xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaDeclAttr.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/DelayedDiagnostic.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/IR/Assumptions.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 
49 using namespace clang;
50 using namespace sema;
51 
52 namespace AttributeLangSupport {
53   enum LANG {
54     C,
55     Cpp,
56     ObjC
57   };
58 } // end namespace AttributeLangSupport
59 
60 //===----------------------------------------------------------------------===//
61 //  Helper functions
62 //===----------------------------------------------------------------------===//
63 
64 /// isFunctionOrMethod - Return true if the given decl has function
65 /// type (function or function-typed variable) or an Objective-C
66 /// method.
67 static bool isFunctionOrMethod(const Decl *D) {
68   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
69 }
70 
71 /// Return true if the given decl has function type (function or
72 /// function-typed variable) or an Objective-C method or a block.
73 static bool isFunctionOrMethodOrBlock(const Decl *D) {
74   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
75 }
76 
77 /// Return true if the given decl has a declarator that should have
78 /// been processed by Sema::GetTypeForDeclarator.
79 static bool hasDeclarator(const Decl *D) {
80   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
81   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
82          isa<ObjCPropertyDecl>(D);
83 }
84 
85 /// hasFunctionProto - Return true if the given decl has a argument
86 /// information. This decl should have already passed
87 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
88 static bool hasFunctionProto(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return isa<FunctionProtoType>(FnTy);
91   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
92 }
93 
94 /// getFunctionOrMethodNumParams - Return number of function or method
95 /// parameters. It is an error to call this on a K&R function (use
96 /// hasFunctionProto first).
97 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
98   if (const FunctionType *FnTy = D->getFunctionType())
99     return cast<FunctionProtoType>(FnTy)->getNumParams();
100   if (const auto *BD = dyn_cast<BlockDecl>(D))
101     return BD->getNumParams();
102   return cast<ObjCMethodDecl>(D)->param_size();
103 }
104 
105 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
106                                                    unsigned Idx) {
107   if (const auto *FD = dyn_cast<FunctionDecl>(D))
108     return FD->getParamDecl(Idx);
109   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
110     return MD->getParamDecl(Idx);
111   if (const auto *BD = dyn_cast<BlockDecl>(D))
112     return BD->getParamDecl(Idx);
113   return nullptr;
114 }
115 
116 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
117   if (const FunctionType *FnTy = D->getFunctionType())
118     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
119   if (const auto *BD = dyn_cast<BlockDecl>(D))
120     return BD->getParamDecl(Idx)->getType();
121 
122   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
123 }
124 
125 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
126   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
127     return PVD->getSourceRange();
128   return SourceRange();
129 }
130 
131 static QualType getFunctionOrMethodResultType(const Decl *D) {
132   if (const FunctionType *FnTy = D->getFunctionType())
133     return FnTy->getReturnType();
134   return cast<ObjCMethodDecl>(D)->getReturnType();
135 }
136 
137 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
138   if (const auto *FD = dyn_cast<FunctionDecl>(D))
139     return FD->getReturnTypeSourceRange();
140   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
141     return MD->getReturnTypeSourceRange();
142   return SourceRange();
143 }
144 
145 static bool isFunctionOrMethodVariadic(const Decl *D) {
146   if (const FunctionType *FnTy = D->getFunctionType())
147     return cast<FunctionProtoType>(FnTy)->isVariadic();
148   if (const auto *BD = dyn_cast<BlockDecl>(D))
149     return BD->isVariadic();
150   return cast<ObjCMethodDecl>(D)->isVariadic();
151 }
152 
153 static bool isInstanceMethod(const Decl *D) {
154   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
155     return MethodDecl->isInstance();
156   return false;
157 }
158 
159 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
160                                   bool AllowNSAttributedString = false) {
161   const auto *PT = T->getAs<ObjCObjectPointerType>();
162   if (!PT)
163     return false;
164 
165   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
166   if (!Cls)
167     return false;
168 
169   IdentifierInfo* ClsName = Cls->getIdentifier();
170 
171   if (AllowNSAttributedString &&
172       ClsName == &Ctx.Idents.get("NSAttributedString"))
173     return true;
174   // FIXME: Should we walk the chain of classes?
175   return ClsName == &Ctx.Idents.get("NSString") ||
176          ClsName == &Ctx.Idents.get("NSMutableString");
177 }
178 
179 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
180   const auto *PT = T->getAs<PointerType>();
181   if (!PT)
182     return false;
183 
184   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
185   if (!RT)
186     return false;
187 
188   const RecordDecl *RD = RT->getDecl();
189   if (RD->getTagKind() != TTK_Struct)
190     return false;
191 
192   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
193 }
194 
195 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
196   // FIXME: Include the type in the argument list.
197   return AL.getNumArgs() + AL.hasParsedType();
198 }
199 
200 /// A helper function to provide Attribute Location for the Attr types
201 /// AND the ParsedAttr.
202 template <typename AttrInfo>
203 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
204 getAttrLoc(const AttrInfo &AL) {
205   return AL.getLocation();
206 }
207 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
208 
209 /// If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
211 ///
212 /// Negative argument is implicitly converted to unsigned, unless
213 /// \p StrictlyUnsigned is true.
214 template <typename AttrInfo>
215 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
216                                 uint32_t &Val, unsigned Idx = UINT_MAX,
217                                 bool StrictlyUnsigned = false) {
218   Optional<llvm::APSInt> I = llvm::APSInt(32);
219   if (Expr->isTypeDependent() ||
220       !(I = Expr->getIntegerConstantExpr(S.Context))) {
221     if (Idx != UINT_MAX)
222       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
223           << &AI << Idx << AANT_ArgumentIntegerConstant
224           << Expr->getSourceRange();
225     else
226       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
227           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
228     return false;
229   }
230 
231   if (!I->isIntN(32)) {
232     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
233         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
234     return false;
235   }
236 
237   if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
238     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
239         << &AI << /*non-negative*/ 1;
240     return false;
241   }
242 
243   Val = (uint32_t)I->getZExtValue();
244   return true;
245 }
246 
247 /// Wrapper around checkUInt32Argument, with an extra check to be sure
248 /// that the result will fit into a regular (signed) int. All args have the same
249 /// purpose as they do in checkUInt32Argument.
250 template <typename AttrInfo>
251 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
252                                      int &Val, unsigned Idx = UINT_MAX) {
253   uint32_t UVal;
254   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
255     return false;
256 
257   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
258     llvm::APSInt I(32); // for toString
259     I = UVal;
260     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
261         << toString(I, 10, false) << 32 << /* Unsigned */ 0;
262     return false;
263   }
264 
265   Val = UVal;
266   return true;
267 }
268 
269 /// Diagnose mutually exclusive attributes when present on a given
270 /// declaration. Returns true if diagnosed.
271 template <typename AttrTy>
272 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
273   if (const auto *A = D->getAttr<AttrTy>()) {
274     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
275     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
276     return true;
277   }
278   return false;
279 }
280 
281 template <typename AttrTy>
282 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
283   if (const auto *A = D->getAttr<AttrTy>()) {
284     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
285                                                                       << A;
286     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
287     return true;
288   }
289   return false;
290 }
291 
292 /// Check if IdxExpr is a valid parameter index for a function or
293 /// instance method D.  May output an error.
294 ///
295 /// \returns true if IdxExpr is a valid index.
296 template <typename AttrInfo>
297 static bool checkFunctionOrMethodParameterIndex(
298     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
299     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
300   assert(isFunctionOrMethodOrBlock(D));
301 
302   // In C++ the implicit 'this' function parameter also counts.
303   // Parameters are counted from one.
304   bool HP = hasFunctionProto(D);
305   bool HasImplicitThisParam = isInstanceMethod(D);
306   bool IV = HP && isFunctionOrMethodVariadic(D);
307   unsigned NumParams =
308       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
309 
310   Optional<llvm::APSInt> IdxInt;
311   if (IdxExpr->isTypeDependent() ||
312       !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
313     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
314         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
315         << IdxExpr->getSourceRange();
316     return false;
317   }
318 
319   unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
320   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
321     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
322         << &AI << AttrArgNum << IdxExpr->getSourceRange();
323     return false;
324   }
325   if (HasImplicitThisParam && !CanIndexImplicitThis) {
326     if (IdxSource == 1) {
327       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
328           << &AI << IdxExpr->getSourceRange();
329       return false;
330     }
331   }
332 
333   Idx = ParamIdx(IdxSource, D);
334   return true;
335 }
336 
337 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
338 /// If not emit an error and return false. If the argument is an identifier it
339 /// will emit an error with a fixit hint and treat it as if it was a string
340 /// literal.
341 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
342                                           StringRef &Str,
343                                           SourceLocation *ArgLocation) {
344   // Look for identifiers. If we have one emit a hint to fix it to a literal.
345   if (AL.isArgIdent(ArgNum)) {
346     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
347     Diag(Loc->Loc, diag::err_attribute_argument_type)
348         << AL << AANT_ArgumentString
349         << FixItHint::CreateInsertion(Loc->Loc, "\"")
350         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
351     Str = Loc->Ident->getName();
352     if (ArgLocation)
353       *ArgLocation = Loc->Loc;
354     return true;
355   }
356 
357   // Now check for an actual string literal.
358   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
359   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
360   if (ArgLocation)
361     *ArgLocation = ArgExpr->getBeginLoc();
362 
363   if (!Literal || !Literal->isAscii()) {
364     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
365         << AL << AANT_ArgumentString;
366     return false;
367   }
368 
369   Str = Literal->getString();
370   return true;
371 }
372 
373 /// Applies the given attribute to the Decl without performing any
374 /// additional semantic checking.
375 template <typename AttrType>
376 static void handleSimpleAttribute(Sema &S, Decl *D,
377                                   const AttributeCommonInfo &CI) {
378   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
379 }
380 
381 template <typename... DiagnosticArgs>
382 static const Sema::SemaDiagnosticBuilder&
383 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
384   return Bldr;
385 }
386 
387 template <typename T, typename... DiagnosticArgs>
388 static const Sema::SemaDiagnosticBuilder&
389 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
390                   DiagnosticArgs &&... ExtraArgs) {
391   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
392                            std::forward<DiagnosticArgs>(ExtraArgs)...);
393 }
394 
395 /// Add an attribute @c AttrType to declaration @c D, provided that
396 /// @c PassesCheck is true.
397 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
398 /// specified in @c ExtraArgs.
399 template <typename AttrType, typename... DiagnosticArgs>
400 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
401                                             const AttributeCommonInfo &CI,
402                                             bool PassesCheck, unsigned DiagID,
403                                             DiagnosticArgs &&... ExtraArgs) {
404   if (!PassesCheck) {
405     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
406     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
407     return;
408   }
409   handleSimpleAttribute<AttrType>(S, D, CI);
410 }
411 
412 /// Check if the passed-in expression is of type int or bool.
413 static bool isIntOrBool(Expr *Exp) {
414   QualType QT = Exp->getType();
415   return QT->isBooleanType() || QT->isIntegerType();
416 }
417 
418 
419 // Check to see if the type is a smart pointer of some kind.  We assume
420 // it's a smart pointer if it defines both operator-> and operator*.
421 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
422   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
423                                           OverloadedOperatorKind Op) {
424     DeclContextLookupResult Result =
425         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
426     return !Result.empty();
427   };
428 
429   const RecordDecl *Record = RT->getDecl();
430   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
431   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
432   if (foundStarOperator && foundArrowOperator)
433     return true;
434 
435   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
436   if (!CXXRecord)
437     return false;
438 
439   for (auto BaseSpecifier : CXXRecord->bases()) {
440     if (!foundStarOperator)
441       foundStarOperator = IsOverloadedOperatorPresent(
442           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
443     if (!foundArrowOperator)
444       foundArrowOperator = IsOverloadedOperatorPresent(
445           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
446   }
447 
448   if (foundStarOperator && foundArrowOperator)
449     return true;
450 
451   return false;
452 }
453 
454 /// Check if passed in Decl is a pointer type.
455 /// Note that this function may produce an error message.
456 /// \return true if the Decl is a pointer type; false otherwise
457 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
458                                        const ParsedAttr &AL) {
459   const auto *VD = cast<ValueDecl>(D);
460   QualType QT = VD->getType();
461   if (QT->isAnyPointerType())
462     return true;
463 
464   if (const auto *RT = QT->getAs<RecordType>()) {
465     // If it's an incomplete type, it could be a smart pointer; skip it.
466     // (We don't want to force template instantiation if we can avoid it,
467     // since that would alter the order in which templates are instantiated.)
468     if (RT->isIncompleteType())
469       return true;
470 
471     if (threadSafetyCheckIsSmartPointer(S, RT))
472       return true;
473   }
474 
475   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
476   return false;
477 }
478 
479 /// Checks that the passed in QualType either is of RecordType or points
480 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
481 static const RecordType *getRecordType(QualType QT) {
482   if (const auto *RT = QT->getAs<RecordType>())
483     return RT;
484 
485   // Now check if we point to record type.
486   if (const auto *PT = QT->getAs<PointerType>())
487     return PT->getPointeeType()->getAs<RecordType>();
488 
489   return nullptr;
490 }
491 
492 template <typename AttrType>
493 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
494   // Check if the record itself has the attribute.
495   if (RD->hasAttr<AttrType>())
496     return true;
497 
498   // Else check if any base classes have the attribute.
499   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
500     if (!CRD->forallBases([](const CXXRecordDecl *Base) {
501           return !Base->hasAttr<AttrType>();
502         }))
503       return true;
504   }
505   return false;
506 }
507 
508 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
509   const RecordType *RT = getRecordType(Ty);
510 
511   if (!RT)
512     return false;
513 
514   // Don't check for the capability if the class hasn't been defined yet.
515   if (RT->isIncompleteType())
516     return true;
517 
518   // Allow smart pointers to be used as capability objects.
519   // FIXME -- Check the type that the smart pointer points to.
520   if (threadSafetyCheckIsSmartPointer(S, RT))
521     return true;
522 
523   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
524 }
525 
526 static bool checkTypedefTypeForCapability(QualType Ty) {
527   const auto *TD = Ty->getAs<TypedefType>();
528   if (!TD)
529     return false;
530 
531   TypedefNameDecl *TN = TD->getDecl();
532   if (!TN)
533     return false;
534 
535   return TN->hasAttr<CapabilityAttr>();
536 }
537 
538 static bool typeHasCapability(Sema &S, QualType Ty) {
539   if (checkTypedefTypeForCapability(Ty))
540     return true;
541 
542   if (checkRecordTypeForCapability(S, Ty))
543     return true;
544 
545   return false;
546 }
547 
548 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
549   // Capability expressions are simple expressions involving the boolean logic
550   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
551   // a DeclRefExpr is found, its type should be checked to determine whether it
552   // is a capability or not.
553 
554   if (const auto *E = dyn_cast<CastExpr>(Ex))
555     return isCapabilityExpr(S, E->getSubExpr());
556   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
557     return isCapabilityExpr(S, E->getSubExpr());
558   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
559     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
560         E->getOpcode() == UO_Deref)
561       return isCapabilityExpr(S, E->getSubExpr());
562     return false;
563   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
564     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
565       return isCapabilityExpr(S, E->getLHS()) &&
566              isCapabilityExpr(S, E->getRHS());
567     return false;
568   }
569 
570   return typeHasCapability(S, Ex->getType());
571 }
572 
573 /// Checks that all attribute arguments, starting from Sidx, resolve to
574 /// a capability object.
575 /// \param Sidx The attribute argument index to start checking with.
576 /// \param ParamIdxOk Whether an argument can be indexing into a function
577 /// parameter list.
578 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
579                                            const ParsedAttr &AL,
580                                            SmallVectorImpl<Expr *> &Args,
581                                            unsigned Sidx = 0,
582                                            bool ParamIdxOk = false) {
583   if (Sidx == AL.getNumArgs()) {
584     // If we don't have any capability arguments, the attribute implicitly
585     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
586     // a non-static method, and that the class is a (scoped) capability.
587     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
588     if (MD && !MD->isStatic()) {
589       const CXXRecordDecl *RD = MD->getParent();
590       // FIXME -- need to check this again on template instantiation
591       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
592           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
593         S.Diag(AL.getLoc(),
594                diag::warn_thread_attribute_not_on_capability_member)
595             << AL << MD->getParent();
596     } else {
597       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
598           << AL;
599     }
600   }
601 
602   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
603     Expr *ArgExp = AL.getArgAsExpr(Idx);
604 
605     if (ArgExp->isTypeDependent()) {
606       // FIXME -- need to check this again on template instantiation
607       Args.push_back(ArgExp);
608       continue;
609     }
610 
611     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
612       if (StrLit->getLength() == 0 ||
613           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
614         // Pass empty strings to the analyzer without warnings.
615         // Treat "*" as the universal lock.
616         Args.push_back(ArgExp);
617         continue;
618       }
619 
620       // We allow constant strings to be used as a placeholder for expressions
621       // that are not valid C++ syntax, but warn that they are ignored.
622       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
623       Args.push_back(ArgExp);
624       continue;
625     }
626 
627     QualType ArgTy = ArgExp->getType();
628 
629     // A pointer to member expression of the form  &MyClass::mu is treated
630     // specially -- we need to look at the type of the member.
631     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
632       if (UOp->getOpcode() == UO_AddrOf)
633         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
634           if (DRE->getDecl()->isCXXInstanceMember())
635             ArgTy = DRE->getDecl()->getType();
636 
637     // First see if we can just cast to record type, or pointer to record type.
638     const RecordType *RT = getRecordType(ArgTy);
639 
640     // Now check if we index into a record type function param.
641     if(!RT && ParamIdxOk) {
642       const auto *FD = dyn_cast<FunctionDecl>(D);
643       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
644       if(FD && IL) {
645         unsigned int NumParams = FD->getNumParams();
646         llvm::APInt ArgValue = IL->getValue();
647         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
648         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
649         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
650           S.Diag(AL.getLoc(),
651                  diag::err_attribute_argument_out_of_bounds_extra_info)
652               << AL << Idx + 1 << NumParams;
653           continue;
654         }
655         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
656       }
657     }
658 
659     // If the type does not have a capability, see if the components of the
660     // expression have capabilities. This allows for writing C code where the
661     // capability may be on the type, and the expression is a capability
662     // boolean logic expression. Eg) requires_capability(A || B && !C)
663     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
664       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
665           << AL << ArgTy;
666 
667     Args.push_back(ArgExp);
668   }
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // Attribute Implementations
673 //===----------------------------------------------------------------------===//
674 
675 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
676   if (!threadSafetyCheckIsPointer(S, D, AL))
677     return;
678 
679   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
680 }
681 
682 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
683                                      Expr *&Arg) {
684   SmallVector<Expr *, 1> Args;
685   // check that all arguments are lockable objects
686   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
687   unsigned Size = Args.size();
688   if (Size != 1)
689     return false;
690 
691   Arg = Args[0];
692 
693   return true;
694 }
695 
696 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
697   Expr *Arg = nullptr;
698   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
699     return;
700 
701   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
702 }
703 
704 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
705   Expr *Arg = nullptr;
706   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
707     return;
708 
709   if (!threadSafetyCheckIsPointer(S, D, AL))
710     return;
711 
712   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
713 }
714 
715 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
716                                         SmallVectorImpl<Expr *> &Args) {
717   if (!AL.checkAtLeastNumArgs(S, 1))
718     return false;
719 
720   // Check that this attribute only applies to lockable types.
721   QualType QT = cast<ValueDecl>(D)->getType();
722   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
723     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
724     return false;
725   }
726 
727   // Check that all arguments are lockable objects.
728   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
729   if (Args.empty())
730     return false;
731 
732   return true;
733 }
734 
735 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
736   SmallVector<Expr *, 1> Args;
737   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
738     return;
739 
740   Expr **StartArg = &Args[0];
741   D->addAttr(::new (S.Context)
742                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
743 }
744 
745 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
746   SmallVector<Expr *, 1> Args;
747   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
748     return;
749 
750   Expr **StartArg = &Args[0];
751   D->addAttr(::new (S.Context)
752                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
753 }
754 
755 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
756                                    SmallVectorImpl<Expr *> &Args) {
757   // zero or more arguments ok
758   // check that all arguments are lockable objects
759   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
760 
761   return true;
762 }
763 
764 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
765   SmallVector<Expr *, 1> Args;
766   if (!checkLockFunAttrCommon(S, D, AL, Args))
767     return;
768 
769   unsigned Size = Args.size();
770   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
771   D->addAttr(::new (S.Context)
772                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
773 }
774 
775 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
776                                           const ParsedAttr &AL) {
777   SmallVector<Expr *, 1> Args;
778   if (!checkLockFunAttrCommon(S, D, AL, Args))
779     return;
780 
781   unsigned Size = Args.size();
782   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
783   D->addAttr(::new (S.Context)
784                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
785 }
786 
787 /// Checks to be sure that the given parameter number is in bounds, and
788 /// is an integral type. Will emit appropriate diagnostics if this returns
789 /// false.
790 ///
791 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
792 template <typename AttrInfo>
793 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
794                                     unsigned AttrArgNo) {
795   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
796   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
797   ParamIdx Idx;
798   if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
799                                            Idx))
800     return false;
801 
802   QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
803   if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
804     SourceLocation SrcLoc = AttrArg->getBeginLoc();
805     S.Diag(SrcLoc, diag::err_attribute_integers_only)
806         << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
807     return false;
808   }
809   return true;
810 }
811 
812 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
813   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
814     return;
815 
816   assert(isFunctionOrMethod(D) && hasFunctionProto(D));
817 
818   QualType RetTy = getFunctionOrMethodResultType(D);
819   if (!RetTy->isPointerType()) {
820     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
821     return;
822   }
823 
824   const Expr *SizeExpr = AL.getArgAsExpr(0);
825   int SizeArgNoVal;
826   // Parameter indices are 1-indexed, hence Index=1
827   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
828     return;
829   if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
830     return;
831   ParamIdx SizeArgNo(SizeArgNoVal, D);
832 
833   ParamIdx NumberArgNo;
834   if (AL.getNumArgs() == 2) {
835     const Expr *NumberExpr = AL.getArgAsExpr(1);
836     int Val;
837     // Parameter indices are 1-based, hence Index=2
838     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
839       return;
840     if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
841       return;
842     NumberArgNo = ParamIdx(Val, D);
843   }
844 
845   D->addAttr(::new (S.Context)
846                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
847 }
848 
849 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
850                                       SmallVectorImpl<Expr *> &Args) {
851   if (!AL.checkAtLeastNumArgs(S, 1))
852     return false;
853 
854   if (!isIntOrBool(AL.getArgAsExpr(0))) {
855     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
856         << AL << 1 << AANT_ArgumentIntOrBool;
857     return false;
858   }
859 
860   // check that all arguments are lockable objects
861   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
862 
863   return true;
864 }
865 
866 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
867                                             const ParsedAttr &AL) {
868   SmallVector<Expr*, 2> Args;
869   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
870     return;
871 
872   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
873       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
874 }
875 
876 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
877                                                const ParsedAttr &AL) {
878   SmallVector<Expr*, 2> Args;
879   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
880     return;
881 
882   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
883       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
884 }
885 
886 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
887   // check that the argument is lockable object
888   SmallVector<Expr*, 1> Args;
889   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
890   unsigned Size = Args.size();
891   if (Size == 0)
892     return;
893 
894   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
895 }
896 
897 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898   if (!AL.checkAtLeastNumArgs(S, 1))
899     return;
900 
901   // check that all arguments are lockable objects
902   SmallVector<Expr*, 1> Args;
903   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
904   unsigned Size = Args.size();
905   if (Size == 0)
906     return;
907   Expr **StartArg = &Args[0];
908 
909   D->addAttr(::new (S.Context)
910                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
911 }
912 
913 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
914                                        Expr *&Cond, StringRef &Msg) {
915   Cond = AL.getArgAsExpr(0);
916   if (!Cond->isTypeDependent()) {
917     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
918     if (Converted.isInvalid())
919       return false;
920     Cond = Converted.get();
921   }
922 
923   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
924     return false;
925 
926   if (Msg.empty())
927     Msg = "<no message provided>";
928 
929   SmallVector<PartialDiagnosticAt, 8> Diags;
930   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
931       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
932                                                 Diags)) {
933     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
934     for (const PartialDiagnosticAt &PDiag : Diags)
935       S.Diag(PDiag.first, PDiag.second);
936     return false;
937   }
938   return true;
939 }
940 
941 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
943 
944   Expr *Cond;
945   StringRef Msg;
946   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
947     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
948 }
949 
950 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
951   StringRef NewUserDiagnostic;
952   if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
953     return;
954   if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
955     D->addAttr(EA);
956 }
957 
958 namespace {
959 /// Determines if a given Expr references any of the given function's
960 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
961 class ArgumentDependenceChecker
962     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
963 #ifndef NDEBUG
964   const CXXRecordDecl *ClassType;
965 #endif
966   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
967   bool Result;
968 
969 public:
970   ArgumentDependenceChecker(const FunctionDecl *FD) {
971 #ifndef NDEBUG
972     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
973       ClassType = MD->getParent();
974     else
975       ClassType = nullptr;
976 #endif
977     Parms.insert(FD->param_begin(), FD->param_end());
978   }
979 
980   bool referencesArgs(Expr *E) {
981     Result = false;
982     TraverseStmt(E);
983     return Result;
984   }
985 
986   bool VisitCXXThisExpr(CXXThisExpr *E) {
987     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
988            "`this` doesn't refer to the enclosing class?");
989     Result = true;
990     return false;
991   }
992 
993   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
994     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
995       if (Parms.count(PVD)) {
996         Result = true;
997         return false;
998       }
999     return true;
1000   }
1001 };
1002 }
1003 
1004 static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D,
1005                                         const ParsedAttr &AL) {
1006   const auto *DeclFD = cast<FunctionDecl>(D);
1007 
1008   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
1009     if (!MethodDecl->isStatic()) {
1010       S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
1011       return;
1012     }
1013 
1014   auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
1015     SourceLocation Loc = [&]() {
1016       auto Union = AL.getArg(Index - 1);
1017       if (Union.is<Expr *>())
1018         return Union.get<Expr *>()->getBeginLoc();
1019       return Union.get<IdentifierLoc *>()->Loc;
1020     }();
1021 
1022     S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
1023   };
1024 
1025   FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
1026     if (!AL.isArgExpr(0))
1027       return nullptr;
1028     auto *F = dyn_cast_or_null<DeclRefExpr>(AL.getArgAsExpr(0));
1029     if (!F)
1030       return nullptr;
1031     return dyn_cast_or_null<FunctionDecl>(F->getFoundDecl());
1032   }();
1033 
1034   if (!AttrFD || !AttrFD->getBuiltinID(true)) {
1035     DiagnoseType(1, AANT_ArgumentBuiltinFunction);
1036     return;
1037   }
1038 
1039   if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
1040     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
1041         << AL << AttrFD << AttrFD->getNumParams();
1042     return;
1043   }
1044 
1045   SmallVector<unsigned, 8> Indices;
1046 
1047   for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
1048     if (!AL.isArgExpr(I)) {
1049       DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
1050       return;
1051     }
1052 
1053     const Expr *IndexExpr = AL.getArgAsExpr(I);
1054     uint32_t Index;
1055 
1056     if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false))
1057       return;
1058 
1059     if (Index > DeclFD->getNumParams()) {
1060       S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
1061           << AL << Index << DeclFD << DeclFD->getNumParams();
1062       return;
1063     }
1064 
1065     QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
1066     QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
1067 
1068     if (T1.getCanonicalType().getUnqualifiedType() !=
1069         T2.getCanonicalType().getUnqualifiedType()) {
1070       S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
1071           << AL << Index << DeclFD << T2 << I << AttrFD << T1;
1072       return;
1073     }
1074 
1075     Indices.push_back(Index - 1);
1076   }
1077 
1078   D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
1079       S.Context, AL, AttrFD, Indices.data(), Indices.size()));
1080 }
1081 
1082 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1083   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1084 
1085   Expr *Cond;
1086   StringRef Msg;
1087   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1088     return;
1089 
1090   StringRef DiagTypeStr;
1091   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1092     return;
1093 
1094   DiagnoseIfAttr::DiagnosticType DiagType;
1095   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1096     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1097            diag::err_diagnose_if_invalid_diagnostic_type);
1098     return;
1099   }
1100 
1101   bool ArgDependent = false;
1102   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1103     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1104   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1105       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1106 }
1107 
1108 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1109   static constexpr const StringRef kWildcard = "*";
1110 
1111   llvm::SmallVector<StringRef, 16> Names;
1112   bool HasWildcard = false;
1113 
1114   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1115     if (Name == kWildcard)
1116       HasWildcard = true;
1117     Names.push_back(Name);
1118   };
1119 
1120   // Add previously defined attributes.
1121   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1122     for (StringRef BuiltinName : NBA->builtinNames())
1123       AddBuiltinName(BuiltinName);
1124 
1125   // Add current attributes.
1126   if (AL.getNumArgs() == 0)
1127     AddBuiltinName(kWildcard);
1128   else
1129     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1130       StringRef BuiltinName;
1131       SourceLocation LiteralLoc;
1132       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1133         return;
1134 
1135       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1136         AddBuiltinName(BuiltinName);
1137       else
1138         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1139             << BuiltinName << AL;
1140     }
1141 
1142   // Repeating the same attribute is fine.
1143   llvm::sort(Names);
1144   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1145 
1146   // Empty no_builtin must be on its own.
1147   if (HasWildcard && Names.size() > 1)
1148     S.Diag(D->getLocation(),
1149            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1150         << AL;
1151 
1152   if (D->hasAttr<NoBuiltinAttr>())
1153     D->dropAttr<NoBuiltinAttr>();
1154   D->addAttr(::new (S.Context)
1155                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1156 }
1157 
1158 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1159   if (D->hasAttr<PassObjectSizeAttr>()) {
1160     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1161     return;
1162   }
1163 
1164   Expr *E = AL.getArgAsExpr(0);
1165   uint32_t Type;
1166   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1167     return;
1168 
1169   // pass_object_size's argument is passed in as the second argument of
1170   // __builtin_object_size. So, it has the same constraints as that second
1171   // argument; namely, it must be in the range [0, 3].
1172   if (Type > 3) {
1173     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1174         << AL << 0 << 3 << E->getSourceRange();
1175     return;
1176   }
1177 
1178   // pass_object_size is only supported on constant pointer parameters; as a
1179   // kindness to users, we allow the parameter to be non-const for declarations.
1180   // At this point, we have no clue if `D` belongs to a function declaration or
1181   // definition, so we defer the constness check until later.
1182   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1183     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1184     return;
1185   }
1186 
1187   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1188 }
1189 
1190 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1191   ConsumableAttr::ConsumedState DefaultState;
1192 
1193   if (AL.isArgIdent(0)) {
1194     IdentifierLoc *IL = AL.getArgAsIdent(0);
1195     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1196                                                    DefaultState)) {
1197       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1198                                                                << IL->Ident;
1199       return;
1200     }
1201   } else {
1202     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1203         << AL << AANT_ArgumentIdentifier;
1204     return;
1205   }
1206 
1207   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1208 }
1209 
1210 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1211                                     const ParsedAttr &AL) {
1212   QualType ThisType = MD->getThisType()->getPointeeType();
1213 
1214   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1215     if (!RD->hasAttr<ConsumableAttr>()) {
1216       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1217 
1218       return false;
1219     }
1220   }
1221 
1222   return true;
1223 }
1224 
1225 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1226   if (!AL.checkAtLeastNumArgs(S, 1))
1227     return;
1228 
1229   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1230     return;
1231 
1232   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1233   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1234     CallableWhenAttr::ConsumedState CallableState;
1235 
1236     StringRef StateString;
1237     SourceLocation Loc;
1238     if (AL.isArgIdent(ArgIndex)) {
1239       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1240       StateString = Ident->Ident->getName();
1241       Loc = Ident->Loc;
1242     } else {
1243       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1244         return;
1245     }
1246 
1247     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1248                                                      CallableState)) {
1249       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1250       return;
1251     }
1252 
1253     States.push_back(CallableState);
1254   }
1255 
1256   D->addAttr(::new (S.Context)
1257                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1258 }
1259 
1260 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1261   ParamTypestateAttr::ConsumedState ParamState;
1262 
1263   if (AL.isArgIdent(0)) {
1264     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1265     StringRef StateString = Ident->Ident->getName();
1266 
1267     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1268                                                        ParamState)) {
1269       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1270           << AL << StateString;
1271       return;
1272     }
1273   } else {
1274     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1275         << AL << AANT_ArgumentIdentifier;
1276     return;
1277   }
1278 
1279   // FIXME: This check is currently being done in the analysis.  It can be
1280   //        enabled here only after the parser propagates attributes at
1281   //        template specialization definition, not declaration.
1282   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1283   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1284   //
1285   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1286   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1287   //      ReturnType.getAsString();
1288   //    return;
1289   //}
1290 
1291   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1292 }
1293 
1294 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1295   ReturnTypestateAttr::ConsumedState ReturnState;
1296 
1297   if (AL.isArgIdent(0)) {
1298     IdentifierLoc *IL = AL.getArgAsIdent(0);
1299     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1300                                                         ReturnState)) {
1301       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1302                                                                << IL->Ident;
1303       return;
1304     }
1305   } else {
1306     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1307         << AL << AANT_ArgumentIdentifier;
1308     return;
1309   }
1310 
1311   // FIXME: This check is currently being done in the analysis.  It can be
1312   //        enabled here only after the parser propagates attributes at
1313   //        template specialization definition, not declaration.
1314   //QualType ReturnType;
1315   //
1316   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1317   //  ReturnType = Param->getType();
1318   //
1319   //} else if (const CXXConstructorDecl *Constructor =
1320   //             dyn_cast<CXXConstructorDecl>(D)) {
1321   //  ReturnType = Constructor->getThisType()->getPointeeType();
1322   //
1323   //} else {
1324   //
1325   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1326   //}
1327   //
1328   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1329   //
1330   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1331   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1332   //      ReturnType.getAsString();
1333   //    return;
1334   //}
1335 
1336   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1337 }
1338 
1339 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1340   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1341     return;
1342 
1343   SetTypestateAttr::ConsumedState NewState;
1344   if (AL.isArgIdent(0)) {
1345     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1346     StringRef Param = Ident->Ident->getName();
1347     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1348       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1349                                                                   << Param;
1350       return;
1351     }
1352   } else {
1353     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1354         << AL << AANT_ArgumentIdentifier;
1355     return;
1356   }
1357 
1358   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1359 }
1360 
1361 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1362   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1363     return;
1364 
1365   TestTypestateAttr::ConsumedState TestState;
1366   if (AL.isArgIdent(0)) {
1367     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1368     StringRef Param = Ident->Ident->getName();
1369     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1370       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1371                                                                   << Param;
1372       return;
1373     }
1374   } else {
1375     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1376         << AL << AANT_ArgumentIdentifier;
1377     return;
1378   }
1379 
1380   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1381 }
1382 
1383 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1384   // Remember this typedef decl, we will need it later for diagnostics.
1385   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1386 }
1387 
1388 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1389   if (auto *TD = dyn_cast<TagDecl>(D))
1390     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1391   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1392     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1393                                 !FD->getType()->isIncompleteType() &&
1394                                 FD->isBitField() &&
1395                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1396 
1397     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1398       if (BitfieldByteAligned)
1399         // The PS4 target needs to maintain ABI backwards compatibility.
1400         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1401             << AL << FD->getType();
1402       else
1403         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1404     } else {
1405       // Report warning about changed offset in the newer compiler versions.
1406       if (BitfieldByteAligned)
1407         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1408 
1409       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1410     }
1411 
1412   } else
1413     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1414 }
1415 
1416 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1417   auto *RD = cast<CXXRecordDecl>(D);
1418   ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1419   assert(CTD && "attribute does not appertain to this declaration");
1420 
1421   ParsedType PT = AL.getTypeArg();
1422   TypeSourceInfo *TSI = nullptr;
1423   QualType T = S.GetTypeFromParser(PT, &TSI);
1424   if (!TSI)
1425     TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1426 
1427   if (!T.hasQualifiers() && T->isTypedefNameType()) {
1428     // Find the template name, if this type names a template specialization.
1429     const TemplateDecl *Template = nullptr;
1430     if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1431             T->getAsCXXRecordDecl())) {
1432       Template = CTSD->getSpecializedTemplate();
1433     } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1434       while (TST && TST->isTypeAlias())
1435         TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1436       if (TST)
1437         Template = TST->getTemplateName().getAsTemplateDecl();
1438     }
1439 
1440     if (Template && declaresSameEntity(Template, CTD)) {
1441       D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1442       return;
1443     }
1444   }
1445 
1446   S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1447       << T << CTD;
1448   if (const auto *TT = T->getAs<TypedefType>())
1449     S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1450         << TT->getDecl();
1451 }
1452 
1453 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1454   // The IBOutlet/IBOutletCollection attributes only apply to instance
1455   // variables or properties of Objective-C classes.  The outlet must also
1456   // have an object reference type.
1457   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1458     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1459       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1460           << AL << VD->getType() << 0;
1461       return false;
1462     }
1463   }
1464   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1465     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1466       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1467           << AL << PD->getType() << 1;
1468       return false;
1469     }
1470   }
1471   else {
1472     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1473     return false;
1474   }
1475 
1476   return true;
1477 }
1478 
1479 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1480   if (!checkIBOutletCommon(S, D, AL))
1481     return;
1482 
1483   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1484 }
1485 
1486 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1487 
1488   // The iboutletcollection attribute can have zero or one arguments.
1489   if (AL.getNumArgs() > 1) {
1490     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1491     return;
1492   }
1493 
1494   if (!checkIBOutletCommon(S, D, AL))
1495     return;
1496 
1497   ParsedType PT;
1498 
1499   if (AL.hasParsedType())
1500     PT = AL.getTypeArg();
1501   else {
1502     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1503                        S.getScopeForContext(D->getDeclContext()->getParent()));
1504     if (!PT) {
1505       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1506       return;
1507     }
1508   }
1509 
1510   TypeSourceInfo *QTLoc = nullptr;
1511   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1512   if (!QTLoc)
1513     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1514 
1515   // Diagnose use of non-object type in iboutletcollection attribute.
1516   // FIXME. Gnu attribute extension ignores use of builtin types in
1517   // attributes. So, __attribute__((iboutletcollection(char))) will be
1518   // treated as __attribute__((iboutletcollection())).
1519   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1520     S.Diag(AL.getLoc(),
1521            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1522                                : diag::err_iboutletcollection_type) << QT;
1523     return;
1524   }
1525 
1526   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1527 }
1528 
1529 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1530   if (RefOkay) {
1531     if (T->isReferenceType())
1532       return true;
1533   } else {
1534     T = T.getNonReferenceType();
1535   }
1536 
1537   // The nonnull attribute, and other similar attributes, can be applied to a
1538   // transparent union that contains a pointer type.
1539   if (const RecordType *UT = T->getAsUnionType()) {
1540     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1541       RecordDecl *UD = UT->getDecl();
1542       for (const auto *I : UD->fields()) {
1543         QualType QT = I->getType();
1544         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1545           return true;
1546       }
1547     }
1548   }
1549 
1550   return T->isAnyPointerType() || T->isBlockPointerType();
1551 }
1552 
1553 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1554                                 SourceRange AttrParmRange,
1555                                 SourceRange TypeRange,
1556                                 bool isReturnValue = false) {
1557   if (!S.isValidPointerAttrType(T)) {
1558     if (isReturnValue)
1559       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1560           << AL << AttrParmRange << TypeRange;
1561     else
1562       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1563           << AL << AttrParmRange << TypeRange << 0;
1564     return false;
1565   }
1566   return true;
1567 }
1568 
1569 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1570   SmallVector<ParamIdx, 8> NonNullArgs;
1571   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1572     Expr *Ex = AL.getArgAsExpr(I);
1573     ParamIdx Idx;
1574     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1575       return;
1576 
1577     // Is the function argument a pointer type?
1578     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1579         !attrNonNullArgCheck(
1580             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1581             Ex->getSourceRange(),
1582             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1583       continue;
1584 
1585     NonNullArgs.push_back(Idx);
1586   }
1587 
1588   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1589   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1590   // check if the attribute came from a macro expansion or a template
1591   // instantiation.
1592   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1593       !S.inTemplateInstantiation()) {
1594     bool AnyPointers = isFunctionOrMethodVariadic(D);
1595     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1596          I != E && !AnyPointers; ++I) {
1597       QualType T = getFunctionOrMethodParamType(D, I);
1598       if (T->isDependentType() || S.isValidPointerAttrType(T))
1599         AnyPointers = true;
1600     }
1601 
1602     if (!AnyPointers)
1603       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1604   }
1605 
1606   ParamIdx *Start = NonNullArgs.data();
1607   unsigned Size = NonNullArgs.size();
1608   llvm::array_pod_sort(Start, Start + Size);
1609   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1610 }
1611 
1612 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1613                                        const ParsedAttr &AL) {
1614   if (AL.getNumArgs() > 0) {
1615     if (D->getFunctionType()) {
1616       handleNonNullAttr(S, D, AL);
1617     } else {
1618       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1619         << D->getSourceRange();
1620     }
1621     return;
1622   }
1623 
1624   // Is the argument a pointer type?
1625   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1626                            D->getSourceRange()))
1627     return;
1628 
1629   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1630 }
1631 
1632 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1633   QualType ResultType = getFunctionOrMethodResultType(D);
1634   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1635   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1636                            /* isReturnValue */ true))
1637     return;
1638 
1639   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1640 }
1641 
1642 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1643   if (D->isInvalidDecl())
1644     return;
1645 
1646   // noescape only applies to pointer types.
1647   QualType T = cast<ParmVarDecl>(D)->getType();
1648   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1649     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1650         << AL << AL.getRange() << 0;
1651     return;
1652   }
1653 
1654   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1655 }
1656 
1657 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1658   Expr *E = AL.getArgAsExpr(0),
1659        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1660   S.AddAssumeAlignedAttr(D, AL, E, OE);
1661 }
1662 
1663 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1664   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1665 }
1666 
1667 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1668                                 Expr *OE) {
1669   QualType ResultType = getFunctionOrMethodResultType(D);
1670   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1671 
1672   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1673   SourceLocation AttrLoc = TmpAttr.getLocation();
1674 
1675   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1676     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1677         << &TmpAttr << TmpAttr.getRange() << SR;
1678     return;
1679   }
1680 
1681   if (!E->isValueDependent()) {
1682     Optional<llvm::APSInt> I = llvm::APSInt(64);
1683     if (!(I = E->getIntegerConstantExpr(Context))) {
1684       if (OE)
1685         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1686           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1687           << E->getSourceRange();
1688       else
1689         Diag(AttrLoc, diag::err_attribute_argument_type)
1690           << &TmpAttr << AANT_ArgumentIntegerConstant
1691           << E->getSourceRange();
1692       return;
1693     }
1694 
1695     if (!I->isPowerOf2()) {
1696       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1697         << E->getSourceRange();
1698       return;
1699     }
1700 
1701     if (*I > Sema::MaximumAlignment)
1702       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1703           << CI.getRange() << Sema::MaximumAlignment;
1704   }
1705 
1706   if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1707     Diag(AttrLoc, diag::err_attribute_argument_n_type)
1708         << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1709         << OE->getSourceRange();
1710     return;
1711   }
1712 
1713   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1714 }
1715 
1716 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1717                              Expr *ParamExpr) {
1718   QualType ResultType = getFunctionOrMethodResultType(D);
1719 
1720   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1721   SourceLocation AttrLoc = CI.getLoc();
1722 
1723   if (!ResultType->isDependentType() &&
1724       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1725     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1726         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1727     return;
1728   }
1729 
1730   ParamIdx Idx;
1731   const auto *FuncDecl = cast<FunctionDecl>(D);
1732   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1733                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1734     return;
1735 
1736   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1737   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1738       !Ty->isAlignValT()) {
1739     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1740         << &TmpAttr
1741         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1742     return;
1743   }
1744 
1745   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1746 }
1747 
1748 /// Check if \p AssumptionStr is a known assumption and warn if not.
1749 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1750                                 StringRef AssumptionStr) {
1751   if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1752     return;
1753 
1754   unsigned BestEditDistance = 3;
1755   StringRef Suggestion;
1756   for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1757     unsigned EditDistance =
1758         AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1759     if (EditDistance < BestEditDistance) {
1760       Suggestion = KnownAssumptionIt.getKey();
1761       BestEditDistance = EditDistance;
1762     }
1763   }
1764 
1765   if (!Suggestion.empty())
1766     S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1767         << AssumptionStr << Suggestion;
1768   else
1769     S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1770 }
1771 
1772 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1773   // Handle the case where the attribute has a text message.
1774   StringRef Str;
1775   SourceLocation AttrStrLoc;
1776   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1777     return;
1778 
1779   checkAssumptionAttr(S, AttrStrLoc, Str);
1780 
1781   D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1782 }
1783 
1784 /// Normalize the attribute, __foo__ becomes foo.
1785 /// Returns true if normalization was applied.
1786 static bool normalizeName(StringRef &AttrName) {
1787   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1788       AttrName.endswith("__")) {
1789     AttrName = AttrName.drop_front(2).drop_back(2);
1790     return true;
1791   }
1792   return false;
1793 }
1794 
1795 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1796   // This attribute must be applied to a function declaration. The first
1797   // argument to the attribute must be an identifier, the name of the resource,
1798   // for example: malloc. The following arguments must be argument indexes, the
1799   // arguments must be of integer type for Returns, otherwise of pointer type.
1800   // The difference between Holds and Takes is that a pointer may still be used
1801   // after being held. free() should be __attribute((ownership_takes)), whereas
1802   // a list append function may well be __attribute((ownership_holds)).
1803 
1804   if (!AL.isArgIdent(0)) {
1805     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1806         << AL << 1 << AANT_ArgumentIdentifier;
1807     return;
1808   }
1809 
1810   // Figure out our Kind.
1811   OwnershipAttr::OwnershipKind K =
1812       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1813 
1814   // Check arguments.
1815   switch (K) {
1816   case OwnershipAttr::Takes:
1817   case OwnershipAttr::Holds:
1818     if (AL.getNumArgs() < 2) {
1819       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1820       return;
1821     }
1822     break;
1823   case OwnershipAttr::Returns:
1824     if (AL.getNumArgs() > 2) {
1825       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1826       return;
1827     }
1828     break;
1829   }
1830 
1831   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1832 
1833   StringRef ModuleName = Module->getName();
1834   if (normalizeName(ModuleName)) {
1835     Module = &S.PP.getIdentifierTable().get(ModuleName);
1836   }
1837 
1838   SmallVector<ParamIdx, 8> OwnershipArgs;
1839   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1840     Expr *Ex = AL.getArgAsExpr(i);
1841     ParamIdx Idx;
1842     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1843       return;
1844 
1845     // Is the function argument a pointer type?
1846     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1847     int Err = -1;  // No error
1848     switch (K) {
1849       case OwnershipAttr::Takes:
1850       case OwnershipAttr::Holds:
1851         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1852           Err = 0;
1853         break;
1854       case OwnershipAttr::Returns:
1855         if (!T->isIntegerType())
1856           Err = 1;
1857         break;
1858     }
1859     if (-1 != Err) {
1860       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1861                                                     << Ex->getSourceRange();
1862       return;
1863     }
1864 
1865     // Check we don't have a conflict with another ownership attribute.
1866     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1867       // Cannot have two ownership attributes of different kinds for the same
1868       // index.
1869       if (I->getOwnKind() != K && I->args_end() !=
1870           std::find(I->args_begin(), I->args_end(), Idx)) {
1871         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1872         return;
1873       } else if (K == OwnershipAttr::Returns &&
1874                  I->getOwnKind() == OwnershipAttr::Returns) {
1875         // A returns attribute conflicts with any other returns attribute using
1876         // a different index.
1877         if (!llvm::is_contained(I->args(), Idx)) {
1878           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1879               << I->args_begin()->getSourceIndex();
1880           if (I->args_size())
1881             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1882                 << Idx.getSourceIndex() << Ex->getSourceRange();
1883           return;
1884         }
1885       }
1886     }
1887     OwnershipArgs.push_back(Idx);
1888   }
1889 
1890   ParamIdx *Start = OwnershipArgs.data();
1891   unsigned Size = OwnershipArgs.size();
1892   llvm::array_pod_sort(Start, Start + Size);
1893   D->addAttr(::new (S.Context)
1894                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1895 }
1896 
1897 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1898   // Check the attribute arguments.
1899   if (AL.getNumArgs() > 1) {
1900     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1901     return;
1902   }
1903 
1904   // gcc rejects
1905   // class c {
1906   //   static int a __attribute__((weakref ("v2")));
1907   //   static int b() __attribute__((weakref ("f3")));
1908   // };
1909   // and ignores the attributes of
1910   // void f(void) {
1911   //   static int a __attribute__((weakref ("v2")));
1912   // }
1913   // we reject them
1914   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1915   if (!Ctx->isFileContext()) {
1916     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1917         << cast<NamedDecl>(D);
1918     return;
1919   }
1920 
1921   // The GCC manual says
1922   //
1923   // At present, a declaration to which `weakref' is attached can only
1924   // be `static'.
1925   //
1926   // It also says
1927   //
1928   // Without a TARGET,
1929   // given as an argument to `weakref' or to `alias', `weakref' is
1930   // equivalent to `weak'.
1931   //
1932   // gcc 4.4.1 will accept
1933   // int a7 __attribute__((weakref));
1934   // as
1935   // int a7 __attribute__((weak));
1936   // This looks like a bug in gcc. We reject that for now. We should revisit
1937   // it if this behaviour is actually used.
1938 
1939   // GCC rejects
1940   // static ((alias ("y"), weakref)).
1941   // Should we? How to check that weakref is before or after alias?
1942 
1943   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1944   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1945   // StringRef parameter it was given anyway.
1946   StringRef Str;
1947   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1948     // GCC will accept anything as the argument of weakref. Should we
1949     // check for an existing decl?
1950     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1951 
1952   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1953 }
1954 
1955 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1956   StringRef Str;
1957   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1958     return;
1959 
1960   // Aliases should be on declarations, not definitions.
1961   const auto *FD = cast<FunctionDecl>(D);
1962   if (FD->isThisDeclarationADefinition()) {
1963     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1964     return;
1965   }
1966 
1967   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1968 }
1969 
1970 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1971   StringRef Str;
1972   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1973     return;
1974 
1975   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1976     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1977     return;
1978   }
1979   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1980     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1981   }
1982 
1983   // Aliases should be on declarations, not definitions.
1984   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1985     if (FD->isThisDeclarationADefinition()) {
1986       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1987       return;
1988     }
1989   } else {
1990     const auto *VD = cast<VarDecl>(D);
1991     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1992       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1993       return;
1994     }
1995   }
1996 
1997   // Mark target used to prevent unneeded-internal-declaration warnings.
1998   if (!S.LangOpts.CPlusPlus) {
1999     // FIXME: demangle Str for C++, as the attribute refers to the mangled
2000     // linkage name, not the pre-mangled identifier.
2001     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
2002     LookupResult LR(S, target, Sema::LookupOrdinaryName);
2003     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
2004       for (NamedDecl *ND : LR)
2005         ND->markUsed(S.Context);
2006   }
2007 
2008   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
2009 }
2010 
2011 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2012   StringRef Model;
2013   SourceLocation LiteralLoc;
2014   // Check that it is a string.
2015   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
2016     return;
2017 
2018   // Check that the value.
2019   if (Model != "global-dynamic" && Model != "local-dynamic"
2020       && Model != "initial-exec" && Model != "local-exec") {
2021     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
2022     return;
2023   }
2024 
2025   if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
2026       Model != "global-dynamic") {
2027     S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
2028     return;
2029   }
2030 
2031   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
2032 }
2033 
2034 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2035   QualType ResultType = getFunctionOrMethodResultType(D);
2036   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
2037     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
2038     return;
2039   }
2040 
2041   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
2042       << AL << getFunctionOrMethodResultSourceRange(D);
2043 }
2044 
2045 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2046   // Ensure we don't combine these with themselves, since that causes some
2047   // confusing behavior.
2048   if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
2049     if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL))
2050       return;
2051 
2052     if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
2053       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2054       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2055       return;
2056     }
2057   } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
2058     if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL))
2059       return;
2060 
2061     if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
2062       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2063       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2064       return;
2065     }
2066   }
2067 
2068   FunctionDecl *FD = cast<FunctionDecl>(D);
2069 
2070   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2071     if (MD->getParent()->isLambda()) {
2072       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
2073       return;
2074     }
2075   }
2076 
2077   if (!AL.checkAtLeastNumArgs(S, 1))
2078     return;
2079 
2080   SmallVector<IdentifierInfo *, 8> CPUs;
2081   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
2082     if (!AL.isArgIdent(ArgNo)) {
2083       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2084           << AL << AANT_ArgumentIdentifier;
2085       return;
2086     }
2087 
2088     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
2089     StringRef CPUName = CPUArg->Ident->getName().trim();
2090 
2091     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
2092       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
2093           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
2094       return;
2095     }
2096 
2097     const TargetInfo &Target = S.Context.getTargetInfo();
2098     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
2099           return Target.CPUSpecificManglingCharacter(CPUName) ==
2100                  Target.CPUSpecificManglingCharacter(Cur->getName());
2101         })) {
2102       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2103       return;
2104     }
2105     CPUs.push_back(CPUArg->Ident);
2106   }
2107 
2108   FD->setIsMultiVersion(true);
2109   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2110     D->addAttr(::new (S.Context)
2111                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2112   else
2113     D->addAttr(::new (S.Context)
2114                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2115 }
2116 
2117 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2118   if (S.LangOpts.CPlusPlus) {
2119     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2120         << AL << AttributeLangSupport::Cpp;
2121     return;
2122   }
2123 
2124   D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2125 }
2126 
2127 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2128   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2129     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2130     return;
2131   }
2132 
2133   const auto *FD = cast<FunctionDecl>(D);
2134   if (!FD->isExternallyVisible()) {
2135     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2136     return;
2137   }
2138 
2139   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2140 }
2141 
2142 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2143   if (AL.isDeclspecAttribute()) {
2144     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2145     const auto &Arch = Triple.getArch();
2146     if (Arch != llvm::Triple::x86 &&
2147         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2148       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2149           << AL << Triple.getArchName();
2150       return;
2151     }
2152   }
2153 
2154   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2155 }
2156 
2157 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2158   if (hasDeclarator(D)) return;
2159 
2160   if (!isa<ObjCMethodDecl>(D)) {
2161     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2162         << Attrs << ExpectedFunctionOrMethod;
2163     return;
2164   }
2165 
2166   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2167 }
2168 
2169 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2170   if (!S.getLangOpts().CFProtectionBranch)
2171     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2172   else
2173     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2174 }
2175 
2176 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2177   if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2178     Attrs.setInvalid();
2179     return true;
2180   }
2181 
2182   return false;
2183 }
2184 
2185 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2186   // Check whether the attribute is valid on the current target.
2187   if (!AL.existsInTarget(Context.getTargetInfo())) {
2188     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2189         << AL << AL.getRange();
2190     AL.setInvalid();
2191     return true;
2192   }
2193 
2194   return false;
2195 }
2196 
2197 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2198 
2199   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2200   // because 'analyzer_noreturn' does not impact the type.
2201   if (!isFunctionOrMethodOrBlock(D)) {
2202     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2203     if (!VD || (!VD->getType()->isBlockPointerType() &&
2204                 !VD->getType()->isFunctionPointerType())) {
2205       S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2206                               ? diag::err_attribute_wrong_decl_type
2207                               : diag::warn_attribute_wrong_decl_type)
2208           << AL << ExpectedFunctionMethodOrBlock;
2209       return;
2210     }
2211   }
2212 
2213   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2214 }
2215 
2216 // PS3 PPU-specific.
2217 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2218   /*
2219     Returning a Vector Class in Registers
2220 
2221     According to the PPU ABI specifications, a class with a single member of
2222     vector type is returned in memory when used as the return value of a
2223     function.
2224     This results in inefficient code when implementing vector classes. To return
2225     the value in a single vector register, add the vecreturn attribute to the
2226     class definition. This attribute is also applicable to struct types.
2227 
2228     Example:
2229 
2230     struct Vector
2231     {
2232       __vector float xyzw;
2233     } __attribute__((vecreturn));
2234 
2235     Vector Add(Vector lhs, Vector rhs)
2236     {
2237       Vector result;
2238       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2239       return result; // This will be returned in a register
2240     }
2241   */
2242   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2243     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2244     return;
2245   }
2246 
2247   const auto *R = cast<RecordDecl>(D);
2248   int count = 0;
2249 
2250   if (!isa<CXXRecordDecl>(R)) {
2251     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2252     return;
2253   }
2254 
2255   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2256     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2257     return;
2258   }
2259 
2260   for (const auto *I : R->fields()) {
2261     if ((count == 1) || !I->getType()->isVectorType()) {
2262       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2263       return;
2264     }
2265     count++;
2266   }
2267 
2268   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2269 }
2270 
2271 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2272                                  const ParsedAttr &AL) {
2273   if (isa<ParmVarDecl>(D)) {
2274     // [[carries_dependency]] can only be applied to a parameter if it is a
2275     // parameter of a function declaration or lambda.
2276     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2277       S.Diag(AL.getLoc(),
2278              diag::err_carries_dependency_param_not_function_decl);
2279       return;
2280     }
2281   }
2282 
2283   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2284 }
2285 
2286 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2287   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2288 
2289   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2290   // about using it as an extension.
2291   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2292     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2293 
2294   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2295 }
2296 
2297 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2298   uint32_t priority = ConstructorAttr::DefaultPriority;
2299   if (AL.getNumArgs() &&
2300       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2301     return;
2302 
2303   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2304 }
2305 
2306 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2307   uint32_t priority = DestructorAttr::DefaultPriority;
2308   if (AL.getNumArgs() &&
2309       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2310     return;
2311 
2312   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2313 }
2314 
2315 template <typename AttrTy>
2316 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2317   // Handle the case where the attribute has a text message.
2318   StringRef Str;
2319   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2320     return;
2321 
2322   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2323 }
2324 
2325 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2326                                           const ParsedAttr &AL) {
2327   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2328     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2329         << AL << AL.getRange();
2330     return;
2331   }
2332 
2333   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2334 }
2335 
2336 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2337                                   IdentifierInfo *Platform,
2338                                   VersionTuple Introduced,
2339                                   VersionTuple Deprecated,
2340                                   VersionTuple Obsoleted) {
2341   StringRef PlatformName
2342     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2343   if (PlatformName.empty())
2344     PlatformName = Platform->getName();
2345 
2346   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2347   // of these steps are needed).
2348   if (!Introduced.empty() && !Deprecated.empty() &&
2349       !(Introduced <= Deprecated)) {
2350     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2351       << 1 << PlatformName << Deprecated.getAsString()
2352       << 0 << Introduced.getAsString();
2353     return true;
2354   }
2355 
2356   if (!Introduced.empty() && !Obsoleted.empty() &&
2357       !(Introduced <= Obsoleted)) {
2358     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2359       << 2 << PlatformName << Obsoleted.getAsString()
2360       << 0 << Introduced.getAsString();
2361     return true;
2362   }
2363 
2364   if (!Deprecated.empty() && !Obsoleted.empty() &&
2365       !(Deprecated <= Obsoleted)) {
2366     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2367       << 2 << PlatformName << Obsoleted.getAsString()
2368       << 1 << Deprecated.getAsString();
2369     return true;
2370   }
2371 
2372   return false;
2373 }
2374 
2375 /// Check whether the two versions match.
2376 ///
2377 /// If either version tuple is empty, then they are assumed to match. If
2378 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2379 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2380                           bool BeforeIsOkay) {
2381   if (X.empty() || Y.empty())
2382     return true;
2383 
2384   if (X == Y)
2385     return true;
2386 
2387   if (BeforeIsOkay && X < Y)
2388     return true;
2389 
2390   return false;
2391 }
2392 
2393 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2394     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2395     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2396     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2397     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2398     int Priority) {
2399   VersionTuple MergedIntroduced = Introduced;
2400   VersionTuple MergedDeprecated = Deprecated;
2401   VersionTuple MergedObsoleted = Obsoleted;
2402   bool FoundAny = false;
2403   bool OverrideOrImpl = false;
2404   switch (AMK) {
2405   case AMK_None:
2406   case AMK_Redeclaration:
2407     OverrideOrImpl = false;
2408     break;
2409 
2410   case AMK_Override:
2411   case AMK_ProtocolImplementation:
2412   case AMK_OptionalProtocolImplementation:
2413     OverrideOrImpl = true;
2414     break;
2415   }
2416 
2417   if (D->hasAttrs()) {
2418     AttrVec &Attrs = D->getAttrs();
2419     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2420       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2421       if (!OldAA) {
2422         ++i;
2423         continue;
2424       }
2425 
2426       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2427       if (OldPlatform != Platform) {
2428         ++i;
2429         continue;
2430       }
2431 
2432       // If there is an existing availability attribute for this platform that
2433       // has a lower priority use the existing one and discard the new
2434       // attribute.
2435       if (OldAA->getPriority() < Priority)
2436         return nullptr;
2437 
2438       // If there is an existing attribute for this platform that has a higher
2439       // priority than the new attribute then erase the old one and continue
2440       // processing the attributes.
2441       if (OldAA->getPriority() > Priority) {
2442         Attrs.erase(Attrs.begin() + i);
2443         --e;
2444         continue;
2445       }
2446 
2447       FoundAny = true;
2448       VersionTuple OldIntroduced = OldAA->getIntroduced();
2449       VersionTuple OldDeprecated = OldAA->getDeprecated();
2450       VersionTuple OldObsoleted = OldAA->getObsoleted();
2451       bool OldIsUnavailable = OldAA->getUnavailable();
2452 
2453       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2454           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2455           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2456           !(OldIsUnavailable == IsUnavailable ||
2457             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2458         if (OverrideOrImpl) {
2459           int Which = -1;
2460           VersionTuple FirstVersion;
2461           VersionTuple SecondVersion;
2462           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2463             Which = 0;
2464             FirstVersion = OldIntroduced;
2465             SecondVersion = Introduced;
2466           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2467             Which = 1;
2468             FirstVersion = Deprecated;
2469             SecondVersion = OldDeprecated;
2470           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2471             Which = 2;
2472             FirstVersion = Obsoleted;
2473             SecondVersion = OldObsoleted;
2474           }
2475 
2476           if (Which == -1) {
2477             Diag(OldAA->getLocation(),
2478                  diag::warn_mismatched_availability_override_unavail)
2479               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2480               << (AMK == AMK_Override);
2481           } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2482             // Allow different 'introduced' / 'obsoleted' availability versions
2483             // on a method that implements an optional protocol requirement. It
2484             // makes less sense to allow this for 'deprecated' as the user can't
2485             // see if the method is 'deprecated' as 'respondsToSelector' will
2486             // still return true when the method is deprecated.
2487             ++i;
2488             continue;
2489           } else {
2490             Diag(OldAA->getLocation(),
2491                  diag::warn_mismatched_availability_override)
2492               << Which
2493               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2494               << FirstVersion.getAsString() << SecondVersion.getAsString()
2495               << (AMK == AMK_Override);
2496           }
2497           if (AMK == AMK_Override)
2498             Diag(CI.getLoc(), diag::note_overridden_method);
2499           else
2500             Diag(CI.getLoc(), diag::note_protocol_method);
2501         } else {
2502           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2503           Diag(CI.getLoc(), diag::note_previous_attribute);
2504         }
2505 
2506         Attrs.erase(Attrs.begin() + i);
2507         --e;
2508         continue;
2509       }
2510 
2511       VersionTuple MergedIntroduced2 = MergedIntroduced;
2512       VersionTuple MergedDeprecated2 = MergedDeprecated;
2513       VersionTuple MergedObsoleted2 = MergedObsoleted;
2514 
2515       if (MergedIntroduced2.empty())
2516         MergedIntroduced2 = OldIntroduced;
2517       if (MergedDeprecated2.empty())
2518         MergedDeprecated2 = OldDeprecated;
2519       if (MergedObsoleted2.empty())
2520         MergedObsoleted2 = OldObsoleted;
2521 
2522       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2523                                 MergedIntroduced2, MergedDeprecated2,
2524                                 MergedObsoleted2)) {
2525         Attrs.erase(Attrs.begin() + i);
2526         --e;
2527         continue;
2528       }
2529 
2530       MergedIntroduced = MergedIntroduced2;
2531       MergedDeprecated = MergedDeprecated2;
2532       MergedObsoleted = MergedObsoleted2;
2533       ++i;
2534     }
2535   }
2536 
2537   if (FoundAny &&
2538       MergedIntroduced == Introduced &&
2539       MergedDeprecated == Deprecated &&
2540       MergedObsoleted == Obsoleted)
2541     return nullptr;
2542 
2543   // Only create a new attribute if !OverrideOrImpl, but we want to do
2544   // the checking.
2545   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2546                              MergedDeprecated, MergedObsoleted) &&
2547       !OverrideOrImpl) {
2548     auto *Avail = ::new (Context) AvailabilityAttr(
2549         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2550         Message, IsStrict, Replacement, Priority);
2551     Avail->setImplicit(Implicit);
2552     return Avail;
2553   }
2554   return nullptr;
2555 }
2556 
2557 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2558   if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2559           D)) {
2560     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2561         << AL;
2562     return;
2563   }
2564 
2565   if (!AL.checkExactlyNumArgs(S, 1))
2566     return;
2567   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2568 
2569   IdentifierInfo *II = Platform->Ident;
2570   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2571     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2572       << Platform->Ident;
2573 
2574   auto *ND = dyn_cast<NamedDecl>(D);
2575   if (!ND) // We warned about this already, so just return.
2576     return;
2577 
2578   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2579   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2580   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2581   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2582   bool IsStrict = AL.getStrictLoc().isValid();
2583   StringRef Str;
2584   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2585     Str = SE->getString();
2586   StringRef Replacement;
2587   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2588     Replacement = SE->getString();
2589 
2590   if (II->isStr("swift")) {
2591     if (Introduced.isValid() || Obsoleted.isValid() ||
2592         (!IsUnavailable && !Deprecated.isValid())) {
2593       S.Diag(AL.getLoc(),
2594              diag::warn_availability_swift_unavailable_deprecated_only);
2595       return;
2596     }
2597   }
2598 
2599   if (II->isStr("fuchsia")) {
2600     Optional<unsigned> Min, Sub;
2601     if ((Min = Introduced.Version.getMinor()) ||
2602         (Sub = Introduced.Version.getSubminor())) {
2603       S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2604       return;
2605     }
2606   }
2607 
2608   int PriorityModifier = AL.isPragmaClangAttribute()
2609                              ? Sema::AP_PragmaClangAttribute
2610                              : Sema::AP_Explicit;
2611   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2612       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2613       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2614       Sema::AMK_None, PriorityModifier);
2615   if (NewAttr)
2616     D->addAttr(NewAttr);
2617 
2618   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2619   // matches before the start of the watchOS platform.
2620   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2621     IdentifierInfo *NewII = nullptr;
2622     if (II->getName() == "ios")
2623       NewII = &S.Context.Idents.get("watchos");
2624     else if (II->getName() == "ios_app_extension")
2625       NewII = &S.Context.Idents.get("watchos_app_extension");
2626 
2627     if (NewII) {
2628         auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2629           if (Version.empty())
2630             return Version;
2631           auto Major = Version.getMajor();
2632           auto NewMajor = Major >= 9 ? Major - 7 : 0;
2633           if (NewMajor >= 2) {
2634             if (Version.getMinor().hasValue()) {
2635               if (Version.getSubminor().hasValue())
2636                 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2637                                     Version.getSubminor().getValue());
2638               else
2639                 return VersionTuple(NewMajor, Version.getMinor().getValue());
2640             }
2641             return VersionTuple(NewMajor);
2642           }
2643 
2644           return VersionTuple(2, 0);
2645         };
2646 
2647         auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2648         auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2649         auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2650 
2651         AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2652             ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2653             NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2654             Sema::AMK_None,
2655             PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2656         if (NewAttr)
2657           D->addAttr(NewAttr);
2658       }
2659   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2660     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2661     // matches before the start of the tvOS platform.
2662     IdentifierInfo *NewII = nullptr;
2663     if (II->getName() == "ios")
2664       NewII = &S.Context.Idents.get("tvos");
2665     else if (II->getName() == "ios_app_extension")
2666       NewII = &S.Context.Idents.get("tvos_app_extension");
2667 
2668     if (NewII) {
2669       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2670           ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2671           Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2672           Replacement, Sema::AMK_None,
2673           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2674       if (NewAttr)
2675         D->addAttr(NewAttr);
2676       }
2677   } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2678                  llvm::Triple::IOS &&
2679              S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2680     auto GetSDKInfo = [&]() {
2681       return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2682                                                        "macOS");
2683     };
2684 
2685     // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2686     IdentifierInfo *NewII = nullptr;
2687     if (II->getName() == "ios")
2688       NewII = &S.Context.Idents.get("maccatalyst");
2689     else if (II->getName() == "ios_app_extension")
2690       NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2691     if (NewII) {
2692       auto MinMacCatalystVersion = [](const VersionTuple &V) {
2693         if (V.empty())
2694           return V;
2695         if (V.getMajor() < 13 ||
2696             (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2697           return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2698         return V;
2699       };
2700       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2701           ND, AL.getRange(), NewII, true /*Implicit*/,
2702           MinMacCatalystVersion(Introduced.Version),
2703           MinMacCatalystVersion(Deprecated.Version),
2704           MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2705           IsStrict, Replacement, Sema::AMK_None,
2706           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2707       if (NewAttr)
2708         D->addAttr(NewAttr);
2709     } else if (II->getName() == "macos" && GetSDKInfo() &&
2710                (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2711                 !Obsoleted.Version.empty())) {
2712       if (const auto *MacOStoMacCatalystMapping =
2713               GetSDKInfo()->getVersionMapping(
2714                   DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2715         // Infer Mac Catalyst availability from the macOS availability attribute
2716         // if it has versioned availability. Don't infer 'unavailable'. This
2717         // inferred availability has lower priority than the other availability
2718         // attributes that are inferred from 'ios'.
2719         NewII = &S.Context.Idents.get("maccatalyst");
2720         auto RemapMacOSVersion =
2721             [&](const VersionTuple &V) -> Optional<VersionTuple> {
2722           if (V.empty())
2723             return None;
2724           // API_TO_BE_DEPRECATED is 100000.
2725           if (V.getMajor() == 100000)
2726             return VersionTuple(100000);
2727           // The minimum iosmac version is 13.1
2728           return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None);
2729         };
2730         Optional<VersionTuple> NewIntroduced =
2731                                    RemapMacOSVersion(Introduced.Version),
2732                                NewDeprecated =
2733                                    RemapMacOSVersion(Deprecated.Version),
2734                                NewObsoleted =
2735                                    RemapMacOSVersion(Obsoleted.Version);
2736         if (NewIntroduced || NewDeprecated || NewObsoleted) {
2737           auto VersionOrEmptyVersion =
2738               [](const Optional<VersionTuple> &V) -> VersionTuple {
2739             return V ? *V : VersionTuple();
2740           };
2741           AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2742               ND, AL.getRange(), NewII, true /*Implicit*/,
2743               VersionOrEmptyVersion(NewIntroduced),
2744               VersionOrEmptyVersion(NewDeprecated),
2745               VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2746               IsStrict, Replacement, Sema::AMK_None,
2747               PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2748                   Sema::AP_InferredFromOtherPlatform);
2749           if (NewAttr)
2750             D->addAttr(NewAttr);
2751         }
2752       }
2753     }
2754   }
2755 }
2756 
2757 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2758                                            const ParsedAttr &AL) {
2759   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2760     return;
2761 
2762   StringRef Language;
2763   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2764     Language = SE->getString();
2765   StringRef DefinedIn;
2766   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2767     DefinedIn = SE->getString();
2768   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2769 
2770   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2771       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2772 }
2773 
2774 template <class T>
2775 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2776                               typename T::VisibilityType value) {
2777   T *existingAttr = D->getAttr<T>();
2778   if (existingAttr) {
2779     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2780     if (existingValue == value)
2781       return nullptr;
2782     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2783     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2784     D->dropAttr<T>();
2785   }
2786   return ::new (S.Context) T(S.Context, CI, value);
2787 }
2788 
2789 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2790                                           const AttributeCommonInfo &CI,
2791                                           VisibilityAttr::VisibilityType Vis) {
2792   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2793 }
2794 
2795 TypeVisibilityAttr *
2796 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2797                               TypeVisibilityAttr::VisibilityType Vis) {
2798   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2799 }
2800 
2801 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2802                                  bool isTypeVisibility) {
2803   // Visibility attributes don't mean anything on a typedef.
2804   if (isa<TypedefNameDecl>(D)) {
2805     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2806     return;
2807   }
2808 
2809   // 'type_visibility' can only go on a type or namespace.
2810   if (isTypeVisibility &&
2811       !(isa<TagDecl>(D) ||
2812         isa<ObjCInterfaceDecl>(D) ||
2813         isa<NamespaceDecl>(D))) {
2814     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2815         << AL << ExpectedTypeOrNamespace;
2816     return;
2817   }
2818 
2819   // Check that the argument is a string literal.
2820   StringRef TypeStr;
2821   SourceLocation LiteralLoc;
2822   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2823     return;
2824 
2825   VisibilityAttr::VisibilityType type;
2826   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2827     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2828                                                                 << TypeStr;
2829     return;
2830   }
2831 
2832   // Complain about attempts to use protected visibility on targets
2833   // (like Darwin) that don't support it.
2834   if (type == VisibilityAttr::Protected &&
2835       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2836     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2837     type = VisibilityAttr::Default;
2838   }
2839 
2840   Attr *newAttr;
2841   if (isTypeVisibility) {
2842     newAttr = S.mergeTypeVisibilityAttr(
2843         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2844   } else {
2845     newAttr = S.mergeVisibilityAttr(D, AL, type);
2846   }
2847   if (newAttr)
2848     D->addAttr(newAttr);
2849 }
2850 
2851 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2852   // objc_direct cannot be set on methods declared in the context of a protocol
2853   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2854     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2855     return;
2856   }
2857 
2858   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2859     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2860   } else {
2861     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2862   }
2863 }
2864 
2865 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2866                                         const ParsedAttr &AL) {
2867   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2868     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2869   } else {
2870     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2871   }
2872 }
2873 
2874 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2875   const auto *M = cast<ObjCMethodDecl>(D);
2876   if (!AL.isArgIdent(0)) {
2877     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2878         << AL << 1 << AANT_ArgumentIdentifier;
2879     return;
2880   }
2881 
2882   IdentifierLoc *IL = AL.getArgAsIdent(0);
2883   ObjCMethodFamilyAttr::FamilyKind F;
2884   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2885     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2886     return;
2887   }
2888 
2889   if (F == ObjCMethodFamilyAttr::OMF_init &&
2890       !M->getReturnType()->isObjCObjectPointerType()) {
2891     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2892         << M->getReturnType();
2893     // Ignore the attribute.
2894     return;
2895   }
2896 
2897   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2898 }
2899 
2900 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2901   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2902     QualType T = TD->getUnderlyingType();
2903     if (!T->isCARCBridgableType()) {
2904       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2905       return;
2906     }
2907   }
2908   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2909     QualType T = PD->getType();
2910     if (!T->isCARCBridgableType()) {
2911       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2912       return;
2913     }
2914   }
2915   else {
2916     // It is okay to include this attribute on properties, e.g.:
2917     //
2918     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2919     //
2920     // In this case it follows tradition and suppresses an error in the above
2921     // case.
2922     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2923   }
2924   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2925 }
2926 
2927 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2928   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2929     QualType T = TD->getUnderlyingType();
2930     if (!T->isObjCObjectPointerType()) {
2931       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2932       return;
2933     }
2934   } else {
2935     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2936     return;
2937   }
2938   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2939 }
2940 
2941 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2942   if (!AL.isArgIdent(0)) {
2943     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2944         << AL << 1 << AANT_ArgumentIdentifier;
2945     return;
2946   }
2947 
2948   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2949   BlocksAttr::BlockType type;
2950   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2951     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2952     return;
2953   }
2954 
2955   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2956 }
2957 
2958 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2959   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2960   if (AL.getNumArgs() > 0) {
2961     Expr *E = AL.getArgAsExpr(0);
2962     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2963     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2964       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2965           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2966       return;
2967     }
2968 
2969     if (Idx->isSigned() && Idx->isNegative()) {
2970       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2971         << E->getSourceRange();
2972       return;
2973     }
2974 
2975     sentinel = Idx->getZExtValue();
2976   }
2977 
2978   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2979   if (AL.getNumArgs() > 1) {
2980     Expr *E = AL.getArgAsExpr(1);
2981     Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2982     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2983       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2984           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2985       return;
2986     }
2987     nullPos = Idx->getZExtValue();
2988 
2989     if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2990       // FIXME: This error message could be improved, it would be nice
2991       // to say what the bounds actually are.
2992       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2993         << E->getSourceRange();
2994       return;
2995     }
2996   }
2997 
2998   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2999     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
3000     if (isa<FunctionNoProtoType>(FT)) {
3001       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
3002       return;
3003     }
3004 
3005     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3006       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3007       return;
3008     }
3009   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
3010     if (!MD->isVariadic()) {
3011       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3012       return;
3013     }
3014   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3015     if (!BD->isVariadic()) {
3016       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
3017       return;
3018     }
3019   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
3020     QualType Ty = V->getType();
3021     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
3022       const FunctionType *FT = Ty->isFunctionPointerType()
3023                                    ? D->getFunctionType()
3024                                    : Ty->castAs<BlockPointerType>()
3025                                          ->getPointeeType()
3026                                          ->castAs<FunctionType>();
3027       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3028         int m = Ty->isFunctionPointerType() ? 0 : 1;
3029         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
3030         return;
3031       }
3032     } else {
3033       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3034           << AL << ExpectedFunctionMethodOrBlock;
3035       return;
3036     }
3037   } else {
3038     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3039         << AL << ExpectedFunctionMethodOrBlock;
3040     return;
3041   }
3042   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3043 }
3044 
3045 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3046   if (D->getFunctionType() &&
3047       D->getFunctionType()->getReturnType()->isVoidType() &&
3048       !isa<CXXConstructorDecl>(D)) {
3049     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3050     return;
3051   }
3052   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3053     if (MD->getReturnType()->isVoidType()) {
3054       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3055       return;
3056     }
3057 
3058   StringRef Str;
3059   if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
3060     // The standard attribute cannot be applied to variable declarations such
3061     // as a function pointer.
3062     if (isa<VarDecl>(D))
3063       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
3064           << AL << "functions, classes, or enumerations";
3065 
3066     // If this is spelled as the standard C++17 attribute, but not in C++17,
3067     // warn about using it as an extension. If there are attribute arguments,
3068     // then claim it's a C++2a extension instead.
3069     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
3070     // extension warning for C2x mode.
3071     const LangOptions &LO = S.getLangOpts();
3072     if (AL.getNumArgs() == 1) {
3073       if (LO.CPlusPlus && !LO.CPlusPlus20)
3074         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3075 
3076       // Since this this is spelled [[nodiscard]], get the optional string
3077       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
3078       // extension.
3079       // FIXME: C2x should support this feature as well, even as an extension.
3080       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3081         return;
3082     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3083       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3084   }
3085 
3086   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3087 }
3088 
3089 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3090   // weak_import only applies to variable & function declarations.
3091   bool isDef = false;
3092   if (!D->canBeWeakImported(isDef)) {
3093     if (isDef)
3094       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3095         << "weak_import";
3096     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3097              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3098               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
3099       // Nothing to warn about here.
3100     } else
3101       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3102           << AL << ExpectedVariableOrFunction;
3103 
3104     return;
3105   }
3106 
3107   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3108 }
3109 
3110 // Handles reqd_work_group_size and work_group_size_hint.
3111 template <typename WorkGroupAttr>
3112 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3113   uint32_t WGSize[3];
3114   for (unsigned i = 0; i < 3; ++i) {
3115     const Expr *E = AL.getArgAsExpr(i);
3116     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3117                              /*StrictlyUnsigned=*/true))
3118       return;
3119     if (WGSize[i] == 0) {
3120       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3121           << AL << E->getSourceRange();
3122       return;
3123     }
3124   }
3125 
3126   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3127   if (Existing && !(Existing->getXDim() == WGSize[0] &&
3128                     Existing->getYDim() == WGSize[1] &&
3129                     Existing->getZDim() == WGSize[2]))
3130     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3131 
3132   D->addAttr(::new (S.Context)
3133                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3134 }
3135 
3136 // Handles intel_reqd_sub_group_size.
3137 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3138   uint32_t SGSize;
3139   const Expr *E = AL.getArgAsExpr(0);
3140   if (!checkUInt32Argument(S, AL, E, SGSize))
3141     return;
3142   if (SGSize == 0) {
3143     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3144         << AL << E->getSourceRange();
3145     return;
3146   }
3147 
3148   OpenCLIntelReqdSubGroupSizeAttr *Existing =
3149       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3150   if (Existing && Existing->getSubGroupSize() != SGSize)
3151     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3152 
3153   D->addAttr(::new (S.Context)
3154                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3155 }
3156 
3157 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3158   if (!AL.hasParsedType()) {
3159     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3160     return;
3161   }
3162 
3163   TypeSourceInfo *ParmTSI = nullptr;
3164   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3165   assert(ParmTSI && "no type source info for attribute argument");
3166 
3167   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3168       (ParmType->isBooleanType() ||
3169        !ParmType->isIntegralType(S.getASTContext()))) {
3170     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3171     return;
3172   }
3173 
3174   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3175     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3176       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3177       return;
3178     }
3179   }
3180 
3181   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3182 }
3183 
3184 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3185                                     StringRef Name) {
3186   // Explicit or partial specializations do not inherit
3187   // the section attribute from the primary template.
3188   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3189     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3190         FD->isFunctionTemplateSpecialization())
3191       return nullptr;
3192   }
3193   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3194     if (ExistingAttr->getName() == Name)
3195       return nullptr;
3196     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3197          << 1 /*section*/;
3198     Diag(CI.getLoc(), diag::note_previous_attribute);
3199     return nullptr;
3200   }
3201   return ::new (Context) SectionAttr(Context, CI, Name);
3202 }
3203 
3204 /// Used to implement to perform semantic checking on
3205 /// attribute((section("foo"))) specifiers.
3206 ///
3207 /// In this case, "foo" is passed in to be checked.  If the section
3208 /// specifier is invalid, return an Error that indicates the problem.
3209 ///
3210 /// This is a simple quality of implementation feature to catch errors
3211 /// and give good diagnostics in cases when the assembler or code generator
3212 /// would otherwise reject the section specifier.
3213 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3214   if (!Context.getTargetInfo().getTriple().isOSDarwin())
3215     return llvm::Error::success();
3216 
3217   // Let MCSectionMachO validate this.
3218   StringRef Segment, Section;
3219   unsigned TAA, StubSize;
3220   bool HasTAA;
3221   return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3222                                                      TAA, HasTAA, StubSize);
3223 }
3224 
3225 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3226   if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3227     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3228         << toString(std::move(E)) << 1 /*'section'*/;
3229     return false;
3230   }
3231   return true;
3232 }
3233 
3234 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3235   // Make sure that there is a string literal as the sections's single
3236   // argument.
3237   StringRef Str;
3238   SourceLocation LiteralLoc;
3239   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3240     return;
3241 
3242   if (!S.checkSectionName(LiteralLoc, Str))
3243     return;
3244 
3245   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3246   if (NewAttr) {
3247     D->addAttr(NewAttr);
3248     if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3249             ObjCPropertyDecl>(D))
3250       S.UnifySection(NewAttr->getName(),
3251                      ASTContext::PSF_Execute | ASTContext::PSF_Read,
3252                      cast<NamedDecl>(D));
3253   }
3254 }
3255 
3256 // This is used for `__declspec(code_seg("segname"))` on a decl.
3257 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3258 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3259                              StringRef CodeSegName) {
3260   if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3261     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3262         << toString(std::move(E)) << 0 /*'code-seg'*/;
3263     return false;
3264   }
3265 
3266   return true;
3267 }
3268 
3269 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3270                                     StringRef Name) {
3271   // Explicit or partial specializations do not inherit
3272   // the code_seg attribute from the primary template.
3273   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3274     if (FD->isFunctionTemplateSpecialization())
3275       return nullptr;
3276   }
3277   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3278     if (ExistingAttr->getName() == Name)
3279       return nullptr;
3280     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3281          << 0 /*codeseg*/;
3282     Diag(CI.getLoc(), diag::note_previous_attribute);
3283     return nullptr;
3284   }
3285   return ::new (Context) CodeSegAttr(Context, CI, Name);
3286 }
3287 
3288 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3289   StringRef Str;
3290   SourceLocation LiteralLoc;
3291   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3292     return;
3293   if (!checkCodeSegName(S, LiteralLoc, Str))
3294     return;
3295   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3296     if (!ExistingAttr->isImplicit()) {
3297       S.Diag(AL.getLoc(),
3298              ExistingAttr->getName() == Str
3299              ? diag::warn_duplicate_codeseg_attribute
3300              : diag::err_conflicting_codeseg_attribute);
3301       return;
3302     }
3303     D->dropAttr<CodeSegAttr>();
3304   }
3305   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3306     D->addAttr(CSA);
3307 }
3308 
3309 // Check for things we'd like to warn about. Multiversioning issues are
3310 // handled later in the process, once we know how many exist.
3311 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3312   enum FirstParam { Unsupported, Duplicate, Unknown };
3313   enum SecondParam { None, Architecture, Tune };
3314   enum ThirdParam { Target, TargetClones };
3315   if (AttrStr.contains("fpmath="))
3316     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3317            << Unsupported << None << "fpmath=" << Target;
3318 
3319   // Diagnose use of tune if target doesn't support it.
3320   if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3321       AttrStr.contains("tune="))
3322     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3323            << Unsupported << None << "tune=" << Target;
3324 
3325   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3326 
3327   if (!ParsedAttrs.Architecture.empty() &&
3328       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3329     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3330            << Unknown << Architecture << ParsedAttrs.Architecture << Target;
3331 
3332   if (!ParsedAttrs.Tune.empty() &&
3333       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3334     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3335            << Unknown << Tune << ParsedAttrs.Tune << Target;
3336 
3337   if (ParsedAttrs.DuplicateArchitecture)
3338     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3339            << Duplicate << None << "arch=" << Target;
3340   if (ParsedAttrs.DuplicateTune)
3341     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3342            << Duplicate << None << "tune=" << Target;
3343 
3344   for (const auto &Feature : ParsedAttrs.Features) {
3345     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3346     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3347       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3348              << Unsupported << None << CurFeature << Target;
3349   }
3350 
3351   TargetInfo::BranchProtectionInfo BPI;
3352   StringRef DiagMsg;
3353   if (ParsedAttrs.BranchProtection.empty())
3354     return false;
3355   if (!Context.getTargetInfo().validateBranchProtection(
3356           ParsedAttrs.BranchProtection, BPI, DiagMsg)) {
3357     if (DiagMsg.empty())
3358       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3359              << Unsupported << None << "branch-protection" << Target;
3360     return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3361            << DiagMsg;
3362   }
3363   if (!DiagMsg.empty())
3364     Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3365 
3366   return false;
3367 }
3368 
3369 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3370   StringRef Str;
3371   SourceLocation LiteralLoc;
3372   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3373       S.checkTargetAttr(LiteralLoc, Str))
3374     return;
3375 
3376   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3377   D->addAttr(NewAttr);
3378 }
3379 
3380 bool Sema::checkTargetClonesAttrString(SourceLocation LiteralLoc, StringRef Str,
3381                                        const StringLiteral *Literal,
3382                                        bool &HasDefault, bool &HasCommas,
3383                                        SmallVectorImpl<StringRef> &Strings) {
3384   enum FirstParam { Unsupported, Duplicate, Unknown };
3385   enum SecondParam { None, Architecture, Tune };
3386   enum ThirdParam { Target, TargetClones };
3387   HasCommas = HasCommas || Str.contains(',');
3388   // Warn on empty at the beginning of a string.
3389   if (Str.size() == 0)
3390     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3391            << Unsupported << None << "" << TargetClones;
3392 
3393   std::pair<StringRef, StringRef> Parts = {{}, Str};
3394   while (!Parts.second.empty()) {
3395     Parts = Parts.second.split(',');
3396     StringRef Cur = Parts.first.trim();
3397     SourceLocation CurLoc = Literal->getLocationOfByte(
3398         Cur.data() - Literal->getString().data(), getSourceManager(),
3399         getLangOpts(), Context.getTargetInfo());
3400 
3401     bool DefaultIsDupe = false;
3402     if (Cur.empty())
3403       return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3404              << Unsupported << None << "" << TargetClones;
3405 
3406     if (Cur.startswith("arch=")) {
3407       if (!Context.getTargetInfo().isValidCPUName(
3408               Cur.drop_front(sizeof("arch=") - 1)))
3409         return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3410                << Unsupported << Architecture
3411                << Cur.drop_front(sizeof("arch=") - 1) << TargetClones;
3412     } else if (Cur == "default") {
3413       DefaultIsDupe = HasDefault;
3414       HasDefault = true;
3415     } else if (!Context.getTargetInfo().isValidFeatureName(Cur))
3416       return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3417              << Unsupported << None << Cur << TargetClones;
3418 
3419     if (llvm::find(Strings, Cur) != Strings.end() || DefaultIsDupe)
3420       Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3421     // Note: Add even if there are duplicates, since it changes name mangling.
3422     Strings.push_back(Cur);
3423   }
3424 
3425   if (Str.rtrim().endswith(","))
3426     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3427            << Unsupported << None << "" << TargetClones;
3428   return false;
3429 }
3430 
3431 static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3432   // Ensure we don't combine these with themselves, since that causes some
3433   // confusing behavior.
3434   if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3435     S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3436     S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3437     return;
3438   }
3439   if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL))
3440     return;
3441 
3442   SmallVector<StringRef, 2> Strings;
3443   bool HasCommas = false, HasDefault = false;
3444 
3445   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3446     StringRef CurStr;
3447     SourceLocation LiteralLoc;
3448     if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) ||
3449         S.checkTargetClonesAttrString(
3450             LiteralLoc, CurStr,
3451             cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()),
3452             HasDefault, HasCommas, Strings))
3453       return;
3454   }
3455 
3456   if (HasCommas && AL.getNumArgs() > 1)
3457     S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values);
3458 
3459   if (!HasDefault) {
3460     S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default);
3461     return;
3462   }
3463 
3464   // FIXME: We could probably figure out how to get this to work for lambdas
3465   // someday.
3466   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3467     if (MD->getParent()->isLambda()) {
3468       S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3469           << static_cast<unsigned>(MultiVersionKind::TargetClones)
3470           << /*Lambda*/ 9;
3471       return;
3472     }
3473   }
3474 
3475   cast<FunctionDecl>(D)->setIsMultiVersion();
3476   TargetClonesAttr *NewAttr = ::new (S.Context)
3477       TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size());
3478   D->addAttr(NewAttr);
3479 }
3480 
3481 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3482   Expr *E = AL.getArgAsExpr(0);
3483   uint32_t VecWidth;
3484   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3485     AL.setInvalid();
3486     return;
3487   }
3488 
3489   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3490   if (Existing && Existing->getVectorWidth() != VecWidth) {
3491     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3492     return;
3493   }
3494 
3495   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3496 }
3497 
3498 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3499   Expr *E = AL.getArgAsExpr(0);
3500   SourceLocation Loc = E->getExprLoc();
3501   FunctionDecl *FD = nullptr;
3502   DeclarationNameInfo NI;
3503 
3504   // gcc only allows for simple identifiers. Since we support more than gcc, we
3505   // will warn the user.
3506   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3507     if (DRE->hasQualifier())
3508       S.Diag(Loc, diag::warn_cleanup_ext);
3509     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3510     NI = DRE->getNameInfo();
3511     if (!FD) {
3512       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3513         << NI.getName();
3514       return;
3515     }
3516   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3517     if (ULE->hasExplicitTemplateArgs())
3518       S.Diag(Loc, diag::warn_cleanup_ext);
3519     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3520     NI = ULE->getNameInfo();
3521     if (!FD) {
3522       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3523         << NI.getName();
3524       if (ULE->getType() == S.Context.OverloadTy)
3525         S.NoteAllOverloadCandidates(ULE);
3526       return;
3527     }
3528   } else {
3529     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3530     return;
3531   }
3532 
3533   if (FD->getNumParams() != 1) {
3534     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3535       << NI.getName();
3536     return;
3537   }
3538 
3539   // We're currently more strict than GCC about what function types we accept.
3540   // If this ever proves to be a problem it should be easy to fix.
3541   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3542   QualType ParamTy = FD->getParamDecl(0)->getType();
3543   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3544                                    ParamTy, Ty) != Sema::Compatible) {
3545     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3546       << NI.getName() << ParamTy << Ty;
3547     return;
3548   }
3549 
3550   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3551 }
3552 
3553 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3554                                         const ParsedAttr &AL) {
3555   if (!AL.isArgIdent(0)) {
3556     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3557         << AL << 0 << AANT_ArgumentIdentifier;
3558     return;
3559   }
3560 
3561   EnumExtensibilityAttr::Kind ExtensibilityKind;
3562   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3563   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3564                                                ExtensibilityKind)) {
3565     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3566     return;
3567   }
3568 
3569   D->addAttr(::new (S.Context)
3570                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3571 }
3572 
3573 /// Handle __attribute__((format_arg((idx)))) attribute based on
3574 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3575 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3576   Expr *IdxExpr = AL.getArgAsExpr(0);
3577   ParamIdx Idx;
3578   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3579     return;
3580 
3581   // Make sure the format string is really a string.
3582   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3583 
3584   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3585   if (NotNSStringTy &&
3586       !isCFStringType(Ty, S.Context) &&
3587       (!Ty->isPointerType() ||
3588        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3589     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3590         << "a string type" << IdxExpr->getSourceRange()
3591         << getFunctionOrMethodParamRange(D, 0);
3592     return;
3593   }
3594   Ty = getFunctionOrMethodResultType(D);
3595   // replace instancetype with the class type
3596   auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3597   if (Ty->getAs<TypedefType>() == Instancetype)
3598     if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3599       if (auto *Interface = OMD->getClassInterface())
3600         Ty = S.Context.getObjCObjectPointerType(
3601             QualType(Interface->getTypeForDecl(), 0));
3602   if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3603       !isCFStringType(Ty, S.Context) &&
3604       (!Ty->isPointerType() ||
3605        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3606     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3607         << (NotNSStringTy ? "string type" : "NSString")
3608         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3609     return;
3610   }
3611 
3612   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3613 }
3614 
3615 enum FormatAttrKind {
3616   CFStringFormat,
3617   NSStringFormat,
3618   StrftimeFormat,
3619   SupportedFormat,
3620   IgnoredFormat,
3621   InvalidFormat
3622 };
3623 
3624 /// getFormatAttrKind - Map from format attribute names to supported format
3625 /// types.
3626 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3627   return llvm::StringSwitch<FormatAttrKind>(Format)
3628       // Check for formats that get handled specially.
3629       .Case("NSString", NSStringFormat)
3630       .Case("CFString", CFStringFormat)
3631       .Case("strftime", StrftimeFormat)
3632 
3633       // Otherwise, check for supported formats.
3634       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3635       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3636       .Case("kprintf", SupportedFormat)         // OpenBSD.
3637       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3638       .Case("os_trace", SupportedFormat)
3639       .Case("os_log", SupportedFormat)
3640 
3641       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3642       .Default(InvalidFormat);
3643 }
3644 
3645 /// Handle __attribute__((init_priority(priority))) attributes based on
3646 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3647 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3648   if (!S.getLangOpts().CPlusPlus) {
3649     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3650     return;
3651   }
3652 
3653   if (S.getCurFunctionOrMethodDecl()) {
3654     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3655     AL.setInvalid();
3656     return;
3657   }
3658   QualType T = cast<VarDecl>(D)->getType();
3659   if (S.Context.getAsArrayType(T))
3660     T = S.Context.getBaseElementType(T);
3661   if (!T->getAs<RecordType>()) {
3662     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3663     AL.setInvalid();
3664     return;
3665   }
3666 
3667   Expr *E = AL.getArgAsExpr(0);
3668   uint32_t prioritynum;
3669   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3670     AL.setInvalid();
3671     return;
3672   }
3673 
3674   // Only perform the priority check if the attribute is outside of a system
3675   // header. Values <= 100 are reserved for the implementation, and libc++
3676   // benefits from being able to specify values in that range.
3677   if ((prioritynum < 101 || prioritynum > 65535) &&
3678       !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3679     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3680         << E->getSourceRange() << AL << 101 << 65535;
3681     AL.setInvalid();
3682     return;
3683   }
3684   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3685 }
3686 
3687 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3688                                 StringRef NewUserDiagnostic) {
3689   if (const auto *EA = D->getAttr<ErrorAttr>()) {
3690     std::string NewAttr = CI.getNormalizedFullName();
3691     assert((NewAttr == "error" || NewAttr == "warning") &&
3692            "unexpected normalized full name");
3693     bool Match = (EA->isError() && NewAttr == "error") ||
3694                  (EA->isWarning() && NewAttr == "warning");
3695     if (!Match) {
3696       Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3697           << CI << EA;
3698       Diag(CI.getLoc(), diag::note_conflicting_attribute);
3699       return nullptr;
3700     }
3701     if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3702       Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3703       Diag(EA->getLoc(), diag::note_previous_attribute);
3704     }
3705     D->dropAttr<ErrorAttr>();
3706   }
3707   return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3708 }
3709 
3710 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3711                                   IdentifierInfo *Format, int FormatIdx,
3712                                   int FirstArg) {
3713   // Check whether we already have an equivalent format attribute.
3714   for (auto *F : D->specific_attrs<FormatAttr>()) {
3715     if (F->getType() == Format &&
3716         F->getFormatIdx() == FormatIdx &&
3717         F->getFirstArg() == FirstArg) {
3718       // If we don't have a valid location for this attribute, adopt the
3719       // location.
3720       if (F->getLocation().isInvalid())
3721         F->setRange(CI.getRange());
3722       return nullptr;
3723     }
3724   }
3725 
3726   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3727 }
3728 
3729 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3730 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3731 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3732   if (!AL.isArgIdent(0)) {
3733     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3734         << AL << 1 << AANT_ArgumentIdentifier;
3735     return;
3736   }
3737 
3738   // In C++ the implicit 'this' function parameter also counts, and they are
3739   // counted from one.
3740   bool HasImplicitThisParam = isInstanceMethod(D);
3741   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3742 
3743   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3744   StringRef Format = II->getName();
3745 
3746   if (normalizeName(Format)) {
3747     // If we've modified the string name, we need a new identifier for it.
3748     II = &S.Context.Idents.get(Format);
3749   }
3750 
3751   // Check for supported formats.
3752   FormatAttrKind Kind = getFormatAttrKind(Format);
3753 
3754   if (Kind == IgnoredFormat)
3755     return;
3756 
3757   if (Kind == InvalidFormat) {
3758     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3759         << AL << II->getName();
3760     return;
3761   }
3762 
3763   // checks for the 2nd argument
3764   Expr *IdxExpr = AL.getArgAsExpr(1);
3765   uint32_t Idx;
3766   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3767     return;
3768 
3769   if (Idx < 1 || Idx > NumArgs) {
3770     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3771         << AL << 2 << IdxExpr->getSourceRange();
3772     return;
3773   }
3774 
3775   // FIXME: Do we need to bounds check?
3776   unsigned ArgIdx = Idx - 1;
3777 
3778   if (HasImplicitThisParam) {
3779     if (ArgIdx == 0) {
3780       S.Diag(AL.getLoc(),
3781              diag::err_format_attribute_implicit_this_format_string)
3782         << IdxExpr->getSourceRange();
3783       return;
3784     }
3785     ArgIdx--;
3786   }
3787 
3788   // make sure the format string is really a string
3789   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3790 
3791   if (Kind == CFStringFormat) {
3792     if (!isCFStringType(Ty, S.Context)) {
3793       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3794         << "a CFString" << IdxExpr->getSourceRange()
3795         << getFunctionOrMethodParamRange(D, ArgIdx);
3796       return;
3797     }
3798   } else if (Kind == NSStringFormat) {
3799     // FIXME: do we need to check if the type is NSString*?  What are the
3800     // semantics?
3801     if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) {
3802       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3803         << "an NSString" << IdxExpr->getSourceRange()
3804         << getFunctionOrMethodParamRange(D, ArgIdx);
3805       return;
3806     }
3807   } else if (!Ty->isPointerType() ||
3808              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3809     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3810       << "a string type" << IdxExpr->getSourceRange()
3811       << getFunctionOrMethodParamRange(D, ArgIdx);
3812     return;
3813   }
3814 
3815   // check the 3rd argument
3816   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3817   uint32_t FirstArg;
3818   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3819     return;
3820 
3821   // check if the function is variadic if the 3rd argument non-zero
3822   if (FirstArg != 0) {
3823     if (isFunctionOrMethodVariadic(D)) {
3824       ++NumArgs; // +1 for ...
3825     } else {
3826       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3827       return;
3828     }
3829   }
3830 
3831   // strftime requires FirstArg to be 0 because it doesn't read from any
3832   // variable the input is just the current time + the format string.
3833   if (Kind == StrftimeFormat) {
3834     if (FirstArg != 0) {
3835       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3836         << FirstArgExpr->getSourceRange();
3837       return;
3838     }
3839   // if 0 it disables parameter checking (to use with e.g. va_list)
3840   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3841     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3842         << AL << 3 << FirstArgExpr->getSourceRange();
3843     return;
3844   }
3845 
3846   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3847   if (NewAttr)
3848     D->addAttr(NewAttr);
3849 }
3850 
3851 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3852 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3853   // The index that identifies the callback callee is mandatory.
3854   if (AL.getNumArgs() == 0) {
3855     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3856         << AL.getRange();
3857     return;
3858   }
3859 
3860   bool HasImplicitThisParam = isInstanceMethod(D);
3861   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3862 
3863   FunctionDecl *FD = D->getAsFunction();
3864   assert(FD && "Expected a function declaration!");
3865 
3866   llvm::StringMap<int> NameIdxMapping;
3867   NameIdxMapping["__"] = -1;
3868 
3869   NameIdxMapping["this"] = 0;
3870 
3871   int Idx = 1;
3872   for (const ParmVarDecl *PVD : FD->parameters())
3873     NameIdxMapping[PVD->getName()] = Idx++;
3874 
3875   auto UnknownName = NameIdxMapping.end();
3876 
3877   SmallVector<int, 8> EncodingIndices;
3878   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3879     SourceRange SR;
3880     int32_t ArgIdx;
3881 
3882     if (AL.isArgIdent(I)) {
3883       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3884       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3885       if (It == UnknownName) {
3886         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3887             << IdLoc->Ident << IdLoc->Loc;
3888         return;
3889       }
3890 
3891       SR = SourceRange(IdLoc->Loc);
3892       ArgIdx = It->second;
3893     } else if (AL.isArgExpr(I)) {
3894       Expr *IdxExpr = AL.getArgAsExpr(I);
3895 
3896       // If the expression is not parseable as an int32_t we have a problem.
3897       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3898                                false)) {
3899         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3900             << AL << (I + 1) << IdxExpr->getSourceRange();
3901         return;
3902       }
3903 
3904       // Check oob, excluding the special values, 0 and -1.
3905       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3906         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3907             << AL << (I + 1) << IdxExpr->getSourceRange();
3908         return;
3909       }
3910 
3911       SR = IdxExpr->getSourceRange();
3912     } else {
3913       llvm_unreachable("Unexpected ParsedAttr argument type!");
3914     }
3915 
3916     if (ArgIdx == 0 && !HasImplicitThisParam) {
3917       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3918           << (I + 1) << SR;
3919       return;
3920     }
3921 
3922     // Adjust for the case we do not have an implicit "this" parameter. In this
3923     // case we decrease all positive values by 1 to get LLVM argument indices.
3924     if (!HasImplicitThisParam && ArgIdx > 0)
3925       ArgIdx -= 1;
3926 
3927     EncodingIndices.push_back(ArgIdx);
3928   }
3929 
3930   int CalleeIdx = EncodingIndices.front();
3931   // Check if the callee index is proper, thus not "this" and not "unknown".
3932   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3933   // is false and positive if "HasImplicitThisParam" is true.
3934   if (CalleeIdx < (int)HasImplicitThisParam) {
3935     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3936         << AL.getRange();
3937     return;
3938   }
3939 
3940   // Get the callee type, note the index adjustment as the AST doesn't contain
3941   // the this type (which the callee cannot reference anyway!).
3942   const Type *CalleeType =
3943       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3944           .getTypePtr();
3945   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3946     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3947         << AL.getRange();
3948     return;
3949   }
3950 
3951   const Type *CalleeFnType =
3952       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3953 
3954   // TODO: Check the type of the callee arguments.
3955 
3956   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3957   if (!CalleeFnProtoType) {
3958     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3959         << AL.getRange();
3960     return;
3961   }
3962 
3963   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3964     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3965         << AL << (unsigned)(EncodingIndices.size() - 1);
3966     return;
3967   }
3968 
3969   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3970     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3971         << AL << (unsigned)(EncodingIndices.size() - 1);
3972     return;
3973   }
3974 
3975   if (CalleeFnProtoType->isVariadic()) {
3976     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3977     return;
3978   }
3979 
3980   // Do not allow multiple callback attributes.
3981   if (D->hasAttr<CallbackAttr>()) {
3982     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3983     return;
3984   }
3985 
3986   D->addAttr(::new (S.Context) CallbackAttr(
3987       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3988 }
3989 
3990 static bool isFunctionLike(const Type &T) {
3991   // Check for explicit function types.
3992   // 'called_once' is only supported in Objective-C and it has
3993   // function pointers and block pointers.
3994   return T.isFunctionPointerType() || T.isBlockPointerType();
3995 }
3996 
3997 /// Handle 'called_once' attribute.
3998 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3999   // 'called_once' only applies to parameters representing functions.
4000   QualType T = cast<ParmVarDecl>(D)->getType();
4001 
4002   if (!isFunctionLike(*T)) {
4003     S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4004     return;
4005   }
4006 
4007   D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4008 }
4009 
4010 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4011   // Try to find the underlying union declaration.
4012   RecordDecl *RD = nullptr;
4013   const auto *TD = dyn_cast<TypedefNameDecl>(D);
4014   if (TD && TD->getUnderlyingType()->isUnionType())
4015     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
4016   else
4017     RD = dyn_cast<RecordDecl>(D);
4018 
4019   if (!RD || !RD->isUnion()) {
4020     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
4021                                                               << ExpectedUnion;
4022     return;
4023   }
4024 
4025   if (!RD->isCompleteDefinition()) {
4026     if (!RD->isBeingDefined())
4027       S.Diag(AL.getLoc(),
4028              diag::warn_transparent_union_attribute_not_definition);
4029     return;
4030   }
4031 
4032   RecordDecl::field_iterator Field = RD->field_begin(),
4033                           FieldEnd = RD->field_end();
4034   if (Field == FieldEnd) {
4035     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4036     return;
4037   }
4038 
4039   FieldDecl *FirstField = *Field;
4040   QualType FirstType = FirstField->getType();
4041   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4042     S.Diag(FirstField->getLocation(),
4043            diag::warn_transparent_union_attribute_floating)
4044       << FirstType->isVectorType() << FirstType;
4045     return;
4046   }
4047 
4048   if (FirstType->isIncompleteType())
4049     return;
4050   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4051   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4052   for (; Field != FieldEnd; ++Field) {
4053     QualType FieldType = Field->getType();
4054     if (FieldType->isIncompleteType())
4055       return;
4056     // FIXME: this isn't fully correct; we also need to test whether the
4057     // members of the union would all have the same calling convention as the
4058     // first member of the union. Checking just the size and alignment isn't
4059     // sufficient (consider structs passed on the stack instead of in registers
4060     // as an example).
4061     if (S.Context.getTypeSize(FieldType) != FirstSize ||
4062         S.Context.getTypeAlign(FieldType) > FirstAlign) {
4063       // Warn if we drop the attribute.
4064       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4065       unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4066                                   : S.Context.getTypeAlign(FieldType);
4067       S.Diag(Field->getLocation(),
4068              diag::warn_transparent_union_attribute_field_size_align)
4069           << isSize << *Field << FieldBits;
4070       unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4071       S.Diag(FirstField->getLocation(),
4072              diag::note_transparent_union_first_field_size_align)
4073           << isSize << FirstBits;
4074       return;
4075     }
4076   }
4077 
4078   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4079 }
4080 
4081 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
4082                              StringRef Str, MutableArrayRef<Expr *> Args) {
4083   auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
4084   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4085   for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) {
4086     Expr *&E = Attr->args_begin()[Idx];
4087     assert(E && "error are handled before");
4088     if (E->isValueDependent() || E->isTypeDependent())
4089       continue;
4090 
4091     if (E->getType()->isArrayType())
4092       E = ImpCastExprToType(E, Context.getPointerType(E->getType()),
4093                             clang::CK_ArrayToPointerDecay)
4094               .get();
4095     if (E->getType()->isFunctionType())
4096       E = ImplicitCastExpr::Create(Context,
4097                                    Context.getPointerType(E->getType()),
4098                                    clang::CK_FunctionToPointerDecay, E, nullptr,
4099                                    VK_PRValue, FPOptionsOverride());
4100     if (E->isLValue())
4101       E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(),
4102                                    clang::CK_LValueToRValue, E, nullptr,
4103                                    VK_PRValue, FPOptionsOverride());
4104 
4105     Expr::EvalResult Eval;
4106     Notes.clear();
4107     Eval.Diag = &Notes;
4108 
4109     bool Result =
4110         E->EvaluateAsConstantExpr(Eval, Context);
4111 
4112     /// Result means the expression can be folded to a constant.
4113     /// Note.empty() means the expression is a valid constant expression in the
4114     /// current language mode.
4115     if (!Result || !Notes.empty()) {
4116       Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type)
4117           << CI << (Idx + 1) << AANT_ArgumentConstantExpr;
4118       for (auto &Note : Notes)
4119         Diag(Note.first, Note.second);
4120       return;
4121     }
4122     assert(Eval.Val.hasValue());
4123     E = ConstantExpr::Create(Context, E, Eval.Val);
4124   }
4125   D->addAttr(Attr);
4126 }
4127 
4128 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4129   // Make sure that there is a string literal as the annotation's first
4130   // argument.
4131   StringRef Str;
4132   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
4133     return;
4134 
4135   llvm::SmallVector<Expr *, 4> Args;
4136   Args.reserve(AL.getNumArgs() - 1);
4137   for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
4138     assert(!AL.isArgIdent(Idx));
4139     Args.push_back(AL.getArgAsExpr(Idx));
4140   }
4141 
4142   S.AddAnnotationAttr(D, AL, Str, Args);
4143 }
4144 
4145 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4146   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4147 }
4148 
4149 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
4150   AlignValueAttr TmpAttr(Context, CI, E);
4151   SourceLocation AttrLoc = CI.getLoc();
4152 
4153   QualType T;
4154   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4155     T = TD->getUnderlyingType();
4156   else if (const auto *VD = dyn_cast<ValueDecl>(D))
4157     T = VD->getType();
4158   else
4159     llvm_unreachable("Unknown decl type for align_value");
4160 
4161   if (!T->isDependentType() && !T->isAnyPointerType() &&
4162       !T->isReferenceType() && !T->isMemberPointerType()) {
4163     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4164       << &TmpAttr << T << D->getSourceRange();
4165     return;
4166   }
4167 
4168   if (!E->isValueDependent()) {
4169     llvm::APSInt Alignment;
4170     ExprResult ICE = VerifyIntegerConstantExpression(
4171         E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4172     if (ICE.isInvalid())
4173       return;
4174 
4175     if (!Alignment.isPowerOf2()) {
4176       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4177         << E->getSourceRange();
4178       return;
4179     }
4180 
4181     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4182     return;
4183   }
4184 
4185   // Save dependent expressions in the AST to be instantiated.
4186   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4187 }
4188 
4189 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4190   // check the attribute arguments.
4191   if (AL.getNumArgs() > 1) {
4192     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4193     return;
4194   }
4195 
4196   if (AL.getNumArgs() == 0) {
4197     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4198     return;
4199   }
4200 
4201   Expr *E = AL.getArgAsExpr(0);
4202   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
4203     S.Diag(AL.getEllipsisLoc(),
4204            diag::err_pack_expansion_without_parameter_packs);
4205     return;
4206   }
4207 
4208   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4209     return;
4210 
4211   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4212 }
4213 
4214 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4215                           bool IsPackExpansion) {
4216   AlignedAttr TmpAttr(Context, CI, true, E);
4217   SourceLocation AttrLoc = CI.getLoc();
4218 
4219   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4220   if (TmpAttr.isAlignas()) {
4221     // C++11 [dcl.align]p1:
4222     //   An alignment-specifier may be applied to a variable or to a class
4223     //   data member, but it shall not be applied to a bit-field, a function
4224     //   parameter, the formal parameter of a catch clause, or a variable
4225     //   declared with the register storage class specifier. An
4226     //   alignment-specifier may also be applied to the declaration of a class
4227     //   or enumeration type.
4228     // C11 6.7.5/2:
4229     //   An alignment attribute shall not be specified in a declaration of
4230     //   a typedef, or a bit-field, or a function, or a parameter, or an
4231     //   object declared with the register storage-class specifier.
4232     int DiagKind = -1;
4233     if (isa<ParmVarDecl>(D)) {
4234       DiagKind = 0;
4235     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4236       if (VD->getStorageClass() == SC_Register)
4237         DiagKind = 1;
4238       if (VD->isExceptionVariable())
4239         DiagKind = 2;
4240     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4241       if (FD->isBitField())
4242         DiagKind = 3;
4243     } else if (!isa<TagDecl>(D)) {
4244       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
4245         << (TmpAttr.isC11() ? ExpectedVariableOrField
4246                             : ExpectedVariableFieldOrTag);
4247       return;
4248     }
4249     if (DiagKind != -1) {
4250       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4251         << &TmpAttr << DiagKind;
4252       return;
4253     }
4254   }
4255 
4256   if (E->isValueDependent()) {
4257     // We can't support a dependent alignment on a non-dependent type,
4258     // because we have no way to model that a type is "alignment-dependent"
4259     // but not dependent in any other way.
4260     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4261       if (!TND->getUnderlyingType()->isDependentType()) {
4262         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4263             << E->getSourceRange();
4264         return;
4265       }
4266     }
4267 
4268     // Save dependent expressions in the AST to be instantiated.
4269     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4270     AA->setPackExpansion(IsPackExpansion);
4271     D->addAttr(AA);
4272     return;
4273   }
4274 
4275   // FIXME: Cache the number on the AL object?
4276   llvm::APSInt Alignment;
4277   ExprResult ICE = VerifyIntegerConstantExpression(
4278       E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4279   if (ICE.isInvalid())
4280     return;
4281 
4282   uint64_t AlignVal = Alignment.getZExtValue();
4283   // 16 byte ByVal alignment not due to a vector member is not honoured by XL
4284   // on AIX. Emit a warning here that users are generating binary incompatible
4285   // code to be safe.
4286   if (AlignVal >= 16 && isa<FieldDecl>(D) &&
4287       Context.getTargetInfo().getTriple().isOSAIX())
4288     Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange();
4289 
4290   // C++11 [dcl.align]p2:
4291   //   -- if the constant expression evaluates to zero, the alignment
4292   //      specifier shall have no effect
4293   // C11 6.7.5p6:
4294   //   An alignment specification of zero has no effect.
4295   if (!(TmpAttr.isAlignas() && !Alignment)) {
4296     if (!llvm::isPowerOf2_64(AlignVal)) {
4297       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4298         << E->getSourceRange();
4299       return;
4300     }
4301   }
4302 
4303   uint64_t MaximumAlignment = Sema::MaximumAlignment;
4304   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4305     MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4306   if (AlignVal > MaximumAlignment) {
4307     Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4308         << MaximumAlignment << E->getSourceRange();
4309     return;
4310   }
4311 
4312   const auto *VD = dyn_cast<VarDecl>(D);
4313   if (VD && Context.getTargetInfo().isTLSSupported()) {
4314     unsigned MaxTLSAlign =
4315         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4316             .getQuantity();
4317     if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4318         VD->getTLSKind() != VarDecl::TLS_None) {
4319       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4320           << (unsigned)AlignVal << VD << MaxTLSAlign;
4321       return;
4322     }
4323   }
4324 
4325   // On AIX, an aligned attribute can not decrease the alignment when applied
4326   // to a variable declaration with vector type.
4327   if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4328     const Type *Ty = VD->getType().getTypePtr();
4329     if (Ty->isVectorType() && AlignVal < 16) {
4330       Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4331           << VD->getType() << 16;
4332       return;
4333     }
4334   }
4335 
4336   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4337   AA->setPackExpansion(IsPackExpansion);
4338   D->addAttr(AA);
4339 }
4340 
4341 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4342                           TypeSourceInfo *TS, bool IsPackExpansion) {
4343   // FIXME: Cache the number on the AL object if non-dependent?
4344   // FIXME: Perform checking of type validity
4345   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4346   AA->setPackExpansion(IsPackExpansion);
4347   D->addAttr(AA);
4348 }
4349 
4350 void Sema::CheckAlignasUnderalignment(Decl *D) {
4351   assert(D->hasAttrs() && "no attributes on decl");
4352 
4353   QualType UnderlyingTy, DiagTy;
4354   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4355     UnderlyingTy = DiagTy = VD->getType();
4356   } else {
4357     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4358     if (const auto *ED = dyn_cast<EnumDecl>(D))
4359       UnderlyingTy = ED->getIntegerType();
4360   }
4361   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4362     return;
4363 
4364   // C++11 [dcl.align]p5, C11 6.7.5/4:
4365   //   The combined effect of all alignment attributes in a declaration shall
4366   //   not specify an alignment that is less strict than the alignment that
4367   //   would otherwise be required for the entity being declared.
4368   AlignedAttr *AlignasAttr = nullptr;
4369   AlignedAttr *LastAlignedAttr = nullptr;
4370   unsigned Align = 0;
4371   for (auto *I : D->specific_attrs<AlignedAttr>()) {
4372     if (I->isAlignmentDependent())
4373       return;
4374     if (I->isAlignas())
4375       AlignasAttr = I;
4376     Align = std::max(Align, I->getAlignment(Context));
4377     LastAlignedAttr = I;
4378   }
4379 
4380   if (Align && DiagTy->isSizelessType()) {
4381     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4382         << LastAlignedAttr << DiagTy;
4383   } else if (AlignasAttr && Align) {
4384     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4385     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4386     if (NaturalAlign > RequestedAlign)
4387       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4388         << DiagTy << (unsigned)NaturalAlign.getQuantity();
4389   }
4390 }
4391 
4392 bool Sema::checkMSInheritanceAttrOnDefinition(
4393     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4394     MSInheritanceModel ExplicitModel) {
4395   assert(RD->hasDefinition() && "RD has no definition!");
4396 
4397   // We may not have seen base specifiers or any virtual methods yet.  We will
4398   // have to wait until the record is defined to catch any mismatches.
4399   if (!RD->getDefinition()->isCompleteDefinition())
4400     return false;
4401 
4402   // The unspecified model never matches what a definition could need.
4403   if (ExplicitModel == MSInheritanceModel::Unspecified)
4404     return false;
4405 
4406   if (BestCase) {
4407     if (RD->calculateInheritanceModel() == ExplicitModel)
4408       return false;
4409   } else {
4410     if (RD->calculateInheritanceModel() <= ExplicitModel)
4411       return false;
4412   }
4413 
4414   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4415       << 0 /*definition*/;
4416   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4417   return true;
4418 }
4419 
4420 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4421 /// attribute.
4422 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4423                              bool &IntegerMode, bool &ComplexMode,
4424                              FloatModeKind &ExplicitType) {
4425   IntegerMode = true;
4426   ComplexMode = false;
4427   ExplicitType = FloatModeKind::NoFloat;
4428   switch (Str.size()) {
4429   case 2:
4430     switch (Str[0]) {
4431     case 'Q':
4432       DestWidth = 8;
4433       break;
4434     case 'H':
4435       DestWidth = 16;
4436       break;
4437     case 'S':
4438       DestWidth = 32;
4439       break;
4440     case 'D':
4441       DestWidth = 64;
4442       break;
4443     case 'X':
4444       DestWidth = 96;
4445       break;
4446     case 'K': // KFmode - IEEE quad precision (__float128)
4447       ExplicitType = FloatModeKind::Float128;
4448       DestWidth = Str[1] == 'I' ? 0 : 128;
4449       break;
4450     case 'T':
4451       ExplicitType = FloatModeKind::LongDouble;
4452       DestWidth = 128;
4453       break;
4454     case 'I':
4455       ExplicitType = FloatModeKind::Ibm128;
4456       DestWidth = Str[1] == 'I' ? 0 : 128;
4457       break;
4458     }
4459     if (Str[1] == 'F') {
4460       IntegerMode = false;
4461     } else if (Str[1] == 'C') {
4462       IntegerMode = false;
4463       ComplexMode = true;
4464     } else if (Str[1] != 'I') {
4465       DestWidth = 0;
4466     }
4467     break;
4468   case 4:
4469     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4470     // pointer on PIC16 and other embedded platforms.
4471     if (Str == "word")
4472       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4473     else if (Str == "byte")
4474       DestWidth = S.Context.getTargetInfo().getCharWidth();
4475     break;
4476   case 7:
4477     if (Str == "pointer")
4478       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
4479     break;
4480   case 11:
4481     if (Str == "unwind_word")
4482       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4483     break;
4484   }
4485 }
4486 
4487 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4488 /// type.
4489 ///
4490 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4491 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4492 /// HImode, not an intermediate pointer.
4493 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4494   // This attribute isn't documented, but glibc uses it.  It changes
4495   // the width of an int or unsigned int to the specified size.
4496   if (!AL.isArgIdent(0)) {
4497     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4498         << AL << AANT_ArgumentIdentifier;
4499     return;
4500   }
4501 
4502   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4503 
4504   S.AddModeAttr(D, AL, Name);
4505 }
4506 
4507 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4508                        IdentifierInfo *Name, bool InInstantiation) {
4509   StringRef Str = Name->getName();
4510   normalizeName(Str);
4511   SourceLocation AttrLoc = CI.getLoc();
4512 
4513   unsigned DestWidth = 0;
4514   bool IntegerMode = true;
4515   bool ComplexMode = false;
4516   FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4517   llvm::APInt VectorSize(64, 0);
4518   if (Str.size() >= 4 && Str[0] == 'V') {
4519     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4520     size_t StrSize = Str.size();
4521     size_t VectorStringLength = 0;
4522     while ((VectorStringLength + 1) < StrSize &&
4523            isdigit(Str[VectorStringLength + 1]))
4524       ++VectorStringLength;
4525     if (VectorStringLength &&
4526         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4527         VectorSize.isPowerOf2()) {
4528       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4529                        IntegerMode, ComplexMode, ExplicitType);
4530       // Avoid duplicate warning from template instantiation.
4531       if (!InInstantiation)
4532         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4533     } else {
4534       VectorSize = 0;
4535     }
4536   }
4537 
4538   if (!VectorSize)
4539     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4540                      ExplicitType);
4541 
4542   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4543   // and friends, at least with glibc.
4544   // FIXME: Make sure floating-point mappings are accurate
4545   // FIXME: Support XF and TF types
4546   if (!DestWidth) {
4547     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4548     return;
4549   }
4550 
4551   QualType OldTy;
4552   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4553     OldTy = TD->getUnderlyingType();
4554   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4555     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4556     // Try to get type from enum declaration, default to int.
4557     OldTy = ED->getIntegerType();
4558     if (OldTy.isNull())
4559       OldTy = Context.IntTy;
4560   } else
4561     OldTy = cast<ValueDecl>(D)->getType();
4562 
4563   if (OldTy->isDependentType()) {
4564     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4565     return;
4566   }
4567 
4568   // Base type can also be a vector type (see PR17453).
4569   // Distinguish between base type and base element type.
4570   QualType OldElemTy = OldTy;
4571   if (const auto *VT = OldTy->getAs<VectorType>())
4572     OldElemTy = VT->getElementType();
4573 
4574   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4575   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4576   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4577   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4578       VectorSize.getBoolValue()) {
4579     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4580     return;
4581   }
4582   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4583                                 !OldElemTy->isBitIntType()) ||
4584                                OldElemTy->getAs<EnumType>();
4585 
4586   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4587       !IntegralOrAnyEnumType)
4588     Diag(AttrLoc, diag::err_mode_not_primitive);
4589   else if (IntegerMode) {
4590     if (!IntegralOrAnyEnumType)
4591       Diag(AttrLoc, diag::err_mode_wrong_type);
4592   } else if (ComplexMode) {
4593     if (!OldElemTy->isComplexType())
4594       Diag(AttrLoc, diag::err_mode_wrong_type);
4595   } else {
4596     if (!OldElemTy->isFloatingType())
4597       Diag(AttrLoc, diag::err_mode_wrong_type);
4598   }
4599 
4600   QualType NewElemTy;
4601 
4602   if (IntegerMode)
4603     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4604                                               OldElemTy->isSignedIntegerType());
4605   else
4606     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4607 
4608   if (NewElemTy.isNull()) {
4609     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4610     return;
4611   }
4612 
4613   if (ComplexMode) {
4614     NewElemTy = Context.getComplexType(NewElemTy);
4615   }
4616 
4617   QualType NewTy = NewElemTy;
4618   if (VectorSize.getBoolValue()) {
4619     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4620                                   VectorType::GenericVector);
4621   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4622     // Complex machine mode does not support base vector types.
4623     if (ComplexMode) {
4624       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4625       return;
4626     }
4627     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4628                            OldVT->getNumElements() /
4629                            Context.getTypeSize(NewElemTy);
4630     NewTy =
4631         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4632   }
4633 
4634   if (NewTy.isNull()) {
4635     Diag(AttrLoc, diag::err_mode_wrong_type);
4636     return;
4637   }
4638 
4639   // Install the new type.
4640   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4641     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4642   else if (auto *ED = dyn_cast<EnumDecl>(D))
4643     ED->setIntegerType(NewTy);
4644   else
4645     cast<ValueDecl>(D)->setType(NewTy);
4646 
4647   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4648 }
4649 
4650 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4651   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4652 }
4653 
4654 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4655                                               const AttributeCommonInfo &CI,
4656                                               const IdentifierInfo *Ident) {
4657   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4658     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4659     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4660     return nullptr;
4661   }
4662 
4663   if (D->hasAttr<AlwaysInlineAttr>())
4664     return nullptr;
4665 
4666   return ::new (Context) AlwaysInlineAttr(Context, CI);
4667 }
4668 
4669 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4670                                                     const ParsedAttr &AL) {
4671   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4672     // Attribute applies to Var but not any subclass of it (like ParmVar,
4673     // ImplicitParm or VarTemplateSpecialization).
4674     if (VD->getKind() != Decl::Var) {
4675       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4676           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4677                                             : ExpectedVariableOrFunction);
4678       return nullptr;
4679     }
4680     // Attribute does not apply to non-static local variables.
4681     if (VD->hasLocalStorage()) {
4682       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4683       return nullptr;
4684     }
4685   }
4686 
4687   return ::new (Context) InternalLinkageAttr(Context, AL);
4688 }
4689 InternalLinkageAttr *
4690 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4691   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4692     // Attribute applies to Var but not any subclass of it (like ParmVar,
4693     // ImplicitParm or VarTemplateSpecialization).
4694     if (VD->getKind() != Decl::Var) {
4695       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4696           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4697                                              : ExpectedVariableOrFunction);
4698       return nullptr;
4699     }
4700     // Attribute does not apply to non-static local variables.
4701     if (VD->hasLocalStorage()) {
4702       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4703       return nullptr;
4704     }
4705   }
4706 
4707   return ::new (Context) InternalLinkageAttr(Context, AL);
4708 }
4709 
4710 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4711   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4712     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4713     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4714     return nullptr;
4715   }
4716 
4717   if (D->hasAttr<MinSizeAttr>())
4718     return nullptr;
4719 
4720   return ::new (Context) MinSizeAttr(Context, CI);
4721 }
4722 
4723 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4724                                         StringRef Name) {
4725   if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4726     if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4727       Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4728           << PrevSNA << &SNA;
4729       Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4730     }
4731 
4732     D->dropAttr<SwiftNameAttr>();
4733   }
4734   return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4735 }
4736 
4737 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4738                                               const AttributeCommonInfo &CI) {
4739   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4740     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4741     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4742     D->dropAttr<AlwaysInlineAttr>();
4743   }
4744   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4745     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4746     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4747     D->dropAttr<MinSizeAttr>();
4748   }
4749 
4750   if (D->hasAttr<OptimizeNoneAttr>())
4751     return nullptr;
4752 
4753   return ::new (Context) OptimizeNoneAttr(Context, CI);
4754 }
4755 
4756 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4757   if (AlwaysInlineAttr *Inline =
4758           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4759     D->addAttr(Inline);
4760 }
4761 
4762 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4763   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4764     D->addAttr(MinSize);
4765 }
4766 
4767 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4768   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4769     D->addAttr(Optnone);
4770 }
4771 
4772 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4773   const auto *VD = cast<VarDecl>(D);
4774   if (VD->hasLocalStorage()) {
4775     S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4776     return;
4777   }
4778   // constexpr variable may already get an implicit constant attr, which should
4779   // be replaced by the explicit constant attr.
4780   if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4781     if (!A->isImplicit())
4782       return;
4783     D->dropAttr<CUDAConstantAttr>();
4784   }
4785   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4786 }
4787 
4788 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4789   const auto *VD = cast<VarDecl>(D);
4790   // extern __shared__ is only allowed on arrays with no length (e.g.
4791   // "int x[]").
4792   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4793       !isa<IncompleteArrayType>(VD->getType())) {
4794     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4795     return;
4796   }
4797   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4798       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4799           << S.CurrentCUDATarget())
4800     return;
4801   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4802 }
4803 
4804 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4805   const auto *FD = cast<FunctionDecl>(D);
4806   if (!FD->getReturnType()->isVoidType() &&
4807       !FD->getReturnType()->getAs<AutoType>() &&
4808       !FD->getReturnType()->isInstantiationDependentType()) {
4809     SourceRange RTRange = FD->getReturnTypeSourceRange();
4810     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4811         << FD->getType()
4812         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4813                               : FixItHint());
4814     return;
4815   }
4816   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4817     if (Method->isInstance()) {
4818       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4819           << Method;
4820       return;
4821     }
4822     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4823   }
4824   // Only warn for "inline" when compiling for host, to cut down on noise.
4825   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4826     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4827 
4828   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4829   // In host compilation the kernel is emitted as a stub function, which is
4830   // a helper function for launching the kernel. The instructions in the helper
4831   // function has nothing to do with the source code of the kernel. Do not emit
4832   // debug info for the stub function to avoid confusing the debugger.
4833   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4834     D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4835 }
4836 
4837 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4838   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4839     if (VD->hasLocalStorage()) {
4840       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4841       return;
4842     }
4843   }
4844 
4845   if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4846     if (!A->isImplicit())
4847       return;
4848     D->dropAttr<CUDADeviceAttr>();
4849   }
4850   D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4851 }
4852 
4853 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4854   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4855     if (VD->hasLocalStorage()) {
4856       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4857       return;
4858     }
4859   }
4860   if (!D->hasAttr<HIPManagedAttr>())
4861     D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
4862   if (!D->hasAttr<CUDADeviceAttr>())
4863     D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
4864 }
4865 
4866 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4867   const auto *Fn = cast<FunctionDecl>(D);
4868   if (!Fn->isInlineSpecified()) {
4869     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4870     return;
4871   }
4872 
4873   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4874     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4875 
4876   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4877 }
4878 
4879 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4880   if (hasDeclarator(D)) return;
4881 
4882   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4883   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4884   CallingConv CC;
4885   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4886     return;
4887 
4888   if (!isa<ObjCMethodDecl>(D)) {
4889     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4890         << AL << ExpectedFunctionOrMethod;
4891     return;
4892   }
4893 
4894   switch (AL.getKind()) {
4895   case ParsedAttr::AT_FastCall:
4896     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4897     return;
4898   case ParsedAttr::AT_StdCall:
4899     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4900     return;
4901   case ParsedAttr::AT_ThisCall:
4902     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4903     return;
4904   case ParsedAttr::AT_CDecl:
4905     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4906     return;
4907   case ParsedAttr::AT_Pascal:
4908     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4909     return;
4910   case ParsedAttr::AT_SwiftCall:
4911     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4912     return;
4913   case ParsedAttr::AT_SwiftAsyncCall:
4914     D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
4915     return;
4916   case ParsedAttr::AT_VectorCall:
4917     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4918     return;
4919   case ParsedAttr::AT_MSABI:
4920     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4921     return;
4922   case ParsedAttr::AT_SysVABI:
4923     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4924     return;
4925   case ParsedAttr::AT_RegCall:
4926     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4927     return;
4928   case ParsedAttr::AT_Pcs: {
4929     PcsAttr::PCSType PCS;
4930     switch (CC) {
4931     case CC_AAPCS:
4932       PCS = PcsAttr::AAPCS;
4933       break;
4934     case CC_AAPCS_VFP:
4935       PCS = PcsAttr::AAPCS_VFP;
4936       break;
4937     default:
4938       llvm_unreachable("unexpected calling convention in pcs attribute");
4939     }
4940 
4941     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4942     return;
4943   }
4944   case ParsedAttr::AT_AArch64VectorPcs:
4945     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4946     return;
4947   case ParsedAttr::AT_IntelOclBicc:
4948     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4949     return;
4950   case ParsedAttr::AT_PreserveMost:
4951     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4952     return;
4953   case ParsedAttr::AT_PreserveAll:
4954     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4955     return;
4956   default:
4957     llvm_unreachable("unexpected attribute kind");
4958   }
4959 }
4960 
4961 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4962   if (!AL.checkAtLeastNumArgs(S, 1))
4963     return;
4964 
4965   std::vector<StringRef> DiagnosticIdentifiers;
4966   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4967     StringRef RuleName;
4968 
4969     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4970       return;
4971 
4972     // FIXME: Warn if the rule name is unknown. This is tricky because only
4973     // clang-tidy knows about available rules.
4974     DiagnosticIdentifiers.push_back(RuleName);
4975   }
4976   D->addAttr(::new (S.Context)
4977                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4978                               DiagnosticIdentifiers.size()));
4979 }
4980 
4981 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4982   TypeSourceInfo *DerefTypeLoc = nullptr;
4983   QualType ParmType;
4984   if (AL.hasParsedType()) {
4985     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4986 
4987     unsigned SelectIdx = ~0U;
4988     if (ParmType->isReferenceType())
4989       SelectIdx = 0;
4990     else if (ParmType->isArrayType())
4991       SelectIdx = 1;
4992 
4993     if (SelectIdx != ~0U) {
4994       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4995           << SelectIdx << AL;
4996       return;
4997     }
4998   }
4999 
5000   // To check if earlier decl attributes do not conflict the newly parsed ones
5001   // we always add (and check) the attribute to the canonical decl. We need
5002   // to repeat the check for attribute mutual exclusion because we're attaching
5003   // all of the attributes to the canonical declaration rather than the current
5004   // declaration.
5005   D = D->getCanonicalDecl();
5006   if (AL.getKind() == ParsedAttr::AT_Owner) {
5007     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
5008       return;
5009     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5010       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5011                                           ? OAttr->getDerefType().getTypePtr()
5012                                           : nullptr;
5013       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5014         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5015             << AL << OAttr;
5016         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5017       }
5018       return;
5019     }
5020     for (Decl *Redecl : D->redecls()) {
5021       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5022     }
5023   } else {
5024     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
5025       return;
5026     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5027       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5028                                           ? PAttr->getDerefType().getTypePtr()
5029                                           : nullptr;
5030       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5031         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5032             << AL << PAttr;
5033         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5034       }
5035       return;
5036     }
5037     for (Decl *Redecl : D->redecls()) {
5038       Redecl->addAttr(::new (S.Context)
5039                           PointerAttr(S.Context, AL, DerefTypeLoc));
5040     }
5041   }
5042 }
5043 
5044 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
5045                                 const FunctionDecl *FD) {
5046   if (Attrs.isInvalid())
5047     return true;
5048 
5049   if (Attrs.hasProcessingCache()) {
5050     CC = (CallingConv) Attrs.getProcessingCache();
5051     return false;
5052   }
5053 
5054   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5055   if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5056     Attrs.setInvalid();
5057     return true;
5058   }
5059 
5060   // TODO: diagnose uses of these conventions on the wrong target.
5061   switch (Attrs.getKind()) {
5062   case ParsedAttr::AT_CDecl:
5063     CC = CC_C;
5064     break;
5065   case ParsedAttr::AT_FastCall:
5066     CC = CC_X86FastCall;
5067     break;
5068   case ParsedAttr::AT_StdCall:
5069     CC = CC_X86StdCall;
5070     break;
5071   case ParsedAttr::AT_ThisCall:
5072     CC = CC_X86ThisCall;
5073     break;
5074   case ParsedAttr::AT_Pascal:
5075     CC = CC_X86Pascal;
5076     break;
5077   case ParsedAttr::AT_SwiftCall:
5078     CC = CC_Swift;
5079     break;
5080   case ParsedAttr::AT_SwiftAsyncCall:
5081     CC = CC_SwiftAsync;
5082     break;
5083   case ParsedAttr::AT_VectorCall:
5084     CC = CC_X86VectorCall;
5085     break;
5086   case ParsedAttr::AT_AArch64VectorPcs:
5087     CC = CC_AArch64VectorCall;
5088     break;
5089   case ParsedAttr::AT_RegCall:
5090     CC = CC_X86RegCall;
5091     break;
5092   case ParsedAttr::AT_MSABI:
5093     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
5094                                                              CC_Win64;
5095     break;
5096   case ParsedAttr::AT_SysVABI:
5097     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
5098                                                              CC_C;
5099     break;
5100   case ParsedAttr::AT_Pcs: {
5101     StringRef StrRef;
5102     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5103       Attrs.setInvalid();
5104       return true;
5105     }
5106     if (StrRef == "aapcs") {
5107       CC = CC_AAPCS;
5108       break;
5109     } else if (StrRef == "aapcs-vfp") {
5110       CC = CC_AAPCS_VFP;
5111       break;
5112     }
5113 
5114     Attrs.setInvalid();
5115     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5116     return true;
5117   }
5118   case ParsedAttr::AT_IntelOclBicc:
5119     CC = CC_IntelOclBicc;
5120     break;
5121   case ParsedAttr::AT_PreserveMost:
5122     CC = CC_PreserveMost;
5123     break;
5124   case ParsedAttr::AT_PreserveAll:
5125     CC = CC_PreserveAll;
5126     break;
5127   default: llvm_unreachable("unexpected attribute kind");
5128   }
5129 
5130   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
5131   const TargetInfo &TI = Context.getTargetInfo();
5132   // CUDA functions may have host and/or device attributes which indicate
5133   // their targeted execution environment, therefore the calling convention
5134   // of functions in CUDA should be checked against the target deduced based
5135   // on their host/device attributes.
5136   if (LangOpts.CUDA) {
5137     auto *Aux = Context.getAuxTargetInfo();
5138     auto CudaTarget = IdentifyCUDATarget(FD);
5139     bool CheckHost = false, CheckDevice = false;
5140     switch (CudaTarget) {
5141     case CFT_HostDevice:
5142       CheckHost = true;
5143       CheckDevice = true;
5144       break;
5145     case CFT_Host:
5146       CheckHost = true;
5147       break;
5148     case CFT_Device:
5149     case CFT_Global:
5150       CheckDevice = true;
5151       break;
5152     case CFT_InvalidTarget:
5153       llvm_unreachable("unexpected cuda target");
5154     }
5155     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5156     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5157     if (CheckHost && HostTI)
5158       A = HostTI->checkCallingConvention(CC);
5159     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5160       A = DeviceTI->checkCallingConvention(CC);
5161   } else {
5162     A = TI.checkCallingConvention(CC);
5163   }
5164 
5165   switch (A) {
5166   case TargetInfo::CCCR_OK:
5167     break;
5168 
5169   case TargetInfo::CCCR_Ignore:
5170     // Treat an ignored convention as if it was an explicit C calling convention
5171     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5172     // that command line flags that change the default convention to
5173     // __vectorcall don't affect declarations marked __stdcall.
5174     CC = CC_C;
5175     break;
5176 
5177   case TargetInfo::CCCR_Error:
5178     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5179         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5180     break;
5181 
5182   case TargetInfo::CCCR_Warning: {
5183     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5184         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5185 
5186     // This convention is not valid for the target. Use the default function or
5187     // method calling convention.
5188     bool IsCXXMethod = false, IsVariadic = false;
5189     if (FD) {
5190       IsCXXMethod = FD->isCXXInstanceMember();
5191       IsVariadic = FD->isVariadic();
5192     }
5193     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5194     break;
5195   }
5196   }
5197 
5198   Attrs.setProcessingCache((unsigned) CC);
5199   return false;
5200 }
5201 
5202 /// Pointer-like types in the default address space.
5203 static bool isValidSwiftContextType(QualType Ty) {
5204   if (!Ty->hasPointerRepresentation())
5205     return Ty->isDependentType();
5206   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5207 }
5208 
5209 /// Pointers and references in the default address space.
5210 static bool isValidSwiftIndirectResultType(QualType Ty) {
5211   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5212     Ty = PtrType->getPointeeType();
5213   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5214     Ty = RefType->getPointeeType();
5215   } else {
5216     return Ty->isDependentType();
5217   }
5218   return Ty.getAddressSpace() == LangAS::Default;
5219 }
5220 
5221 /// Pointers and references to pointers in the default address space.
5222 static bool isValidSwiftErrorResultType(QualType Ty) {
5223   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5224     Ty = PtrType->getPointeeType();
5225   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5226     Ty = RefType->getPointeeType();
5227   } else {
5228     return Ty->isDependentType();
5229   }
5230   if (!Ty.getQualifiers().empty())
5231     return false;
5232   return isValidSwiftContextType(Ty);
5233 }
5234 
5235 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5236                                ParameterABI abi) {
5237 
5238   QualType type = cast<ParmVarDecl>(D)->getType();
5239 
5240   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5241     if (existingAttr->getABI() != abi) {
5242       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5243           << getParameterABISpelling(abi) << existingAttr;
5244       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5245       return;
5246     }
5247   }
5248 
5249   switch (abi) {
5250   case ParameterABI::Ordinary:
5251     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5252 
5253   case ParameterABI::SwiftContext:
5254     if (!isValidSwiftContextType(type)) {
5255       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5256           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5257     }
5258     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5259     return;
5260 
5261   case ParameterABI::SwiftAsyncContext:
5262     if (!isValidSwiftContextType(type)) {
5263       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5264           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5265     }
5266     D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5267     return;
5268 
5269   case ParameterABI::SwiftErrorResult:
5270     if (!isValidSwiftErrorResultType(type)) {
5271       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5272           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5273     }
5274     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5275     return;
5276 
5277   case ParameterABI::SwiftIndirectResult:
5278     if (!isValidSwiftIndirectResultType(type)) {
5279       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5280           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5281     }
5282     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5283     return;
5284   }
5285   llvm_unreachable("bad parameter ABI attribute");
5286 }
5287 
5288 /// Checks a regparm attribute, returning true if it is ill-formed and
5289 /// otherwise setting numParams to the appropriate value.
5290 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5291   if (AL.isInvalid())
5292     return true;
5293 
5294   if (!AL.checkExactlyNumArgs(*this, 1)) {
5295     AL.setInvalid();
5296     return true;
5297   }
5298 
5299   uint32_t NP;
5300   Expr *NumParamsExpr = AL.getArgAsExpr(0);
5301   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5302     AL.setInvalid();
5303     return true;
5304   }
5305 
5306   if (Context.getTargetInfo().getRegParmMax() == 0) {
5307     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5308       << NumParamsExpr->getSourceRange();
5309     AL.setInvalid();
5310     return true;
5311   }
5312 
5313   numParams = NP;
5314   if (numParams > Context.getTargetInfo().getRegParmMax()) {
5315     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5316       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5317     AL.setInvalid();
5318     return true;
5319   }
5320 
5321   return false;
5322 }
5323 
5324 // Checks whether an argument of launch_bounds attribute is
5325 // acceptable, performs implicit conversion to Rvalue, and returns
5326 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5327 // and may output an error.
5328 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5329                                      const CUDALaunchBoundsAttr &AL,
5330                                      const unsigned Idx) {
5331   if (S.DiagnoseUnexpandedParameterPack(E))
5332     return nullptr;
5333 
5334   // Accept template arguments for now as they depend on something else.
5335   // We'll get to check them when they eventually get instantiated.
5336   if (E->isValueDependent())
5337     return E;
5338 
5339   Optional<llvm::APSInt> I = llvm::APSInt(64);
5340   if (!(I = E->getIntegerConstantExpr(S.Context))) {
5341     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5342         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5343     return nullptr;
5344   }
5345   // Make sure we can fit it in 32 bits.
5346   if (!I->isIntN(32)) {
5347     S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5348         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5349     return nullptr;
5350   }
5351   if (*I < 0)
5352     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5353         << &AL << Idx << E->getSourceRange();
5354 
5355   // We may need to perform implicit conversion of the argument.
5356   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5357       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5358   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5359   assert(!ValArg.isInvalid() &&
5360          "Unexpected PerformCopyInitialization() failure.");
5361 
5362   return ValArg.getAs<Expr>();
5363 }
5364 
5365 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5366                                Expr *MaxThreads, Expr *MinBlocks) {
5367   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5368   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5369   if (MaxThreads == nullptr)
5370     return;
5371 
5372   if (MinBlocks) {
5373     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5374     if (MinBlocks == nullptr)
5375       return;
5376   }
5377 
5378   D->addAttr(::new (Context)
5379                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5380 }
5381 
5382 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5383   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5384     return;
5385 
5386   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5387                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5388 }
5389 
5390 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5391                                           const ParsedAttr &AL) {
5392   if (!AL.isArgIdent(0)) {
5393     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5394         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5395     return;
5396   }
5397 
5398   ParamIdx ArgumentIdx;
5399   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5400                                            ArgumentIdx))
5401     return;
5402 
5403   ParamIdx TypeTagIdx;
5404   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5405                                            TypeTagIdx))
5406     return;
5407 
5408   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5409   if (IsPointer) {
5410     // Ensure that buffer has a pointer type.
5411     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5412     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5413         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5414       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5415   }
5416 
5417   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5418       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5419       IsPointer));
5420 }
5421 
5422 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5423                                          const ParsedAttr &AL) {
5424   if (!AL.isArgIdent(0)) {
5425     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5426         << AL << 1 << AANT_ArgumentIdentifier;
5427     return;
5428   }
5429 
5430   if (!AL.checkExactlyNumArgs(S, 1))
5431     return;
5432 
5433   if (!isa<VarDecl>(D)) {
5434     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5435         << AL << ExpectedVariable;
5436     return;
5437   }
5438 
5439   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5440   TypeSourceInfo *MatchingCTypeLoc = nullptr;
5441   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5442   assert(MatchingCTypeLoc && "no type source info for attribute argument");
5443 
5444   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5445       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5446       AL.getMustBeNull()));
5447 }
5448 
5449 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5450   ParamIdx ArgCount;
5451 
5452   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5453                                            ArgCount,
5454                                            true /* CanIndexImplicitThis */))
5455     return;
5456 
5457   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5458   D->addAttr(::new (S.Context)
5459                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5460 }
5461 
5462 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5463                                              const ParsedAttr &AL) {
5464   uint32_t Count = 0, Offset = 0;
5465   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5466     return;
5467   if (AL.getNumArgs() == 2) {
5468     Expr *Arg = AL.getArgAsExpr(1);
5469     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5470       return;
5471     if (Count < Offset) {
5472       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5473           << &AL << 0 << Count << Arg->getBeginLoc();
5474       return;
5475     }
5476   }
5477   D->addAttr(::new (S.Context)
5478                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5479 }
5480 
5481 namespace {
5482 struct IntrinToName {
5483   uint32_t Id;
5484   int32_t FullName;
5485   int32_t ShortName;
5486 };
5487 } // unnamed namespace
5488 
5489 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5490                                  ArrayRef<IntrinToName> Map,
5491                                  const char *IntrinNames) {
5492   if (AliasName.startswith("__arm_"))
5493     AliasName = AliasName.substr(6);
5494   const IntrinToName *It = std::lower_bound(
5495       Map.begin(), Map.end(), BuiltinID,
5496       [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
5497   if (It == Map.end() || It->Id != BuiltinID)
5498     return false;
5499   StringRef FullName(&IntrinNames[It->FullName]);
5500   if (AliasName == FullName)
5501     return true;
5502   if (It->ShortName == -1)
5503     return false;
5504   StringRef ShortName(&IntrinNames[It->ShortName]);
5505   return AliasName == ShortName;
5506 }
5507 
5508 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5509 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5510   // The included file defines:
5511   // - ArrayRef<IntrinToName> Map
5512   // - const char IntrinNames[]
5513   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5514 }
5515 
5516 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5517 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5518   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5519 }
5520 
5521 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5522                              StringRef AliasName) {
5523   if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5524     BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5525   return BuiltinID >= AArch64::FirstSVEBuiltin &&
5526          BuiltinID <= AArch64::LastSVEBuiltin;
5527 }
5528 
5529 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5530   if (!AL.isArgIdent(0)) {
5531     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5532         << AL << 1 << AANT_ArgumentIdentifier;
5533     return;
5534   }
5535 
5536   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5537   unsigned BuiltinID = Ident->getBuiltinID();
5538   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5539 
5540   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5541   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5542       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5543        !ArmCdeAliasValid(BuiltinID, AliasName))) {
5544     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5545     return;
5546   }
5547 
5548   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5549 }
5550 
5551 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5552   return BuiltinID >= RISCV::FirstRVVBuiltin &&
5553          BuiltinID <= RISCV::LastRVVBuiltin;
5554 }
5555 
5556 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5557                                         const ParsedAttr &AL) {
5558   if (!AL.isArgIdent(0)) {
5559     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5560         << AL << 1 << AANT_ArgumentIdentifier;
5561     return;
5562   }
5563 
5564   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5565   unsigned BuiltinID = Ident->getBuiltinID();
5566   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5567 
5568   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5569   bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5570   bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5571   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5572       (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5573        !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5574       (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5575       (!IsAArch64 && !IsARM && !IsRISCV)) {
5576     S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5577     return;
5578   }
5579 
5580   D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5581 }
5582 
5583 //===----------------------------------------------------------------------===//
5584 // Checker-specific attribute handlers.
5585 //===----------------------------------------------------------------------===//
5586 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5587   return QT->isDependentType() || QT->isObjCRetainableType();
5588 }
5589 
5590 static bool isValidSubjectOfNSAttribute(QualType QT) {
5591   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5592          QT->isObjCNSObjectType();
5593 }
5594 
5595 static bool isValidSubjectOfCFAttribute(QualType QT) {
5596   return QT->isDependentType() || QT->isPointerType() ||
5597          isValidSubjectOfNSAttribute(QT);
5598 }
5599 
5600 static bool isValidSubjectOfOSAttribute(QualType QT) {
5601   if (QT->isDependentType())
5602     return true;
5603   QualType PT = QT->getPointeeType();
5604   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5605 }
5606 
5607 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5608                             RetainOwnershipKind K,
5609                             bool IsTemplateInstantiation) {
5610   ValueDecl *VD = cast<ValueDecl>(D);
5611   switch (K) {
5612   case RetainOwnershipKind::OS:
5613     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5614         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5615         diag::warn_ns_attribute_wrong_parameter_type,
5616         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5617     return;
5618   case RetainOwnershipKind::NS:
5619     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5620         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5621 
5622         // These attributes are normally just advisory, but in ARC, ns_consumed
5623         // is significant.  Allow non-dependent code to contain inappropriate
5624         // attributes even in ARC, but require template instantiations to be
5625         // set up correctly.
5626         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5627              ? diag::err_ns_attribute_wrong_parameter_type
5628              : diag::warn_ns_attribute_wrong_parameter_type),
5629         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5630     return;
5631   case RetainOwnershipKind::CF:
5632     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5633         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5634         diag::warn_ns_attribute_wrong_parameter_type,
5635         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5636     return;
5637   }
5638 }
5639 
5640 static Sema::RetainOwnershipKind
5641 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5642   switch (AL.getKind()) {
5643   case ParsedAttr::AT_CFConsumed:
5644   case ParsedAttr::AT_CFReturnsRetained:
5645   case ParsedAttr::AT_CFReturnsNotRetained:
5646     return Sema::RetainOwnershipKind::CF;
5647   case ParsedAttr::AT_OSConsumesThis:
5648   case ParsedAttr::AT_OSConsumed:
5649   case ParsedAttr::AT_OSReturnsRetained:
5650   case ParsedAttr::AT_OSReturnsNotRetained:
5651   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5652   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5653     return Sema::RetainOwnershipKind::OS;
5654   case ParsedAttr::AT_NSConsumesSelf:
5655   case ParsedAttr::AT_NSConsumed:
5656   case ParsedAttr::AT_NSReturnsRetained:
5657   case ParsedAttr::AT_NSReturnsNotRetained:
5658   case ParsedAttr::AT_NSReturnsAutoreleased:
5659     return Sema::RetainOwnershipKind::NS;
5660   default:
5661     llvm_unreachable("Wrong argument supplied");
5662   }
5663 }
5664 
5665 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5666   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5667     return false;
5668 
5669   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5670       << "'ns_returns_retained'" << 0 << 0;
5671   return true;
5672 }
5673 
5674 /// \return whether the parameter is a pointer to OSObject pointer.
5675 static bool isValidOSObjectOutParameter(const Decl *D) {
5676   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5677   if (!PVD)
5678     return false;
5679   QualType QT = PVD->getType();
5680   QualType PT = QT->getPointeeType();
5681   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5682 }
5683 
5684 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5685                                         const ParsedAttr &AL) {
5686   QualType ReturnType;
5687   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5688 
5689   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5690     ReturnType = MD->getReturnType();
5691   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5692              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5693     return; // ignore: was handled as a type attribute
5694   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5695     ReturnType = PD->getType();
5696   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5697     ReturnType = FD->getReturnType();
5698   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5699     // Attributes on parameters are used for out-parameters,
5700     // passed as pointers-to-pointers.
5701     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5702             ? /*pointer-to-CF-pointer*/2
5703             : /*pointer-to-OSObject-pointer*/3;
5704     ReturnType = Param->getType()->getPointeeType();
5705     if (ReturnType.isNull()) {
5706       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5707           << AL << DiagID << AL.getRange();
5708       return;
5709     }
5710   } else if (AL.isUsedAsTypeAttr()) {
5711     return;
5712   } else {
5713     AttributeDeclKind ExpectedDeclKind;
5714     switch (AL.getKind()) {
5715     default: llvm_unreachable("invalid ownership attribute");
5716     case ParsedAttr::AT_NSReturnsRetained:
5717     case ParsedAttr::AT_NSReturnsAutoreleased:
5718     case ParsedAttr::AT_NSReturnsNotRetained:
5719       ExpectedDeclKind = ExpectedFunctionOrMethod;
5720       break;
5721 
5722     case ParsedAttr::AT_OSReturnsRetained:
5723     case ParsedAttr::AT_OSReturnsNotRetained:
5724     case ParsedAttr::AT_CFReturnsRetained:
5725     case ParsedAttr::AT_CFReturnsNotRetained:
5726       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5727       break;
5728     }
5729     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5730         << AL.getRange() << AL << ExpectedDeclKind;
5731     return;
5732   }
5733 
5734   bool TypeOK;
5735   bool Cf;
5736   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5737   switch (AL.getKind()) {
5738   default: llvm_unreachable("invalid ownership attribute");
5739   case ParsedAttr::AT_NSReturnsRetained:
5740     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5741     Cf = false;
5742     break;
5743 
5744   case ParsedAttr::AT_NSReturnsAutoreleased:
5745   case ParsedAttr::AT_NSReturnsNotRetained:
5746     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5747     Cf = false;
5748     break;
5749 
5750   case ParsedAttr::AT_CFReturnsRetained:
5751   case ParsedAttr::AT_CFReturnsNotRetained:
5752     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5753     Cf = true;
5754     break;
5755 
5756   case ParsedAttr::AT_OSReturnsRetained:
5757   case ParsedAttr::AT_OSReturnsNotRetained:
5758     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5759     Cf = true;
5760     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5761     break;
5762   }
5763 
5764   if (!TypeOK) {
5765     if (AL.isUsedAsTypeAttr())
5766       return;
5767 
5768     if (isa<ParmVarDecl>(D)) {
5769       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5770           << AL << ParmDiagID << AL.getRange();
5771     } else {
5772       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5773       enum : unsigned {
5774         Function,
5775         Method,
5776         Property
5777       } SubjectKind = Function;
5778       if (isa<ObjCMethodDecl>(D))
5779         SubjectKind = Method;
5780       else if (isa<ObjCPropertyDecl>(D))
5781         SubjectKind = Property;
5782       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5783           << AL << SubjectKind << Cf << AL.getRange();
5784     }
5785     return;
5786   }
5787 
5788   switch (AL.getKind()) {
5789     default:
5790       llvm_unreachable("invalid ownership attribute");
5791     case ParsedAttr::AT_NSReturnsAutoreleased:
5792       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5793       return;
5794     case ParsedAttr::AT_CFReturnsNotRetained:
5795       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5796       return;
5797     case ParsedAttr::AT_NSReturnsNotRetained:
5798       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5799       return;
5800     case ParsedAttr::AT_CFReturnsRetained:
5801       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5802       return;
5803     case ParsedAttr::AT_NSReturnsRetained:
5804       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5805       return;
5806     case ParsedAttr::AT_OSReturnsRetained:
5807       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5808       return;
5809     case ParsedAttr::AT_OSReturnsNotRetained:
5810       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5811       return;
5812   };
5813 }
5814 
5815 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5816                                               const ParsedAttr &Attrs) {
5817   const int EP_ObjCMethod = 1;
5818   const int EP_ObjCProperty = 2;
5819 
5820   SourceLocation loc = Attrs.getLoc();
5821   QualType resultType;
5822   if (isa<ObjCMethodDecl>(D))
5823     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5824   else
5825     resultType = cast<ObjCPropertyDecl>(D)->getType();
5826 
5827   if (!resultType->isReferenceType() &&
5828       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5829     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5830         << SourceRange(loc) << Attrs
5831         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5832         << /*non-retainable pointer*/ 2;
5833 
5834     // Drop the attribute.
5835     return;
5836   }
5837 
5838   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5839 }
5840 
5841 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5842                                         const ParsedAttr &Attrs) {
5843   const auto *Method = cast<ObjCMethodDecl>(D);
5844 
5845   const DeclContext *DC = Method->getDeclContext();
5846   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5847     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5848                                                                       << 0;
5849     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5850     return;
5851   }
5852   if (Method->getMethodFamily() == OMF_dealloc) {
5853     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5854                                                                       << 1;
5855     return;
5856   }
5857 
5858   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5859 }
5860 
5861 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
5862   auto *E = AL.getArgAsExpr(0);
5863   auto Loc = E ? E->getBeginLoc() : AL.getLoc();
5864 
5865   auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
5866   if (!DRE) {
5867     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
5868     return;
5869   }
5870 
5871   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
5872   if (!VD) {
5873     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
5874     return;
5875   }
5876 
5877   if (!isNSStringType(VD->getType(), S.Context) &&
5878       !isCFStringType(VD->getType(), S.Context)) {
5879     S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
5880     return;
5881   }
5882 
5883   D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
5884 }
5885 
5886 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5887   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5888 
5889   if (!Parm) {
5890     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5891     return;
5892   }
5893 
5894   // Typedefs only allow objc_bridge(id) and have some additional checking.
5895   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5896     if (!Parm->Ident->isStr("id")) {
5897       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5898       return;
5899     }
5900 
5901     // Only allow 'cv void *'.
5902     QualType T = TD->getUnderlyingType();
5903     if (!T->isVoidPointerType()) {
5904       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5905       return;
5906     }
5907   }
5908 
5909   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5910 }
5911 
5912 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5913                                         const ParsedAttr &AL) {
5914   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5915 
5916   if (!Parm) {
5917     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5918     return;
5919   }
5920 
5921   D->addAttr(::new (S.Context)
5922                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5923 }
5924 
5925 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5926                                         const ParsedAttr &AL) {
5927   IdentifierInfo *RelatedClass =
5928       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5929   if (!RelatedClass) {
5930     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5931     return;
5932   }
5933   IdentifierInfo *ClassMethod =
5934     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5935   IdentifierInfo *InstanceMethod =
5936     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5937   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5938       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5939 }
5940 
5941 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5942                                             const ParsedAttr &AL) {
5943   DeclContext *Ctx = D->getDeclContext();
5944 
5945   // This attribute can only be applied to methods in interfaces or class
5946   // extensions.
5947   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5948       !(isa<ObjCCategoryDecl>(Ctx) &&
5949         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5950     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5951     return;
5952   }
5953 
5954   ObjCInterfaceDecl *IFace;
5955   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5956     IFace = CatDecl->getClassInterface();
5957   else
5958     IFace = cast<ObjCInterfaceDecl>(Ctx);
5959 
5960   if (!IFace)
5961     return;
5962 
5963   IFace->setHasDesignatedInitializers();
5964   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5965 }
5966 
5967 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5968   StringRef MetaDataName;
5969   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5970     return;
5971   D->addAttr(::new (S.Context)
5972                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5973 }
5974 
5975 // When a user wants to use objc_boxable with a union or struct
5976 // but they don't have access to the declaration (legacy/third-party code)
5977 // then they can 'enable' this feature with a typedef:
5978 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
5979 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5980   bool notify = false;
5981 
5982   auto *RD = dyn_cast<RecordDecl>(D);
5983   if (RD && RD->getDefinition()) {
5984     RD = RD->getDefinition();
5985     notify = true;
5986   }
5987 
5988   if (RD) {
5989     ObjCBoxableAttr *BoxableAttr =
5990         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5991     RD->addAttr(BoxableAttr);
5992     if (notify) {
5993       // we need to notify ASTReader/ASTWriter about
5994       // modification of existing declaration
5995       if (ASTMutationListener *L = S.getASTMutationListener())
5996         L->AddedAttributeToRecord(BoxableAttr, RD);
5997     }
5998   }
5999 }
6000 
6001 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6002   if (hasDeclarator(D)) return;
6003 
6004   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
6005       << AL.getRange() << AL << ExpectedVariable;
6006 }
6007 
6008 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
6009                                           const ParsedAttr &AL) {
6010   const auto *VD = cast<ValueDecl>(D);
6011   QualType QT = VD->getType();
6012 
6013   if (!QT->isDependentType() &&
6014       !QT->isObjCLifetimeType()) {
6015     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
6016       << QT;
6017     return;
6018   }
6019 
6020   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
6021 
6022   // If we have no lifetime yet, check the lifetime we're presumably
6023   // going to infer.
6024   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
6025     Lifetime = QT->getObjCARCImplicitLifetime();
6026 
6027   switch (Lifetime) {
6028   case Qualifiers::OCL_None:
6029     assert(QT->isDependentType() &&
6030            "didn't infer lifetime for non-dependent type?");
6031     break;
6032 
6033   case Qualifiers::OCL_Weak:   // meaningful
6034   case Qualifiers::OCL_Strong: // meaningful
6035     break;
6036 
6037   case Qualifiers::OCL_ExplicitNone:
6038   case Qualifiers::OCL_Autoreleasing:
6039     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
6040         << (Lifetime == Qualifiers::OCL_Autoreleasing);
6041     break;
6042   }
6043 
6044   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
6045 }
6046 
6047 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6048   // Make sure that there is a string literal as the annotation's single
6049   // argument.
6050   StringRef Str;
6051   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6052     return;
6053 
6054   D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
6055 }
6056 
6057 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
6058   // Make sure that there is a string literal as the annotation's single
6059   // argument.
6060   StringRef BT;
6061   if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
6062     return;
6063 
6064   // Warn about duplicate attributes if they have different arguments, but drop
6065   // any duplicate attributes regardless.
6066   if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
6067     if (Other->getSwiftType() != BT)
6068       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
6069     return;
6070   }
6071 
6072   D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
6073 }
6074 
6075 static bool isErrorParameter(Sema &S, QualType QT) {
6076   const auto *PT = QT->getAs<PointerType>();
6077   if (!PT)
6078     return false;
6079 
6080   QualType Pointee = PT->getPointeeType();
6081 
6082   // Check for NSError**.
6083   if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
6084     if (const auto *ID = OPT->getInterfaceDecl())
6085       if (ID->getIdentifier() == S.getNSErrorIdent())
6086         return true;
6087 
6088   // Check for CFError**.
6089   if (const auto *PT = Pointee->getAs<PointerType>())
6090     if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
6091       if (S.isCFError(RT->getDecl()))
6092         return true;
6093 
6094   return false;
6095 }
6096 
6097 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
6098   auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6099     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6100       if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
6101         return true;
6102     }
6103 
6104     S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
6105         << AL << isa<ObjCMethodDecl>(D);
6106     return false;
6107   };
6108 
6109   auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6110     // - C, ObjC, and block pointers are definitely okay.
6111     // - References are definitely not okay.
6112     // - nullptr_t is weird, but acceptable.
6113     QualType RT = getFunctionOrMethodResultType(D);
6114     if (RT->hasPointerRepresentation() && !RT->isReferenceType())
6115       return true;
6116 
6117     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6118         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6119         << /*pointer*/ 1;
6120     return false;
6121   };
6122 
6123   auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6124     QualType RT = getFunctionOrMethodResultType(D);
6125     if (RT->isIntegralType(S.Context))
6126       return true;
6127 
6128     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6129         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6130         << /*integral*/ 0;
6131     return false;
6132   };
6133 
6134   if (D->isInvalidDecl())
6135     return;
6136 
6137   IdentifierLoc *Loc = AL.getArgAsIdent(0);
6138   SwiftErrorAttr::ConventionKind Convention;
6139   if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
6140                                                   Convention)) {
6141     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6142         << AL << Loc->Ident;
6143     return;
6144   }
6145 
6146   switch (Convention) {
6147   case SwiftErrorAttr::None:
6148     // No additional validation required.
6149     break;
6150 
6151   case SwiftErrorAttr::NonNullError:
6152     if (!hasErrorParameter(S, D, AL))
6153       return;
6154     break;
6155 
6156   case SwiftErrorAttr::NullResult:
6157     if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
6158       return;
6159     break;
6160 
6161   case SwiftErrorAttr::NonZeroResult:
6162   case SwiftErrorAttr::ZeroResult:
6163     if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
6164       return;
6165     break;
6166   }
6167 
6168   D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
6169 }
6170 
6171 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
6172                                       const SwiftAsyncErrorAttr *ErrorAttr,
6173                                       const SwiftAsyncAttr *AsyncAttr) {
6174   if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
6175     if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
6176       S.Diag(AsyncAttr->getLocation(),
6177              diag::err_swift_async_error_without_swift_async)
6178           << AsyncAttr << isa<ObjCMethodDecl>(D);
6179     }
6180     return;
6181   }
6182 
6183   const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
6184       D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
6185   // handleSwiftAsyncAttr already verified the type is correct, so no need to
6186   // double-check it here.
6187   const auto *FuncTy = HandlerParam->getType()
6188                            ->castAs<BlockPointerType>()
6189                            ->getPointeeType()
6190                            ->getAs<FunctionProtoType>();
6191   ArrayRef<QualType> BlockParams;
6192   if (FuncTy)
6193     BlockParams = FuncTy->getParamTypes();
6194 
6195   switch (ErrorAttr->getConvention()) {
6196   case SwiftAsyncErrorAttr::ZeroArgument:
6197   case SwiftAsyncErrorAttr::NonZeroArgument: {
6198     uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
6199     if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
6200       S.Diag(ErrorAttr->getLocation(),
6201              diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
6202       return;
6203     }
6204     QualType ErrorParam = BlockParams[ParamIdx - 1];
6205     if (!ErrorParam->isIntegralType(S.Context)) {
6206       StringRef ConvStr =
6207           ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6208               ? "zero_argument"
6209               : "nonzero_argument";
6210       S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6211           << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6212       return;
6213     }
6214     break;
6215   }
6216   case SwiftAsyncErrorAttr::NonNullError: {
6217     bool AnyErrorParams = false;
6218     for (QualType Param : BlockParams) {
6219       // Check for NSError *.
6220       if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6221         if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6222           if (ID->getIdentifier() == S.getNSErrorIdent()) {
6223             AnyErrorParams = true;
6224             break;
6225           }
6226         }
6227       }
6228       // Check for CFError *.
6229       if (const auto *PtrTy = Param->getAs<PointerType>()) {
6230         if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6231           if (S.isCFError(RT->getDecl())) {
6232             AnyErrorParams = true;
6233             break;
6234           }
6235         }
6236       }
6237     }
6238 
6239     if (!AnyErrorParams) {
6240       S.Diag(ErrorAttr->getLocation(),
6241              diag::err_swift_async_error_no_error_parameter)
6242           << ErrorAttr << isa<ObjCMethodDecl>(D);
6243       return;
6244     }
6245     break;
6246   }
6247   case SwiftAsyncErrorAttr::None:
6248     break;
6249   }
6250 }
6251 
6252 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6253   IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6254   SwiftAsyncErrorAttr::ConventionKind ConvKind;
6255   if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6256                                                        ConvKind)) {
6257     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6258         << AL << IDLoc->Ident;
6259     return;
6260   }
6261 
6262   uint32_t ParamIdx = 0;
6263   switch (ConvKind) {
6264   case SwiftAsyncErrorAttr::ZeroArgument:
6265   case SwiftAsyncErrorAttr::NonZeroArgument: {
6266     if (!AL.checkExactlyNumArgs(S, 2))
6267       return;
6268 
6269     Expr *IdxExpr = AL.getArgAsExpr(1);
6270     if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6271       return;
6272     break;
6273   }
6274   case SwiftAsyncErrorAttr::NonNullError:
6275   case SwiftAsyncErrorAttr::None: {
6276     if (!AL.checkExactlyNumArgs(S, 1))
6277       return;
6278     break;
6279   }
6280   }
6281 
6282   auto *ErrorAttr =
6283       ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6284   D->addAttr(ErrorAttr);
6285 
6286   if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6287     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6288 }
6289 
6290 // For a function, this will validate a compound Swift name, e.g.
6291 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6292 // the function will output the number of parameter names, and whether this is a
6293 // single-arg initializer.
6294 //
6295 // For a type, enum constant, property, or variable declaration, this will
6296 // validate either a simple identifier, or a qualified
6297 // <code>context.identifier</code> name.
6298 static bool
6299 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6300                           StringRef Name, unsigned &SwiftParamCount,
6301                           bool &IsSingleParamInit) {
6302   SwiftParamCount = 0;
6303   IsSingleParamInit = false;
6304 
6305   // Check whether this will be mapped to a getter or setter of a property.
6306   bool IsGetter = false, IsSetter = false;
6307   if (Name.startswith("getter:")) {
6308     IsGetter = true;
6309     Name = Name.substr(7);
6310   } else if (Name.startswith("setter:")) {
6311     IsSetter = true;
6312     Name = Name.substr(7);
6313   }
6314 
6315   if (Name.back() != ')') {
6316     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6317     return false;
6318   }
6319 
6320   bool IsMember = false;
6321   StringRef ContextName, BaseName, Parameters;
6322 
6323   std::tie(BaseName, Parameters) = Name.split('(');
6324 
6325   // Split at the first '.', if it exists, which separates the context name
6326   // from the base name.
6327   std::tie(ContextName, BaseName) = BaseName.split('.');
6328   if (BaseName.empty()) {
6329     BaseName = ContextName;
6330     ContextName = StringRef();
6331   } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6332     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6333         << AL << /*context*/ 1;
6334     return false;
6335   } else {
6336     IsMember = true;
6337   }
6338 
6339   if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6340     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6341         << AL << /*basename*/ 0;
6342     return false;
6343   }
6344 
6345   bool IsSubscript = BaseName == "subscript";
6346   // A subscript accessor must be a getter or setter.
6347   if (IsSubscript && !IsGetter && !IsSetter) {
6348     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6349         << AL << /* getter or setter */ 0;
6350     return false;
6351   }
6352 
6353   if (Parameters.empty()) {
6354     S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6355     return false;
6356   }
6357 
6358   assert(Parameters.back() == ')' && "expected ')'");
6359   Parameters = Parameters.drop_back(); // ')'
6360 
6361   if (Parameters.empty()) {
6362     // Setters and subscripts must have at least one parameter.
6363     if (IsSubscript) {
6364       S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6365           << AL << /* have at least one parameter */1;
6366       return false;
6367     }
6368 
6369     if (IsSetter) {
6370       S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6371       return false;
6372     }
6373 
6374     return true;
6375   }
6376 
6377   if (Parameters.back() != ':') {
6378     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6379     return false;
6380   }
6381 
6382   StringRef CurrentParam;
6383   llvm::Optional<unsigned> SelfLocation;
6384   unsigned NewValueCount = 0;
6385   llvm::Optional<unsigned> NewValueLocation;
6386   do {
6387     std::tie(CurrentParam, Parameters) = Parameters.split(':');
6388 
6389     if (!isValidAsciiIdentifier(CurrentParam)) {
6390       S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6391           << AL << /*parameter*/2;
6392       return false;
6393     }
6394 
6395     if (IsMember && CurrentParam == "self") {
6396       // "self" indicates the "self" argument for a member.
6397 
6398       // More than one "self"?
6399       if (SelfLocation) {
6400         S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6401         return false;
6402       }
6403 
6404       // The "self" location is the current parameter.
6405       SelfLocation = SwiftParamCount;
6406     } else if (CurrentParam == "newValue") {
6407       // "newValue" indicates the "newValue" argument for a setter.
6408 
6409       // There should only be one 'newValue', but it's only significant for
6410       // subscript accessors, so don't error right away.
6411       ++NewValueCount;
6412 
6413       NewValueLocation = SwiftParamCount;
6414     }
6415 
6416     ++SwiftParamCount;
6417   } while (!Parameters.empty());
6418 
6419   // Only instance subscripts are currently supported.
6420   if (IsSubscript && !SelfLocation) {
6421     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6422         << AL << /*have a 'self:' parameter*/2;
6423     return false;
6424   }
6425 
6426   IsSingleParamInit =
6427         SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6428 
6429   // Check the number of parameters for a getter/setter.
6430   if (IsGetter || IsSetter) {
6431     // Setters have one parameter for the new value.
6432     unsigned NumExpectedParams = IsGetter ? 0 : 1;
6433     unsigned ParamDiag =
6434         IsGetter ? diag::warn_attr_swift_name_getter_parameters
6435                  : diag::warn_attr_swift_name_setter_parameters;
6436 
6437     // Instance methods have one parameter for "self".
6438     if (SelfLocation)
6439       ++NumExpectedParams;
6440 
6441     // Subscripts may have additional parameters beyond the expected params for
6442     // the index.
6443     if (IsSubscript) {
6444       if (SwiftParamCount < NumExpectedParams) {
6445         S.Diag(Loc, ParamDiag) << AL;
6446         return false;
6447       }
6448 
6449       // A subscript setter must explicitly label its newValue parameter to
6450       // distinguish it from index parameters.
6451       if (IsSetter) {
6452         if (!NewValueLocation) {
6453           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6454               << AL;
6455           return false;
6456         }
6457         if (NewValueCount > 1) {
6458           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6459               << AL;
6460           return false;
6461         }
6462       } else {
6463         // Subscript getters should have no 'newValue:' parameter.
6464         if (NewValueLocation) {
6465           S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6466               << AL;
6467           return false;
6468         }
6469       }
6470     } else {
6471       // Property accessors must have exactly the number of expected params.
6472       if (SwiftParamCount != NumExpectedParams) {
6473         S.Diag(Loc, ParamDiag) << AL;
6474         return false;
6475       }
6476     }
6477   }
6478 
6479   return true;
6480 }
6481 
6482 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6483                              const ParsedAttr &AL, bool IsAsync) {
6484   if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6485     ArrayRef<ParmVarDecl*> Params;
6486     unsigned ParamCount;
6487 
6488     if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6489       ParamCount = Method->getSelector().getNumArgs();
6490       Params = Method->parameters().slice(0, ParamCount);
6491     } else {
6492       const auto *F = cast<FunctionDecl>(D);
6493 
6494       ParamCount = F->getNumParams();
6495       Params = F->parameters();
6496 
6497       if (!F->hasWrittenPrototype()) {
6498         Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6499             << ExpectedFunctionWithProtoType;
6500         return false;
6501       }
6502     }
6503 
6504     // The async name drops the last callback parameter.
6505     if (IsAsync) {
6506       if (ParamCount == 0) {
6507         Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6508             << AL << isa<ObjCMethodDecl>(D);
6509         return false;
6510       }
6511       ParamCount -= 1;
6512     }
6513 
6514     unsigned SwiftParamCount;
6515     bool IsSingleParamInit;
6516     if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6517                                    SwiftParamCount, IsSingleParamInit))
6518       return false;
6519 
6520     bool ParamCountValid;
6521     if (SwiftParamCount == ParamCount) {
6522       ParamCountValid = true;
6523     } else if (SwiftParamCount > ParamCount) {
6524       ParamCountValid = IsSingleParamInit && ParamCount == 0;
6525     } else {
6526       // We have fewer Swift parameters than Objective-C parameters, but that
6527       // might be because we've transformed some of them. Check for potential
6528       // "out" parameters and err on the side of not warning.
6529       unsigned MaybeOutParamCount =
6530           llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6531             QualType ParamTy = Param->getType();
6532             if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6533               return !ParamTy->getPointeeType().isConstQualified();
6534             return false;
6535           });
6536 
6537       ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6538     }
6539 
6540     if (!ParamCountValid) {
6541       Diag(Loc, diag::warn_attr_swift_name_num_params)
6542           << (SwiftParamCount > ParamCount) << AL << ParamCount
6543           << SwiftParamCount;
6544       return false;
6545     }
6546   } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6547               isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6548               isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6549               isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6550              !IsAsync) {
6551     StringRef ContextName, BaseName;
6552 
6553     std::tie(ContextName, BaseName) = Name.split('.');
6554     if (BaseName.empty()) {
6555       BaseName = ContextName;
6556       ContextName = StringRef();
6557     } else if (!isValidAsciiIdentifier(ContextName)) {
6558       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6559           << /*context*/1;
6560       return false;
6561     }
6562 
6563     if (!isValidAsciiIdentifier(BaseName)) {
6564       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6565           << /*basename*/0;
6566       return false;
6567     }
6568   } else {
6569     Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6570     return false;
6571   }
6572   return true;
6573 }
6574 
6575 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6576   StringRef Name;
6577   SourceLocation Loc;
6578   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6579     return;
6580 
6581   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6582     return;
6583 
6584   D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6585 }
6586 
6587 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6588   StringRef Name;
6589   SourceLocation Loc;
6590   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6591     return;
6592 
6593   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6594     return;
6595 
6596   D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6597 }
6598 
6599 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6600   // Make sure that there is an identifier as the annotation's single argument.
6601   if (!AL.checkExactlyNumArgs(S, 1))
6602     return;
6603 
6604   if (!AL.isArgIdent(0)) {
6605     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6606         << AL << AANT_ArgumentIdentifier;
6607     return;
6608   }
6609 
6610   SwiftNewTypeAttr::NewtypeKind Kind;
6611   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6612   if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6613     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6614     return;
6615   }
6616 
6617   if (!isa<TypedefNameDecl>(D)) {
6618     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6619         << AL << "typedefs";
6620     return;
6621   }
6622 
6623   D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6624 }
6625 
6626 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6627   if (!AL.isArgIdent(0)) {
6628     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6629         << AL << 1 << AANT_ArgumentIdentifier;
6630     return;
6631   }
6632 
6633   SwiftAsyncAttr::Kind Kind;
6634   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6635   if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6636     S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6637     return;
6638   }
6639 
6640   ParamIdx Idx;
6641   if (Kind == SwiftAsyncAttr::None) {
6642     // If this is 'none', then there shouldn't be any additional arguments.
6643     if (!AL.checkExactlyNumArgs(S, 1))
6644       return;
6645   } else {
6646     // Non-none swift_async requires a completion handler index argument.
6647     if (!AL.checkExactlyNumArgs(S, 2))
6648       return;
6649 
6650     Expr *HandlerIdx = AL.getArgAsExpr(1);
6651     if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6652       return;
6653 
6654     const ParmVarDecl *CompletionBlock =
6655         getFunctionOrMethodParam(D, Idx.getASTIndex());
6656     QualType CompletionBlockType = CompletionBlock->getType();
6657     if (!CompletionBlockType->isBlockPointerType()) {
6658       S.Diag(CompletionBlock->getLocation(),
6659              diag::err_swift_async_bad_block_type)
6660           << CompletionBlock->getType();
6661       return;
6662     }
6663     QualType BlockTy =
6664         CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6665     if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6666       S.Diag(CompletionBlock->getLocation(),
6667              diag::err_swift_async_bad_block_type)
6668           << CompletionBlock->getType();
6669       return;
6670     }
6671   }
6672 
6673   auto *AsyncAttr =
6674       ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6675   D->addAttr(AsyncAttr);
6676 
6677   if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6678     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6679 }
6680 
6681 //===----------------------------------------------------------------------===//
6682 // Microsoft specific attribute handlers.
6683 //===----------------------------------------------------------------------===//
6684 
6685 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6686                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6687   if (const auto *UA = D->getAttr<UuidAttr>()) {
6688     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6689       return nullptr;
6690     if (!UA->getGuid().empty()) {
6691       Diag(UA->getLocation(), diag::err_mismatched_uuid);
6692       Diag(CI.getLoc(), diag::note_previous_uuid);
6693       D->dropAttr<UuidAttr>();
6694     }
6695   }
6696 
6697   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6698 }
6699 
6700 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6701   if (!S.LangOpts.CPlusPlus) {
6702     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6703         << AL << AttributeLangSupport::C;
6704     return;
6705   }
6706 
6707   StringRef OrigStrRef;
6708   SourceLocation LiteralLoc;
6709   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6710     return;
6711 
6712   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6713   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6714   StringRef StrRef = OrigStrRef;
6715   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6716     StrRef = StrRef.drop_front().drop_back();
6717 
6718   // Validate GUID length.
6719   if (StrRef.size() != 36) {
6720     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6721     return;
6722   }
6723 
6724   for (unsigned i = 0; i < 36; ++i) {
6725     if (i == 8 || i == 13 || i == 18 || i == 23) {
6726       if (StrRef[i] != '-') {
6727         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6728         return;
6729       }
6730     } else if (!isHexDigit(StrRef[i])) {
6731       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6732       return;
6733     }
6734   }
6735 
6736   // Convert to our parsed format and canonicalize.
6737   MSGuidDecl::Parts Parsed;
6738   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6739   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6740   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6741   for (unsigned i = 0; i != 8; ++i)
6742     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6743         .getAsInteger(16, Parsed.Part4And5[i]);
6744   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6745 
6746   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6747   // the only thing in the [] list, the [] too), and add an insertion of
6748   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
6749   // separating attributes nor of the [ and the ] are in the AST.
6750   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6751   // on cfe-dev.
6752   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6753     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6754 
6755   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6756   if (UA)
6757     D->addAttr(UA);
6758 }
6759 
6760 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6761   if (!S.LangOpts.CPlusPlus) {
6762     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6763         << AL << AttributeLangSupport::C;
6764     return;
6765   }
6766   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
6767       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
6768   if (IA) {
6769     D->addAttr(IA);
6770     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
6771   }
6772 }
6773 
6774 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6775   const auto *VD = cast<VarDecl>(D);
6776   if (!S.Context.getTargetInfo().isTLSSupported()) {
6777     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
6778     return;
6779   }
6780   if (VD->getTSCSpec() != TSCS_unspecified) {
6781     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
6782     return;
6783   }
6784   if (VD->hasLocalStorage()) {
6785     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
6786     return;
6787   }
6788   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
6789 }
6790 
6791 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6792   SmallVector<StringRef, 4> Tags;
6793   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6794     StringRef Tag;
6795     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
6796       return;
6797     Tags.push_back(Tag);
6798   }
6799 
6800   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6801     if (!NS->isInline()) {
6802       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6803       return;
6804     }
6805     if (NS->isAnonymousNamespace()) {
6806       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6807       return;
6808     }
6809     if (AL.getNumArgs() == 0)
6810       Tags.push_back(NS->getName());
6811   } else if (!AL.checkAtLeastNumArgs(S, 1))
6812     return;
6813 
6814   // Store tags sorted and without duplicates.
6815   llvm::sort(Tags);
6816   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
6817 
6818   D->addAttr(::new (S.Context)
6819                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6820 }
6821 
6822 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6823   // Check the attribute arguments.
6824   if (AL.getNumArgs() > 1) {
6825     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6826     return;
6827   }
6828 
6829   StringRef Str;
6830   SourceLocation ArgLoc;
6831 
6832   if (AL.getNumArgs() == 0)
6833     Str = "";
6834   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6835     return;
6836 
6837   ARMInterruptAttr::InterruptType Kind;
6838   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6839     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6840                                                                  << ArgLoc;
6841     return;
6842   }
6843 
6844   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
6845 }
6846 
6847 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6848   // MSP430 'interrupt' attribute is applied to
6849   // a function with no parameters and void return type.
6850   if (!isFunctionOrMethod(D)) {
6851     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6852         << "'interrupt'" << ExpectedFunctionOrMethod;
6853     return;
6854   }
6855 
6856   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6857     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6858         << /*MSP430*/ 1 << 0;
6859     return;
6860   }
6861 
6862   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6863     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6864         << /*MSP430*/ 1 << 1;
6865     return;
6866   }
6867 
6868   // The attribute takes one integer argument.
6869   if (!AL.checkExactlyNumArgs(S, 1))
6870     return;
6871 
6872   if (!AL.isArgExpr(0)) {
6873     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6874         << AL << AANT_ArgumentIntegerConstant;
6875     return;
6876   }
6877 
6878   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6879   Optional<llvm::APSInt> NumParams = llvm::APSInt(32);
6880   if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
6881     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6882         << AL << AANT_ArgumentIntegerConstant
6883         << NumParamsExpr->getSourceRange();
6884     return;
6885   }
6886   // The argument should be in range 0..63.
6887   unsigned Num = NumParams->getLimitedValue(255);
6888   if (Num > 63) {
6889     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6890         << AL << (int)NumParams->getSExtValue()
6891         << NumParamsExpr->getSourceRange();
6892     return;
6893   }
6894 
6895   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
6896   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6897 }
6898 
6899 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6900   // Only one optional argument permitted.
6901   if (AL.getNumArgs() > 1) {
6902     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6903     return;
6904   }
6905 
6906   StringRef Str;
6907   SourceLocation ArgLoc;
6908 
6909   if (AL.getNumArgs() == 0)
6910     Str = "";
6911   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6912     return;
6913 
6914   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
6915   // a) Must be a function.
6916   // b) Must have no parameters.
6917   // c) Must have the 'void' return type.
6918   // d) Cannot have the 'mips16' attribute, as that instruction set
6919   //    lacks the 'eret' instruction.
6920   // e) The attribute itself must either have no argument or one of the
6921   //    valid interrupt types, see [MipsInterruptDocs].
6922 
6923   if (!isFunctionOrMethod(D)) {
6924     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6925         << "'interrupt'" << ExpectedFunctionOrMethod;
6926     return;
6927   }
6928 
6929   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6930     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6931         << /*MIPS*/ 0 << 0;
6932     return;
6933   }
6934 
6935   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6936     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6937         << /*MIPS*/ 0 << 1;
6938     return;
6939   }
6940 
6941   // We still have to do this manually because the Interrupt attributes are
6942   // a bit special due to sharing their spellings across targets.
6943   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
6944     return;
6945 
6946   MipsInterruptAttr::InterruptType Kind;
6947   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6948     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6949         << AL << "'" + std::string(Str) + "'";
6950     return;
6951   }
6952 
6953   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
6954 }
6955 
6956 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6957   if (!AL.checkExactlyNumArgs(S, 1))
6958     return;
6959 
6960   if (!AL.isArgExpr(0)) {
6961     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6962         << AL << AANT_ArgumentIntegerConstant;
6963     return;
6964   }
6965 
6966   // FIXME: Check for decl - it should be void ()(void).
6967 
6968   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6969   auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
6970   if (!MaybeNumParams) {
6971     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6972         << AL << AANT_ArgumentIntegerConstant
6973         << NumParamsExpr->getSourceRange();
6974     return;
6975   }
6976 
6977   unsigned Num = MaybeNumParams->getLimitedValue(255);
6978   if ((Num & 1) || Num > 30) {
6979     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6980         << AL << (int)MaybeNumParams->getSExtValue()
6981         << NumParamsExpr->getSourceRange();
6982     return;
6983   }
6984 
6985   D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
6986   D->addAttr(UsedAttr::CreateImplicit(S.Context));
6987 }
6988 
6989 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6990   // Semantic checks for a function with the 'interrupt' attribute.
6991   // a) Must be a function.
6992   // b) Must have the 'void' return type.
6993   // c) Must take 1 or 2 arguments.
6994   // d) The 1st argument must be a pointer.
6995   // e) The 2nd argument (if any) must be an unsigned integer.
6996   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
6997       CXXMethodDecl::isStaticOverloadedOperator(
6998           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
6999     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7000         << AL << ExpectedFunctionWithProtoType;
7001     return;
7002   }
7003   // Interrupt handler must have void return type.
7004   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7005     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
7006            diag::err_anyx86_interrupt_attribute)
7007         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7008                 ? 0
7009                 : 1)
7010         << 0;
7011     return;
7012   }
7013   // Interrupt handler must have 1 or 2 parameters.
7014   unsigned NumParams = getFunctionOrMethodNumParams(D);
7015   if (NumParams < 1 || NumParams > 2) {
7016     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
7017         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7018                 ? 0
7019                 : 1)
7020         << 1;
7021     return;
7022   }
7023   // The first argument must be a pointer.
7024   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
7025     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
7026            diag::err_anyx86_interrupt_attribute)
7027         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7028                 ? 0
7029                 : 1)
7030         << 2;
7031     return;
7032   }
7033   // The second argument, if present, must be an unsigned integer.
7034   unsigned TypeSize =
7035       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
7036           ? 64
7037           : 32;
7038   if (NumParams == 2 &&
7039       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
7040        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
7041     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
7042            diag::err_anyx86_interrupt_attribute)
7043         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7044                 ? 0
7045                 : 1)
7046         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
7047     return;
7048   }
7049   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
7050   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7051 }
7052 
7053 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7054   if (!isFunctionOrMethod(D)) {
7055     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7056         << "'interrupt'" << ExpectedFunction;
7057     return;
7058   }
7059 
7060   if (!AL.checkExactlyNumArgs(S, 0))
7061     return;
7062 
7063   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
7064 }
7065 
7066 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7067   if (!isFunctionOrMethod(D)) {
7068     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7069         << "'signal'" << ExpectedFunction;
7070     return;
7071   }
7072 
7073   if (!AL.checkExactlyNumArgs(S, 0))
7074     return;
7075 
7076   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
7077 }
7078 
7079 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
7080   // Add preserve_access_index attribute to all fields and inner records.
7081   for (auto D : RD->decls()) {
7082     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
7083       continue;
7084 
7085     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
7086     if (auto *Rec = dyn_cast<RecordDecl>(D))
7087       handleBPFPreserveAIRecord(S, Rec);
7088   }
7089 }
7090 
7091 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
7092     const ParsedAttr &AL) {
7093   auto *Rec = cast<RecordDecl>(D);
7094   handleBPFPreserveAIRecord(S, Rec);
7095   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
7096 }
7097 
7098 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
7099   for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
7100     if (I->getBTFDeclTag() == Tag)
7101       return true;
7102   }
7103   return false;
7104 }
7105 
7106 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7107   StringRef Str;
7108   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
7109     return;
7110   if (hasBTFDeclTagAttr(D, Str))
7111     return;
7112 
7113   D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
7114 }
7115 
7116 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
7117   if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
7118     return nullptr;
7119   return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
7120 }
7121 
7122 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7123   if (!isFunctionOrMethod(D)) {
7124     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7125         << "'export_name'" << ExpectedFunction;
7126     return;
7127   }
7128 
7129   auto *FD = cast<FunctionDecl>(D);
7130   if (FD->isThisDeclarationADefinition()) {
7131     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
7132     return;
7133   }
7134 
7135   StringRef Str;
7136   SourceLocation ArgLoc;
7137   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7138     return;
7139 
7140   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
7141   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7142 }
7143 
7144 WebAssemblyImportModuleAttr *
7145 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
7146   auto *FD = cast<FunctionDecl>(D);
7147 
7148   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
7149     if (ExistingAttr->getImportModule() == AL.getImportModule())
7150       return nullptr;
7151     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
7152       << ExistingAttr->getImportModule() << AL.getImportModule();
7153     Diag(AL.getLoc(), diag::note_previous_attribute);
7154     return nullptr;
7155   }
7156   if (FD->hasBody()) {
7157     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7158     return nullptr;
7159   }
7160   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
7161                                                      AL.getImportModule());
7162 }
7163 
7164 WebAssemblyImportNameAttr *
7165 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
7166   auto *FD = cast<FunctionDecl>(D);
7167 
7168   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
7169     if (ExistingAttr->getImportName() == AL.getImportName())
7170       return nullptr;
7171     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
7172       << ExistingAttr->getImportName() << AL.getImportName();
7173     Diag(AL.getLoc(), diag::note_previous_attribute);
7174     return nullptr;
7175   }
7176   if (FD->hasBody()) {
7177     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7178     return nullptr;
7179   }
7180   return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
7181                                                    AL.getImportName());
7182 }
7183 
7184 static void
7185 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7186   auto *FD = cast<FunctionDecl>(D);
7187 
7188   StringRef Str;
7189   SourceLocation ArgLoc;
7190   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7191     return;
7192   if (FD->hasBody()) {
7193     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7194     return;
7195   }
7196 
7197   FD->addAttr(::new (S.Context)
7198                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
7199 }
7200 
7201 static void
7202 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7203   auto *FD = cast<FunctionDecl>(D);
7204 
7205   StringRef Str;
7206   SourceLocation ArgLoc;
7207   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7208     return;
7209   if (FD->hasBody()) {
7210     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7211     return;
7212   }
7213 
7214   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7215 }
7216 
7217 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7218                                      const ParsedAttr &AL) {
7219   // Warn about repeated attributes.
7220   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7221     S.Diag(AL.getRange().getBegin(),
7222       diag::warn_riscv_repeated_interrupt_attribute);
7223     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7224     return;
7225   }
7226 
7227   // Check the attribute argument. Argument is optional.
7228   if (!AL.checkAtMostNumArgs(S, 1))
7229     return;
7230 
7231   StringRef Str;
7232   SourceLocation ArgLoc;
7233 
7234   // 'machine'is the default interrupt mode.
7235   if (AL.getNumArgs() == 0)
7236     Str = "machine";
7237   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7238     return;
7239 
7240   // Semantic checks for a function with the 'interrupt' attribute:
7241   // - Must be a function.
7242   // - Must have no parameters.
7243   // - Must have the 'void' return type.
7244   // - The attribute itself must either have no argument or one of the
7245   //   valid interrupt types, see [RISCVInterruptDocs].
7246 
7247   if (D->getFunctionType() == nullptr) {
7248     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7249       << "'interrupt'" << ExpectedFunction;
7250     return;
7251   }
7252 
7253   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7254     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7255       << /*RISC-V*/ 2 << 0;
7256     return;
7257   }
7258 
7259   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7260     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7261       << /*RISC-V*/ 2 << 1;
7262     return;
7263   }
7264 
7265   RISCVInterruptAttr::InterruptType Kind;
7266   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7267     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7268                                                                  << ArgLoc;
7269     return;
7270   }
7271 
7272   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7273 }
7274 
7275 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7276   // Dispatch the interrupt attribute based on the current target.
7277   switch (S.Context.getTargetInfo().getTriple().getArch()) {
7278   case llvm::Triple::msp430:
7279     handleMSP430InterruptAttr(S, D, AL);
7280     break;
7281   case llvm::Triple::mipsel:
7282   case llvm::Triple::mips:
7283     handleMipsInterruptAttr(S, D, AL);
7284     break;
7285   case llvm::Triple::m68k:
7286     handleM68kInterruptAttr(S, D, AL);
7287     break;
7288   case llvm::Triple::x86:
7289   case llvm::Triple::x86_64:
7290     handleAnyX86InterruptAttr(S, D, AL);
7291     break;
7292   case llvm::Triple::avr:
7293     handleAVRInterruptAttr(S, D, AL);
7294     break;
7295   case llvm::Triple::riscv32:
7296   case llvm::Triple::riscv64:
7297     handleRISCVInterruptAttr(S, D, AL);
7298     break;
7299   default:
7300     handleARMInterruptAttr(S, D, AL);
7301     break;
7302   }
7303 }
7304 
7305 static bool
7306 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7307                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7308   // Accept template arguments for now as they depend on something else.
7309   // We'll get to check them when they eventually get instantiated.
7310   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7311     return false;
7312 
7313   uint32_t Min = 0;
7314   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7315     return true;
7316 
7317   uint32_t Max = 0;
7318   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7319     return true;
7320 
7321   if (Min == 0 && Max != 0) {
7322     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7323         << &Attr << 0;
7324     return true;
7325   }
7326   if (Min > Max) {
7327     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7328         << &Attr << 1;
7329     return true;
7330   }
7331 
7332   return false;
7333 }
7334 
7335 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7336                                           const AttributeCommonInfo &CI,
7337                                           Expr *MinExpr, Expr *MaxExpr) {
7338   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7339 
7340   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7341     return;
7342 
7343   D->addAttr(::new (Context)
7344                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7345 }
7346 
7347 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7348                                               const ParsedAttr &AL) {
7349   Expr *MinExpr = AL.getArgAsExpr(0);
7350   Expr *MaxExpr = AL.getArgAsExpr(1);
7351 
7352   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7353 }
7354 
7355 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7356                                            Expr *MaxExpr,
7357                                            const AMDGPUWavesPerEUAttr &Attr) {
7358   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7359       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7360     return true;
7361 
7362   // Accept template arguments for now as they depend on something else.
7363   // We'll get to check them when they eventually get instantiated.
7364   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7365     return false;
7366 
7367   uint32_t Min = 0;
7368   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7369     return true;
7370 
7371   uint32_t Max = 0;
7372   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7373     return true;
7374 
7375   if (Min == 0 && Max != 0) {
7376     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7377         << &Attr << 0;
7378     return true;
7379   }
7380   if (Max != 0 && Min > Max) {
7381     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7382         << &Attr << 1;
7383     return true;
7384   }
7385 
7386   return false;
7387 }
7388 
7389 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7390                                    Expr *MinExpr, Expr *MaxExpr) {
7391   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7392 
7393   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7394     return;
7395 
7396   D->addAttr(::new (Context)
7397                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7398 }
7399 
7400 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7401   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7402     return;
7403 
7404   Expr *MinExpr = AL.getArgAsExpr(0);
7405   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7406 
7407   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7408 }
7409 
7410 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7411   uint32_t NumSGPR = 0;
7412   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7413   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7414     return;
7415 
7416   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7417 }
7418 
7419 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7420   uint32_t NumVGPR = 0;
7421   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7422   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7423     return;
7424 
7425   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7426 }
7427 
7428 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7429                                               const ParsedAttr &AL) {
7430   // If we try to apply it to a function pointer, don't warn, but don't
7431   // do anything, either. It doesn't matter anyway, because there's nothing
7432   // special about calling a force_align_arg_pointer function.
7433   const auto *VD = dyn_cast<ValueDecl>(D);
7434   if (VD && VD->getType()->isFunctionPointerType())
7435     return;
7436   // Also don't warn on function pointer typedefs.
7437   const auto *TD = dyn_cast<TypedefNameDecl>(D);
7438   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7439     TD->getUnderlyingType()->isFunctionType()))
7440     return;
7441   // Attribute can only be applied to function types.
7442   if (!isa<FunctionDecl>(D)) {
7443     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7444         << AL << ExpectedFunction;
7445     return;
7446   }
7447 
7448   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7449 }
7450 
7451 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7452   uint32_t Version;
7453   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7454   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7455     return;
7456 
7457   // TODO: Investigate what happens with the next major version of MSVC.
7458   if (Version != LangOptions::MSVC2015 / 100) {
7459     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7460         << AL << Version << VersionExpr->getSourceRange();
7461     return;
7462   }
7463 
7464   // The attribute expects a "major" version number like 19, but new versions of
7465   // MSVC have moved to updating the "minor", or less significant numbers, so we
7466   // have to multiply by 100 now.
7467   Version *= 100;
7468 
7469   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7470 }
7471 
7472 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7473                                         const AttributeCommonInfo &CI) {
7474   if (D->hasAttr<DLLExportAttr>()) {
7475     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7476     return nullptr;
7477   }
7478 
7479   if (D->hasAttr<DLLImportAttr>())
7480     return nullptr;
7481 
7482   return ::new (Context) DLLImportAttr(Context, CI);
7483 }
7484 
7485 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7486                                         const AttributeCommonInfo &CI) {
7487   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7488     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7489     D->dropAttr<DLLImportAttr>();
7490   }
7491 
7492   if (D->hasAttr<DLLExportAttr>())
7493     return nullptr;
7494 
7495   return ::new (Context) DLLExportAttr(Context, CI);
7496 }
7497 
7498 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7499   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7500       (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7501     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7502     return;
7503   }
7504 
7505   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7506     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7507         !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7508       // MinGW doesn't allow dllimport on inline functions.
7509       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7510           << A;
7511       return;
7512     }
7513   }
7514 
7515   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7516     if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7517         MD->getParent()->isLambda()) {
7518       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7519       return;
7520     }
7521   }
7522 
7523   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7524                       ? (Attr *)S.mergeDLLExportAttr(D, A)
7525                       : (Attr *)S.mergeDLLImportAttr(D, A);
7526   if (NewAttr)
7527     D->addAttr(NewAttr);
7528 }
7529 
7530 MSInheritanceAttr *
7531 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7532                              bool BestCase,
7533                              MSInheritanceModel Model) {
7534   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7535     if (IA->getInheritanceModel() == Model)
7536       return nullptr;
7537     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7538         << 1 /*previous declaration*/;
7539     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7540     D->dropAttr<MSInheritanceAttr>();
7541   }
7542 
7543   auto *RD = cast<CXXRecordDecl>(D);
7544   if (RD->hasDefinition()) {
7545     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7546                                            Model)) {
7547       return nullptr;
7548     }
7549   } else {
7550     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7551       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7552           << 1 /*partial specialization*/;
7553       return nullptr;
7554     }
7555     if (RD->getDescribedClassTemplate()) {
7556       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7557           << 0 /*primary template*/;
7558       return nullptr;
7559     }
7560   }
7561 
7562   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7563 }
7564 
7565 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7566   // The capability attributes take a single string parameter for the name of
7567   // the capability they represent. The lockable attribute does not take any
7568   // parameters. However, semantically, both attributes represent the same
7569   // concept, and so they use the same semantic attribute. Eventually, the
7570   // lockable attribute will be removed.
7571   //
7572   // For backward compatibility, any capability which has no specified string
7573   // literal will be considered a "mutex."
7574   StringRef N("mutex");
7575   SourceLocation LiteralLoc;
7576   if (AL.getKind() == ParsedAttr::AT_Capability &&
7577       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7578     return;
7579 
7580   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7581 }
7582 
7583 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7584   SmallVector<Expr*, 1> Args;
7585   if (!checkLockFunAttrCommon(S, D, AL, Args))
7586     return;
7587 
7588   D->addAttr(::new (S.Context)
7589                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
7590 }
7591 
7592 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
7593                                         const ParsedAttr &AL) {
7594   SmallVector<Expr*, 1> Args;
7595   if (!checkLockFunAttrCommon(S, D, AL, Args))
7596     return;
7597 
7598   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
7599                                                      Args.size()));
7600 }
7601 
7602 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
7603                                            const ParsedAttr &AL) {
7604   SmallVector<Expr*, 2> Args;
7605   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
7606     return;
7607 
7608   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
7609       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
7610 }
7611 
7612 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
7613                                         const ParsedAttr &AL) {
7614   // Check that all arguments are lockable objects.
7615   SmallVector<Expr *, 1> Args;
7616   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
7617 
7618   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
7619                                                      Args.size()));
7620 }
7621 
7622 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
7623                                          const ParsedAttr &AL) {
7624   if (!AL.checkAtLeastNumArgs(S, 1))
7625     return;
7626 
7627   // check that all arguments are lockable objects
7628   SmallVector<Expr*, 1> Args;
7629   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
7630   if (Args.empty())
7631     return;
7632 
7633   RequiresCapabilityAttr *RCA = ::new (S.Context)
7634       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
7635 
7636   D->addAttr(RCA);
7637 }
7638 
7639 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7640   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
7641     if (NSD->isAnonymousNamespace()) {
7642       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
7643       // Do not want to attach the attribute to the namespace because that will
7644       // cause confusing diagnostic reports for uses of declarations within the
7645       // namespace.
7646       return;
7647     }
7648   } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
7649                  UnresolvedUsingValueDecl>(D)) {
7650     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
7651         << AL;
7652     return;
7653   }
7654 
7655   // Handle the cases where the attribute has a text message.
7656   StringRef Str, Replacement;
7657   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
7658       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
7659     return;
7660 
7661   // Support a single optional message only for Declspec and [[]] spellings.
7662   if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
7663     AL.checkAtMostNumArgs(S, 1);
7664   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
7665            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
7666     return;
7667 
7668   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
7669     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
7670 
7671   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
7672 }
7673 
7674 static bool isGlobalVar(const Decl *D) {
7675   if (const auto *S = dyn_cast<VarDecl>(D))
7676     return S->hasGlobalStorage();
7677   return false;
7678 }
7679 
7680 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7681   if (!AL.checkAtLeastNumArgs(S, 1))
7682     return;
7683 
7684   std::vector<StringRef> Sanitizers;
7685 
7686   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7687     StringRef SanitizerName;
7688     SourceLocation LiteralLoc;
7689 
7690     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
7691       return;
7692 
7693     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
7694             SanitizerMask() &&
7695         SanitizerName != "coverage")
7696       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
7697     else if (isGlobalVar(D) && SanitizerName != "address")
7698       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7699           << AL << ExpectedFunctionOrMethod;
7700     Sanitizers.push_back(SanitizerName);
7701   }
7702 
7703   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
7704                                               Sanitizers.size()));
7705 }
7706 
7707 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
7708                                          const ParsedAttr &AL) {
7709   StringRef AttrName = AL.getAttrName()->getName();
7710   normalizeName(AttrName);
7711   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
7712                                 .Case("no_address_safety_analysis", "address")
7713                                 .Case("no_sanitize_address", "address")
7714                                 .Case("no_sanitize_thread", "thread")
7715                                 .Case("no_sanitize_memory", "memory");
7716   if (isGlobalVar(D) && SanitizerName != "address")
7717     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7718         << AL << ExpectedFunction;
7719 
7720   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
7721   // NoSanitizeAttr object; but we need to calculate the correct spelling list
7722   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
7723   // has the same spellings as the index for NoSanitizeAttr. We don't have a
7724   // general way to "translate" between the two, so this hack attempts to work
7725   // around the issue with hard-coded indices. This is critical for calling
7726   // getSpelling() or prettyPrint() on the resulting semantic attribute object
7727   // without failing assertions.
7728   unsigned TranslatedSpellingIndex = 0;
7729   if (AL.isStandardAttributeSyntax())
7730     TranslatedSpellingIndex = 1;
7731 
7732   AttributeCommonInfo Info = AL;
7733   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
7734   D->addAttr(::new (S.Context)
7735                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
7736 }
7737 
7738 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7739   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
7740     D->addAttr(Internal);
7741 }
7742 
7743 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7744   if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
7745     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
7746         << AL << "2.0" << 1;
7747   else
7748     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
7749         << AL << S.LangOpts.getOpenCLVersionString();
7750 }
7751 
7752 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7753   if (D->isInvalidDecl())
7754     return;
7755 
7756   // Check if there is only one access qualifier.
7757   if (D->hasAttr<OpenCLAccessAttr>()) {
7758     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
7759         AL.getSemanticSpelling()) {
7760       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
7761           << AL.getAttrName()->getName() << AL.getRange();
7762     } else {
7763       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
7764           << D->getSourceRange();
7765       D->setInvalidDecl(true);
7766       return;
7767     }
7768   }
7769 
7770   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
7771   // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
7772   // cannot read from and write to the same pipe object. Using the read_write
7773   // (or __read_write) qualifier with the pipe qualifier is a compilation error.
7774   // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
7775   // __opencl_c_read_write_images feature, image objects specified as arguments
7776   // to a kernel can additionally be declared to be read-write.
7777   // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
7778   // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
7779   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
7780     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
7781     if (AL.getAttrName()->getName().contains("read_write")) {
7782       bool ReadWriteImagesUnsupported =
7783           (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
7784           (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
7785            !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
7786                                              S.getLangOpts()));
7787       if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
7788         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
7789             << AL << PDecl->getType() << DeclTy->isImageType();
7790         D->setInvalidDecl(true);
7791         return;
7792       }
7793     }
7794   }
7795 
7796   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
7797 }
7798 
7799 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7800   // The 'sycl_kernel' attribute applies only to function templates.
7801   const auto *FD = cast<FunctionDecl>(D);
7802   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
7803   assert(FT && "Function template is expected");
7804 
7805   // Function template must have at least two template parameters.
7806   const TemplateParameterList *TL = FT->getTemplateParameters();
7807   if (TL->size() < 2) {
7808     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
7809     return;
7810   }
7811 
7812   // Template parameters must be typenames.
7813   for (unsigned I = 0; I < 2; ++I) {
7814     const NamedDecl *TParam = TL->getParam(I);
7815     if (isa<NonTypeTemplateParmDecl>(TParam)) {
7816       S.Diag(FT->getLocation(),
7817              diag::warn_sycl_kernel_invalid_template_param_type);
7818       return;
7819     }
7820   }
7821 
7822   // Function must have at least one argument.
7823   if (getFunctionOrMethodNumParams(D) != 1) {
7824     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
7825     return;
7826   }
7827 
7828   // Function must return void.
7829   QualType RetTy = getFunctionOrMethodResultType(D);
7830   if (!RetTy->isVoidType()) {
7831     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
7832     return;
7833   }
7834 
7835   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
7836 }
7837 
7838 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7839   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
7840     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
7841         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
7842     return;
7843   }
7844 
7845   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
7846     handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
7847   else
7848     handleSimpleAttribute<NoDestroyAttr>(S, D, A);
7849 }
7850 
7851 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7852   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
7853          "uninitialized is only valid on automatic duration variables");
7854   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
7855 }
7856 
7857 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
7858                                         bool DiagnoseFailure) {
7859   QualType Ty = VD->getType();
7860   if (!Ty->isObjCRetainableType()) {
7861     if (DiagnoseFailure) {
7862       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7863           << 0;
7864     }
7865     return false;
7866   }
7867 
7868   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
7869 
7870   // Sema::inferObjCARCLifetime must run after processing decl attributes
7871   // (because __block lowers to an attribute), so if the lifetime hasn't been
7872   // explicitly specified, infer it locally now.
7873   if (LifetimeQual == Qualifiers::OCL_None)
7874     LifetimeQual = Ty->getObjCARCImplicitLifetime();
7875 
7876   // The attributes only really makes sense for __strong variables; ignore any
7877   // attempts to annotate a parameter with any other lifetime qualifier.
7878   if (LifetimeQual != Qualifiers::OCL_Strong) {
7879     if (DiagnoseFailure) {
7880       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7881           << 1;
7882     }
7883     return false;
7884   }
7885 
7886   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
7887   // to ensure that the variable is 'const' so that we can error on
7888   // modification, which can otherwise over-release.
7889   VD->setType(Ty.withConst());
7890   VD->setARCPseudoStrong(true);
7891   return true;
7892 }
7893 
7894 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
7895                                              const ParsedAttr &AL) {
7896   if (auto *VD = dyn_cast<VarDecl>(D)) {
7897     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
7898     if (!VD->hasLocalStorage()) {
7899       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7900           << 0;
7901       return;
7902     }
7903 
7904     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
7905       return;
7906 
7907     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7908     return;
7909   }
7910 
7911   // If D is a function-like declaration (method, block, or function), then we
7912   // make every parameter psuedo-strong.
7913   unsigned NumParams =
7914       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
7915   for (unsigned I = 0; I != NumParams; ++I) {
7916     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
7917     QualType Ty = PVD->getType();
7918 
7919     // If a user wrote a parameter with __strong explicitly, then assume they
7920     // want "real" strong semantics for that parameter. This works because if
7921     // the parameter was written with __strong, then the strong qualifier will
7922     // be non-local.
7923     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
7924         Qualifiers::OCL_Strong)
7925       continue;
7926 
7927     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
7928   }
7929   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7930 }
7931 
7932 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7933   // Check that the return type is a `typedef int kern_return_t` or a typedef
7934   // around it, because otherwise MIG convention checks make no sense.
7935   // BlockDecl doesn't store a return type, so it's annoying to check,
7936   // so let's skip it for now.
7937   if (!isa<BlockDecl>(D)) {
7938     QualType T = getFunctionOrMethodResultType(D);
7939     bool IsKernReturnT = false;
7940     while (const auto *TT = T->getAs<TypedefType>()) {
7941       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
7942       T = TT->desugar();
7943     }
7944     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
7945       S.Diag(D->getBeginLoc(),
7946              diag::warn_mig_server_routine_does_not_return_kern_return_t);
7947       return;
7948     }
7949   }
7950 
7951   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
7952 }
7953 
7954 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7955   // Warn if the return type is not a pointer or reference type.
7956   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7957     QualType RetTy = FD->getReturnType();
7958     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
7959       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
7960           << AL.getRange() << RetTy;
7961       return;
7962     }
7963   }
7964 
7965   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
7966 }
7967 
7968 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7969   if (AL.isUsedAsTypeAttr())
7970     return;
7971   // Warn if the parameter is definitely not an output parameter.
7972   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
7973     if (PVD->getType()->isIntegerType()) {
7974       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
7975           << AL.getRange();
7976       return;
7977     }
7978   }
7979   StringRef Argument;
7980   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7981     return;
7982   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
7983 }
7984 
7985 template<typename Attr>
7986 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7987   StringRef Argument;
7988   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7989     return;
7990   D->addAttr(Attr::Create(S.Context, Argument, AL));
7991 }
7992 
7993 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7994   // The guard attribute takes a single identifier argument.
7995 
7996   if (!AL.isArgIdent(0)) {
7997     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7998         << AL << AANT_ArgumentIdentifier;
7999     return;
8000   }
8001 
8002   CFGuardAttr::GuardArg Arg;
8003   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
8004   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
8005     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
8006     return;
8007   }
8008 
8009   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
8010 }
8011 
8012 
8013 template <typename AttrTy>
8014 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
8015   auto Attrs = D->specific_attrs<AttrTy>();
8016   auto I = llvm::find_if(Attrs,
8017                          [Name](const AttrTy *A) {
8018                            return A->getTCBName() == Name;
8019                          });
8020   return I == Attrs.end() ? nullptr : *I;
8021 }
8022 
8023 template <typename AttrTy, typename ConflictingAttrTy>
8024 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8025   StringRef Argument;
8026   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8027     return;
8028 
8029   // A function cannot be have both regular and leaf membership in the same TCB.
8030   if (const ConflictingAttrTy *ConflictingAttr =
8031       findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
8032     // We could attach a note to the other attribute but in this case
8033     // there's no need given how the two are very close to each other.
8034     S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
8035       << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
8036       << Argument;
8037 
8038     // Error recovery: drop the non-leaf attribute so that to suppress
8039     // all future warnings caused by erroneous attributes. The leaf attribute
8040     // needs to be kept because it can only suppresses warnings, not cause them.
8041     D->dropAttr<EnforceTCBAttr>();
8042     return;
8043   }
8044 
8045   D->addAttr(AttrTy::Create(S.Context, Argument, AL));
8046 }
8047 
8048 template <typename AttrTy, typename ConflictingAttrTy>
8049 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
8050   // Check if the new redeclaration has different leaf-ness in the same TCB.
8051   StringRef TCBName = AL.getTCBName();
8052   if (const ConflictingAttrTy *ConflictingAttr =
8053       findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
8054     S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
8055       << ConflictingAttr->getAttrName()->getName()
8056       << AL.getAttrName()->getName() << TCBName;
8057 
8058     // Add a note so that the user could easily find the conflicting attribute.
8059     S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
8060 
8061     // More error recovery.
8062     D->dropAttr<EnforceTCBAttr>();
8063     return nullptr;
8064   }
8065 
8066   ASTContext &Context = S.getASTContext();
8067   return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
8068 }
8069 
8070 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
8071   return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
8072       *this, D, AL);
8073 }
8074 
8075 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
8076     Decl *D, const EnforceTCBLeafAttr &AL) {
8077   return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
8078       *this, D, AL);
8079 }
8080 
8081 //===----------------------------------------------------------------------===//
8082 // Top Level Sema Entry Points
8083 //===----------------------------------------------------------------------===//
8084 
8085 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
8086 /// the attribute applies to decls.  If the attribute is a type attribute, just
8087 /// silently ignore it if a GNU attribute.
8088 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
8089                                  const ParsedAttr &AL,
8090                                  bool IncludeCXX11Attributes) {
8091   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
8092     return;
8093 
8094   // Ignore C++11 attributes on declarator chunks: they appertain to the type
8095   // instead.
8096   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
8097     return;
8098 
8099   // Unknown attributes are automatically warned on. Target-specific attributes
8100   // which do not apply to the current target architecture are treated as
8101   // though they were unknown attributes.
8102   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
8103       !AL.existsInTarget(S.Context.getTargetInfo())) {
8104     S.Diag(AL.getLoc(),
8105            AL.isDeclspecAttribute()
8106                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
8107                : (unsigned)diag::warn_unknown_attribute_ignored)
8108         << AL << AL.getRange();
8109     return;
8110   }
8111 
8112   if (S.checkCommonAttributeFeatures(D, AL))
8113     return;
8114 
8115   switch (AL.getKind()) {
8116   default:
8117     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
8118       break;
8119     if (!AL.isStmtAttr()) {
8120       // Type attributes are handled elsewhere; silently move on.
8121       assert(AL.isTypeAttr() && "Non-type attribute not handled");
8122       break;
8123     }
8124     // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
8125     // statement attribute is not written on a declaration, but this code is
8126     // needed for attributes in Attr.td that do not list any subjects.
8127     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
8128         << AL << D->getLocation();
8129     break;
8130   case ParsedAttr::AT_Interrupt:
8131     handleInterruptAttr(S, D, AL);
8132     break;
8133   case ParsedAttr::AT_X86ForceAlignArgPointer:
8134     handleX86ForceAlignArgPointerAttr(S, D, AL);
8135     break;
8136   case ParsedAttr::AT_DLLExport:
8137   case ParsedAttr::AT_DLLImport:
8138     handleDLLAttr(S, D, AL);
8139     break;
8140   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
8141     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
8142     break;
8143   case ParsedAttr::AT_AMDGPUWavesPerEU:
8144     handleAMDGPUWavesPerEUAttr(S, D, AL);
8145     break;
8146   case ParsedAttr::AT_AMDGPUNumSGPR:
8147     handleAMDGPUNumSGPRAttr(S, D, AL);
8148     break;
8149   case ParsedAttr::AT_AMDGPUNumVGPR:
8150     handleAMDGPUNumVGPRAttr(S, D, AL);
8151     break;
8152   case ParsedAttr::AT_AVRSignal:
8153     handleAVRSignalAttr(S, D, AL);
8154     break;
8155   case ParsedAttr::AT_BPFPreserveAccessIndex:
8156     handleBPFPreserveAccessIndexAttr(S, D, AL);
8157     break;
8158   case ParsedAttr::AT_BTFDeclTag:
8159     handleBTFDeclTagAttr(S, D, AL);
8160     break;
8161   case ParsedAttr::AT_WebAssemblyExportName:
8162     handleWebAssemblyExportNameAttr(S, D, AL);
8163     break;
8164   case ParsedAttr::AT_WebAssemblyImportModule:
8165     handleWebAssemblyImportModuleAttr(S, D, AL);
8166     break;
8167   case ParsedAttr::AT_WebAssemblyImportName:
8168     handleWebAssemblyImportNameAttr(S, D, AL);
8169     break;
8170   case ParsedAttr::AT_IBOutlet:
8171     handleIBOutlet(S, D, AL);
8172     break;
8173   case ParsedAttr::AT_IBOutletCollection:
8174     handleIBOutletCollection(S, D, AL);
8175     break;
8176   case ParsedAttr::AT_IFunc:
8177     handleIFuncAttr(S, D, AL);
8178     break;
8179   case ParsedAttr::AT_Alias:
8180     handleAliasAttr(S, D, AL);
8181     break;
8182   case ParsedAttr::AT_Aligned:
8183     handleAlignedAttr(S, D, AL);
8184     break;
8185   case ParsedAttr::AT_AlignValue:
8186     handleAlignValueAttr(S, D, AL);
8187     break;
8188   case ParsedAttr::AT_AllocSize:
8189     handleAllocSizeAttr(S, D, AL);
8190     break;
8191   case ParsedAttr::AT_AlwaysInline:
8192     handleAlwaysInlineAttr(S, D, AL);
8193     break;
8194   case ParsedAttr::AT_AnalyzerNoReturn:
8195     handleAnalyzerNoReturnAttr(S, D, AL);
8196     break;
8197   case ParsedAttr::AT_TLSModel:
8198     handleTLSModelAttr(S, D, AL);
8199     break;
8200   case ParsedAttr::AT_Annotate:
8201     handleAnnotateAttr(S, D, AL);
8202     break;
8203   case ParsedAttr::AT_Availability:
8204     handleAvailabilityAttr(S, D, AL);
8205     break;
8206   case ParsedAttr::AT_CarriesDependency:
8207     handleDependencyAttr(S, scope, D, AL);
8208     break;
8209   case ParsedAttr::AT_CPUDispatch:
8210   case ParsedAttr::AT_CPUSpecific:
8211     handleCPUSpecificAttr(S, D, AL);
8212     break;
8213   case ParsedAttr::AT_Common:
8214     handleCommonAttr(S, D, AL);
8215     break;
8216   case ParsedAttr::AT_CUDAConstant:
8217     handleConstantAttr(S, D, AL);
8218     break;
8219   case ParsedAttr::AT_PassObjectSize:
8220     handlePassObjectSizeAttr(S, D, AL);
8221     break;
8222   case ParsedAttr::AT_Constructor:
8223       handleConstructorAttr(S, D, AL);
8224     break;
8225   case ParsedAttr::AT_Deprecated:
8226     handleDeprecatedAttr(S, D, AL);
8227     break;
8228   case ParsedAttr::AT_Destructor:
8229       handleDestructorAttr(S, D, AL);
8230     break;
8231   case ParsedAttr::AT_EnableIf:
8232     handleEnableIfAttr(S, D, AL);
8233     break;
8234   case ParsedAttr::AT_Error:
8235     handleErrorAttr(S, D, AL);
8236     break;
8237   case ParsedAttr::AT_DiagnoseIf:
8238     handleDiagnoseIfAttr(S, D, AL);
8239     break;
8240   case ParsedAttr::AT_DiagnoseAsBuiltin:
8241     handleDiagnoseAsBuiltinAttr(S, D, AL);
8242     break;
8243   case ParsedAttr::AT_NoBuiltin:
8244     handleNoBuiltinAttr(S, D, AL);
8245     break;
8246   case ParsedAttr::AT_ExtVectorType:
8247     handleExtVectorTypeAttr(S, D, AL);
8248     break;
8249   case ParsedAttr::AT_ExternalSourceSymbol:
8250     handleExternalSourceSymbolAttr(S, D, AL);
8251     break;
8252   case ParsedAttr::AT_MinSize:
8253     handleMinSizeAttr(S, D, AL);
8254     break;
8255   case ParsedAttr::AT_OptimizeNone:
8256     handleOptimizeNoneAttr(S, D, AL);
8257     break;
8258   case ParsedAttr::AT_EnumExtensibility:
8259     handleEnumExtensibilityAttr(S, D, AL);
8260     break;
8261   case ParsedAttr::AT_SYCLKernel:
8262     handleSYCLKernelAttr(S, D, AL);
8263     break;
8264   case ParsedAttr::AT_Format:
8265     handleFormatAttr(S, D, AL);
8266     break;
8267   case ParsedAttr::AT_FormatArg:
8268     handleFormatArgAttr(S, D, AL);
8269     break;
8270   case ParsedAttr::AT_Callback:
8271     handleCallbackAttr(S, D, AL);
8272     break;
8273   case ParsedAttr::AT_CalledOnce:
8274     handleCalledOnceAttr(S, D, AL);
8275     break;
8276   case ParsedAttr::AT_CUDAGlobal:
8277     handleGlobalAttr(S, D, AL);
8278     break;
8279   case ParsedAttr::AT_CUDADevice:
8280     handleDeviceAttr(S, D, AL);
8281     break;
8282   case ParsedAttr::AT_HIPManaged:
8283     handleManagedAttr(S, D, AL);
8284     break;
8285   case ParsedAttr::AT_GNUInline:
8286     handleGNUInlineAttr(S, D, AL);
8287     break;
8288   case ParsedAttr::AT_CUDALaunchBounds:
8289     handleLaunchBoundsAttr(S, D, AL);
8290     break;
8291   case ParsedAttr::AT_Restrict:
8292     handleRestrictAttr(S, D, AL);
8293     break;
8294   case ParsedAttr::AT_Mode:
8295     handleModeAttr(S, D, AL);
8296     break;
8297   case ParsedAttr::AT_NonNull:
8298     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8299       handleNonNullAttrParameter(S, PVD, AL);
8300     else
8301       handleNonNullAttr(S, D, AL);
8302     break;
8303   case ParsedAttr::AT_ReturnsNonNull:
8304     handleReturnsNonNullAttr(S, D, AL);
8305     break;
8306   case ParsedAttr::AT_NoEscape:
8307     handleNoEscapeAttr(S, D, AL);
8308     break;
8309   case ParsedAttr::AT_AssumeAligned:
8310     handleAssumeAlignedAttr(S, D, AL);
8311     break;
8312   case ParsedAttr::AT_AllocAlign:
8313     handleAllocAlignAttr(S, D, AL);
8314     break;
8315   case ParsedAttr::AT_Ownership:
8316     handleOwnershipAttr(S, D, AL);
8317     break;
8318   case ParsedAttr::AT_Naked:
8319     handleNakedAttr(S, D, AL);
8320     break;
8321   case ParsedAttr::AT_NoReturn:
8322     handleNoReturnAttr(S, D, AL);
8323     break;
8324   case ParsedAttr::AT_AnyX86NoCfCheck:
8325     handleNoCfCheckAttr(S, D, AL);
8326     break;
8327   case ParsedAttr::AT_NoThrow:
8328     if (!AL.isUsedAsTypeAttr())
8329       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8330     break;
8331   case ParsedAttr::AT_CUDAShared:
8332     handleSharedAttr(S, D, AL);
8333     break;
8334   case ParsedAttr::AT_VecReturn:
8335     handleVecReturnAttr(S, D, AL);
8336     break;
8337   case ParsedAttr::AT_ObjCOwnership:
8338     handleObjCOwnershipAttr(S, D, AL);
8339     break;
8340   case ParsedAttr::AT_ObjCPreciseLifetime:
8341     handleObjCPreciseLifetimeAttr(S, D, AL);
8342     break;
8343   case ParsedAttr::AT_ObjCReturnsInnerPointer:
8344     handleObjCReturnsInnerPointerAttr(S, D, AL);
8345     break;
8346   case ParsedAttr::AT_ObjCRequiresSuper:
8347     handleObjCRequiresSuperAttr(S, D, AL);
8348     break;
8349   case ParsedAttr::AT_ObjCBridge:
8350     handleObjCBridgeAttr(S, D, AL);
8351     break;
8352   case ParsedAttr::AT_ObjCBridgeMutable:
8353     handleObjCBridgeMutableAttr(S, D, AL);
8354     break;
8355   case ParsedAttr::AT_ObjCBridgeRelated:
8356     handleObjCBridgeRelatedAttr(S, D, AL);
8357     break;
8358   case ParsedAttr::AT_ObjCDesignatedInitializer:
8359     handleObjCDesignatedInitializer(S, D, AL);
8360     break;
8361   case ParsedAttr::AT_ObjCRuntimeName:
8362     handleObjCRuntimeName(S, D, AL);
8363     break;
8364   case ParsedAttr::AT_ObjCBoxable:
8365     handleObjCBoxable(S, D, AL);
8366     break;
8367   case ParsedAttr::AT_NSErrorDomain:
8368     handleNSErrorDomain(S, D, AL);
8369     break;
8370   case ParsedAttr::AT_CFConsumed:
8371   case ParsedAttr::AT_NSConsumed:
8372   case ParsedAttr::AT_OSConsumed:
8373     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8374                        /*IsTemplateInstantiation=*/false);
8375     break;
8376   case ParsedAttr::AT_OSReturnsRetainedOnZero:
8377     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8378         S, D, AL, isValidOSObjectOutParameter(D),
8379         diag::warn_ns_attribute_wrong_parameter_type,
8380         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8381     break;
8382   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8383     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8384         S, D, AL, isValidOSObjectOutParameter(D),
8385         diag::warn_ns_attribute_wrong_parameter_type,
8386         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8387     break;
8388   case ParsedAttr::AT_NSReturnsAutoreleased:
8389   case ParsedAttr::AT_NSReturnsNotRetained:
8390   case ParsedAttr::AT_NSReturnsRetained:
8391   case ParsedAttr::AT_CFReturnsNotRetained:
8392   case ParsedAttr::AT_CFReturnsRetained:
8393   case ParsedAttr::AT_OSReturnsNotRetained:
8394   case ParsedAttr::AT_OSReturnsRetained:
8395     handleXReturnsXRetainedAttr(S, D, AL);
8396     break;
8397   case ParsedAttr::AT_WorkGroupSizeHint:
8398     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8399     break;
8400   case ParsedAttr::AT_ReqdWorkGroupSize:
8401     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8402     break;
8403   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8404     handleSubGroupSize(S, D, AL);
8405     break;
8406   case ParsedAttr::AT_VecTypeHint:
8407     handleVecTypeHint(S, D, AL);
8408     break;
8409   case ParsedAttr::AT_InitPriority:
8410       handleInitPriorityAttr(S, D, AL);
8411     break;
8412   case ParsedAttr::AT_Packed:
8413     handlePackedAttr(S, D, AL);
8414     break;
8415   case ParsedAttr::AT_PreferredName:
8416     handlePreferredName(S, D, AL);
8417     break;
8418   case ParsedAttr::AT_Section:
8419     handleSectionAttr(S, D, AL);
8420     break;
8421   case ParsedAttr::AT_CodeSeg:
8422     handleCodeSegAttr(S, D, AL);
8423     break;
8424   case ParsedAttr::AT_Target:
8425     handleTargetAttr(S, D, AL);
8426     break;
8427   case ParsedAttr::AT_TargetClones:
8428     handleTargetClonesAttr(S, D, AL);
8429     break;
8430   case ParsedAttr::AT_MinVectorWidth:
8431     handleMinVectorWidthAttr(S, D, AL);
8432     break;
8433   case ParsedAttr::AT_Unavailable:
8434     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
8435     break;
8436   case ParsedAttr::AT_Assumption:
8437     handleAssumumptionAttr(S, D, AL);
8438     break;
8439   case ParsedAttr::AT_ObjCDirect:
8440     handleObjCDirectAttr(S, D, AL);
8441     break;
8442   case ParsedAttr::AT_ObjCDirectMembers:
8443     handleObjCDirectMembersAttr(S, D, AL);
8444     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
8445     break;
8446   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
8447     handleObjCSuppresProtocolAttr(S, D, AL);
8448     break;
8449   case ParsedAttr::AT_Unused:
8450     handleUnusedAttr(S, D, AL);
8451     break;
8452   case ParsedAttr::AT_Visibility:
8453     handleVisibilityAttr(S, D, AL, false);
8454     break;
8455   case ParsedAttr::AT_TypeVisibility:
8456     handleVisibilityAttr(S, D, AL, true);
8457     break;
8458   case ParsedAttr::AT_WarnUnusedResult:
8459     handleWarnUnusedResult(S, D, AL);
8460     break;
8461   case ParsedAttr::AT_WeakRef:
8462     handleWeakRefAttr(S, D, AL);
8463     break;
8464   case ParsedAttr::AT_WeakImport:
8465     handleWeakImportAttr(S, D, AL);
8466     break;
8467   case ParsedAttr::AT_TransparentUnion:
8468     handleTransparentUnionAttr(S, D, AL);
8469     break;
8470   case ParsedAttr::AT_ObjCMethodFamily:
8471     handleObjCMethodFamilyAttr(S, D, AL);
8472     break;
8473   case ParsedAttr::AT_ObjCNSObject:
8474     handleObjCNSObject(S, D, AL);
8475     break;
8476   case ParsedAttr::AT_ObjCIndependentClass:
8477     handleObjCIndependentClass(S, D, AL);
8478     break;
8479   case ParsedAttr::AT_Blocks:
8480     handleBlocksAttr(S, D, AL);
8481     break;
8482   case ParsedAttr::AT_Sentinel:
8483     handleSentinelAttr(S, D, AL);
8484     break;
8485   case ParsedAttr::AT_Cleanup:
8486     handleCleanupAttr(S, D, AL);
8487     break;
8488   case ParsedAttr::AT_NoDebug:
8489     handleNoDebugAttr(S, D, AL);
8490     break;
8491   case ParsedAttr::AT_CmseNSEntry:
8492     handleCmseNSEntryAttr(S, D, AL);
8493     break;
8494   case ParsedAttr::AT_StdCall:
8495   case ParsedAttr::AT_CDecl:
8496   case ParsedAttr::AT_FastCall:
8497   case ParsedAttr::AT_ThisCall:
8498   case ParsedAttr::AT_Pascal:
8499   case ParsedAttr::AT_RegCall:
8500   case ParsedAttr::AT_SwiftCall:
8501   case ParsedAttr::AT_SwiftAsyncCall:
8502   case ParsedAttr::AT_VectorCall:
8503   case ParsedAttr::AT_MSABI:
8504   case ParsedAttr::AT_SysVABI:
8505   case ParsedAttr::AT_Pcs:
8506   case ParsedAttr::AT_IntelOclBicc:
8507   case ParsedAttr::AT_PreserveMost:
8508   case ParsedAttr::AT_PreserveAll:
8509   case ParsedAttr::AT_AArch64VectorPcs:
8510     handleCallConvAttr(S, D, AL);
8511     break;
8512   case ParsedAttr::AT_Suppress:
8513     handleSuppressAttr(S, D, AL);
8514     break;
8515   case ParsedAttr::AT_Owner:
8516   case ParsedAttr::AT_Pointer:
8517     handleLifetimeCategoryAttr(S, D, AL);
8518     break;
8519   case ParsedAttr::AT_OpenCLAccess:
8520     handleOpenCLAccessAttr(S, D, AL);
8521     break;
8522   case ParsedAttr::AT_OpenCLNoSVM:
8523     handleOpenCLNoSVMAttr(S, D, AL);
8524     break;
8525   case ParsedAttr::AT_SwiftContext:
8526     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
8527     break;
8528   case ParsedAttr::AT_SwiftAsyncContext:
8529     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
8530     break;
8531   case ParsedAttr::AT_SwiftErrorResult:
8532     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
8533     break;
8534   case ParsedAttr::AT_SwiftIndirectResult:
8535     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
8536     break;
8537   case ParsedAttr::AT_InternalLinkage:
8538     handleInternalLinkageAttr(S, D, AL);
8539     break;
8540 
8541   // Microsoft attributes:
8542   case ParsedAttr::AT_LayoutVersion:
8543     handleLayoutVersion(S, D, AL);
8544     break;
8545   case ParsedAttr::AT_Uuid:
8546     handleUuidAttr(S, D, AL);
8547     break;
8548   case ParsedAttr::AT_MSInheritance:
8549     handleMSInheritanceAttr(S, D, AL);
8550     break;
8551   case ParsedAttr::AT_Thread:
8552     handleDeclspecThreadAttr(S, D, AL);
8553     break;
8554 
8555   case ParsedAttr::AT_AbiTag:
8556     handleAbiTagAttr(S, D, AL);
8557     break;
8558   case ParsedAttr::AT_CFGuard:
8559     handleCFGuardAttr(S, D, AL);
8560     break;
8561 
8562   // Thread safety attributes:
8563   case ParsedAttr::AT_AssertExclusiveLock:
8564     handleAssertExclusiveLockAttr(S, D, AL);
8565     break;
8566   case ParsedAttr::AT_AssertSharedLock:
8567     handleAssertSharedLockAttr(S, D, AL);
8568     break;
8569   case ParsedAttr::AT_PtGuardedVar:
8570     handlePtGuardedVarAttr(S, D, AL);
8571     break;
8572   case ParsedAttr::AT_NoSanitize:
8573     handleNoSanitizeAttr(S, D, AL);
8574     break;
8575   case ParsedAttr::AT_NoSanitizeSpecific:
8576     handleNoSanitizeSpecificAttr(S, D, AL);
8577     break;
8578   case ParsedAttr::AT_GuardedBy:
8579     handleGuardedByAttr(S, D, AL);
8580     break;
8581   case ParsedAttr::AT_PtGuardedBy:
8582     handlePtGuardedByAttr(S, D, AL);
8583     break;
8584   case ParsedAttr::AT_ExclusiveTrylockFunction:
8585     handleExclusiveTrylockFunctionAttr(S, D, AL);
8586     break;
8587   case ParsedAttr::AT_LockReturned:
8588     handleLockReturnedAttr(S, D, AL);
8589     break;
8590   case ParsedAttr::AT_LocksExcluded:
8591     handleLocksExcludedAttr(S, D, AL);
8592     break;
8593   case ParsedAttr::AT_SharedTrylockFunction:
8594     handleSharedTrylockFunctionAttr(S, D, AL);
8595     break;
8596   case ParsedAttr::AT_AcquiredBefore:
8597     handleAcquiredBeforeAttr(S, D, AL);
8598     break;
8599   case ParsedAttr::AT_AcquiredAfter:
8600     handleAcquiredAfterAttr(S, D, AL);
8601     break;
8602 
8603   // Capability analysis attributes.
8604   case ParsedAttr::AT_Capability:
8605   case ParsedAttr::AT_Lockable:
8606     handleCapabilityAttr(S, D, AL);
8607     break;
8608   case ParsedAttr::AT_RequiresCapability:
8609     handleRequiresCapabilityAttr(S, D, AL);
8610     break;
8611 
8612   case ParsedAttr::AT_AssertCapability:
8613     handleAssertCapabilityAttr(S, D, AL);
8614     break;
8615   case ParsedAttr::AT_AcquireCapability:
8616     handleAcquireCapabilityAttr(S, D, AL);
8617     break;
8618   case ParsedAttr::AT_ReleaseCapability:
8619     handleReleaseCapabilityAttr(S, D, AL);
8620     break;
8621   case ParsedAttr::AT_TryAcquireCapability:
8622     handleTryAcquireCapabilityAttr(S, D, AL);
8623     break;
8624 
8625   // Consumed analysis attributes.
8626   case ParsedAttr::AT_Consumable:
8627     handleConsumableAttr(S, D, AL);
8628     break;
8629   case ParsedAttr::AT_CallableWhen:
8630     handleCallableWhenAttr(S, D, AL);
8631     break;
8632   case ParsedAttr::AT_ParamTypestate:
8633     handleParamTypestateAttr(S, D, AL);
8634     break;
8635   case ParsedAttr::AT_ReturnTypestate:
8636     handleReturnTypestateAttr(S, D, AL);
8637     break;
8638   case ParsedAttr::AT_SetTypestate:
8639     handleSetTypestateAttr(S, D, AL);
8640     break;
8641   case ParsedAttr::AT_TestTypestate:
8642     handleTestTypestateAttr(S, D, AL);
8643     break;
8644 
8645   // Type safety attributes.
8646   case ParsedAttr::AT_ArgumentWithTypeTag:
8647     handleArgumentWithTypeTagAttr(S, D, AL);
8648     break;
8649   case ParsedAttr::AT_TypeTagForDatatype:
8650     handleTypeTagForDatatypeAttr(S, D, AL);
8651     break;
8652 
8653   // Swift attributes.
8654   case ParsedAttr::AT_SwiftAsyncName:
8655     handleSwiftAsyncName(S, D, AL);
8656     break;
8657   case ParsedAttr::AT_SwiftAttr:
8658     handleSwiftAttrAttr(S, D, AL);
8659     break;
8660   case ParsedAttr::AT_SwiftBridge:
8661     handleSwiftBridge(S, D, AL);
8662     break;
8663   case ParsedAttr::AT_SwiftError:
8664     handleSwiftError(S, D, AL);
8665     break;
8666   case ParsedAttr::AT_SwiftName:
8667     handleSwiftName(S, D, AL);
8668     break;
8669   case ParsedAttr::AT_SwiftNewType:
8670     handleSwiftNewType(S, D, AL);
8671     break;
8672   case ParsedAttr::AT_SwiftAsync:
8673     handleSwiftAsyncAttr(S, D, AL);
8674     break;
8675   case ParsedAttr::AT_SwiftAsyncError:
8676     handleSwiftAsyncError(S, D, AL);
8677     break;
8678 
8679   // XRay attributes.
8680   case ParsedAttr::AT_XRayLogArgs:
8681     handleXRayLogArgsAttr(S, D, AL);
8682     break;
8683 
8684   case ParsedAttr::AT_PatchableFunctionEntry:
8685     handlePatchableFunctionEntryAttr(S, D, AL);
8686     break;
8687 
8688   case ParsedAttr::AT_AlwaysDestroy:
8689   case ParsedAttr::AT_NoDestroy:
8690     handleDestroyAttr(S, D, AL);
8691     break;
8692 
8693   case ParsedAttr::AT_Uninitialized:
8694     handleUninitializedAttr(S, D, AL);
8695     break;
8696 
8697   case ParsedAttr::AT_ObjCExternallyRetained:
8698     handleObjCExternallyRetainedAttr(S, D, AL);
8699     break;
8700 
8701   case ParsedAttr::AT_MIGServerRoutine:
8702     handleMIGServerRoutineAttr(S, D, AL);
8703     break;
8704 
8705   case ParsedAttr::AT_MSAllocator:
8706     handleMSAllocatorAttr(S, D, AL);
8707     break;
8708 
8709   case ParsedAttr::AT_ArmBuiltinAlias:
8710     handleArmBuiltinAliasAttr(S, D, AL);
8711     break;
8712 
8713   case ParsedAttr::AT_AcquireHandle:
8714     handleAcquireHandleAttr(S, D, AL);
8715     break;
8716 
8717   case ParsedAttr::AT_ReleaseHandle:
8718     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
8719     break;
8720 
8721   case ParsedAttr::AT_UseHandle:
8722     handleHandleAttr<UseHandleAttr>(S, D, AL);
8723     break;
8724 
8725   case ParsedAttr::AT_EnforceTCB:
8726     handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
8727     break;
8728 
8729   case ParsedAttr::AT_EnforceTCBLeaf:
8730     handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
8731     break;
8732 
8733   case ParsedAttr::AT_BuiltinAlias:
8734     handleBuiltinAliasAttr(S, D, AL);
8735     break;
8736 
8737   case ParsedAttr::AT_UsingIfExists:
8738     handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
8739     break;
8740   }
8741 }
8742 
8743 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
8744 /// attribute list to the specified decl, ignoring any type attributes.
8745 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
8746                                     const ParsedAttributesView &AttrList,
8747                                     bool IncludeCXX11Attributes) {
8748   if (AttrList.empty())
8749     return;
8750 
8751   for (const ParsedAttr &AL : AttrList)
8752     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
8753 
8754   // FIXME: We should be able to handle these cases in TableGen.
8755   // GCC accepts
8756   // static int a9 __attribute__((weakref));
8757   // but that looks really pointless. We reject it.
8758   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
8759     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
8760         << cast<NamedDecl>(D);
8761     D->dropAttr<WeakRefAttr>();
8762     return;
8763   }
8764 
8765   // FIXME: We should be able to handle this in TableGen as well. It would be
8766   // good to have a way to specify "these attributes must appear as a group",
8767   // for these. Additionally, it would be good to have a way to specify "these
8768   // attribute must never appear as a group" for attributes like cold and hot.
8769   if (!D->hasAttr<OpenCLKernelAttr>()) {
8770     // These attributes cannot be applied to a non-kernel function.
8771     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
8772       // FIXME: This emits a different error message than
8773       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
8774       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8775       D->setInvalidDecl();
8776     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
8777       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8778       D->setInvalidDecl();
8779     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
8780       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8781       D->setInvalidDecl();
8782     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
8783       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8784       D->setInvalidDecl();
8785     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
8786       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
8787         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8788             << A << ExpectedKernelFunction;
8789         D->setInvalidDecl();
8790       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
8791         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8792             << A << ExpectedKernelFunction;
8793         D->setInvalidDecl();
8794       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
8795         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8796             << A << ExpectedKernelFunction;
8797         D->setInvalidDecl();
8798       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
8799         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8800             << A << ExpectedKernelFunction;
8801         D->setInvalidDecl();
8802       }
8803     }
8804   }
8805 
8806   // Do this check after processing D's attributes because the attribute
8807   // objc_method_family can change whether the given method is in the init
8808   // family, and it can be applied after objc_designated_initializer. This is a
8809   // bit of a hack, but we need it to be compatible with versions of clang that
8810   // processed the attribute list in the wrong order.
8811   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
8812       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
8813     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
8814     D->dropAttr<ObjCDesignatedInitializerAttr>();
8815   }
8816 }
8817 
8818 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
8819 // attribute.
8820 void Sema::ProcessDeclAttributeDelayed(Decl *D,
8821                                        const ParsedAttributesView &AttrList) {
8822   for (const ParsedAttr &AL : AttrList)
8823     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
8824       handleTransparentUnionAttr(*this, D, AL);
8825       break;
8826     }
8827 
8828   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
8829   // to fields and inner records as well.
8830   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
8831     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
8832 }
8833 
8834 // Annotation attributes are the only attributes allowed after an access
8835 // specifier.
8836 bool Sema::ProcessAccessDeclAttributeList(
8837     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
8838   for (const ParsedAttr &AL : AttrList) {
8839     if (AL.getKind() == ParsedAttr::AT_Annotate) {
8840       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
8841     } else {
8842       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
8843       return true;
8844     }
8845   }
8846   return false;
8847 }
8848 
8849 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
8850 /// contains any decl attributes that we should warn about.
8851 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
8852   for (const ParsedAttr &AL : A) {
8853     // Only warn if the attribute is an unignored, non-type attribute.
8854     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
8855       continue;
8856     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
8857       continue;
8858 
8859     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
8860       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
8861           << AL << AL.getRange();
8862     } else {
8863       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
8864                                                             << AL.getRange();
8865     }
8866   }
8867 }
8868 
8869 /// checkUnusedDeclAttributes - Given a declarator which is not being
8870 /// used to build a declaration, complain about any decl attributes
8871 /// which might be lying around on it.
8872 void Sema::checkUnusedDeclAttributes(Declarator &D) {
8873   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
8874   ::checkUnusedDeclAttributes(*this, D.getAttributes());
8875   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
8876     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
8877 }
8878 
8879 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
8880 /// \#pragma weak needs a non-definition decl and source may not have one.
8881 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
8882                                       SourceLocation Loc) {
8883   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
8884   NamedDecl *NewD = nullptr;
8885   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
8886     FunctionDecl *NewFD;
8887     // FIXME: Missing call to CheckFunctionDeclaration().
8888     // FIXME: Mangling?
8889     // FIXME: Is the qualifier info correct?
8890     // FIXME: Is the DeclContext correct?
8891     NewFD = FunctionDecl::Create(
8892         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
8893         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
8894         getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
8895         FD->hasPrototype(), ConstexprSpecKind::Unspecified,
8896         FD->getTrailingRequiresClause());
8897     NewD = NewFD;
8898 
8899     if (FD->getQualifier())
8900       NewFD->setQualifierInfo(FD->getQualifierLoc());
8901 
8902     // Fake up parameter variables; they are declared as if this were
8903     // a typedef.
8904     QualType FDTy = FD->getType();
8905     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
8906       SmallVector<ParmVarDecl*, 16> Params;
8907       for (const auto &AI : FT->param_types()) {
8908         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
8909         Param->setScopeInfo(0, Params.size());
8910         Params.push_back(Param);
8911       }
8912       NewFD->setParams(Params);
8913     }
8914   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
8915     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
8916                            VD->getInnerLocStart(), VD->getLocation(), II,
8917                            VD->getType(), VD->getTypeSourceInfo(),
8918                            VD->getStorageClass());
8919     if (VD->getQualifier())
8920       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
8921   }
8922   return NewD;
8923 }
8924 
8925 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
8926 /// applied to it, possibly with an alias.
8927 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
8928   if (W.getUsed()) return; // only do this once
8929   W.setUsed(true);
8930   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
8931     IdentifierInfo *NDId = ND->getIdentifier();
8932     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
8933     NewD->addAttr(
8934         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
8935     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8936                                            AttributeCommonInfo::AS_Pragma));
8937     WeakTopLevelDecl.push_back(NewD);
8938     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
8939     // to insert Decl at TU scope, sorry.
8940     DeclContext *SavedContext = CurContext;
8941     CurContext = Context.getTranslationUnitDecl();
8942     NewD->setDeclContext(CurContext);
8943     NewD->setLexicalDeclContext(CurContext);
8944     PushOnScopeChains(NewD, S);
8945     CurContext = SavedContext;
8946   } else { // just add weak to existing
8947     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8948                                          AttributeCommonInfo::AS_Pragma));
8949   }
8950 }
8951 
8952 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
8953   // It's valid to "forward-declare" #pragma weak, in which case we
8954   // have to do this.
8955   LoadExternalWeakUndeclaredIdentifiers();
8956   if (!WeakUndeclaredIdentifiers.empty()) {
8957     NamedDecl *ND = nullptr;
8958     if (auto *VD = dyn_cast<VarDecl>(D))
8959       if (VD->isExternC())
8960         ND = VD;
8961     if (auto *FD = dyn_cast<FunctionDecl>(D))
8962       if (FD->isExternC())
8963         ND = FD;
8964     if (ND) {
8965       if (IdentifierInfo *Id = ND->getIdentifier()) {
8966         auto I = WeakUndeclaredIdentifiers.find(Id);
8967         if (I != WeakUndeclaredIdentifiers.end()) {
8968           WeakInfo W = I->second;
8969           DeclApplyPragmaWeak(S, ND, W);
8970           WeakUndeclaredIdentifiers[Id] = W;
8971         }
8972       }
8973     }
8974   }
8975 }
8976 
8977 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
8978 /// it, apply them to D.  This is a bit tricky because PD can have attributes
8979 /// specified in many different places, and we need to find and apply them all.
8980 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
8981   // Apply decl attributes from the DeclSpec if present.
8982   if (!PD.getDeclSpec().getAttributes().empty())
8983     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
8984 
8985   // Walk the declarator structure, applying decl attributes that were in a type
8986   // position to the decl itself.  This handles cases like:
8987   //   int *__attr__(x)** D;
8988   // when X is a decl attribute.
8989   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
8990     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
8991                              /*IncludeCXX11Attributes=*/false);
8992 
8993   // Finally, apply any attributes on the decl itself.
8994   ProcessDeclAttributeList(S, D, PD.getAttributes());
8995 
8996   // Apply additional attributes specified by '#pragma clang attribute'.
8997   AddPragmaAttributes(S, D);
8998 }
8999 
9000 /// Is the given declaration allowed to use a forbidden type?
9001 /// If so, it'll still be annotated with an attribute that makes it
9002 /// illegal to actually use.
9003 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
9004                                    const DelayedDiagnostic &diag,
9005                                    UnavailableAttr::ImplicitReason &reason) {
9006   // Private ivars are always okay.  Unfortunately, people don't
9007   // always properly make their ivars private, even in system headers.
9008   // Plus we need to make fields okay, too.
9009   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
9010       !isa<FunctionDecl>(D))
9011     return false;
9012 
9013   // Silently accept unsupported uses of __weak in both user and system
9014   // declarations when it's been disabled, for ease of integration with
9015   // -fno-objc-arc files.  We do have to take some care against attempts
9016   // to define such things;  for now, we've only done that for ivars
9017   // and properties.
9018   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
9019     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
9020         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
9021       reason = UnavailableAttr::IR_ForbiddenWeak;
9022       return true;
9023     }
9024   }
9025 
9026   // Allow all sorts of things in system headers.
9027   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
9028     // Currently, all the failures dealt with this way are due to ARC
9029     // restrictions.
9030     reason = UnavailableAttr::IR_ARCForbiddenType;
9031     return true;
9032   }
9033 
9034   return false;
9035 }
9036 
9037 /// Handle a delayed forbidden-type diagnostic.
9038 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
9039                                        Decl *D) {
9040   auto Reason = UnavailableAttr::IR_None;
9041   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
9042     assert(Reason && "didn't set reason?");
9043     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
9044     return;
9045   }
9046   if (S.getLangOpts().ObjCAutoRefCount)
9047     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9048       // FIXME: we may want to suppress diagnostics for all
9049       // kind of forbidden type messages on unavailable functions.
9050       if (FD->hasAttr<UnavailableAttr>() &&
9051           DD.getForbiddenTypeDiagnostic() ==
9052               diag::err_arc_array_param_no_ownership) {
9053         DD.Triggered = true;
9054         return;
9055       }
9056     }
9057 
9058   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
9059       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
9060   DD.Triggered = true;
9061 }
9062 
9063 
9064 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
9065   assert(DelayedDiagnostics.getCurrentPool());
9066   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
9067   DelayedDiagnostics.popWithoutEmitting(state);
9068 
9069   // When delaying diagnostics to run in the context of a parsed
9070   // declaration, we only want to actually emit anything if parsing
9071   // succeeds.
9072   if (!decl) return;
9073 
9074   // We emit all the active diagnostics in this pool or any of its
9075   // parents.  In general, we'll get one pool for the decl spec
9076   // and a child pool for each declarator; in a decl group like:
9077   //   deprecated_typedef foo, *bar, baz();
9078   // only the declarator pops will be passed decls.  This is correct;
9079   // we really do need to consider delayed diagnostics from the decl spec
9080   // for each of the different declarations.
9081   const DelayedDiagnosticPool *pool = &poppedPool;
9082   do {
9083     bool AnyAccessFailures = false;
9084     for (DelayedDiagnosticPool::pool_iterator
9085            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
9086       // This const_cast is a bit lame.  Really, Triggered should be mutable.
9087       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
9088       if (diag.Triggered)
9089         continue;
9090 
9091       switch (diag.Kind) {
9092       case DelayedDiagnostic::Availability:
9093         // Don't bother giving deprecation/unavailable diagnostics if
9094         // the decl is invalid.
9095         if (!decl->isInvalidDecl())
9096           handleDelayedAvailabilityCheck(diag, decl);
9097         break;
9098 
9099       case DelayedDiagnostic::Access:
9100         // Only produce one access control diagnostic for a structured binding
9101         // declaration: we don't need to tell the user that all the fields are
9102         // inaccessible one at a time.
9103         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
9104           continue;
9105         HandleDelayedAccessCheck(diag, decl);
9106         if (diag.Triggered)
9107           AnyAccessFailures = true;
9108         break;
9109 
9110       case DelayedDiagnostic::ForbiddenType:
9111         handleDelayedForbiddenType(*this, diag, decl);
9112         break;
9113       }
9114     }
9115   } while ((pool = pool->getParent()));
9116 }
9117 
9118 /// Given a set of delayed diagnostics, re-emit them as if they had
9119 /// been delayed in the current context instead of in the given pool.
9120 /// Essentially, this just moves them to the current pool.
9121 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
9122   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
9123   assert(curPool && "re-emitting in undelayed context not supported");
9124   curPool->steal(pool);
9125 }
9126