1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective C declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/RecursiveASTVisitor.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 31 using namespace clang; 32 33 /// Check whether the given method, which must be in the 'init' 34 /// family, is a valid member of that family. 35 /// 36 /// \param receiverTypeIfCall - if null, check this as if declaring it; 37 /// if non-null, check this as if making a call to it with the given 38 /// receiver type 39 /// 40 /// \return true to indicate that there was an error and appropriate 41 /// actions were taken 42 bool Sema::checkInitMethod(ObjCMethodDecl *method, 43 QualType receiverTypeIfCall) { 44 if (method->isInvalidDecl()) return true; 45 46 // This castAs is safe: methods that don't return an object 47 // pointer won't be inferred as inits and will reject an explicit 48 // objc_method_family(init). 49 50 // We ignore protocols here. Should we? What about Class? 51 52 const ObjCObjectType *result = 53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 54 55 if (result->isObjCId()) { 56 return false; 57 } else if (result->isObjCClass()) { 58 // fall through: always an error 59 } else { 60 ObjCInterfaceDecl *resultClass = result->getInterface(); 61 assert(resultClass && "unexpected object type!"); 62 63 // It's okay for the result type to still be a forward declaration 64 // if we're checking an interface declaration. 65 if (!resultClass->hasDefinition()) { 66 if (receiverTypeIfCall.isNull() && 67 !isa<ObjCImplementationDecl>(method->getDeclContext())) 68 return false; 69 70 // Otherwise, we try to compare class types. 71 } else { 72 // If this method was declared in a protocol, we can't check 73 // anything unless we have a receiver type that's an interface. 74 const ObjCInterfaceDecl *receiverClass = nullptr; 75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 76 if (receiverTypeIfCall.isNull()) 77 return false; 78 79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 80 ->getInterfaceDecl(); 81 82 // This can be null for calls to e.g. id<Foo>. 83 if (!receiverClass) return false; 84 } else { 85 receiverClass = method->getClassInterface(); 86 assert(receiverClass && "method not associated with a class!"); 87 } 88 89 // If either class is a subclass of the other, it's fine. 90 if (receiverClass->isSuperClassOf(resultClass) || 91 resultClass->isSuperClassOf(receiverClass)) 92 return false; 93 } 94 } 95 96 SourceLocation loc = method->getLocation(); 97 98 // If we're in a system header, and this is not a call, just make 99 // the method unusable. 100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "", 102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110 } 111 112 /// Issue a warning if the parameter of the overridden method is non-escaping 113 /// but the parameter of the overriding method is not. 114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 115 Sema &S) { 116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { 117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); 118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); 119 return false; 120 } 121 122 return true; 123 } 124 125 /// Produce additional diagnostics if a category conforms to a protocol that 126 /// defines a method taking a non-escaping parameter. 127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 128 const ObjCCategoryDecl *CD, 129 const ObjCProtocolDecl *PD, Sema &S) { 130 if (!diagnoseNoescape(NewD, OldD, S)) 131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) 132 << CD->IsClassExtension() << PD 133 << cast<ObjCMethodDecl>(NewD->getDeclContext()); 134 } 135 136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 137 const ObjCMethodDecl *Overridden) { 138 if (Overridden->hasRelatedResultType() && 139 !NewMethod->hasRelatedResultType()) { 140 // This can only happen when the method follows a naming convention that 141 // implies a related result type, and the original (overridden) method has 142 // a suitable return type, but the new (overriding) method does not have 143 // a suitable return type. 144 QualType ResultType = NewMethod->getReturnType(); 145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 146 147 // Figure out which class this method is part of, if any. 148 ObjCInterfaceDecl *CurrentClass 149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 150 if (!CurrentClass) { 151 DeclContext *DC = NewMethod->getDeclContext(); 152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 153 CurrentClass = Cat->getClassInterface(); 154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 155 CurrentClass = Impl->getClassInterface(); 156 else if (ObjCCategoryImplDecl *CatImpl 157 = dyn_cast<ObjCCategoryImplDecl>(DC)) 158 CurrentClass = CatImpl->getClassInterface(); 159 } 160 161 if (CurrentClass) { 162 Diag(NewMethod->getLocation(), 163 diag::warn_related_result_type_compatibility_class) 164 << Context.getObjCInterfaceType(CurrentClass) 165 << ResultType 166 << ResultTypeRange; 167 } else { 168 Diag(NewMethod->getLocation(), 169 diag::warn_related_result_type_compatibility_protocol) 170 << ResultType 171 << ResultTypeRange; 172 } 173 174 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 175 Diag(Overridden->getLocation(), 176 diag::note_related_result_type_family) 177 << /*overridden method*/ 0 178 << Family; 179 else 180 Diag(Overridden->getLocation(), 181 diag::note_related_result_type_overridden); 182 } 183 184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 185 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 186 Diag(NewMethod->getLocation(), 187 getLangOpts().ObjCAutoRefCount 188 ? diag::err_nsreturns_retained_attribute_mismatch 189 : diag::warn_nsreturns_retained_attribute_mismatch) 190 << 1; 191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 192 } 193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 195 Diag(NewMethod->getLocation(), 196 getLangOpts().ObjCAutoRefCount 197 ? diag::err_nsreturns_retained_attribute_mismatch 198 : diag::warn_nsreturns_retained_attribute_mismatch) 199 << 0; 200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 201 } 202 203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 204 oe = Overridden->param_end(); 205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), 206 ne = NewMethod->param_end(); 207 ni != ne && oi != oe; ++ni, ++oi) { 208 const ParmVarDecl *oldDecl = (*oi); 209 ParmVarDecl *newDecl = (*ni); 210 if (newDecl->hasAttr<NSConsumedAttr>() != 211 oldDecl->hasAttr<NSConsumedAttr>()) { 212 Diag(newDecl->getLocation(), 213 getLangOpts().ObjCAutoRefCount 214 ? diag::err_nsconsumed_attribute_mismatch 215 : diag::warn_nsconsumed_attribute_mismatch); 216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; 217 } 218 219 diagnoseNoescape(newDecl, oldDecl, *this); 220 } 221 } 222 223 /// Check a method declaration for compatibility with the Objective-C 224 /// ARC conventions. 225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 226 ObjCMethodFamily family = method->getMethodFamily(); 227 switch (family) { 228 case OMF_None: 229 case OMF_finalize: 230 case OMF_retain: 231 case OMF_release: 232 case OMF_autorelease: 233 case OMF_retainCount: 234 case OMF_self: 235 case OMF_initialize: 236 case OMF_performSelector: 237 return false; 238 239 case OMF_dealloc: 240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 242 if (ResultTypeRange.isInvalid()) 243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 244 << method->getReturnType() 245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 246 else 247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 248 << method->getReturnType() 249 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 250 return true; 251 } 252 return false; 253 254 case OMF_init: 255 // If the method doesn't obey the init rules, don't bother annotating it. 256 if (checkInitMethod(method, QualType())) 257 return true; 258 259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 260 261 // Don't add a second copy of this attribute, but otherwise don't 262 // let it be suppressed. 263 if (method->hasAttr<NSReturnsRetainedAttr>()) 264 return false; 265 break; 266 267 case OMF_alloc: 268 case OMF_copy: 269 case OMF_mutableCopy: 270 case OMF_new: 271 if (method->hasAttr<NSReturnsRetainedAttr>() || 272 method->hasAttr<NSReturnsNotRetainedAttr>() || 273 method->hasAttr<NSReturnsAutoreleasedAttr>()) 274 return false; 275 break; 276 } 277 278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 279 return false; 280 } 281 282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, 283 SourceLocation ImplLoc) { 284 if (!ND) 285 return; 286 bool IsCategory = false; 287 StringRef RealizedPlatform; 288 AvailabilityResult Availability = ND->getAvailability( 289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), 290 &RealizedPlatform); 291 if (Availability != AR_Deprecated) { 292 if (isa<ObjCMethodDecl>(ND)) { 293 if (Availability != AR_Unavailable) 294 return; 295 if (RealizedPlatform.empty()) 296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); 297 // Warn about implementing unavailable methods, unless the unavailable 298 // is for an app extension. 299 if (RealizedPlatform.endswith("_app_extension")) 300 return; 301 S.Diag(ImplLoc, diag::warn_unavailable_def); 302 S.Diag(ND->getLocation(), diag::note_method_declared_at) 303 << ND->getDeclName(); 304 return; 305 } 306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) { 307 if (!CD->getClassInterface()->isDeprecated()) 308 return; 309 ND = CD->getClassInterface(); 310 IsCategory = true; 311 } else 312 return; 313 } 314 S.Diag(ImplLoc, diag::warn_deprecated_def) 315 << (isa<ObjCMethodDecl>(ND) 316 ? /*Method*/ 0 317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 318 : /*Class*/ 1); 319 if (isa<ObjCMethodDecl>(ND)) 320 S.Diag(ND->getLocation(), diag::note_method_declared_at) 321 << ND->getDeclName(); 322 else 323 S.Diag(ND->getLocation(), diag::note_previous_decl) 324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class"); 325 } 326 327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 328 /// pool. 329 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 331 332 // If we don't have a valid method decl, simply return. 333 if (!MDecl) 334 return; 335 if (MDecl->isInstanceMethod()) 336 AddInstanceMethodToGlobalPool(MDecl, true); 337 else 338 AddFactoryMethodToGlobalPool(MDecl, true); 339 } 340 341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 342 /// has explicit ownership attribute; false otherwise. 343 static bool 344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 345 QualType T = Param->getType(); 346 347 if (const PointerType *PT = T->getAs<PointerType>()) { 348 T = PT->getPointeeType(); 349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 350 T = RT->getPointeeType(); 351 } else { 352 return true; 353 } 354 355 // If we have a lifetime qualifier, but it's local, we must have 356 // inferred it. So, it is implicit. 357 return !T.getLocalQualifiers().hasObjCLifetime(); 358 } 359 360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 361 /// and user declared, in the method definition's AST. 362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 363 ImplicitlyRetainedSelfLocs.clear(); 364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 366 367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 368 369 // If we don't have a valid method decl, simply return. 370 if (!MDecl) 371 return; 372 373 QualType ResultType = MDecl->getReturnType(); 374 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 375 !MDecl->isInvalidDecl() && 376 RequireCompleteType(MDecl->getLocation(), ResultType, 377 diag::err_func_def_incomplete_result)) 378 MDecl->setInvalidDecl(); 379 380 // Allow all of Sema to see that we are entering a method definition. 381 PushDeclContext(FnBodyScope, MDecl); 382 PushFunctionScope(); 383 384 // Create Decl objects for each parameter, entrring them in the scope for 385 // binding to their use. 386 387 // Insert the invisible arguments, self and _cmd! 388 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 389 390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 392 393 // The ObjC parser requires parameter names so there's no need to check. 394 CheckParmsForFunctionDef(MDecl->parameters(), 395 /*CheckParameterNames=*/false); 396 397 // Introduce all of the other parameters into this scope. 398 for (auto *Param : MDecl->parameters()) { 399 if (!Param->isInvalidDecl() && 400 getLangOpts().ObjCAutoRefCount && 401 !HasExplicitOwnershipAttr(*this, Param)) 402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 403 Param->getType(); 404 405 if (Param->getIdentifier()) 406 PushOnScopeChains(Param, FnBodyScope); 407 } 408 409 // In ARC, disallow definition of retain/release/autorelease/retainCount 410 if (getLangOpts().ObjCAutoRefCount) { 411 switch (MDecl->getMethodFamily()) { 412 case OMF_retain: 413 case OMF_retainCount: 414 case OMF_release: 415 case OMF_autorelease: 416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 417 << 0 << MDecl->getSelector(); 418 break; 419 420 case OMF_None: 421 case OMF_dealloc: 422 case OMF_finalize: 423 case OMF_alloc: 424 case OMF_init: 425 case OMF_mutableCopy: 426 case OMF_copy: 427 case OMF_new: 428 case OMF_self: 429 case OMF_initialize: 430 case OMF_performSelector: 431 break; 432 } 433 } 434 435 // Warn on deprecated methods under -Wdeprecated-implementations, 436 // and prepare for warning on missing super calls. 437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 438 ObjCMethodDecl *IMD = 439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 440 441 if (IMD) { 442 ObjCImplDecl *ImplDeclOfMethodDef = 443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 444 ObjCContainerDecl *ContDeclOfMethodDecl = 445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 448 ImplDeclOfMethodDecl = OID->getImplementation(); 449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 450 if (CD->IsClassExtension()) { 451 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 452 ImplDeclOfMethodDecl = OID->getImplementation(); 453 } else 454 ImplDeclOfMethodDecl = CD->getImplementation(); 455 } 456 // No need to issue deprecated warning if deprecated mehod in class/category 457 // is being implemented in its own implementation (no overriding is involved). 458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); 460 } 461 462 if (MDecl->getMethodFamily() == OMF_init) { 463 if (MDecl->isDesignatedInitializerForTheInterface()) { 464 getCurFunction()->ObjCIsDesignatedInit = true; 465 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 466 IC->getSuperClass() != nullptr; 467 } else if (IC->hasDesignatedInitializers()) { 468 getCurFunction()->ObjCIsSecondaryInit = true; 469 getCurFunction()->ObjCWarnForNoInitDelegation = true; 470 } 471 } 472 473 // If this is "dealloc" or "finalize", set some bit here. 474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 476 // Only do this if the current class actually has a superclass. 477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 478 ObjCMethodFamily Family = MDecl->getMethodFamily(); 479 if (Family == OMF_dealloc) { 480 if (!(getLangOpts().ObjCAutoRefCount || 481 getLangOpts().getGC() == LangOptions::GCOnly)) 482 getCurFunction()->ObjCShouldCallSuper = true; 483 484 } else if (Family == OMF_finalize) { 485 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 486 getCurFunction()->ObjCShouldCallSuper = true; 487 488 } else { 489 const ObjCMethodDecl *SuperMethod = 490 SuperClass->lookupMethod(MDecl->getSelector(), 491 MDecl->isInstanceMethod()); 492 getCurFunction()->ObjCShouldCallSuper = 493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 494 } 495 } 496 } 497 } 498 499 namespace { 500 501 // Callback to only accept typo corrections that are Objective-C classes. 502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 503 // function will reject corrections to that class. 504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { 505 public: 506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 508 : CurrentIDecl(IDecl) {} 509 510 bool ValidateCandidate(const TypoCorrection &candidate) override { 511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 512 return ID && !declaresSameEntity(ID, CurrentIDecl); 513 } 514 515 std::unique_ptr<CorrectionCandidateCallback> clone() override { 516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this); 517 } 518 519 private: 520 ObjCInterfaceDecl *CurrentIDecl; 521 }; 522 523 } // end anonymous namespace 524 525 static void diagnoseUseOfProtocols(Sema &TheSema, 526 ObjCContainerDecl *CD, 527 ObjCProtocolDecl *const *ProtoRefs, 528 unsigned NumProtoRefs, 529 const SourceLocation *ProtoLocs) { 530 assert(ProtoRefs); 531 // Diagnose availability in the context of the ObjC container. 532 Sema::ContextRAII SavedContext(TheSema, CD); 533 for (unsigned i = 0; i < NumProtoRefs; ++i) { 534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], 535 /*UnknownObjCClass=*/nullptr, 536 /*ObjCPropertyAccess=*/false, 537 /*AvoidPartialAvailabilityChecks=*/true); 538 } 539 } 540 541 void Sema:: 542 ActOnSuperClassOfClassInterface(Scope *S, 543 SourceLocation AtInterfaceLoc, 544 ObjCInterfaceDecl *IDecl, 545 IdentifierInfo *ClassName, 546 SourceLocation ClassLoc, 547 IdentifierInfo *SuperName, 548 SourceLocation SuperLoc, 549 ArrayRef<ParsedType> SuperTypeArgs, 550 SourceRange SuperTypeArgsRange) { 551 // Check if a different kind of symbol declared in this scope. 552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 553 LookupOrdinaryName); 554 555 if (!PrevDecl) { 556 // Try to correct for a typo in the superclass name without correcting 557 // to the class we're defining. 558 ObjCInterfaceValidatorCCC CCC(IDecl); 559 if (TypoCorrection Corrected = CorrectTypo( 560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, 561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 563 << SuperName << ClassName); 564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 565 } 566 } 567 568 if (declaresSameEntity(PrevDecl, IDecl)) { 569 Diag(SuperLoc, diag::err_recursive_superclass) 570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 571 IDecl->setEndOfDefinitionLoc(ClassLoc); 572 } else { 573 ObjCInterfaceDecl *SuperClassDecl = 574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 575 QualType SuperClassType; 576 577 // Diagnose classes that inherit from deprecated classes. 578 if (SuperClassDecl) { 579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl); 581 } 582 583 if (PrevDecl && !SuperClassDecl) { 584 // The previous declaration was not a class decl. Check if we have a 585 // typedef. If we do, get the underlying class type. 586 if (const TypedefNameDecl *TDecl = 587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 588 QualType T = TDecl->getUnderlyingType(); 589 if (T->isObjCObjectType()) { 590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 592 SuperClassType = Context.getTypeDeclType(TDecl); 593 594 // This handles the following case: 595 // @interface NewI @end 596 // typedef NewI DeprI __attribute__((deprecated("blah"))) 597 // @interface SI : DeprI /* warn here */ @end 598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 599 } 600 } 601 } 602 603 // This handles the following case: 604 // 605 // typedef int SuperClass; 606 // @interface MyClass : SuperClass {} @end 607 // 608 if (!SuperClassDecl) { 609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 610 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 611 } 612 } 613 614 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) { 615 if (!SuperClassDecl) 616 Diag(SuperLoc, diag::err_undef_superclass) 617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 618 else if (RequireCompleteType(SuperLoc, 619 SuperClassType, 620 diag::err_forward_superclass, 621 SuperClassDecl->getDeclName(), 622 ClassName, 623 SourceRange(AtInterfaceLoc, ClassLoc))) { 624 SuperClassDecl = nullptr; 625 SuperClassType = QualType(); 626 } 627 } 628 629 if (SuperClassType.isNull()) { 630 assert(!SuperClassDecl && "Failed to set SuperClassType?"); 631 return; 632 } 633 634 // Handle type arguments on the superclass. 635 TypeSourceInfo *SuperClassTInfo = nullptr; 636 if (!SuperTypeArgs.empty()) { 637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( 638 S, 639 SuperLoc, 640 CreateParsedType(SuperClassType, 641 nullptr), 642 SuperTypeArgsRange.getBegin(), 643 SuperTypeArgs, 644 SuperTypeArgsRange.getEnd(), 645 SourceLocation(), 646 { }, 647 { }, 648 SourceLocation()); 649 if (!fullSuperClassType.isUsable()) 650 return; 651 652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(), 653 &SuperClassTInfo); 654 } 655 656 if (!SuperClassTInfo) { 657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, 658 SuperLoc); 659 } 660 661 IDecl->setSuperClass(SuperClassTInfo); 662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); 663 } 664 } 665 666 DeclResult Sema::actOnObjCTypeParam(Scope *S, 667 ObjCTypeParamVariance variance, 668 SourceLocation varianceLoc, 669 unsigned index, 670 IdentifierInfo *paramName, 671 SourceLocation paramLoc, 672 SourceLocation colonLoc, 673 ParsedType parsedTypeBound) { 674 // If there was an explicitly-provided type bound, check it. 675 TypeSourceInfo *typeBoundInfo = nullptr; 676 if (parsedTypeBound) { 677 // The type bound can be any Objective-C pointer type. 678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo); 679 if (typeBound->isObjCObjectPointerType()) { 680 // okay 681 } else if (typeBound->isObjCObjectType()) { 682 // The user forgot the * on an Objective-C pointer type, e.g., 683 // "T : NSView". 684 SourceLocation starLoc = getLocForEndOfToken( 685 typeBoundInfo->getTypeLoc().getEndLoc()); 686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 687 diag::err_objc_type_param_bound_missing_pointer) 688 << typeBound << paramName 689 << FixItHint::CreateInsertion(starLoc, " *"); 690 691 // Create a new type location builder so we can update the type 692 // location information we have. 693 TypeLocBuilder builder; 694 builder.pushFullCopy(typeBoundInfo->getTypeLoc()); 695 696 // Create the Objective-C pointer type. 697 typeBound = Context.getObjCObjectPointerType(typeBound); 698 ObjCObjectPointerTypeLoc newT 699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound); 700 newT.setStarLoc(starLoc); 701 702 // Form the new type source information. 703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound); 704 } else { 705 // Not a valid type bound. 706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 707 diag::err_objc_type_param_bound_nonobject) 708 << typeBound << paramName; 709 710 // Forget the bound; we'll default to id later. 711 typeBoundInfo = nullptr; 712 } 713 714 // Type bounds cannot have qualifiers (even indirectly) or explicit 715 // nullability. 716 if (typeBoundInfo) { 717 QualType typeBound = typeBoundInfo->getType(); 718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); 719 if (qual || typeBound.hasQualifiers()) { 720 bool diagnosed = false; 721 SourceRange rangeToRemove; 722 if (qual) { 723 if (auto attr = qual.getAs<AttributedTypeLoc>()) { 724 rangeToRemove = attr.getLocalSourceRange(); 725 if (attr.getTypePtr()->getImmediateNullability()) { 726 Diag(attr.getBeginLoc(), 727 diag::err_objc_type_param_bound_explicit_nullability) 728 << paramName << typeBound 729 << FixItHint::CreateRemoval(rangeToRemove); 730 diagnosed = true; 731 } 732 } 733 } 734 735 if (!diagnosed) { 736 Diag(qual ? qual.getBeginLoc() 737 : typeBoundInfo->getTypeLoc().getBeginLoc(), 738 diag::err_objc_type_param_bound_qualified) 739 << paramName << typeBound 740 << typeBound.getQualifiers().getAsString() 741 << FixItHint::CreateRemoval(rangeToRemove); 742 } 743 744 // If the type bound has qualifiers other than CVR, we need to strip 745 // them or we'll probably assert later when trying to apply new 746 // qualifiers. 747 Qualifiers quals = typeBound.getQualifiers(); 748 quals.removeCVRQualifiers(); 749 if (!quals.empty()) { 750 typeBoundInfo = 751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType()); 752 } 753 } 754 } 755 } 756 757 // If there was no explicit type bound (or we removed it due to an error), 758 // use 'id' instead. 759 if (!typeBoundInfo) { 760 colonLoc = SourceLocation(); 761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType()); 762 } 763 764 // Create the type parameter. 765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc, 766 index, paramLoc, paramName, colonLoc, 767 typeBoundInfo); 768 } 769 770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, 771 SourceLocation lAngleLoc, 772 ArrayRef<Decl *> typeParamsIn, 773 SourceLocation rAngleLoc) { 774 // We know that the array only contains Objective-C type parameters. 775 ArrayRef<ObjCTypeParamDecl *> 776 typeParams( 777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), 778 typeParamsIn.size()); 779 780 // Diagnose redeclarations of type parameters. 781 // We do this now because Objective-C type parameters aren't pushed into 782 // scope until later (after the instance variable block), but we want the 783 // diagnostics to occur right after we parse the type parameter list. 784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; 785 for (auto typeParam : typeParams) { 786 auto known = knownParams.find(typeParam->getIdentifier()); 787 if (known != knownParams.end()) { 788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) 789 << typeParam->getIdentifier() 790 << SourceRange(known->second->getLocation()); 791 792 typeParam->setInvalidDecl(); 793 } else { 794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); 795 796 // Push the type parameter into scope. 797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false); 798 } 799 } 800 801 // Create the parameter list. 802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc); 803 } 804 805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { 806 for (auto typeParam : *typeParamList) { 807 if (!typeParam->isInvalidDecl()) { 808 S->RemoveDecl(typeParam); 809 IdResolver.RemoveDecl(typeParam); 810 } 811 } 812 } 813 814 namespace { 815 /// The context in which an Objective-C type parameter list occurs, for use 816 /// in diagnostics. 817 enum class TypeParamListContext { 818 ForwardDeclaration, 819 Definition, 820 Category, 821 Extension 822 }; 823 } // end anonymous namespace 824 825 /// Check consistency between two Objective-C type parameter lists, e.g., 826 /// between a category/extension and an \@interface or between an \@class and an 827 /// \@interface. 828 static bool checkTypeParamListConsistency(Sema &S, 829 ObjCTypeParamList *prevTypeParams, 830 ObjCTypeParamList *newTypeParams, 831 TypeParamListContext newContext) { 832 // If the sizes don't match, complain about that. 833 if (prevTypeParams->size() != newTypeParams->size()) { 834 SourceLocation diagLoc; 835 if (newTypeParams->size() > prevTypeParams->size()) { 836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); 837 } else { 838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc()); 839 } 840 841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) 842 << static_cast<unsigned>(newContext) 843 << (newTypeParams->size() > prevTypeParams->size()) 844 << prevTypeParams->size() 845 << newTypeParams->size(); 846 847 return true; 848 } 849 850 // Match up the type parameters. 851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { 852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; 853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; 854 855 // Check for consistency of the variance. 856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { 857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && 858 newContext != TypeParamListContext::Definition) { 859 // When the new type parameter is invariant and is not part 860 // of the definition, just propagate the variance. 861 newTypeParam->setVariance(prevTypeParam->getVariance()); 862 } else if (prevTypeParam->getVariance() 863 == ObjCTypeParamVariance::Invariant && 864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && 865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) 866 ->getDefinition() == prevTypeParam->getDeclContext())) { 867 // When the old parameter is invariant and was not part of the 868 // definition, just ignore the difference because it doesn't 869 // matter. 870 } else { 871 { 872 // Diagnose the conflict and update the second declaration. 873 SourceLocation diagLoc = newTypeParam->getVarianceLoc(); 874 if (diagLoc.isInvalid()) 875 diagLoc = newTypeParam->getBeginLoc(); 876 877 auto diag = S.Diag(diagLoc, 878 diag::err_objc_type_param_variance_conflict) 879 << static_cast<unsigned>(newTypeParam->getVariance()) 880 << newTypeParam->getDeclName() 881 << static_cast<unsigned>(prevTypeParam->getVariance()) 882 << prevTypeParam->getDeclName(); 883 switch (prevTypeParam->getVariance()) { 884 case ObjCTypeParamVariance::Invariant: 885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc()); 886 break; 887 888 case ObjCTypeParamVariance::Covariant: 889 case ObjCTypeParamVariance::Contravariant: { 890 StringRef newVarianceStr 891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant 892 ? "__covariant" 893 : "__contravariant"; 894 if (newTypeParam->getVariance() 895 == ObjCTypeParamVariance::Invariant) { 896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(), 897 (newVarianceStr + " ").str()); 898 } else { 899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(), 900 newVarianceStr); 901 } 902 } 903 } 904 } 905 906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 907 << prevTypeParam->getDeclName(); 908 909 // Override the variance. 910 newTypeParam->setVariance(prevTypeParam->getVariance()); 911 } 912 } 913 914 // If the bound types match, there's nothing to do. 915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), 916 newTypeParam->getUnderlyingType())) 917 continue; 918 919 // If the new type parameter's bound was explicit, complain about it being 920 // different from the original. 921 if (newTypeParam->hasExplicitBound()) { 922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() 923 ->getTypeLoc().getSourceRange(); 924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) 925 << newTypeParam->getUnderlyingType() 926 << newTypeParam->getDeclName() 927 << prevTypeParam->hasExplicitBound() 928 << prevTypeParam->getUnderlyingType() 929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) 930 << prevTypeParam->getDeclName() 931 << FixItHint::CreateReplacement( 932 newBoundRange, 933 prevTypeParam->getUnderlyingType().getAsString( 934 S.Context.getPrintingPolicy())); 935 936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 937 << prevTypeParam->getDeclName(); 938 939 // Override the new type parameter's bound type with the previous type, 940 // so that it's consistent. 941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 942 continue; 943 } 944 945 // The new type parameter got the implicit bound of 'id'. That's okay for 946 // categories and extensions (overwrite it later), but not for forward 947 // declarations and @interfaces, because those must be standalone. 948 if (newContext == TypeParamListContext::ForwardDeclaration || 949 newContext == TypeParamListContext::Definition) { 950 // Diagnose this problem for forward declarations and definitions. 951 SourceLocation insertionLoc 952 = S.getLocForEndOfToken(newTypeParam->getLocation()); 953 std::string newCode 954 = " : " + prevTypeParam->getUnderlyingType().getAsString( 955 S.Context.getPrintingPolicy()); 956 S.Diag(newTypeParam->getLocation(), 957 diag::err_objc_type_param_bound_missing) 958 << prevTypeParam->getUnderlyingType() 959 << newTypeParam->getDeclName() 960 << (newContext == TypeParamListContext::ForwardDeclaration) 961 << FixItHint::CreateInsertion(insertionLoc, newCode); 962 963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 964 << prevTypeParam->getDeclName(); 965 } 966 967 // Update the new type parameter's bound to match the previous one. 968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 969 } 970 971 return false; 972 } 973 974 Decl *Sema::ActOnStartClassInterface( 975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 977 IdentifierInfo *SuperName, SourceLocation SuperLoc, 978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, 979 Decl *const *ProtoRefs, unsigned NumProtoRefs, 980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 981 const ParsedAttributesView &AttrList) { 982 assert(ClassName && "Missing class identifier"); 983 984 // Check for another declaration kind with the same name. 985 NamedDecl *PrevDecl = 986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 987 forRedeclarationInCurContext()); 988 989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 991 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 992 } 993 994 // Create a declaration to describe this @interface. 995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 996 997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 998 // A previous decl with a different name is because of 999 // @compatibility_alias, for example: 1000 // \code 1001 // @class NewImage; 1002 // @compatibility_alias OldImage NewImage; 1003 // \endcode 1004 // A lookup for 'OldImage' will return the 'NewImage' decl. 1005 // 1006 // In such a case use the real declaration name, instead of the alias one, 1007 // otherwise we will break IdentifierResolver and redecls-chain invariants. 1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 1009 // has been aliased. 1010 ClassName = PrevIDecl->getIdentifier(); 1011 } 1012 1013 // If there was a forward declaration with type parameters, check 1014 // for consistency. 1015 if (PrevIDecl) { 1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { 1017 if (typeParamList) { 1018 // Both have type parameter lists; check for consistency. 1019 if (checkTypeParamListConsistency(*this, prevTypeParamList, 1020 typeParamList, 1021 TypeParamListContext::Definition)) { 1022 typeParamList = nullptr; 1023 } 1024 } else { 1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) 1026 << ClassName; 1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) 1028 << ClassName; 1029 1030 // Clone the type parameter list. 1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; 1032 for (auto typeParam : *prevTypeParamList) { 1033 clonedTypeParams.push_back( 1034 ObjCTypeParamDecl::Create( 1035 Context, 1036 CurContext, 1037 typeParam->getVariance(), 1038 SourceLocation(), 1039 typeParam->getIndex(), 1040 SourceLocation(), 1041 typeParam->getIdentifier(), 1042 SourceLocation(), 1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType()))); 1044 } 1045 1046 typeParamList = ObjCTypeParamList::create(Context, 1047 SourceLocation(), 1048 clonedTypeParams, 1049 SourceLocation()); 1050 } 1051 } 1052 } 1053 1054 ObjCInterfaceDecl *IDecl 1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 1056 typeParamList, PrevIDecl, ClassLoc); 1057 if (PrevIDecl) { 1058 // Class already seen. Was it a definition? 1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 1061 << PrevIDecl->getDeclName(); 1062 Diag(Def->getLocation(), diag::note_previous_definition); 1063 IDecl->setInvalidDecl(); 1064 } 1065 } 1066 1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 1068 AddPragmaAttributes(TUScope, IDecl); 1069 1070 // Merge attributes from previous declarations. 1071 if (PrevIDecl) 1072 mergeDeclAttributes(IDecl, PrevIDecl); 1073 1074 PushOnScopeChains(IDecl, TUScope); 1075 1076 // Start the definition of this class. If we're in a redefinition case, there 1077 // may already be a definition, so we'll end up adding to it. 1078 if (!IDecl->hasDefinition()) 1079 IDecl->startDefinition(); 1080 1081 if (SuperName) { 1082 // Diagnose availability in the context of the @interface. 1083 ContextRAII SavedContext(*this, IDecl); 1084 1085 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, 1086 ClassName, ClassLoc, 1087 SuperName, SuperLoc, SuperTypeArgs, 1088 SuperTypeArgsRange); 1089 } else { // we have a root class. 1090 IDecl->setEndOfDefinitionLoc(ClassLoc); 1091 } 1092 1093 // Check then save referenced protocols. 1094 if (NumProtoRefs) { 1095 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1096 NumProtoRefs, ProtoLocs); 1097 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1098 ProtoLocs, Context); 1099 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 1100 } 1101 1102 CheckObjCDeclScope(IDecl); 1103 return ActOnObjCContainerStartDefinition(IDecl); 1104 } 1105 1106 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 1107 /// typedef'ed use for a qualified super class and adds them to the list 1108 /// of the protocols. 1109 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 1110 SmallVectorImpl<SourceLocation> &ProtocolLocs, 1111 IdentifierInfo *SuperName, 1112 SourceLocation SuperLoc) { 1113 if (!SuperName) 1114 return; 1115 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 1116 LookupOrdinaryName); 1117 if (!IDecl) 1118 return; 1119 1120 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 1121 QualType T = TDecl->getUnderlyingType(); 1122 if (T->isObjCObjectType()) 1123 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { 1124 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); 1125 // FIXME: Consider whether this should be an invalid loc since the loc 1126 // is not actually pointing to a protocol name reference but to the 1127 // typedef reference. Note that the base class name loc is also pointing 1128 // at the typedef. 1129 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); 1130 } 1131 } 1132 } 1133 1134 /// ActOnCompatibilityAlias - this action is called after complete parsing of 1135 /// a \@compatibility_alias declaration. It sets up the alias relationships. 1136 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 1137 IdentifierInfo *AliasName, 1138 SourceLocation AliasLocation, 1139 IdentifierInfo *ClassName, 1140 SourceLocation ClassLocation) { 1141 // Look for previous declaration of alias name 1142 NamedDecl *ADecl = 1143 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, 1144 forRedeclarationInCurContext()); 1145 if (ADecl) { 1146 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 1147 Diag(ADecl->getLocation(), diag::note_previous_declaration); 1148 return nullptr; 1149 } 1150 // Check for class declaration 1151 NamedDecl *CDeclU = 1152 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, 1153 forRedeclarationInCurContext()); 1154 if (const TypedefNameDecl *TDecl = 1155 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 1156 QualType T = TDecl->getUnderlyingType(); 1157 if (T->isObjCObjectType()) { 1158 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 1159 ClassName = IDecl->getIdentifier(); 1160 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 1161 LookupOrdinaryName, 1162 forRedeclarationInCurContext()); 1163 } 1164 } 1165 } 1166 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 1167 if (!CDecl) { 1168 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 1169 if (CDeclU) 1170 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 1171 return nullptr; 1172 } 1173 1174 // Everything checked out, instantiate a new alias declaration AST. 1175 ObjCCompatibleAliasDecl *AliasDecl = 1176 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 1177 1178 if (!CheckObjCDeclScope(AliasDecl)) 1179 PushOnScopeChains(AliasDecl, TUScope); 1180 1181 return AliasDecl; 1182 } 1183 1184 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 1185 IdentifierInfo *PName, 1186 SourceLocation &Ploc, SourceLocation PrevLoc, 1187 const ObjCList<ObjCProtocolDecl> &PList) { 1188 1189 bool res = false; 1190 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 1191 E = PList.end(); I != E; ++I) { 1192 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 1193 Ploc)) { 1194 if (PDecl->getIdentifier() == PName) { 1195 Diag(Ploc, diag::err_protocol_has_circular_dependency); 1196 Diag(PrevLoc, diag::note_previous_definition); 1197 res = true; 1198 } 1199 1200 if (!PDecl->hasDefinition()) 1201 continue; 1202 1203 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 1204 PDecl->getLocation(), PDecl->getReferencedProtocols())) 1205 res = true; 1206 } 1207 } 1208 return res; 1209 } 1210 1211 Decl *Sema::ActOnStartProtocolInterface( 1212 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, 1213 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, 1214 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1215 const ParsedAttributesView &AttrList) { 1216 bool err = false; 1217 // FIXME: Deal with AttrList. 1218 assert(ProtocolName && "Missing protocol identifier"); 1219 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 1220 forRedeclarationInCurContext()); 1221 ObjCProtocolDecl *PDecl = nullptr; 1222 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 1223 // If we already have a definition, complain. 1224 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 1225 Diag(Def->getLocation(), diag::note_previous_definition); 1226 1227 // Create a new protocol that is completely distinct from previous 1228 // declarations, and do not make this protocol available for name lookup. 1229 // That way, we'll end up completely ignoring the duplicate. 1230 // FIXME: Can we turn this into an error? 1231 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1232 ProtocolLoc, AtProtoInterfaceLoc, 1233 /*PrevDecl=*/nullptr); 1234 1235 // If we are using modules, add the decl to the context in order to 1236 // serialize something meaningful. 1237 if (getLangOpts().Modules) 1238 PushOnScopeChains(PDecl, TUScope); 1239 PDecl->startDefinition(); 1240 } else { 1241 if (PrevDecl) { 1242 // Check for circular dependencies among protocol declarations. This can 1243 // only happen if this protocol was forward-declared. 1244 ObjCList<ObjCProtocolDecl> PList; 1245 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 1246 err = CheckForwardProtocolDeclarationForCircularDependency( 1247 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 1248 } 1249 1250 // Create the new declaration. 1251 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1252 ProtocolLoc, AtProtoInterfaceLoc, 1253 /*PrevDecl=*/PrevDecl); 1254 1255 PushOnScopeChains(PDecl, TUScope); 1256 PDecl->startDefinition(); 1257 } 1258 1259 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 1260 AddPragmaAttributes(TUScope, PDecl); 1261 1262 // Merge attributes from previous declarations. 1263 if (PrevDecl) 1264 mergeDeclAttributes(PDecl, PrevDecl); 1265 1266 if (!err && NumProtoRefs ) { 1267 /// Check then save referenced protocols. 1268 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1269 NumProtoRefs, ProtoLocs); 1270 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1271 ProtoLocs, Context); 1272 } 1273 1274 CheckObjCDeclScope(PDecl); 1275 return ActOnObjCContainerStartDefinition(PDecl); 1276 } 1277 1278 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 1279 ObjCProtocolDecl *&UndefinedProtocol) { 1280 if (!PDecl->hasDefinition() || 1281 !PDecl->getDefinition()->isUnconditionallyVisible()) { 1282 UndefinedProtocol = PDecl; 1283 return true; 1284 } 1285 1286 for (auto *PI : PDecl->protocols()) 1287 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 1288 UndefinedProtocol = PI; 1289 return true; 1290 } 1291 return false; 1292 } 1293 1294 /// FindProtocolDeclaration - This routine looks up protocols and 1295 /// issues an error if they are not declared. It returns list of 1296 /// protocol declarations in its 'Protocols' argument. 1297 void 1298 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, 1299 ArrayRef<IdentifierLocPair> ProtocolId, 1300 SmallVectorImpl<Decl *> &Protocols) { 1301 for (const IdentifierLocPair &Pair : ProtocolId) { 1302 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second); 1303 if (!PDecl) { 1304 DeclFilterCCC<ObjCProtocolDecl> CCC{}; 1305 TypoCorrection Corrected = CorrectTypo( 1306 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName, 1307 TUScope, nullptr, CCC, CTK_ErrorRecovery); 1308 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 1309 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 1310 << Pair.first); 1311 } 1312 1313 if (!PDecl) { 1314 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; 1315 continue; 1316 } 1317 // If this is a forward protocol declaration, get its definition. 1318 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 1319 PDecl = PDecl->getDefinition(); 1320 1321 // For an objc container, delay protocol reference checking until after we 1322 // can set the objc decl as the availability context, otherwise check now. 1323 if (!ForObjCContainer) { 1324 (void)DiagnoseUseOfDecl(PDecl, Pair.second); 1325 } 1326 1327 // If this is a forward declaration and we are supposed to warn in this 1328 // case, do it. 1329 // FIXME: Recover nicely in the hidden case. 1330 ObjCProtocolDecl *UndefinedProtocol; 1331 1332 if (WarnOnDeclarations && 1333 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 1334 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; 1335 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 1336 << UndefinedProtocol; 1337 } 1338 Protocols.push_back(PDecl); 1339 } 1340 } 1341 1342 namespace { 1343 // Callback to only accept typo corrections that are either 1344 // Objective-C protocols or valid Objective-C type arguments. 1345 class ObjCTypeArgOrProtocolValidatorCCC final 1346 : public CorrectionCandidateCallback { 1347 ASTContext &Context; 1348 Sema::LookupNameKind LookupKind; 1349 public: 1350 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, 1351 Sema::LookupNameKind lookupKind) 1352 : Context(context), LookupKind(lookupKind) { } 1353 1354 bool ValidateCandidate(const TypoCorrection &candidate) override { 1355 // If we're allowed to find protocols and we have a protocol, accept it. 1356 if (LookupKind != Sema::LookupOrdinaryName) { 1357 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) 1358 return true; 1359 } 1360 1361 // If we're allowed to find type names and we have one, accept it. 1362 if (LookupKind != Sema::LookupObjCProtocolName) { 1363 // If we have a type declaration, we might accept this result. 1364 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { 1365 // If we found a tag declaration outside of C++, skip it. This 1366 // can happy because we look for any name when there is no 1367 // bias to protocol or type names. 1368 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus) 1369 return false; 1370 1371 // Make sure the type is something we would accept as a type 1372 // argument. 1373 auto type = Context.getTypeDeclType(typeDecl); 1374 if (type->isObjCObjectPointerType() || 1375 type->isBlockPointerType() || 1376 type->isDependentType() || 1377 type->isObjCObjectType()) 1378 return true; 1379 1380 return false; 1381 } 1382 1383 // If we have an Objective-C class type, accept it; there will 1384 // be another fix to add the '*'. 1385 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) 1386 return true; 1387 1388 return false; 1389 } 1390 1391 return false; 1392 } 1393 1394 std::unique_ptr<CorrectionCandidateCallback> clone() override { 1395 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this); 1396 } 1397 }; 1398 } // end anonymous namespace 1399 1400 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, 1401 SourceLocation ProtocolLoc, 1402 IdentifierInfo *TypeArgId, 1403 SourceLocation TypeArgLoc, 1404 bool SelectProtocolFirst) { 1405 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) 1406 << SelectProtocolFirst << TypeArgId << ProtocolId 1407 << SourceRange(ProtocolLoc); 1408 } 1409 1410 void Sema::actOnObjCTypeArgsOrProtocolQualifiers( 1411 Scope *S, 1412 ParsedType baseType, 1413 SourceLocation lAngleLoc, 1414 ArrayRef<IdentifierInfo *> identifiers, 1415 ArrayRef<SourceLocation> identifierLocs, 1416 SourceLocation rAngleLoc, 1417 SourceLocation &typeArgsLAngleLoc, 1418 SmallVectorImpl<ParsedType> &typeArgs, 1419 SourceLocation &typeArgsRAngleLoc, 1420 SourceLocation &protocolLAngleLoc, 1421 SmallVectorImpl<Decl *> &protocols, 1422 SourceLocation &protocolRAngleLoc, 1423 bool warnOnIncompleteProtocols) { 1424 // Local function that updates the declaration specifiers with 1425 // protocol information. 1426 unsigned numProtocolsResolved = 0; 1427 auto resolvedAsProtocols = [&] { 1428 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); 1429 1430 // Determine whether the base type is a parameterized class, in 1431 // which case we want to warn about typos such as 1432 // "NSArray<NSObject>" (that should be NSArray<NSObject *>). 1433 ObjCInterfaceDecl *baseClass = nullptr; 1434 QualType base = GetTypeFromParser(baseType, nullptr); 1435 bool allAreTypeNames = false; 1436 SourceLocation firstClassNameLoc; 1437 if (!base.isNull()) { 1438 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { 1439 baseClass = objcObjectType->getInterface(); 1440 if (baseClass) { 1441 if (auto typeParams = baseClass->getTypeParamList()) { 1442 if (typeParams->size() == numProtocolsResolved) { 1443 // Note that we should be looking for type names, too. 1444 allAreTypeNames = true; 1445 } 1446 } 1447 } 1448 } 1449 } 1450 1451 for (unsigned i = 0, n = protocols.size(); i != n; ++i) { 1452 ObjCProtocolDecl *&proto 1453 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); 1454 // For an objc container, delay protocol reference checking until after we 1455 // can set the objc decl as the availability context, otherwise check now. 1456 if (!warnOnIncompleteProtocols) { 1457 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); 1458 } 1459 1460 // If this is a forward protocol declaration, get its definition. 1461 if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) 1462 proto = proto->getDefinition(); 1463 1464 // If this is a forward declaration and we are supposed to warn in this 1465 // case, do it. 1466 // FIXME: Recover nicely in the hidden case. 1467 ObjCProtocolDecl *forwardDecl = nullptr; 1468 if (warnOnIncompleteProtocols && 1469 NestedProtocolHasNoDefinition(proto, forwardDecl)) { 1470 Diag(identifierLocs[i], diag::warn_undef_protocolref) 1471 << proto->getDeclName(); 1472 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) 1473 << forwardDecl; 1474 } 1475 1476 // If everything this far has been a type name (and we care 1477 // about such things), check whether this name refers to a type 1478 // as well. 1479 if (allAreTypeNames) { 1480 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1481 LookupOrdinaryName)) { 1482 if (isa<ObjCInterfaceDecl>(decl)) { 1483 if (firstClassNameLoc.isInvalid()) 1484 firstClassNameLoc = identifierLocs[i]; 1485 } else if (!isa<TypeDecl>(decl)) { 1486 // Not a type. 1487 allAreTypeNames = false; 1488 } 1489 } else { 1490 allAreTypeNames = false; 1491 } 1492 } 1493 } 1494 1495 // All of the protocols listed also have type names, and at least 1496 // one is an Objective-C class name. Check whether all of the 1497 // protocol conformances are declared by the base class itself, in 1498 // which case we warn. 1499 if (allAreTypeNames && firstClassNameLoc.isValid()) { 1500 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; 1501 Context.CollectInheritedProtocols(baseClass, knownProtocols); 1502 bool allProtocolsDeclared = true; 1503 for (auto proto : protocols) { 1504 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) { 1505 allProtocolsDeclared = false; 1506 break; 1507 } 1508 } 1509 1510 if (allProtocolsDeclared) { 1511 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) 1512 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) 1513 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), 1514 " *"); 1515 } 1516 } 1517 1518 protocolLAngleLoc = lAngleLoc; 1519 protocolRAngleLoc = rAngleLoc; 1520 assert(protocols.size() == identifierLocs.size()); 1521 }; 1522 1523 // Attempt to resolve all of the identifiers as protocols. 1524 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1525 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]); 1526 protocols.push_back(proto); 1527 if (proto) 1528 ++numProtocolsResolved; 1529 } 1530 1531 // If all of the names were protocols, these were protocol qualifiers. 1532 if (numProtocolsResolved == identifiers.size()) 1533 return resolvedAsProtocols(); 1534 1535 // Attempt to resolve all of the identifiers as type names or 1536 // Objective-C class names. The latter is technically ill-formed, 1537 // but is probably something like \c NSArray<NSView *> missing the 1538 // \c*. 1539 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; 1540 SmallVector<TypeOrClassDecl, 4> typeDecls; 1541 unsigned numTypeDeclsResolved = 0; 1542 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1543 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1544 LookupOrdinaryName); 1545 if (!decl) { 1546 typeDecls.push_back(TypeOrClassDecl()); 1547 continue; 1548 } 1549 1550 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) { 1551 typeDecls.push_back(typeDecl); 1552 ++numTypeDeclsResolved; 1553 continue; 1554 } 1555 1556 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) { 1557 typeDecls.push_back(objcClass); 1558 ++numTypeDeclsResolved; 1559 continue; 1560 } 1561 1562 typeDecls.push_back(TypeOrClassDecl()); 1563 } 1564 1565 AttributeFactory attrFactory; 1566 1567 // Local function that forms a reference to the given type or 1568 // Objective-C class declaration. 1569 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) 1570 -> TypeResult { 1571 // Form declaration specifiers. They simply refer to the type. 1572 DeclSpec DS(attrFactory); 1573 const char* prevSpec; // unused 1574 unsigned diagID; // unused 1575 QualType type; 1576 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) 1577 type = Context.getTypeDeclType(actualTypeDecl); 1578 else 1579 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>()); 1580 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc); 1581 ParsedType parsedType = CreateParsedType(type, parsedTSInfo); 1582 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID, 1583 parsedType, Context.getPrintingPolicy()); 1584 // Use the identifier location for the type source range. 1585 DS.SetRangeStart(loc); 1586 DS.SetRangeEnd(loc); 1587 1588 // Form the declarator. 1589 Declarator D(DS, DeclaratorContext::TypeName); 1590 1591 // If we have a typedef of an Objective-C class type that is missing a '*', 1592 // add the '*'. 1593 if (type->getAs<ObjCInterfaceType>()) { 1594 SourceLocation starLoc = getLocForEndOfToken(loc); 1595 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc, 1596 SourceLocation(), 1597 SourceLocation(), 1598 SourceLocation(), 1599 SourceLocation(), 1600 SourceLocation()), 1601 starLoc); 1602 1603 // Diagnose the missing '*'. 1604 Diag(loc, diag::err_objc_type_arg_missing_star) 1605 << type 1606 << FixItHint::CreateInsertion(starLoc, " *"); 1607 } 1608 1609 // Convert this to a type. 1610 return ActOnTypeName(S, D); 1611 }; 1612 1613 // Local function that updates the declaration specifiers with 1614 // type argument information. 1615 auto resolvedAsTypeDecls = [&] { 1616 // We did not resolve these as protocols. 1617 protocols.clear(); 1618 1619 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); 1620 // Map type declarations to type arguments. 1621 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1622 // Map type reference to a type. 1623 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); 1624 if (!type.isUsable()) { 1625 typeArgs.clear(); 1626 return; 1627 } 1628 1629 typeArgs.push_back(type.get()); 1630 } 1631 1632 typeArgsLAngleLoc = lAngleLoc; 1633 typeArgsRAngleLoc = rAngleLoc; 1634 }; 1635 1636 // If all of the identifiers can be resolved as type names or 1637 // Objective-C class names, we have type arguments. 1638 if (numTypeDeclsResolved == identifiers.size()) 1639 return resolvedAsTypeDecls(); 1640 1641 // Error recovery: some names weren't found, or we have a mix of 1642 // type and protocol names. Go resolve all of the unresolved names 1643 // and complain if we can't find a consistent answer. 1644 LookupNameKind lookupKind = LookupAnyName; 1645 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1646 // If we already have a protocol or type. Check whether it is the 1647 // right thing. 1648 if (protocols[i] || typeDecls[i]) { 1649 // If we haven't figured out whether we want types or protocols 1650 // yet, try to figure it out from this name. 1651 if (lookupKind == LookupAnyName) { 1652 // If this name refers to both a protocol and a type (e.g., \c 1653 // NSObject), don't conclude anything yet. 1654 if (protocols[i] && typeDecls[i]) 1655 continue; 1656 1657 // Otherwise, let this name decide whether we'll be correcting 1658 // toward types or protocols. 1659 lookupKind = protocols[i] ? LookupObjCProtocolName 1660 : LookupOrdinaryName; 1661 continue; 1662 } 1663 1664 // If we want protocols and we have a protocol, there's nothing 1665 // more to do. 1666 if (lookupKind == LookupObjCProtocolName && protocols[i]) 1667 continue; 1668 1669 // If we want types and we have a type declaration, there's 1670 // nothing more to do. 1671 if (lookupKind == LookupOrdinaryName && typeDecls[i]) 1672 continue; 1673 1674 // We have a conflict: some names refer to protocols and others 1675 // refer to types. 1676 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0], 1677 identifiers[i], identifierLocs[i], 1678 protocols[i] != nullptr); 1679 1680 protocols.clear(); 1681 typeArgs.clear(); 1682 return; 1683 } 1684 1685 // Perform typo correction on the name. 1686 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); 1687 TypoCorrection corrected = 1688 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]), 1689 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery); 1690 if (corrected) { 1691 // Did we find a protocol? 1692 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { 1693 diagnoseTypo(corrected, 1694 PDiag(diag::err_undeclared_protocol_suggest) 1695 << identifiers[i]); 1696 lookupKind = LookupObjCProtocolName; 1697 protocols[i] = proto; 1698 ++numProtocolsResolved; 1699 continue; 1700 } 1701 1702 // Did we find a type? 1703 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { 1704 diagnoseTypo(corrected, 1705 PDiag(diag::err_unknown_typename_suggest) 1706 << identifiers[i]); 1707 lookupKind = LookupOrdinaryName; 1708 typeDecls[i] = typeDecl; 1709 ++numTypeDeclsResolved; 1710 continue; 1711 } 1712 1713 // Did we find an Objective-C class? 1714 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1715 diagnoseTypo(corrected, 1716 PDiag(diag::err_unknown_type_or_class_name_suggest) 1717 << identifiers[i] << true); 1718 lookupKind = LookupOrdinaryName; 1719 typeDecls[i] = objcClass; 1720 ++numTypeDeclsResolved; 1721 continue; 1722 } 1723 } 1724 1725 // We couldn't find anything. 1726 Diag(identifierLocs[i], 1727 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing 1728 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol 1729 : diag::err_unknown_typename)) 1730 << identifiers[i]; 1731 protocols.clear(); 1732 typeArgs.clear(); 1733 return; 1734 } 1735 1736 // If all of the names were (corrected to) protocols, these were 1737 // protocol qualifiers. 1738 if (numProtocolsResolved == identifiers.size()) 1739 return resolvedAsProtocols(); 1740 1741 // Otherwise, all of the names were (corrected to) types. 1742 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); 1743 return resolvedAsTypeDecls(); 1744 } 1745 1746 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 1747 /// a class method in its extension. 1748 /// 1749 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 1750 ObjCInterfaceDecl *ID) { 1751 if (!ID) 1752 return; // Possibly due to previous error 1753 1754 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 1755 for (auto *MD : ID->methods()) 1756 MethodMap[MD->getSelector()] = MD; 1757 1758 if (MethodMap.empty()) 1759 return; 1760 for (const auto *Method : CAT->methods()) { 1761 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 1762 if (PrevMethod && 1763 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 1764 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 1765 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1766 << Method->getDeclName(); 1767 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1768 } 1769 } 1770 } 1771 1772 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 1773 Sema::DeclGroupPtrTy 1774 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 1775 ArrayRef<IdentifierLocPair> IdentList, 1776 const ParsedAttributesView &attrList) { 1777 SmallVector<Decl *, 8> DeclsInGroup; 1778 for (const IdentifierLocPair &IdentPair : IdentList) { 1779 IdentifierInfo *Ident = IdentPair.first; 1780 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second, 1781 forRedeclarationInCurContext()); 1782 ObjCProtocolDecl *PDecl 1783 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 1784 IdentPair.second, AtProtocolLoc, 1785 PrevDecl); 1786 1787 PushOnScopeChains(PDecl, TUScope); 1788 CheckObjCDeclScope(PDecl); 1789 1790 ProcessDeclAttributeList(TUScope, PDecl, attrList); 1791 AddPragmaAttributes(TUScope, PDecl); 1792 1793 if (PrevDecl) 1794 mergeDeclAttributes(PDecl, PrevDecl); 1795 1796 DeclsInGroup.push_back(PDecl); 1797 } 1798 1799 return BuildDeclaratorGroup(DeclsInGroup); 1800 } 1801 1802 Decl *Sema::ActOnStartCategoryInterface( 1803 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 1804 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 1805 IdentifierInfo *CategoryName, SourceLocation CategoryLoc, 1806 Decl *const *ProtoRefs, unsigned NumProtoRefs, 1807 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1808 const ParsedAttributesView &AttrList) { 1809 ObjCCategoryDecl *CDecl; 1810 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1811 1812 /// Check that class of this category is already completely declared. 1813 1814 if (!IDecl 1815 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1816 diag::err_category_forward_interface, 1817 CategoryName == nullptr)) { 1818 // Create an invalid ObjCCategoryDecl to serve as context for 1819 // the enclosing method declarations. We mark the decl invalid 1820 // to make it clear that this isn't a valid AST. 1821 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1822 ClassLoc, CategoryLoc, CategoryName, 1823 IDecl, typeParamList); 1824 CDecl->setInvalidDecl(); 1825 CurContext->addDecl(CDecl); 1826 1827 if (!IDecl) 1828 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1829 return ActOnObjCContainerStartDefinition(CDecl); 1830 } 1831 1832 if (!CategoryName && IDecl->getImplementation()) { 1833 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 1834 Diag(IDecl->getImplementation()->getLocation(), 1835 diag::note_implementation_declared); 1836 } 1837 1838 if (CategoryName) { 1839 /// Check for duplicate interface declaration for this category 1840 if (ObjCCategoryDecl *Previous 1841 = IDecl->FindCategoryDeclaration(CategoryName)) { 1842 // Class extensions can be declared multiple times, categories cannot. 1843 Diag(CategoryLoc, diag::warn_dup_category_def) 1844 << ClassName << CategoryName; 1845 Diag(Previous->getLocation(), diag::note_previous_definition); 1846 } 1847 } 1848 1849 // If we have a type parameter list, check it. 1850 if (typeParamList) { 1851 if (auto prevTypeParamList = IDecl->getTypeParamList()) { 1852 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList, 1853 CategoryName 1854 ? TypeParamListContext::Category 1855 : TypeParamListContext::Extension)) 1856 typeParamList = nullptr; 1857 } else { 1858 Diag(typeParamList->getLAngleLoc(), 1859 diag::err_objc_parameterized_category_nonclass) 1860 << (CategoryName != nullptr) 1861 << ClassName 1862 << typeParamList->getSourceRange(); 1863 1864 typeParamList = nullptr; 1865 } 1866 } 1867 1868 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1869 ClassLoc, CategoryLoc, CategoryName, IDecl, 1870 typeParamList); 1871 // FIXME: PushOnScopeChains? 1872 CurContext->addDecl(CDecl); 1873 1874 // Process the attributes before looking at protocols to ensure that the 1875 // availability attribute is attached to the category to provide availability 1876 // checking for protocol uses. 1877 ProcessDeclAttributeList(TUScope, CDecl, AttrList); 1878 AddPragmaAttributes(TUScope, CDecl); 1879 1880 if (NumProtoRefs) { 1881 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1882 NumProtoRefs, ProtoLocs); 1883 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1884 ProtoLocs, Context); 1885 // Protocols in the class extension belong to the class. 1886 if (CDecl->IsClassExtension()) 1887 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 1888 NumProtoRefs, Context); 1889 } 1890 1891 CheckObjCDeclScope(CDecl); 1892 return ActOnObjCContainerStartDefinition(CDecl); 1893 } 1894 1895 /// ActOnStartCategoryImplementation - Perform semantic checks on the 1896 /// category implementation declaration and build an ObjCCategoryImplDecl 1897 /// object. 1898 Decl *Sema::ActOnStartCategoryImplementation( 1899 SourceLocation AtCatImplLoc, 1900 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1901 IdentifierInfo *CatName, SourceLocation CatLoc, 1902 const ParsedAttributesView &Attrs) { 1903 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1904 ObjCCategoryDecl *CatIDecl = nullptr; 1905 if (IDecl && IDecl->hasDefinition()) { 1906 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 1907 if (!CatIDecl) { 1908 // Category @implementation with no corresponding @interface. 1909 // Create and install one. 1910 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 1911 ClassLoc, CatLoc, 1912 CatName, IDecl, 1913 /*typeParamList=*/nullptr); 1914 CatIDecl->setImplicit(); 1915 } 1916 } 1917 1918 ObjCCategoryImplDecl *CDecl = 1919 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 1920 ClassLoc, AtCatImplLoc, CatLoc); 1921 /// Check that class of this category is already completely declared. 1922 if (!IDecl) { 1923 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1924 CDecl->setInvalidDecl(); 1925 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1926 diag::err_undef_interface)) { 1927 CDecl->setInvalidDecl(); 1928 } 1929 1930 ProcessDeclAttributeList(TUScope, CDecl, Attrs); 1931 AddPragmaAttributes(TUScope, CDecl); 1932 1933 // FIXME: PushOnScopeChains? 1934 CurContext->addDecl(CDecl); 1935 1936 // If the interface has the objc_runtime_visible attribute, we 1937 // cannot implement a category for it. 1938 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { 1939 Diag(ClassLoc, diag::err_objc_runtime_visible_category) 1940 << IDecl->getDeclName(); 1941 } 1942 1943 /// Check that CatName, category name, is not used in another implementation. 1944 if (CatIDecl) { 1945 if (CatIDecl->getImplementation()) { 1946 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 1947 << CatName; 1948 Diag(CatIDecl->getImplementation()->getLocation(), 1949 diag::note_previous_definition); 1950 CDecl->setInvalidDecl(); 1951 } else { 1952 CatIDecl->setImplementation(CDecl); 1953 // Warn on implementating category of deprecated class under 1954 // -Wdeprecated-implementations flag. 1955 DiagnoseObjCImplementedDeprecations(*this, CatIDecl, 1956 CDecl->getLocation()); 1957 } 1958 } 1959 1960 CheckObjCDeclScope(CDecl); 1961 return ActOnObjCContainerStartDefinition(CDecl); 1962 } 1963 1964 Decl *Sema::ActOnStartClassImplementation( 1965 SourceLocation AtClassImplLoc, 1966 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1967 IdentifierInfo *SuperClassname, 1968 SourceLocation SuperClassLoc, 1969 const ParsedAttributesView &Attrs) { 1970 ObjCInterfaceDecl *IDecl = nullptr; 1971 // Check for another declaration kind with the same name. 1972 NamedDecl *PrevDecl 1973 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1974 forRedeclarationInCurContext()); 1975 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1976 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1977 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1978 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1979 // FIXME: This will produce an error if the definition of the interface has 1980 // been imported from a module but is not visible. 1981 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1982 diag::warn_undef_interface); 1983 } else { 1984 // We did not find anything with the name ClassName; try to correct for 1985 // typos in the class name. 1986 ObjCInterfaceValidatorCCC CCC{}; 1987 TypoCorrection Corrected = 1988 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), 1989 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError); 1990 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1991 // Suggest the (potentially) correct interface name. Don't provide a 1992 // code-modification hint or use the typo name for recovery, because 1993 // this is just a warning. The program may actually be correct. 1994 diagnoseTypo(Corrected, 1995 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1996 /*ErrorRecovery*/false); 1997 } else { 1998 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 1999 } 2000 } 2001 2002 // Check that super class name is valid class name 2003 ObjCInterfaceDecl *SDecl = nullptr; 2004 if (SuperClassname) { 2005 // Check if a different kind of symbol declared in this scope. 2006 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 2007 LookupOrdinaryName); 2008 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2009 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 2010 << SuperClassname; 2011 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2012 } else { 2013 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2014 if (SDecl && !SDecl->hasDefinition()) 2015 SDecl = nullptr; 2016 if (!SDecl) 2017 Diag(SuperClassLoc, diag::err_undef_superclass) 2018 << SuperClassname << ClassName; 2019 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 2020 // This implementation and its interface do not have the same 2021 // super class. 2022 Diag(SuperClassLoc, diag::err_conflicting_super_class) 2023 << SDecl->getDeclName(); 2024 Diag(SDecl->getLocation(), diag::note_previous_definition); 2025 } 2026 } 2027 } 2028 2029 if (!IDecl) { 2030 // Legacy case of @implementation with no corresponding @interface. 2031 // Build, chain & install the interface decl into the identifier. 2032 2033 // FIXME: Do we support attributes on the @implementation? If so we should 2034 // copy them over. 2035 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 2036 ClassName, /*typeParamList=*/nullptr, 2037 /*PrevDecl=*/nullptr, ClassLoc, 2038 true); 2039 AddPragmaAttributes(TUScope, IDecl); 2040 IDecl->startDefinition(); 2041 if (SDecl) { 2042 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( 2043 Context.getObjCInterfaceType(SDecl), 2044 SuperClassLoc)); 2045 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 2046 } else { 2047 IDecl->setEndOfDefinitionLoc(ClassLoc); 2048 } 2049 2050 PushOnScopeChains(IDecl, TUScope); 2051 } else { 2052 // Mark the interface as being completed, even if it was just as 2053 // @class ....; 2054 // declaration; the user cannot reopen it. 2055 if (!IDecl->hasDefinition()) 2056 IDecl->startDefinition(); 2057 } 2058 2059 ObjCImplementationDecl* IMPDecl = 2060 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 2061 ClassLoc, AtClassImplLoc, SuperClassLoc); 2062 2063 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); 2064 AddPragmaAttributes(TUScope, IMPDecl); 2065 2066 if (CheckObjCDeclScope(IMPDecl)) 2067 return ActOnObjCContainerStartDefinition(IMPDecl); 2068 2069 // Check that there is no duplicate implementation of this class. 2070 if (IDecl->getImplementation()) { 2071 // FIXME: Don't leak everything! 2072 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 2073 Diag(IDecl->getImplementation()->getLocation(), 2074 diag::note_previous_definition); 2075 IMPDecl->setInvalidDecl(); 2076 } else { // add it to the list. 2077 IDecl->setImplementation(IMPDecl); 2078 PushOnScopeChains(IMPDecl, TUScope); 2079 // Warn on implementating deprecated class under 2080 // -Wdeprecated-implementations flag. 2081 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); 2082 } 2083 2084 // If the superclass has the objc_runtime_visible attribute, we 2085 // cannot implement a subclass of it. 2086 if (IDecl->getSuperClass() && 2087 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { 2088 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) 2089 << IDecl->getDeclName() 2090 << IDecl->getSuperClass()->getDeclName(); 2091 } 2092 2093 return ActOnObjCContainerStartDefinition(IMPDecl); 2094 } 2095 2096 Sema::DeclGroupPtrTy 2097 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 2098 SmallVector<Decl *, 64> DeclsInGroup; 2099 DeclsInGroup.reserve(Decls.size() + 1); 2100 2101 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 2102 Decl *Dcl = Decls[i]; 2103 if (!Dcl) 2104 continue; 2105 if (Dcl->getDeclContext()->isFileContext()) 2106 Dcl->setTopLevelDeclInObjCContainer(); 2107 DeclsInGroup.push_back(Dcl); 2108 } 2109 2110 DeclsInGroup.push_back(ObjCImpDecl); 2111 2112 return BuildDeclaratorGroup(DeclsInGroup); 2113 } 2114 2115 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 2116 ObjCIvarDecl **ivars, unsigned numIvars, 2117 SourceLocation RBrace) { 2118 assert(ImpDecl && "missing implementation decl"); 2119 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 2120 if (!IDecl) 2121 return; 2122 /// Check case of non-existing \@interface decl. 2123 /// (legacy objective-c \@implementation decl without an \@interface decl). 2124 /// Add implementations's ivar to the synthesize class's ivar list. 2125 if (IDecl->isImplicitInterfaceDecl()) { 2126 IDecl->setEndOfDefinitionLoc(RBrace); 2127 // Add ivar's to class's DeclContext. 2128 for (unsigned i = 0, e = numIvars; i != e; ++i) { 2129 ivars[i]->setLexicalDeclContext(ImpDecl); 2130 // In a 'fragile' runtime the ivar was added to the implicit 2131 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is 2132 // only in the ObjCImplementationDecl. In the non-fragile case the ivar 2133 // therefore also needs to be propagated to the ObjCInterfaceDecl. 2134 if (!LangOpts.ObjCRuntime.isFragile()) 2135 IDecl->makeDeclVisibleInContext(ivars[i]); 2136 ImpDecl->addDecl(ivars[i]); 2137 } 2138 2139 return; 2140 } 2141 // If implementation has empty ivar list, just return. 2142 if (numIvars == 0) 2143 return; 2144 2145 assert(ivars && "missing @implementation ivars"); 2146 if (LangOpts.ObjCRuntime.isNonFragile()) { 2147 if (ImpDecl->getSuperClass()) 2148 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 2149 for (unsigned i = 0; i < numIvars; i++) { 2150 ObjCIvarDecl* ImplIvar = ivars[i]; 2151 if (const ObjCIvarDecl *ClsIvar = 2152 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2153 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2154 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2155 continue; 2156 } 2157 // Check class extensions (unnamed categories) for duplicate ivars. 2158 for (const auto *CDecl : IDecl->visible_extensions()) { 2159 if (const ObjCIvarDecl *ClsExtIvar = 2160 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2161 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2162 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 2163 continue; 2164 } 2165 } 2166 // Instance ivar to Implementation's DeclContext. 2167 ImplIvar->setLexicalDeclContext(ImpDecl); 2168 IDecl->makeDeclVisibleInContext(ImplIvar); 2169 ImpDecl->addDecl(ImplIvar); 2170 } 2171 return; 2172 } 2173 // Check interface's Ivar list against those in the implementation. 2174 // names and types must match. 2175 // 2176 unsigned j = 0; 2177 ObjCInterfaceDecl::ivar_iterator 2178 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 2179 for (; numIvars > 0 && IVI != IVE; ++IVI) { 2180 ObjCIvarDecl* ImplIvar = ivars[j++]; 2181 ObjCIvarDecl* ClsIvar = *IVI; 2182 assert (ImplIvar && "missing implementation ivar"); 2183 assert (ClsIvar && "missing class ivar"); 2184 2185 // First, make sure the types match. 2186 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 2187 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 2188 << ImplIvar->getIdentifier() 2189 << ImplIvar->getType() << ClsIvar->getType(); 2190 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2191 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 2192 ImplIvar->getBitWidthValue(Context) != 2193 ClsIvar->getBitWidthValue(Context)) { 2194 Diag(ImplIvar->getBitWidth()->getBeginLoc(), 2195 diag::err_conflicting_ivar_bitwidth) 2196 << ImplIvar->getIdentifier(); 2197 Diag(ClsIvar->getBitWidth()->getBeginLoc(), 2198 diag::note_previous_definition); 2199 } 2200 // Make sure the names are identical. 2201 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 2202 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 2203 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 2204 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2205 } 2206 --numIvars; 2207 } 2208 2209 if (numIvars > 0) 2210 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 2211 else if (IVI != IVE) 2212 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 2213 } 2214 2215 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 2216 ObjCMethodDecl *method, 2217 bool &IncompleteImpl, 2218 unsigned DiagID, 2219 NamedDecl *NeededFor = nullptr) { 2220 // No point warning no definition of method which is 'unavailable'. 2221 if (method->getAvailability() == AR_Unavailable) 2222 return; 2223 2224 // FIXME: For now ignore 'IncompleteImpl'. 2225 // Previously we grouped all unimplemented methods under a single 2226 // warning, but some users strongly voiced that they would prefer 2227 // separate warnings. We will give that approach a try, as that 2228 // matches what we do with protocols. 2229 { 2230 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 2231 B << method; 2232 if (NeededFor) 2233 B << NeededFor; 2234 } 2235 2236 // Issue a note to the original declaration. 2237 SourceLocation MethodLoc = method->getBeginLoc(); 2238 if (MethodLoc.isValid()) 2239 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 2240 } 2241 2242 /// Determines if type B can be substituted for type A. Returns true if we can 2243 /// guarantee that anything that the user will do to an object of type A can 2244 /// also be done to an object of type B. This is trivially true if the two 2245 /// types are the same, or if B is a subclass of A. It becomes more complex 2246 /// in cases where protocols are involved. 2247 /// 2248 /// Object types in Objective-C describe the minimum requirements for an 2249 /// object, rather than providing a complete description of a type. For 2250 /// example, if A is a subclass of B, then B* may refer to an instance of A. 2251 /// The principle of substitutability means that we may use an instance of A 2252 /// anywhere that we may use an instance of B - it will implement all of the 2253 /// ivars of B and all of the methods of B. 2254 /// 2255 /// This substitutability is important when type checking methods, because 2256 /// the implementation may have stricter type definitions than the interface. 2257 /// The interface specifies minimum requirements, but the implementation may 2258 /// have more accurate ones. For example, a method may privately accept 2259 /// instances of B, but only publish that it accepts instances of A. Any 2260 /// object passed to it will be type checked against B, and so will implicitly 2261 /// by a valid A*. Similarly, a method may return a subclass of the class that 2262 /// it is declared as returning. 2263 /// 2264 /// This is most important when considering subclassing. A method in a 2265 /// subclass must accept any object as an argument that its superclass's 2266 /// implementation accepts. It may, however, accept a more general type 2267 /// without breaking substitutability (i.e. you can still use the subclass 2268 /// anywhere that you can use the superclass, but not vice versa). The 2269 /// converse requirement applies to return types: the return type for a 2270 /// subclass method must be a valid object of the kind that the superclass 2271 /// advertises, but it may be specified more accurately. This avoids the need 2272 /// for explicit down-casting by callers. 2273 /// 2274 /// Note: This is a stricter requirement than for assignment. 2275 static bool isObjCTypeSubstitutable(ASTContext &Context, 2276 const ObjCObjectPointerType *A, 2277 const ObjCObjectPointerType *B, 2278 bool rejectId) { 2279 // Reject a protocol-unqualified id. 2280 if (rejectId && B->isObjCIdType()) return false; 2281 2282 // If B is a qualified id, then A must also be a qualified id and it must 2283 // implement all of the protocols in B. It may not be a qualified class. 2284 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 2285 // stricter definition so it is not substitutable for id<A>. 2286 if (B->isObjCQualifiedIdType()) { 2287 return A->isObjCQualifiedIdType() && 2288 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false); 2289 } 2290 2291 /* 2292 // id is a special type that bypasses type checking completely. We want a 2293 // warning when it is used in one place but not another. 2294 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 2295 2296 2297 // If B is a qualified id, then A must also be a qualified id (which it isn't 2298 // if we've got this far) 2299 if (B->isObjCQualifiedIdType()) return false; 2300 */ 2301 2302 // Now we know that A and B are (potentially-qualified) class types. The 2303 // normal rules for assignment apply. 2304 return Context.canAssignObjCInterfaces(A, B); 2305 } 2306 2307 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 2308 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 2309 } 2310 2311 /// Determine whether two set of Objective-C declaration qualifiers conflict. 2312 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, 2313 Decl::ObjCDeclQualifier y) { 2314 return (x & ~Decl::OBJC_TQ_CSNullability) != 2315 (y & ~Decl::OBJC_TQ_CSNullability); 2316 } 2317 2318 static bool CheckMethodOverrideReturn(Sema &S, 2319 ObjCMethodDecl *MethodImpl, 2320 ObjCMethodDecl *MethodDecl, 2321 bool IsProtocolMethodDecl, 2322 bool IsOverridingMode, 2323 bool Warn) { 2324 if (IsProtocolMethodDecl && 2325 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(), 2326 MethodImpl->getObjCDeclQualifier())) { 2327 if (Warn) { 2328 S.Diag(MethodImpl->getLocation(), 2329 (IsOverridingMode 2330 ? diag::warn_conflicting_overriding_ret_type_modifiers 2331 : diag::warn_conflicting_ret_type_modifiers)) 2332 << MethodImpl->getDeclName() 2333 << MethodImpl->getReturnTypeSourceRange(); 2334 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 2335 << MethodDecl->getReturnTypeSourceRange(); 2336 } 2337 else 2338 return false; 2339 } 2340 if (Warn && IsOverridingMode && 2341 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2342 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(), 2343 MethodDecl->getReturnType(), 2344 false)) { 2345 auto nullabilityMethodImpl = 2346 *MethodImpl->getReturnType()->getNullability(S.Context); 2347 auto nullabilityMethodDecl = 2348 *MethodDecl->getReturnType()->getNullability(S.Context); 2349 S.Diag(MethodImpl->getLocation(), 2350 diag::warn_conflicting_nullability_attr_overriding_ret_types) 2351 << DiagNullabilityKind( 2352 nullabilityMethodImpl, 2353 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2354 != 0)) 2355 << DiagNullabilityKind( 2356 nullabilityMethodDecl, 2357 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2358 != 0)); 2359 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2360 } 2361 2362 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 2363 MethodDecl->getReturnType())) 2364 return true; 2365 if (!Warn) 2366 return false; 2367 2368 unsigned DiagID = 2369 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 2370 : diag::warn_conflicting_ret_types; 2371 2372 // Mismatches between ObjC pointers go into a different warning 2373 // category, and sometimes they're even completely explicitly allowed. 2374 if (const ObjCObjectPointerType *ImplPtrTy = 2375 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2376 if (const ObjCObjectPointerType *IfacePtrTy = 2377 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2378 // Allow non-matching return types as long as they don't violate 2379 // the principle of substitutability. Specifically, we permit 2380 // return types that are subclasses of the declared return type, 2381 // or that are more-qualified versions of the declared type. 2382 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 2383 return false; 2384 2385 DiagID = 2386 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 2387 : diag::warn_non_covariant_ret_types; 2388 } 2389 } 2390 2391 S.Diag(MethodImpl->getLocation(), DiagID) 2392 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 2393 << MethodImpl->getReturnType() 2394 << MethodImpl->getReturnTypeSourceRange(); 2395 S.Diag(MethodDecl->getLocation(), IsOverridingMode 2396 ? diag::note_previous_declaration 2397 : diag::note_previous_definition) 2398 << MethodDecl->getReturnTypeSourceRange(); 2399 return false; 2400 } 2401 2402 static bool CheckMethodOverrideParam(Sema &S, 2403 ObjCMethodDecl *MethodImpl, 2404 ObjCMethodDecl *MethodDecl, 2405 ParmVarDecl *ImplVar, 2406 ParmVarDecl *IfaceVar, 2407 bool IsProtocolMethodDecl, 2408 bool IsOverridingMode, 2409 bool Warn) { 2410 if (IsProtocolMethodDecl && 2411 objcModifiersConflict(ImplVar->getObjCDeclQualifier(), 2412 IfaceVar->getObjCDeclQualifier())) { 2413 if (Warn) { 2414 if (IsOverridingMode) 2415 S.Diag(ImplVar->getLocation(), 2416 diag::warn_conflicting_overriding_param_modifiers) 2417 << getTypeRange(ImplVar->getTypeSourceInfo()) 2418 << MethodImpl->getDeclName(); 2419 else S.Diag(ImplVar->getLocation(), 2420 diag::warn_conflicting_param_modifiers) 2421 << getTypeRange(ImplVar->getTypeSourceInfo()) 2422 << MethodImpl->getDeclName(); 2423 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 2424 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2425 } 2426 else 2427 return false; 2428 } 2429 2430 QualType ImplTy = ImplVar->getType(); 2431 QualType IfaceTy = IfaceVar->getType(); 2432 if (Warn && IsOverridingMode && 2433 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2434 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) { 2435 S.Diag(ImplVar->getLocation(), 2436 diag::warn_conflicting_nullability_attr_overriding_param_types) 2437 << DiagNullabilityKind( 2438 *ImplTy->getNullability(S.Context), 2439 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2440 != 0)) 2441 << DiagNullabilityKind( 2442 *IfaceTy->getNullability(S.Context), 2443 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2444 != 0)); 2445 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); 2446 } 2447 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 2448 return true; 2449 2450 if (!Warn) 2451 return false; 2452 unsigned DiagID = 2453 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 2454 : diag::warn_conflicting_param_types; 2455 2456 // Mismatches between ObjC pointers go into a different warning 2457 // category, and sometimes they're even completely explicitly allowed.. 2458 if (const ObjCObjectPointerType *ImplPtrTy = 2459 ImplTy->getAs<ObjCObjectPointerType>()) { 2460 if (const ObjCObjectPointerType *IfacePtrTy = 2461 IfaceTy->getAs<ObjCObjectPointerType>()) { 2462 // Allow non-matching argument types as long as they don't 2463 // violate the principle of substitutability. Specifically, the 2464 // implementation must accept any objects that the superclass 2465 // accepts, however it may also accept others. 2466 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 2467 return false; 2468 2469 DiagID = 2470 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 2471 : diag::warn_non_contravariant_param_types; 2472 } 2473 } 2474 2475 S.Diag(ImplVar->getLocation(), DiagID) 2476 << getTypeRange(ImplVar->getTypeSourceInfo()) 2477 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 2478 S.Diag(IfaceVar->getLocation(), 2479 (IsOverridingMode ? diag::note_previous_declaration 2480 : diag::note_previous_definition)) 2481 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2482 return false; 2483 } 2484 2485 /// In ARC, check whether the conventional meanings of the two methods 2486 /// match. If they don't, it's a hard error. 2487 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 2488 ObjCMethodDecl *decl) { 2489 ObjCMethodFamily implFamily = impl->getMethodFamily(); 2490 ObjCMethodFamily declFamily = decl->getMethodFamily(); 2491 if (implFamily == declFamily) return false; 2492 2493 // Since conventions are sorted by selector, the only possibility is 2494 // that the types differ enough to cause one selector or the other 2495 // to fall out of the family. 2496 assert(implFamily == OMF_None || declFamily == OMF_None); 2497 2498 // No further diagnostics required on invalid declarations. 2499 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 2500 2501 const ObjCMethodDecl *unmatched = impl; 2502 ObjCMethodFamily family = declFamily; 2503 unsigned errorID = diag::err_arc_lost_method_convention; 2504 unsigned noteID = diag::note_arc_lost_method_convention; 2505 if (declFamily == OMF_None) { 2506 unmatched = decl; 2507 family = implFamily; 2508 errorID = diag::err_arc_gained_method_convention; 2509 noteID = diag::note_arc_gained_method_convention; 2510 } 2511 2512 // Indexes into a %select clause in the diagnostic. 2513 enum FamilySelector { 2514 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 2515 }; 2516 FamilySelector familySelector = FamilySelector(); 2517 2518 switch (family) { 2519 case OMF_None: llvm_unreachable("logic error, no method convention"); 2520 case OMF_retain: 2521 case OMF_release: 2522 case OMF_autorelease: 2523 case OMF_dealloc: 2524 case OMF_finalize: 2525 case OMF_retainCount: 2526 case OMF_self: 2527 case OMF_initialize: 2528 case OMF_performSelector: 2529 // Mismatches for these methods don't change ownership 2530 // conventions, so we don't care. 2531 return false; 2532 2533 case OMF_init: familySelector = F_init; break; 2534 case OMF_alloc: familySelector = F_alloc; break; 2535 case OMF_copy: familySelector = F_copy; break; 2536 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 2537 case OMF_new: familySelector = F_new; break; 2538 } 2539 2540 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 2541 ReasonSelector reasonSelector; 2542 2543 // The only reason these methods don't fall within their families is 2544 // due to unusual result types. 2545 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 2546 reasonSelector = R_UnrelatedReturn; 2547 } else { 2548 reasonSelector = R_NonObjectReturn; 2549 } 2550 2551 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 2552 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 2553 2554 return true; 2555 } 2556 2557 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2558 ObjCMethodDecl *MethodDecl, 2559 bool IsProtocolMethodDecl) { 2560 if (getLangOpts().ObjCAutoRefCount && 2561 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 2562 return; 2563 2564 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2565 IsProtocolMethodDecl, false, 2566 true); 2567 2568 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2569 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2570 EF = MethodDecl->param_end(); 2571 IM != EM && IF != EF; ++IM, ++IF) { 2572 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 2573 IsProtocolMethodDecl, false, true); 2574 } 2575 2576 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 2577 Diag(ImpMethodDecl->getLocation(), 2578 diag::warn_conflicting_variadic); 2579 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2580 } 2581 } 2582 2583 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 2584 ObjCMethodDecl *Overridden, 2585 bool IsProtocolMethodDecl) { 2586 2587 CheckMethodOverrideReturn(*this, Method, Overridden, 2588 IsProtocolMethodDecl, true, 2589 true); 2590 2591 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 2592 IF = Overridden->param_begin(), EM = Method->param_end(), 2593 EF = Overridden->param_end(); 2594 IM != EM && IF != EF; ++IM, ++IF) { 2595 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 2596 IsProtocolMethodDecl, true, true); 2597 } 2598 2599 if (Method->isVariadic() != Overridden->isVariadic()) { 2600 Diag(Method->getLocation(), 2601 diag::warn_conflicting_overriding_variadic); 2602 Diag(Overridden->getLocation(), diag::note_previous_declaration); 2603 } 2604 } 2605 2606 /// WarnExactTypedMethods - This routine issues a warning if method 2607 /// implementation declaration matches exactly that of its declaration. 2608 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2609 ObjCMethodDecl *MethodDecl, 2610 bool IsProtocolMethodDecl) { 2611 // don't issue warning when protocol method is optional because primary 2612 // class is not required to implement it and it is safe for protocol 2613 // to implement it. 2614 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 2615 return; 2616 // don't issue warning when primary class's method is 2617 // deprecated/unavailable. 2618 if (MethodDecl->hasAttr<UnavailableAttr>() || 2619 MethodDecl->hasAttr<DeprecatedAttr>()) 2620 return; 2621 2622 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2623 IsProtocolMethodDecl, false, false); 2624 if (match) 2625 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2626 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2627 EF = MethodDecl->param_end(); 2628 IM != EM && IF != EF; ++IM, ++IF) { 2629 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 2630 *IM, *IF, 2631 IsProtocolMethodDecl, false, false); 2632 if (!match) 2633 break; 2634 } 2635 if (match) 2636 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 2637 if (match) 2638 match = !(MethodDecl->isClassMethod() && 2639 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 2640 2641 if (match) { 2642 Diag(ImpMethodDecl->getLocation(), 2643 diag::warn_category_method_impl_match); 2644 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 2645 << MethodDecl->getDeclName(); 2646 } 2647 } 2648 2649 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 2650 /// improve the efficiency of selector lookups and type checking by associating 2651 /// with each protocol / interface / category the flattened instance tables. If 2652 /// we used an immutable set to keep the table then it wouldn't add significant 2653 /// memory cost and it would be handy for lookups. 2654 2655 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 2656 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 2657 2658 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 2659 ProtocolNameSet &PNS) { 2660 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 2661 PNS.insert(PDecl->getIdentifier()); 2662 for (const auto *PI : PDecl->protocols()) 2663 findProtocolsWithExplicitImpls(PI, PNS); 2664 } 2665 2666 /// Recursively populates a set with all conformed protocols in a class 2667 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 2668 /// attribute. 2669 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 2670 ProtocolNameSet &PNS) { 2671 if (!Super) 2672 return; 2673 2674 for (const auto *I : Super->all_referenced_protocols()) 2675 findProtocolsWithExplicitImpls(I, PNS); 2676 2677 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 2678 } 2679 2680 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 2681 /// Declared in protocol, and those referenced by it. 2682 static void CheckProtocolMethodDefs(Sema &S, 2683 SourceLocation ImpLoc, 2684 ObjCProtocolDecl *PDecl, 2685 bool& IncompleteImpl, 2686 const Sema::SelectorSet &InsMap, 2687 const Sema::SelectorSet &ClsMap, 2688 ObjCContainerDecl *CDecl, 2689 LazyProtocolNameSet &ProtocolsExplictImpl) { 2690 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 2691 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 2692 : dyn_cast<ObjCInterfaceDecl>(CDecl); 2693 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 2694 2695 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 2696 ObjCInterfaceDecl *NSIDecl = nullptr; 2697 2698 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 2699 // then we should check if any class in the super class hierarchy also 2700 // conforms to this protocol, either directly or via protocol inheritance. 2701 // If so, we can skip checking this protocol completely because we 2702 // know that a parent class already satisfies this protocol. 2703 // 2704 // Note: we could generalize this logic for all protocols, and merely 2705 // add the limit on looking at the super class chain for just 2706 // specially marked protocols. This may be a good optimization. This 2707 // change is restricted to 'objc_protocol_requires_explicit_implementation' 2708 // protocols for now for controlled evaluation. 2709 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 2710 if (!ProtocolsExplictImpl) { 2711 ProtocolsExplictImpl.reset(new ProtocolNameSet); 2712 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 2713 } 2714 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier())) 2715 return; 2716 2717 // If no super class conforms to the protocol, we should not search 2718 // for methods in the super class to implicitly satisfy the protocol. 2719 Super = nullptr; 2720 } 2721 2722 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 2723 // check to see if class implements forwardInvocation method and objects 2724 // of this class are derived from 'NSProxy' so that to forward requests 2725 // from one object to another. 2726 // Under such conditions, which means that every method possible is 2727 // implemented in the class, we should not issue "Method definition not 2728 // found" warnings. 2729 // FIXME: Use a general GetUnarySelector method for this. 2730 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 2731 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 2732 if (InsMap.count(fISelector)) 2733 // Is IDecl derived from 'NSProxy'? If so, no instance methods 2734 // need be implemented in the implementation. 2735 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 2736 } 2737 2738 // If this is a forward protocol declaration, get its definition. 2739 if (!PDecl->isThisDeclarationADefinition() && 2740 PDecl->getDefinition()) 2741 PDecl = PDecl->getDefinition(); 2742 2743 // If a method lookup fails locally we still need to look and see if 2744 // the method was implemented by a base class or an inherited 2745 // protocol. This lookup is slow, but occurs rarely in correct code 2746 // and otherwise would terminate in a warning. 2747 2748 // check unimplemented instance methods. 2749 if (!NSIDecl) 2750 for (auto *method : PDecl->instance_methods()) { 2751 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2752 !method->isPropertyAccessor() && 2753 !InsMap.count(method->getSelector()) && 2754 (!Super || !Super->lookupMethod(method->getSelector(), 2755 true /* instance */, 2756 false /* shallowCategory */, 2757 true /* followsSuper */, 2758 nullptr /* category */))) { 2759 // If a method is not implemented in the category implementation but 2760 // has been declared in its primary class, superclass, 2761 // or in one of their protocols, no need to issue the warning. 2762 // This is because method will be implemented in the primary class 2763 // or one of its super class implementation. 2764 2765 // Ugly, but necessary. Method declared in protocol might have 2766 // have been synthesized due to a property declared in the class which 2767 // uses the protocol. 2768 if (ObjCMethodDecl *MethodInClass = 2769 IDecl->lookupMethod(method->getSelector(), 2770 true /* instance */, 2771 true /* shallowCategoryLookup */, 2772 false /* followSuper */)) 2773 if (C || MethodInClass->isPropertyAccessor()) 2774 continue; 2775 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2776 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2777 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 2778 PDecl); 2779 } 2780 } 2781 } 2782 // check unimplemented class methods 2783 for (auto *method : PDecl->class_methods()) { 2784 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2785 !ClsMap.count(method->getSelector()) && 2786 (!Super || !Super->lookupMethod(method->getSelector(), 2787 false /* class method */, 2788 false /* shallowCategoryLookup */, 2789 true /* followSuper */, 2790 nullptr /* category */))) { 2791 // See above comment for instance method lookups. 2792 if (C && IDecl->lookupMethod(method->getSelector(), 2793 false /* class */, 2794 true /* shallowCategoryLookup */, 2795 false /* followSuper */)) 2796 continue; 2797 2798 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2799 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2800 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 2801 } 2802 } 2803 } 2804 // Check on this protocols's referenced protocols, recursively. 2805 for (auto *PI : PDecl->protocols()) 2806 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 2807 CDecl, ProtocolsExplictImpl); 2808 } 2809 2810 /// MatchAllMethodDeclarations - Check methods declared in interface 2811 /// or protocol against those declared in their implementations. 2812 /// 2813 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 2814 const SelectorSet &ClsMap, 2815 SelectorSet &InsMapSeen, 2816 SelectorSet &ClsMapSeen, 2817 ObjCImplDecl* IMPDecl, 2818 ObjCContainerDecl* CDecl, 2819 bool &IncompleteImpl, 2820 bool ImmediateClass, 2821 bool WarnCategoryMethodImpl) { 2822 // Check and see if instance methods in class interface have been 2823 // implemented in the implementation class. If so, their types match. 2824 for (auto *I : CDecl->instance_methods()) { 2825 if (!InsMapSeen.insert(I->getSelector()).second) 2826 continue; 2827 if (!I->isPropertyAccessor() && 2828 !InsMap.count(I->getSelector())) { 2829 if (ImmediateClass) 2830 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2831 diag::warn_undef_method_impl); 2832 continue; 2833 } else { 2834 ObjCMethodDecl *ImpMethodDecl = 2835 IMPDecl->getInstanceMethod(I->getSelector()); 2836 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && 2837 "Expected to find the method through lookup as well"); 2838 // ImpMethodDecl may be null as in a @dynamic property. 2839 if (ImpMethodDecl) { 2840 // Skip property accessor function stubs. 2841 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2842 continue; 2843 if (!WarnCategoryMethodImpl) 2844 WarnConflictingTypedMethods(ImpMethodDecl, I, 2845 isa<ObjCProtocolDecl>(CDecl)); 2846 else if (!I->isPropertyAccessor()) 2847 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2848 } 2849 } 2850 } 2851 2852 // Check and see if class methods in class interface have been 2853 // implemented in the implementation class. If so, their types match. 2854 for (auto *I : CDecl->class_methods()) { 2855 if (!ClsMapSeen.insert(I->getSelector()).second) 2856 continue; 2857 if (!I->isPropertyAccessor() && 2858 !ClsMap.count(I->getSelector())) { 2859 if (ImmediateClass) 2860 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2861 diag::warn_undef_method_impl); 2862 } else { 2863 ObjCMethodDecl *ImpMethodDecl = 2864 IMPDecl->getClassMethod(I->getSelector()); 2865 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && 2866 "Expected to find the method through lookup as well"); 2867 // ImpMethodDecl may be null as in a @dynamic property. 2868 if (ImpMethodDecl) { 2869 // Skip property accessor function stubs. 2870 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2871 continue; 2872 if (!WarnCategoryMethodImpl) 2873 WarnConflictingTypedMethods(ImpMethodDecl, I, 2874 isa<ObjCProtocolDecl>(CDecl)); 2875 else if (!I->isPropertyAccessor()) 2876 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2877 } 2878 } 2879 } 2880 2881 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 2882 // Also, check for methods declared in protocols inherited by 2883 // this protocol. 2884 for (auto *PI : PD->protocols()) 2885 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2886 IMPDecl, PI, IncompleteImpl, false, 2887 WarnCategoryMethodImpl); 2888 } 2889 2890 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 2891 // when checking that methods in implementation match their declaration, 2892 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 2893 // extension; as well as those in categories. 2894 if (!WarnCategoryMethodImpl) { 2895 for (auto *Cat : I->visible_categories()) 2896 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2897 IMPDecl, Cat, IncompleteImpl, 2898 ImmediateClass && Cat->IsClassExtension(), 2899 WarnCategoryMethodImpl); 2900 } else { 2901 // Also methods in class extensions need be looked at next. 2902 for (auto *Ext : I->visible_extensions()) 2903 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2904 IMPDecl, Ext, IncompleteImpl, false, 2905 WarnCategoryMethodImpl); 2906 } 2907 2908 // Check for any implementation of a methods declared in protocol. 2909 for (auto *PI : I->all_referenced_protocols()) 2910 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2911 IMPDecl, PI, IncompleteImpl, false, 2912 WarnCategoryMethodImpl); 2913 2914 // FIXME. For now, we are not checking for exact match of methods 2915 // in category implementation and its primary class's super class. 2916 if (!WarnCategoryMethodImpl && I->getSuperClass()) 2917 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2918 IMPDecl, 2919 I->getSuperClass(), IncompleteImpl, false); 2920 } 2921 } 2922 2923 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 2924 /// category matches with those implemented in its primary class and 2925 /// warns each time an exact match is found. 2926 void Sema::CheckCategoryVsClassMethodMatches( 2927 ObjCCategoryImplDecl *CatIMPDecl) { 2928 // Get category's primary class. 2929 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 2930 if (!CatDecl) 2931 return; 2932 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 2933 if (!IDecl) 2934 return; 2935 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 2936 SelectorSet InsMap, ClsMap; 2937 2938 for (const auto *I : CatIMPDecl->instance_methods()) { 2939 Selector Sel = I->getSelector(); 2940 // When checking for methods implemented in the category, skip over 2941 // those declared in category class's super class. This is because 2942 // the super class must implement the method. 2943 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 2944 continue; 2945 InsMap.insert(Sel); 2946 } 2947 2948 for (const auto *I : CatIMPDecl->class_methods()) { 2949 Selector Sel = I->getSelector(); 2950 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 2951 continue; 2952 ClsMap.insert(Sel); 2953 } 2954 if (InsMap.empty() && ClsMap.empty()) 2955 return; 2956 2957 SelectorSet InsMapSeen, ClsMapSeen; 2958 bool IncompleteImpl = false; 2959 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2960 CatIMPDecl, IDecl, 2961 IncompleteImpl, false, 2962 true /*WarnCategoryMethodImpl*/); 2963 } 2964 2965 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 2966 ObjCContainerDecl* CDecl, 2967 bool IncompleteImpl) { 2968 SelectorSet InsMap; 2969 // Check and see if instance methods in class interface have been 2970 // implemented in the implementation class. 2971 for (const auto *I : IMPDecl->instance_methods()) 2972 InsMap.insert(I->getSelector()); 2973 2974 // Add the selectors for getters/setters of @dynamic properties. 2975 for (const auto *PImpl : IMPDecl->property_impls()) { 2976 // We only care about @dynamic implementations. 2977 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) 2978 continue; 2979 2980 const auto *P = PImpl->getPropertyDecl(); 2981 if (!P) continue; 2982 2983 InsMap.insert(P->getGetterName()); 2984 if (!P->getSetterName().isNull()) 2985 InsMap.insert(P->getSetterName()); 2986 } 2987 2988 // Check and see if properties declared in the interface have either 1) 2989 // an implementation or 2) there is a @synthesize/@dynamic implementation 2990 // of the property in the @implementation. 2991 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 2992 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 2993 LangOpts.ObjCRuntime.isNonFragile() && 2994 !IDecl->isObjCRequiresPropertyDefs(); 2995 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 2996 } 2997 2998 // Diagnose null-resettable synthesized setters. 2999 diagnoseNullResettableSynthesizedSetters(IMPDecl); 3000 3001 SelectorSet ClsMap; 3002 for (const auto *I : IMPDecl->class_methods()) 3003 ClsMap.insert(I->getSelector()); 3004 3005 // Check for type conflict of methods declared in a class/protocol and 3006 // its implementation; if any. 3007 SelectorSet InsMapSeen, ClsMapSeen; 3008 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 3009 IMPDecl, CDecl, 3010 IncompleteImpl, true); 3011 3012 // check all methods implemented in category against those declared 3013 // in its primary class. 3014 if (ObjCCategoryImplDecl *CatDecl = 3015 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 3016 CheckCategoryVsClassMethodMatches(CatDecl); 3017 3018 // Check the protocol list for unimplemented methods in the @implementation 3019 // class. 3020 // Check and see if class methods in class interface have been 3021 // implemented in the implementation class. 3022 3023 LazyProtocolNameSet ExplicitImplProtocols; 3024 3025 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 3026 for (auto *PI : I->all_referenced_protocols()) 3027 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 3028 InsMap, ClsMap, I, ExplicitImplProtocols); 3029 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 3030 // For extended class, unimplemented methods in its protocols will 3031 // be reported in the primary class. 3032 if (!C->IsClassExtension()) { 3033 for (auto *P : C->protocols()) 3034 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 3035 IncompleteImpl, InsMap, ClsMap, CDecl, 3036 ExplicitImplProtocols); 3037 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 3038 /*SynthesizeProperties=*/false); 3039 } 3040 } else 3041 llvm_unreachable("invalid ObjCContainerDecl type."); 3042 } 3043 3044 Sema::DeclGroupPtrTy 3045 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 3046 IdentifierInfo **IdentList, 3047 SourceLocation *IdentLocs, 3048 ArrayRef<ObjCTypeParamList *> TypeParamLists, 3049 unsigned NumElts) { 3050 SmallVector<Decl *, 8> DeclsInGroup; 3051 for (unsigned i = 0; i != NumElts; ++i) { 3052 // Check for another declaration kind with the same name. 3053 NamedDecl *PrevDecl 3054 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 3055 LookupOrdinaryName, forRedeclarationInCurContext()); 3056 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 3057 // GCC apparently allows the following idiom: 3058 // 3059 // typedef NSObject < XCElementTogglerP > XCElementToggler; 3060 // @class XCElementToggler; 3061 // 3062 // Here we have chosen to ignore the forward class declaration 3063 // with a warning. Since this is the implied behavior. 3064 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 3065 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 3066 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 3067 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3068 } else { 3069 // a forward class declaration matching a typedef name of a class refers 3070 // to the underlying class. Just ignore the forward class with a warning 3071 // as this will force the intended behavior which is to lookup the 3072 // typedef name. 3073 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 3074 Diag(AtClassLoc, diag::warn_forward_class_redefinition) 3075 << IdentList[i]; 3076 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3077 continue; 3078 } 3079 } 3080 } 3081 3082 // Create a declaration to describe this forward declaration. 3083 ObjCInterfaceDecl *PrevIDecl 3084 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 3085 3086 IdentifierInfo *ClassName = IdentList[i]; 3087 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 3088 // A previous decl with a different name is because of 3089 // @compatibility_alias, for example: 3090 // \code 3091 // @class NewImage; 3092 // @compatibility_alias OldImage NewImage; 3093 // \endcode 3094 // A lookup for 'OldImage' will return the 'NewImage' decl. 3095 // 3096 // In such a case use the real declaration name, instead of the alias one, 3097 // otherwise we will break IdentifierResolver and redecls-chain invariants. 3098 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 3099 // has been aliased. 3100 ClassName = PrevIDecl->getIdentifier(); 3101 } 3102 3103 // If this forward declaration has type parameters, compare them with the 3104 // type parameters of the previous declaration. 3105 ObjCTypeParamList *TypeParams = TypeParamLists[i]; 3106 if (PrevIDecl && TypeParams) { 3107 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { 3108 // Check for consistency with the previous declaration. 3109 if (checkTypeParamListConsistency( 3110 *this, PrevTypeParams, TypeParams, 3111 TypeParamListContext::ForwardDeclaration)) { 3112 TypeParams = nullptr; 3113 } 3114 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 3115 // The @interface does not have type parameters. Complain. 3116 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) 3117 << ClassName 3118 << TypeParams->getSourceRange(); 3119 Diag(Def->getLocation(), diag::note_defined_here) 3120 << ClassName; 3121 3122 TypeParams = nullptr; 3123 } 3124 } 3125 3126 ObjCInterfaceDecl *IDecl 3127 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 3128 ClassName, TypeParams, PrevIDecl, 3129 IdentLocs[i]); 3130 IDecl->setAtEndRange(IdentLocs[i]); 3131 3132 if (PrevIDecl) 3133 mergeDeclAttributes(IDecl, PrevIDecl); 3134 3135 PushOnScopeChains(IDecl, TUScope); 3136 CheckObjCDeclScope(IDecl); 3137 DeclsInGroup.push_back(IDecl); 3138 } 3139 3140 return BuildDeclaratorGroup(DeclsInGroup); 3141 } 3142 3143 static bool tryMatchRecordTypes(ASTContext &Context, 3144 Sema::MethodMatchStrategy strategy, 3145 const Type *left, const Type *right); 3146 3147 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 3148 QualType leftQT, QualType rightQT) { 3149 const Type *left = 3150 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 3151 const Type *right = 3152 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 3153 3154 if (left == right) return true; 3155 3156 // If we're doing a strict match, the types have to match exactly. 3157 if (strategy == Sema::MMS_strict) return false; 3158 3159 if (left->isIncompleteType() || right->isIncompleteType()) return false; 3160 3161 // Otherwise, use this absurdly complicated algorithm to try to 3162 // validate the basic, low-level compatibility of the two types. 3163 3164 // As a minimum, require the sizes and alignments to match. 3165 TypeInfo LeftTI = Context.getTypeInfo(left); 3166 TypeInfo RightTI = Context.getTypeInfo(right); 3167 if (LeftTI.Width != RightTI.Width) 3168 return false; 3169 3170 if (LeftTI.Align != RightTI.Align) 3171 return false; 3172 3173 // Consider all the kinds of non-dependent canonical types: 3174 // - functions and arrays aren't possible as return and parameter types 3175 3176 // - vector types of equal size can be arbitrarily mixed 3177 if (isa<VectorType>(left)) return isa<VectorType>(right); 3178 if (isa<VectorType>(right)) return false; 3179 3180 // - references should only match references of identical type 3181 // - structs, unions, and Objective-C objects must match more-or-less 3182 // exactly 3183 // - everything else should be a scalar 3184 if (!left->isScalarType() || !right->isScalarType()) 3185 return tryMatchRecordTypes(Context, strategy, left, right); 3186 3187 // Make scalars agree in kind, except count bools as chars, and group 3188 // all non-member pointers together. 3189 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 3190 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 3191 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 3192 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 3193 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 3194 leftSK = Type::STK_ObjCObjectPointer; 3195 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 3196 rightSK = Type::STK_ObjCObjectPointer; 3197 3198 // Note that data member pointers and function member pointers don't 3199 // intermix because of the size differences. 3200 3201 return (leftSK == rightSK); 3202 } 3203 3204 static bool tryMatchRecordTypes(ASTContext &Context, 3205 Sema::MethodMatchStrategy strategy, 3206 const Type *lt, const Type *rt) { 3207 assert(lt && rt && lt != rt); 3208 3209 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 3210 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 3211 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 3212 3213 // Require union-hood to match. 3214 if (left->isUnion() != right->isUnion()) return false; 3215 3216 // Require an exact match if either is non-POD. 3217 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 3218 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 3219 return false; 3220 3221 // Require size and alignment to match. 3222 TypeInfo LeftTI = Context.getTypeInfo(lt); 3223 TypeInfo RightTI = Context.getTypeInfo(rt); 3224 if (LeftTI.Width != RightTI.Width) 3225 return false; 3226 3227 if (LeftTI.Align != RightTI.Align) 3228 return false; 3229 3230 // Require fields to match. 3231 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 3232 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 3233 for (; li != le && ri != re; ++li, ++ri) { 3234 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 3235 return false; 3236 } 3237 return (li == le && ri == re); 3238 } 3239 3240 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 3241 /// returns true, or false, accordingly. 3242 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 3243 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 3244 const ObjCMethodDecl *right, 3245 MethodMatchStrategy strategy) { 3246 if (!matchTypes(Context, strategy, left->getReturnType(), 3247 right->getReturnType())) 3248 return false; 3249 3250 // If either is hidden, it is not considered to match. 3251 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) 3252 return false; 3253 3254 if (left->isDirectMethod() != right->isDirectMethod()) 3255 return false; 3256 3257 if (getLangOpts().ObjCAutoRefCount && 3258 (left->hasAttr<NSReturnsRetainedAttr>() 3259 != right->hasAttr<NSReturnsRetainedAttr>() || 3260 left->hasAttr<NSConsumesSelfAttr>() 3261 != right->hasAttr<NSConsumesSelfAttr>())) 3262 return false; 3263 3264 ObjCMethodDecl::param_const_iterator 3265 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 3266 re = right->param_end(); 3267 3268 for (; li != le && ri != re; ++li, ++ri) { 3269 assert(ri != right->param_end() && "Param mismatch"); 3270 const ParmVarDecl *lparm = *li, *rparm = *ri; 3271 3272 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 3273 return false; 3274 3275 if (getLangOpts().ObjCAutoRefCount && 3276 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 3277 return false; 3278 } 3279 return true; 3280 } 3281 3282 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, 3283 ObjCMethodDecl *MethodInList) { 3284 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3285 auto *MethodInListProtocol = 3286 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); 3287 // If this method belongs to a protocol but the method in list does not, or 3288 // vice versa, we say the context is not the same. 3289 if ((MethodProtocol && !MethodInListProtocol) || 3290 (!MethodProtocol && MethodInListProtocol)) 3291 return false; 3292 3293 if (MethodProtocol && MethodInListProtocol) 3294 return true; 3295 3296 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); 3297 ObjCInterfaceDecl *MethodInListInterface = 3298 MethodInList->getClassInterface(); 3299 return MethodInterface == MethodInListInterface; 3300 } 3301 3302 void Sema::addMethodToGlobalList(ObjCMethodList *List, 3303 ObjCMethodDecl *Method) { 3304 // Record at the head of the list whether there were 0, 1, or >= 2 methods 3305 // inside categories. 3306 if (ObjCCategoryDecl *CD = 3307 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 3308 if (!CD->IsClassExtension() && List->getBits() < 2) 3309 List->setBits(List->getBits() + 1); 3310 3311 // If the list is empty, make it a singleton list. 3312 if (List->getMethod() == nullptr) { 3313 List->setMethod(Method); 3314 List->setNext(nullptr); 3315 return; 3316 } 3317 3318 // We've seen a method with this name, see if we have already seen this type 3319 // signature. 3320 ObjCMethodList *Previous = List; 3321 ObjCMethodList *ListWithSameDeclaration = nullptr; 3322 for (; List; Previous = List, List = List->getNext()) { 3323 // If we are building a module, keep all of the methods. 3324 if (getLangOpts().isCompilingModule()) 3325 continue; 3326 3327 bool SameDeclaration = MatchTwoMethodDeclarations(Method, 3328 List->getMethod()); 3329 // Looking for method with a type bound requires the correct context exists. 3330 // We need to insert a method into the list if the context is different. 3331 // If the method's declaration matches the list 3332 // a> the method belongs to a different context: we need to insert it, in 3333 // order to emit the availability message, we need to prioritize over 3334 // availability among the methods with the same declaration. 3335 // b> the method belongs to the same context: there is no need to insert a 3336 // new entry. 3337 // If the method's declaration does not match the list, we insert it to the 3338 // end. 3339 if (!SameDeclaration || 3340 !isMethodContextSameForKindofLookup(Method, List->getMethod())) { 3341 // Even if two method types do not match, we would like to say 3342 // there is more than one declaration so unavailability/deprecated 3343 // warning is not too noisy. 3344 if (!Method->isDefined()) 3345 List->setHasMoreThanOneDecl(true); 3346 3347 // For methods with the same declaration, the one that is deprecated 3348 // should be put in the front for better diagnostics. 3349 if (Method->isDeprecated() && SameDeclaration && 3350 !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) 3351 ListWithSameDeclaration = List; 3352 3353 if (Method->isUnavailable() && SameDeclaration && 3354 !ListWithSameDeclaration && 3355 List->getMethod()->getAvailability() < AR_Deprecated) 3356 ListWithSameDeclaration = List; 3357 continue; 3358 } 3359 3360 ObjCMethodDecl *PrevObjCMethod = List->getMethod(); 3361 3362 // Propagate the 'defined' bit. 3363 if (Method->isDefined()) 3364 PrevObjCMethod->setDefined(true); 3365 else { 3366 // Objective-C doesn't allow an @interface for a class after its 3367 // @implementation. So if Method is not defined and there already is 3368 // an entry for this type signature, Method has to be for a different 3369 // class than PrevObjCMethod. 3370 List->setHasMoreThanOneDecl(true); 3371 } 3372 3373 // If a method is deprecated, push it in the global pool. 3374 // This is used for better diagnostics. 3375 if (Method->isDeprecated()) { 3376 if (!PrevObjCMethod->isDeprecated()) 3377 List->setMethod(Method); 3378 } 3379 // If the new method is unavailable, push it into global pool 3380 // unless previous one is deprecated. 3381 if (Method->isUnavailable()) { 3382 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 3383 List->setMethod(Method); 3384 } 3385 3386 return; 3387 } 3388 3389 // We have a new signature for an existing method - add it. 3390 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 3391 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 3392 3393 // We insert it right before ListWithSameDeclaration. 3394 if (ListWithSameDeclaration) { 3395 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); 3396 // FIXME: should we clear the other bits in ListWithSameDeclaration? 3397 ListWithSameDeclaration->setMethod(Method); 3398 ListWithSameDeclaration->setNext(List); 3399 return; 3400 } 3401 3402 Previous->setNext(new (Mem) ObjCMethodList(Method)); 3403 } 3404 3405 /// Read the contents of the method pool for a given selector from 3406 /// external storage. 3407 void Sema::ReadMethodPool(Selector Sel) { 3408 assert(ExternalSource && "We need an external AST source"); 3409 ExternalSource->ReadMethodPool(Sel); 3410 } 3411 3412 void Sema::updateOutOfDateSelector(Selector Sel) { 3413 if (!ExternalSource) 3414 return; 3415 ExternalSource->updateOutOfDateSelector(Sel); 3416 } 3417 3418 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 3419 bool instance) { 3420 // Ignore methods of invalid containers. 3421 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 3422 return; 3423 3424 if (ExternalSource) 3425 ReadMethodPool(Method->getSelector()); 3426 3427 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 3428 if (Pos == MethodPool.end()) 3429 Pos = MethodPool 3430 .insert(std::make_pair(Method->getSelector(), 3431 GlobalMethodPool::Lists())) 3432 .first; 3433 3434 Method->setDefined(impl); 3435 3436 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 3437 addMethodToGlobalList(&Entry, Method); 3438 } 3439 3440 /// Determines if this is an "acceptable" loose mismatch in the global 3441 /// method pool. This exists mostly as a hack to get around certain 3442 /// global mismatches which we can't afford to make warnings / errors. 3443 /// Really, what we want is a way to take a method out of the global 3444 /// method pool. 3445 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 3446 ObjCMethodDecl *other) { 3447 if (!chosen->isInstanceMethod()) 3448 return false; 3449 3450 if (chosen->isDirectMethod() != other->isDirectMethod()) 3451 return false; 3452 3453 Selector sel = chosen->getSelector(); 3454 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 3455 return false; 3456 3457 // Don't complain about mismatches for -length if the method we 3458 // chose has an integral result type. 3459 return (chosen->getReturnType()->isIntegerType()); 3460 } 3461 3462 /// Return true if the given method is wthin the type bound. 3463 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, 3464 const ObjCObjectType *TypeBound) { 3465 if (!TypeBound) 3466 return true; 3467 3468 if (TypeBound->isObjCId()) 3469 // FIXME: should we handle the case of bounding to id<A, B> differently? 3470 return true; 3471 3472 auto *BoundInterface = TypeBound->getInterface(); 3473 assert(BoundInterface && "unexpected object type!"); 3474 3475 // Check if the Method belongs to a protocol. We should allow any method 3476 // defined in any protocol, because any subclass could adopt the protocol. 3477 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3478 if (MethodProtocol) { 3479 return true; 3480 } 3481 3482 // If the Method belongs to a class, check if it belongs to the class 3483 // hierarchy of the class bound. 3484 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { 3485 // We allow methods declared within classes that are part of the hierarchy 3486 // of the class bound (superclass of, subclass of, or the same as the class 3487 // bound). 3488 return MethodInterface == BoundInterface || 3489 MethodInterface->isSuperClassOf(BoundInterface) || 3490 BoundInterface->isSuperClassOf(MethodInterface); 3491 } 3492 llvm_unreachable("unknown method context"); 3493 } 3494 3495 /// We first select the type of the method: Instance or Factory, then collect 3496 /// all methods with that type. 3497 bool Sema::CollectMultipleMethodsInGlobalPool( 3498 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, 3499 bool InstanceFirst, bool CheckTheOther, 3500 const ObjCObjectType *TypeBound) { 3501 if (ExternalSource) 3502 ReadMethodPool(Sel); 3503 3504 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3505 if (Pos == MethodPool.end()) 3506 return false; 3507 3508 // Gather the non-hidden methods. 3509 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : 3510 Pos->second.second; 3511 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 3512 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3513 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3514 Methods.push_back(M->getMethod()); 3515 } 3516 3517 // Return if we find any method with the desired kind. 3518 if (!Methods.empty()) 3519 return Methods.size() > 1; 3520 3521 if (!CheckTheOther) 3522 return false; 3523 3524 // Gather the other kind. 3525 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : 3526 Pos->second.first; 3527 for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) 3528 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3529 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3530 Methods.push_back(M->getMethod()); 3531 } 3532 3533 return Methods.size() > 1; 3534 } 3535 3536 bool Sema::AreMultipleMethodsInGlobalPool( 3537 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, 3538 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { 3539 // Diagnose finding more than one method in global pool. 3540 SmallVector<ObjCMethodDecl *, 4> FilteredMethods; 3541 FilteredMethods.push_back(BestMethod); 3542 3543 for (auto *M : Methods) 3544 if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) 3545 FilteredMethods.push_back(M); 3546 3547 if (FilteredMethods.size() > 1) 3548 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R, 3549 receiverIdOrClass); 3550 3551 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3552 // Test for no method in the pool which should not trigger any warning by 3553 // caller. 3554 if (Pos == MethodPool.end()) 3555 return true; 3556 ObjCMethodList &MethList = 3557 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; 3558 return MethList.hasMoreThanOneDecl(); 3559 } 3560 3561 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 3562 bool receiverIdOrClass, 3563 bool instance) { 3564 if (ExternalSource) 3565 ReadMethodPool(Sel); 3566 3567 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3568 if (Pos == MethodPool.end()) 3569 return nullptr; 3570 3571 // Gather the non-hidden methods. 3572 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 3573 SmallVector<ObjCMethodDecl *, 4> Methods; 3574 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 3575 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) 3576 return M->getMethod(); 3577 } 3578 return nullptr; 3579 } 3580 3581 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, 3582 Selector Sel, SourceRange R, 3583 bool receiverIdOrClass) { 3584 // We found multiple methods, so we may have to complain. 3585 bool issueDiagnostic = false, issueError = false; 3586 3587 // We support a warning which complains about *any* difference in 3588 // method signature. 3589 bool strictSelectorMatch = 3590 receiverIdOrClass && 3591 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 3592 if (strictSelectorMatch) { 3593 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3594 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 3595 issueDiagnostic = true; 3596 break; 3597 } 3598 } 3599 } 3600 3601 // If we didn't see any strict differences, we won't see any loose 3602 // differences. In ARC, however, we also need to check for loose 3603 // mismatches, because most of them are errors. 3604 if (!strictSelectorMatch || 3605 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 3606 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3607 // This checks if the methods differ in type mismatch. 3608 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 3609 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 3610 issueDiagnostic = true; 3611 if (getLangOpts().ObjCAutoRefCount) 3612 issueError = true; 3613 break; 3614 } 3615 } 3616 3617 if (issueDiagnostic) { 3618 if (issueError) 3619 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 3620 else if (strictSelectorMatch) 3621 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 3622 else 3623 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 3624 3625 Diag(Methods[0]->getBeginLoc(), 3626 issueError ? diag::note_possibility : diag::note_using) 3627 << Methods[0]->getSourceRange(); 3628 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3629 Diag(Methods[I]->getBeginLoc(), diag::note_also_found) 3630 << Methods[I]->getSourceRange(); 3631 } 3632 } 3633 } 3634 3635 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 3636 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3637 if (Pos == MethodPool.end()) 3638 return nullptr; 3639 3640 GlobalMethodPool::Lists &Methods = Pos->second; 3641 for (const ObjCMethodList *Method = &Methods.first; Method; 3642 Method = Method->getNext()) 3643 if (Method->getMethod() && 3644 (Method->getMethod()->isDefined() || 3645 Method->getMethod()->isPropertyAccessor())) 3646 return Method->getMethod(); 3647 3648 for (const ObjCMethodList *Method = &Methods.second; Method; 3649 Method = Method->getNext()) 3650 if (Method->getMethod() && 3651 (Method->getMethod()->isDefined() || 3652 Method->getMethod()->isPropertyAccessor())) 3653 return Method->getMethod(); 3654 return nullptr; 3655 } 3656 3657 static void 3658 HelperSelectorsForTypoCorrection( 3659 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 3660 StringRef Typo, const ObjCMethodDecl * Method) { 3661 const unsigned MaxEditDistance = 1; 3662 unsigned BestEditDistance = MaxEditDistance + 1; 3663 std::string MethodName = Method->getSelector().getAsString(); 3664 3665 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 3666 if (MinPossibleEditDistance > 0 && 3667 Typo.size() / MinPossibleEditDistance < 1) 3668 return; 3669 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 3670 if (EditDistance > MaxEditDistance) 3671 return; 3672 if (EditDistance == BestEditDistance) 3673 BestMethod.push_back(Method); 3674 else if (EditDistance < BestEditDistance) { 3675 BestMethod.clear(); 3676 BestMethod.push_back(Method); 3677 } 3678 } 3679 3680 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 3681 QualType ObjectType) { 3682 if (ObjectType.isNull()) 3683 return true; 3684 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 3685 return true; 3686 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 3687 nullptr; 3688 } 3689 3690 const ObjCMethodDecl * 3691 Sema::SelectorsForTypoCorrection(Selector Sel, 3692 QualType ObjectType) { 3693 unsigned NumArgs = Sel.getNumArgs(); 3694 SmallVector<const ObjCMethodDecl *, 8> Methods; 3695 bool ObjectIsId = true, ObjectIsClass = true; 3696 if (ObjectType.isNull()) 3697 ObjectIsId = ObjectIsClass = false; 3698 else if (!ObjectType->isObjCObjectPointerType()) 3699 return nullptr; 3700 else if (const ObjCObjectPointerType *ObjCPtr = 3701 ObjectType->getAsObjCInterfacePointerType()) { 3702 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 3703 ObjectIsId = ObjectIsClass = false; 3704 } 3705 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 3706 ObjectIsClass = false; 3707 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 3708 ObjectIsId = false; 3709 else 3710 return nullptr; 3711 3712 for (GlobalMethodPool::iterator b = MethodPool.begin(), 3713 e = MethodPool.end(); b != e; b++) { 3714 // instance methods 3715 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 3716 if (M->getMethod() && 3717 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3718 (M->getMethod()->getSelector() != Sel)) { 3719 if (ObjectIsId) 3720 Methods.push_back(M->getMethod()); 3721 else if (!ObjectIsClass && 3722 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3723 ObjectType)) 3724 Methods.push_back(M->getMethod()); 3725 } 3726 // class methods 3727 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 3728 if (M->getMethod() && 3729 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3730 (M->getMethod()->getSelector() != Sel)) { 3731 if (ObjectIsClass) 3732 Methods.push_back(M->getMethod()); 3733 else if (!ObjectIsId && 3734 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3735 ObjectType)) 3736 Methods.push_back(M->getMethod()); 3737 } 3738 } 3739 3740 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 3741 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 3742 HelperSelectorsForTypoCorrection(SelectedMethods, 3743 Sel.getAsString(), Methods[i]); 3744 } 3745 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 3746 } 3747 3748 /// DiagnoseDuplicateIvars - 3749 /// Check for duplicate ivars in the entire class at the start of 3750 /// \@implementation. This becomes necesssary because class extension can 3751 /// add ivars to a class in random order which will not be known until 3752 /// class's \@implementation is seen. 3753 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 3754 ObjCInterfaceDecl *SID) { 3755 for (auto *Ivar : ID->ivars()) { 3756 if (Ivar->isInvalidDecl()) 3757 continue; 3758 if (IdentifierInfo *II = Ivar->getIdentifier()) { 3759 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 3760 if (prevIvar) { 3761 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 3762 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 3763 Ivar->setInvalidDecl(); 3764 } 3765 } 3766 } 3767 } 3768 3769 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. 3770 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { 3771 if (S.getLangOpts().ObjCWeak) return; 3772 3773 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); 3774 ivar; ivar = ivar->getNextIvar()) { 3775 if (ivar->isInvalidDecl()) continue; 3776 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 3777 if (S.getLangOpts().ObjCWeakRuntime) { 3778 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); 3779 } else { 3780 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); 3781 } 3782 } 3783 } 3784 } 3785 3786 /// Diagnose attempts to use flexible array member with retainable object type. 3787 static void DiagnoseRetainableFlexibleArrayMember(Sema &S, 3788 ObjCInterfaceDecl *ID) { 3789 if (!S.getLangOpts().ObjCAutoRefCount) 3790 return; 3791 3792 for (auto ivar = ID->all_declared_ivar_begin(); ivar; 3793 ivar = ivar->getNextIvar()) { 3794 if (ivar->isInvalidDecl()) 3795 continue; 3796 QualType IvarTy = ivar->getType(); 3797 if (IvarTy->isIncompleteArrayType() && 3798 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && 3799 IvarTy->isObjCLifetimeType()) { 3800 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); 3801 ivar->setInvalidDecl(); 3802 } 3803 } 3804 } 3805 3806 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 3807 switch (CurContext->getDeclKind()) { 3808 case Decl::ObjCInterface: 3809 return Sema::OCK_Interface; 3810 case Decl::ObjCProtocol: 3811 return Sema::OCK_Protocol; 3812 case Decl::ObjCCategory: 3813 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 3814 return Sema::OCK_ClassExtension; 3815 return Sema::OCK_Category; 3816 case Decl::ObjCImplementation: 3817 return Sema::OCK_Implementation; 3818 case Decl::ObjCCategoryImpl: 3819 return Sema::OCK_CategoryImplementation; 3820 3821 default: 3822 return Sema::OCK_None; 3823 } 3824 } 3825 3826 static bool IsVariableSizedType(QualType T) { 3827 if (T->isIncompleteArrayType()) 3828 return true; 3829 const auto *RecordTy = T->getAs<RecordType>(); 3830 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); 3831 } 3832 3833 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { 3834 ObjCInterfaceDecl *IntfDecl = nullptr; 3835 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( 3836 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator()); 3837 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) { 3838 Ivars = IntfDecl->ivars(); 3839 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) { 3840 IntfDecl = ImplDecl->getClassInterface(); 3841 Ivars = ImplDecl->ivars(); 3842 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) { 3843 if (CategoryDecl->IsClassExtension()) { 3844 IntfDecl = CategoryDecl->getClassInterface(); 3845 Ivars = CategoryDecl->ivars(); 3846 } 3847 } 3848 3849 // Check if variable sized ivar is in interface and visible to subclasses. 3850 if (!isa<ObjCInterfaceDecl>(OCD)) { 3851 for (auto ivar : Ivars) { 3852 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { 3853 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) 3854 << ivar->getDeclName() << ivar->getType(); 3855 } 3856 } 3857 } 3858 3859 // Subsequent checks require interface decl. 3860 if (!IntfDecl) 3861 return; 3862 3863 // Check if variable sized ivar is followed by another ivar. 3864 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; 3865 ivar = ivar->getNextIvar()) { 3866 if (ivar->isInvalidDecl() || !ivar->getNextIvar()) 3867 continue; 3868 QualType IvarTy = ivar->getType(); 3869 bool IsInvalidIvar = false; 3870 if (IvarTy->isIncompleteArrayType()) { 3871 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) 3872 << ivar->getDeclName() << IvarTy 3873 << TTK_Class; // Use "class" for Obj-C. 3874 IsInvalidIvar = true; 3875 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { 3876 if (RecordTy->getDecl()->hasFlexibleArrayMember()) { 3877 S.Diag(ivar->getLocation(), 3878 diag::err_objc_variable_sized_type_not_at_end) 3879 << ivar->getDeclName() << IvarTy; 3880 IsInvalidIvar = true; 3881 } 3882 } 3883 if (IsInvalidIvar) { 3884 S.Diag(ivar->getNextIvar()->getLocation(), 3885 diag::note_next_ivar_declaration) 3886 << ivar->getNextIvar()->getSynthesize(); 3887 ivar->setInvalidDecl(); 3888 } 3889 } 3890 3891 // Check if ObjC container adds ivars after variable sized ivar in superclass. 3892 // Perform the check only if OCD is the first container to declare ivars to 3893 // avoid multiple warnings for the same ivar. 3894 ObjCIvarDecl *FirstIvar = 3895 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); 3896 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { 3897 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); 3898 while (SuperClass && SuperClass->ivar_empty()) 3899 SuperClass = SuperClass->getSuperClass(); 3900 if (SuperClass) { 3901 auto IvarIter = SuperClass->ivar_begin(); 3902 std::advance(IvarIter, SuperClass->ivar_size() - 1); 3903 const ObjCIvarDecl *LastIvar = *IvarIter; 3904 if (IsVariableSizedType(LastIvar->getType())) { 3905 S.Diag(FirstIvar->getLocation(), 3906 diag::warn_superclass_variable_sized_type_not_at_end) 3907 << FirstIvar->getDeclName() << LastIvar->getDeclName() 3908 << LastIvar->getType() << SuperClass->getDeclName(); 3909 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) 3910 << LastIvar->getDeclName(); 3911 } 3912 } 3913 } 3914 } 3915 3916 static void DiagnoseCategoryDirectMembersProtocolConformance( 3917 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); 3918 3919 static void DiagnoseCategoryDirectMembersProtocolConformance( 3920 Sema &S, ObjCCategoryDecl *CDecl, 3921 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { 3922 for (auto *PI : Protocols) 3923 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl); 3924 } 3925 3926 static void DiagnoseCategoryDirectMembersProtocolConformance( 3927 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { 3928 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 3929 PDecl = PDecl->getDefinition(); 3930 3931 llvm::SmallVector<const Decl *, 4> DirectMembers; 3932 const auto *IDecl = CDecl->getClassInterface(); 3933 for (auto *MD : PDecl->methods()) { 3934 if (!MD->isPropertyAccessor()) { 3935 if (const auto *CMD = 3936 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) { 3937 if (CMD->isDirectMethod()) 3938 DirectMembers.push_back(CMD); 3939 } 3940 } 3941 } 3942 for (auto *PD : PDecl->properties()) { 3943 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( 3944 PD->getIdentifier(), 3945 PD->isClassProperty() 3946 ? ObjCPropertyQueryKind::OBJC_PR_query_class 3947 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 3948 if (CPD->isDirectProperty()) 3949 DirectMembers.push_back(CPD); 3950 } 3951 } 3952 if (!DirectMembers.empty()) { 3953 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance) 3954 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; 3955 for (const auto *MD : DirectMembers) 3956 S.Diag(MD->getLocation(), diag::note_direct_member_here); 3957 return; 3958 } 3959 3960 // Check on this protocols's referenced protocols, recursively. 3961 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, 3962 PDecl->protocols()); 3963 } 3964 3965 // Note: For class/category implementations, allMethods is always null. 3966 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 3967 ArrayRef<DeclGroupPtrTy> allTUVars) { 3968 if (getObjCContainerKind() == Sema::OCK_None) 3969 return nullptr; 3970 3971 assert(AtEnd.isValid() && "Invalid location for '@end'"); 3972 3973 auto *OCD = cast<ObjCContainerDecl>(CurContext); 3974 Decl *ClassDecl = OCD; 3975 3976 bool isInterfaceDeclKind = 3977 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 3978 || isa<ObjCProtocolDecl>(ClassDecl); 3979 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 3980 3981 // Make synthesized accessor stub functions visible. 3982 // ActOnPropertyImplDecl() creates them as not visible in case 3983 // they are overridden by an explicit method that is encountered 3984 // later. 3985 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) { 3986 for (auto PropImpl : OID->property_impls()) { 3987 if (auto *Getter = PropImpl->getGetterMethodDecl()) 3988 if (Getter->isSynthesizedAccessorStub()) 3989 OID->addDecl(Getter); 3990 if (auto *Setter = PropImpl->getSetterMethodDecl()) 3991 if (Setter->isSynthesizedAccessorStub()) 3992 OID->addDecl(Setter); 3993 } 3994 } 3995 3996 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 3997 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 3998 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 3999 4000 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 4001 ObjCMethodDecl *Method = 4002 cast_or_null<ObjCMethodDecl>(allMethods[i]); 4003 4004 if (!Method) continue; // Already issued a diagnostic. 4005 if (Method->isInstanceMethod()) { 4006 /// Check for instance method of the same name with incompatible types 4007 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 4008 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4009 : false; 4010 if ((isInterfaceDeclKind && PrevMethod && !match) 4011 || (checkIdenticalMethods && match)) { 4012 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4013 << Method->getDeclName(); 4014 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4015 Method->setInvalidDecl(); 4016 } else { 4017 if (PrevMethod) { 4018 Method->setAsRedeclaration(PrevMethod); 4019 if (!Context.getSourceManager().isInSystemHeader( 4020 Method->getLocation())) 4021 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4022 << Method->getDeclName(); 4023 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4024 } 4025 InsMap[Method->getSelector()] = Method; 4026 /// The following allows us to typecheck messages to "id". 4027 AddInstanceMethodToGlobalPool(Method); 4028 } 4029 } else { 4030 /// Check for class method of the same name with incompatible types 4031 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 4032 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4033 : false; 4034 if ((isInterfaceDeclKind && PrevMethod && !match) 4035 || (checkIdenticalMethods && match)) { 4036 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4037 << Method->getDeclName(); 4038 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4039 Method->setInvalidDecl(); 4040 } else { 4041 if (PrevMethod) { 4042 Method->setAsRedeclaration(PrevMethod); 4043 if (!Context.getSourceManager().isInSystemHeader( 4044 Method->getLocation())) 4045 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4046 << Method->getDeclName(); 4047 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4048 } 4049 ClsMap[Method->getSelector()] = Method; 4050 AddFactoryMethodToGlobalPool(Method); 4051 } 4052 } 4053 } 4054 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 4055 // Nothing to do here. 4056 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 4057 // Categories are used to extend the class by declaring new methods. 4058 // By the same token, they are also used to add new properties. No 4059 // need to compare the added property to those in the class. 4060 4061 if (C->IsClassExtension()) { 4062 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 4063 DiagnoseClassExtensionDupMethods(C, CCPrimary); 4064 } 4065 4066 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols()); 4067 } 4068 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 4069 if (CDecl->getIdentifier()) 4070 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 4071 // user-defined setter/getter. It also synthesizes setter/getter methods 4072 // and adds them to the DeclContext and global method pools. 4073 for (auto *I : CDecl->properties()) 4074 ProcessPropertyDecl(I); 4075 CDecl->setAtEndRange(AtEnd); 4076 } 4077 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 4078 IC->setAtEndRange(AtEnd); 4079 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 4080 // Any property declared in a class extension might have user 4081 // declared setter or getter in current class extension or one 4082 // of the other class extensions. Mark them as synthesized as 4083 // property will be synthesized when property with same name is 4084 // seen in the @implementation. 4085 for (const auto *Ext : IDecl->visible_extensions()) { 4086 for (const auto *Property : Ext->instance_properties()) { 4087 // Skip over properties declared @dynamic 4088 if (const ObjCPropertyImplDecl *PIDecl 4089 = IC->FindPropertyImplDecl(Property->getIdentifier(), 4090 Property->getQueryKind())) 4091 if (PIDecl->getPropertyImplementation() 4092 == ObjCPropertyImplDecl::Dynamic) 4093 continue; 4094 4095 for (const auto *Ext : IDecl->visible_extensions()) { 4096 if (ObjCMethodDecl *GetterMethod = 4097 Ext->getInstanceMethod(Property->getGetterName())) 4098 GetterMethod->setPropertyAccessor(true); 4099 if (!Property->isReadOnly()) 4100 if (ObjCMethodDecl *SetterMethod 4101 = Ext->getInstanceMethod(Property->getSetterName())) 4102 SetterMethod->setPropertyAccessor(true); 4103 } 4104 } 4105 } 4106 ImplMethodsVsClassMethods(S, IC, IDecl); 4107 AtomicPropertySetterGetterRules(IC, IDecl); 4108 DiagnoseOwningPropertyGetterSynthesis(IC); 4109 DiagnoseUnusedBackingIvarInAccessor(S, IC); 4110 if (IDecl->hasDesignatedInitializers()) 4111 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 4112 DiagnoseWeakIvars(*this, IC); 4113 DiagnoseRetainableFlexibleArrayMember(*this, IDecl); 4114 4115 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 4116 if (IDecl->getSuperClass() == nullptr) { 4117 // This class has no superclass, so check that it has been marked with 4118 // __attribute((objc_root_class)). 4119 if (!HasRootClassAttr) { 4120 SourceLocation DeclLoc(IDecl->getLocation()); 4121 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 4122 Diag(DeclLoc, diag::warn_objc_root_class_missing) 4123 << IDecl->getIdentifier(); 4124 // See if NSObject is in the current scope, and if it is, suggest 4125 // adding " : NSObject " to the class declaration. 4126 NamedDecl *IF = LookupSingleName(TUScope, 4127 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 4128 DeclLoc, LookupOrdinaryName); 4129 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 4130 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 4131 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 4132 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 4133 } else { 4134 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 4135 } 4136 } 4137 } else if (HasRootClassAttr) { 4138 // Complain that only root classes may have this attribute. 4139 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 4140 } 4141 4142 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { 4143 // An interface can subclass another interface with a 4144 // objc_subclassing_restricted attribute when it has that attribute as 4145 // well (because of interfaces imported from Swift). Therefore we have 4146 // to check if we can subclass in the implementation as well. 4147 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4148 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4149 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); 4150 Diag(Super->getLocation(), diag::note_class_declared); 4151 } 4152 } 4153 4154 if (IDecl->hasAttr<ObjCClassStubAttr>()) 4155 Diag(IC->getLocation(), diag::err_implementation_of_class_stub); 4156 4157 if (LangOpts.ObjCRuntime.isNonFragile()) { 4158 while (IDecl->getSuperClass()) { 4159 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 4160 IDecl = IDecl->getSuperClass(); 4161 } 4162 } 4163 } 4164 SetIvarInitializers(IC); 4165 } else if (ObjCCategoryImplDecl* CatImplClass = 4166 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 4167 CatImplClass->setAtEndRange(AtEnd); 4168 4169 // Find category interface decl and then check that all methods declared 4170 // in this interface are implemented in the category @implementation. 4171 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 4172 if (ObjCCategoryDecl *Cat 4173 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 4174 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 4175 } 4176 } 4177 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 4178 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { 4179 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4180 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4181 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); 4182 Diag(Super->getLocation(), diag::note_class_declared); 4183 } 4184 } 4185 4186 if (IntfDecl->hasAttr<ObjCClassStubAttr>() && 4187 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) 4188 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); 4189 } 4190 DiagnoseVariableSizedIvars(*this, OCD); 4191 if (isInterfaceDeclKind) { 4192 // Reject invalid vardecls. 4193 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4194 DeclGroupRef DG = allTUVars[i].get(); 4195 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4196 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 4197 if (!VDecl->hasExternalStorage()) 4198 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 4199 } 4200 } 4201 } 4202 ActOnObjCContainerFinishDefinition(); 4203 4204 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4205 DeclGroupRef DG = allTUVars[i].get(); 4206 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4207 (*I)->setTopLevelDeclInObjCContainer(); 4208 Consumer.HandleTopLevelDeclInObjCContainer(DG); 4209 } 4210 4211 ActOnDocumentableDecl(ClassDecl); 4212 return ClassDecl; 4213 } 4214 4215 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 4216 /// objective-c's type qualifier from the parser version of the same info. 4217 static Decl::ObjCDeclQualifier 4218 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 4219 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 4220 } 4221 4222 /// Check whether the declared result type of the given Objective-C 4223 /// method declaration is compatible with the method's class. 4224 /// 4225 static Sema::ResultTypeCompatibilityKind 4226 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 4227 ObjCInterfaceDecl *CurrentClass) { 4228 QualType ResultType = Method->getReturnType(); 4229 4230 // If an Objective-C method inherits its related result type, then its 4231 // declared result type must be compatible with its own class type. The 4232 // declared result type is compatible if: 4233 if (const ObjCObjectPointerType *ResultObjectType 4234 = ResultType->getAs<ObjCObjectPointerType>()) { 4235 // - it is id or qualified id, or 4236 if (ResultObjectType->isObjCIdType() || 4237 ResultObjectType->isObjCQualifiedIdType()) 4238 return Sema::RTC_Compatible; 4239 4240 if (CurrentClass) { 4241 if (ObjCInterfaceDecl *ResultClass 4242 = ResultObjectType->getInterfaceDecl()) { 4243 // - it is the same as the method's class type, or 4244 if (declaresSameEntity(CurrentClass, ResultClass)) 4245 return Sema::RTC_Compatible; 4246 4247 // - it is a superclass of the method's class type 4248 if (ResultClass->isSuperClassOf(CurrentClass)) 4249 return Sema::RTC_Compatible; 4250 } 4251 } else { 4252 // Any Objective-C pointer type might be acceptable for a protocol 4253 // method; we just don't know. 4254 return Sema::RTC_Unknown; 4255 } 4256 } 4257 4258 return Sema::RTC_Incompatible; 4259 } 4260 4261 namespace { 4262 /// A helper class for searching for methods which a particular method 4263 /// overrides. 4264 class OverrideSearch { 4265 public: 4266 const ObjCMethodDecl *Method; 4267 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; 4268 bool Recursive; 4269 4270 public: 4271 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { 4272 Selector selector = method->getSelector(); 4273 4274 // Bypass this search if we've never seen an instance/class method 4275 // with this selector before. 4276 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 4277 if (it == S.MethodPool.end()) { 4278 if (!S.getExternalSource()) return; 4279 S.ReadMethodPool(selector); 4280 4281 it = S.MethodPool.find(selector); 4282 if (it == S.MethodPool.end()) 4283 return; 4284 } 4285 const ObjCMethodList &list = 4286 method->isInstanceMethod() ? it->second.first : it->second.second; 4287 if (!list.getMethod()) return; 4288 4289 const ObjCContainerDecl *container 4290 = cast<ObjCContainerDecl>(method->getDeclContext()); 4291 4292 // Prevent the search from reaching this container again. This is 4293 // important with categories, which override methods from the 4294 // interface and each other. 4295 if (const ObjCCategoryDecl *Category = 4296 dyn_cast<ObjCCategoryDecl>(container)) { 4297 searchFromContainer(container); 4298 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) 4299 searchFromContainer(Interface); 4300 } else { 4301 searchFromContainer(container); 4302 } 4303 } 4304 4305 typedef decltype(Overridden)::iterator iterator; 4306 iterator begin() const { return Overridden.begin(); } 4307 iterator end() const { return Overridden.end(); } 4308 4309 private: 4310 void searchFromContainer(const ObjCContainerDecl *container) { 4311 if (container->isInvalidDecl()) return; 4312 4313 switch (container->getDeclKind()) { 4314 #define OBJCCONTAINER(type, base) \ 4315 case Decl::type: \ 4316 searchFrom(cast<type##Decl>(container)); \ 4317 break; 4318 #define ABSTRACT_DECL(expansion) 4319 #define DECL(type, base) \ 4320 case Decl::type: 4321 #include "clang/AST/DeclNodes.inc" 4322 llvm_unreachable("not an ObjC container!"); 4323 } 4324 } 4325 4326 void searchFrom(const ObjCProtocolDecl *protocol) { 4327 if (!protocol->hasDefinition()) 4328 return; 4329 4330 // A method in a protocol declaration overrides declarations from 4331 // referenced ("parent") protocols. 4332 search(protocol->getReferencedProtocols()); 4333 } 4334 4335 void searchFrom(const ObjCCategoryDecl *category) { 4336 // A method in a category declaration overrides declarations from 4337 // the main class and from protocols the category references. 4338 // The main class is handled in the constructor. 4339 search(category->getReferencedProtocols()); 4340 } 4341 4342 void searchFrom(const ObjCCategoryImplDecl *impl) { 4343 // A method in a category definition that has a category 4344 // declaration overrides declarations from the category 4345 // declaration. 4346 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 4347 search(category); 4348 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 4349 search(Interface); 4350 4351 // Otherwise it overrides declarations from the class. 4352 } else if (const auto *Interface = impl->getClassInterface()) { 4353 search(Interface); 4354 } 4355 } 4356 4357 void searchFrom(const ObjCInterfaceDecl *iface) { 4358 // A method in a class declaration overrides declarations from 4359 if (!iface->hasDefinition()) 4360 return; 4361 4362 // - categories, 4363 for (auto *Cat : iface->known_categories()) 4364 search(Cat); 4365 4366 // - the super class, and 4367 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 4368 search(super); 4369 4370 // - any referenced protocols. 4371 search(iface->getReferencedProtocols()); 4372 } 4373 4374 void searchFrom(const ObjCImplementationDecl *impl) { 4375 // A method in a class implementation overrides declarations from 4376 // the class interface. 4377 if (const auto *Interface = impl->getClassInterface()) 4378 search(Interface); 4379 } 4380 4381 void search(const ObjCProtocolList &protocols) { 4382 for (const auto *Proto : protocols) 4383 search(Proto); 4384 } 4385 4386 void search(const ObjCContainerDecl *container) { 4387 // Check for a method in this container which matches this selector. 4388 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 4389 Method->isInstanceMethod(), 4390 /*AllowHidden=*/true); 4391 4392 // If we find one, record it and bail out. 4393 if (meth) { 4394 Overridden.insert(meth); 4395 return; 4396 } 4397 4398 // Otherwise, search for methods that a hypothetical method here 4399 // would have overridden. 4400 4401 // Note that we're now in a recursive case. 4402 Recursive = true; 4403 4404 searchFromContainer(container); 4405 } 4406 }; 4407 } // end anonymous namespace 4408 4409 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, 4410 ObjCMethodDecl *overridden) { 4411 if (overridden->isDirectMethod()) { 4412 const auto *attr = overridden->getAttr<ObjCDirectAttr>(); 4413 Diag(method->getLocation(), diag::err_objc_override_direct_method); 4414 Diag(attr->getLocation(), diag::note_previous_declaration); 4415 } else if (method->isDirectMethod()) { 4416 const auto *attr = method->getAttr<ObjCDirectAttr>(); 4417 Diag(attr->getLocation(), diag::err_objc_direct_on_override) 4418 << isa<ObjCProtocolDecl>(overridden->getDeclContext()); 4419 Diag(overridden->getLocation(), diag::note_previous_declaration); 4420 } 4421 } 4422 4423 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 4424 ObjCInterfaceDecl *CurrentClass, 4425 ResultTypeCompatibilityKind RTC) { 4426 if (!ObjCMethod) 4427 return; 4428 // Search for overridden methods and merge information down from them. 4429 OverrideSearch overrides(*this, ObjCMethod); 4430 // Keep track if the method overrides any method in the class's base classes, 4431 // its protocols, or its categories' protocols; we will keep that info 4432 // in the ObjCMethodDecl. 4433 // For this info, a method in an implementation is not considered as 4434 // overriding the same method in the interface or its categories. 4435 bool hasOverriddenMethodsInBaseOrProtocol = false; 4436 for (ObjCMethodDecl *overridden : overrides) { 4437 if (!hasOverriddenMethodsInBaseOrProtocol) { 4438 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 4439 CurrentClass != overridden->getClassInterface() || 4440 overridden->isOverriding()) { 4441 CheckObjCMethodDirectOverrides(ObjCMethod, overridden); 4442 hasOverriddenMethodsInBaseOrProtocol = true; 4443 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 4444 // OverrideSearch will return as "overridden" the same method in the 4445 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 4446 // check whether a category of a base class introduced a method with the 4447 // same selector, after the interface method declaration. 4448 // To avoid unnecessary lookups in the majority of cases, we use the 4449 // extra info bits in GlobalMethodPool to check whether there were any 4450 // category methods with this selector. 4451 GlobalMethodPool::iterator It = 4452 MethodPool.find(ObjCMethod->getSelector()); 4453 if (It != MethodPool.end()) { 4454 ObjCMethodList &List = 4455 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 4456 unsigned CategCount = List.getBits(); 4457 if (CategCount > 0) { 4458 // If the method is in a category we'll do lookup if there were at 4459 // least 2 category methods recorded, otherwise only one will do. 4460 if (CategCount > 1 || 4461 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 4462 OverrideSearch overrides(*this, overridden); 4463 for (ObjCMethodDecl *SuperOverridden : overrides) { 4464 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 4465 CurrentClass != SuperOverridden->getClassInterface()) { 4466 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden); 4467 hasOverriddenMethodsInBaseOrProtocol = true; 4468 overridden->setOverriding(true); 4469 break; 4470 } 4471 } 4472 } 4473 } 4474 } 4475 } 4476 } 4477 4478 // Propagate down the 'related result type' bit from overridden methods. 4479 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 4480 ObjCMethod->setRelatedResultType(); 4481 4482 // Then merge the declarations. 4483 mergeObjCMethodDecls(ObjCMethod, overridden); 4484 4485 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 4486 continue; // Conflicting properties are detected elsewhere. 4487 4488 // Check for overriding methods 4489 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 4490 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 4491 CheckConflictingOverridingMethod(ObjCMethod, overridden, 4492 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 4493 4494 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 4495 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 4496 !overridden->isImplicit() /* not meant for properties */) { 4497 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 4498 E = ObjCMethod->param_end(); 4499 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 4500 PrevE = overridden->param_end(); 4501 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 4502 assert(PrevI != overridden->param_end() && "Param mismatch"); 4503 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 4504 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 4505 // If type of argument of method in this class does not match its 4506 // respective argument type in the super class method, issue warning; 4507 if (!Context.typesAreCompatible(T1, T2)) { 4508 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 4509 << T1 << T2; 4510 Diag(overridden->getLocation(), diag::note_previous_declaration); 4511 break; 4512 } 4513 } 4514 } 4515 } 4516 4517 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 4518 } 4519 4520 /// Merge type nullability from for a redeclaration of the same entity, 4521 /// producing the updated type of the redeclared entity. 4522 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, 4523 QualType type, 4524 bool usesCSKeyword, 4525 SourceLocation prevLoc, 4526 QualType prevType, 4527 bool prevUsesCSKeyword) { 4528 // Determine the nullability of both types. 4529 auto nullability = type->getNullability(S.Context); 4530 auto prevNullability = prevType->getNullability(S.Context); 4531 4532 // Easy case: both have nullability. 4533 if (nullability.hasValue() == prevNullability.hasValue()) { 4534 // Neither has nullability; continue. 4535 if (!nullability) 4536 return type; 4537 4538 // The nullabilities are equivalent; do nothing. 4539 if (*nullability == *prevNullability) 4540 return type; 4541 4542 // Complain about mismatched nullability. 4543 S.Diag(loc, diag::err_nullability_conflicting) 4544 << DiagNullabilityKind(*nullability, usesCSKeyword) 4545 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); 4546 return type; 4547 } 4548 4549 // If it's the redeclaration that has nullability, don't change anything. 4550 if (nullability) 4551 return type; 4552 4553 // Otherwise, provide the result with the same nullability. 4554 return S.Context.getAttributedType( 4555 AttributedType::getNullabilityAttrKind(*prevNullability), 4556 type, type); 4557 } 4558 4559 /// Merge information from the declaration of a method in the \@interface 4560 /// (or a category/extension) into the corresponding method in the 4561 /// @implementation (for a class or category). 4562 static void mergeInterfaceMethodToImpl(Sema &S, 4563 ObjCMethodDecl *method, 4564 ObjCMethodDecl *prevMethod) { 4565 // Merge the objc_requires_super attribute. 4566 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && 4567 !method->hasAttr<ObjCRequiresSuperAttr>()) { 4568 // merge the attribute into implementation. 4569 method->addAttr( 4570 ObjCRequiresSuperAttr::CreateImplicit(S.Context, 4571 method->getLocation())); 4572 } 4573 4574 // Merge nullability of the result type. 4575 QualType newReturnType 4576 = mergeTypeNullabilityForRedecl( 4577 S, method->getReturnTypeSourceRange().getBegin(), 4578 method->getReturnType(), 4579 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4580 prevMethod->getReturnTypeSourceRange().getBegin(), 4581 prevMethod->getReturnType(), 4582 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4583 method->setReturnType(newReturnType); 4584 4585 // Handle each of the parameters. 4586 unsigned numParams = method->param_size(); 4587 unsigned numPrevParams = prevMethod->param_size(); 4588 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) { 4589 ParmVarDecl *param = method->param_begin()[i]; 4590 ParmVarDecl *prevParam = prevMethod->param_begin()[i]; 4591 4592 // Merge nullability. 4593 QualType newParamType 4594 = mergeTypeNullabilityForRedecl( 4595 S, param->getLocation(), param->getType(), 4596 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4597 prevParam->getLocation(), prevParam->getType(), 4598 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4599 param->setType(newParamType); 4600 } 4601 } 4602 4603 /// Verify that the method parameters/return value have types that are supported 4604 /// by the x86 target. 4605 static void checkObjCMethodX86VectorTypes(Sema &SemaRef, 4606 const ObjCMethodDecl *Method) { 4607 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == 4608 llvm::Triple::x86 && 4609 "x86-specific check invoked for a different target"); 4610 SourceLocation Loc; 4611 QualType T; 4612 for (const ParmVarDecl *P : Method->parameters()) { 4613 if (P->getType()->isVectorType()) { 4614 Loc = P->getBeginLoc(); 4615 T = P->getType(); 4616 break; 4617 } 4618 } 4619 if (Loc.isInvalid()) { 4620 if (Method->getReturnType()->isVectorType()) { 4621 Loc = Method->getReturnTypeSourceRange().getBegin(); 4622 T = Method->getReturnType(); 4623 } else 4624 return; 4625 } 4626 4627 // Vector parameters/return values are not supported by objc_msgSend on x86 in 4628 // iOS < 9 and macOS < 10.11. 4629 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); 4630 VersionTuple AcceptedInVersion; 4631 if (Triple.getOS() == llvm::Triple::IOS) 4632 AcceptedInVersion = VersionTuple(/*Major=*/9); 4633 else if (Triple.isMacOSX()) 4634 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); 4635 else 4636 return; 4637 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= 4638 AcceptedInVersion) 4639 return; 4640 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) 4641 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 4642 : /*parameter*/ 0) 4643 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9"); 4644 } 4645 4646 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { 4647 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && 4648 CD->hasAttr<ObjCDirectMembersAttr>()) { 4649 Method->addAttr( 4650 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); 4651 } 4652 } 4653 4654 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, 4655 ObjCMethodDecl *Method, 4656 ObjCImplDecl *ImpDecl = nullptr) { 4657 auto Sel = Method->getSelector(); 4658 bool isInstance = Method->isInstanceMethod(); 4659 bool diagnosed = false; 4660 4661 auto diagClash = [&](const ObjCMethodDecl *IMD) { 4662 if (diagnosed || IMD->isImplicit()) 4663 return; 4664 if (Method->isDirectMethod() || IMD->isDirectMethod()) { 4665 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) 4666 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() 4667 << Method->getDeclName(); 4668 S.Diag(IMD->getLocation(), diag::note_previous_declaration); 4669 diagnosed = true; 4670 } 4671 }; 4672 4673 // Look for any other declaration of this method anywhere we can see in this 4674 // compilation unit. 4675 // 4676 // We do not use IDecl->lookupMethod() because we have specific needs: 4677 // 4678 // - we absolutely do not need to walk protocols, because 4679 // diag::err_objc_direct_on_protocol has already been emitted 4680 // during parsing if there's a conflict, 4681 // 4682 // - when we do not find a match in a given @interface container, 4683 // we need to attempt looking it up in the @implementation block if the 4684 // translation unit sees it to find more clashes. 4685 4686 if (auto *IMD = IDecl->getMethod(Sel, isInstance)) 4687 diagClash(IMD); 4688 else if (auto *Impl = IDecl->getImplementation()) 4689 if (Impl != ImpDecl) 4690 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) 4691 diagClash(IMD); 4692 4693 for (const auto *Cat : IDecl->visible_categories()) 4694 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4695 diagClash(IMD); 4696 else if (auto CatImpl = Cat->getImplementation()) 4697 if (CatImpl != ImpDecl) 4698 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4699 diagClash(IMD); 4700 } 4701 4702 Decl *Sema::ActOnMethodDeclaration( 4703 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, 4704 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 4705 ArrayRef<SourceLocation> SelectorLocs, Selector Sel, 4706 // optional arguments. The number of types/arguments is obtained 4707 // from the Sel.getNumArgs(). 4708 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, 4709 unsigned CNumArgs, // c-style args 4710 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, 4711 bool isVariadic, bool MethodDefinition) { 4712 // Make sure we can establish a context for the method. 4713 if (!CurContext->isObjCContainer()) { 4714 Diag(MethodLoc, diag::err_missing_method_context); 4715 return nullptr; 4716 } 4717 4718 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext); 4719 QualType resultDeclType; 4720 4721 bool HasRelatedResultType = false; 4722 TypeSourceInfo *ReturnTInfo = nullptr; 4723 if (ReturnType) { 4724 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 4725 4726 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 4727 return nullptr; 4728 4729 QualType bareResultType = resultDeclType; 4730 (void)AttributedType::stripOuterNullability(bareResultType); 4731 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); 4732 } else { // get the type for "id". 4733 resultDeclType = Context.getObjCIdType(); 4734 Diag(MethodLoc, diag::warn_missing_method_return_type) 4735 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 4736 } 4737 4738 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 4739 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 4740 MethodType == tok::minus, isVariadic, 4741 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 4742 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 4743 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 4744 : ObjCMethodDecl::Required, 4745 HasRelatedResultType); 4746 4747 SmallVector<ParmVarDecl*, 16> Params; 4748 4749 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 4750 QualType ArgType; 4751 TypeSourceInfo *DI; 4752 4753 if (!ArgInfo[i].Type) { 4754 ArgType = Context.getObjCIdType(); 4755 DI = nullptr; 4756 } else { 4757 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 4758 } 4759 4760 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 4761 LookupOrdinaryName, forRedeclarationInCurContext()); 4762 LookupName(R, S); 4763 if (R.isSingleResult()) { 4764 NamedDecl *PrevDecl = R.getFoundDecl(); 4765 if (S->isDeclScope(PrevDecl)) { 4766 Diag(ArgInfo[i].NameLoc, 4767 (MethodDefinition ? diag::warn_method_param_redefinition 4768 : diag::warn_method_param_declaration)) 4769 << ArgInfo[i].Name; 4770 Diag(PrevDecl->getLocation(), 4771 diag::note_previous_declaration); 4772 } 4773 } 4774 4775 SourceLocation StartLoc = DI 4776 ? DI->getTypeLoc().getBeginLoc() 4777 : ArgInfo[i].NameLoc; 4778 4779 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 4780 ArgInfo[i].NameLoc, ArgInfo[i].Name, 4781 ArgType, DI, SC_None); 4782 4783 Param->setObjCMethodScopeInfo(i); 4784 4785 Param->setObjCDeclQualifier( 4786 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 4787 4788 // Apply the attributes to the parameter. 4789 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 4790 AddPragmaAttributes(TUScope, Param); 4791 4792 if (Param->hasAttr<BlocksAttr>()) { 4793 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 4794 Param->setInvalidDecl(); 4795 } 4796 S->AddDecl(Param); 4797 IdResolver.AddDecl(Param); 4798 4799 Params.push_back(Param); 4800 } 4801 4802 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 4803 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 4804 QualType ArgType = Param->getType(); 4805 if (ArgType.isNull()) 4806 ArgType = Context.getObjCIdType(); 4807 else 4808 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 4809 ArgType = Context.getAdjustedParameterType(ArgType); 4810 4811 Param->setDeclContext(ObjCMethod); 4812 Params.push_back(Param); 4813 } 4814 4815 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 4816 ObjCMethod->setObjCDeclQualifier( 4817 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 4818 4819 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 4820 AddPragmaAttributes(TUScope, ObjCMethod); 4821 4822 // Add the method now. 4823 const ObjCMethodDecl *PrevMethod = nullptr; 4824 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 4825 if (MethodType == tok::minus) { 4826 PrevMethod = ImpDecl->getInstanceMethod(Sel); 4827 ImpDecl->addInstanceMethod(ObjCMethod); 4828 } else { 4829 PrevMethod = ImpDecl->getClassMethod(Sel); 4830 ImpDecl->addClassMethod(ObjCMethod); 4831 } 4832 4833 // If this method overrides a previous @synthesize declaration, 4834 // register it with the property. Linear search through all 4835 // properties here, because the autosynthesized stub hasn't been 4836 // made visible yet, so it can be overridden by a later 4837 // user-specified implementation. 4838 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { 4839 if (auto *Setter = PropertyImpl->getSetterMethodDecl()) 4840 if (Setter->getSelector() == Sel && 4841 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4842 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4843 PropertyImpl->setSetterMethodDecl(ObjCMethod); 4844 } 4845 if (auto *Getter = PropertyImpl->getGetterMethodDecl()) 4846 if (Getter->getSelector() == Sel && 4847 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4848 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4849 PropertyImpl->setGetterMethodDecl(ObjCMethod); 4850 break; 4851 } 4852 } 4853 4854 // A method is either tagged direct explicitly, or inherits it from its 4855 // canonical declaration. 4856 // 4857 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() 4858 // because IDecl->lookupMethod() returns more possible matches than just 4859 // the canonical declaration. 4860 if (!ObjCMethod->isDirectMethod()) { 4861 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); 4862 if (CanonicalMD->isDirectMethod()) { 4863 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); 4864 ObjCMethod->addAttr( 4865 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4866 } 4867 } 4868 4869 // Merge information from the @interface declaration into the 4870 // @implementation. 4871 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { 4872 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 4873 ObjCMethod->isInstanceMethod())) { 4874 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); 4875 4876 // The Idecl->lookupMethod() above will find declarations for ObjCMethod 4877 // in one of these places: 4878 // 4879 // (1) the canonical declaration in an @interface container paired 4880 // with the ImplDecl, 4881 // (2) non canonical declarations in @interface not paired with the 4882 // ImplDecl for the same Class, 4883 // (3) any superclass container. 4884 // 4885 // Direct methods only allow for canonical declarations in the matching 4886 // container (case 1). 4887 // 4888 // Direct methods overriding a superclass declaration (case 3) is 4889 // handled during overrides checks in CheckObjCMethodOverrides(). 4890 // 4891 // We deal with same-class container mismatches (Case 2) here. 4892 if (IDecl == IMD->getClassInterface()) { 4893 auto diagContainerMismatch = [&] { 4894 int decl = 0, impl = 0; 4895 4896 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) 4897 decl = Cat->IsClassExtension() ? 1 : 2; 4898 4899 if (isa<ObjCCategoryImplDecl>(ImpDecl)) 4900 impl = 1 + (decl != 0); 4901 4902 Diag(ObjCMethod->getLocation(), 4903 diag::err_objc_direct_impl_decl_mismatch) 4904 << decl << impl; 4905 Diag(IMD->getLocation(), diag::note_previous_declaration); 4906 }; 4907 4908 if (ObjCMethod->isDirectMethod()) { 4909 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); 4910 if (ObjCMethod->getCanonicalDecl() != IMD) { 4911 diagContainerMismatch(); 4912 } else if (!IMD->isDirectMethod()) { 4913 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); 4914 Diag(IMD->getLocation(), diag::note_previous_declaration); 4915 } 4916 } else if (IMD->isDirectMethod()) { 4917 const auto *attr = IMD->getAttr<ObjCDirectAttr>(); 4918 if (ObjCMethod->getCanonicalDecl() != IMD) { 4919 diagContainerMismatch(); 4920 } else { 4921 ObjCMethod->addAttr( 4922 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4923 } 4924 } 4925 } 4926 4927 // Warn about defining -dealloc in a category. 4928 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() && 4929 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { 4930 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 4931 << ObjCMethod->getDeclName(); 4932 } 4933 } else { 4934 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4935 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl); 4936 } 4937 4938 // Warn if a method declared in a protocol to which a category or 4939 // extension conforms is non-escaping and the implementation's method is 4940 // escaping. 4941 for (auto *C : IDecl->visible_categories()) 4942 for (auto &P : C->protocols()) 4943 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), 4944 ObjCMethod->isInstanceMethod())) { 4945 assert(ObjCMethod->parameters().size() == 4946 IMD->parameters().size() && 4947 "Methods have different number of parameters"); 4948 auto OI = IMD->param_begin(), OE = IMD->param_end(); 4949 auto NI = ObjCMethod->param_begin(); 4950 for (; OI != OE; ++OI, ++NI) 4951 diagnoseNoescape(*NI, *OI, C, P, *this); 4952 } 4953 } 4954 } else { 4955 if (!isa<ObjCProtocolDecl>(ClassDecl)) { 4956 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4957 4958 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4959 if (!IDecl) 4960 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface(); 4961 // For valid code, we should always know the primary interface 4962 // declaration by now, however for invalid code we'll keep parsing 4963 // but we won't find the primary interface and IDecl will be nil. 4964 if (IDecl) 4965 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod); 4966 } 4967 4968 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 4969 } 4970 4971 if (PrevMethod) { 4972 // You can never have two method definitions with the same name. 4973 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 4974 << ObjCMethod->getDeclName(); 4975 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4976 ObjCMethod->setInvalidDecl(); 4977 return ObjCMethod; 4978 } 4979 4980 // If this Objective-C method does not have a related result type, but we 4981 // are allowed to infer related result types, try to do so based on the 4982 // method family. 4983 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4984 if (!CurrentClass) { 4985 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 4986 CurrentClass = Cat->getClassInterface(); 4987 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 4988 CurrentClass = Impl->getClassInterface(); 4989 else if (ObjCCategoryImplDecl *CatImpl 4990 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 4991 CurrentClass = CatImpl->getClassInterface(); 4992 } 4993 4994 ResultTypeCompatibilityKind RTC 4995 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 4996 4997 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 4998 4999 bool ARCError = false; 5000 if (getLangOpts().ObjCAutoRefCount) 5001 ARCError = CheckARCMethodDecl(ObjCMethod); 5002 5003 // Infer the related result type when possible. 5004 if (!ARCError && RTC == Sema::RTC_Compatible && 5005 !ObjCMethod->hasRelatedResultType() && 5006 LangOpts.ObjCInferRelatedResultType) { 5007 bool InferRelatedResultType = false; 5008 switch (ObjCMethod->getMethodFamily()) { 5009 case OMF_None: 5010 case OMF_copy: 5011 case OMF_dealloc: 5012 case OMF_finalize: 5013 case OMF_mutableCopy: 5014 case OMF_release: 5015 case OMF_retainCount: 5016 case OMF_initialize: 5017 case OMF_performSelector: 5018 break; 5019 5020 case OMF_alloc: 5021 case OMF_new: 5022 InferRelatedResultType = ObjCMethod->isClassMethod(); 5023 break; 5024 5025 case OMF_init: 5026 case OMF_autorelease: 5027 case OMF_retain: 5028 case OMF_self: 5029 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 5030 break; 5031 } 5032 5033 if (InferRelatedResultType && 5034 !ObjCMethod->getReturnType()->isObjCIndependentClassType()) 5035 ObjCMethod->setRelatedResultType(); 5036 } 5037 5038 if (MethodDefinition && 5039 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 5040 checkObjCMethodX86VectorTypes(*this, ObjCMethod); 5041 5042 // + load method cannot have availability attributes. It get called on 5043 // startup, so it has to have the availability of the deployment target. 5044 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { 5045 if (ObjCMethod->isClassMethod() && 5046 ObjCMethod->getSelector().getAsString() == "load") { 5047 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 5048 << 0; 5049 ObjCMethod->dropAttr<AvailabilityAttr>(); 5050 } 5051 } 5052 5053 // Insert the invisible arguments, self and _cmd! 5054 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface()); 5055 5056 ActOnDocumentableDecl(ObjCMethod); 5057 5058 return ObjCMethod; 5059 } 5060 5061 bool Sema::CheckObjCDeclScope(Decl *D) { 5062 // Following is also an error. But it is caused by a missing @end 5063 // and diagnostic is issued elsewhere. 5064 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 5065 return false; 5066 5067 // If we switched context to translation unit while we are still lexically in 5068 // an objc container, it means the parser missed emitting an error. 5069 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 5070 return false; 5071 5072 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 5073 D->setInvalidDecl(); 5074 5075 return true; 5076 } 5077 5078 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 5079 /// instance variables of ClassName into Decls. 5080 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 5081 IdentifierInfo *ClassName, 5082 SmallVectorImpl<Decl*> &Decls) { 5083 // Check that ClassName is a valid class 5084 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 5085 if (!Class) { 5086 Diag(DeclStart, diag::err_undef_interface) << ClassName; 5087 return; 5088 } 5089 if (LangOpts.ObjCRuntime.isNonFragile()) { 5090 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 5091 return; 5092 } 5093 5094 // Collect the instance variables 5095 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5096 Context.DeepCollectObjCIvars(Class, true, Ivars); 5097 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 5098 for (unsigned i = 0; i < Ivars.size(); i++) { 5099 const FieldDecl* ID = Ivars[i]; 5100 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 5101 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 5102 /*FIXME: StartL=*/ID->getLocation(), 5103 ID->getLocation(), 5104 ID->getIdentifier(), ID->getType(), 5105 ID->getBitWidth()); 5106 Decls.push_back(FD); 5107 } 5108 5109 // Introduce all of these fields into the appropriate scope. 5110 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 5111 D != Decls.end(); ++D) { 5112 FieldDecl *FD = cast<FieldDecl>(*D); 5113 if (getLangOpts().CPlusPlus) 5114 PushOnScopeChains(FD, S); 5115 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 5116 Record->addDecl(FD); 5117 } 5118 } 5119 5120 /// Build a type-check a new Objective-C exception variable declaration. 5121 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 5122 SourceLocation StartLoc, 5123 SourceLocation IdLoc, 5124 IdentifierInfo *Id, 5125 bool Invalid) { 5126 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 5127 // duration shall not be qualified by an address-space qualifier." 5128 // Since all parameters have automatic store duration, they can not have 5129 // an address space. 5130 if (T.getAddressSpace() != LangAS::Default) { 5131 Diag(IdLoc, diag::err_arg_with_address_space); 5132 Invalid = true; 5133 } 5134 5135 // An @catch parameter must be an unqualified object pointer type; 5136 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 5137 if (Invalid) { 5138 // Don't do any further checking. 5139 } else if (T->isDependentType()) { 5140 // Okay: we don't know what this type will instantiate to. 5141 } else if (T->isObjCQualifiedIdType()) { 5142 Invalid = true; 5143 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 5144 } else if (T->isObjCIdType()) { 5145 // Okay: we don't know what this type will instantiate to. 5146 } else if (!T->isObjCObjectPointerType()) { 5147 Invalid = true; 5148 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5149 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { 5150 Invalid = true; 5151 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5152 } 5153 5154 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 5155 T, TInfo, SC_None); 5156 New->setExceptionVariable(true); 5157 5158 // In ARC, infer 'retaining' for variables of retainable type. 5159 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 5160 Invalid = true; 5161 5162 if (Invalid) 5163 New->setInvalidDecl(); 5164 return New; 5165 } 5166 5167 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 5168 const DeclSpec &DS = D.getDeclSpec(); 5169 5170 // We allow the "register" storage class on exception variables because 5171 // GCC did, but we drop it completely. Any other storage class is an error. 5172 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 5173 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 5174 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 5175 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 5176 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 5177 << DeclSpec::getSpecifierName(SCS); 5178 } 5179 if (DS.isInlineSpecified()) 5180 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 5181 << getLangOpts().CPlusPlus17; 5182 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 5183 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5184 diag::err_invalid_thread) 5185 << DeclSpec::getSpecifierName(TSCS); 5186 D.getMutableDeclSpec().ClearStorageClassSpecs(); 5187 5188 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5189 5190 // Check that there are no default arguments inside the type of this 5191 // exception object (C++ only). 5192 if (getLangOpts().CPlusPlus) 5193 CheckExtraCXXDefaultArguments(D); 5194 5195 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5196 QualType ExceptionType = TInfo->getType(); 5197 5198 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 5199 D.getSourceRange().getBegin(), 5200 D.getIdentifierLoc(), 5201 D.getIdentifier(), 5202 D.isInvalidType()); 5203 5204 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 5205 if (D.getCXXScopeSpec().isSet()) { 5206 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 5207 << D.getCXXScopeSpec().getRange(); 5208 New->setInvalidDecl(); 5209 } 5210 5211 // Add the parameter declaration into this scope. 5212 S->AddDecl(New); 5213 if (D.getIdentifier()) 5214 IdResolver.AddDecl(New); 5215 5216 ProcessDeclAttributes(S, New, D); 5217 5218 if (New->hasAttr<BlocksAttr>()) 5219 Diag(New->getLocation(), diag::err_block_on_nonlocal); 5220 return New; 5221 } 5222 5223 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 5224 /// initialization. 5225 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 5226 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 5227 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 5228 Iv= Iv->getNextIvar()) { 5229 QualType QT = Context.getBaseElementType(Iv->getType()); 5230 if (QT->isRecordType()) 5231 Ivars.push_back(Iv); 5232 } 5233 } 5234 5235 void Sema::DiagnoseUseOfUnimplementedSelectors() { 5236 // Load referenced selectors from the external source. 5237 if (ExternalSource) { 5238 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 5239 ExternalSource->ReadReferencedSelectors(Sels); 5240 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 5241 ReferencedSelectors[Sels[I].first] = Sels[I].second; 5242 } 5243 5244 // Warning will be issued only when selector table is 5245 // generated (which means there is at lease one implementation 5246 // in the TU). This is to match gcc's behavior. 5247 if (ReferencedSelectors.empty() || 5248 !Context.AnyObjCImplementation()) 5249 return; 5250 for (auto &SelectorAndLocation : ReferencedSelectors) { 5251 Selector Sel = SelectorAndLocation.first; 5252 SourceLocation Loc = SelectorAndLocation.second; 5253 if (!LookupImplementedMethodInGlobalPool(Sel)) 5254 Diag(Loc, diag::warn_unimplemented_selector) << Sel; 5255 } 5256 } 5257 5258 ObjCIvarDecl * 5259 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 5260 const ObjCPropertyDecl *&PDecl) const { 5261 if (Method->isClassMethod()) 5262 return nullptr; 5263 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 5264 if (!IDecl) 5265 return nullptr; 5266 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 5267 /*shallowCategoryLookup=*/false, 5268 /*followSuper=*/false); 5269 if (!Method || !Method->isPropertyAccessor()) 5270 return nullptr; 5271 if ((PDecl = Method->findPropertyDecl())) 5272 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 5273 // property backing ivar must belong to property's class 5274 // or be a private ivar in class's implementation. 5275 // FIXME. fix the const-ness issue. 5276 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 5277 IV->getIdentifier()); 5278 return IV; 5279 } 5280 return nullptr; 5281 } 5282 5283 namespace { 5284 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 5285 /// accessor references the backing ivar. 5286 class UnusedBackingIvarChecker : 5287 public RecursiveASTVisitor<UnusedBackingIvarChecker> { 5288 public: 5289 Sema &S; 5290 const ObjCMethodDecl *Method; 5291 const ObjCIvarDecl *IvarD; 5292 bool AccessedIvar; 5293 bool InvokedSelfMethod; 5294 5295 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 5296 const ObjCIvarDecl *IvarD) 5297 : S(S), Method(Method), IvarD(IvarD), 5298 AccessedIvar(false), InvokedSelfMethod(false) { 5299 assert(IvarD); 5300 } 5301 5302 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 5303 if (E->getDecl() == IvarD) { 5304 AccessedIvar = true; 5305 return false; 5306 } 5307 return true; 5308 } 5309 5310 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 5311 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 5312 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 5313 InvokedSelfMethod = true; 5314 } 5315 return true; 5316 } 5317 }; 5318 } // end anonymous namespace 5319 5320 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 5321 const ObjCImplementationDecl *ImplD) { 5322 if (S->hasUnrecoverableErrorOccurred()) 5323 return; 5324 5325 for (const auto *CurMethod : ImplD->instance_methods()) { 5326 unsigned DIAG = diag::warn_unused_property_backing_ivar; 5327 SourceLocation Loc = CurMethod->getLocation(); 5328 if (Diags.isIgnored(DIAG, Loc)) 5329 continue; 5330 5331 const ObjCPropertyDecl *PDecl; 5332 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 5333 if (!IV) 5334 continue; 5335 5336 if (CurMethod->isSynthesizedAccessorStub()) 5337 continue; 5338 5339 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 5340 Checker.TraverseStmt(CurMethod->getBody()); 5341 if (Checker.AccessedIvar) 5342 continue; 5343 5344 // Do not issue this warning if backing ivar is used somewhere and accessor 5345 // implementation makes a self call. This is to prevent false positive in 5346 // cases where the ivar is accessed by another method that the accessor 5347 // delegates to. 5348 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 5349 Diag(Loc, DIAG) << IV; 5350 Diag(PDecl->getLocation(), diag::note_property_declare); 5351 } 5352 } 5353 } 5354