1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Basic/Builtins.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Overload.h" 25 #include "clang/Sema/ScopeInfo.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallSet.h" 28 29 using namespace clang; 30 using namespace sema; 31 32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 33 SourceLocation Loc, bool &Res) { 34 DeclarationName DN = S.PP.getIdentifierInfo(Name); 35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 36 // Suppress diagnostics when a private member is selected. The same warnings 37 // will be produced again when building the call. 38 LR.suppressDiagnostics(); 39 Res = S.LookupQualifiedName(LR, RD); 40 return LR; 41 } 42 43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 44 SourceLocation Loc) { 45 bool Res; 46 lookupMember(S, Name, RD, Loc, Res); 47 return Res; 48 } 49 50 /// Look up the std::coroutine_traits<...>::promise_type for the given 51 /// function type. 52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 53 SourceLocation KwLoc) { 54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 55 const SourceLocation FuncLoc = FD->getLocation(); 56 57 ClassTemplateDecl *CoroTraits = 58 S.lookupCoroutineTraits(KwLoc, FuncLoc); 59 if (!CoroTraits) 60 return QualType(); 61 62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 63 // to [dcl.fct.def.coroutine]3 64 TemplateArgumentListInfo Args(KwLoc, KwLoc); 65 auto AddArg = [&](QualType T) { 66 Args.addArgument(TemplateArgumentLoc( 67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 68 }; 69 AddArg(FnType->getReturnType()); 70 // If the function is a non-static member function, add the type 71 // of the implicit object parameter before the formal parameters. 72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 73 if (MD->isImplicitObjectMemberFunction()) { 74 // [over.match.funcs]4 75 // For non-static member functions, the type of the implicit object 76 // parameter is 77 // -- "lvalue reference to cv X" for functions declared without a 78 // ref-qualifier or with the & ref-qualifier 79 // -- "rvalue reference to cv X" for functions declared with the && 80 // ref-qualifier 81 QualType T = MD->getFunctionObjectParameterType(); 82 T = FnType->getRefQualifier() == RQ_RValue 83 ? S.Context.getRValueReferenceType(T) 84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 85 AddArg(T); 86 } 87 } 88 for (QualType T : FnType->getParamTypes()) 89 AddArg(T); 90 91 // Build the template-id. 92 QualType CoroTrait = 93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 94 if (CoroTrait.isNull()) 95 return QualType(); 96 if (S.RequireCompleteType(KwLoc, CoroTrait, 97 diag::err_coroutine_type_missing_specialization)) 98 return QualType(); 99 100 auto *RD = CoroTrait->getAsCXXRecordDecl(); 101 assert(RD && "specialization of class template is not a class?"); 102 103 // Look up the ::promise_type member. 104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 105 Sema::LookupOrdinaryName); 106 S.LookupQualifiedName(R, RD); 107 auto *Promise = R.getAsSingle<TypeDecl>(); 108 if (!Promise) { 109 S.Diag(FuncLoc, 110 diag::err_implied_std_coroutine_traits_promise_type_not_found) 111 << RD; 112 return QualType(); 113 } 114 // The promise type is required to be a class type. 115 QualType PromiseType = S.Context.getTypeDeclType(Promise); 116 117 auto buildElaboratedType = [&]() { 118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 120 CoroTrait.getTypePtr()); 121 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 122 PromiseType); 123 }; 124 125 if (!PromiseType->getAsCXXRecordDecl()) { 126 S.Diag(FuncLoc, 127 diag::err_implied_std_coroutine_traits_promise_type_not_class) 128 << buildElaboratedType(); 129 return QualType(); 130 } 131 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 132 diag::err_coroutine_promise_type_incomplete)) 133 return QualType(); 134 135 return PromiseType; 136 } 137 138 /// Look up the std::coroutine_handle<PromiseType>. 139 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 140 SourceLocation Loc) { 141 if (PromiseType.isNull()) 142 return QualType(); 143 144 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 145 assert(CoroNamespace && "Should already be diagnosed"); 146 147 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 148 Loc, Sema::LookupOrdinaryName); 149 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 150 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 151 << "std::coroutine_handle"; 152 return QualType(); 153 } 154 155 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 156 if (!CoroHandle) { 157 Result.suppressDiagnostics(); 158 // We found something weird. Complain about the first thing we found. 159 NamedDecl *Found = *Result.begin(); 160 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 161 return QualType(); 162 } 163 164 // Form template argument list for coroutine_handle<Promise>. 165 TemplateArgumentListInfo Args(Loc, Loc); 166 Args.addArgument(TemplateArgumentLoc( 167 TemplateArgument(PromiseType), 168 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 169 170 // Build the template-id. 171 QualType CoroHandleType = 172 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 173 if (CoroHandleType.isNull()) 174 return QualType(); 175 if (S.RequireCompleteType(Loc, CoroHandleType, 176 diag::err_coroutine_type_missing_specialization)) 177 return QualType(); 178 179 return CoroHandleType; 180 } 181 182 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 183 StringRef Keyword) { 184 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 185 // a function body. 186 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 187 // appear in a default argument." But the diagnostic QoI here could be 188 // improved to inform the user that default arguments specifically are not 189 // allowed. 190 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 191 if (!FD) { 192 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 193 ? diag::err_coroutine_objc_method 194 : diag::err_coroutine_outside_function) << Keyword; 195 return false; 196 } 197 198 // An enumeration for mapping the diagnostic type to the correct diagnostic 199 // selection index. 200 enum InvalidFuncDiag { 201 DiagCtor = 0, 202 DiagDtor, 203 DiagMain, 204 DiagConstexpr, 205 DiagAutoRet, 206 DiagVarargs, 207 DiagConsteval, 208 }; 209 bool Diagnosed = false; 210 auto DiagInvalid = [&](InvalidFuncDiag ID) { 211 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 212 Diagnosed = true; 213 return false; 214 }; 215 216 // Diagnose when a constructor, destructor 217 // or the function 'main' are declared as a coroutine. 218 auto *MD = dyn_cast<CXXMethodDecl>(FD); 219 // [class.ctor]p11: "A constructor shall not be a coroutine." 220 if (MD && isa<CXXConstructorDecl>(MD)) 221 return DiagInvalid(DiagCtor); 222 // [class.dtor]p17: "A destructor shall not be a coroutine." 223 else if (MD && isa<CXXDestructorDecl>(MD)) 224 return DiagInvalid(DiagDtor); 225 // [basic.start.main]p3: "The function main shall not be a coroutine." 226 else if (FD->isMain()) 227 return DiagInvalid(DiagMain); 228 229 // Emit a diagnostics for each of the following conditions which is not met. 230 // [expr.const]p2: "An expression e is a core constant expression unless the 231 // evaluation of e [...] would evaluate one of the following expressions: 232 // [...] an await-expression [...] a yield-expression." 233 if (FD->isConstexpr()) 234 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 235 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 236 // placeholder type shall not be a coroutine." 237 if (FD->getReturnType()->isUndeducedType()) 238 DiagInvalid(DiagAutoRet); 239 // [dcl.fct.def.coroutine]p1 240 // The parameter-declaration-clause of the coroutine shall not terminate with 241 // an ellipsis that is not part of a parameter-declaration. 242 if (FD->isVariadic()) 243 DiagInvalid(DiagVarargs); 244 245 return !Diagnosed; 246 } 247 248 /// Build a call to 'operator co_await' if there is a suitable operator for 249 /// the given expression. 250 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 251 UnresolvedLookupExpr *Lookup) { 252 UnresolvedSet<16> Functions; 253 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 254 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 255 } 256 257 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 258 SourceLocation Loc, Expr *E) { 259 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 260 if (R.isInvalid()) 261 return ExprError(); 262 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 263 cast<UnresolvedLookupExpr>(R.get())); 264 } 265 266 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 267 SourceLocation Loc) { 268 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 269 if (CoroHandleType.isNull()) 270 return ExprError(); 271 272 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 273 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 274 Sema::LookupOrdinaryName); 275 if (!S.LookupQualifiedName(Found, LookupCtx)) { 276 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 277 << "from_address"; 278 return ExprError(); 279 } 280 281 Expr *FramePtr = 282 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 283 284 CXXScopeSpec SS; 285 ExprResult FromAddr = 286 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 287 if (FromAddr.isInvalid()) 288 return ExprError(); 289 290 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 291 } 292 293 struct ReadySuspendResumeResult { 294 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 295 Expr *Results[3]; 296 OpaqueValueExpr *OpaqueValue; 297 bool IsInvalid; 298 }; 299 300 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 301 StringRef Name, MultiExprArg Args) { 302 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 303 304 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 305 CXXScopeSpec SS; 306 ExprResult Result = S.BuildMemberReferenceExpr( 307 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 308 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 309 /*Scope=*/nullptr); 310 if (Result.isInvalid()) 311 return ExprError(); 312 313 // We meant exactly what we asked for. No need for typo correction. 314 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 315 S.clearDelayedTypo(TE); 316 S.Diag(Loc, diag::err_no_member) 317 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 318 << Base->getSourceRange(); 319 return ExprError(); 320 } 321 322 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); 323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr); 324 } 325 326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 327 // on its address. This is to enable the support for coroutine-handle 328 // returning await_suspend that results in a guaranteed tail call to the target 329 // coroutine. 330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 331 SourceLocation Loc) { 332 if (RetType->isReferenceType()) 333 return nullptr; 334 Type const *T = RetType.getTypePtr(); 335 if (!T->isClassType() && !T->isStructureType()) 336 return nullptr; 337 338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 340 // a private function in SemaExprCXX.cpp 341 342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 343 if (AddressExpr.isInvalid()) 344 return nullptr; 345 346 Expr *JustAddress = AddressExpr.get(); 347 348 // FIXME: Without optimizations, the temporary result from `await_suspend()` 349 // may be put on the coroutine frame since the coroutine frame constructor 350 // will think the temporary variable will escape from the 351 // `coroutine_handle<>::address()` call. This is problematic since the 352 // coroutine should be considered to be suspended after it enters 353 // `await_suspend` so it shouldn't access/update the coroutine frame after 354 // that. 355 // 356 // See https://github.com/llvm/llvm-project/issues/65054 for the report. 357 // 358 // The long term solution may wrap the whole logic about `await-suspend` 359 // into a standalone function. This is similar to the proposed solution 360 // in tryMarkAwaitSuspendNoInline. See the comments there for details. 361 // 362 // The short term solution here is to mark `coroutine_handle<>::address()` 363 // function as always-inline so that the coroutine frame constructor won't 364 // think the temporary result is escaped incorrectly. 365 if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee()) 366 if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>()) 367 FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(), 368 FD->getLocation())); 369 370 // Check that the type of AddressExpr is void* 371 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 372 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 373 diag::warn_coroutine_handle_address_invalid_return_type) 374 << JustAddress->getType(); 375 376 // Clean up temporary objects so that they don't live across suspension points 377 // unnecessarily. We choose to clean up before the call to 378 // __builtin_coro_resume so that the cleanup code are not inserted in-between 379 // the resume call and return instruction, which would interfere with the 380 // musttail call contract. 381 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); 382 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, 383 JustAddress); 384 } 385 386 /// The await_suspend call performed by co_await is essentially asynchronous 387 /// to the execution of the coroutine. Inlining it normally into an unsplit 388 /// coroutine can cause miscompilation because the coroutine CFG misrepresents 389 /// the true control flow of the program: things that happen in the 390 /// await_suspend are not guaranteed to happen prior to the resumption of the 391 /// coroutine, and things that happen after the resumption of the coroutine 392 /// (including its exit and the potential deallocation of the coroutine frame) 393 /// are not guaranteed to happen only after the end of await_suspend. 394 /// 395 /// See https://github.com/llvm/llvm-project/issues/56301 and 396 /// https://reviews.llvm.org/D157070 for the example and the full discussion. 397 /// 398 /// The short-term solution to this problem is to mark the call as uninlinable. 399 /// But we don't want to do this if the call is known to be trivial, which is 400 /// very common. 401 /// 402 /// The long-term solution may introduce patterns like: 403 /// 404 /// call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle, 405 /// ptr @awaitSuspendFn) 406 /// 407 /// Then it is much easier to perform the safety analysis in the middle end. 408 /// If it is safe to inline the call to awaitSuspend, we can replace it in the 409 /// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass. 410 static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter, 411 CallExpr *AwaitSuspend) { 412 // The method here to extract the awaiter decl is not precise. 413 // This is intentional. Since it is hard to perform the analysis in the 414 // frontend due to the complexity of C++'s type systems. 415 // And we prefer to perform such analysis in the middle end since it is 416 // easier to implement and more powerful. 417 CXXRecordDecl *AwaiterDecl = 418 Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl(); 419 420 if (AwaiterDecl && AwaiterDecl->field_empty()) 421 return; 422 423 FunctionDecl *FD = AwaitSuspend->getDirectCallee(); 424 425 assert(FD); 426 427 // If the `await_suspend()` function is marked as `always_inline` explicitly, 428 // we should give the user the right to control the codegen. 429 if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>()) 430 return; 431 432 // This is problematic if the user calls the await_suspend standalone. But on 433 // the on hand, it is not incorrect semantically since inlining is not part 434 // of the standard. On the other hand, it is relatively rare to call 435 // the await_suspend function standalone. 436 // 437 // And given we've already had the long-term plan, the current workaround 438 // looks relatively tolerant. 439 FD->addAttr( 440 NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation())); 441 } 442 443 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 444 /// expression. 445 /// The generated AST tries to clean up temporary objects as early as 446 /// possible so that they don't live across suspension points if possible. 447 /// Having temporary objects living across suspension points unnecessarily can 448 /// lead to large frame size, and also lead to memory corruptions if the 449 /// coroutine frame is destroyed after coming back from suspension. This is done 450 /// by wrapping both the await_ready call and the await_suspend call with 451 /// ExprWithCleanups. In the end of this function, we also need to explicitly 452 /// set cleanup state so that the CoawaitExpr is also wrapped with an 453 /// ExprWithCleanups to clean up the awaiter associated with the co_await 454 /// expression. 455 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 456 SourceLocation Loc, Expr *E) { 457 OpaqueValueExpr *Operand = new (S.Context) 458 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 459 460 // Assume valid until we see otherwise. 461 // Further operations are responsible for setting IsInalid to true. 462 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 463 464 using ACT = ReadySuspendResumeResult::AwaitCallType; 465 466 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 467 MultiExprArg Arg) -> Expr * { 468 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 469 if (Result.isInvalid()) { 470 Calls.IsInvalid = true; 471 return nullptr; 472 } 473 Calls.Results[CallType] = Result.get(); 474 return Result.get(); 475 }; 476 477 CallExpr *AwaitReady = cast_or_null<CallExpr>( 478 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 479 if (!AwaitReady) 480 return Calls; 481 if (!AwaitReady->getType()->isDependentType()) { 482 // [expr.await]p3 [...] 483 // — await-ready is the expression e.await_ready(), contextually converted 484 // to bool. 485 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 486 if (Conv.isInvalid()) { 487 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 488 diag::note_await_ready_no_bool_conversion); 489 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 490 << AwaitReady->getDirectCallee() << E->getSourceRange(); 491 Calls.IsInvalid = true; 492 } else 493 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 494 } 495 496 ExprResult CoroHandleRes = 497 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 498 if (CoroHandleRes.isInvalid()) { 499 Calls.IsInvalid = true; 500 return Calls; 501 } 502 Expr *CoroHandle = CoroHandleRes.get(); 503 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 504 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 505 if (!AwaitSuspend) 506 return Calls; 507 if (!AwaitSuspend->getType()->isDependentType()) { 508 // [expr.await]p3 [...] 509 // - await-suspend is the expression e.await_suspend(h), which shall be 510 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 511 // type Z. 512 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 513 514 // We need to mark await_suspend as noinline temporarily. See the comment 515 // of tryMarkAwaitSuspendNoInline for details. 516 tryMarkAwaitSuspendNoInline(S, Operand, AwaitSuspend); 517 518 // Support for coroutine_handle returning await_suspend. 519 if (Expr *TailCallSuspend = 520 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 521 // Note that we don't wrap the expression with ExprWithCleanups here 522 // because that might interfere with tailcall contract (e.g. inserting 523 // clean up instructions in-between tailcall and return). Instead 524 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 525 // call. 526 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 527 else { 528 // non-class prvalues always have cv-unqualified types 529 if (RetType->isReferenceType() || 530 (!RetType->isBooleanType() && !RetType->isVoidType())) { 531 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 532 diag::err_await_suspend_invalid_return_type) 533 << RetType; 534 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 535 << AwaitSuspend->getDirectCallee(); 536 Calls.IsInvalid = true; 537 } else 538 Calls.Results[ACT::ACT_Suspend] = 539 S.MaybeCreateExprWithCleanups(AwaitSuspend); 540 } 541 } 542 543 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 544 545 // Make sure the awaiter object gets a chance to be cleaned up. 546 S.Cleanup.setExprNeedsCleanups(true); 547 548 return Calls; 549 } 550 551 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 552 SourceLocation Loc, StringRef Name, 553 MultiExprArg Args) { 554 555 // Form a reference to the promise. 556 ExprResult PromiseRef = S.BuildDeclRefExpr( 557 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 558 if (PromiseRef.isInvalid()) 559 return ExprError(); 560 561 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 562 } 563 564 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 565 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 566 auto *FD = cast<FunctionDecl>(CurContext); 567 bool IsThisDependentType = [&] { 568 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD)) 569 return MD->isImplicitObjectMemberFunction() && 570 MD->getThisType()->isDependentType(); 571 return false; 572 }(); 573 574 QualType T = FD->getType()->isDependentType() || IsThisDependentType 575 ? Context.DependentTy 576 : lookupPromiseType(*this, FD, Loc); 577 if (T.isNull()) 578 return nullptr; 579 580 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 581 &PP.getIdentifierTable().get("__promise"), T, 582 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 583 VD->setImplicit(); 584 CheckVariableDeclarationType(VD); 585 if (VD->isInvalidDecl()) 586 return nullptr; 587 588 auto *ScopeInfo = getCurFunction(); 589 590 // Build a list of arguments, based on the coroutine function's arguments, 591 // that if present will be passed to the promise type's constructor. 592 llvm::SmallVector<Expr *, 4> CtorArgExprs; 593 594 // Add implicit object parameter. 595 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 596 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 597 ExprResult ThisExpr = ActOnCXXThis(Loc); 598 if (ThisExpr.isInvalid()) 599 return nullptr; 600 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 601 if (ThisExpr.isInvalid()) 602 return nullptr; 603 CtorArgExprs.push_back(ThisExpr.get()); 604 } 605 } 606 607 // Add the coroutine function's parameters. 608 auto &Moves = ScopeInfo->CoroutineParameterMoves; 609 for (auto *PD : FD->parameters()) { 610 if (PD->getType()->isDependentType()) 611 continue; 612 613 auto RefExpr = ExprEmpty(); 614 auto Move = Moves.find(PD); 615 assert(Move != Moves.end() && 616 "Coroutine function parameter not inserted into move map"); 617 // If a reference to the function parameter exists in the coroutine 618 // frame, use that reference. 619 auto *MoveDecl = 620 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 621 RefExpr = 622 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 623 ExprValueKind::VK_LValue, FD->getLocation()); 624 if (RefExpr.isInvalid()) 625 return nullptr; 626 CtorArgExprs.push_back(RefExpr.get()); 627 } 628 629 // If we have a non-zero number of constructor arguments, try to use them. 630 // Otherwise, fall back to the promise type's default constructor. 631 if (!CtorArgExprs.empty()) { 632 // Create an initialization sequence for the promise type using the 633 // constructor arguments, wrapped in a parenthesized list expression. 634 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 635 CtorArgExprs, FD->getLocation()); 636 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 637 InitializationKind Kind = InitializationKind::CreateForInit( 638 VD->getLocation(), /*DirectInit=*/true, PLE); 639 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 640 /*TopLevelOfInitList=*/false, 641 /*TreatUnavailableAsInvalid=*/false); 642 643 // [dcl.fct.def.coroutine]5.7 644 // promise-constructor-arguments is determined as follows: overload 645 // resolution is performed on a promise constructor call created by 646 // assembling an argument list q_1 ... q_n . If a viable constructor is 647 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 648 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 649 if (InitSeq) { 650 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 651 if (Result.isInvalid()) { 652 VD->setInvalidDecl(); 653 } else if (Result.get()) { 654 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 655 VD->setInitStyle(VarDecl::CallInit); 656 CheckCompleteVariableDeclaration(VD); 657 } 658 } else 659 ActOnUninitializedDecl(VD); 660 } else 661 ActOnUninitializedDecl(VD); 662 663 FD->addDecl(VD); 664 return VD; 665 } 666 667 /// Check that this is a context in which a coroutine suspension can appear. 668 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 669 StringRef Keyword, 670 bool IsImplicit = false) { 671 if (!isValidCoroutineContext(S, Loc, Keyword)) 672 return nullptr; 673 674 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 675 676 auto *ScopeInfo = S.getCurFunction(); 677 assert(ScopeInfo && "missing function scope for function"); 678 679 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 680 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 681 682 if (ScopeInfo->CoroutinePromise) 683 return ScopeInfo; 684 685 if (!S.buildCoroutineParameterMoves(Loc)) 686 return nullptr; 687 688 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 689 if (!ScopeInfo->CoroutinePromise) 690 return nullptr; 691 692 return ScopeInfo; 693 } 694 695 /// Recursively check \p E and all its children to see if any call target 696 /// (including constructor call) is declared noexcept. Also any value returned 697 /// from the call has a noexcept destructor. 698 static void checkNoThrow(Sema &S, const Stmt *E, 699 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 700 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 701 // In the case of dtor, the call to dtor is implicit and hence we should 702 // pass nullptr to canCalleeThrow. 703 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 704 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 705 // co_await promise.final_suspend() could end up calling 706 // __builtin_coro_resume for symmetric transfer if await_suspend() 707 // returns a handle. In that case, even __builtin_coro_resume is not 708 // declared as noexcept and may throw, it does not throw _into_ the 709 // coroutine that just suspended, but rather throws back out from 710 // whoever called coroutine_handle::resume(), hence we claim that 711 // logically it does not throw. 712 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 713 return; 714 } 715 if (ThrowingDecls.empty()) { 716 // [dcl.fct.def.coroutine]p15 717 // The expression co_await promise.final_suspend() shall not be 718 // potentially-throwing ([except.spec]). 719 // 720 // First time seeing an error, emit the error message. 721 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 722 diag::err_coroutine_promise_final_suspend_requires_nothrow); 723 } 724 ThrowingDecls.insert(D); 725 } 726 }; 727 728 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 729 CXXConstructorDecl *Ctor = CE->getConstructor(); 730 checkDeclNoexcept(Ctor); 731 // Check the corresponding destructor of the constructor. 732 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 733 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 734 if (CE->isTypeDependent()) 735 return; 736 737 checkDeclNoexcept(CE->getCalleeDecl()); 738 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 739 // Check the destructor of the call return type, if any. 740 if (ReturnType.isDestructedType() == 741 QualType::DestructionKind::DK_cxx_destructor) { 742 const auto *T = 743 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 744 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 745 /*IsDtor=*/true); 746 } 747 } else 748 for (const auto *Child : E->children()) { 749 if (!Child) 750 continue; 751 checkNoThrow(S, Child, ThrowingDecls); 752 } 753 } 754 755 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 756 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 757 // We first collect all declarations that should not throw but not declared 758 // with noexcept. We then sort them based on the location before printing. 759 // This is to avoid emitting the same note multiple times on the same 760 // declaration, and also provide a deterministic order for the messages. 761 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 762 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 763 ThrowingDecls.end()}; 764 sort(SortedDecls, [](const Decl *A, const Decl *B) { 765 return A->getEndLoc() < B->getEndLoc(); 766 }); 767 for (const auto *D : SortedDecls) { 768 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 769 } 770 return ThrowingDecls.empty(); 771 } 772 773 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 774 StringRef Keyword) { 775 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 776 return false; 777 auto *ScopeInfo = getCurFunction(); 778 assert(ScopeInfo->CoroutinePromise); 779 780 // If we have existing coroutine statements then we have already built 781 // the initial and final suspend points. 782 if (!ScopeInfo->NeedsCoroutineSuspends) 783 return true; 784 785 ScopeInfo->setNeedsCoroutineSuspends(false); 786 787 auto *Fn = cast<FunctionDecl>(CurContext); 788 SourceLocation Loc = Fn->getLocation(); 789 // Build the initial suspend point 790 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 791 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 792 Loc, Name, std::nullopt); 793 if (Operand.isInvalid()) 794 return StmtError(); 795 ExprResult Suspend = 796 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 797 if (Suspend.isInvalid()) 798 return StmtError(); 799 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 800 /*IsImplicit*/ true); 801 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 802 if (Suspend.isInvalid()) { 803 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 804 << ((Name == "initial_suspend") ? 0 : 1); 805 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 806 return StmtError(); 807 } 808 return cast<Stmt>(Suspend.get()); 809 }; 810 811 StmtResult InitSuspend = buildSuspends("initial_suspend"); 812 if (InitSuspend.isInvalid()) 813 return true; 814 815 StmtResult FinalSuspend = buildSuspends("final_suspend"); 816 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 817 return true; 818 819 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 820 821 return true; 822 } 823 824 // Recursively walks up the scope hierarchy until either a 'catch' or a function 825 // scope is found, whichever comes first. 826 static bool isWithinCatchScope(Scope *S) { 827 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 828 // lambdas that use 'co_await' are allowed. The loop below ends when a 829 // function scope is found in order to ensure the following behavior: 830 // 831 // void foo() { // <- function scope 832 // try { // 833 // co_await x; // <- 'co_await' is OK within a function scope 834 // } catch { // <- catch scope 835 // co_await x; // <- 'co_await' is not OK within a catch scope 836 // []() { // <- function scope 837 // co_await x; // <- 'co_await' is OK within a function scope 838 // }(); 839 // } 840 // } 841 while (S && !S->isFunctionScope()) { 842 if (S->isCatchScope()) 843 return true; 844 S = S->getParent(); 845 } 846 return false; 847 } 848 849 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 850 // a *potentially evaluated* expression within the compound-statement of a 851 // function-body *outside of a handler* [...] A context within a function 852 // where an await-expression can appear is called a suspension context of the 853 // function." 854 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 855 StringRef Keyword) { 856 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 857 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 858 // \c sizeof. 859 if (S.isUnevaluatedContext()) { 860 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 861 return false; 862 } 863 864 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 865 if (isWithinCatchScope(S.getCurScope())) { 866 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 867 return false; 868 } 869 870 return true; 871 } 872 873 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 874 if (!checkSuspensionContext(*this, Loc, "co_await")) 875 return ExprError(); 876 877 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 878 CorrectDelayedTyposInExpr(E); 879 return ExprError(); 880 } 881 882 if (E->hasPlaceholderType()) { 883 ExprResult R = CheckPlaceholderExpr(E); 884 if (R.isInvalid()) return ExprError(); 885 E = R.get(); 886 } 887 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 888 if (Lookup.isInvalid()) 889 return ExprError(); 890 return BuildUnresolvedCoawaitExpr(Loc, E, 891 cast<UnresolvedLookupExpr>(Lookup.get())); 892 } 893 894 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 895 DeclarationName OpName = 896 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 897 LookupResult Operators(*this, OpName, SourceLocation(), 898 Sema::LookupOperatorName); 899 LookupName(Operators, S); 900 901 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 902 const auto &Functions = Operators.asUnresolvedSet(); 903 bool IsOverloaded = 904 Functions.size() > 1 || 905 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 906 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 907 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 908 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, 909 Functions.begin(), Functions.end()); 910 assert(CoawaitOp); 911 return CoawaitOp; 912 } 913 914 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 915 // DependentCoawaitExpr if needed. 916 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 917 UnresolvedLookupExpr *Lookup) { 918 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 919 if (!FSI) 920 return ExprError(); 921 922 if (Operand->hasPlaceholderType()) { 923 ExprResult R = CheckPlaceholderExpr(Operand); 924 if (R.isInvalid()) 925 return ExprError(); 926 Operand = R.get(); 927 } 928 929 auto *Promise = FSI->CoroutinePromise; 930 if (Promise->getType()->isDependentType()) { 931 Expr *Res = new (Context) 932 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 933 return Res; 934 } 935 936 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 937 auto *Transformed = Operand; 938 if (lookupMember(*this, "await_transform", RD, Loc)) { 939 ExprResult R = 940 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 941 if (R.isInvalid()) { 942 Diag(Loc, 943 diag::note_coroutine_promise_implicit_await_transform_required_here) 944 << Operand->getSourceRange(); 945 return ExprError(); 946 } 947 Transformed = R.get(); 948 } 949 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 950 if (Awaiter.isInvalid()) 951 return ExprError(); 952 953 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 954 } 955 956 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 957 Expr *Awaiter, bool IsImplicit) { 958 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 959 if (!Coroutine) 960 return ExprError(); 961 962 if (Awaiter->hasPlaceholderType()) { 963 ExprResult R = CheckPlaceholderExpr(Awaiter); 964 if (R.isInvalid()) return ExprError(); 965 Awaiter = R.get(); 966 } 967 968 if (Awaiter->getType()->isDependentType()) { 969 Expr *Res = new (Context) 970 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 971 return Res; 972 } 973 974 // If the expression is a temporary, materialize it as an lvalue so that we 975 // can use it multiple times. 976 if (Awaiter->isPRValue()) 977 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 978 979 // The location of the `co_await` token cannot be used when constructing 980 // the member call expressions since it's before the location of `Expr`, which 981 // is used as the start of the member call expression. 982 SourceLocation CallLoc = Awaiter->getExprLoc(); 983 984 // Build the await_ready, await_suspend, await_resume calls. 985 ReadySuspendResumeResult RSS = 986 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 987 if (RSS.IsInvalid) 988 return ExprError(); 989 990 Expr *Res = new (Context) 991 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 992 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 993 994 return Res; 995 } 996 997 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 998 if (!checkSuspensionContext(*this, Loc, "co_yield")) 999 return ExprError(); 1000 1001 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 1002 CorrectDelayedTyposInExpr(E); 1003 return ExprError(); 1004 } 1005 1006 // Build yield_value call. 1007 ExprResult Awaitable = buildPromiseCall( 1008 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 1009 if (Awaitable.isInvalid()) 1010 return ExprError(); 1011 1012 // Build 'operator co_await' call. 1013 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 1014 if (Awaitable.isInvalid()) 1015 return ExprError(); 1016 1017 return BuildCoyieldExpr(Loc, Awaitable.get()); 1018 } 1019 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 1020 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 1021 if (!Coroutine) 1022 return ExprError(); 1023 1024 if (E->hasPlaceholderType()) { 1025 ExprResult R = CheckPlaceholderExpr(E); 1026 if (R.isInvalid()) return ExprError(); 1027 E = R.get(); 1028 } 1029 1030 Expr *Operand = E; 1031 1032 if (E->getType()->isDependentType()) { 1033 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 1034 return Res; 1035 } 1036 1037 // If the expression is a temporary, materialize it as an lvalue so that we 1038 // can use it multiple times. 1039 if (E->isPRValue()) 1040 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 1041 1042 // Build the await_ready, await_suspend, await_resume calls. 1043 ReadySuspendResumeResult RSS = buildCoawaitCalls( 1044 *this, Coroutine->CoroutinePromise, Loc, E); 1045 if (RSS.IsInvalid) 1046 return ExprError(); 1047 1048 Expr *Res = 1049 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 1050 RSS.Results[2], RSS.OpaqueValue); 1051 1052 return Res; 1053 } 1054 1055 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 1056 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 1057 CorrectDelayedTyposInExpr(E); 1058 return StmtError(); 1059 } 1060 return BuildCoreturnStmt(Loc, E); 1061 } 1062 1063 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 1064 bool IsImplicit) { 1065 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 1066 if (!FSI) 1067 return StmtError(); 1068 1069 if (E && E->hasPlaceholderType() && 1070 !E->hasPlaceholderType(BuiltinType::Overload)) { 1071 ExprResult R = CheckPlaceholderExpr(E); 1072 if (R.isInvalid()) return StmtError(); 1073 E = R.get(); 1074 } 1075 1076 VarDecl *Promise = FSI->CoroutinePromise; 1077 ExprResult PC; 1078 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 1079 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 1080 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 1081 } else { 1082 E = MakeFullDiscardedValueExpr(E).get(); 1083 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 1084 } 1085 if (PC.isInvalid()) 1086 return StmtError(); 1087 1088 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1089 1090 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1091 return Res; 1092 } 1093 1094 /// Look up the std::nothrow object. 1095 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1096 NamespaceDecl *Std = S.getStdNamespace(); 1097 assert(Std && "Should already be diagnosed"); 1098 1099 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1100 Sema::LookupOrdinaryName); 1101 if (!S.LookupQualifiedName(Result, Std)) { 1102 // <coroutine> is not requred to include <new>, so we couldn't omit 1103 // the check here. 1104 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1105 return nullptr; 1106 } 1107 1108 auto *VD = Result.getAsSingle<VarDecl>(); 1109 if (!VD) { 1110 Result.suppressDiagnostics(); 1111 // We found something weird. Complain about the first thing we found. 1112 NamedDecl *Found = *Result.begin(); 1113 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1114 return nullptr; 1115 } 1116 1117 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1118 if (DR.isInvalid()) 1119 return nullptr; 1120 1121 return DR.get(); 1122 } 1123 1124 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1125 SourceLocation Loc) { 1126 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1127 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1128 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1129 } 1130 1131 // Find an appropriate delete for the promise. 1132 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1133 FunctionDecl *&OperatorDelete) { 1134 DeclarationName DeleteName = 1135 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1136 1137 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1138 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1139 1140 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1141 1142 // [dcl.fct.def.coroutine]p12 1143 // The deallocation function's name is looked up by searching for it in the 1144 // scope of the promise type. If nothing is found, a search is performed in 1145 // the global scope. 1146 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1147 /*Diagnose*/ true, /*WantSize*/ true, 1148 /*WantAligned*/ Overaligned)) 1149 return false; 1150 1151 // [dcl.fct.def.coroutine]p12 1152 // If both a usual deallocation function with only a pointer parameter and a 1153 // usual deallocation function with both a pointer parameter and a size 1154 // parameter are found, then the selected deallocation function shall be the 1155 // one with two parameters. Otherwise, the selected deallocation function 1156 // shall be the function with one parameter. 1157 if (!OperatorDelete) { 1158 // Look for a global declaration. 1159 // Coroutines can always provide their required size. 1160 const bool CanProvideSize = true; 1161 // Sema::FindUsualDeallocationFunction will try to find the one with two 1162 // parameters first. It will return the deallocation function with one 1163 // parameter if failed. 1164 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1165 Overaligned, DeleteName); 1166 1167 if (!OperatorDelete) 1168 return false; 1169 } 1170 1171 S.MarkFunctionReferenced(Loc, OperatorDelete); 1172 return true; 1173 } 1174 1175 1176 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1177 FunctionScopeInfo *Fn = getCurFunction(); 1178 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1179 if (!Body) { 1180 assert(FD->isInvalidDecl() && 1181 "a null body is only allowed for invalid declarations"); 1182 return; 1183 } 1184 // We have a function that uses coroutine keywords, but we failed to build 1185 // the promise type. 1186 if (!Fn->CoroutinePromise) 1187 return FD->setInvalidDecl(); 1188 1189 if (isa<CoroutineBodyStmt>(Body)) { 1190 // Nothing todo. the body is already a transformed coroutine body statement. 1191 return; 1192 } 1193 1194 // The always_inline attribute doesn't reliably apply to a coroutine, 1195 // because the coroutine will be split into pieces and some pieces 1196 // might be called indirectly, as in a virtual call. Even the ramp 1197 // function cannot be inlined at -O0, due to pipeline ordering 1198 // problems (see https://llvm.org/PR53413). Tell the user about it. 1199 if (FD->hasAttr<AlwaysInlineAttr>()) 1200 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1201 1202 // The design of coroutines means we cannot allow use of VLAs within one, so 1203 // diagnose if we've seen a VLA in the body of this function. 1204 if (Fn->FirstVLALoc.isValid()) 1205 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported); 1206 1207 // [stmt.return.coroutine]p1: 1208 // A coroutine shall not enclose a return statement ([stmt.return]). 1209 if (Fn->FirstReturnLoc.isValid()) { 1210 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1211 "first coroutine location not set"); 1212 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1213 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1214 << Fn->getFirstCoroutineStmtKeyword(); 1215 } 1216 1217 // Coroutines will get splitted into pieces. The GNU address of label 1218 // extension wouldn't be meaningful in coroutines. 1219 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1220 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1221 1222 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1223 if (Builder.isInvalid() || !Builder.buildStatements()) 1224 return FD->setInvalidDecl(); 1225 1226 // Build body for the coroutine wrapper statement. 1227 Body = CoroutineBodyStmt::Create(Context, Builder); 1228 } 1229 1230 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1231 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1232 return CS; 1233 1234 // The body of the coroutine may be a try statement if it is in 1235 // 'function-try-block' syntax. Here we wrap it into a compound 1236 // statement for consistency. 1237 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1238 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1239 SourceLocation(), SourceLocation()); 1240 } 1241 1242 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1243 sema::FunctionScopeInfo &Fn, 1244 Stmt *Body) 1245 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1246 IsPromiseDependentType( 1247 !Fn.CoroutinePromise || 1248 Fn.CoroutinePromise->getType()->isDependentType()) { 1249 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1250 1251 for (auto KV : Fn.CoroutineParameterMoves) 1252 this->ParamMovesVector.push_back(KV.second); 1253 this->ParamMoves = this->ParamMovesVector; 1254 1255 if (!IsPromiseDependentType) { 1256 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1257 assert(PromiseRecordDecl && "Type should have already been checked"); 1258 } 1259 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1260 } 1261 1262 bool CoroutineStmtBuilder::buildStatements() { 1263 assert(this->IsValid && "coroutine already invalid"); 1264 this->IsValid = makeReturnObject(); 1265 if (this->IsValid && !IsPromiseDependentType) 1266 buildDependentStatements(); 1267 return this->IsValid; 1268 } 1269 1270 bool CoroutineStmtBuilder::buildDependentStatements() { 1271 assert(this->IsValid && "coroutine already invalid"); 1272 assert(!this->IsPromiseDependentType && 1273 "coroutine cannot have a dependent promise type"); 1274 this->IsValid = makeOnException() && makeOnFallthrough() && 1275 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1276 makeNewAndDeleteExpr(); 1277 return this->IsValid; 1278 } 1279 1280 bool CoroutineStmtBuilder::makePromiseStmt() { 1281 // Form a declaration statement for the promise declaration, so that AST 1282 // visitors can more easily find it. 1283 StmtResult PromiseStmt = 1284 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1285 if (PromiseStmt.isInvalid()) 1286 return false; 1287 1288 this->Promise = PromiseStmt.get(); 1289 return true; 1290 } 1291 1292 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1293 if (Fn.hasInvalidCoroutineSuspends()) 1294 return false; 1295 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1296 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1297 return true; 1298 } 1299 1300 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1301 CXXRecordDecl *PromiseRecordDecl, 1302 FunctionScopeInfo &Fn) { 1303 auto Loc = E->getExprLoc(); 1304 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1305 auto *Decl = DeclRef->getDecl(); 1306 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1307 if (Method->isStatic()) 1308 return true; 1309 else 1310 Loc = Decl->getLocation(); 1311 } 1312 } 1313 1314 S.Diag( 1315 Loc, 1316 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1317 << PromiseRecordDecl; 1318 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1319 << Fn.getFirstCoroutineStmtKeyword(); 1320 return false; 1321 } 1322 1323 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1324 assert(!IsPromiseDependentType && 1325 "cannot make statement while the promise type is dependent"); 1326 1327 // [dcl.fct.def.coroutine]p10 1328 // If a search for the name get_return_object_on_allocation_failure in 1329 // the scope of the promise type ([class.member.lookup]) finds any 1330 // declarations, then the result of a call to an allocation function used to 1331 // obtain storage for the coroutine state is assumed to return nullptr if it 1332 // fails to obtain storage, ... If the allocation function returns nullptr, 1333 // ... and the return value is obtained by a call to 1334 // T::get_return_object_on_allocation_failure(), where T is the 1335 // promise type. 1336 DeclarationName DN = 1337 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1338 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1339 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1340 return true; 1341 1342 CXXScopeSpec SS; 1343 ExprResult DeclNameExpr = 1344 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1345 if (DeclNameExpr.isInvalid()) 1346 return false; 1347 1348 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1349 return false; 1350 1351 ExprResult ReturnObjectOnAllocationFailure = 1352 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1353 if (ReturnObjectOnAllocationFailure.isInvalid()) 1354 return false; 1355 1356 StmtResult ReturnStmt = 1357 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1358 if (ReturnStmt.isInvalid()) { 1359 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1360 << DN; 1361 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1362 << Fn.getFirstCoroutineStmtKeyword(); 1363 return false; 1364 } 1365 1366 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1367 return true; 1368 } 1369 1370 // Collect placement arguments for allocation function of coroutine FD. 1371 // Return true if we collect placement arguments succesfully. Return false, 1372 // otherwise. 1373 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1374 SmallVectorImpl<Expr *> &PlacementArgs) { 1375 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1376 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 1377 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1378 if (ThisExpr.isInvalid()) 1379 return false; 1380 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1381 if (ThisExpr.isInvalid()) 1382 return false; 1383 PlacementArgs.push_back(ThisExpr.get()); 1384 } 1385 } 1386 1387 for (auto *PD : FD.parameters()) { 1388 if (PD->getType()->isDependentType()) 1389 continue; 1390 1391 // Build a reference to the parameter. 1392 auto PDLoc = PD->getLocation(); 1393 ExprResult PDRefExpr = 1394 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1395 ExprValueKind::VK_LValue, PDLoc); 1396 if (PDRefExpr.isInvalid()) 1397 return false; 1398 1399 PlacementArgs.push_back(PDRefExpr.get()); 1400 } 1401 1402 return true; 1403 } 1404 1405 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1406 // Form and check allocation and deallocation calls. 1407 assert(!IsPromiseDependentType && 1408 "cannot make statement while the promise type is dependent"); 1409 QualType PromiseType = Fn.CoroutinePromise->getType(); 1410 1411 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1412 return false; 1413 1414 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1415 1416 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1417 // parameter list composed of the requested size of the coroutine state being 1418 // allocated, followed by the coroutine function's arguments. If a matching 1419 // allocation function exists, use it. Otherwise, use an allocation function 1420 // that just takes the requested size. 1421 // 1422 // [dcl.fct.def.coroutine]p9 1423 // An implementation may need to allocate additional storage for a 1424 // coroutine. 1425 // This storage is known as the coroutine state and is obtained by calling a 1426 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1427 // allocation function's name is looked up by searching for it in the scope of 1428 // the promise type. 1429 // - If any declarations are found, overload resolution is performed on a 1430 // function call created by assembling an argument list. The first argument is 1431 // the amount of space requested, and has type std::size_t. The 1432 // lvalues p1 ... pn are the succeeding arguments. 1433 // 1434 // ...where "p1 ... pn" are defined earlier as: 1435 // 1436 // [dcl.fct.def.coroutine]p3 1437 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1438 // Pn>` 1439 // , where R is the return type of the function, and `P1, ..., Pn` are the 1440 // sequence of types of the non-object function parameters, preceded by the 1441 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1442 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1443 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1444 // the i-th non-object function parameter for a non-static member function, 1445 // and p_i denotes the i-th function parameter otherwise. For a non-static 1446 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1447 // lvalue that denotes the parameter copy corresponding to p_i. 1448 1449 FunctionDecl *OperatorNew = nullptr; 1450 SmallVector<Expr *, 1> PlacementArgs; 1451 1452 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1453 DeclarationName NewName = 1454 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1455 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1456 1457 if (PromiseType->isRecordType()) 1458 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1459 1460 return !R.empty() && !R.isAmbiguous(); 1461 }(); 1462 1463 // Helper function to indicate whether the last lookup found the aligned 1464 // allocation function. 1465 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1466 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1467 Sema::AFS_Both, 1468 bool WithoutPlacementArgs = false, 1469 bool ForceNonAligned = false) { 1470 // [dcl.fct.def.coroutine]p9 1471 // The allocation function's name is looked up by searching for it in the 1472 // scope of the promise type. 1473 // - If any declarations are found, ... 1474 // - If no declarations are found in the scope of the promise type, a search 1475 // is performed in the global scope. 1476 if (NewScope == Sema::AFS_Both) 1477 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1478 1479 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1480 FunctionDecl *UnusedResult = nullptr; 1481 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1482 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1483 /*isArray*/ false, PassAlignment, 1484 WithoutPlacementArgs ? MultiExprArg{} 1485 : PlacementArgs, 1486 OperatorNew, UnusedResult, /*Diagnose*/ false); 1487 }; 1488 1489 // We don't expect to call to global operator new with (size, p0, …, pn). 1490 // So if we choose to lookup the allocation function in global scope, we 1491 // shouldn't lookup placement arguments. 1492 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1493 return false; 1494 1495 LookupAllocationFunction(); 1496 1497 if (PromiseContainsNew && !PlacementArgs.empty()) { 1498 // [dcl.fct.def.coroutine]p9 1499 // If no viable function is found ([over.match.viable]), overload 1500 // resolution 1501 // is performed again on a function call created by passing just the amount 1502 // of space required as an argument of type std::size_t. 1503 // 1504 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1505 // Otherwise, overload resolution is performed again on a function call 1506 // created 1507 // by passing the amount of space requested as an argument of type 1508 // std::size_t as the first argument, and the requested alignment as 1509 // an argument of type std:align_val_t as the second argument. 1510 if (!OperatorNew || 1511 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1512 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1513 /*WithoutPlacementArgs*/ true); 1514 } 1515 1516 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1517 // Otherwise, overload resolution is performed again on a function call 1518 // created 1519 // by passing the amount of space requested as an argument of type 1520 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1521 // succeeding arguments. Otherwise, overload resolution is performed again 1522 // on a function call created by passing just the amount of space required as 1523 // an argument of type std::size_t. 1524 // 1525 // So within the proposed change in P2014RO, the priority order of aligned 1526 // allocation functions wiht promise_type is: 1527 // 1528 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1529 // void* operator new( std::size_t, std::align_val_t); 1530 // void* operator new( std::size_t, placement_args... ); 1531 // void* operator new( std::size_t); 1532 1533 // Helper variable to emit warnings. 1534 bool FoundNonAlignedInPromise = false; 1535 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1536 if (!OperatorNew || !PassAlignment) { 1537 FoundNonAlignedInPromise = OperatorNew; 1538 1539 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1540 /*WithoutPlacementArgs*/ false, 1541 /*ForceNonAligned*/ true); 1542 1543 if (!OperatorNew && !PlacementArgs.empty()) 1544 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1545 /*WithoutPlacementArgs*/ true, 1546 /*ForceNonAligned*/ true); 1547 } 1548 1549 bool IsGlobalOverload = 1550 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1551 // If we didn't find a class-local new declaration and non-throwing new 1552 // was is required then we need to lookup the non-throwing global operator 1553 // instead. 1554 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1555 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1556 if (!StdNoThrow) 1557 return false; 1558 PlacementArgs = {StdNoThrow}; 1559 OperatorNew = nullptr; 1560 LookupAllocationFunction(Sema::AFS_Global); 1561 } 1562 1563 // If we found a non-aligned allocation function in the promise_type, 1564 // it indicates the user forgot to update the allocation function. Let's emit 1565 // a warning here. 1566 if (FoundNonAlignedInPromise) { 1567 S.Diag(OperatorNew->getLocation(), 1568 diag::warn_non_aligned_allocation_function) 1569 << &FD; 1570 } 1571 1572 if (!OperatorNew) { 1573 if (PromiseContainsNew) 1574 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1575 else if (RequiresNoThrowAlloc) 1576 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1577 << &FD << S.getLangOpts().CoroAlignedAllocation; 1578 1579 return false; 1580 } 1581 1582 if (RequiresNoThrowAlloc) { 1583 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1584 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1585 S.Diag(OperatorNew->getLocation(), 1586 diag::err_coroutine_promise_new_requires_nothrow) 1587 << OperatorNew; 1588 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1589 << OperatorNew; 1590 return false; 1591 } 1592 } 1593 1594 FunctionDecl *OperatorDelete = nullptr; 1595 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1596 // FIXME: We should add an error here. According to: 1597 // [dcl.fct.def.coroutine]p12 1598 // If no usual deallocation function is found, the program is ill-formed. 1599 return false; 1600 } 1601 1602 Expr *FramePtr = 1603 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1604 1605 Expr *FrameSize = 1606 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1607 1608 Expr *FrameAlignment = nullptr; 1609 1610 if (S.getLangOpts().CoroAlignedAllocation) { 1611 FrameAlignment = 1612 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1613 1614 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1615 if (!AlignValTy) 1616 return false; 1617 1618 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1619 FrameAlignment, SourceRange(Loc, Loc), 1620 SourceRange(Loc, Loc)) 1621 .get(); 1622 } 1623 1624 // Make new call. 1625 ExprResult NewRef = 1626 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1627 if (NewRef.isInvalid()) 1628 return false; 1629 1630 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1631 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1632 NewArgs.push_back(FrameAlignment); 1633 1634 if (OperatorNew->getNumParams() > NewArgs.size()) 1635 llvm::append_range(NewArgs, PlacementArgs); 1636 1637 ExprResult NewExpr = 1638 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1639 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1640 if (NewExpr.isInvalid()) 1641 return false; 1642 1643 // Make delete call. 1644 1645 QualType OpDeleteQualType = OperatorDelete->getType(); 1646 1647 ExprResult DeleteRef = 1648 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1649 if (DeleteRef.isInvalid()) 1650 return false; 1651 1652 Expr *CoroFree = 1653 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1654 1655 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1656 1657 // [dcl.fct.def.coroutine]p12 1658 // The selected deallocation function shall be called with the address of 1659 // the block of storage to be reclaimed as its first argument. If a 1660 // deallocation function with a parameter of type std::size_t is 1661 // used, the size of the block is passed as the corresponding argument. 1662 const auto *OpDeleteType = 1663 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1664 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1665 S.getASTContext().hasSameUnqualifiedType( 1666 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1667 DeleteArgs.push_back(FrameSize); 1668 1669 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1670 // If deallocation function lookup finds a usual deallocation function with 1671 // a pointer parameter, size parameter and alignment parameter then this 1672 // will be the selected deallocation function, otherwise if lookup finds a 1673 // usual deallocation function with both a pointer parameter and a size 1674 // parameter, then this will be the selected deallocation function. 1675 // Otherwise, if lookup finds a usual deallocation function with only a 1676 // pointer parameter, then this will be the selected deallocation 1677 // function. 1678 // 1679 // So we are not forced to pass alignment to the deallocation function. 1680 if (S.getLangOpts().CoroAlignedAllocation && 1681 OpDeleteType->getNumParams() > DeleteArgs.size() && 1682 S.getASTContext().hasSameUnqualifiedType( 1683 OpDeleteType->getParamType(DeleteArgs.size()), 1684 FrameAlignment->getType())) 1685 DeleteArgs.push_back(FrameAlignment); 1686 1687 ExprResult DeleteExpr = 1688 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1689 DeleteExpr = 1690 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1691 if (DeleteExpr.isInvalid()) 1692 return false; 1693 1694 this->Allocate = NewExpr.get(); 1695 this->Deallocate = DeleteExpr.get(); 1696 1697 return true; 1698 } 1699 1700 bool CoroutineStmtBuilder::makeOnFallthrough() { 1701 assert(!IsPromiseDependentType && 1702 "cannot make statement while the promise type is dependent"); 1703 1704 // [dcl.fct.def.coroutine]/p6 1705 // If searches for the names return_void and return_value in the scope of 1706 // the promise type each find any declarations, the program is ill-formed. 1707 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1708 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1709 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1710 // end note] 1711 bool HasRVoid, HasRValue; 1712 LookupResult LRVoid = 1713 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1714 LookupResult LRValue = 1715 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1716 1717 StmtResult Fallthrough; 1718 if (HasRVoid && HasRValue) { 1719 // FIXME Improve this diagnostic 1720 S.Diag(FD.getLocation(), 1721 diag::err_coroutine_promise_incompatible_return_functions) 1722 << PromiseRecordDecl; 1723 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1724 diag::note_member_first_declared_here) 1725 << LRVoid.getLookupName(); 1726 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1727 diag::note_member_first_declared_here) 1728 << LRValue.getLookupName(); 1729 return false; 1730 } else if (!HasRVoid && !HasRValue) { 1731 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1732 // think the coroutine has defined a return_value method. So it might emit 1733 // **false** positive warning. e.g., 1734 // 1735 // promise_without_return_func foo() { 1736 // co_await something(); 1737 // } 1738 // 1739 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1740 // co_return statements, which isn't correct. 1741 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1742 if (Fallthrough.isInvalid()) 1743 return false; 1744 } else if (HasRVoid) { 1745 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1746 /*IsImplicit*/false); 1747 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1748 if (Fallthrough.isInvalid()) 1749 return false; 1750 } 1751 1752 this->OnFallthrough = Fallthrough.get(); 1753 return true; 1754 } 1755 1756 bool CoroutineStmtBuilder::makeOnException() { 1757 // Try to form 'p.unhandled_exception();' 1758 assert(!IsPromiseDependentType && 1759 "cannot make statement while the promise type is dependent"); 1760 1761 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1762 1763 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1764 auto DiagID = 1765 RequireUnhandledException 1766 ? diag::err_coroutine_promise_unhandled_exception_required 1767 : diag:: 1768 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1769 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1770 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1771 << PromiseRecordDecl; 1772 return !RequireUnhandledException; 1773 } 1774 1775 // If exceptions are disabled, don't try to build OnException. 1776 if (!S.getLangOpts().CXXExceptions) 1777 return true; 1778 1779 ExprResult UnhandledException = buildPromiseCall( 1780 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1781 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1782 /*DiscardedValue*/ false); 1783 if (UnhandledException.isInvalid()) 1784 return false; 1785 1786 // Since the body of the coroutine will be wrapped in try-catch, it will 1787 // be incompatible with SEH __try if present in a function. 1788 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1789 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1790 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1791 << Fn.getFirstCoroutineStmtKeyword(); 1792 return false; 1793 } 1794 1795 this->OnException = UnhandledException.get(); 1796 return true; 1797 } 1798 1799 bool CoroutineStmtBuilder::makeReturnObject() { 1800 // [dcl.fct.def.coroutine]p7 1801 // The expression promise.get_return_object() is used to initialize the 1802 // returned reference or prvalue result object of a call to a coroutine. 1803 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1804 "get_return_object", std::nullopt); 1805 if (ReturnObject.isInvalid()) 1806 return false; 1807 1808 this->ReturnValue = ReturnObject.get(); 1809 return true; 1810 } 1811 1812 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1813 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1814 auto *MethodDecl = MbrRef->getMethodDecl(); 1815 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1816 << MethodDecl; 1817 } 1818 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1819 << Fn.getFirstCoroutineStmtKeyword(); 1820 } 1821 1822 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1823 assert(!IsPromiseDependentType && 1824 "cannot make statement while the promise type is dependent"); 1825 assert(this->ReturnValue && "ReturnValue must be already formed"); 1826 1827 QualType const GroType = this->ReturnValue->getType(); 1828 assert(!GroType->isDependentType() && 1829 "get_return_object type must no longer be dependent"); 1830 1831 QualType const FnRetType = FD.getReturnType(); 1832 assert(!FnRetType->isDependentType() && 1833 "get_return_object type must no longer be dependent"); 1834 1835 // The call to get_return_object is sequenced before the call to 1836 // initial_suspend and is invoked at most once, but there are caveats 1837 // regarding on whether the prvalue result object may be initialized 1838 // directly/eager or delayed, depending on the types involved. 1839 // 1840 // More info at https://github.com/cplusplus/papers/issues/1414 1841 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1842 1843 if (FnRetType->isVoidType()) { 1844 ExprResult Res = 1845 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1846 if (Res.isInvalid()) 1847 return false; 1848 1849 if (!GroMatchesRetType) 1850 this->ResultDecl = Res.get(); 1851 return true; 1852 } 1853 1854 if (GroType->isVoidType()) { 1855 // Trigger a nice error message. 1856 InitializedEntity Entity = 1857 InitializedEntity::InitializeResult(Loc, FnRetType); 1858 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1859 noteMemberDeclaredHere(S, ReturnValue, Fn); 1860 return false; 1861 } 1862 1863 StmtResult ReturnStmt; 1864 clang::VarDecl *GroDecl = nullptr; 1865 if (GroMatchesRetType) { 1866 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1867 } else { 1868 GroDecl = VarDecl::Create( 1869 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1870 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1871 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1872 GroDecl->setImplicit(); 1873 1874 S.CheckVariableDeclarationType(GroDecl); 1875 if (GroDecl->isInvalidDecl()) 1876 return false; 1877 1878 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1879 ExprResult Res = 1880 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1881 if (Res.isInvalid()) 1882 return false; 1883 1884 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1885 if (Res.isInvalid()) 1886 return false; 1887 1888 S.AddInitializerToDecl(GroDecl, Res.get(), 1889 /*DirectInit=*/false); 1890 1891 S.FinalizeDeclaration(GroDecl); 1892 1893 // Form a declaration statement for the return declaration, so that AST 1894 // visitors can more easily find it. 1895 StmtResult GroDeclStmt = 1896 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1897 if (GroDeclStmt.isInvalid()) 1898 return false; 1899 1900 this->ResultDecl = GroDeclStmt.get(); 1901 1902 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1903 if (declRef.isInvalid()) 1904 return false; 1905 1906 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1907 } 1908 1909 if (ReturnStmt.isInvalid()) { 1910 noteMemberDeclaredHere(S, ReturnValue, Fn); 1911 return false; 1912 } 1913 1914 if (!GroMatchesRetType && 1915 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1916 GroDecl->setNRVOVariable(true); 1917 1918 this->ReturnStmt = ReturnStmt.get(); 1919 return true; 1920 } 1921 1922 // Create a static_cast\<T&&>(expr). 1923 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1924 if (T.isNull()) 1925 T = E->getType(); 1926 QualType TargetType = S.BuildReferenceType( 1927 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1928 SourceLocation ExprLoc = E->getBeginLoc(); 1929 TypeSourceInfo *TargetLoc = 1930 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1931 1932 return S 1933 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1934 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1935 .get(); 1936 } 1937 1938 /// Build a variable declaration for move parameter. 1939 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1940 IdentifierInfo *II) { 1941 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1942 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1943 TInfo, SC_None); 1944 Decl->setImplicit(); 1945 return Decl; 1946 } 1947 1948 // Build statements that move coroutine function parameters to the coroutine 1949 // frame, and store them on the function scope info. 1950 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1951 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1952 auto *FD = cast<FunctionDecl>(CurContext); 1953 1954 auto *ScopeInfo = getCurFunction(); 1955 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1956 return false; 1957 1958 // [dcl.fct.def.coroutine]p13 1959 // When a coroutine is invoked, after initializing its parameters 1960 // ([expr.call]), a copy is created for each coroutine parameter. For a 1961 // parameter of type cv T, the copy is a variable of type cv T with 1962 // automatic storage duration that is direct-initialized from an xvalue of 1963 // type T referring to the parameter. 1964 for (auto *PD : FD->parameters()) { 1965 if (PD->getType()->isDependentType()) 1966 continue; 1967 1968 // Preserve the referenced state for unused parameter diagnostics. 1969 bool DeclReferenced = PD->isReferenced(); 1970 1971 ExprResult PDRefExpr = 1972 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1973 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1974 1975 PD->setReferenced(DeclReferenced); 1976 1977 if (PDRefExpr.isInvalid()) 1978 return false; 1979 1980 Expr *CExpr = nullptr; 1981 if (PD->getType()->getAsCXXRecordDecl() || 1982 PD->getType()->isRValueReferenceType()) 1983 CExpr = castForMoving(*this, PDRefExpr.get()); 1984 else 1985 CExpr = PDRefExpr.get(); 1986 // [dcl.fct.def.coroutine]p13 1987 // The initialization and destruction of each parameter copy occurs in the 1988 // context of the called coroutine. 1989 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1990 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1991 1992 // Convert decl to a statement. 1993 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1994 if (Stmt.isInvalid()) 1995 return false; 1996 1997 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1998 } 1999 return true; 2000 } 2001 2002 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 2003 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 2004 if (!Res) 2005 return StmtError(); 2006 return Res; 2007 } 2008 2009 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 2010 SourceLocation FuncLoc) { 2011 if (StdCoroutineTraitsCache) 2012 return StdCoroutineTraitsCache; 2013 2014 IdentifierInfo const &TraitIdent = 2015 PP.getIdentifierTable().get("coroutine_traits"); 2016 2017 NamespaceDecl *StdSpace = getStdNamespace(); 2018 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 2019 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 2020 2021 if (!Found) { 2022 // The goggles, we found nothing! 2023 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 2024 << "std::coroutine_traits"; 2025 return nullptr; 2026 } 2027 2028 // coroutine_traits is required to be a class template. 2029 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 2030 if (!StdCoroutineTraitsCache) { 2031 Result.suppressDiagnostics(); 2032 NamedDecl *Found = *Result.begin(); 2033 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 2034 return nullptr; 2035 } 2036 2037 return StdCoroutineTraitsCache; 2038 } 2039