FixBuffer.assign({Separator, "&", Var->getName()});
18632     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18633         << Var << /*reference*/ 1
18634         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18635   }
18636 
18637   // Only try to offer default capture if there are no captures excluding this
18638   // and init captures.
18639   // [this]: OK.
18640   // [X = Y]: OK.
18641   // [&A, &B]: Don't offer.
18642   // [A, B]: Don't offer.
18643   if (llvm::any_of(LSI->Captures, [](Capture &C) {
18644         return !C.isThisCapture() && !C.isInitCapture();
18645       }))
18646     return;
18647 
18648   // The default capture specifiers, '=' or '&', must appear first in the
18649   // capture body.
18650   SourceLocation DefaultInsertLoc =
18651       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18652 
18653   if (ShouldOfferCopyFix) {
18654     bool CanDefaultCopyCapture = true;
18655     // [=, *this] OK since c++17
18656     // [=, this] OK since c++20
18657     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18658       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18659                                   ? LSI->getCXXThisCapture().isCopyCapture()
18660                                   : false;
18661     // We can't use default capture by copy if any captures already specified
18662     // capture by copy.
18663     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18664           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18665         })) {
18666       FixBuffer.assign({"=", Separator});
18667       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18668           << /*value*/ 0
18669           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18670     }
18671   }
18672 
18673   // We can't use default capture by reference if any captures already specified
18674   // capture by reference.
18675   if (llvm::none_of(LSI->Captures, [](Capture &C) {
18676         return !C.isInitCapture() && C.isReferenceCapture() &&
18677                !C.isThisCapture();
18678       })) {
18679     FixBuffer.assign({"&", Separator});
18680     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18681         << /*reference*/ 1
18682         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18683   }
18684 }
18685 
18686 bool Sema::tryCaptureVariable(
18687     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18688     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18689     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18690   // An init-capture is notionally from the context surrounding its
18691   // declaration, but its parent DC is the lambda class.
18692   DeclContext *VarDC = Var->getDeclContext();
18693   DeclContext *DC = CurContext;
18694 
18695   // Skip past RequiresExprBodys because they don't constitute function scopes.
18696   while (DC->isRequiresExprBody())
18697     DC = DC->getParent();
18698 
18699   // tryCaptureVariable is called every time a DeclRef is formed,
18700   // it can therefore have non-negigible impact on performances.
18701   // For local variables and when there is no capturing scope,
18702   // we can bailout early.
18703   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
18704     return true;
18705 
18706   // Exception: Function parameters are not tied to the function's DeclContext
18707   // until we enter the function definition. Capturing them anyway would result
18708   // in an out-of-bounds error while traversing DC and its parents.
18709   if (isa<ParmVarDecl>(Var) && !VarDC->isFunctionOrMethod())
18710     return true;
18711 
18712   const auto *VD = dyn_cast<VarDecl>(Var);
18713   if (VD) {
18714     if (VD->isInitCapture())
18715       VarDC = VarDC->getParent();
18716   } else {
18717     VD = Var->getPotentiallyDecomposedVarDecl();
18718   }
18719   assert(VD && "Cannot capture a null variable");
18720 
18721   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18722       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18723   // We need to sync up the Declaration Context with the
18724   // FunctionScopeIndexToStopAt
18725   if (FunctionScopeIndexToStopAt) {
18726     unsigned FSIndex = FunctionScopes.size() - 1;
18727     while (FSIndex != MaxFunctionScopesIndex) {
18728       DC = getLambdaAwareParentOfDeclContext(DC);
18729       --FSIndex;
18730     }
18731   }
18732 
18733   // Capture global variables if it is required to use private copy of this
18734   // variable.
18735   bool IsGlobal = !VD->hasLocalStorage();
18736   if (IsGlobal && !(LangOpts.OpenMP &&
18737                     OpenMP().isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18738                                                   MaxFunctionScopesIndex)))
18739     return true;
18740 
18741   if (isa<VarDecl>(Var))
18742     Var = cast<VarDecl>(Var->getCanonicalDecl());
18743 
18744   // Walk up the stack to determine whether we can capture the variable,
18745   // performing the "simple" checks that don't depend on type. We stop when
18746   // we've either hit the declared scope of the variable or find an existing
18747   // capture of that variable.  We start from the innermost capturing-entity
18748   // (the DC) and ensure that all intervening capturing-entities
18749   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18750   // declcontext can either capture the variable or have already captured
18751   // the variable.
18752   CaptureType = Var->getType();
18753   DeclRefType = CaptureType.getNonReferenceType();
18754   bool Nested = false;
18755   bool Explicit = (Kind != TryCapture_Implicit);
18756   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18757   do {
18758 
18759     LambdaScopeInfo *LSI = nullptr;
18760     if (!FunctionScopes.empty())
18761       LSI = dyn_cast_or_null<LambdaScopeInfo>(
18762           FunctionScopes[FunctionScopesIndex]);
18763 
18764     bool IsInScopeDeclarationContext =
18765         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
18766 
18767     if (LSI && !LSI->AfterParameterList) {
18768       // This allows capturing parameters from a default value which does not
18769       // seems correct
18770       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
18771         return true;
18772     }
18773     // If the variable is declared in the current context, there is no need to
18774     // capture it.
18775     if (IsInScopeDeclarationContext &&
18776         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
18777       return true;
18778 
18779     // Only block literals, captured statements, and lambda expressions can
18780     // capture; other scopes don't work.
18781     DeclContext *ParentDC =
18782         !IsInScopeDeclarationContext
18783             ? DC->getParent()
18784             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
18785                                                 BuildAndDiagnose, *this);
18786     // We need to check for the parent *first* because, if we *have*
18787     // private-captured a global variable, we need to recursively capture it in
18788     // intermediate blocks, lambdas, etc.
18789     if (!ParentDC) {
18790       if (IsGlobal) {
18791         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18792         break;
18793       }
18794       return true;
18795     }
18796 
18797     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
18798     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18799 
18800     // Check whether we've already captured it.
18801     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18802                                              DeclRefType)) {
18803       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18804       break;
18805     }
18806 
18807     // When evaluating some attributes (like enable_if) we might refer to a
18808     // function parameter appertaining to the same declaration as that
18809     // attribute.
18810     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
18811         Parm && Parm->getDeclContext() == DC)
18812       return true;
18813 
18814     // If we are instantiating a generic lambda call operator body,
18815     // we do not want to capture new variables.  What was captured
18816     // during either a lambdas transformation or initial parsing
18817     // should be used.
18818     if (isGenericLambdaCallOperatorSpecialization(DC)) {
18819       if (BuildAndDiagnose) {
18820         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18821         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18822           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18823           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18824           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18825           buildLambdaCaptureFixit(*this, LSI, Var);
18826         } else
18827           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
18828       }
18829       return true;
18830     }
18831 
18832     // Try to capture variable-length arrays types.
18833     if (Var->getType()->isVariablyModifiedType()) {
18834       // We're going to walk down into the type and look for VLA
18835       // expressions.
18836       QualType QTy = Var->getType();
18837       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18838         QTy = PVD->getOriginalType();
18839       captureVariablyModifiedType(Context, QTy, CSI);
18840     }
18841 
18842     if (getLangOpts().OpenMP) {
18843       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18844         // OpenMP private variables should not be captured in outer scope, so
18845         // just break here. Similarly, global variables that are captured in a
18846         // target region should not be captured outside the scope of the region.
18847         if (RSI->CapRegionKind == CR_OpenMP) {
18848           // FIXME: We should support capturing structured bindings in OpenMP.
18849           if (isa<BindingDecl>(Var)) {
18850             if (BuildAndDiagnose) {
18851               Diag(ExprLoc, diag::err_capture_binding_openmp) << Var;
18852               Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18853             }
18854             return true;
18855           }
18856           OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
18857               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18858           // If the variable is private (i.e. not captured) and has variably
18859           // modified type, we still need to capture the type for correct
18860           // codegen in all regions, associated with the construct. Currently,
18861           // it is captured in the innermost captured region only.
18862           if (IsOpenMPPrivateDecl != OMPC_unknown &&
18863               Var->getType()->isVariablyModifiedType()) {
18864             QualType QTy = Var->getType();
18865             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18866               QTy = PVD->getOriginalType();
18867             for (int I = 1,
18868                      E = OpenMP().getNumberOfConstructScopes(RSI->OpenMPLevel);
18869                  I < E; ++I) {
18870               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18871                   FunctionScopes[FunctionScopesIndex - I]);
18872               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
18873                      "Wrong number of captured regions associated with the "
18874                      "OpenMP construct.");
18875               captureVariablyModifiedType(Context, QTy, OuterRSI);
18876             }
18877           }
18878           bool IsTargetCap =
18879               IsOpenMPPrivateDecl != OMPC_private &&
18880               OpenMP().isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18881                                                   RSI->OpenMPCaptureLevel);
18882           // Do not capture global if it is not privatized in outer regions.
18883           bool IsGlobalCap =
18884               IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
18885                               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18886 
18887           // When we detect target captures we are looking from inside the
18888           // target region, therefore we need to propagate the capture from the
18889           // enclosing region. Therefore, the capture is not initially nested.
18890           if (IsTargetCap)
18891             OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
18892                                                   RSI->OpenMPLevel);
18893 
18894           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18895               (IsGlobal && !IsGlobalCap)) {
18896             Nested = !IsTargetCap;
18897             bool HasConst = DeclRefType.isConstQualified();
18898             DeclRefType = DeclRefType.getUnqualifiedType();
18899             // Don't lose diagnostics about assignments to const.
18900             if (HasConst)
18901               DeclRefType.addConst();
18902             CaptureType = Context.getLValueReferenceType(DeclRefType);
18903             break;
18904           }
18905         }
18906       }
18907     }
18908     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18909       // No capture-default, and this is not an explicit capture
18910       // so cannot capture this variable.
18911       if (BuildAndDiagnose) {
18912         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18913         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18914         auto *LSI = cast<LambdaScopeInfo>(CSI);
18915         if (LSI->Lambda) {
18916           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18917           buildLambdaCaptureFixit(*this, LSI, Var);
18918         }
18919         // FIXME: If we error out because an outer lambda can not implicitly
18920         // capture a variable that an inner lambda explicitly captures, we
18921         // should have the inner lambda do the explicit capture - because
18922         // it makes for cleaner diagnostics later.  This would purely be done
18923         // so that the diagnostic does not misleadingly claim that a variable
18924         // can not be captured by a lambda implicitly even though it is captured
18925         // explicitly.  Suggestion:
18926         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18927         //    at the function head
18928         //  - cache the StartingDeclContext - this must be a lambda
18929         //  - captureInLambda in the innermost lambda the variable.
18930       }
18931       return true;
18932     }
18933     Explicit = false;
18934     FunctionScopesIndex--;
18935     if (IsInScopeDeclarationContext)
18936       DC = ParentDC;
18937   } while (!VarDC->Equals(DC));
18938 
18939   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18940   // computing the type of the capture at each step, checking type-specific
18941   // requirements, and adding captures if requested.
18942   // If the variable had already been captured previously, we start capturing
18943   // at the lambda nested within that one.
18944   bool Invalid = false;
18945   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18946        ++I) {
18947     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18948 
18949     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18950     // certain types of variables (unnamed, variably modified types etc.)
18951     // so check for eligibility.
18952     if (!Invalid)
18953       Invalid =
18954           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18955 
18956     // After encountering an error, if we're actually supposed to capture, keep
18957     // capturing in nested contexts to suppress any follow-on diagnostics.
18958     if (Invalid && !BuildAndDiagnose)
18959       return true;
18960 
18961     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18962       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18963                                DeclRefType, Nested, *this, Invalid);
18964       Nested = true;
18965     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18966       Invalid = !captureInCapturedRegion(
18967           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18968           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18969       Nested = true;
18970     } else {
18971       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18972       Invalid =
18973           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18974                            DeclRefType, Nested, Kind, EllipsisLoc,
18975                            /*IsTopScope*/ I == N - 1, *this, Invalid);
18976       Nested = true;
18977     }
18978 
18979     if (Invalid && !BuildAndDiagnose)
18980       return true;
18981   }
18982   return Invalid;
18983 }
18984 
18985 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
18986                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18987   QualType CaptureType;
18988   QualType DeclRefType;
18989   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18990                             /*BuildAndDiagnose=*/true, CaptureType,
18991                             DeclRefType, nullptr);
18992 }
18993 
18994 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
18995   QualType CaptureType;
18996   QualType DeclRefType;
18997   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18998                              /*BuildAndDiagnose=*/false, CaptureType,
18999                              DeclRefType, nullptr);
19000 }
19001 
19002 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19003   QualType CaptureType;
19004   QualType DeclRefType;
19005 
19006   // Determine whether we can capture this variable.
19007   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19008                          /*BuildAndDiagnose=*/false, CaptureType,
19009                          DeclRefType, nullptr))
19010     return QualType();
19011 
19012   return DeclRefType;
19013 }
19014 
19015 namespace {
19016 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19017 // The produced TemplateArgumentListInfo* points to data stored within this
19018 // object, so should only be used in contexts where the pointer will not be
19019 // used after the CopiedTemplateArgs object is destroyed.
19020 class CopiedTemplateArgs {
19021   bool HasArgs;
19022   TemplateArgumentListInfo TemplateArgStorage;
19023 public:
19024   template<typename RefExpr>
19025   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19026     if (HasArgs)
19027       E->copyTemplateArgumentsInto(TemplateArgStorage);
19028   }
19029   operator TemplateArgumentListInfo*()
19030 #ifdef __has_cpp_attribute
19031 #if __has_cpp_attribute(clang::lifetimebound)
19032   [[clang::lifetimebound]]
19033 #endif
19034 #endif
19035   {
19036     return HasArgs ? &TemplateArgStorage : nullptr;
19037   }
19038 };
19039 }
19040 
19041 /// Walk the set of potential results of an expression and mark them all as
19042 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19043 ///
19044 /// \return A new expression if we found any potential results, ExprEmpty() if
19045 ///         not, and ExprError() if we diagnosed an error.
19046 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19047                                                       NonOdrUseReason NOUR) {
19048   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19049   // an object that satisfies the requirements for appearing in a
19050   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19051   // is immediately applied."  This function handles the lvalue-to-rvalue
19052   // conversion part.
19053   //
19054   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19055   // transform it into the relevant kind of non-odr-use node and rebuild the
19056   // tree of nodes leading to it.
19057   //
19058   // This is a mini-TreeTransform that only transforms a restricted subset of
19059   // nodes (and only certain operands of them).
19060 
19061   // Rebuild a subexpression.
19062   auto Rebuild = [&](Expr *Sub) {
19063     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19064   };
19065 
19066   // Check whether a potential result satisfies the requirements of NOUR.
19067   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19068     // Any entity other than a VarDecl is always odr-used whenever it's named
19069     // in a potentially-evaluated expression.
19070     auto *VD = dyn_cast<VarDecl>(D);
19071     if (!VD)
19072       return true;
19073 
19074     // C++2a [basic.def.odr]p4:
19075     //   A variable x whose name appears as a potentially-evalauted expression
19076     //   e is odr-used by e unless
19077     //   -- x is a reference that is usable in constant expressions, or
19078     //   -- x is a variable of non-reference type that is usable in constant
19079     //      expressions and has no mutable subobjects, and e is an element of
19080     //      the set of potential results of an expression of
19081     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19082     //      conversion is applied, or
19083     //   -- x is a variable of non-reference type, and e is an element of the
19084     //      set of potential results of a discarded-value expression to which
19085     //      the lvalue-to-rvalue conversion is not applied
19086     //
19087     // We check the first bullet and the "potentially-evaluated" condition in
19088     // BuildDeclRefExpr. We check the type requirements in the second bullet
19089     // in CheckLValueToRValueConversionOperand below.
19090     switch (NOUR) {
19091     case NOUR_None:
19092     case NOUR_Unevaluated:
19093       llvm_unreachable("unexpected non-odr-use-reason");
19094 
19095     case NOUR_Constant:
19096       // Constant references were handled when they were built.
19097       if (VD->getType()->isReferenceType())
19098         return true;
19099       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19100         if (RD->hasMutableFields())
19101           return true;
19102       if (!VD->isUsableInConstantExpressions(S.Context))
19103         return true;
19104       break;
19105 
19106     case NOUR_Discarded:
19107       if (VD->getType()->isReferenceType())
19108         return true;
19109       break;
19110     }
19111     return false;
19112   };
19113 
19114   // Mark that this expression does not constitute an odr-use.
19115   auto MarkNotOdrUsed = [&] {
19116     S.MaybeODRUseExprs.remove(E);
19117     if (LambdaScopeInfo *LSI = S.getCurLambda())
19118       LSI->markVariableExprAsNonODRUsed(E);
19119   };
19120 
19121   // C++2a [basic.def.odr]p2:
19122   //   The set of potential results of an expression e is defined as follows:
19123   switch (E->getStmtClass()) {
19124   //   -- If e is an id-expression, ...
19125   case Expr::DeclRefExprClass: {
19126     auto *DRE = cast<DeclRefExpr>(E);
19127     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19128       break;
19129 
19130     // Rebuild as a non-odr-use DeclRefExpr.
19131     MarkNotOdrUsed();
19132     return DeclRefExpr::Create(
19133         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19134         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19135         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19136         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19137   }
19138 
19139   case Expr::FunctionParmPackExprClass: {
19140     auto *FPPE = cast<FunctionParmPackExpr>(E);
19141     // If any of the declarations in the pack is odr-used, then the expression
19142     // as a whole constitutes an odr-use.
19143     for (VarDecl *D : *FPPE)
19144       if (IsPotentialResultOdrUsed(D))
19145         return ExprEmpty();
19146 
19147     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19148     // nothing cares about whether we marked this as an odr-use, but it might
19149     // be useful for non-compiler tools.
19150     MarkNotOdrUsed();
19151     break;
19152   }
19153 
19154   //   -- If e is a subscripting operation with an array operand...
19155   case Expr::ArraySubscriptExprClass: {
19156     auto *ASE = cast<ArraySubscriptExpr>(E);
19157     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19158     if (!OldBase->getType()->isArrayType())
19159       break;
19160     ExprResult Base = Rebuild(OldBase);
19161     if (!Base.isUsable())
19162       return Base;
19163     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19164     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19165     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19166     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19167                                      ASE->getRBracketLoc());
19168   }
19169 
19170   case Expr::MemberExprClass: {
19171     auto *ME = cast<MemberExpr>(E);
19172     // -- If e is a class member access expression [...] naming a non-static
19173     //    data member...
19174     if (isa<FieldDecl>(ME->getMemberDecl())) {
19175       ExprResult Base = Rebuild(ME->getBase());
19176       if (!Base.isUsable())
19177         return Base;
19178       return MemberExpr::Create(
19179           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19180           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19181           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19182           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19183           ME->getObjectKind(), ME->isNonOdrUse());
19184     }
19185 
19186     if (ME->getMemberDecl()->isCXXInstanceMember())
19187       break;
19188 
19189     // -- If e is a class member access expression naming a static data member,
19190     //    ...
19191     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19192       break;
19193 
19194     // Rebuild as a non-odr-use MemberExpr.
19195     MarkNotOdrUsed();
19196     return MemberExpr::Create(
19197         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19198         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19199         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19200         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19201   }
19202 
19203   case Expr::BinaryOperatorClass: {
19204     auto *BO = cast<BinaryOperator>(E);
19205     Expr *LHS = BO->getLHS();
19206     Expr *RHS = BO->getRHS();
19207     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19208     if (BO->getOpcode() == BO_PtrMemD) {
19209       ExprResult Sub = Rebuild(LHS);
19210       if (!Sub.isUsable())
19211         return Sub;
19212       BO->setLHS(Sub.get());
19213     //   -- If e is a comma expression, ...
19214     } else if (BO->getOpcode() == BO_Comma) {
19215       ExprResult Sub = Rebuild(RHS);
19216       if (!Sub.isUsable())
19217         return Sub;
19218       BO->setRHS(Sub.get());
19219     } else {
19220       break;
19221     }
19222     return ExprResult(BO);
19223   }
19224 
19225   //   -- If e has the form (e1)...
19226   case Expr::ParenExprClass: {
19227     auto *PE = cast<ParenExpr>(E);
19228     ExprResult Sub = Rebuild(PE->getSubExpr());
19229     if (!Sub.isUsable())
19230       return Sub;
19231     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19232   }
19233 
19234   //   -- If e is a glvalue conditional expression, ...
19235   // We don't apply this to a binary conditional operator. FIXME: Should we?
19236   case Expr::ConditionalOperatorClass: {
19237     auto *CO = cast<ConditionalOperator>(E);
19238     ExprResult LHS = Rebuild(CO->getLHS());
19239     if (LHS.isInvalid())
19240       return ExprError();
19241     ExprResult RHS = Rebuild(CO->getRHS());
19242     if (RHS.isInvalid())
19243       return ExprError();
19244     if (!LHS.isUsable() && !RHS.isUsable())
19245       return ExprEmpty();
19246     if (!LHS.isUsable())
19247       LHS = CO->getLHS();
19248     if (!RHS.isUsable())
19249       RHS = CO->getRHS();
19250     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19251                                 CO->getCond(), LHS.get(), RHS.get());
19252   }
19253 
19254   // [Clang extension]
19255   //   -- If e has the form __extension__ e1...
19256   case Expr::UnaryOperatorClass: {
19257     auto *UO = cast<UnaryOperator>(E);
19258     if (UO->getOpcode() != UO_Extension)
19259       break;
19260     ExprResult Sub = Rebuild(UO->getSubExpr());
19261     if (!Sub.isUsable())
19262       return Sub;
19263     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19264                           Sub.get());
19265   }
19266 
19267   // [Clang extension]
19268   //   -- If e has the form _Generic(...), the set of potential results is the
19269   //      union of the sets of potential results of the associated expressions.
19270   case Expr::GenericSelectionExprClass: {
19271     auto *GSE = cast<GenericSelectionExpr>(E);
19272 
19273     SmallVector<Expr *, 4> AssocExprs;
19274     bool AnyChanged = false;
19275     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19276       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19277       if (AssocExpr.isInvalid())
19278         return ExprError();
19279       if (AssocExpr.isUsable()) {
19280         AssocExprs.push_back(AssocExpr.get());
19281         AnyChanged = true;
19282       } else {
19283         AssocExprs.push_back(OrigAssocExpr);
19284       }
19285     }
19286 
19287     void *ExOrTy = nullptr;
19288     bool IsExpr = GSE->isExprPredicate();
19289     if (IsExpr)
19290       ExOrTy = GSE->getControllingExpr();
19291     else
19292       ExOrTy = GSE->getControllingType();
19293     return AnyChanged ? S.CreateGenericSelectionExpr(
19294                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
19295                             GSE->getRParenLoc(), IsExpr, ExOrTy,
19296                             GSE->getAssocTypeSourceInfos(), AssocExprs)
19297                       : ExprEmpty();
19298   }
19299 
19300   // [Clang extension]
19301   //   -- If e has the form __builtin_choose_expr(...), the set of potential
19302   //      results is the union of the sets of potential results of the
19303   //      second and third subexpressions.
19304   case Expr::ChooseExprClass: {
19305     auto *CE = cast<ChooseExpr>(E);
19306 
19307     ExprResult LHS = Rebuild(CE->getLHS());
19308     if (LHS.isInvalid())
19309       return ExprError();
19310 
19311     ExprResult RHS = Rebuild(CE->getLHS());
19312     if (RHS.isInvalid())
19313       return ExprError();
19314 
19315     if (!LHS.get() && !RHS.get())
19316       return ExprEmpty();
19317     if (!LHS.isUsable())
19318       LHS = CE->getLHS();
19319     if (!RHS.isUsable())
19320       RHS = CE->getRHS();
19321 
19322     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19323                              RHS.get(), CE->getRParenLoc());
19324   }
19325 
19326   // Step through non-syntactic nodes.
19327   case Expr::ConstantExprClass: {
19328     auto *CE = cast<ConstantExpr>(E);
19329     ExprResult Sub = Rebuild(CE->getSubExpr());
19330     if (!Sub.isUsable())
19331       return Sub;
19332     return ConstantExpr::Create(S.Context, Sub.get());
19333   }
19334 
19335   // We could mostly rely on the recursive rebuilding to rebuild implicit
19336   // casts, but not at the top level, so rebuild them here.
19337   case Expr::ImplicitCastExprClass: {
19338     auto *ICE = cast<ImplicitCastExpr>(E);
19339     // Only step through the narrow set of cast kinds we expect to encounter.
19340     // Anything else suggests we've left the region in which potential results
19341     // can be found.
19342     switch (ICE->getCastKind()) {
19343     case CK_NoOp:
19344     case CK_DerivedToBase:
19345     case CK_UncheckedDerivedToBase: {
19346       ExprResult Sub = Rebuild(ICE->getSubExpr());
19347       if (!Sub.isUsable())
19348         return Sub;
19349       CXXCastPath Path(ICE->path());
19350       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19351                                  ICE->getValueKind(), &Path);
19352     }
19353 
19354     default:
19355       break;
19356     }
19357     break;
19358   }
19359 
19360   default:
19361     break;
19362   }
19363 
19364   // Can't traverse through this node. Nothing to do.
19365   return ExprEmpty();
19366 }
19367 
19368 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19369   // Check whether the operand is or contains an object of non-trivial C union
19370   // type.
19371   if (E->getType().isVolatileQualified() &&
19372       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19373        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19374     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19375                           Sema::NTCUC_LValueToRValueVolatile,
19376                           NTCUK_Destruct|NTCUK_Copy);
19377 
19378   // C++2a [basic.def.odr]p4:
19379   //   [...] an expression of non-volatile-qualified non-class type to which
19380   //   the lvalue-to-rvalue conversion is applied [...]
19381   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19382     return E;
19383 
19384   ExprResult Result =
19385       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19386   if (Result.isInvalid())
19387     return ExprError();
19388   return Result.get() ? Result : E;
19389 }
19390 
19391 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19392   Res = CorrectDelayedTyposInExpr(Res);
19393 
19394   if (!Res.isUsable())
19395     return Res;
19396 
19397   // If a constant-expression is a reference to a variable where we delay
19398   // deciding whether it is an odr-use, just assume we will apply the
19399   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
19400   // (a non-type template argument), we have special handling anyway.
19401   return CheckLValueToRValueConversionOperand(Res.get());
19402 }
19403 
19404 void Sema::CleanupVarDeclMarking() {
19405   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19406   // call.
19407   MaybeODRUseExprSet LocalMaybeODRUseExprs;
19408   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19409 
19410   for (Expr *E : LocalMaybeODRUseExprs) {
19411     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19412       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19413                          DRE->getLocation(), *this);
19414     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19415       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19416                          *this);
19417     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19418       for (VarDecl *VD : *FP)
19419         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19420     } else {
19421       llvm_unreachable("Unexpected expression");
19422     }
19423   }
19424 
19425   assert(MaybeODRUseExprs.empty() &&
19426          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19427 }
19428 
19429 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19430                                    ValueDecl *Var, Expr *E) {
19431   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19432   if (!VD)
19433     return;
19434 
19435   const bool RefersToEnclosingScope =
19436       (SemaRef.CurContext != VD->getDeclContext() &&
19437        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19438   if (RefersToEnclosingScope) {
19439     LambdaScopeInfo *const LSI =
19440         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19441     if (LSI && (!LSI->CallOperator ||
19442                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19443       // If a variable could potentially be odr-used, defer marking it so
19444       // until we finish analyzing the full expression for any
19445       // lvalue-to-rvalue
19446       // or discarded value conversions that would obviate odr-use.
19447       // Add it to the list of potential captures that will be analyzed
19448       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19449       // unless the variable is a reference that was initialized by a constant
19450       // expression (this will never need to be captured or odr-used).
19451       //
19452       // FIXME: We can simplify this a lot after implementing P0588R1.
19453       assert(E && "Capture variable should be used in an expression.");
19454       if (!Var->getType()->isReferenceType() ||
19455           !VD->isUsableInConstantExpressions(SemaRef.Context))
19456         LSI->addPotentialCapture(E->IgnoreParens());
19457     }
19458   }
19459 }
19460 
19461 static void DoMarkVarDeclReferenced(
19462     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19463     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19464   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19465           isa<FunctionParmPackExpr>(E)) &&
19466          "Invalid Expr argument to DoMarkVarDeclReferenced");
19467   Var->setReferenced();
19468 
19469   if (Var->isInvalidDecl())
19470     return;
19471 
19472   auto *MSI = Var->getMemberSpecializationInfo();
19473   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19474                                        : Var->getTemplateSpecializationKind();
19475 
19476   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19477   bool UsableInConstantExpr =
19478       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19479 
19480   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19481     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19482   }
19483 
19484   // C++20 [expr.const]p12:
19485   //   A variable [...] is needed for constant evaluation if it is [...] a
19486   //   variable whose name appears as a potentially constant evaluated
19487   //   expression that is either a contexpr variable or is of non-volatile
19488   //   const-qualified integral type or of reference type
19489   bool NeededForConstantEvaluation =
19490       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19491 
19492   bool NeedDefinition =
19493       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19494 
19495   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19496          "Can't instantiate a partial template specialization.");
19497 
19498   // If this might be a member specialization of a static data member, check
19499   // the specialization is visible. We already did the checks for variable
19500   // template specializations when we created them.
19501   if (NeedDefinition && TSK != TSK_Undeclared &&
19502       !isa<VarTemplateSpecializationDecl>(Var))
19503     SemaRef.checkSpecializationVisibility(Loc, Var);
19504 
19505   // Perform implicit instantiation of static data members, static data member
19506   // templates of class templates, and variable template specializations. Delay
19507   // instantiations of variable templates, except for those that could be used
19508   // in a constant expression.
19509   if (NeedDefinition && isTemplateInstantiation(TSK)) {
19510     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19511     // instantiation declaration if a variable is usable in a constant
19512     // expression (among other cases).
19513     bool TryInstantiating =
19514         TSK == TSK_ImplicitInstantiation ||
19515         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19516 
19517     if (TryInstantiating) {
19518       SourceLocation PointOfInstantiation =
19519           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19520       bool FirstInstantiation = PointOfInstantiation.isInvalid();
19521       if (FirstInstantiation) {
19522         PointOfInstantiation = Loc;
19523         if (MSI)
19524           MSI->setPointOfInstantiation(PointOfInstantiation);
19525           // FIXME: Notify listener.
19526         else
19527           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19528       }
19529 
19530       if (UsableInConstantExpr) {
19531         // Do not defer instantiations of variables that could be used in a
19532         // constant expression.
19533         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19534           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19535         });
19536 
19537         // Re-set the member to trigger a recomputation of the dependence bits
19538         // for the expression.
19539         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19540           DRE->setDecl(DRE->getDecl());
19541         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19542           ME->setMemberDecl(ME->getMemberDecl());
19543       } else if (FirstInstantiation) {
19544         SemaRef.PendingInstantiations
19545             .push_back(std::make_pair(Var, PointOfInstantiation));
19546       } else {
19547         bool Inserted = false;
19548         for (auto &I : SemaRef.SavedPendingInstantiations) {
19549           auto Iter = llvm::find_if(
19550               I, [Var](const Sema::PendingImplicitInstantiation &P) {
19551                 return P.first == Var;
19552               });
19553           if (Iter != I.end()) {
19554             SemaRef.PendingInstantiations.push_back(*Iter);
19555             I.erase(Iter);
19556             Inserted = true;
19557             break;
19558           }
19559         }
19560 
19561         // FIXME: For a specialization of a variable template, we don't
19562         // distinguish between "declaration and type implicitly instantiated"
19563         // and "implicit instantiation of definition requested", so we have
19564         // no direct way to avoid enqueueing the pending instantiation
19565         // multiple times.
19566         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
19567           SemaRef.PendingInstantiations
19568             .push_back(std::make_pair(Var, PointOfInstantiation));
19569       }
19570     }
19571   }
19572 
19573   // C++2a [basic.def.odr]p4:
19574   //   A variable x whose name appears as a potentially-evaluated expression e
19575   //   is odr-used by e unless
19576   //   -- x is a reference that is usable in constant expressions
19577   //   -- x is a variable of non-reference type that is usable in constant
19578   //      expressions and has no mutable subobjects [FIXME], and e is an
19579   //      element of the set of potential results of an expression of
19580   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19581   //      conversion is applied
19582   //   -- x is a variable of non-reference type, and e is an element of the set
19583   //      of potential results of a discarded-value expression to which the
19584   //      lvalue-to-rvalue conversion is not applied [FIXME]
19585   //
19586   // We check the first part of the second bullet here, and
19587   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19588   // FIXME: To get the third bullet right, we need to delay this even for
19589   // variables that are not usable in constant expressions.
19590 
19591   // If we already know this isn't an odr-use, there's nothing more to do.
19592   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19593     if (DRE->isNonOdrUse())
19594       return;
19595   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19596     if (ME->isNonOdrUse())
19597       return;
19598 
19599   switch (OdrUse) {
19600   case OdrUseContext::None:
19601     // In some cases, a variable may not have been marked unevaluated, if it
19602     // appears in a defaukt initializer.
19603     assert((!E || isa<FunctionParmPackExpr>(E) ||
19604             SemaRef.isUnevaluatedContext()) &&
19605            "missing non-odr-use marking for unevaluated decl ref");
19606     break;
19607 
19608   case OdrUseContext::FormallyOdrUsed:
19609     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19610     // behavior.
19611     break;
19612 
19613   case OdrUseContext::Used:
19614     // If we might later find that this expression isn't actually an odr-use,
19615     // delay the marking.
19616     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19617       SemaRef.MaybeODRUseExprs.insert(E);
19618     else
19619       MarkVarDeclODRUsed(Var, Loc, SemaRef);
19620     break;
19621 
19622   case OdrUseContext::Dependent:
19623     // If this is a dependent context, we don't need to mark variables as
19624     // odr-used, but we may still need to track them for lambda capture.
19625     // FIXME: Do we also need to do this inside dependent typeid expressions
19626     // (which are modeled as unevaluated at this point)?
19627     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19628     break;
19629   }
19630 }
19631 
19632 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19633                                         BindingDecl *BD, Expr *E) {
19634   BD->setReferenced();
19635 
19636   if (BD->isInvalidDecl())
19637     return;
19638 
19639   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19640   if (OdrUse == OdrUseContext::Used) {
19641     QualType CaptureType, DeclRefType;
19642     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19643                                /*EllipsisLoc*/ SourceLocation(),
19644                                /*BuildAndDiagnose*/ true, CaptureType,
19645                                DeclRefType,
19646                                /*FunctionScopeIndexToStopAt*/ nullptr);
19647   } else if (OdrUse == OdrUseContext::Dependent) {
19648     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19649   }
19650 }
19651 
19652 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19653   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19654 }
19655 
19656 // C++ [temp.dep.expr]p3:
19657 //   An id-expression is type-dependent if it contains:
19658 //     - an identifier associated by name lookup with an entity captured by copy
19659 //       in a lambda-expression that has an explicit object parameter whose type
19660 //       is dependent ([dcl.fct]),
19661 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
19662     Sema &SemaRef, ValueDecl *D, Expr *E) {
19663   auto *ID = dyn_cast<DeclRefExpr>(E);
19664   if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
19665     return;
19666 
19667   // If any enclosing lambda with a dependent explicit object parameter either
19668   // explicitly captures the variable by value, or has a capture default of '='
19669   // and does not capture the variable by reference, then the type of the DRE
19670   // is dependent on the type of that lambda's explicit object parameter.
19671   auto IsDependent = [&]() {
19672     for (auto *Scope : llvm::reverse(SemaRef.FunctionScopes)) {
19673       auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
19674       if (!LSI)
19675         continue;
19676 
19677       if (LSI->Lambda && !LSI->Lambda->Encloses(SemaRef.CurContext) &&
19678           LSI->AfterParameterList)
19679         return false;
19680 
19681       const auto *MD = LSI->CallOperator;
19682       if (MD->getType().isNull())
19683         continue;
19684 
19685       const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
19686       if (!Ty || !MD->isExplicitObjectMemberFunction() ||
19687           !Ty->getParamType(0)->isDependentType())
19688         continue;
19689 
19690       if (auto *C = LSI->CaptureMap.count(D) ? &LSI->getCapture(D) : nullptr) {
19691         if (C->isCopyCapture())
19692           return true;
19693         continue;
19694       }
19695 
19696       if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
19697         return true;
19698     }
19699     return false;
19700   }();
19701 
19702   ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
19703       IsDependent, SemaRef.getASTContext());
19704 }
19705 
19706 static void
19707 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19708                    bool MightBeOdrUse,
19709                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19710   if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
19711     SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
19712 
19713   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19714     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19715     if (SemaRef.getLangOpts().CPlusPlus)
19716       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19717                                                                        Var, E);
19718     return;
19719   }
19720 
19721   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19722     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
19723     if (SemaRef.getLangOpts().CPlusPlus)
19724       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19725                                                                        Decl, E);
19726     return;
19727   }
19728   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19729 
19730   // If this is a call to a method via a cast, also mark the method in the
19731   // derived class used in case codegen can devirtualize the call.
19732   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19733   if (!ME)
19734     return;
19735   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19736   if (!MD)
19737     return;
19738   // Only attempt to devirtualize if this is truly a virtual call.
19739   bool IsVirtualCall = MD->isVirtual() &&
19740                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
19741   if (!IsVirtualCall)
19742     return;
19743 
19744   // If it's possible to devirtualize the call, mark the called function
19745   // referenced.
19746   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19747       ME->getBase(), SemaRef.getLangOpts().AppleKext);
19748   if (DM)
19749     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19750 }
19751 
19752 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19753   // TODO: update this with DR# once a defect report is filed.
19754   // C++11 defect. The address of a pure member should not be an ODR use, even
19755   // if it's a qualified reference.
19756   bool OdrUse = true;
19757   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19758     if (Method->isVirtual() &&
19759         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19760       OdrUse = false;
19761 
19762   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
19763     if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
19764         !isImmediateFunctionContext() &&
19765         !isCheckingDefaultArgumentOrInitializer() &&
19766         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
19767         !FD->isDependentContext())
19768       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19769   }
19770   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19771                      RefsMinusAssignments);
19772 }
19773 
19774 void Sema::MarkMemberReferenced(MemberExpr *E) {
19775   // C++11 [basic.def.odr]p2:
19776   //   A non-overloaded function whose name appears as a potentially-evaluated
19777   //   expression or a member of a set of candidate functions, if selected by
19778   //   overload resolution when referred to from a potentially-evaluated
19779   //   expression, is odr-used, unless it is a pure virtual function and its
19780   //   name is not explicitly qualified.
19781   bool MightBeOdrUse = true;
19782   if (E->performsVirtualDispatch(getLangOpts())) {
19783     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19784       if (Method->isPureVirtual())
19785         MightBeOdrUse = false;
19786   }
19787   SourceLocation Loc =
19788       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19789   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19790                      RefsMinusAssignments);
19791 }
19792 
19793 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19794   for (VarDecl *VD : *E)
19795     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19796                        RefsMinusAssignments);
19797 }
19798 
19799 /// Perform marking for a reference to an arbitrary declaration.  It
19800 /// marks the declaration referenced, and performs odr-use checking for
19801 /// functions and variables. This method should not be used when building a
19802 /// normal expression which refers to a variable.
19803 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19804                                  bool MightBeOdrUse) {
19805   if (MightBeOdrUse) {
19806     if (auto *VD = dyn_cast<VarDecl>(D)) {
19807       MarkVariableReferenced(Loc, VD);
19808       return;
19809     }
19810   }
19811   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19812     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19813     return;
19814   }
19815   D->setReferenced();
19816 }
19817 
19818 namespace {
19819   // Mark all of the declarations used by a type as referenced.
19820   // FIXME: Not fully implemented yet! We need to have a better understanding
19821   // of when we're entering a context we should not recurse into.
19822   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19823   // TreeTransforms rebuilding the type in a new context. Rather than
19824   // duplicating the TreeTransform logic, we should consider reusing it here.
19825   // Currently that causes problems when rebuilding LambdaExprs.
19826   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19827     Sema &S;
19828     SourceLocation Loc;
19829 
19830   public:
19831     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19832 
19833     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19834 
19835     bool TraverseTemplateArgument(const TemplateArgument &Arg);
19836   };
19837 }
19838 
19839 bool MarkReferencedDecls::TraverseTemplateArgument(
19840     const TemplateArgument &Arg) {
19841   {
19842     // A non-type template argument is a constant-evaluated context.
19843     EnterExpressionEvaluationContext Evaluated(
19844         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19845     if (Arg.getKind() == TemplateArgument::Declaration) {
19846       if (Decl *D = Arg.getAsDecl())
19847         S.MarkAnyDeclReferenced(Loc, D, true);
19848     } else if (Arg.getKind() == TemplateArgument::Expression) {
19849       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
19850     }
19851   }
19852 
19853   return Inherited::TraverseTemplateArgument(Arg);
19854 }
19855 
19856 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19857   MarkReferencedDecls Marker(*this, Loc);
19858   Marker.TraverseType(T);
19859 }
19860 
19861 namespace {
19862 /// Helper class that marks all of the declarations referenced by
19863 /// potentially-evaluated subexpressions as "referenced".
19864 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19865 public:
19866   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19867   bool SkipLocalVariables;
19868   ArrayRef<const Expr *> StopAt;
19869 
19870   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19871                       ArrayRef<const Expr *> StopAt)
19872       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19873 
19874   void visitUsedDecl(SourceLocation Loc, Decl *D) {
19875     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
19876   }
19877 
19878   void Visit(Expr *E) {
19879     if (llvm::is_contained(StopAt, E))
19880       return;
19881     Inherited::Visit(E);
19882   }
19883 
19884   void VisitConstantExpr(ConstantExpr *E) {
19885     // Don't mark declarations within a ConstantExpression, as this expression
19886     // will be evaluated and folded to a value.
19887   }
19888 
19889   void VisitDeclRefExpr(DeclRefExpr *E) {
19890     // If we were asked not to visit local variables, don't.
19891     if (SkipLocalVariables) {
19892       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
19893         if (VD->hasLocalStorage())
19894           return;
19895     }
19896 
19897     // FIXME: This can trigger the instantiation of the initializer of a
19898     // variable, which can cause the expression to become value-dependent
19899     // or error-dependent. Do we need to propagate the new dependence bits?
19900     S.MarkDeclRefReferenced(E);
19901   }
19902 
19903   void VisitMemberExpr(MemberExpr *E) {
19904     S.MarkMemberReferenced(E);
19905     Visit(E->getBase());
19906   }
19907 };
19908 } // namespace
19909 
19910 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19911                                             bool SkipLocalVariables,
19912                                             ArrayRef<const Expr*> StopAt) {
19913   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19914 }
19915 
19916 /// Emit a diagnostic when statements are reachable.
19917 /// FIXME: check for reachability even in expressions for which we don't build a
19918 ///        CFG (eg, in the initializer of a global or in a constant expression).
19919 ///        For example,
19920 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19921 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19922                            const PartialDiagnostic &PD) {
19923   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19924     if (!FunctionScopes.empty())
19925       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19926           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19927     return true;
19928   }
19929 
19930   // The initializer of a constexpr variable or of the first declaration of a
19931   // static data member is not syntactically a constant evaluated constant,
19932   // but nonetheless is always required to be a constant expression, so we
19933   // can skip diagnosing.
19934   // FIXME: Using the mangling context here is a hack.
19935   if (auto *VD = dyn_cast_or_null<VarDecl>(
19936           ExprEvalContexts.back().ManglingContextDecl)) {
19937     if (VD->isConstexpr() ||
19938         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19939       return false;
19940     // FIXME: For any other kind of variable, we should build a CFG for its
19941     // initializer and check whether the context in question is reachable.
19942   }
19943 
19944   Diag(Loc, PD);
19945   return true;
19946 }
19947 
19948 /// Emit a diagnostic that describes an effect on the run-time behavior
19949 /// of the program being compiled.
19950 ///
19951 /// This routine emits the given diagnostic when the code currently being
19952 /// type-checked is "potentially evaluated", meaning that there is a
19953 /// possibility that the code will actually be executable. Code in sizeof()
19954 /// expressions, code used only during overload resolution, etc., are not
19955 /// potentially evaluated. This routine will suppress such diagnostics or,
19956 /// in the absolutely nutty case of potentially potentially evaluated
19957 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
19958 /// later.
19959 ///
19960 /// This routine should be used for all diagnostics that describe the run-time
19961 /// behavior of a program, such as passing a non-POD value through an ellipsis.
19962 /// Failure to do so will likely result in spurious diagnostics or failures
19963 /// during overload resolution or within sizeof/alignof/typeof/typeid.
19964 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19965                                const PartialDiagnostic &PD) {
19966 
19967   if (ExprEvalContexts.back().isDiscardedStatementContext())
19968     return false;
19969 
19970   switch (ExprEvalContexts.back().Context) {
19971   case ExpressionEvaluationContext::Unevaluated:
19972   case ExpressionEvaluationContext::UnevaluatedList:
19973   case ExpressionEvaluationContext::UnevaluatedAbstract:
19974   case ExpressionEvaluationContext::DiscardedStatement:
19975     // The argument will never be evaluated, so don't complain.
19976     break;
19977 
19978   case ExpressionEvaluationContext::ConstantEvaluated:
19979   case ExpressionEvaluationContext::ImmediateFunctionContext:
19980     // Relevant diagnostics should be produced by constant evaluation.
19981     break;
19982 
19983   case ExpressionEvaluationContext::PotentiallyEvaluated:
19984   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19985     return DiagIfReachable(Loc, Stmts, PD);
19986   }
19987 
19988   return false;
19989 }
19990 
19991 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19992                                const PartialDiagnostic &PD) {
19993   return DiagRuntimeBehavior(
19994       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
19995 }
19996 
19997 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19998                                CallExpr *CE, FunctionDecl *FD) {
19999   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20000     return false;
20001 
20002   // If we're inside a decltype's expression, don't check for a valid return
20003   // type or construct temporaries until we know whether this is the last call.
20004   if (ExprEvalContexts.back().ExprContext ==
20005       ExpressionEvaluationContextRecord::EK_Decltype) {
20006     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20007     return false;
20008   }
20009 
20010   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20011     FunctionDecl *FD;
20012     CallExpr *CE;
20013 
20014   public:
20015     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20016       : FD(FD), CE(CE) { }
20017 
20018     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20019       if (!FD) {
20020         S.Diag(Loc, diag::err_call_incomplete_return)
20021           << T << CE->getSourceRange();
20022         return;
20023       }
20024 
20025       S.Diag(Loc, diag::err_call_function_incomplete_return)
20026           << CE->getSourceRange() << FD << T;
20027       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20028           << FD->getDeclName();
20029     }
20030   } Diagnoser(FD, CE);
20031 
20032   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20033     return true;
20034 
20035   return false;
20036 }
20037 
20038 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20039 // will prevent this condition from triggering, which is what we want.
20040 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20041   SourceLocation Loc;
20042 
20043   unsigned diagnostic = diag::warn_condition_is_assignment;
20044   bool IsOrAssign = false;
20045 
20046   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20047     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20048       return;
20049 
20050     IsOrAssign = Op->getOpcode() == BO_OrAssign;
20051 
20052     // Greylist some idioms by putting them into a warning subcategory.
20053     if (ObjCMessageExpr *ME
20054           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20055       Selector Sel = ME->getSelector();
20056 
20057       // self = [<foo> init...]
20058       if (ObjC().isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20059         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20060 
20061       // <foo> = [<bar> nextObject]
20062       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20063         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20064     }
20065 
20066     Loc = Op->getOperatorLoc();
20067   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20068     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20069       return;
20070 
20071     IsOrAssign = Op->getOperator() == OO_PipeEqual;
20072     Loc = Op->getOperatorLoc();
20073   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20074     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20075   else {
20076     // Not an assignment.
20077     return;
20078   }
20079 
20080   Diag(Loc, diagnostic) << E->getSourceRange();
20081 
20082   SourceLocation Open = E->getBeginLoc();
20083   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20084   Diag(Loc, diag::note_condition_assign_silence)
20085         << FixItHint::CreateInsertion(Open, "(")
20086         << FixItHint::CreateInsertion(Close, ")");
20087 
20088   if (IsOrAssign)
20089     Diag(Loc, diag::note_condition_or_assign_to_comparison)
20090       << FixItHint::CreateReplacement(Loc, "!=");
20091   else
20092     Diag(Loc, diag::note_condition_assign_to_comparison)
20093       << FixItHint::CreateReplacement(Loc, "==");
20094 }
20095 
20096 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20097   // Don't warn if the parens came from a macro.
20098   SourceLocation parenLoc = ParenE->getBeginLoc();
20099   if (parenLoc.isInvalid() || parenLoc.isMacroID())
20100     return;
20101   // Don't warn for dependent expressions.
20102   if (ParenE->isTypeDependent())
20103     return;
20104 
20105   Expr *E = ParenE->IgnoreParens();
20106 
20107   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20108     if (opE->getOpcode() == BO_EQ &&
20109         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20110                                                            == Expr::MLV_Valid) {
20111       SourceLocation Loc = opE->getOperatorLoc();
20112 
20113       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20114       SourceRange ParenERange = ParenE->getSourceRange();
20115       Diag(Loc, diag::note_equality_comparison_silence)
20116         << FixItHint::CreateRemoval(ParenERange.getBegin())
20117         << FixItHint::CreateRemoval(ParenERange.getEnd());
20118       Diag(Loc, diag::note_equality_comparison_to_assign)
20119         << FixItHint::CreateReplacement(Loc, "=");
20120     }
20121 }
20122 
20123 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20124                                        bool IsConstexpr) {
20125   DiagnoseAssignmentAsCondition(E);
20126   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20127     DiagnoseEqualityWithExtraParens(parenE);
20128 
20129   ExprResult result = CheckPlaceholderExpr(E);
20130   if (result.isInvalid()) return ExprError();
20131   E = result.get();
20132 
20133   if (!E->isTypeDependent()) {
20134     if (getLangOpts().CPlusPlus)
20135       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20136 
20137     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20138     if (ERes.isInvalid())
20139       return ExprError();
20140     E = ERes.get();
20141 
20142     QualType T = E->getType();
20143     if (!T->isScalarType()) { // C99 6.8.4.1p1
20144       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20145         << T << E->getSourceRange();
20146       return ExprError();
20147     }
20148     CheckBoolLikeConversion(E, Loc);
20149   }
20150 
20151   return E;
20152 }
20153 
20154 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20155                                            Expr *SubExpr, ConditionKind CK,
20156                                            bool MissingOK) {
20157   // MissingOK indicates whether having no condition expression is valid
20158   // (for loop) or invalid (e.g. while loop).
20159   if (!SubExpr)
20160     return MissingOK ? ConditionResult() : ConditionError();
20161 
20162   ExprResult Cond;
20163   switch (CK) {
20164   case ConditionKind::Boolean:
20165     Cond = CheckBooleanCondition(Loc, SubExpr);
20166     break;
20167 
20168   case ConditionKind::ConstexprIf:
20169     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20170     break;
20171 
20172   case ConditionKind::Switch:
20173     Cond = CheckSwitchCondition(Loc, SubExpr);
20174     break;
20175   }
20176   if (Cond.isInvalid()) {
20177     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20178                               {SubExpr}, PreferredConditionType(CK));
20179     if (!Cond.get())
20180       return ConditionError();
20181   }
20182   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20183   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20184   if (!FullExpr.get())
20185     return ConditionError();
20186 
20187   return ConditionResult(*this, nullptr, FullExpr,
20188                          CK == ConditionKind::ConstexprIf);
20189 }
20190 
20191 namespace {
20192   /// A visitor for rebuilding a call to an __unknown_any expression
20193   /// to have an appropriate type.
20194   struct RebuildUnknownAnyFunction
20195     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20196 
20197     Sema &S;
20198 
20199     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20200 
20201     ExprResult VisitStmt(Stmt *S) {
20202       llvm_unreachable("unexpected statement!");
20203     }
20204 
20205     ExprResult VisitExpr(Expr *E) {
20206       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20207         << E->getSourceRange();
20208       return ExprError();
20209     }
20210 
20211     /// Rebuild an expression which simply semantically wraps another
20212     /// expression which it shares the type and value kind of.
20213     template <class T> ExprResult rebuildSugarExpr(T *E) {
20214       ExprResult SubResult = Visit(E->getSubExpr());
20215       if (SubResult.isInvalid()) return ExprError();
20216 
20217       Expr *SubExpr = SubResult.get();
20218       E->setSubExpr(SubExpr);
20219       E->setType(SubExpr->getType());
20220       E->setValueKind(SubExpr->getValueKind());
20221       assert(E->getObjectKind() == OK_Ordinary);
20222       return E;
20223     }
20224 
20225     ExprResult VisitParenExpr(ParenExpr *E) {
20226       return rebuildSugarExpr(E);
20227     }
20228 
20229     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20230       return rebuildSugarExpr(E);
20231     }
20232 
20233     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20234       ExprResult SubResult = Visit(E->getSubExpr());
20235       if (SubResult.isInvalid()) return ExprError();
20236 
20237       Expr *SubExpr = SubResult.get();
20238       E->setSubExpr(SubExpr);
20239       E->setType(S.Context.getPointerType(SubExpr->getType()));
20240       assert(E->isPRValue());
20241       assert(E->getObjectKind() == OK_Ordinary);
20242       return E;
20243     }
20244 
20245     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20246       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20247 
20248       E->setType(VD->getType());
20249 
20250       assert(E->isPRValue());
20251       if (S.getLangOpts().CPlusPlus &&
20252           !(isa<CXXMethodDecl>(VD) &&
20253             cast<CXXMethodDecl>(VD)->isInstance()))
20254         E->setValueKind(VK_LValue);
20255 
20256       return E;
20257     }
20258 
20259     ExprResult VisitMemberExpr(MemberExpr *E) {
20260       return resolveDecl(E, E->getMemberDecl());
20261     }
20262 
20263     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20264       return resolveDecl(E, E->getDecl());
20265     }
20266   };
20267 }
20268 
20269 /// Given a function expression of unknown-any type, try to rebuild it
20270 /// to have a function type.
20271 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20272   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20273   if (Result.isInvalid()) return ExprError();
20274   return S.DefaultFunctionArrayConversion(Result.get());
20275 }
20276 
20277 namespace {
20278   /// A visitor for rebuilding an expression of type __unknown_anytype
20279   /// into one which resolves the type directly on the referring
20280   /// expression.  Strict preservation of the original source
20281   /// structure is not a goal.
20282   struct RebuildUnknownAnyExpr
20283     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20284 
20285     Sema &S;
20286 
20287     /// The current destination type.
20288     QualType DestType;
20289 
20290     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20291       : S(S), DestType(CastType) {}
20292 
20293     ExprResult VisitStmt(Stmt *S) {
20294       llvm_unreachable("unexpected statement!");
20295     }
20296 
20297     ExprResult VisitExpr(Expr *E) {
20298       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20299         << E->getSourceRange();
20300       return ExprError();
20301     }
20302 
20303     ExprResult VisitCallExpr(CallExpr *E);
20304     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20305 
20306     /// Rebuild an expression which simply semantically wraps another
20307     /// expression which it shares the type and value kind of.
20308     template <class T> ExprResult rebuildSugarExpr(T *E) {
20309       ExprResult SubResult = Visit(E->getSubExpr());
20310       if (SubResult.isInvalid()) return ExprError();
20311       Expr *SubExpr = SubResult.get();
20312       E->setSubExpr(SubExpr);
20313       E->setType(SubExpr->getType());
20314       E->setValueKind(SubExpr->getValueKind());
20315       assert(E->getObjectKind() == OK_Ordinary);
20316       return E;
20317     }
20318 
20319     ExprResult VisitParenExpr(ParenExpr *E) {
20320       return rebuildSugarExpr(E);
20321     }
20322 
20323     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20324       return rebuildSugarExpr(E);
20325     }
20326 
20327     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20328       const PointerType *Ptr = DestType->getAs<PointerType>();
20329       if (!Ptr) {
20330         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20331           << E->getSourceRange();
20332         return ExprError();
20333       }
20334 
20335       if (isa<CallExpr>(E->getSubExpr())) {
20336         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20337           << E->getSourceRange();
20338         return ExprError();
20339       }
20340 
20341       assert(E->isPRValue());
20342       assert(E->getObjectKind() == OK_Ordinary);
20343       E->setType(DestType);
20344 
20345       // Build the sub-expression as if it were an object of the pointee type.
20346       DestType = Ptr->getPointeeType();
20347       ExprResult SubResult = Visit(E->getSubExpr());
20348       if (SubResult.isInvalid()) return ExprError();
20349       E->setSubExpr(SubResult.get());
20350       return E;
20351     }
20352 
20353     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20354 
20355     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20356 
20357     ExprResult VisitMemberExpr(MemberExpr *E) {
20358       return resolveDecl(E, E->getMemberDecl());
20359     }
20360 
20361     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20362       return resolveDecl(E, E->getDecl());
20363     }
20364   };
20365 }
20366 
20367 /// Rebuilds a call expression which yielded __unknown_anytype.
20368 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20369   Expr *CalleeExpr = E->getCallee();
20370 
20371   enum FnKind {
20372     FK_MemberFunction,
20373     FK_FunctionPointer,
20374     FK_BlockPointer
20375   };
20376 
20377   FnKind Kind;
20378   QualType CalleeType = CalleeExpr->getType();
20379   if (CalleeType == S.Context.BoundMemberTy) {
20380     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20381     Kind = FK_MemberFunction;
20382     CalleeType = Expr::findBoundMemberType(CalleeExpr);
20383   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20384     CalleeType = Ptr->getPointeeType();
20385     Kind = FK_FunctionPointer;
20386   } else {
20387     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20388     Kind = FK_BlockPointer;
20389   }
20390   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20391 
20392   // Verify that this is a legal result type of a function.
20393   if (DestType->isArrayType() || DestType->isFunctionType()) {
20394     unsigned diagID = diag::err_func_returning_array_function;
20395     if (Kind == FK_BlockPointer)
20396       diagID = diag::err_block_returning_array_function;
20397 
20398     S.Diag(E->getExprLoc(), diagID)
20399       << DestType->isFunctionType() << DestType;
20400     return ExprError();
20401   }
20402 
20403   // Otherwise, go ahead and set DestType as the call's result.
20404   E->setType(DestType.getNonLValueExprType(S.Context));
20405   E->setValueKind(Expr::getValueKindForType(DestType));
20406   assert(E->getObjectKind() == OK_Ordinary);
20407 
20408   // Rebuild the function type, replacing the result type with DestType.
20409   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20410   if (Proto) {
20411     // __unknown_anytype(...) is a special case used by the debugger when
20412     // it has no idea what a function's signature is.
20413     //
20414     // We want to build this call essentially under the K&R
20415     // unprototyped rules, but making a FunctionNoProtoType in C++
20416     // would foul up all sorts of assumptions.  However, we cannot
20417     // simply pass all arguments as variadic arguments, nor can we
20418     // portably just call the function under a non-variadic type; see
20419     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20420     // However, it turns out that in practice it is generally safe to
20421     // call a function declared as "A foo(B,C,D);" under the prototype
20422     // "A foo(B,C,D,...);".  The only known exception is with the
20423     // Windows ABI, where any variadic function is implicitly cdecl
20424     // regardless of its normal CC.  Therefore we change the parameter
20425     // types to match the types of the arguments.
20426     //
20427     // This is a hack, but it is far superior to moving the
20428     // corresponding target-specific code from IR-gen to Sema/AST.
20429 
20430     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20431     SmallVector<QualType, 8> ArgTypes;
20432     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20433       ArgTypes.reserve(E->getNumArgs());
20434       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20435         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20436       }
20437       ParamTypes = ArgTypes;
20438     }
20439     DestType = S.Context.getFunctionType(DestType, ParamTypes,
20440                                          Proto->getExtProtoInfo());
20441   } else {
20442     DestType = S.Context.getFunctionNoProtoType(DestType,
20443                                                 FnType->getExtInfo());
20444   }
20445 
20446   // Rebuild the appropriate pointer-to-function type.
20447   switch (Kind) {
20448   case FK_MemberFunction:
20449     // Nothing to do.
20450     break;
20451 
20452   case FK_FunctionPointer:
20453     DestType = S.Context.getPointerType(DestType);
20454     break;
20455 
20456   case FK_BlockPointer:
20457     DestType = S.Context.getBlockPointerType(DestType);
20458     break;
20459   }
20460 
20461   // Finally, we can recurse.
20462   ExprResult CalleeResult = Visit(CalleeExpr);
20463   if (!CalleeResult.isUsable()) return ExprError();
20464   E->setCallee(CalleeResult.get());
20465 
20466   // Bind a temporary if necessary.
20467   return S.MaybeBindToTemporary(E);
20468 }
20469 
20470 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20471   // Verify that this is a legal result type of a call.
20472   if (DestType->isArrayType() || DestType->isFunctionType()) {
20473     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20474       << DestType->isFunctionType() << DestType;
20475     return ExprError();
20476   }
20477 
20478   // Rewrite the method result type if available.
20479   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20480     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20481     Method->setReturnType(DestType);
20482   }
20483 
20484   // Change the type of the message.
20485   E->setType(DestType.getNonReferenceType());
20486   E->setValueKind(Expr::getValueKindForType(DestType));
20487 
20488   return S.MaybeBindToTemporary(E);
20489 }
20490 
20491 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20492   // The only case we should ever see here is a function-to-pointer decay.
20493   if (E->getCastKind() == CK_FunctionToPointerDecay) {
20494     assert(E->isPRValue());
20495     assert(E->getObjectKind() == OK_Ordinary);
20496 
20497     E->setType(DestType);
20498 
20499     // Rebuild the sub-expression as the pointee (function) type.
20500     DestType = DestType->castAs<PointerType>()->getPointeeType();
20501 
20502     ExprResult Result = Visit(E->getSubExpr());
20503     if (!Result.isUsable()) return ExprError();
20504 
20505     E->setSubExpr(Result.get());
20506     return E;
20507   } else if (E->getCastKind() == CK_LValueToRValue) {
20508     assert(E->isPRValue());
20509     assert(E->getObjectKind() == OK_Ordinary);
20510 
20511     assert(isa<BlockPointerType>(E->getType()));
20512 
20513     E->setType(DestType);
20514 
20515     // The sub-expression has to be a lvalue reference, so rebuild it as such.
20516     DestType = S.Context.getLValueReferenceType(DestType);
20517 
20518     ExprResult Result = Visit(E->getSubExpr());
20519     if (!Result.isUsable()) return ExprError();
20520 
20521     E->setSubExpr(Result.get());
20522     return E;
20523   } else {
20524     llvm_unreachable("Unhandled cast type!");
20525   }
20526 }
20527 
20528 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20529   ExprValueKind ValueKind = VK_LValue;
20530   QualType Type = DestType;
20531 
20532   // We know how to make this work for certain kinds of decls:
20533 
20534   //  - functions
20535   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20536     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20537       DestType = Ptr->getPointeeType();
20538       ExprResult Result = resolveDecl(E, VD);
20539       if (Result.isInvalid()) return ExprError();
20540       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20541                                  VK_PRValue);
20542     }
20543 
20544     if (!Type->isFunctionType()) {
20545       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20546         << VD << E->getSourceRange();
20547       return ExprError();
20548     }
20549     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20550       // We must match the FunctionDecl's type to the hack introduced in
20551       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20552       // type. See the lengthy commentary in that routine.
20553       QualType FDT = FD->getType();
20554       const FunctionType *FnType = FDT->castAs<FunctionType>();
20555       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20556       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20557       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20558         SourceLocation Loc = FD->getLocation();
20559         FunctionDecl *NewFD = FunctionDecl::Create(
20560             S.Context, FD->getDeclContext(), Loc, Loc,
20561             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20562             SC_None, S.getCurFPFeatures().isFPConstrained(),
20563             false /*isInlineSpecified*/, FD->hasPrototype(),
20564             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20565 
20566         if (FD->getQualifier())
20567           NewFD->setQualifierInfo(FD->getQualifierLoc());
20568 
20569         SmallVector<ParmVarDecl*, 16> Params;
20570         for (const auto &AI : FT->param_types()) {
20571           ParmVarDecl *Param =
20572             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20573           Param->setScopeInfo(0, Params.size());
20574           Params.push_back(Param);
20575         }
20576         NewFD->setParams(Params);
20577         DRE->setDecl(NewFD);
20578         VD = DRE->getDecl();
20579       }
20580     }
20581 
20582     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20583       if (MD->isInstance()) {
20584         ValueKind = VK_PRValue;
20585         Type = S.Context.BoundMemberTy;
20586       }
20587 
20588     // Function references aren't l-values in C.
20589     if (!S.getLangOpts().CPlusPlus)
20590       ValueKind = VK_PRValue;
20591 
20592   //  - variables
20593   } else if (isa<VarDecl>(VD)) {
20594     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20595       Type = RefTy->getPointeeType();
20596     } else if (Type->isFunctionType()) {
20597       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20598         << VD << E->getSourceRange();
20599       return ExprError();
20600     }
20601 
20602   //  - nothing else
20603   } else {
20604     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20605       << VD << E->getSourceRange();
20606     return ExprError();
20607   }
20608 
20609   // Modifying the declaration like this is friendly to IR-gen but
20610   // also really dangerous.
20611   VD->setType(DestType);
20612   E->setType(Type);
20613   E->setValueKind(ValueKind);
20614   return E;
20615 }
20616 
20617 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20618                                      Expr *CastExpr, CastKind &CastKind,
20619                                      ExprValueKind &VK, CXXCastPath &Path) {
20620   // The type we're casting to must be either void or complete.
20621   if (!CastType->isVoidType() &&
20622       RequireCompleteType(TypeRange.getBegin(), CastType,
20623                           diag::err_typecheck_cast_to_incomplete))
20624     return ExprError();
20625 
20626   // Rewrite the casted expression from scratch.
20627   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20628   if (!result.isUsable()) return ExprError();
20629 
20630   CastExpr = result.get();
20631   VK = CastExpr->getValueKind();
20632   CastKind = CK_NoOp;
20633 
20634   return CastExpr;
20635 }
20636 
20637 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20638   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20639 }
20640 
20641 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20642                                     Expr *arg, QualType &paramType) {
20643   // If the syntactic form of the argument is not an explicit cast of
20644   // any sort, just do default argument promotion.
20645   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20646   if (!castArg) {
20647     ExprResult result = DefaultArgumentPromotion(arg);
20648     if (result.isInvalid()) return ExprError();
20649     paramType = result.get()->getType();
20650     return result;
20651   }
20652 
20653   // Otherwise, use the type that was written in the explicit cast.
20654   assert(!arg->hasPlaceholderType());
20655   paramType = castArg->getTypeAsWritten();
20656 
20657   // Copy-initialize a parameter of that type.
20658   InitializedEntity entity =
20659     InitializedEntity::InitializeParameter(Context, paramType,
20660                                            /*consumed*/ false);
20661   return PerformCopyInitialization(entity, callLoc, arg);
20662 }
20663 
20664 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20665   Expr *orig = E;
20666   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20667   while (true) {
20668     E = E->IgnoreParenImpCasts();
20669     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20670       E = call->getCallee();
20671       diagID = diag::err_uncasted_call_of_unknown_any;
20672     } else {
20673       break;
20674     }
20675   }
20676 
20677   SourceLocation loc;
20678   NamedDecl *d;
20679   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20680     loc = ref->getLocation();
20681     d = ref->getDecl();
20682   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20683     loc = mem->getMemberLoc();
20684     d = mem->getMemberDecl();
20685   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20686     diagID = diag::err_uncasted_call_of_unknown_any;
20687     loc = msg->getSelectorStartLoc();
20688     d = msg->getMethodDecl();
20689     if (!d) {
20690       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20691         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20692         << orig->getSourceRange();
20693       return ExprError();
20694     }
20695   } else {
20696     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20697       << E->getSourceRange();
20698     return ExprError();
20699   }
20700 
20701   S.Diag(loc, diagID) << d << orig->getSourceRange();
20702 
20703   // Never recoverable.
20704   return ExprError();
20705 }
20706 
20707 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20708   if (!Context.isDependenceAllowed()) {
20709     // C cannot handle TypoExpr nodes on either side of a binop because it
20710     // doesn't handle dependent types properly, so make sure any TypoExprs have
20711     // been dealt with before checking the operands.
20712     ExprResult Result = CorrectDelayedTyposInExpr(E);
20713     if (!Result.isUsable()) return ExprError();
20714     E = Result.get();
20715   }
20716 
20717   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20718   if (!placeholderType) return E;
20719 
20720   switch (placeholderType->getKind()) {
20721   case BuiltinType::UnresolvedTemplate: {
20722     auto *ULE = cast<UnresolvedLookupExpr>(E);
20723     const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
20724     // There's only one FoundDecl for UnresolvedTemplate type. See
20725     // BuildTemplateIdExpr.
20726     NamedDecl *Temp = *ULE->decls_begin();
20727     const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Temp);
20728 
20729     if (NestedNameSpecifierLoc Loc = ULE->getQualifierLoc(); Loc.hasQualifier())
20730       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20731           << Loc.getNestedNameSpecifier() << NameInfo.getName().getAsString()
20732           << Loc.getSourceRange() << IsTypeAliasTemplateDecl;
20733     else
20734       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20735           << "" << NameInfo.getName().getAsString() << ULE->getSourceRange()
20736           << IsTypeAliasTemplateDecl;
20737     Diag(Temp->getLocation(), diag::note_referenced_type_template)
20738         << IsTypeAliasTemplateDecl;
20739 
20740     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
20741   }
20742 
20743   // Overloaded expressions.
20744   case BuiltinType::Overload: {
20745     // Try to resolve a single function template specialization.
20746     // This is obligatory.
20747     ExprResult Result = E;
20748     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20749       return Result;
20750 
20751     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20752     // leaves Result unchanged on failure.
20753     Result = E;
20754     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20755       return Result;
20756 
20757     // If that failed, try to recover with a call.
20758     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20759                          /*complain*/ true);
20760     return Result;
20761   }
20762 
20763   // Bound member functions.
20764   case BuiltinType::BoundMember: {
20765     ExprResult result = E;
20766     const Expr *BME = E->IgnoreParens();
20767     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20768     // Try to give a nicer diagnostic if it is a bound member that we recognize.
20769     if (isa<CXXPseudoDestructorExpr>(BME)) {
20770       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20771     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20772       if (ME->getMemberNameInfo().getName().getNameKind() ==
20773           DeclarationName::CXXDestructorName)
20774         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20775     }
20776     tryToRecoverWithCall(result, PD,
20777                          /*complain*/ true);
20778     return result;
20779   }
20780 
20781   // ARC unbridged casts.
20782   case BuiltinType::ARCUnbridgedCast: {
20783     Expr *realCast = ObjC().stripARCUnbridgedCast(E);
20784     ObjC().diagnoseARCUnbridgedCast(realCast);
20785     return realCast;
20786   }
20787 
20788   // Expressions of unknown type.
20789   case BuiltinType::UnknownAny:
20790     return diagnoseUnknownAnyExpr(*this, E);
20791 
20792   // Pseudo-objects.
20793   case BuiltinType::PseudoObject:
20794     return PseudoObject().checkRValue(E);
20795 
20796   case BuiltinType::BuiltinFn: {
20797     // Accept __noop without parens by implicitly converting it to a call expr.
20798     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20799     if (DRE) {
20800       auto *FD = cast<FunctionDecl>(DRE->getDecl());
20801       unsigned BuiltinID = FD->getBuiltinID();
20802       if (BuiltinID == Builtin::BI__noop) {
20803         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20804                               CK_BuiltinFnToFnPtr)
20805                 .get();
20806         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20807                                 VK_PRValue, SourceLocation(),
20808                                 FPOptionsOverride());
20809       }
20810 
20811       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20812         // Any use of these other than a direct call is ill-formed as of C++20,
20813         // because they are not addressable functions. In earlier language
20814         // modes, warn and force an instantiation of the real body.
20815         Diag(E->getBeginLoc(),
20816              getLangOpts().CPlusPlus20
20817                  ? diag::err_use_of_unaddressable_function
20818                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
20819         if (FD->isImplicitlyInstantiable()) {
20820           // Require a definition here because a normal attempt at
20821           // instantiation for a builtin will be ignored, and we won't try
20822           // again later. We assume that the definition of the template
20823           // precedes this use.
20824           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
20825                                         /*Recursive=*/false,
20826                                         /*DefinitionRequired=*/true,
20827                                         /*AtEndOfTU=*/false);
20828         }
20829         // Produce a properly-typed reference to the function.
20830         CXXScopeSpec SS;
20831         SS.Adopt(DRE->getQualifierLoc());
20832         TemplateArgumentListInfo TemplateArgs;
20833         DRE->copyTemplateArgumentsInto(TemplateArgs);
20834         return BuildDeclRefExpr(
20835             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
20836             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
20837             DRE->getTemplateKeywordLoc(),
20838             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20839       }
20840     }
20841 
20842     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
20843     return ExprError();
20844   }
20845 
20846   case BuiltinType::IncompleteMatrixIdx:
20847     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
20848              ->getRowIdx()
20849              ->getBeginLoc(),
20850          diag::err_matrix_incomplete_index);
20851     return ExprError();
20852 
20853   // Expressions of unknown type.
20854   case BuiltinType::ArraySection:
20855     Diag(E->getBeginLoc(), diag::err_array_section_use)
20856         << cast<ArraySectionExpr>(E)->isOMPArraySection();
20857     return ExprError();
20858 
20859   // Expressions of unknown type.
20860   case BuiltinType::OMPArrayShaping:
20861     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
20862 
20863   case BuiltinType::OMPIterator:
20864     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
20865 
20866   // Everything else should be impossible.
20867 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20868   case BuiltinType::Id:
20869 #include "clang/Basic/OpenCLImageTypes.def"
20870 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20871   case BuiltinType::Id:
20872 #include "clang/Basic/OpenCLExtensionTypes.def"
20873 #define SVE_TYPE(Name, Id, SingletonId) \
20874   case BuiltinType::Id:
20875 #include "clang/Basic/AArch64SVEACLETypes.def"
20876 #define PPC_VECTOR_TYPE(Name, Id, Size) \
20877   case BuiltinType::Id:
20878 #include "clang/Basic/PPCTypes.def"
20879 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20880 #include "clang/Basic/RISCVVTypes.def"
20881 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20882 #include "clang/Basic/WebAssemblyReferenceTypes.def"
20883 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20884 #include "clang/Basic/AMDGPUTypes.def"
20885 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20886 #define PLACEHOLDER_TYPE(Id, SingletonId)
20887 #include "clang/AST/BuiltinTypes.def"
20888     break;
20889   }
20890 
20891   llvm_unreachable("invalid placeholder type!");
20892 }
20893 
20894 bool Sema::CheckCaseExpression(Expr *E) {
20895   if (E->isTypeDependent())
20896     return true;
20897   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
20898     return E->getType()->isIntegralOrEnumerationType();
20899   return false;
20900 }
20901 
20902 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20903                                     ArrayRef<Expr *> SubExprs, QualType T) {
20904   if (!Context.getLangOpts().RecoveryAST)
20905     return ExprError();
20906 
20907   if (isSFINAEContext())
20908     return ExprError();
20909 
20910   if (T.isNull() || T->isUndeducedType() ||
20911       !Context.getLangOpts().RecoveryASTType)
20912     // We don't know the concrete type, fallback to dependent type.
20913     T = Context.DependentTy;
20914 
20915   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20916 }
20917