1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ constraints and concepts. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaConcept.h" 14 #include "TreeTransform.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/ExprConcepts.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/Basic/OperatorPrecedence.h" 20 #include "clang/Sema/EnterExpressionEvaluationContext.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Overload.h" 23 #include "clang/Sema/ScopeInfo.h" 24 #include "clang/Sema/Sema.h" 25 #include "clang/Sema/SemaDiagnostic.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "clang/Sema/Template.h" 28 #include "clang/Sema/TemplateDeduction.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/PointerUnion.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <optional> 33 34 using namespace clang; 35 using namespace sema; 36 37 namespace { 38 class LogicalBinOp { 39 SourceLocation Loc; 40 OverloadedOperatorKind Op = OO_None; 41 const Expr *LHS = nullptr; 42 const Expr *RHS = nullptr; 43 44 public: 45 LogicalBinOp(const Expr *E) { 46 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 47 Op = BinaryOperator::getOverloadedOperator(BO->getOpcode()); 48 LHS = BO->getLHS(); 49 RHS = BO->getRHS(); 50 Loc = BO->getExprLoc(); 51 } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) { 52 // If OO is not || or && it might not have exactly 2 arguments. 53 if (OO->getNumArgs() == 2) { 54 Op = OO->getOperator(); 55 LHS = OO->getArg(0); 56 RHS = OO->getArg(1); 57 Loc = OO->getOperatorLoc(); 58 } 59 } 60 } 61 62 bool isAnd() const { return Op == OO_AmpAmp; } 63 bool isOr() const { return Op == OO_PipePipe; } 64 explicit operator bool() const { return isAnd() || isOr(); } 65 66 const Expr *getLHS() const { return LHS; } 67 const Expr *getRHS() const { return RHS; } 68 69 ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const { 70 return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS())); 71 } 72 73 ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS, 74 ExprResult RHS) const { 75 assert((isAnd() || isOr()) && "Not the right kind of op?"); 76 assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?"); 77 78 if (!LHS.isUsable() || !RHS.isUsable()) 79 return ExprEmpty(); 80 81 // We should just be able to 'normalize' these to the builtin Binary 82 // Operator, since that is how they are evaluated in constriant checks. 83 return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(), 84 BinaryOperator::getOverloadedOpcode(Op), 85 SemaRef.Context.BoolTy, VK_PRValue, 86 OK_Ordinary, Loc, FPOptionsOverride{}); 87 } 88 }; 89 } 90 91 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression, 92 Token NextToken, bool *PossibleNonPrimary, 93 bool IsTrailingRequiresClause) { 94 // C++2a [temp.constr.atomic]p1 95 // ..E shall be a constant expression of type bool. 96 97 ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts(); 98 99 if (LogicalBinOp BO = ConstraintExpression) { 100 return CheckConstraintExpression(BO.getLHS(), NextToken, 101 PossibleNonPrimary) && 102 CheckConstraintExpression(BO.getRHS(), NextToken, 103 PossibleNonPrimary); 104 } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression)) 105 return CheckConstraintExpression(C->getSubExpr(), NextToken, 106 PossibleNonPrimary); 107 108 QualType Type = ConstraintExpression->getType(); 109 110 auto CheckForNonPrimary = [&] { 111 if (!PossibleNonPrimary) 112 return; 113 114 *PossibleNonPrimary = 115 // We have the following case: 116 // template<typename> requires func(0) struct S { }; 117 // The user probably isn't aware of the parentheses required around 118 // the function call, and we're only going to parse 'func' as the 119 // primary-expression, and complain that it is of non-bool type. 120 // 121 // However, if we're in a lambda, this might also be: 122 // []<typename> requires var () {}; 123 // Which also looks like a function call due to the lambda parentheses, 124 // but unlike the first case, isn't an error, so this check is skipped. 125 (NextToken.is(tok::l_paren) && 126 (IsTrailingRequiresClause || 127 (Type->isDependentType() && 128 isa<UnresolvedLookupExpr>(ConstraintExpression) && 129 !dyn_cast_if_present<LambdaScopeInfo>(getCurFunction())) || 130 Type->isFunctionType() || 131 Type->isSpecificBuiltinType(BuiltinType::Overload))) || 132 // We have the following case: 133 // template<typename T> requires size_<T> == 0 struct S { }; 134 // The user probably isn't aware of the parentheses required around 135 // the binary operator, and we're only going to parse 'func' as the 136 // first operand, and complain that it is of non-bool type. 137 getBinOpPrecedence(NextToken.getKind(), 138 /*GreaterThanIsOperator=*/true, 139 getLangOpts().CPlusPlus11) > prec::LogicalAnd; 140 }; 141 142 // An atomic constraint! 143 if (ConstraintExpression->isTypeDependent()) { 144 CheckForNonPrimary(); 145 return true; 146 } 147 148 if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) { 149 Diag(ConstraintExpression->getExprLoc(), 150 diag::err_non_bool_atomic_constraint) << Type 151 << ConstraintExpression->getSourceRange(); 152 CheckForNonPrimary(); 153 return false; 154 } 155 156 if (PossibleNonPrimary) 157 *PossibleNonPrimary = false; 158 return true; 159 } 160 161 namespace { 162 struct SatisfactionStackRAII { 163 Sema &SemaRef; 164 bool Inserted = false; 165 SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND, 166 const llvm::FoldingSetNodeID &FSNID) 167 : SemaRef(SemaRef) { 168 if (ND) { 169 SemaRef.PushSatisfactionStackEntry(ND, FSNID); 170 Inserted = true; 171 } 172 } 173 ~SatisfactionStackRAII() { 174 if (Inserted) 175 SemaRef.PopSatisfactionStackEntry(); 176 } 177 }; 178 } // namespace 179 180 template <typename AtomicEvaluator> 181 static ExprResult 182 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr, 183 ConstraintSatisfaction &Satisfaction, 184 AtomicEvaluator &&Evaluator) { 185 ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts(); 186 187 if (LogicalBinOp BO = ConstraintExpr) { 188 size_t EffectiveDetailEndIndex = Satisfaction.Details.size(); 189 ExprResult LHSRes = calculateConstraintSatisfaction( 190 S, BO.getLHS(), Satisfaction, Evaluator); 191 192 if (LHSRes.isInvalid()) 193 return ExprError(); 194 195 bool IsLHSSatisfied = Satisfaction.IsSatisfied; 196 197 if (BO.isOr() && IsLHSSatisfied) 198 // [temp.constr.op] p3 199 // A disjunction is a constraint taking two operands. To determine if 200 // a disjunction is satisfied, the satisfaction of the first operand 201 // is checked. If that is satisfied, the disjunction is satisfied. 202 // Otherwise, the disjunction is satisfied if and only if the second 203 // operand is satisfied. 204 // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp. 205 return LHSRes; 206 207 if (BO.isAnd() && !IsLHSSatisfied) 208 // [temp.constr.op] p2 209 // A conjunction is a constraint taking two operands. To determine if 210 // a conjunction is satisfied, the satisfaction of the first operand 211 // is checked. If that is not satisfied, the conjunction is not 212 // satisfied. Otherwise, the conjunction is satisfied if and only if 213 // the second operand is satisfied. 214 // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp. 215 return LHSRes; 216 217 ExprResult RHSRes = calculateConstraintSatisfaction( 218 S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator)); 219 if (RHSRes.isInvalid()) 220 return ExprError(); 221 222 bool IsRHSSatisfied = Satisfaction.IsSatisfied; 223 // Current implementation adds diagnostic information about the falsity 224 // of each false atomic constraint expression when it evaluates them. 225 // When the evaluation results to `false || true`, the information 226 // generated during the evaluation of left-hand side is meaningless 227 // because the whole expression evaluates to true. 228 // The following code removes the irrelevant diagnostic information. 229 // FIXME: We should probably delay the addition of diagnostic information 230 // until we know the entire expression is false. 231 if (BO.isOr() && IsRHSSatisfied) { 232 auto EffectiveDetailEnd = Satisfaction.Details.begin(); 233 std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex); 234 Satisfaction.Details.erase(EffectiveDetailEnd, 235 Satisfaction.Details.end()); 236 } 237 238 return BO.recreateBinOp(S, LHSRes, RHSRes); 239 } 240 241 if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) { 242 // These aren't evaluated, so we don't care about cleanups, so we can just 243 // evaluate these as if the cleanups didn't exist. 244 return calculateConstraintSatisfaction( 245 S, C->getSubExpr(), Satisfaction, 246 std::forward<AtomicEvaluator>(Evaluator)); 247 } 248 249 // An atomic constraint expression 250 ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr); 251 252 if (SubstitutedAtomicExpr.isInvalid()) 253 return ExprError(); 254 255 if (!SubstitutedAtomicExpr.isUsable()) 256 // Evaluator has decided satisfaction without yielding an expression. 257 return ExprEmpty(); 258 259 // We don't have the ability to evaluate this, since it contains a 260 // RecoveryExpr, so we want to fail overload resolution. Otherwise, 261 // we'd potentially pick up a different overload, and cause confusing 262 // diagnostics. SO, add a failure detail that will cause us to make this 263 // overload set not viable. 264 if (SubstitutedAtomicExpr.get()->containsErrors()) { 265 Satisfaction.IsSatisfied = false; 266 Satisfaction.ContainsErrors = true; 267 268 PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error); 269 SmallString<128> DiagString; 270 DiagString = ": "; 271 Msg.EmitToString(S.getDiagnostics(), DiagString); 272 unsigned MessageSize = DiagString.size(); 273 char *Mem = new (S.Context) char[MessageSize]; 274 memcpy(Mem, DiagString.c_str(), MessageSize); 275 Satisfaction.Details.emplace_back( 276 ConstraintExpr, 277 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ 278 SubstitutedAtomicExpr.get()->getBeginLoc(), 279 StringRef(Mem, MessageSize)}); 280 return SubstitutedAtomicExpr; 281 } 282 283 EnterExpressionEvaluationContext ConstantEvaluated( 284 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 285 SmallVector<PartialDiagnosticAt, 2> EvaluationDiags; 286 Expr::EvalResult EvalResult; 287 EvalResult.Diag = &EvaluationDiags; 288 if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult, 289 S.Context) || 290 !EvaluationDiags.empty()) { 291 // C++2a [temp.constr.atomic]p1 292 // ...E shall be a constant expression of type bool. 293 S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(), 294 diag::err_non_constant_constraint_expression) 295 << SubstitutedAtomicExpr.get()->getSourceRange(); 296 for (const PartialDiagnosticAt &PDiag : EvaluationDiags) 297 S.Diag(PDiag.first, PDiag.second); 298 return ExprError(); 299 } 300 301 assert(EvalResult.Val.isInt() && 302 "evaluating bool expression didn't produce int"); 303 Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue(); 304 if (!Satisfaction.IsSatisfied) 305 Satisfaction.Details.emplace_back(ConstraintExpr, 306 SubstitutedAtomicExpr.get()); 307 308 return SubstitutedAtomicExpr; 309 } 310 311 static bool 312 DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID, 313 const NamedDecl *Templ, const Expr *E, 314 const MultiLevelTemplateArgumentList &MLTAL) { 315 E->Profile(ID, S.Context, /*Canonical=*/true); 316 for (const auto &List : MLTAL) 317 for (const auto &TemplateArg : List.Args) 318 TemplateArg.Profile(ID, S.Context); 319 320 // Note that we have to do this with our own collection, because there are 321 // times where a constraint-expression check can cause us to need to evaluate 322 // other constriants that are unrelated, such as when evaluating a recovery 323 // expression, or when trying to determine the constexpr-ness of special 324 // members. Otherwise we could just use the 325 // Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function. 326 if (S.SatisfactionStackContains(Templ, ID)) { 327 S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self) 328 << const_cast<Expr *>(E) << E->getSourceRange(); 329 return true; 330 } 331 332 return false; 333 } 334 335 static ExprResult calculateConstraintSatisfaction( 336 Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc, 337 const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr, 338 ConstraintSatisfaction &Satisfaction) { 339 return calculateConstraintSatisfaction( 340 S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) { 341 EnterExpressionEvaluationContext ConstantEvaluated( 342 S, Sema::ExpressionEvaluationContext::ConstantEvaluated, 343 Sema::ReuseLambdaContextDecl); 344 345 // Atomic constraint - substitute arguments and check satisfaction. 346 ExprResult SubstitutedExpression; 347 { 348 TemplateDeductionInfo Info(TemplateNameLoc); 349 Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(), 350 Sema::InstantiatingTemplate::ConstraintSubstitution{}, 351 const_cast<NamedDecl *>(Template), Info, 352 AtomicExpr->getSourceRange()); 353 if (Inst.isInvalid()) 354 return ExprError(); 355 356 llvm::FoldingSetNodeID ID; 357 if (Template && 358 DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) { 359 Satisfaction.IsSatisfied = false; 360 Satisfaction.ContainsErrors = true; 361 return ExprEmpty(); 362 } 363 364 SatisfactionStackRAII StackRAII(S, Template, ID); 365 366 // We do not want error diagnostics escaping here. 367 Sema::SFINAETrap Trap(S); 368 SubstitutedExpression = 369 S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL); 370 371 if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) { 372 // C++2a [temp.constr.atomic]p1 373 // ...If substitution results in an invalid type or expression, the 374 // constraint is not satisfied. 375 if (!Trap.hasErrorOccurred()) 376 // A non-SFINAE error has occurred as a result of this 377 // substitution. 378 return ExprError(); 379 380 PartialDiagnosticAt SubstDiag{SourceLocation(), 381 PartialDiagnostic::NullDiagnostic()}; 382 Info.takeSFINAEDiagnostic(SubstDiag); 383 // FIXME: Concepts: This is an unfortunate consequence of there 384 // being no serialization code for PartialDiagnostics and the fact 385 // that serializing them would likely take a lot more storage than 386 // just storing them as strings. We would still like, in the 387 // future, to serialize the proper PartialDiagnostic as serializing 388 // it as a string defeats the purpose of the diagnostic mechanism. 389 SmallString<128> DiagString; 390 DiagString = ": "; 391 SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString); 392 unsigned MessageSize = DiagString.size(); 393 char *Mem = new (S.Context) char[MessageSize]; 394 memcpy(Mem, DiagString.c_str(), MessageSize); 395 Satisfaction.Details.emplace_back( 396 AtomicExpr, 397 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ 398 SubstDiag.first, StringRef(Mem, MessageSize)}); 399 Satisfaction.IsSatisfied = false; 400 return ExprEmpty(); 401 } 402 } 403 404 if (!S.CheckConstraintExpression(SubstitutedExpression.get())) 405 return ExprError(); 406 407 // [temp.constr.atomic]p3: To determine if an atomic constraint is 408 // satisfied, the parameter mapping and template arguments are first 409 // substituted into its expression. If substitution results in an 410 // invalid type or expression, the constraint is not satisfied. 411 // Otherwise, the lvalue-to-rvalue conversion is performed if necessary, 412 // and E shall be a constant expression of type bool. 413 // 414 // Perform the L to R Value conversion if necessary. We do so for all 415 // non-PRValue categories, else we fail to extend the lifetime of 416 // temporaries, and that fails the constant expression check. 417 if (!SubstitutedExpression.get()->isPRValue()) 418 SubstitutedExpression = ImplicitCastExpr::Create( 419 S.Context, SubstitutedExpression.get()->getType(), 420 CK_LValueToRValue, SubstitutedExpression.get(), 421 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); 422 423 return SubstitutedExpression; 424 }); 425 } 426 427 static bool CheckConstraintSatisfaction( 428 Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs, 429 llvm::SmallVectorImpl<Expr *> &Converted, 430 const MultiLevelTemplateArgumentList &TemplateArgsLists, 431 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) { 432 if (ConstraintExprs.empty()) { 433 Satisfaction.IsSatisfied = true; 434 return false; 435 } 436 437 if (TemplateArgsLists.isAnyArgInstantiationDependent()) { 438 // No need to check satisfaction for dependent constraint expressions. 439 Satisfaction.IsSatisfied = true; 440 return false; 441 } 442 443 ArrayRef<TemplateArgument> TemplateArgs = 444 TemplateArgsLists.getNumSubstitutedLevels() > 0 445 ? TemplateArgsLists.getOutermost() 446 : ArrayRef<TemplateArgument> {}; 447 Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(), 448 Sema::InstantiatingTemplate::ConstraintsCheck{}, 449 const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange); 450 if (Inst.isInvalid()) 451 return true; 452 453 for (const Expr *ConstraintExpr : ConstraintExprs) { 454 ExprResult Res = calculateConstraintSatisfaction( 455 S, Template, TemplateIDRange.getBegin(), TemplateArgsLists, 456 ConstraintExpr, Satisfaction); 457 if (Res.isInvalid()) 458 return true; 459 460 Converted.push_back(Res.get()); 461 if (!Satisfaction.IsSatisfied) { 462 // Backfill the 'converted' list with nulls so we can keep the Converted 463 // and unconverted lists in sync. 464 Converted.append(ConstraintExprs.size() - Converted.size(), nullptr); 465 // [temp.constr.op] p2 466 // [...] To determine if a conjunction is satisfied, the satisfaction 467 // of the first operand is checked. If that is not satisfied, the 468 // conjunction is not satisfied. [...] 469 return false; 470 } 471 } 472 return false; 473 } 474 475 bool Sema::CheckConstraintSatisfaction( 476 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs, 477 llvm::SmallVectorImpl<Expr *> &ConvertedConstraints, 478 const MultiLevelTemplateArgumentList &TemplateArgsLists, 479 SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) { 480 if (ConstraintExprs.empty()) { 481 OutSatisfaction.IsSatisfied = true; 482 return false; 483 } 484 if (!Template) { 485 return ::CheckConstraintSatisfaction( 486 *this, nullptr, ConstraintExprs, ConvertedConstraints, 487 TemplateArgsLists, TemplateIDRange, OutSatisfaction); 488 } 489 490 // A list of the template argument list flattened in a predictible manner for 491 // the purposes of caching. The ConstraintSatisfaction type is in AST so it 492 // has no access to the MultiLevelTemplateArgumentList, so this has to happen 493 // here. 494 llvm::SmallVector<TemplateArgument, 4> FlattenedArgs; 495 for (auto List : TemplateArgsLists) 496 FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(), 497 List.Args.end()); 498 499 llvm::FoldingSetNodeID ID; 500 ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs); 501 void *InsertPos; 502 if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) { 503 OutSatisfaction = *Cached; 504 return false; 505 } 506 507 auto Satisfaction = 508 std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs); 509 if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs, 510 ConvertedConstraints, TemplateArgsLists, 511 TemplateIDRange, *Satisfaction)) { 512 OutSatisfaction = *Satisfaction; 513 return true; 514 } 515 516 if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) { 517 // The evaluation of this constraint resulted in us trying to re-evaluate it 518 // recursively. This isn't really possible, except we try to form a 519 // RecoveryExpr as a part of the evaluation. If this is the case, just 520 // return the 'cached' version (which will have the same result), and save 521 // ourselves the extra-insert. If it ever becomes possible to legitimately 522 // recursively check a constraint, we should skip checking the 'inner' one 523 // above, and replace the cached version with this one, as it would be more 524 // specific. 525 OutSatisfaction = *Cached; 526 return false; 527 } 528 529 // Else we can simply add this satisfaction to the list. 530 OutSatisfaction = *Satisfaction; 531 // We cannot use InsertPos here because CheckConstraintSatisfaction might have 532 // invalidated it. 533 // Note that entries of SatisfactionCache are deleted in Sema's destructor. 534 SatisfactionCache.InsertNode(Satisfaction.release()); 535 return false; 536 } 537 538 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr, 539 ConstraintSatisfaction &Satisfaction) { 540 return calculateConstraintSatisfaction( 541 *this, ConstraintExpr, Satisfaction, 542 [this](const Expr *AtomicExpr) -> ExprResult { 543 // We only do this to immitate lvalue-to-rvalue conversion. 544 return PerformContextuallyConvertToBool( 545 const_cast<Expr *>(AtomicExpr)); 546 }) 547 .isInvalid(); 548 } 549 550 bool Sema::addInstantiatedCapturesToScope( 551 FunctionDecl *Function, const FunctionDecl *PatternDecl, 552 LocalInstantiationScope &Scope, 553 const MultiLevelTemplateArgumentList &TemplateArgs) { 554 const auto *LambdaClass = cast<CXXMethodDecl>(Function)->getParent(); 555 const auto *LambdaPattern = cast<CXXMethodDecl>(PatternDecl)->getParent(); 556 557 unsigned Instantiated = 0; 558 559 auto AddSingleCapture = [&](const ValueDecl *CapturedPattern, 560 unsigned Index) { 561 ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar(); 562 if (CapturedVar->isInitCapture()) 563 Scope.InstantiatedLocal(CapturedPattern, CapturedVar); 564 }; 565 566 for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) { 567 if (!CapturePattern.capturesVariable()) { 568 Instantiated++; 569 continue; 570 } 571 const ValueDecl *CapturedPattern = CapturePattern.getCapturedVar(); 572 if (!CapturedPattern->isParameterPack()) { 573 AddSingleCapture(CapturedPattern, Instantiated++); 574 } else { 575 Scope.MakeInstantiatedLocalArgPack(CapturedPattern); 576 std::optional<unsigned> NumArgumentsInExpansion = 577 getNumArgumentsInExpansion(CapturedPattern->getType(), TemplateArgs); 578 if (!NumArgumentsInExpansion) 579 continue; 580 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) 581 AddSingleCapture(CapturedPattern, Instantiated++); 582 } 583 } 584 return false; 585 } 586 587 bool Sema::SetupConstraintScope( 588 FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs, 589 MultiLevelTemplateArgumentList MLTAL, LocalInstantiationScope &Scope) { 590 if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) { 591 FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate(); 592 InstantiatingTemplate Inst( 593 *this, FD->getPointOfInstantiation(), 594 Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate, 595 TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{}, 596 SourceRange()); 597 if (Inst.isInvalid()) 598 return true; 599 600 // addInstantiatedParametersToScope creates a map of 'uninstantiated' to 601 // 'instantiated' parameters and adds it to the context. For the case where 602 // this function is a template being instantiated NOW, we also need to add 603 // the list of current template arguments to the list so that they also can 604 // be picked out of the map. 605 if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) { 606 MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(), 607 /*Final=*/false); 608 if (addInstantiatedParametersToScope( 609 FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs)) 610 return true; 611 } 612 613 // If this is a member function, make sure we get the parameters that 614 // reference the original primary template. 615 if (const auto *FromMemTempl = 616 PrimaryTemplate->getInstantiatedFromMemberTemplate()) { 617 if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(), 618 Scope, MLTAL)) 619 return true; 620 } 621 622 return false; 623 } 624 625 if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization || 626 FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) { 627 FunctionDecl *InstantiatedFrom = 628 FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization 629 ? FD->getInstantiatedFromMemberFunction() 630 : FD->getInstantiatedFromDecl(); 631 632 InstantiatingTemplate Inst( 633 *this, FD->getPointOfInstantiation(), 634 Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom, 635 TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{}, 636 SourceRange()); 637 if (Inst.isInvalid()) 638 return true; 639 640 // Case where this was not a template, but instantiated as a 641 // child-function. 642 if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL)) 643 return true; 644 } 645 646 return false; 647 } 648 649 // This function collects all of the template arguments for the purposes of 650 // constraint-instantiation and checking. 651 std::optional<MultiLevelTemplateArgumentList> 652 Sema::SetupConstraintCheckingTemplateArgumentsAndScope( 653 FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs, 654 LocalInstantiationScope &Scope) { 655 MultiLevelTemplateArgumentList MLTAL; 656 657 // Collect the list of template arguments relative to the 'primary' template. 658 // We need the entire list, since the constraint is completely uninstantiated 659 // at this point. 660 MLTAL = getTemplateInstantiationArgs(FD, FD->getLexicalDeclContext(), 661 /*Final=*/false, /*Innermost=*/nullptr, 662 /*RelativeToPrimary=*/true, 663 /*Pattern=*/nullptr, 664 /*ForConstraintInstantiation=*/true); 665 if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope)) 666 return std::nullopt; 667 668 return MLTAL; 669 } 670 671 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD, 672 ConstraintSatisfaction &Satisfaction, 673 SourceLocation UsageLoc, 674 bool ForOverloadResolution) { 675 // Don't check constraints if the function is dependent. Also don't check if 676 // this is a function template specialization, as the call to 677 // CheckinstantiatedFunctionTemplateConstraints after this will check it 678 // better. 679 if (FD->isDependentContext() || 680 FD->getTemplatedKind() == 681 FunctionDecl::TK_FunctionTemplateSpecialization) { 682 Satisfaction.IsSatisfied = true; 683 return false; 684 } 685 686 // A lambda conversion operator has the same constraints as the call operator 687 // and constraints checking relies on whether we are in a lambda call operator 688 // (and may refer to its parameters), so check the call operator instead. 689 if (const auto *MD = dyn_cast<CXXConversionDecl>(FD); 690 MD && isLambdaConversionOperator(const_cast<CXXConversionDecl *>(MD))) 691 return CheckFunctionConstraints(MD->getParent()->getLambdaCallOperator(), 692 Satisfaction, UsageLoc, 693 ForOverloadResolution); 694 695 DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD); 696 697 while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) { 698 if (isLambdaCallOperator(CtxToSave)) 699 CtxToSave = CtxToSave->getParent()->getParent(); 700 else 701 CtxToSave = CtxToSave->getNonTransparentContext(); 702 } 703 704 ContextRAII SavedContext{*this, CtxToSave}; 705 LocalInstantiationScope Scope(*this, !ForOverloadResolution); 706 std::optional<MultiLevelTemplateArgumentList> MLTAL = 707 SetupConstraintCheckingTemplateArgumentsAndScope( 708 const_cast<FunctionDecl *>(FD), {}, Scope); 709 710 if (!MLTAL) 711 return true; 712 713 Qualifiers ThisQuals; 714 CXXRecordDecl *Record = nullptr; 715 if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) { 716 ThisQuals = Method->getMethodQualifiers(); 717 Record = const_cast<CXXRecordDecl *>(Method->getParent()); 718 } 719 CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); 720 721 LambdaScopeForCallOperatorInstantiationRAII LambdaScope( 722 *this, const_cast<FunctionDecl *>(FD), *MLTAL, Scope, 723 ForOverloadResolution); 724 725 return CheckConstraintSatisfaction( 726 FD, {FD->getTrailingRequiresClause()}, *MLTAL, 727 SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()), 728 Satisfaction); 729 } 730 731 732 // Figure out the to-translation-unit depth for this function declaration for 733 // the purpose of seeing if they differ by constraints. This isn't the same as 734 // getTemplateDepth, because it includes already instantiated parents. 735 static unsigned 736 CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND, 737 bool SkipForSpecialization = false) { 738 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 739 ND, ND->getLexicalDeclContext(), /*Final=*/false, /*Innermost=*/nullptr, 740 /*RelativeToPrimary=*/true, 741 /*Pattern=*/nullptr, 742 /*ForConstraintInstantiation=*/true, SkipForSpecialization); 743 return MLTAL.getNumLevels(); 744 } 745 746 namespace { 747 class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> { 748 unsigned TemplateDepth = 0; 749 public: 750 using inherited = TreeTransform<AdjustConstraintDepth>; 751 AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth) 752 : inherited(SemaRef), TemplateDepth(TemplateDepth) {} 753 754 using inherited::TransformTemplateTypeParmType; 755 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, 756 TemplateTypeParmTypeLoc TL, bool) { 757 const TemplateTypeParmType *T = TL.getTypePtr(); 758 759 TemplateTypeParmDecl *NewTTPDecl = nullptr; 760 if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl()) 761 NewTTPDecl = cast_or_null<TemplateTypeParmDecl>( 762 TransformDecl(TL.getNameLoc(), OldTTPDecl)); 763 764 QualType Result = getSema().Context.getTemplateTypeParmType( 765 T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(), 766 NewTTPDecl); 767 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 768 NewTL.setNameLoc(TL.getNameLoc()); 769 return Result; 770 } 771 }; 772 } // namespace 773 774 static const Expr *SubstituteConstraintExpressionWithoutSatisfaction( 775 Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo, 776 const Expr *ConstrExpr) { 777 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 778 DeclInfo.getDecl(), DeclInfo.getLexicalDeclContext(), /*Final=*/false, 779 /*Innermost=*/nullptr, 780 /*RelativeToPrimary=*/true, 781 /*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true, 782 /*SkipForSpecialization*/ false); 783 784 if (MLTAL.getNumSubstitutedLevels() == 0) 785 return ConstrExpr; 786 787 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false); 788 789 Sema::InstantiatingTemplate Inst( 790 S, DeclInfo.getLocation(), 791 Sema::InstantiatingTemplate::ConstraintNormalization{}, 792 const_cast<NamedDecl *>(DeclInfo.getDecl()), SourceRange{}); 793 if (Inst.isInvalid()) 794 return nullptr; 795 796 std::optional<Sema::CXXThisScopeRAII> ThisScope; 797 if (auto *RD = dyn_cast<CXXRecordDecl>(DeclInfo.getDeclContext())) 798 ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers()); 799 ExprResult SubstConstr = S.SubstConstraintExprWithoutSatisfaction( 800 const_cast<clang::Expr *>(ConstrExpr), MLTAL); 801 if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable()) 802 return nullptr; 803 return SubstConstr.get(); 804 } 805 806 bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old, 807 const Expr *OldConstr, 808 const TemplateCompareNewDeclInfo &New, 809 const Expr *NewConstr) { 810 if (OldConstr == NewConstr) 811 return true; 812 // C++ [temp.constr.decl]p4 813 if (Old && !New.isInvalid() && !New.ContainsDecl(Old) && 814 Old->getLexicalDeclContext() != New.getLexicalDeclContext()) { 815 if (const Expr *SubstConstr = 816 SubstituteConstraintExpressionWithoutSatisfaction(*this, Old, 817 OldConstr)) 818 OldConstr = SubstConstr; 819 else 820 return false; 821 if (const Expr *SubstConstr = 822 SubstituteConstraintExpressionWithoutSatisfaction(*this, New, 823 NewConstr)) 824 NewConstr = SubstConstr; 825 else 826 return false; 827 } 828 829 llvm::FoldingSetNodeID ID1, ID2; 830 OldConstr->Profile(ID1, Context, /*Canonical=*/true); 831 NewConstr->Profile(ID2, Context, /*Canonical=*/true); 832 return ID1 == ID2; 833 } 834 835 bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) { 836 assert(FD->getFriendObjectKind() && "Must be a friend!"); 837 838 // The logic for non-templates is handled in ASTContext::isSameEntity, so we 839 // don't have to bother checking 'DependsOnEnclosingTemplate' for a 840 // non-function-template. 841 assert(FD->getDescribedFunctionTemplate() && 842 "Non-function templates don't need to be checked"); 843 844 SmallVector<const Expr *, 3> ACs; 845 FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs); 846 847 unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD); 848 for (const Expr *Constraint : ACs) 849 if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth, 850 Constraint)) 851 return true; 852 853 return false; 854 } 855 856 bool Sema::EnsureTemplateArgumentListConstraints( 857 TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists, 858 SourceRange TemplateIDRange) { 859 ConstraintSatisfaction Satisfaction; 860 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 861 TD->getAssociatedConstraints(AssociatedConstraints); 862 if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists, 863 TemplateIDRange, Satisfaction)) 864 return true; 865 866 if (!Satisfaction.IsSatisfied) { 867 SmallString<128> TemplateArgString; 868 TemplateArgString = " "; 869 TemplateArgString += getTemplateArgumentBindingsText( 870 TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(), 871 TemplateArgsLists.getInnermost().size()); 872 873 Diag(TemplateIDRange.getBegin(), 874 diag::err_template_arg_list_constraints_not_satisfied) 875 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD 876 << TemplateArgString << TemplateIDRange; 877 DiagnoseUnsatisfiedConstraint(Satisfaction); 878 return true; 879 } 880 return false; 881 } 882 883 bool Sema::CheckInstantiatedFunctionTemplateConstraints( 884 SourceLocation PointOfInstantiation, FunctionDecl *Decl, 885 ArrayRef<TemplateArgument> TemplateArgs, 886 ConstraintSatisfaction &Satisfaction) { 887 // In most cases we're not going to have constraints, so check for that first. 888 FunctionTemplateDecl *Template = Decl->getPrimaryTemplate(); 889 // Note - code synthesis context for the constraints check is created 890 // inside CheckConstraintsSatisfaction. 891 SmallVector<const Expr *, 3> TemplateAC; 892 Template->getAssociatedConstraints(TemplateAC); 893 if (TemplateAC.empty()) { 894 Satisfaction.IsSatisfied = true; 895 return false; 896 } 897 898 // Enter the scope of this instantiation. We don't use 899 // PushDeclContext because we don't have a scope. 900 Sema::ContextRAII savedContext(*this, Decl); 901 LocalInstantiationScope Scope(*this); 902 903 std::optional<MultiLevelTemplateArgumentList> MLTAL = 904 SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs, 905 Scope); 906 907 if (!MLTAL) 908 return true; 909 910 Qualifiers ThisQuals; 911 CXXRecordDecl *Record = nullptr; 912 if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) { 913 ThisQuals = Method->getMethodQualifiers(); 914 Record = Method->getParent(); 915 } 916 917 CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); 918 LambdaScopeForCallOperatorInstantiationRAII LambdaScope( 919 *this, const_cast<FunctionDecl *>(Decl), *MLTAL, Scope); 920 921 llvm::SmallVector<Expr *, 1> Converted; 922 return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL, 923 PointOfInstantiation, Satisfaction); 924 } 925 926 static void diagnoseUnsatisfiedRequirement(Sema &S, 927 concepts::ExprRequirement *Req, 928 bool First) { 929 assert(!Req->isSatisfied() 930 && "Diagnose() can only be used on an unsatisfied requirement"); 931 switch (Req->getSatisfactionStatus()) { 932 case concepts::ExprRequirement::SS_Dependent: 933 llvm_unreachable("Diagnosing a dependent requirement"); 934 break; 935 case concepts::ExprRequirement::SS_ExprSubstitutionFailure: { 936 auto *SubstDiag = Req->getExprSubstitutionDiagnostic(); 937 if (!SubstDiag->DiagMessage.empty()) 938 S.Diag(SubstDiag->DiagLoc, 939 diag::note_expr_requirement_expr_substitution_error) 940 << (int)First << SubstDiag->SubstitutedEntity 941 << SubstDiag->DiagMessage; 942 else 943 S.Diag(SubstDiag->DiagLoc, 944 diag::note_expr_requirement_expr_unknown_substitution_error) 945 << (int)First << SubstDiag->SubstitutedEntity; 946 break; 947 } 948 case concepts::ExprRequirement::SS_NoexceptNotMet: 949 S.Diag(Req->getNoexceptLoc(), 950 diag::note_expr_requirement_noexcept_not_met) 951 << (int)First << Req->getExpr(); 952 break; 953 case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: { 954 auto *SubstDiag = 955 Req->getReturnTypeRequirement().getSubstitutionDiagnostic(); 956 if (!SubstDiag->DiagMessage.empty()) 957 S.Diag(SubstDiag->DiagLoc, 958 diag::note_expr_requirement_type_requirement_substitution_error) 959 << (int)First << SubstDiag->SubstitutedEntity 960 << SubstDiag->DiagMessage; 961 else 962 S.Diag(SubstDiag->DiagLoc, 963 diag::note_expr_requirement_type_requirement_unknown_substitution_error) 964 << (int)First << SubstDiag->SubstitutedEntity; 965 break; 966 } 967 case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: { 968 ConceptSpecializationExpr *ConstraintExpr = 969 Req->getReturnTypeRequirementSubstitutedConstraintExpr(); 970 if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { 971 // A simple case - expr type is the type being constrained and the concept 972 // was not provided arguments. 973 Expr *e = Req->getExpr(); 974 S.Diag(e->getBeginLoc(), 975 diag::note_expr_requirement_constraints_not_satisfied_simple) 976 << (int)First << S.Context.getReferenceQualifiedType(e) 977 << ConstraintExpr->getNamedConcept(); 978 } else { 979 S.Diag(ConstraintExpr->getBeginLoc(), 980 diag::note_expr_requirement_constraints_not_satisfied) 981 << (int)First << ConstraintExpr; 982 } 983 S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction()); 984 break; 985 } 986 case concepts::ExprRequirement::SS_Satisfied: 987 llvm_unreachable("We checked this above"); 988 } 989 } 990 991 static void diagnoseUnsatisfiedRequirement(Sema &S, 992 concepts::TypeRequirement *Req, 993 bool First) { 994 assert(!Req->isSatisfied() 995 && "Diagnose() can only be used on an unsatisfied requirement"); 996 switch (Req->getSatisfactionStatus()) { 997 case concepts::TypeRequirement::SS_Dependent: 998 llvm_unreachable("Diagnosing a dependent requirement"); 999 return; 1000 case concepts::TypeRequirement::SS_SubstitutionFailure: { 1001 auto *SubstDiag = Req->getSubstitutionDiagnostic(); 1002 if (!SubstDiag->DiagMessage.empty()) 1003 S.Diag(SubstDiag->DiagLoc, 1004 diag::note_type_requirement_substitution_error) << (int)First 1005 << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage; 1006 else 1007 S.Diag(SubstDiag->DiagLoc, 1008 diag::note_type_requirement_unknown_substitution_error) 1009 << (int)First << SubstDiag->SubstitutedEntity; 1010 return; 1011 } 1012 default: 1013 llvm_unreachable("Unknown satisfaction status"); 1014 return; 1015 } 1016 } 1017 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, 1018 Expr *SubstExpr, 1019 bool First = true); 1020 1021 static void diagnoseUnsatisfiedRequirement(Sema &S, 1022 concepts::NestedRequirement *Req, 1023 bool First) { 1024 using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>; 1025 for (auto &Pair : Req->getConstraintSatisfaction()) { 1026 if (auto *SubstDiag = Pair.second.dyn_cast<SubstitutionDiagnostic *>()) 1027 S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error) 1028 << (int)First << Req->getInvalidConstraintEntity() << SubstDiag->second; 1029 else 1030 diagnoseWellFormedUnsatisfiedConstraintExpr( 1031 S, Pair.second.dyn_cast<Expr *>(), First); 1032 First = false; 1033 } 1034 } 1035 1036 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, 1037 Expr *SubstExpr, 1038 bool First) { 1039 SubstExpr = SubstExpr->IgnoreParenImpCasts(); 1040 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) { 1041 switch (BO->getOpcode()) { 1042 // These two cases will in practice only be reached when using fold 1043 // expressions with || and &&, since otherwise the || and && will have been 1044 // broken down into atomic constraints during satisfaction checking. 1045 case BO_LOr: 1046 // Or evaluated to false - meaning both RHS and LHS evaluated to false. 1047 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); 1048 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), 1049 /*First=*/false); 1050 return; 1051 case BO_LAnd: { 1052 bool LHSSatisfied = 1053 BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue(); 1054 if (LHSSatisfied) { 1055 // LHS is true, so RHS must be false. 1056 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First); 1057 return; 1058 } 1059 // LHS is false 1060 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); 1061 1062 // RHS might also be false 1063 bool RHSSatisfied = 1064 BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue(); 1065 if (!RHSSatisfied) 1066 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), 1067 /*First=*/false); 1068 return; 1069 } 1070 case BO_GE: 1071 case BO_LE: 1072 case BO_GT: 1073 case BO_LT: 1074 case BO_EQ: 1075 case BO_NE: 1076 if (BO->getLHS()->getType()->isIntegerType() && 1077 BO->getRHS()->getType()->isIntegerType()) { 1078 Expr::EvalResult SimplifiedLHS; 1079 Expr::EvalResult SimplifiedRHS; 1080 BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context, 1081 Expr::SE_NoSideEffects, 1082 /*InConstantContext=*/true); 1083 BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context, 1084 Expr::SE_NoSideEffects, 1085 /*InConstantContext=*/true); 1086 if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) { 1087 S.Diag(SubstExpr->getBeginLoc(), 1088 diag::note_atomic_constraint_evaluated_to_false_elaborated) 1089 << (int)First << SubstExpr 1090 << toString(SimplifiedLHS.Val.getInt(), 10) 1091 << BinaryOperator::getOpcodeStr(BO->getOpcode()) 1092 << toString(SimplifiedRHS.Val.getInt(), 10); 1093 return; 1094 } 1095 } 1096 break; 1097 1098 default: 1099 break; 1100 } 1101 } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) { 1102 if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { 1103 S.Diag( 1104 CSE->getSourceRange().getBegin(), 1105 diag:: 1106 note_single_arg_concept_specialization_constraint_evaluated_to_false) 1107 << (int)First 1108 << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument() 1109 << CSE->getNamedConcept(); 1110 } else { 1111 S.Diag(SubstExpr->getSourceRange().getBegin(), 1112 diag::note_concept_specialization_constraint_evaluated_to_false) 1113 << (int)First << CSE; 1114 } 1115 S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction()); 1116 return; 1117 } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) { 1118 // FIXME: RequiresExpr should store dependent diagnostics. 1119 for (concepts::Requirement *Req : RE->getRequirements()) 1120 if (!Req->isDependent() && !Req->isSatisfied()) { 1121 if (auto *E = dyn_cast<concepts::ExprRequirement>(Req)) 1122 diagnoseUnsatisfiedRequirement(S, E, First); 1123 else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req)) 1124 diagnoseUnsatisfiedRequirement(S, T, First); 1125 else 1126 diagnoseUnsatisfiedRequirement( 1127 S, cast<concepts::NestedRequirement>(Req), First); 1128 break; 1129 } 1130 return; 1131 } 1132 1133 S.Diag(SubstExpr->getSourceRange().getBegin(), 1134 diag::note_atomic_constraint_evaluated_to_false) 1135 << (int)First << SubstExpr; 1136 } 1137 1138 template<typename SubstitutionDiagnostic> 1139 static void diagnoseUnsatisfiedConstraintExpr( 1140 Sema &S, const Expr *E, 1141 const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record, 1142 bool First = true) { 1143 if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){ 1144 S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed) 1145 << Diag->second; 1146 return; 1147 } 1148 1149 diagnoseWellFormedUnsatisfiedConstraintExpr(S, 1150 Record.template get<Expr *>(), First); 1151 } 1152 1153 void 1154 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction, 1155 bool First) { 1156 assert(!Satisfaction.IsSatisfied && 1157 "Attempted to diagnose a satisfied constraint"); 1158 for (auto &Pair : Satisfaction.Details) { 1159 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); 1160 First = false; 1161 } 1162 } 1163 1164 void Sema::DiagnoseUnsatisfiedConstraint( 1165 const ASTConstraintSatisfaction &Satisfaction, 1166 bool First) { 1167 assert(!Satisfaction.IsSatisfied && 1168 "Attempted to diagnose a satisfied constraint"); 1169 for (auto &Pair : Satisfaction) { 1170 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); 1171 First = false; 1172 } 1173 } 1174 1175 const NormalizedConstraint * 1176 Sema::getNormalizedAssociatedConstraints( 1177 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) { 1178 // In case the ConstrainedDecl comes from modules, it is necessary to use 1179 // the canonical decl to avoid different atomic constraints with the 'same' 1180 // declarations. 1181 ConstrainedDecl = cast<NamedDecl>(ConstrainedDecl->getCanonicalDecl()); 1182 1183 auto CacheEntry = NormalizationCache.find(ConstrainedDecl); 1184 if (CacheEntry == NormalizationCache.end()) { 1185 auto Normalized = 1186 NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl, 1187 AssociatedConstraints); 1188 CacheEntry = 1189 NormalizationCache 1190 .try_emplace(ConstrainedDecl, 1191 Normalized 1192 ? new (Context) NormalizedConstraint( 1193 std::move(*Normalized)) 1194 : nullptr) 1195 .first; 1196 } 1197 return CacheEntry->second; 1198 } 1199 1200 static bool 1201 substituteParameterMappings(Sema &S, NormalizedConstraint &N, 1202 ConceptDecl *Concept, 1203 const MultiLevelTemplateArgumentList &MLTAL, 1204 const ASTTemplateArgumentListInfo *ArgsAsWritten) { 1205 if (!N.isAtomic()) { 1206 if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL, 1207 ArgsAsWritten)) 1208 return true; 1209 return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL, 1210 ArgsAsWritten); 1211 } 1212 TemplateParameterList *TemplateParams = Concept->getTemplateParameters(); 1213 1214 AtomicConstraint &Atomic = *N.getAtomicConstraint(); 1215 TemplateArgumentListInfo SubstArgs; 1216 if (!Atomic.ParameterMapping) { 1217 llvm::SmallBitVector OccurringIndices(TemplateParams->size()); 1218 S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false, 1219 /*Depth=*/0, OccurringIndices); 1220 TemplateArgumentLoc *TempArgs = 1221 new (S.Context) TemplateArgumentLoc[OccurringIndices.count()]; 1222 for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I) 1223 if (OccurringIndices[I]) 1224 new (&(TempArgs)[J++]) 1225 TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc( 1226 TemplateParams->begin()[I], 1227 // Here we assume we do not support things like 1228 // template<typename A, typename B> 1229 // concept C = ...; 1230 // 1231 // template<typename... Ts> requires C<Ts...> 1232 // struct S { }; 1233 // The above currently yields a diagnostic. 1234 // We still might have default arguments for concept parameters. 1235 ArgsAsWritten->NumTemplateArgs > I 1236 ? ArgsAsWritten->arguments()[I].getLocation() 1237 : SourceLocation())); 1238 Atomic.ParameterMapping.emplace(TempArgs, OccurringIndices.count()); 1239 } 1240 Sema::InstantiatingTemplate Inst( 1241 S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(), 1242 Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept, 1243 ArgsAsWritten->arguments().front().getSourceRange()); 1244 if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs)) 1245 return true; 1246 1247 TemplateArgumentLoc *TempArgs = 1248 new (S.Context) TemplateArgumentLoc[SubstArgs.size()]; 1249 std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(), 1250 TempArgs); 1251 Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size()); 1252 return false; 1253 } 1254 1255 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, 1256 const ConceptSpecializationExpr *CSE) { 1257 TemplateArgumentList TAL{TemplateArgumentList::OnStack, 1258 CSE->getTemplateArguments()}; 1259 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 1260 CSE->getNamedConcept(), CSE->getNamedConcept()->getLexicalDeclContext(), 1261 /*Final=*/false, &TAL, 1262 /*RelativeToPrimary=*/true, 1263 /*Pattern=*/nullptr, 1264 /*ForConstraintInstantiation=*/true); 1265 1266 return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL, 1267 CSE->getTemplateArgsAsWritten()); 1268 } 1269 1270 std::optional<NormalizedConstraint> 1271 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D, 1272 ArrayRef<const Expr *> E) { 1273 assert(E.size() != 0); 1274 auto Conjunction = fromConstraintExpr(S, D, E[0]); 1275 if (!Conjunction) 1276 return std::nullopt; 1277 for (unsigned I = 1; I < E.size(); ++I) { 1278 auto Next = fromConstraintExpr(S, D, E[I]); 1279 if (!Next) 1280 return std::nullopt; 1281 *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction), 1282 std::move(*Next), CCK_Conjunction); 1283 } 1284 return Conjunction; 1285 } 1286 1287 std::optional<NormalizedConstraint> 1288 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) { 1289 assert(E != nullptr); 1290 1291 // C++ [temp.constr.normal]p1.1 1292 // [...] 1293 // - The normal form of an expression (E) is the normal form of E. 1294 // [...] 1295 E = E->IgnoreParenImpCasts(); 1296 1297 // C++2a [temp.param]p4: 1298 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1299 // Fold expression is considered atomic constraints per current wording. 1300 // See http://cplusplus.github.io/concepts-ts/ts-active.html#28 1301 1302 if (LogicalBinOp BO = E) { 1303 auto LHS = fromConstraintExpr(S, D, BO.getLHS()); 1304 if (!LHS) 1305 return std::nullopt; 1306 auto RHS = fromConstraintExpr(S, D, BO.getRHS()); 1307 if (!RHS) 1308 return std::nullopt; 1309 1310 return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS), 1311 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction); 1312 } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) { 1313 const NormalizedConstraint *SubNF; 1314 { 1315 Sema::InstantiatingTemplate Inst( 1316 S, CSE->getExprLoc(), 1317 Sema::InstantiatingTemplate::ConstraintNormalization{}, D, 1318 CSE->getSourceRange()); 1319 // C++ [temp.constr.normal]p1.1 1320 // [...] 1321 // The normal form of an id-expression of the form C<A1, A2, ..., AN>, 1322 // where C names a concept, is the normal form of the 1323 // constraint-expression of C, after substituting A1, A2, ..., AN for C’s 1324 // respective template parameters in the parameter mappings in each atomic 1325 // constraint. If any such substitution results in an invalid type or 1326 // expression, the program is ill-formed; no diagnostic is required. 1327 // [...] 1328 ConceptDecl *CD = CSE->getNamedConcept(); 1329 SubNF = S.getNormalizedAssociatedConstraints(CD, 1330 {CD->getConstraintExpr()}); 1331 if (!SubNF) 1332 return std::nullopt; 1333 } 1334 1335 std::optional<NormalizedConstraint> New; 1336 New.emplace(S.Context, *SubNF); 1337 1338 if (substituteParameterMappings(S, *New, CSE)) 1339 return std::nullopt; 1340 1341 return New; 1342 } 1343 return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)}; 1344 } 1345 1346 using NormalForm = 1347 llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>; 1348 1349 static NormalForm makeCNF(const NormalizedConstraint &Normalized) { 1350 if (Normalized.isAtomic()) 1351 return {{Normalized.getAtomicConstraint()}}; 1352 1353 NormalForm LCNF = makeCNF(Normalized.getLHS()); 1354 NormalForm RCNF = makeCNF(Normalized.getRHS()); 1355 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) { 1356 LCNF.reserve(LCNF.size() + RCNF.size()); 1357 while (!RCNF.empty()) 1358 LCNF.push_back(RCNF.pop_back_val()); 1359 return LCNF; 1360 } 1361 1362 // Disjunction 1363 NormalForm Res; 1364 Res.reserve(LCNF.size() * RCNF.size()); 1365 for (auto &LDisjunction : LCNF) 1366 for (auto &RDisjunction : RCNF) { 1367 NormalForm::value_type Combined; 1368 Combined.reserve(LDisjunction.size() + RDisjunction.size()); 1369 std::copy(LDisjunction.begin(), LDisjunction.end(), 1370 std::back_inserter(Combined)); 1371 std::copy(RDisjunction.begin(), RDisjunction.end(), 1372 std::back_inserter(Combined)); 1373 Res.emplace_back(Combined); 1374 } 1375 return Res; 1376 } 1377 1378 static NormalForm makeDNF(const NormalizedConstraint &Normalized) { 1379 if (Normalized.isAtomic()) 1380 return {{Normalized.getAtomicConstraint()}}; 1381 1382 NormalForm LDNF = makeDNF(Normalized.getLHS()); 1383 NormalForm RDNF = makeDNF(Normalized.getRHS()); 1384 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) { 1385 LDNF.reserve(LDNF.size() + RDNF.size()); 1386 while (!RDNF.empty()) 1387 LDNF.push_back(RDNF.pop_back_val()); 1388 return LDNF; 1389 } 1390 1391 // Conjunction 1392 NormalForm Res; 1393 Res.reserve(LDNF.size() * RDNF.size()); 1394 for (auto &LConjunction : LDNF) { 1395 for (auto &RConjunction : RDNF) { 1396 NormalForm::value_type Combined; 1397 Combined.reserve(LConjunction.size() + RConjunction.size()); 1398 std::copy(LConjunction.begin(), LConjunction.end(), 1399 std::back_inserter(Combined)); 1400 std::copy(RConjunction.begin(), RConjunction.end(), 1401 std::back_inserter(Combined)); 1402 Res.emplace_back(Combined); 1403 } 1404 } 1405 return Res; 1406 } 1407 1408 template<typename AtomicSubsumptionEvaluator> 1409 static bool subsumes(const NormalForm &PDNF, const NormalForm &QCNF, 1410 AtomicSubsumptionEvaluator E) { 1411 // C++ [temp.constr.order] p2 1412 // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the 1413 // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in 1414 // the conjuctive normal form of Q, where [...] 1415 for (const auto &Pi : PDNF) { 1416 for (const auto &Qj : QCNF) { 1417 // C++ [temp.constr.order] p2 1418 // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if 1419 // and only if there exists an atomic constraint Pia in Pi for which 1420 // there exists an atomic constraint, Qjb, in Qj such that Pia 1421 // subsumes Qjb. 1422 bool Found = false; 1423 for (const AtomicConstraint *Pia : Pi) { 1424 for (const AtomicConstraint *Qjb : Qj) { 1425 if (E(*Pia, *Qjb)) { 1426 Found = true; 1427 break; 1428 } 1429 } 1430 if (Found) 1431 break; 1432 } 1433 if (!Found) 1434 return false; 1435 } 1436 } 1437 return true; 1438 } 1439 1440 template<typename AtomicSubsumptionEvaluator> 1441 static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P, 1442 NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes, 1443 AtomicSubsumptionEvaluator E) { 1444 // C++ [temp.constr.order] p2 1445 // In order to determine if a constraint P subsumes a constraint Q, P is 1446 // transformed into disjunctive normal form, and Q is transformed into 1447 // conjunctive normal form. [...] 1448 auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P); 1449 if (!PNormalized) 1450 return true; 1451 const NormalForm PDNF = makeDNF(*PNormalized); 1452 1453 auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q); 1454 if (!QNormalized) 1455 return true; 1456 const NormalForm QCNF = makeCNF(*QNormalized); 1457 1458 Subsumes = subsumes(PDNF, QCNF, E); 1459 return false; 1460 } 1461 1462 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, 1463 MutableArrayRef<const Expr *> AC1, 1464 NamedDecl *D2, 1465 MutableArrayRef<const Expr *> AC2, 1466 bool &Result) { 1467 if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) { 1468 auto IsExpectedEntity = [](const FunctionDecl *FD) { 1469 FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind(); 1470 return Kind == FunctionDecl::TK_NonTemplate || 1471 Kind == FunctionDecl::TK_FunctionTemplate; 1472 }; 1473 const auto *FD2 = dyn_cast<FunctionDecl>(D2); 1474 (void)IsExpectedEntity; 1475 (void)FD1; 1476 (void)FD2; 1477 assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) && 1478 "use non-instantiated function declaration for constraints partial " 1479 "ordering"); 1480 } 1481 1482 if (AC1.empty()) { 1483 Result = AC2.empty(); 1484 return false; 1485 } 1486 if (AC2.empty()) { 1487 // TD1 has associated constraints and TD2 does not. 1488 Result = true; 1489 return false; 1490 } 1491 1492 std::pair<NamedDecl *, NamedDecl *> Key{D1, D2}; 1493 auto CacheEntry = SubsumptionCache.find(Key); 1494 if (CacheEntry != SubsumptionCache.end()) { 1495 Result = CacheEntry->second; 1496 return false; 1497 } 1498 1499 unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true); 1500 unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true); 1501 1502 for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) { 1503 if (Depth2 > Depth1) { 1504 AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1) 1505 .TransformExpr(const_cast<Expr *>(AC1[I])) 1506 .get(); 1507 } else if (Depth1 > Depth2) { 1508 AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2) 1509 .TransformExpr(const_cast<Expr *>(AC2[I])) 1510 .get(); 1511 } 1512 } 1513 1514 if (subsumes(*this, D1, AC1, D2, AC2, Result, 1515 [this] (const AtomicConstraint &A, const AtomicConstraint &B) { 1516 return A.subsumes(Context, B); 1517 })) 1518 return true; 1519 SubsumptionCache.try_emplace(Key, Result); 1520 return false; 1521 } 1522 1523 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, 1524 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) { 1525 if (isSFINAEContext()) 1526 // No need to work here because our notes would be discarded. 1527 return false; 1528 1529 if (AC1.empty() || AC2.empty()) 1530 return false; 1531 1532 auto NormalExprEvaluator = 1533 [this] (const AtomicConstraint &A, const AtomicConstraint &B) { 1534 return A.subsumes(Context, B); 1535 }; 1536 1537 const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr; 1538 auto IdenticalExprEvaluator = 1539 [&] (const AtomicConstraint &A, const AtomicConstraint &B) { 1540 if (!A.hasMatchingParameterMapping(Context, B)) 1541 return false; 1542 const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr; 1543 if (EA == EB) 1544 return true; 1545 1546 // Not the same source level expression - are the expressions 1547 // identical? 1548 llvm::FoldingSetNodeID IDA, IDB; 1549 EA->Profile(IDA, Context, /*Canonical=*/true); 1550 EB->Profile(IDB, Context, /*Canonical=*/true); 1551 if (IDA != IDB) 1552 return false; 1553 1554 AmbiguousAtomic1 = EA; 1555 AmbiguousAtomic2 = EB; 1556 return true; 1557 }; 1558 1559 { 1560 // The subsumption checks might cause diagnostics 1561 SFINAETrap Trap(*this); 1562 auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1); 1563 if (!Normalized1) 1564 return false; 1565 const NormalForm DNF1 = makeDNF(*Normalized1); 1566 const NormalForm CNF1 = makeCNF(*Normalized1); 1567 1568 auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2); 1569 if (!Normalized2) 1570 return false; 1571 const NormalForm DNF2 = makeDNF(*Normalized2); 1572 const NormalForm CNF2 = makeCNF(*Normalized2); 1573 1574 bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator); 1575 bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator); 1576 bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator); 1577 bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator); 1578 if (Is1AtLeastAs2 == Is1AtLeastAs2Normally && 1579 Is2AtLeastAs1 == Is2AtLeastAs1Normally) 1580 // Same result - no ambiguity was caused by identical atomic expressions. 1581 return false; 1582 } 1583 1584 // A different result! Some ambiguous atomic constraint(s) caused a difference 1585 assert(AmbiguousAtomic1 && AmbiguousAtomic2); 1586 1587 Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints) 1588 << AmbiguousAtomic1->getSourceRange(); 1589 Diag(AmbiguousAtomic2->getBeginLoc(), 1590 diag::note_ambiguous_atomic_constraints_similar_expression) 1591 << AmbiguousAtomic2->getSourceRange(); 1592 return true; 1593 } 1594 1595 concepts::ExprRequirement::ExprRequirement( 1596 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 1597 ReturnTypeRequirement Req, SatisfactionStatus Status, 1598 ConceptSpecializationExpr *SubstitutedConstraintExpr) : 1599 Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent, 1600 Status == SS_Dependent && 1601 (E->containsUnexpandedParameterPack() || 1602 Req.containsUnexpandedParameterPack()), 1603 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc), 1604 TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr), 1605 Status(Status) { 1606 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && 1607 "Simple requirement must not have a return type requirement or a " 1608 "noexcept specification"); 1609 assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) == 1610 (SubstitutedConstraintExpr != nullptr)); 1611 } 1612 1613 concepts::ExprRequirement::ExprRequirement( 1614 SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple, 1615 SourceLocation NoexceptLoc, ReturnTypeRequirement Req) : 1616 Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(), 1617 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false), 1618 Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req), 1619 Status(SS_ExprSubstitutionFailure) { 1620 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && 1621 "Simple requirement must not have a return type requirement or a " 1622 "noexcept specification"); 1623 } 1624 1625 concepts::ExprRequirement::ReturnTypeRequirement:: 1626 ReturnTypeRequirement(TemplateParameterList *TPL) : 1627 TypeConstraintInfo(TPL, false) { 1628 assert(TPL->size() == 1); 1629 const TypeConstraint *TC = 1630 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint(); 1631 assert(TC && 1632 "TPL must have a template type parameter with a type constraint"); 1633 auto *Constraint = 1634 cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint()); 1635 bool Dependent = 1636 Constraint->getTemplateArgsAsWritten() && 1637 TemplateSpecializationType::anyInstantiationDependentTemplateArguments( 1638 Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1)); 1639 TypeConstraintInfo.setInt(Dependent ? true : false); 1640 } 1641 1642 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) : 1643 Requirement(RK_Type, T->getType()->isInstantiationDependentType(), 1644 T->getType()->containsUnexpandedParameterPack(), 1645 // We reach this ctor with either dependent types (in which 1646 // IsSatisfied doesn't matter) or with non-dependent type in 1647 // which the existence of the type indicates satisfaction. 1648 /*IsSatisfied=*/true), 1649 Value(T), 1650 Status(T->getType()->isInstantiationDependentType() ? SS_Dependent 1651 : SS_Satisfied) {} 1652