xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaDeclAttr.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/DelayedDiagnostic.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/IR/Assumptions.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 
49 using namespace clang;
50 using namespace sema;
51 
52 namespace AttributeLangSupport {
53   enum LANG {
54     C,
55     Cpp,
56     ObjC
57   };
58 } // end namespace AttributeLangSupport
59 
60 //===----------------------------------------------------------------------===//
61 //  Helper functions
62 //===----------------------------------------------------------------------===//
63 
64 /// isFunctionOrMethod - Return true if the given decl has function
65 /// type (function or function-typed variable) or an Objective-C
66 /// method.
67 static bool isFunctionOrMethod(const Decl *D) {
68   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
69 }
70 
71 /// Return true if the given decl has function type (function or
72 /// function-typed variable) or an Objective-C method or a block.
73 static bool isFunctionOrMethodOrBlock(const Decl *D) {
74   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
75 }
76 
77 /// Return true if the given decl has a declarator that should have
78 /// been processed by Sema::GetTypeForDeclarator.
79 static bool hasDeclarator(const Decl *D) {
80   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
81   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
82          isa<ObjCPropertyDecl>(D);
83 }
84 
85 /// hasFunctionProto - Return true if the given decl has a argument
86 /// information. This decl should have already passed
87 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
88 static bool hasFunctionProto(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return isa<FunctionProtoType>(FnTy);
91   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
92 }
93 
94 /// getFunctionOrMethodNumParams - Return number of function or method
95 /// parameters. It is an error to call this on a K&R function (use
96 /// hasFunctionProto first).
97 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
98   if (const FunctionType *FnTy = D->getFunctionType())
99     return cast<FunctionProtoType>(FnTy)->getNumParams();
100   if (const auto *BD = dyn_cast<BlockDecl>(D))
101     return BD->getNumParams();
102   return cast<ObjCMethodDecl>(D)->param_size();
103 }
104 
105 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
106                                                    unsigned Idx) {
107   if (const auto *FD = dyn_cast<FunctionDecl>(D))
108     return FD->getParamDecl(Idx);
109   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
110     return MD->getParamDecl(Idx);
111   if (const auto *BD = dyn_cast<BlockDecl>(D))
112     return BD->getParamDecl(Idx);
113   return nullptr;
114 }
115 
116 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
117   if (const FunctionType *FnTy = D->getFunctionType())
118     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
119   if (const auto *BD = dyn_cast<BlockDecl>(D))
120     return BD->getParamDecl(Idx)->getType();
121 
122   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
123 }
124 
125 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
126   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
127     return PVD->getSourceRange();
128   return SourceRange();
129 }
130 
131 static QualType getFunctionOrMethodResultType(const Decl *D) {
132   if (const FunctionType *FnTy = D->getFunctionType())
133     return FnTy->getReturnType();
134   return cast<ObjCMethodDecl>(D)->getReturnType();
135 }
136 
137 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
138   if (const auto *FD = dyn_cast<FunctionDecl>(D))
139     return FD->getReturnTypeSourceRange();
140   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
141     return MD->getReturnTypeSourceRange();
142   return SourceRange();
143 }
144 
145 static bool isFunctionOrMethodVariadic(const Decl *D) {
146   if (const FunctionType *FnTy = D->getFunctionType())
147     return cast<FunctionProtoType>(FnTy)->isVariadic();
148   if (const auto *BD = dyn_cast<BlockDecl>(D))
149     return BD->isVariadic();
150   return cast<ObjCMethodDecl>(D)->isVariadic();
151 }
152 
153 static bool isInstanceMethod(const Decl *D) {
154   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
155     return MethodDecl->isInstance();
156   return false;
157 }
158 
159 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
160                                   bool AllowNSAttributedString = false) {
161   const auto *PT = T->getAs<ObjCObjectPointerType>();
162   if (!PT)
163     return false;
164 
165   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
166   if (!Cls)
167     return false;
168 
169   IdentifierInfo* ClsName = Cls->getIdentifier();
170 
171   if (AllowNSAttributedString &&
172       ClsName == &Ctx.Idents.get("NSAttributedString"))
173     return true;
174   // FIXME: Should we walk the chain of classes?
175   return ClsName == &Ctx.Idents.get("NSString") ||
176          ClsName == &Ctx.Idents.get("NSMutableString");
177 }
178 
179 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
180   const auto *PT = T->getAs<PointerType>();
181   if (!PT)
182     return false;
183 
184   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
185   if (!RT)
186     return false;
187 
188   const RecordDecl *RD = RT->getDecl();
189   if (RD->getTagKind() != TTK_Struct)
190     return false;
191 
192   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
193 }
194 
195 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
196   // FIXME: Include the type in the argument list.
197   return AL.getNumArgs() + AL.hasParsedType();
198 }
199 
200 /// A helper function to provide Attribute Location for the Attr types
201 /// AND the ParsedAttr.
202 template <typename AttrInfo>
203 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
204 getAttrLoc(const AttrInfo &AL) {
205   return AL.getLocation();
206 }
207 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
208 
209 /// If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
211 ///
212 /// Negative argument is implicitly converted to unsigned, unless
213 /// \p StrictlyUnsigned is true.
214 template <typename AttrInfo>
215 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
216                                 uint32_t &Val, unsigned Idx = UINT_MAX,
217                                 bool StrictlyUnsigned = false) {
218   Optional<llvm::APSInt> I = llvm::APSInt(32);
219   if (Expr->isTypeDependent() ||
220       !(I = Expr->getIntegerConstantExpr(S.Context))) {
221     if (Idx != UINT_MAX)
222       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
223           << &AI << Idx << AANT_ArgumentIntegerConstant
224           << Expr->getSourceRange();
225     else
226       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
227           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
228     return false;
229   }
230 
231   if (!I->isIntN(32)) {
232     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
233         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
234     return false;
235   }
236 
237   if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
238     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
239         << &AI << /*non-negative*/ 1;
240     return false;
241   }
242 
243   Val = (uint32_t)I->getZExtValue();
244   return true;
245 }
246 
247 /// Wrapper around checkUInt32Argument, with an extra check to be sure
248 /// that the result will fit into a regular (signed) int. All args have the same
249 /// purpose as they do in checkUInt32Argument.
250 template <typename AttrInfo>
251 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
252                                      int &Val, unsigned Idx = UINT_MAX) {
253   uint32_t UVal;
254   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
255     return false;
256 
257   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
258     llvm::APSInt I(32); // for toString
259     I = UVal;
260     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
261         << toString(I, 10, false) << 32 << /* Unsigned */ 0;
262     return false;
263   }
264 
265   Val = UVal;
266   return true;
267 }
268 
269 /// Diagnose mutually exclusive attributes when present on a given
270 /// declaration. Returns true if diagnosed.
271 template <typename AttrTy>
272 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
273   if (const auto *A = D->getAttr<AttrTy>()) {
274     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
275     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
276     return true;
277   }
278   return false;
279 }
280 
281 template <typename AttrTy>
282 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
283   if (const auto *A = D->getAttr<AttrTy>()) {
284     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
285                                                                       << A;
286     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
287     return true;
288   }
289   return false;
290 }
291 
292 /// Check if IdxExpr is a valid parameter index for a function or
293 /// instance method D.  May output an error.
294 ///
295 /// \returns true if IdxExpr is a valid index.
296 template <typename AttrInfo>
297 static bool checkFunctionOrMethodParameterIndex(
298     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
299     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
300   assert(isFunctionOrMethodOrBlock(D));
301 
302   // In C++ the implicit 'this' function parameter also counts.
303   // Parameters are counted from one.
304   bool HP = hasFunctionProto(D);
305   bool HasImplicitThisParam = isInstanceMethod(D);
306   bool IV = HP && isFunctionOrMethodVariadic(D);
307   unsigned NumParams =
308       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
309 
310   Optional<llvm::APSInt> IdxInt;
311   if (IdxExpr->isTypeDependent() ||
312       !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
313     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
314         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
315         << IdxExpr->getSourceRange();
316     return false;
317   }
318 
319   unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
320   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
321     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
322         << &AI << AttrArgNum << IdxExpr->getSourceRange();
323     return false;
324   }
325   if (HasImplicitThisParam && !CanIndexImplicitThis) {
326     if (IdxSource == 1) {
327       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
328           << &AI << IdxExpr->getSourceRange();
329       return false;
330     }
331   }
332 
333   Idx = ParamIdx(IdxSource, D);
334   return true;
335 }
336 
337 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
338 /// If not emit an error and return false. If the argument is an identifier it
339 /// will emit an error with a fixit hint and treat it as if it was a string
340 /// literal.
341 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
342                                           StringRef &Str,
343                                           SourceLocation *ArgLocation) {
344   // Look for identifiers. If we have one emit a hint to fix it to a literal.
345   if (AL.isArgIdent(ArgNum)) {
346     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
347     Diag(Loc->Loc, diag::err_attribute_argument_type)
348         << AL << AANT_ArgumentString
349         << FixItHint::CreateInsertion(Loc->Loc, "\"")
350         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
351     Str = Loc->Ident->getName();
352     if (ArgLocation)
353       *ArgLocation = Loc->Loc;
354     return true;
355   }
356 
357   // Now check for an actual string literal.
358   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
359   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
360   if (ArgLocation)
361     *ArgLocation = ArgExpr->getBeginLoc();
362 
363   if (!Literal || !Literal->isAscii()) {
364     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
365         << AL << AANT_ArgumentString;
366     return false;
367   }
368 
369   Str = Literal->getString();
370   return true;
371 }
372 
373 /// Applies the given attribute to the Decl without performing any
374 /// additional semantic checking.
375 template <typename AttrType>
376 static void handleSimpleAttribute(Sema &S, Decl *D,
377                                   const AttributeCommonInfo &CI) {
378   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
379 }
380 
381 template <typename... DiagnosticArgs>
382 static const Sema::SemaDiagnosticBuilder&
383 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
384   return Bldr;
385 }
386 
387 template <typename T, typename... DiagnosticArgs>
388 static const Sema::SemaDiagnosticBuilder&
389 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
390                   DiagnosticArgs &&... ExtraArgs) {
391   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
392                            std::forward<DiagnosticArgs>(ExtraArgs)...);
393 }
394 
395 /// Add an attribute @c AttrType to declaration @c D, provided that
396 /// @c PassesCheck is true.
397 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
398 /// specified in @c ExtraArgs.
399 template <typename AttrType, typename... DiagnosticArgs>
400 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
401                                             const AttributeCommonInfo &CI,
402                                             bool PassesCheck, unsigned DiagID,
403                                             DiagnosticArgs &&... ExtraArgs) {
404   if (!PassesCheck) {
405     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
406     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
407     return;
408   }
409   handleSimpleAttribute<AttrType>(S, D, CI);
410 }
411 
412 /// Check if the passed-in expression is of type int or bool.
413 static bool isIntOrBool(Expr *Exp) {
414   QualType QT = Exp->getType();
415   return QT->isBooleanType() || QT->isIntegerType();
416 }
417 
418 
419 // Check to see if the type is a smart pointer of some kind.  We assume
420 // it's a smart pointer if it defines both operator-> and operator*.
421 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
422   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
423                                           OverloadedOperatorKind Op) {
424     DeclContextLookupResult Result =
425         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
426     return !Result.empty();
427   };
428 
429   const RecordDecl *Record = RT->getDecl();
430   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
431   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
432   if (foundStarOperator && foundArrowOperator)
433     return true;
434 
435   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
436   if (!CXXRecord)
437     return false;
438 
439   for (auto BaseSpecifier : CXXRecord->bases()) {
440     if (!foundStarOperator)
441       foundStarOperator = IsOverloadedOperatorPresent(
442           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
443     if (!foundArrowOperator)
444       foundArrowOperator = IsOverloadedOperatorPresent(
445           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
446   }
447 
448   if (foundStarOperator && foundArrowOperator)
449     return true;
450 
451   return false;
452 }
453 
454 /// Check if passed in Decl is a pointer type.
455 /// Note that this function may produce an error message.
456 /// \return true if the Decl is a pointer type; false otherwise
457 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
458                                        const ParsedAttr &AL) {
459   const auto *VD = cast<ValueDecl>(D);
460   QualType QT = VD->getType();
461   if (QT->isAnyPointerType())
462     return true;
463 
464   if (const auto *RT = QT->getAs<RecordType>()) {
465     // If it's an incomplete type, it could be a smart pointer; skip it.
466     // (We don't want to force template instantiation if we can avoid it,
467     // since that would alter the order in which templates are instantiated.)
468     if (RT->isIncompleteType())
469       return true;
470 
471     if (threadSafetyCheckIsSmartPointer(S, RT))
472       return true;
473   }
474 
475   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
476   return false;
477 }
478 
479 /// Checks that the passed in QualType either is of RecordType or points
480 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
481 static const RecordType *getRecordType(QualType QT) {
482   if (const auto *RT = QT->getAs<RecordType>())
483     return RT;
484 
485   // Now check if we point to record type.
486   if (const auto *PT = QT->getAs<PointerType>())
487     return PT->getPointeeType()->getAs<RecordType>();
488 
489   return nullptr;
490 }
491 
492 template <typename AttrType>
493 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
494   // Check if the record itself has the attribute.
495   if (RD->hasAttr<AttrType>())
496     return true;
497 
498   // Else check if any base classes have the attribute.
499   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
500     if (!CRD->forallBases([](const CXXRecordDecl *Base) {
501           return !Base->hasAttr<AttrType>();
502         }))
503       return true;
504   }
505   return false;
506 }
507 
508 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
509   const RecordType *RT = getRecordType(Ty);
510 
511   if (!RT)
512     return false;
513 
514   // Don't check for the capability if the class hasn't been defined yet.
515   if (RT->isIncompleteType())
516     return true;
517 
518   // Allow smart pointers to be used as capability objects.
519   // FIXME -- Check the type that the smart pointer points to.
520   if (threadSafetyCheckIsSmartPointer(S, RT))
521     return true;
522 
523   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
524 }
525 
526 static bool checkTypedefTypeForCapability(QualType Ty) {
527   const auto *TD = Ty->getAs<TypedefType>();
528   if (!TD)
529     return false;
530 
531   TypedefNameDecl *TN = TD->getDecl();
532   if (!TN)
533     return false;
534 
535   return TN->hasAttr<CapabilityAttr>();
536 }
537 
538 static bool typeHasCapability(Sema &S, QualType Ty) {
539   if (checkTypedefTypeForCapability(Ty))
540     return true;
541 
542   if (checkRecordTypeForCapability(S, Ty))
543     return true;
544 
545   return false;
546 }
547 
548 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
549   // Capability expressions are simple expressions involving the boolean logic
550   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
551   // a DeclRefExpr is found, its type should be checked to determine whether it
552   // is a capability or not.
553 
554   if (const auto *E = dyn_cast<CastExpr>(Ex))
555     return isCapabilityExpr(S, E->getSubExpr());
556   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
557     return isCapabilityExpr(S, E->getSubExpr());
558   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
559     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
560         E->getOpcode() == UO_Deref)
561       return isCapabilityExpr(S, E->getSubExpr());
562     return false;
563   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
564     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
565       return isCapabilityExpr(S, E->getLHS()) &&
566              isCapabilityExpr(S, E->getRHS());
567     return false;
568   }
569 
570   return typeHasCapability(S, Ex->getType());
571 }
572 
573 /// Checks that all attribute arguments, starting from Sidx, resolve to
574 /// a capability object.
575 /// \param Sidx The attribute argument index to start checking with.
576 /// \param ParamIdxOk Whether an argument can be indexing into a function
577 /// parameter list.
578 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
579                                            const ParsedAttr &AL,
580                                            SmallVectorImpl<Expr *> &Args,
581                                            unsigned Sidx = 0,
582                                            bool ParamIdxOk = false) {
583   if (Sidx == AL.getNumArgs()) {
584     // If we don't have any capability arguments, the attribute implicitly
585     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
586     // a non-static method, and that the class is a (scoped) capability.
587     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
588     if (MD && !MD->isStatic()) {
589       const CXXRecordDecl *RD = MD->getParent();
590       // FIXME -- need to check this again on template instantiation
591       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
592           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
593         S.Diag(AL.getLoc(),
594                diag::warn_thread_attribute_not_on_capability_member)
595             << AL << MD->getParent();
596     } else {
597       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
598           << AL;
599     }
600   }
601 
602   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
603     Expr *ArgExp = AL.getArgAsExpr(Idx);
604 
605     if (ArgExp->isTypeDependent()) {
606       // FIXME -- need to check this again on template instantiation
607       Args.push_back(ArgExp);
608       continue;
609     }
610 
611     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
612       if (StrLit->getLength() == 0 ||
613           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
614         // Pass empty strings to the analyzer without warnings.
615         // Treat "*" as the universal lock.
616         Args.push_back(ArgExp);
617         continue;
618       }
619 
620       // We allow constant strings to be used as a placeholder for expressions
621       // that are not valid C++ syntax, but warn that they are ignored.
622       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
623       Args.push_back(ArgExp);
624       continue;
625     }
626 
627     QualType ArgTy = ArgExp->getType();
628 
629     // A pointer to member expression of the form  &MyClass::mu is treated
630     // specially -- we need to look at the type of the member.
631     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
632       if (UOp->getOpcode() == UO_AddrOf)
633         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
634           if (DRE->getDecl()->isCXXInstanceMember())
635             ArgTy = DRE->getDecl()->getType();
636 
637     // First see if we can just cast to record type, or pointer to record type.
638     const RecordType *RT = getRecordType(ArgTy);
639 
640     // Now check if we index into a record type function param.
641     if(!RT && ParamIdxOk) {
642       const auto *FD = dyn_cast<FunctionDecl>(D);
643       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
644       if(FD && IL) {
645         unsigned int NumParams = FD->getNumParams();
646         llvm::APInt ArgValue = IL->getValue();
647         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
648         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
649         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
650           S.Diag(AL.getLoc(),
651                  diag::err_attribute_argument_out_of_bounds_extra_info)
652               << AL << Idx + 1 << NumParams;
653           continue;
654         }
655         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
656       }
657     }
658 
659     // If the type does not have a capability, see if the components of the
660     // expression have capabilities. This allows for writing C code where the
661     // capability may be on the type, and the expression is a capability
662     // boolean logic expression. Eg) requires_capability(A || B && !C)
663     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
664       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
665           << AL << ArgTy;
666 
667     Args.push_back(ArgExp);
668   }
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // Attribute Implementations
673 //===----------------------------------------------------------------------===//
674 
675 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
676   if (!threadSafetyCheckIsPointer(S, D, AL))
677     return;
678 
679   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
680 }
681 
682 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
683                                      Expr *&Arg) {
684   SmallVector<Expr *, 1> Args;
685   // check that all arguments are lockable objects
686   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
687   unsigned Size = Args.size();
688   if (Size != 1)
689     return false;
690 
691   Arg = Args[0];
692 
693   return true;
694 }
695 
696 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
697   Expr *Arg = nullptr;
698   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
699     return;
700 
701   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
702 }
703 
704 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
705   Expr *Arg = nullptr;
706   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
707     return;
708 
709   if (!threadSafetyCheckIsPointer(S, D, AL))
710     return;
711 
712   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
713 }
714 
715 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
716                                         SmallVectorImpl<Expr *> &Args) {
717   if (!AL.checkAtLeastNumArgs(S, 1))
718     return false;
719 
720   // Check that this attribute only applies to lockable types.
721   QualType QT = cast<ValueDecl>(D)->getType();
722   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
723     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
724     return false;
725   }
726 
727   // Check that all arguments are lockable objects.
728   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
729   if (Args.empty())
730     return false;
731 
732   return true;
733 }
734 
735 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
736   SmallVector<Expr *, 1> Args;
737   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
738     return;
739 
740   Expr **StartArg = &Args[0];
741   D->addAttr(::new (S.Context)
742                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
743 }
744 
745 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
746   SmallVector<Expr *, 1> Args;
747   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
748     return;
749 
750   Expr **StartArg = &Args[0];
751   D->addAttr(::new (S.Context)
752                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
753 }
754 
755 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
756                                    SmallVectorImpl<Expr *> &Args) {
757   // zero or more arguments ok
758   // check that all arguments are lockable objects
759   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
760 
761   return true;
762 }
763 
764 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
765   SmallVector<Expr *, 1> Args;
766   if (!checkLockFunAttrCommon(S, D, AL, Args))
767     return;
768 
769   unsigned Size = Args.size();
770   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
771   D->addAttr(::new (S.Context)
772                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
773 }
774 
775 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
776                                           const ParsedAttr &AL) {
777   SmallVector<Expr *, 1> Args;
778   if (!checkLockFunAttrCommon(S, D, AL, Args))
779     return;
780 
781   unsigned Size = Args.size();
782   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
783   D->addAttr(::new (S.Context)
784                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
785 }
786 
787 /// Checks to be sure that the given parameter number is in bounds, and
788 /// is an integral type. Will emit appropriate diagnostics if this returns
789 /// false.
790 ///
791 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
792 template <typename AttrInfo>
793 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
794                                     unsigned AttrArgNo) {
795   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
796   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
797   ParamIdx Idx;
798   if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
799                                            Idx))
800     return false;
801 
802   QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
803   if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
804     SourceLocation SrcLoc = AttrArg->getBeginLoc();
805     S.Diag(SrcLoc, diag::err_attribute_integers_only)
806         << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
807     return false;
808   }
809   return true;
810 }
811 
812 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
813   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
814     return;
815 
816   assert(isFunctionOrMethod(D) && hasFunctionProto(D));
817 
818   QualType RetTy = getFunctionOrMethodResultType(D);
819   if (!RetTy->isPointerType()) {
820     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
821     return;
822   }
823 
824   const Expr *SizeExpr = AL.getArgAsExpr(0);
825   int SizeArgNoVal;
826   // Parameter indices are 1-indexed, hence Index=1
827   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
828     return;
829   if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
830     return;
831   ParamIdx SizeArgNo(SizeArgNoVal, D);
832 
833   ParamIdx NumberArgNo;
834   if (AL.getNumArgs() == 2) {
835     const Expr *NumberExpr = AL.getArgAsExpr(1);
836     int Val;
837     // Parameter indices are 1-based, hence Index=2
838     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
839       return;
840     if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
841       return;
842     NumberArgNo = ParamIdx(Val, D);
843   }
844 
845   D->addAttr(::new (S.Context)
846                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
847 }
848 
849 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
850                                       SmallVectorImpl<Expr *> &Args) {
851   if (!AL.checkAtLeastNumArgs(S, 1))
852     return false;
853 
854   if (!isIntOrBool(AL.getArgAsExpr(0))) {
855     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
856         << AL << 1 << AANT_ArgumentIntOrBool;
857     return false;
858   }
859 
860   // check that all arguments are lockable objects
861   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
862 
863   return true;
864 }
865 
866 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
867                                             const ParsedAttr &AL) {
868   SmallVector<Expr*, 2> Args;
869   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
870     return;
871 
872   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
873       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
874 }
875 
876 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
877                                                const ParsedAttr &AL) {
878   SmallVector<Expr*, 2> Args;
879   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
880     return;
881 
882   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
883       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
884 }
885 
886 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
887   // check that the argument is lockable object
888   SmallVector<Expr*, 1> Args;
889   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
890   unsigned Size = Args.size();
891   if (Size == 0)
892     return;
893 
894   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
895 }
896 
897 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898   if (!AL.checkAtLeastNumArgs(S, 1))
899     return;
900 
901   // check that all arguments are lockable objects
902   SmallVector<Expr*, 1> Args;
903   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
904   unsigned Size = Args.size();
905   if (Size == 0)
906     return;
907   Expr **StartArg = &Args[0];
908 
909   D->addAttr(::new (S.Context)
910                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
911 }
912 
913 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
914                                        Expr *&Cond, StringRef &Msg) {
915   Cond = AL.getArgAsExpr(0);
916   if (!Cond->isTypeDependent()) {
917     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
918     if (Converted.isInvalid())
919       return false;
920     Cond = Converted.get();
921   }
922 
923   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
924     return false;
925 
926   if (Msg.empty())
927     Msg = "<no message provided>";
928 
929   SmallVector<PartialDiagnosticAt, 8> Diags;
930   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
931       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
932                                                 Diags)) {
933     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
934     for (const PartialDiagnosticAt &PDiag : Diags)
935       S.Diag(PDiag.first, PDiag.second);
936     return false;
937   }
938   return true;
939 }
940 
941 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
943 
944   Expr *Cond;
945   StringRef Msg;
946   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
947     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
948 }
949 
950 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
951   StringRef NewUserDiagnostic;
952   if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
953     return;
954   if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
955     D->addAttr(EA);
956 }
957 
958 namespace {
959 /// Determines if a given Expr references any of the given function's
960 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
961 class ArgumentDependenceChecker
962     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
963 #ifndef NDEBUG
964   const CXXRecordDecl *ClassType;
965 #endif
966   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
967   bool Result;
968 
969 public:
970   ArgumentDependenceChecker(const FunctionDecl *FD) {
971 #ifndef NDEBUG
972     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
973       ClassType = MD->getParent();
974     else
975       ClassType = nullptr;
976 #endif
977     Parms.insert(FD->param_begin(), FD->param_end());
978   }
979 
980   bool referencesArgs(Expr *E) {
981     Result = false;
982     TraverseStmt(E);
983     return Result;
984   }
985 
986   bool VisitCXXThisExpr(CXXThisExpr *E) {
987     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
988            "`this` doesn't refer to the enclosing class?");
989     Result = true;
990     return false;
991   }
992 
993   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
994     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
995       if (Parms.count(PVD)) {
996         Result = true;
997         return false;
998       }
999     return true;
1000   }
1001 };
1002 }
1003 
1004 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1005   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1006 
1007   Expr *Cond;
1008   StringRef Msg;
1009   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1010     return;
1011 
1012   StringRef DiagTypeStr;
1013   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1014     return;
1015 
1016   DiagnoseIfAttr::DiagnosticType DiagType;
1017   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1018     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1019            diag::err_diagnose_if_invalid_diagnostic_type);
1020     return;
1021   }
1022 
1023   bool ArgDependent = false;
1024   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1025     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1026   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1027       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1028 }
1029 
1030 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1031   static constexpr const StringRef kWildcard = "*";
1032 
1033   llvm::SmallVector<StringRef, 16> Names;
1034   bool HasWildcard = false;
1035 
1036   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1037     if (Name == kWildcard)
1038       HasWildcard = true;
1039     Names.push_back(Name);
1040   };
1041 
1042   // Add previously defined attributes.
1043   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1044     for (StringRef BuiltinName : NBA->builtinNames())
1045       AddBuiltinName(BuiltinName);
1046 
1047   // Add current attributes.
1048   if (AL.getNumArgs() == 0)
1049     AddBuiltinName(kWildcard);
1050   else
1051     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1052       StringRef BuiltinName;
1053       SourceLocation LiteralLoc;
1054       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1055         return;
1056 
1057       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1058         AddBuiltinName(BuiltinName);
1059       else
1060         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1061             << BuiltinName << AL;
1062     }
1063 
1064   // Repeating the same attribute is fine.
1065   llvm::sort(Names);
1066   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1067 
1068   // Empty no_builtin must be on its own.
1069   if (HasWildcard && Names.size() > 1)
1070     S.Diag(D->getLocation(),
1071            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1072         << AL;
1073 
1074   if (D->hasAttr<NoBuiltinAttr>())
1075     D->dropAttr<NoBuiltinAttr>();
1076   D->addAttr(::new (S.Context)
1077                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1078 }
1079 
1080 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1081   if (D->hasAttr<PassObjectSizeAttr>()) {
1082     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1083     return;
1084   }
1085 
1086   Expr *E = AL.getArgAsExpr(0);
1087   uint32_t Type;
1088   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1089     return;
1090 
1091   // pass_object_size's argument is passed in as the second argument of
1092   // __builtin_object_size. So, it has the same constraints as that second
1093   // argument; namely, it must be in the range [0, 3].
1094   if (Type > 3) {
1095     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1096         << AL << 0 << 3 << E->getSourceRange();
1097     return;
1098   }
1099 
1100   // pass_object_size is only supported on constant pointer parameters; as a
1101   // kindness to users, we allow the parameter to be non-const for declarations.
1102   // At this point, we have no clue if `D` belongs to a function declaration or
1103   // definition, so we defer the constness check until later.
1104   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1105     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1106     return;
1107   }
1108 
1109   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1110 }
1111 
1112 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1113   ConsumableAttr::ConsumedState DefaultState;
1114 
1115   if (AL.isArgIdent(0)) {
1116     IdentifierLoc *IL = AL.getArgAsIdent(0);
1117     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1118                                                    DefaultState)) {
1119       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1120                                                                << IL->Ident;
1121       return;
1122     }
1123   } else {
1124     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1125         << AL << AANT_ArgumentIdentifier;
1126     return;
1127   }
1128 
1129   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1130 }
1131 
1132 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1133                                     const ParsedAttr &AL) {
1134   QualType ThisType = MD->getThisType()->getPointeeType();
1135 
1136   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1137     if (!RD->hasAttr<ConsumableAttr>()) {
1138       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1139 
1140       return false;
1141     }
1142   }
1143 
1144   return true;
1145 }
1146 
1147 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1148   if (!AL.checkAtLeastNumArgs(S, 1))
1149     return;
1150 
1151   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1152     return;
1153 
1154   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1155   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1156     CallableWhenAttr::ConsumedState CallableState;
1157 
1158     StringRef StateString;
1159     SourceLocation Loc;
1160     if (AL.isArgIdent(ArgIndex)) {
1161       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1162       StateString = Ident->Ident->getName();
1163       Loc = Ident->Loc;
1164     } else {
1165       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1166         return;
1167     }
1168 
1169     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1170                                                      CallableState)) {
1171       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1172       return;
1173     }
1174 
1175     States.push_back(CallableState);
1176   }
1177 
1178   D->addAttr(::new (S.Context)
1179                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1180 }
1181 
1182 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1183   ParamTypestateAttr::ConsumedState ParamState;
1184 
1185   if (AL.isArgIdent(0)) {
1186     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1187     StringRef StateString = Ident->Ident->getName();
1188 
1189     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1190                                                        ParamState)) {
1191       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1192           << AL << StateString;
1193       return;
1194     }
1195   } else {
1196     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1197         << AL << AANT_ArgumentIdentifier;
1198     return;
1199   }
1200 
1201   // FIXME: This check is currently being done in the analysis.  It can be
1202   //        enabled here only after the parser propagates attributes at
1203   //        template specialization definition, not declaration.
1204   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1205   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1206   //
1207   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1208   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1209   //      ReturnType.getAsString();
1210   //    return;
1211   //}
1212 
1213   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1214 }
1215 
1216 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1217   ReturnTypestateAttr::ConsumedState ReturnState;
1218 
1219   if (AL.isArgIdent(0)) {
1220     IdentifierLoc *IL = AL.getArgAsIdent(0);
1221     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1222                                                         ReturnState)) {
1223       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1224                                                                << IL->Ident;
1225       return;
1226     }
1227   } else {
1228     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1229         << AL << AANT_ArgumentIdentifier;
1230     return;
1231   }
1232 
1233   // FIXME: This check is currently being done in the analysis.  It can be
1234   //        enabled here only after the parser propagates attributes at
1235   //        template specialization definition, not declaration.
1236   //QualType ReturnType;
1237   //
1238   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1239   //  ReturnType = Param->getType();
1240   //
1241   //} else if (const CXXConstructorDecl *Constructor =
1242   //             dyn_cast<CXXConstructorDecl>(D)) {
1243   //  ReturnType = Constructor->getThisType()->getPointeeType();
1244   //
1245   //} else {
1246   //
1247   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1248   //}
1249   //
1250   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1251   //
1252   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1253   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1254   //      ReturnType.getAsString();
1255   //    return;
1256   //}
1257 
1258   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1259 }
1260 
1261 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1262   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1263     return;
1264 
1265   SetTypestateAttr::ConsumedState NewState;
1266   if (AL.isArgIdent(0)) {
1267     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1268     StringRef Param = Ident->Ident->getName();
1269     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1270       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1271                                                                   << Param;
1272       return;
1273     }
1274   } else {
1275     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1276         << AL << AANT_ArgumentIdentifier;
1277     return;
1278   }
1279 
1280   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1281 }
1282 
1283 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1284   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1285     return;
1286 
1287   TestTypestateAttr::ConsumedState TestState;
1288   if (AL.isArgIdent(0)) {
1289     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1290     StringRef Param = Ident->Ident->getName();
1291     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1292       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1293                                                                   << Param;
1294       return;
1295     }
1296   } else {
1297     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1298         << AL << AANT_ArgumentIdentifier;
1299     return;
1300   }
1301 
1302   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1303 }
1304 
1305 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1306   // Remember this typedef decl, we will need it later for diagnostics.
1307   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1308 }
1309 
1310 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1311   if (auto *TD = dyn_cast<TagDecl>(D))
1312     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1313   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1314     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1315                                 !FD->getType()->isIncompleteType() &&
1316                                 FD->isBitField() &&
1317                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1318 
1319     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1320       if (BitfieldByteAligned)
1321         // The PS4 target needs to maintain ABI backwards compatibility.
1322         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1323             << AL << FD->getType();
1324       else
1325         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1326     } else {
1327       // Report warning about changed offset in the newer compiler versions.
1328       if (BitfieldByteAligned)
1329         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1330 
1331       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1332     }
1333 
1334   } else
1335     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1336 }
1337 
1338 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1339   auto *RD = cast<CXXRecordDecl>(D);
1340   ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1341   assert(CTD && "attribute does not appertain to this declaration");
1342 
1343   ParsedType PT = AL.getTypeArg();
1344   TypeSourceInfo *TSI = nullptr;
1345   QualType T = S.GetTypeFromParser(PT, &TSI);
1346   if (!TSI)
1347     TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1348 
1349   if (!T.hasQualifiers() && T->isTypedefNameType()) {
1350     // Find the template name, if this type names a template specialization.
1351     const TemplateDecl *Template = nullptr;
1352     if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1353             T->getAsCXXRecordDecl())) {
1354       Template = CTSD->getSpecializedTemplate();
1355     } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1356       while (TST && TST->isTypeAlias())
1357         TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1358       if (TST)
1359         Template = TST->getTemplateName().getAsTemplateDecl();
1360     }
1361 
1362     if (Template && declaresSameEntity(Template, CTD)) {
1363       D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1364       return;
1365     }
1366   }
1367 
1368   S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1369       << T << CTD;
1370   if (const auto *TT = T->getAs<TypedefType>())
1371     S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1372         << TT->getDecl();
1373 }
1374 
1375 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1376   // The IBOutlet/IBOutletCollection attributes only apply to instance
1377   // variables or properties of Objective-C classes.  The outlet must also
1378   // have an object reference type.
1379   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1380     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1381       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1382           << AL << VD->getType() << 0;
1383       return false;
1384     }
1385   }
1386   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1387     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1388       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1389           << AL << PD->getType() << 1;
1390       return false;
1391     }
1392   }
1393   else {
1394     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1395     return false;
1396   }
1397 
1398   return true;
1399 }
1400 
1401 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1402   if (!checkIBOutletCommon(S, D, AL))
1403     return;
1404 
1405   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1406 }
1407 
1408 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1409 
1410   // The iboutletcollection attribute can have zero or one arguments.
1411   if (AL.getNumArgs() > 1) {
1412     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1413     return;
1414   }
1415 
1416   if (!checkIBOutletCommon(S, D, AL))
1417     return;
1418 
1419   ParsedType PT;
1420 
1421   if (AL.hasParsedType())
1422     PT = AL.getTypeArg();
1423   else {
1424     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1425                        S.getScopeForContext(D->getDeclContext()->getParent()));
1426     if (!PT) {
1427       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1428       return;
1429     }
1430   }
1431 
1432   TypeSourceInfo *QTLoc = nullptr;
1433   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1434   if (!QTLoc)
1435     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1436 
1437   // Diagnose use of non-object type in iboutletcollection attribute.
1438   // FIXME. Gnu attribute extension ignores use of builtin types in
1439   // attributes. So, __attribute__((iboutletcollection(char))) will be
1440   // treated as __attribute__((iboutletcollection())).
1441   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1442     S.Diag(AL.getLoc(),
1443            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1444                                : diag::err_iboutletcollection_type) << QT;
1445     return;
1446   }
1447 
1448   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1449 }
1450 
1451 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1452   if (RefOkay) {
1453     if (T->isReferenceType())
1454       return true;
1455   } else {
1456     T = T.getNonReferenceType();
1457   }
1458 
1459   // The nonnull attribute, and other similar attributes, can be applied to a
1460   // transparent union that contains a pointer type.
1461   if (const RecordType *UT = T->getAsUnionType()) {
1462     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1463       RecordDecl *UD = UT->getDecl();
1464       for (const auto *I : UD->fields()) {
1465         QualType QT = I->getType();
1466         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1467           return true;
1468       }
1469     }
1470   }
1471 
1472   return T->isAnyPointerType() || T->isBlockPointerType();
1473 }
1474 
1475 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1476                                 SourceRange AttrParmRange,
1477                                 SourceRange TypeRange,
1478                                 bool isReturnValue = false) {
1479   if (!S.isValidPointerAttrType(T)) {
1480     if (isReturnValue)
1481       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1482           << AL << AttrParmRange << TypeRange;
1483     else
1484       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1485           << AL << AttrParmRange << TypeRange << 0;
1486     return false;
1487   }
1488   return true;
1489 }
1490 
1491 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1492   SmallVector<ParamIdx, 8> NonNullArgs;
1493   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1494     Expr *Ex = AL.getArgAsExpr(I);
1495     ParamIdx Idx;
1496     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1497       return;
1498 
1499     // Is the function argument a pointer type?
1500     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1501         !attrNonNullArgCheck(
1502             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1503             Ex->getSourceRange(),
1504             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1505       continue;
1506 
1507     NonNullArgs.push_back(Idx);
1508   }
1509 
1510   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1511   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1512   // check if the attribute came from a macro expansion or a template
1513   // instantiation.
1514   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1515       !S.inTemplateInstantiation()) {
1516     bool AnyPointers = isFunctionOrMethodVariadic(D);
1517     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1518          I != E && !AnyPointers; ++I) {
1519       QualType T = getFunctionOrMethodParamType(D, I);
1520       if (T->isDependentType() || S.isValidPointerAttrType(T))
1521         AnyPointers = true;
1522     }
1523 
1524     if (!AnyPointers)
1525       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1526   }
1527 
1528   ParamIdx *Start = NonNullArgs.data();
1529   unsigned Size = NonNullArgs.size();
1530   llvm::array_pod_sort(Start, Start + Size);
1531   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1532 }
1533 
1534 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1535                                        const ParsedAttr &AL) {
1536   if (AL.getNumArgs() > 0) {
1537     if (D->getFunctionType()) {
1538       handleNonNullAttr(S, D, AL);
1539     } else {
1540       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1541         << D->getSourceRange();
1542     }
1543     return;
1544   }
1545 
1546   // Is the argument a pointer type?
1547   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1548                            D->getSourceRange()))
1549     return;
1550 
1551   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1552 }
1553 
1554 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1555   QualType ResultType = getFunctionOrMethodResultType(D);
1556   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1557   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1558                            /* isReturnValue */ true))
1559     return;
1560 
1561   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1562 }
1563 
1564 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1565   if (D->isInvalidDecl())
1566     return;
1567 
1568   // noescape only applies to pointer types.
1569   QualType T = cast<ParmVarDecl>(D)->getType();
1570   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1571     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1572         << AL << AL.getRange() << 0;
1573     return;
1574   }
1575 
1576   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1577 }
1578 
1579 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1580   Expr *E = AL.getArgAsExpr(0),
1581        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1582   S.AddAssumeAlignedAttr(D, AL, E, OE);
1583 }
1584 
1585 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1586   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1587 }
1588 
1589 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1590                                 Expr *OE) {
1591   QualType ResultType = getFunctionOrMethodResultType(D);
1592   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1593 
1594   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1595   SourceLocation AttrLoc = TmpAttr.getLocation();
1596 
1597   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1598     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1599         << &TmpAttr << TmpAttr.getRange() << SR;
1600     return;
1601   }
1602 
1603   if (!E->isValueDependent()) {
1604     Optional<llvm::APSInt> I = llvm::APSInt(64);
1605     if (!(I = E->getIntegerConstantExpr(Context))) {
1606       if (OE)
1607         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1608           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1609           << E->getSourceRange();
1610       else
1611         Diag(AttrLoc, diag::err_attribute_argument_type)
1612           << &TmpAttr << AANT_ArgumentIntegerConstant
1613           << E->getSourceRange();
1614       return;
1615     }
1616 
1617     if (!I->isPowerOf2()) {
1618       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1619         << E->getSourceRange();
1620       return;
1621     }
1622 
1623     if (*I > Sema::MaximumAlignment)
1624       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1625           << CI.getRange() << Sema::MaximumAlignment;
1626   }
1627 
1628   if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1629     Diag(AttrLoc, diag::err_attribute_argument_n_type)
1630         << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1631         << OE->getSourceRange();
1632     return;
1633   }
1634 
1635   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1636 }
1637 
1638 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1639                              Expr *ParamExpr) {
1640   QualType ResultType = getFunctionOrMethodResultType(D);
1641 
1642   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1643   SourceLocation AttrLoc = CI.getLoc();
1644 
1645   if (!ResultType->isDependentType() &&
1646       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1647     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1648         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1649     return;
1650   }
1651 
1652   ParamIdx Idx;
1653   const auto *FuncDecl = cast<FunctionDecl>(D);
1654   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1655                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1656     return;
1657 
1658   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1659   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1660       !Ty->isAlignValT()) {
1661     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1662         << &TmpAttr
1663         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1664     return;
1665   }
1666 
1667   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1668 }
1669 
1670 /// Check if \p AssumptionStr is a known assumption and warn if not.
1671 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1672                                 StringRef AssumptionStr) {
1673   if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1674     return;
1675 
1676   unsigned BestEditDistance = 3;
1677   StringRef Suggestion;
1678   for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1679     unsigned EditDistance =
1680         AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1681     if (EditDistance < BestEditDistance) {
1682       Suggestion = KnownAssumptionIt.getKey();
1683       BestEditDistance = EditDistance;
1684     }
1685   }
1686 
1687   if (!Suggestion.empty())
1688     S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1689         << AssumptionStr << Suggestion;
1690   else
1691     S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1692 }
1693 
1694 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1695   // Handle the case where the attribute has a text message.
1696   StringRef Str;
1697   SourceLocation AttrStrLoc;
1698   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1699     return;
1700 
1701   checkAssumptionAttr(S, AttrStrLoc, Str);
1702 
1703   D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1704 }
1705 
1706 /// Normalize the attribute, __foo__ becomes foo.
1707 /// Returns true if normalization was applied.
1708 static bool normalizeName(StringRef &AttrName) {
1709   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1710       AttrName.endswith("__")) {
1711     AttrName = AttrName.drop_front(2).drop_back(2);
1712     return true;
1713   }
1714   return false;
1715 }
1716 
1717 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1718   // This attribute must be applied to a function declaration. The first
1719   // argument to the attribute must be an identifier, the name of the resource,
1720   // for example: malloc. The following arguments must be argument indexes, the
1721   // arguments must be of integer type for Returns, otherwise of pointer type.
1722   // The difference between Holds and Takes is that a pointer may still be used
1723   // after being held. free() should be __attribute((ownership_takes)), whereas
1724   // a list append function may well be __attribute((ownership_holds)).
1725 
1726   if (!AL.isArgIdent(0)) {
1727     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1728         << AL << 1 << AANT_ArgumentIdentifier;
1729     return;
1730   }
1731 
1732   // Figure out our Kind.
1733   OwnershipAttr::OwnershipKind K =
1734       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1735 
1736   // Check arguments.
1737   switch (K) {
1738   case OwnershipAttr::Takes:
1739   case OwnershipAttr::Holds:
1740     if (AL.getNumArgs() < 2) {
1741       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1742       return;
1743     }
1744     break;
1745   case OwnershipAttr::Returns:
1746     if (AL.getNumArgs() > 2) {
1747       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1748       return;
1749     }
1750     break;
1751   }
1752 
1753   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1754 
1755   StringRef ModuleName = Module->getName();
1756   if (normalizeName(ModuleName)) {
1757     Module = &S.PP.getIdentifierTable().get(ModuleName);
1758   }
1759 
1760   SmallVector<ParamIdx, 8> OwnershipArgs;
1761   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1762     Expr *Ex = AL.getArgAsExpr(i);
1763     ParamIdx Idx;
1764     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1765       return;
1766 
1767     // Is the function argument a pointer type?
1768     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1769     int Err = -1;  // No error
1770     switch (K) {
1771       case OwnershipAttr::Takes:
1772       case OwnershipAttr::Holds:
1773         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1774           Err = 0;
1775         break;
1776       case OwnershipAttr::Returns:
1777         if (!T->isIntegerType())
1778           Err = 1;
1779         break;
1780     }
1781     if (-1 != Err) {
1782       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1783                                                     << Ex->getSourceRange();
1784       return;
1785     }
1786 
1787     // Check we don't have a conflict with another ownership attribute.
1788     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1789       // Cannot have two ownership attributes of different kinds for the same
1790       // index.
1791       if (I->getOwnKind() != K && I->args_end() !=
1792           std::find(I->args_begin(), I->args_end(), Idx)) {
1793         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1794         return;
1795       } else if (K == OwnershipAttr::Returns &&
1796                  I->getOwnKind() == OwnershipAttr::Returns) {
1797         // A returns attribute conflicts with any other returns attribute using
1798         // a different index.
1799         if (!llvm::is_contained(I->args(), Idx)) {
1800           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1801               << I->args_begin()->getSourceIndex();
1802           if (I->args_size())
1803             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1804                 << Idx.getSourceIndex() << Ex->getSourceRange();
1805           return;
1806         }
1807       }
1808     }
1809     OwnershipArgs.push_back(Idx);
1810   }
1811 
1812   ParamIdx *Start = OwnershipArgs.data();
1813   unsigned Size = OwnershipArgs.size();
1814   llvm::array_pod_sort(Start, Start + Size);
1815   D->addAttr(::new (S.Context)
1816                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1817 }
1818 
1819 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1820   // Check the attribute arguments.
1821   if (AL.getNumArgs() > 1) {
1822     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1823     return;
1824   }
1825 
1826   // gcc rejects
1827   // class c {
1828   //   static int a __attribute__((weakref ("v2")));
1829   //   static int b() __attribute__((weakref ("f3")));
1830   // };
1831   // and ignores the attributes of
1832   // void f(void) {
1833   //   static int a __attribute__((weakref ("v2")));
1834   // }
1835   // we reject them
1836   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1837   if (!Ctx->isFileContext()) {
1838     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1839         << cast<NamedDecl>(D);
1840     return;
1841   }
1842 
1843   // The GCC manual says
1844   //
1845   // At present, a declaration to which `weakref' is attached can only
1846   // be `static'.
1847   //
1848   // It also says
1849   //
1850   // Without a TARGET,
1851   // given as an argument to `weakref' or to `alias', `weakref' is
1852   // equivalent to `weak'.
1853   //
1854   // gcc 4.4.1 will accept
1855   // int a7 __attribute__((weakref));
1856   // as
1857   // int a7 __attribute__((weak));
1858   // This looks like a bug in gcc. We reject that for now. We should revisit
1859   // it if this behaviour is actually used.
1860 
1861   // GCC rejects
1862   // static ((alias ("y"), weakref)).
1863   // Should we? How to check that weakref is before or after alias?
1864 
1865   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1866   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1867   // StringRef parameter it was given anyway.
1868   StringRef Str;
1869   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1870     // GCC will accept anything as the argument of weakref. Should we
1871     // check for an existing decl?
1872     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1873 
1874   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1875 }
1876 
1877 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1878   StringRef Str;
1879   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1880     return;
1881 
1882   // Aliases should be on declarations, not definitions.
1883   const auto *FD = cast<FunctionDecl>(D);
1884   if (FD->isThisDeclarationADefinition()) {
1885     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1886     return;
1887   }
1888 
1889   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1890 }
1891 
1892 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1893   StringRef Str;
1894   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1895     return;
1896 
1897   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1898     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1899     return;
1900   }
1901   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1902     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1903   }
1904 
1905   // Aliases should be on declarations, not definitions.
1906   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1907     if (FD->isThisDeclarationADefinition()) {
1908       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1909       return;
1910     }
1911   } else {
1912     const auto *VD = cast<VarDecl>(D);
1913     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1914       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1915       return;
1916     }
1917   }
1918 
1919   // Mark target used to prevent unneeded-internal-declaration warnings.
1920   if (!S.LangOpts.CPlusPlus) {
1921     // FIXME: demangle Str for C++, as the attribute refers to the mangled
1922     // linkage name, not the pre-mangled identifier.
1923     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
1924     LookupResult LR(S, target, Sema::LookupOrdinaryName);
1925     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
1926       for (NamedDecl *ND : LR)
1927         ND->markUsed(S.Context);
1928   }
1929 
1930   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1931 }
1932 
1933 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1934   StringRef Model;
1935   SourceLocation LiteralLoc;
1936   // Check that it is a string.
1937   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1938     return;
1939 
1940   // Check that the value.
1941   if (Model != "global-dynamic" && Model != "local-dynamic"
1942       && Model != "initial-exec" && Model != "local-exec") {
1943     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1944     return;
1945   }
1946 
1947   if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
1948       Model != "global-dynamic") {
1949     S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
1950     return;
1951   }
1952 
1953   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1954 }
1955 
1956 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1957   QualType ResultType = getFunctionOrMethodResultType(D);
1958   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1959     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1960     return;
1961   }
1962 
1963   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1964       << AL << getFunctionOrMethodResultSourceRange(D);
1965 }
1966 
1967 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1968   FunctionDecl *FD = cast<FunctionDecl>(D);
1969 
1970   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1971     if (MD->getParent()->isLambda()) {
1972       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1973       return;
1974     }
1975   }
1976 
1977   if (!AL.checkAtLeastNumArgs(S, 1))
1978     return;
1979 
1980   SmallVector<IdentifierInfo *, 8> CPUs;
1981   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1982     if (!AL.isArgIdent(ArgNo)) {
1983       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1984           << AL << AANT_ArgumentIdentifier;
1985       return;
1986     }
1987 
1988     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1989     StringRef CPUName = CPUArg->Ident->getName().trim();
1990 
1991     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1992       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1993           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1994       return;
1995     }
1996 
1997     const TargetInfo &Target = S.Context.getTargetInfo();
1998     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1999           return Target.CPUSpecificManglingCharacter(CPUName) ==
2000                  Target.CPUSpecificManglingCharacter(Cur->getName());
2001         })) {
2002       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2003       return;
2004     }
2005     CPUs.push_back(CPUArg->Ident);
2006   }
2007 
2008   FD->setIsMultiVersion(true);
2009   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2010     D->addAttr(::new (S.Context)
2011                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2012   else
2013     D->addAttr(::new (S.Context)
2014                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2015 }
2016 
2017 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2018   if (S.LangOpts.CPlusPlus) {
2019     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2020         << AL << AttributeLangSupport::Cpp;
2021     return;
2022   }
2023 
2024   D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2025 }
2026 
2027 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2028   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2029     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2030     return;
2031   }
2032 
2033   const auto *FD = cast<FunctionDecl>(D);
2034   if (!FD->isExternallyVisible()) {
2035     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2036     return;
2037   }
2038 
2039   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2040 }
2041 
2042 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2043   if (AL.isDeclspecAttribute()) {
2044     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2045     const auto &Arch = Triple.getArch();
2046     if (Arch != llvm::Triple::x86 &&
2047         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2048       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2049           << AL << Triple.getArchName();
2050       return;
2051     }
2052   }
2053 
2054   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2055 }
2056 
2057 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2058   if (hasDeclarator(D)) return;
2059 
2060   if (!isa<ObjCMethodDecl>(D)) {
2061     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2062         << Attrs << ExpectedFunctionOrMethod;
2063     return;
2064   }
2065 
2066   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2067 }
2068 
2069 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2070   if (!S.getLangOpts().CFProtectionBranch)
2071     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2072   else
2073     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2074 }
2075 
2076 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2077   if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2078     Attrs.setInvalid();
2079     return true;
2080   }
2081 
2082   return false;
2083 }
2084 
2085 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2086   // Check whether the attribute is valid on the current target.
2087   if (!AL.existsInTarget(Context.getTargetInfo())) {
2088     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2089         << AL << AL.getRange();
2090     AL.setInvalid();
2091     return true;
2092   }
2093 
2094   return false;
2095 }
2096 
2097 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2098 
2099   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2100   // because 'analyzer_noreturn' does not impact the type.
2101   if (!isFunctionOrMethodOrBlock(D)) {
2102     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2103     if (!VD || (!VD->getType()->isBlockPointerType() &&
2104                 !VD->getType()->isFunctionPointerType())) {
2105       S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2106                               ? diag::err_attribute_wrong_decl_type
2107                               : diag::warn_attribute_wrong_decl_type)
2108           << AL << ExpectedFunctionMethodOrBlock;
2109       return;
2110     }
2111   }
2112 
2113   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2114 }
2115 
2116 // PS3 PPU-specific.
2117 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2118   /*
2119     Returning a Vector Class in Registers
2120 
2121     According to the PPU ABI specifications, a class with a single member of
2122     vector type is returned in memory when used as the return value of a
2123     function.
2124     This results in inefficient code when implementing vector classes. To return
2125     the value in a single vector register, add the vecreturn attribute to the
2126     class definition. This attribute is also applicable to struct types.
2127 
2128     Example:
2129 
2130     struct Vector
2131     {
2132       __vector float xyzw;
2133     } __attribute__((vecreturn));
2134 
2135     Vector Add(Vector lhs, Vector rhs)
2136     {
2137       Vector result;
2138       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2139       return result; // This will be returned in a register
2140     }
2141   */
2142   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2143     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2144     return;
2145   }
2146 
2147   const auto *R = cast<RecordDecl>(D);
2148   int count = 0;
2149 
2150   if (!isa<CXXRecordDecl>(R)) {
2151     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2152     return;
2153   }
2154 
2155   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2156     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2157     return;
2158   }
2159 
2160   for (const auto *I : R->fields()) {
2161     if ((count == 1) || !I->getType()->isVectorType()) {
2162       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2163       return;
2164     }
2165     count++;
2166   }
2167 
2168   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2169 }
2170 
2171 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2172                                  const ParsedAttr &AL) {
2173   if (isa<ParmVarDecl>(D)) {
2174     // [[carries_dependency]] can only be applied to a parameter if it is a
2175     // parameter of a function declaration or lambda.
2176     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2177       S.Diag(AL.getLoc(),
2178              diag::err_carries_dependency_param_not_function_decl);
2179       return;
2180     }
2181   }
2182 
2183   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2184 }
2185 
2186 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2187   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2188 
2189   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2190   // about using it as an extension.
2191   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2192     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2193 
2194   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2195 }
2196 
2197 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2198   uint32_t priority = ConstructorAttr::DefaultPriority;
2199   if (AL.getNumArgs() &&
2200       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2201     return;
2202 
2203   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2204 }
2205 
2206 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2207   uint32_t priority = DestructorAttr::DefaultPriority;
2208   if (AL.getNumArgs() &&
2209       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2210     return;
2211 
2212   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2213 }
2214 
2215 template <typename AttrTy>
2216 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2217   // Handle the case where the attribute has a text message.
2218   StringRef Str;
2219   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2220     return;
2221 
2222   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2223 }
2224 
2225 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2226                                           const ParsedAttr &AL) {
2227   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2228     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2229         << AL << AL.getRange();
2230     return;
2231   }
2232 
2233   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2234 }
2235 
2236 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2237                                   IdentifierInfo *Platform,
2238                                   VersionTuple Introduced,
2239                                   VersionTuple Deprecated,
2240                                   VersionTuple Obsoleted) {
2241   StringRef PlatformName
2242     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2243   if (PlatformName.empty())
2244     PlatformName = Platform->getName();
2245 
2246   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2247   // of these steps are needed).
2248   if (!Introduced.empty() && !Deprecated.empty() &&
2249       !(Introduced <= Deprecated)) {
2250     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2251       << 1 << PlatformName << Deprecated.getAsString()
2252       << 0 << Introduced.getAsString();
2253     return true;
2254   }
2255 
2256   if (!Introduced.empty() && !Obsoleted.empty() &&
2257       !(Introduced <= Obsoleted)) {
2258     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2259       << 2 << PlatformName << Obsoleted.getAsString()
2260       << 0 << Introduced.getAsString();
2261     return true;
2262   }
2263 
2264   if (!Deprecated.empty() && !Obsoleted.empty() &&
2265       !(Deprecated <= Obsoleted)) {
2266     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2267       << 2 << PlatformName << Obsoleted.getAsString()
2268       << 1 << Deprecated.getAsString();
2269     return true;
2270   }
2271 
2272   return false;
2273 }
2274 
2275 /// Check whether the two versions match.
2276 ///
2277 /// If either version tuple is empty, then they are assumed to match. If
2278 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2279 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2280                           bool BeforeIsOkay) {
2281   if (X.empty() || Y.empty())
2282     return true;
2283 
2284   if (X == Y)
2285     return true;
2286 
2287   if (BeforeIsOkay && X < Y)
2288     return true;
2289 
2290   return false;
2291 }
2292 
2293 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2294     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2295     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2296     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2297     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2298     int Priority) {
2299   VersionTuple MergedIntroduced = Introduced;
2300   VersionTuple MergedDeprecated = Deprecated;
2301   VersionTuple MergedObsoleted = Obsoleted;
2302   bool FoundAny = false;
2303   bool OverrideOrImpl = false;
2304   switch (AMK) {
2305   case AMK_None:
2306   case AMK_Redeclaration:
2307     OverrideOrImpl = false;
2308     break;
2309 
2310   case AMK_Override:
2311   case AMK_ProtocolImplementation:
2312   case AMK_OptionalProtocolImplementation:
2313     OverrideOrImpl = true;
2314     break;
2315   }
2316 
2317   if (D->hasAttrs()) {
2318     AttrVec &Attrs = D->getAttrs();
2319     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2320       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2321       if (!OldAA) {
2322         ++i;
2323         continue;
2324       }
2325 
2326       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2327       if (OldPlatform != Platform) {
2328         ++i;
2329         continue;
2330       }
2331 
2332       // If there is an existing availability attribute for this platform that
2333       // has a lower priority use the existing one and discard the new
2334       // attribute.
2335       if (OldAA->getPriority() < Priority)
2336         return nullptr;
2337 
2338       // If there is an existing attribute for this platform that has a higher
2339       // priority than the new attribute then erase the old one and continue
2340       // processing the attributes.
2341       if (OldAA->getPriority() > Priority) {
2342         Attrs.erase(Attrs.begin() + i);
2343         --e;
2344         continue;
2345       }
2346 
2347       FoundAny = true;
2348       VersionTuple OldIntroduced = OldAA->getIntroduced();
2349       VersionTuple OldDeprecated = OldAA->getDeprecated();
2350       VersionTuple OldObsoleted = OldAA->getObsoleted();
2351       bool OldIsUnavailable = OldAA->getUnavailable();
2352 
2353       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2354           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2355           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2356           !(OldIsUnavailable == IsUnavailable ||
2357             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2358         if (OverrideOrImpl) {
2359           int Which = -1;
2360           VersionTuple FirstVersion;
2361           VersionTuple SecondVersion;
2362           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2363             Which = 0;
2364             FirstVersion = OldIntroduced;
2365             SecondVersion = Introduced;
2366           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2367             Which = 1;
2368             FirstVersion = Deprecated;
2369             SecondVersion = OldDeprecated;
2370           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2371             Which = 2;
2372             FirstVersion = Obsoleted;
2373             SecondVersion = OldObsoleted;
2374           }
2375 
2376           if (Which == -1) {
2377             Diag(OldAA->getLocation(),
2378                  diag::warn_mismatched_availability_override_unavail)
2379               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2380               << (AMK == AMK_Override);
2381           } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2382             // Allow different 'introduced' / 'obsoleted' availability versions
2383             // on a method that implements an optional protocol requirement. It
2384             // makes less sense to allow this for 'deprecated' as the user can't
2385             // see if the method is 'deprecated' as 'respondsToSelector' will
2386             // still return true when the method is deprecated.
2387             ++i;
2388             continue;
2389           } else {
2390             Diag(OldAA->getLocation(),
2391                  diag::warn_mismatched_availability_override)
2392               << Which
2393               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2394               << FirstVersion.getAsString() << SecondVersion.getAsString()
2395               << (AMK == AMK_Override);
2396           }
2397           if (AMK == AMK_Override)
2398             Diag(CI.getLoc(), diag::note_overridden_method);
2399           else
2400             Diag(CI.getLoc(), diag::note_protocol_method);
2401         } else {
2402           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2403           Diag(CI.getLoc(), diag::note_previous_attribute);
2404         }
2405 
2406         Attrs.erase(Attrs.begin() + i);
2407         --e;
2408         continue;
2409       }
2410 
2411       VersionTuple MergedIntroduced2 = MergedIntroduced;
2412       VersionTuple MergedDeprecated2 = MergedDeprecated;
2413       VersionTuple MergedObsoleted2 = MergedObsoleted;
2414 
2415       if (MergedIntroduced2.empty())
2416         MergedIntroduced2 = OldIntroduced;
2417       if (MergedDeprecated2.empty())
2418         MergedDeprecated2 = OldDeprecated;
2419       if (MergedObsoleted2.empty())
2420         MergedObsoleted2 = OldObsoleted;
2421 
2422       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2423                                 MergedIntroduced2, MergedDeprecated2,
2424                                 MergedObsoleted2)) {
2425         Attrs.erase(Attrs.begin() + i);
2426         --e;
2427         continue;
2428       }
2429 
2430       MergedIntroduced = MergedIntroduced2;
2431       MergedDeprecated = MergedDeprecated2;
2432       MergedObsoleted = MergedObsoleted2;
2433       ++i;
2434     }
2435   }
2436 
2437   if (FoundAny &&
2438       MergedIntroduced == Introduced &&
2439       MergedDeprecated == Deprecated &&
2440       MergedObsoleted == Obsoleted)
2441     return nullptr;
2442 
2443   // Only create a new attribute if !OverrideOrImpl, but we want to do
2444   // the checking.
2445   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2446                              MergedDeprecated, MergedObsoleted) &&
2447       !OverrideOrImpl) {
2448     auto *Avail = ::new (Context) AvailabilityAttr(
2449         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2450         Message, IsStrict, Replacement, Priority);
2451     Avail->setImplicit(Implicit);
2452     return Avail;
2453   }
2454   return nullptr;
2455 }
2456 
2457 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2458   if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2459           D)) {
2460     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2461         << AL;
2462     return;
2463   }
2464 
2465   if (!AL.checkExactlyNumArgs(S, 1))
2466     return;
2467   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2468 
2469   IdentifierInfo *II = Platform->Ident;
2470   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2471     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2472       << Platform->Ident;
2473 
2474   auto *ND = dyn_cast<NamedDecl>(D);
2475   if (!ND) // We warned about this already, so just return.
2476     return;
2477 
2478   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2479   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2480   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2481   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2482   bool IsStrict = AL.getStrictLoc().isValid();
2483   StringRef Str;
2484   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2485     Str = SE->getString();
2486   StringRef Replacement;
2487   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2488     Replacement = SE->getString();
2489 
2490   if (II->isStr("swift")) {
2491     if (Introduced.isValid() || Obsoleted.isValid() ||
2492         (!IsUnavailable && !Deprecated.isValid())) {
2493       S.Diag(AL.getLoc(),
2494              diag::warn_availability_swift_unavailable_deprecated_only);
2495       return;
2496     }
2497   }
2498 
2499   if (II->isStr("fuchsia")) {
2500     Optional<unsigned> Min, Sub;
2501     if ((Min = Introduced.Version.getMinor()) ||
2502         (Sub = Introduced.Version.getSubminor())) {
2503       S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2504       return;
2505     }
2506   }
2507 
2508   int PriorityModifier = AL.isPragmaClangAttribute()
2509                              ? Sema::AP_PragmaClangAttribute
2510                              : Sema::AP_Explicit;
2511   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2512       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2513       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2514       Sema::AMK_None, PriorityModifier);
2515   if (NewAttr)
2516     D->addAttr(NewAttr);
2517 
2518   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2519   // matches before the start of the watchOS platform.
2520   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2521     IdentifierInfo *NewII = nullptr;
2522     if (II->getName() == "ios")
2523       NewII = &S.Context.Idents.get("watchos");
2524     else if (II->getName() == "ios_app_extension")
2525       NewII = &S.Context.Idents.get("watchos_app_extension");
2526 
2527     if (NewII) {
2528         auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2529           if (Version.empty())
2530             return Version;
2531           auto Major = Version.getMajor();
2532           auto NewMajor = Major >= 9 ? Major - 7 : 0;
2533           if (NewMajor >= 2) {
2534             if (Version.getMinor().hasValue()) {
2535               if (Version.getSubminor().hasValue())
2536                 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2537                                     Version.getSubminor().getValue());
2538               else
2539                 return VersionTuple(NewMajor, Version.getMinor().getValue());
2540             }
2541             return VersionTuple(NewMajor);
2542           }
2543 
2544           return VersionTuple(2, 0);
2545         };
2546 
2547         auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2548         auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2549         auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2550 
2551         AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2552             ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2553             NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2554             Sema::AMK_None,
2555             PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2556         if (NewAttr)
2557           D->addAttr(NewAttr);
2558       }
2559   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2560     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2561     // matches before the start of the tvOS platform.
2562     IdentifierInfo *NewII = nullptr;
2563     if (II->getName() == "ios")
2564       NewII = &S.Context.Idents.get("tvos");
2565     else if (II->getName() == "ios_app_extension")
2566       NewII = &S.Context.Idents.get("tvos_app_extension");
2567 
2568     if (NewII) {
2569       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2570           ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2571           Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2572           Replacement, Sema::AMK_None,
2573           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2574       if (NewAttr)
2575         D->addAttr(NewAttr);
2576       }
2577   } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2578                  llvm::Triple::IOS &&
2579              S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2580     auto GetSDKInfo = [&]() {
2581       return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2582                                                        "macOS");
2583     };
2584 
2585     // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2586     IdentifierInfo *NewII = nullptr;
2587     if (II->getName() == "ios")
2588       NewII = &S.Context.Idents.get("maccatalyst");
2589     else if (II->getName() == "ios_app_extension")
2590       NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2591     if (NewII) {
2592       auto MinMacCatalystVersion = [](const VersionTuple &V) {
2593         if (V.empty())
2594           return V;
2595         if (V.getMajor() < 13 ||
2596             (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2597           return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2598         return V;
2599       };
2600       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2601           ND, AL.getRange(), NewII, true /*Implicit*/,
2602           MinMacCatalystVersion(Introduced.Version),
2603           MinMacCatalystVersion(Deprecated.Version),
2604           MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2605           IsStrict, Replacement, Sema::AMK_None,
2606           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2607       if (NewAttr)
2608         D->addAttr(NewAttr);
2609     } else if (II->getName() == "macos" && GetSDKInfo() &&
2610                (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2611                 !Obsoleted.Version.empty())) {
2612       if (const auto *MacOStoMacCatalystMapping =
2613               GetSDKInfo()->getVersionMapping(
2614                   DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2615         // Infer Mac Catalyst availability from the macOS availability attribute
2616         // if it has versioned availability. Don't infer 'unavailable'. This
2617         // inferred availability has lower priority than the other availability
2618         // attributes that are inferred from 'ios'.
2619         NewII = &S.Context.Idents.get("maccatalyst");
2620         auto RemapMacOSVersion =
2621             [&](const VersionTuple &V) -> Optional<VersionTuple> {
2622           if (V.empty())
2623             return None;
2624           // API_TO_BE_DEPRECATED is 100000.
2625           if (V.getMajor() == 100000)
2626             return VersionTuple(100000);
2627           // The minimum iosmac version is 13.1
2628           return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None);
2629         };
2630         Optional<VersionTuple> NewIntroduced =
2631                                    RemapMacOSVersion(Introduced.Version),
2632                                NewDeprecated =
2633                                    RemapMacOSVersion(Deprecated.Version),
2634                                NewObsoleted =
2635                                    RemapMacOSVersion(Obsoleted.Version);
2636         if (NewIntroduced || NewDeprecated || NewObsoleted) {
2637           auto VersionOrEmptyVersion =
2638               [](const Optional<VersionTuple> &V) -> VersionTuple {
2639             return V ? *V : VersionTuple();
2640           };
2641           AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2642               ND, AL.getRange(), NewII, true /*Implicit*/,
2643               VersionOrEmptyVersion(NewIntroduced),
2644               VersionOrEmptyVersion(NewDeprecated),
2645               VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2646               IsStrict, Replacement, Sema::AMK_None,
2647               PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2648                   Sema::AP_InferredFromOtherPlatform);
2649           if (NewAttr)
2650             D->addAttr(NewAttr);
2651         }
2652       }
2653     }
2654   }
2655 }
2656 
2657 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2658                                            const ParsedAttr &AL) {
2659   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2660     return;
2661 
2662   StringRef Language;
2663   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2664     Language = SE->getString();
2665   StringRef DefinedIn;
2666   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2667     DefinedIn = SE->getString();
2668   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2669 
2670   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2671       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2672 }
2673 
2674 template <class T>
2675 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2676                               typename T::VisibilityType value) {
2677   T *existingAttr = D->getAttr<T>();
2678   if (existingAttr) {
2679     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2680     if (existingValue == value)
2681       return nullptr;
2682     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2683     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2684     D->dropAttr<T>();
2685   }
2686   return ::new (S.Context) T(S.Context, CI, value);
2687 }
2688 
2689 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2690                                           const AttributeCommonInfo &CI,
2691                                           VisibilityAttr::VisibilityType Vis) {
2692   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2693 }
2694 
2695 TypeVisibilityAttr *
2696 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2697                               TypeVisibilityAttr::VisibilityType Vis) {
2698   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2699 }
2700 
2701 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2702                                  bool isTypeVisibility) {
2703   // Visibility attributes don't mean anything on a typedef.
2704   if (isa<TypedefNameDecl>(D)) {
2705     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2706     return;
2707   }
2708 
2709   // 'type_visibility' can only go on a type or namespace.
2710   if (isTypeVisibility &&
2711       !(isa<TagDecl>(D) ||
2712         isa<ObjCInterfaceDecl>(D) ||
2713         isa<NamespaceDecl>(D))) {
2714     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2715         << AL << ExpectedTypeOrNamespace;
2716     return;
2717   }
2718 
2719   // Check that the argument is a string literal.
2720   StringRef TypeStr;
2721   SourceLocation LiteralLoc;
2722   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2723     return;
2724 
2725   VisibilityAttr::VisibilityType type;
2726   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2727     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2728                                                                 << TypeStr;
2729     return;
2730   }
2731 
2732   // Complain about attempts to use protected visibility on targets
2733   // (like Darwin) that don't support it.
2734   if (type == VisibilityAttr::Protected &&
2735       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2736     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2737     type = VisibilityAttr::Default;
2738   }
2739 
2740   Attr *newAttr;
2741   if (isTypeVisibility) {
2742     newAttr = S.mergeTypeVisibilityAttr(
2743         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2744   } else {
2745     newAttr = S.mergeVisibilityAttr(D, AL, type);
2746   }
2747   if (newAttr)
2748     D->addAttr(newAttr);
2749 }
2750 
2751 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2752   // objc_direct cannot be set on methods declared in the context of a protocol
2753   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2754     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2755     return;
2756   }
2757 
2758   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2759     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2760   } else {
2761     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2762   }
2763 }
2764 
2765 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2766                                         const ParsedAttr &AL) {
2767   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2768     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2769   } else {
2770     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2771   }
2772 }
2773 
2774 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2775   const auto *M = cast<ObjCMethodDecl>(D);
2776   if (!AL.isArgIdent(0)) {
2777     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2778         << AL << 1 << AANT_ArgumentIdentifier;
2779     return;
2780   }
2781 
2782   IdentifierLoc *IL = AL.getArgAsIdent(0);
2783   ObjCMethodFamilyAttr::FamilyKind F;
2784   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2785     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2786     return;
2787   }
2788 
2789   if (F == ObjCMethodFamilyAttr::OMF_init &&
2790       !M->getReturnType()->isObjCObjectPointerType()) {
2791     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2792         << M->getReturnType();
2793     // Ignore the attribute.
2794     return;
2795   }
2796 
2797   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2798 }
2799 
2800 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2801   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2802     QualType T = TD->getUnderlyingType();
2803     if (!T->isCARCBridgableType()) {
2804       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2805       return;
2806     }
2807   }
2808   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2809     QualType T = PD->getType();
2810     if (!T->isCARCBridgableType()) {
2811       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2812       return;
2813     }
2814   }
2815   else {
2816     // It is okay to include this attribute on properties, e.g.:
2817     //
2818     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2819     //
2820     // In this case it follows tradition and suppresses an error in the above
2821     // case.
2822     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2823   }
2824   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2825 }
2826 
2827 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2828   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2829     QualType T = TD->getUnderlyingType();
2830     if (!T->isObjCObjectPointerType()) {
2831       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2832       return;
2833     }
2834   } else {
2835     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2836     return;
2837   }
2838   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2839 }
2840 
2841 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2842   if (!AL.isArgIdent(0)) {
2843     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2844         << AL << 1 << AANT_ArgumentIdentifier;
2845     return;
2846   }
2847 
2848   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2849   BlocksAttr::BlockType type;
2850   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2851     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2852     return;
2853   }
2854 
2855   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2856 }
2857 
2858 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2859   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2860   if (AL.getNumArgs() > 0) {
2861     Expr *E = AL.getArgAsExpr(0);
2862     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2863     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2864       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2865           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2866       return;
2867     }
2868 
2869     if (Idx->isSigned() && Idx->isNegative()) {
2870       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2871         << E->getSourceRange();
2872       return;
2873     }
2874 
2875     sentinel = Idx->getZExtValue();
2876   }
2877 
2878   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2879   if (AL.getNumArgs() > 1) {
2880     Expr *E = AL.getArgAsExpr(1);
2881     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2882     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2883       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2884           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2885       return;
2886     }
2887     nullPos = Idx->getZExtValue();
2888 
2889     if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2890       // FIXME: This error message could be improved, it would be nice
2891       // to say what the bounds actually are.
2892       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2893         << E->getSourceRange();
2894       return;
2895     }
2896   }
2897 
2898   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2899     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2900     if (isa<FunctionNoProtoType>(FT)) {
2901       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2902       return;
2903     }
2904 
2905     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2906       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2907       return;
2908     }
2909   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2910     if (!MD->isVariadic()) {
2911       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2912       return;
2913     }
2914   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2915     if (!BD->isVariadic()) {
2916       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2917       return;
2918     }
2919   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2920     QualType Ty = V->getType();
2921     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2922       const FunctionType *FT = Ty->isFunctionPointerType()
2923                                    ? D->getFunctionType()
2924                                    : Ty->castAs<BlockPointerType>()
2925                                          ->getPointeeType()
2926                                          ->castAs<FunctionType>();
2927       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2928         int m = Ty->isFunctionPointerType() ? 0 : 1;
2929         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2930         return;
2931       }
2932     } else {
2933       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2934           << AL << ExpectedFunctionMethodOrBlock;
2935       return;
2936     }
2937   } else {
2938     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2939         << AL << ExpectedFunctionMethodOrBlock;
2940     return;
2941   }
2942   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2943 }
2944 
2945 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2946   if (D->getFunctionType() &&
2947       D->getFunctionType()->getReturnType()->isVoidType() &&
2948       !isa<CXXConstructorDecl>(D)) {
2949     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2950     return;
2951   }
2952   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2953     if (MD->getReturnType()->isVoidType()) {
2954       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2955       return;
2956     }
2957 
2958   StringRef Str;
2959   if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
2960     // The standard attribute cannot be applied to variable declarations such
2961     // as a function pointer.
2962     if (isa<VarDecl>(D))
2963       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
2964           << AL << "functions, classes, or enumerations";
2965 
2966     // If this is spelled as the standard C++17 attribute, but not in C++17,
2967     // warn about using it as an extension. If there are attribute arguments,
2968     // then claim it's a C++2a extension instead.
2969     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
2970     // extension warning for C2x mode.
2971     const LangOptions &LO = S.getLangOpts();
2972     if (AL.getNumArgs() == 1) {
2973       if (LO.CPlusPlus && !LO.CPlusPlus20)
2974         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
2975 
2976       // Since this this is spelled [[nodiscard]], get the optional string
2977       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
2978       // extension.
2979       // FIXME: C2x should support this feature as well, even as an extension.
2980       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2981         return;
2982     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2983       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2984   }
2985 
2986   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2987 }
2988 
2989 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2990   // weak_import only applies to variable & function declarations.
2991   bool isDef = false;
2992   if (!D->canBeWeakImported(isDef)) {
2993     if (isDef)
2994       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2995         << "weak_import";
2996     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2997              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2998               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2999       // Nothing to warn about here.
3000     } else
3001       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3002           << AL << ExpectedVariableOrFunction;
3003 
3004     return;
3005   }
3006 
3007   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3008 }
3009 
3010 // Handles reqd_work_group_size and work_group_size_hint.
3011 template <typename WorkGroupAttr>
3012 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3013   uint32_t WGSize[3];
3014   for (unsigned i = 0; i < 3; ++i) {
3015     const Expr *E = AL.getArgAsExpr(i);
3016     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3017                              /*StrictlyUnsigned=*/true))
3018       return;
3019     if (WGSize[i] == 0) {
3020       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3021           << AL << E->getSourceRange();
3022       return;
3023     }
3024   }
3025 
3026   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3027   if (Existing && !(Existing->getXDim() == WGSize[0] &&
3028                     Existing->getYDim() == WGSize[1] &&
3029                     Existing->getZDim() == WGSize[2]))
3030     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3031 
3032   D->addAttr(::new (S.Context)
3033                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3034 }
3035 
3036 // Handles intel_reqd_sub_group_size.
3037 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3038   uint32_t SGSize;
3039   const Expr *E = AL.getArgAsExpr(0);
3040   if (!checkUInt32Argument(S, AL, E, SGSize))
3041     return;
3042   if (SGSize == 0) {
3043     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3044         << AL << E->getSourceRange();
3045     return;
3046   }
3047 
3048   OpenCLIntelReqdSubGroupSizeAttr *Existing =
3049       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3050   if (Existing && Existing->getSubGroupSize() != SGSize)
3051     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3052 
3053   D->addAttr(::new (S.Context)
3054                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3055 }
3056 
3057 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3058   if (!AL.hasParsedType()) {
3059     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3060     return;
3061   }
3062 
3063   TypeSourceInfo *ParmTSI = nullptr;
3064   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3065   assert(ParmTSI && "no type source info for attribute argument");
3066 
3067   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3068       (ParmType->isBooleanType() ||
3069        !ParmType->isIntegralType(S.getASTContext()))) {
3070     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3071     return;
3072   }
3073 
3074   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3075     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3076       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3077       return;
3078     }
3079   }
3080 
3081   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3082 }
3083 
3084 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3085                                     StringRef Name) {
3086   // Explicit or partial specializations do not inherit
3087   // the section attribute from the primary template.
3088   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3089     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3090         FD->isFunctionTemplateSpecialization())
3091       return nullptr;
3092   }
3093   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3094     if (ExistingAttr->getName() == Name)
3095       return nullptr;
3096     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3097          << 1 /*section*/;
3098     Diag(CI.getLoc(), diag::note_previous_attribute);
3099     return nullptr;
3100   }
3101   return ::new (Context) SectionAttr(Context, CI, Name);
3102 }
3103 
3104 /// Used to implement to perform semantic checking on
3105 /// attribute((section("foo"))) specifiers.
3106 ///
3107 /// In this case, "foo" is passed in to be checked.  If the section
3108 /// specifier is invalid, return an Error that indicates the problem.
3109 ///
3110 /// This is a simple quality of implementation feature to catch errors
3111 /// and give good diagnostics in cases when the assembler or code generator
3112 /// would otherwise reject the section specifier.
3113 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3114   if (!Context.getTargetInfo().getTriple().isOSDarwin())
3115     return llvm::Error::success();
3116 
3117   // Let MCSectionMachO validate this.
3118   StringRef Segment, Section;
3119   unsigned TAA, StubSize;
3120   bool HasTAA;
3121   return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3122                                                      TAA, HasTAA, StubSize);
3123 }
3124 
3125 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3126   if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3127     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3128         << toString(std::move(E)) << 1 /*'section'*/;
3129     return false;
3130   }
3131   return true;
3132 }
3133 
3134 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3135   // Make sure that there is a string literal as the sections's single
3136   // argument.
3137   StringRef Str;
3138   SourceLocation LiteralLoc;
3139   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3140     return;
3141 
3142   if (!S.checkSectionName(LiteralLoc, Str))
3143     return;
3144 
3145   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3146   if (NewAttr) {
3147     D->addAttr(NewAttr);
3148     if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3149             ObjCPropertyDecl>(D))
3150       S.UnifySection(NewAttr->getName(),
3151                      ASTContext::PSF_Execute | ASTContext::PSF_Read,
3152                      cast<NamedDecl>(D));
3153   }
3154 }
3155 
3156 // This is used for `__declspec(code_seg("segname"))` on a decl.
3157 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3158 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3159                              StringRef CodeSegName) {
3160   if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3161     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3162         << toString(std::move(E)) << 0 /*'code-seg'*/;
3163     return false;
3164   }
3165 
3166   return true;
3167 }
3168 
3169 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3170                                     StringRef Name) {
3171   // Explicit or partial specializations do not inherit
3172   // the code_seg attribute from the primary template.
3173   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3174     if (FD->isFunctionTemplateSpecialization())
3175       return nullptr;
3176   }
3177   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3178     if (ExistingAttr->getName() == Name)
3179       return nullptr;
3180     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3181          << 0 /*codeseg*/;
3182     Diag(CI.getLoc(), diag::note_previous_attribute);
3183     return nullptr;
3184   }
3185   return ::new (Context) CodeSegAttr(Context, CI, Name);
3186 }
3187 
3188 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3189   StringRef Str;
3190   SourceLocation LiteralLoc;
3191   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3192     return;
3193   if (!checkCodeSegName(S, LiteralLoc, Str))
3194     return;
3195   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3196     if (!ExistingAttr->isImplicit()) {
3197       S.Diag(AL.getLoc(),
3198              ExistingAttr->getName() == Str
3199              ? diag::warn_duplicate_codeseg_attribute
3200              : diag::err_conflicting_codeseg_attribute);
3201       return;
3202     }
3203     D->dropAttr<CodeSegAttr>();
3204   }
3205   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3206     D->addAttr(CSA);
3207 }
3208 
3209 // Check for things we'd like to warn about. Multiversioning issues are
3210 // handled later in the process, once we know how many exist.
3211 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3212   enum FirstParam { Unsupported, Duplicate, Unknown };
3213   enum SecondParam { None, Architecture, Tune };
3214   if (AttrStr.contains("fpmath="))
3215     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3216            << Unsupported << None << "fpmath=";
3217 
3218   // Diagnose use of tune if target doesn't support it.
3219   if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3220       AttrStr.contains("tune="))
3221     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3222            << Unsupported << None << "tune=";
3223 
3224   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3225 
3226   if (!ParsedAttrs.Architecture.empty() &&
3227       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3228     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3229            << Unknown << Architecture << ParsedAttrs.Architecture;
3230 
3231   if (!ParsedAttrs.Tune.empty() &&
3232       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3233     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3234            << Unknown << Tune << ParsedAttrs.Tune;
3235 
3236   if (ParsedAttrs.DuplicateArchitecture)
3237     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3238            << Duplicate << None << "arch=";
3239   if (ParsedAttrs.DuplicateTune)
3240     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3241            << Duplicate << None << "tune=";
3242 
3243   for (const auto &Feature : ParsedAttrs.Features) {
3244     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3245     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3246       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3247              << Unsupported << None << CurFeature;
3248   }
3249 
3250   TargetInfo::BranchProtectionInfo BPI;
3251   StringRef Error;
3252   if (!ParsedAttrs.BranchProtection.empty() &&
3253       !Context.getTargetInfo().validateBranchProtection(
3254           ParsedAttrs.BranchProtection, BPI, Error)) {
3255     if (Error.empty())
3256       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3257              << Unsupported << None << "branch-protection";
3258     else
3259       return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3260              << Error;
3261   }
3262 
3263   return false;
3264 }
3265 
3266 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3267   StringRef Str;
3268   SourceLocation LiteralLoc;
3269   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3270       S.checkTargetAttr(LiteralLoc, Str))
3271     return;
3272 
3273   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3274   D->addAttr(NewAttr);
3275 }
3276 
3277 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3278   Expr *E = AL.getArgAsExpr(0);
3279   uint32_t VecWidth;
3280   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3281     AL.setInvalid();
3282     return;
3283   }
3284 
3285   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3286   if (Existing && Existing->getVectorWidth() != VecWidth) {
3287     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3288     return;
3289   }
3290 
3291   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3292 }
3293 
3294 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3295   Expr *E = AL.getArgAsExpr(0);
3296   SourceLocation Loc = E->getExprLoc();
3297   FunctionDecl *FD = nullptr;
3298   DeclarationNameInfo NI;
3299 
3300   // gcc only allows for simple identifiers. Since we support more than gcc, we
3301   // will warn the user.
3302   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3303     if (DRE->hasQualifier())
3304       S.Diag(Loc, diag::warn_cleanup_ext);
3305     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3306     NI = DRE->getNameInfo();
3307     if (!FD) {
3308       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3309         << NI.getName();
3310       return;
3311     }
3312   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3313     if (ULE->hasExplicitTemplateArgs())
3314       S.Diag(Loc, diag::warn_cleanup_ext);
3315     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3316     NI = ULE->getNameInfo();
3317     if (!FD) {
3318       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3319         << NI.getName();
3320       if (ULE->getType() == S.Context.OverloadTy)
3321         S.NoteAllOverloadCandidates(ULE);
3322       return;
3323     }
3324   } else {
3325     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3326     return;
3327   }
3328 
3329   if (FD->getNumParams() != 1) {
3330     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3331       << NI.getName();
3332     return;
3333   }
3334 
3335   // We're currently more strict than GCC about what function types we accept.
3336   // If this ever proves to be a problem it should be easy to fix.
3337   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3338   QualType ParamTy = FD->getParamDecl(0)->getType();
3339   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3340                                    ParamTy, Ty) != Sema::Compatible) {
3341     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3342       << NI.getName() << ParamTy << Ty;
3343     return;
3344   }
3345 
3346   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3347 }
3348 
3349 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3350                                         const ParsedAttr &AL) {
3351   if (!AL.isArgIdent(0)) {
3352     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3353         << AL << 0 << AANT_ArgumentIdentifier;
3354     return;
3355   }
3356 
3357   EnumExtensibilityAttr::Kind ExtensibilityKind;
3358   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3359   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3360                                                ExtensibilityKind)) {
3361     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3362     return;
3363   }
3364 
3365   D->addAttr(::new (S.Context)
3366                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3367 }
3368 
3369 /// Handle __attribute__((format_arg((idx)))) attribute based on
3370 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3371 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3372   Expr *IdxExpr = AL.getArgAsExpr(0);
3373   ParamIdx Idx;
3374   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3375     return;
3376 
3377   // Make sure the format string is really a string.
3378   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3379 
3380   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3381   if (NotNSStringTy &&
3382       !isCFStringType(Ty, S.Context) &&
3383       (!Ty->isPointerType() ||
3384        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3385     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3386         << "a string type" << IdxExpr->getSourceRange()
3387         << getFunctionOrMethodParamRange(D, 0);
3388     return;
3389   }
3390   Ty = getFunctionOrMethodResultType(D);
3391   // replace instancetype with the class type
3392   auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3393   if (Ty->getAs<TypedefType>() == Instancetype)
3394     if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3395       if (auto *Interface = OMD->getClassInterface())
3396         Ty = S.Context.getObjCObjectPointerType(
3397             QualType(Interface->getTypeForDecl(), 0));
3398   if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3399       !isCFStringType(Ty, S.Context) &&
3400       (!Ty->isPointerType() ||
3401        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3402     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3403         << (NotNSStringTy ? "string type" : "NSString")
3404         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3405     return;
3406   }
3407 
3408   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3409 }
3410 
3411 enum FormatAttrKind {
3412   CFStringFormat,
3413   NSStringFormat,
3414   StrftimeFormat,
3415   SupportedFormat,
3416   IgnoredFormat,
3417   InvalidFormat
3418 };
3419 
3420 /// getFormatAttrKind - Map from format attribute names to supported format
3421 /// types.
3422 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3423   return llvm::StringSwitch<FormatAttrKind>(Format)
3424       // Check for formats that get handled specially.
3425       .Case("NSString", NSStringFormat)
3426       .Case("CFString", CFStringFormat)
3427       .Case("strftime", StrftimeFormat)
3428 
3429       // Otherwise, check for supported formats.
3430       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3431       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3432       .Case("kprintf", SupportedFormat)         // OpenBSD.
3433       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3434       .Case("os_trace", SupportedFormat)
3435       .Case("os_log", SupportedFormat)
3436 
3437       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3438       .Default(InvalidFormat);
3439 }
3440 
3441 /// Handle __attribute__((init_priority(priority))) attributes based on
3442 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3443 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3444   if (!S.getLangOpts().CPlusPlus) {
3445     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3446     return;
3447   }
3448 
3449   if (S.getCurFunctionOrMethodDecl()) {
3450     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3451     AL.setInvalid();
3452     return;
3453   }
3454   QualType T = cast<VarDecl>(D)->getType();
3455   if (S.Context.getAsArrayType(T))
3456     T = S.Context.getBaseElementType(T);
3457   if (!T->getAs<RecordType>()) {
3458     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3459     AL.setInvalid();
3460     return;
3461   }
3462 
3463   Expr *E = AL.getArgAsExpr(0);
3464   uint32_t prioritynum;
3465   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3466     AL.setInvalid();
3467     return;
3468   }
3469 
3470   // Only perform the priority check if the attribute is outside of a system
3471   // header. Values <= 100 are reserved for the implementation, and libc++
3472   // benefits from being able to specify values in that range.
3473   if ((prioritynum < 101 || prioritynum > 65535) &&
3474       !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3475     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3476         << E->getSourceRange() << AL << 101 << 65535;
3477     AL.setInvalid();
3478     return;
3479   }
3480   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3481 }
3482 
3483 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3484                                 StringRef NewUserDiagnostic) {
3485   if (const auto *EA = D->getAttr<ErrorAttr>()) {
3486     std::string NewAttr = CI.getNormalizedFullName();
3487     assert((NewAttr == "error" || NewAttr == "warning") &&
3488            "unexpected normalized full name");
3489     bool Match = (EA->isError() && NewAttr == "error") ||
3490                  (EA->isWarning() && NewAttr == "warning");
3491     if (!Match) {
3492       Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3493           << CI << EA;
3494       Diag(CI.getLoc(), diag::note_conflicting_attribute);
3495       return nullptr;
3496     }
3497     if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3498       Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3499       Diag(EA->getLoc(), diag::note_previous_attribute);
3500     }
3501     D->dropAttr<ErrorAttr>();
3502   }
3503   return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3504 }
3505 
3506 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3507                                   IdentifierInfo *Format, int FormatIdx,
3508                                   int FirstArg) {
3509   // Check whether we already have an equivalent format attribute.
3510   for (auto *F : D->specific_attrs<FormatAttr>()) {
3511     if (F->getType() == Format &&
3512         F->getFormatIdx() == FormatIdx &&
3513         F->getFirstArg() == FirstArg) {
3514       // If we don't have a valid location for this attribute, adopt the
3515       // location.
3516       if (F->getLocation().isInvalid())
3517         F->setRange(CI.getRange());
3518       return nullptr;
3519     }
3520   }
3521 
3522   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3523 }
3524 
3525 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3526 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3527 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3528   if (!AL.isArgIdent(0)) {
3529     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3530         << AL << 1 << AANT_ArgumentIdentifier;
3531     return;
3532   }
3533 
3534   // In C++ the implicit 'this' function parameter also counts, and they are
3535   // counted from one.
3536   bool HasImplicitThisParam = isInstanceMethod(D);
3537   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3538 
3539   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3540   StringRef Format = II->getName();
3541 
3542   if (normalizeName(Format)) {
3543     // If we've modified the string name, we need a new identifier for it.
3544     II = &S.Context.Idents.get(Format);
3545   }
3546 
3547   // Check for supported formats.
3548   FormatAttrKind Kind = getFormatAttrKind(Format);
3549 
3550   if (Kind == IgnoredFormat)
3551     return;
3552 
3553   if (Kind == InvalidFormat) {
3554     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3555         << AL << II->getName();
3556     return;
3557   }
3558 
3559   // checks for the 2nd argument
3560   Expr *IdxExpr = AL.getArgAsExpr(1);
3561   uint32_t Idx;
3562   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3563     return;
3564 
3565   if (Idx < 1 || Idx > NumArgs) {
3566     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3567         << AL << 2 << IdxExpr->getSourceRange();
3568     return;
3569   }
3570 
3571   // FIXME: Do we need to bounds check?
3572   unsigned ArgIdx = Idx - 1;
3573 
3574   if (HasImplicitThisParam) {
3575     if (ArgIdx == 0) {
3576       S.Diag(AL.getLoc(),
3577              diag::err_format_attribute_implicit_this_format_string)
3578         << IdxExpr->getSourceRange();
3579       return;
3580     }
3581     ArgIdx--;
3582   }
3583 
3584   // make sure the format string is really a string
3585   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3586 
3587   if (Kind == CFStringFormat) {
3588     if (!isCFStringType(Ty, S.Context)) {
3589       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3590         << "a CFString" << IdxExpr->getSourceRange()
3591         << getFunctionOrMethodParamRange(D, ArgIdx);
3592       return;
3593     }
3594   } else if (Kind == NSStringFormat) {
3595     // FIXME: do we need to check if the type is NSString*?  What are the
3596     // semantics?
3597     if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) {
3598       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3599         << "an NSString" << IdxExpr->getSourceRange()
3600         << getFunctionOrMethodParamRange(D, ArgIdx);
3601       return;
3602     }
3603   } else if (!Ty->isPointerType() ||
3604              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3605     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3606       << "a string type" << IdxExpr->getSourceRange()
3607       << getFunctionOrMethodParamRange(D, ArgIdx);
3608     return;
3609   }
3610 
3611   // check the 3rd argument
3612   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3613   uint32_t FirstArg;
3614   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3615     return;
3616 
3617   // check if the function is variadic if the 3rd argument non-zero
3618   if (FirstArg != 0) {
3619     if (isFunctionOrMethodVariadic(D)) {
3620       ++NumArgs; // +1 for ...
3621     } else {
3622       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3623       return;
3624     }
3625   }
3626 
3627   // strftime requires FirstArg to be 0 because it doesn't read from any
3628   // variable the input is just the current time + the format string.
3629   if (Kind == StrftimeFormat) {
3630     if (FirstArg != 0) {
3631       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3632         << FirstArgExpr->getSourceRange();
3633       return;
3634     }
3635   // if 0 it disables parameter checking (to use with e.g. va_list)
3636   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3637     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3638         << AL << 3 << FirstArgExpr->getSourceRange();
3639     return;
3640   }
3641 
3642   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3643   if (NewAttr)
3644     D->addAttr(NewAttr);
3645 }
3646 
3647 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3648 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3649   // The index that identifies the callback callee is mandatory.
3650   if (AL.getNumArgs() == 0) {
3651     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3652         << AL.getRange();
3653     return;
3654   }
3655 
3656   bool HasImplicitThisParam = isInstanceMethod(D);
3657   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3658 
3659   FunctionDecl *FD = D->getAsFunction();
3660   assert(FD && "Expected a function declaration!");
3661 
3662   llvm::StringMap<int> NameIdxMapping;
3663   NameIdxMapping["__"] = -1;
3664 
3665   NameIdxMapping["this"] = 0;
3666 
3667   int Idx = 1;
3668   for (const ParmVarDecl *PVD : FD->parameters())
3669     NameIdxMapping[PVD->getName()] = Idx++;
3670 
3671   auto UnknownName = NameIdxMapping.end();
3672 
3673   SmallVector<int, 8> EncodingIndices;
3674   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3675     SourceRange SR;
3676     int32_t ArgIdx;
3677 
3678     if (AL.isArgIdent(I)) {
3679       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3680       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3681       if (It == UnknownName) {
3682         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3683             << IdLoc->Ident << IdLoc->Loc;
3684         return;
3685       }
3686 
3687       SR = SourceRange(IdLoc->Loc);
3688       ArgIdx = It->second;
3689     } else if (AL.isArgExpr(I)) {
3690       Expr *IdxExpr = AL.getArgAsExpr(I);
3691 
3692       // If the expression is not parseable as an int32_t we have a problem.
3693       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3694                                false)) {
3695         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3696             << AL << (I + 1) << IdxExpr->getSourceRange();
3697         return;
3698       }
3699 
3700       // Check oob, excluding the special values, 0 and -1.
3701       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3702         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3703             << AL << (I + 1) << IdxExpr->getSourceRange();
3704         return;
3705       }
3706 
3707       SR = IdxExpr->getSourceRange();
3708     } else {
3709       llvm_unreachable("Unexpected ParsedAttr argument type!");
3710     }
3711 
3712     if (ArgIdx == 0 && !HasImplicitThisParam) {
3713       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3714           << (I + 1) << SR;
3715       return;
3716     }
3717 
3718     // Adjust for the case we do not have an implicit "this" parameter. In this
3719     // case we decrease all positive values by 1 to get LLVM argument indices.
3720     if (!HasImplicitThisParam && ArgIdx > 0)
3721       ArgIdx -= 1;
3722 
3723     EncodingIndices.push_back(ArgIdx);
3724   }
3725 
3726   int CalleeIdx = EncodingIndices.front();
3727   // Check if the callee index is proper, thus not "this" and not "unknown".
3728   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3729   // is false and positive if "HasImplicitThisParam" is true.
3730   if (CalleeIdx < (int)HasImplicitThisParam) {
3731     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3732         << AL.getRange();
3733     return;
3734   }
3735 
3736   // Get the callee type, note the index adjustment as the AST doesn't contain
3737   // the this type (which the callee cannot reference anyway!).
3738   const Type *CalleeType =
3739       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3740           .getTypePtr();
3741   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3742     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3743         << AL.getRange();
3744     return;
3745   }
3746 
3747   const Type *CalleeFnType =
3748       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3749 
3750   // TODO: Check the type of the callee arguments.
3751 
3752   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3753   if (!CalleeFnProtoType) {
3754     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3755         << AL.getRange();
3756     return;
3757   }
3758 
3759   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3760     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3761         << AL << (unsigned)(EncodingIndices.size() - 1);
3762     return;
3763   }
3764 
3765   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3766     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3767         << AL << (unsigned)(EncodingIndices.size() - 1);
3768     return;
3769   }
3770 
3771   if (CalleeFnProtoType->isVariadic()) {
3772     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3773     return;
3774   }
3775 
3776   // Do not allow multiple callback attributes.
3777   if (D->hasAttr<CallbackAttr>()) {
3778     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3779     return;
3780   }
3781 
3782   D->addAttr(::new (S.Context) CallbackAttr(
3783       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3784 }
3785 
3786 static bool isFunctionLike(const Type &T) {
3787   // Check for explicit function types.
3788   // 'called_once' is only supported in Objective-C and it has
3789   // function pointers and block pointers.
3790   return T.isFunctionPointerType() || T.isBlockPointerType();
3791 }
3792 
3793 /// Handle 'called_once' attribute.
3794 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3795   // 'called_once' only applies to parameters representing functions.
3796   QualType T = cast<ParmVarDecl>(D)->getType();
3797 
3798   if (!isFunctionLike(*T)) {
3799     S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
3800     return;
3801   }
3802 
3803   D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
3804 }
3805 
3806 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3807   // Try to find the underlying union declaration.
3808   RecordDecl *RD = nullptr;
3809   const auto *TD = dyn_cast<TypedefNameDecl>(D);
3810   if (TD && TD->getUnderlyingType()->isUnionType())
3811     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3812   else
3813     RD = dyn_cast<RecordDecl>(D);
3814 
3815   if (!RD || !RD->isUnion()) {
3816     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
3817                                                               << ExpectedUnion;
3818     return;
3819   }
3820 
3821   if (!RD->isCompleteDefinition()) {
3822     if (!RD->isBeingDefined())
3823       S.Diag(AL.getLoc(),
3824              diag::warn_transparent_union_attribute_not_definition);
3825     return;
3826   }
3827 
3828   RecordDecl::field_iterator Field = RD->field_begin(),
3829                           FieldEnd = RD->field_end();
3830   if (Field == FieldEnd) {
3831     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3832     return;
3833   }
3834 
3835   FieldDecl *FirstField = *Field;
3836   QualType FirstType = FirstField->getType();
3837   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3838     S.Diag(FirstField->getLocation(),
3839            diag::warn_transparent_union_attribute_floating)
3840       << FirstType->isVectorType() << FirstType;
3841     return;
3842   }
3843 
3844   if (FirstType->isIncompleteType())
3845     return;
3846   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3847   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3848   for (; Field != FieldEnd; ++Field) {
3849     QualType FieldType = Field->getType();
3850     if (FieldType->isIncompleteType())
3851       return;
3852     // FIXME: this isn't fully correct; we also need to test whether the
3853     // members of the union would all have the same calling convention as the
3854     // first member of the union. Checking just the size and alignment isn't
3855     // sufficient (consider structs passed on the stack instead of in registers
3856     // as an example).
3857     if (S.Context.getTypeSize(FieldType) != FirstSize ||
3858         S.Context.getTypeAlign(FieldType) > FirstAlign) {
3859       // Warn if we drop the attribute.
3860       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3861       unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
3862                                   : S.Context.getTypeAlign(FieldType);
3863       S.Diag(Field->getLocation(),
3864              diag::warn_transparent_union_attribute_field_size_align)
3865           << isSize << *Field << FieldBits;
3866       unsigned FirstBits = isSize ? FirstSize : FirstAlign;
3867       S.Diag(FirstField->getLocation(),
3868              diag::note_transparent_union_first_field_size_align)
3869           << isSize << FirstBits;
3870       return;
3871     }
3872   }
3873 
3874   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
3875 }
3876 
3877 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
3878                              StringRef Str, MutableArrayRef<Expr *> Args) {
3879   auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
3880   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3881   for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) {
3882     Expr *&E = Attr->args_begin()[Idx];
3883     assert(E && "error are handled before");
3884     if (E->isValueDependent() || E->isTypeDependent())
3885       continue;
3886 
3887     if (E->getType()->isArrayType())
3888       E = ImpCastExprToType(E, Context.getPointerType(E->getType()),
3889                             clang::CK_ArrayToPointerDecay)
3890               .get();
3891     if (E->getType()->isFunctionType())
3892       E = ImplicitCastExpr::Create(Context,
3893                                    Context.getPointerType(E->getType()),
3894                                    clang::CK_FunctionToPointerDecay, E, nullptr,
3895                                    VK_PRValue, FPOptionsOverride());
3896     if (E->isLValue())
3897       E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(),
3898                                    clang::CK_LValueToRValue, E, nullptr,
3899                                    VK_PRValue, FPOptionsOverride());
3900 
3901     Expr::EvalResult Eval;
3902     Notes.clear();
3903     Eval.Diag = &Notes;
3904 
3905     bool Result =
3906         E->EvaluateAsConstantExpr(Eval, Context);
3907 
3908     /// Result means the expression can be folded to a constant.
3909     /// Note.empty() means the expression is a valid constant expression in the
3910     /// current language mode.
3911     if (!Result || !Notes.empty()) {
3912       Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type)
3913           << CI << (Idx + 1) << AANT_ArgumentConstantExpr;
3914       for (auto &Note : Notes)
3915         Diag(Note.first, Note.second);
3916       return;
3917     }
3918     assert(Eval.Val.hasValue());
3919     E = ConstantExpr::Create(Context, E, Eval.Val);
3920   }
3921   D->addAttr(Attr);
3922 }
3923 
3924 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3925   // Make sure that there is a string literal as the annotation's first
3926   // argument.
3927   StringRef Str;
3928   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3929     return;
3930 
3931   llvm::SmallVector<Expr *, 4> Args;
3932   Args.reserve(AL.getNumArgs() - 1);
3933   for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
3934     assert(!AL.isArgIdent(Idx));
3935     Args.push_back(AL.getArgAsExpr(Idx));
3936   }
3937 
3938   S.AddAnnotationAttr(D, AL, Str, Args);
3939 }
3940 
3941 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3942   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
3943 }
3944 
3945 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
3946   AlignValueAttr TmpAttr(Context, CI, E);
3947   SourceLocation AttrLoc = CI.getLoc();
3948 
3949   QualType T;
3950   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3951     T = TD->getUnderlyingType();
3952   else if (const auto *VD = dyn_cast<ValueDecl>(D))
3953     T = VD->getType();
3954   else
3955     llvm_unreachable("Unknown decl type for align_value");
3956 
3957   if (!T->isDependentType() && !T->isAnyPointerType() &&
3958       !T->isReferenceType() && !T->isMemberPointerType()) {
3959     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3960       << &TmpAttr << T << D->getSourceRange();
3961     return;
3962   }
3963 
3964   if (!E->isValueDependent()) {
3965     llvm::APSInt Alignment;
3966     ExprResult ICE = VerifyIntegerConstantExpression(
3967         E, &Alignment, diag::err_align_value_attribute_argument_not_int);
3968     if (ICE.isInvalid())
3969       return;
3970 
3971     if (!Alignment.isPowerOf2()) {
3972       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3973         << E->getSourceRange();
3974       return;
3975     }
3976 
3977     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
3978     return;
3979   }
3980 
3981   // Save dependent expressions in the AST to be instantiated.
3982   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
3983 }
3984 
3985 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3986   // check the attribute arguments.
3987   if (AL.getNumArgs() > 1) {
3988     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3989     return;
3990   }
3991 
3992   if (AL.getNumArgs() == 0) {
3993     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
3994     return;
3995   }
3996 
3997   Expr *E = AL.getArgAsExpr(0);
3998   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3999     S.Diag(AL.getEllipsisLoc(),
4000            diag::err_pack_expansion_without_parameter_packs);
4001     return;
4002   }
4003 
4004   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4005     return;
4006 
4007   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4008 }
4009 
4010 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4011                           bool IsPackExpansion) {
4012   AlignedAttr TmpAttr(Context, CI, true, E);
4013   SourceLocation AttrLoc = CI.getLoc();
4014 
4015   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4016   if (TmpAttr.isAlignas()) {
4017     // C++11 [dcl.align]p1:
4018     //   An alignment-specifier may be applied to a variable or to a class
4019     //   data member, but it shall not be applied to a bit-field, a function
4020     //   parameter, the formal parameter of a catch clause, or a variable
4021     //   declared with the register storage class specifier. An
4022     //   alignment-specifier may also be applied to the declaration of a class
4023     //   or enumeration type.
4024     // C11 6.7.5/2:
4025     //   An alignment attribute shall not be specified in a declaration of
4026     //   a typedef, or a bit-field, or a function, or a parameter, or an
4027     //   object declared with the register storage-class specifier.
4028     int DiagKind = -1;
4029     if (isa<ParmVarDecl>(D)) {
4030       DiagKind = 0;
4031     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4032       if (VD->getStorageClass() == SC_Register)
4033         DiagKind = 1;
4034       if (VD->isExceptionVariable())
4035         DiagKind = 2;
4036     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4037       if (FD->isBitField())
4038         DiagKind = 3;
4039     } else if (!isa<TagDecl>(D)) {
4040       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
4041         << (TmpAttr.isC11() ? ExpectedVariableOrField
4042                             : ExpectedVariableFieldOrTag);
4043       return;
4044     }
4045     if (DiagKind != -1) {
4046       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4047         << &TmpAttr << DiagKind;
4048       return;
4049     }
4050   }
4051 
4052   if (E->isValueDependent()) {
4053     // We can't support a dependent alignment on a non-dependent type,
4054     // because we have no way to model that a type is "alignment-dependent"
4055     // but not dependent in any other way.
4056     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4057       if (!TND->getUnderlyingType()->isDependentType()) {
4058         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4059             << E->getSourceRange();
4060         return;
4061       }
4062     }
4063 
4064     // Save dependent expressions in the AST to be instantiated.
4065     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4066     AA->setPackExpansion(IsPackExpansion);
4067     D->addAttr(AA);
4068     return;
4069   }
4070 
4071   // FIXME: Cache the number on the AL object?
4072   llvm::APSInt Alignment;
4073   ExprResult ICE = VerifyIntegerConstantExpression(
4074       E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4075   if (ICE.isInvalid())
4076     return;
4077 
4078   uint64_t AlignVal = Alignment.getZExtValue();
4079   // 16 byte ByVal alignment not due to a vector member is not honoured by XL
4080   // on AIX. Emit a warning here that users are generating binary incompatible
4081   // code to be safe.
4082   if (AlignVal >= 16 && isa<FieldDecl>(D) &&
4083       Context.getTargetInfo().getTriple().isOSAIX())
4084     Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange();
4085 
4086   // C++11 [dcl.align]p2:
4087   //   -- if the constant expression evaluates to zero, the alignment
4088   //      specifier shall have no effect
4089   // C11 6.7.5p6:
4090   //   An alignment specification of zero has no effect.
4091   if (!(TmpAttr.isAlignas() && !Alignment)) {
4092     if (!llvm::isPowerOf2_64(AlignVal)) {
4093       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4094         << E->getSourceRange();
4095       return;
4096     }
4097   }
4098 
4099   uint64_t MaximumAlignment = Sema::MaximumAlignment;
4100   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4101     MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4102   if (AlignVal > MaximumAlignment) {
4103     Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4104         << MaximumAlignment << E->getSourceRange();
4105     return;
4106   }
4107 
4108   const auto *VD = dyn_cast<VarDecl>(D);
4109   if (VD && Context.getTargetInfo().isTLSSupported()) {
4110     unsigned MaxTLSAlign =
4111         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4112             .getQuantity();
4113     if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4114         VD->getTLSKind() != VarDecl::TLS_None) {
4115       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4116           << (unsigned)AlignVal << VD << MaxTLSAlign;
4117       return;
4118     }
4119   }
4120 
4121   // On AIX, an aligned attribute can not decrease the alignment when applied
4122   // to a variable declaration with vector type.
4123   if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4124     const Type *Ty = VD->getType().getTypePtr();
4125     if (Ty->isVectorType() && AlignVal < 16) {
4126       Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4127           << VD->getType() << 16;
4128       return;
4129     }
4130   }
4131 
4132   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4133   AA->setPackExpansion(IsPackExpansion);
4134   D->addAttr(AA);
4135 }
4136 
4137 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4138                           TypeSourceInfo *TS, bool IsPackExpansion) {
4139   // FIXME: Cache the number on the AL object if non-dependent?
4140   // FIXME: Perform checking of type validity
4141   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4142   AA->setPackExpansion(IsPackExpansion);
4143   D->addAttr(AA);
4144 }
4145 
4146 void Sema::CheckAlignasUnderalignment(Decl *D) {
4147   assert(D->hasAttrs() && "no attributes on decl");
4148 
4149   QualType UnderlyingTy, DiagTy;
4150   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4151     UnderlyingTy = DiagTy = VD->getType();
4152   } else {
4153     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4154     if (const auto *ED = dyn_cast<EnumDecl>(D))
4155       UnderlyingTy = ED->getIntegerType();
4156   }
4157   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4158     return;
4159 
4160   // C++11 [dcl.align]p5, C11 6.7.5/4:
4161   //   The combined effect of all alignment attributes in a declaration shall
4162   //   not specify an alignment that is less strict than the alignment that
4163   //   would otherwise be required for the entity being declared.
4164   AlignedAttr *AlignasAttr = nullptr;
4165   AlignedAttr *LastAlignedAttr = nullptr;
4166   unsigned Align = 0;
4167   for (auto *I : D->specific_attrs<AlignedAttr>()) {
4168     if (I->isAlignmentDependent())
4169       return;
4170     if (I->isAlignas())
4171       AlignasAttr = I;
4172     Align = std::max(Align, I->getAlignment(Context));
4173     LastAlignedAttr = I;
4174   }
4175 
4176   if (Align && DiagTy->isSizelessType()) {
4177     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4178         << LastAlignedAttr << DiagTy;
4179   } else if (AlignasAttr && Align) {
4180     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4181     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4182     if (NaturalAlign > RequestedAlign)
4183       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4184         << DiagTy << (unsigned)NaturalAlign.getQuantity();
4185   }
4186 }
4187 
4188 bool Sema::checkMSInheritanceAttrOnDefinition(
4189     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4190     MSInheritanceModel ExplicitModel) {
4191   assert(RD->hasDefinition() && "RD has no definition!");
4192 
4193   // We may not have seen base specifiers or any virtual methods yet.  We will
4194   // have to wait until the record is defined to catch any mismatches.
4195   if (!RD->getDefinition()->isCompleteDefinition())
4196     return false;
4197 
4198   // The unspecified model never matches what a definition could need.
4199   if (ExplicitModel == MSInheritanceModel::Unspecified)
4200     return false;
4201 
4202   if (BestCase) {
4203     if (RD->calculateInheritanceModel() == ExplicitModel)
4204       return false;
4205   } else {
4206     if (RD->calculateInheritanceModel() <= ExplicitModel)
4207       return false;
4208   }
4209 
4210   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4211       << 0 /*definition*/;
4212   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4213   return true;
4214 }
4215 
4216 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4217 /// attribute.
4218 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4219                              bool &IntegerMode, bool &ComplexMode,
4220                              FloatModeKind &ExplicitType) {
4221   IntegerMode = true;
4222   ComplexMode = false;
4223   ExplicitType = FloatModeKind::NoFloat;
4224   switch (Str.size()) {
4225   case 2:
4226     switch (Str[0]) {
4227     case 'Q':
4228       DestWidth = 8;
4229       break;
4230     case 'H':
4231       DestWidth = 16;
4232       break;
4233     case 'S':
4234       DestWidth = 32;
4235       break;
4236     case 'D':
4237       DestWidth = 64;
4238       break;
4239     case 'X':
4240       DestWidth = 96;
4241       break;
4242     case 'K': // KFmode - IEEE quad precision (__float128)
4243       ExplicitType = FloatModeKind::Float128;
4244       DestWidth = Str[1] == 'I' ? 0 : 128;
4245       break;
4246     case 'T':
4247       ExplicitType = FloatModeKind::LongDouble;
4248       DestWidth = 128;
4249       break;
4250     case 'I':
4251       ExplicitType = FloatModeKind::Ibm128;
4252       DestWidth = Str[1] == 'I' ? 0 : 128;
4253       break;
4254     }
4255     if (Str[1] == 'F') {
4256       IntegerMode = false;
4257     } else if (Str[1] == 'C') {
4258       IntegerMode = false;
4259       ComplexMode = true;
4260     } else if (Str[1] != 'I') {
4261       DestWidth = 0;
4262     }
4263     break;
4264   case 4:
4265     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4266     // pointer on PIC16 and other embedded platforms.
4267     if (Str == "word")
4268       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4269     else if (Str == "byte")
4270       DestWidth = S.Context.getTargetInfo().getCharWidth();
4271     break;
4272   case 7:
4273     if (Str == "pointer")
4274       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
4275     break;
4276   case 11:
4277     if (Str == "unwind_word")
4278       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4279     break;
4280   }
4281 }
4282 
4283 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4284 /// type.
4285 ///
4286 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4287 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4288 /// HImode, not an intermediate pointer.
4289 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4290   // This attribute isn't documented, but glibc uses it.  It changes
4291   // the width of an int or unsigned int to the specified size.
4292   if (!AL.isArgIdent(0)) {
4293     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4294         << AL << AANT_ArgumentIdentifier;
4295     return;
4296   }
4297 
4298   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4299 
4300   S.AddModeAttr(D, AL, Name);
4301 }
4302 
4303 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4304                        IdentifierInfo *Name, bool InInstantiation) {
4305   StringRef Str = Name->getName();
4306   normalizeName(Str);
4307   SourceLocation AttrLoc = CI.getLoc();
4308 
4309   unsigned DestWidth = 0;
4310   bool IntegerMode = true;
4311   bool ComplexMode = false;
4312   FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4313   llvm::APInt VectorSize(64, 0);
4314   if (Str.size() >= 4 && Str[0] == 'V') {
4315     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4316     size_t StrSize = Str.size();
4317     size_t VectorStringLength = 0;
4318     while ((VectorStringLength + 1) < StrSize &&
4319            isdigit(Str[VectorStringLength + 1]))
4320       ++VectorStringLength;
4321     if (VectorStringLength &&
4322         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4323         VectorSize.isPowerOf2()) {
4324       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4325                        IntegerMode, ComplexMode, ExplicitType);
4326       // Avoid duplicate warning from template instantiation.
4327       if (!InInstantiation)
4328         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4329     } else {
4330       VectorSize = 0;
4331     }
4332   }
4333 
4334   if (!VectorSize)
4335     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4336                      ExplicitType);
4337 
4338   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4339   // and friends, at least with glibc.
4340   // FIXME: Make sure floating-point mappings are accurate
4341   // FIXME: Support XF and TF types
4342   if (!DestWidth) {
4343     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4344     return;
4345   }
4346 
4347   QualType OldTy;
4348   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4349     OldTy = TD->getUnderlyingType();
4350   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4351     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4352     // Try to get type from enum declaration, default to int.
4353     OldTy = ED->getIntegerType();
4354     if (OldTy.isNull())
4355       OldTy = Context.IntTy;
4356   } else
4357     OldTy = cast<ValueDecl>(D)->getType();
4358 
4359   if (OldTy->isDependentType()) {
4360     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4361     return;
4362   }
4363 
4364   // Base type can also be a vector type (see PR17453).
4365   // Distinguish between base type and base element type.
4366   QualType OldElemTy = OldTy;
4367   if (const auto *VT = OldTy->getAs<VectorType>())
4368     OldElemTy = VT->getElementType();
4369 
4370   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4371   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4372   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4373   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4374       VectorSize.getBoolValue()) {
4375     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4376     return;
4377   }
4378   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4379                                 !OldElemTy->isExtIntType()) ||
4380                                OldElemTy->getAs<EnumType>();
4381 
4382   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4383       !IntegralOrAnyEnumType)
4384     Diag(AttrLoc, diag::err_mode_not_primitive);
4385   else if (IntegerMode) {
4386     if (!IntegralOrAnyEnumType)
4387       Diag(AttrLoc, diag::err_mode_wrong_type);
4388   } else if (ComplexMode) {
4389     if (!OldElemTy->isComplexType())
4390       Diag(AttrLoc, diag::err_mode_wrong_type);
4391   } else {
4392     if (!OldElemTy->isFloatingType())
4393       Diag(AttrLoc, diag::err_mode_wrong_type);
4394   }
4395 
4396   QualType NewElemTy;
4397 
4398   if (IntegerMode)
4399     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4400                                               OldElemTy->isSignedIntegerType());
4401   else
4402     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4403 
4404   if (NewElemTy.isNull()) {
4405     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4406     return;
4407   }
4408 
4409   if (ComplexMode) {
4410     NewElemTy = Context.getComplexType(NewElemTy);
4411   }
4412 
4413   QualType NewTy = NewElemTy;
4414   if (VectorSize.getBoolValue()) {
4415     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4416                                   VectorType::GenericVector);
4417   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4418     // Complex machine mode does not support base vector types.
4419     if (ComplexMode) {
4420       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4421       return;
4422     }
4423     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4424                            OldVT->getNumElements() /
4425                            Context.getTypeSize(NewElemTy);
4426     NewTy =
4427         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4428   }
4429 
4430   if (NewTy.isNull()) {
4431     Diag(AttrLoc, diag::err_mode_wrong_type);
4432     return;
4433   }
4434 
4435   // Install the new type.
4436   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4437     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4438   else if (auto *ED = dyn_cast<EnumDecl>(D))
4439     ED->setIntegerType(NewTy);
4440   else
4441     cast<ValueDecl>(D)->setType(NewTy);
4442 
4443   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4444 }
4445 
4446 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4447   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4448 }
4449 
4450 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4451                                               const AttributeCommonInfo &CI,
4452                                               const IdentifierInfo *Ident) {
4453   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4454     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4455     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4456     return nullptr;
4457   }
4458 
4459   if (D->hasAttr<AlwaysInlineAttr>())
4460     return nullptr;
4461 
4462   return ::new (Context) AlwaysInlineAttr(Context, CI);
4463 }
4464 
4465 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4466                                                     const ParsedAttr &AL) {
4467   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4468     // Attribute applies to Var but not any subclass of it (like ParmVar,
4469     // ImplicitParm or VarTemplateSpecialization).
4470     if (VD->getKind() != Decl::Var) {
4471       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4472           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4473                                             : ExpectedVariableOrFunction);
4474       return nullptr;
4475     }
4476     // Attribute does not apply to non-static local variables.
4477     if (VD->hasLocalStorage()) {
4478       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4479       return nullptr;
4480     }
4481   }
4482 
4483   return ::new (Context) InternalLinkageAttr(Context, AL);
4484 }
4485 InternalLinkageAttr *
4486 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4487   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4488     // Attribute applies to Var but not any subclass of it (like ParmVar,
4489     // ImplicitParm or VarTemplateSpecialization).
4490     if (VD->getKind() != Decl::Var) {
4491       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4492           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4493                                              : ExpectedVariableOrFunction);
4494       return nullptr;
4495     }
4496     // Attribute does not apply to non-static local variables.
4497     if (VD->hasLocalStorage()) {
4498       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4499       return nullptr;
4500     }
4501   }
4502 
4503   return ::new (Context) InternalLinkageAttr(Context, AL);
4504 }
4505 
4506 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4507   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4508     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4509     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4510     return nullptr;
4511   }
4512 
4513   if (D->hasAttr<MinSizeAttr>())
4514     return nullptr;
4515 
4516   return ::new (Context) MinSizeAttr(Context, CI);
4517 }
4518 
4519 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4520                                         StringRef Name) {
4521   if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4522     if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4523       Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4524           << PrevSNA << &SNA;
4525       Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4526     }
4527 
4528     D->dropAttr<SwiftNameAttr>();
4529   }
4530   return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4531 }
4532 
4533 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4534                                               const AttributeCommonInfo &CI) {
4535   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4536     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4537     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4538     D->dropAttr<AlwaysInlineAttr>();
4539   }
4540   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4541     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4542     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4543     D->dropAttr<MinSizeAttr>();
4544   }
4545 
4546   if (D->hasAttr<OptimizeNoneAttr>())
4547     return nullptr;
4548 
4549   return ::new (Context) OptimizeNoneAttr(Context, CI);
4550 }
4551 
4552 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4553   if (AlwaysInlineAttr *Inline =
4554           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4555     D->addAttr(Inline);
4556 }
4557 
4558 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4559   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4560     D->addAttr(MinSize);
4561 }
4562 
4563 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4564   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4565     D->addAttr(Optnone);
4566 }
4567 
4568 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4569   const auto *VD = cast<VarDecl>(D);
4570   if (VD->hasLocalStorage()) {
4571     S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4572     return;
4573   }
4574   // constexpr variable may already get an implicit constant attr, which should
4575   // be replaced by the explicit constant attr.
4576   if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4577     if (!A->isImplicit())
4578       return;
4579     D->dropAttr<CUDAConstantAttr>();
4580   }
4581   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4582 }
4583 
4584 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4585   const auto *VD = cast<VarDecl>(D);
4586   // extern __shared__ is only allowed on arrays with no length (e.g.
4587   // "int x[]").
4588   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4589       !isa<IncompleteArrayType>(VD->getType())) {
4590     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4591     return;
4592   }
4593   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4594       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4595           << S.CurrentCUDATarget())
4596     return;
4597   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4598 }
4599 
4600 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4601   const auto *FD = cast<FunctionDecl>(D);
4602   if (!FD->getReturnType()->isVoidType() &&
4603       !FD->getReturnType()->getAs<AutoType>() &&
4604       !FD->getReturnType()->isInstantiationDependentType()) {
4605     SourceRange RTRange = FD->getReturnTypeSourceRange();
4606     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4607         << FD->getType()
4608         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4609                               : FixItHint());
4610     return;
4611   }
4612   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4613     if (Method->isInstance()) {
4614       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4615           << Method;
4616       return;
4617     }
4618     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4619   }
4620   // Only warn for "inline" when compiling for host, to cut down on noise.
4621   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4622     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4623 
4624   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4625   // In host compilation the kernel is emitted as a stub function, which is
4626   // a helper function for launching the kernel. The instructions in the helper
4627   // function has nothing to do with the source code of the kernel. Do not emit
4628   // debug info for the stub function to avoid confusing the debugger.
4629   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4630     D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4631 }
4632 
4633 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4634   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4635     if (VD->hasLocalStorage()) {
4636       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4637       return;
4638     }
4639   }
4640 
4641   if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4642     if (!A->isImplicit())
4643       return;
4644     D->dropAttr<CUDADeviceAttr>();
4645   }
4646   D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4647 }
4648 
4649 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4650   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4651     if (VD->hasLocalStorage()) {
4652       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4653       return;
4654     }
4655   }
4656   if (!D->hasAttr<HIPManagedAttr>())
4657     D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
4658   if (!D->hasAttr<CUDADeviceAttr>())
4659     D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
4660 }
4661 
4662 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4663   const auto *Fn = cast<FunctionDecl>(D);
4664   if (!Fn->isInlineSpecified()) {
4665     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4666     return;
4667   }
4668 
4669   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4670     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4671 
4672   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4673 }
4674 
4675 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4676   if (hasDeclarator(D)) return;
4677 
4678   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4679   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4680   CallingConv CC;
4681   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4682     return;
4683 
4684   if (!isa<ObjCMethodDecl>(D)) {
4685     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4686         << AL << ExpectedFunctionOrMethod;
4687     return;
4688   }
4689 
4690   switch (AL.getKind()) {
4691   case ParsedAttr::AT_FastCall:
4692     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4693     return;
4694   case ParsedAttr::AT_StdCall:
4695     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4696     return;
4697   case ParsedAttr::AT_ThisCall:
4698     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4699     return;
4700   case ParsedAttr::AT_CDecl:
4701     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4702     return;
4703   case ParsedAttr::AT_Pascal:
4704     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4705     return;
4706   case ParsedAttr::AT_SwiftCall:
4707     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4708     return;
4709   case ParsedAttr::AT_SwiftAsyncCall:
4710     D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
4711     return;
4712   case ParsedAttr::AT_VectorCall:
4713     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4714     return;
4715   case ParsedAttr::AT_MSABI:
4716     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4717     return;
4718   case ParsedAttr::AT_SysVABI:
4719     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4720     return;
4721   case ParsedAttr::AT_RegCall:
4722     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4723     return;
4724   case ParsedAttr::AT_Pcs: {
4725     PcsAttr::PCSType PCS;
4726     switch (CC) {
4727     case CC_AAPCS:
4728       PCS = PcsAttr::AAPCS;
4729       break;
4730     case CC_AAPCS_VFP:
4731       PCS = PcsAttr::AAPCS_VFP;
4732       break;
4733     default:
4734       llvm_unreachable("unexpected calling convention in pcs attribute");
4735     }
4736 
4737     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4738     return;
4739   }
4740   case ParsedAttr::AT_AArch64VectorPcs:
4741     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4742     return;
4743   case ParsedAttr::AT_IntelOclBicc:
4744     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4745     return;
4746   case ParsedAttr::AT_PreserveMost:
4747     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4748     return;
4749   case ParsedAttr::AT_PreserveAll:
4750     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4751     return;
4752   default:
4753     llvm_unreachable("unexpected attribute kind");
4754   }
4755 }
4756 
4757 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4758   if (!AL.checkAtLeastNumArgs(S, 1))
4759     return;
4760 
4761   std::vector<StringRef> DiagnosticIdentifiers;
4762   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4763     StringRef RuleName;
4764 
4765     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4766       return;
4767 
4768     // FIXME: Warn if the rule name is unknown. This is tricky because only
4769     // clang-tidy knows about available rules.
4770     DiagnosticIdentifiers.push_back(RuleName);
4771   }
4772   D->addAttr(::new (S.Context)
4773                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4774                               DiagnosticIdentifiers.size()));
4775 }
4776 
4777 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4778   TypeSourceInfo *DerefTypeLoc = nullptr;
4779   QualType ParmType;
4780   if (AL.hasParsedType()) {
4781     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4782 
4783     unsigned SelectIdx = ~0U;
4784     if (ParmType->isReferenceType())
4785       SelectIdx = 0;
4786     else if (ParmType->isArrayType())
4787       SelectIdx = 1;
4788 
4789     if (SelectIdx != ~0U) {
4790       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4791           << SelectIdx << AL;
4792       return;
4793     }
4794   }
4795 
4796   // To check if earlier decl attributes do not conflict the newly parsed ones
4797   // we always add (and check) the attribute to the canonical decl. We need
4798   // to repeat the check for attribute mutual exclusion because we're attaching
4799   // all of the attributes to the canonical declaration rather than the current
4800   // declaration.
4801   D = D->getCanonicalDecl();
4802   if (AL.getKind() == ParsedAttr::AT_Owner) {
4803     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
4804       return;
4805     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
4806       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
4807                                           ? OAttr->getDerefType().getTypePtr()
4808                                           : nullptr;
4809       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4810         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4811             << AL << OAttr;
4812         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
4813       }
4814       return;
4815     }
4816     for (Decl *Redecl : D->redecls()) {
4817       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
4818     }
4819   } else {
4820     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
4821       return;
4822     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
4823       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
4824                                           ? PAttr->getDerefType().getTypePtr()
4825                                           : nullptr;
4826       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4827         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4828             << AL << PAttr;
4829         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
4830       }
4831       return;
4832     }
4833     for (Decl *Redecl : D->redecls()) {
4834       Redecl->addAttr(::new (S.Context)
4835                           PointerAttr(S.Context, AL, DerefTypeLoc));
4836     }
4837   }
4838 }
4839 
4840 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4841                                 const FunctionDecl *FD) {
4842   if (Attrs.isInvalid())
4843     return true;
4844 
4845   if (Attrs.hasProcessingCache()) {
4846     CC = (CallingConv) Attrs.getProcessingCache();
4847     return false;
4848   }
4849 
4850   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4851   if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
4852     Attrs.setInvalid();
4853     return true;
4854   }
4855 
4856   // TODO: diagnose uses of these conventions on the wrong target.
4857   switch (Attrs.getKind()) {
4858   case ParsedAttr::AT_CDecl:
4859     CC = CC_C;
4860     break;
4861   case ParsedAttr::AT_FastCall:
4862     CC = CC_X86FastCall;
4863     break;
4864   case ParsedAttr::AT_StdCall:
4865     CC = CC_X86StdCall;
4866     break;
4867   case ParsedAttr::AT_ThisCall:
4868     CC = CC_X86ThisCall;
4869     break;
4870   case ParsedAttr::AT_Pascal:
4871     CC = CC_X86Pascal;
4872     break;
4873   case ParsedAttr::AT_SwiftCall:
4874     CC = CC_Swift;
4875     break;
4876   case ParsedAttr::AT_SwiftAsyncCall:
4877     CC = CC_SwiftAsync;
4878     break;
4879   case ParsedAttr::AT_VectorCall:
4880     CC = CC_X86VectorCall;
4881     break;
4882   case ParsedAttr::AT_AArch64VectorPcs:
4883     CC = CC_AArch64VectorCall;
4884     break;
4885   case ParsedAttr::AT_RegCall:
4886     CC = CC_X86RegCall;
4887     break;
4888   case ParsedAttr::AT_MSABI:
4889     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4890                                                              CC_Win64;
4891     break;
4892   case ParsedAttr::AT_SysVABI:
4893     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4894                                                              CC_C;
4895     break;
4896   case ParsedAttr::AT_Pcs: {
4897     StringRef StrRef;
4898     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4899       Attrs.setInvalid();
4900       return true;
4901     }
4902     if (StrRef == "aapcs") {
4903       CC = CC_AAPCS;
4904       break;
4905     } else if (StrRef == "aapcs-vfp") {
4906       CC = CC_AAPCS_VFP;
4907       break;
4908     }
4909 
4910     Attrs.setInvalid();
4911     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4912     return true;
4913   }
4914   case ParsedAttr::AT_IntelOclBicc:
4915     CC = CC_IntelOclBicc;
4916     break;
4917   case ParsedAttr::AT_PreserveMost:
4918     CC = CC_PreserveMost;
4919     break;
4920   case ParsedAttr::AT_PreserveAll:
4921     CC = CC_PreserveAll;
4922     break;
4923   default: llvm_unreachable("unexpected attribute kind");
4924   }
4925 
4926   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
4927   const TargetInfo &TI = Context.getTargetInfo();
4928   // CUDA functions may have host and/or device attributes which indicate
4929   // their targeted execution environment, therefore the calling convention
4930   // of functions in CUDA should be checked against the target deduced based
4931   // on their host/device attributes.
4932   if (LangOpts.CUDA) {
4933     auto *Aux = Context.getAuxTargetInfo();
4934     auto CudaTarget = IdentifyCUDATarget(FD);
4935     bool CheckHost = false, CheckDevice = false;
4936     switch (CudaTarget) {
4937     case CFT_HostDevice:
4938       CheckHost = true;
4939       CheckDevice = true;
4940       break;
4941     case CFT_Host:
4942       CheckHost = true;
4943       break;
4944     case CFT_Device:
4945     case CFT_Global:
4946       CheckDevice = true;
4947       break;
4948     case CFT_InvalidTarget:
4949       llvm_unreachable("unexpected cuda target");
4950     }
4951     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
4952     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
4953     if (CheckHost && HostTI)
4954       A = HostTI->checkCallingConvention(CC);
4955     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
4956       A = DeviceTI->checkCallingConvention(CC);
4957   } else {
4958     A = TI.checkCallingConvention(CC);
4959   }
4960 
4961   switch (A) {
4962   case TargetInfo::CCCR_OK:
4963     break;
4964 
4965   case TargetInfo::CCCR_Ignore:
4966     // Treat an ignored convention as if it was an explicit C calling convention
4967     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
4968     // that command line flags that change the default convention to
4969     // __vectorcall don't affect declarations marked __stdcall.
4970     CC = CC_C;
4971     break;
4972 
4973   case TargetInfo::CCCR_Error:
4974     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
4975         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4976     break;
4977 
4978   case TargetInfo::CCCR_Warning: {
4979     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
4980         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4981 
4982     // This convention is not valid for the target. Use the default function or
4983     // method calling convention.
4984     bool IsCXXMethod = false, IsVariadic = false;
4985     if (FD) {
4986       IsCXXMethod = FD->isCXXInstanceMember();
4987       IsVariadic = FD->isVariadic();
4988     }
4989     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4990     break;
4991   }
4992   }
4993 
4994   Attrs.setProcessingCache((unsigned) CC);
4995   return false;
4996 }
4997 
4998 /// Pointer-like types in the default address space.
4999 static bool isValidSwiftContextType(QualType Ty) {
5000   if (!Ty->hasPointerRepresentation())
5001     return Ty->isDependentType();
5002   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5003 }
5004 
5005 /// Pointers and references in the default address space.
5006 static bool isValidSwiftIndirectResultType(QualType Ty) {
5007   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5008     Ty = PtrType->getPointeeType();
5009   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5010     Ty = RefType->getPointeeType();
5011   } else {
5012     return Ty->isDependentType();
5013   }
5014   return Ty.getAddressSpace() == LangAS::Default;
5015 }
5016 
5017 /// Pointers and references to pointers in the default address space.
5018 static bool isValidSwiftErrorResultType(QualType Ty) {
5019   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5020     Ty = PtrType->getPointeeType();
5021   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5022     Ty = RefType->getPointeeType();
5023   } else {
5024     return Ty->isDependentType();
5025   }
5026   if (!Ty.getQualifiers().empty())
5027     return false;
5028   return isValidSwiftContextType(Ty);
5029 }
5030 
5031 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5032                                ParameterABI abi) {
5033 
5034   QualType type = cast<ParmVarDecl>(D)->getType();
5035 
5036   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5037     if (existingAttr->getABI() != abi) {
5038       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5039           << getParameterABISpelling(abi) << existingAttr;
5040       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5041       return;
5042     }
5043   }
5044 
5045   switch (abi) {
5046   case ParameterABI::Ordinary:
5047     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5048 
5049   case ParameterABI::SwiftContext:
5050     if (!isValidSwiftContextType(type)) {
5051       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5052           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5053     }
5054     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5055     return;
5056 
5057   case ParameterABI::SwiftAsyncContext:
5058     if (!isValidSwiftContextType(type)) {
5059       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5060           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5061     }
5062     D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5063     return;
5064 
5065   case ParameterABI::SwiftErrorResult:
5066     if (!isValidSwiftErrorResultType(type)) {
5067       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5068           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5069     }
5070     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5071     return;
5072 
5073   case ParameterABI::SwiftIndirectResult:
5074     if (!isValidSwiftIndirectResultType(type)) {
5075       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5076           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5077     }
5078     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5079     return;
5080   }
5081   llvm_unreachable("bad parameter ABI attribute");
5082 }
5083 
5084 /// Checks a regparm attribute, returning true if it is ill-formed and
5085 /// otherwise setting numParams to the appropriate value.
5086 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5087   if (AL.isInvalid())
5088     return true;
5089 
5090   if (!AL.checkExactlyNumArgs(*this, 1)) {
5091     AL.setInvalid();
5092     return true;
5093   }
5094 
5095   uint32_t NP;
5096   Expr *NumParamsExpr = AL.getArgAsExpr(0);
5097   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5098     AL.setInvalid();
5099     return true;
5100   }
5101 
5102   if (Context.getTargetInfo().getRegParmMax() == 0) {
5103     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5104       << NumParamsExpr->getSourceRange();
5105     AL.setInvalid();
5106     return true;
5107   }
5108 
5109   numParams = NP;
5110   if (numParams > Context.getTargetInfo().getRegParmMax()) {
5111     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5112       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5113     AL.setInvalid();
5114     return true;
5115   }
5116 
5117   return false;
5118 }
5119 
5120 // Checks whether an argument of launch_bounds attribute is
5121 // acceptable, performs implicit conversion to Rvalue, and returns
5122 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5123 // and may output an error.
5124 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5125                                      const CUDALaunchBoundsAttr &AL,
5126                                      const unsigned Idx) {
5127   if (S.DiagnoseUnexpandedParameterPack(E))
5128     return nullptr;
5129 
5130   // Accept template arguments for now as they depend on something else.
5131   // We'll get to check them when they eventually get instantiated.
5132   if (E->isValueDependent())
5133     return E;
5134 
5135   Optional<llvm::APSInt> I = llvm::APSInt(64);
5136   if (!(I = E->getIntegerConstantExpr(S.Context))) {
5137     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5138         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5139     return nullptr;
5140   }
5141   // Make sure we can fit it in 32 bits.
5142   if (!I->isIntN(32)) {
5143     S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5144         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5145     return nullptr;
5146   }
5147   if (*I < 0)
5148     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5149         << &AL << Idx << E->getSourceRange();
5150 
5151   // We may need to perform implicit conversion of the argument.
5152   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5153       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5154   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5155   assert(!ValArg.isInvalid() &&
5156          "Unexpected PerformCopyInitialization() failure.");
5157 
5158   return ValArg.getAs<Expr>();
5159 }
5160 
5161 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5162                                Expr *MaxThreads, Expr *MinBlocks) {
5163   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5164   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5165   if (MaxThreads == nullptr)
5166     return;
5167 
5168   if (MinBlocks) {
5169     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5170     if (MinBlocks == nullptr)
5171       return;
5172   }
5173 
5174   D->addAttr(::new (Context)
5175                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5176 }
5177 
5178 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5179   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5180     return;
5181 
5182   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5183                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5184 }
5185 
5186 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5187                                           const ParsedAttr &AL) {
5188   if (!AL.isArgIdent(0)) {
5189     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5190         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5191     return;
5192   }
5193 
5194   ParamIdx ArgumentIdx;
5195   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5196                                            ArgumentIdx))
5197     return;
5198 
5199   ParamIdx TypeTagIdx;
5200   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5201                                            TypeTagIdx))
5202     return;
5203 
5204   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5205   if (IsPointer) {
5206     // Ensure that buffer has a pointer type.
5207     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5208     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5209         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5210       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5211   }
5212 
5213   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5214       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5215       IsPointer));
5216 }
5217 
5218 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5219                                          const ParsedAttr &AL) {
5220   if (!AL.isArgIdent(0)) {
5221     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5222         << AL << 1 << AANT_ArgumentIdentifier;
5223     return;
5224   }
5225 
5226   if (!AL.checkExactlyNumArgs(S, 1))
5227     return;
5228 
5229   if (!isa<VarDecl>(D)) {
5230     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5231         << AL << ExpectedVariable;
5232     return;
5233   }
5234 
5235   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5236   TypeSourceInfo *MatchingCTypeLoc = nullptr;
5237   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5238   assert(MatchingCTypeLoc && "no type source info for attribute argument");
5239 
5240   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5241       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5242       AL.getMustBeNull()));
5243 }
5244 
5245 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5246   ParamIdx ArgCount;
5247 
5248   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5249                                            ArgCount,
5250                                            true /* CanIndexImplicitThis */))
5251     return;
5252 
5253   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5254   D->addAttr(::new (S.Context)
5255                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5256 }
5257 
5258 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5259                                              const ParsedAttr &AL) {
5260   uint32_t Count = 0, Offset = 0;
5261   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5262     return;
5263   if (AL.getNumArgs() == 2) {
5264     Expr *Arg = AL.getArgAsExpr(1);
5265     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5266       return;
5267     if (Count < Offset) {
5268       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5269           << &AL << 0 << Count << Arg->getBeginLoc();
5270       return;
5271     }
5272   }
5273   D->addAttr(::new (S.Context)
5274                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5275 }
5276 
5277 namespace {
5278 struct IntrinToName {
5279   uint32_t Id;
5280   int32_t FullName;
5281   int32_t ShortName;
5282 };
5283 } // unnamed namespace
5284 
5285 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5286                                  ArrayRef<IntrinToName> Map,
5287                                  const char *IntrinNames) {
5288   if (AliasName.startswith("__arm_"))
5289     AliasName = AliasName.substr(6);
5290   const IntrinToName *It = std::lower_bound(
5291       Map.begin(), Map.end(), BuiltinID,
5292       [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
5293   if (It == Map.end() || It->Id != BuiltinID)
5294     return false;
5295   StringRef FullName(&IntrinNames[It->FullName]);
5296   if (AliasName == FullName)
5297     return true;
5298   if (It->ShortName == -1)
5299     return false;
5300   StringRef ShortName(&IntrinNames[It->ShortName]);
5301   return AliasName == ShortName;
5302 }
5303 
5304 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5305 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5306   // The included file defines:
5307   // - ArrayRef<IntrinToName> Map
5308   // - const char IntrinNames[]
5309   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5310 }
5311 
5312 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5313 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5314   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5315 }
5316 
5317 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5318                              StringRef AliasName) {
5319   if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5320     BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5321   return BuiltinID >= AArch64::FirstSVEBuiltin &&
5322          BuiltinID <= AArch64::LastSVEBuiltin;
5323 }
5324 
5325 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5326   if (!AL.isArgIdent(0)) {
5327     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5328         << AL << 1 << AANT_ArgumentIdentifier;
5329     return;
5330   }
5331 
5332   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5333   unsigned BuiltinID = Ident->getBuiltinID();
5334   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5335 
5336   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5337   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5338       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5339        !ArmCdeAliasValid(BuiltinID, AliasName))) {
5340     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5341     return;
5342   }
5343 
5344   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5345 }
5346 
5347 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5348   return BuiltinID >= RISCV::FirstRVVBuiltin &&
5349          BuiltinID <= RISCV::LastRVVBuiltin;
5350 }
5351 
5352 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5353                                         const ParsedAttr &AL) {
5354   if (!AL.isArgIdent(0)) {
5355     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5356         << AL << 1 << AANT_ArgumentIdentifier;
5357     return;
5358   }
5359 
5360   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5361   unsigned BuiltinID = Ident->getBuiltinID();
5362   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5363 
5364   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5365   bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5366   bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5367   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5368       (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5369        !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5370       (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5371       (!IsAArch64 && !IsARM && !IsRISCV)) {
5372     S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5373     return;
5374   }
5375 
5376   D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5377 }
5378 
5379 //===----------------------------------------------------------------------===//
5380 // Checker-specific attribute handlers.
5381 //===----------------------------------------------------------------------===//
5382 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5383   return QT->isDependentType() || QT->isObjCRetainableType();
5384 }
5385 
5386 static bool isValidSubjectOfNSAttribute(QualType QT) {
5387   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5388          QT->isObjCNSObjectType();
5389 }
5390 
5391 static bool isValidSubjectOfCFAttribute(QualType QT) {
5392   return QT->isDependentType() || QT->isPointerType() ||
5393          isValidSubjectOfNSAttribute(QT);
5394 }
5395 
5396 static bool isValidSubjectOfOSAttribute(QualType QT) {
5397   if (QT->isDependentType())
5398     return true;
5399   QualType PT = QT->getPointeeType();
5400   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5401 }
5402 
5403 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5404                             RetainOwnershipKind K,
5405                             bool IsTemplateInstantiation) {
5406   ValueDecl *VD = cast<ValueDecl>(D);
5407   switch (K) {
5408   case RetainOwnershipKind::OS:
5409     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5410         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5411         diag::warn_ns_attribute_wrong_parameter_type,
5412         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5413     return;
5414   case RetainOwnershipKind::NS:
5415     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5416         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5417 
5418         // These attributes are normally just advisory, but in ARC, ns_consumed
5419         // is significant.  Allow non-dependent code to contain inappropriate
5420         // attributes even in ARC, but require template instantiations to be
5421         // set up correctly.
5422         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5423              ? diag::err_ns_attribute_wrong_parameter_type
5424              : diag::warn_ns_attribute_wrong_parameter_type),
5425         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5426     return;
5427   case RetainOwnershipKind::CF:
5428     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5429         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5430         diag::warn_ns_attribute_wrong_parameter_type,
5431         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5432     return;
5433   }
5434 }
5435 
5436 static Sema::RetainOwnershipKind
5437 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5438   switch (AL.getKind()) {
5439   case ParsedAttr::AT_CFConsumed:
5440   case ParsedAttr::AT_CFReturnsRetained:
5441   case ParsedAttr::AT_CFReturnsNotRetained:
5442     return Sema::RetainOwnershipKind::CF;
5443   case ParsedAttr::AT_OSConsumesThis:
5444   case ParsedAttr::AT_OSConsumed:
5445   case ParsedAttr::AT_OSReturnsRetained:
5446   case ParsedAttr::AT_OSReturnsNotRetained:
5447   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5448   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5449     return Sema::RetainOwnershipKind::OS;
5450   case ParsedAttr::AT_NSConsumesSelf:
5451   case ParsedAttr::AT_NSConsumed:
5452   case ParsedAttr::AT_NSReturnsRetained:
5453   case ParsedAttr::AT_NSReturnsNotRetained:
5454   case ParsedAttr::AT_NSReturnsAutoreleased:
5455     return Sema::RetainOwnershipKind::NS;
5456   default:
5457     llvm_unreachable("Wrong argument supplied");
5458   }
5459 }
5460 
5461 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5462   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5463     return false;
5464 
5465   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5466       << "'ns_returns_retained'" << 0 << 0;
5467   return true;
5468 }
5469 
5470 /// \return whether the parameter is a pointer to OSObject pointer.
5471 static bool isValidOSObjectOutParameter(const Decl *D) {
5472   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5473   if (!PVD)
5474     return false;
5475   QualType QT = PVD->getType();
5476   QualType PT = QT->getPointeeType();
5477   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5478 }
5479 
5480 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5481                                         const ParsedAttr &AL) {
5482   QualType ReturnType;
5483   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5484 
5485   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5486     ReturnType = MD->getReturnType();
5487   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5488              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5489     return; // ignore: was handled as a type attribute
5490   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5491     ReturnType = PD->getType();
5492   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5493     ReturnType = FD->getReturnType();
5494   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5495     // Attributes on parameters are used for out-parameters,
5496     // passed as pointers-to-pointers.
5497     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5498             ? /*pointer-to-CF-pointer*/2
5499             : /*pointer-to-OSObject-pointer*/3;
5500     ReturnType = Param->getType()->getPointeeType();
5501     if (ReturnType.isNull()) {
5502       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5503           << AL << DiagID << AL.getRange();
5504       return;
5505     }
5506   } else if (AL.isUsedAsTypeAttr()) {
5507     return;
5508   } else {
5509     AttributeDeclKind ExpectedDeclKind;
5510     switch (AL.getKind()) {
5511     default: llvm_unreachable("invalid ownership attribute");
5512     case ParsedAttr::AT_NSReturnsRetained:
5513     case ParsedAttr::AT_NSReturnsAutoreleased:
5514     case ParsedAttr::AT_NSReturnsNotRetained:
5515       ExpectedDeclKind = ExpectedFunctionOrMethod;
5516       break;
5517 
5518     case ParsedAttr::AT_OSReturnsRetained:
5519     case ParsedAttr::AT_OSReturnsNotRetained:
5520     case ParsedAttr::AT_CFReturnsRetained:
5521     case ParsedAttr::AT_CFReturnsNotRetained:
5522       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5523       break;
5524     }
5525     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5526         << AL.getRange() << AL << ExpectedDeclKind;
5527     return;
5528   }
5529 
5530   bool TypeOK;
5531   bool Cf;
5532   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5533   switch (AL.getKind()) {
5534   default: llvm_unreachable("invalid ownership attribute");
5535   case ParsedAttr::AT_NSReturnsRetained:
5536     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5537     Cf = false;
5538     break;
5539 
5540   case ParsedAttr::AT_NSReturnsAutoreleased:
5541   case ParsedAttr::AT_NSReturnsNotRetained:
5542     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5543     Cf = false;
5544     break;
5545 
5546   case ParsedAttr::AT_CFReturnsRetained:
5547   case ParsedAttr::AT_CFReturnsNotRetained:
5548     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5549     Cf = true;
5550     break;
5551 
5552   case ParsedAttr::AT_OSReturnsRetained:
5553   case ParsedAttr::AT_OSReturnsNotRetained:
5554     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5555     Cf = true;
5556     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5557     break;
5558   }
5559 
5560   if (!TypeOK) {
5561     if (AL.isUsedAsTypeAttr())
5562       return;
5563 
5564     if (isa<ParmVarDecl>(D)) {
5565       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5566           << AL << ParmDiagID << AL.getRange();
5567     } else {
5568       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5569       enum : unsigned {
5570         Function,
5571         Method,
5572         Property
5573       } SubjectKind = Function;
5574       if (isa<ObjCMethodDecl>(D))
5575         SubjectKind = Method;
5576       else if (isa<ObjCPropertyDecl>(D))
5577         SubjectKind = Property;
5578       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5579           << AL << SubjectKind << Cf << AL.getRange();
5580     }
5581     return;
5582   }
5583 
5584   switch (AL.getKind()) {
5585     default:
5586       llvm_unreachable("invalid ownership attribute");
5587     case ParsedAttr::AT_NSReturnsAutoreleased:
5588       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5589       return;
5590     case ParsedAttr::AT_CFReturnsNotRetained:
5591       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5592       return;
5593     case ParsedAttr::AT_NSReturnsNotRetained:
5594       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5595       return;
5596     case ParsedAttr::AT_CFReturnsRetained:
5597       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5598       return;
5599     case ParsedAttr::AT_NSReturnsRetained:
5600       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5601       return;
5602     case ParsedAttr::AT_OSReturnsRetained:
5603       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5604       return;
5605     case ParsedAttr::AT_OSReturnsNotRetained:
5606       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5607       return;
5608   };
5609 }
5610 
5611 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5612                                               const ParsedAttr &Attrs) {
5613   const int EP_ObjCMethod = 1;
5614   const int EP_ObjCProperty = 2;
5615 
5616   SourceLocation loc = Attrs.getLoc();
5617   QualType resultType;
5618   if (isa<ObjCMethodDecl>(D))
5619     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5620   else
5621     resultType = cast<ObjCPropertyDecl>(D)->getType();
5622 
5623   if (!resultType->isReferenceType() &&
5624       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5625     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5626         << SourceRange(loc) << Attrs
5627         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5628         << /*non-retainable pointer*/ 2;
5629 
5630     // Drop the attribute.
5631     return;
5632   }
5633 
5634   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5635 }
5636 
5637 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5638                                         const ParsedAttr &Attrs) {
5639   const auto *Method = cast<ObjCMethodDecl>(D);
5640 
5641   const DeclContext *DC = Method->getDeclContext();
5642   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5643     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5644                                                                       << 0;
5645     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5646     return;
5647   }
5648   if (Method->getMethodFamily() == OMF_dealloc) {
5649     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5650                                                                       << 1;
5651     return;
5652   }
5653 
5654   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5655 }
5656 
5657 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
5658   auto *E = AL.getArgAsExpr(0);
5659   auto Loc = E ? E->getBeginLoc() : AL.getLoc();
5660 
5661   auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
5662   if (!DRE) {
5663     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
5664     return;
5665   }
5666 
5667   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
5668   if (!VD) {
5669     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
5670     return;
5671   }
5672 
5673   if (!isNSStringType(VD->getType(), S.Context) &&
5674       !isCFStringType(VD->getType(), S.Context)) {
5675     S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
5676     return;
5677   }
5678 
5679   D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
5680 }
5681 
5682 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5683   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5684 
5685   if (!Parm) {
5686     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5687     return;
5688   }
5689 
5690   // Typedefs only allow objc_bridge(id) and have some additional checking.
5691   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5692     if (!Parm->Ident->isStr("id")) {
5693       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5694       return;
5695     }
5696 
5697     // Only allow 'cv void *'.
5698     QualType T = TD->getUnderlyingType();
5699     if (!T->isVoidPointerType()) {
5700       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5701       return;
5702     }
5703   }
5704 
5705   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5706 }
5707 
5708 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5709                                         const ParsedAttr &AL) {
5710   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5711 
5712   if (!Parm) {
5713     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5714     return;
5715   }
5716 
5717   D->addAttr(::new (S.Context)
5718                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5719 }
5720 
5721 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5722                                         const ParsedAttr &AL) {
5723   IdentifierInfo *RelatedClass =
5724       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5725   if (!RelatedClass) {
5726     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5727     return;
5728   }
5729   IdentifierInfo *ClassMethod =
5730     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5731   IdentifierInfo *InstanceMethod =
5732     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5733   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5734       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5735 }
5736 
5737 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5738                                             const ParsedAttr &AL) {
5739   DeclContext *Ctx = D->getDeclContext();
5740 
5741   // This attribute can only be applied to methods in interfaces or class
5742   // extensions.
5743   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5744       !(isa<ObjCCategoryDecl>(Ctx) &&
5745         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5746     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5747     return;
5748   }
5749 
5750   ObjCInterfaceDecl *IFace;
5751   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5752     IFace = CatDecl->getClassInterface();
5753   else
5754     IFace = cast<ObjCInterfaceDecl>(Ctx);
5755 
5756   if (!IFace)
5757     return;
5758 
5759   IFace->setHasDesignatedInitializers();
5760   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5761 }
5762 
5763 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5764   StringRef MetaDataName;
5765   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5766     return;
5767   D->addAttr(::new (S.Context)
5768                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5769 }
5770 
5771 // When a user wants to use objc_boxable with a union or struct
5772 // but they don't have access to the declaration (legacy/third-party code)
5773 // then they can 'enable' this feature with a typedef:
5774 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
5775 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5776   bool notify = false;
5777 
5778   auto *RD = dyn_cast<RecordDecl>(D);
5779   if (RD && RD->getDefinition()) {
5780     RD = RD->getDefinition();
5781     notify = true;
5782   }
5783 
5784   if (RD) {
5785     ObjCBoxableAttr *BoxableAttr =
5786         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5787     RD->addAttr(BoxableAttr);
5788     if (notify) {
5789       // we need to notify ASTReader/ASTWriter about
5790       // modification of existing declaration
5791       if (ASTMutationListener *L = S.getASTMutationListener())
5792         L->AddedAttributeToRecord(BoxableAttr, RD);
5793     }
5794   }
5795 }
5796 
5797 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5798   if (hasDeclarator(D)) return;
5799 
5800   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
5801       << AL.getRange() << AL << ExpectedVariable;
5802 }
5803 
5804 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
5805                                           const ParsedAttr &AL) {
5806   const auto *VD = cast<ValueDecl>(D);
5807   QualType QT = VD->getType();
5808 
5809   if (!QT->isDependentType() &&
5810       !QT->isObjCLifetimeType()) {
5811     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
5812       << QT;
5813     return;
5814   }
5815 
5816   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5817 
5818   // If we have no lifetime yet, check the lifetime we're presumably
5819   // going to infer.
5820   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5821     Lifetime = QT->getObjCARCImplicitLifetime();
5822 
5823   switch (Lifetime) {
5824   case Qualifiers::OCL_None:
5825     assert(QT->isDependentType() &&
5826            "didn't infer lifetime for non-dependent type?");
5827     break;
5828 
5829   case Qualifiers::OCL_Weak:   // meaningful
5830   case Qualifiers::OCL_Strong: // meaningful
5831     break;
5832 
5833   case Qualifiers::OCL_ExplicitNone:
5834   case Qualifiers::OCL_Autoreleasing:
5835     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5836         << (Lifetime == Qualifiers::OCL_Autoreleasing);
5837     break;
5838   }
5839 
5840   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
5841 }
5842 
5843 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5844   // Make sure that there is a string literal as the annotation's single
5845   // argument.
5846   StringRef Str;
5847   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
5848     return;
5849 
5850   D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
5851 }
5852 
5853 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
5854   // Make sure that there is a string literal as the annotation's single
5855   // argument.
5856   StringRef BT;
5857   if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
5858     return;
5859 
5860   // Warn about duplicate attributes if they have different arguments, but drop
5861   // any duplicate attributes regardless.
5862   if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
5863     if (Other->getSwiftType() != BT)
5864       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
5865     return;
5866   }
5867 
5868   D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
5869 }
5870 
5871 static bool isErrorParameter(Sema &S, QualType QT) {
5872   const auto *PT = QT->getAs<PointerType>();
5873   if (!PT)
5874     return false;
5875 
5876   QualType Pointee = PT->getPointeeType();
5877 
5878   // Check for NSError**.
5879   if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
5880     if (const auto *ID = OPT->getInterfaceDecl())
5881       if (ID->getIdentifier() == S.getNSErrorIdent())
5882         return true;
5883 
5884   // Check for CFError**.
5885   if (const auto *PT = Pointee->getAs<PointerType>())
5886     if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
5887       if (S.isCFError(RT->getDecl()))
5888         return true;
5889 
5890   return false;
5891 }
5892 
5893 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
5894   auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5895     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
5896       if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
5897         return true;
5898     }
5899 
5900     S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
5901         << AL << isa<ObjCMethodDecl>(D);
5902     return false;
5903   };
5904 
5905   auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5906     // - C, ObjC, and block pointers are definitely okay.
5907     // - References are definitely not okay.
5908     // - nullptr_t is weird, but acceptable.
5909     QualType RT = getFunctionOrMethodResultType(D);
5910     if (RT->hasPointerRepresentation() && !RT->isReferenceType())
5911       return true;
5912 
5913     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
5914         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
5915         << /*pointer*/ 1;
5916     return false;
5917   };
5918 
5919   auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5920     QualType RT = getFunctionOrMethodResultType(D);
5921     if (RT->isIntegralType(S.Context))
5922       return true;
5923 
5924     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
5925         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
5926         << /*integral*/ 0;
5927     return false;
5928   };
5929 
5930   if (D->isInvalidDecl())
5931     return;
5932 
5933   IdentifierLoc *Loc = AL.getArgAsIdent(0);
5934   SwiftErrorAttr::ConventionKind Convention;
5935   if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
5936                                                   Convention)) {
5937     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5938         << AL << Loc->Ident;
5939     return;
5940   }
5941 
5942   switch (Convention) {
5943   case SwiftErrorAttr::None:
5944     // No additional validation required.
5945     break;
5946 
5947   case SwiftErrorAttr::NonNullError:
5948     if (!hasErrorParameter(S, D, AL))
5949       return;
5950     break;
5951 
5952   case SwiftErrorAttr::NullResult:
5953     if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
5954       return;
5955     break;
5956 
5957   case SwiftErrorAttr::NonZeroResult:
5958   case SwiftErrorAttr::ZeroResult:
5959     if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
5960       return;
5961     break;
5962   }
5963 
5964   D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
5965 }
5966 
5967 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
5968                                       const SwiftAsyncErrorAttr *ErrorAttr,
5969                                       const SwiftAsyncAttr *AsyncAttr) {
5970   if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
5971     if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
5972       S.Diag(AsyncAttr->getLocation(),
5973              diag::err_swift_async_error_without_swift_async)
5974           << AsyncAttr << isa<ObjCMethodDecl>(D);
5975     }
5976     return;
5977   }
5978 
5979   const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
5980       D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
5981   // handleSwiftAsyncAttr already verified the type is correct, so no need to
5982   // double-check it here.
5983   const auto *FuncTy = HandlerParam->getType()
5984                            ->castAs<BlockPointerType>()
5985                            ->getPointeeType()
5986                            ->getAs<FunctionProtoType>();
5987   ArrayRef<QualType> BlockParams;
5988   if (FuncTy)
5989     BlockParams = FuncTy->getParamTypes();
5990 
5991   switch (ErrorAttr->getConvention()) {
5992   case SwiftAsyncErrorAttr::ZeroArgument:
5993   case SwiftAsyncErrorAttr::NonZeroArgument: {
5994     uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
5995     if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
5996       S.Diag(ErrorAttr->getLocation(),
5997              diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
5998       return;
5999     }
6000     QualType ErrorParam = BlockParams[ParamIdx - 1];
6001     if (!ErrorParam->isIntegralType(S.Context)) {
6002       StringRef ConvStr =
6003           ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6004               ? "zero_argument"
6005               : "nonzero_argument";
6006       S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6007           << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6008       return;
6009     }
6010     break;
6011   }
6012   case SwiftAsyncErrorAttr::NonNullError: {
6013     bool AnyErrorParams = false;
6014     for (QualType Param : BlockParams) {
6015       // Check for NSError *.
6016       if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6017         if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6018           if (ID->getIdentifier() == S.getNSErrorIdent()) {
6019             AnyErrorParams = true;
6020             break;
6021           }
6022         }
6023       }
6024       // Check for CFError *.
6025       if (const auto *PtrTy = Param->getAs<PointerType>()) {
6026         if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6027           if (S.isCFError(RT->getDecl())) {
6028             AnyErrorParams = true;
6029             break;
6030           }
6031         }
6032       }
6033     }
6034 
6035     if (!AnyErrorParams) {
6036       S.Diag(ErrorAttr->getLocation(),
6037              diag::err_swift_async_error_no_error_parameter)
6038           << ErrorAttr << isa<ObjCMethodDecl>(D);
6039       return;
6040     }
6041     break;
6042   }
6043   case SwiftAsyncErrorAttr::None:
6044     break;
6045   }
6046 }
6047 
6048 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6049   IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6050   SwiftAsyncErrorAttr::ConventionKind ConvKind;
6051   if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6052                                                        ConvKind)) {
6053     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6054         << AL << IDLoc->Ident;
6055     return;
6056   }
6057 
6058   uint32_t ParamIdx = 0;
6059   switch (ConvKind) {
6060   case SwiftAsyncErrorAttr::ZeroArgument:
6061   case SwiftAsyncErrorAttr::NonZeroArgument: {
6062     if (!AL.checkExactlyNumArgs(S, 2))
6063       return;
6064 
6065     Expr *IdxExpr = AL.getArgAsExpr(1);
6066     if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6067       return;
6068     break;
6069   }
6070   case SwiftAsyncErrorAttr::NonNullError:
6071   case SwiftAsyncErrorAttr::None: {
6072     if (!AL.checkExactlyNumArgs(S, 1))
6073       return;
6074     break;
6075   }
6076   }
6077 
6078   auto *ErrorAttr =
6079       ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6080   D->addAttr(ErrorAttr);
6081 
6082   if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6083     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6084 }
6085 
6086 // For a function, this will validate a compound Swift name, e.g.
6087 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6088 // the function will output the number of parameter names, and whether this is a
6089 // single-arg initializer.
6090 //
6091 // For a type, enum constant, property, or variable declaration, this will
6092 // validate either a simple identifier, or a qualified
6093 // <code>context.identifier</code> name.
6094 static bool
6095 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6096                           StringRef Name, unsigned &SwiftParamCount,
6097                           bool &IsSingleParamInit) {
6098   SwiftParamCount = 0;
6099   IsSingleParamInit = false;
6100 
6101   // Check whether this will be mapped to a getter or setter of a property.
6102   bool IsGetter = false, IsSetter = false;
6103   if (Name.startswith("getter:")) {
6104     IsGetter = true;
6105     Name = Name.substr(7);
6106   } else if (Name.startswith("setter:")) {
6107     IsSetter = true;
6108     Name = Name.substr(7);
6109   }
6110 
6111   if (Name.back() != ')') {
6112     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6113     return false;
6114   }
6115 
6116   bool IsMember = false;
6117   StringRef ContextName, BaseName, Parameters;
6118 
6119   std::tie(BaseName, Parameters) = Name.split('(');
6120 
6121   // Split at the first '.', if it exists, which separates the context name
6122   // from the base name.
6123   std::tie(ContextName, BaseName) = BaseName.split('.');
6124   if (BaseName.empty()) {
6125     BaseName = ContextName;
6126     ContextName = StringRef();
6127   } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6128     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6129         << AL << /*context*/ 1;
6130     return false;
6131   } else {
6132     IsMember = true;
6133   }
6134 
6135   if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6136     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6137         << AL << /*basename*/ 0;
6138     return false;
6139   }
6140 
6141   bool IsSubscript = BaseName == "subscript";
6142   // A subscript accessor must be a getter or setter.
6143   if (IsSubscript && !IsGetter && !IsSetter) {
6144     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6145         << AL << /* getter or setter */ 0;
6146     return false;
6147   }
6148 
6149   if (Parameters.empty()) {
6150     S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6151     return false;
6152   }
6153 
6154   assert(Parameters.back() == ')' && "expected ')'");
6155   Parameters = Parameters.drop_back(); // ')'
6156 
6157   if (Parameters.empty()) {
6158     // Setters and subscripts must have at least one parameter.
6159     if (IsSubscript) {
6160       S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6161           << AL << /* have at least one parameter */1;
6162       return false;
6163     }
6164 
6165     if (IsSetter) {
6166       S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6167       return false;
6168     }
6169 
6170     return true;
6171   }
6172 
6173   if (Parameters.back() != ':') {
6174     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6175     return false;
6176   }
6177 
6178   StringRef CurrentParam;
6179   llvm::Optional<unsigned> SelfLocation;
6180   unsigned NewValueCount = 0;
6181   llvm::Optional<unsigned> NewValueLocation;
6182   do {
6183     std::tie(CurrentParam, Parameters) = Parameters.split(':');
6184 
6185     if (!isValidAsciiIdentifier(CurrentParam)) {
6186       S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6187           << AL << /*parameter*/2;
6188       return false;
6189     }
6190 
6191     if (IsMember && CurrentParam == "self") {
6192       // "self" indicates the "self" argument for a member.
6193 
6194       // More than one "self"?
6195       if (SelfLocation) {
6196         S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6197         return false;
6198       }
6199 
6200       // The "self" location is the current parameter.
6201       SelfLocation = SwiftParamCount;
6202     } else if (CurrentParam == "newValue") {
6203       // "newValue" indicates the "newValue" argument for a setter.
6204 
6205       // There should only be one 'newValue', but it's only significant for
6206       // subscript accessors, so don't error right away.
6207       ++NewValueCount;
6208 
6209       NewValueLocation = SwiftParamCount;
6210     }
6211 
6212     ++SwiftParamCount;
6213   } while (!Parameters.empty());
6214 
6215   // Only instance subscripts are currently supported.
6216   if (IsSubscript && !SelfLocation) {
6217     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6218         << AL << /*have a 'self:' parameter*/2;
6219     return false;
6220   }
6221 
6222   IsSingleParamInit =
6223         SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6224 
6225   // Check the number of parameters for a getter/setter.
6226   if (IsGetter || IsSetter) {
6227     // Setters have one parameter for the new value.
6228     unsigned NumExpectedParams = IsGetter ? 0 : 1;
6229     unsigned ParamDiag =
6230         IsGetter ? diag::warn_attr_swift_name_getter_parameters
6231                  : diag::warn_attr_swift_name_setter_parameters;
6232 
6233     // Instance methods have one parameter for "self".
6234     if (SelfLocation)
6235       ++NumExpectedParams;
6236 
6237     // Subscripts may have additional parameters beyond the expected params for
6238     // the index.
6239     if (IsSubscript) {
6240       if (SwiftParamCount < NumExpectedParams) {
6241         S.Diag(Loc, ParamDiag) << AL;
6242         return false;
6243       }
6244 
6245       // A subscript setter must explicitly label its newValue parameter to
6246       // distinguish it from index parameters.
6247       if (IsSetter) {
6248         if (!NewValueLocation) {
6249           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6250               << AL;
6251           return false;
6252         }
6253         if (NewValueCount > 1) {
6254           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6255               << AL;
6256           return false;
6257         }
6258       } else {
6259         // Subscript getters should have no 'newValue:' parameter.
6260         if (NewValueLocation) {
6261           S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6262               << AL;
6263           return false;
6264         }
6265       }
6266     } else {
6267       // Property accessors must have exactly the number of expected params.
6268       if (SwiftParamCount != NumExpectedParams) {
6269         S.Diag(Loc, ParamDiag) << AL;
6270         return false;
6271       }
6272     }
6273   }
6274 
6275   return true;
6276 }
6277 
6278 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6279                              const ParsedAttr &AL, bool IsAsync) {
6280   if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6281     ArrayRef<ParmVarDecl*> Params;
6282     unsigned ParamCount;
6283 
6284     if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6285       ParamCount = Method->getSelector().getNumArgs();
6286       Params = Method->parameters().slice(0, ParamCount);
6287     } else {
6288       const auto *F = cast<FunctionDecl>(D);
6289 
6290       ParamCount = F->getNumParams();
6291       Params = F->parameters();
6292 
6293       if (!F->hasWrittenPrototype()) {
6294         Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6295             << ExpectedFunctionWithProtoType;
6296         return false;
6297       }
6298     }
6299 
6300     // The async name drops the last callback parameter.
6301     if (IsAsync) {
6302       if (ParamCount == 0) {
6303         Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6304             << AL << isa<ObjCMethodDecl>(D);
6305         return false;
6306       }
6307       ParamCount -= 1;
6308     }
6309 
6310     unsigned SwiftParamCount;
6311     bool IsSingleParamInit;
6312     if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6313                                    SwiftParamCount, IsSingleParamInit))
6314       return false;
6315 
6316     bool ParamCountValid;
6317     if (SwiftParamCount == ParamCount) {
6318       ParamCountValid = true;
6319     } else if (SwiftParamCount > ParamCount) {
6320       ParamCountValid = IsSingleParamInit && ParamCount == 0;
6321     } else {
6322       // We have fewer Swift parameters than Objective-C parameters, but that
6323       // might be because we've transformed some of them. Check for potential
6324       // "out" parameters and err on the side of not warning.
6325       unsigned MaybeOutParamCount =
6326           llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6327             QualType ParamTy = Param->getType();
6328             if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6329               return !ParamTy->getPointeeType().isConstQualified();
6330             return false;
6331           });
6332 
6333       ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6334     }
6335 
6336     if (!ParamCountValid) {
6337       Diag(Loc, diag::warn_attr_swift_name_num_params)
6338           << (SwiftParamCount > ParamCount) << AL << ParamCount
6339           << SwiftParamCount;
6340       return false;
6341     }
6342   } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6343               isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6344               isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6345               isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6346              !IsAsync) {
6347     StringRef ContextName, BaseName;
6348 
6349     std::tie(ContextName, BaseName) = Name.split('.');
6350     if (BaseName.empty()) {
6351       BaseName = ContextName;
6352       ContextName = StringRef();
6353     } else if (!isValidAsciiIdentifier(ContextName)) {
6354       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6355           << /*context*/1;
6356       return false;
6357     }
6358 
6359     if (!isValidAsciiIdentifier(BaseName)) {
6360       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6361           << /*basename*/0;
6362       return false;
6363     }
6364   } else {
6365     Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6366     return false;
6367   }
6368   return true;
6369 }
6370 
6371 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6372   StringRef Name;
6373   SourceLocation Loc;
6374   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6375     return;
6376 
6377   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6378     return;
6379 
6380   D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6381 }
6382 
6383 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6384   StringRef Name;
6385   SourceLocation Loc;
6386   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6387     return;
6388 
6389   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6390     return;
6391 
6392   D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6393 }
6394 
6395 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6396   // Make sure that there is an identifier as the annotation's single argument.
6397   if (!AL.checkExactlyNumArgs(S, 1))
6398     return;
6399 
6400   if (!AL.isArgIdent(0)) {
6401     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6402         << AL << AANT_ArgumentIdentifier;
6403     return;
6404   }
6405 
6406   SwiftNewTypeAttr::NewtypeKind Kind;
6407   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6408   if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6409     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6410     return;
6411   }
6412 
6413   if (!isa<TypedefNameDecl>(D)) {
6414     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6415         << AL << "typedefs";
6416     return;
6417   }
6418 
6419   D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6420 }
6421 
6422 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6423   if (!AL.isArgIdent(0)) {
6424     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6425         << AL << 1 << AANT_ArgumentIdentifier;
6426     return;
6427   }
6428 
6429   SwiftAsyncAttr::Kind Kind;
6430   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6431   if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6432     S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6433     return;
6434   }
6435 
6436   ParamIdx Idx;
6437   if (Kind == SwiftAsyncAttr::None) {
6438     // If this is 'none', then there shouldn't be any additional arguments.
6439     if (!AL.checkExactlyNumArgs(S, 1))
6440       return;
6441   } else {
6442     // Non-none swift_async requires a completion handler index argument.
6443     if (!AL.checkExactlyNumArgs(S, 2))
6444       return;
6445 
6446     Expr *HandlerIdx = AL.getArgAsExpr(1);
6447     if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6448       return;
6449 
6450     const ParmVarDecl *CompletionBlock =
6451         getFunctionOrMethodParam(D, Idx.getASTIndex());
6452     QualType CompletionBlockType = CompletionBlock->getType();
6453     if (!CompletionBlockType->isBlockPointerType()) {
6454       S.Diag(CompletionBlock->getLocation(),
6455              diag::err_swift_async_bad_block_type)
6456           << CompletionBlock->getType();
6457       return;
6458     }
6459     QualType BlockTy =
6460         CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6461     if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6462       S.Diag(CompletionBlock->getLocation(),
6463              diag::err_swift_async_bad_block_type)
6464           << CompletionBlock->getType();
6465       return;
6466     }
6467   }
6468 
6469   auto *AsyncAttr =
6470       ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6471   D->addAttr(AsyncAttr);
6472 
6473   if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6474     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6475 }
6476 
6477 //===----------------------------------------------------------------------===//
6478 // Microsoft specific attribute handlers.
6479 //===----------------------------------------------------------------------===//
6480 
6481 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6482                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6483   if (const auto *UA = D->getAttr<UuidAttr>()) {
6484     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6485       return nullptr;
6486     if (!UA->getGuid().empty()) {
6487       Diag(UA->getLocation(), diag::err_mismatched_uuid);
6488       Diag(CI.getLoc(), diag::note_previous_uuid);
6489       D->dropAttr<UuidAttr>();
6490     }
6491   }
6492 
6493   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6494 }
6495 
6496 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6497   if (!S.LangOpts.CPlusPlus) {
6498     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6499         << AL << AttributeLangSupport::C;
6500     return;
6501   }
6502 
6503   StringRef OrigStrRef;
6504   SourceLocation LiteralLoc;
6505   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6506     return;
6507 
6508   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6509   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6510   StringRef StrRef = OrigStrRef;
6511   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6512     StrRef = StrRef.drop_front().drop_back();
6513 
6514   // Validate GUID length.
6515   if (StrRef.size() != 36) {
6516     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6517     return;
6518   }
6519 
6520   for (unsigned i = 0; i < 36; ++i) {
6521     if (i == 8 || i == 13 || i == 18 || i == 23) {
6522       if (StrRef[i] != '-') {
6523         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6524         return;
6525       }
6526     } else if (!isHexDigit(StrRef[i])) {
6527       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6528       return;
6529     }
6530   }
6531 
6532   // Convert to our parsed format and canonicalize.
6533   MSGuidDecl::Parts Parsed;
6534   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6535   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6536   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6537   for (unsigned i = 0; i != 8; ++i)
6538     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6539         .getAsInteger(16, Parsed.Part4And5[i]);
6540   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6541 
6542   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6543   // the only thing in the [] list, the [] too), and add an insertion of
6544   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
6545   // separating attributes nor of the [ and the ] are in the AST.
6546   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6547   // on cfe-dev.
6548   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6549     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6550 
6551   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6552   if (UA)
6553     D->addAttr(UA);
6554 }
6555 
6556 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6557   if (!S.LangOpts.CPlusPlus) {
6558     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6559         << AL << AttributeLangSupport::C;
6560     return;
6561   }
6562   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
6563       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
6564   if (IA) {
6565     D->addAttr(IA);
6566     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
6567   }
6568 }
6569 
6570 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6571   const auto *VD = cast<VarDecl>(D);
6572   if (!S.Context.getTargetInfo().isTLSSupported()) {
6573     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
6574     return;
6575   }
6576   if (VD->getTSCSpec() != TSCS_unspecified) {
6577     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
6578     return;
6579   }
6580   if (VD->hasLocalStorage()) {
6581     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
6582     return;
6583   }
6584   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
6585 }
6586 
6587 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6588   SmallVector<StringRef, 4> Tags;
6589   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6590     StringRef Tag;
6591     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
6592       return;
6593     Tags.push_back(Tag);
6594   }
6595 
6596   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6597     if (!NS->isInline()) {
6598       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6599       return;
6600     }
6601     if (NS->isAnonymousNamespace()) {
6602       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6603       return;
6604     }
6605     if (AL.getNumArgs() == 0)
6606       Tags.push_back(NS->getName());
6607   } else if (!AL.checkAtLeastNumArgs(S, 1))
6608     return;
6609 
6610   // Store tags sorted and without duplicates.
6611   llvm::sort(Tags);
6612   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
6613 
6614   D->addAttr(::new (S.Context)
6615                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6616 }
6617 
6618 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6619   // Check the attribute arguments.
6620   if (AL.getNumArgs() > 1) {
6621     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6622     return;
6623   }
6624 
6625   StringRef Str;
6626   SourceLocation ArgLoc;
6627 
6628   if (AL.getNumArgs() == 0)
6629     Str = "";
6630   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6631     return;
6632 
6633   ARMInterruptAttr::InterruptType Kind;
6634   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6635     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6636                                                                  << ArgLoc;
6637     return;
6638   }
6639 
6640   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
6641 }
6642 
6643 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6644   // MSP430 'interrupt' attribute is applied to
6645   // a function with no parameters and void return type.
6646   if (!isFunctionOrMethod(D)) {
6647     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6648         << "'interrupt'" << ExpectedFunctionOrMethod;
6649     return;
6650   }
6651 
6652   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6653     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6654         << /*MSP430*/ 1 << 0;
6655     return;
6656   }
6657 
6658   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6659     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6660         << /*MSP430*/ 1 << 1;
6661     return;
6662   }
6663 
6664   // The attribute takes one integer argument.
6665   if (!AL.checkExactlyNumArgs(S, 1))
6666     return;
6667 
6668   if (!AL.isArgExpr(0)) {
6669     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6670         << AL << AANT_ArgumentIntegerConstant;
6671     return;
6672   }
6673 
6674   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6675   Optional<llvm::APSInt> NumParams = llvm::APSInt(32);
6676   if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
6677     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6678         << AL << AANT_ArgumentIntegerConstant
6679         << NumParamsExpr->getSourceRange();
6680     return;
6681   }
6682   // The argument should be in range 0..63.
6683   unsigned Num = NumParams->getLimitedValue(255);
6684   if (Num > 63) {
6685     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6686         << AL << (int)NumParams->getSExtValue()
6687         << NumParamsExpr->getSourceRange();
6688     return;
6689   }
6690 
6691   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
6692   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6693 }
6694 
6695 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6696   // Only one optional argument permitted.
6697   if (AL.getNumArgs() > 1) {
6698     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6699     return;
6700   }
6701 
6702   StringRef Str;
6703   SourceLocation ArgLoc;
6704 
6705   if (AL.getNumArgs() == 0)
6706     Str = "";
6707   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6708     return;
6709 
6710   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
6711   // a) Must be a function.
6712   // b) Must have no parameters.
6713   // c) Must have the 'void' return type.
6714   // d) Cannot have the 'mips16' attribute, as that instruction set
6715   //    lacks the 'eret' instruction.
6716   // e) The attribute itself must either have no argument or one of the
6717   //    valid interrupt types, see [MipsInterruptDocs].
6718 
6719   if (!isFunctionOrMethod(D)) {
6720     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6721         << "'interrupt'" << ExpectedFunctionOrMethod;
6722     return;
6723   }
6724 
6725   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6726     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6727         << /*MIPS*/ 0 << 0;
6728     return;
6729   }
6730 
6731   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6732     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6733         << /*MIPS*/ 0 << 1;
6734     return;
6735   }
6736 
6737   // We still have to do this manually because the Interrupt attributes are
6738   // a bit special due to sharing their spellings across targets.
6739   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
6740     return;
6741 
6742   MipsInterruptAttr::InterruptType Kind;
6743   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6744     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6745         << AL << "'" + std::string(Str) + "'";
6746     return;
6747   }
6748 
6749   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
6750 }
6751 
6752 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6753   if (!AL.checkExactlyNumArgs(S, 1))
6754     return;
6755 
6756   if (!AL.isArgExpr(0)) {
6757     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6758         << AL << AANT_ArgumentIntegerConstant;
6759     return;
6760   }
6761 
6762   // FIXME: Check for decl - it should be void ()(void).
6763 
6764   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6765   auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
6766   if (!MaybeNumParams) {
6767     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6768         << AL << AANT_ArgumentIntegerConstant
6769         << NumParamsExpr->getSourceRange();
6770     return;
6771   }
6772 
6773   unsigned Num = MaybeNumParams->getLimitedValue(255);
6774   if ((Num & 1) || Num > 30) {
6775     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6776         << AL << (int)MaybeNumParams->getSExtValue()
6777         << NumParamsExpr->getSourceRange();
6778     return;
6779   }
6780 
6781   D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
6782   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6783 }
6784 
6785 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6786   // Semantic checks for a function with the 'interrupt' attribute.
6787   // a) Must be a function.
6788   // b) Must have the 'void' return type.
6789   // c) Must take 1 or 2 arguments.
6790   // d) The 1st argument must be a pointer.
6791   // e) The 2nd argument (if any) must be an unsigned integer.
6792   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
6793       CXXMethodDecl::isStaticOverloadedOperator(
6794           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
6795     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
6796         << AL << ExpectedFunctionWithProtoType;
6797     return;
6798   }
6799   // Interrupt handler must have void return type.
6800   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6801     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
6802            diag::err_anyx86_interrupt_attribute)
6803         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6804                 ? 0
6805                 : 1)
6806         << 0;
6807     return;
6808   }
6809   // Interrupt handler must have 1 or 2 parameters.
6810   unsigned NumParams = getFunctionOrMethodNumParams(D);
6811   if (NumParams < 1 || NumParams > 2) {
6812     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
6813         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6814                 ? 0
6815                 : 1)
6816         << 1;
6817     return;
6818   }
6819   // The first argument must be a pointer.
6820   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
6821     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
6822            diag::err_anyx86_interrupt_attribute)
6823         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6824                 ? 0
6825                 : 1)
6826         << 2;
6827     return;
6828   }
6829   // The second argument, if present, must be an unsigned integer.
6830   unsigned TypeSize =
6831       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
6832           ? 64
6833           : 32;
6834   if (NumParams == 2 &&
6835       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
6836        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
6837     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
6838            diag::err_anyx86_interrupt_attribute)
6839         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6840                 ? 0
6841                 : 1)
6842         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
6843     return;
6844   }
6845   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
6846   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6847 }
6848 
6849 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6850   if (!isFunctionOrMethod(D)) {
6851     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6852         << "'interrupt'" << ExpectedFunction;
6853     return;
6854   }
6855 
6856   if (!AL.checkExactlyNumArgs(S, 0))
6857     return;
6858 
6859   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
6860 }
6861 
6862 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6863   if (!isFunctionOrMethod(D)) {
6864     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6865         << "'signal'" << ExpectedFunction;
6866     return;
6867   }
6868 
6869   if (!AL.checkExactlyNumArgs(S, 0))
6870     return;
6871 
6872   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
6873 }
6874 
6875 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
6876   // Add preserve_access_index attribute to all fields and inner records.
6877   for (auto D : RD->decls()) {
6878     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
6879       continue;
6880 
6881     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
6882     if (auto *Rec = dyn_cast<RecordDecl>(D))
6883       handleBPFPreserveAIRecord(S, Rec);
6884   }
6885 }
6886 
6887 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
6888     const ParsedAttr &AL) {
6889   auto *Rec = cast<RecordDecl>(D);
6890   handleBPFPreserveAIRecord(S, Rec);
6891   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
6892 }
6893 
6894 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
6895   for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
6896     if (I->getBTFDeclTag() == Tag)
6897       return true;
6898   }
6899   return false;
6900 }
6901 
6902 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6903   StringRef Str;
6904   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6905     return;
6906   if (hasBTFDeclTagAttr(D, Str))
6907     return;
6908 
6909   D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
6910 }
6911 
6912 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
6913   if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
6914     return nullptr;
6915   return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
6916 }
6917 
6918 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6919   if (!isFunctionOrMethod(D)) {
6920     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6921         << "'export_name'" << ExpectedFunction;
6922     return;
6923   }
6924 
6925   auto *FD = cast<FunctionDecl>(D);
6926   if (FD->isThisDeclarationADefinition()) {
6927     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
6928     return;
6929   }
6930 
6931   StringRef Str;
6932   SourceLocation ArgLoc;
6933   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6934     return;
6935 
6936   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
6937   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6938 }
6939 
6940 WebAssemblyImportModuleAttr *
6941 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
6942   auto *FD = cast<FunctionDecl>(D);
6943 
6944   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
6945     if (ExistingAttr->getImportModule() == AL.getImportModule())
6946       return nullptr;
6947     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
6948       << ExistingAttr->getImportModule() << AL.getImportModule();
6949     Diag(AL.getLoc(), diag::note_previous_attribute);
6950     return nullptr;
6951   }
6952   if (FD->hasBody()) {
6953     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
6954     return nullptr;
6955   }
6956   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
6957                                                      AL.getImportModule());
6958 }
6959 
6960 WebAssemblyImportNameAttr *
6961 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
6962   auto *FD = cast<FunctionDecl>(D);
6963 
6964   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
6965     if (ExistingAttr->getImportName() == AL.getImportName())
6966       return nullptr;
6967     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
6968       << ExistingAttr->getImportName() << AL.getImportName();
6969     Diag(AL.getLoc(), diag::note_previous_attribute);
6970     return nullptr;
6971   }
6972   if (FD->hasBody()) {
6973     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
6974     return nullptr;
6975   }
6976   return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
6977                                                    AL.getImportName());
6978 }
6979 
6980 static void
6981 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6982   auto *FD = cast<FunctionDecl>(D);
6983 
6984   StringRef Str;
6985   SourceLocation ArgLoc;
6986   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6987     return;
6988   if (FD->hasBody()) {
6989     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
6990     return;
6991   }
6992 
6993   FD->addAttr(::new (S.Context)
6994                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
6995 }
6996 
6997 static void
6998 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6999   auto *FD = cast<FunctionDecl>(D);
7000 
7001   StringRef Str;
7002   SourceLocation ArgLoc;
7003   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7004     return;
7005   if (FD->hasBody()) {
7006     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7007     return;
7008   }
7009 
7010   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7011 }
7012 
7013 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7014                                      const ParsedAttr &AL) {
7015   // Warn about repeated attributes.
7016   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7017     S.Diag(AL.getRange().getBegin(),
7018       diag::warn_riscv_repeated_interrupt_attribute);
7019     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7020     return;
7021   }
7022 
7023   // Check the attribute argument. Argument is optional.
7024   if (!AL.checkAtMostNumArgs(S, 1))
7025     return;
7026 
7027   StringRef Str;
7028   SourceLocation ArgLoc;
7029 
7030   // 'machine'is the default interrupt mode.
7031   if (AL.getNumArgs() == 0)
7032     Str = "machine";
7033   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7034     return;
7035 
7036   // Semantic checks for a function with the 'interrupt' attribute:
7037   // - Must be a function.
7038   // - Must have no parameters.
7039   // - Must have the 'void' return type.
7040   // - The attribute itself must either have no argument or one of the
7041   //   valid interrupt types, see [RISCVInterruptDocs].
7042 
7043   if (D->getFunctionType() == nullptr) {
7044     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7045       << "'interrupt'" << ExpectedFunction;
7046     return;
7047   }
7048 
7049   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7050     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7051       << /*RISC-V*/ 2 << 0;
7052     return;
7053   }
7054 
7055   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7056     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7057       << /*RISC-V*/ 2 << 1;
7058     return;
7059   }
7060 
7061   RISCVInterruptAttr::InterruptType Kind;
7062   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7063     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7064                                                                  << ArgLoc;
7065     return;
7066   }
7067 
7068   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7069 }
7070 
7071 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7072   // Dispatch the interrupt attribute based on the current target.
7073   switch (S.Context.getTargetInfo().getTriple().getArch()) {
7074   case llvm::Triple::msp430:
7075     handleMSP430InterruptAttr(S, D, AL);
7076     break;
7077   case llvm::Triple::mipsel:
7078   case llvm::Triple::mips:
7079     handleMipsInterruptAttr(S, D, AL);
7080     break;
7081   case llvm::Triple::m68k:
7082     handleM68kInterruptAttr(S, D, AL);
7083     break;
7084   case llvm::Triple::x86:
7085   case llvm::Triple::x86_64:
7086     handleAnyX86InterruptAttr(S, D, AL);
7087     break;
7088   case llvm::Triple::avr:
7089     handleAVRInterruptAttr(S, D, AL);
7090     break;
7091   case llvm::Triple::riscv32:
7092   case llvm::Triple::riscv64:
7093     handleRISCVInterruptAttr(S, D, AL);
7094     break;
7095   default:
7096     handleARMInterruptAttr(S, D, AL);
7097     break;
7098   }
7099 }
7100 
7101 static bool
7102 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7103                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7104   // Accept template arguments for now as they depend on something else.
7105   // We'll get to check them when they eventually get instantiated.
7106   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7107     return false;
7108 
7109   uint32_t Min = 0;
7110   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7111     return true;
7112 
7113   uint32_t Max = 0;
7114   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7115     return true;
7116 
7117   if (Min == 0 && Max != 0) {
7118     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7119         << &Attr << 0;
7120     return true;
7121   }
7122   if (Min > Max) {
7123     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7124         << &Attr << 1;
7125     return true;
7126   }
7127 
7128   return false;
7129 }
7130 
7131 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7132                                           const AttributeCommonInfo &CI,
7133                                           Expr *MinExpr, Expr *MaxExpr) {
7134   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7135 
7136   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7137     return;
7138 
7139   D->addAttr(::new (Context)
7140                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7141 }
7142 
7143 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7144                                               const ParsedAttr &AL) {
7145   Expr *MinExpr = AL.getArgAsExpr(0);
7146   Expr *MaxExpr = AL.getArgAsExpr(1);
7147 
7148   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7149 }
7150 
7151 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7152                                            Expr *MaxExpr,
7153                                            const AMDGPUWavesPerEUAttr &Attr) {
7154   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7155       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7156     return true;
7157 
7158   // Accept template arguments for now as they depend on something else.
7159   // We'll get to check them when they eventually get instantiated.
7160   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7161     return false;
7162 
7163   uint32_t Min = 0;
7164   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7165     return true;
7166 
7167   uint32_t Max = 0;
7168   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7169     return true;
7170 
7171   if (Min == 0 && Max != 0) {
7172     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7173         << &Attr << 0;
7174     return true;
7175   }
7176   if (Max != 0 && Min > Max) {
7177     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7178         << &Attr << 1;
7179     return true;
7180   }
7181 
7182   return false;
7183 }
7184 
7185 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7186                                    Expr *MinExpr, Expr *MaxExpr) {
7187   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7188 
7189   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7190     return;
7191 
7192   D->addAttr(::new (Context)
7193                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7194 }
7195 
7196 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7197   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7198     return;
7199 
7200   Expr *MinExpr = AL.getArgAsExpr(0);
7201   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7202 
7203   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7204 }
7205 
7206 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7207   uint32_t NumSGPR = 0;
7208   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7209   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7210     return;
7211 
7212   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7213 }
7214 
7215 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7216   uint32_t NumVGPR = 0;
7217   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7218   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7219     return;
7220 
7221   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7222 }
7223 
7224 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7225                                               const ParsedAttr &AL) {
7226   // If we try to apply it to a function pointer, don't warn, but don't
7227   // do anything, either. It doesn't matter anyway, because there's nothing
7228   // special about calling a force_align_arg_pointer function.
7229   const auto *VD = dyn_cast<ValueDecl>(D);
7230   if (VD && VD->getType()->isFunctionPointerType())
7231     return;
7232   // Also don't warn on function pointer typedefs.
7233   const auto *TD = dyn_cast<TypedefNameDecl>(D);
7234   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7235     TD->getUnderlyingType()->isFunctionType()))
7236     return;
7237   // Attribute can only be applied to function types.
7238   if (!isa<FunctionDecl>(D)) {
7239     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7240         << AL << ExpectedFunction;
7241     return;
7242   }
7243 
7244   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7245 }
7246 
7247 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7248   uint32_t Version;
7249   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7250   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7251     return;
7252 
7253   // TODO: Investigate what happens with the next major version of MSVC.
7254   if (Version != LangOptions::MSVC2015 / 100) {
7255     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7256         << AL << Version << VersionExpr->getSourceRange();
7257     return;
7258   }
7259 
7260   // The attribute expects a "major" version number like 19, but new versions of
7261   // MSVC have moved to updating the "minor", or less significant numbers, so we
7262   // have to multiply by 100 now.
7263   Version *= 100;
7264 
7265   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7266 }
7267 
7268 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7269                                         const AttributeCommonInfo &CI) {
7270   if (D->hasAttr<DLLExportAttr>()) {
7271     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7272     return nullptr;
7273   }
7274 
7275   if (D->hasAttr<DLLImportAttr>())
7276     return nullptr;
7277 
7278   return ::new (Context) DLLImportAttr(Context, CI);
7279 }
7280 
7281 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7282                                         const AttributeCommonInfo &CI) {
7283   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7284     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7285     D->dropAttr<DLLImportAttr>();
7286   }
7287 
7288   if (D->hasAttr<DLLExportAttr>())
7289     return nullptr;
7290 
7291   return ::new (Context) DLLExportAttr(Context, CI);
7292 }
7293 
7294 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7295   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7296       (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7297     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7298     return;
7299   }
7300 
7301   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7302     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7303         !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7304       // MinGW doesn't allow dllimport on inline functions.
7305       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7306           << A;
7307       return;
7308     }
7309   }
7310 
7311   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7312     if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7313         MD->getParent()->isLambda()) {
7314       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7315       return;
7316     }
7317   }
7318 
7319   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7320                       ? (Attr *)S.mergeDLLExportAttr(D, A)
7321                       : (Attr *)S.mergeDLLImportAttr(D, A);
7322   if (NewAttr)
7323     D->addAttr(NewAttr);
7324 }
7325 
7326 MSInheritanceAttr *
7327 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7328                              bool BestCase,
7329                              MSInheritanceModel Model) {
7330   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7331     if (IA->getInheritanceModel() == Model)
7332       return nullptr;
7333     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7334         << 1 /*previous declaration*/;
7335     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7336     D->dropAttr<MSInheritanceAttr>();
7337   }
7338 
7339   auto *RD = cast<CXXRecordDecl>(D);
7340   if (RD->hasDefinition()) {
7341     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7342                                            Model)) {
7343       return nullptr;
7344     }
7345   } else {
7346     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7347       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7348           << 1 /*partial specialization*/;
7349       return nullptr;
7350     }
7351     if (RD->getDescribedClassTemplate()) {
7352       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7353           << 0 /*primary template*/;
7354       return nullptr;
7355     }
7356   }
7357 
7358   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7359 }
7360 
7361 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7362   // The capability attributes take a single string parameter for the name of
7363   // the capability they represent. The lockable attribute does not take any
7364   // parameters. However, semantically, both attributes represent the same
7365   // concept, and so they use the same semantic attribute. Eventually, the
7366   // lockable attribute will be removed.
7367   //
7368   // For backward compatibility, any capability which has no specified string
7369   // literal will be considered a "mutex."
7370   StringRef N("mutex");
7371   SourceLocation LiteralLoc;
7372   if (AL.getKind() == ParsedAttr::AT_Capability &&
7373       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7374     return;
7375 
7376   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7377 }
7378 
7379 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7380   SmallVector<Expr*, 1> Args;
7381   if (!checkLockFunAttrCommon(S, D, AL, Args))
7382     return;
7383 
7384   D->addAttr(::new (S.Context)
7385                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
7386 }
7387 
7388 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
7389                                         const ParsedAttr &AL) {
7390   SmallVector<Expr*, 1> Args;
7391   if (!checkLockFunAttrCommon(S, D, AL, Args))
7392     return;
7393 
7394   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
7395                                                      Args.size()));
7396 }
7397 
7398 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
7399                                            const ParsedAttr &AL) {
7400   SmallVector<Expr*, 2> Args;
7401   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
7402     return;
7403 
7404   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
7405       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
7406 }
7407 
7408 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
7409                                         const ParsedAttr &AL) {
7410   // Check that all arguments are lockable objects.
7411   SmallVector<Expr *, 1> Args;
7412   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
7413 
7414   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
7415                                                      Args.size()));
7416 }
7417 
7418 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
7419                                          const ParsedAttr &AL) {
7420   if (!AL.checkAtLeastNumArgs(S, 1))
7421     return;
7422 
7423   // check that all arguments are lockable objects
7424   SmallVector<Expr*, 1> Args;
7425   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
7426   if (Args.empty())
7427     return;
7428 
7429   RequiresCapabilityAttr *RCA = ::new (S.Context)
7430       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
7431 
7432   D->addAttr(RCA);
7433 }
7434 
7435 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7436   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
7437     if (NSD->isAnonymousNamespace()) {
7438       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
7439       // Do not want to attach the attribute to the namespace because that will
7440       // cause confusing diagnostic reports for uses of declarations within the
7441       // namespace.
7442       return;
7443     }
7444   } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
7445                  UnresolvedUsingValueDecl>(D)) {
7446     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
7447         << AL;
7448     return;
7449   }
7450 
7451   // Handle the cases where the attribute has a text message.
7452   StringRef Str, Replacement;
7453   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
7454       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
7455     return;
7456 
7457   // Support a single optional message only for Declspec and [[]] spellings.
7458   if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
7459     AL.checkAtMostNumArgs(S, 1);
7460   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
7461            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
7462     return;
7463 
7464   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
7465     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
7466 
7467   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
7468 }
7469 
7470 static bool isGlobalVar(const Decl *D) {
7471   if (const auto *S = dyn_cast<VarDecl>(D))
7472     return S->hasGlobalStorage();
7473   return false;
7474 }
7475 
7476 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7477   if (!AL.checkAtLeastNumArgs(S, 1))
7478     return;
7479 
7480   std::vector<StringRef> Sanitizers;
7481 
7482   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7483     StringRef SanitizerName;
7484     SourceLocation LiteralLoc;
7485 
7486     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
7487       return;
7488 
7489     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
7490             SanitizerMask() &&
7491         SanitizerName != "coverage")
7492       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
7493     else if (isGlobalVar(D) && SanitizerName != "address")
7494       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7495           << AL << ExpectedFunctionOrMethod;
7496     Sanitizers.push_back(SanitizerName);
7497   }
7498 
7499   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
7500                                               Sanitizers.size()));
7501 }
7502 
7503 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
7504                                          const ParsedAttr &AL) {
7505   StringRef AttrName = AL.getAttrName()->getName();
7506   normalizeName(AttrName);
7507   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
7508                                 .Case("no_address_safety_analysis", "address")
7509                                 .Case("no_sanitize_address", "address")
7510                                 .Case("no_sanitize_thread", "thread")
7511                                 .Case("no_sanitize_memory", "memory");
7512   if (isGlobalVar(D) && SanitizerName != "address")
7513     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7514         << AL << ExpectedFunction;
7515 
7516   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
7517   // NoSanitizeAttr object; but we need to calculate the correct spelling list
7518   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
7519   // has the same spellings as the index for NoSanitizeAttr. We don't have a
7520   // general way to "translate" between the two, so this hack attempts to work
7521   // around the issue with hard-coded indices. This is critical for calling
7522   // getSpelling() or prettyPrint() on the resulting semantic attribute object
7523   // without failing assertions.
7524   unsigned TranslatedSpellingIndex = 0;
7525   if (AL.isStandardAttributeSyntax())
7526     TranslatedSpellingIndex = 1;
7527 
7528   AttributeCommonInfo Info = AL;
7529   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
7530   D->addAttr(::new (S.Context)
7531                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
7532 }
7533 
7534 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7535   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
7536     D->addAttr(Internal);
7537 }
7538 
7539 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7540   if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
7541     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
7542         << AL << "2.0" << 1;
7543   else
7544     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
7545         << AL << S.LangOpts.getOpenCLVersionString();
7546 }
7547 
7548 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7549   if (D->isInvalidDecl())
7550     return;
7551 
7552   // Check if there is only one access qualifier.
7553   if (D->hasAttr<OpenCLAccessAttr>()) {
7554     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
7555         AL.getSemanticSpelling()) {
7556       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
7557           << AL.getAttrName()->getName() << AL.getRange();
7558     } else {
7559       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
7560           << D->getSourceRange();
7561       D->setInvalidDecl(true);
7562       return;
7563     }
7564   }
7565 
7566   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
7567   // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
7568   // cannot read from and write to the same pipe object. Using the read_write
7569   // (or __read_write) qualifier with the pipe qualifier is a compilation error.
7570   // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
7571   // __opencl_c_read_write_images feature, image objects specified as arguments
7572   // to a kernel can additionally be declared to be read-write.
7573   // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
7574   // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
7575   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
7576     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
7577     if (AL.getAttrName()->getName().contains("read_write")) {
7578       bool ReadWriteImagesUnsupported =
7579           (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
7580           (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
7581            !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
7582                                              S.getLangOpts()));
7583       if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
7584         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
7585             << AL << PDecl->getType() << DeclTy->isImageType();
7586         D->setInvalidDecl(true);
7587         return;
7588       }
7589     }
7590   }
7591 
7592   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
7593 }
7594 
7595 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7596   // The 'sycl_kernel' attribute applies only to function templates.
7597   const auto *FD = cast<FunctionDecl>(D);
7598   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
7599   assert(FT && "Function template is expected");
7600 
7601   // Function template must have at least two template parameters.
7602   const TemplateParameterList *TL = FT->getTemplateParameters();
7603   if (TL->size() < 2) {
7604     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
7605     return;
7606   }
7607 
7608   // Template parameters must be typenames.
7609   for (unsigned I = 0; I < 2; ++I) {
7610     const NamedDecl *TParam = TL->getParam(I);
7611     if (isa<NonTypeTemplateParmDecl>(TParam)) {
7612       S.Diag(FT->getLocation(),
7613              diag::warn_sycl_kernel_invalid_template_param_type);
7614       return;
7615     }
7616   }
7617 
7618   // Function must have at least one argument.
7619   if (getFunctionOrMethodNumParams(D) != 1) {
7620     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
7621     return;
7622   }
7623 
7624   // Function must return void.
7625   QualType RetTy = getFunctionOrMethodResultType(D);
7626   if (!RetTy->isVoidType()) {
7627     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
7628     return;
7629   }
7630 
7631   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
7632 }
7633 
7634 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7635   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
7636     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
7637         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
7638     return;
7639   }
7640 
7641   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
7642     handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
7643   else
7644     handleSimpleAttribute<NoDestroyAttr>(S, D, A);
7645 }
7646 
7647 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7648   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
7649          "uninitialized is only valid on automatic duration variables");
7650   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
7651 }
7652 
7653 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
7654                                         bool DiagnoseFailure) {
7655   QualType Ty = VD->getType();
7656   if (!Ty->isObjCRetainableType()) {
7657     if (DiagnoseFailure) {
7658       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7659           << 0;
7660     }
7661     return false;
7662   }
7663 
7664   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
7665 
7666   // Sema::inferObjCARCLifetime must run after processing decl attributes
7667   // (because __block lowers to an attribute), so if the lifetime hasn't been
7668   // explicitly specified, infer it locally now.
7669   if (LifetimeQual == Qualifiers::OCL_None)
7670     LifetimeQual = Ty->getObjCARCImplicitLifetime();
7671 
7672   // The attributes only really makes sense for __strong variables; ignore any
7673   // attempts to annotate a parameter with any other lifetime qualifier.
7674   if (LifetimeQual != Qualifiers::OCL_Strong) {
7675     if (DiagnoseFailure) {
7676       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7677           << 1;
7678     }
7679     return false;
7680   }
7681 
7682   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
7683   // to ensure that the variable is 'const' so that we can error on
7684   // modification, which can otherwise over-release.
7685   VD->setType(Ty.withConst());
7686   VD->setARCPseudoStrong(true);
7687   return true;
7688 }
7689 
7690 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
7691                                              const ParsedAttr &AL) {
7692   if (auto *VD = dyn_cast<VarDecl>(D)) {
7693     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
7694     if (!VD->hasLocalStorage()) {
7695       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7696           << 0;
7697       return;
7698     }
7699 
7700     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
7701       return;
7702 
7703     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7704     return;
7705   }
7706 
7707   // If D is a function-like declaration (method, block, or function), then we
7708   // make every parameter psuedo-strong.
7709   unsigned NumParams =
7710       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
7711   for (unsigned I = 0; I != NumParams; ++I) {
7712     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
7713     QualType Ty = PVD->getType();
7714 
7715     // If a user wrote a parameter with __strong explicitly, then assume they
7716     // want "real" strong semantics for that parameter. This works because if
7717     // the parameter was written with __strong, then the strong qualifier will
7718     // be non-local.
7719     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
7720         Qualifiers::OCL_Strong)
7721       continue;
7722 
7723     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
7724   }
7725   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7726 }
7727 
7728 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7729   // Check that the return type is a `typedef int kern_return_t` or a typedef
7730   // around it, because otherwise MIG convention checks make no sense.
7731   // BlockDecl doesn't store a return type, so it's annoying to check,
7732   // so let's skip it for now.
7733   if (!isa<BlockDecl>(D)) {
7734     QualType T = getFunctionOrMethodResultType(D);
7735     bool IsKernReturnT = false;
7736     while (const auto *TT = T->getAs<TypedefType>()) {
7737       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
7738       T = TT->desugar();
7739     }
7740     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
7741       S.Diag(D->getBeginLoc(),
7742              diag::warn_mig_server_routine_does_not_return_kern_return_t);
7743       return;
7744     }
7745   }
7746 
7747   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
7748 }
7749 
7750 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7751   // Warn if the return type is not a pointer or reference type.
7752   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7753     QualType RetTy = FD->getReturnType();
7754     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
7755       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
7756           << AL.getRange() << RetTy;
7757       return;
7758     }
7759   }
7760 
7761   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
7762 }
7763 
7764 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7765   if (AL.isUsedAsTypeAttr())
7766     return;
7767   // Warn if the parameter is definitely not an output parameter.
7768   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
7769     if (PVD->getType()->isIntegerType()) {
7770       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
7771           << AL.getRange();
7772       return;
7773     }
7774   }
7775   StringRef Argument;
7776   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7777     return;
7778   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
7779 }
7780 
7781 template<typename Attr>
7782 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7783   StringRef Argument;
7784   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7785     return;
7786   D->addAttr(Attr::Create(S.Context, Argument, AL));
7787 }
7788 
7789 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7790   // The guard attribute takes a single identifier argument.
7791 
7792   if (!AL.isArgIdent(0)) {
7793     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7794         << AL << AANT_ArgumentIdentifier;
7795     return;
7796   }
7797 
7798   CFGuardAttr::GuardArg Arg;
7799   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
7800   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
7801     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
7802     return;
7803   }
7804 
7805   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
7806 }
7807 
7808 
7809 template <typename AttrTy>
7810 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
7811   auto Attrs = D->specific_attrs<AttrTy>();
7812   auto I = llvm::find_if(Attrs,
7813                          [Name](const AttrTy *A) {
7814                            return A->getTCBName() == Name;
7815                          });
7816   return I == Attrs.end() ? nullptr : *I;
7817 }
7818 
7819 template <typename AttrTy, typename ConflictingAttrTy>
7820 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7821   StringRef Argument;
7822   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7823     return;
7824 
7825   // A function cannot be have both regular and leaf membership in the same TCB.
7826   if (const ConflictingAttrTy *ConflictingAttr =
7827       findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
7828     // We could attach a note to the other attribute but in this case
7829     // there's no need given how the two are very close to each other.
7830     S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
7831       << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
7832       << Argument;
7833 
7834     // Error recovery: drop the non-leaf attribute so that to suppress
7835     // all future warnings caused by erroneous attributes. The leaf attribute
7836     // needs to be kept because it can only suppresses warnings, not cause them.
7837     D->dropAttr<EnforceTCBAttr>();
7838     return;
7839   }
7840 
7841   D->addAttr(AttrTy::Create(S.Context, Argument, AL));
7842 }
7843 
7844 template <typename AttrTy, typename ConflictingAttrTy>
7845 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
7846   // Check if the new redeclaration has different leaf-ness in the same TCB.
7847   StringRef TCBName = AL.getTCBName();
7848   if (const ConflictingAttrTy *ConflictingAttr =
7849       findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
7850     S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
7851       << ConflictingAttr->getAttrName()->getName()
7852       << AL.getAttrName()->getName() << TCBName;
7853 
7854     // Add a note so that the user could easily find the conflicting attribute.
7855     S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
7856 
7857     // More error recovery.
7858     D->dropAttr<EnforceTCBAttr>();
7859     return nullptr;
7860   }
7861 
7862   ASTContext &Context = S.getASTContext();
7863   return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
7864 }
7865 
7866 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
7867   return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
7868       *this, D, AL);
7869 }
7870 
7871 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
7872     Decl *D, const EnforceTCBLeafAttr &AL) {
7873   return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
7874       *this, D, AL);
7875 }
7876 
7877 //===----------------------------------------------------------------------===//
7878 // Top Level Sema Entry Points
7879 //===----------------------------------------------------------------------===//
7880 
7881 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
7882 /// the attribute applies to decls.  If the attribute is a type attribute, just
7883 /// silently ignore it if a GNU attribute.
7884 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
7885                                  const ParsedAttr &AL,
7886                                  bool IncludeCXX11Attributes) {
7887   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
7888     return;
7889 
7890   // Ignore C++11 attributes on declarator chunks: they appertain to the type
7891   // instead.
7892   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
7893     return;
7894 
7895   // Unknown attributes are automatically warned on. Target-specific attributes
7896   // which do not apply to the current target architecture are treated as
7897   // though they were unknown attributes.
7898   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
7899       !AL.existsInTarget(S.Context.getTargetInfo())) {
7900     S.Diag(AL.getLoc(),
7901            AL.isDeclspecAttribute()
7902                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
7903                : (unsigned)diag::warn_unknown_attribute_ignored)
7904         << AL << AL.getRange();
7905     return;
7906   }
7907 
7908   if (S.checkCommonAttributeFeatures(D, AL))
7909     return;
7910 
7911   switch (AL.getKind()) {
7912   default:
7913     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
7914       break;
7915     if (!AL.isStmtAttr()) {
7916       // Type attributes are handled elsewhere; silently move on.
7917       assert(AL.isTypeAttr() && "Non-type attribute not handled");
7918       break;
7919     }
7920     // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
7921     // statement attribute is not written on a declaration, but this code is
7922     // needed for attributes in Attr.td that do not list any subjects.
7923     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
7924         << AL << D->getLocation();
7925     break;
7926   case ParsedAttr::AT_Interrupt:
7927     handleInterruptAttr(S, D, AL);
7928     break;
7929   case ParsedAttr::AT_X86ForceAlignArgPointer:
7930     handleX86ForceAlignArgPointerAttr(S, D, AL);
7931     break;
7932   case ParsedAttr::AT_DLLExport:
7933   case ParsedAttr::AT_DLLImport:
7934     handleDLLAttr(S, D, AL);
7935     break;
7936   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
7937     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
7938     break;
7939   case ParsedAttr::AT_AMDGPUWavesPerEU:
7940     handleAMDGPUWavesPerEUAttr(S, D, AL);
7941     break;
7942   case ParsedAttr::AT_AMDGPUNumSGPR:
7943     handleAMDGPUNumSGPRAttr(S, D, AL);
7944     break;
7945   case ParsedAttr::AT_AMDGPUNumVGPR:
7946     handleAMDGPUNumVGPRAttr(S, D, AL);
7947     break;
7948   case ParsedAttr::AT_AVRSignal:
7949     handleAVRSignalAttr(S, D, AL);
7950     break;
7951   case ParsedAttr::AT_BPFPreserveAccessIndex:
7952     handleBPFPreserveAccessIndexAttr(S, D, AL);
7953     break;
7954   case ParsedAttr::AT_BTFDeclTag:
7955     handleBTFDeclTagAttr(S, D, AL);
7956     break;
7957   case ParsedAttr::AT_WebAssemblyExportName:
7958     handleWebAssemblyExportNameAttr(S, D, AL);
7959     break;
7960   case ParsedAttr::AT_WebAssemblyImportModule:
7961     handleWebAssemblyImportModuleAttr(S, D, AL);
7962     break;
7963   case ParsedAttr::AT_WebAssemblyImportName:
7964     handleWebAssemblyImportNameAttr(S, D, AL);
7965     break;
7966   case ParsedAttr::AT_IBOutlet:
7967     handleIBOutlet(S, D, AL);
7968     break;
7969   case ParsedAttr::AT_IBOutletCollection:
7970     handleIBOutletCollection(S, D, AL);
7971     break;
7972   case ParsedAttr::AT_IFunc:
7973     handleIFuncAttr(S, D, AL);
7974     break;
7975   case ParsedAttr::AT_Alias:
7976     handleAliasAttr(S, D, AL);
7977     break;
7978   case ParsedAttr::AT_Aligned:
7979     handleAlignedAttr(S, D, AL);
7980     break;
7981   case ParsedAttr::AT_AlignValue:
7982     handleAlignValueAttr(S, D, AL);
7983     break;
7984   case ParsedAttr::AT_AllocSize:
7985     handleAllocSizeAttr(S, D, AL);
7986     break;
7987   case ParsedAttr::AT_AlwaysInline:
7988     handleAlwaysInlineAttr(S, D, AL);
7989     break;
7990   case ParsedAttr::AT_AnalyzerNoReturn:
7991     handleAnalyzerNoReturnAttr(S, D, AL);
7992     break;
7993   case ParsedAttr::AT_TLSModel:
7994     handleTLSModelAttr(S, D, AL);
7995     break;
7996   case ParsedAttr::AT_Annotate:
7997     handleAnnotateAttr(S, D, AL);
7998     break;
7999   case ParsedAttr::AT_Availability:
8000     handleAvailabilityAttr(S, D, AL);
8001     break;
8002   case ParsedAttr::AT_CarriesDependency:
8003     handleDependencyAttr(S, scope, D, AL);
8004     break;
8005   case ParsedAttr::AT_CPUDispatch:
8006   case ParsedAttr::AT_CPUSpecific:
8007     handleCPUSpecificAttr(S, D, AL);
8008     break;
8009   case ParsedAttr::AT_Common:
8010     handleCommonAttr(S, D, AL);
8011     break;
8012   case ParsedAttr::AT_CUDAConstant:
8013     handleConstantAttr(S, D, AL);
8014     break;
8015   case ParsedAttr::AT_PassObjectSize:
8016     handlePassObjectSizeAttr(S, D, AL);
8017     break;
8018   case ParsedAttr::AT_Constructor:
8019       handleConstructorAttr(S, D, AL);
8020     break;
8021   case ParsedAttr::AT_Deprecated:
8022     handleDeprecatedAttr(S, D, AL);
8023     break;
8024   case ParsedAttr::AT_Destructor:
8025       handleDestructorAttr(S, D, AL);
8026     break;
8027   case ParsedAttr::AT_EnableIf:
8028     handleEnableIfAttr(S, D, AL);
8029     break;
8030   case ParsedAttr::AT_Error:
8031     handleErrorAttr(S, D, AL);
8032     break;
8033   case ParsedAttr::AT_DiagnoseIf:
8034     handleDiagnoseIfAttr(S, D, AL);
8035     break;
8036   case ParsedAttr::AT_NoBuiltin:
8037     handleNoBuiltinAttr(S, D, AL);
8038     break;
8039   case ParsedAttr::AT_ExtVectorType:
8040     handleExtVectorTypeAttr(S, D, AL);
8041     break;
8042   case ParsedAttr::AT_ExternalSourceSymbol:
8043     handleExternalSourceSymbolAttr(S, D, AL);
8044     break;
8045   case ParsedAttr::AT_MinSize:
8046     handleMinSizeAttr(S, D, AL);
8047     break;
8048   case ParsedAttr::AT_OptimizeNone:
8049     handleOptimizeNoneAttr(S, D, AL);
8050     break;
8051   case ParsedAttr::AT_EnumExtensibility:
8052     handleEnumExtensibilityAttr(S, D, AL);
8053     break;
8054   case ParsedAttr::AT_SYCLKernel:
8055     handleSYCLKernelAttr(S, D, AL);
8056     break;
8057   case ParsedAttr::AT_Format:
8058     handleFormatAttr(S, D, AL);
8059     break;
8060   case ParsedAttr::AT_FormatArg:
8061     handleFormatArgAttr(S, D, AL);
8062     break;
8063   case ParsedAttr::AT_Callback:
8064     handleCallbackAttr(S, D, AL);
8065     break;
8066   case ParsedAttr::AT_CalledOnce:
8067     handleCalledOnceAttr(S, D, AL);
8068     break;
8069   case ParsedAttr::AT_CUDAGlobal:
8070     handleGlobalAttr(S, D, AL);
8071     break;
8072   case ParsedAttr::AT_CUDADevice:
8073     handleDeviceAttr(S, D, AL);
8074     break;
8075   case ParsedAttr::AT_HIPManaged:
8076     handleManagedAttr(S, D, AL);
8077     break;
8078   case ParsedAttr::AT_GNUInline:
8079     handleGNUInlineAttr(S, D, AL);
8080     break;
8081   case ParsedAttr::AT_CUDALaunchBounds:
8082     handleLaunchBoundsAttr(S, D, AL);
8083     break;
8084   case ParsedAttr::AT_Restrict:
8085     handleRestrictAttr(S, D, AL);
8086     break;
8087   case ParsedAttr::AT_Mode:
8088     handleModeAttr(S, D, AL);
8089     break;
8090   case ParsedAttr::AT_NonNull:
8091     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8092       handleNonNullAttrParameter(S, PVD, AL);
8093     else
8094       handleNonNullAttr(S, D, AL);
8095     break;
8096   case ParsedAttr::AT_ReturnsNonNull:
8097     handleReturnsNonNullAttr(S, D, AL);
8098     break;
8099   case ParsedAttr::AT_NoEscape:
8100     handleNoEscapeAttr(S, D, AL);
8101     break;
8102   case ParsedAttr::AT_AssumeAligned:
8103     handleAssumeAlignedAttr(S, D, AL);
8104     break;
8105   case ParsedAttr::AT_AllocAlign:
8106     handleAllocAlignAttr(S, D, AL);
8107     break;
8108   case ParsedAttr::AT_Ownership:
8109     handleOwnershipAttr(S, D, AL);
8110     break;
8111   case ParsedAttr::AT_Naked:
8112     handleNakedAttr(S, D, AL);
8113     break;
8114   case ParsedAttr::AT_NoReturn:
8115     handleNoReturnAttr(S, D, AL);
8116     break;
8117   case ParsedAttr::AT_AnyX86NoCfCheck:
8118     handleNoCfCheckAttr(S, D, AL);
8119     break;
8120   case ParsedAttr::AT_NoThrow:
8121     if (!AL.isUsedAsTypeAttr())
8122       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8123     break;
8124   case ParsedAttr::AT_CUDAShared:
8125     handleSharedAttr(S, D, AL);
8126     break;
8127   case ParsedAttr::AT_VecReturn:
8128     handleVecReturnAttr(S, D, AL);
8129     break;
8130   case ParsedAttr::AT_ObjCOwnership:
8131     handleObjCOwnershipAttr(S, D, AL);
8132     break;
8133   case ParsedAttr::AT_ObjCPreciseLifetime:
8134     handleObjCPreciseLifetimeAttr(S, D, AL);
8135     break;
8136   case ParsedAttr::AT_ObjCReturnsInnerPointer:
8137     handleObjCReturnsInnerPointerAttr(S, D, AL);
8138     break;
8139   case ParsedAttr::AT_ObjCRequiresSuper:
8140     handleObjCRequiresSuperAttr(S, D, AL);
8141     break;
8142   case ParsedAttr::AT_ObjCBridge:
8143     handleObjCBridgeAttr(S, D, AL);
8144     break;
8145   case ParsedAttr::AT_ObjCBridgeMutable:
8146     handleObjCBridgeMutableAttr(S, D, AL);
8147     break;
8148   case ParsedAttr::AT_ObjCBridgeRelated:
8149     handleObjCBridgeRelatedAttr(S, D, AL);
8150     break;
8151   case ParsedAttr::AT_ObjCDesignatedInitializer:
8152     handleObjCDesignatedInitializer(S, D, AL);
8153     break;
8154   case ParsedAttr::AT_ObjCRuntimeName:
8155     handleObjCRuntimeName(S, D, AL);
8156     break;
8157   case ParsedAttr::AT_ObjCBoxable:
8158     handleObjCBoxable(S, D, AL);
8159     break;
8160   case ParsedAttr::AT_NSErrorDomain:
8161     handleNSErrorDomain(S, D, AL);
8162     break;
8163   case ParsedAttr::AT_CFConsumed:
8164   case ParsedAttr::AT_NSConsumed:
8165   case ParsedAttr::AT_OSConsumed:
8166     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8167                        /*IsTemplateInstantiation=*/false);
8168     break;
8169   case ParsedAttr::AT_OSReturnsRetainedOnZero:
8170     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8171         S, D, AL, isValidOSObjectOutParameter(D),
8172         diag::warn_ns_attribute_wrong_parameter_type,
8173         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8174     break;
8175   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8176     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8177         S, D, AL, isValidOSObjectOutParameter(D),
8178         diag::warn_ns_attribute_wrong_parameter_type,
8179         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8180     break;
8181   case ParsedAttr::AT_NSReturnsAutoreleased:
8182   case ParsedAttr::AT_NSReturnsNotRetained:
8183   case ParsedAttr::AT_NSReturnsRetained:
8184   case ParsedAttr::AT_CFReturnsNotRetained:
8185   case ParsedAttr::AT_CFReturnsRetained:
8186   case ParsedAttr::AT_OSReturnsNotRetained:
8187   case ParsedAttr::AT_OSReturnsRetained:
8188     handleXReturnsXRetainedAttr(S, D, AL);
8189     break;
8190   case ParsedAttr::AT_WorkGroupSizeHint:
8191     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8192     break;
8193   case ParsedAttr::AT_ReqdWorkGroupSize:
8194     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8195     break;
8196   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8197     handleSubGroupSize(S, D, AL);
8198     break;
8199   case ParsedAttr::AT_VecTypeHint:
8200     handleVecTypeHint(S, D, AL);
8201     break;
8202   case ParsedAttr::AT_InitPriority:
8203       handleInitPriorityAttr(S, D, AL);
8204     break;
8205   case ParsedAttr::AT_Packed:
8206     handlePackedAttr(S, D, AL);
8207     break;
8208   case ParsedAttr::AT_PreferredName:
8209     handlePreferredName(S, D, AL);
8210     break;
8211   case ParsedAttr::AT_Section:
8212     handleSectionAttr(S, D, AL);
8213     break;
8214   case ParsedAttr::AT_CodeSeg:
8215     handleCodeSegAttr(S, D, AL);
8216     break;
8217   case ParsedAttr::AT_Target:
8218     handleTargetAttr(S, D, AL);
8219     break;
8220   case ParsedAttr::AT_MinVectorWidth:
8221     handleMinVectorWidthAttr(S, D, AL);
8222     break;
8223   case ParsedAttr::AT_Unavailable:
8224     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
8225     break;
8226   case ParsedAttr::AT_Assumption:
8227     handleAssumumptionAttr(S, D, AL);
8228     break;
8229   case ParsedAttr::AT_ObjCDirect:
8230     handleObjCDirectAttr(S, D, AL);
8231     break;
8232   case ParsedAttr::AT_ObjCDirectMembers:
8233     handleObjCDirectMembersAttr(S, D, AL);
8234     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
8235     break;
8236   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
8237     handleObjCSuppresProtocolAttr(S, D, AL);
8238     break;
8239   case ParsedAttr::AT_Unused:
8240     handleUnusedAttr(S, D, AL);
8241     break;
8242   case ParsedAttr::AT_Visibility:
8243     handleVisibilityAttr(S, D, AL, false);
8244     break;
8245   case ParsedAttr::AT_TypeVisibility:
8246     handleVisibilityAttr(S, D, AL, true);
8247     break;
8248   case ParsedAttr::AT_WarnUnusedResult:
8249     handleWarnUnusedResult(S, D, AL);
8250     break;
8251   case ParsedAttr::AT_WeakRef:
8252     handleWeakRefAttr(S, D, AL);
8253     break;
8254   case ParsedAttr::AT_WeakImport:
8255     handleWeakImportAttr(S, D, AL);
8256     break;
8257   case ParsedAttr::AT_TransparentUnion:
8258     handleTransparentUnionAttr(S, D, AL);
8259     break;
8260   case ParsedAttr::AT_ObjCMethodFamily:
8261     handleObjCMethodFamilyAttr(S, D, AL);
8262     break;
8263   case ParsedAttr::AT_ObjCNSObject:
8264     handleObjCNSObject(S, D, AL);
8265     break;
8266   case ParsedAttr::AT_ObjCIndependentClass:
8267     handleObjCIndependentClass(S, D, AL);
8268     break;
8269   case ParsedAttr::AT_Blocks:
8270     handleBlocksAttr(S, D, AL);
8271     break;
8272   case ParsedAttr::AT_Sentinel:
8273     handleSentinelAttr(S, D, AL);
8274     break;
8275   case ParsedAttr::AT_Cleanup:
8276     handleCleanupAttr(S, D, AL);
8277     break;
8278   case ParsedAttr::AT_NoDebug:
8279     handleNoDebugAttr(S, D, AL);
8280     break;
8281   case ParsedAttr::AT_CmseNSEntry:
8282     handleCmseNSEntryAttr(S, D, AL);
8283     break;
8284   case ParsedAttr::AT_StdCall:
8285   case ParsedAttr::AT_CDecl:
8286   case ParsedAttr::AT_FastCall:
8287   case ParsedAttr::AT_ThisCall:
8288   case ParsedAttr::AT_Pascal:
8289   case ParsedAttr::AT_RegCall:
8290   case ParsedAttr::AT_SwiftCall:
8291   case ParsedAttr::AT_SwiftAsyncCall:
8292   case ParsedAttr::AT_VectorCall:
8293   case ParsedAttr::AT_MSABI:
8294   case ParsedAttr::AT_SysVABI:
8295   case ParsedAttr::AT_Pcs:
8296   case ParsedAttr::AT_IntelOclBicc:
8297   case ParsedAttr::AT_PreserveMost:
8298   case ParsedAttr::AT_PreserveAll:
8299   case ParsedAttr::AT_AArch64VectorPcs:
8300     handleCallConvAttr(S, D, AL);
8301     break;
8302   case ParsedAttr::AT_Suppress:
8303     handleSuppressAttr(S, D, AL);
8304     break;
8305   case ParsedAttr::AT_Owner:
8306   case ParsedAttr::AT_Pointer:
8307     handleLifetimeCategoryAttr(S, D, AL);
8308     break;
8309   case ParsedAttr::AT_OpenCLAccess:
8310     handleOpenCLAccessAttr(S, D, AL);
8311     break;
8312   case ParsedAttr::AT_OpenCLNoSVM:
8313     handleOpenCLNoSVMAttr(S, D, AL);
8314     break;
8315   case ParsedAttr::AT_SwiftContext:
8316     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
8317     break;
8318   case ParsedAttr::AT_SwiftAsyncContext:
8319     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
8320     break;
8321   case ParsedAttr::AT_SwiftErrorResult:
8322     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
8323     break;
8324   case ParsedAttr::AT_SwiftIndirectResult:
8325     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
8326     break;
8327   case ParsedAttr::AT_InternalLinkage:
8328     handleInternalLinkageAttr(S, D, AL);
8329     break;
8330 
8331   // Microsoft attributes:
8332   case ParsedAttr::AT_LayoutVersion:
8333     handleLayoutVersion(S, D, AL);
8334     break;
8335   case ParsedAttr::AT_Uuid:
8336     handleUuidAttr(S, D, AL);
8337     break;
8338   case ParsedAttr::AT_MSInheritance:
8339     handleMSInheritanceAttr(S, D, AL);
8340     break;
8341   case ParsedAttr::AT_Thread:
8342     handleDeclspecThreadAttr(S, D, AL);
8343     break;
8344 
8345   case ParsedAttr::AT_AbiTag:
8346     handleAbiTagAttr(S, D, AL);
8347     break;
8348   case ParsedAttr::AT_CFGuard:
8349     handleCFGuardAttr(S, D, AL);
8350     break;
8351 
8352   // Thread safety attributes:
8353   case ParsedAttr::AT_AssertExclusiveLock:
8354     handleAssertExclusiveLockAttr(S, D, AL);
8355     break;
8356   case ParsedAttr::AT_AssertSharedLock:
8357     handleAssertSharedLockAttr(S, D, AL);
8358     break;
8359   case ParsedAttr::AT_PtGuardedVar:
8360     handlePtGuardedVarAttr(S, D, AL);
8361     break;
8362   case ParsedAttr::AT_NoSanitize:
8363     handleNoSanitizeAttr(S, D, AL);
8364     break;
8365   case ParsedAttr::AT_NoSanitizeSpecific:
8366     handleNoSanitizeSpecificAttr(S, D, AL);
8367     break;
8368   case ParsedAttr::AT_GuardedBy:
8369     handleGuardedByAttr(S, D, AL);
8370     break;
8371   case ParsedAttr::AT_PtGuardedBy:
8372     handlePtGuardedByAttr(S, D, AL);
8373     break;
8374   case ParsedAttr::AT_ExclusiveTrylockFunction:
8375     handleExclusiveTrylockFunctionAttr(S, D, AL);
8376     break;
8377   case ParsedAttr::AT_LockReturned:
8378     handleLockReturnedAttr(S, D, AL);
8379     break;
8380   case ParsedAttr::AT_LocksExcluded:
8381     handleLocksExcludedAttr(S, D, AL);
8382     break;
8383   case ParsedAttr::AT_SharedTrylockFunction:
8384     handleSharedTrylockFunctionAttr(S, D, AL);
8385     break;
8386   case ParsedAttr::AT_AcquiredBefore:
8387     handleAcquiredBeforeAttr(S, D, AL);
8388     break;
8389   case ParsedAttr::AT_AcquiredAfter:
8390     handleAcquiredAfterAttr(S, D, AL);
8391     break;
8392 
8393   // Capability analysis attributes.
8394   case ParsedAttr::AT_Capability:
8395   case ParsedAttr::AT_Lockable:
8396     handleCapabilityAttr(S, D, AL);
8397     break;
8398   case ParsedAttr::AT_RequiresCapability:
8399     handleRequiresCapabilityAttr(S, D, AL);
8400     break;
8401 
8402   case ParsedAttr::AT_AssertCapability:
8403     handleAssertCapabilityAttr(S, D, AL);
8404     break;
8405   case ParsedAttr::AT_AcquireCapability:
8406     handleAcquireCapabilityAttr(S, D, AL);
8407     break;
8408   case ParsedAttr::AT_ReleaseCapability:
8409     handleReleaseCapabilityAttr(S, D, AL);
8410     break;
8411   case ParsedAttr::AT_TryAcquireCapability:
8412     handleTryAcquireCapabilityAttr(S, D, AL);
8413     break;
8414 
8415   // Consumed analysis attributes.
8416   case ParsedAttr::AT_Consumable:
8417     handleConsumableAttr(S, D, AL);
8418     break;
8419   case ParsedAttr::AT_CallableWhen:
8420     handleCallableWhenAttr(S, D, AL);
8421     break;
8422   case ParsedAttr::AT_ParamTypestate:
8423     handleParamTypestateAttr(S, D, AL);
8424     break;
8425   case ParsedAttr::AT_ReturnTypestate:
8426     handleReturnTypestateAttr(S, D, AL);
8427     break;
8428   case ParsedAttr::AT_SetTypestate:
8429     handleSetTypestateAttr(S, D, AL);
8430     break;
8431   case ParsedAttr::AT_TestTypestate:
8432     handleTestTypestateAttr(S, D, AL);
8433     break;
8434 
8435   // Type safety attributes.
8436   case ParsedAttr::AT_ArgumentWithTypeTag:
8437     handleArgumentWithTypeTagAttr(S, D, AL);
8438     break;
8439   case ParsedAttr::AT_TypeTagForDatatype:
8440     handleTypeTagForDatatypeAttr(S, D, AL);
8441     break;
8442 
8443   // Swift attributes.
8444   case ParsedAttr::AT_SwiftAsyncName:
8445     handleSwiftAsyncName(S, D, AL);
8446     break;
8447   case ParsedAttr::AT_SwiftAttr:
8448     handleSwiftAttrAttr(S, D, AL);
8449     break;
8450   case ParsedAttr::AT_SwiftBridge:
8451     handleSwiftBridge(S, D, AL);
8452     break;
8453   case ParsedAttr::AT_SwiftError:
8454     handleSwiftError(S, D, AL);
8455     break;
8456   case ParsedAttr::AT_SwiftName:
8457     handleSwiftName(S, D, AL);
8458     break;
8459   case ParsedAttr::AT_SwiftNewType:
8460     handleSwiftNewType(S, D, AL);
8461     break;
8462   case ParsedAttr::AT_SwiftAsync:
8463     handleSwiftAsyncAttr(S, D, AL);
8464     break;
8465   case ParsedAttr::AT_SwiftAsyncError:
8466     handleSwiftAsyncError(S, D, AL);
8467     break;
8468 
8469   // XRay attributes.
8470   case ParsedAttr::AT_XRayLogArgs:
8471     handleXRayLogArgsAttr(S, D, AL);
8472     break;
8473 
8474   case ParsedAttr::AT_PatchableFunctionEntry:
8475     handlePatchableFunctionEntryAttr(S, D, AL);
8476     break;
8477 
8478   case ParsedAttr::AT_AlwaysDestroy:
8479   case ParsedAttr::AT_NoDestroy:
8480     handleDestroyAttr(S, D, AL);
8481     break;
8482 
8483   case ParsedAttr::AT_Uninitialized:
8484     handleUninitializedAttr(S, D, AL);
8485     break;
8486 
8487   case ParsedAttr::AT_ObjCExternallyRetained:
8488     handleObjCExternallyRetainedAttr(S, D, AL);
8489     break;
8490 
8491   case ParsedAttr::AT_MIGServerRoutine:
8492     handleMIGServerRoutineAttr(S, D, AL);
8493     break;
8494 
8495   case ParsedAttr::AT_MSAllocator:
8496     handleMSAllocatorAttr(S, D, AL);
8497     break;
8498 
8499   case ParsedAttr::AT_ArmBuiltinAlias:
8500     handleArmBuiltinAliasAttr(S, D, AL);
8501     break;
8502 
8503   case ParsedAttr::AT_AcquireHandle:
8504     handleAcquireHandleAttr(S, D, AL);
8505     break;
8506 
8507   case ParsedAttr::AT_ReleaseHandle:
8508     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
8509     break;
8510 
8511   case ParsedAttr::AT_UseHandle:
8512     handleHandleAttr<UseHandleAttr>(S, D, AL);
8513     break;
8514 
8515   case ParsedAttr::AT_EnforceTCB:
8516     handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
8517     break;
8518 
8519   case ParsedAttr::AT_EnforceTCBLeaf:
8520     handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
8521     break;
8522 
8523   case ParsedAttr::AT_BuiltinAlias:
8524     handleBuiltinAliasAttr(S, D, AL);
8525     break;
8526 
8527   case ParsedAttr::AT_UsingIfExists:
8528     handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
8529     break;
8530   }
8531 }
8532 
8533 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
8534 /// attribute list to the specified decl, ignoring any type attributes.
8535 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
8536                                     const ParsedAttributesView &AttrList,
8537                                     bool IncludeCXX11Attributes) {
8538   if (AttrList.empty())
8539     return;
8540 
8541   for (const ParsedAttr &AL : AttrList)
8542     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
8543 
8544   // FIXME: We should be able to handle these cases in TableGen.
8545   // GCC accepts
8546   // static int a9 __attribute__((weakref));
8547   // but that looks really pointless. We reject it.
8548   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
8549     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
8550         << cast<NamedDecl>(D);
8551     D->dropAttr<WeakRefAttr>();
8552     return;
8553   }
8554 
8555   // FIXME: We should be able to handle this in TableGen as well. It would be
8556   // good to have a way to specify "these attributes must appear as a group",
8557   // for these. Additionally, it would be good to have a way to specify "these
8558   // attribute must never appear as a group" for attributes like cold and hot.
8559   if (!D->hasAttr<OpenCLKernelAttr>()) {
8560     // These attributes cannot be applied to a non-kernel function.
8561     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
8562       // FIXME: This emits a different error message than
8563       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
8564       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8565       D->setInvalidDecl();
8566     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
8567       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8568       D->setInvalidDecl();
8569     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
8570       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8571       D->setInvalidDecl();
8572     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
8573       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8574       D->setInvalidDecl();
8575     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
8576       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
8577         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8578             << A << ExpectedKernelFunction;
8579         D->setInvalidDecl();
8580       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
8581         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8582             << A << ExpectedKernelFunction;
8583         D->setInvalidDecl();
8584       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
8585         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8586             << A << ExpectedKernelFunction;
8587         D->setInvalidDecl();
8588       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
8589         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8590             << A << ExpectedKernelFunction;
8591         D->setInvalidDecl();
8592       }
8593     }
8594   }
8595 
8596   // Do this check after processing D's attributes because the attribute
8597   // objc_method_family can change whether the given method is in the init
8598   // family, and it can be applied after objc_designated_initializer. This is a
8599   // bit of a hack, but we need it to be compatible with versions of clang that
8600   // processed the attribute list in the wrong order.
8601   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
8602       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
8603     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
8604     D->dropAttr<ObjCDesignatedInitializerAttr>();
8605   }
8606 }
8607 
8608 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
8609 // attribute.
8610 void Sema::ProcessDeclAttributeDelayed(Decl *D,
8611                                        const ParsedAttributesView &AttrList) {
8612   for (const ParsedAttr &AL : AttrList)
8613     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
8614       handleTransparentUnionAttr(*this, D, AL);
8615       break;
8616     }
8617 
8618   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
8619   // to fields and inner records as well.
8620   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
8621     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
8622 }
8623 
8624 // Annotation attributes are the only attributes allowed after an access
8625 // specifier.
8626 bool Sema::ProcessAccessDeclAttributeList(
8627     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
8628   for (const ParsedAttr &AL : AttrList) {
8629     if (AL.getKind() == ParsedAttr::AT_Annotate) {
8630       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
8631     } else {
8632       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
8633       return true;
8634     }
8635   }
8636   return false;
8637 }
8638 
8639 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
8640 /// contains any decl attributes that we should warn about.
8641 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
8642   for (const ParsedAttr &AL : A) {
8643     // Only warn if the attribute is an unignored, non-type attribute.
8644     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
8645       continue;
8646     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
8647       continue;
8648 
8649     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
8650       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
8651           << AL << AL.getRange();
8652     } else {
8653       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
8654                                                             << AL.getRange();
8655     }
8656   }
8657 }
8658 
8659 /// checkUnusedDeclAttributes - Given a declarator which is not being
8660 /// used to build a declaration, complain about any decl attributes
8661 /// which might be lying around on it.
8662 void Sema::checkUnusedDeclAttributes(Declarator &D) {
8663   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
8664   ::checkUnusedDeclAttributes(*this, D.getAttributes());
8665   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
8666     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
8667 }
8668 
8669 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
8670 /// \#pragma weak needs a non-definition decl and source may not have one.
8671 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
8672                                       SourceLocation Loc) {
8673   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
8674   NamedDecl *NewD = nullptr;
8675   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
8676     FunctionDecl *NewFD;
8677     // FIXME: Missing call to CheckFunctionDeclaration().
8678     // FIXME: Mangling?
8679     // FIXME: Is the qualifier info correct?
8680     // FIXME: Is the DeclContext correct?
8681     NewFD = FunctionDecl::Create(
8682         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
8683         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
8684         getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
8685         FD->hasPrototype(), ConstexprSpecKind::Unspecified,
8686         FD->getTrailingRequiresClause());
8687     NewD = NewFD;
8688 
8689     if (FD->getQualifier())
8690       NewFD->setQualifierInfo(FD->getQualifierLoc());
8691 
8692     // Fake up parameter variables; they are declared as if this were
8693     // a typedef.
8694     QualType FDTy = FD->getType();
8695     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
8696       SmallVector<ParmVarDecl*, 16> Params;
8697       for (const auto &AI : FT->param_types()) {
8698         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
8699         Param->setScopeInfo(0, Params.size());
8700         Params.push_back(Param);
8701       }
8702       NewFD->setParams(Params);
8703     }
8704   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
8705     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
8706                            VD->getInnerLocStart(), VD->getLocation(), II,
8707                            VD->getType(), VD->getTypeSourceInfo(),
8708                            VD->getStorageClass());
8709     if (VD->getQualifier())
8710       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
8711   }
8712   return NewD;
8713 }
8714 
8715 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
8716 /// applied to it, possibly with an alias.
8717 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
8718   if (W.getUsed()) return; // only do this once
8719   W.setUsed(true);
8720   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
8721     IdentifierInfo *NDId = ND->getIdentifier();
8722     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
8723     NewD->addAttr(
8724         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
8725     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8726                                            AttributeCommonInfo::AS_Pragma));
8727     WeakTopLevelDecl.push_back(NewD);
8728     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
8729     // to insert Decl at TU scope, sorry.
8730     DeclContext *SavedContext = CurContext;
8731     CurContext = Context.getTranslationUnitDecl();
8732     NewD->setDeclContext(CurContext);
8733     NewD->setLexicalDeclContext(CurContext);
8734     PushOnScopeChains(NewD, S);
8735     CurContext = SavedContext;
8736   } else { // just add weak to existing
8737     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8738                                          AttributeCommonInfo::AS_Pragma));
8739   }
8740 }
8741 
8742 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
8743   // It's valid to "forward-declare" #pragma weak, in which case we
8744   // have to do this.
8745   LoadExternalWeakUndeclaredIdentifiers();
8746   if (!WeakUndeclaredIdentifiers.empty()) {
8747     NamedDecl *ND = nullptr;
8748     if (auto *VD = dyn_cast<VarDecl>(D))
8749       if (VD->isExternC())
8750         ND = VD;
8751     if (auto *FD = dyn_cast<FunctionDecl>(D))
8752       if (FD->isExternC())
8753         ND = FD;
8754     if (ND) {
8755       if (IdentifierInfo *Id = ND->getIdentifier()) {
8756         auto I = WeakUndeclaredIdentifiers.find(Id);
8757         if (I != WeakUndeclaredIdentifiers.end()) {
8758           WeakInfo W = I->second;
8759           DeclApplyPragmaWeak(S, ND, W);
8760           WeakUndeclaredIdentifiers[Id] = W;
8761         }
8762       }
8763     }
8764   }
8765 }
8766 
8767 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
8768 /// it, apply them to D.  This is a bit tricky because PD can have attributes
8769 /// specified in many different places, and we need to find and apply them all.
8770 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
8771   // Apply decl attributes from the DeclSpec if present.
8772   if (!PD.getDeclSpec().getAttributes().empty())
8773     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
8774 
8775   // Walk the declarator structure, applying decl attributes that were in a type
8776   // position to the decl itself.  This handles cases like:
8777   //   int *__attr__(x)** D;
8778   // when X is a decl attribute.
8779   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
8780     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
8781                              /*IncludeCXX11Attributes=*/false);
8782 
8783   // Finally, apply any attributes on the decl itself.
8784   ProcessDeclAttributeList(S, D, PD.getAttributes());
8785 
8786   // Apply additional attributes specified by '#pragma clang attribute'.
8787   AddPragmaAttributes(S, D);
8788 }
8789 
8790 /// Is the given declaration allowed to use a forbidden type?
8791 /// If so, it'll still be annotated with an attribute that makes it
8792 /// illegal to actually use.
8793 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
8794                                    const DelayedDiagnostic &diag,
8795                                    UnavailableAttr::ImplicitReason &reason) {
8796   // Private ivars are always okay.  Unfortunately, people don't
8797   // always properly make their ivars private, even in system headers.
8798   // Plus we need to make fields okay, too.
8799   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
8800       !isa<FunctionDecl>(D))
8801     return false;
8802 
8803   // Silently accept unsupported uses of __weak in both user and system
8804   // declarations when it's been disabled, for ease of integration with
8805   // -fno-objc-arc files.  We do have to take some care against attempts
8806   // to define such things;  for now, we've only done that for ivars
8807   // and properties.
8808   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
8809     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
8810         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
8811       reason = UnavailableAttr::IR_ForbiddenWeak;
8812       return true;
8813     }
8814   }
8815 
8816   // Allow all sorts of things in system headers.
8817   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
8818     // Currently, all the failures dealt with this way are due to ARC
8819     // restrictions.
8820     reason = UnavailableAttr::IR_ARCForbiddenType;
8821     return true;
8822   }
8823 
8824   return false;
8825 }
8826 
8827 /// Handle a delayed forbidden-type diagnostic.
8828 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
8829                                        Decl *D) {
8830   auto Reason = UnavailableAttr::IR_None;
8831   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
8832     assert(Reason && "didn't set reason?");
8833     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
8834     return;
8835   }
8836   if (S.getLangOpts().ObjCAutoRefCount)
8837     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8838       // FIXME: we may want to suppress diagnostics for all
8839       // kind of forbidden type messages on unavailable functions.
8840       if (FD->hasAttr<UnavailableAttr>() &&
8841           DD.getForbiddenTypeDiagnostic() ==
8842               diag::err_arc_array_param_no_ownership) {
8843         DD.Triggered = true;
8844         return;
8845       }
8846     }
8847 
8848   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
8849       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
8850   DD.Triggered = true;
8851 }
8852 
8853 
8854 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
8855   assert(DelayedDiagnostics.getCurrentPool());
8856   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
8857   DelayedDiagnostics.popWithoutEmitting(state);
8858 
8859   // When delaying diagnostics to run in the context of a parsed
8860   // declaration, we only want to actually emit anything if parsing
8861   // succeeds.
8862   if (!decl) return;
8863 
8864   // We emit all the active diagnostics in this pool or any of its
8865   // parents.  In general, we'll get one pool for the decl spec
8866   // and a child pool for each declarator; in a decl group like:
8867   //   deprecated_typedef foo, *bar, baz();
8868   // only the declarator pops will be passed decls.  This is correct;
8869   // we really do need to consider delayed diagnostics from the decl spec
8870   // for each of the different declarations.
8871   const DelayedDiagnosticPool *pool = &poppedPool;
8872   do {
8873     bool AnyAccessFailures = false;
8874     for (DelayedDiagnosticPool::pool_iterator
8875            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8876       // This const_cast is a bit lame.  Really, Triggered should be mutable.
8877       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8878       if (diag.Triggered)
8879         continue;
8880 
8881       switch (diag.Kind) {
8882       case DelayedDiagnostic::Availability:
8883         // Don't bother giving deprecation/unavailable diagnostics if
8884         // the decl is invalid.
8885         if (!decl->isInvalidDecl())
8886           handleDelayedAvailabilityCheck(diag, decl);
8887         break;
8888 
8889       case DelayedDiagnostic::Access:
8890         // Only produce one access control diagnostic for a structured binding
8891         // declaration: we don't need to tell the user that all the fields are
8892         // inaccessible one at a time.
8893         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8894           continue;
8895         HandleDelayedAccessCheck(diag, decl);
8896         if (diag.Triggered)
8897           AnyAccessFailures = true;
8898         break;
8899 
8900       case DelayedDiagnostic::ForbiddenType:
8901         handleDelayedForbiddenType(*this, diag, decl);
8902         break;
8903       }
8904     }
8905   } while ((pool = pool->getParent()));
8906 }
8907 
8908 /// Given a set of delayed diagnostics, re-emit them as if they had
8909 /// been delayed in the current context instead of in the given pool.
8910 /// Essentially, this just moves them to the current pool.
8911 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
8912   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
8913   assert(curPool && "re-emitting in undelayed context not supported");
8914   curPool->steal(pool);
8915 }
8916