1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSet.h" 79 #include "llvm/ADT/StringSwitch.h" 80 #include "llvm/ADT/Triple.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ConvertUTF.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/Locale.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/SaveAndRestore.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 #include <bitset> 93 #include <cassert> 94 #include <cctype> 95 #include <cstddef> 96 #include <cstdint> 97 #include <functional> 98 #include <limits> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 103 using namespace clang; 104 using namespace sema; 105 106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 107 unsigned ByteNo) const { 108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 109 Context.getTargetInfo()); 110 } 111 112 /// Checks that a call expression's argument count is the desired number. 113 /// This is useful when doing custom type-checking. Returns true on error. 114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 115 unsigned argCount = call->getNumArgs(); 116 if (argCount == desiredArgCount) return false; 117 118 if (argCount < desiredArgCount) 119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 120 << 0 /*function call*/ << desiredArgCount << argCount 121 << call->getSourceRange(); 122 123 // Highlight all the excess arguments. 124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 125 call->getArg(argCount - 1)->getEndLoc()); 126 127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 128 << 0 /*function call*/ << desiredArgCount << argCount 129 << call->getArg(1)->getSourceRange(); 130 } 131 132 /// Check that the first argument to __builtin_annotation is an integer 133 /// and the second argument is a non-wide string literal. 134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 135 if (checkArgCount(S, TheCall, 2)) 136 return true; 137 138 // First argument should be an integer. 139 Expr *ValArg = TheCall->getArg(0); 140 QualType Ty = ValArg->getType(); 141 if (!Ty->isIntegerType()) { 142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 143 << ValArg->getSourceRange(); 144 return true; 145 } 146 147 // Second argument should be a constant string. 148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 150 if (!Literal || !Literal->isAscii()) { 151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 152 << StrArg->getSourceRange(); 153 return true; 154 } 155 156 TheCall->setType(Ty); 157 return false; 158 } 159 160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 161 // We need at least one argument. 162 if (TheCall->getNumArgs() < 1) { 163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 164 << 0 << 1 << TheCall->getNumArgs() 165 << TheCall->getCallee()->getSourceRange(); 166 return true; 167 } 168 169 // All arguments should be wide string literals. 170 for (Expr *Arg : TheCall->arguments()) { 171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 172 if (!Literal || !Literal->isWide()) { 173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 174 << Arg->getSourceRange(); 175 return true; 176 } 177 } 178 179 return false; 180 } 181 182 /// Check that the argument to __builtin_addressof is a glvalue, and set the 183 /// result type to the corresponding pointer type. 184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 185 if (checkArgCount(S, TheCall, 1)) 186 return true; 187 188 ExprResult Arg(TheCall->getArg(0)); 189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 190 if (ResultType.isNull()) 191 return true; 192 193 TheCall->setArg(0, Arg.get()); 194 TheCall->setType(ResultType); 195 return false; 196 } 197 198 /// Check the number of arguments and set the result type to 199 /// the argument type. 200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 201 if (checkArgCount(S, TheCall, 1)) 202 return true; 203 204 TheCall->setType(TheCall->getArg(0)->getType()); 205 return false; 206 } 207 208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 210 /// type (but not a function pointer) and that the alignment is a power-of-two. 211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 212 if (checkArgCount(S, TheCall, 2)) 213 return true; 214 215 clang::Expr *Source = TheCall->getArg(0); 216 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 217 218 auto IsValidIntegerType = [](QualType Ty) { 219 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 220 }; 221 QualType SrcTy = Source->getType(); 222 // We should also be able to use it with arrays (but not functions!). 223 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 224 SrcTy = S.Context.getDecayedType(SrcTy); 225 } 226 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 227 SrcTy->isFunctionPointerType()) { 228 // FIXME: this is not quite the right error message since we don't allow 229 // floating point types, or member pointers. 230 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 231 << SrcTy; 232 return true; 233 } 234 235 clang::Expr *AlignOp = TheCall->getArg(1); 236 if (!IsValidIntegerType(AlignOp->getType())) { 237 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 238 << AlignOp->getType(); 239 return true; 240 } 241 Expr::EvalResult AlignResult; 242 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 243 // We can't check validity of alignment if it is value dependent. 244 if (!AlignOp->isValueDependent() && 245 AlignOp->EvaluateAsInt(AlignResult, S.Context, 246 Expr::SE_AllowSideEffects)) { 247 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 248 llvm::APSInt MaxValue( 249 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 250 if (AlignValue < 1) { 251 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 252 return true; 253 } 254 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 255 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 256 << toString(MaxValue, 10); 257 return true; 258 } 259 if (!AlignValue.isPowerOf2()) { 260 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 261 return true; 262 } 263 if (AlignValue == 1) { 264 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 265 << IsBooleanAlignBuiltin; 266 } 267 } 268 269 ExprResult SrcArg = S.PerformCopyInitialization( 270 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 271 SourceLocation(), Source); 272 if (SrcArg.isInvalid()) 273 return true; 274 TheCall->setArg(0, SrcArg.get()); 275 ExprResult AlignArg = 276 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 277 S.Context, AlignOp->getType(), false), 278 SourceLocation(), AlignOp); 279 if (AlignArg.isInvalid()) 280 return true; 281 TheCall->setArg(1, AlignArg.get()); 282 // For align_up/align_down, the return type is the same as the (potentially 283 // decayed) argument type including qualifiers. For is_aligned(), the result 284 // is always bool. 285 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 286 return false; 287 } 288 289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 290 unsigned BuiltinID) { 291 if (checkArgCount(S, TheCall, 3)) 292 return true; 293 294 // First two arguments should be integers. 295 for (unsigned I = 0; I < 2; ++I) { 296 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 297 if (Arg.isInvalid()) return true; 298 TheCall->setArg(I, Arg.get()); 299 300 QualType Ty = Arg.get()->getType(); 301 if (!Ty->isIntegerType()) { 302 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 303 << Ty << Arg.get()->getSourceRange(); 304 return true; 305 } 306 } 307 308 // Third argument should be a pointer to a non-const integer. 309 // IRGen correctly handles volatile, restrict, and address spaces, and 310 // the other qualifiers aren't possible. 311 { 312 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 313 if (Arg.isInvalid()) return true; 314 TheCall->setArg(2, Arg.get()); 315 316 QualType Ty = Arg.get()->getType(); 317 const auto *PtrTy = Ty->getAs<PointerType>(); 318 if (!PtrTy || 319 !PtrTy->getPointeeType()->isIntegerType() || 320 PtrTy->getPointeeType().isConstQualified()) { 321 S.Diag(Arg.get()->getBeginLoc(), 322 diag::err_overflow_builtin_must_be_ptr_int) 323 << Ty << Arg.get()->getSourceRange(); 324 return true; 325 } 326 } 327 328 // Disallow signed ExtIntType args larger than 128 bits to mul function until 329 // we improve backend support. 330 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 331 for (unsigned I = 0; I < 3; ++I) { 332 const auto Arg = TheCall->getArg(I); 333 // Third argument will be a pointer. 334 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 335 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 336 S.getASTContext().getIntWidth(Ty) > 128) 337 return S.Diag(Arg->getBeginLoc(), 338 diag::err_overflow_builtin_ext_int_max_size) 339 << 128; 340 } 341 } 342 343 return false; 344 } 345 346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 347 if (checkArgCount(S, BuiltinCall, 2)) 348 return true; 349 350 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 351 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 352 Expr *Call = BuiltinCall->getArg(0); 353 Expr *Chain = BuiltinCall->getArg(1); 354 355 if (Call->getStmtClass() != Stmt::CallExprClass) { 356 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 357 << Call->getSourceRange(); 358 return true; 359 } 360 361 auto CE = cast<CallExpr>(Call); 362 if (CE->getCallee()->getType()->isBlockPointerType()) { 363 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 364 << Call->getSourceRange(); 365 return true; 366 } 367 368 const Decl *TargetDecl = CE->getCalleeDecl(); 369 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 370 if (FD->getBuiltinID()) { 371 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 372 << Call->getSourceRange(); 373 return true; 374 } 375 376 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 377 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 378 << Call->getSourceRange(); 379 return true; 380 } 381 382 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 383 if (ChainResult.isInvalid()) 384 return true; 385 if (!ChainResult.get()->getType()->isPointerType()) { 386 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 387 << Chain->getSourceRange(); 388 return true; 389 } 390 391 QualType ReturnTy = CE->getCallReturnType(S.Context); 392 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 393 QualType BuiltinTy = S.Context.getFunctionType( 394 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 395 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 396 397 Builtin = 398 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 399 400 BuiltinCall->setType(CE->getType()); 401 BuiltinCall->setValueKind(CE->getValueKind()); 402 BuiltinCall->setObjectKind(CE->getObjectKind()); 403 BuiltinCall->setCallee(Builtin); 404 BuiltinCall->setArg(1, ChainResult.get()); 405 406 return false; 407 } 408 409 namespace { 410 411 class ScanfDiagnosticFormatHandler 412 : public analyze_format_string::FormatStringHandler { 413 // Accepts the argument index (relative to the first destination index) of the 414 // argument whose size we want. 415 using ComputeSizeFunction = 416 llvm::function_ref<Optional<llvm::APSInt>(unsigned)>; 417 418 // Accepts the argument index (relative to the first destination index), the 419 // destination size, and the source size). 420 using DiagnoseFunction = 421 llvm::function_ref<void(unsigned, unsigned, unsigned)>; 422 423 ComputeSizeFunction ComputeSizeArgument; 424 DiagnoseFunction Diagnose; 425 426 public: 427 ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, 428 DiagnoseFunction Diagnose) 429 : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} 430 431 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 432 const char *StartSpecifier, 433 unsigned specifierLen) override { 434 if (!FS.consumesDataArgument()) 435 return true; 436 437 unsigned NulByte = 0; 438 switch ((FS.getConversionSpecifier().getKind())) { 439 default: 440 return true; 441 case analyze_format_string::ConversionSpecifier::sArg: 442 case analyze_format_string::ConversionSpecifier::ScanListArg: 443 NulByte = 1; 444 break; 445 case analyze_format_string::ConversionSpecifier::cArg: 446 break; 447 } 448 449 auto OptionalFW = FS.getFieldWidth(); 450 if (OptionalFW.getHowSpecified() != 451 analyze_format_string::OptionalAmount::HowSpecified::Constant) 452 return true; 453 454 unsigned SourceSize = OptionalFW.getConstantAmount() + NulByte; 455 456 auto DestSizeAPS = ComputeSizeArgument(FS.getArgIndex()); 457 if (!DestSizeAPS) 458 return true; 459 460 unsigned DestSize = DestSizeAPS->getZExtValue(); 461 462 if (DestSize < SourceSize) 463 Diagnose(FS.getArgIndex(), DestSize, SourceSize); 464 465 return true; 466 } 467 }; 468 469 class EstimateSizeFormatHandler 470 : public analyze_format_string::FormatStringHandler { 471 size_t Size; 472 473 public: 474 EstimateSizeFormatHandler(StringRef Format) 475 : Size(std::min(Format.find(0), Format.size()) + 476 1 /* null byte always written by sprintf */) {} 477 478 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 479 const char *, unsigned SpecifierLen) override { 480 481 const size_t FieldWidth = computeFieldWidth(FS); 482 const size_t Precision = computePrecision(FS); 483 484 // The actual format. 485 switch (FS.getConversionSpecifier().getKind()) { 486 // Just a char. 487 case analyze_format_string::ConversionSpecifier::cArg: 488 case analyze_format_string::ConversionSpecifier::CArg: 489 Size += std::max(FieldWidth, (size_t)1); 490 break; 491 // Just an integer. 492 case analyze_format_string::ConversionSpecifier::dArg: 493 case analyze_format_string::ConversionSpecifier::DArg: 494 case analyze_format_string::ConversionSpecifier::iArg: 495 case analyze_format_string::ConversionSpecifier::oArg: 496 case analyze_format_string::ConversionSpecifier::OArg: 497 case analyze_format_string::ConversionSpecifier::uArg: 498 case analyze_format_string::ConversionSpecifier::UArg: 499 case analyze_format_string::ConversionSpecifier::xArg: 500 case analyze_format_string::ConversionSpecifier::XArg: 501 Size += std::max(FieldWidth, Precision); 502 break; 503 504 // %g style conversion switches between %f or %e style dynamically. 505 // %f always takes less space, so default to it. 506 case analyze_format_string::ConversionSpecifier::gArg: 507 case analyze_format_string::ConversionSpecifier::GArg: 508 509 // Floating point number in the form '[+]ddd.ddd'. 510 case analyze_format_string::ConversionSpecifier::fArg: 511 case analyze_format_string::ConversionSpecifier::FArg: 512 Size += std::max(FieldWidth, 1 /* integer part */ + 513 (Precision ? 1 + Precision 514 : 0) /* period + decimal */); 515 break; 516 517 // Floating point number in the form '[-]d.ddde[+-]dd'. 518 case analyze_format_string::ConversionSpecifier::eArg: 519 case analyze_format_string::ConversionSpecifier::EArg: 520 Size += 521 std::max(FieldWidth, 522 1 /* integer part */ + 523 (Precision ? 1 + Precision : 0) /* period + decimal */ + 524 1 /* e or E letter */ + 2 /* exponent */); 525 break; 526 527 // Floating point number in the form '[-]0xh.hhhhp±dd'. 528 case analyze_format_string::ConversionSpecifier::aArg: 529 case analyze_format_string::ConversionSpecifier::AArg: 530 Size += 531 std::max(FieldWidth, 532 2 /* 0x */ + 1 /* integer part */ + 533 (Precision ? 1 + Precision : 0) /* period + decimal */ + 534 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 535 break; 536 537 // Just a string. 538 case analyze_format_string::ConversionSpecifier::sArg: 539 case analyze_format_string::ConversionSpecifier::SArg: 540 Size += FieldWidth; 541 break; 542 543 // Just a pointer in the form '0xddd'. 544 case analyze_format_string::ConversionSpecifier::pArg: 545 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 546 break; 547 548 // A plain percent. 549 case analyze_format_string::ConversionSpecifier::PercentArg: 550 Size += 1; 551 break; 552 553 default: 554 break; 555 } 556 557 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 558 559 if (FS.hasAlternativeForm()) { 560 switch (FS.getConversionSpecifier().getKind()) { 561 default: 562 break; 563 // Force a leading '0'. 564 case analyze_format_string::ConversionSpecifier::oArg: 565 Size += 1; 566 break; 567 // Force a leading '0x'. 568 case analyze_format_string::ConversionSpecifier::xArg: 569 case analyze_format_string::ConversionSpecifier::XArg: 570 Size += 2; 571 break; 572 // Force a period '.' before decimal, even if precision is 0. 573 case analyze_format_string::ConversionSpecifier::aArg: 574 case analyze_format_string::ConversionSpecifier::AArg: 575 case analyze_format_string::ConversionSpecifier::eArg: 576 case analyze_format_string::ConversionSpecifier::EArg: 577 case analyze_format_string::ConversionSpecifier::fArg: 578 case analyze_format_string::ConversionSpecifier::FArg: 579 case analyze_format_string::ConversionSpecifier::gArg: 580 case analyze_format_string::ConversionSpecifier::GArg: 581 Size += (Precision ? 0 : 1); 582 break; 583 } 584 } 585 assert(SpecifierLen <= Size && "no underflow"); 586 Size -= SpecifierLen; 587 return true; 588 } 589 590 size_t getSizeLowerBound() const { return Size; } 591 592 private: 593 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 594 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 595 size_t FieldWidth = 0; 596 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 597 FieldWidth = FW.getConstantAmount(); 598 return FieldWidth; 599 } 600 601 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 602 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 603 size_t Precision = 0; 604 605 // See man 3 printf for default precision value based on the specifier. 606 switch (FW.getHowSpecified()) { 607 case analyze_format_string::OptionalAmount::NotSpecified: 608 switch (FS.getConversionSpecifier().getKind()) { 609 default: 610 break; 611 case analyze_format_string::ConversionSpecifier::dArg: // %d 612 case analyze_format_string::ConversionSpecifier::DArg: // %D 613 case analyze_format_string::ConversionSpecifier::iArg: // %i 614 Precision = 1; 615 break; 616 case analyze_format_string::ConversionSpecifier::oArg: // %d 617 case analyze_format_string::ConversionSpecifier::OArg: // %D 618 case analyze_format_string::ConversionSpecifier::uArg: // %d 619 case analyze_format_string::ConversionSpecifier::UArg: // %D 620 case analyze_format_string::ConversionSpecifier::xArg: // %d 621 case analyze_format_string::ConversionSpecifier::XArg: // %D 622 Precision = 1; 623 break; 624 case analyze_format_string::ConversionSpecifier::fArg: // %f 625 case analyze_format_string::ConversionSpecifier::FArg: // %F 626 case analyze_format_string::ConversionSpecifier::eArg: // %e 627 case analyze_format_string::ConversionSpecifier::EArg: // %E 628 case analyze_format_string::ConversionSpecifier::gArg: // %g 629 case analyze_format_string::ConversionSpecifier::GArg: // %G 630 Precision = 6; 631 break; 632 case analyze_format_string::ConversionSpecifier::pArg: // %d 633 Precision = 1; 634 break; 635 } 636 break; 637 case analyze_format_string::OptionalAmount::Constant: 638 Precision = FW.getConstantAmount(); 639 break; 640 default: 641 break; 642 } 643 return Precision; 644 } 645 }; 646 647 } // namespace 648 649 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 650 CallExpr *TheCall) { 651 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 652 isConstantEvaluated()) 653 return; 654 655 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 656 if (!BuiltinID) 657 return; 658 659 const TargetInfo &TI = getASTContext().getTargetInfo(); 660 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 661 662 auto ComputeExplicitObjectSizeArgument = 663 [&](unsigned Index) -> Optional<llvm::APSInt> { 664 Expr::EvalResult Result; 665 Expr *SizeArg = TheCall->getArg(Index); 666 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 667 return llvm::None; 668 return Result.Val.getInt(); 669 }; 670 671 auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { 672 // If the parameter has a pass_object_size attribute, then we should use its 673 // (potentially) more strict checking mode. Otherwise, conservatively assume 674 // type 0. 675 int BOSType = 0; 676 // This check can fail for variadic functions. 677 if (Index < FD->getNumParams()) { 678 if (const auto *POS = 679 FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>()) 680 BOSType = POS->getType(); 681 } 682 683 const Expr *ObjArg = TheCall->getArg(Index); 684 uint64_t Result; 685 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 686 return llvm::None; 687 688 // Get the object size in the target's size_t width. 689 return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 690 }; 691 692 auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { 693 Expr *ObjArg = TheCall->getArg(Index); 694 uint64_t Result; 695 if (!ObjArg->tryEvaluateStrLen(Result, getASTContext())) 696 return llvm::None; 697 // Add 1 for null byte. 698 return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth); 699 }; 700 701 Optional<llvm::APSInt> SourceSize; 702 Optional<llvm::APSInt> DestinationSize; 703 unsigned DiagID = 0; 704 bool IsChkVariant = false; 705 706 auto GetFunctionName = [&]() { 707 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 708 // Skim off the details of whichever builtin was called to produce a better 709 // diagnostic, as it's unlikely that the user wrote the __builtin 710 // explicitly. 711 if (IsChkVariant) { 712 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 713 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 714 } else if (FunctionName.startswith("__builtin_")) { 715 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 716 } 717 return FunctionName; 718 }; 719 720 switch (BuiltinID) { 721 default: 722 return; 723 case Builtin::BI__builtin_strcpy: 724 case Builtin::BIstrcpy: { 725 DiagID = diag::warn_fortify_strlen_overflow; 726 SourceSize = ComputeStrLenArgument(1); 727 DestinationSize = ComputeSizeArgument(0); 728 break; 729 } 730 731 case Builtin::BI__builtin___strcpy_chk: { 732 DiagID = diag::warn_fortify_strlen_overflow; 733 SourceSize = ComputeStrLenArgument(1); 734 DestinationSize = ComputeExplicitObjectSizeArgument(2); 735 IsChkVariant = true; 736 break; 737 } 738 739 case Builtin::BIscanf: 740 case Builtin::BIfscanf: 741 case Builtin::BIsscanf: { 742 unsigned FormatIndex = 1; 743 unsigned DataIndex = 2; 744 if (BuiltinID == Builtin::BIscanf) { 745 FormatIndex = 0; 746 DataIndex = 1; 747 } 748 749 const auto *FormatExpr = 750 TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 751 752 const auto *Format = dyn_cast<StringLiteral>(FormatExpr); 753 if (!Format) 754 return; 755 756 if (!Format->isAscii() && !Format->isUTF8()) 757 return; 758 759 auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, 760 unsigned SourceSize) { 761 DiagID = diag::warn_fortify_scanf_overflow; 762 unsigned Index = ArgIndex + DataIndex; 763 StringRef FunctionName = GetFunctionName(); 764 DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall, 765 PDiag(DiagID) << FunctionName << (Index + 1) 766 << DestSize << SourceSize); 767 }; 768 769 StringRef FormatStrRef = Format->getString(); 770 auto ShiftedComputeSizeArgument = [&](unsigned Index) { 771 return ComputeSizeArgument(Index + DataIndex); 772 }; 773 ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); 774 const char *FormatBytes = FormatStrRef.data(); 775 const ConstantArrayType *T = 776 Context.getAsConstantArrayType(Format->getType()); 777 assert(T && "String literal not of constant array type!"); 778 size_t TypeSize = T->getSize().getZExtValue(); 779 780 // In case there's a null byte somewhere. 781 size_t StrLen = 782 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 783 784 analyze_format_string::ParseScanfString(H, FormatBytes, 785 FormatBytes + StrLen, getLangOpts(), 786 Context.getTargetInfo()); 787 788 // Unlike the other cases, in this one we have already issued the diagnostic 789 // here, so no need to continue (because unlike the other cases, here the 790 // diagnostic refers to the argument number). 791 return; 792 } 793 794 case Builtin::BIsprintf: 795 case Builtin::BI__builtin___sprintf_chk: { 796 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 797 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 798 799 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 800 801 if (!Format->isAscii() && !Format->isUTF8()) 802 return; 803 804 StringRef FormatStrRef = Format->getString(); 805 EstimateSizeFormatHandler H(FormatStrRef); 806 const char *FormatBytes = FormatStrRef.data(); 807 const ConstantArrayType *T = 808 Context.getAsConstantArrayType(Format->getType()); 809 assert(T && "String literal not of constant array type!"); 810 size_t TypeSize = T->getSize().getZExtValue(); 811 812 // In case there's a null byte somewhere. 813 size_t StrLen = 814 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 815 if (!analyze_format_string::ParsePrintfString( 816 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 817 Context.getTargetInfo(), false)) { 818 DiagID = diag::warn_fortify_source_format_overflow; 819 SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 820 .extOrTrunc(SizeTypeWidth); 821 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 822 DestinationSize = ComputeExplicitObjectSizeArgument(2); 823 IsChkVariant = true; 824 } else { 825 DestinationSize = ComputeSizeArgument(0); 826 } 827 break; 828 } 829 } 830 return; 831 } 832 case Builtin::BI__builtin___memcpy_chk: 833 case Builtin::BI__builtin___memmove_chk: 834 case Builtin::BI__builtin___memset_chk: 835 case Builtin::BI__builtin___strlcat_chk: 836 case Builtin::BI__builtin___strlcpy_chk: 837 case Builtin::BI__builtin___strncat_chk: 838 case Builtin::BI__builtin___strncpy_chk: 839 case Builtin::BI__builtin___stpncpy_chk: 840 case Builtin::BI__builtin___memccpy_chk: 841 case Builtin::BI__builtin___mempcpy_chk: { 842 DiagID = diag::warn_builtin_chk_overflow; 843 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); 844 DestinationSize = 845 ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 846 IsChkVariant = true; 847 break; 848 } 849 850 case Builtin::BI__builtin___snprintf_chk: 851 case Builtin::BI__builtin___vsnprintf_chk: { 852 DiagID = diag::warn_builtin_chk_overflow; 853 SourceSize = ComputeExplicitObjectSizeArgument(1); 854 DestinationSize = ComputeExplicitObjectSizeArgument(3); 855 IsChkVariant = true; 856 break; 857 } 858 859 case Builtin::BIstrncat: 860 case Builtin::BI__builtin_strncat: 861 case Builtin::BIstrncpy: 862 case Builtin::BI__builtin_strncpy: 863 case Builtin::BIstpncpy: 864 case Builtin::BI__builtin_stpncpy: { 865 // Whether these functions overflow depends on the runtime strlen of the 866 // string, not just the buffer size, so emitting the "always overflow" 867 // diagnostic isn't quite right. We should still diagnose passing a buffer 868 // size larger than the destination buffer though; this is a runtime abort 869 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 870 DiagID = diag::warn_fortify_source_size_mismatch; 871 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 872 DestinationSize = ComputeSizeArgument(0); 873 break; 874 } 875 876 case Builtin::BImemcpy: 877 case Builtin::BI__builtin_memcpy: 878 case Builtin::BImemmove: 879 case Builtin::BI__builtin_memmove: 880 case Builtin::BImemset: 881 case Builtin::BI__builtin_memset: 882 case Builtin::BImempcpy: 883 case Builtin::BI__builtin_mempcpy: { 884 DiagID = diag::warn_fortify_source_overflow; 885 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 886 DestinationSize = ComputeSizeArgument(0); 887 break; 888 } 889 case Builtin::BIsnprintf: 890 case Builtin::BI__builtin_snprintf: 891 case Builtin::BIvsnprintf: 892 case Builtin::BI__builtin_vsnprintf: { 893 DiagID = diag::warn_fortify_source_size_mismatch; 894 SourceSize = ComputeExplicitObjectSizeArgument(1); 895 DestinationSize = ComputeSizeArgument(0); 896 break; 897 } 898 } 899 900 if (!SourceSize || !DestinationSize || 901 SourceSize.getValue().ule(DestinationSize.getValue())) 902 return; 903 904 StringRef FunctionName = GetFunctionName(); 905 906 SmallString<16> DestinationStr; 907 SmallString<16> SourceStr; 908 DestinationSize->toString(DestinationStr, /*Radix=*/10); 909 SourceSize->toString(SourceStr, /*Radix=*/10); 910 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 911 PDiag(DiagID) 912 << FunctionName << DestinationStr << SourceStr); 913 } 914 915 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 916 Scope::ScopeFlags NeededScopeFlags, 917 unsigned DiagID) { 918 // Scopes aren't available during instantiation. Fortunately, builtin 919 // functions cannot be template args so they cannot be formed through template 920 // instantiation. Therefore checking once during the parse is sufficient. 921 if (SemaRef.inTemplateInstantiation()) 922 return false; 923 924 Scope *S = SemaRef.getCurScope(); 925 while (S && !S->isSEHExceptScope()) 926 S = S->getParent(); 927 if (!S || !(S->getFlags() & NeededScopeFlags)) { 928 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 929 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 930 << DRE->getDecl()->getIdentifier(); 931 return true; 932 } 933 934 return false; 935 } 936 937 static inline bool isBlockPointer(Expr *Arg) { 938 return Arg->getType()->isBlockPointerType(); 939 } 940 941 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 942 /// void*, which is a requirement of device side enqueue. 943 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 944 const BlockPointerType *BPT = 945 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 946 ArrayRef<QualType> Params = 947 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 948 unsigned ArgCounter = 0; 949 bool IllegalParams = false; 950 // Iterate through the block parameters until either one is found that is not 951 // a local void*, or the block is valid. 952 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 953 I != E; ++I, ++ArgCounter) { 954 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 955 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 956 LangAS::opencl_local) { 957 // Get the location of the error. If a block literal has been passed 958 // (BlockExpr) then we can point straight to the offending argument, 959 // else we just point to the variable reference. 960 SourceLocation ErrorLoc; 961 if (isa<BlockExpr>(BlockArg)) { 962 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 963 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 964 } else if (isa<DeclRefExpr>(BlockArg)) { 965 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 966 } 967 S.Diag(ErrorLoc, 968 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 969 IllegalParams = true; 970 } 971 } 972 973 return IllegalParams; 974 } 975 976 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 977 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) { 978 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 979 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 980 return true; 981 } 982 return false; 983 } 984 985 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 986 if (checkArgCount(S, TheCall, 2)) 987 return true; 988 989 if (checkOpenCLSubgroupExt(S, TheCall)) 990 return true; 991 992 // First argument is an ndrange_t type. 993 Expr *NDRangeArg = TheCall->getArg(0); 994 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 995 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 996 << TheCall->getDirectCallee() << "'ndrange_t'"; 997 return true; 998 } 999 1000 Expr *BlockArg = TheCall->getArg(1); 1001 if (!isBlockPointer(BlockArg)) { 1002 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1003 << TheCall->getDirectCallee() << "block"; 1004 return true; 1005 } 1006 return checkOpenCLBlockArgs(S, BlockArg); 1007 } 1008 1009 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 1010 /// get_kernel_work_group_size 1011 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 1012 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 1013 if (checkArgCount(S, TheCall, 1)) 1014 return true; 1015 1016 Expr *BlockArg = TheCall->getArg(0); 1017 if (!isBlockPointer(BlockArg)) { 1018 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1019 << TheCall->getDirectCallee() << "block"; 1020 return true; 1021 } 1022 return checkOpenCLBlockArgs(S, BlockArg); 1023 } 1024 1025 /// Diagnose integer type and any valid implicit conversion to it. 1026 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 1027 const QualType &IntType); 1028 1029 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 1030 unsigned Start, unsigned End) { 1031 bool IllegalParams = false; 1032 for (unsigned I = Start; I <= End; ++I) 1033 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 1034 S.Context.getSizeType()); 1035 return IllegalParams; 1036 } 1037 1038 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 1039 /// 'local void*' parameter of passed block. 1040 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 1041 Expr *BlockArg, 1042 unsigned NumNonVarArgs) { 1043 const BlockPointerType *BPT = 1044 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 1045 unsigned NumBlockParams = 1046 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 1047 unsigned TotalNumArgs = TheCall->getNumArgs(); 1048 1049 // For each argument passed to the block, a corresponding uint needs to 1050 // be passed to describe the size of the local memory. 1051 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 1052 S.Diag(TheCall->getBeginLoc(), 1053 diag::err_opencl_enqueue_kernel_local_size_args); 1054 return true; 1055 } 1056 1057 // Check that the sizes of the local memory are specified by integers. 1058 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 1059 TotalNumArgs - 1); 1060 } 1061 1062 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 1063 /// overload formats specified in Table 6.13.17.1. 1064 /// int enqueue_kernel(queue_t queue, 1065 /// kernel_enqueue_flags_t flags, 1066 /// const ndrange_t ndrange, 1067 /// void (^block)(void)) 1068 /// int enqueue_kernel(queue_t queue, 1069 /// kernel_enqueue_flags_t flags, 1070 /// const ndrange_t ndrange, 1071 /// uint num_events_in_wait_list, 1072 /// clk_event_t *event_wait_list, 1073 /// clk_event_t *event_ret, 1074 /// void (^block)(void)) 1075 /// int enqueue_kernel(queue_t queue, 1076 /// kernel_enqueue_flags_t flags, 1077 /// const ndrange_t ndrange, 1078 /// void (^block)(local void*, ...), 1079 /// uint size0, ...) 1080 /// int enqueue_kernel(queue_t queue, 1081 /// kernel_enqueue_flags_t flags, 1082 /// const ndrange_t ndrange, 1083 /// uint num_events_in_wait_list, 1084 /// clk_event_t *event_wait_list, 1085 /// clk_event_t *event_ret, 1086 /// void (^block)(local void*, ...), 1087 /// uint size0, ...) 1088 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 1089 unsigned NumArgs = TheCall->getNumArgs(); 1090 1091 if (NumArgs < 4) { 1092 S.Diag(TheCall->getBeginLoc(), 1093 diag::err_typecheck_call_too_few_args_at_least) 1094 << 0 << 4 << NumArgs; 1095 return true; 1096 } 1097 1098 Expr *Arg0 = TheCall->getArg(0); 1099 Expr *Arg1 = TheCall->getArg(1); 1100 Expr *Arg2 = TheCall->getArg(2); 1101 Expr *Arg3 = TheCall->getArg(3); 1102 1103 // First argument always needs to be a queue_t type. 1104 if (!Arg0->getType()->isQueueT()) { 1105 S.Diag(TheCall->getArg(0)->getBeginLoc(), 1106 diag::err_opencl_builtin_expected_type) 1107 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 1108 return true; 1109 } 1110 1111 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 1112 if (!Arg1->getType()->isIntegerType()) { 1113 S.Diag(TheCall->getArg(1)->getBeginLoc(), 1114 diag::err_opencl_builtin_expected_type) 1115 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 1116 return true; 1117 } 1118 1119 // Third argument is always an ndrange_t type. 1120 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 1121 S.Diag(TheCall->getArg(2)->getBeginLoc(), 1122 diag::err_opencl_builtin_expected_type) 1123 << TheCall->getDirectCallee() << "'ndrange_t'"; 1124 return true; 1125 } 1126 1127 // With four arguments, there is only one form that the function could be 1128 // called in: no events and no variable arguments. 1129 if (NumArgs == 4) { 1130 // check that the last argument is the right block type. 1131 if (!isBlockPointer(Arg3)) { 1132 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1133 << TheCall->getDirectCallee() << "block"; 1134 return true; 1135 } 1136 // we have a block type, check the prototype 1137 const BlockPointerType *BPT = 1138 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1139 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1140 S.Diag(Arg3->getBeginLoc(), 1141 diag::err_opencl_enqueue_kernel_blocks_no_args); 1142 return true; 1143 } 1144 return false; 1145 } 1146 // we can have block + varargs. 1147 if (isBlockPointer(Arg3)) 1148 return (checkOpenCLBlockArgs(S, Arg3) || 1149 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1150 // last two cases with either exactly 7 args or 7 args and varargs. 1151 if (NumArgs >= 7) { 1152 // check common block argument. 1153 Expr *Arg6 = TheCall->getArg(6); 1154 if (!isBlockPointer(Arg6)) { 1155 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1156 << TheCall->getDirectCallee() << "block"; 1157 return true; 1158 } 1159 if (checkOpenCLBlockArgs(S, Arg6)) 1160 return true; 1161 1162 // Forth argument has to be any integer type. 1163 if (!Arg3->getType()->isIntegerType()) { 1164 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1165 diag::err_opencl_builtin_expected_type) 1166 << TheCall->getDirectCallee() << "integer"; 1167 return true; 1168 } 1169 // check remaining common arguments. 1170 Expr *Arg4 = TheCall->getArg(4); 1171 Expr *Arg5 = TheCall->getArg(5); 1172 1173 // Fifth argument is always passed as a pointer to clk_event_t. 1174 if (!Arg4->isNullPointerConstant(S.Context, 1175 Expr::NPC_ValueDependentIsNotNull) && 1176 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1177 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1178 diag::err_opencl_builtin_expected_type) 1179 << TheCall->getDirectCallee() 1180 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1181 return true; 1182 } 1183 1184 // Sixth argument is always passed as a pointer to clk_event_t. 1185 if (!Arg5->isNullPointerConstant(S.Context, 1186 Expr::NPC_ValueDependentIsNotNull) && 1187 !(Arg5->getType()->isPointerType() && 1188 Arg5->getType()->getPointeeType()->isClkEventT())) { 1189 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1190 diag::err_opencl_builtin_expected_type) 1191 << TheCall->getDirectCallee() 1192 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1193 return true; 1194 } 1195 1196 if (NumArgs == 7) 1197 return false; 1198 1199 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1200 } 1201 1202 // None of the specific case has been detected, give generic error 1203 S.Diag(TheCall->getBeginLoc(), 1204 diag::err_opencl_enqueue_kernel_incorrect_args); 1205 return true; 1206 } 1207 1208 /// Returns OpenCL access qual. 1209 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1210 return D->getAttr<OpenCLAccessAttr>(); 1211 } 1212 1213 /// Returns true if pipe element type is different from the pointer. 1214 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1215 const Expr *Arg0 = Call->getArg(0); 1216 // First argument type should always be pipe. 1217 if (!Arg0->getType()->isPipeType()) { 1218 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1219 << Call->getDirectCallee() << Arg0->getSourceRange(); 1220 return true; 1221 } 1222 OpenCLAccessAttr *AccessQual = 1223 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1224 // Validates the access qualifier is compatible with the call. 1225 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1226 // read_only and write_only, and assumed to be read_only if no qualifier is 1227 // specified. 1228 switch (Call->getDirectCallee()->getBuiltinID()) { 1229 case Builtin::BIread_pipe: 1230 case Builtin::BIreserve_read_pipe: 1231 case Builtin::BIcommit_read_pipe: 1232 case Builtin::BIwork_group_reserve_read_pipe: 1233 case Builtin::BIsub_group_reserve_read_pipe: 1234 case Builtin::BIwork_group_commit_read_pipe: 1235 case Builtin::BIsub_group_commit_read_pipe: 1236 if (!(!AccessQual || AccessQual->isReadOnly())) { 1237 S.Diag(Arg0->getBeginLoc(), 1238 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1239 << "read_only" << Arg0->getSourceRange(); 1240 return true; 1241 } 1242 break; 1243 case Builtin::BIwrite_pipe: 1244 case Builtin::BIreserve_write_pipe: 1245 case Builtin::BIcommit_write_pipe: 1246 case Builtin::BIwork_group_reserve_write_pipe: 1247 case Builtin::BIsub_group_reserve_write_pipe: 1248 case Builtin::BIwork_group_commit_write_pipe: 1249 case Builtin::BIsub_group_commit_write_pipe: 1250 if (!(AccessQual && AccessQual->isWriteOnly())) { 1251 S.Diag(Arg0->getBeginLoc(), 1252 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1253 << "write_only" << Arg0->getSourceRange(); 1254 return true; 1255 } 1256 break; 1257 default: 1258 break; 1259 } 1260 return false; 1261 } 1262 1263 /// Returns true if pipe element type is different from the pointer. 1264 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1265 const Expr *Arg0 = Call->getArg(0); 1266 const Expr *ArgIdx = Call->getArg(Idx); 1267 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1268 const QualType EltTy = PipeTy->getElementType(); 1269 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1270 // The Idx argument should be a pointer and the type of the pointer and 1271 // the type of pipe element should also be the same. 1272 if (!ArgTy || 1273 !S.Context.hasSameType( 1274 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1275 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1276 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1277 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1278 return true; 1279 } 1280 return false; 1281 } 1282 1283 // Performs semantic analysis for the read/write_pipe call. 1284 // \param S Reference to the semantic analyzer. 1285 // \param Call A pointer to the builtin call. 1286 // \return True if a semantic error has been found, false otherwise. 1287 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1288 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1289 // functions have two forms. 1290 switch (Call->getNumArgs()) { 1291 case 2: 1292 if (checkOpenCLPipeArg(S, Call)) 1293 return true; 1294 // The call with 2 arguments should be 1295 // read/write_pipe(pipe T, T*). 1296 // Check packet type T. 1297 if (checkOpenCLPipePacketType(S, Call, 1)) 1298 return true; 1299 break; 1300 1301 case 4: { 1302 if (checkOpenCLPipeArg(S, Call)) 1303 return true; 1304 // The call with 4 arguments should be 1305 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1306 // Check reserve_id_t. 1307 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1308 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1309 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1310 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1311 return true; 1312 } 1313 1314 // Check the index. 1315 const Expr *Arg2 = Call->getArg(2); 1316 if (!Arg2->getType()->isIntegerType() && 1317 !Arg2->getType()->isUnsignedIntegerType()) { 1318 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1319 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1320 << Arg2->getType() << Arg2->getSourceRange(); 1321 return true; 1322 } 1323 1324 // Check packet type T. 1325 if (checkOpenCLPipePacketType(S, Call, 3)) 1326 return true; 1327 } break; 1328 default: 1329 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1330 << Call->getDirectCallee() << Call->getSourceRange(); 1331 return true; 1332 } 1333 1334 return false; 1335 } 1336 1337 // Performs a semantic analysis on the {work_group_/sub_group_ 1338 // /_}reserve_{read/write}_pipe 1339 // \param S Reference to the semantic analyzer. 1340 // \param Call The call to the builtin function to be analyzed. 1341 // \return True if a semantic error was found, false otherwise. 1342 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1343 if (checkArgCount(S, Call, 2)) 1344 return true; 1345 1346 if (checkOpenCLPipeArg(S, Call)) 1347 return true; 1348 1349 // Check the reserve size. 1350 if (!Call->getArg(1)->getType()->isIntegerType() && 1351 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1352 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1353 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1354 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1355 return true; 1356 } 1357 1358 // Since return type of reserve_read/write_pipe built-in function is 1359 // reserve_id_t, which is not defined in the builtin def file , we used int 1360 // as return type and need to override the return type of these functions. 1361 Call->setType(S.Context.OCLReserveIDTy); 1362 1363 return false; 1364 } 1365 1366 // Performs a semantic analysis on {work_group_/sub_group_ 1367 // /_}commit_{read/write}_pipe 1368 // \param S Reference to the semantic analyzer. 1369 // \param Call The call to the builtin function to be analyzed. 1370 // \return True if a semantic error was found, false otherwise. 1371 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1372 if (checkArgCount(S, Call, 2)) 1373 return true; 1374 1375 if (checkOpenCLPipeArg(S, Call)) 1376 return true; 1377 1378 // Check reserve_id_t. 1379 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1380 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1381 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1382 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1383 return true; 1384 } 1385 1386 return false; 1387 } 1388 1389 // Performs a semantic analysis on the call to built-in Pipe 1390 // Query Functions. 1391 // \param S Reference to the semantic analyzer. 1392 // \param Call The call to the builtin function to be analyzed. 1393 // \return True if a semantic error was found, false otherwise. 1394 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1395 if (checkArgCount(S, Call, 1)) 1396 return true; 1397 1398 if (!Call->getArg(0)->getType()->isPipeType()) { 1399 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1400 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1401 return true; 1402 } 1403 1404 return false; 1405 } 1406 1407 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1408 // Performs semantic analysis for the to_global/local/private call. 1409 // \param S Reference to the semantic analyzer. 1410 // \param BuiltinID ID of the builtin function. 1411 // \param Call A pointer to the builtin call. 1412 // \return True if a semantic error has been found, false otherwise. 1413 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1414 CallExpr *Call) { 1415 if (checkArgCount(S, Call, 1)) 1416 return true; 1417 1418 auto RT = Call->getArg(0)->getType(); 1419 if (!RT->isPointerType() || RT->getPointeeType() 1420 .getAddressSpace() == LangAS::opencl_constant) { 1421 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1422 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1423 return true; 1424 } 1425 1426 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1427 S.Diag(Call->getArg(0)->getBeginLoc(), 1428 diag::warn_opencl_generic_address_space_arg) 1429 << Call->getDirectCallee()->getNameInfo().getAsString() 1430 << Call->getArg(0)->getSourceRange(); 1431 } 1432 1433 RT = RT->getPointeeType(); 1434 auto Qual = RT.getQualifiers(); 1435 switch (BuiltinID) { 1436 case Builtin::BIto_global: 1437 Qual.setAddressSpace(LangAS::opencl_global); 1438 break; 1439 case Builtin::BIto_local: 1440 Qual.setAddressSpace(LangAS::opencl_local); 1441 break; 1442 case Builtin::BIto_private: 1443 Qual.setAddressSpace(LangAS::opencl_private); 1444 break; 1445 default: 1446 llvm_unreachable("Invalid builtin function"); 1447 } 1448 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1449 RT.getUnqualifiedType(), Qual))); 1450 1451 return false; 1452 } 1453 1454 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1455 if (checkArgCount(S, TheCall, 1)) 1456 return ExprError(); 1457 1458 // Compute __builtin_launder's parameter type from the argument. 1459 // The parameter type is: 1460 // * The type of the argument if it's not an array or function type, 1461 // Otherwise, 1462 // * The decayed argument type. 1463 QualType ParamTy = [&]() { 1464 QualType ArgTy = TheCall->getArg(0)->getType(); 1465 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1466 return S.Context.getPointerType(Ty->getElementType()); 1467 if (ArgTy->isFunctionType()) { 1468 return S.Context.getPointerType(ArgTy); 1469 } 1470 return ArgTy; 1471 }(); 1472 1473 TheCall->setType(ParamTy); 1474 1475 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1476 if (!ParamTy->isPointerType()) 1477 return 0; 1478 if (ParamTy->isFunctionPointerType()) 1479 return 1; 1480 if (ParamTy->isVoidPointerType()) 1481 return 2; 1482 return llvm::Optional<unsigned>{}; 1483 }(); 1484 if (DiagSelect.hasValue()) { 1485 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1486 << DiagSelect.getValue() << TheCall->getSourceRange(); 1487 return ExprError(); 1488 } 1489 1490 // We either have an incomplete class type, or we have a class template 1491 // whose instantiation has not been forced. Example: 1492 // 1493 // template <class T> struct Foo { T value; }; 1494 // Foo<int> *p = nullptr; 1495 // auto *d = __builtin_launder(p); 1496 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1497 diag::err_incomplete_type)) 1498 return ExprError(); 1499 1500 assert(ParamTy->getPointeeType()->isObjectType() && 1501 "Unhandled non-object pointer case"); 1502 1503 InitializedEntity Entity = 1504 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1505 ExprResult Arg = 1506 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1507 if (Arg.isInvalid()) 1508 return ExprError(); 1509 TheCall->setArg(0, Arg.get()); 1510 1511 return TheCall; 1512 } 1513 1514 // Emit an error and return true if the current architecture is not in the list 1515 // of supported architectures. 1516 static bool 1517 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1518 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1519 llvm::Triple::ArchType CurArch = 1520 S.getASTContext().getTargetInfo().getTriple().getArch(); 1521 if (llvm::is_contained(SupportedArchs, CurArch)) 1522 return false; 1523 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1524 << TheCall->getSourceRange(); 1525 return true; 1526 } 1527 1528 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1529 SourceLocation CallSiteLoc); 1530 1531 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1532 CallExpr *TheCall) { 1533 switch (TI.getTriple().getArch()) { 1534 default: 1535 // Some builtins don't require additional checking, so just consider these 1536 // acceptable. 1537 return false; 1538 case llvm::Triple::arm: 1539 case llvm::Triple::armeb: 1540 case llvm::Triple::thumb: 1541 case llvm::Triple::thumbeb: 1542 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1543 case llvm::Triple::aarch64: 1544 case llvm::Triple::aarch64_32: 1545 case llvm::Triple::aarch64_be: 1546 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1547 case llvm::Triple::bpfeb: 1548 case llvm::Triple::bpfel: 1549 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1550 case llvm::Triple::hexagon: 1551 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1552 case llvm::Triple::mips: 1553 case llvm::Triple::mipsel: 1554 case llvm::Triple::mips64: 1555 case llvm::Triple::mips64el: 1556 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1557 case llvm::Triple::systemz: 1558 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1559 case llvm::Triple::x86: 1560 case llvm::Triple::x86_64: 1561 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1562 case llvm::Triple::ppc: 1563 case llvm::Triple::ppcle: 1564 case llvm::Triple::ppc64: 1565 case llvm::Triple::ppc64le: 1566 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1567 case llvm::Triple::amdgcn: 1568 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1569 case llvm::Triple::riscv32: 1570 case llvm::Triple::riscv64: 1571 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); 1572 } 1573 } 1574 1575 ExprResult 1576 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1577 CallExpr *TheCall) { 1578 ExprResult TheCallResult(TheCall); 1579 1580 // Find out if any arguments are required to be integer constant expressions. 1581 unsigned ICEArguments = 0; 1582 ASTContext::GetBuiltinTypeError Error; 1583 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1584 if (Error != ASTContext::GE_None) 1585 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1586 1587 // If any arguments are required to be ICE's, check and diagnose. 1588 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1589 // Skip arguments not required to be ICE's. 1590 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1591 1592 llvm::APSInt Result; 1593 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1594 return true; 1595 ICEArguments &= ~(1 << ArgNo); 1596 } 1597 1598 switch (BuiltinID) { 1599 case Builtin::BI__builtin___CFStringMakeConstantString: 1600 assert(TheCall->getNumArgs() == 1 && 1601 "Wrong # arguments to builtin CFStringMakeConstantString"); 1602 if (CheckObjCString(TheCall->getArg(0))) 1603 return ExprError(); 1604 break; 1605 case Builtin::BI__builtin_ms_va_start: 1606 case Builtin::BI__builtin_stdarg_start: 1607 case Builtin::BI__builtin_va_start: 1608 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1609 return ExprError(); 1610 break; 1611 case Builtin::BI__va_start: { 1612 switch (Context.getTargetInfo().getTriple().getArch()) { 1613 case llvm::Triple::aarch64: 1614 case llvm::Triple::arm: 1615 case llvm::Triple::thumb: 1616 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1617 return ExprError(); 1618 break; 1619 default: 1620 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1621 return ExprError(); 1622 break; 1623 } 1624 break; 1625 } 1626 1627 // The acquire, release, and no fence variants are ARM and AArch64 only. 1628 case Builtin::BI_interlockedbittestandset_acq: 1629 case Builtin::BI_interlockedbittestandset_rel: 1630 case Builtin::BI_interlockedbittestandset_nf: 1631 case Builtin::BI_interlockedbittestandreset_acq: 1632 case Builtin::BI_interlockedbittestandreset_rel: 1633 case Builtin::BI_interlockedbittestandreset_nf: 1634 if (CheckBuiltinTargetSupport( 1635 *this, BuiltinID, TheCall, 1636 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1637 return ExprError(); 1638 break; 1639 1640 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1641 case Builtin::BI_bittest64: 1642 case Builtin::BI_bittestandcomplement64: 1643 case Builtin::BI_bittestandreset64: 1644 case Builtin::BI_bittestandset64: 1645 case Builtin::BI_interlockedbittestandreset64: 1646 case Builtin::BI_interlockedbittestandset64: 1647 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1648 {llvm::Triple::x86_64, llvm::Triple::arm, 1649 llvm::Triple::thumb, llvm::Triple::aarch64})) 1650 return ExprError(); 1651 break; 1652 1653 case Builtin::BI__builtin_isgreater: 1654 case Builtin::BI__builtin_isgreaterequal: 1655 case Builtin::BI__builtin_isless: 1656 case Builtin::BI__builtin_islessequal: 1657 case Builtin::BI__builtin_islessgreater: 1658 case Builtin::BI__builtin_isunordered: 1659 if (SemaBuiltinUnorderedCompare(TheCall)) 1660 return ExprError(); 1661 break; 1662 case Builtin::BI__builtin_fpclassify: 1663 if (SemaBuiltinFPClassification(TheCall, 6)) 1664 return ExprError(); 1665 break; 1666 case Builtin::BI__builtin_isfinite: 1667 case Builtin::BI__builtin_isinf: 1668 case Builtin::BI__builtin_isinf_sign: 1669 case Builtin::BI__builtin_isnan: 1670 case Builtin::BI__builtin_isnormal: 1671 case Builtin::BI__builtin_signbit: 1672 case Builtin::BI__builtin_signbitf: 1673 case Builtin::BI__builtin_signbitl: 1674 if (SemaBuiltinFPClassification(TheCall, 1)) 1675 return ExprError(); 1676 break; 1677 case Builtin::BI__builtin_shufflevector: 1678 return SemaBuiltinShuffleVector(TheCall); 1679 // TheCall will be freed by the smart pointer here, but that's fine, since 1680 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1681 case Builtin::BI__builtin_prefetch: 1682 if (SemaBuiltinPrefetch(TheCall)) 1683 return ExprError(); 1684 break; 1685 case Builtin::BI__builtin_alloca_with_align: 1686 if (SemaBuiltinAllocaWithAlign(TheCall)) 1687 return ExprError(); 1688 LLVM_FALLTHROUGH; 1689 case Builtin::BI__builtin_alloca: 1690 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1691 << TheCall->getDirectCallee(); 1692 break; 1693 case Builtin::BI__arithmetic_fence: 1694 if (SemaBuiltinArithmeticFence(TheCall)) 1695 return ExprError(); 1696 break; 1697 case Builtin::BI__assume: 1698 case Builtin::BI__builtin_assume: 1699 if (SemaBuiltinAssume(TheCall)) 1700 return ExprError(); 1701 break; 1702 case Builtin::BI__builtin_assume_aligned: 1703 if (SemaBuiltinAssumeAligned(TheCall)) 1704 return ExprError(); 1705 break; 1706 case Builtin::BI__builtin_dynamic_object_size: 1707 case Builtin::BI__builtin_object_size: 1708 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1709 return ExprError(); 1710 break; 1711 case Builtin::BI__builtin_longjmp: 1712 if (SemaBuiltinLongjmp(TheCall)) 1713 return ExprError(); 1714 break; 1715 case Builtin::BI__builtin_setjmp: 1716 if (SemaBuiltinSetjmp(TheCall)) 1717 return ExprError(); 1718 break; 1719 case Builtin::BI__builtin_classify_type: 1720 if (checkArgCount(*this, TheCall, 1)) return true; 1721 TheCall->setType(Context.IntTy); 1722 break; 1723 case Builtin::BI__builtin_complex: 1724 if (SemaBuiltinComplex(TheCall)) 1725 return ExprError(); 1726 break; 1727 case Builtin::BI__builtin_constant_p: { 1728 if (checkArgCount(*this, TheCall, 1)) return true; 1729 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1730 if (Arg.isInvalid()) return true; 1731 TheCall->setArg(0, Arg.get()); 1732 TheCall->setType(Context.IntTy); 1733 break; 1734 } 1735 case Builtin::BI__builtin_launder: 1736 return SemaBuiltinLaunder(*this, TheCall); 1737 case Builtin::BI__sync_fetch_and_add: 1738 case Builtin::BI__sync_fetch_and_add_1: 1739 case Builtin::BI__sync_fetch_and_add_2: 1740 case Builtin::BI__sync_fetch_and_add_4: 1741 case Builtin::BI__sync_fetch_and_add_8: 1742 case Builtin::BI__sync_fetch_and_add_16: 1743 case Builtin::BI__sync_fetch_and_sub: 1744 case Builtin::BI__sync_fetch_and_sub_1: 1745 case Builtin::BI__sync_fetch_and_sub_2: 1746 case Builtin::BI__sync_fetch_and_sub_4: 1747 case Builtin::BI__sync_fetch_and_sub_8: 1748 case Builtin::BI__sync_fetch_and_sub_16: 1749 case Builtin::BI__sync_fetch_and_or: 1750 case Builtin::BI__sync_fetch_and_or_1: 1751 case Builtin::BI__sync_fetch_and_or_2: 1752 case Builtin::BI__sync_fetch_and_or_4: 1753 case Builtin::BI__sync_fetch_and_or_8: 1754 case Builtin::BI__sync_fetch_and_or_16: 1755 case Builtin::BI__sync_fetch_and_and: 1756 case Builtin::BI__sync_fetch_and_and_1: 1757 case Builtin::BI__sync_fetch_and_and_2: 1758 case Builtin::BI__sync_fetch_and_and_4: 1759 case Builtin::BI__sync_fetch_and_and_8: 1760 case Builtin::BI__sync_fetch_and_and_16: 1761 case Builtin::BI__sync_fetch_and_xor: 1762 case Builtin::BI__sync_fetch_and_xor_1: 1763 case Builtin::BI__sync_fetch_and_xor_2: 1764 case Builtin::BI__sync_fetch_and_xor_4: 1765 case Builtin::BI__sync_fetch_and_xor_8: 1766 case Builtin::BI__sync_fetch_and_xor_16: 1767 case Builtin::BI__sync_fetch_and_nand: 1768 case Builtin::BI__sync_fetch_and_nand_1: 1769 case Builtin::BI__sync_fetch_and_nand_2: 1770 case Builtin::BI__sync_fetch_and_nand_4: 1771 case Builtin::BI__sync_fetch_and_nand_8: 1772 case Builtin::BI__sync_fetch_and_nand_16: 1773 case Builtin::BI__sync_add_and_fetch: 1774 case Builtin::BI__sync_add_and_fetch_1: 1775 case Builtin::BI__sync_add_and_fetch_2: 1776 case Builtin::BI__sync_add_and_fetch_4: 1777 case Builtin::BI__sync_add_and_fetch_8: 1778 case Builtin::BI__sync_add_and_fetch_16: 1779 case Builtin::BI__sync_sub_and_fetch: 1780 case Builtin::BI__sync_sub_and_fetch_1: 1781 case Builtin::BI__sync_sub_and_fetch_2: 1782 case Builtin::BI__sync_sub_and_fetch_4: 1783 case Builtin::BI__sync_sub_and_fetch_8: 1784 case Builtin::BI__sync_sub_and_fetch_16: 1785 case Builtin::BI__sync_and_and_fetch: 1786 case Builtin::BI__sync_and_and_fetch_1: 1787 case Builtin::BI__sync_and_and_fetch_2: 1788 case Builtin::BI__sync_and_and_fetch_4: 1789 case Builtin::BI__sync_and_and_fetch_8: 1790 case Builtin::BI__sync_and_and_fetch_16: 1791 case Builtin::BI__sync_or_and_fetch: 1792 case Builtin::BI__sync_or_and_fetch_1: 1793 case Builtin::BI__sync_or_and_fetch_2: 1794 case Builtin::BI__sync_or_and_fetch_4: 1795 case Builtin::BI__sync_or_and_fetch_8: 1796 case Builtin::BI__sync_or_and_fetch_16: 1797 case Builtin::BI__sync_xor_and_fetch: 1798 case Builtin::BI__sync_xor_and_fetch_1: 1799 case Builtin::BI__sync_xor_and_fetch_2: 1800 case Builtin::BI__sync_xor_and_fetch_4: 1801 case Builtin::BI__sync_xor_and_fetch_8: 1802 case Builtin::BI__sync_xor_and_fetch_16: 1803 case Builtin::BI__sync_nand_and_fetch: 1804 case Builtin::BI__sync_nand_and_fetch_1: 1805 case Builtin::BI__sync_nand_and_fetch_2: 1806 case Builtin::BI__sync_nand_and_fetch_4: 1807 case Builtin::BI__sync_nand_and_fetch_8: 1808 case Builtin::BI__sync_nand_and_fetch_16: 1809 case Builtin::BI__sync_val_compare_and_swap: 1810 case Builtin::BI__sync_val_compare_and_swap_1: 1811 case Builtin::BI__sync_val_compare_and_swap_2: 1812 case Builtin::BI__sync_val_compare_and_swap_4: 1813 case Builtin::BI__sync_val_compare_and_swap_8: 1814 case Builtin::BI__sync_val_compare_and_swap_16: 1815 case Builtin::BI__sync_bool_compare_and_swap: 1816 case Builtin::BI__sync_bool_compare_and_swap_1: 1817 case Builtin::BI__sync_bool_compare_and_swap_2: 1818 case Builtin::BI__sync_bool_compare_and_swap_4: 1819 case Builtin::BI__sync_bool_compare_and_swap_8: 1820 case Builtin::BI__sync_bool_compare_and_swap_16: 1821 case Builtin::BI__sync_lock_test_and_set: 1822 case Builtin::BI__sync_lock_test_and_set_1: 1823 case Builtin::BI__sync_lock_test_and_set_2: 1824 case Builtin::BI__sync_lock_test_and_set_4: 1825 case Builtin::BI__sync_lock_test_and_set_8: 1826 case Builtin::BI__sync_lock_test_and_set_16: 1827 case Builtin::BI__sync_lock_release: 1828 case Builtin::BI__sync_lock_release_1: 1829 case Builtin::BI__sync_lock_release_2: 1830 case Builtin::BI__sync_lock_release_4: 1831 case Builtin::BI__sync_lock_release_8: 1832 case Builtin::BI__sync_lock_release_16: 1833 case Builtin::BI__sync_swap: 1834 case Builtin::BI__sync_swap_1: 1835 case Builtin::BI__sync_swap_2: 1836 case Builtin::BI__sync_swap_4: 1837 case Builtin::BI__sync_swap_8: 1838 case Builtin::BI__sync_swap_16: 1839 return SemaBuiltinAtomicOverloaded(TheCallResult); 1840 case Builtin::BI__sync_synchronize: 1841 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1842 << TheCall->getCallee()->getSourceRange(); 1843 break; 1844 case Builtin::BI__builtin_nontemporal_load: 1845 case Builtin::BI__builtin_nontemporal_store: 1846 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1847 case Builtin::BI__builtin_memcpy_inline: { 1848 clang::Expr *SizeOp = TheCall->getArg(2); 1849 // We warn about copying to or from `nullptr` pointers when `size` is 1850 // greater than 0. When `size` is value dependent we cannot evaluate its 1851 // value so we bail out. 1852 if (SizeOp->isValueDependent()) 1853 break; 1854 if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) { 1855 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1856 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1857 } 1858 break; 1859 } 1860 #define BUILTIN(ID, TYPE, ATTRS) 1861 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1862 case Builtin::BI##ID: \ 1863 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1864 #include "clang/Basic/Builtins.def" 1865 case Builtin::BI__annotation: 1866 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1867 return ExprError(); 1868 break; 1869 case Builtin::BI__builtin_annotation: 1870 if (SemaBuiltinAnnotation(*this, TheCall)) 1871 return ExprError(); 1872 break; 1873 case Builtin::BI__builtin_addressof: 1874 if (SemaBuiltinAddressof(*this, TheCall)) 1875 return ExprError(); 1876 break; 1877 case Builtin::BI__builtin_is_aligned: 1878 case Builtin::BI__builtin_align_up: 1879 case Builtin::BI__builtin_align_down: 1880 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1881 return ExprError(); 1882 break; 1883 case Builtin::BI__builtin_add_overflow: 1884 case Builtin::BI__builtin_sub_overflow: 1885 case Builtin::BI__builtin_mul_overflow: 1886 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1887 return ExprError(); 1888 break; 1889 case Builtin::BI__builtin_operator_new: 1890 case Builtin::BI__builtin_operator_delete: { 1891 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1892 ExprResult Res = 1893 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1894 if (Res.isInvalid()) 1895 CorrectDelayedTyposInExpr(TheCallResult.get()); 1896 return Res; 1897 } 1898 case Builtin::BI__builtin_dump_struct: { 1899 // We first want to ensure we are called with 2 arguments 1900 if (checkArgCount(*this, TheCall, 2)) 1901 return ExprError(); 1902 // Ensure that the first argument is of type 'struct XX *' 1903 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1904 const QualType PtrArgType = PtrArg->getType(); 1905 if (!PtrArgType->isPointerType() || 1906 !PtrArgType->getPointeeType()->isRecordType()) { 1907 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1908 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1909 << "structure pointer"; 1910 return ExprError(); 1911 } 1912 1913 // Ensure that the second argument is of type 'FunctionType' 1914 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1915 const QualType FnPtrArgType = FnPtrArg->getType(); 1916 if (!FnPtrArgType->isPointerType()) { 1917 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1918 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1919 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1920 return ExprError(); 1921 } 1922 1923 const auto *FuncType = 1924 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1925 1926 if (!FuncType) { 1927 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1928 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1929 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1930 return ExprError(); 1931 } 1932 1933 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1934 if (!FT->getNumParams()) { 1935 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1936 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1937 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1938 return ExprError(); 1939 } 1940 QualType PT = FT->getParamType(0); 1941 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1942 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1943 !PT->getPointeeType().isConstQualified()) { 1944 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1945 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1946 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1947 return ExprError(); 1948 } 1949 } 1950 1951 TheCall->setType(Context.IntTy); 1952 break; 1953 } 1954 case Builtin::BI__builtin_expect_with_probability: { 1955 // We first want to ensure we are called with 3 arguments 1956 if (checkArgCount(*this, TheCall, 3)) 1957 return ExprError(); 1958 // then check probability is constant float in range [0.0, 1.0] 1959 const Expr *ProbArg = TheCall->getArg(2); 1960 SmallVector<PartialDiagnosticAt, 8> Notes; 1961 Expr::EvalResult Eval; 1962 Eval.Diag = &Notes; 1963 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 1964 !Eval.Val.isFloat()) { 1965 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1966 << ProbArg->getSourceRange(); 1967 for (const PartialDiagnosticAt &PDiag : Notes) 1968 Diag(PDiag.first, PDiag.second); 1969 return ExprError(); 1970 } 1971 llvm::APFloat Probability = Eval.Val.getFloat(); 1972 bool LoseInfo = false; 1973 Probability.convert(llvm::APFloat::IEEEdouble(), 1974 llvm::RoundingMode::Dynamic, &LoseInfo); 1975 if (!(Probability >= llvm::APFloat(0.0) && 1976 Probability <= llvm::APFloat(1.0))) { 1977 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1978 << ProbArg->getSourceRange(); 1979 return ExprError(); 1980 } 1981 break; 1982 } 1983 case Builtin::BI__builtin_preserve_access_index: 1984 if (SemaBuiltinPreserveAI(*this, TheCall)) 1985 return ExprError(); 1986 break; 1987 case Builtin::BI__builtin_call_with_static_chain: 1988 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1989 return ExprError(); 1990 break; 1991 case Builtin::BI__exception_code: 1992 case Builtin::BI_exception_code: 1993 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1994 diag::err_seh___except_block)) 1995 return ExprError(); 1996 break; 1997 case Builtin::BI__exception_info: 1998 case Builtin::BI_exception_info: 1999 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 2000 diag::err_seh___except_filter)) 2001 return ExprError(); 2002 break; 2003 case Builtin::BI__GetExceptionInfo: 2004 if (checkArgCount(*this, TheCall, 1)) 2005 return ExprError(); 2006 2007 if (CheckCXXThrowOperand( 2008 TheCall->getBeginLoc(), 2009 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 2010 TheCall)) 2011 return ExprError(); 2012 2013 TheCall->setType(Context.VoidPtrTy); 2014 break; 2015 // OpenCL v2.0, s6.13.16 - Pipe functions 2016 case Builtin::BIread_pipe: 2017 case Builtin::BIwrite_pipe: 2018 // Since those two functions are declared with var args, we need a semantic 2019 // check for the argument. 2020 if (SemaBuiltinRWPipe(*this, TheCall)) 2021 return ExprError(); 2022 break; 2023 case Builtin::BIreserve_read_pipe: 2024 case Builtin::BIreserve_write_pipe: 2025 case Builtin::BIwork_group_reserve_read_pipe: 2026 case Builtin::BIwork_group_reserve_write_pipe: 2027 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 2028 return ExprError(); 2029 break; 2030 case Builtin::BIsub_group_reserve_read_pipe: 2031 case Builtin::BIsub_group_reserve_write_pipe: 2032 if (checkOpenCLSubgroupExt(*this, TheCall) || 2033 SemaBuiltinReserveRWPipe(*this, TheCall)) 2034 return ExprError(); 2035 break; 2036 case Builtin::BIcommit_read_pipe: 2037 case Builtin::BIcommit_write_pipe: 2038 case Builtin::BIwork_group_commit_read_pipe: 2039 case Builtin::BIwork_group_commit_write_pipe: 2040 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 2041 return ExprError(); 2042 break; 2043 case Builtin::BIsub_group_commit_read_pipe: 2044 case Builtin::BIsub_group_commit_write_pipe: 2045 if (checkOpenCLSubgroupExt(*this, TheCall) || 2046 SemaBuiltinCommitRWPipe(*this, TheCall)) 2047 return ExprError(); 2048 break; 2049 case Builtin::BIget_pipe_num_packets: 2050 case Builtin::BIget_pipe_max_packets: 2051 if (SemaBuiltinPipePackets(*this, TheCall)) 2052 return ExprError(); 2053 break; 2054 case Builtin::BIto_global: 2055 case Builtin::BIto_local: 2056 case Builtin::BIto_private: 2057 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 2058 return ExprError(); 2059 break; 2060 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 2061 case Builtin::BIenqueue_kernel: 2062 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 2063 return ExprError(); 2064 break; 2065 case Builtin::BIget_kernel_work_group_size: 2066 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 2067 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 2068 return ExprError(); 2069 break; 2070 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 2071 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 2072 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 2073 return ExprError(); 2074 break; 2075 case Builtin::BI__builtin_os_log_format: 2076 Cleanup.setExprNeedsCleanups(true); 2077 LLVM_FALLTHROUGH; 2078 case Builtin::BI__builtin_os_log_format_buffer_size: 2079 if (SemaBuiltinOSLogFormat(TheCall)) 2080 return ExprError(); 2081 break; 2082 case Builtin::BI__builtin_frame_address: 2083 case Builtin::BI__builtin_return_address: { 2084 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 2085 return ExprError(); 2086 2087 // -Wframe-address warning if non-zero passed to builtin 2088 // return/frame address. 2089 Expr::EvalResult Result; 2090 if (!TheCall->getArg(0)->isValueDependent() && 2091 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 2092 Result.Val.getInt() != 0) 2093 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 2094 << ((BuiltinID == Builtin::BI__builtin_return_address) 2095 ? "__builtin_return_address" 2096 : "__builtin_frame_address") 2097 << TheCall->getSourceRange(); 2098 break; 2099 } 2100 2101 case Builtin::BI__builtin_elementwise_abs: 2102 if (SemaBuiltinElementwiseMathOneArg(TheCall)) 2103 return ExprError(); 2104 break; 2105 case Builtin::BI__builtin_elementwise_min: 2106 case Builtin::BI__builtin_elementwise_max: 2107 if (SemaBuiltinElementwiseMath(TheCall)) 2108 return ExprError(); 2109 break; 2110 case Builtin::BI__builtin_reduce_max: 2111 case Builtin::BI__builtin_reduce_min: 2112 if (SemaBuiltinReduceMath(TheCall)) 2113 return ExprError(); 2114 break; 2115 case Builtin::BI__builtin_matrix_transpose: 2116 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 2117 2118 case Builtin::BI__builtin_matrix_column_major_load: 2119 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 2120 2121 case Builtin::BI__builtin_matrix_column_major_store: 2122 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 2123 2124 case Builtin::BI__builtin_get_device_side_mangled_name: { 2125 auto Check = [](CallExpr *TheCall) { 2126 if (TheCall->getNumArgs() != 1) 2127 return false; 2128 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts()); 2129 if (!DRE) 2130 return false; 2131 auto *D = DRE->getDecl(); 2132 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) 2133 return false; 2134 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || 2135 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); 2136 }; 2137 if (!Check(TheCall)) { 2138 Diag(TheCall->getBeginLoc(), 2139 diag::err_hip_invalid_args_builtin_mangled_name); 2140 return ExprError(); 2141 } 2142 } 2143 } 2144 2145 // Since the target specific builtins for each arch overlap, only check those 2146 // of the arch we are compiling for. 2147 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 2148 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 2149 assert(Context.getAuxTargetInfo() && 2150 "Aux Target Builtin, but not an aux target?"); 2151 2152 if (CheckTSBuiltinFunctionCall( 2153 *Context.getAuxTargetInfo(), 2154 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 2155 return ExprError(); 2156 } else { 2157 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 2158 TheCall)) 2159 return ExprError(); 2160 } 2161 } 2162 2163 return TheCallResult; 2164 } 2165 2166 // Get the valid immediate range for the specified NEON type code. 2167 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 2168 NeonTypeFlags Type(t); 2169 int IsQuad = ForceQuad ? true : Type.isQuad(); 2170 switch (Type.getEltType()) { 2171 case NeonTypeFlags::Int8: 2172 case NeonTypeFlags::Poly8: 2173 return shift ? 7 : (8 << IsQuad) - 1; 2174 case NeonTypeFlags::Int16: 2175 case NeonTypeFlags::Poly16: 2176 return shift ? 15 : (4 << IsQuad) - 1; 2177 case NeonTypeFlags::Int32: 2178 return shift ? 31 : (2 << IsQuad) - 1; 2179 case NeonTypeFlags::Int64: 2180 case NeonTypeFlags::Poly64: 2181 return shift ? 63 : (1 << IsQuad) - 1; 2182 case NeonTypeFlags::Poly128: 2183 return shift ? 127 : (1 << IsQuad) - 1; 2184 case NeonTypeFlags::Float16: 2185 assert(!shift && "cannot shift float types!"); 2186 return (4 << IsQuad) - 1; 2187 case NeonTypeFlags::Float32: 2188 assert(!shift && "cannot shift float types!"); 2189 return (2 << IsQuad) - 1; 2190 case NeonTypeFlags::Float64: 2191 assert(!shift && "cannot shift float types!"); 2192 return (1 << IsQuad) - 1; 2193 case NeonTypeFlags::BFloat16: 2194 assert(!shift && "cannot shift float types!"); 2195 return (4 << IsQuad) - 1; 2196 } 2197 llvm_unreachable("Invalid NeonTypeFlag!"); 2198 } 2199 2200 /// getNeonEltType - Return the QualType corresponding to the elements of 2201 /// the vector type specified by the NeonTypeFlags. This is used to check 2202 /// the pointer arguments for Neon load/store intrinsics. 2203 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2204 bool IsPolyUnsigned, bool IsInt64Long) { 2205 switch (Flags.getEltType()) { 2206 case NeonTypeFlags::Int8: 2207 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2208 case NeonTypeFlags::Int16: 2209 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2210 case NeonTypeFlags::Int32: 2211 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2212 case NeonTypeFlags::Int64: 2213 if (IsInt64Long) 2214 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2215 else 2216 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2217 : Context.LongLongTy; 2218 case NeonTypeFlags::Poly8: 2219 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2220 case NeonTypeFlags::Poly16: 2221 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2222 case NeonTypeFlags::Poly64: 2223 if (IsInt64Long) 2224 return Context.UnsignedLongTy; 2225 else 2226 return Context.UnsignedLongLongTy; 2227 case NeonTypeFlags::Poly128: 2228 break; 2229 case NeonTypeFlags::Float16: 2230 return Context.HalfTy; 2231 case NeonTypeFlags::Float32: 2232 return Context.FloatTy; 2233 case NeonTypeFlags::Float64: 2234 return Context.DoubleTy; 2235 case NeonTypeFlags::BFloat16: 2236 return Context.BFloat16Ty; 2237 } 2238 llvm_unreachable("Invalid NeonTypeFlag!"); 2239 } 2240 2241 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2242 // Range check SVE intrinsics that take immediate values. 2243 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2244 2245 switch (BuiltinID) { 2246 default: 2247 return false; 2248 #define GET_SVE_IMMEDIATE_CHECK 2249 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2250 #undef GET_SVE_IMMEDIATE_CHECK 2251 } 2252 2253 // Perform all the immediate checks for this builtin call. 2254 bool HasError = false; 2255 for (auto &I : ImmChecks) { 2256 int ArgNum, CheckTy, ElementSizeInBits; 2257 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2258 2259 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2260 2261 // Function that checks whether the operand (ArgNum) is an immediate 2262 // that is one of the predefined values. 2263 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2264 int ErrDiag) -> bool { 2265 // We can't check the value of a dependent argument. 2266 Expr *Arg = TheCall->getArg(ArgNum); 2267 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2268 return false; 2269 2270 // Check constant-ness first. 2271 llvm::APSInt Imm; 2272 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2273 return true; 2274 2275 if (!CheckImm(Imm.getSExtValue())) 2276 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2277 return false; 2278 }; 2279 2280 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2281 case SVETypeFlags::ImmCheck0_31: 2282 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2283 HasError = true; 2284 break; 2285 case SVETypeFlags::ImmCheck0_13: 2286 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2287 HasError = true; 2288 break; 2289 case SVETypeFlags::ImmCheck1_16: 2290 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2291 HasError = true; 2292 break; 2293 case SVETypeFlags::ImmCheck0_7: 2294 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2295 HasError = true; 2296 break; 2297 case SVETypeFlags::ImmCheckExtract: 2298 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2299 (2048 / ElementSizeInBits) - 1)) 2300 HasError = true; 2301 break; 2302 case SVETypeFlags::ImmCheckShiftRight: 2303 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2304 HasError = true; 2305 break; 2306 case SVETypeFlags::ImmCheckShiftRightNarrow: 2307 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2308 ElementSizeInBits / 2)) 2309 HasError = true; 2310 break; 2311 case SVETypeFlags::ImmCheckShiftLeft: 2312 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2313 ElementSizeInBits - 1)) 2314 HasError = true; 2315 break; 2316 case SVETypeFlags::ImmCheckLaneIndex: 2317 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2318 (128 / (1 * ElementSizeInBits)) - 1)) 2319 HasError = true; 2320 break; 2321 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2322 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2323 (128 / (2 * ElementSizeInBits)) - 1)) 2324 HasError = true; 2325 break; 2326 case SVETypeFlags::ImmCheckLaneIndexDot: 2327 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2328 (128 / (4 * ElementSizeInBits)) - 1)) 2329 HasError = true; 2330 break; 2331 case SVETypeFlags::ImmCheckComplexRot90_270: 2332 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2333 diag::err_rotation_argument_to_cadd)) 2334 HasError = true; 2335 break; 2336 case SVETypeFlags::ImmCheckComplexRotAll90: 2337 if (CheckImmediateInSet( 2338 [](int64_t V) { 2339 return V == 0 || V == 90 || V == 180 || V == 270; 2340 }, 2341 diag::err_rotation_argument_to_cmla)) 2342 HasError = true; 2343 break; 2344 case SVETypeFlags::ImmCheck0_1: 2345 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2346 HasError = true; 2347 break; 2348 case SVETypeFlags::ImmCheck0_2: 2349 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2350 HasError = true; 2351 break; 2352 case SVETypeFlags::ImmCheck0_3: 2353 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2354 HasError = true; 2355 break; 2356 } 2357 } 2358 2359 return HasError; 2360 } 2361 2362 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2363 unsigned BuiltinID, CallExpr *TheCall) { 2364 llvm::APSInt Result; 2365 uint64_t mask = 0; 2366 unsigned TV = 0; 2367 int PtrArgNum = -1; 2368 bool HasConstPtr = false; 2369 switch (BuiltinID) { 2370 #define GET_NEON_OVERLOAD_CHECK 2371 #include "clang/Basic/arm_neon.inc" 2372 #include "clang/Basic/arm_fp16.inc" 2373 #undef GET_NEON_OVERLOAD_CHECK 2374 } 2375 2376 // For NEON intrinsics which are overloaded on vector element type, validate 2377 // the immediate which specifies which variant to emit. 2378 unsigned ImmArg = TheCall->getNumArgs()-1; 2379 if (mask) { 2380 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2381 return true; 2382 2383 TV = Result.getLimitedValue(64); 2384 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2385 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2386 << TheCall->getArg(ImmArg)->getSourceRange(); 2387 } 2388 2389 if (PtrArgNum >= 0) { 2390 // Check that pointer arguments have the specified type. 2391 Expr *Arg = TheCall->getArg(PtrArgNum); 2392 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2393 Arg = ICE->getSubExpr(); 2394 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2395 QualType RHSTy = RHS.get()->getType(); 2396 2397 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2398 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2399 Arch == llvm::Triple::aarch64_32 || 2400 Arch == llvm::Triple::aarch64_be; 2401 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2402 QualType EltTy = 2403 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2404 if (HasConstPtr) 2405 EltTy = EltTy.withConst(); 2406 QualType LHSTy = Context.getPointerType(EltTy); 2407 AssignConvertType ConvTy; 2408 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2409 if (RHS.isInvalid()) 2410 return true; 2411 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2412 RHS.get(), AA_Assigning)) 2413 return true; 2414 } 2415 2416 // For NEON intrinsics which take an immediate value as part of the 2417 // instruction, range check them here. 2418 unsigned i = 0, l = 0, u = 0; 2419 switch (BuiltinID) { 2420 default: 2421 return false; 2422 #define GET_NEON_IMMEDIATE_CHECK 2423 #include "clang/Basic/arm_neon.inc" 2424 #include "clang/Basic/arm_fp16.inc" 2425 #undef GET_NEON_IMMEDIATE_CHECK 2426 } 2427 2428 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2429 } 2430 2431 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2432 switch (BuiltinID) { 2433 default: 2434 return false; 2435 #include "clang/Basic/arm_mve_builtin_sema.inc" 2436 } 2437 } 2438 2439 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2440 CallExpr *TheCall) { 2441 bool Err = false; 2442 switch (BuiltinID) { 2443 default: 2444 return false; 2445 #include "clang/Basic/arm_cde_builtin_sema.inc" 2446 } 2447 2448 if (Err) 2449 return true; 2450 2451 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2452 } 2453 2454 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2455 const Expr *CoprocArg, bool WantCDE) { 2456 if (isConstantEvaluated()) 2457 return false; 2458 2459 // We can't check the value of a dependent argument. 2460 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2461 return false; 2462 2463 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2464 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2465 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2466 2467 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2468 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2469 2470 if (IsCDECoproc != WantCDE) 2471 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2472 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2473 2474 return false; 2475 } 2476 2477 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2478 unsigned MaxWidth) { 2479 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2480 BuiltinID == ARM::BI__builtin_arm_ldaex || 2481 BuiltinID == ARM::BI__builtin_arm_strex || 2482 BuiltinID == ARM::BI__builtin_arm_stlex || 2483 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2484 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2485 BuiltinID == AArch64::BI__builtin_arm_strex || 2486 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2487 "unexpected ARM builtin"); 2488 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2489 BuiltinID == ARM::BI__builtin_arm_ldaex || 2490 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2491 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2492 2493 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2494 2495 // Ensure that we have the proper number of arguments. 2496 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2497 return true; 2498 2499 // Inspect the pointer argument of the atomic builtin. This should always be 2500 // a pointer type, whose element is an integral scalar or pointer type. 2501 // Because it is a pointer type, we don't have to worry about any implicit 2502 // casts here. 2503 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2504 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2505 if (PointerArgRes.isInvalid()) 2506 return true; 2507 PointerArg = PointerArgRes.get(); 2508 2509 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2510 if (!pointerType) { 2511 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2512 << PointerArg->getType() << PointerArg->getSourceRange(); 2513 return true; 2514 } 2515 2516 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2517 // task is to insert the appropriate casts into the AST. First work out just 2518 // what the appropriate type is. 2519 QualType ValType = pointerType->getPointeeType(); 2520 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2521 if (IsLdrex) 2522 AddrType.addConst(); 2523 2524 // Issue a warning if the cast is dodgy. 2525 CastKind CastNeeded = CK_NoOp; 2526 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2527 CastNeeded = CK_BitCast; 2528 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2529 << PointerArg->getType() << Context.getPointerType(AddrType) 2530 << AA_Passing << PointerArg->getSourceRange(); 2531 } 2532 2533 // Finally, do the cast and replace the argument with the corrected version. 2534 AddrType = Context.getPointerType(AddrType); 2535 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2536 if (PointerArgRes.isInvalid()) 2537 return true; 2538 PointerArg = PointerArgRes.get(); 2539 2540 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2541 2542 // In general, we allow ints, floats and pointers to be loaded and stored. 2543 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2544 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2545 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2546 << PointerArg->getType() << PointerArg->getSourceRange(); 2547 return true; 2548 } 2549 2550 // But ARM doesn't have instructions to deal with 128-bit versions. 2551 if (Context.getTypeSize(ValType) > MaxWidth) { 2552 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2553 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2554 << PointerArg->getType() << PointerArg->getSourceRange(); 2555 return true; 2556 } 2557 2558 switch (ValType.getObjCLifetime()) { 2559 case Qualifiers::OCL_None: 2560 case Qualifiers::OCL_ExplicitNone: 2561 // okay 2562 break; 2563 2564 case Qualifiers::OCL_Weak: 2565 case Qualifiers::OCL_Strong: 2566 case Qualifiers::OCL_Autoreleasing: 2567 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2568 << ValType << PointerArg->getSourceRange(); 2569 return true; 2570 } 2571 2572 if (IsLdrex) { 2573 TheCall->setType(ValType); 2574 return false; 2575 } 2576 2577 // Initialize the argument to be stored. 2578 ExprResult ValArg = TheCall->getArg(0); 2579 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2580 Context, ValType, /*consume*/ false); 2581 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2582 if (ValArg.isInvalid()) 2583 return true; 2584 TheCall->setArg(0, ValArg.get()); 2585 2586 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2587 // but the custom checker bypasses all default analysis. 2588 TheCall->setType(Context.IntTy); 2589 return false; 2590 } 2591 2592 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2593 CallExpr *TheCall) { 2594 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2595 BuiltinID == ARM::BI__builtin_arm_ldaex || 2596 BuiltinID == ARM::BI__builtin_arm_strex || 2597 BuiltinID == ARM::BI__builtin_arm_stlex) { 2598 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2599 } 2600 2601 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2602 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2603 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2604 } 2605 2606 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2607 BuiltinID == ARM::BI__builtin_arm_wsr64) 2608 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2609 2610 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2611 BuiltinID == ARM::BI__builtin_arm_rsrp || 2612 BuiltinID == ARM::BI__builtin_arm_wsr || 2613 BuiltinID == ARM::BI__builtin_arm_wsrp) 2614 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2615 2616 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2617 return true; 2618 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2619 return true; 2620 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2621 return true; 2622 2623 // For intrinsics which take an immediate value as part of the instruction, 2624 // range check them here. 2625 // FIXME: VFP Intrinsics should error if VFP not present. 2626 switch (BuiltinID) { 2627 default: return false; 2628 case ARM::BI__builtin_arm_ssat: 2629 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2630 case ARM::BI__builtin_arm_usat: 2631 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2632 case ARM::BI__builtin_arm_ssat16: 2633 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2634 case ARM::BI__builtin_arm_usat16: 2635 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2636 case ARM::BI__builtin_arm_vcvtr_f: 2637 case ARM::BI__builtin_arm_vcvtr_d: 2638 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2639 case ARM::BI__builtin_arm_dmb: 2640 case ARM::BI__builtin_arm_dsb: 2641 case ARM::BI__builtin_arm_isb: 2642 case ARM::BI__builtin_arm_dbg: 2643 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2644 case ARM::BI__builtin_arm_cdp: 2645 case ARM::BI__builtin_arm_cdp2: 2646 case ARM::BI__builtin_arm_mcr: 2647 case ARM::BI__builtin_arm_mcr2: 2648 case ARM::BI__builtin_arm_mrc: 2649 case ARM::BI__builtin_arm_mrc2: 2650 case ARM::BI__builtin_arm_mcrr: 2651 case ARM::BI__builtin_arm_mcrr2: 2652 case ARM::BI__builtin_arm_mrrc: 2653 case ARM::BI__builtin_arm_mrrc2: 2654 case ARM::BI__builtin_arm_ldc: 2655 case ARM::BI__builtin_arm_ldcl: 2656 case ARM::BI__builtin_arm_ldc2: 2657 case ARM::BI__builtin_arm_ldc2l: 2658 case ARM::BI__builtin_arm_stc: 2659 case ARM::BI__builtin_arm_stcl: 2660 case ARM::BI__builtin_arm_stc2: 2661 case ARM::BI__builtin_arm_stc2l: 2662 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2663 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2664 /*WantCDE*/ false); 2665 } 2666 } 2667 2668 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2669 unsigned BuiltinID, 2670 CallExpr *TheCall) { 2671 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2672 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2673 BuiltinID == AArch64::BI__builtin_arm_strex || 2674 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2675 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2676 } 2677 2678 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2679 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2680 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2681 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2682 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2683 } 2684 2685 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2686 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2687 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2688 2689 // Memory Tagging Extensions (MTE) Intrinsics 2690 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2691 BuiltinID == AArch64::BI__builtin_arm_addg || 2692 BuiltinID == AArch64::BI__builtin_arm_gmi || 2693 BuiltinID == AArch64::BI__builtin_arm_ldg || 2694 BuiltinID == AArch64::BI__builtin_arm_stg || 2695 BuiltinID == AArch64::BI__builtin_arm_subp) { 2696 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2697 } 2698 2699 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2700 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2701 BuiltinID == AArch64::BI__builtin_arm_wsr || 2702 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2703 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2704 2705 // Only check the valid encoding range. Any constant in this range would be 2706 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2707 // an exception for incorrect registers. This matches MSVC behavior. 2708 if (BuiltinID == AArch64::BI_ReadStatusReg || 2709 BuiltinID == AArch64::BI_WriteStatusReg) 2710 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2711 2712 if (BuiltinID == AArch64::BI__getReg) 2713 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2714 2715 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2716 return true; 2717 2718 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2719 return true; 2720 2721 // For intrinsics which take an immediate value as part of the instruction, 2722 // range check them here. 2723 unsigned i = 0, l = 0, u = 0; 2724 switch (BuiltinID) { 2725 default: return false; 2726 case AArch64::BI__builtin_arm_dmb: 2727 case AArch64::BI__builtin_arm_dsb: 2728 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2729 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2730 } 2731 2732 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2733 } 2734 2735 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2736 if (Arg->getType()->getAsPlaceholderType()) 2737 return false; 2738 2739 // The first argument needs to be a record field access. 2740 // If it is an array element access, we delay decision 2741 // to BPF backend to check whether the access is a 2742 // field access or not. 2743 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2744 isa<MemberExpr>(Arg->IgnoreParens()) || 2745 isa<ArraySubscriptExpr>(Arg->IgnoreParens())); 2746 } 2747 2748 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2749 QualType VectorTy, QualType EltTy) { 2750 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2751 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2752 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2753 << Call->getSourceRange() << VectorEltTy << EltTy; 2754 return false; 2755 } 2756 return true; 2757 } 2758 2759 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2760 QualType ArgType = Arg->getType(); 2761 if (ArgType->getAsPlaceholderType()) 2762 return false; 2763 2764 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2765 // format: 2766 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2767 // 2. <type> var; 2768 // __builtin_preserve_type_info(var, flag); 2769 if (!isa<DeclRefExpr>(Arg->IgnoreParens()) && 2770 !isa<UnaryOperator>(Arg->IgnoreParens())) 2771 return false; 2772 2773 // Typedef type. 2774 if (ArgType->getAs<TypedefType>()) 2775 return true; 2776 2777 // Record type or Enum type. 2778 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2779 if (const auto *RT = Ty->getAs<RecordType>()) { 2780 if (!RT->getDecl()->getDeclName().isEmpty()) 2781 return true; 2782 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2783 if (!ET->getDecl()->getDeclName().isEmpty()) 2784 return true; 2785 } 2786 2787 return false; 2788 } 2789 2790 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2791 QualType ArgType = Arg->getType(); 2792 if (ArgType->getAsPlaceholderType()) 2793 return false; 2794 2795 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 2796 // format: 2797 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 2798 // flag); 2799 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 2800 if (!UO) 2801 return false; 2802 2803 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 2804 if (!CE) 2805 return false; 2806 if (CE->getCastKind() != CK_IntegralToPointer && 2807 CE->getCastKind() != CK_NullToPointer) 2808 return false; 2809 2810 // The integer must be from an EnumConstantDecl. 2811 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 2812 if (!DR) 2813 return false; 2814 2815 const EnumConstantDecl *Enumerator = 2816 dyn_cast<EnumConstantDecl>(DR->getDecl()); 2817 if (!Enumerator) 2818 return false; 2819 2820 // The type must be EnumType. 2821 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2822 const auto *ET = Ty->getAs<EnumType>(); 2823 if (!ET) 2824 return false; 2825 2826 // The enum value must be supported. 2827 return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator); 2828 } 2829 2830 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2831 CallExpr *TheCall) { 2832 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2833 BuiltinID == BPF::BI__builtin_btf_type_id || 2834 BuiltinID == BPF::BI__builtin_preserve_type_info || 2835 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 2836 "unexpected BPF builtin"); 2837 2838 if (checkArgCount(*this, TheCall, 2)) 2839 return true; 2840 2841 // The second argument needs to be a constant int 2842 Expr *Arg = TheCall->getArg(1); 2843 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 2844 diag::kind kind; 2845 if (!Value) { 2846 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 2847 kind = diag::err_preserve_field_info_not_const; 2848 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 2849 kind = diag::err_btf_type_id_not_const; 2850 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 2851 kind = diag::err_preserve_type_info_not_const; 2852 else 2853 kind = diag::err_preserve_enum_value_not_const; 2854 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 2855 return true; 2856 } 2857 2858 // The first argument 2859 Arg = TheCall->getArg(0); 2860 bool InvalidArg = false; 2861 bool ReturnUnsignedInt = true; 2862 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 2863 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 2864 InvalidArg = true; 2865 kind = diag::err_preserve_field_info_not_field; 2866 } 2867 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 2868 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 2869 InvalidArg = true; 2870 kind = diag::err_preserve_type_info_invalid; 2871 } 2872 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 2873 if (!isValidBPFPreserveEnumValueArg(Arg)) { 2874 InvalidArg = true; 2875 kind = diag::err_preserve_enum_value_invalid; 2876 } 2877 ReturnUnsignedInt = false; 2878 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2879 ReturnUnsignedInt = false; 2880 } 2881 2882 if (InvalidArg) { 2883 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 2884 return true; 2885 } 2886 2887 if (ReturnUnsignedInt) 2888 TheCall->setType(Context.UnsignedIntTy); 2889 else 2890 TheCall->setType(Context.UnsignedLongTy); 2891 return false; 2892 } 2893 2894 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2895 struct ArgInfo { 2896 uint8_t OpNum; 2897 bool IsSigned; 2898 uint8_t BitWidth; 2899 uint8_t Align; 2900 }; 2901 struct BuiltinInfo { 2902 unsigned BuiltinID; 2903 ArgInfo Infos[2]; 2904 }; 2905 2906 static BuiltinInfo Infos[] = { 2907 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2908 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2909 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2910 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2911 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2912 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2913 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2914 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2915 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2916 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2917 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2918 2919 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2920 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2921 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2922 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2923 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2924 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2925 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2926 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2927 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2928 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2929 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2930 2931 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2932 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2933 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2934 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2935 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2936 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2937 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2938 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2939 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2940 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2941 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2942 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2943 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2944 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2945 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2946 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2947 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2948 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2949 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2950 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2951 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2952 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2953 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2954 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2955 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2956 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2957 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2958 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2959 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2960 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2961 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2962 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2963 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2964 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2965 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2966 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2967 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2968 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2969 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2970 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2971 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2972 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2973 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2974 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2975 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2976 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2977 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2978 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2979 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2980 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2981 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2982 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2983 {{ 1, false, 6, 0 }} }, 2984 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2985 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2986 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2987 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2988 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2989 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2990 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2991 {{ 1, false, 5, 0 }} }, 2992 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2993 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2994 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2995 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2996 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2997 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2998 { 2, false, 5, 0 }} }, 2999 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 3000 { 2, false, 6, 0 }} }, 3001 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 3002 { 3, false, 5, 0 }} }, 3003 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 3004 { 3, false, 6, 0 }} }, 3005 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 3006 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 3007 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 3008 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 3009 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 3010 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 3011 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 3012 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 3013 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 3014 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 3015 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 3016 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 3017 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 3018 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 3019 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 3020 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 3021 {{ 2, false, 4, 0 }, 3022 { 3, false, 5, 0 }} }, 3023 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 3024 {{ 2, false, 4, 0 }, 3025 { 3, false, 5, 0 }} }, 3026 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 3027 {{ 2, false, 4, 0 }, 3028 { 3, false, 5, 0 }} }, 3029 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 3030 {{ 2, false, 4, 0 }, 3031 { 3, false, 5, 0 }} }, 3032 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 3033 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 3034 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 3035 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 3036 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 3037 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 3038 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 3039 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 3040 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 3041 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 3042 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 3043 { 2, false, 5, 0 }} }, 3044 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 3045 { 2, false, 6, 0 }} }, 3046 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 3047 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 3048 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 3049 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 3050 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 3051 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 3052 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 3053 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 3054 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 3055 {{ 1, false, 4, 0 }} }, 3056 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 3057 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 3058 {{ 1, false, 4, 0 }} }, 3059 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 3060 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 3061 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 3062 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 3063 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 3064 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 3065 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 3066 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 3067 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 3068 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 3069 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 3070 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 3071 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 3072 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 3073 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 3074 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 3075 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 3076 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 3077 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 3078 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 3079 {{ 3, false, 1, 0 }} }, 3080 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 3081 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 3082 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 3083 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 3084 {{ 3, false, 1, 0 }} }, 3085 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 3086 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 3087 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 3088 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 3089 {{ 3, false, 1, 0 }} }, 3090 }; 3091 3092 // Use a dynamically initialized static to sort the table exactly once on 3093 // first run. 3094 static const bool SortOnce = 3095 (llvm::sort(Infos, 3096 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 3097 return LHS.BuiltinID < RHS.BuiltinID; 3098 }), 3099 true); 3100 (void)SortOnce; 3101 3102 const BuiltinInfo *F = llvm::partition_point( 3103 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 3104 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 3105 return false; 3106 3107 bool Error = false; 3108 3109 for (const ArgInfo &A : F->Infos) { 3110 // Ignore empty ArgInfo elements. 3111 if (A.BitWidth == 0) 3112 continue; 3113 3114 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 3115 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 3116 if (!A.Align) { 3117 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 3118 } else { 3119 unsigned M = 1 << A.Align; 3120 Min *= M; 3121 Max *= M; 3122 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 3123 Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 3124 } 3125 } 3126 return Error; 3127 } 3128 3129 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 3130 CallExpr *TheCall) { 3131 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 3132 } 3133 3134 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 3135 unsigned BuiltinID, CallExpr *TheCall) { 3136 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 3137 CheckMipsBuiltinArgument(BuiltinID, TheCall); 3138 } 3139 3140 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 3141 CallExpr *TheCall) { 3142 3143 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 3144 BuiltinID <= Mips::BI__builtin_mips_lwx) { 3145 if (!TI.hasFeature("dsp")) 3146 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 3147 } 3148 3149 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 3150 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 3151 if (!TI.hasFeature("dspr2")) 3152 return Diag(TheCall->getBeginLoc(), 3153 diag::err_mips_builtin_requires_dspr2); 3154 } 3155 3156 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 3157 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 3158 if (!TI.hasFeature("msa")) 3159 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 3160 } 3161 3162 return false; 3163 } 3164 3165 // CheckMipsBuiltinArgument - Checks the constant value passed to the 3166 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 3167 // ordering for DSP is unspecified. MSA is ordered by the data format used 3168 // by the underlying instruction i.e., df/m, df/n and then by size. 3169 // 3170 // FIXME: The size tests here should instead be tablegen'd along with the 3171 // definitions from include/clang/Basic/BuiltinsMips.def. 3172 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 3173 // be too. 3174 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 3175 unsigned i = 0, l = 0, u = 0, m = 0; 3176 switch (BuiltinID) { 3177 default: return false; 3178 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3179 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3180 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3181 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3182 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3183 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3184 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3185 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3186 // df/m field. 3187 // These intrinsics take an unsigned 3 bit immediate. 3188 case Mips::BI__builtin_msa_bclri_b: 3189 case Mips::BI__builtin_msa_bnegi_b: 3190 case Mips::BI__builtin_msa_bseti_b: 3191 case Mips::BI__builtin_msa_sat_s_b: 3192 case Mips::BI__builtin_msa_sat_u_b: 3193 case Mips::BI__builtin_msa_slli_b: 3194 case Mips::BI__builtin_msa_srai_b: 3195 case Mips::BI__builtin_msa_srari_b: 3196 case Mips::BI__builtin_msa_srli_b: 3197 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3198 case Mips::BI__builtin_msa_binsli_b: 3199 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3200 // These intrinsics take an unsigned 4 bit immediate. 3201 case Mips::BI__builtin_msa_bclri_h: 3202 case Mips::BI__builtin_msa_bnegi_h: 3203 case Mips::BI__builtin_msa_bseti_h: 3204 case Mips::BI__builtin_msa_sat_s_h: 3205 case Mips::BI__builtin_msa_sat_u_h: 3206 case Mips::BI__builtin_msa_slli_h: 3207 case Mips::BI__builtin_msa_srai_h: 3208 case Mips::BI__builtin_msa_srari_h: 3209 case Mips::BI__builtin_msa_srli_h: 3210 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3211 case Mips::BI__builtin_msa_binsli_h: 3212 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3213 // These intrinsics take an unsigned 5 bit immediate. 3214 // The first block of intrinsics actually have an unsigned 5 bit field, 3215 // not a df/n field. 3216 case Mips::BI__builtin_msa_cfcmsa: 3217 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3218 case Mips::BI__builtin_msa_clei_u_b: 3219 case Mips::BI__builtin_msa_clei_u_h: 3220 case Mips::BI__builtin_msa_clei_u_w: 3221 case Mips::BI__builtin_msa_clei_u_d: 3222 case Mips::BI__builtin_msa_clti_u_b: 3223 case Mips::BI__builtin_msa_clti_u_h: 3224 case Mips::BI__builtin_msa_clti_u_w: 3225 case Mips::BI__builtin_msa_clti_u_d: 3226 case Mips::BI__builtin_msa_maxi_u_b: 3227 case Mips::BI__builtin_msa_maxi_u_h: 3228 case Mips::BI__builtin_msa_maxi_u_w: 3229 case Mips::BI__builtin_msa_maxi_u_d: 3230 case Mips::BI__builtin_msa_mini_u_b: 3231 case Mips::BI__builtin_msa_mini_u_h: 3232 case Mips::BI__builtin_msa_mini_u_w: 3233 case Mips::BI__builtin_msa_mini_u_d: 3234 case Mips::BI__builtin_msa_addvi_b: 3235 case Mips::BI__builtin_msa_addvi_h: 3236 case Mips::BI__builtin_msa_addvi_w: 3237 case Mips::BI__builtin_msa_addvi_d: 3238 case Mips::BI__builtin_msa_bclri_w: 3239 case Mips::BI__builtin_msa_bnegi_w: 3240 case Mips::BI__builtin_msa_bseti_w: 3241 case Mips::BI__builtin_msa_sat_s_w: 3242 case Mips::BI__builtin_msa_sat_u_w: 3243 case Mips::BI__builtin_msa_slli_w: 3244 case Mips::BI__builtin_msa_srai_w: 3245 case Mips::BI__builtin_msa_srari_w: 3246 case Mips::BI__builtin_msa_srli_w: 3247 case Mips::BI__builtin_msa_srlri_w: 3248 case Mips::BI__builtin_msa_subvi_b: 3249 case Mips::BI__builtin_msa_subvi_h: 3250 case Mips::BI__builtin_msa_subvi_w: 3251 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3252 case Mips::BI__builtin_msa_binsli_w: 3253 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3254 // These intrinsics take an unsigned 6 bit immediate. 3255 case Mips::BI__builtin_msa_bclri_d: 3256 case Mips::BI__builtin_msa_bnegi_d: 3257 case Mips::BI__builtin_msa_bseti_d: 3258 case Mips::BI__builtin_msa_sat_s_d: 3259 case Mips::BI__builtin_msa_sat_u_d: 3260 case Mips::BI__builtin_msa_slli_d: 3261 case Mips::BI__builtin_msa_srai_d: 3262 case Mips::BI__builtin_msa_srari_d: 3263 case Mips::BI__builtin_msa_srli_d: 3264 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3265 case Mips::BI__builtin_msa_binsli_d: 3266 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3267 // These intrinsics take a signed 5 bit immediate. 3268 case Mips::BI__builtin_msa_ceqi_b: 3269 case Mips::BI__builtin_msa_ceqi_h: 3270 case Mips::BI__builtin_msa_ceqi_w: 3271 case Mips::BI__builtin_msa_ceqi_d: 3272 case Mips::BI__builtin_msa_clti_s_b: 3273 case Mips::BI__builtin_msa_clti_s_h: 3274 case Mips::BI__builtin_msa_clti_s_w: 3275 case Mips::BI__builtin_msa_clti_s_d: 3276 case Mips::BI__builtin_msa_clei_s_b: 3277 case Mips::BI__builtin_msa_clei_s_h: 3278 case Mips::BI__builtin_msa_clei_s_w: 3279 case Mips::BI__builtin_msa_clei_s_d: 3280 case Mips::BI__builtin_msa_maxi_s_b: 3281 case Mips::BI__builtin_msa_maxi_s_h: 3282 case Mips::BI__builtin_msa_maxi_s_w: 3283 case Mips::BI__builtin_msa_maxi_s_d: 3284 case Mips::BI__builtin_msa_mini_s_b: 3285 case Mips::BI__builtin_msa_mini_s_h: 3286 case Mips::BI__builtin_msa_mini_s_w: 3287 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3288 // These intrinsics take an unsigned 8 bit immediate. 3289 case Mips::BI__builtin_msa_andi_b: 3290 case Mips::BI__builtin_msa_nori_b: 3291 case Mips::BI__builtin_msa_ori_b: 3292 case Mips::BI__builtin_msa_shf_b: 3293 case Mips::BI__builtin_msa_shf_h: 3294 case Mips::BI__builtin_msa_shf_w: 3295 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3296 case Mips::BI__builtin_msa_bseli_b: 3297 case Mips::BI__builtin_msa_bmnzi_b: 3298 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3299 // df/n format 3300 // These intrinsics take an unsigned 4 bit immediate. 3301 case Mips::BI__builtin_msa_copy_s_b: 3302 case Mips::BI__builtin_msa_copy_u_b: 3303 case Mips::BI__builtin_msa_insve_b: 3304 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3305 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3306 // These intrinsics take an unsigned 3 bit immediate. 3307 case Mips::BI__builtin_msa_copy_s_h: 3308 case Mips::BI__builtin_msa_copy_u_h: 3309 case Mips::BI__builtin_msa_insve_h: 3310 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3311 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3312 // These intrinsics take an unsigned 2 bit immediate. 3313 case Mips::BI__builtin_msa_copy_s_w: 3314 case Mips::BI__builtin_msa_copy_u_w: 3315 case Mips::BI__builtin_msa_insve_w: 3316 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3317 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3318 // These intrinsics take an unsigned 1 bit immediate. 3319 case Mips::BI__builtin_msa_copy_s_d: 3320 case Mips::BI__builtin_msa_copy_u_d: 3321 case Mips::BI__builtin_msa_insve_d: 3322 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3323 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3324 // Memory offsets and immediate loads. 3325 // These intrinsics take a signed 10 bit immediate. 3326 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3327 case Mips::BI__builtin_msa_ldi_h: 3328 case Mips::BI__builtin_msa_ldi_w: 3329 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3330 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3331 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3332 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3333 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3334 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3335 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3336 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3337 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3338 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3339 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3340 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3341 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3342 } 3343 3344 if (!m) 3345 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3346 3347 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3348 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3349 } 3350 3351 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3352 /// advancing the pointer over the consumed characters. The decoded type is 3353 /// returned. If the decoded type represents a constant integer with a 3354 /// constraint on its value then Mask is set to that value. The type descriptors 3355 /// used in Str are specific to PPC MMA builtins and are documented in the file 3356 /// defining the PPC builtins. 3357 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3358 unsigned &Mask) { 3359 bool RequireICE = false; 3360 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3361 switch (*Str++) { 3362 case 'V': 3363 return Context.getVectorType(Context.UnsignedCharTy, 16, 3364 VectorType::VectorKind::AltiVecVector); 3365 case 'i': { 3366 char *End; 3367 unsigned size = strtoul(Str, &End, 10); 3368 assert(End != Str && "Missing constant parameter constraint"); 3369 Str = End; 3370 Mask = size; 3371 return Context.IntTy; 3372 } 3373 case 'W': { 3374 char *End; 3375 unsigned size = strtoul(Str, &End, 10); 3376 assert(End != Str && "Missing PowerPC MMA type size"); 3377 Str = End; 3378 QualType Type; 3379 switch (size) { 3380 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3381 case size: Type = Context.Id##Ty; break; 3382 #include "clang/Basic/PPCTypes.def" 3383 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3384 } 3385 bool CheckVectorArgs = false; 3386 while (!CheckVectorArgs) { 3387 switch (*Str++) { 3388 case '*': 3389 Type = Context.getPointerType(Type); 3390 break; 3391 case 'C': 3392 Type = Type.withConst(); 3393 break; 3394 default: 3395 CheckVectorArgs = true; 3396 --Str; 3397 break; 3398 } 3399 } 3400 return Type; 3401 } 3402 default: 3403 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3404 } 3405 } 3406 3407 static bool isPPC_64Builtin(unsigned BuiltinID) { 3408 // These builtins only work on PPC 64bit targets. 3409 switch (BuiltinID) { 3410 case PPC::BI__builtin_divde: 3411 case PPC::BI__builtin_divdeu: 3412 case PPC::BI__builtin_bpermd: 3413 case PPC::BI__builtin_ppc_ldarx: 3414 case PPC::BI__builtin_ppc_stdcx: 3415 case PPC::BI__builtin_ppc_tdw: 3416 case PPC::BI__builtin_ppc_trapd: 3417 case PPC::BI__builtin_ppc_cmpeqb: 3418 case PPC::BI__builtin_ppc_setb: 3419 case PPC::BI__builtin_ppc_mulhd: 3420 case PPC::BI__builtin_ppc_mulhdu: 3421 case PPC::BI__builtin_ppc_maddhd: 3422 case PPC::BI__builtin_ppc_maddhdu: 3423 case PPC::BI__builtin_ppc_maddld: 3424 case PPC::BI__builtin_ppc_load8r: 3425 case PPC::BI__builtin_ppc_store8r: 3426 case PPC::BI__builtin_ppc_insert_exp: 3427 case PPC::BI__builtin_ppc_extract_sig: 3428 case PPC::BI__builtin_ppc_addex: 3429 case PPC::BI__builtin_darn: 3430 case PPC::BI__builtin_darn_raw: 3431 case PPC::BI__builtin_ppc_compare_and_swaplp: 3432 case PPC::BI__builtin_ppc_fetch_and_addlp: 3433 case PPC::BI__builtin_ppc_fetch_and_andlp: 3434 case PPC::BI__builtin_ppc_fetch_and_orlp: 3435 case PPC::BI__builtin_ppc_fetch_and_swaplp: 3436 return true; 3437 } 3438 return false; 3439 } 3440 3441 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall, 3442 StringRef FeatureToCheck, unsigned DiagID, 3443 StringRef DiagArg = "") { 3444 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck)) 3445 return false; 3446 3447 if (DiagArg.empty()) 3448 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange(); 3449 else 3450 S.Diag(TheCall->getBeginLoc(), DiagID) 3451 << DiagArg << TheCall->getSourceRange(); 3452 3453 return true; 3454 } 3455 3456 /// Returns true if the argument consists of one contiguous run of 1s with any 3457 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so 3458 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not, 3459 /// since all 1s are not contiguous. 3460 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { 3461 llvm::APSInt Result; 3462 // We can't check the value of a dependent argument. 3463 Expr *Arg = TheCall->getArg(ArgNum); 3464 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3465 return false; 3466 3467 // Check constant-ness first. 3468 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3469 return true; 3470 3471 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. 3472 if (Result.isShiftedMask() || (~Result).isShiftedMask()) 3473 return false; 3474 3475 return Diag(TheCall->getBeginLoc(), 3476 diag::err_argument_not_contiguous_bit_field) 3477 << ArgNum << Arg->getSourceRange(); 3478 } 3479 3480 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3481 CallExpr *TheCall) { 3482 unsigned i = 0, l = 0, u = 0; 3483 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3484 llvm::APSInt Result; 3485 3486 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit) 3487 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3488 << TheCall->getSourceRange(); 3489 3490 switch (BuiltinID) { 3491 default: return false; 3492 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3493 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3494 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3495 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3496 case PPC::BI__builtin_altivec_dss: 3497 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3498 case PPC::BI__builtin_tbegin: 3499 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3500 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3501 case PPC::BI__builtin_tabortwc: 3502 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3503 case PPC::BI__builtin_tabortwci: 3504 case PPC::BI__builtin_tabortdci: 3505 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3506 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3507 // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05', 3508 // __builtin_(un)pack_longdouble are available only if long double uses IBM 3509 // extended double representation. 3510 case PPC::BI__builtin_unpack_longdouble: 3511 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1)) 3512 return true; 3513 LLVM_FALLTHROUGH; 3514 case PPC::BI__builtin_pack_longdouble: 3515 if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble()) 3516 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi) 3517 << "ibmlongdouble"; 3518 return false; 3519 case PPC::BI__builtin_altivec_dst: 3520 case PPC::BI__builtin_altivec_dstt: 3521 case PPC::BI__builtin_altivec_dstst: 3522 case PPC::BI__builtin_altivec_dststt: 3523 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3524 case PPC::BI__builtin_vsx_xxpermdi: 3525 case PPC::BI__builtin_vsx_xxsldwi: 3526 return SemaBuiltinVSX(TheCall); 3527 case PPC::BI__builtin_divwe: 3528 case PPC::BI__builtin_divweu: 3529 case PPC::BI__builtin_divde: 3530 case PPC::BI__builtin_divdeu: 3531 return SemaFeatureCheck(*this, TheCall, "extdiv", 3532 diag::err_ppc_builtin_only_on_arch, "7"); 3533 case PPC::BI__builtin_bpermd: 3534 return SemaFeatureCheck(*this, TheCall, "bpermd", 3535 diag::err_ppc_builtin_only_on_arch, "7"); 3536 case PPC::BI__builtin_unpack_vector_int128: 3537 return SemaFeatureCheck(*this, TheCall, "vsx", 3538 diag::err_ppc_builtin_only_on_arch, "7") || 3539 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3540 case PPC::BI__builtin_pack_vector_int128: 3541 return SemaFeatureCheck(*this, TheCall, "vsx", 3542 diag::err_ppc_builtin_only_on_arch, "7"); 3543 case PPC::BI__builtin_altivec_vgnb: 3544 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3545 case PPC::BI__builtin_altivec_vec_replace_elt: 3546 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3547 QualType VecTy = TheCall->getArg(0)->getType(); 3548 QualType EltTy = TheCall->getArg(1)->getType(); 3549 unsigned Width = Context.getIntWidth(EltTy); 3550 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3551 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3552 } 3553 case PPC::BI__builtin_vsx_xxeval: 3554 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3555 case PPC::BI__builtin_altivec_vsldbi: 3556 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3557 case PPC::BI__builtin_altivec_vsrdbi: 3558 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3559 case PPC::BI__builtin_vsx_xxpermx: 3560 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3561 case PPC::BI__builtin_ppc_tw: 3562 case PPC::BI__builtin_ppc_tdw: 3563 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31); 3564 case PPC::BI__builtin_ppc_cmpeqb: 3565 case PPC::BI__builtin_ppc_setb: 3566 case PPC::BI__builtin_ppc_maddhd: 3567 case PPC::BI__builtin_ppc_maddhdu: 3568 case PPC::BI__builtin_ppc_maddld: 3569 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3570 diag::err_ppc_builtin_only_on_arch, "9"); 3571 case PPC::BI__builtin_ppc_cmprb: 3572 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3573 diag::err_ppc_builtin_only_on_arch, "9") || 3574 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1); 3575 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must 3576 // be a constant that represents a contiguous bit field. 3577 case PPC::BI__builtin_ppc_rlwnm: 3578 return SemaValueIsRunOfOnes(TheCall, 2); 3579 case PPC::BI__builtin_ppc_rlwimi: 3580 case PPC::BI__builtin_ppc_rldimi: 3581 return SemaBuiltinConstantArg(TheCall, 2, Result) || 3582 SemaValueIsRunOfOnes(TheCall, 3); 3583 case PPC::BI__builtin_ppc_extract_exp: 3584 case PPC::BI__builtin_ppc_extract_sig: 3585 case PPC::BI__builtin_ppc_insert_exp: 3586 return SemaFeatureCheck(*this, TheCall, "power9-vector", 3587 diag::err_ppc_builtin_only_on_arch, "9"); 3588 case PPC::BI__builtin_ppc_addex: { 3589 if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3590 diag::err_ppc_builtin_only_on_arch, "9") || 3591 SemaBuiltinConstantArgRange(TheCall, 2, 0, 3)) 3592 return true; 3593 // Output warning for reserved values 1 to 3. 3594 int ArgValue = 3595 TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue(); 3596 if (ArgValue != 0) 3597 Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour) 3598 << ArgValue; 3599 return false; 3600 } 3601 case PPC::BI__builtin_ppc_mtfsb0: 3602 case PPC::BI__builtin_ppc_mtfsb1: 3603 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 3604 case PPC::BI__builtin_ppc_mtfsf: 3605 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255); 3606 case PPC::BI__builtin_ppc_mtfsfi: 3607 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) || 3608 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 3609 case PPC::BI__builtin_ppc_alignx: 3610 return SemaBuiltinConstantArgPower2(TheCall, 0); 3611 case PPC::BI__builtin_ppc_rdlam: 3612 return SemaValueIsRunOfOnes(TheCall, 2); 3613 case PPC::BI__builtin_ppc_icbt: 3614 case PPC::BI__builtin_ppc_sthcx: 3615 case PPC::BI__builtin_ppc_stbcx: 3616 case PPC::BI__builtin_ppc_lharx: 3617 case PPC::BI__builtin_ppc_lbarx: 3618 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3619 diag::err_ppc_builtin_only_on_arch, "8"); 3620 case PPC::BI__builtin_vsx_ldrmb: 3621 case PPC::BI__builtin_vsx_strmb: 3622 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3623 diag::err_ppc_builtin_only_on_arch, "8") || 3624 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 3625 case PPC::BI__builtin_altivec_vcntmbb: 3626 case PPC::BI__builtin_altivec_vcntmbh: 3627 case PPC::BI__builtin_altivec_vcntmbw: 3628 case PPC::BI__builtin_altivec_vcntmbd: 3629 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3630 case PPC::BI__builtin_darn: 3631 case PPC::BI__builtin_darn_raw: 3632 case PPC::BI__builtin_darn_32: 3633 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3634 diag::err_ppc_builtin_only_on_arch, "9"); 3635 case PPC::BI__builtin_vsx_xxgenpcvbm: 3636 case PPC::BI__builtin_vsx_xxgenpcvhm: 3637 case PPC::BI__builtin_vsx_xxgenpcvwm: 3638 case PPC::BI__builtin_vsx_xxgenpcvdm: 3639 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3); 3640 case PPC::BI__builtin_ppc_compare_exp_uo: 3641 case PPC::BI__builtin_ppc_compare_exp_lt: 3642 case PPC::BI__builtin_ppc_compare_exp_gt: 3643 case PPC::BI__builtin_ppc_compare_exp_eq: 3644 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3645 diag::err_ppc_builtin_only_on_arch, "9") || 3646 SemaFeatureCheck(*this, TheCall, "vsx", 3647 diag::err_ppc_builtin_requires_vsx); 3648 case PPC::BI__builtin_ppc_test_data_class: { 3649 // Check if the first argument of the __builtin_ppc_test_data_class call is 3650 // valid. The argument must be either a 'float' or a 'double'. 3651 QualType ArgType = TheCall->getArg(0)->getType(); 3652 if (ArgType != QualType(Context.FloatTy) && 3653 ArgType != QualType(Context.DoubleTy)) 3654 return Diag(TheCall->getBeginLoc(), 3655 diag::err_ppc_invalid_test_data_class_type); 3656 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3657 diag::err_ppc_builtin_only_on_arch, "9") || 3658 SemaFeatureCheck(*this, TheCall, "vsx", 3659 diag::err_ppc_builtin_requires_vsx) || 3660 SemaBuiltinConstantArgRange(TheCall, 1, 0, 127); 3661 } 3662 case PPC::BI__builtin_ppc_load8r: 3663 case PPC::BI__builtin_ppc_store8r: 3664 return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions", 3665 diag::err_ppc_builtin_only_on_arch, "7"); 3666 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 3667 case PPC::BI__builtin_##Name: \ 3668 return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types); 3669 #include "clang/Basic/BuiltinsPPC.def" 3670 } 3671 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3672 } 3673 3674 // Check if the given type is a non-pointer PPC MMA type. This function is used 3675 // in Sema to prevent invalid uses of restricted PPC MMA types. 3676 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3677 if (Type->isPointerType() || Type->isArrayType()) 3678 return false; 3679 3680 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3681 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3682 if (false 3683 #include "clang/Basic/PPCTypes.def" 3684 ) { 3685 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3686 return true; 3687 } 3688 return false; 3689 } 3690 3691 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3692 CallExpr *TheCall) { 3693 // position of memory order and scope arguments in the builtin 3694 unsigned OrderIndex, ScopeIndex; 3695 switch (BuiltinID) { 3696 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3697 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3698 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3699 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3700 OrderIndex = 2; 3701 ScopeIndex = 3; 3702 break; 3703 case AMDGPU::BI__builtin_amdgcn_fence: 3704 OrderIndex = 0; 3705 ScopeIndex = 1; 3706 break; 3707 default: 3708 return false; 3709 } 3710 3711 ExprResult Arg = TheCall->getArg(OrderIndex); 3712 auto ArgExpr = Arg.get(); 3713 Expr::EvalResult ArgResult; 3714 3715 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3716 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3717 << ArgExpr->getType(); 3718 auto Ord = ArgResult.Val.getInt().getZExtValue(); 3719 3720 // Check validity of memory ordering as per C11 / C++11's memody model. 3721 // Only fence needs check. Atomic dec/inc allow all memory orders. 3722 if (!llvm::isValidAtomicOrderingCABI(Ord)) 3723 return Diag(ArgExpr->getBeginLoc(), 3724 diag::warn_atomic_op_has_invalid_memory_order) 3725 << ArgExpr->getSourceRange(); 3726 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { 3727 case llvm::AtomicOrderingCABI::relaxed: 3728 case llvm::AtomicOrderingCABI::consume: 3729 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) 3730 return Diag(ArgExpr->getBeginLoc(), 3731 diag::warn_atomic_op_has_invalid_memory_order) 3732 << ArgExpr->getSourceRange(); 3733 break; 3734 case llvm::AtomicOrderingCABI::acquire: 3735 case llvm::AtomicOrderingCABI::release: 3736 case llvm::AtomicOrderingCABI::acq_rel: 3737 case llvm::AtomicOrderingCABI::seq_cst: 3738 break; 3739 } 3740 3741 Arg = TheCall->getArg(ScopeIndex); 3742 ArgExpr = Arg.get(); 3743 Expr::EvalResult ArgResult1; 3744 // Check that sync scope is a constant literal 3745 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3746 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3747 << ArgExpr->getType(); 3748 3749 return false; 3750 } 3751 3752 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { 3753 llvm::APSInt Result; 3754 3755 // We can't check the value of a dependent argument. 3756 Expr *Arg = TheCall->getArg(ArgNum); 3757 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3758 return false; 3759 3760 // Check constant-ness first. 3761 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3762 return true; 3763 3764 int64_t Val = Result.getSExtValue(); 3765 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) 3766 return false; 3767 3768 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) 3769 << Arg->getSourceRange(); 3770 } 3771 3772 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, 3773 unsigned BuiltinID, 3774 CallExpr *TheCall) { 3775 // CodeGenFunction can also detect this, but this gives a better error 3776 // message. 3777 bool FeatureMissing = false; 3778 SmallVector<StringRef> ReqFeatures; 3779 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID); 3780 Features.split(ReqFeatures, ','); 3781 3782 // Check if each required feature is included 3783 for (StringRef F : ReqFeatures) { 3784 if (TI.hasFeature(F)) 3785 continue; 3786 3787 // If the feature is 64bit, alter the string so it will print better in 3788 // the diagnostic. 3789 if (F == "64bit") 3790 F = "RV64"; 3791 3792 // Convert features like "zbr" and "experimental-zbr" to "Zbr". 3793 F.consume_front("experimental-"); 3794 std::string FeatureStr = F.str(); 3795 FeatureStr[0] = std::toupper(FeatureStr[0]); 3796 3797 // Error message 3798 FeatureMissing = true; 3799 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension) 3800 << TheCall->getSourceRange() << StringRef(FeatureStr); 3801 } 3802 3803 if (FeatureMissing) 3804 return true; 3805 3806 switch (BuiltinID) { 3807 case RISCVVector::BI__builtin_rvv_vsetvli: 3808 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) || 3809 CheckRISCVLMUL(TheCall, 2); 3810 case RISCVVector::BI__builtin_rvv_vsetvlimax: 3811 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) || 3812 CheckRISCVLMUL(TheCall, 1); 3813 } 3814 3815 return false; 3816 } 3817 3818 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3819 CallExpr *TheCall) { 3820 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3821 Expr *Arg = TheCall->getArg(0); 3822 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 3823 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 3824 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3825 << Arg->getSourceRange(); 3826 } 3827 3828 // For intrinsics which take an immediate value as part of the instruction, 3829 // range check them here. 3830 unsigned i = 0, l = 0, u = 0; 3831 switch (BuiltinID) { 3832 default: return false; 3833 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3834 case SystemZ::BI__builtin_s390_verimb: 3835 case SystemZ::BI__builtin_s390_verimh: 3836 case SystemZ::BI__builtin_s390_verimf: 3837 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3838 case SystemZ::BI__builtin_s390_vfaeb: 3839 case SystemZ::BI__builtin_s390_vfaeh: 3840 case SystemZ::BI__builtin_s390_vfaef: 3841 case SystemZ::BI__builtin_s390_vfaebs: 3842 case SystemZ::BI__builtin_s390_vfaehs: 3843 case SystemZ::BI__builtin_s390_vfaefs: 3844 case SystemZ::BI__builtin_s390_vfaezb: 3845 case SystemZ::BI__builtin_s390_vfaezh: 3846 case SystemZ::BI__builtin_s390_vfaezf: 3847 case SystemZ::BI__builtin_s390_vfaezbs: 3848 case SystemZ::BI__builtin_s390_vfaezhs: 3849 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3850 case SystemZ::BI__builtin_s390_vfisb: 3851 case SystemZ::BI__builtin_s390_vfidb: 3852 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3853 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3854 case SystemZ::BI__builtin_s390_vftcisb: 3855 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3856 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3857 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3858 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3859 case SystemZ::BI__builtin_s390_vstrcb: 3860 case SystemZ::BI__builtin_s390_vstrch: 3861 case SystemZ::BI__builtin_s390_vstrcf: 3862 case SystemZ::BI__builtin_s390_vstrczb: 3863 case SystemZ::BI__builtin_s390_vstrczh: 3864 case SystemZ::BI__builtin_s390_vstrczf: 3865 case SystemZ::BI__builtin_s390_vstrcbs: 3866 case SystemZ::BI__builtin_s390_vstrchs: 3867 case SystemZ::BI__builtin_s390_vstrcfs: 3868 case SystemZ::BI__builtin_s390_vstrczbs: 3869 case SystemZ::BI__builtin_s390_vstrczhs: 3870 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3871 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3872 case SystemZ::BI__builtin_s390_vfminsb: 3873 case SystemZ::BI__builtin_s390_vfmaxsb: 3874 case SystemZ::BI__builtin_s390_vfmindb: 3875 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3876 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3877 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3878 case SystemZ::BI__builtin_s390_vclfnhs: 3879 case SystemZ::BI__builtin_s390_vclfnls: 3880 case SystemZ::BI__builtin_s390_vcfn: 3881 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break; 3882 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break; 3883 } 3884 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3885 } 3886 3887 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3888 /// This checks that the target supports __builtin_cpu_supports and 3889 /// that the string argument is constant and valid. 3890 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3891 CallExpr *TheCall) { 3892 Expr *Arg = TheCall->getArg(0); 3893 3894 // Check if the argument is a string literal. 3895 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3896 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3897 << Arg->getSourceRange(); 3898 3899 // Check the contents of the string. 3900 StringRef Feature = 3901 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3902 if (!TI.validateCpuSupports(Feature)) 3903 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3904 << Arg->getSourceRange(); 3905 return false; 3906 } 3907 3908 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3909 /// This checks that the target supports __builtin_cpu_is and 3910 /// that the string argument is constant and valid. 3911 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3912 Expr *Arg = TheCall->getArg(0); 3913 3914 // Check if the argument is a string literal. 3915 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3916 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3917 << Arg->getSourceRange(); 3918 3919 // Check the contents of the string. 3920 StringRef Feature = 3921 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3922 if (!TI.validateCpuIs(Feature)) 3923 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3924 << Arg->getSourceRange(); 3925 return false; 3926 } 3927 3928 // Check if the rounding mode is legal. 3929 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3930 // Indicates if this instruction has rounding control or just SAE. 3931 bool HasRC = false; 3932 3933 unsigned ArgNum = 0; 3934 switch (BuiltinID) { 3935 default: 3936 return false; 3937 case X86::BI__builtin_ia32_vcvttsd2si32: 3938 case X86::BI__builtin_ia32_vcvttsd2si64: 3939 case X86::BI__builtin_ia32_vcvttsd2usi32: 3940 case X86::BI__builtin_ia32_vcvttsd2usi64: 3941 case X86::BI__builtin_ia32_vcvttss2si32: 3942 case X86::BI__builtin_ia32_vcvttss2si64: 3943 case X86::BI__builtin_ia32_vcvttss2usi32: 3944 case X86::BI__builtin_ia32_vcvttss2usi64: 3945 case X86::BI__builtin_ia32_vcvttsh2si32: 3946 case X86::BI__builtin_ia32_vcvttsh2si64: 3947 case X86::BI__builtin_ia32_vcvttsh2usi32: 3948 case X86::BI__builtin_ia32_vcvttsh2usi64: 3949 ArgNum = 1; 3950 break; 3951 case X86::BI__builtin_ia32_maxpd512: 3952 case X86::BI__builtin_ia32_maxps512: 3953 case X86::BI__builtin_ia32_minpd512: 3954 case X86::BI__builtin_ia32_minps512: 3955 case X86::BI__builtin_ia32_maxph512: 3956 case X86::BI__builtin_ia32_minph512: 3957 ArgNum = 2; 3958 break; 3959 case X86::BI__builtin_ia32_vcvtph2pd512_mask: 3960 case X86::BI__builtin_ia32_vcvtph2psx512_mask: 3961 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3962 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3963 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3964 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3965 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3966 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3967 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3968 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3969 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3970 case X86::BI__builtin_ia32_vcvttph2w512_mask: 3971 case X86::BI__builtin_ia32_vcvttph2uw512_mask: 3972 case X86::BI__builtin_ia32_vcvttph2dq512_mask: 3973 case X86::BI__builtin_ia32_vcvttph2udq512_mask: 3974 case X86::BI__builtin_ia32_vcvttph2qq512_mask: 3975 case X86::BI__builtin_ia32_vcvttph2uqq512_mask: 3976 case X86::BI__builtin_ia32_exp2pd_mask: 3977 case X86::BI__builtin_ia32_exp2ps_mask: 3978 case X86::BI__builtin_ia32_getexppd512_mask: 3979 case X86::BI__builtin_ia32_getexpps512_mask: 3980 case X86::BI__builtin_ia32_getexpph512_mask: 3981 case X86::BI__builtin_ia32_rcp28pd_mask: 3982 case X86::BI__builtin_ia32_rcp28ps_mask: 3983 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3984 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3985 case X86::BI__builtin_ia32_vcomisd: 3986 case X86::BI__builtin_ia32_vcomiss: 3987 case X86::BI__builtin_ia32_vcomish: 3988 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3989 ArgNum = 3; 3990 break; 3991 case X86::BI__builtin_ia32_cmppd512_mask: 3992 case X86::BI__builtin_ia32_cmpps512_mask: 3993 case X86::BI__builtin_ia32_cmpsd_mask: 3994 case X86::BI__builtin_ia32_cmpss_mask: 3995 case X86::BI__builtin_ia32_cmpsh_mask: 3996 case X86::BI__builtin_ia32_vcvtsh2sd_round_mask: 3997 case X86::BI__builtin_ia32_vcvtsh2ss_round_mask: 3998 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3999 case X86::BI__builtin_ia32_getexpsd128_round_mask: 4000 case X86::BI__builtin_ia32_getexpss128_round_mask: 4001 case X86::BI__builtin_ia32_getexpsh128_round_mask: 4002 case X86::BI__builtin_ia32_getmantpd512_mask: 4003 case X86::BI__builtin_ia32_getmantps512_mask: 4004 case X86::BI__builtin_ia32_getmantph512_mask: 4005 case X86::BI__builtin_ia32_maxsd_round_mask: 4006 case X86::BI__builtin_ia32_maxss_round_mask: 4007 case X86::BI__builtin_ia32_maxsh_round_mask: 4008 case X86::BI__builtin_ia32_minsd_round_mask: 4009 case X86::BI__builtin_ia32_minss_round_mask: 4010 case X86::BI__builtin_ia32_minsh_round_mask: 4011 case X86::BI__builtin_ia32_rcp28sd_round_mask: 4012 case X86::BI__builtin_ia32_rcp28ss_round_mask: 4013 case X86::BI__builtin_ia32_reducepd512_mask: 4014 case X86::BI__builtin_ia32_reduceps512_mask: 4015 case X86::BI__builtin_ia32_reduceph512_mask: 4016 case X86::BI__builtin_ia32_rndscalepd_mask: 4017 case X86::BI__builtin_ia32_rndscaleps_mask: 4018 case X86::BI__builtin_ia32_rndscaleph_mask: 4019 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 4020 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 4021 ArgNum = 4; 4022 break; 4023 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4024 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4025 case X86::BI__builtin_ia32_fixupimmps512_mask: 4026 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4027 case X86::BI__builtin_ia32_fixupimmsd_mask: 4028 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4029 case X86::BI__builtin_ia32_fixupimmss_mask: 4030 case X86::BI__builtin_ia32_fixupimmss_maskz: 4031 case X86::BI__builtin_ia32_getmantsd_round_mask: 4032 case X86::BI__builtin_ia32_getmantss_round_mask: 4033 case X86::BI__builtin_ia32_getmantsh_round_mask: 4034 case X86::BI__builtin_ia32_rangepd512_mask: 4035 case X86::BI__builtin_ia32_rangeps512_mask: 4036 case X86::BI__builtin_ia32_rangesd128_round_mask: 4037 case X86::BI__builtin_ia32_rangess128_round_mask: 4038 case X86::BI__builtin_ia32_reducesd_mask: 4039 case X86::BI__builtin_ia32_reducess_mask: 4040 case X86::BI__builtin_ia32_reducesh_mask: 4041 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4042 case X86::BI__builtin_ia32_rndscaless_round_mask: 4043 case X86::BI__builtin_ia32_rndscalesh_round_mask: 4044 ArgNum = 5; 4045 break; 4046 case X86::BI__builtin_ia32_vcvtsd2si64: 4047 case X86::BI__builtin_ia32_vcvtsd2si32: 4048 case X86::BI__builtin_ia32_vcvtsd2usi32: 4049 case X86::BI__builtin_ia32_vcvtsd2usi64: 4050 case X86::BI__builtin_ia32_vcvtss2si32: 4051 case X86::BI__builtin_ia32_vcvtss2si64: 4052 case X86::BI__builtin_ia32_vcvtss2usi32: 4053 case X86::BI__builtin_ia32_vcvtss2usi64: 4054 case X86::BI__builtin_ia32_vcvtsh2si32: 4055 case X86::BI__builtin_ia32_vcvtsh2si64: 4056 case X86::BI__builtin_ia32_vcvtsh2usi32: 4057 case X86::BI__builtin_ia32_vcvtsh2usi64: 4058 case X86::BI__builtin_ia32_sqrtpd512: 4059 case X86::BI__builtin_ia32_sqrtps512: 4060 case X86::BI__builtin_ia32_sqrtph512: 4061 ArgNum = 1; 4062 HasRC = true; 4063 break; 4064 case X86::BI__builtin_ia32_addph512: 4065 case X86::BI__builtin_ia32_divph512: 4066 case X86::BI__builtin_ia32_mulph512: 4067 case X86::BI__builtin_ia32_subph512: 4068 case X86::BI__builtin_ia32_addpd512: 4069 case X86::BI__builtin_ia32_addps512: 4070 case X86::BI__builtin_ia32_divpd512: 4071 case X86::BI__builtin_ia32_divps512: 4072 case X86::BI__builtin_ia32_mulpd512: 4073 case X86::BI__builtin_ia32_mulps512: 4074 case X86::BI__builtin_ia32_subpd512: 4075 case X86::BI__builtin_ia32_subps512: 4076 case X86::BI__builtin_ia32_cvtsi2sd64: 4077 case X86::BI__builtin_ia32_cvtsi2ss32: 4078 case X86::BI__builtin_ia32_cvtsi2ss64: 4079 case X86::BI__builtin_ia32_cvtusi2sd64: 4080 case X86::BI__builtin_ia32_cvtusi2ss32: 4081 case X86::BI__builtin_ia32_cvtusi2ss64: 4082 case X86::BI__builtin_ia32_vcvtusi2sh: 4083 case X86::BI__builtin_ia32_vcvtusi642sh: 4084 case X86::BI__builtin_ia32_vcvtsi2sh: 4085 case X86::BI__builtin_ia32_vcvtsi642sh: 4086 ArgNum = 2; 4087 HasRC = true; 4088 break; 4089 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 4090 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 4091 case X86::BI__builtin_ia32_vcvtpd2ph512_mask: 4092 case X86::BI__builtin_ia32_vcvtps2phx512_mask: 4093 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 4094 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 4095 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 4096 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 4097 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 4098 case X86::BI__builtin_ia32_cvtps2dq512_mask: 4099 case X86::BI__builtin_ia32_cvtps2qq512_mask: 4100 case X86::BI__builtin_ia32_cvtps2udq512_mask: 4101 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 4102 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 4103 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 4104 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 4105 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 4106 case X86::BI__builtin_ia32_vcvtdq2ph512_mask: 4107 case X86::BI__builtin_ia32_vcvtudq2ph512_mask: 4108 case X86::BI__builtin_ia32_vcvtw2ph512_mask: 4109 case X86::BI__builtin_ia32_vcvtuw2ph512_mask: 4110 case X86::BI__builtin_ia32_vcvtph2w512_mask: 4111 case X86::BI__builtin_ia32_vcvtph2uw512_mask: 4112 case X86::BI__builtin_ia32_vcvtph2dq512_mask: 4113 case X86::BI__builtin_ia32_vcvtph2udq512_mask: 4114 case X86::BI__builtin_ia32_vcvtph2qq512_mask: 4115 case X86::BI__builtin_ia32_vcvtph2uqq512_mask: 4116 case X86::BI__builtin_ia32_vcvtqq2ph512_mask: 4117 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: 4118 ArgNum = 3; 4119 HasRC = true; 4120 break; 4121 case X86::BI__builtin_ia32_addsh_round_mask: 4122 case X86::BI__builtin_ia32_addss_round_mask: 4123 case X86::BI__builtin_ia32_addsd_round_mask: 4124 case X86::BI__builtin_ia32_divsh_round_mask: 4125 case X86::BI__builtin_ia32_divss_round_mask: 4126 case X86::BI__builtin_ia32_divsd_round_mask: 4127 case X86::BI__builtin_ia32_mulsh_round_mask: 4128 case X86::BI__builtin_ia32_mulss_round_mask: 4129 case X86::BI__builtin_ia32_mulsd_round_mask: 4130 case X86::BI__builtin_ia32_subsh_round_mask: 4131 case X86::BI__builtin_ia32_subss_round_mask: 4132 case X86::BI__builtin_ia32_subsd_round_mask: 4133 case X86::BI__builtin_ia32_scalefph512_mask: 4134 case X86::BI__builtin_ia32_scalefpd512_mask: 4135 case X86::BI__builtin_ia32_scalefps512_mask: 4136 case X86::BI__builtin_ia32_scalefsd_round_mask: 4137 case X86::BI__builtin_ia32_scalefss_round_mask: 4138 case X86::BI__builtin_ia32_scalefsh_round_mask: 4139 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 4140 case X86::BI__builtin_ia32_vcvtss2sh_round_mask: 4141 case X86::BI__builtin_ia32_vcvtsd2sh_round_mask: 4142 case X86::BI__builtin_ia32_sqrtsd_round_mask: 4143 case X86::BI__builtin_ia32_sqrtss_round_mask: 4144 case X86::BI__builtin_ia32_sqrtsh_round_mask: 4145 case X86::BI__builtin_ia32_vfmaddsd3_mask: 4146 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 4147 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 4148 case X86::BI__builtin_ia32_vfmaddss3_mask: 4149 case X86::BI__builtin_ia32_vfmaddss3_maskz: 4150 case X86::BI__builtin_ia32_vfmaddss3_mask3: 4151 case X86::BI__builtin_ia32_vfmaddsh3_mask: 4152 case X86::BI__builtin_ia32_vfmaddsh3_maskz: 4153 case X86::BI__builtin_ia32_vfmaddsh3_mask3: 4154 case X86::BI__builtin_ia32_vfmaddpd512_mask: 4155 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 4156 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 4157 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 4158 case X86::BI__builtin_ia32_vfmaddps512_mask: 4159 case X86::BI__builtin_ia32_vfmaddps512_maskz: 4160 case X86::BI__builtin_ia32_vfmaddps512_mask3: 4161 case X86::BI__builtin_ia32_vfmsubps512_mask3: 4162 case X86::BI__builtin_ia32_vfmaddph512_mask: 4163 case X86::BI__builtin_ia32_vfmaddph512_maskz: 4164 case X86::BI__builtin_ia32_vfmaddph512_mask3: 4165 case X86::BI__builtin_ia32_vfmsubph512_mask3: 4166 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 4167 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 4168 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 4169 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 4170 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 4171 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 4172 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 4173 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 4174 case X86::BI__builtin_ia32_vfmaddsubph512_mask: 4175 case X86::BI__builtin_ia32_vfmaddsubph512_maskz: 4176 case X86::BI__builtin_ia32_vfmaddsubph512_mask3: 4177 case X86::BI__builtin_ia32_vfmsubaddph512_mask3: 4178 case X86::BI__builtin_ia32_vfmaddcsh_mask: 4179 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: 4180 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: 4181 case X86::BI__builtin_ia32_vfmaddcph512_mask: 4182 case X86::BI__builtin_ia32_vfmaddcph512_maskz: 4183 case X86::BI__builtin_ia32_vfmaddcph512_mask3: 4184 case X86::BI__builtin_ia32_vfcmaddcsh_mask: 4185 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: 4186 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: 4187 case X86::BI__builtin_ia32_vfcmaddcph512_mask: 4188 case X86::BI__builtin_ia32_vfcmaddcph512_maskz: 4189 case X86::BI__builtin_ia32_vfcmaddcph512_mask3: 4190 case X86::BI__builtin_ia32_vfmulcsh_mask: 4191 case X86::BI__builtin_ia32_vfmulcph512_mask: 4192 case X86::BI__builtin_ia32_vfcmulcsh_mask: 4193 case X86::BI__builtin_ia32_vfcmulcph512_mask: 4194 ArgNum = 4; 4195 HasRC = true; 4196 break; 4197 } 4198 4199 llvm::APSInt Result; 4200 4201 // We can't check the value of a dependent argument. 4202 Expr *Arg = TheCall->getArg(ArgNum); 4203 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4204 return false; 4205 4206 // Check constant-ness first. 4207 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4208 return true; 4209 4210 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 4211 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 4212 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 4213 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 4214 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 4215 Result == 8/*ROUND_NO_EXC*/ || 4216 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 4217 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 4218 return false; 4219 4220 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 4221 << Arg->getSourceRange(); 4222 } 4223 4224 // Check if the gather/scatter scale is legal. 4225 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 4226 CallExpr *TheCall) { 4227 unsigned ArgNum = 0; 4228 switch (BuiltinID) { 4229 default: 4230 return false; 4231 case X86::BI__builtin_ia32_gatherpfdpd: 4232 case X86::BI__builtin_ia32_gatherpfdps: 4233 case X86::BI__builtin_ia32_gatherpfqpd: 4234 case X86::BI__builtin_ia32_gatherpfqps: 4235 case X86::BI__builtin_ia32_scatterpfdpd: 4236 case X86::BI__builtin_ia32_scatterpfdps: 4237 case X86::BI__builtin_ia32_scatterpfqpd: 4238 case X86::BI__builtin_ia32_scatterpfqps: 4239 ArgNum = 3; 4240 break; 4241 case X86::BI__builtin_ia32_gatherd_pd: 4242 case X86::BI__builtin_ia32_gatherd_pd256: 4243 case X86::BI__builtin_ia32_gatherq_pd: 4244 case X86::BI__builtin_ia32_gatherq_pd256: 4245 case X86::BI__builtin_ia32_gatherd_ps: 4246 case X86::BI__builtin_ia32_gatherd_ps256: 4247 case X86::BI__builtin_ia32_gatherq_ps: 4248 case X86::BI__builtin_ia32_gatherq_ps256: 4249 case X86::BI__builtin_ia32_gatherd_q: 4250 case X86::BI__builtin_ia32_gatherd_q256: 4251 case X86::BI__builtin_ia32_gatherq_q: 4252 case X86::BI__builtin_ia32_gatherq_q256: 4253 case X86::BI__builtin_ia32_gatherd_d: 4254 case X86::BI__builtin_ia32_gatherd_d256: 4255 case X86::BI__builtin_ia32_gatherq_d: 4256 case X86::BI__builtin_ia32_gatherq_d256: 4257 case X86::BI__builtin_ia32_gather3div2df: 4258 case X86::BI__builtin_ia32_gather3div2di: 4259 case X86::BI__builtin_ia32_gather3div4df: 4260 case X86::BI__builtin_ia32_gather3div4di: 4261 case X86::BI__builtin_ia32_gather3div4sf: 4262 case X86::BI__builtin_ia32_gather3div4si: 4263 case X86::BI__builtin_ia32_gather3div8sf: 4264 case X86::BI__builtin_ia32_gather3div8si: 4265 case X86::BI__builtin_ia32_gather3siv2df: 4266 case X86::BI__builtin_ia32_gather3siv2di: 4267 case X86::BI__builtin_ia32_gather3siv4df: 4268 case X86::BI__builtin_ia32_gather3siv4di: 4269 case X86::BI__builtin_ia32_gather3siv4sf: 4270 case X86::BI__builtin_ia32_gather3siv4si: 4271 case X86::BI__builtin_ia32_gather3siv8sf: 4272 case X86::BI__builtin_ia32_gather3siv8si: 4273 case X86::BI__builtin_ia32_gathersiv8df: 4274 case X86::BI__builtin_ia32_gathersiv16sf: 4275 case X86::BI__builtin_ia32_gatherdiv8df: 4276 case X86::BI__builtin_ia32_gatherdiv16sf: 4277 case X86::BI__builtin_ia32_gathersiv8di: 4278 case X86::BI__builtin_ia32_gathersiv16si: 4279 case X86::BI__builtin_ia32_gatherdiv8di: 4280 case X86::BI__builtin_ia32_gatherdiv16si: 4281 case X86::BI__builtin_ia32_scatterdiv2df: 4282 case X86::BI__builtin_ia32_scatterdiv2di: 4283 case X86::BI__builtin_ia32_scatterdiv4df: 4284 case X86::BI__builtin_ia32_scatterdiv4di: 4285 case X86::BI__builtin_ia32_scatterdiv4sf: 4286 case X86::BI__builtin_ia32_scatterdiv4si: 4287 case X86::BI__builtin_ia32_scatterdiv8sf: 4288 case X86::BI__builtin_ia32_scatterdiv8si: 4289 case X86::BI__builtin_ia32_scattersiv2df: 4290 case X86::BI__builtin_ia32_scattersiv2di: 4291 case X86::BI__builtin_ia32_scattersiv4df: 4292 case X86::BI__builtin_ia32_scattersiv4di: 4293 case X86::BI__builtin_ia32_scattersiv4sf: 4294 case X86::BI__builtin_ia32_scattersiv4si: 4295 case X86::BI__builtin_ia32_scattersiv8sf: 4296 case X86::BI__builtin_ia32_scattersiv8si: 4297 case X86::BI__builtin_ia32_scattersiv8df: 4298 case X86::BI__builtin_ia32_scattersiv16sf: 4299 case X86::BI__builtin_ia32_scatterdiv8df: 4300 case X86::BI__builtin_ia32_scatterdiv16sf: 4301 case X86::BI__builtin_ia32_scattersiv8di: 4302 case X86::BI__builtin_ia32_scattersiv16si: 4303 case X86::BI__builtin_ia32_scatterdiv8di: 4304 case X86::BI__builtin_ia32_scatterdiv16si: 4305 ArgNum = 4; 4306 break; 4307 } 4308 4309 llvm::APSInt Result; 4310 4311 // We can't check the value of a dependent argument. 4312 Expr *Arg = TheCall->getArg(ArgNum); 4313 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4314 return false; 4315 4316 // Check constant-ness first. 4317 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4318 return true; 4319 4320 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 4321 return false; 4322 4323 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 4324 << Arg->getSourceRange(); 4325 } 4326 4327 enum { TileRegLow = 0, TileRegHigh = 7 }; 4328 4329 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 4330 ArrayRef<int> ArgNums) { 4331 for (int ArgNum : ArgNums) { 4332 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 4333 return true; 4334 } 4335 return false; 4336 } 4337 4338 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 4339 ArrayRef<int> ArgNums) { 4340 // Because the max number of tile register is TileRegHigh + 1, so here we use 4341 // each bit to represent the usage of them in bitset. 4342 std::bitset<TileRegHigh + 1> ArgValues; 4343 for (int ArgNum : ArgNums) { 4344 Expr *Arg = TheCall->getArg(ArgNum); 4345 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4346 continue; 4347 4348 llvm::APSInt Result; 4349 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4350 return true; 4351 int ArgExtValue = Result.getExtValue(); 4352 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 4353 "Incorrect tile register num."); 4354 if (ArgValues.test(ArgExtValue)) 4355 return Diag(TheCall->getBeginLoc(), 4356 diag::err_x86_builtin_tile_arg_duplicate) 4357 << TheCall->getArg(ArgNum)->getSourceRange(); 4358 ArgValues.set(ArgExtValue); 4359 } 4360 return false; 4361 } 4362 4363 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 4364 ArrayRef<int> ArgNums) { 4365 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 4366 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 4367 } 4368 4369 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 4370 switch (BuiltinID) { 4371 default: 4372 return false; 4373 case X86::BI__builtin_ia32_tileloadd64: 4374 case X86::BI__builtin_ia32_tileloaddt164: 4375 case X86::BI__builtin_ia32_tilestored64: 4376 case X86::BI__builtin_ia32_tilezero: 4377 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 4378 case X86::BI__builtin_ia32_tdpbssd: 4379 case X86::BI__builtin_ia32_tdpbsud: 4380 case X86::BI__builtin_ia32_tdpbusd: 4381 case X86::BI__builtin_ia32_tdpbuud: 4382 case X86::BI__builtin_ia32_tdpbf16ps: 4383 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 4384 } 4385 } 4386 static bool isX86_32Builtin(unsigned BuiltinID) { 4387 // These builtins only work on x86-32 targets. 4388 switch (BuiltinID) { 4389 case X86::BI__builtin_ia32_readeflags_u32: 4390 case X86::BI__builtin_ia32_writeeflags_u32: 4391 return true; 4392 } 4393 4394 return false; 4395 } 4396 4397 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 4398 CallExpr *TheCall) { 4399 if (BuiltinID == X86::BI__builtin_cpu_supports) 4400 return SemaBuiltinCpuSupports(*this, TI, TheCall); 4401 4402 if (BuiltinID == X86::BI__builtin_cpu_is) 4403 return SemaBuiltinCpuIs(*this, TI, TheCall); 4404 4405 // Check for 32-bit only builtins on a 64-bit target. 4406 const llvm::Triple &TT = TI.getTriple(); 4407 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 4408 return Diag(TheCall->getCallee()->getBeginLoc(), 4409 diag::err_32_bit_builtin_64_bit_tgt); 4410 4411 // If the intrinsic has rounding or SAE make sure its valid. 4412 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 4413 return true; 4414 4415 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 4416 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 4417 return true; 4418 4419 // If the intrinsic has a tile arguments, make sure they are valid. 4420 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 4421 return true; 4422 4423 // For intrinsics which take an immediate value as part of the instruction, 4424 // range check them here. 4425 int i = 0, l = 0, u = 0; 4426 switch (BuiltinID) { 4427 default: 4428 return false; 4429 case X86::BI__builtin_ia32_vec_ext_v2si: 4430 case X86::BI__builtin_ia32_vec_ext_v2di: 4431 case X86::BI__builtin_ia32_vextractf128_pd256: 4432 case X86::BI__builtin_ia32_vextractf128_ps256: 4433 case X86::BI__builtin_ia32_vextractf128_si256: 4434 case X86::BI__builtin_ia32_extract128i256: 4435 case X86::BI__builtin_ia32_extractf64x4_mask: 4436 case X86::BI__builtin_ia32_extracti64x4_mask: 4437 case X86::BI__builtin_ia32_extractf32x8_mask: 4438 case X86::BI__builtin_ia32_extracti32x8_mask: 4439 case X86::BI__builtin_ia32_extractf64x2_256_mask: 4440 case X86::BI__builtin_ia32_extracti64x2_256_mask: 4441 case X86::BI__builtin_ia32_extractf32x4_256_mask: 4442 case X86::BI__builtin_ia32_extracti32x4_256_mask: 4443 i = 1; l = 0; u = 1; 4444 break; 4445 case X86::BI__builtin_ia32_vec_set_v2di: 4446 case X86::BI__builtin_ia32_vinsertf128_pd256: 4447 case X86::BI__builtin_ia32_vinsertf128_ps256: 4448 case X86::BI__builtin_ia32_vinsertf128_si256: 4449 case X86::BI__builtin_ia32_insert128i256: 4450 case X86::BI__builtin_ia32_insertf32x8: 4451 case X86::BI__builtin_ia32_inserti32x8: 4452 case X86::BI__builtin_ia32_insertf64x4: 4453 case X86::BI__builtin_ia32_inserti64x4: 4454 case X86::BI__builtin_ia32_insertf64x2_256: 4455 case X86::BI__builtin_ia32_inserti64x2_256: 4456 case X86::BI__builtin_ia32_insertf32x4_256: 4457 case X86::BI__builtin_ia32_inserti32x4_256: 4458 i = 2; l = 0; u = 1; 4459 break; 4460 case X86::BI__builtin_ia32_vpermilpd: 4461 case X86::BI__builtin_ia32_vec_ext_v4hi: 4462 case X86::BI__builtin_ia32_vec_ext_v4si: 4463 case X86::BI__builtin_ia32_vec_ext_v4sf: 4464 case X86::BI__builtin_ia32_vec_ext_v4di: 4465 case X86::BI__builtin_ia32_extractf32x4_mask: 4466 case X86::BI__builtin_ia32_extracti32x4_mask: 4467 case X86::BI__builtin_ia32_extractf64x2_512_mask: 4468 case X86::BI__builtin_ia32_extracti64x2_512_mask: 4469 i = 1; l = 0; u = 3; 4470 break; 4471 case X86::BI_mm_prefetch: 4472 case X86::BI__builtin_ia32_vec_ext_v8hi: 4473 case X86::BI__builtin_ia32_vec_ext_v8si: 4474 i = 1; l = 0; u = 7; 4475 break; 4476 case X86::BI__builtin_ia32_sha1rnds4: 4477 case X86::BI__builtin_ia32_blendpd: 4478 case X86::BI__builtin_ia32_shufpd: 4479 case X86::BI__builtin_ia32_vec_set_v4hi: 4480 case X86::BI__builtin_ia32_vec_set_v4si: 4481 case X86::BI__builtin_ia32_vec_set_v4di: 4482 case X86::BI__builtin_ia32_shuf_f32x4_256: 4483 case X86::BI__builtin_ia32_shuf_f64x2_256: 4484 case X86::BI__builtin_ia32_shuf_i32x4_256: 4485 case X86::BI__builtin_ia32_shuf_i64x2_256: 4486 case X86::BI__builtin_ia32_insertf64x2_512: 4487 case X86::BI__builtin_ia32_inserti64x2_512: 4488 case X86::BI__builtin_ia32_insertf32x4: 4489 case X86::BI__builtin_ia32_inserti32x4: 4490 i = 2; l = 0; u = 3; 4491 break; 4492 case X86::BI__builtin_ia32_vpermil2pd: 4493 case X86::BI__builtin_ia32_vpermil2pd256: 4494 case X86::BI__builtin_ia32_vpermil2ps: 4495 case X86::BI__builtin_ia32_vpermil2ps256: 4496 i = 3; l = 0; u = 3; 4497 break; 4498 case X86::BI__builtin_ia32_cmpb128_mask: 4499 case X86::BI__builtin_ia32_cmpw128_mask: 4500 case X86::BI__builtin_ia32_cmpd128_mask: 4501 case X86::BI__builtin_ia32_cmpq128_mask: 4502 case X86::BI__builtin_ia32_cmpb256_mask: 4503 case X86::BI__builtin_ia32_cmpw256_mask: 4504 case X86::BI__builtin_ia32_cmpd256_mask: 4505 case X86::BI__builtin_ia32_cmpq256_mask: 4506 case X86::BI__builtin_ia32_cmpb512_mask: 4507 case X86::BI__builtin_ia32_cmpw512_mask: 4508 case X86::BI__builtin_ia32_cmpd512_mask: 4509 case X86::BI__builtin_ia32_cmpq512_mask: 4510 case X86::BI__builtin_ia32_ucmpb128_mask: 4511 case X86::BI__builtin_ia32_ucmpw128_mask: 4512 case X86::BI__builtin_ia32_ucmpd128_mask: 4513 case X86::BI__builtin_ia32_ucmpq128_mask: 4514 case X86::BI__builtin_ia32_ucmpb256_mask: 4515 case X86::BI__builtin_ia32_ucmpw256_mask: 4516 case X86::BI__builtin_ia32_ucmpd256_mask: 4517 case X86::BI__builtin_ia32_ucmpq256_mask: 4518 case X86::BI__builtin_ia32_ucmpb512_mask: 4519 case X86::BI__builtin_ia32_ucmpw512_mask: 4520 case X86::BI__builtin_ia32_ucmpd512_mask: 4521 case X86::BI__builtin_ia32_ucmpq512_mask: 4522 case X86::BI__builtin_ia32_vpcomub: 4523 case X86::BI__builtin_ia32_vpcomuw: 4524 case X86::BI__builtin_ia32_vpcomud: 4525 case X86::BI__builtin_ia32_vpcomuq: 4526 case X86::BI__builtin_ia32_vpcomb: 4527 case X86::BI__builtin_ia32_vpcomw: 4528 case X86::BI__builtin_ia32_vpcomd: 4529 case X86::BI__builtin_ia32_vpcomq: 4530 case X86::BI__builtin_ia32_vec_set_v8hi: 4531 case X86::BI__builtin_ia32_vec_set_v8si: 4532 i = 2; l = 0; u = 7; 4533 break; 4534 case X86::BI__builtin_ia32_vpermilpd256: 4535 case X86::BI__builtin_ia32_roundps: 4536 case X86::BI__builtin_ia32_roundpd: 4537 case X86::BI__builtin_ia32_roundps256: 4538 case X86::BI__builtin_ia32_roundpd256: 4539 case X86::BI__builtin_ia32_getmantpd128_mask: 4540 case X86::BI__builtin_ia32_getmantpd256_mask: 4541 case X86::BI__builtin_ia32_getmantps128_mask: 4542 case X86::BI__builtin_ia32_getmantps256_mask: 4543 case X86::BI__builtin_ia32_getmantpd512_mask: 4544 case X86::BI__builtin_ia32_getmantps512_mask: 4545 case X86::BI__builtin_ia32_getmantph128_mask: 4546 case X86::BI__builtin_ia32_getmantph256_mask: 4547 case X86::BI__builtin_ia32_getmantph512_mask: 4548 case X86::BI__builtin_ia32_vec_ext_v16qi: 4549 case X86::BI__builtin_ia32_vec_ext_v16hi: 4550 i = 1; l = 0; u = 15; 4551 break; 4552 case X86::BI__builtin_ia32_pblendd128: 4553 case X86::BI__builtin_ia32_blendps: 4554 case X86::BI__builtin_ia32_blendpd256: 4555 case X86::BI__builtin_ia32_shufpd256: 4556 case X86::BI__builtin_ia32_roundss: 4557 case X86::BI__builtin_ia32_roundsd: 4558 case X86::BI__builtin_ia32_rangepd128_mask: 4559 case X86::BI__builtin_ia32_rangepd256_mask: 4560 case X86::BI__builtin_ia32_rangepd512_mask: 4561 case X86::BI__builtin_ia32_rangeps128_mask: 4562 case X86::BI__builtin_ia32_rangeps256_mask: 4563 case X86::BI__builtin_ia32_rangeps512_mask: 4564 case X86::BI__builtin_ia32_getmantsd_round_mask: 4565 case X86::BI__builtin_ia32_getmantss_round_mask: 4566 case X86::BI__builtin_ia32_getmantsh_round_mask: 4567 case X86::BI__builtin_ia32_vec_set_v16qi: 4568 case X86::BI__builtin_ia32_vec_set_v16hi: 4569 i = 2; l = 0; u = 15; 4570 break; 4571 case X86::BI__builtin_ia32_vec_ext_v32qi: 4572 i = 1; l = 0; u = 31; 4573 break; 4574 case X86::BI__builtin_ia32_cmpps: 4575 case X86::BI__builtin_ia32_cmpss: 4576 case X86::BI__builtin_ia32_cmppd: 4577 case X86::BI__builtin_ia32_cmpsd: 4578 case X86::BI__builtin_ia32_cmpps256: 4579 case X86::BI__builtin_ia32_cmppd256: 4580 case X86::BI__builtin_ia32_cmpps128_mask: 4581 case X86::BI__builtin_ia32_cmppd128_mask: 4582 case X86::BI__builtin_ia32_cmpps256_mask: 4583 case X86::BI__builtin_ia32_cmppd256_mask: 4584 case X86::BI__builtin_ia32_cmpps512_mask: 4585 case X86::BI__builtin_ia32_cmppd512_mask: 4586 case X86::BI__builtin_ia32_cmpsd_mask: 4587 case X86::BI__builtin_ia32_cmpss_mask: 4588 case X86::BI__builtin_ia32_vec_set_v32qi: 4589 i = 2; l = 0; u = 31; 4590 break; 4591 case X86::BI__builtin_ia32_permdf256: 4592 case X86::BI__builtin_ia32_permdi256: 4593 case X86::BI__builtin_ia32_permdf512: 4594 case X86::BI__builtin_ia32_permdi512: 4595 case X86::BI__builtin_ia32_vpermilps: 4596 case X86::BI__builtin_ia32_vpermilps256: 4597 case X86::BI__builtin_ia32_vpermilpd512: 4598 case X86::BI__builtin_ia32_vpermilps512: 4599 case X86::BI__builtin_ia32_pshufd: 4600 case X86::BI__builtin_ia32_pshufd256: 4601 case X86::BI__builtin_ia32_pshufd512: 4602 case X86::BI__builtin_ia32_pshufhw: 4603 case X86::BI__builtin_ia32_pshufhw256: 4604 case X86::BI__builtin_ia32_pshufhw512: 4605 case X86::BI__builtin_ia32_pshuflw: 4606 case X86::BI__builtin_ia32_pshuflw256: 4607 case X86::BI__builtin_ia32_pshuflw512: 4608 case X86::BI__builtin_ia32_vcvtps2ph: 4609 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4610 case X86::BI__builtin_ia32_vcvtps2ph256: 4611 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4612 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4613 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4614 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4615 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4616 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4617 case X86::BI__builtin_ia32_rndscaleps_mask: 4618 case X86::BI__builtin_ia32_rndscalepd_mask: 4619 case X86::BI__builtin_ia32_rndscaleph_mask: 4620 case X86::BI__builtin_ia32_reducepd128_mask: 4621 case X86::BI__builtin_ia32_reducepd256_mask: 4622 case X86::BI__builtin_ia32_reducepd512_mask: 4623 case X86::BI__builtin_ia32_reduceps128_mask: 4624 case X86::BI__builtin_ia32_reduceps256_mask: 4625 case X86::BI__builtin_ia32_reduceps512_mask: 4626 case X86::BI__builtin_ia32_reduceph128_mask: 4627 case X86::BI__builtin_ia32_reduceph256_mask: 4628 case X86::BI__builtin_ia32_reduceph512_mask: 4629 case X86::BI__builtin_ia32_prold512: 4630 case X86::BI__builtin_ia32_prolq512: 4631 case X86::BI__builtin_ia32_prold128: 4632 case X86::BI__builtin_ia32_prold256: 4633 case X86::BI__builtin_ia32_prolq128: 4634 case X86::BI__builtin_ia32_prolq256: 4635 case X86::BI__builtin_ia32_prord512: 4636 case X86::BI__builtin_ia32_prorq512: 4637 case X86::BI__builtin_ia32_prord128: 4638 case X86::BI__builtin_ia32_prord256: 4639 case X86::BI__builtin_ia32_prorq128: 4640 case X86::BI__builtin_ia32_prorq256: 4641 case X86::BI__builtin_ia32_fpclasspd128_mask: 4642 case X86::BI__builtin_ia32_fpclasspd256_mask: 4643 case X86::BI__builtin_ia32_fpclassps128_mask: 4644 case X86::BI__builtin_ia32_fpclassps256_mask: 4645 case X86::BI__builtin_ia32_fpclassps512_mask: 4646 case X86::BI__builtin_ia32_fpclasspd512_mask: 4647 case X86::BI__builtin_ia32_fpclassph128_mask: 4648 case X86::BI__builtin_ia32_fpclassph256_mask: 4649 case X86::BI__builtin_ia32_fpclassph512_mask: 4650 case X86::BI__builtin_ia32_fpclasssd_mask: 4651 case X86::BI__builtin_ia32_fpclassss_mask: 4652 case X86::BI__builtin_ia32_fpclasssh_mask: 4653 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4654 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4655 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4656 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4657 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4658 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4659 case X86::BI__builtin_ia32_kshiftliqi: 4660 case X86::BI__builtin_ia32_kshiftlihi: 4661 case X86::BI__builtin_ia32_kshiftlisi: 4662 case X86::BI__builtin_ia32_kshiftlidi: 4663 case X86::BI__builtin_ia32_kshiftriqi: 4664 case X86::BI__builtin_ia32_kshiftrihi: 4665 case X86::BI__builtin_ia32_kshiftrisi: 4666 case X86::BI__builtin_ia32_kshiftridi: 4667 i = 1; l = 0; u = 255; 4668 break; 4669 case X86::BI__builtin_ia32_vperm2f128_pd256: 4670 case X86::BI__builtin_ia32_vperm2f128_ps256: 4671 case X86::BI__builtin_ia32_vperm2f128_si256: 4672 case X86::BI__builtin_ia32_permti256: 4673 case X86::BI__builtin_ia32_pblendw128: 4674 case X86::BI__builtin_ia32_pblendw256: 4675 case X86::BI__builtin_ia32_blendps256: 4676 case X86::BI__builtin_ia32_pblendd256: 4677 case X86::BI__builtin_ia32_palignr128: 4678 case X86::BI__builtin_ia32_palignr256: 4679 case X86::BI__builtin_ia32_palignr512: 4680 case X86::BI__builtin_ia32_alignq512: 4681 case X86::BI__builtin_ia32_alignd512: 4682 case X86::BI__builtin_ia32_alignd128: 4683 case X86::BI__builtin_ia32_alignd256: 4684 case X86::BI__builtin_ia32_alignq128: 4685 case X86::BI__builtin_ia32_alignq256: 4686 case X86::BI__builtin_ia32_vcomisd: 4687 case X86::BI__builtin_ia32_vcomiss: 4688 case X86::BI__builtin_ia32_shuf_f32x4: 4689 case X86::BI__builtin_ia32_shuf_f64x2: 4690 case X86::BI__builtin_ia32_shuf_i32x4: 4691 case X86::BI__builtin_ia32_shuf_i64x2: 4692 case X86::BI__builtin_ia32_shufpd512: 4693 case X86::BI__builtin_ia32_shufps: 4694 case X86::BI__builtin_ia32_shufps256: 4695 case X86::BI__builtin_ia32_shufps512: 4696 case X86::BI__builtin_ia32_dbpsadbw128: 4697 case X86::BI__builtin_ia32_dbpsadbw256: 4698 case X86::BI__builtin_ia32_dbpsadbw512: 4699 case X86::BI__builtin_ia32_vpshldd128: 4700 case X86::BI__builtin_ia32_vpshldd256: 4701 case X86::BI__builtin_ia32_vpshldd512: 4702 case X86::BI__builtin_ia32_vpshldq128: 4703 case X86::BI__builtin_ia32_vpshldq256: 4704 case X86::BI__builtin_ia32_vpshldq512: 4705 case X86::BI__builtin_ia32_vpshldw128: 4706 case X86::BI__builtin_ia32_vpshldw256: 4707 case X86::BI__builtin_ia32_vpshldw512: 4708 case X86::BI__builtin_ia32_vpshrdd128: 4709 case X86::BI__builtin_ia32_vpshrdd256: 4710 case X86::BI__builtin_ia32_vpshrdd512: 4711 case X86::BI__builtin_ia32_vpshrdq128: 4712 case X86::BI__builtin_ia32_vpshrdq256: 4713 case X86::BI__builtin_ia32_vpshrdq512: 4714 case X86::BI__builtin_ia32_vpshrdw128: 4715 case X86::BI__builtin_ia32_vpshrdw256: 4716 case X86::BI__builtin_ia32_vpshrdw512: 4717 i = 2; l = 0; u = 255; 4718 break; 4719 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4720 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4721 case X86::BI__builtin_ia32_fixupimmps512_mask: 4722 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4723 case X86::BI__builtin_ia32_fixupimmsd_mask: 4724 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4725 case X86::BI__builtin_ia32_fixupimmss_mask: 4726 case X86::BI__builtin_ia32_fixupimmss_maskz: 4727 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4728 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4729 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4730 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4731 case X86::BI__builtin_ia32_fixupimmps128_mask: 4732 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4733 case X86::BI__builtin_ia32_fixupimmps256_mask: 4734 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4735 case X86::BI__builtin_ia32_pternlogd512_mask: 4736 case X86::BI__builtin_ia32_pternlogd512_maskz: 4737 case X86::BI__builtin_ia32_pternlogq512_mask: 4738 case X86::BI__builtin_ia32_pternlogq512_maskz: 4739 case X86::BI__builtin_ia32_pternlogd128_mask: 4740 case X86::BI__builtin_ia32_pternlogd128_maskz: 4741 case X86::BI__builtin_ia32_pternlogd256_mask: 4742 case X86::BI__builtin_ia32_pternlogd256_maskz: 4743 case X86::BI__builtin_ia32_pternlogq128_mask: 4744 case X86::BI__builtin_ia32_pternlogq128_maskz: 4745 case X86::BI__builtin_ia32_pternlogq256_mask: 4746 case X86::BI__builtin_ia32_pternlogq256_maskz: 4747 i = 3; l = 0; u = 255; 4748 break; 4749 case X86::BI__builtin_ia32_gatherpfdpd: 4750 case X86::BI__builtin_ia32_gatherpfdps: 4751 case X86::BI__builtin_ia32_gatherpfqpd: 4752 case X86::BI__builtin_ia32_gatherpfqps: 4753 case X86::BI__builtin_ia32_scatterpfdpd: 4754 case X86::BI__builtin_ia32_scatterpfdps: 4755 case X86::BI__builtin_ia32_scatterpfqpd: 4756 case X86::BI__builtin_ia32_scatterpfqps: 4757 i = 4; l = 2; u = 3; 4758 break; 4759 case X86::BI__builtin_ia32_reducesd_mask: 4760 case X86::BI__builtin_ia32_reducess_mask: 4761 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4762 case X86::BI__builtin_ia32_rndscaless_round_mask: 4763 case X86::BI__builtin_ia32_rndscalesh_round_mask: 4764 case X86::BI__builtin_ia32_reducesh_mask: 4765 i = 4; l = 0; u = 255; 4766 break; 4767 } 4768 4769 // Note that we don't force a hard error on the range check here, allowing 4770 // template-generated or macro-generated dead code to potentially have out-of- 4771 // range values. These need to code generate, but don't need to necessarily 4772 // make any sense. We use a warning that defaults to an error. 4773 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4774 } 4775 4776 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4777 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4778 /// Returns true when the format fits the function and the FormatStringInfo has 4779 /// been populated. 4780 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4781 FormatStringInfo *FSI) { 4782 FSI->HasVAListArg = Format->getFirstArg() == 0; 4783 FSI->FormatIdx = Format->getFormatIdx() - 1; 4784 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4785 4786 // The way the format attribute works in GCC, the implicit this argument 4787 // of member functions is counted. However, it doesn't appear in our own 4788 // lists, so decrement format_idx in that case. 4789 if (IsCXXMember) { 4790 if(FSI->FormatIdx == 0) 4791 return false; 4792 --FSI->FormatIdx; 4793 if (FSI->FirstDataArg != 0) 4794 --FSI->FirstDataArg; 4795 } 4796 return true; 4797 } 4798 4799 /// Checks if a the given expression evaluates to null. 4800 /// 4801 /// Returns true if the value evaluates to null. 4802 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4803 // If the expression has non-null type, it doesn't evaluate to null. 4804 if (auto nullability 4805 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4806 if (*nullability == NullabilityKind::NonNull) 4807 return false; 4808 } 4809 4810 // As a special case, transparent unions initialized with zero are 4811 // considered null for the purposes of the nonnull attribute. 4812 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4813 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4814 if (const CompoundLiteralExpr *CLE = 4815 dyn_cast<CompoundLiteralExpr>(Expr)) 4816 if (const InitListExpr *ILE = 4817 dyn_cast<InitListExpr>(CLE->getInitializer())) 4818 Expr = ILE->getInit(0); 4819 } 4820 4821 bool Result; 4822 return (!Expr->isValueDependent() && 4823 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4824 !Result); 4825 } 4826 4827 static void CheckNonNullArgument(Sema &S, 4828 const Expr *ArgExpr, 4829 SourceLocation CallSiteLoc) { 4830 if (CheckNonNullExpr(S, ArgExpr)) 4831 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4832 S.PDiag(diag::warn_null_arg) 4833 << ArgExpr->getSourceRange()); 4834 } 4835 4836 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4837 FormatStringInfo FSI; 4838 if ((GetFormatStringType(Format) == FST_NSString) && 4839 getFormatStringInfo(Format, false, &FSI)) { 4840 Idx = FSI.FormatIdx; 4841 return true; 4842 } 4843 return false; 4844 } 4845 4846 /// Diagnose use of %s directive in an NSString which is being passed 4847 /// as formatting string to formatting method. 4848 static void 4849 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4850 const NamedDecl *FDecl, 4851 Expr **Args, 4852 unsigned NumArgs) { 4853 unsigned Idx = 0; 4854 bool Format = false; 4855 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4856 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4857 Idx = 2; 4858 Format = true; 4859 } 4860 else 4861 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4862 if (S.GetFormatNSStringIdx(I, Idx)) { 4863 Format = true; 4864 break; 4865 } 4866 } 4867 if (!Format || NumArgs <= Idx) 4868 return; 4869 const Expr *FormatExpr = Args[Idx]; 4870 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4871 FormatExpr = CSCE->getSubExpr(); 4872 const StringLiteral *FormatString; 4873 if (const ObjCStringLiteral *OSL = 4874 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4875 FormatString = OSL->getString(); 4876 else 4877 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4878 if (!FormatString) 4879 return; 4880 if (S.FormatStringHasSArg(FormatString)) { 4881 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4882 << "%s" << 1 << 1; 4883 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4884 << FDecl->getDeclName(); 4885 } 4886 } 4887 4888 /// Determine whether the given type has a non-null nullability annotation. 4889 static bool isNonNullType(ASTContext &ctx, QualType type) { 4890 if (auto nullability = type->getNullability(ctx)) 4891 return *nullability == NullabilityKind::NonNull; 4892 4893 return false; 4894 } 4895 4896 static void CheckNonNullArguments(Sema &S, 4897 const NamedDecl *FDecl, 4898 const FunctionProtoType *Proto, 4899 ArrayRef<const Expr *> Args, 4900 SourceLocation CallSiteLoc) { 4901 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4902 4903 // Already checked by by constant evaluator. 4904 if (S.isConstantEvaluated()) 4905 return; 4906 // Check the attributes attached to the method/function itself. 4907 llvm::SmallBitVector NonNullArgs; 4908 if (FDecl) { 4909 // Handle the nonnull attribute on the function/method declaration itself. 4910 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4911 if (!NonNull->args_size()) { 4912 // Easy case: all pointer arguments are nonnull. 4913 for (const auto *Arg : Args) 4914 if (S.isValidPointerAttrType(Arg->getType())) 4915 CheckNonNullArgument(S, Arg, CallSiteLoc); 4916 return; 4917 } 4918 4919 for (const ParamIdx &Idx : NonNull->args()) { 4920 unsigned IdxAST = Idx.getASTIndex(); 4921 if (IdxAST >= Args.size()) 4922 continue; 4923 if (NonNullArgs.empty()) 4924 NonNullArgs.resize(Args.size()); 4925 NonNullArgs.set(IdxAST); 4926 } 4927 } 4928 } 4929 4930 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4931 // Handle the nonnull attribute on the parameters of the 4932 // function/method. 4933 ArrayRef<ParmVarDecl*> parms; 4934 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4935 parms = FD->parameters(); 4936 else 4937 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4938 4939 unsigned ParamIndex = 0; 4940 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4941 I != E; ++I, ++ParamIndex) { 4942 const ParmVarDecl *PVD = *I; 4943 if (PVD->hasAttr<NonNullAttr>() || 4944 isNonNullType(S.Context, PVD->getType())) { 4945 if (NonNullArgs.empty()) 4946 NonNullArgs.resize(Args.size()); 4947 4948 NonNullArgs.set(ParamIndex); 4949 } 4950 } 4951 } else { 4952 // If we have a non-function, non-method declaration but no 4953 // function prototype, try to dig out the function prototype. 4954 if (!Proto) { 4955 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4956 QualType type = VD->getType().getNonReferenceType(); 4957 if (auto pointerType = type->getAs<PointerType>()) 4958 type = pointerType->getPointeeType(); 4959 else if (auto blockType = type->getAs<BlockPointerType>()) 4960 type = blockType->getPointeeType(); 4961 // FIXME: data member pointers? 4962 4963 // Dig out the function prototype, if there is one. 4964 Proto = type->getAs<FunctionProtoType>(); 4965 } 4966 } 4967 4968 // Fill in non-null argument information from the nullability 4969 // information on the parameter types (if we have them). 4970 if (Proto) { 4971 unsigned Index = 0; 4972 for (auto paramType : Proto->getParamTypes()) { 4973 if (isNonNullType(S.Context, paramType)) { 4974 if (NonNullArgs.empty()) 4975 NonNullArgs.resize(Args.size()); 4976 4977 NonNullArgs.set(Index); 4978 } 4979 4980 ++Index; 4981 } 4982 } 4983 } 4984 4985 // Check for non-null arguments. 4986 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4987 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4988 if (NonNullArgs[ArgIndex]) 4989 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4990 } 4991 } 4992 4993 /// Warn if a pointer or reference argument passed to a function points to an 4994 /// object that is less aligned than the parameter. This can happen when 4995 /// creating a typedef with a lower alignment than the original type and then 4996 /// calling functions defined in terms of the original type. 4997 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, 4998 StringRef ParamName, QualType ArgTy, 4999 QualType ParamTy) { 5000 5001 // If a function accepts a pointer or reference type 5002 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) 5003 return; 5004 5005 // If the parameter is a pointer type, get the pointee type for the 5006 // argument too. If the parameter is a reference type, don't try to get 5007 // the pointee type for the argument. 5008 if (ParamTy->isPointerType()) 5009 ArgTy = ArgTy->getPointeeType(); 5010 5011 // Remove reference or pointer 5012 ParamTy = ParamTy->getPointeeType(); 5013 5014 // Find expected alignment, and the actual alignment of the passed object. 5015 // getTypeAlignInChars requires complete types 5016 if (ArgTy.isNull() || ParamTy->isIncompleteType() || 5017 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() || 5018 ArgTy->isUndeducedType()) 5019 return; 5020 5021 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); 5022 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); 5023 5024 // If the argument is less aligned than the parameter, there is a 5025 // potential alignment issue. 5026 if (ArgAlign < ParamAlign) 5027 Diag(Loc, diag::warn_param_mismatched_alignment) 5028 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() 5029 << ParamName << (FDecl != nullptr) << FDecl; 5030 } 5031 5032 /// Handles the checks for format strings, non-POD arguments to vararg 5033 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 5034 /// attributes. 5035 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 5036 const Expr *ThisArg, ArrayRef<const Expr *> Args, 5037 bool IsMemberFunction, SourceLocation Loc, 5038 SourceRange Range, VariadicCallType CallType) { 5039 // FIXME: We should check as much as we can in the template definition. 5040 if (CurContext->isDependentContext()) 5041 return; 5042 5043 // Printf and scanf checking. 5044 llvm::SmallBitVector CheckedVarArgs; 5045 if (FDecl) { 5046 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 5047 // Only create vector if there are format attributes. 5048 CheckedVarArgs.resize(Args.size()); 5049 5050 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 5051 CheckedVarArgs); 5052 } 5053 } 5054 5055 // Refuse POD arguments that weren't caught by the format string 5056 // checks above. 5057 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 5058 if (CallType != VariadicDoesNotApply && 5059 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 5060 unsigned NumParams = Proto ? Proto->getNumParams() 5061 : FDecl && isa<FunctionDecl>(FDecl) 5062 ? cast<FunctionDecl>(FDecl)->getNumParams() 5063 : FDecl && isa<ObjCMethodDecl>(FDecl) 5064 ? cast<ObjCMethodDecl>(FDecl)->param_size() 5065 : 0; 5066 5067 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 5068 // Args[ArgIdx] can be null in malformed code. 5069 if (const Expr *Arg = Args[ArgIdx]) { 5070 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 5071 checkVariadicArgument(Arg, CallType); 5072 } 5073 } 5074 } 5075 5076 if (FDecl || Proto) { 5077 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 5078 5079 // Type safety checking. 5080 if (FDecl) { 5081 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 5082 CheckArgumentWithTypeTag(I, Args, Loc); 5083 } 5084 } 5085 5086 // Check that passed arguments match the alignment of original arguments. 5087 // Try to get the missing prototype from the declaration. 5088 if (!Proto && FDecl) { 5089 const auto *FT = FDecl->getFunctionType(); 5090 if (isa_and_nonnull<FunctionProtoType>(FT)) 5091 Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); 5092 } 5093 if (Proto) { 5094 // For variadic functions, we may have more args than parameters. 5095 // For some K&R functions, we may have less args than parameters. 5096 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size()); 5097 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { 5098 // Args[ArgIdx] can be null in malformed code. 5099 if (const Expr *Arg = Args[ArgIdx]) { 5100 if (Arg->containsErrors()) 5101 continue; 5102 5103 QualType ParamTy = Proto->getParamType(ArgIdx); 5104 QualType ArgTy = Arg->getType(); 5105 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), 5106 ArgTy, ParamTy); 5107 } 5108 } 5109 } 5110 5111 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 5112 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 5113 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 5114 if (!Arg->isValueDependent()) { 5115 Expr::EvalResult Align; 5116 if (Arg->EvaluateAsInt(Align, Context)) { 5117 const llvm::APSInt &I = Align.Val.getInt(); 5118 if (!I.isPowerOf2()) 5119 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 5120 << Arg->getSourceRange(); 5121 5122 if (I > Sema::MaximumAlignment) 5123 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 5124 << Arg->getSourceRange() << Sema::MaximumAlignment; 5125 } 5126 } 5127 } 5128 5129 if (FD) 5130 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 5131 } 5132 5133 /// CheckConstructorCall - Check a constructor call for correctness and safety 5134 /// properties not enforced by the C type system. 5135 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, 5136 ArrayRef<const Expr *> Args, 5137 const FunctionProtoType *Proto, 5138 SourceLocation Loc) { 5139 VariadicCallType CallType = 5140 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 5141 5142 auto *Ctor = cast<CXXConstructorDecl>(FDecl); 5143 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType), 5144 Context.getPointerType(Ctor->getThisObjectType())); 5145 5146 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 5147 Loc, SourceRange(), CallType); 5148 } 5149 5150 /// CheckFunctionCall - Check a direct function call for various correctness 5151 /// and safety properties not strictly enforced by the C type system. 5152 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 5153 const FunctionProtoType *Proto) { 5154 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 5155 isa<CXXMethodDecl>(FDecl); 5156 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 5157 IsMemberOperatorCall; 5158 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 5159 TheCall->getCallee()); 5160 Expr** Args = TheCall->getArgs(); 5161 unsigned NumArgs = TheCall->getNumArgs(); 5162 5163 Expr *ImplicitThis = nullptr; 5164 if (IsMemberOperatorCall) { 5165 // If this is a call to a member operator, hide the first argument 5166 // from checkCall. 5167 // FIXME: Our choice of AST representation here is less than ideal. 5168 ImplicitThis = Args[0]; 5169 ++Args; 5170 --NumArgs; 5171 } else if (IsMemberFunction) 5172 ImplicitThis = 5173 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 5174 5175 if (ImplicitThis) { 5176 // ImplicitThis may or may not be a pointer, depending on whether . or -> is 5177 // used. 5178 QualType ThisType = ImplicitThis->getType(); 5179 if (!ThisType->isPointerType()) { 5180 assert(!ThisType->isReferenceType()); 5181 ThisType = Context.getPointerType(ThisType); 5182 } 5183 5184 QualType ThisTypeFromDecl = 5185 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType()); 5186 5187 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, 5188 ThisTypeFromDecl); 5189 } 5190 5191 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 5192 IsMemberFunction, TheCall->getRParenLoc(), 5193 TheCall->getCallee()->getSourceRange(), CallType); 5194 5195 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 5196 // None of the checks below are needed for functions that don't have 5197 // simple names (e.g., C++ conversion functions). 5198 if (!FnInfo) 5199 return false; 5200 5201 CheckTCBEnforcement(TheCall, FDecl); 5202 5203 CheckAbsoluteValueFunction(TheCall, FDecl); 5204 CheckMaxUnsignedZero(TheCall, FDecl); 5205 5206 if (getLangOpts().ObjC) 5207 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 5208 5209 unsigned CMId = FDecl->getMemoryFunctionKind(); 5210 5211 // Handle memory setting and copying functions. 5212 switch (CMId) { 5213 case 0: 5214 return false; 5215 case Builtin::BIstrlcpy: // fallthrough 5216 case Builtin::BIstrlcat: 5217 CheckStrlcpycatArguments(TheCall, FnInfo); 5218 break; 5219 case Builtin::BIstrncat: 5220 CheckStrncatArguments(TheCall, FnInfo); 5221 break; 5222 case Builtin::BIfree: 5223 CheckFreeArguments(TheCall); 5224 break; 5225 default: 5226 CheckMemaccessArguments(TheCall, CMId, FnInfo); 5227 } 5228 5229 return false; 5230 } 5231 5232 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 5233 ArrayRef<const Expr *> Args) { 5234 VariadicCallType CallType = 5235 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 5236 5237 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 5238 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 5239 CallType); 5240 5241 return false; 5242 } 5243 5244 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 5245 const FunctionProtoType *Proto) { 5246 QualType Ty; 5247 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 5248 Ty = V->getType().getNonReferenceType(); 5249 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 5250 Ty = F->getType().getNonReferenceType(); 5251 else 5252 return false; 5253 5254 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 5255 !Ty->isFunctionProtoType()) 5256 return false; 5257 5258 VariadicCallType CallType; 5259 if (!Proto || !Proto->isVariadic()) { 5260 CallType = VariadicDoesNotApply; 5261 } else if (Ty->isBlockPointerType()) { 5262 CallType = VariadicBlock; 5263 } else { // Ty->isFunctionPointerType() 5264 CallType = VariadicFunction; 5265 } 5266 5267 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 5268 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5269 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5270 TheCall->getCallee()->getSourceRange(), CallType); 5271 5272 return false; 5273 } 5274 5275 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 5276 /// such as function pointers returned from functions. 5277 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 5278 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 5279 TheCall->getCallee()); 5280 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 5281 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5282 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5283 TheCall->getCallee()->getSourceRange(), CallType); 5284 5285 return false; 5286 } 5287 5288 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 5289 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 5290 return false; 5291 5292 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 5293 switch (Op) { 5294 case AtomicExpr::AO__c11_atomic_init: 5295 case AtomicExpr::AO__opencl_atomic_init: 5296 llvm_unreachable("There is no ordering argument for an init"); 5297 5298 case AtomicExpr::AO__c11_atomic_load: 5299 case AtomicExpr::AO__opencl_atomic_load: 5300 case AtomicExpr::AO__atomic_load_n: 5301 case AtomicExpr::AO__atomic_load: 5302 return OrderingCABI != llvm::AtomicOrderingCABI::release && 5303 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5304 5305 case AtomicExpr::AO__c11_atomic_store: 5306 case AtomicExpr::AO__opencl_atomic_store: 5307 case AtomicExpr::AO__atomic_store: 5308 case AtomicExpr::AO__atomic_store_n: 5309 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 5310 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 5311 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5312 5313 default: 5314 return true; 5315 } 5316 } 5317 5318 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 5319 AtomicExpr::AtomicOp Op) { 5320 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 5321 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5322 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 5323 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 5324 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 5325 Op); 5326 } 5327 5328 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 5329 SourceLocation RParenLoc, MultiExprArg Args, 5330 AtomicExpr::AtomicOp Op, 5331 AtomicArgumentOrder ArgOrder) { 5332 // All the non-OpenCL operations take one of the following forms. 5333 // The OpenCL operations take the __c11 forms with one extra argument for 5334 // synchronization scope. 5335 enum { 5336 // C __c11_atomic_init(A *, C) 5337 Init, 5338 5339 // C __c11_atomic_load(A *, int) 5340 Load, 5341 5342 // void __atomic_load(A *, CP, int) 5343 LoadCopy, 5344 5345 // void __atomic_store(A *, CP, int) 5346 Copy, 5347 5348 // C __c11_atomic_add(A *, M, int) 5349 Arithmetic, 5350 5351 // C __atomic_exchange_n(A *, CP, int) 5352 Xchg, 5353 5354 // void __atomic_exchange(A *, C *, CP, int) 5355 GNUXchg, 5356 5357 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 5358 C11CmpXchg, 5359 5360 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 5361 GNUCmpXchg 5362 } Form = Init; 5363 5364 const unsigned NumForm = GNUCmpXchg + 1; 5365 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 5366 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 5367 // where: 5368 // C is an appropriate type, 5369 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 5370 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 5371 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 5372 // the int parameters are for orderings. 5373 5374 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 5375 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 5376 "need to update code for modified forms"); 5377 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 5378 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 5379 AtomicExpr::AO__atomic_load, 5380 "need to update code for modified C11 atomics"); 5381 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 5382 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 5383 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 5384 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 5385 IsOpenCL; 5386 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 5387 Op == AtomicExpr::AO__atomic_store_n || 5388 Op == AtomicExpr::AO__atomic_exchange_n || 5389 Op == AtomicExpr::AO__atomic_compare_exchange_n; 5390 bool IsAddSub = false; 5391 5392 switch (Op) { 5393 case AtomicExpr::AO__c11_atomic_init: 5394 case AtomicExpr::AO__opencl_atomic_init: 5395 Form = Init; 5396 break; 5397 5398 case AtomicExpr::AO__c11_atomic_load: 5399 case AtomicExpr::AO__opencl_atomic_load: 5400 case AtomicExpr::AO__atomic_load_n: 5401 Form = Load; 5402 break; 5403 5404 case AtomicExpr::AO__atomic_load: 5405 Form = LoadCopy; 5406 break; 5407 5408 case AtomicExpr::AO__c11_atomic_store: 5409 case AtomicExpr::AO__opencl_atomic_store: 5410 case AtomicExpr::AO__atomic_store: 5411 case AtomicExpr::AO__atomic_store_n: 5412 Form = Copy; 5413 break; 5414 5415 case AtomicExpr::AO__c11_atomic_fetch_add: 5416 case AtomicExpr::AO__c11_atomic_fetch_sub: 5417 case AtomicExpr::AO__opencl_atomic_fetch_add: 5418 case AtomicExpr::AO__opencl_atomic_fetch_sub: 5419 case AtomicExpr::AO__atomic_fetch_add: 5420 case AtomicExpr::AO__atomic_fetch_sub: 5421 case AtomicExpr::AO__atomic_add_fetch: 5422 case AtomicExpr::AO__atomic_sub_fetch: 5423 IsAddSub = true; 5424 Form = Arithmetic; 5425 break; 5426 case AtomicExpr::AO__c11_atomic_fetch_and: 5427 case AtomicExpr::AO__c11_atomic_fetch_or: 5428 case AtomicExpr::AO__c11_atomic_fetch_xor: 5429 case AtomicExpr::AO__c11_atomic_fetch_nand: 5430 case AtomicExpr::AO__opencl_atomic_fetch_and: 5431 case AtomicExpr::AO__opencl_atomic_fetch_or: 5432 case AtomicExpr::AO__opencl_atomic_fetch_xor: 5433 case AtomicExpr::AO__atomic_fetch_and: 5434 case AtomicExpr::AO__atomic_fetch_or: 5435 case AtomicExpr::AO__atomic_fetch_xor: 5436 case AtomicExpr::AO__atomic_fetch_nand: 5437 case AtomicExpr::AO__atomic_and_fetch: 5438 case AtomicExpr::AO__atomic_or_fetch: 5439 case AtomicExpr::AO__atomic_xor_fetch: 5440 case AtomicExpr::AO__atomic_nand_fetch: 5441 Form = Arithmetic; 5442 break; 5443 case AtomicExpr::AO__c11_atomic_fetch_min: 5444 case AtomicExpr::AO__c11_atomic_fetch_max: 5445 case AtomicExpr::AO__opencl_atomic_fetch_min: 5446 case AtomicExpr::AO__opencl_atomic_fetch_max: 5447 case AtomicExpr::AO__atomic_min_fetch: 5448 case AtomicExpr::AO__atomic_max_fetch: 5449 case AtomicExpr::AO__atomic_fetch_min: 5450 case AtomicExpr::AO__atomic_fetch_max: 5451 Form = Arithmetic; 5452 break; 5453 5454 case AtomicExpr::AO__c11_atomic_exchange: 5455 case AtomicExpr::AO__opencl_atomic_exchange: 5456 case AtomicExpr::AO__atomic_exchange_n: 5457 Form = Xchg; 5458 break; 5459 5460 case AtomicExpr::AO__atomic_exchange: 5461 Form = GNUXchg; 5462 break; 5463 5464 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 5465 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 5466 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 5467 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 5468 Form = C11CmpXchg; 5469 break; 5470 5471 case AtomicExpr::AO__atomic_compare_exchange: 5472 case AtomicExpr::AO__atomic_compare_exchange_n: 5473 Form = GNUCmpXchg; 5474 break; 5475 } 5476 5477 unsigned AdjustedNumArgs = NumArgs[Form]; 5478 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 5479 ++AdjustedNumArgs; 5480 // Check we have the right number of arguments. 5481 if (Args.size() < AdjustedNumArgs) { 5482 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 5483 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5484 << ExprRange; 5485 return ExprError(); 5486 } else if (Args.size() > AdjustedNumArgs) { 5487 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 5488 diag::err_typecheck_call_too_many_args) 5489 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5490 << ExprRange; 5491 return ExprError(); 5492 } 5493 5494 // Inspect the first argument of the atomic operation. 5495 Expr *Ptr = Args[0]; 5496 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 5497 if (ConvertedPtr.isInvalid()) 5498 return ExprError(); 5499 5500 Ptr = ConvertedPtr.get(); 5501 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 5502 if (!pointerType) { 5503 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 5504 << Ptr->getType() << Ptr->getSourceRange(); 5505 return ExprError(); 5506 } 5507 5508 // For a __c11 builtin, this should be a pointer to an _Atomic type. 5509 QualType AtomTy = pointerType->getPointeeType(); // 'A' 5510 QualType ValType = AtomTy; // 'C' 5511 if (IsC11) { 5512 if (!AtomTy->isAtomicType()) { 5513 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 5514 << Ptr->getType() << Ptr->getSourceRange(); 5515 return ExprError(); 5516 } 5517 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 5518 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 5519 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 5520 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 5521 << Ptr->getSourceRange(); 5522 return ExprError(); 5523 } 5524 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 5525 } else if (Form != Load && Form != LoadCopy) { 5526 if (ValType.isConstQualified()) { 5527 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 5528 << Ptr->getType() << Ptr->getSourceRange(); 5529 return ExprError(); 5530 } 5531 } 5532 5533 // For an arithmetic operation, the implied arithmetic must be well-formed. 5534 if (Form == Arithmetic) { 5535 // GCC does not enforce these rules for GNU atomics, but we do, because if 5536 // we didn't it would be very confusing. FIXME: For whom? How so? 5537 auto IsAllowedValueType = [&](QualType ValType) { 5538 if (ValType->isIntegerType()) 5539 return true; 5540 if (ValType->isPointerType()) 5541 return true; 5542 if (!ValType->isFloatingType()) 5543 return false; 5544 // LLVM Parser does not allow atomicrmw with x86_fp80 type. 5545 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && 5546 &Context.getTargetInfo().getLongDoubleFormat() == 5547 &llvm::APFloat::x87DoubleExtended()) 5548 return false; 5549 return true; 5550 }; 5551 if (IsAddSub && !IsAllowedValueType(ValType)) { 5552 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp) 5553 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5554 return ExprError(); 5555 } 5556 if (!IsAddSub && !ValType->isIntegerType()) { 5557 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 5558 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5559 return ExprError(); 5560 } 5561 if (IsC11 && ValType->isPointerType() && 5562 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 5563 diag::err_incomplete_type)) { 5564 return ExprError(); 5565 } 5566 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 5567 // For __atomic_*_n operations, the value type must be a scalar integral or 5568 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 5569 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 5570 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5571 return ExprError(); 5572 } 5573 5574 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 5575 !AtomTy->isScalarType()) { 5576 // For GNU atomics, require a trivially-copyable type. This is not part of 5577 // the GNU atomics specification, but we enforce it, because if we didn't it 5578 // would be very confusing. FIXME: For whom? How so? 5579 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 5580 << Ptr->getType() << Ptr->getSourceRange(); 5581 return ExprError(); 5582 } 5583 5584 switch (ValType.getObjCLifetime()) { 5585 case Qualifiers::OCL_None: 5586 case Qualifiers::OCL_ExplicitNone: 5587 // okay 5588 break; 5589 5590 case Qualifiers::OCL_Weak: 5591 case Qualifiers::OCL_Strong: 5592 case Qualifiers::OCL_Autoreleasing: 5593 // FIXME: Can this happen? By this point, ValType should be known 5594 // to be trivially copyable. 5595 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 5596 << ValType << Ptr->getSourceRange(); 5597 return ExprError(); 5598 } 5599 5600 // All atomic operations have an overload which takes a pointer to a volatile 5601 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 5602 // into the result or the other operands. Similarly atomic_load takes a 5603 // pointer to a const 'A'. 5604 ValType.removeLocalVolatile(); 5605 ValType.removeLocalConst(); 5606 QualType ResultType = ValType; 5607 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 5608 Form == Init) 5609 ResultType = Context.VoidTy; 5610 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 5611 ResultType = Context.BoolTy; 5612 5613 // The type of a parameter passed 'by value'. In the GNU atomics, such 5614 // arguments are actually passed as pointers. 5615 QualType ByValType = ValType; // 'CP' 5616 bool IsPassedByAddress = false; 5617 if (!IsC11 && !IsN) { 5618 ByValType = Ptr->getType(); 5619 IsPassedByAddress = true; 5620 } 5621 5622 SmallVector<Expr *, 5> APIOrderedArgs; 5623 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 5624 APIOrderedArgs.push_back(Args[0]); 5625 switch (Form) { 5626 case Init: 5627 case Load: 5628 APIOrderedArgs.push_back(Args[1]); // Val1/Order 5629 break; 5630 case LoadCopy: 5631 case Copy: 5632 case Arithmetic: 5633 case Xchg: 5634 APIOrderedArgs.push_back(Args[2]); // Val1 5635 APIOrderedArgs.push_back(Args[1]); // Order 5636 break; 5637 case GNUXchg: 5638 APIOrderedArgs.push_back(Args[2]); // Val1 5639 APIOrderedArgs.push_back(Args[3]); // Val2 5640 APIOrderedArgs.push_back(Args[1]); // Order 5641 break; 5642 case C11CmpXchg: 5643 APIOrderedArgs.push_back(Args[2]); // Val1 5644 APIOrderedArgs.push_back(Args[4]); // Val2 5645 APIOrderedArgs.push_back(Args[1]); // Order 5646 APIOrderedArgs.push_back(Args[3]); // OrderFail 5647 break; 5648 case GNUCmpXchg: 5649 APIOrderedArgs.push_back(Args[2]); // Val1 5650 APIOrderedArgs.push_back(Args[4]); // Val2 5651 APIOrderedArgs.push_back(Args[5]); // Weak 5652 APIOrderedArgs.push_back(Args[1]); // Order 5653 APIOrderedArgs.push_back(Args[3]); // OrderFail 5654 break; 5655 } 5656 } else 5657 APIOrderedArgs.append(Args.begin(), Args.end()); 5658 5659 // The first argument's non-CV pointer type is used to deduce the type of 5660 // subsequent arguments, except for: 5661 // - weak flag (always converted to bool) 5662 // - memory order (always converted to int) 5663 // - scope (always converted to int) 5664 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5665 QualType Ty; 5666 if (i < NumVals[Form] + 1) { 5667 switch (i) { 5668 case 0: 5669 // The first argument is always a pointer. It has a fixed type. 5670 // It is always dereferenced, a nullptr is undefined. 5671 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5672 // Nothing else to do: we already know all we want about this pointer. 5673 continue; 5674 case 1: 5675 // The second argument is the non-atomic operand. For arithmetic, this 5676 // is always passed by value, and for a compare_exchange it is always 5677 // passed by address. For the rest, GNU uses by-address and C11 uses 5678 // by-value. 5679 assert(Form != Load); 5680 if (Form == Arithmetic && ValType->isPointerType()) 5681 Ty = Context.getPointerDiffType(); 5682 else if (Form == Init || Form == Arithmetic) 5683 Ty = ValType; 5684 else if (Form == Copy || Form == Xchg) { 5685 if (IsPassedByAddress) { 5686 // The value pointer is always dereferenced, a nullptr is undefined. 5687 CheckNonNullArgument(*this, APIOrderedArgs[i], 5688 ExprRange.getBegin()); 5689 } 5690 Ty = ByValType; 5691 } else { 5692 Expr *ValArg = APIOrderedArgs[i]; 5693 // The value pointer is always dereferenced, a nullptr is undefined. 5694 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 5695 LangAS AS = LangAS::Default; 5696 // Keep address space of non-atomic pointer type. 5697 if (const PointerType *PtrTy = 5698 ValArg->getType()->getAs<PointerType>()) { 5699 AS = PtrTy->getPointeeType().getAddressSpace(); 5700 } 5701 Ty = Context.getPointerType( 5702 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 5703 } 5704 break; 5705 case 2: 5706 // The third argument to compare_exchange / GNU exchange is the desired 5707 // value, either by-value (for the C11 and *_n variant) or as a pointer. 5708 if (IsPassedByAddress) 5709 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5710 Ty = ByValType; 5711 break; 5712 case 3: 5713 // The fourth argument to GNU compare_exchange is a 'weak' flag. 5714 Ty = Context.BoolTy; 5715 break; 5716 } 5717 } else { 5718 // The order(s) and scope are always converted to int. 5719 Ty = Context.IntTy; 5720 } 5721 5722 InitializedEntity Entity = 5723 InitializedEntity::InitializeParameter(Context, Ty, false); 5724 ExprResult Arg = APIOrderedArgs[i]; 5725 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5726 if (Arg.isInvalid()) 5727 return true; 5728 APIOrderedArgs[i] = Arg.get(); 5729 } 5730 5731 // Permute the arguments into a 'consistent' order. 5732 SmallVector<Expr*, 5> SubExprs; 5733 SubExprs.push_back(Ptr); 5734 switch (Form) { 5735 case Init: 5736 // Note, AtomicExpr::getVal1() has a special case for this atomic. 5737 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5738 break; 5739 case Load: 5740 SubExprs.push_back(APIOrderedArgs[1]); // Order 5741 break; 5742 case LoadCopy: 5743 case Copy: 5744 case Arithmetic: 5745 case Xchg: 5746 SubExprs.push_back(APIOrderedArgs[2]); // Order 5747 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5748 break; 5749 case GNUXchg: 5750 // Note, AtomicExpr::getVal2() has a special case for this atomic. 5751 SubExprs.push_back(APIOrderedArgs[3]); // Order 5752 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5753 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5754 break; 5755 case C11CmpXchg: 5756 SubExprs.push_back(APIOrderedArgs[3]); // Order 5757 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5758 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 5759 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5760 break; 5761 case GNUCmpXchg: 5762 SubExprs.push_back(APIOrderedArgs[4]); // Order 5763 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5764 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 5765 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5766 SubExprs.push_back(APIOrderedArgs[3]); // Weak 5767 break; 5768 } 5769 5770 if (SubExprs.size() >= 2 && Form != Init) { 5771 if (Optional<llvm::APSInt> Result = 5772 SubExprs[1]->getIntegerConstantExpr(Context)) 5773 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 5774 Diag(SubExprs[1]->getBeginLoc(), 5775 diag::warn_atomic_op_has_invalid_memory_order) 5776 << SubExprs[1]->getSourceRange(); 5777 } 5778 5779 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 5780 auto *Scope = Args[Args.size() - 1]; 5781 if (Optional<llvm::APSInt> Result = 5782 Scope->getIntegerConstantExpr(Context)) { 5783 if (!ScopeModel->isValid(Result->getZExtValue())) 5784 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 5785 << Scope->getSourceRange(); 5786 } 5787 SubExprs.push_back(Scope); 5788 } 5789 5790 AtomicExpr *AE = new (Context) 5791 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 5792 5793 if ((Op == AtomicExpr::AO__c11_atomic_load || 5794 Op == AtomicExpr::AO__c11_atomic_store || 5795 Op == AtomicExpr::AO__opencl_atomic_load || 5796 Op == AtomicExpr::AO__opencl_atomic_store ) && 5797 Context.AtomicUsesUnsupportedLibcall(AE)) 5798 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 5799 << ((Op == AtomicExpr::AO__c11_atomic_load || 5800 Op == AtomicExpr::AO__opencl_atomic_load) 5801 ? 0 5802 : 1); 5803 5804 if (ValType->isExtIntType()) { 5805 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 5806 return ExprError(); 5807 } 5808 5809 return AE; 5810 } 5811 5812 /// checkBuiltinArgument - Given a call to a builtin function, perform 5813 /// normal type-checking on the given argument, updating the call in 5814 /// place. This is useful when a builtin function requires custom 5815 /// type-checking for some of its arguments but not necessarily all of 5816 /// them. 5817 /// 5818 /// Returns true on error. 5819 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 5820 FunctionDecl *Fn = E->getDirectCallee(); 5821 assert(Fn && "builtin call without direct callee!"); 5822 5823 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 5824 InitializedEntity Entity = 5825 InitializedEntity::InitializeParameter(S.Context, Param); 5826 5827 ExprResult Arg = E->getArg(0); 5828 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 5829 if (Arg.isInvalid()) 5830 return true; 5831 5832 E->setArg(ArgIndex, Arg.get()); 5833 return false; 5834 } 5835 5836 /// We have a call to a function like __sync_fetch_and_add, which is an 5837 /// overloaded function based on the pointer type of its first argument. 5838 /// The main BuildCallExpr routines have already promoted the types of 5839 /// arguments because all of these calls are prototyped as void(...). 5840 /// 5841 /// This function goes through and does final semantic checking for these 5842 /// builtins, as well as generating any warnings. 5843 ExprResult 5844 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5845 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5846 Expr *Callee = TheCall->getCallee(); 5847 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5848 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5849 5850 // Ensure that we have at least one argument to do type inference from. 5851 if (TheCall->getNumArgs() < 1) { 5852 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5853 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5854 return ExprError(); 5855 } 5856 5857 // Inspect the first argument of the atomic builtin. This should always be 5858 // a pointer type, whose element is an integral scalar or pointer type. 5859 // Because it is a pointer type, we don't have to worry about any implicit 5860 // casts here. 5861 // FIXME: We don't allow floating point scalars as input. 5862 Expr *FirstArg = TheCall->getArg(0); 5863 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5864 if (FirstArgResult.isInvalid()) 5865 return ExprError(); 5866 FirstArg = FirstArgResult.get(); 5867 TheCall->setArg(0, FirstArg); 5868 5869 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5870 if (!pointerType) { 5871 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5872 << FirstArg->getType() << FirstArg->getSourceRange(); 5873 return ExprError(); 5874 } 5875 5876 QualType ValType = pointerType->getPointeeType(); 5877 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5878 !ValType->isBlockPointerType()) { 5879 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5880 << FirstArg->getType() << FirstArg->getSourceRange(); 5881 return ExprError(); 5882 } 5883 5884 if (ValType.isConstQualified()) { 5885 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5886 << FirstArg->getType() << FirstArg->getSourceRange(); 5887 return ExprError(); 5888 } 5889 5890 switch (ValType.getObjCLifetime()) { 5891 case Qualifiers::OCL_None: 5892 case Qualifiers::OCL_ExplicitNone: 5893 // okay 5894 break; 5895 5896 case Qualifiers::OCL_Weak: 5897 case Qualifiers::OCL_Strong: 5898 case Qualifiers::OCL_Autoreleasing: 5899 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5900 << ValType << FirstArg->getSourceRange(); 5901 return ExprError(); 5902 } 5903 5904 // Strip any qualifiers off ValType. 5905 ValType = ValType.getUnqualifiedType(); 5906 5907 // The majority of builtins return a value, but a few have special return 5908 // types, so allow them to override appropriately below. 5909 QualType ResultType = ValType; 5910 5911 // We need to figure out which concrete builtin this maps onto. For example, 5912 // __sync_fetch_and_add with a 2 byte object turns into 5913 // __sync_fetch_and_add_2. 5914 #define BUILTIN_ROW(x) \ 5915 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5916 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5917 5918 static const unsigned BuiltinIndices[][5] = { 5919 BUILTIN_ROW(__sync_fetch_and_add), 5920 BUILTIN_ROW(__sync_fetch_and_sub), 5921 BUILTIN_ROW(__sync_fetch_and_or), 5922 BUILTIN_ROW(__sync_fetch_and_and), 5923 BUILTIN_ROW(__sync_fetch_and_xor), 5924 BUILTIN_ROW(__sync_fetch_and_nand), 5925 5926 BUILTIN_ROW(__sync_add_and_fetch), 5927 BUILTIN_ROW(__sync_sub_and_fetch), 5928 BUILTIN_ROW(__sync_and_and_fetch), 5929 BUILTIN_ROW(__sync_or_and_fetch), 5930 BUILTIN_ROW(__sync_xor_and_fetch), 5931 BUILTIN_ROW(__sync_nand_and_fetch), 5932 5933 BUILTIN_ROW(__sync_val_compare_and_swap), 5934 BUILTIN_ROW(__sync_bool_compare_and_swap), 5935 BUILTIN_ROW(__sync_lock_test_and_set), 5936 BUILTIN_ROW(__sync_lock_release), 5937 BUILTIN_ROW(__sync_swap) 5938 }; 5939 #undef BUILTIN_ROW 5940 5941 // Determine the index of the size. 5942 unsigned SizeIndex; 5943 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5944 case 1: SizeIndex = 0; break; 5945 case 2: SizeIndex = 1; break; 5946 case 4: SizeIndex = 2; break; 5947 case 8: SizeIndex = 3; break; 5948 case 16: SizeIndex = 4; break; 5949 default: 5950 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5951 << FirstArg->getType() << FirstArg->getSourceRange(); 5952 return ExprError(); 5953 } 5954 5955 // Each of these builtins has one pointer argument, followed by some number of 5956 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5957 // that we ignore. Find out which row of BuiltinIndices to read from as well 5958 // as the number of fixed args. 5959 unsigned BuiltinID = FDecl->getBuiltinID(); 5960 unsigned BuiltinIndex, NumFixed = 1; 5961 bool WarnAboutSemanticsChange = false; 5962 switch (BuiltinID) { 5963 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5964 case Builtin::BI__sync_fetch_and_add: 5965 case Builtin::BI__sync_fetch_and_add_1: 5966 case Builtin::BI__sync_fetch_and_add_2: 5967 case Builtin::BI__sync_fetch_and_add_4: 5968 case Builtin::BI__sync_fetch_and_add_8: 5969 case Builtin::BI__sync_fetch_and_add_16: 5970 BuiltinIndex = 0; 5971 break; 5972 5973 case Builtin::BI__sync_fetch_and_sub: 5974 case Builtin::BI__sync_fetch_and_sub_1: 5975 case Builtin::BI__sync_fetch_and_sub_2: 5976 case Builtin::BI__sync_fetch_and_sub_4: 5977 case Builtin::BI__sync_fetch_and_sub_8: 5978 case Builtin::BI__sync_fetch_and_sub_16: 5979 BuiltinIndex = 1; 5980 break; 5981 5982 case Builtin::BI__sync_fetch_and_or: 5983 case Builtin::BI__sync_fetch_and_or_1: 5984 case Builtin::BI__sync_fetch_and_or_2: 5985 case Builtin::BI__sync_fetch_and_or_4: 5986 case Builtin::BI__sync_fetch_and_or_8: 5987 case Builtin::BI__sync_fetch_and_or_16: 5988 BuiltinIndex = 2; 5989 break; 5990 5991 case Builtin::BI__sync_fetch_and_and: 5992 case Builtin::BI__sync_fetch_and_and_1: 5993 case Builtin::BI__sync_fetch_and_and_2: 5994 case Builtin::BI__sync_fetch_and_and_4: 5995 case Builtin::BI__sync_fetch_and_and_8: 5996 case Builtin::BI__sync_fetch_and_and_16: 5997 BuiltinIndex = 3; 5998 break; 5999 6000 case Builtin::BI__sync_fetch_and_xor: 6001 case Builtin::BI__sync_fetch_and_xor_1: 6002 case Builtin::BI__sync_fetch_and_xor_2: 6003 case Builtin::BI__sync_fetch_and_xor_4: 6004 case Builtin::BI__sync_fetch_and_xor_8: 6005 case Builtin::BI__sync_fetch_and_xor_16: 6006 BuiltinIndex = 4; 6007 break; 6008 6009 case Builtin::BI__sync_fetch_and_nand: 6010 case Builtin::BI__sync_fetch_and_nand_1: 6011 case Builtin::BI__sync_fetch_and_nand_2: 6012 case Builtin::BI__sync_fetch_and_nand_4: 6013 case Builtin::BI__sync_fetch_and_nand_8: 6014 case Builtin::BI__sync_fetch_and_nand_16: 6015 BuiltinIndex = 5; 6016 WarnAboutSemanticsChange = true; 6017 break; 6018 6019 case Builtin::BI__sync_add_and_fetch: 6020 case Builtin::BI__sync_add_and_fetch_1: 6021 case Builtin::BI__sync_add_and_fetch_2: 6022 case Builtin::BI__sync_add_and_fetch_4: 6023 case Builtin::BI__sync_add_and_fetch_8: 6024 case Builtin::BI__sync_add_and_fetch_16: 6025 BuiltinIndex = 6; 6026 break; 6027 6028 case Builtin::BI__sync_sub_and_fetch: 6029 case Builtin::BI__sync_sub_and_fetch_1: 6030 case Builtin::BI__sync_sub_and_fetch_2: 6031 case Builtin::BI__sync_sub_and_fetch_4: 6032 case Builtin::BI__sync_sub_and_fetch_8: 6033 case Builtin::BI__sync_sub_and_fetch_16: 6034 BuiltinIndex = 7; 6035 break; 6036 6037 case Builtin::BI__sync_and_and_fetch: 6038 case Builtin::BI__sync_and_and_fetch_1: 6039 case Builtin::BI__sync_and_and_fetch_2: 6040 case Builtin::BI__sync_and_and_fetch_4: 6041 case Builtin::BI__sync_and_and_fetch_8: 6042 case Builtin::BI__sync_and_and_fetch_16: 6043 BuiltinIndex = 8; 6044 break; 6045 6046 case Builtin::BI__sync_or_and_fetch: 6047 case Builtin::BI__sync_or_and_fetch_1: 6048 case Builtin::BI__sync_or_and_fetch_2: 6049 case Builtin::BI__sync_or_and_fetch_4: 6050 case Builtin::BI__sync_or_and_fetch_8: 6051 case Builtin::BI__sync_or_and_fetch_16: 6052 BuiltinIndex = 9; 6053 break; 6054 6055 case Builtin::BI__sync_xor_and_fetch: 6056 case Builtin::BI__sync_xor_and_fetch_1: 6057 case Builtin::BI__sync_xor_and_fetch_2: 6058 case Builtin::BI__sync_xor_and_fetch_4: 6059 case Builtin::BI__sync_xor_and_fetch_8: 6060 case Builtin::BI__sync_xor_and_fetch_16: 6061 BuiltinIndex = 10; 6062 break; 6063 6064 case Builtin::BI__sync_nand_and_fetch: 6065 case Builtin::BI__sync_nand_and_fetch_1: 6066 case Builtin::BI__sync_nand_and_fetch_2: 6067 case Builtin::BI__sync_nand_and_fetch_4: 6068 case Builtin::BI__sync_nand_and_fetch_8: 6069 case Builtin::BI__sync_nand_and_fetch_16: 6070 BuiltinIndex = 11; 6071 WarnAboutSemanticsChange = true; 6072 break; 6073 6074 case Builtin::BI__sync_val_compare_and_swap: 6075 case Builtin::BI__sync_val_compare_and_swap_1: 6076 case Builtin::BI__sync_val_compare_and_swap_2: 6077 case Builtin::BI__sync_val_compare_and_swap_4: 6078 case Builtin::BI__sync_val_compare_and_swap_8: 6079 case Builtin::BI__sync_val_compare_and_swap_16: 6080 BuiltinIndex = 12; 6081 NumFixed = 2; 6082 break; 6083 6084 case Builtin::BI__sync_bool_compare_and_swap: 6085 case Builtin::BI__sync_bool_compare_and_swap_1: 6086 case Builtin::BI__sync_bool_compare_and_swap_2: 6087 case Builtin::BI__sync_bool_compare_and_swap_4: 6088 case Builtin::BI__sync_bool_compare_and_swap_8: 6089 case Builtin::BI__sync_bool_compare_and_swap_16: 6090 BuiltinIndex = 13; 6091 NumFixed = 2; 6092 ResultType = Context.BoolTy; 6093 break; 6094 6095 case Builtin::BI__sync_lock_test_and_set: 6096 case Builtin::BI__sync_lock_test_and_set_1: 6097 case Builtin::BI__sync_lock_test_and_set_2: 6098 case Builtin::BI__sync_lock_test_and_set_4: 6099 case Builtin::BI__sync_lock_test_and_set_8: 6100 case Builtin::BI__sync_lock_test_and_set_16: 6101 BuiltinIndex = 14; 6102 break; 6103 6104 case Builtin::BI__sync_lock_release: 6105 case Builtin::BI__sync_lock_release_1: 6106 case Builtin::BI__sync_lock_release_2: 6107 case Builtin::BI__sync_lock_release_4: 6108 case Builtin::BI__sync_lock_release_8: 6109 case Builtin::BI__sync_lock_release_16: 6110 BuiltinIndex = 15; 6111 NumFixed = 0; 6112 ResultType = Context.VoidTy; 6113 break; 6114 6115 case Builtin::BI__sync_swap: 6116 case Builtin::BI__sync_swap_1: 6117 case Builtin::BI__sync_swap_2: 6118 case Builtin::BI__sync_swap_4: 6119 case Builtin::BI__sync_swap_8: 6120 case Builtin::BI__sync_swap_16: 6121 BuiltinIndex = 16; 6122 break; 6123 } 6124 6125 // Now that we know how many fixed arguments we expect, first check that we 6126 // have at least that many. 6127 if (TheCall->getNumArgs() < 1+NumFixed) { 6128 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 6129 << 0 << 1 + NumFixed << TheCall->getNumArgs() 6130 << Callee->getSourceRange(); 6131 return ExprError(); 6132 } 6133 6134 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 6135 << Callee->getSourceRange(); 6136 6137 if (WarnAboutSemanticsChange) { 6138 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 6139 << Callee->getSourceRange(); 6140 } 6141 6142 // Get the decl for the concrete builtin from this, we can tell what the 6143 // concrete integer type we should convert to is. 6144 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 6145 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 6146 FunctionDecl *NewBuiltinDecl; 6147 if (NewBuiltinID == BuiltinID) 6148 NewBuiltinDecl = FDecl; 6149 else { 6150 // Perform builtin lookup to avoid redeclaring it. 6151 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 6152 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 6153 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 6154 assert(Res.getFoundDecl()); 6155 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 6156 if (!NewBuiltinDecl) 6157 return ExprError(); 6158 } 6159 6160 // The first argument --- the pointer --- has a fixed type; we 6161 // deduce the types of the rest of the arguments accordingly. Walk 6162 // the remaining arguments, converting them to the deduced value type. 6163 for (unsigned i = 0; i != NumFixed; ++i) { 6164 ExprResult Arg = TheCall->getArg(i+1); 6165 6166 // GCC does an implicit conversion to the pointer or integer ValType. This 6167 // can fail in some cases (1i -> int**), check for this error case now. 6168 // Initialize the argument. 6169 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6170 ValType, /*consume*/ false); 6171 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6172 if (Arg.isInvalid()) 6173 return ExprError(); 6174 6175 // Okay, we have something that *can* be converted to the right type. Check 6176 // to see if there is a potentially weird extension going on here. This can 6177 // happen when you do an atomic operation on something like an char* and 6178 // pass in 42. The 42 gets converted to char. This is even more strange 6179 // for things like 45.123 -> char, etc. 6180 // FIXME: Do this check. 6181 TheCall->setArg(i+1, Arg.get()); 6182 } 6183 6184 // Create a new DeclRefExpr to refer to the new decl. 6185 DeclRefExpr *NewDRE = DeclRefExpr::Create( 6186 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 6187 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 6188 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 6189 6190 // Set the callee in the CallExpr. 6191 // FIXME: This loses syntactic information. 6192 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 6193 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 6194 CK_BuiltinFnToFnPtr); 6195 TheCall->setCallee(PromotedCall.get()); 6196 6197 // Change the result type of the call to match the original value type. This 6198 // is arbitrary, but the codegen for these builtins ins design to handle it 6199 // gracefully. 6200 TheCall->setType(ResultType); 6201 6202 // Prohibit use of _ExtInt with atomic builtins. 6203 // The arguments would have already been converted to the first argument's 6204 // type, so only need to check the first argument. 6205 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 6206 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 6207 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 6208 return ExprError(); 6209 } 6210 6211 return TheCallResult; 6212 } 6213 6214 /// SemaBuiltinNontemporalOverloaded - We have a call to 6215 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 6216 /// overloaded function based on the pointer type of its last argument. 6217 /// 6218 /// This function goes through and does final semantic checking for these 6219 /// builtins. 6220 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 6221 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 6222 DeclRefExpr *DRE = 6223 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6224 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6225 unsigned BuiltinID = FDecl->getBuiltinID(); 6226 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 6227 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 6228 "Unexpected nontemporal load/store builtin!"); 6229 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 6230 unsigned numArgs = isStore ? 2 : 1; 6231 6232 // Ensure that we have the proper number of arguments. 6233 if (checkArgCount(*this, TheCall, numArgs)) 6234 return ExprError(); 6235 6236 // Inspect the last argument of the nontemporal builtin. This should always 6237 // be a pointer type, from which we imply the type of the memory access. 6238 // Because it is a pointer type, we don't have to worry about any implicit 6239 // casts here. 6240 Expr *PointerArg = TheCall->getArg(numArgs - 1); 6241 ExprResult PointerArgResult = 6242 DefaultFunctionArrayLvalueConversion(PointerArg); 6243 6244 if (PointerArgResult.isInvalid()) 6245 return ExprError(); 6246 PointerArg = PointerArgResult.get(); 6247 TheCall->setArg(numArgs - 1, PointerArg); 6248 6249 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 6250 if (!pointerType) { 6251 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 6252 << PointerArg->getType() << PointerArg->getSourceRange(); 6253 return ExprError(); 6254 } 6255 6256 QualType ValType = pointerType->getPointeeType(); 6257 6258 // Strip any qualifiers off ValType. 6259 ValType = ValType.getUnqualifiedType(); 6260 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 6261 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 6262 !ValType->isVectorType()) { 6263 Diag(DRE->getBeginLoc(), 6264 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 6265 << PointerArg->getType() << PointerArg->getSourceRange(); 6266 return ExprError(); 6267 } 6268 6269 if (!isStore) { 6270 TheCall->setType(ValType); 6271 return TheCallResult; 6272 } 6273 6274 ExprResult ValArg = TheCall->getArg(0); 6275 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6276 Context, ValType, /*consume*/ false); 6277 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 6278 if (ValArg.isInvalid()) 6279 return ExprError(); 6280 6281 TheCall->setArg(0, ValArg.get()); 6282 TheCall->setType(Context.VoidTy); 6283 return TheCallResult; 6284 } 6285 6286 /// CheckObjCString - Checks that the argument to the builtin 6287 /// CFString constructor is correct 6288 /// Note: It might also make sense to do the UTF-16 conversion here (would 6289 /// simplify the backend). 6290 bool Sema::CheckObjCString(Expr *Arg) { 6291 Arg = Arg->IgnoreParenCasts(); 6292 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 6293 6294 if (!Literal || !Literal->isAscii()) { 6295 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 6296 << Arg->getSourceRange(); 6297 return true; 6298 } 6299 6300 if (Literal->containsNonAsciiOrNull()) { 6301 StringRef String = Literal->getString(); 6302 unsigned NumBytes = String.size(); 6303 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 6304 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6305 llvm::UTF16 *ToPtr = &ToBuf[0]; 6306 6307 llvm::ConversionResult Result = 6308 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6309 ToPtr + NumBytes, llvm::strictConversion); 6310 // Check for conversion failure. 6311 if (Result != llvm::conversionOK) 6312 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 6313 << Arg->getSourceRange(); 6314 } 6315 return false; 6316 } 6317 6318 /// CheckObjCString - Checks that the format string argument to the os_log() 6319 /// and os_trace() functions is correct, and converts it to const char *. 6320 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 6321 Arg = Arg->IgnoreParenCasts(); 6322 auto *Literal = dyn_cast<StringLiteral>(Arg); 6323 if (!Literal) { 6324 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 6325 Literal = ObjcLiteral->getString(); 6326 } 6327 } 6328 6329 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 6330 return ExprError( 6331 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 6332 << Arg->getSourceRange()); 6333 } 6334 6335 ExprResult Result(Literal); 6336 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 6337 InitializedEntity Entity = 6338 InitializedEntity::InitializeParameter(Context, ResultTy, false); 6339 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 6340 return Result; 6341 } 6342 6343 /// Check that the user is calling the appropriate va_start builtin for the 6344 /// target and calling convention. 6345 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 6346 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 6347 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 6348 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 6349 TT.getArch() == llvm::Triple::aarch64_32); 6350 bool IsWindows = TT.isOSWindows(); 6351 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 6352 if (IsX64 || IsAArch64) { 6353 CallingConv CC = CC_C; 6354 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 6355 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 6356 if (IsMSVAStart) { 6357 // Don't allow this in System V ABI functions. 6358 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 6359 return S.Diag(Fn->getBeginLoc(), 6360 diag::err_ms_va_start_used_in_sysv_function); 6361 } else { 6362 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 6363 // On x64 Windows, don't allow this in System V ABI functions. 6364 // (Yes, that means there's no corresponding way to support variadic 6365 // System V ABI functions on Windows.) 6366 if ((IsWindows && CC == CC_X86_64SysV) || 6367 (!IsWindows && CC == CC_Win64)) 6368 return S.Diag(Fn->getBeginLoc(), 6369 diag::err_va_start_used_in_wrong_abi_function) 6370 << !IsWindows; 6371 } 6372 return false; 6373 } 6374 6375 if (IsMSVAStart) 6376 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 6377 return false; 6378 } 6379 6380 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 6381 ParmVarDecl **LastParam = nullptr) { 6382 // Determine whether the current function, block, or obj-c method is variadic 6383 // and get its parameter list. 6384 bool IsVariadic = false; 6385 ArrayRef<ParmVarDecl *> Params; 6386 DeclContext *Caller = S.CurContext; 6387 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 6388 IsVariadic = Block->isVariadic(); 6389 Params = Block->parameters(); 6390 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 6391 IsVariadic = FD->isVariadic(); 6392 Params = FD->parameters(); 6393 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 6394 IsVariadic = MD->isVariadic(); 6395 // FIXME: This isn't correct for methods (results in bogus warning). 6396 Params = MD->parameters(); 6397 } else if (isa<CapturedDecl>(Caller)) { 6398 // We don't support va_start in a CapturedDecl. 6399 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 6400 return true; 6401 } else { 6402 // This must be some other declcontext that parses exprs. 6403 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 6404 return true; 6405 } 6406 6407 if (!IsVariadic) { 6408 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 6409 return true; 6410 } 6411 6412 if (LastParam) 6413 *LastParam = Params.empty() ? nullptr : Params.back(); 6414 6415 return false; 6416 } 6417 6418 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 6419 /// for validity. Emit an error and return true on failure; return false 6420 /// on success. 6421 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 6422 Expr *Fn = TheCall->getCallee(); 6423 6424 if (checkVAStartABI(*this, BuiltinID, Fn)) 6425 return true; 6426 6427 if (checkArgCount(*this, TheCall, 2)) 6428 return true; 6429 6430 // Type-check the first argument normally. 6431 if (checkBuiltinArgument(*this, TheCall, 0)) 6432 return true; 6433 6434 // Check that the current function is variadic, and get its last parameter. 6435 ParmVarDecl *LastParam; 6436 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 6437 return true; 6438 6439 // Verify that the second argument to the builtin is the last argument of the 6440 // current function or method. 6441 bool SecondArgIsLastNamedArgument = false; 6442 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 6443 6444 // These are valid if SecondArgIsLastNamedArgument is false after the next 6445 // block. 6446 QualType Type; 6447 SourceLocation ParamLoc; 6448 bool IsCRegister = false; 6449 6450 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 6451 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 6452 SecondArgIsLastNamedArgument = PV == LastParam; 6453 6454 Type = PV->getType(); 6455 ParamLoc = PV->getLocation(); 6456 IsCRegister = 6457 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 6458 } 6459 } 6460 6461 if (!SecondArgIsLastNamedArgument) 6462 Diag(TheCall->getArg(1)->getBeginLoc(), 6463 diag::warn_second_arg_of_va_start_not_last_named_param); 6464 else if (IsCRegister || Type->isReferenceType() || 6465 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 6466 // Promotable integers are UB, but enumerations need a bit of 6467 // extra checking to see what their promotable type actually is. 6468 if (!Type->isPromotableIntegerType()) 6469 return false; 6470 if (!Type->isEnumeralType()) 6471 return true; 6472 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 6473 return !(ED && 6474 Context.typesAreCompatible(ED->getPromotionType(), Type)); 6475 }()) { 6476 unsigned Reason = 0; 6477 if (Type->isReferenceType()) Reason = 1; 6478 else if (IsCRegister) Reason = 2; 6479 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 6480 Diag(ParamLoc, diag::note_parameter_type) << Type; 6481 } 6482 6483 TheCall->setType(Context.VoidTy); 6484 return false; 6485 } 6486 6487 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 6488 auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { 6489 const LangOptions &LO = getLangOpts(); 6490 6491 if (LO.CPlusPlus) 6492 return Arg->getType() 6493 .getCanonicalType() 6494 .getTypePtr() 6495 ->getPointeeType() 6496 .withoutLocalFastQualifiers() == Context.CharTy; 6497 6498 // In C, allow aliasing through `char *`, this is required for AArch64 at 6499 // least. 6500 return true; 6501 }; 6502 6503 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 6504 // const char *named_addr); 6505 6506 Expr *Func = Call->getCallee(); 6507 6508 if (Call->getNumArgs() < 3) 6509 return Diag(Call->getEndLoc(), 6510 diag::err_typecheck_call_too_few_args_at_least) 6511 << 0 /*function call*/ << 3 << Call->getNumArgs(); 6512 6513 // Type-check the first argument normally. 6514 if (checkBuiltinArgument(*this, Call, 0)) 6515 return true; 6516 6517 // Check that the current function is variadic. 6518 if (checkVAStartIsInVariadicFunction(*this, Func)) 6519 return true; 6520 6521 // __va_start on Windows does not validate the parameter qualifiers 6522 6523 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 6524 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 6525 6526 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 6527 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 6528 6529 const QualType &ConstCharPtrTy = 6530 Context.getPointerType(Context.CharTy.withConst()); 6531 if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) 6532 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6533 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 6534 << 0 /* qualifier difference */ 6535 << 3 /* parameter mismatch */ 6536 << 2 << Arg1->getType() << ConstCharPtrTy; 6537 6538 const QualType SizeTy = Context.getSizeType(); 6539 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 6540 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6541 << Arg2->getType() << SizeTy << 1 /* different class */ 6542 << 0 /* qualifier difference */ 6543 << 3 /* parameter mismatch */ 6544 << 3 << Arg2->getType() << SizeTy; 6545 6546 return false; 6547 } 6548 6549 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 6550 /// friends. This is declared to take (...), so we have to check everything. 6551 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 6552 if (checkArgCount(*this, TheCall, 2)) 6553 return true; 6554 6555 ExprResult OrigArg0 = TheCall->getArg(0); 6556 ExprResult OrigArg1 = TheCall->getArg(1); 6557 6558 // Do standard promotions between the two arguments, returning their common 6559 // type. 6560 QualType Res = UsualArithmeticConversions( 6561 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 6562 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 6563 return true; 6564 6565 // Make sure any conversions are pushed back into the call; this is 6566 // type safe since unordered compare builtins are declared as "_Bool 6567 // foo(...)". 6568 TheCall->setArg(0, OrigArg0.get()); 6569 TheCall->setArg(1, OrigArg1.get()); 6570 6571 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 6572 return false; 6573 6574 // If the common type isn't a real floating type, then the arguments were 6575 // invalid for this operation. 6576 if (Res.isNull() || !Res->isRealFloatingType()) 6577 return Diag(OrigArg0.get()->getBeginLoc(), 6578 diag::err_typecheck_call_invalid_ordered_compare) 6579 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 6580 << SourceRange(OrigArg0.get()->getBeginLoc(), 6581 OrigArg1.get()->getEndLoc()); 6582 6583 return false; 6584 } 6585 6586 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 6587 /// __builtin_isnan and friends. This is declared to take (...), so we have 6588 /// to check everything. We expect the last argument to be a floating point 6589 /// value. 6590 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 6591 if (checkArgCount(*this, TheCall, NumArgs)) 6592 return true; 6593 6594 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 6595 // on all preceding parameters just being int. Try all of those. 6596 for (unsigned i = 0; i < NumArgs - 1; ++i) { 6597 Expr *Arg = TheCall->getArg(i); 6598 6599 if (Arg->isTypeDependent()) 6600 return false; 6601 6602 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 6603 6604 if (Res.isInvalid()) 6605 return true; 6606 TheCall->setArg(i, Res.get()); 6607 } 6608 6609 Expr *OrigArg = TheCall->getArg(NumArgs-1); 6610 6611 if (OrigArg->isTypeDependent()) 6612 return false; 6613 6614 // Usual Unary Conversions will convert half to float, which we want for 6615 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 6616 // type how it is, but do normal L->Rvalue conversions. 6617 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 6618 OrigArg = UsualUnaryConversions(OrigArg).get(); 6619 else 6620 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 6621 TheCall->setArg(NumArgs - 1, OrigArg); 6622 6623 // This operation requires a non-_Complex floating-point number. 6624 if (!OrigArg->getType()->isRealFloatingType()) 6625 return Diag(OrigArg->getBeginLoc(), 6626 diag::err_typecheck_call_invalid_unary_fp) 6627 << OrigArg->getType() << OrigArg->getSourceRange(); 6628 6629 return false; 6630 } 6631 6632 /// Perform semantic analysis for a call to __builtin_complex. 6633 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 6634 if (checkArgCount(*this, TheCall, 2)) 6635 return true; 6636 6637 bool Dependent = false; 6638 for (unsigned I = 0; I != 2; ++I) { 6639 Expr *Arg = TheCall->getArg(I); 6640 QualType T = Arg->getType(); 6641 if (T->isDependentType()) { 6642 Dependent = true; 6643 continue; 6644 } 6645 6646 // Despite supporting _Complex int, GCC requires a real floating point type 6647 // for the operands of __builtin_complex. 6648 if (!T->isRealFloatingType()) { 6649 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 6650 << Arg->getType() << Arg->getSourceRange(); 6651 } 6652 6653 ExprResult Converted = DefaultLvalueConversion(Arg); 6654 if (Converted.isInvalid()) 6655 return true; 6656 TheCall->setArg(I, Converted.get()); 6657 } 6658 6659 if (Dependent) { 6660 TheCall->setType(Context.DependentTy); 6661 return false; 6662 } 6663 6664 Expr *Real = TheCall->getArg(0); 6665 Expr *Imag = TheCall->getArg(1); 6666 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6667 return Diag(Real->getBeginLoc(), 6668 diag::err_typecheck_call_different_arg_types) 6669 << Real->getType() << Imag->getType() 6670 << Real->getSourceRange() << Imag->getSourceRange(); 6671 } 6672 6673 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6674 // don't allow this builtin to form those types either. 6675 // FIXME: Should we allow these types? 6676 if (Real->getType()->isFloat16Type()) 6677 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6678 << "_Float16"; 6679 if (Real->getType()->isHalfType()) 6680 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6681 << "half"; 6682 6683 TheCall->setType(Context.getComplexType(Real->getType())); 6684 return false; 6685 } 6686 6687 // Customized Sema Checking for VSX builtins that have the following signature: 6688 // vector [...] builtinName(vector [...], vector [...], const int); 6689 // Which takes the same type of vectors (any legal vector type) for the first 6690 // two arguments and takes compile time constant for the third argument. 6691 // Example builtins are : 6692 // vector double vec_xxpermdi(vector double, vector double, int); 6693 // vector short vec_xxsldwi(vector short, vector short, int); 6694 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 6695 unsigned ExpectedNumArgs = 3; 6696 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 6697 return true; 6698 6699 // Check the third argument is a compile time constant 6700 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 6701 return Diag(TheCall->getBeginLoc(), 6702 diag::err_vsx_builtin_nonconstant_argument) 6703 << 3 /* argument index */ << TheCall->getDirectCallee() 6704 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 6705 TheCall->getArg(2)->getEndLoc()); 6706 6707 QualType Arg1Ty = TheCall->getArg(0)->getType(); 6708 QualType Arg2Ty = TheCall->getArg(1)->getType(); 6709 6710 // Check the type of argument 1 and argument 2 are vectors. 6711 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 6712 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 6713 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 6714 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 6715 << TheCall->getDirectCallee() 6716 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6717 TheCall->getArg(1)->getEndLoc()); 6718 } 6719 6720 // Check the first two arguments are the same type. 6721 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 6722 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 6723 << TheCall->getDirectCallee() 6724 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6725 TheCall->getArg(1)->getEndLoc()); 6726 } 6727 6728 // When default clang type checking is turned off and the customized type 6729 // checking is used, the returning type of the function must be explicitly 6730 // set. Otherwise it is _Bool by default. 6731 TheCall->setType(Arg1Ty); 6732 6733 return false; 6734 } 6735 6736 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 6737 // This is declared to take (...), so we have to check everything. 6738 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 6739 if (TheCall->getNumArgs() < 2) 6740 return ExprError(Diag(TheCall->getEndLoc(), 6741 diag::err_typecheck_call_too_few_args_at_least) 6742 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 6743 << TheCall->getSourceRange()); 6744 6745 // Determine which of the following types of shufflevector we're checking: 6746 // 1) unary, vector mask: (lhs, mask) 6747 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 6748 QualType resType = TheCall->getArg(0)->getType(); 6749 unsigned numElements = 0; 6750 6751 if (!TheCall->getArg(0)->isTypeDependent() && 6752 !TheCall->getArg(1)->isTypeDependent()) { 6753 QualType LHSType = TheCall->getArg(0)->getType(); 6754 QualType RHSType = TheCall->getArg(1)->getType(); 6755 6756 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 6757 return ExprError( 6758 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 6759 << TheCall->getDirectCallee() 6760 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6761 TheCall->getArg(1)->getEndLoc())); 6762 6763 numElements = LHSType->castAs<VectorType>()->getNumElements(); 6764 unsigned numResElements = TheCall->getNumArgs() - 2; 6765 6766 // Check to see if we have a call with 2 vector arguments, the unary shuffle 6767 // with mask. If so, verify that RHS is an integer vector type with the 6768 // same number of elts as lhs. 6769 if (TheCall->getNumArgs() == 2) { 6770 if (!RHSType->hasIntegerRepresentation() || 6771 RHSType->castAs<VectorType>()->getNumElements() != numElements) 6772 return ExprError(Diag(TheCall->getBeginLoc(), 6773 diag::err_vec_builtin_incompatible_vector) 6774 << TheCall->getDirectCallee() 6775 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 6776 TheCall->getArg(1)->getEndLoc())); 6777 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 6778 return ExprError(Diag(TheCall->getBeginLoc(), 6779 diag::err_vec_builtin_incompatible_vector) 6780 << TheCall->getDirectCallee() 6781 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6782 TheCall->getArg(1)->getEndLoc())); 6783 } else if (numElements != numResElements) { 6784 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 6785 resType = Context.getVectorType(eltType, numResElements, 6786 VectorType::GenericVector); 6787 } 6788 } 6789 6790 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 6791 if (TheCall->getArg(i)->isTypeDependent() || 6792 TheCall->getArg(i)->isValueDependent()) 6793 continue; 6794 6795 Optional<llvm::APSInt> Result; 6796 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 6797 return ExprError(Diag(TheCall->getBeginLoc(), 6798 diag::err_shufflevector_nonconstant_argument) 6799 << TheCall->getArg(i)->getSourceRange()); 6800 6801 // Allow -1 which will be translated to undef in the IR. 6802 if (Result->isSigned() && Result->isAllOnes()) 6803 continue; 6804 6805 if (Result->getActiveBits() > 64 || 6806 Result->getZExtValue() >= numElements * 2) 6807 return ExprError(Diag(TheCall->getBeginLoc(), 6808 diag::err_shufflevector_argument_too_large) 6809 << TheCall->getArg(i)->getSourceRange()); 6810 } 6811 6812 SmallVector<Expr*, 32> exprs; 6813 6814 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 6815 exprs.push_back(TheCall->getArg(i)); 6816 TheCall->setArg(i, nullptr); 6817 } 6818 6819 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 6820 TheCall->getCallee()->getBeginLoc(), 6821 TheCall->getRParenLoc()); 6822 } 6823 6824 /// SemaConvertVectorExpr - Handle __builtin_convertvector 6825 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 6826 SourceLocation BuiltinLoc, 6827 SourceLocation RParenLoc) { 6828 ExprValueKind VK = VK_PRValue; 6829 ExprObjectKind OK = OK_Ordinary; 6830 QualType DstTy = TInfo->getType(); 6831 QualType SrcTy = E->getType(); 6832 6833 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 6834 return ExprError(Diag(BuiltinLoc, 6835 diag::err_convertvector_non_vector) 6836 << E->getSourceRange()); 6837 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 6838 return ExprError(Diag(BuiltinLoc, 6839 diag::err_convertvector_non_vector_type)); 6840 6841 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 6842 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 6843 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 6844 if (SrcElts != DstElts) 6845 return ExprError(Diag(BuiltinLoc, 6846 diag::err_convertvector_incompatible_vector) 6847 << E->getSourceRange()); 6848 } 6849 6850 return new (Context) 6851 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 6852 } 6853 6854 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 6855 // This is declared to take (const void*, ...) and can take two 6856 // optional constant int args. 6857 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 6858 unsigned NumArgs = TheCall->getNumArgs(); 6859 6860 if (NumArgs > 3) 6861 return Diag(TheCall->getEndLoc(), 6862 diag::err_typecheck_call_too_many_args_at_most) 6863 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6864 6865 // Argument 0 is checked for us and the remaining arguments must be 6866 // constant integers. 6867 for (unsigned i = 1; i != NumArgs; ++i) 6868 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 6869 return true; 6870 6871 return false; 6872 } 6873 6874 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence. 6875 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) { 6876 if (!Context.getTargetInfo().checkArithmeticFenceSupported()) 6877 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 6878 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6879 if (checkArgCount(*this, TheCall, 1)) 6880 return true; 6881 Expr *Arg = TheCall->getArg(0); 6882 if (Arg->isInstantiationDependent()) 6883 return false; 6884 6885 QualType ArgTy = Arg->getType(); 6886 if (!ArgTy->hasFloatingRepresentation()) 6887 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) 6888 << ArgTy; 6889 if (Arg->isLValue()) { 6890 ExprResult FirstArg = DefaultLvalueConversion(Arg); 6891 TheCall->setArg(0, FirstArg.get()); 6892 } 6893 TheCall->setType(TheCall->getArg(0)->getType()); 6894 return false; 6895 } 6896 6897 /// SemaBuiltinAssume - Handle __assume (MS Extension). 6898 // __assume does not evaluate its arguments, and should warn if its argument 6899 // has side effects. 6900 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6901 Expr *Arg = TheCall->getArg(0); 6902 if (Arg->isInstantiationDependent()) return false; 6903 6904 if (Arg->HasSideEffects(Context)) 6905 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6906 << Arg->getSourceRange() 6907 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6908 6909 return false; 6910 } 6911 6912 /// Handle __builtin_alloca_with_align. This is declared 6913 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6914 /// than 8. 6915 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6916 // The alignment must be a constant integer. 6917 Expr *Arg = TheCall->getArg(1); 6918 6919 // We can't check the value of a dependent argument. 6920 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6921 if (const auto *UE = 6922 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6923 if (UE->getKind() == UETT_AlignOf || 6924 UE->getKind() == UETT_PreferredAlignOf) 6925 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6926 << Arg->getSourceRange(); 6927 6928 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6929 6930 if (!Result.isPowerOf2()) 6931 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6932 << Arg->getSourceRange(); 6933 6934 if (Result < Context.getCharWidth()) 6935 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6936 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6937 6938 if (Result > std::numeric_limits<int32_t>::max()) 6939 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6940 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6941 } 6942 6943 return false; 6944 } 6945 6946 /// Handle __builtin_assume_aligned. This is declared 6947 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6948 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6949 unsigned NumArgs = TheCall->getNumArgs(); 6950 6951 if (NumArgs > 3) 6952 return Diag(TheCall->getEndLoc(), 6953 diag::err_typecheck_call_too_many_args_at_most) 6954 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6955 6956 // The alignment must be a constant integer. 6957 Expr *Arg = TheCall->getArg(1); 6958 6959 // We can't check the value of a dependent argument. 6960 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6961 llvm::APSInt Result; 6962 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6963 return true; 6964 6965 if (!Result.isPowerOf2()) 6966 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6967 << Arg->getSourceRange(); 6968 6969 if (Result > Sema::MaximumAlignment) 6970 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6971 << Arg->getSourceRange() << Sema::MaximumAlignment; 6972 } 6973 6974 if (NumArgs > 2) { 6975 ExprResult Arg(TheCall->getArg(2)); 6976 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6977 Context.getSizeType(), false); 6978 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6979 if (Arg.isInvalid()) return true; 6980 TheCall->setArg(2, Arg.get()); 6981 } 6982 6983 return false; 6984 } 6985 6986 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6987 unsigned BuiltinID = 6988 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6989 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6990 6991 unsigned NumArgs = TheCall->getNumArgs(); 6992 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6993 if (NumArgs < NumRequiredArgs) { 6994 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6995 << 0 /* function call */ << NumRequiredArgs << NumArgs 6996 << TheCall->getSourceRange(); 6997 } 6998 if (NumArgs >= NumRequiredArgs + 0x100) { 6999 return Diag(TheCall->getEndLoc(), 7000 diag::err_typecheck_call_too_many_args_at_most) 7001 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 7002 << TheCall->getSourceRange(); 7003 } 7004 unsigned i = 0; 7005 7006 // For formatting call, check buffer arg. 7007 if (!IsSizeCall) { 7008 ExprResult Arg(TheCall->getArg(i)); 7009 InitializedEntity Entity = InitializedEntity::InitializeParameter( 7010 Context, Context.VoidPtrTy, false); 7011 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 7012 if (Arg.isInvalid()) 7013 return true; 7014 TheCall->setArg(i, Arg.get()); 7015 i++; 7016 } 7017 7018 // Check string literal arg. 7019 unsigned FormatIdx = i; 7020 { 7021 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 7022 if (Arg.isInvalid()) 7023 return true; 7024 TheCall->setArg(i, Arg.get()); 7025 i++; 7026 } 7027 7028 // Make sure variadic args are scalar. 7029 unsigned FirstDataArg = i; 7030 while (i < NumArgs) { 7031 ExprResult Arg = DefaultVariadicArgumentPromotion( 7032 TheCall->getArg(i), VariadicFunction, nullptr); 7033 if (Arg.isInvalid()) 7034 return true; 7035 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 7036 if (ArgSize.getQuantity() >= 0x100) { 7037 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 7038 << i << (int)ArgSize.getQuantity() << 0xff 7039 << TheCall->getSourceRange(); 7040 } 7041 TheCall->setArg(i, Arg.get()); 7042 i++; 7043 } 7044 7045 // Check formatting specifiers. NOTE: We're only doing this for the non-size 7046 // call to avoid duplicate diagnostics. 7047 if (!IsSizeCall) { 7048 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 7049 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 7050 bool Success = CheckFormatArguments( 7051 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 7052 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 7053 CheckedVarArgs); 7054 if (!Success) 7055 return true; 7056 } 7057 7058 if (IsSizeCall) { 7059 TheCall->setType(Context.getSizeType()); 7060 } else { 7061 TheCall->setType(Context.VoidPtrTy); 7062 } 7063 return false; 7064 } 7065 7066 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 7067 /// TheCall is a constant expression. 7068 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 7069 llvm::APSInt &Result) { 7070 Expr *Arg = TheCall->getArg(ArgNum); 7071 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 7072 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 7073 7074 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 7075 7076 Optional<llvm::APSInt> R; 7077 if (!(R = Arg->getIntegerConstantExpr(Context))) 7078 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 7079 << FDecl->getDeclName() << Arg->getSourceRange(); 7080 Result = *R; 7081 return false; 7082 } 7083 7084 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 7085 /// TheCall is a constant expression in the range [Low, High]. 7086 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 7087 int Low, int High, bool RangeIsError) { 7088 if (isConstantEvaluated()) 7089 return false; 7090 llvm::APSInt Result; 7091 7092 // We can't check the value of a dependent argument. 7093 Expr *Arg = TheCall->getArg(ArgNum); 7094 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7095 return false; 7096 7097 // Check constant-ness first. 7098 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7099 return true; 7100 7101 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 7102 if (RangeIsError) 7103 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 7104 << toString(Result, 10) << Low << High << Arg->getSourceRange(); 7105 else 7106 // Defer the warning until we know if the code will be emitted so that 7107 // dead code can ignore this. 7108 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 7109 PDiag(diag::warn_argument_invalid_range) 7110 << toString(Result, 10) << Low << High 7111 << Arg->getSourceRange()); 7112 } 7113 7114 return false; 7115 } 7116 7117 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 7118 /// TheCall is a constant expression is a multiple of Num.. 7119 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 7120 unsigned Num) { 7121 llvm::APSInt Result; 7122 7123 // We can't check the value of a dependent argument. 7124 Expr *Arg = TheCall->getArg(ArgNum); 7125 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7126 return false; 7127 7128 // Check constant-ness first. 7129 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7130 return true; 7131 7132 if (Result.getSExtValue() % Num != 0) 7133 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 7134 << Num << Arg->getSourceRange(); 7135 7136 return false; 7137 } 7138 7139 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 7140 /// constant expression representing a power of 2. 7141 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 7142 llvm::APSInt Result; 7143 7144 // We can't check the value of a dependent argument. 7145 Expr *Arg = TheCall->getArg(ArgNum); 7146 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7147 return false; 7148 7149 // Check constant-ness first. 7150 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7151 return true; 7152 7153 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 7154 // and only if x is a power of 2. 7155 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 7156 return false; 7157 7158 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 7159 << Arg->getSourceRange(); 7160 } 7161 7162 static bool IsShiftedByte(llvm::APSInt Value) { 7163 if (Value.isNegative()) 7164 return false; 7165 7166 // Check if it's a shifted byte, by shifting it down 7167 while (true) { 7168 // If the value fits in the bottom byte, the check passes. 7169 if (Value < 0x100) 7170 return true; 7171 7172 // Otherwise, if the value has _any_ bits in the bottom byte, the check 7173 // fails. 7174 if ((Value & 0xFF) != 0) 7175 return false; 7176 7177 // If the bottom 8 bits are all 0, but something above that is nonzero, 7178 // then shifting the value right by 8 bits won't affect whether it's a 7179 // shifted byte or not. So do that, and go round again. 7180 Value >>= 8; 7181 } 7182 } 7183 7184 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 7185 /// a constant expression representing an arbitrary byte value shifted left by 7186 /// a multiple of 8 bits. 7187 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 7188 unsigned ArgBits) { 7189 llvm::APSInt Result; 7190 7191 // We can't check the value of a dependent argument. 7192 Expr *Arg = TheCall->getArg(ArgNum); 7193 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7194 return false; 7195 7196 // Check constant-ness first. 7197 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7198 return true; 7199 7200 // Truncate to the given size. 7201 Result = Result.getLoBits(ArgBits); 7202 Result.setIsUnsigned(true); 7203 7204 if (IsShiftedByte(Result)) 7205 return false; 7206 7207 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 7208 << Arg->getSourceRange(); 7209 } 7210 7211 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 7212 /// TheCall is a constant expression representing either a shifted byte value, 7213 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 7214 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 7215 /// Arm MVE intrinsics. 7216 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 7217 int ArgNum, 7218 unsigned ArgBits) { 7219 llvm::APSInt Result; 7220 7221 // We can't check the value of a dependent argument. 7222 Expr *Arg = TheCall->getArg(ArgNum); 7223 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7224 return false; 7225 7226 // Check constant-ness first. 7227 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7228 return true; 7229 7230 // Truncate to the given size. 7231 Result = Result.getLoBits(ArgBits); 7232 Result.setIsUnsigned(true); 7233 7234 // Check to see if it's in either of the required forms. 7235 if (IsShiftedByte(Result) || 7236 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 7237 return false; 7238 7239 return Diag(TheCall->getBeginLoc(), 7240 diag::err_argument_not_shifted_byte_or_xxff) 7241 << Arg->getSourceRange(); 7242 } 7243 7244 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 7245 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 7246 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 7247 if (checkArgCount(*this, TheCall, 2)) 7248 return true; 7249 Expr *Arg0 = TheCall->getArg(0); 7250 Expr *Arg1 = TheCall->getArg(1); 7251 7252 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7253 if (FirstArg.isInvalid()) 7254 return true; 7255 QualType FirstArgType = FirstArg.get()->getType(); 7256 if (!FirstArgType->isAnyPointerType()) 7257 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7258 << "first" << FirstArgType << Arg0->getSourceRange(); 7259 TheCall->setArg(0, FirstArg.get()); 7260 7261 ExprResult SecArg = DefaultLvalueConversion(Arg1); 7262 if (SecArg.isInvalid()) 7263 return true; 7264 QualType SecArgType = SecArg.get()->getType(); 7265 if (!SecArgType->isIntegerType()) 7266 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7267 << "second" << SecArgType << Arg1->getSourceRange(); 7268 7269 // Derive the return type from the pointer argument. 7270 TheCall->setType(FirstArgType); 7271 return false; 7272 } 7273 7274 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 7275 if (checkArgCount(*this, TheCall, 2)) 7276 return true; 7277 7278 Expr *Arg0 = TheCall->getArg(0); 7279 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7280 if (FirstArg.isInvalid()) 7281 return true; 7282 QualType FirstArgType = FirstArg.get()->getType(); 7283 if (!FirstArgType->isAnyPointerType()) 7284 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7285 << "first" << FirstArgType << Arg0->getSourceRange(); 7286 TheCall->setArg(0, FirstArg.get()); 7287 7288 // Derive the return type from the pointer argument. 7289 TheCall->setType(FirstArgType); 7290 7291 // Second arg must be an constant in range [0,15] 7292 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7293 } 7294 7295 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 7296 if (checkArgCount(*this, TheCall, 2)) 7297 return true; 7298 Expr *Arg0 = TheCall->getArg(0); 7299 Expr *Arg1 = TheCall->getArg(1); 7300 7301 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7302 if (FirstArg.isInvalid()) 7303 return true; 7304 QualType FirstArgType = FirstArg.get()->getType(); 7305 if (!FirstArgType->isAnyPointerType()) 7306 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7307 << "first" << FirstArgType << Arg0->getSourceRange(); 7308 7309 QualType SecArgType = Arg1->getType(); 7310 if (!SecArgType->isIntegerType()) 7311 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7312 << "second" << SecArgType << Arg1->getSourceRange(); 7313 TheCall->setType(Context.IntTy); 7314 return false; 7315 } 7316 7317 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 7318 BuiltinID == AArch64::BI__builtin_arm_stg) { 7319 if (checkArgCount(*this, TheCall, 1)) 7320 return true; 7321 Expr *Arg0 = TheCall->getArg(0); 7322 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7323 if (FirstArg.isInvalid()) 7324 return true; 7325 7326 QualType FirstArgType = FirstArg.get()->getType(); 7327 if (!FirstArgType->isAnyPointerType()) 7328 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7329 << "first" << FirstArgType << Arg0->getSourceRange(); 7330 TheCall->setArg(0, FirstArg.get()); 7331 7332 // Derive the return type from the pointer argument. 7333 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 7334 TheCall->setType(FirstArgType); 7335 return false; 7336 } 7337 7338 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 7339 Expr *ArgA = TheCall->getArg(0); 7340 Expr *ArgB = TheCall->getArg(1); 7341 7342 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 7343 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 7344 7345 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 7346 return true; 7347 7348 QualType ArgTypeA = ArgExprA.get()->getType(); 7349 QualType ArgTypeB = ArgExprB.get()->getType(); 7350 7351 auto isNull = [&] (Expr *E) -> bool { 7352 return E->isNullPointerConstant( 7353 Context, Expr::NPC_ValueDependentIsNotNull); }; 7354 7355 // argument should be either a pointer or null 7356 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 7357 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7358 << "first" << ArgTypeA << ArgA->getSourceRange(); 7359 7360 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 7361 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7362 << "second" << ArgTypeB << ArgB->getSourceRange(); 7363 7364 // Ensure Pointee types are compatible 7365 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 7366 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 7367 QualType pointeeA = ArgTypeA->getPointeeType(); 7368 QualType pointeeB = ArgTypeB->getPointeeType(); 7369 if (!Context.typesAreCompatible( 7370 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 7371 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 7372 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 7373 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 7374 << ArgB->getSourceRange(); 7375 } 7376 } 7377 7378 // at least one argument should be pointer type 7379 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 7380 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 7381 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 7382 7383 if (isNull(ArgA)) // adopt type of the other pointer 7384 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 7385 7386 if (isNull(ArgB)) 7387 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 7388 7389 TheCall->setArg(0, ArgExprA.get()); 7390 TheCall->setArg(1, ArgExprB.get()); 7391 TheCall->setType(Context.LongLongTy); 7392 return false; 7393 } 7394 assert(false && "Unhandled ARM MTE intrinsic"); 7395 return true; 7396 } 7397 7398 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 7399 /// TheCall is an ARM/AArch64 special register string literal. 7400 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 7401 int ArgNum, unsigned ExpectedFieldNum, 7402 bool AllowName) { 7403 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7404 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7405 BuiltinID == ARM::BI__builtin_arm_rsr || 7406 BuiltinID == ARM::BI__builtin_arm_rsrp || 7407 BuiltinID == ARM::BI__builtin_arm_wsr || 7408 BuiltinID == ARM::BI__builtin_arm_wsrp; 7409 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 7410 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 7411 BuiltinID == AArch64::BI__builtin_arm_rsr || 7412 BuiltinID == AArch64::BI__builtin_arm_rsrp || 7413 BuiltinID == AArch64::BI__builtin_arm_wsr || 7414 BuiltinID == AArch64::BI__builtin_arm_wsrp; 7415 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 7416 7417 // We can't check the value of a dependent argument. 7418 Expr *Arg = TheCall->getArg(ArgNum); 7419 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7420 return false; 7421 7422 // Check if the argument is a string literal. 7423 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 7424 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 7425 << Arg->getSourceRange(); 7426 7427 // Check the type of special register given. 7428 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 7429 SmallVector<StringRef, 6> Fields; 7430 Reg.split(Fields, ":"); 7431 7432 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 7433 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7434 << Arg->getSourceRange(); 7435 7436 // If the string is the name of a register then we cannot check that it is 7437 // valid here but if the string is of one the forms described in ACLE then we 7438 // can check that the supplied fields are integers and within the valid 7439 // ranges. 7440 if (Fields.size() > 1) { 7441 bool FiveFields = Fields.size() == 5; 7442 7443 bool ValidString = true; 7444 if (IsARMBuiltin) { 7445 ValidString &= Fields[0].startswith_insensitive("cp") || 7446 Fields[0].startswith_insensitive("p"); 7447 if (ValidString) 7448 Fields[0] = Fields[0].drop_front( 7449 Fields[0].startswith_insensitive("cp") ? 2 : 1); 7450 7451 ValidString &= Fields[2].startswith_insensitive("c"); 7452 if (ValidString) 7453 Fields[2] = Fields[2].drop_front(1); 7454 7455 if (FiveFields) { 7456 ValidString &= Fields[3].startswith_insensitive("c"); 7457 if (ValidString) 7458 Fields[3] = Fields[3].drop_front(1); 7459 } 7460 } 7461 7462 SmallVector<int, 5> Ranges; 7463 if (FiveFields) 7464 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 7465 else 7466 Ranges.append({15, 7, 15}); 7467 7468 for (unsigned i=0; i<Fields.size(); ++i) { 7469 int IntField; 7470 ValidString &= !Fields[i].getAsInteger(10, IntField); 7471 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 7472 } 7473 7474 if (!ValidString) 7475 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7476 << Arg->getSourceRange(); 7477 } else if (IsAArch64Builtin && Fields.size() == 1) { 7478 // If the register name is one of those that appear in the condition below 7479 // and the special register builtin being used is one of the write builtins, 7480 // then we require that the argument provided for writing to the register 7481 // is an integer constant expression. This is because it will be lowered to 7482 // an MSR (immediate) instruction, so we need to know the immediate at 7483 // compile time. 7484 if (TheCall->getNumArgs() != 2) 7485 return false; 7486 7487 std::string RegLower = Reg.lower(); 7488 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 7489 RegLower != "pan" && RegLower != "uao") 7490 return false; 7491 7492 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7493 } 7494 7495 return false; 7496 } 7497 7498 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 7499 /// Emit an error and return true on failure; return false on success. 7500 /// TypeStr is a string containing the type descriptor of the value returned by 7501 /// the builtin and the descriptors of the expected type of the arguments. 7502 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID, 7503 const char *TypeStr) { 7504 7505 assert((TypeStr[0] != '\0') && 7506 "Invalid types in PPC MMA builtin declaration"); 7507 7508 switch (BuiltinID) { 7509 default: 7510 // This function is called in CheckPPCBuiltinFunctionCall where the 7511 // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here 7512 // we are isolating the pair vector memop builtins that can be used with mma 7513 // off so the default case is every builtin that requires mma and paired 7514 // vector memops. 7515 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", 7516 diag::err_ppc_builtin_only_on_arch, "10") || 7517 SemaFeatureCheck(*this, TheCall, "mma", 7518 diag::err_ppc_builtin_only_on_arch, "10")) 7519 return true; 7520 break; 7521 case PPC::BI__builtin_vsx_lxvp: 7522 case PPC::BI__builtin_vsx_stxvp: 7523 case PPC::BI__builtin_vsx_assemble_pair: 7524 case PPC::BI__builtin_vsx_disassemble_pair: 7525 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", 7526 diag::err_ppc_builtin_only_on_arch, "10")) 7527 return true; 7528 break; 7529 } 7530 7531 unsigned Mask = 0; 7532 unsigned ArgNum = 0; 7533 7534 // The first type in TypeStr is the type of the value returned by the 7535 // builtin. So we first read that type and change the type of TheCall. 7536 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7537 TheCall->setType(type); 7538 7539 while (*TypeStr != '\0') { 7540 Mask = 0; 7541 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7542 if (ArgNum >= TheCall->getNumArgs()) { 7543 ArgNum++; 7544 break; 7545 } 7546 7547 Expr *Arg = TheCall->getArg(ArgNum); 7548 QualType PassedType = Arg->getType(); 7549 QualType StrippedRVType = PassedType.getCanonicalType(); 7550 7551 // Strip Restrict/Volatile qualifiers. 7552 if (StrippedRVType.isRestrictQualified() || 7553 StrippedRVType.isVolatileQualified()) 7554 StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType(); 7555 7556 // The only case where the argument type and expected type are allowed to 7557 // mismatch is if the argument type is a non-void pointer (or array) and 7558 // expected type is a void pointer. 7559 if (StrippedRVType != ExpectedType) 7560 if (!(ExpectedType->isVoidPointerType() && 7561 (StrippedRVType->isPointerType() || StrippedRVType->isArrayType()))) 7562 return Diag(Arg->getBeginLoc(), 7563 diag::err_typecheck_convert_incompatible) 7564 << PassedType << ExpectedType << 1 << 0 << 0; 7565 7566 // If the value of the Mask is not 0, we have a constraint in the size of 7567 // the integer argument so here we ensure the argument is a constant that 7568 // is in the valid range. 7569 if (Mask != 0 && 7570 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 7571 return true; 7572 7573 ArgNum++; 7574 } 7575 7576 // In case we exited early from the previous loop, there are other types to 7577 // read from TypeStr. So we need to read them all to ensure we have the right 7578 // number of arguments in TheCall and if it is not the case, to display a 7579 // better error message. 7580 while (*TypeStr != '\0') { 7581 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7582 ArgNum++; 7583 } 7584 if (checkArgCount(*this, TheCall, ArgNum)) 7585 return true; 7586 7587 return false; 7588 } 7589 7590 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 7591 /// This checks that the target supports __builtin_longjmp and 7592 /// that val is a constant 1. 7593 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 7594 if (!Context.getTargetInfo().hasSjLjLowering()) 7595 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 7596 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7597 7598 Expr *Arg = TheCall->getArg(1); 7599 llvm::APSInt Result; 7600 7601 // TODO: This is less than ideal. Overload this to take a value. 7602 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 7603 return true; 7604 7605 if (Result != 1) 7606 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 7607 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 7608 7609 return false; 7610 } 7611 7612 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 7613 /// This checks that the target supports __builtin_setjmp. 7614 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 7615 if (!Context.getTargetInfo().hasSjLjLowering()) 7616 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 7617 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7618 return false; 7619 } 7620 7621 namespace { 7622 7623 class UncoveredArgHandler { 7624 enum { Unknown = -1, AllCovered = -2 }; 7625 7626 signed FirstUncoveredArg = Unknown; 7627 SmallVector<const Expr *, 4> DiagnosticExprs; 7628 7629 public: 7630 UncoveredArgHandler() = default; 7631 7632 bool hasUncoveredArg() const { 7633 return (FirstUncoveredArg >= 0); 7634 } 7635 7636 unsigned getUncoveredArg() const { 7637 assert(hasUncoveredArg() && "no uncovered argument"); 7638 return FirstUncoveredArg; 7639 } 7640 7641 void setAllCovered() { 7642 // A string has been found with all arguments covered, so clear out 7643 // the diagnostics. 7644 DiagnosticExprs.clear(); 7645 FirstUncoveredArg = AllCovered; 7646 } 7647 7648 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 7649 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 7650 7651 // Don't update if a previous string covers all arguments. 7652 if (FirstUncoveredArg == AllCovered) 7653 return; 7654 7655 // UncoveredArgHandler tracks the highest uncovered argument index 7656 // and with it all the strings that match this index. 7657 if (NewFirstUncoveredArg == FirstUncoveredArg) 7658 DiagnosticExprs.push_back(StrExpr); 7659 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 7660 DiagnosticExprs.clear(); 7661 DiagnosticExprs.push_back(StrExpr); 7662 FirstUncoveredArg = NewFirstUncoveredArg; 7663 } 7664 } 7665 7666 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 7667 }; 7668 7669 enum StringLiteralCheckType { 7670 SLCT_NotALiteral, 7671 SLCT_UncheckedLiteral, 7672 SLCT_CheckedLiteral 7673 }; 7674 7675 } // namespace 7676 7677 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 7678 BinaryOperatorKind BinOpKind, 7679 bool AddendIsRight) { 7680 unsigned BitWidth = Offset.getBitWidth(); 7681 unsigned AddendBitWidth = Addend.getBitWidth(); 7682 // There might be negative interim results. 7683 if (Addend.isUnsigned()) { 7684 Addend = Addend.zext(++AddendBitWidth); 7685 Addend.setIsSigned(true); 7686 } 7687 // Adjust the bit width of the APSInts. 7688 if (AddendBitWidth > BitWidth) { 7689 Offset = Offset.sext(AddendBitWidth); 7690 BitWidth = AddendBitWidth; 7691 } else if (BitWidth > AddendBitWidth) { 7692 Addend = Addend.sext(BitWidth); 7693 } 7694 7695 bool Ov = false; 7696 llvm::APSInt ResOffset = Offset; 7697 if (BinOpKind == BO_Add) 7698 ResOffset = Offset.sadd_ov(Addend, Ov); 7699 else { 7700 assert(AddendIsRight && BinOpKind == BO_Sub && 7701 "operator must be add or sub with addend on the right"); 7702 ResOffset = Offset.ssub_ov(Addend, Ov); 7703 } 7704 7705 // We add an offset to a pointer here so we should support an offset as big as 7706 // possible. 7707 if (Ov) { 7708 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 7709 "index (intermediate) result too big"); 7710 Offset = Offset.sext(2 * BitWidth); 7711 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 7712 return; 7713 } 7714 7715 Offset = ResOffset; 7716 } 7717 7718 namespace { 7719 7720 // This is a wrapper class around StringLiteral to support offsetted string 7721 // literals as format strings. It takes the offset into account when returning 7722 // the string and its length or the source locations to display notes correctly. 7723 class FormatStringLiteral { 7724 const StringLiteral *FExpr; 7725 int64_t Offset; 7726 7727 public: 7728 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 7729 : FExpr(fexpr), Offset(Offset) {} 7730 7731 StringRef getString() const { 7732 return FExpr->getString().drop_front(Offset); 7733 } 7734 7735 unsigned getByteLength() const { 7736 return FExpr->getByteLength() - getCharByteWidth() * Offset; 7737 } 7738 7739 unsigned getLength() const { return FExpr->getLength() - Offset; } 7740 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 7741 7742 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 7743 7744 QualType getType() const { return FExpr->getType(); } 7745 7746 bool isAscii() const { return FExpr->isAscii(); } 7747 bool isWide() const { return FExpr->isWide(); } 7748 bool isUTF8() const { return FExpr->isUTF8(); } 7749 bool isUTF16() const { return FExpr->isUTF16(); } 7750 bool isUTF32() const { return FExpr->isUTF32(); } 7751 bool isPascal() const { return FExpr->isPascal(); } 7752 7753 SourceLocation getLocationOfByte( 7754 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 7755 const TargetInfo &Target, unsigned *StartToken = nullptr, 7756 unsigned *StartTokenByteOffset = nullptr) const { 7757 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 7758 StartToken, StartTokenByteOffset); 7759 } 7760 7761 SourceLocation getBeginLoc() const LLVM_READONLY { 7762 return FExpr->getBeginLoc().getLocWithOffset(Offset); 7763 } 7764 7765 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 7766 }; 7767 7768 } // namespace 7769 7770 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 7771 const Expr *OrigFormatExpr, 7772 ArrayRef<const Expr *> Args, 7773 bool HasVAListArg, unsigned format_idx, 7774 unsigned firstDataArg, 7775 Sema::FormatStringType Type, 7776 bool inFunctionCall, 7777 Sema::VariadicCallType CallType, 7778 llvm::SmallBitVector &CheckedVarArgs, 7779 UncoveredArgHandler &UncoveredArg, 7780 bool IgnoreStringsWithoutSpecifiers); 7781 7782 // Determine if an expression is a string literal or constant string. 7783 // If this function returns false on the arguments to a function expecting a 7784 // format string, we will usually need to emit a warning. 7785 // True string literals are then checked by CheckFormatString. 7786 static StringLiteralCheckType 7787 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 7788 bool HasVAListArg, unsigned format_idx, 7789 unsigned firstDataArg, Sema::FormatStringType Type, 7790 Sema::VariadicCallType CallType, bool InFunctionCall, 7791 llvm::SmallBitVector &CheckedVarArgs, 7792 UncoveredArgHandler &UncoveredArg, 7793 llvm::APSInt Offset, 7794 bool IgnoreStringsWithoutSpecifiers = false) { 7795 if (S.isConstantEvaluated()) 7796 return SLCT_NotALiteral; 7797 tryAgain: 7798 assert(Offset.isSigned() && "invalid offset"); 7799 7800 if (E->isTypeDependent() || E->isValueDependent()) 7801 return SLCT_NotALiteral; 7802 7803 E = E->IgnoreParenCasts(); 7804 7805 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 7806 // Technically -Wformat-nonliteral does not warn about this case. 7807 // The behavior of printf and friends in this case is implementation 7808 // dependent. Ideally if the format string cannot be null then 7809 // it should have a 'nonnull' attribute in the function prototype. 7810 return SLCT_UncheckedLiteral; 7811 7812 switch (E->getStmtClass()) { 7813 case Stmt::BinaryConditionalOperatorClass: 7814 case Stmt::ConditionalOperatorClass: { 7815 // The expression is a literal if both sub-expressions were, and it was 7816 // completely checked only if both sub-expressions were checked. 7817 const AbstractConditionalOperator *C = 7818 cast<AbstractConditionalOperator>(E); 7819 7820 // Determine whether it is necessary to check both sub-expressions, for 7821 // example, because the condition expression is a constant that can be 7822 // evaluated at compile time. 7823 bool CheckLeft = true, CheckRight = true; 7824 7825 bool Cond; 7826 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 7827 S.isConstantEvaluated())) { 7828 if (Cond) 7829 CheckRight = false; 7830 else 7831 CheckLeft = false; 7832 } 7833 7834 // We need to maintain the offsets for the right and the left hand side 7835 // separately to check if every possible indexed expression is a valid 7836 // string literal. They might have different offsets for different string 7837 // literals in the end. 7838 StringLiteralCheckType Left; 7839 if (!CheckLeft) 7840 Left = SLCT_UncheckedLiteral; 7841 else { 7842 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 7843 HasVAListArg, format_idx, firstDataArg, 7844 Type, CallType, InFunctionCall, 7845 CheckedVarArgs, UncoveredArg, Offset, 7846 IgnoreStringsWithoutSpecifiers); 7847 if (Left == SLCT_NotALiteral || !CheckRight) { 7848 return Left; 7849 } 7850 } 7851 7852 StringLiteralCheckType Right = checkFormatStringExpr( 7853 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 7854 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7855 IgnoreStringsWithoutSpecifiers); 7856 7857 return (CheckLeft && Left < Right) ? Left : Right; 7858 } 7859 7860 case Stmt::ImplicitCastExprClass: 7861 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 7862 goto tryAgain; 7863 7864 case Stmt::OpaqueValueExprClass: 7865 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 7866 E = src; 7867 goto tryAgain; 7868 } 7869 return SLCT_NotALiteral; 7870 7871 case Stmt::PredefinedExprClass: 7872 // While __func__, etc., are technically not string literals, they 7873 // cannot contain format specifiers and thus are not a security 7874 // liability. 7875 return SLCT_UncheckedLiteral; 7876 7877 case Stmt::DeclRefExprClass: { 7878 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 7879 7880 // As an exception, do not flag errors for variables binding to 7881 // const string literals. 7882 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 7883 bool isConstant = false; 7884 QualType T = DR->getType(); 7885 7886 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 7887 isConstant = AT->getElementType().isConstant(S.Context); 7888 } else if (const PointerType *PT = T->getAs<PointerType>()) { 7889 isConstant = T.isConstant(S.Context) && 7890 PT->getPointeeType().isConstant(S.Context); 7891 } else if (T->isObjCObjectPointerType()) { 7892 // In ObjC, there is usually no "const ObjectPointer" type, 7893 // so don't check if the pointee type is constant. 7894 isConstant = T.isConstant(S.Context); 7895 } 7896 7897 if (isConstant) { 7898 if (const Expr *Init = VD->getAnyInitializer()) { 7899 // Look through initializers like const char c[] = { "foo" } 7900 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 7901 if (InitList->isStringLiteralInit()) 7902 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 7903 } 7904 return checkFormatStringExpr(S, Init, Args, 7905 HasVAListArg, format_idx, 7906 firstDataArg, Type, CallType, 7907 /*InFunctionCall*/ false, CheckedVarArgs, 7908 UncoveredArg, Offset); 7909 } 7910 } 7911 7912 // For vprintf* functions (i.e., HasVAListArg==true), we add a 7913 // special check to see if the format string is a function parameter 7914 // of the function calling the printf function. If the function 7915 // has an attribute indicating it is a printf-like function, then we 7916 // should suppress warnings concerning non-literals being used in a call 7917 // to a vprintf function. For example: 7918 // 7919 // void 7920 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 7921 // va_list ap; 7922 // va_start(ap, fmt); 7923 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 7924 // ... 7925 // } 7926 if (HasVAListArg) { 7927 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 7928 if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) { 7929 int PVIndex = PV->getFunctionScopeIndex() + 1; 7930 for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { 7931 // adjust for implicit parameter 7932 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 7933 if (MD->isInstance()) 7934 ++PVIndex; 7935 // We also check if the formats are compatible. 7936 // We can't pass a 'scanf' string to a 'printf' function. 7937 if (PVIndex == PVFormat->getFormatIdx() && 7938 Type == S.GetFormatStringType(PVFormat)) 7939 return SLCT_UncheckedLiteral; 7940 } 7941 } 7942 } 7943 } 7944 } 7945 7946 return SLCT_NotALiteral; 7947 } 7948 7949 case Stmt::CallExprClass: 7950 case Stmt::CXXMemberCallExprClass: { 7951 const CallExpr *CE = cast<CallExpr>(E); 7952 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 7953 bool IsFirst = true; 7954 StringLiteralCheckType CommonResult; 7955 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 7956 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 7957 StringLiteralCheckType Result = checkFormatStringExpr( 7958 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7959 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7960 IgnoreStringsWithoutSpecifiers); 7961 if (IsFirst) { 7962 CommonResult = Result; 7963 IsFirst = false; 7964 } 7965 } 7966 if (!IsFirst) 7967 return CommonResult; 7968 7969 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 7970 unsigned BuiltinID = FD->getBuiltinID(); 7971 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 7972 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 7973 const Expr *Arg = CE->getArg(0); 7974 return checkFormatStringExpr(S, Arg, Args, 7975 HasVAListArg, format_idx, 7976 firstDataArg, Type, CallType, 7977 InFunctionCall, CheckedVarArgs, 7978 UncoveredArg, Offset, 7979 IgnoreStringsWithoutSpecifiers); 7980 } 7981 } 7982 } 7983 7984 return SLCT_NotALiteral; 7985 } 7986 case Stmt::ObjCMessageExprClass: { 7987 const auto *ME = cast<ObjCMessageExpr>(E); 7988 if (const auto *MD = ME->getMethodDecl()) { 7989 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 7990 // As a special case heuristic, if we're using the method -[NSBundle 7991 // localizedStringForKey:value:table:], ignore any key strings that lack 7992 // format specifiers. The idea is that if the key doesn't have any 7993 // format specifiers then its probably just a key to map to the 7994 // localized strings. If it does have format specifiers though, then its 7995 // likely that the text of the key is the format string in the 7996 // programmer's language, and should be checked. 7997 const ObjCInterfaceDecl *IFace; 7998 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7999 IFace->getIdentifier()->isStr("NSBundle") && 8000 MD->getSelector().isKeywordSelector( 8001 {"localizedStringForKey", "value", "table"})) { 8002 IgnoreStringsWithoutSpecifiers = true; 8003 } 8004 8005 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 8006 return checkFormatStringExpr( 8007 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 8008 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 8009 IgnoreStringsWithoutSpecifiers); 8010 } 8011 } 8012 8013 return SLCT_NotALiteral; 8014 } 8015 case Stmt::ObjCStringLiteralClass: 8016 case Stmt::StringLiteralClass: { 8017 const StringLiteral *StrE = nullptr; 8018 8019 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 8020 StrE = ObjCFExpr->getString(); 8021 else 8022 StrE = cast<StringLiteral>(E); 8023 8024 if (StrE) { 8025 if (Offset.isNegative() || Offset > StrE->getLength()) { 8026 // TODO: It would be better to have an explicit warning for out of 8027 // bounds literals. 8028 return SLCT_NotALiteral; 8029 } 8030 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 8031 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 8032 firstDataArg, Type, InFunctionCall, CallType, 8033 CheckedVarArgs, UncoveredArg, 8034 IgnoreStringsWithoutSpecifiers); 8035 return SLCT_CheckedLiteral; 8036 } 8037 8038 return SLCT_NotALiteral; 8039 } 8040 case Stmt::BinaryOperatorClass: { 8041 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 8042 8043 // A string literal + an int offset is still a string literal. 8044 if (BinOp->isAdditiveOp()) { 8045 Expr::EvalResult LResult, RResult; 8046 8047 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 8048 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 8049 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 8050 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 8051 8052 if (LIsInt != RIsInt) { 8053 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 8054 8055 if (LIsInt) { 8056 if (BinOpKind == BO_Add) { 8057 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 8058 E = BinOp->getRHS(); 8059 goto tryAgain; 8060 } 8061 } else { 8062 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 8063 E = BinOp->getLHS(); 8064 goto tryAgain; 8065 } 8066 } 8067 } 8068 8069 return SLCT_NotALiteral; 8070 } 8071 case Stmt::UnaryOperatorClass: { 8072 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 8073 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 8074 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 8075 Expr::EvalResult IndexResult; 8076 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 8077 Expr::SE_NoSideEffects, 8078 S.isConstantEvaluated())) { 8079 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 8080 /*RHS is int*/ true); 8081 E = ASE->getBase(); 8082 goto tryAgain; 8083 } 8084 } 8085 8086 return SLCT_NotALiteral; 8087 } 8088 8089 default: 8090 return SLCT_NotALiteral; 8091 } 8092 } 8093 8094 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 8095 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 8096 .Case("scanf", FST_Scanf) 8097 .Cases("printf", "printf0", FST_Printf) 8098 .Cases("NSString", "CFString", FST_NSString) 8099 .Case("strftime", FST_Strftime) 8100 .Case("strfmon", FST_Strfmon) 8101 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 8102 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 8103 .Case("os_trace", FST_OSLog) 8104 .Case("os_log", FST_OSLog) 8105 .Default(FST_Unknown); 8106 } 8107 8108 /// CheckFormatArguments - Check calls to printf and scanf (and similar 8109 /// functions) for correct use of format strings. 8110 /// Returns true if a format string has been fully checked. 8111 bool Sema::CheckFormatArguments(const FormatAttr *Format, 8112 ArrayRef<const Expr *> Args, 8113 bool IsCXXMember, 8114 VariadicCallType CallType, 8115 SourceLocation Loc, SourceRange Range, 8116 llvm::SmallBitVector &CheckedVarArgs) { 8117 FormatStringInfo FSI; 8118 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 8119 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 8120 FSI.FirstDataArg, GetFormatStringType(Format), 8121 CallType, Loc, Range, CheckedVarArgs); 8122 return false; 8123 } 8124 8125 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 8126 bool HasVAListArg, unsigned format_idx, 8127 unsigned firstDataArg, FormatStringType Type, 8128 VariadicCallType CallType, 8129 SourceLocation Loc, SourceRange Range, 8130 llvm::SmallBitVector &CheckedVarArgs) { 8131 // CHECK: printf/scanf-like function is called with no format string. 8132 if (format_idx >= Args.size()) { 8133 Diag(Loc, diag::warn_missing_format_string) << Range; 8134 return false; 8135 } 8136 8137 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 8138 8139 // CHECK: format string is not a string literal. 8140 // 8141 // Dynamically generated format strings are difficult to 8142 // automatically vet at compile time. Requiring that format strings 8143 // are string literals: (1) permits the checking of format strings by 8144 // the compiler and thereby (2) can practically remove the source of 8145 // many format string exploits. 8146 8147 // Format string can be either ObjC string (e.g. @"%d") or 8148 // C string (e.g. "%d") 8149 // ObjC string uses the same format specifiers as C string, so we can use 8150 // the same format string checking logic for both ObjC and C strings. 8151 UncoveredArgHandler UncoveredArg; 8152 StringLiteralCheckType CT = 8153 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 8154 format_idx, firstDataArg, Type, CallType, 8155 /*IsFunctionCall*/ true, CheckedVarArgs, 8156 UncoveredArg, 8157 /*no string offset*/ llvm::APSInt(64, false) = 0); 8158 8159 // Generate a diagnostic where an uncovered argument is detected. 8160 if (UncoveredArg.hasUncoveredArg()) { 8161 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 8162 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 8163 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 8164 } 8165 8166 if (CT != SLCT_NotALiteral) 8167 // Literal format string found, check done! 8168 return CT == SLCT_CheckedLiteral; 8169 8170 // Strftime is particular as it always uses a single 'time' argument, 8171 // so it is safe to pass a non-literal string. 8172 if (Type == FST_Strftime) 8173 return false; 8174 8175 // Do not emit diag when the string param is a macro expansion and the 8176 // format is either NSString or CFString. This is a hack to prevent 8177 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 8178 // which are usually used in place of NS and CF string literals. 8179 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 8180 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 8181 return false; 8182 8183 // If there are no arguments specified, warn with -Wformat-security, otherwise 8184 // warn only with -Wformat-nonliteral. 8185 if (Args.size() == firstDataArg) { 8186 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 8187 << OrigFormatExpr->getSourceRange(); 8188 switch (Type) { 8189 default: 8190 break; 8191 case FST_Kprintf: 8192 case FST_FreeBSDKPrintf: 8193 case FST_Printf: 8194 Diag(FormatLoc, diag::note_format_security_fixit) 8195 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 8196 break; 8197 case FST_NSString: 8198 Diag(FormatLoc, diag::note_format_security_fixit) 8199 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 8200 break; 8201 } 8202 } else { 8203 Diag(FormatLoc, diag::warn_format_nonliteral) 8204 << OrigFormatExpr->getSourceRange(); 8205 } 8206 return false; 8207 } 8208 8209 namespace { 8210 8211 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 8212 protected: 8213 Sema &S; 8214 const FormatStringLiteral *FExpr; 8215 const Expr *OrigFormatExpr; 8216 const Sema::FormatStringType FSType; 8217 const unsigned FirstDataArg; 8218 const unsigned NumDataArgs; 8219 const char *Beg; // Start of format string. 8220 const bool HasVAListArg; 8221 ArrayRef<const Expr *> Args; 8222 unsigned FormatIdx; 8223 llvm::SmallBitVector CoveredArgs; 8224 bool usesPositionalArgs = false; 8225 bool atFirstArg = true; 8226 bool inFunctionCall; 8227 Sema::VariadicCallType CallType; 8228 llvm::SmallBitVector &CheckedVarArgs; 8229 UncoveredArgHandler &UncoveredArg; 8230 8231 public: 8232 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 8233 const Expr *origFormatExpr, 8234 const Sema::FormatStringType type, unsigned firstDataArg, 8235 unsigned numDataArgs, const char *beg, bool hasVAListArg, 8236 ArrayRef<const Expr *> Args, unsigned formatIdx, 8237 bool inFunctionCall, Sema::VariadicCallType callType, 8238 llvm::SmallBitVector &CheckedVarArgs, 8239 UncoveredArgHandler &UncoveredArg) 8240 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 8241 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 8242 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 8243 inFunctionCall(inFunctionCall), CallType(callType), 8244 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 8245 CoveredArgs.resize(numDataArgs); 8246 CoveredArgs.reset(); 8247 } 8248 8249 void DoneProcessing(); 8250 8251 void HandleIncompleteSpecifier(const char *startSpecifier, 8252 unsigned specifierLen) override; 8253 8254 void HandleInvalidLengthModifier( 8255 const analyze_format_string::FormatSpecifier &FS, 8256 const analyze_format_string::ConversionSpecifier &CS, 8257 const char *startSpecifier, unsigned specifierLen, 8258 unsigned DiagID); 8259 8260 void HandleNonStandardLengthModifier( 8261 const analyze_format_string::FormatSpecifier &FS, 8262 const char *startSpecifier, unsigned specifierLen); 8263 8264 void HandleNonStandardConversionSpecifier( 8265 const analyze_format_string::ConversionSpecifier &CS, 8266 const char *startSpecifier, unsigned specifierLen); 8267 8268 void HandlePosition(const char *startPos, unsigned posLen) override; 8269 8270 void HandleInvalidPosition(const char *startSpecifier, 8271 unsigned specifierLen, 8272 analyze_format_string::PositionContext p) override; 8273 8274 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 8275 8276 void HandleNullChar(const char *nullCharacter) override; 8277 8278 template <typename Range> 8279 static void 8280 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 8281 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 8282 bool IsStringLocation, Range StringRange, 8283 ArrayRef<FixItHint> Fixit = None); 8284 8285 protected: 8286 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 8287 const char *startSpec, 8288 unsigned specifierLen, 8289 const char *csStart, unsigned csLen); 8290 8291 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 8292 const char *startSpec, 8293 unsigned specifierLen); 8294 8295 SourceRange getFormatStringRange(); 8296 CharSourceRange getSpecifierRange(const char *startSpecifier, 8297 unsigned specifierLen); 8298 SourceLocation getLocationOfByte(const char *x); 8299 8300 const Expr *getDataArg(unsigned i) const; 8301 8302 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 8303 const analyze_format_string::ConversionSpecifier &CS, 8304 const char *startSpecifier, unsigned specifierLen, 8305 unsigned argIndex); 8306 8307 template <typename Range> 8308 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 8309 bool IsStringLocation, Range StringRange, 8310 ArrayRef<FixItHint> Fixit = None); 8311 }; 8312 8313 } // namespace 8314 8315 SourceRange CheckFormatHandler::getFormatStringRange() { 8316 return OrigFormatExpr->getSourceRange(); 8317 } 8318 8319 CharSourceRange CheckFormatHandler:: 8320 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 8321 SourceLocation Start = getLocationOfByte(startSpecifier); 8322 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 8323 8324 // Advance the end SourceLocation by one due to half-open ranges. 8325 End = End.getLocWithOffset(1); 8326 8327 return CharSourceRange::getCharRange(Start, End); 8328 } 8329 8330 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 8331 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 8332 S.getLangOpts(), S.Context.getTargetInfo()); 8333 } 8334 8335 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 8336 unsigned specifierLen){ 8337 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 8338 getLocationOfByte(startSpecifier), 8339 /*IsStringLocation*/true, 8340 getSpecifierRange(startSpecifier, specifierLen)); 8341 } 8342 8343 void CheckFormatHandler::HandleInvalidLengthModifier( 8344 const analyze_format_string::FormatSpecifier &FS, 8345 const analyze_format_string::ConversionSpecifier &CS, 8346 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 8347 using namespace analyze_format_string; 8348 8349 const LengthModifier &LM = FS.getLengthModifier(); 8350 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8351 8352 // See if we know how to fix this length modifier. 8353 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8354 if (FixedLM) { 8355 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8356 getLocationOfByte(LM.getStart()), 8357 /*IsStringLocation*/true, 8358 getSpecifierRange(startSpecifier, specifierLen)); 8359 8360 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8361 << FixedLM->toString() 8362 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8363 8364 } else { 8365 FixItHint Hint; 8366 if (DiagID == diag::warn_format_nonsensical_length) 8367 Hint = FixItHint::CreateRemoval(LMRange); 8368 8369 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8370 getLocationOfByte(LM.getStart()), 8371 /*IsStringLocation*/true, 8372 getSpecifierRange(startSpecifier, specifierLen), 8373 Hint); 8374 } 8375 } 8376 8377 void CheckFormatHandler::HandleNonStandardLengthModifier( 8378 const analyze_format_string::FormatSpecifier &FS, 8379 const char *startSpecifier, unsigned specifierLen) { 8380 using namespace analyze_format_string; 8381 8382 const LengthModifier &LM = FS.getLengthModifier(); 8383 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8384 8385 // See if we know how to fix this length modifier. 8386 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8387 if (FixedLM) { 8388 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8389 << LM.toString() << 0, 8390 getLocationOfByte(LM.getStart()), 8391 /*IsStringLocation*/true, 8392 getSpecifierRange(startSpecifier, specifierLen)); 8393 8394 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8395 << FixedLM->toString() 8396 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8397 8398 } else { 8399 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8400 << LM.toString() << 0, 8401 getLocationOfByte(LM.getStart()), 8402 /*IsStringLocation*/true, 8403 getSpecifierRange(startSpecifier, specifierLen)); 8404 } 8405 } 8406 8407 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 8408 const analyze_format_string::ConversionSpecifier &CS, 8409 const char *startSpecifier, unsigned specifierLen) { 8410 using namespace analyze_format_string; 8411 8412 // See if we know how to fix this conversion specifier. 8413 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 8414 if (FixedCS) { 8415 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8416 << CS.toString() << /*conversion specifier*/1, 8417 getLocationOfByte(CS.getStart()), 8418 /*IsStringLocation*/true, 8419 getSpecifierRange(startSpecifier, specifierLen)); 8420 8421 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 8422 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 8423 << FixedCS->toString() 8424 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 8425 } else { 8426 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8427 << CS.toString() << /*conversion specifier*/1, 8428 getLocationOfByte(CS.getStart()), 8429 /*IsStringLocation*/true, 8430 getSpecifierRange(startSpecifier, specifierLen)); 8431 } 8432 } 8433 8434 void CheckFormatHandler::HandlePosition(const char *startPos, 8435 unsigned posLen) { 8436 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 8437 getLocationOfByte(startPos), 8438 /*IsStringLocation*/true, 8439 getSpecifierRange(startPos, posLen)); 8440 } 8441 8442 void 8443 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 8444 analyze_format_string::PositionContext p) { 8445 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 8446 << (unsigned) p, 8447 getLocationOfByte(startPos), /*IsStringLocation*/true, 8448 getSpecifierRange(startPos, posLen)); 8449 } 8450 8451 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 8452 unsigned posLen) { 8453 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 8454 getLocationOfByte(startPos), 8455 /*IsStringLocation*/true, 8456 getSpecifierRange(startPos, posLen)); 8457 } 8458 8459 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 8460 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 8461 // The presence of a null character is likely an error. 8462 EmitFormatDiagnostic( 8463 S.PDiag(diag::warn_printf_format_string_contains_null_char), 8464 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 8465 getFormatStringRange()); 8466 } 8467 } 8468 8469 // Note that this may return NULL if there was an error parsing or building 8470 // one of the argument expressions. 8471 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 8472 return Args[FirstDataArg + i]; 8473 } 8474 8475 void CheckFormatHandler::DoneProcessing() { 8476 // Does the number of data arguments exceed the number of 8477 // format conversions in the format string? 8478 if (!HasVAListArg) { 8479 // Find any arguments that weren't covered. 8480 CoveredArgs.flip(); 8481 signed notCoveredArg = CoveredArgs.find_first(); 8482 if (notCoveredArg >= 0) { 8483 assert((unsigned)notCoveredArg < NumDataArgs); 8484 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 8485 } else { 8486 UncoveredArg.setAllCovered(); 8487 } 8488 } 8489 } 8490 8491 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 8492 const Expr *ArgExpr) { 8493 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 8494 "Invalid state"); 8495 8496 if (!ArgExpr) 8497 return; 8498 8499 SourceLocation Loc = ArgExpr->getBeginLoc(); 8500 8501 if (S.getSourceManager().isInSystemMacro(Loc)) 8502 return; 8503 8504 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 8505 for (auto E : DiagnosticExprs) 8506 PDiag << E->getSourceRange(); 8507 8508 CheckFormatHandler::EmitFormatDiagnostic( 8509 S, IsFunctionCall, DiagnosticExprs[0], 8510 PDiag, Loc, /*IsStringLocation*/false, 8511 DiagnosticExprs[0]->getSourceRange()); 8512 } 8513 8514 bool 8515 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 8516 SourceLocation Loc, 8517 const char *startSpec, 8518 unsigned specifierLen, 8519 const char *csStart, 8520 unsigned csLen) { 8521 bool keepGoing = true; 8522 if (argIndex < NumDataArgs) { 8523 // Consider the argument coverered, even though the specifier doesn't 8524 // make sense. 8525 CoveredArgs.set(argIndex); 8526 } 8527 else { 8528 // If argIndex exceeds the number of data arguments we 8529 // don't issue a warning because that is just a cascade of warnings (and 8530 // they may have intended '%%' anyway). We don't want to continue processing 8531 // the format string after this point, however, as we will like just get 8532 // gibberish when trying to match arguments. 8533 keepGoing = false; 8534 } 8535 8536 StringRef Specifier(csStart, csLen); 8537 8538 // If the specifier in non-printable, it could be the first byte of a UTF-8 8539 // sequence. In that case, print the UTF-8 code point. If not, print the byte 8540 // hex value. 8541 std::string CodePointStr; 8542 if (!llvm::sys::locale::isPrint(*csStart)) { 8543 llvm::UTF32 CodePoint; 8544 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 8545 const llvm::UTF8 *E = 8546 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 8547 llvm::ConversionResult Result = 8548 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 8549 8550 if (Result != llvm::conversionOK) { 8551 unsigned char FirstChar = *csStart; 8552 CodePoint = (llvm::UTF32)FirstChar; 8553 } 8554 8555 llvm::raw_string_ostream OS(CodePointStr); 8556 if (CodePoint < 256) 8557 OS << "\\x" << llvm::format("%02x", CodePoint); 8558 else if (CodePoint <= 0xFFFF) 8559 OS << "\\u" << llvm::format("%04x", CodePoint); 8560 else 8561 OS << "\\U" << llvm::format("%08x", CodePoint); 8562 OS.flush(); 8563 Specifier = CodePointStr; 8564 } 8565 8566 EmitFormatDiagnostic( 8567 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 8568 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 8569 8570 return keepGoing; 8571 } 8572 8573 void 8574 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 8575 const char *startSpec, 8576 unsigned specifierLen) { 8577 EmitFormatDiagnostic( 8578 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 8579 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 8580 } 8581 8582 bool 8583 CheckFormatHandler::CheckNumArgs( 8584 const analyze_format_string::FormatSpecifier &FS, 8585 const analyze_format_string::ConversionSpecifier &CS, 8586 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 8587 8588 if (argIndex >= NumDataArgs) { 8589 PartialDiagnostic PDiag = FS.usesPositionalArg() 8590 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 8591 << (argIndex+1) << NumDataArgs) 8592 : S.PDiag(diag::warn_printf_insufficient_data_args); 8593 EmitFormatDiagnostic( 8594 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 8595 getSpecifierRange(startSpecifier, specifierLen)); 8596 8597 // Since more arguments than conversion tokens are given, by extension 8598 // all arguments are covered, so mark this as so. 8599 UncoveredArg.setAllCovered(); 8600 return false; 8601 } 8602 return true; 8603 } 8604 8605 template<typename Range> 8606 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 8607 SourceLocation Loc, 8608 bool IsStringLocation, 8609 Range StringRange, 8610 ArrayRef<FixItHint> FixIt) { 8611 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 8612 Loc, IsStringLocation, StringRange, FixIt); 8613 } 8614 8615 /// If the format string is not within the function call, emit a note 8616 /// so that the function call and string are in diagnostic messages. 8617 /// 8618 /// \param InFunctionCall if true, the format string is within the function 8619 /// call and only one diagnostic message will be produced. Otherwise, an 8620 /// extra note will be emitted pointing to location of the format string. 8621 /// 8622 /// \param ArgumentExpr the expression that is passed as the format string 8623 /// argument in the function call. Used for getting locations when two 8624 /// diagnostics are emitted. 8625 /// 8626 /// \param PDiag the callee should already have provided any strings for the 8627 /// diagnostic message. This function only adds locations and fixits 8628 /// to diagnostics. 8629 /// 8630 /// \param Loc primary location for diagnostic. If two diagnostics are 8631 /// required, one will be at Loc and a new SourceLocation will be created for 8632 /// the other one. 8633 /// 8634 /// \param IsStringLocation if true, Loc points to the format string should be 8635 /// used for the note. Otherwise, Loc points to the argument list and will 8636 /// be used with PDiag. 8637 /// 8638 /// \param StringRange some or all of the string to highlight. This is 8639 /// templated so it can accept either a CharSourceRange or a SourceRange. 8640 /// 8641 /// \param FixIt optional fix it hint for the format string. 8642 template <typename Range> 8643 void CheckFormatHandler::EmitFormatDiagnostic( 8644 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 8645 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 8646 Range StringRange, ArrayRef<FixItHint> FixIt) { 8647 if (InFunctionCall) { 8648 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 8649 D << StringRange; 8650 D << FixIt; 8651 } else { 8652 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 8653 << ArgumentExpr->getSourceRange(); 8654 8655 const Sema::SemaDiagnosticBuilder &Note = 8656 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 8657 diag::note_format_string_defined); 8658 8659 Note << StringRange; 8660 Note << FixIt; 8661 } 8662 } 8663 8664 //===--- CHECK: Printf format string checking ------------------------------===// 8665 8666 namespace { 8667 8668 class CheckPrintfHandler : public CheckFormatHandler { 8669 public: 8670 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 8671 const Expr *origFormatExpr, 8672 const Sema::FormatStringType type, unsigned firstDataArg, 8673 unsigned numDataArgs, bool isObjC, const char *beg, 8674 bool hasVAListArg, ArrayRef<const Expr *> Args, 8675 unsigned formatIdx, bool inFunctionCall, 8676 Sema::VariadicCallType CallType, 8677 llvm::SmallBitVector &CheckedVarArgs, 8678 UncoveredArgHandler &UncoveredArg) 8679 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8680 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8681 inFunctionCall, CallType, CheckedVarArgs, 8682 UncoveredArg) {} 8683 8684 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 8685 8686 /// Returns true if '%@' specifiers are allowed in the format string. 8687 bool allowsObjCArg() const { 8688 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 8689 FSType == Sema::FST_OSTrace; 8690 } 8691 8692 bool HandleInvalidPrintfConversionSpecifier( 8693 const analyze_printf::PrintfSpecifier &FS, 8694 const char *startSpecifier, 8695 unsigned specifierLen) override; 8696 8697 void handleInvalidMaskType(StringRef MaskType) override; 8698 8699 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 8700 const char *startSpecifier, 8701 unsigned specifierLen) override; 8702 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8703 const char *StartSpecifier, 8704 unsigned SpecifierLen, 8705 const Expr *E); 8706 8707 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 8708 const char *startSpecifier, unsigned specifierLen); 8709 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 8710 const analyze_printf::OptionalAmount &Amt, 8711 unsigned type, 8712 const char *startSpecifier, unsigned specifierLen); 8713 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8714 const analyze_printf::OptionalFlag &flag, 8715 const char *startSpecifier, unsigned specifierLen); 8716 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 8717 const analyze_printf::OptionalFlag &ignoredFlag, 8718 const analyze_printf::OptionalFlag &flag, 8719 const char *startSpecifier, unsigned specifierLen); 8720 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 8721 const Expr *E); 8722 8723 void HandleEmptyObjCModifierFlag(const char *startFlag, 8724 unsigned flagLen) override; 8725 8726 void HandleInvalidObjCModifierFlag(const char *startFlag, 8727 unsigned flagLen) override; 8728 8729 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 8730 const char *flagsEnd, 8731 const char *conversionPosition) 8732 override; 8733 }; 8734 8735 } // namespace 8736 8737 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 8738 const analyze_printf::PrintfSpecifier &FS, 8739 const char *startSpecifier, 8740 unsigned specifierLen) { 8741 const analyze_printf::PrintfConversionSpecifier &CS = 8742 FS.getConversionSpecifier(); 8743 8744 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8745 getLocationOfByte(CS.getStart()), 8746 startSpecifier, specifierLen, 8747 CS.getStart(), CS.getLength()); 8748 } 8749 8750 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 8751 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 8752 } 8753 8754 bool CheckPrintfHandler::HandleAmount( 8755 const analyze_format_string::OptionalAmount &Amt, 8756 unsigned k, const char *startSpecifier, 8757 unsigned specifierLen) { 8758 if (Amt.hasDataArgument()) { 8759 if (!HasVAListArg) { 8760 unsigned argIndex = Amt.getArgIndex(); 8761 if (argIndex >= NumDataArgs) { 8762 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 8763 << k, 8764 getLocationOfByte(Amt.getStart()), 8765 /*IsStringLocation*/true, 8766 getSpecifierRange(startSpecifier, specifierLen)); 8767 // Don't do any more checking. We will just emit 8768 // spurious errors. 8769 return false; 8770 } 8771 8772 // Type check the data argument. It should be an 'int'. 8773 // Although not in conformance with C99, we also allow the argument to be 8774 // an 'unsigned int' as that is a reasonably safe case. GCC also 8775 // doesn't emit a warning for that case. 8776 CoveredArgs.set(argIndex); 8777 const Expr *Arg = getDataArg(argIndex); 8778 if (!Arg) 8779 return false; 8780 8781 QualType T = Arg->getType(); 8782 8783 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 8784 assert(AT.isValid()); 8785 8786 if (!AT.matchesType(S.Context, T)) { 8787 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 8788 << k << AT.getRepresentativeTypeName(S.Context) 8789 << T << Arg->getSourceRange(), 8790 getLocationOfByte(Amt.getStart()), 8791 /*IsStringLocation*/true, 8792 getSpecifierRange(startSpecifier, specifierLen)); 8793 // Don't do any more checking. We will just emit 8794 // spurious errors. 8795 return false; 8796 } 8797 } 8798 } 8799 return true; 8800 } 8801 8802 void CheckPrintfHandler::HandleInvalidAmount( 8803 const analyze_printf::PrintfSpecifier &FS, 8804 const analyze_printf::OptionalAmount &Amt, 8805 unsigned type, 8806 const char *startSpecifier, 8807 unsigned specifierLen) { 8808 const analyze_printf::PrintfConversionSpecifier &CS = 8809 FS.getConversionSpecifier(); 8810 8811 FixItHint fixit = 8812 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 8813 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 8814 Amt.getConstantLength())) 8815 : FixItHint(); 8816 8817 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 8818 << type << CS.toString(), 8819 getLocationOfByte(Amt.getStart()), 8820 /*IsStringLocation*/true, 8821 getSpecifierRange(startSpecifier, specifierLen), 8822 fixit); 8823 } 8824 8825 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8826 const analyze_printf::OptionalFlag &flag, 8827 const char *startSpecifier, 8828 unsigned specifierLen) { 8829 // Warn about pointless flag with a fixit removal. 8830 const analyze_printf::PrintfConversionSpecifier &CS = 8831 FS.getConversionSpecifier(); 8832 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 8833 << flag.toString() << CS.toString(), 8834 getLocationOfByte(flag.getPosition()), 8835 /*IsStringLocation*/true, 8836 getSpecifierRange(startSpecifier, specifierLen), 8837 FixItHint::CreateRemoval( 8838 getSpecifierRange(flag.getPosition(), 1))); 8839 } 8840 8841 void CheckPrintfHandler::HandleIgnoredFlag( 8842 const analyze_printf::PrintfSpecifier &FS, 8843 const analyze_printf::OptionalFlag &ignoredFlag, 8844 const analyze_printf::OptionalFlag &flag, 8845 const char *startSpecifier, 8846 unsigned specifierLen) { 8847 // Warn about ignored flag with a fixit removal. 8848 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 8849 << ignoredFlag.toString() << flag.toString(), 8850 getLocationOfByte(ignoredFlag.getPosition()), 8851 /*IsStringLocation*/true, 8852 getSpecifierRange(startSpecifier, specifierLen), 8853 FixItHint::CreateRemoval( 8854 getSpecifierRange(ignoredFlag.getPosition(), 1))); 8855 } 8856 8857 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 8858 unsigned flagLen) { 8859 // Warn about an empty flag. 8860 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 8861 getLocationOfByte(startFlag), 8862 /*IsStringLocation*/true, 8863 getSpecifierRange(startFlag, flagLen)); 8864 } 8865 8866 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 8867 unsigned flagLen) { 8868 // Warn about an invalid flag. 8869 auto Range = getSpecifierRange(startFlag, flagLen); 8870 StringRef flag(startFlag, flagLen); 8871 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 8872 getLocationOfByte(startFlag), 8873 /*IsStringLocation*/true, 8874 Range, FixItHint::CreateRemoval(Range)); 8875 } 8876 8877 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 8878 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 8879 // Warn about using '[...]' without a '@' conversion. 8880 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 8881 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 8882 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 8883 getLocationOfByte(conversionPosition), 8884 /*IsStringLocation*/true, 8885 Range, FixItHint::CreateRemoval(Range)); 8886 } 8887 8888 // Determines if the specified is a C++ class or struct containing 8889 // a member with the specified name and kind (e.g. a CXXMethodDecl named 8890 // "c_str()"). 8891 template<typename MemberKind> 8892 static llvm::SmallPtrSet<MemberKind*, 1> 8893 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 8894 const RecordType *RT = Ty->getAs<RecordType>(); 8895 llvm::SmallPtrSet<MemberKind*, 1> Results; 8896 8897 if (!RT) 8898 return Results; 8899 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 8900 if (!RD || !RD->getDefinition()) 8901 return Results; 8902 8903 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 8904 Sema::LookupMemberName); 8905 R.suppressDiagnostics(); 8906 8907 // We just need to include all members of the right kind turned up by the 8908 // filter, at this point. 8909 if (S.LookupQualifiedName(R, RT->getDecl())) 8910 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8911 NamedDecl *decl = (*I)->getUnderlyingDecl(); 8912 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 8913 Results.insert(FK); 8914 } 8915 return Results; 8916 } 8917 8918 /// Check if we could call '.c_str()' on an object. 8919 /// 8920 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 8921 /// allow the call, or if it would be ambiguous). 8922 bool Sema::hasCStrMethod(const Expr *E) { 8923 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8924 8925 MethodSet Results = 8926 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 8927 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8928 MI != ME; ++MI) 8929 if ((*MI)->getMinRequiredArguments() == 0) 8930 return true; 8931 return false; 8932 } 8933 8934 // Check if a (w)string was passed when a (w)char* was needed, and offer a 8935 // better diagnostic if so. AT is assumed to be valid. 8936 // Returns true when a c_str() conversion method is found. 8937 bool CheckPrintfHandler::checkForCStrMembers( 8938 const analyze_printf::ArgType &AT, const Expr *E) { 8939 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8940 8941 MethodSet Results = 8942 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 8943 8944 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8945 MI != ME; ++MI) { 8946 const CXXMethodDecl *Method = *MI; 8947 if (Method->getMinRequiredArguments() == 0 && 8948 AT.matchesType(S.Context, Method->getReturnType())) { 8949 // FIXME: Suggest parens if the expression needs them. 8950 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 8951 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 8952 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 8953 return true; 8954 } 8955 } 8956 8957 return false; 8958 } 8959 8960 bool 8961 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 8962 &FS, 8963 const char *startSpecifier, 8964 unsigned specifierLen) { 8965 using namespace analyze_format_string; 8966 using namespace analyze_printf; 8967 8968 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 8969 8970 if (FS.consumesDataArgument()) { 8971 if (atFirstArg) { 8972 atFirstArg = false; 8973 usesPositionalArgs = FS.usesPositionalArg(); 8974 } 8975 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8976 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8977 startSpecifier, specifierLen); 8978 return false; 8979 } 8980 } 8981 8982 // First check if the field width, precision, and conversion specifier 8983 // have matching data arguments. 8984 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 8985 startSpecifier, specifierLen)) { 8986 return false; 8987 } 8988 8989 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 8990 startSpecifier, specifierLen)) { 8991 return false; 8992 } 8993 8994 if (!CS.consumesDataArgument()) { 8995 // FIXME: Technically specifying a precision or field width here 8996 // makes no sense. Worth issuing a warning at some point. 8997 return true; 8998 } 8999 9000 // Consume the argument. 9001 unsigned argIndex = FS.getArgIndex(); 9002 if (argIndex < NumDataArgs) { 9003 // The check to see if the argIndex is valid will come later. 9004 // We set the bit here because we may exit early from this 9005 // function if we encounter some other error. 9006 CoveredArgs.set(argIndex); 9007 } 9008 9009 // FreeBSD kernel extensions. 9010 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 9011 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 9012 // We need at least two arguments. 9013 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 9014 return false; 9015 9016 // Claim the second argument. 9017 CoveredArgs.set(argIndex + 1); 9018 9019 // Type check the first argument (int for %b, pointer for %D) 9020 const Expr *Ex = getDataArg(argIndex); 9021 const analyze_printf::ArgType &AT = 9022 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 9023 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 9024 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 9025 EmitFormatDiagnostic( 9026 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9027 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 9028 << false << Ex->getSourceRange(), 9029 Ex->getBeginLoc(), /*IsStringLocation*/ false, 9030 getSpecifierRange(startSpecifier, specifierLen)); 9031 9032 // Type check the second argument (char * for both %b and %D) 9033 Ex = getDataArg(argIndex + 1); 9034 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 9035 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 9036 EmitFormatDiagnostic( 9037 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9038 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 9039 << false << Ex->getSourceRange(), 9040 Ex->getBeginLoc(), /*IsStringLocation*/ false, 9041 getSpecifierRange(startSpecifier, specifierLen)); 9042 9043 return true; 9044 } 9045 9046 // Check for using an Objective-C specific conversion specifier 9047 // in a non-ObjC literal. 9048 if (!allowsObjCArg() && CS.isObjCArg()) { 9049 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9050 specifierLen); 9051 } 9052 9053 // %P can only be used with os_log. 9054 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 9055 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9056 specifierLen); 9057 } 9058 9059 // %n is not allowed with os_log. 9060 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 9061 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 9062 getLocationOfByte(CS.getStart()), 9063 /*IsStringLocation*/ false, 9064 getSpecifierRange(startSpecifier, specifierLen)); 9065 9066 return true; 9067 } 9068 9069 // Only scalars are allowed for os_trace. 9070 if (FSType == Sema::FST_OSTrace && 9071 (CS.getKind() == ConversionSpecifier::PArg || 9072 CS.getKind() == ConversionSpecifier::sArg || 9073 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 9074 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9075 specifierLen); 9076 } 9077 9078 // Check for use of public/private annotation outside of os_log(). 9079 if (FSType != Sema::FST_OSLog) { 9080 if (FS.isPublic().isSet()) { 9081 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 9082 << "public", 9083 getLocationOfByte(FS.isPublic().getPosition()), 9084 /*IsStringLocation*/ false, 9085 getSpecifierRange(startSpecifier, specifierLen)); 9086 } 9087 if (FS.isPrivate().isSet()) { 9088 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 9089 << "private", 9090 getLocationOfByte(FS.isPrivate().getPosition()), 9091 /*IsStringLocation*/ false, 9092 getSpecifierRange(startSpecifier, specifierLen)); 9093 } 9094 } 9095 9096 // Check for invalid use of field width 9097 if (!FS.hasValidFieldWidth()) { 9098 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 9099 startSpecifier, specifierLen); 9100 } 9101 9102 // Check for invalid use of precision 9103 if (!FS.hasValidPrecision()) { 9104 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 9105 startSpecifier, specifierLen); 9106 } 9107 9108 // Precision is mandatory for %P specifier. 9109 if (CS.getKind() == ConversionSpecifier::PArg && 9110 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 9111 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 9112 getLocationOfByte(startSpecifier), 9113 /*IsStringLocation*/ false, 9114 getSpecifierRange(startSpecifier, specifierLen)); 9115 } 9116 9117 // Check each flag does not conflict with any other component. 9118 if (!FS.hasValidThousandsGroupingPrefix()) 9119 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 9120 if (!FS.hasValidLeadingZeros()) 9121 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 9122 if (!FS.hasValidPlusPrefix()) 9123 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 9124 if (!FS.hasValidSpacePrefix()) 9125 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 9126 if (!FS.hasValidAlternativeForm()) 9127 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 9128 if (!FS.hasValidLeftJustified()) 9129 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 9130 9131 // Check that flags are not ignored by another flag 9132 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 9133 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 9134 startSpecifier, specifierLen); 9135 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 9136 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 9137 startSpecifier, specifierLen); 9138 9139 // Check the length modifier is valid with the given conversion specifier. 9140 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 9141 S.getLangOpts())) 9142 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9143 diag::warn_format_nonsensical_length); 9144 else if (!FS.hasStandardLengthModifier()) 9145 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 9146 else if (!FS.hasStandardLengthConversionCombination()) 9147 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9148 diag::warn_format_non_standard_conversion_spec); 9149 9150 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 9151 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 9152 9153 // The remaining checks depend on the data arguments. 9154 if (HasVAListArg) 9155 return true; 9156 9157 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 9158 return false; 9159 9160 const Expr *Arg = getDataArg(argIndex); 9161 if (!Arg) 9162 return true; 9163 9164 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 9165 } 9166 9167 static bool requiresParensToAddCast(const Expr *E) { 9168 // FIXME: We should have a general way to reason about operator 9169 // precedence and whether parens are actually needed here. 9170 // Take care of a few common cases where they aren't. 9171 const Expr *Inside = E->IgnoreImpCasts(); 9172 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 9173 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 9174 9175 switch (Inside->getStmtClass()) { 9176 case Stmt::ArraySubscriptExprClass: 9177 case Stmt::CallExprClass: 9178 case Stmt::CharacterLiteralClass: 9179 case Stmt::CXXBoolLiteralExprClass: 9180 case Stmt::DeclRefExprClass: 9181 case Stmt::FloatingLiteralClass: 9182 case Stmt::IntegerLiteralClass: 9183 case Stmt::MemberExprClass: 9184 case Stmt::ObjCArrayLiteralClass: 9185 case Stmt::ObjCBoolLiteralExprClass: 9186 case Stmt::ObjCBoxedExprClass: 9187 case Stmt::ObjCDictionaryLiteralClass: 9188 case Stmt::ObjCEncodeExprClass: 9189 case Stmt::ObjCIvarRefExprClass: 9190 case Stmt::ObjCMessageExprClass: 9191 case Stmt::ObjCPropertyRefExprClass: 9192 case Stmt::ObjCStringLiteralClass: 9193 case Stmt::ObjCSubscriptRefExprClass: 9194 case Stmt::ParenExprClass: 9195 case Stmt::StringLiteralClass: 9196 case Stmt::UnaryOperatorClass: 9197 return false; 9198 default: 9199 return true; 9200 } 9201 } 9202 9203 static std::pair<QualType, StringRef> 9204 shouldNotPrintDirectly(const ASTContext &Context, 9205 QualType IntendedTy, 9206 const Expr *E) { 9207 // Use a 'while' to peel off layers of typedefs. 9208 QualType TyTy = IntendedTy; 9209 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 9210 StringRef Name = UserTy->getDecl()->getName(); 9211 QualType CastTy = llvm::StringSwitch<QualType>(Name) 9212 .Case("CFIndex", Context.getNSIntegerType()) 9213 .Case("NSInteger", Context.getNSIntegerType()) 9214 .Case("NSUInteger", Context.getNSUIntegerType()) 9215 .Case("SInt32", Context.IntTy) 9216 .Case("UInt32", Context.UnsignedIntTy) 9217 .Default(QualType()); 9218 9219 if (!CastTy.isNull()) 9220 return std::make_pair(CastTy, Name); 9221 9222 TyTy = UserTy->desugar(); 9223 } 9224 9225 // Strip parens if necessary. 9226 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 9227 return shouldNotPrintDirectly(Context, 9228 PE->getSubExpr()->getType(), 9229 PE->getSubExpr()); 9230 9231 // If this is a conditional expression, then its result type is constructed 9232 // via usual arithmetic conversions and thus there might be no necessary 9233 // typedef sugar there. Recurse to operands to check for NSInteger & 9234 // Co. usage condition. 9235 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 9236 QualType TrueTy, FalseTy; 9237 StringRef TrueName, FalseName; 9238 9239 std::tie(TrueTy, TrueName) = 9240 shouldNotPrintDirectly(Context, 9241 CO->getTrueExpr()->getType(), 9242 CO->getTrueExpr()); 9243 std::tie(FalseTy, FalseName) = 9244 shouldNotPrintDirectly(Context, 9245 CO->getFalseExpr()->getType(), 9246 CO->getFalseExpr()); 9247 9248 if (TrueTy == FalseTy) 9249 return std::make_pair(TrueTy, TrueName); 9250 else if (TrueTy.isNull()) 9251 return std::make_pair(FalseTy, FalseName); 9252 else if (FalseTy.isNull()) 9253 return std::make_pair(TrueTy, TrueName); 9254 } 9255 9256 return std::make_pair(QualType(), StringRef()); 9257 } 9258 9259 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 9260 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 9261 /// type do not count. 9262 static bool 9263 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 9264 QualType From = ICE->getSubExpr()->getType(); 9265 QualType To = ICE->getType(); 9266 // It's an integer promotion if the destination type is the promoted 9267 // source type. 9268 if (ICE->getCastKind() == CK_IntegralCast && 9269 From->isPromotableIntegerType() && 9270 S.Context.getPromotedIntegerType(From) == To) 9271 return true; 9272 // Look through vector types, since we do default argument promotion for 9273 // those in OpenCL. 9274 if (const auto *VecTy = From->getAs<ExtVectorType>()) 9275 From = VecTy->getElementType(); 9276 if (const auto *VecTy = To->getAs<ExtVectorType>()) 9277 To = VecTy->getElementType(); 9278 // It's a floating promotion if the source type is a lower rank. 9279 return ICE->getCastKind() == CK_FloatingCast && 9280 S.Context.getFloatingTypeOrder(From, To) < 0; 9281 } 9282 9283 bool 9284 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 9285 const char *StartSpecifier, 9286 unsigned SpecifierLen, 9287 const Expr *E) { 9288 using namespace analyze_format_string; 9289 using namespace analyze_printf; 9290 9291 // Now type check the data expression that matches the 9292 // format specifier. 9293 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 9294 if (!AT.isValid()) 9295 return true; 9296 9297 QualType ExprTy = E->getType(); 9298 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 9299 ExprTy = TET->getUnderlyingExpr()->getType(); 9300 } 9301 9302 // Diagnose attempts to print a boolean value as a character. Unlike other 9303 // -Wformat diagnostics, this is fine from a type perspective, but it still 9304 // doesn't make sense. 9305 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 9306 E->isKnownToHaveBooleanValue()) { 9307 const CharSourceRange &CSR = 9308 getSpecifierRange(StartSpecifier, SpecifierLen); 9309 SmallString<4> FSString; 9310 llvm::raw_svector_ostream os(FSString); 9311 FS.toString(os); 9312 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 9313 << FSString, 9314 E->getExprLoc(), false, CSR); 9315 return true; 9316 } 9317 9318 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 9319 if (Match == analyze_printf::ArgType::Match) 9320 return true; 9321 9322 // Look through argument promotions for our error message's reported type. 9323 // This includes the integral and floating promotions, but excludes array 9324 // and function pointer decay (seeing that an argument intended to be a 9325 // string has type 'char [6]' is probably more confusing than 'char *') and 9326 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 9327 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 9328 if (isArithmeticArgumentPromotion(S, ICE)) { 9329 E = ICE->getSubExpr(); 9330 ExprTy = E->getType(); 9331 9332 // Check if we didn't match because of an implicit cast from a 'char' 9333 // or 'short' to an 'int'. This is done because printf is a varargs 9334 // function. 9335 if (ICE->getType() == S.Context.IntTy || 9336 ICE->getType() == S.Context.UnsignedIntTy) { 9337 // All further checking is done on the subexpression 9338 const analyze_printf::ArgType::MatchKind ImplicitMatch = 9339 AT.matchesType(S.Context, ExprTy); 9340 if (ImplicitMatch == analyze_printf::ArgType::Match) 9341 return true; 9342 if (ImplicitMatch == ArgType::NoMatchPedantic || 9343 ImplicitMatch == ArgType::NoMatchTypeConfusion) 9344 Match = ImplicitMatch; 9345 } 9346 } 9347 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 9348 // Special case for 'a', which has type 'int' in C. 9349 // Note, however, that we do /not/ want to treat multibyte constants like 9350 // 'MooV' as characters! This form is deprecated but still exists. In 9351 // addition, don't treat expressions as of type 'char' if one byte length 9352 // modifier is provided. 9353 if (ExprTy == S.Context.IntTy && 9354 FS.getLengthModifier().getKind() != LengthModifier::AsChar) 9355 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 9356 ExprTy = S.Context.CharTy; 9357 } 9358 9359 // Look through enums to their underlying type. 9360 bool IsEnum = false; 9361 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 9362 ExprTy = EnumTy->getDecl()->getIntegerType(); 9363 IsEnum = true; 9364 } 9365 9366 // %C in an Objective-C context prints a unichar, not a wchar_t. 9367 // If the argument is an integer of some kind, believe the %C and suggest 9368 // a cast instead of changing the conversion specifier. 9369 QualType IntendedTy = ExprTy; 9370 if (isObjCContext() && 9371 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 9372 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 9373 !ExprTy->isCharType()) { 9374 // 'unichar' is defined as a typedef of unsigned short, but we should 9375 // prefer using the typedef if it is visible. 9376 IntendedTy = S.Context.UnsignedShortTy; 9377 9378 // While we are here, check if the value is an IntegerLiteral that happens 9379 // to be within the valid range. 9380 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 9381 const llvm::APInt &V = IL->getValue(); 9382 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 9383 return true; 9384 } 9385 9386 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 9387 Sema::LookupOrdinaryName); 9388 if (S.LookupName(Result, S.getCurScope())) { 9389 NamedDecl *ND = Result.getFoundDecl(); 9390 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 9391 if (TD->getUnderlyingType() == IntendedTy) 9392 IntendedTy = S.Context.getTypedefType(TD); 9393 } 9394 } 9395 } 9396 9397 // Special-case some of Darwin's platform-independence types by suggesting 9398 // casts to primitive types that are known to be large enough. 9399 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 9400 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 9401 QualType CastTy; 9402 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 9403 if (!CastTy.isNull()) { 9404 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 9405 // (long in ASTContext). Only complain to pedants. 9406 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 9407 (AT.isSizeT() || AT.isPtrdiffT()) && 9408 AT.matchesType(S.Context, CastTy)) 9409 Match = ArgType::NoMatchPedantic; 9410 IntendedTy = CastTy; 9411 ShouldNotPrintDirectly = true; 9412 } 9413 } 9414 9415 // We may be able to offer a FixItHint if it is a supported type. 9416 PrintfSpecifier fixedFS = FS; 9417 bool Success = 9418 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 9419 9420 if (Success) { 9421 // Get the fix string from the fixed format specifier 9422 SmallString<16> buf; 9423 llvm::raw_svector_ostream os(buf); 9424 fixedFS.toString(os); 9425 9426 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 9427 9428 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 9429 unsigned Diag; 9430 switch (Match) { 9431 case ArgType::Match: llvm_unreachable("expected non-matching"); 9432 case ArgType::NoMatchPedantic: 9433 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9434 break; 9435 case ArgType::NoMatchTypeConfusion: 9436 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9437 break; 9438 case ArgType::NoMatch: 9439 Diag = diag::warn_format_conversion_argument_type_mismatch; 9440 break; 9441 } 9442 9443 // In this case, the specifier is wrong and should be changed to match 9444 // the argument. 9445 EmitFormatDiagnostic(S.PDiag(Diag) 9446 << AT.getRepresentativeTypeName(S.Context) 9447 << IntendedTy << IsEnum << E->getSourceRange(), 9448 E->getBeginLoc(), 9449 /*IsStringLocation*/ false, SpecRange, 9450 FixItHint::CreateReplacement(SpecRange, os.str())); 9451 } else { 9452 // The canonical type for formatting this value is different from the 9453 // actual type of the expression. (This occurs, for example, with Darwin's 9454 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 9455 // should be printed as 'long' for 64-bit compatibility.) 9456 // Rather than emitting a normal format/argument mismatch, we want to 9457 // add a cast to the recommended type (and correct the format string 9458 // if necessary). 9459 SmallString<16> CastBuf; 9460 llvm::raw_svector_ostream CastFix(CastBuf); 9461 CastFix << "("; 9462 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 9463 CastFix << ")"; 9464 9465 SmallVector<FixItHint,4> Hints; 9466 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 9467 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 9468 9469 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 9470 // If there's already a cast present, just replace it. 9471 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 9472 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 9473 9474 } else if (!requiresParensToAddCast(E)) { 9475 // If the expression has high enough precedence, 9476 // just write the C-style cast. 9477 Hints.push_back( 9478 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9479 } else { 9480 // Otherwise, add parens around the expression as well as the cast. 9481 CastFix << "("; 9482 Hints.push_back( 9483 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9484 9485 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 9486 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 9487 } 9488 9489 if (ShouldNotPrintDirectly) { 9490 // The expression has a type that should not be printed directly. 9491 // We extract the name from the typedef because we don't want to show 9492 // the underlying type in the diagnostic. 9493 StringRef Name; 9494 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 9495 Name = TypedefTy->getDecl()->getName(); 9496 else 9497 Name = CastTyName; 9498 unsigned Diag = Match == ArgType::NoMatchPedantic 9499 ? diag::warn_format_argument_needs_cast_pedantic 9500 : diag::warn_format_argument_needs_cast; 9501 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 9502 << E->getSourceRange(), 9503 E->getBeginLoc(), /*IsStringLocation=*/false, 9504 SpecRange, Hints); 9505 } else { 9506 // In this case, the expression could be printed using a different 9507 // specifier, but we've decided that the specifier is probably correct 9508 // and we should cast instead. Just use the normal warning message. 9509 EmitFormatDiagnostic( 9510 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9511 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 9512 << E->getSourceRange(), 9513 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 9514 } 9515 } 9516 } else { 9517 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 9518 SpecifierLen); 9519 // Since the warning for passing non-POD types to variadic functions 9520 // was deferred until now, we emit a warning for non-POD 9521 // arguments here. 9522 switch (S.isValidVarArgType(ExprTy)) { 9523 case Sema::VAK_Valid: 9524 case Sema::VAK_ValidInCXX11: { 9525 unsigned Diag; 9526 switch (Match) { 9527 case ArgType::Match: llvm_unreachable("expected non-matching"); 9528 case ArgType::NoMatchPedantic: 9529 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9530 break; 9531 case ArgType::NoMatchTypeConfusion: 9532 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9533 break; 9534 case ArgType::NoMatch: 9535 Diag = diag::warn_format_conversion_argument_type_mismatch; 9536 break; 9537 } 9538 9539 EmitFormatDiagnostic( 9540 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 9541 << IsEnum << CSR << E->getSourceRange(), 9542 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9543 break; 9544 } 9545 case Sema::VAK_Undefined: 9546 case Sema::VAK_MSVCUndefined: 9547 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 9548 << S.getLangOpts().CPlusPlus11 << ExprTy 9549 << CallType 9550 << AT.getRepresentativeTypeName(S.Context) << CSR 9551 << E->getSourceRange(), 9552 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9553 checkForCStrMembers(AT, E); 9554 break; 9555 9556 case Sema::VAK_Invalid: 9557 if (ExprTy->isObjCObjectType()) 9558 EmitFormatDiagnostic( 9559 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 9560 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 9561 << AT.getRepresentativeTypeName(S.Context) << CSR 9562 << E->getSourceRange(), 9563 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9564 else 9565 // FIXME: If this is an initializer list, suggest removing the braces 9566 // or inserting a cast to the target type. 9567 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 9568 << isa<InitListExpr>(E) << ExprTy << CallType 9569 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 9570 break; 9571 } 9572 9573 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 9574 "format string specifier index out of range"); 9575 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 9576 } 9577 9578 return true; 9579 } 9580 9581 //===--- CHECK: Scanf format string checking ------------------------------===// 9582 9583 namespace { 9584 9585 class CheckScanfHandler : public CheckFormatHandler { 9586 public: 9587 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 9588 const Expr *origFormatExpr, Sema::FormatStringType type, 9589 unsigned firstDataArg, unsigned numDataArgs, 9590 const char *beg, bool hasVAListArg, 9591 ArrayRef<const Expr *> Args, unsigned formatIdx, 9592 bool inFunctionCall, Sema::VariadicCallType CallType, 9593 llvm::SmallBitVector &CheckedVarArgs, 9594 UncoveredArgHandler &UncoveredArg) 9595 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 9596 numDataArgs, beg, hasVAListArg, Args, formatIdx, 9597 inFunctionCall, CallType, CheckedVarArgs, 9598 UncoveredArg) {} 9599 9600 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 9601 const char *startSpecifier, 9602 unsigned specifierLen) override; 9603 9604 bool HandleInvalidScanfConversionSpecifier( 9605 const analyze_scanf::ScanfSpecifier &FS, 9606 const char *startSpecifier, 9607 unsigned specifierLen) override; 9608 9609 void HandleIncompleteScanList(const char *start, const char *end) override; 9610 }; 9611 9612 } // namespace 9613 9614 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 9615 const char *end) { 9616 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 9617 getLocationOfByte(end), /*IsStringLocation*/true, 9618 getSpecifierRange(start, end - start)); 9619 } 9620 9621 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 9622 const analyze_scanf::ScanfSpecifier &FS, 9623 const char *startSpecifier, 9624 unsigned specifierLen) { 9625 const analyze_scanf::ScanfConversionSpecifier &CS = 9626 FS.getConversionSpecifier(); 9627 9628 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 9629 getLocationOfByte(CS.getStart()), 9630 startSpecifier, specifierLen, 9631 CS.getStart(), CS.getLength()); 9632 } 9633 9634 bool CheckScanfHandler::HandleScanfSpecifier( 9635 const analyze_scanf::ScanfSpecifier &FS, 9636 const char *startSpecifier, 9637 unsigned specifierLen) { 9638 using namespace analyze_scanf; 9639 using namespace analyze_format_string; 9640 9641 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 9642 9643 // Handle case where '%' and '*' don't consume an argument. These shouldn't 9644 // be used to decide if we are using positional arguments consistently. 9645 if (FS.consumesDataArgument()) { 9646 if (atFirstArg) { 9647 atFirstArg = false; 9648 usesPositionalArgs = FS.usesPositionalArg(); 9649 } 9650 else if (usesPositionalArgs != FS.usesPositionalArg()) { 9651 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 9652 startSpecifier, specifierLen); 9653 return false; 9654 } 9655 } 9656 9657 // Check if the field with is non-zero. 9658 const OptionalAmount &Amt = FS.getFieldWidth(); 9659 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 9660 if (Amt.getConstantAmount() == 0) { 9661 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 9662 Amt.getConstantLength()); 9663 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 9664 getLocationOfByte(Amt.getStart()), 9665 /*IsStringLocation*/true, R, 9666 FixItHint::CreateRemoval(R)); 9667 } 9668 } 9669 9670 if (!FS.consumesDataArgument()) { 9671 // FIXME: Technically specifying a precision or field width here 9672 // makes no sense. Worth issuing a warning at some point. 9673 return true; 9674 } 9675 9676 // Consume the argument. 9677 unsigned argIndex = FS.getArgIndex(); 9678 if (argIndex < NumDataArgs) { 9679 // The check to see if the argIndex is valid will come later. 9680 // We set the bit here because we may exit early from this 9681 // function if we encounter some other error. 9682 CoveredArgs.set(argIndex); 9683 } 9684 9685 // Check the length modifier is valid with the given conversion specifier. 9686 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 9687 S.getLangOpts())) 9688 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9689 diag::warn_format_nonsensical_length); 9690 else if (!FS.hasStandardLengthModifier()) 9691 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 9692 else if (!FS.hasStandardLengthConversionCombination()) 9693 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9694 diag::warn_format_non_standard_conversion_spec); 9695 9696 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 9697 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 9698 9699 // The remaining checks depend on the data arguments. 9700 if (HasVAListArg) 9701 return true; 9702 9703 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 9704 return false; 9705 9706 // Check that the argument type matches the format specifier. 9707 const Expr *Ex = getDataArg(argIndex); 9708 if (!Ex) 9709 return true; 9710 9711 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 9712 9713 if (!AT.isValid()) { 9714 return true; 9715 } 9716 9717 analyze_format_string::ArgType::MatchKind Match = 9718 AT.matchesType(S.Context, Ex->getType()); 9719 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 9720 if (Match == analyze_format_string::ArgType::Match) 9721 return true; 9722 9723 ScanfSpecifier fixedFS = FS; 9724 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 9725 S.getLangOpts(), S.Context); 9726 9727 unsigned Diag = 9728 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 9729 : diag::warn_format_conversion_argument_type_mismatch; 9730 9731 if (Success) { 9732 // Get the fix string from the fixed format specifier. 9733 SmallString<128> buf; 9734 llvm::raw_svector_ostream os(buf); 9735 fixedFS.toString(os); 9736 9737 EmitFormatDiagnostic( 9738 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 9739 << Ex->getType() << false << Ex->getSourceRange(), 9740 Ex->getBeginLoc(), 9741 /*IsStringLocation*/ false, 9742 getSpecifierRange(startSpecifier, specifierLen), 9743 FixItHint::CreateReplacement( 9744 getSpecifierRange(startSpecifier, specifierLen), os.str())); 9745 } else { 9746 EmitFormatDiagnostic(S.PDiag(Diag) 9747 << AT.getRepresentativeTypeName(S.Context) 9748 << Ex->getType() << false << Ex->getSourceRange(), 9749 Ex->getBeginLoc(), 9750 /*IsStringLocation*/ false, 9751 getSpecifierRange(startSpecifier, specifierLen)); 9752 } 9753 9754 return true; 9755 } 9756 9757 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 9758 const Expr *OrigFormatExpr, 9759 ArrayRef<const Expr *> Args, 9760 bool HasVAListArg, unsigned format_idx, 9761 unsigned firstDataArg, 9762 Sema::FormatStringType Type, 9763 bool inFunctionCall, 9764 Sema::VariadicCallType CallType, 9765 llvm::SmallBitVector &CheckedVarArgs, 9766 UncoveredArgHandler &UncoveredArg, 9767 bool IgnoreStringsWithoutSpecifiers) { 9768 // CHECK: is the format string a wide literal? 9769 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 9770 CheckFormatHandler::EmitFormatDiagnostic( 9771 S, inFunctionCall, Args[format_idx], 9772 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 9773 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9774 return; 9775 } 9776 9777 // Str - The format string. NOTE: this is NOT null-terminated! 9778 StringRef StrRef = FExpr->getString(); 9779 const char *Str = StrRef.data(); 9780 // Account for cases where the string literal is truncated in a declaration. 9781 const ConstantArrayType *T = 9782 S.Context.getAsConstantArrayType(FExpr->getType()); 9783 assert(T && "String literal not of constant array type!"); 9784 size_t TypeSize = T->getSize().getZExtValue(); 9785 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9786 const unsigned numDataArgs = Args.size() - firstDataArg; 9787 9788 if (IgnoreStringsWithoutSpecifiers && 9789 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 9790 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 9791 return; 9792 9793 // Emit a warning if the string literal is truncated and does not contain an 9794 // embedded null character. 9795 if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) { 9796 CheckFormatHandler::EmitFormatDiagnostic( 9797 S, inFunctionCall, Args[format_idx], 9798 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 9799 FExpr->getBeginLoc(), 9800 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 9801 return; 9802 } 9803 9804 // CHECK: empty format string? 9805 if (StrLen == 0 && numDataArgs > 0) { 9806 CheckFormatHandler::EmitFormatDiagnostic( 9807 S, inFunctionCall, Args[format_idx], 9808 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 9809 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9810 return; 9811 } 9812 9813 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 9814 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 9815 Type == Sema::FST_OSTrace) { 9816 CheckPrintfHandler H( 9817 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 9818 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 9819 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 9820 CheckedVarArgs, UncoveredArg); 9821 9822 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 9823 S.getLangOpts(), 9824 S.Context.getTargetInfo(), 9825 Type == Sema::FST_FreeBSDKPrintf)) 9826 H.DoneProcessing(); 9827 } else if (Type == Sema::FST_Scanf) { 9828 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 9829 numDataArgs, Str, HasVAListArg, Args, format_idx, 9830 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 9831 9832 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 9833 S.getLangOpts(), 9834 S.Context.getTargetInfo())) 9835 H.DoneProcessing(); 9836 } // TODO: handle other formats 9837 } 9838 9839 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 9840 // Str - The format string. NOTE: this is NOT null-terminated! 9841 StringRef StrRef = FExpr->getString(); 9842 const char *Str = StrRef.data(); 9843 // Account for cases where the string literal is truncated in a declaration. 9844 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 9845 assert(T && "String literal not of constant array type!"); 9846 size_t TypeSize = T->getSize().getZExtValue(); 9847 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9848 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 9849 getLangOpts(), 9850 Context.getTargetInfo()); 9851 } 9852 9853 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 9854 9855 // Returns the related absolute value function that is larger, of 0 if one 9856 // does not exist. 9857 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 9858 switch (AbsFunction) { 9859 default: 9860 return 0; 9861 9862 case Builtin::BI__builtin_abs: 9863 return Builtin::BI__builtin_labs; 9864 case Builtin::BI__builtin_labs: 9865 return Builtin::BI__builtin_llabs; 9866 case Builtin::BI__builtin_llabs: 9867 return 0; 9868 9869 case Builtin::BI__builtin_fabsf: 9870 return Builtin::BI__builtin_fabs; 9871 case Builtin::BI__builtin_fabs: 9872 return Builtin::BI__builtin_fabsl; 9873 case Builtin::BI__builtin_fabsl: 9874 return 0; 9875 9876 case Builtin::BI__builtin_cabsf: 9877 return Builtin::BI__builtin_cabs; 9878 case Builtin::BI__builtin_cabs: 9879 return Builtin::BI__builtin_cabsl; 9880 case Builtin::BI__builtin_cabsl: 9881 return 0; 9882 9883 case Builtin::BIabs: 9884 return Builtin::BIlabs; 9885 case Builtin::BIlabs: 9886 return Builtin::BIllabs; 9887 case Builtin::BIllabs: 9888 return 0; 9889 9890 case Builtin::BIfabsf: 9891 return Builtin::BIfabs; 9892 case Builtin::BIfabs: 9893 return Builtin::BIfabsl; 9894 case Builtin::BIfabsl: 9895 return 0; 9896 9897 case Builtin::BIcabsf: 9898 return Builtin::BIcabs; 9899 case Builtin::BIcabs: 9900 return Builtin::BIcabsl; 9901 case Builtin::BIcabsl: 9902 return 0; 9903 } 9904 } 9905 9906 // Returns the argument type of the absolute value function. 9907 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 9908 unsigned AbsType) { 9909 if (AbsType == 0) 9910 return QualType(); 9911 9912 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 9913 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 9914 if (Error != ASTContext::GE_None) 9915 return QualType(); 9916 9917 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 9918 if (!FT) 9919 return QualType(); 9920 9921 if (FT->getNumParams() != 1) 9922 return QualType(); 9923 9924 return FT->getParamType(0); 9925 } 9926 9927 // Returns the best absolute value function, or zero, based on type and 9928 // current absolute value function. 9929 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 9930 unsigned AbsFunctionKind) { 9931 unsigned BestKind = 0; 9932 uint64_t ArgSize = Context.getTypeSize(ArgType); 9933 for (unsigned Kind = AbsFunctionKind; Kind != 0; 9934 Kind = getLargerAbsoluteValueFunction(Kind)) { 9935 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 9936 if (Context.getTypeSize(ParamType) >= ArgSize) { 9937 if (BestKind == 0) 9938 BestKind = Kind; 9939 else if (Context.hasSameType(ParamType, ArgType)) { 9940 BestKind = Kind; 9941 break; 9942 } 9943 } 9944 } 9945 return BestKind; 9946 } 9947 9948 enum AbsoluteValueKind { 9949 AVK_Integer, 9950 AVK_Floating, 9951 AVK_Complex 9952 }; 9953 9954 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 9955 if (T->isIntegralOrEnumerationType()) 9956 return AVK_Integer; 9957 if (T->isRealFloatingType()) 9958 return AVK_Floating; 9959 if (T->isAnyComplexType()) 9960 return AVK_Complex; 9961 9962 llvm_unreachable("Type not integer, floating, or complex"); 9963 } 9964 9965 // Changes the absolute value function to a different type. Preserves whether 9966 // the function is a builtin. 9967 static unsigned changeAbsFunction(unsigned AbsKind, 9968 AbsoluteValueKind ValueKind) { 9969 switch (ValueKind) { 9970 case AVK_Integer: 9971 switch (AbsKind) { 9972 default: 9973 return 0; 9974 case Builtin::BI__builtin_fabsf: 9975 case Builtin::BI__builtin_fabs: 9976 case Builtin::BI__builtin_fabsl: 9977 case Builtin::BI__builtin_cabsf: 9978 case Builtin::BI__builtin_cabs: 9979 case Builtin::BI__builtin_cabsl: 9980 return Builtin::BI__builtin_abs; 9981 case Builtin::BIfabsf: 9982 case Builtin::BIfabs: 9983 case Builtin::BIfabsl: 9984 case Builtin::BIcabsf: 9985 case Builtin::BIcabs: 9986 case Builtin::BIcabsl: 9987 return Builtin::BIabs; 9988 } 9989 case AVK_Floating: 9990 switch (AbsKind) { 9991 default: 9992 return 0; 9993 case Builtin::BI__builtin_abs: 9994 case Builtin::BI__builtin_labs: 9995 case Builtin::BI__builtin_llabs: 9996 case Builtin::BI__builtin_cabsf: 9997 case Builtin::BI__builtin_cabs: 9998 case Builtin::BI__builtin_cabsl: 9999 return Builtin::BI__builtin_fabsf; 10000 case Builtin::BIabs: 10001 case Builtin::BIlabs: 10002 case Builtin::BIllabs: 10003 case Builtin::BIcabsf: 10004 case Builtin::BIcabs: 10005 case Builtin::BIcabsl: 10006 return Builtin::BIfabsf; 10007 } 10008 case AVK_Complex: 10009 switch (AbsKind) { 10010 default: 10011 return 0; 10012 case Builtin::BI__builtin_abs: 10013 case Builtin::BI__builtin_labs: 10014 case Builtin::BI__builtin_llabs: 10015 case Builtin::BI__builtin_fabsf: 10016 case Builtin::BI__builtin_fabs: 10017 case Builtin::BI__builtin_fabsl: 10018 return Builtin::BI__builtin_cabsf; 10019 case Builtin::BIabs: 10020 case Builtin::BIlabs: 10021 case Builtin::BIllabs: 10022 case Builtin::BIfabsf: 10023 case Builtin::BIfabs: 10024 case Builtin::BIfabsl: 10025 return Builtin::BIcabsf; 10026 } 10027 } 10028 llvm_unreachable("Unable to convert function"); 10029 } 10030 10031 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 10032 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 10033 if (!FnInfo) 10034 return 0; 10035 10036 switch (FDecl->getBuiltinID()) { 10037 default: 10038 return 0; 10039 case Builtin::BI__builtin_abs: 10040 case Builtin::BI__builtin_fabs: 10041 case Builtin::BI__builtin_fabsf: 10042 case Builtin::BI__builtin_fabsl: 10043 case Builtin::BI__builtin_labs: 10044 case Builtin::BI__builtin_llabs: 10045 case Builtin::BI__builtin_cabs: 10046 case Builtin::BI__builtin_cabsf: 10047 case Builtin::BI__builtin_cabsl: 10048 case Builtin::BIabs: 10049 case Builtin::BIlabs: 10050 case Builtin::BIllabs: 10051 case Builtin::BIfabs: 10052 case Builtin::BIfabsf: 10053 case Builtin::BIfabsl: 10054 case Builtin::BIcabs: 10055 case Builtin::BIcabsf: 10056 case Builtin::BIcabsl: 10057 return FDecl->getBuiltinID(); 10058 } 10059 llvm_unreachable("Unknown Builtin type"); 10060 } 10061 10062 // If the replacement is valid, emit a note with replacement function. 10063 // Additionally, suggest including the proper header if not already included. 10064 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 10065 unsigned AbsKind, QualType ArgType) { 10066 bool EmitHeaderHint = true; 10067 const char *HeaderName = nullptr; 10068 const char *FunctionName = nullptr; 10069 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 10070 FunctionName = "std::abs"; 10071 if (ArgType->isIntegralOrEnumerationType()) { 10072 HeaderName = "cstdlib"; 10073 } else if (ArgType->isRealFloatingType()) { 10074 HeaderName = "cmath"; 10075 } else { 10076 llvm_unreachable("Invalid Type"); 10077 } 10078 10079 // Lookup all std::abs 10080 if (NamespaceDecl *Std = S.getStdNamespace()) { 10081 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 10082 R.suppressDiagnostics(); 10083 S.LookupQualifiedName(R, Std); 10084 10085 for (const auto *I : R) { 10086 const FunctionDecl *FDecl = nullptr; 10087 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 10088 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 10089 } else { 10090 FDecl = dyn_cast<FunctionDecl>(I); 10091 } 10092 if (!FDecl) 10093 continue; 10094 10095 // Found std::abs(), check that they are the right ones. 10096 if (FDecl->getNumParams() != 1) 10097 continue; 10098 10099 // Check that the parameter type can handle the argument. 10100 QualType ParamType = FDecl->getParamDecl(0)->getType(); 10101 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 10102 S.Context.getTypeSize(ArgType) <= 10103 S.Context.getTypeSize(ParamType)) { 10104 // Found a function, don't need the header hint. 10105 EmitHeaderHint = false; 10106 break; 10107 } 10108 } 10109 } 10110 } else { 10111 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 10112 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 10113 10114 if (HeaderName) { 10115 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 10116 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 10117 R.suppressDiagnostics(); 10118 S.LookupName(R, S.getCurScope()); 10119 10120 if (R.isSingleResult()) { 10121 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 10122 if (FD && FD->getBuiltinID() == AbsKind) { 10123 EmitHeaderHint = false; 10124 } else { 10125 return; 10126 } 10127 } else if (!R.empty()) { 10128 return; 10129 } 10130 } 10131 } 10132 10133 S.Diag(Loc, diag::note_replace_abs_function) 10134 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 10135 10136 if (!HeaderName) 10137 return; 10138 10139 if (!EmitHeaderHint) 10140 return; 10141 10142 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 10143 << FunctionName; 10144 } 10145 10146 template <std::size_t StrLen> 10147 static bool IsStdFunction(const FunctionDecl *FDecl, 10148 const char (&Str)[StrLen]) { 10149 if (!FDecl) 10150 return false; 10151 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 10152 return false; 10153 if (!FDecl->isInStdNamespace()) 10154 return false; 10155 10156 return true; 10157 } 10158 10159 // Warn when using the wrong abs() function. 10160 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 10161 const FunctionDecl *FDecl) { 10162 if (Call->getNumArgs() != 1) 10163 return; 10164 10165 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 10166 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 10167 if (AbsKind == 0 && !IsStdAbs) 10168 return; 10169 10170 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10171 QualType ParamType = Call->getArg(0)->getType(); 10172 10173 // Unsigned types cannot be negative. Suggest removing the absolute value 10174 // function call. 10175 if (ArgType->isUnsignedIntegerType()) { 10176 const char *FunctionName = 10177 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 10178 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 10179 Diag(Call->getExprLoc(), diag::note_remove_abs) 10180 << FunctionName 10181 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 10182 return; 10183 } 10184 10185 // Taking the absolute value of a pointer is very suspicious, they probably 10186 // wanted to index into an array, dereference a pointer, call a function, etc. 10187 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 10188 unsigned DiagType = 0; 10189 if (ArgType->isFunctionType()) 10190 DiagType = 1; 10191 else if (ArgType->isArrayType()) 10192 DiagType = 2; 10193 10194 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 10195 return; 10196 } 10197 10198 // std::abs has overloads which prevent most of the absolute value problems 10199 // from occurring. 10200 if (IsStdAbs) 10201 return; 10202 10203 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 10204 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 10205 10206 // The argument and parameter are the same kind. Check if they are the right 10207 // size. 10208 if (ArgValueKind == ParamValueKind) { 10209 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 10210 return; 10211 10212 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 10213 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 10214 << FDecl << ArgType << ParamType; 10215 10216 if (NewAbsKind == 0) 10217 return; 10218 10219 emitReplacement(*this, Call->getExprLoc(), 10220 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 10221 return; 10222 } 10223 10224 // ArgValueKind != ParamValueKind 10225 // The wrong type of absolute value function was used. Attempt to find the 10226 // proper one. 10227 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 10228 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 10229 if (NewAbsKind == 0) 10230 return; 10231 10232 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 10233 << FDecl << ParamValueKind << ArgValueKind; 10234 10235 emitReplacement(*this, Call->getExprLoc(), 10236 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 10237 } 10238 10239 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 10240 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 10241 const FunctionDecl *FDecl) { 10242 if (!Call || !FDecl) return; 10243 10244 // Ignore template specializations and macros. 10245 if (inTemplateInstantiation()) return; 10246 if (Call->getExprLoc().isMacroID()) return; 10247 10248 // Only care about the one template argument, two function parameter std::max 10249 if (Call->getNumArgs() != 2) return; 10250 if (!IsStdFunction(FDecl, "max")) return; 10251 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 10252 if (!ArgList) return; 10253 if (ArgList->size() != 1) return; 10254 10255 // Check that template type argument is unsigned integer. 10256 const auto& TA = ArgList->get(0); 10257 if (TA.getKind() != TemplateArgument::Type) return; 10258 QualType ArgType = TA.getAsType(); 10259 if (!ArgType->isUnsignedIntegerType()) return; 10260 10261 // See if either argument is a literal zero. 10262 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 10263 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 10264 if (!MTE) return false; 10265 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 10266 if (!Num) return false; 10267 if (Num->getValue() != 0) return false; 10268 return true; 10269 }; 10270 10271 const Expr *FirstArg = Call->getArg(0); 10272 const Expr *SecondArg = Call->getArg(1); 10273 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 10274 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 10275 10276 // Only warn when exactly one argument is zero. 10277 if (IsFirstArgZero == IsSecondArgZero) return; 10278 10279 SourceRange FirstRange = FirstArg->getSourceRange(); 10280 SourceRange SecondRange = SecondArg->getSourceRange(); 10281 10282 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 10283 10284 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 10285 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 10286 10287 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 10288 SourceRange RemovalRange; 10289 if (IsFirstArgZero) { 10290 RemovalRange = SourceRange(FirstRange.getBegin(), 10291 SecondRange.getBegin().getLocWithOffset(-1)); 10292 } else { 10293 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 10294 SecondRange.getEnd()); 10295 } 10296 10297 Diag(Call->getExprLoc(), diag::note_remove_max_call) 10298 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 10299 << FixItHint::CreateRemoval(RemovalRange); 10300 } 10301 10302 //===--- CHECK: Standard memory functions ---------------------------------===// 10303 10304 /// Takes the expression passed to the size_t parameter of functions 10305 /// such as memcmp, strncat, etc and warns if it's a comparison. 10306 /// 10307 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 10308 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 10309 IdentifierInfo *FnName, 10310 SourceLocation FnLoc, 10311 SourceLocation RParenLoc) { 10312 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 10313 if (!Size) 10314 return false; 10315 10316 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 10317 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 10318 return false; 10319 10320 SourceRange SizeRange = Size->getSourceRange(); 10321 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 10322 << SizeRange << FnName; 10323 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 10324 << FnName 10325 << FixItHint::CreateInsertion( 10326 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 10327 << FixItHint::CreateRemoval(RParenLoc); 10328 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 10329 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 10330 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 10331 ")"); 10332 10333 return true; 10334 } 10335 10336 /// Determine whether the given type is or contains a dynamic class type 10337 /// (e.g., whether it has a vtable). 10338 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 10339 bool &IsContained) { 10340 // Look through array types while ignoring qualifiers. 10341 const Type *Ty = T->getBaseElementTypeUnsafe(); 10342 IsContained = false; 10343 10344 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 10345 RD = RD ? RD->getDefinition() : nullptr; 10346 if (!RD || RD->isInvalidDecl()) 10347 return nullptr; 10348 10349 if (RD->isDynamicClass()) 10350 return RD; 10351 10352 // Check all the fields. If any bases were dynamic, the class is dynamic. 10353 // It's impossible for a class to transitively contain itself by value, so 10354 // infinite recursion is impossible. 10355 for (auto *FD : RD->fields()) { 10356 bool SubContained; 10357 if (const CXXRecordDecl *ContainedRD = 10358 getContainedDynamicClass(FD->getType(), SubContained)) { 10359 IsContained = true; 10360 return ContainedRD; 10361 } 10362 } 10363 10364 return nullptr; 10365 } 10366 10367 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 10368 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 10369 if (Unary->getKind() == UETT_SizeOf) 10370 return Unary; 10371 return nullptr; 10372 } 10373 10374 /// If E is a sizeof expression, returns its argument expression, 10375 /// otherwise returns NULL. 10376 static const Expr *getSizeOfExprArg(const Expr *E) { 10377 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10378 if (!SizeOf->isArgumentType()) 10379 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 10380 return nullptr; 10381 } 10382 10383 /// If E is a sizeof expression, returns its argument type. 10384 static QualType getSizeOfArgType(const Expr *E) { 10385 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10386 return SizeOf->getTypeOfArgument(); 10387 return QualType(); 10388 } 10389 10390 namespace { 10391 10392 struct SearchNonTrivialToInitializeField 10393 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 10394 using Super = 10395 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 10396 10397 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 10398 10399 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 10400 SourceLocation SL) { 10401 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10402 asDerived().visitArray(PDIK, AT, SL); 10403 return; 10404 } 10405 10406 Super::visitWithKind(PDIK, FT, SL); 10407 } 10408 10409 void visitARCStrong(QualType FT, SourceLocation SL) { 10410 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10411 } 10412 void visitARCWeak(QualType FT, SourceLocation SL) { 10413 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10414 } 10415 void visitStruct(QualType FT, SourceLocation SL) { 10416 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10417 visit(FD->getType(), FD->getLocation()); 10418 } 10419 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 10420 const ArrayType *AT, SourceLocation SL) { 10421 visit(getContext().getBaseElementType(AT), SL); 10422 } 10423 void visitTrivial(QualType FT, SourceLocation SL) {} 10424 10425 static void diag(QualType RT, const Expr *E, Sema &S) { 10426 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 10427 } 10428 10429 ASTContext &getContext() { return S.getASTContext(); } 10430 10431 const Expr *E; 10432 Sema &S; 10433 }; 10434 10435 struct SearchNonTrivialToCopyField 10436 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 10437 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 10438 10439 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 10440 10441 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 10442 SourceLocation SL) { 10443 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10444 asDerived().visitArray(PCK, AT, SL); 10445 return; 10446 } 10447 10448 Super::visitWithKind(PCK, FT, SL); 10449 } 10450 10451 void visitARCStrong(QualType FT, SourceLocation SL) { 10452 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10453 } 10454 void visitARCWeak(QualType FT, SourceLocation SL) { 10455 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10456 } 10457 void visitStruct(QualType FT, SourceLocation SL) { 10458 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10459 visit(FD->getType(), FD->getLocation()); 10460 } 10461 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 10462 SourceLocation SL) { 10463 visit(getContext().getBaseElementType(AT), SL); 10464 } 10465 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 10466 SourceLocation SL) {} 10467 void visitTrivial(QualType FT, SourceLocation SL) {} 10468 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 10469 10470 static void diag(QualType RT, const Expr *E, Sema &S) { 10471 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 10472 } 10473 10474 ASTContext &getContext() { return S.getASTContext(); } 10475 10476 const Expr *E; 10477 Sema &S; 10478 }; 10479 10480 } 10481 10482 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 10483 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 10484 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 10485 10486 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 10487 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 10488 return false; 10489 10490 return doesExprLikelyComputeSize(BO->getLHS()) || 10491 doesExprLikelyComputeSize(BO->getRHS()); 10492 } 10493 10494 return getAsSizeOfExpr(SizeofExpr) != nullptr; 10495 } 10496 10497 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 10498 /// 10499 /// \code 10500 /// #define MACRO 0 10501 /// foo(MACRO); 10502 /// foo(0); 10503 /// \endcode 10504 /// 10505 /// This should return true for the first call to foo, but not for the second 10506 /// (regardless of whether foo is a macro or function). 10507 static bool isArgumentExpandedFromMacro(SourceManager &SM, 10508 SourceLocation CallLoc, 10509 SourceLocation ArgLoc) { 10510 if (!CallLoc.isMacroID()) 10511 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 10512 10513 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 10514 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 10515 } 10516 10517 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 10518 /// last two arguments transposed. 10519 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 10520 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 10521 return; 10522 10523 const Expr *SizeArg = 10524 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 10525 10526 auto isLiteralZero = [](const Expr *E) { 10527 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 10528 }; 10529 10530 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 10531 SourceLocation CallLoc = Call->getRParenLoc(); 10532 SourceManager &SM = S.getSourceManager(); 10533 if (isLiteralZero(SizeArg) && 10534 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 10535 10536 SourceLocation DiagLoc = SizeArg->getExprLoc(); 10537 10538 // Some platforms #define bzero to __builtin_memset. See if this is the 10539 // case, and if so, emit a better diagnostic. 10540 if (BId == Builtin::BIbzero || 10541 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 10542 CallLoc, SM, S.getLangOpts()) == "bzero")) { 10543 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 10544 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 10545 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 10546 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 10547 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 10548 } 10549 return; 10550 } 10551 10552 // If the second argument to a memset is a sizeof expression and the third 10553 // isn't, this is also likely an error. This should catch 10554 // 'memset(buf, sizeof(buf), 0xff)'. 10555 if (BId == Builtin::BImemset && 10556 doesExprLikelyComputeSize(Call->getArg(1)) && 10557 !doesExprLikelyComputeSize(Call->getArg(2))) { 10558 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 10559 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 10560 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 10561 return; 10562 } 10563 } 10564 10565 /// Check for dangerous or invalid arguments to memset(). 10566 /// 10567 /// This issues warnings on known problematic, dangerous or unspecified 10568 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 10569 /// function calls. 10570 /// 10571 /// \param Call The call expression to diagnose. 10572 void Sema::CheckMemaccessArguments(const CallExpr *Call, 10573 unsigned BId, 10574 IdentifierInfo *FnName) { 10575 assert(BId != 0); 10576 10577 // It is possible to have a non-standard definition of memset. Validate 10578 // we have enough arguments, and if not, abort further checking. 10579 unsigned ExpectedNumArgs = 10580 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 10581 if (Call->getNumArgs() < ExpectedNumArgs) 10582 return; 10583 10584 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 10585 BId == Builtin::BIstrndup ? 1 : 2); 10586 unsigned LenArg = 10587 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 10588 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 10589 10590 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 10591 Call->getBeginLoc(), Call->getRParenLoc())) 10592 return; 10593 10594 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 10595 CheckMemaccessSize(*this, BId, Call); 10596 10597 // We have special checking when the length is a sizeof expression. 10598 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 10599 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 10600 llvm::FoldingSetNodeID SizeOfArgID; 10601 10602 // Although widely used, 'bzero' is not a standard function. Be more strict 10603 // with the argument types before allowing diagnostics and only allow the 10604 // form bzero(ptr, sizeof(...)). 10605 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10606 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 10607 return; 10608 10609 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 10610 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 10611 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 10612 10613 QualType DestTy = Dest->getType(); 10614 QualType PointeeTy; 10615 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 10616 PointeeTy = DestPtrTy->getPointeeType(); 10617 10618 // Never warn about void type pointers. This can be used to suppress 10619 // false positives. 10620 if (PointeeTy->isVoidType()) 10621 continue; 10622 10623 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 10624 // actually comparing the expressions for equality. Because computing the 10625 // expression IDs can be expensive, we only do this if the diagnostic is 10626 // enabled. 10627 if (SizeOfArg && 10628 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 10629 SizeOfArg->getExprLoc())) { 10630 // We only compute IDs for expressions if the warning is enabled, and 10631 // cache the sizeof arg's ID. 10632 if (SizeOfArgID == llvm::FoldingSetNodeID()) 10633 SizeOfArg->Profile(SizeOfArgID, Context, true); 10634 llvm::FoldingSetNodeID DestID; 10635 Dest->Profile(DestID, Context, true); 10636 if (DestID == SizeOfArgID) { 10637 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 10638 // over sizeof(src) as well. 10639 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 10640 StringRef ReadableName = FnName->getName(); 10641 10642 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 10643 if (UnaryOp->getOpcode() == UO_AddrOf) 10644 ActionIdx = 1; // If its an address-of operator, just remove it. 10645 if (!PointeeTy->isIncompleteType() && 10646 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 10647 ActionIdx = 2; // If the pointee's size is sizeof(char), 10648 // suggest an explicit length. 10649 10650 // If the function is defined as a builtin macro, do not show macro 10651 // expansion. 10652 SourceLocation SL = SizeOfArg->getExprLoc(); 10653 SourceRange DSR = Dest->getSourceRange(); 10654 SourceRange SSR = SizeOfArg->getSourceRange(); 10655 SourceManager &SM = getSourceManager(); 10656 10657 if (SM.isMacroArgExpansion(SL)) { 10658 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 10659 SL = SM.getSpellingLoc(SL); 10660 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 10661 SM.getSpellingLoc(DSR.getEnd())); 10662 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 10663 SM.getSpellingLoc(SSR.getEnd())); 10664 } 10665 10666 DiagRuntimeBehavior(SL, SizeOfArg, 10667 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 10668 << ReadableName 10669 << PointeeTy 10670 << DestTy 10671 << DSR 10672 << SSR); 10673 DiagRuntimeBehavior(SL, SizeOfArg, 10674 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 10675 << ActionIdx 10676 << SSR); 10677 10678 break; 10679 } 10680 } 10681 10682 // Also check for cases where the sizeof argument is the exact same 10683 // type as the memory argument, and where it points to a user-defined 10684 // record type. 10685 if (SizeOfArgTy != QualType()) { 10686 if (PointeeTy->isRecordType() && 10687 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 10688 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 10689 PDiag(diag::warn_sizeof_pointer_type_memaccess) 10690 << FnName << SizeOfArgTy << ArgIdx 10691 << PointeeTy << Dest->getSourceRange() 10692 << LenExpr->getSourceRange()); 10693 break; 10694 } 10695 } 10696 } else if (DestTy->isArrayType()) { 10697 PointeeTy = DestTy; 10698 } 10699 10700 if (PointeeTy == QualType()) 10701 continue; 10702 10703 // Always complain about dynamic classes. 10704 bool IsContained; 10705 if (const CXXRecordDecl *ContainedRD = 10706 getContainedDynamicClass(PointeeTy, IsContained)) { 10707 10708 unsigned OperationType = 0; 10709 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 10710 // "overwritten" if we're warning about the destination for any call 10711 // but memcmp; otherwise a verb appropriate to the call. 10712 if (ArgIdx != 0 || IsCmp) { 10713 if (BId == Builtin::BImemcpy) 10714 OperationType = 1; 10715 else if(BId == Builtin::BImemmove) 10716 OperationType = 2; 10717 else if (IsCmp) 10718 OperationType = 3; 10719 } 10720 10721 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10722 PDiag(diag::warn_dyn_class_memaccess) 10723 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 10724 << IsContained << ContainedRD << OperationType 10725 << Call->getCallee()->getSourceRange()); 10726 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 10727 BId != Builtin::BImemset) 10728 DiagRuntimeBehavior( 10729 Dest->getExprLoc(), Dest, 10730 PDiag(diag::warn_arc_object_memaccess) 10731 << ArgIdx << FnName << PointeeTy 10732 << Call->getCallee()->getSourceRange()); 10733 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 10734 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 10735 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 10736 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10737 PDiag(diag::warn_cstruct_memaccess) 10738 << ArgIdx << FnName << PointeeTy << 0); 10739 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 10740 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 10741 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 10742 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10743 PDiag(diag::warn_cstruct_memaccess) 10744 << ArgIdx << FnName << PointeeTy << 1); 10745 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 10746 } else { 10747 continue; 10748 } 10749 } else 10750 continue; 10751 10752 DiagRuntimeBehavior( 10753 Dest->getExprLoc(), Dest, 10754 PDiag(diag::note_bad_memaccess_silence) 10755 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 10756 break; 10757 } 10758 } 10759 10760 // A little helper routine: ignore addition and subtraction of integer literals. 10761 // This intentionally does not ignore all integer constant expressions because 10762 // we don't want to remove sizeof(). 10763 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 10764 Ex = Ex->IgnoreParenCasts(); 10765 10766 while (true) { 10767 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 10768 if (!BO || !BO->isAdditiveOp()) 10769 break; 10770 10771 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 10772 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 10773 10774 if (isa<IntegerLiteral>(RHS)) 10775 Ex = LHS; 10776 else if (isa<IntegerLiteral>(LHS)) 10777 Ex = RHS; 10778 else 10779 break; 10780 } 10781 10782 return Ex; 10783 } 10784 10785 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 10786 ASTContext &Context) { 10787 // Only handle constant-sized or VLAs, but not flexible members. 10788 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 10789 // Only issue the FIXIT for arrays of size > 1. 10790 if (CAT->getSize().getSExtValue() <= 1) 10791 return false; 10792 } else if (!Ty->isVariableArrayType()) { 10793 return false; 10794 } 10795 return true; 10796 } 10797 10798 // Warn if the user has made the 'size' argument to strlcpy or strlcat 10799 // be the size of the source, instead of the destination. 10800 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 10801 IdentifierInfo *FnName) { 10802 10803 // Don't crash if the user has the wrong number of arguments 10804 unsigned NumArgs = Call->getNumArgs(); 10805 if ((NumArgs != 3) && (NumArgs != 4)) 10806 return; 10807 10808 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 10809 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 10810 const Expr *CompareWithSrc = nullptr; 10811 10812 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 10813 Call->getBeginLoc(), Call->getRParenLoc())) 10814 return; 10815 10816 // Look for 'strlcpy(dst, x, sizeof(x))' 10817 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 10818 CompareWithSrc = Ex; 10819 else { 10820 // Look for 'strlcpy(dst, x, strlen(x))' 10821 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 10822 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 10823 SizeCall->getNumArgs() == 1) 10824 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 10825 } 10826 } 10827 10828 if (!CompareWithSrc) 10829 return; 10830 10831 // Determine if the argument to sizeof/strlen is equal to the source 10832 // argument. In principle there's all kinds of things you could do 10833 // here, for instance creating an == expression and evaluating it with 10834 // EvaluateAsBooleanCondition, but this uses a more direct technique: 10835 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 10836 if (!SrcArgDRE) 10837 return; 10838 10839 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 10840 if (!CompareWithSrcDRE || 10841 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 10842 return; 10843 10844 const Expr *OriginalSizeArg = Call->getArg(2); 10845 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 10846 << OriginalSizeArg->getSourceRange() << FnName; 10847 10848 // Output a FIXIT hint if the destination is an array (rather than a 10849 // pointer to an array). This could be enhanced to handle some 10850 // pointers if we know the actual size, like if DstArg is 'array+2' 10851 // we could say 'sizeof(array)-2'. 10852 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 10853 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 10854 return; 10855 10856 SmallString<128> sizeString; 10857 llvm::raw_svector_ostream OS(sizeString); 10858 OS << "sizeof("; 10859 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10860 OS << ")"; 10861 10862 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 10863 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 10864 OS.str()); 10865 } 10866 10867 /// Check if two expressions refer to the same declaration. 10868 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 10869 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 10870 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 10871 return D1->getDecl() == D2->getDecl(); 10872 return false; 10873 } 10874 10875 static const Expr *getStrlenExprArg(const Expr *E) { 10876 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 10877 const FunctionDecl *FD = CE->getDirectCallee(); 10878 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 10879 return nullptr; 10880 return CE->getArg(0)->IgnoreParenCasts(); 10881 } 10882 return nullptr; 10883 } 10884 10885 // Warn on anti-patterns as the 'size' argument to strncat. 10886 // The correct size argument should look like following: 10887 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 10888 void Sema::CheckStrncatArguments(const CallExpr *CE, 10889 IdentifierInfo *FnName) { 10890 // Don't crash if the user has the wrong number of arguments. 10891 if (CE->getNumArgs() < 3) 10892 return; 10893 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 10894 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 10895 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 10896 10897 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 10898 CE->getRParenLoc())) 10899 return; 10900 10901 // Identify common expressions, which are wrongly used as the size argument 10902 // to strncat and may lead to buffer overflows. 10903 unsigned PatternType = 0; 10904 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 10905 // - sizeof(dst) 10906 if (referToTheSameDecl(SizeOfArg, DstArg)) 10907 PatternType = 1; 10908 // - sizeof(src) 10909 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 10910 PatternType = 2; 10911 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 10912 if (BE->getOpcode() == BO_Sub) { 10913 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 10914 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 10915 // - sizeof(dst) - strlen(dst) 10916 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 10917 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 10918 PatternType = 1; 10919 // - sizeof(src) - (anything) 10920 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 10921 PatternType = 2; 10922 } 10923 } 10924 10925 if (PatternType == 0) 10926 return; 10927 10928 // Generate the diagnostic. 10929 SourceLocation SL = LenArg->getBeginLoc(); 10930 SourceRange SR = LenArg->getSourceRange(); 10931 SourceManager &SM = getSourceManager(); 10932 10933 // If the function is defined as a builtin macro, do not show macro expansion. 10934 if (SM.isMacroArgExpansion(SL)) { 10935 SL = SM.getSpellingLoc(SL); 10936 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 10937 SM.getSpellingLoc(SR.getEnd())); 10938 } 10939 10940 // Check if the destination is an array (rather than a pointer to an array). 10941 QualType DstTy = DstArg->getType(); 10942 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 10943 Context); 10944 if (!isKnownSizeArray) { 10945 if (PatternType == 1) 10946 Diag(SL, diag::warn_strncat_wrong_size) << SR; 10947 else 10948 Diag(SL, diag::warn_strncat_src_size) << SR; 10949 return; 10950 } 10951 10952 if (PatternType == 1) 10953 Diag(SL, diag::warn_strncat_large_size) << SR; 10954 else 10955 Diag(SL, diag::warn_strncat_src_size) << SR; 10956 10957 SmallString<128> sizeString; 10958 llvm::raw_svector_ostream OS(sizeString); 10959 OS << "sizeof("; 10960 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10961 OS << ") - "; 10962 OS << "strlen("; 10963 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10964 OS << ") - 1"; 10965 10966 Diag(SL, diag::note_strncat_wrong_size) 10967 << FixItHint::CreateReplacement(SR, OS.str()); 10968 } 10969 10970 namespace { 10971 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10972 const UnaryOperator *UnaryExpr, const Decl *D) { 10973 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) { 10974 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10975 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); 10976 return; 10977 } 10978 } 10979 10980 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 10981 const UnaryOperator *UnaryExpr) { 10982 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) { 10983 const Decl *D = Lvalue->getDecl(); 10984 if (isa<DeclaratorDecl>(D)) 10985 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType()) 10986 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); 10987 } 10988 10989 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 10990 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 10991 Lvalue->getMemberDecl()); 10992 } 10993 10994 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, 10995 const UnaryOperator *UnaryExpr) { 10996 const auto *Lambda = dyn_cast<LambdaExpr>( 10997 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); 10998 if (!Lambda) 10999 return; 11000 11001 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) 11002 << CalleeName << 2 /*object: lambda expression*/; 11003 } 11004 11005 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 11006 const DeclRefExpr *Lvalue) { 11007 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 11008 if (Var == nullptr) 11009 return; 11010 11011 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 11012 << CalleeName << 0 /*object: */ << Var; 11013 } 11014 11015 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, 11016 const CastExpr *Cast) { 11017 SmallString<128> SizeString; 11018 llvm::raw_svector_ostream OS(SizeString); 11019 11020 clang::CastKind Kind = Cast->getCastKind(); 11021 if (Kind == clang::CK_BitCast && 11022 !Cast->getSubExpr()->getType()->isFunctionPointerType()) 11023 return; 11024 if (Kind == clang::CK_IntegralToPointer && 11025 !isa<IntegerLiteral>( 11026 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) 11027 return; 11028 11029 switch (Cast->getCastKind()) { 11030 case clang::CK_BitCast: 11031 case clang::CK_IntegralToPointer: 11032 case clang::CK_FunctionToPointerDecay: 11033 OS << '\''; 11034 Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); 11035 OS << '\''; 11036 break; 11037 default: 11038 return; 11039 } 11040 11041 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) 11042 << CalleeName << 0 /*object: */ << OS.str(); 11043 } 11044 } // namespace 11045 11046 /// Alerts the user that they are attempting to free a non-malloc'd object. 11047 void Sema::CheckFreeArguments(const CallExpr *E) { 11048 const std::string CalleeName = 11049 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 11050 11051 { // Prefer something that doesn't involve a cast to make things simpler. 11052 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 11053 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 11054 switch (UnaryExpr->getOpcode()) { 11055 case UnaryOperator::Opcode::UO_AddrOf: 11056 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 11057 case UnaryOperator::Opcode::UO_Plus: 11058 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); 11059 default: 11060 break; 11061 } 11062 11063 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 11064 if (Lvalue->getType()->isArrayType()) 11065 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 11066 11067 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) { 11068 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) 11069 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); 11070 return; 11071 } 11072 11073 if (isa<BlockExpr>(Arg)) { 11074 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) 11075 << CalleeName << 1 /*object: block*/; 11076 return; 11077 } 11078 } 11079 // Maybe the cast was important, check after the other cases. 11080 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0))) 11081 return CheckFreeArgumentsCast(*this, CalleeName, Cast); 11082 } 11083 11084 void 11085 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 11086 SourceLocation ReturnLoc, 11087 bool isObjCMethod, 11088 const AttrVec *Attrs, 11089 const FunctionDecl *FD) { 11090 // Check if the return value is null but should not be. 11091 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 11092 (!isObjCMethod && isNonNullType(Context, lhsType))) && 11093 CheckNonNullExpr(*this, RetValExp)) 11094 Diag(ReturnLoc, diag::warn_null_ret) 11095 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 11096 11097 // C++11 [basic.stc.dynamic.allocation]p4: 11098 // If an allocation function declared with a non-throwing 11099 // exception-specification fails to allocate storage, it shall return 11100 // a null pointer. Any other allocation function that fails to allocate 11101 // storage shall indicate failure only by throwing an exception [...] 11102 if (FD) { 11103 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 11104 if (Op == OO_New || Op == OO_Array_New) { 11105 const FunctionProtoType *Proto 11106 = FD->getType()->castAs<FunctionProtoType>(); 11107 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 11108 CheckNonNullExpr(*this, RetValExp)) 11109 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 11110 << FD << getLangOpts().CPlusPlus11; 11111 } 11112 } 11113 11114 // PPC MMA non-pointer types are not allowed as return type. Checking the type 11115 // here prevent the user from using a PPC MMA type as trailing return type. 11116 if (Context.getTargetInfo().getTriple().isPPC64()) 11117 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 11118 } 11119 11120 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 11121 11122 /// Check for comparisons of floating point operands using != and ==. 11123 /// Issue a warning if these are no self-comparisons, as they are not likely 11124 /// to do what the programmer intended. 11125 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 11126 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 11127 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 11128 11129 // Special case: check for x == x (which is OK). 11130 // Do not emit warnings for such cases. 11131 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 11132 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 11133 if (DRL->getDecl() == DRR->getDecl()) 11134 return; 11135 11136 // Special case: check for comparisons against literals that can be exactly 11137 // represented by APFloat. In such cases, do not emit a warning. This 11138 // is a heuristic: often comparison against such literals are used to 11139 // detect if a value in a variable has not changed. This clearly can 11140 // lead to false negatives. 11141 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 11142 if (FLL->isExact()) 11143 return; 11144 } else 11145 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 11146 if (FLR->isExact()) 11147 return; 11148 11149 // Check for comparisons with builtin types. 11150 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 11151 if (CL->getBuiltinCallee()) 11152 return; 11153 11154 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 11155 if (CR->getBuiltinCallee()) 11156 return; 11157 11158 // Emit the diagnostic. 11159 Diag(Loc, diag::warn_floatingpoint_eq) 11160 << LHS->getSourceRange() << RHS->getSourceRange(); 11161 } 11162 11163 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 11164 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 11165 11166 namespace { 11167 11168 /// Structure recording the 'active' range of an integer-valued 11169 /// expression. 11170 struct IntRange { 11171 /// The number of bits active in the int. Note that this includes exactly one 11172 /// sign bit if !NonNegative. 11173 unsigned Width; 11174 11175 /// True if the int is known not to have negative values. If so, all leading 11176 /// bits before Width are known zero, otherwise they are known to be the 11177 /// same as the MSB within Width. 11178 bool NonNegative; 11179 11180 IntRange(unsigned Width, bool NonNegative) 11181 : Width(Width), NonNegative(NonNegative) {} 11182 11183 /// Number of bits excluding the sign bit. 11184 unsigned valueBits() const { 11185 return NonNegative ? Width : Width - 1; 11186 } 11187 11188 /// Returns the range of the bool type. 11189 static IntRange forBoolType() { 11190 return IntRange(1, true); 11191 } 11192 11193 /// Returns the range of an opaque value of the given integral type. 11194 static IntRange forValueOfType(ASTContext &C, QualType T) { 11195 return forValueOfCanonicalType(C, 11196 T->getCanonicalTypeInternal().getTypePtr()); 11197 } 11198 11199 /// Returns the range of an opaque value of a canonical integral type. 11200 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 11201 assert(T->isCanonicalUnqualified()); 11202 11203 if (const VectorType *VT = dyn_cast<VectorType>(T)) 11204 T = VT->getElementType().getTypePtr(); 11205 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 11206 T = CT->getElementType().getTypePtr(); 11207 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 11208 T = AT->getValueType().getTypePtr(); 11209 11210 if (!C.getLangOpts().CPlusPlus) { 11211 // For enum types in C code, use the underlying datatype. 11212 if (const EnumType *ET = dyn_cast<EnumType>(T)) 11213 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 11214 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 11215 // For enum types in C++, use the known bit width of the enumerators. 11216 EnumDecl *Enum = ET->getDecl(); 11217 // In C++11, enums can have a fixed underlying type. Use this type to 11218 // compute the range. 11219 if (Enum->isFixed()) { 11220 return IntRange(C.getIntWidth(QualType(T, 0)), 11221 !ET->isSignedIntegerOrEnumerationType()); 11222 } 11223 11224 unsigned NumPositive = Enum->getNumPositiveBits(); 11225 unsigned NumNegative = Enum->getNumNegativeBits(); 11226 11227 if (NumNegative == 0) 11228 return IntRange(NumPositive, true/*NonNegative*/); 11229 else 11230 return IntRange(std::max(NumPositive + 1, NumNegative), 11231 false/*NonNegative*/); 11232 } 11233 11234 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 11235 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 11236 11237 const BuiltinType *BT = cast<BuiltinType>(T); 11238 assert(BT->isInteger()); 11239 11240 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 11241 } 11242 11243 /// Returns the "target" range of a canonical integral type, i.e. 11244 /// the range of values expressible in the type. 11245 /// 11246 /// This matches forValueOfCanonicalType except that enums have the 11247 /// full range of their type, not the range of their enumerators. 11248 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 11249 assert(T->isCanonicalUnqualified()); 11250 11251 if (const VectorType *VT = dyn_cast<VectorType>(T)) 11252 T = VT->getElementType().getTypePtr(); 11253 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 11254 T = CT->getElementType().getTypePtr(); 11255 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 11256 T = AT->getValueType().getTypePtr(); 11257 if (const EnumType *ET = dyn_cast<EnumType>(T)) 11258 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 11259 11260 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 11261 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 11262 11263 const BuiltinType *BT = cast<BuiltinType>(T); 11264 assert(BT->isInteger()); 11265 11266 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 11267 } 11268 11269 /// Returns the supremum of two ranges: i.e. their conservative merge. 11270 static IntRange join(IntRange L, IntRange R) { 11271 bool Unsigned = L.NonNegative && R.NonNegative; 11272 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 11273 L.NonNegative && R.NonNegative); 11274 } 11275 11276 /// Return the range of a bitwise-AND of the two ranges. 11277 static IntRange bit_and(IntRange L, IntRange R) { 11278 unsigned Bits = std::max(L.Width, R.Width); 11279 bool NonNegative = false; 11280 if (L.NonNegative) { 11281 Bits = std::min(Bits, L.Width); 11282 NonNegative = true; 11283 } 11284 if (R.NonNegative) { 11285 Bits = std::min(Bits, R.Width); 11286 NonNegative = true; 11287 } 11288 return IntRange(Bits, NonNegative); 11289 } 11290 11291 /// Return the range of a sum of the two ranges. 11292 static IntRange sum(IntRange L, IntRange R) { 11293 bool Unsigned = L.NonNegative && R.NonNegative; 11294 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 11295 Unsigned); 11296 } 11297 11298 /// Return the range of a difference of the two ranges. 11299 static IntRange difference(IntRange L, IntRange R) { 11300 // We need a 1-bit-wider range if: 11301 // 1) LHS can be negative: least value can be reduced. 11302 // 2) RHS can be negative: greatest value can be increased. 11303 bool CanWiden = !L.NonNegative || !R.NonNegative; 11304 bool Unsigned = L.NonNegative && R.Width == 0; 11305 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 11306 !Unsigned, 11307 Unsigned); 11308 } 11309 11310 /// Return the range of a product of the two ranges. 11311 static IntRange product(IntRange L, IntRange R) { 11312 // If both LHS and RHS can be negative, we can form 11313 // -2^L * -2^R = 2^(L + R) 11314 // which requires L + R + 1 value bits to represent. 11315 bool CanWiden = !L.NonNegative && !R.NonNegative; 11316 bool Unsigned = L.NonNegative && R.NonNegative; 11317 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 11318 Unsigned); 11319 } 11320 11321 /// Return the range of a remainder operation between the two ranges. 11322 static IntRange rem(IntRange L, IntRange R) { 11323 // The result of a remainder can't be larger than the result of 11324 // either side. The sign of the result is the sign of the LHS. 11325 bool Unsigned = L.NonNegative; 11326 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 11327 Unsigned); 11328 } 11329 }; 11330 11331 } // namespace 11332 11333 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 11334 unsigned MaxWidth) { 11335 if (value.isSigned() && value.isNegative()) 11336 return IntRange(value.getMinSignedBits(), false); 11337 11338 if (value.getBitWidth() > MaxWidth) 11339 value = value.trunc(MaxWidth); 11340 11341 // isNonNegative() just checks the sign bit without considering 11342 // signedness. 11343 return IntRange(value.getActiveBits(), true); 11344 } 11345 11346 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 11347 unsigned MaxWidth) { 11348 if (result.isInt()) 11349 return GetValueRange(C, result.getInt(), MaxWidth); 11350 11351 if (result.isVector()) { 11352 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 11353 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 11354 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 11355 R = IntRange::join(R, El); 11356 } 11357 return R; 11358 } 11359 11360 if (result.isComplexInt()) { 11361 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 11362 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 11363 return IntRange::join(R, I); 11364 } 11365 11366 // This can happen with lossless casts to intptr_t of "based" lvalues. 11367 // Assume it might use arbitrary bits. 11368 // FIXME: The only reason we need to pass the type in here is to get 11369 // the sign right on this one case. It would be nice if APValue 11370 // preserved this. 11371 assert(result.isLValue() || result.isAddrLabelDiff()); 11372 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 11373 } 11374 11375 static QualType GetExprType(const Expr *E) { 11376 QualType Ty = E->getType(); 11377 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 11378 Ty = AtomicRHS->getValueType(); 11379 return Ty; 11380 } 11381 11382 /// Pseudo-evaluate the given integer expression, estimating the 11383 /// range of values it might take. 11384 /// 11385 /// \param MaxWidth The width to which the value will be truncated. 11386 /// \param Approximate If \c true, return a likely range for the result: in 11387 /// particular, assume that arithmetic on narrower types doesn't leave 11388 /// those types. If \c false, return a range including all possible 11389 /// result values. 11390 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 11391 bool InConstantContext, bool Approximate) { 11392 E = E->IgnoreParens(); 11393 11394 // Try a full evaluation first. 11395 Expr::EvalResult result; 11396 if (E->EvaluateAsRValue(result, C, InConstantContext)) 11397 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 11398 11399 // I think we only want to look through implicit casts here; if the 11400 // user has an explicit widening cast, we should treat the value as 11401 // being of the new, wider type. 11402 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 11403 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 11404 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 11405 Approximate); 11406 11407 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 11408 11409 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 11410 CE->getCastKind() == CK_BooleanToSignedIntegral; 11411 11412 // Assume that non-integer casts can span the full range of the type. 11413 if (!isIntegerCast) 11414 return OutputTypeRange; 11415 11416 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 11417 std::min(MaxWidth, OutputTypeRange.Width), 11418 InConstantContext, Approximate); 11419 11420 // Bail out if the subexpr's range is as wide as the cast type. 11421 if (SubRange.Width >= OutputTypeRange.Width) 11422 return OutputTypeRange; 11423 11424 // Otherwise, we take the smaller width, and we're non-negative if 11425 // either the output type or the subexpr is. 11426 return IntRange(SubRange.Width, 11427 SubRange.NonNegative || OutputTypeRange.NonNegative); 11428 } 11429 11430 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11431 // If we can fold the condition, just take that operand. 11432 bool CondResult; 11433 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 11434 return GetExprRange(C, 11435 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 11436 MaxWidth, InConstantContext, Approximate); 11437 11438 // Otherwise, conservatively merge. 11439 // GetExprRange requires an integer expression, but a throw expression 11440 // results in a void type. 11441 Expr *E = CO->getTrueExpr(); 11442 IntRange L = E->getType()->isVoidType() 11443 ? IntRange{0, true} 11444 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11445 E = CO->getFalseExpr(); 11446 IntRange R = E->getType()->isVoidType() 11447 ? IntRange{0, true} 11448 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11449 return IntRange::join(L, R); 11450 } 11451 11452 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11453 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 11454 11455 switch (BO->getOpcode()) { 11456 case BO_Cmp: 11457 llvm_unreachable("builtin <=> should have class type"); 11458 11459 // Boolean-valued operations are single-bit and positive. 11460 case BO_LAnd: 11461 case BO_LOr: 11462 case BO_LT: 11463 case BO_GT: 11464 case BO_LE: 11465 case BO_GE: 11466 case BO_EQ: 11467 case BO_NE: 11468 return IntRange::forBoolType(); 11469 11470 // The type of the assignments is the type of the LHS, so the RHS 11471 // is not necessarily the same type. 11472 case BO_MulAssign: 11473 case BO_DivAssign: 11474 case BO_RemAssign: 11475 case BO_AddAssign: 11476 case BO_SubAssign: 11477 case BO_XorAssign: 11478 case BO_OrAssign: 11479 // TODO: bitfields? 11480 return IntRange::forValueOfType(C, GetExprType(E)); 11481 11482 // Simple assignments just pass through the RHS, which will have 11483 // been coerced to the LHS type. 11484 case BO_Assign: 11485 // TODO: bitfields? 11486 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11487 Approximate); 11488 11489 // Operations with opaque sources are black-listed. 11490 case BO_PtrMemD: 11491 case BO_PtrMemI: 11492 return IntRange::forValueOfType(C, GetExprType(E)); 11493 11494 // Bitwise-and uses the *infinum* of the two source ranges. 11495 case BO_And: 11496 case BO_AndAssign: 11497 Combine = IntRange::bit_and; 11498 break; 11499 11500 // Left shift gets black-listed based on a judgement call. 11501 case BO_Shl: 11502 // ...except that we want to treat '1 << (blah)' as logically 11503 // positive. It's an important idiom. 11504 if (IntegerLiteral *I 11505 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 11506 if (I->getValue() == 1) { 11507 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 11508 return IntRange(R.Width, /*NonNegative*/ true); 11509 } 11510 } 11511 LLVM_FALLTHROUGH; 11512 11513 case BO_ShlAssign: 11514 return IntRange::forValueOfType(C, GetExprType(E)); 11515 11516 // Right shift by a constant can narrow its left argument. 11517 case BO_Shr: 11518 case BO_ShrAssign: { 11519 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 11520 Approximate); 11521 11522 // If the shift amount is a positive constant, drop the width by 11523 // that much. 11524 if (Optional<llvm::APSInt> shift = 11525 BO->getRHS()->getIntegerConstantExpr(C)) { 11526 if (shift->isNonNegative()) { 11527 unsigned zext = shift->getZExtValue(); 11528 if (zext >= L.Width) 11529 L.Width = (L.NonNegative ? 0 : 1); 11530 else 11531 L.Width -= zext; 11532 } 11533 } 11534 11535 return L; 11536 } 11537 11538 // Comma acts as its right operand. 11539 case BO_Comma: 11540 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11541 Approximate); 11542 11543 case BO_Add: 11544 if (!Approximate) 11545 Combine = IntRange::sum; 11546 break; 11547 11548 case BO_Sub: 11549 if (BO->getLHS()->getType()->isPointerType()) 11550 return IntRange::forValueOfType(C, GetExprType(E)); 11551 if (!Approximate) 11552 Combine = IntRange::difference; 11553 break; 11554 11555 case BO_Mul: 11556 if (!Approximate) 11557 Combine = IntRange::product; 11558 break; 11559 11560 // The width of a division result is mostly determined by the size 11561 // of the LHS. 11562 case BO_Div: { 11563 // Don't 'pre-truncate' the operands. 11564 unsigned opWidth = C.getIntWidth(GetExprType(E)); 11565 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 11566 Approximate); 11567 11568 // If the divisor is constant, use that. 11569 if (Optional<llvm::APSInt> divisor = 11570 BO->getRHS()->getIntegerConstantExpr(C)) { 11571 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 11572 if (log2 >= L.Width) 11573 L.Width = (L.NonNegative ? 0 : 1); 11574 else 11575 L.Width = std::min(L.Width - log2, MaxWidth); 11576 return L; 11577 } 11578 11579 // Otherwise, just use the LHS's width. 11580 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 11581 // could be -1. 11582 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 11583 Approximate); 11584 return IntRange(L.Width, L.NonNegative && R.NonNegative); 11585 } 11586 11587 case BO_Rem: 11588 Combine = IntRange::rem; 11589 break; 11590 11591 // The default behavior is okay for these. 11592 case BO_Xor: 11593 case BO_Or: 11594 break; 11595 } 11596 11597 // Combine the two ranges, but limit the result to the type in which we 11598 // performed the computation. 11599 QualType T = GetExprType(E); 11600 unsigned opWidth = C.getIntWidth(T); 11601 IntRange L = 11602 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 11603 IntRange R = 11604 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 11605 IntRange C = Combine(L, R); 11606 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 11607 C.Width = std::min(C.Width, MaxWidth); 11608 return C; 11609 } 11610 11611 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 11612 switch (UO->getOpcode()) { 11613 // Boolean-valued operations are white-listed. 11614 case UO_LNot: 11615 return IntRange::forBoolType(); 11616 11617 // Operations with opaque sources are black-listed. 11618 case UO_Deref: 11619 case UO_AddrOf: // should be impossible 11620 return IntRange::forValueOfType(C, GetExprType(E)); 11621 11622 default: 11623 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 11624 Approximate); 11625 } 11626 } 11627 11628 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 11629 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 11630 Approximate); 11631 11632 if (const auto *BitField = E->getSourceBitField()) 11633 return IntRange(BitField->getBitWidthValue(C), 11634 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 11635 11636 return IntRange::forValueOfType(C, GetExprType(E)); 11637 } 11638 11639 static IntRange GetExprRange(ASTContext &C, const Expr *E, 11640 bool InConstantContext, bool Approximate) { 11641 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 11642 Approximate); 11643 } 11644 11645 /// Checks whether the given value, which currently has the given 11646 /// source semantics, has the same value when coerced through the 11647 /// target semantics. 11648 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 11649 const llvm::fltSemantics &Src, 11650 const llvm::fltSemantics &Tgt) { 11651 llvm::APFloat truncated = value; 11652 11653 bool ignored; 11654 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 11655 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 11656 11657 return truncated.bitwiseIsEqual(value); 11658 } 11659 11660 /// Checks whether the given value, which currently has the given 11661 /// source semantics, has the same value when coerced through the 11662 /// target semantics. 11663 /// 11664 /// The value might be a vector of floats (or a complex number). 11665 static bool IsSameFloatAfterCast(const APValue &value, 11666 const llvm::fltSemantics &Src, 11667 const llvm::fltSemantics &Tgt) { 11668 if (value.isFloat()) 11669 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 11670 11671 if (value.isVector()) { 11672 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 11673 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 11674 return false; 11675 return true; 11676 } 11677 11678 assert(value.isComplexFloat()); 11679 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 11680 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 11681 } 11682 11683 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 11684 bool IsListInit = false); 11685 11686 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 11687 // Suppress cases where we are comparing against an enum constant. 11688 if (const DeclRefExpr *DR = 11689 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 11690 if (isa<EnumConstantDecl>(DR->getDecl())) 11691 return true; 11692 11693 // Suppress cases where the value is expanded from a macro, unless that macro 11694 // is how a language represents a boolean literal. This is the case in both C 11695 // and Objective-C. 11696 SourceLocation BeginLoc = E->getBeginLoc(); 11697 if (BeginLoc.isMacroID()) { 11698 StringRef MacroName = Lexer::getImmediateMacroName( 11699 BeginLoc, S.getSourceManager(), S.getLangOpts()); 11700 return MacroName != "YES" && MacroName != "NO" && 11701 MacroName != "true" && MacroName != "false"; 11702 } 11703 11704 return false; 11705 } 11706 11707 static bool isKnownToHaveUnsignedValue(Expr *E) { 11708 return E->getType()->isIntegerType() && 11709 (!E->getType()->isSignedIntegerType() || 11710 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 11711 } 11712 11713 namespace { 11714 /// The promoted range of values of a type. In general this has the 11715 /// following structure: 11716 /// 11717 /// |-----------| . . . |-----------| 11718 /// ^ ^ ^ ^ 11719 /// Min HoleMin HoleMax Max 11720 /// 11721 /// ... where there is only a hole if a signed type is promoted to unsigned 11722 /// (in which case Min and Max are the smallest and largest representable 11723 /// values). 11724 struct PromotedRange { 11725 // Min, or HoleMax if there is a hole. 11726 llvm::APSInt PromotedMin; 11727 // Max, or HoleMin if there is a hole. 11728 llvm::APSInt PromotedMax; 11729 11730 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 11731 if (R.Width == 0) 11732 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 11733 else if (R.Width >= BitWidth && !Unsigned) { 11734 // Promotion made the type *narrower*. This happens when promoting 11735 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 11736 // Treat all values of 'signed int' as being in range for now. 11737 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 11738 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 11739 } else { 11740 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 11741 .extOrTrunc(BitWidth); 11742 PromotedMin.setIsUnsigned(Unsigned); 11743 11744 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 11745 .extOrTrunc(BitWidth); 11746 PromotedMax.setIsUnsigned(Unsigned); 11747 } 11748 } 11749 11750 // Determine whether this range is contiguous (has no hole). 11751 bool isContiguous() const { return PromotedMin <= PromotedMax; } 11752 11753 // Where a constant value is within the range. 11754 enum ComparisonResult { 11755 LT = 0x1, 11756 LE = 0x2, 11757 GT = 0x4, 11758 GE = 0x8, 11759 EQ = 0x10, 11760 NE = 0x20, 11761 InRangeFlag = 0x40, 11762 11763 Less = LE | LT | NE, 11764 Min = LE | InRangeFlag, 11765 InRange = InRangeFlag, 11766 Max = GE | InRangeFlag, 11767 Greater = GE | GT | NE, 11768 11769 OnlyValue = LE | GE | EQ | InRangeFlag, 11770 InHole = NE 11771 }; 11772 11773 ComparisonResult compare(const llvm::APSInt &Value) const { 11774 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 11775 Value.isUnsigned() == PromotedMin.isUnsigned()); 11776 if (!isContiguous()) { 11777 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 11778 if (Value.isMinValue()) return Min; 11779 if (Value.isMaxValue()) return Max; 11780 if (Value >= PromotedMin) return InRange; 11781 if (Value <= PromotedMax) return InRange; 11782 return InHole; 11783 } 11784 11785 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 11786 case -1: return Less; 11787 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 11788 case 1: 11789 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 11790 case -1: return InRange; 11791 case 0: return Max; 11792 case 1: return Greater; 11793 } 11794 } 11795 11796 llvm_unreachable("impossible compare result"); 11797 } 11798 11799 static llvm::Optional<StringRef> 11800 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 11801 if (Op == BO_Cmp) { 11802 ComparisonResult LTFlag = LT, GTFlag = GT; 11803 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 11804 11805 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 11806 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 11807 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 11808 return llvm::None; 11809 } 11810 11811 ComparisonResult TrueFlag, FalseFlag; 11812 if (Op == BO_EQ) { 11813 TrueFlag = EQ; 11814 FalseFlag = NE; 11815 } else if (Op == BO_NE) { 11816 TrueFlag = NE; 11817 FalseFlag = EQ; 11818 } else { 11819 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 11820 TrueFlag = LT; 11821 FalseFlag = GE; 11822 } else { 11823 TrueFlag = GT; 11824 FalseFlag = LE; 11825 } 11826 if (Op == BO_GE || Op == BO_LE) 11827 std::swap(TrueFlag, FalseFlag); 11828 } 11829 if (R & TrueFlag) 11830 return StringRef("true"); 11831 if (R & FalseFlag) 11832 return StringRef("false"); 11833 return llvm::None; 11834 } 11835 }; 11836 } 11837 11838 static bool HasEnumType(Expr *E) { 11839 // Strip off implicit integral promotions. 11840 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11841 if (ICE->getCastKind() != CK_IntegralCast && 11842 ICE->getCastKind() != CK_NoOp) 11843 break; 11844 E = ICE->getSubExpr(); 11845 } 11846 11847 return E->getType()->isEnumeralType(); 11848 } 11849 11850 static int classifyConstantValue(Expr *Constant) { 11851 // The values of this enumeration are used in the diagnostics 11852 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 11853 enum ConstantValueKind { 11854 Miscellaneous = 0, 11855 LiteralTrue, 11856 LiteralFalse 11857 }; 11858 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 11859 return BL->getValue() ? ConstantValueKind::LiteralTrue 11860 : ConstantValueKind::LiteralFalse; 11861 return ConstantValueKind::Miscellaneous; 11862 } 11863 11864 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 11865 Expr *Constant, Expr *Other, 11866 const llvm::APSInt &Value, 11867 bool RhsConstant) { 11868 if (S.inTemplateInstantiation()) 11869 return false; 11870 11871 Expr *OriginalOther = Other; 11872 11873 Constant = Constant->IgnoreParenImpCasts(); 11874 Other = Other->IgnoreParenImpCasts(); 11875 11876 // Suppress warnings on tautological comparisons between values of the same 11877 // enumeration type. There are only two ways we could warn on this: 11878 // - If the constant is outside the range of representable values of 11879 // the enumeration. In such a case, we should warn about the cast 11880 // to enumeration type, not about the comparison. 11881 // - If the constant is the maximum / minimum in-range value. For an 11882 // enumeratin type, such comparisons can be meaningful and useful. 11883 if (Constant->getType()->isEnumeralType() && 11884 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 11885 return false; 11886 11887 IntRange OtherValueRange = GetExprRange( 11888 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 11889 11890 QualType OtherT = Other->getType(); 11891 if (const auto *AT = OtherT->getAs<AtomicType>()) 11892 OtherT = AT->getValueType(); 11893 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 11894 11895 // Special case for ObjC BOOL on targets where its a typedef for a signed char 11896 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 11897 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 11898 S.NSAPIObj->isObjCBOOLType(OtherT) && 11899 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 11900 11901 // Whether we're treating Other as being a bool because of the form of 11902 // expression despite it having another type (typically 'int' in C). 11903 bool OtherIsBooleanDespiteType = 11904 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 11905 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 11906 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 11907 11908 // Check if all values in the range of possible values of this expression 11909 // lead to the same comparison outcome. 11910 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 11911 Value.isUnsigned()); 11912 auto Cmp = OtherPromotedValueRange.compare(Value); 11913 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 11914 if (!Result) 11915 return false; 11916 11917 // Also consider the range determined by the type alone. This allows us to 11918 // classify the warning under the proper diagnostic group. 11919 bool TautologicalTypeCompare = false; 11920 { 11921 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 11922 Value.isUnsigned()); 11923 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 11924 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 11925 RhsConstant)) { 11926 TautologicalTypeCompare = true; 11927 Cmp = TypeCmp; 11928 Result = TypeResult; 11929 } 11930 } 11931 11932 // Don't warn if the non-constant operand actually always evaluates to the 11933 // same value. 11934 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 11935 return false; 11936 11937 // Suppress the diagnostic for an in-range comparison if the constant comes 11938 // from a macro or enumerator. We don't want to diagnose 11939 // 11940 // some_long_value <= INT_MAX 11941 // 11942 // when sizeof(int) == sizeof(long). 11943 bool InRange = Cmp & PromotedRange::InRangeFlag; 11944 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 11945 return false; 11946 11947 // A comparison of an unsigned bit-field against 0 is really a type problem, 11948 // even though at the type level the bit-field might promote to 'signed int'. 11949 if (Other->refersToBitField() && InRange && Value == 0 && 11950 Other->getType()->isUnsignedIntegerOrEnumerationType()) 11951 TautologicalTypeCompare = true; 11952 11953 // If this is a comparison to an enum constant, include that 11954 // constant in the diagnostic. 11955 const EnumConstantDecl *ED = nullptr; 11956 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 11957 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 11958 11959 // Should be enough for uint128 (39 decimal digits) 11960 SmallString<64> PrettySourceValue; 11961 llvm::raw_svector_ostream OS(PrettySourceValue); 11962 if (ED) { 11963 OS << '\'' << *ED << "' (" << Value << ")"; 11964 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 11965 Constant->IgnoreParenImpCasts())) { 11966 OS << (BL->getValue() ? "YES" : "NO"); 11967 } else { 11968 OS << Value; 11969 } 11970 11971 if (!TautologicalTypeCompare) { 11972 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 11973 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 11974 << E->getOpcodeStr() << OS.str() << *Result 11975 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11976 return true; 11977 } 11978 11979 if (IsObjCSignedCharBool) { 11980 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11981 S.PDiag(diag::warn_tautological_compare_objc_bool) 11982 << OS.str() << *Result); 11983 return true; 11984 } 11985 11986 // FIXME: We use a somewhat different formatting for the in-range cases and 11987 // cases involving boolean values for historical reasons. We should pick a 11988 // consistent way of presenting these diagnostics. 11989 if (!InRange || Other->isKnownToHaveBooleanValue()) { 11990 11991 S.DiagRuntimeBehavior( 11992 E->getOperatorLoc(), E, 11993 S.PDiag(!InRange ? diag::warn_out_of_range_compare 11994 : diag::warn_tautological_bool_compare) 11995 << OS.str() << classifyConstantValue(Constant) << OtherT 11996 << OtherIsBooleanDespiteType << *Result 11997 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 11998 } else { 11999 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; 12000 unsigned Diag = 12001 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 12002 ? (HasEnumType(OriginalOther) 12003 ? diag::warn_unsigned_enum_always_true_comparison 12004 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison 12005 : diag::warn_unsigned_always_true_comparison) 12006 : diag::warn_tautological_constant_compare; 12007 12008 S.Diag(E->getOperatorLoc(), Diag) 12009 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 12010 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 12011 } 12012 12013 return true; 12014 } 12015 12016 /// Analyze the operands of the given comparison. Implements the 12017 /// fallback case from AnalyzeComparison. 12018 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 12019 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12020 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12021 } 12022 12023 /// Implements -Wsign-compare. 12024 /// 12025 /// \param E the binary operator to check for warnings 12026 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 12027 // The type the comparison is being performed in. 12028 QualType T = E->getLHS()->getType(); 12029 12030 // Only analyze comparison operators where both sides have been converted to 12031 // the same type. 12032 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 12033 return AnalyzeImpConvsInComparison(S, E); 12034 12035 // Don't analyze value-dependent comparisons directly. 12036 if (E->isValueDependent()) 12037 return AnalyzeImpConvsInComparison(S, E); 12038 12039 Expr *LHS = E->getLHS(); 12040 Expr *RHS = E->getRHS(); 12041 12042 if (T->isIntegralType(S.Context)) { 12043 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 12044 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 12045 12046 // We don't care about expressions whose result is a constant. 12047 if (RHSValue && LHSValue) 12048 return AnalyzeImpConvsInComparison(S, E); 12049 12050 // We only care about expressions where just one side is literal 12051 if ((bool)RHSValue ^ (bool)LHSValue) { 12052 // Is the constant on the RHS or LHS? 12053 const bool RhsConstant = (bool)RHSValue; 12054 Expr *Const = RhsConstant ? RHS : LHS; 12055 Expr *Other = RhsConstant ? LHS : RHS; 12056 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 12057 12058 // Check whether an integer constant comparison results in a value 12059 // of 'true' or 'false'. 12060 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 12061 return AnalyzeImpConvsInComparison(S, E); 12062 } 12063 } 12064 12065 if (!T->hasUnsignedIntegerRepresentation()) { 12066 // We don't do anything special if this isn't an unsigned integral 12067 // comparison: we're only interested in integral comparisons, and 12068 // signed comparisons only happen in cases we don't care to warn about. 12069 return AnalyzeImpConvsInComparison(S, E); 12070 } 12071 12072 LHS = LHS->IgnoreParenImpCasts(); 12073 RHS = RHS->IgnoreParenImpCasts(); 12074 12075 if (!S.getLangOpts().CPlusPlus) { 12076 // Avoid warning about comparison of integers with different signs when 12077 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 12078 // the type of `E`. 12079 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 12080 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 12081 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 12082 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 12083 } 12084 12085 // Check to see if one of the (unmodified) operands is of different 12086 // signedness. 12087 Expr *signedOperand, *unsignedOperand; 12088 if (LHS->getType()->hasSignedIntegerRepresentation()) { 12089 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 12090 "unsigned comparison between two signed integer expressions?"); 12091 signedOperand = LHS; 12092 unsignedOperand = RHS; 12093 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 12094 signedOperand = RHS; 12095 unsignedOperand = LHS; 12096 } else { 12097 return AnalyzeImpConvsInComparison(S, E); 12098 } 12099 12100 // Otherwise, calculate the effective range of the signed operand. 12101 IntRange signedRange = GetExprRange( 12102 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 12103 12104 // Go ahead and analyze implicit conversions in the operands. Note 12105 // that we skip the implicit conversions on both sides. 12106 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 12107 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 12108 12109 // If the signed range is non-negative, -Wsign-compare won't fire. 12110 if (signedRange.NonNegative) 12111 return; 12112 12113 // For (in)equality comparisons, if the unsigned operand is a 12114 // constant which cannot collide with a overflowed signed operand, 12115 // then reinterpreting the signed operand as unsigned will not 12116 // change the result of the comparison. 12117 if (E->isEqualityOp()) { 12118 unsigned comparisonWidth = S.Context.getIntWidth(T); 12119 IntRange unsignedRange = 12120 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 12121 /*Approximate*/ true); 12122 12123 // We should never be unable to prove that the unsigned operand is 12124 // non-negative. 12125 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 12126 12127 if (unsignedRange.Width < comparisonWidth) 12128 return; 12129 } 12130 12131 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 12132 S.PDiag(diag::warn_mixed_sign_comparison) 12133 << LHS->getType() << RHS->getType() 12134 << LHS->getSourceRange() << RHS->getSourceRange()); 12135 } 12136 12137 /// Analyzes an attempt to assign the given value to a bitfield. 12138 /// 12139 /// Returns true if there was something fishy about the attempt. 12140 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 12141 SourceLocation InitLoc) { 12142 assert(Bitfield->isBitField()); 12143 if (Bitfield->isInvalidDecl()) 12144 return false; 12145 12146 // White-list bool bitfields. 12147 QualType BitfieldType = Bitfield->getType(); 12148 if (BitfieldType->isBooleanType()) 12149 return false; 12150 12151 if (BitfieldType->isEnumeralType()) { 12152 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 12153 // If the underlying enum type was not explicitly specified as an unsigned 12154 // type and the enum contain only positive values, MSVC++ will cause an 12155 // inconsistency by storing this as a signed type. 12156 if (S.getLangOpts().CPlusPlus11 && 12157 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 12158 BitfieldEnumDecl->getNumPositiveBits() > 0 && 12159 BitfieldEnumDecl->getNumNegativeBits() == 0) { 12160 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 12161 << BitfieldEnumDecl; 12162 } 12163 } 12164 12165 if (Bitfield->getType()->isBooleanType()) 12166 return false; 12167 12168 // Ignore value- or type-dependent expressions. 12169 if (Bitfield->getBitWidth()->isValueDependent() || 12170 Bitfield->getBitWidth()->isTypeDependent() || 12171 Init->isValueDependent() || 12172 Init->isTypeDependent()) 12173 return false; 12174 12175 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 12176 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 12177 12178 Expr::EvalResult Result; 12179 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 12180 Expr::SE_AllowSideEffects)) { 12181 // The RHS is not constant. If the RHS has an enum type, make sure the 12182 // bitfield is wide enough to hold all the values of the enum without 12183 // truncation. 12184 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 12185 EnumDecl *ED = EnumTy->getDecl(); 12186 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 12187 12188 // Enum types are implicitly signed on Windows, so check if there are any 12189 // negative enumerators to see if the enum was intended to be signed or 12190 // not. 12191 bool SignedEnum = ED->getNumNegativeBits() > 0; 12192 12193 // Check for surprising sign changes when assigning enum values to a 12194 // bitfield of different signedness. If the bitfield is signed and we 12195 // have exactly the right number of bits to store this unsigned enum, 12196 // suggest changing the enum to an unsigned type. This typically happens 12197 // on Windows where unfixed enums always use an underlying type of 'int'. 12198 unsigned DiagID = 0; 12199 if (SignedEnum && !SignedBitfield) { 12200 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 12201 } else if (SignedBitfield && !SignedEnum && 12202 ED->getNumPositiveBits() == FieldWidth) { 12203 DiagID = diag::warn_signed_bitfield_enum_conversion; 12204 } 12205 12206 if (DiagID) { 12207 S.Diag(InitLoc, DiagID) << Bitfield << ED; 12208 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 12209 SourceRange TypeRange = 12210 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 12211 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 12212 << SignedEnum << TypeRange; 12213 } 12214 12215 // Compute the required bitwidth. If the enum has negative values, we need 12216 // one more bit than the normal number of positive bits to represent the 12217 // sign bit. 12218 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 12219 ED->getNumNegativeBits()) 12220 : ED->getNumPositiveBits(); 12221 12222 // Check the bitwidth. 12223 if (BitsNeeded > FieldWidth) { 12224 Expr *WidthExpr = Bitfield->getBitWidth(); 12225 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 12226 << Bitfield << ED; 12227 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 12228 << BitsNeeded << ED << WidthExpr->getSourceRange(); 12229 } 12230 } 12231 12232 return false; 12233 } 12234 12235 llvm::APSInt Value = Result.Val.getInt(); 12236 12237 unsigned OriginalWidth = Value.getBitWidth(); 12238 12239 if (!Value.isSigned() || Value.isNegative()) 12240 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 12241 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 12242 OriginalWidth = Value.getMinSignedBits(); 12243 12244 if (OriginalWidth <= FieldWidth) 12245 return false; 12246 12247 // Compute the value which the bitfield will contain. 12248 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 12249 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 12250 12251 // Check whether the stored value is equal to the original value. 12252 TruncatedValue = TruncatedValue.extend(OriginalWidth); 12253 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 12254 return false; 12255 12256 // Special-case bitfields of width 1: booleans are naturally 0/1, and 12257 // therefore don't strictly fit into a signed bitfield of width 1. 12258 if (FieldWidth == 1 && Value == 1) 12259 return false; 12260 12261 std::string PrettyValue = toString(Value, 10); 12262 std::string PrettyTrunc = toString(TruncatedValue, 10); 12263 12264 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 12265 << PrettyValue << PrettyTrunc << OriginalInit->getType() 12266 << Init->getSourceRange(); 12267 12268 return true; 12269 } 12270 12271 /// Analyze the given simple or compound assignment for warning-worthy 12272 /// operations. 12273 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 12274 // Just recurse on the LHS. 12275 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12276 12277 // We want to recurse on the RHS as normal unless we're assigning to 12278 // a bitfield. 12279 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 12280 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 12281 E->getOperatorLoc())) { 12282 // Recurse, ignoring any implicit conversions on the RHS. 12283 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 12284 E->getOperatorLoc()); 12285 } 12286 } 12287 12288 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12289 12290 // Diagnose implicitly sequentially-consistent atomic assignment. 12291 if (E->getLHS()->getType()->isAtomicType()) 12292 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12293 } 12294 12295 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12296 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 12297 SourceLocation CContext, unsigned diag, 12298 bool pruneControlFlow = false) { 12299 if (pruneControlFlow) { 12300 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12301 S.PDiag(diag) 12302 << SourceType << T << E->getSourceRange() 12303 << SourceRange(CContext)); 12304 return; 12305 } 12306 S.Diag(E->getExprLoc(), diag) 12307 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 12308 } 12309 12310 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12311 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 12312 SourceLocation CContext, 12313 unsigned diag, bool pruneControlFlow = false) { 12314 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 12315 } 12316 12317 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 12318 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 12319 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 12320 } 12321 12322 static void adornObjCBoolConversionDiagWithTernaryFixit( 12323 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 12324 Expr *Ignored = SourceExpr->IgnoreImplicit(); 12325 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 12326 Ignored = OVE->getSourceExpr(); 12327 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 12328 isa<BinaryOperator>(Ignored) || 12329 isa<CXXOperatorCallExpr>(Ignored); 12330 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 12331 if (NeedsParens) 12332 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 12333 << FixItHint::CreateInsertion(EndLoc, ")"); 12334 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 12335 } 12336 12337 /// Diagnose an implicit cast from a floating point value to an integer value. 12338 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 12339 SourceLocation CContext) { 12340 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 12341 const bool PruneWarnings = S.inTemplateInstantiation(); 12342 12343 Expr *InnerE = E->IgnoreParenImpCasts(); 12344 // We also want to warn on, e.g., "int i = -1.234" 12345 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 12346 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 12347 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 12348 12349 const bool IsLiteral = 12350 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 12351 12352 llvm::APFloat Value(0.0); 12353 bool IsConstant = 12354 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 12355 if (!IsConstant) { 12356 if (isObjCSignedCharBool(S, T)) { 12357 return adornObjCBoolConversionDiagWithTernaryFixit( 12358 S, E, 12359 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 12360 << E->getType()); 12361 } 12362 12363 return DiagnoseImpCast(S, E, T, CContext, 12364 diag::warn_impcast_float_integer, PruneWarnings); 12365 } 12366 12367 bool isExact = false; 12368 12369 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 12370 T->hasUnsignedIntegerRepresentation()); 12371 llvm::APFloat::opStatus Result = Value.convertToInteger( 12372 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 12373 12374 // FIXME: Force the precision of the source value down so we don't print 12375 // digits which are usually useless (we don't really care here if we 12376 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 12377 // would automatically print the shortest representation, but it's a bit 12378 // tricky to implement. 12379 SmallString<16> PrettySourceValue; 12380 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 12381 precision = (precision * 59 + 195) / 196; 12382 Value.toString(PrettySourceValue, precision); 12383 12384 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 12385 return adornObjCBoolConversionDiagWithTernaryFixit( 12386 S, E, 12387 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 12388 << PrettySourceValue); 12389 } 12390 12391 if (Result == llvm::APFloat::opOK && isExact) { 12392 if (IsLiteral) return; 12393 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 12394 PruneWarnings); 12395 } 12396 12397 // Conversion of a floating-point value to a non-bool integer where the 12398 // integral part cannot be represented by the integer type is undefined. 12399 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 12400 return DiagnoseImpCast( 12401 S, E, T, CContext, 12402 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 12403 : diag::warn_impcast_float_to_integer_out_of_range, 12404 PruneWarnings); 12405 12406 unsigned DiagID = 0; 12407 if (IsLiteral) { 12408 // Warn on floating point literal to integer. 12409 DiagID = diag::warn_impcast_literal_float_to_integer; 12410 } else if (IntegerValue == 0) { 12411 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 12412 return DiagnoseImpCast(S, E, T, CContext, 12413 diag::warn_impcast_float_integer, PruneWarnings); 12414 } 12415 // Warn on non-zero to zero conversion. 12416 DiagID = diag::warn_impcast_float_to_integer_zero; 12417 } else { 12418 if (IntegerValue.isUnsigned()) { 12419 if (!IntegerValue.isMaxValue()) { 12420 return DiagnoseImpCast(S, E, T, CContext, 12421 diag::warn_impcast_float_integer, PruneWarnings); 12422 } 12423 } else { // IntegerValue.isSigned() 12424 if (!IntegerValue.isMaxSignedValue() && 12425 !IntegerValue.isMinSignedValue()) { 12426 return DiagnoseImpCast(S, E, T, CContext, 12427 diag::warn_impcast_float_integer, PruneWarnings); 12428 } 12429 } 12430 // Warn on evaluatable floating point expression to integer conversion. 12431 DiagID = diag::warn_impcast_float_to_integer; 12432 } 12433 12434 SmallString<16> PrettyTargetValue; 12435 if (IsBool) 12436 PrettyTargetValue = Value.isZero() ? "false" : "true"; 12437 else 12438 IntegerValue.toString(PrettyTargetValue); 12439 12440 if (PruneWarnings) { 12441 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12442 S.PDiag(DiagID) 12443 << E->getType() << T.getUnqualifiedType() 12444 << PrettySourceValue << PrettyTargetValue 12445 << E->getSourceRange() << SourceRange(CContext)); 12446 } else { 12447 S.Diag(E->getExprLoc(), DiagID) 12448 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 12449 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 12450 } 12451 } 12452 12453 /// Analyze the given compound assignment for the possible losing of 12454 /// floating-point precision. 12455 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 12456 assert(isa<CompoundAssignOperator>(E) && 12457 "Must be compound assignment operation"); 12458 // Recurse on the LHS and RHS in here 12459 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12460 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12461 12462 if (E->getLHS()->getType()->isAtomicType()) 12463 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 12464 12465 // Now check the outermost expression 12466 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 12467 const auto *RBT = cast<CompoundAssignOperator>(E) 12468 ->getComputationResultType() 12469 ->getAs<BuiltinType>(); 12470 12471 // The below checks assume source is floating point. 12472 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 12473 12474 // If source is floating point but target is an integer. 12475 if (ResultBT->isInteger()) 12476 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 12477 E->getExprLoc(), diag::warn_impcast_float_integer); 12478 12479 if (!ResultBT->isFloatingPoint()) 12480 return; 12481 12482 // If both source and target are floating points, warn about losing precision. 12483 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12484 QualType(ResultBT, 0), QualType(RBT, 0)); 12485 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 12486 // warn about dropping FP rank. 12487 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 12488 diag::warn_impcast_float_result_precision); 12489 } 12490 12491 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 12492 IntRange Range) { 12493 if (!Range.Width) return "0"; 12494 12495 llvm::APSInt ValueInRange = Value; 12496 ValueInRange.setIsSigned(!Range.NonNegative); 12497 ValueInRange = ValueInRange.trunc(Range.Width); 12498 return toString(ValueInRange, 10); 12499 } 12500 12501 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 12502 if (!isa<ImplicitCastExpr>(Ex)) 12503 return false; 12504 12505 Expr *InnerE = Ex->IgnoreParenImpCasts(); 12506 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 12507 const Type *Source = 12508 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 12509 if (Target->isDependentType()) 12510 return false; 12511 12512 const BuiltinType *FloatCandidateBT = 12513 dyn_cast<BuiltinType>(ToBool ? Source : Target); 12514 const Type *BoolCandidateType = ToBool ? Target : Source; 12515 12516 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 12517 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 12518 } 12519 12520 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 12521 SourceLocation CC) { 12522 unsigned NumArgs = TheCall->getNumArgs(); 12523 for (unsigned i = 0; i < NumArgs; ++i) { 12524 Expr *CurrA = TheCall->getArg(i); 12525 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 12526 continue; 12527 12528 bool IsSwapped = ((i > 0) && 12529 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 12530 IsSwapped |= ((i < (NumArgs - 1)) && 12531 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 12532 if (IsSwapped) { 12533 // Warn on this floating-point to bool conversion. 12534 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 12535 CurrA->getType(), CC, 12536 diag::warn_impcast_floating_point_to_bool); 12537 } 12538 } 12539 } 12540 12541 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 12542 SourceLocation CC) { 12543 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 12544 E->getExprLoc())) 12545 return; 12546 12547 // Don't warn on functions which have return type nullptr_t. 12548 if (isa<CallExpr>(E)) 12549 return; 12550 12551 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 12552 const Expr::NullPointerConstantKind NullKind = 12553 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 12554 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 12555 return; 12556 12557 // Return if target type is a safe conversion. 12558 if (T->isAnyPointerType() || T->isBlockPointerType() || 12559 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 12560 return; 12561 12562 SourceLocation Loc = E->getSourceRange().getBegin(); 12563 12564 // Venture through the macro stacks to get to the source of macro arguments. 12565 // The new location is a better location than the complete location that was 12566 // passed in. 12567 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 12568 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 12569 12570 // __null is usually wrapped in a macro. Go up a macro if that is the case. 12571 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 12572 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 12573 Loc, S.SourceMgr, S.getLangOpts()); 12574 if (MacroName == "NULL") 12575 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 12576 } 12577 12578 // Only warn if the null and context location are in the same macro expansion. 12579 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 12580 return; 12581 12582 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 12583 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 12584 << FixItHint::CreateReplacement(Loc, 12585 S.getFixItZeroLiteralForType(T, Loc)); 12586 } 12587 12588 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12589 ObjCArrayLiteral *ArrayLiteral); 12590 12591 static void 12592 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12593 ObjCDictionaryLiteral *DictionaryLiteral); 12594 12595 /// Check a single element within a collection literal against the 12596 /// target element type. 12597 static void checkObjCCollectionLiteralElement(Sema &S, 12598 QualType TargetElementType, 12599 Expr *Element, 12600 unsigned ElementKind) { 12601 // Skip a bitcast to 'id' or qualified 'id'. 12602 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 12603 if (ICE->getCastKind() == CK_BitCast && 12604 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 12605 Element = ICE->getSubExpr(); 12606 } 12607 12608 QualType ElementType = Element->getType(); 12609 ExprResult ElementResult(Element); 12610 if (ElementType->getAs<ObjCObjectPointerType>() && 12611 S.CheckSingleAssignmentConstraints(TargetElementType, 12612 ElementResult, 12613 false, false) 12614 != Sema::Compatible) { 12615 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 12616 << ElementType << ElementKind << TargetElementType 12617 << Element->getSourceRange(); 12618 } 12619 12620 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 12621 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 12622 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 12623 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 12624 } 12625 12626 /// Check an Objective-C array literal being converted to the given 12627 /// target type. 12628 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12629 ObjCArrayLiteral *ArrayLiteral) { 12630 if (!S.NSArrayDecl) 12631 return; 12632 12633 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12634 if (!TargetObjCPtr) 12635 return; 12636 12637 if (TargetObjCPtr->isUnspecialized() || 12638 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12639 != S.NSArrayDecl->getCanonicalDecl()) 12640 return; 12641 12642 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12643 if (TypeArgs.size() != 1) 12644 return; 12645 12646 QualType TargetElementType = TypeArgs[0]; 12647 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 12648 checkObjCCollectionLiteralElement(S, TargetElementType, 12649 ArrayLiteral->getElement(I), 12650 0); 12651 } 12652 } 12653 12654 /// Check an Objective-C dictionary literal being converted to the given 12655 /// target type. 12656 static void 12657 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12658 ObjCDictionaryLiteral *DictionaryLiteral) { 12659 if (!S.NSDictionaryDecl) 12660 return; 12661 12662 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12663 if (!TargetObjCPtr) 12664 return; 12665 12666 if (TargetObjCPtr->isUnspecialized() || 12667 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12668 != S.NSDictionaryDecl->getCanonicalDecl()) 12669 return; 12670 12671 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12672 if (TypeArgs.size() != 2) 12673 return; 12674 12675 QualType TargetKeyType = TypeArgs[0]; 12676 QualType TargetObjectType = TypeArgs[1]; 12677 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 12678 auto Element = DictionaryLiteral->getKeyValueElement(I); 12679 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 12680 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 12681 } 12682 } 12683 12684 // Helper function to filter out cases for constant width constant conversion. 12685 // Don't warn on char array initialization or for non-decimal values. 12686 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 12687 SourceLocation CC) { 12688 // If initializing from a constant, and the constant starts with '0', 12689 // then it is a binary, octal, or hexadecimal. Allow these constants 12690 // to fill all the bits, even if there is a sign change. 12691 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 12692 const char FirstLiteralCharacter = 12693 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 12694 if (FirstLiteralCharacter == '0') 12695 return false; 12696 } 12697 12698 // If the CC location points to a '{', and the type is char, then assume 12699 // assume it is an array initialization. 12700 if (CC.isValid() && T->isCharType()) { 12701 const char FirstContextCharacter = 12702 S.getSourceManager().getCharacterData(CC)[0]; 12703 if (FirstContextCharacter == '{') 12704 return false; 12705 } 12706 12707 return true; 12708 } 12709 12710 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 12711 const auto *IL = dyn_cast<IntegerLiteral>(E); 12712 if (!IL) { 12713 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 12714 if (UO->getOpcode() == UO_Minus) 12715 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 12716 } 12717 } 12718 12719 return IL; 12720 } 12721 12722 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 12723 E = E->IgnoreParenImpCasts(); 12724 SourceLocation ExprLoc = E->getExprLoc(); 12725 12726 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 12727 BinaryOperator::Opcode Opc = BO->getOpcode(); 12728 Expr::EvalResult Result; 12729 // Do not diagnose unsigned shifts. 12730 if (Opc == BO_Shl) { 12731 const auto *LHS = getIntegerLiteral(BO->getLHS()); 12732 const auto *RHS = getIntegerLiteral(BO->getRHS()); 12733 if (LHS && LHS->getValue() == 0) 12734 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 12735 else if (!E->isValueDependent() && LHS && RHS && 12736 RHS->getValue().isNonNegative() && 12737 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 12738 S.Diag(ExprLoc, diag::warn_left_shift_always) 12739 << (Result.Val.getInt() != 0); 12740 else if (E->getType()->isSignedIntegerType()) 12741 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 12742 } 12743 } 12744 12745 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 12746 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 12747 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 12748 if (!LHS || !RHS) 12749 return; 12750 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 12751 (RHS->getValue() == 0 || RHS->getValue() == 1)) 12752 // Do not diagnose common idioms. 12753 return; 12754 if (LHS->getValue() != 0 && RHS->getValue() != 0) 12755 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 12756 } 12757 } 12758 12759 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 12760 SourceLocation CC, 12761 bool *ICContext = nullptr, 12762 bool IsListInit = false) { 12763 if (E->isTypeDependent() || E->isValueDependent()) return; 12764 12765 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 12766 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 12767 if (Source == Target) return; 12768 if (Target->isDependentType()) return; 12769 12770 // If the conversion context location is invalid don't complain. We also 12771 // don't want to emit a warning if the issue occurs from the expansion of 12772 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 12773 // delay this check as long as possible. Once we detect we are in that 12774 // scenario, we just return. 12775 if (CC.isInvalid()) 12776 return; 12777 12778 if (Source->isAtomicType()) 12779 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 12780 12781 // Diagnose implicit casts to bool. 12782 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 12783 if (isa<StringLiteral>(E)) 12784 // Warn on string literal to bool. Checks for string literals in logical 12785 // and expressions, for instance, assert(0 && "error here"), are 12786 // prevented by a check in AnalyzeImplicitConversions(). 12787 return DiagnoseImpCast(S, E, T, CC, 12788 diag::warn_impcast_string_literal_to_bool); 12789 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 12790 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 12791 // This covers the literal expressions that evaluate to Objective-C 12792 // objects. 12793 return DiagnoseImpCast(S, E, T, CC, 12794 diag::warn_impcast_objective_c_literal_to_bool); 12795 } 12796 if (Source->isPointerType() || Source->canDecayToPointerType()) { 12797 // Warn on pointer to bool conversion that is always true. 12798 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 12799 SourceRange(CC)); 12800 } 12801 } 12802 12803 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 12804 // is a typedef for signed char (macOS), then that constant value has to be 1 12805 // or 0. 12806 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 12807 Expr::EvalResult Result; 12808 if (E->EvaluateAsInt(Result, S.getASTContext(), 12809 Expr::SE_AllowSideEffects)) { 12810 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 12811 adornObjCBoolConversionDiagWithTernaryFixit( 12812 S, E, 12813 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 12814 << toString(Result.Val.getInt(), 10)); 12815 } 12816 return; 12817 } 12818 } 12819 12820 // Check implicit casts from Objective-C collection literals to specialized 12821 // collection types, e.g., NSArray<NSString *> *. 12822 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 12823 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 12824 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 12825 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 12826 12827 // Strip vector types. 12828 if (isa<VectorType>(Source)) { 12829 if (Target->isVLSTBuiltinType() && 12830 (S.Context.areCompatibleSveTypes(QualType(Target, 0), 12831 QualType(Source, 0)) || 12832 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0), 12833 QualType(Source, 0)))) 12834 return; 12835 12836 if (!isa<VectorType>(Target)) { 12837 if (S.SourceMgr.isInSystemMacro(CC)) 12838 return; 12839 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 12840 } 12841 12842 // If the vector cast is cast between two vectors of the same size, it is 12843 // a bitcast, not a conversion. 12844 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 12845 return; 12846 12847 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 12848 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 12849 } 12850 if (auto VecTy = dyn_cast<VectorType>(Target)) 12851 Target = VecTy->getElementType().getTypePtr(); 12852 12853 // Strip complex types. 12854 if (isa<ComplexType>(Source)) { 12855 if (!isa<ComplexType>(Target)) { 12856 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 12857 return; 12858 12859 return DiagnoseImpCast(S, E, T, CC, 12860 S.getLangOpts().CPlusPlus 12861 ? diag::err_impcast_complex_scalar 12862 : diag::warn_impcast_complex_scalar); 12863 } 12864 12865 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 12866 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 12867 } 12868 12869 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 12870 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 12871 12872 // If the source is floating point... 12873 if (SourceBT && SourceBT->isFloatingPoint()) { 12874 // ...and the target is floating point... 12875 if (TargetBT && TargetBT->isFloatingPoint()) { 12876 // ...then warn if we're dropping FP rank. 12877 12878 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12879 QualType(SourceBT, 0), QualType(TargetBT, 0)); 12880 if (Order > 0) { 12881 // Don't warn about float constants that are precisely 12882 // representable in the target type. 12883 Expr::EvalResult result; 12884 if (E->EvaluateAsRValue(result, S.Context)) { 12885 // Value might be a float, a float vector, or a float complex. 12886 if (IsSameFloatAfterCast(result.Val, 12887 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 12888 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 12889 return; 12890 } 12891 12892 if (S.SourceMgr.isInSystemMacro(CC)) 12893 return; 12894 12895 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 12896 } 12897 // ... or possibly if we're increasing rank, too 12898 else if (Order < 0) { 12899 if (S.SourceMgr.isInSystemMacro(CC)) 12900 return; 12901 12902 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 12903 } 12904 return; 12905 } 12906 12907 // If the target is integral, always warn. 12908 if (TargetBT && TargetBT->isInteger()) { 12909 if (S.SourceMgr.isInSystemMacro(CC)) 12910 return; 12911 12912 DiagnoseFloatingImpCast(S, E, T, CC); 12913 } 12914 12915 // Detect the case where a call result is converted from floating-point to 12916 // to bool, and the final argument to the call is converted from bool, to 12917 // discover this typo: 12918 // 12919 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 12920 // 12921 // FIXME: This is an incredibly special case; is there some more general 12922 // way to detect this class of misplaced-parentheses bug? 12923 if (Target->isBooleanType() && isa<CallExpr>(E)) { 12924 // Check last argument of function call to see if it is an 12925 // implicit cast from a type matching the type the result 12926 // is being cast to. 12927 CallExpr *CEx = cast<CallExpr>(E); 12928 if (unsigned NumArgs = CEx->getNumArgs()) { 12929 Expr *LastA = CEx->getArg(NumArgs - 1); 12930 Expr *InnerE = LastA->IgnoreParenImpCasts(); 12931 if (isa<ImplicitCastExpr>(LastA) && 12932 InnerE->getType()->isBooleanType()) { 12933 // Warn on this floating-point to bool conversion 12934 DiagnoseImpCast(S, E, T, CC, 12935 diag::warn_impcast_floating_point_to_bool); 12936 } 12937 } 12938 } 12939 return; 12940 } 12941 12942 // Valid casts involving fixed point types should be accounted for here. 12943 if (Source->isFixedPointType()) { 12944 if (Target->isUnsaturatedFixedPointType()) { 12945 Expr::EvalResult Result; 12946 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 12947 S.isConstantEvaluated())) { 12948 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 12949 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 12950 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 12951 if (Value > MaxVal || Value < MinVal) { 12952 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12953 S.PDiag(diag::warn_impcast_fixed_point_range) 12954 << Value.toString() << T 12955 << E->getSourceRange() 12956 << clang::SourceRange(CC)); 12957 return; 12958 } 12959 } 12960 } else if (Target->isIntegerType()) { 12961 Expr::EvalResult Result; 12962 if (!S.isConstantEvaluated() && 12963 E->EvaluateAsFixedPoint(Result, S.Context, 12964 Expr::SE_AllowSideEffects)) { 12965 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 12966 12967 bool Overflowed; 12968 llvm::APSInt IntResult = FXResult.convertToInt( 12969 S.Context.getIntWidth(T), 12970 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 12971 12972 if (Overflowed) { 12973 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12974 S.PDiag(diag::warn_impcast_fixed_point_range) 12975 << FXResult.toString() << T 12976 << E->getSourceRange() 12977 << clang::SourceRange(CC)); 12978 return; 12979 } 12980 } 12981 } 12982 } else if (Target->isUnsaturatedFixedPointType()) { 12983 if (Source->isIntegerType()) { 12984 Expr::EvalResult Result; 12985 if (!S.isConstantEvaluated() && 12986 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 12987 llvm::APSInt Value = Result.Val.getInt(); 12988 12989 bool Overflowed; 12990 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 12991 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 12992 12993 if (Overflowed) { 12994 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12995 S.PDiag(diag::warn_impcast_fixed_point_range) 12996 << toString(Value, /*Radix=*/10) << T 12997 << E->getSourceRange() 12998 << clang::SourceRange(CC)); 12999 return; 13000 } 13001 } 13002 } 13003 } 13004 13005 // If we are casting an integer type to a floating point type without 13006 // initialization-list syntax, we might lose accuracy if the floating 13007 // point type has a narrower significand than the integer type. 13008 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 13009 TargetBT->isFloatingType() && !IsListInit) { 13010 // Determine the number of precision bits in the source integer type. 13011 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 13012 /*Approximate*/ true); 13013 unsigned int SourcePrecision = SourceRange.Width; 13014 13015 // Determine the number of precision bits in the 13016 // target floating point type. 13017 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 13018 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 13019 13020 if (SourcePrecision > 0 && TargetPrecision > 0 && 13021 SourcePrecision > TargetPrecision) { 13022 13023 if (Optional<llvm::APSInt> SourceInt = 13024 E->getIntegerConstantExpr(S.Context)) { 13025 // If the source integer is a constant, convert it to the target 13026 // floating point type. Issue a warning if the value changes 13027 // during the whole conversion. 13028 llvm::APFloat TargetFloatValue( 13029 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 13030 llvm::APFloat::opStatus ConversionStatus = 13031 TargetFloatValue.convertFromAPInt( 13032 *SourceInt, SourceBT->isSignedInteger(), 13033 llvm::APFloat::rmNearestTiesToEven); 13034 13035 if (ConversionStatus != llvm::APFloat::opOK) { 13036 SmallString<32> PrettySourceValue; 13037 SourceInt->toString(PrettySourceValue, 10); 13038 SmallString<32> PrettyTargetValue; 13039 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 13040 13041 S.DiagRuntimeBehavior( 13042 E->getExprLoc(), E, 13043 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 13044 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13045 << E->getSourceRange() << clang::SourceRange(CC)); 13046 } 13047 } else { 13048 // Otherwise, the implicit conversion may lose precision. 13049 DiagnoseImpCast(S, E, T, CC, 13050 diag::warn_impcast_integer_float_precision); 13051 } 13052 } 13053 } 13054 13055 DiagnoseNullConversion(S, E, T, CC); 13056 13057 S.DiscardMisalignedMemberAddress(Target, E); 13058 13059 if (Target->isBooleanType()) 13060 DiagnoseIntInBoolContext(S, E); 13061 13062 if (!Source->isIntegerType() || !Target->isIntegerType()) 13063 return; 13064 13065 // TODO: remove this early return once the false positives for constant->bool 13066 // in templates, macros, etc, are reduced or removed. 13067 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 13068 return; 13069 13070 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 13071 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 13072 return adornObjCBoolConversionDiagWithTernaryFixit( 13073 S, E, 13074 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 13075 << E->getType()); 13076 } 13077 13078 IntRange SourceTypeRange = 13079 IntRange::forTargetOfCanonicalType(S.Context, Source); 13080 IntRange LikelySourceRange = 13081 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 13082 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 13083 13084 if (LikelySourceRange.Width > TargetRange.Width) { 13085 // If the source is a constant, use a default-on diagnostic. 13086 // TODO: this should happen for bitfield stores, too. 13087 Expr::EvalResult Result; 13088 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 13089 S.isConstantEvaluated())) { 13090 llvm::APSInt Value(32); 13091 Value = Result.Val.getInt(); 13092 13093 if (S.SourceMgr.isInSystemMacro(CC)) 13094 return; 13095 13096 std::string PrettySourceValue = toString(Value, 10); 13097 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 13098 13099 S.DiagRuntimeBehavior( 13100 E->getExprLoc(), E, 13101 S.PDiag(diag::warn_impcast_integer_precision_constant) 13102 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13103 << E->getSourceRange() << SourceRange(CC)); 13104 return; 13105 } 13106 13107 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 13108 if (S.SourceMgr.isInSystemMacro(CC)) 13109 return; 13110 13111 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 13112 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 13113 /* pruneControlFlow */ true); 13114 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 13115 } 13116 13117 if (TargetRange.Width > SourceTypeRange.Width) { 13118 if (auto *UO = dyn_cast<UnaryOperator>(E)) 13119 if (UO->getOpcode() == UO_Minus) 13120 if (Source->isUnsignedIntegerType()) { 13121 if (Target->isUnsignedIntegerType()) 13122 return DiagnoseImpCast(S, E, T, CC, 13123 diag::warn_impcast_high_order_zero_bits); 13124 if (Target->isSignedIntegerType()) 13125 return DiagnoseImpCast(S, E, T, CC, 13126 diag::warn_impcast_nonnegative_result); 13127 } 13128 } 13129 13130 if (TargetRange.Width == LikelySourceRange.Width && 13131 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 13132 Source->isSignedIntegerType()) { 13133 // Warn when doing a signed to signed conversion, warn if the positive 13134 // source value is exactly the width of the target type, which will 13135 // cause a negative value to be stored. 13136 13137 Expr::EvalResult Result; 13138 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 13139 !S.SourceMgr.isInSystemMacro(CC)) { 13140 llvm::APSInt Value = Result.Val.getInt(); 13141 if (isSameWidthConstantConversion(S, E, T, CC)) { 13142 std::string PrettySourceValue = toString(Value, 10); 13143 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 13144 13145 S.DiagRuntimeBehavior( 13146 E->getExprLoc(), E, 13147 S.PDiag(diag::warn_impcast_integer_precision_constant) 13148 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13149 << E->getSourceRange() << SourceRange(CC)); 13150 return; 13151 } 13152 } 13153 13154 // Fall through for non-constants to give a sign conversion warning. 13155 } 13156 13157 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 13158 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 13159 LikelySourceRange.Width == TargetRange.Width)) { 13160 if (S.SourceMgr.isInSystemMacro(CC)) 13161 return; 13162 13163 unsigned DiagID = diag::warn_impcast_integer_sign; 13164 13165 // Traditionally, gcc has warned about this under -Wsign-compare. 13166 // We also want to warn about it in -Wconversion. 13167 // So if -Wconversion is off, use a completely identical diagnostic 13168 // in the sign-compare group. 13169 // The conditional-checking code will 13170 if (ICContext) { 13171 DiagID = diag::warn_impcast_integer_sign_conditional; 13172 *ICContext = true; 13173 } 13174 13175 return DiagnoseImpCast(S, E, T, CC, DiagID); 13176 } 13177 13178 // Diagnose conversions between different enumeration types. 13179 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 13180 // type, to give us better diagnostics. 13181 QualType SourceType = E->getType(); 13182 if (!S.getLangOpts().CPlusPlus) { 13183 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13184 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 13185 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 13186 SourceType = S.Context.getTypeDeclType(Enum); 13187 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 13188 } 13189 } 13190 13191 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 13192 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 13193 if (SourceEnum->getDecl()->hasNameForLinkage() && 13194 TargetEnum->getDecl()->hasNameForLinkage() && 13195 SourceEnum != TargetEnum) { 13196 if (S.SourceMgr.isInSystemMacro(CC)) 13197 return; 13198 13199 return DiagnoseImpCast(S, E, SourceType, T, CC, 13200 diag::warn_impcast_different_enum_types); 13201 } 13202 } 13203 13204 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 13205 SourceLocation CC, QualType T); 13206 13207 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 13208 SourceLocation CC, bool &ICContext) { 13209 E = E->IgnoreParenImpCasts(); 13210 13211 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 13212 return CheckConditionalOperator(S, CO, CC, T); 13213 13214 AnalyzeImplicitConversions(S, E, CC); 13215 if (E->getType() != T) 13216 return CheckImplicitConversion(S, E, T, CC, &ICContext); 13217 } 13218 13219 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 13220 SourceLocation CC, QualType T) { 13221 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 13222 13223 Expr *TrueExpr = E->getTrueExpr(); 13224 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 13225 TrueExpr = BCO->getCommon(); 13226 13227 bool Suspicious = false; 13228 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 13229 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 13230 13231 if (T->isBooleanType()) 13232 DiagnoseIntInBoolContext(S, E); 13233 13234 // If -Wconversion would have warned about either of the candidates 13235 // for a signedness conversion to the context type... 13236 if (!Suspicious) return; 13237 13238 // ...but it's currently ignored... 13239 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 13240 return; 13241 13242 // ...then check whether it would have warned about either of the 13243 // candidates for a signedness conversion to the condition type. 13244 if (E->getType() == T) return; 13245 13246 Suspicious = false; 13247 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 13248 E->getType(), CC, &Suspicious); 13249 if (!Suspicious) 13250 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 13251 E->getType(), CC, &Suspicious); 13252 } 13253 13254 /// Check conversion of given expression to boolean. 13255 /// Input argument E is a logical expression. 13256 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 13257 if (S.getLangOpts().Bool) 13258 return; 13259 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 13260 return; 13261 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 13262 } 13263 13264 namespace { 13265 struct AnalyzeImplicitConversionsWorkItem { 13266 Expr *E; 13267 SourceLocation CC; 13268 bool IsListInit; 13269 }; 13270 } 13271 13272 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 13273 /// that should be visited are added to WorkList. 13274 static void AnalyzeImplicitConversions( 13275 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 13276 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 13277 Expr *OrigE = Item.E; 13278 SourceLocation CC = Item.CC; 13279 13280 QualType T = OrigE->getType(); 13281 Expr *E = OrigE->IgnoreParenImpCasts(); 13282 13283 // Propagate whether we are in a C++ list initialization expression. 13284 // If so, we do not issue warnings for implicit int-float conversion 13285 // precision loss, because C++11 narrowing already handles it. 13286 bool IsListInit = Item.IsListInit || 13287 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 13288 13289 if (E->isTypeDependent() || E->isValueDependent()) 13290 return; 13291 13292 Expr *SourceExpr = E; 13293 // Examine, but don't traverse into the source expression of an 13294 // OpaqueValueExpr, since it may have multiple parents and we don't want to 13295 // emit duplicate diagnostics. Its fine to examine the form or attempt to 13296 // evaluate it in the context of checking the specific conversion to T though. 13297 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 13298 if (auto *Src = OVE->getSourceExpr()) 13299 SourceExpr = Src; 13300 13301 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 13302 if (UO->getOpcode() == UO_Not && 13303 UO->getSubExpr()->isKnownToHaveBooleanValue()) 13304 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 13305 << OrigE->getSourceRange() << T->isBooleanType() 13306 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 13307 13308 if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr)) 13309 if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && 13310 BO->getLHS()->isKnownToHaveBooleanValue() && 13311 BO->getRHS()->isKnownToHaveBooleanValue() && 13312 BO->getLHS()->HasSideEffects(S.Context) && 13313 BO->getRHS()->HasSideEffects(S.Context)) { 13314 S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical) 13315 << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange() 13316 << FixItHint::CreateReplacement( 13317 BO->getOperatorLoc(), 13318 (BO->getOpcode() == BO_And ? "&&" : "||")); 13319 S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int); 13320 } 13321 13322 // For conditional operators, we analyze the arguments as if they 13323 // were being fed directly into the output. 13324 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 13325 CheckConditionalOperator(S, CO, CC, T); 13326 return; 13327 } 13328 13329 // Check implicit argument conversions for function calls. 13330 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 13331 CheckImplicitArgumentConversions(S, Call, CC); 13332 13333 // Go ahead and check any implicit conversions we might have skipped. 13334 // The non-canonical typecheck is just an optimization; 13335 // CheckImplicitConversion will filter out dead implicit conversions. 13336 if (SourceExpr->getType() != T) 13337 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 13338 13339 // Now continue drilling into this expression. 13340 13341 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 13342 // The bound subexpressions in a PseudoObjectExpr are not reachable 13343 // as transitive children. 13344 // FIXME: Use a more uniform representation for this. 13345 for (auto *SE : POE->semantics()) 13346 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 13347 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 13348 } 13349 13350 // Skip past explicit casts. 13351 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 13352 E = CE->getSubExpr()->IgnoreParenImpCasts(); 13353 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 13354 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 13355 WorkList.push_back({E, CC, IsListInit}); 13356 return; 13357 } 13358 13359 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13360 // Do a somewhat different check with comparison operators. 13361 if (BO->isComparisonOp()) 13362 return AnalyzeComparison(S, BO); 13363 13364 // And with simple assignments. 13365 if (BO->getOpcode() == BO_Assign) 13366 return AnalyzeAssignment(S, BO); 13367 // And with compound assignments. 13368 if (BO->isAssignmentOp()) 13369 return AnalyzeCompoundAssignment(S, BO); 13370 } 13371 13372 // These break the otherwise-useful invariant below. Fortunately, 13373 // we don't really need to recurse into them, because any internal 13374 // expressions should have been analyzed already when they were 13375 // built into statements. 13376 if (isa<StmtExpr>(E)) return; 13377 13378 // Don't descend into unevaluated contexts. 13379 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 13380 13381 // Now just recurse over the expression's children. 13382 CC = E->getExprLoc(); 13383 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 13384 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 13385 for (Stmt *SubStmt : E->children()) { 13386 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 13387 if (!ChildExpr) 13388 continue; 13389 13390 if (IsLogicalAndOperator && 13391 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 13392 // Ignore checking string literals that are in logical and operators. 13393 // This is a common pattern for asserts. 13394 continue; 13395 WorkList.push_back({ChildExpr, CC, IsListInit}); 13396 } 13397 13398 if (BO && BO->isLogicalOp()) { 13399 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 13400 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13401 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13402 13403 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 13404 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13405 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13406 } 13407 13408 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 13409 if (U->getOpcode() == UO_LNot) { 13410 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 13411 } else if (U->getOpcode() != UO_AddrOf) { 13412 if (U->getSubExpr()->getType()->isAtomicType()) 13413 S.Diag(U->getSubExpr()->getBeginLoc(), 13414 diag::warn_atomic_implicit_seq_cst); 13415 } 13416 } 13417 } 13418 13419 /// AnalyzeImplicitConversions - Find and report any interesting 13420 /// implicit conversions in the given expression. There are a couple 13421 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 13422 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 13423 bool IsListInit/*= false*/) { 13424 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 13425 WorkList.push_back({OrigE, CC, IsListInit}); 13426 while (!WorkList.empty()) 13427 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 13428 } 13429 13430 /// Diagnose integer type and any valid implicit conversion to it. 13431 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 13432 // Taking into account implicit conversions, 13433 // allow any integer. 13434 if (!E->getType()->isIntegerType()) { 13435 S.Diag(E->getBeginLoc(), 13436 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 13437 return true; 13438 } 13439 // Potentially emit standard warnings for implicit conversions if enabled 13440 // using -Wconversion. 13441 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 13442 return false; 13443 } 13444 13445 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 13446 // Returns true when emitting a warning about taking the address of a reference. 13447 static bool CheckForReference(Sema &SemaRef, const Expr *E, 13448 const PartialDiagnostic &PD) { 13449 E = E->IgnoreParenImpCasts(); 13450 13451 const FunctionDecl *FD = nullptr; 13452 13453 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 13454 if (!DRE->getDecl()->getType()->isReferenceType()) 13455 return false; 13456 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13457 if (!M->getMemberDecl()->getType()->isReferenceType()) 13458 return false; 13459 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 13460 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 13461 return false; 13462 FD = Call->getDirectCallee(); 13463 } else { 13464 return false; 13465 } 13466 13467 SemaRef.Diag(E->getExprLoc(), PD); 13468 13469 // If possible, point to location of function. 13470 if (FD) { 13471 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 13472 } 13473 13474 return true; 13475 } 13476 13477 // Returns true if the SourceLocation is expanded from any macro body. 13478 // Returns false if the SourceLocation is invalid, is from not in a macro 13479 // expansion, or is from expanded from a top-level macro argument. 13480 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 13481 if (Loc.isInvalid()) 13482 return false; 13483 13484 while (Loc.isMacroID()) { 13485 if (SM.isMacroBodyExpansion(Loc)) 13486 return true; 13487 Loc = SM.getImmediateMacroCallerLoc(Loc); 13488 } 13489 13490 return false; 13491 } 13492 13493 /// Diagnose pointers that are always non-null. 13494 /// \param E the expression containing the pointer 13495 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 13496 /// compared to a null pointer 13497 /// \param IsEqual True when the comparison is equal to a null pointer 13498 /// \param Range Extra SourceRange to highlight in the diagnostic 13499 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 13500 Expr::NullPointerConstantKind NullKind, 13501 bool IsEqual, SourceRange Range) { 13502 if (!E) 13503 return; 13504 13505 // Don't warn inside macros. 13506 if (E->getExprLoc().isMacroID()) { 13507 const SourceManager &SM = getSourceManager(); 13508 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 13509 IsInAnyMacroBody(SM, Range.getBegin())) 13510 return; 13511 } 13512 E = E->IgnoreImpCasts(); 13513 13514 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 13515 13516 if (isa<CXXThisExpr>(E)) { 13517 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 13518 : diag::warn_this_bool_conversion; 13519 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 13520 return; 13521 } 13522 13523 bool IsAddressOf = false; 13524 13525 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13526 if (UO->getOpcode() != UO_AddrOf) 13527 return; 13528 IsAddressOf = true; 13529 E = UO->getSubExpr(); 13530 } 13531 13532 if (IsAddressOf) { 13533 unsigned DiagID = IsCompare 13534 ? diag::warn_address_of_reference_null_compare 13535 : diag::warn_address_of_reference_bool_conversion; 13536 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 13537 << IsEqual; 13538 if (CheckForReference(*this, E, PD)) { 13539 return; 13540 } 13541 } 13542 13543 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 13544 bool IsParam = isa<NonNullAttr>(NonnullAttr); 13545 std::string Str; 13546 llvm::raw_string_ostream S(Str); 13547 E->printPretty(S, nullptr, getPrintingPolicy()); 13548 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 13549 : diag::warn_cast_nonnull_to_bool; 13550 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 13551 << E->getSourceRange() << Range << IsEqual; 13552 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 13553 }; 13554 13555 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 13556 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 13557 if (auto *Callee = Call->getDirectCallee()) { 13558 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 13559 ComplainAboutNonnullParamOrCall(A); 13560 return; 13561 } 13562 } 13563 } 13564 13565 // Expect to find a single Decl. Skip anything more complicated. 13566 ValueDecl *D = nullptr; 13567 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 13568 D = R->getDecl(); 13569 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13570 D = M->getMemberDecl(); 13571 } 13572 13573 // Weak Decls can be null. 13574 if (!D || D->isWeak()) 13575 return; 13576 13577 // Check for parameter decl with nonnull attribute 13578 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 13579 if (getCurFunction() && 13580 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 13581 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 13582 ComplainAboutNonnullParamOrCall(A); 13583 return; 13584 } 13585 13586 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 13587 // Skip function template not specialized yet. 13588 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 13589 return; 13590 auto ParamIter = llvm::find(FD->parameters(), PV); 13591 assert(ParamIter != FD->param_end()); 13592 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 13593 13594 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 13595 if (!NonNull->args_size()) { 13596 ComplainAboutNonnullParamOrCall(NonNull); 13597 return; 13598 } 13599 13600 for (const ParamIdx &ArgNo : NonNull->args()) { 13601 if (ArgNo.getASTIndex() == ParamNo) { 13602 ComplainAboutNonnullParamOrCall(NonNull); 13603 return; 13604 } 13605 } 13606 } 13607 } 13608 } 13609 } 13610 13611 QualType T = D->getType(); 13612 const bool IsArray = T->isArrayType(); 13613 const bool IsFunction = T->isFunctionType(); 13614 13615 // Address of function is used to silence the function warning. 13616 if (IsAddressOf && IsFunction) { 13617 return; 13618 } 13619 13620 // Found nothing. 13621 if (!IsAddressOf && !IsFunction && !IsArray) 13622 return; 13623 13624 // Pretty print the expression for the diagnostic. 13625 std::string Str; 13626 llvm::raw_string_ostream S(Str); 13627 E->printPretty(S, nullptr, getPrintingPolicy()); 13628 13629 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 13630 : diag::warn_impcast_pointer_to_bool; 13631 enum { 13632 AddressOf, 13633 FunctionPointer, 13634 ArrayPointer 13635 } DiagType; 13636 if (IsAddressOf) 13637 DiagType = AddressOf; 13638 else if (IsFunction) 13639 DiagType = FunctionPointer; 13640 else if (IsArray) 13641 DiagType = ArrayPointer; 13642 else 13643 llvm_unreachable("Could not determine diagnostic."); 13644 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 13645 << Range << IsEqual; 13646 13647 if (!IsFunction) 13648 return; 13649 13650 // Suggest '&' to silence the function warning. 13651 Diag(E->getExprLoc(), diag::note_function_warning_silence) 13652 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 13653 13654 // Check to see if '()' fixit should be emitted. 13655 QualType ReturnType; 13656 UnresolvedSet<4> NonTemplateOverloads; 13657 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 13658 if (ReturnType.isNull()) 13659 return; 13660 13661 if (IsCompare) { 13662 // There are two cases here. If there is null constant, the only suggest 13663 // for a pointer return type. If the null is 0, then suggest if the return 13664 // type is a pointer or an integer type. 13665 if (!ReturnType->isPointerType()) { 13666 if (NullKind == Expr::NPCK_ZeroExpression || 13667 NullKind == Expr::NPCK_ZeroLiteral) { 13668 if (!ReturnType->isIntegerType()) 13669 return; 13670 } else { 13671 return; 13672 } 13673 } 13674 } else { // !IsCompare 13675 // For function to bool, only suggest if the function pointer has bool 13676 // return type. 13677 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 13678 return; 13679 } 13680 Diag(E->getExprLoc(), diag::note_function_to_function_call) 13681 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 13682 } 13683 13684 /// Diagnoses "dangerous" implicit conversions within the given 13685 /// expression (which is a full expression). Implements -Wconversion 13686 /// and -Wsign-compare. 13687 /// 13688 /// \param CC the "context" location of the implicit conversion, i.e. 13689 /// the most location of the syntactic entity requiring the implicit 13690 /// conversion 13691 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 13692 // Don't diagnose in unevaluated contexts. 13693 if (isUnevaluatedContext()) 13694 return; 13695 13696 // Don't diagnose for value- or type-dependent expressions. 13697 if (E->isTypeDependent() || E->isValueDependent()) 13698 return; 13699 13700 // Check for array bounds violations in cases where the check isn't triggered 13701 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 13702 // ArraySubscriptExpr is on the RHS of a variable initialization. 13703 CheckArrayAccess(E); 13704 13705 // This is not the right CC for (e.g.) a variable initialization. 13706 AnalyzeImplicitConversions(*this, E, CC); 13707 } 13708 13709 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 13710 /// Input argument E is a logical expression. 13711 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 13712 ::CheckBoolLikeConversion(*this, E, CC); 13713 } 13714 13715 /// Diagnose when expression is an integer constant expression and its evaluation 13716 /// results in integer overflow 13717 void Sema::CheckForIntOverflow (Expr *E) { 13718 // Use a work list to deal with nested struct initializers. 13719 SmallVector<Expr *, 2> Exprs(1, E); 13720 13721 do { 13722 Expr *OriginalE = Exprs.pop_back_val(); 13723 Expr *E = OriginalE->IgnoreParenCasts(); 13724 13725 if (isa<BinaryOperator>(E)) { 13726 E->EvaluateForOverflow(Context); 13727 continue; 13728 } 13729 13730 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 13731 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 13732 else if (isa<ObjCBoxedExpr>(OriginalE)) 13733 E->EvaluateForOverflow(Context); 13734 else if (auto Call = dyn_cast<CallExpr>(E)) 13735 Exprs.append(Call->arg_begin(), Call->arg_end()); 13736 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 13737 Exprs.append(Message->arg_begin(), Message->arg_end()); 13738 } while (!Exprs.empty()); 13739 } 13740 13741 namespace { 13742 13743 /// Visitor for expressions which looks for unsequenced operations on the 13744 /// same object. 13745 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 13746 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 13747 13748 /// A tree of sequenced regions within an expression. Two regions are 13749 /// unsequenced if one is an ancestor or a descendent of the other. When we 13750 /// finish processing an expression with sequencing, such as a comma 13751 /// expression, we fold its tree nodes into its parent, since they are 13752 /// unsequenced with respect to nodes we will visit later. 13753 class SequenceTree { 13754 struct Value { 13755 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 13756 unsigned Parent : 31; 13757 unsigned Merged : 1; 13758 }; 13759 SmallVector<Value, 8> Values; 13760 13761 public: 13762 /// A region within an expression which may be sequenced with respect 13763 /// to some other region. 13764 class Seq { 13765 friend class SequenceTree; 13766 13767 unsigned Index; 13768 13769 explicit Seq(unsigned N) : Index(N) {} 13770 13771 public: 13772 Seq() : Index(0) {} 13773 }; 13774 13775 SequenceTree() { Values.push_back(Value(0)); } 13776 Seq root() const { return Seq(0); } 13777 13778 /// Create a new sequence of operations, which is an unsequenced 13779 /// subset of \p Parent. This sequence of operations is sequenced with 13780 /// respect to other children of \p Parent. 13781 Seq allocate(Seq Parent) { 13782 Values.push_back(Value(Parent.Index)); 13783 return Seq(Values.size() - 1); 13784 } 13785 13786 /// Merge a sequence of operations into its parent. 13787 void merge(Seq S) { 13788 Values[S.Index].Merged = true; 13789 } 13790 13791 /// Determine whether two operations are unsequenced. This operation 13792 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 13793 /// should have been merged into its parent as appropriate. 13794 bool isUnsequenced(Seq Cur, Seq Old) { 13795 unsigned C = representative(Cur.Index); 13796 unsigned Target = representative(Old.Index); 13797 while (C >= Target) { 13798 if (C == Target) 13799 return true; 13800 C = Values[C].Parent; 13801 } 13802 return false; 13803 } 13804 13805 private: 13806 /// Pick a representative for a sequence. 13807 unsigned representative(unsigned K) { 13808 if (Values[K].Merged) 13809 // Perform path compression as we go. 13810 return Values[K].Parent = representative(Values[K].Parent); 13811 return K; 13812 } 13813 }; 13814 13815 /// An object for which we can track unsequenced uses. 13816 using Object = const NamedDecl *; 13817 13818 /// Different flavors of object usage which we track. We only track the 13819 /// least-sequenced usage of each kind. 13820 enum UsageKind { 13821 /// A read of an object. Multiple unsequenced reads are OK. 13822 UK_Use, 13823 13824 /// A modification of an object which is sequenced before the value 13825 /// computation of the expression, such as ++n in C++. 13826 UK_ModAsValue, 13827 13828 /// A modification of an object which is not sequenced before the value 13829 /// computation of the expression, such as n++. 13830 UK_ModAsSideEffect, 13831 13832 UK_Count = UK_ModAsSideEffect + 1 13833 }; 13834 13835 /// Bundle together a sequencing region and the expression corresponding 13836 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 13837 struct Usage { 13838 const Expr *UsageExpr; 13839 SequenceTree::Seq Seq; 13840 13841 Usage() : UsageExpr(nullptr), Seq() {} 13842 }; 13843 13844 struct UsageInfo { 13845 Usage Uses[UK_Count]; 13846 13847 /// Have we issued a diagnostic for this object already? 13848 bool Diagnosed; 13849 13850 UsageInfo() : Uses(), Diagnosed(false) {} 13851 }; 13852 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 13853 13854 Sema &SemaRef; 13855 13856 /// Sequenced regions within the expression. 13857 SequenceTree Tree; 13858 13859 /// Declaration modifications and references which we have seen. 13860 UsageInfoMap UsageMap; 13861 13862 /// The region we are currently within. 13863 SequenceTree::Seq Region; 13864 13865 /// Filled in with declarations which were modified as a side-effect 13866 /// (that is, post-increment operations). 13867 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 13868 13869 /// Expressions to check later. We defer checking these to reduce 13870 /// stack usage. 13871 SmallVectorImpl<const Expr *> &WorkList; 13872 13873 /// RAII object wrapping the visitation of a sequenced subexpression of an 13874 /// expression. At the end of this process, the side-effects of the evaluation 13875 /// become sequenced with respect to the value computation of the result, so 13876 /// we downgrade any UK_ModAsSideEffect within the evaluation to 13877 /// UK_ModAsValue. 13878 struct SequencedSubexpression { 13879 SequencedSubexpression(SequenceChecker &Self) 13880 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 13881 Self.ModAsSideEffect = &ModAsSideEffect; 13882 } 13883 13884 ~SequencedSubexpression() { 13885 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 13886 // Add a new usage with usage kind UK_ModAsValue, and then restore 13887 // the previous usage with UK_ModAsSideEffect (thus clearing it if 13888 // the previous one was empty). 13889 UsageInfo &UI = Self.UsageMap[M.first]; 13890 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 13891 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 13892 SideEffectUsage = M.second; 13893 } 13894 Self.ModAsSideEffect = OldModAsSideEffect; 13895 } 13896 13897 SequenceChecker &Self; 13898 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 13899 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 13900 }; 13901 13902 /// RAII object wrapping the visitation of a subexpression which we might 13903 /// choose to evaluate as a constant. If any subexpression is evaluated and 13904 /// found to be non-constant, this allows us to suppress the evaluation of 13905 /// the outer expression. 13906 class EvaluationTracker { 13907 public: 13908 EvaluationTracker(SequenceChecker &Self) 13909 : Self(Self), Prev(Self.EvalTracker) { 13910 Self.EvalTracker = this; 13911 } 13912 13913 ~EvaluationTracker() { 13914 Self.EvalTracker = Prev; 13915 if (Prev) 13916 Prev->EvalOK &= EvalOK; 13917 } 13918 13919 bool evaluate(const Expr *E, bool &Result) { 13920 if (!EvalOK || E->isValueDependent()) 13921 return false; 13922 EvalOK = E->EvaluateAsBooleanCondition( 13923 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 13924 return EvalOK; 13925 } 13926 13927 private: 13928 SequenceChecker &Self; 13929 EvaluationTracker *Prev; 13930 bool EvalOK = true; 13931 } *EvalTracker = nullptr; 13932 13933 /// Find the object which is produced by the specified expression, 13934 /// if any. 13935 Object getObject(const Expr *E, bool Mod) const { 13936 E = E->IgnoreParenCasts(); 13937 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13938 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 13939 return getObject(UO->getSubExpr(), Mod); 13940 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13941 if (BO->getOpcode() == BO_Comma) 13942 return getObject(BO->getRHS(), Mod); 13943 if (Mod && BO->isAssignmentOp()) 13944 return getObject(BO->getLHS(), Mod); 13945 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 13946 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 13947 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 13948 return ME->getMemberDecl(); 13949 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13950 // FIXME: If this is a reference, map through to its value. 13951 return DRE->getDecl(); 13952 return nullptr; 13953 } 13954 13955 /// Note that an object \p O was modified or used by an expression 13956 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 13957 /// the object \p O as obtained via the \p UsageMap. 13958 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 13959 // Get the old usage for the given object and usage kind. 13960 Usage &U = UI.Uses[UK]; 13961 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 13962 // If we have a modification as side effect and are in a sequenced 13963 // subexpression, save the old Usage so that we can restore it later 13964 // in SequencedSubexpression::~SequencedSubexpression. 13965 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 13966 ModAsSideEffect->push_back(std::make_pair(O, U)); 13967 // Then record the new usage with the current sequencing region. 13968 U.UsageExpr = UsageExpr; 13969 U.Seq = Region; 13970 } 13971 } 13972 13973 /// Check whether a modification or use of an object \p O in an expression 13974 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 13975 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 13976 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 13977 /// usage and false we are checking for a mod-use unsequenced usage. 13978 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 13979 UsageKind OtherKind, bool IsModMod) { 13980 if (UI.Diagnosed) 13981 return; 13982 13983 const Usage &U = UI.Uses[OtherKind]; 13984 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 13985 return; 13986 13987 const Expr *Mod = U.UsageExpr; 13988 const Expr *ModOrUse = UsageExpr; 13989 if (OtherKind == UK_Use) 13990 std::swap(Mod, ModOrUse); 13991 13992 SemaRef.DiagRuntimeBehavior( 13993 Mod->getExprLoc(), {Mod, ModOrUse}, 13994 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 13995 : diag::warn_unsequenced_mod_use) 13996 << O << SourceRange(ModOrUse->getExprLoc())); 13997 UI.Diagnosed = true; 13998 } 13999 14000 // A note on note{Pre, Post}{Use, Mod}: 14001 // 14002 // (It helps to follow the algorithm with an expression such as 14003 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 14004 // operations before C++17 and both are well-defined in C++17). 14005 // 14006 // When visiting a node which uses/modify an object we first call notePreUse 14007 // or notePreMod before visiting its sub-expression(s). At this point the 14008 // children of the current node have not yet been visited and so the eventual 14009 // uses/modifications resulting from the children of the current node have not 14010 // been recorded yet. 14011 // 14012 // We then visit the children of the current node. After that notePostUse or 14013 // notePostMod is called. These will 1) detect an unsequenced modification 14014 // as side effect (as in "k++ + k") and 2) add a new usage with the 14015 // appropriate usage kind. 14016 // 14017 // We also have to be careful that some operation sequences modification as 14018 // side effect as well (for example: || or ,). To account for this we wrap 14019 // the visitation of such a sub-expression (for example: the LHS of || or ,) 14020 // with SequencedSubexpression. SequencedSubexpression is an RAII object 14021 // which record usages which are modifications as side effect, and then 14022 // downgrade them (or more accurately restore the previous usage which was a 14023 // modification as side effect) when exiting the scope of the sequenced 14024 // subexpression. 14025 14026 void notePreUse(Object O, const Expr *UseExpr) { 14027 UsageInfo &UI = UsageMap[O]; 14028 // Uses conflict with other modifications. 14029 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 14030 } 14031 14032 void notePostUse(Object O, const Expr *UseExpr) { 14033 UsageInfo &UI = UsageMap[O]; 14034 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 14035 /*IsModMod=*/false); 14036 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 14037 } 14038 14039 void notePreMod(Object O, const Expr *ModExpr) { 14040 UsageInfo &UI = UsageMap[O]; 14041 // Modifications conflict with other modifications and with uses. 14042 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 14043 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 14044 } 14045 14046 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 14047 UsageInfo &UI = UsageMap[O]; 14048 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 14049 /*IsModMod=*/true); 14050 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 14051 } 14052 14053 public: 14054 SequenceChecker(Sema &S, const Expr *E, 14055 SmallVectorImpl<const Expr *> &WorkList) 14056 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 14057 Visit(E); 14058 // Silence a -Wunused-private-field since WorkList is now unused. 14059 // TODO: Evaluate if it can be used, and if not remove it. 14060 (void)this->WorkList; 14061 } 14062 14063 void VisitStmt(const Stmt *S) { 14064 // Skip all statements which aren't expressions for now. 14065 } 14066 14067 void VisitExpr(const Expr *E) { 14068 // By default, just recurse to evaluated subexpressions. 14069 Base::VisitStmt(E); 14070 } 14071 14072 void VisitCastExpr(const CastExpr *E) { 14073 Object O = Object(); 14074 if (E->getCastKind() == CK_LValueToRValue) 14075 O = getObject(E->getSubExpr(), false); 14076 14077 if (O) 14078 notePreUse(O, E); 14079 VisitExpr(E); 14080 if (O) 14081 notePostUse(O, E); 14082 } 14083 14084 void VisitSequencedExpressions(const Expr *SequencedBefore, 14085 const Expr *SequencedAfter) { 14086 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 14087 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 14088 SequenceTree::Seq OldRegion = Region; 14089 14090 { 14091 SequencedSubexpression SeqBefore(*this); 14092 Region = BeforeRegion; 14093 Visit(SequencedBefore); 14094 } 14095 14096 Region = AfterRegion; 14097 Visit(SequencedAfter); 14098 14099 Region = OldRegion; 14100 14101 Tree.merge(BeforeRegion); 14102 Tree.merge(AfterRegion); 14103 } 14104 14105 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 14106 // C++17 [expr.sub]p1: 14107 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 14108 // expression E1 is sequenced before the expression E2. 14109 if (SemaRef.getLangOpts().CPlusPlus17) 14110 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 14111 else { 14112 Visit(ASE->getLHS()); 14113 Visit(ASE->getRHS()); 14114 } 14115 } 14116 14117 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 14118 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 14119 void VisitBinPtrMem(const BinaryOperator *BO) { 14120 // C++17 [expr.mptr.oper]p4: 14121 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 14122 // the expression E1 is sequenced before the expression E2. 14123 if (SemaRef.getLangOpts().CPlusPlus17) 14124 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14125 else { 14126 Visit(BO->getLHS()); 14127 Visit(BO->getRHS()); 14128 } 14129 } 14130 14131 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 14132 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 14133 void VisitBinShlShr(const BinaryOperator *BO) { 14134 // C++17 [expr.shift]p4: 14135 // The expression E1 is sequenced before the expression E2. 14136 if (SemaRef.getLangOpts().CPlusPlus17) 14137 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14138 else { 14139 Visit(BO->getLHS()); 14140 Visit(BO->getRHS()); 14141 } 14142 } 14143 14144 void VisitBinComma(const BinaryOperator *BO) { 14145 // C++11 [expr.comma]p1: 14146 // Every value computation and side effect associated with the left 14147 // expression is sequenced before every value computation and side 14148 // effect associated with the right expression. 14149 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14150 } 14151 14152 void VisitBinAssign(const BinaryOperator *BO) { 14153 SequenceTree::Seq RHSRegion; 14154 SequenceTree::Seq LHSRegion; 14155 if (SemaRef.getLangOpts().CPlusPlus17) { 14156 RHSRegion = Tree.allocate(Region); 14157 LHSRegion = Tree.allocate(Region); 14158 } else { 14159 RHSRegion = Region; 14160 LHSRegion = Region; 14161 } 14162 SequenceTree::Seq OldRegion = Region; 14163 14164 // C++11 [expr.ass]p1: 14165 // [...] the assignment is sequenced after the value computation 14166 // of the right and left operands, [...] 14167 // 14168 // so check it before inspecting the operands and update the 14169 // map afterwards. 14170 Object O = getObject(BO->getLHS(), /*Mod=*/true); 14171 if (O) 14172 notePreMod(O, BO); 14173 14174 if (SemaRef.getLangOpts().CPlusPlus17) { 14175 // C++17 [expr.ass]p1: 14176 // [...] The right operand is sequenced before the left operand. [...] 14177 { 14178 SequencedSubexpression SeqBefore(*this); 14179 Region = RHSRegion; 14180 Visit(BO->getRHS()); 14181 } 14182 14183 Region = LHSRegion; 14184 Visit(BO->getLHS()); 14185 14186 if (O && isa<CompoundAssignOperator>(BO)) 14187 notePostUse(O, BO); 14188 14189 } else { 14190 // C++11 does not specify any sequencing between the LHS and RHS. 14191 Region = LHSRegion; 14192 Visit(BO->getLHS()); 14193 14194 if (O && isa<CompoundAssignOperator>(BO)) 14195 notePostUse(O, BO); 14196 14197 Region = RHSRegion; 14198 Visit(BO->getRHS()); 14199 } 14200 14201 // C++11 [expr.ass]p1: 14202 // the assignment is sequenced [...] before the value computation of the 14203 // assignment expression. 14204 // C11 6.5.16/3 has no such rule. 14205 Region = OldRegion; 14206 if (O) 14207 notePostMod(O, BO, 14208 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 14209 : UK_ModAsSideEffect); 14210 if (SemaRef.getLangOpts().CPlusPlus17) { 14211 Tree.merge(RHSRegion); 14212 Tree.merge(LHSRegion); 14213 } 14214 } 14215 14216 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 14217 VisitBinAssign(CAO); 14218 } 14219 14220 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 14221 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 14222 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 14223 Object O = getObject(UO->getSubExpr(), true); 14224 if (!O) 14225 return VisitExpr(UO); 14226 14227 notePreMod(O, UO); 14228 Visit(UO->getSubExpr()); 14229 // C++11 [expr.pre.incr]p1: 14230 // the expression ++x is equivalent to x+=1 14231 notePostMod(O, UO, 14232 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 14233 : UK_ModAsSideEffect); 14234 } 14235 14236 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 14237 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 14238 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 14239 Object O = getObject(UO->getSubExpr(), true); 14240 if (!O) 14241 return VisitExpr(UO); 14242 14243 notePreMod(O, UO); 14244 Visit(UO->getSubExpr()); 14245 notePostMod(O, UO, UK_ModAsSideEffect); 14246 } 14247 14248 void VisitBinLOr(const BinaryOperator *BO) { 14249 // C++11 [expr.log.or]p2: 14250 // If the second expression is evaluated, every value computation and 14251 // side effect associated with the first expression is sequenced before 14252 // every value computation and side effect associated with the 14253 // second expression. 14254 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 14255 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 14256 SequenceTree::Seq OldRegion = Region; 14257 14258 EvaluationTracker Eval(*this); 14259 { 14260 SequencedSubexpression Sequenced(*this); 14261 Region = LHSRegion; 14262 Visit(BO->getLHS()); 14263 } 14264 14265 // C++11 [expr.log.or]p1: 14266 // [...] the second operand is not evaluated if the first operand 14267 // evaluates to true. 14268 bool EvalResult = false; 14269 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14270 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 14271 if (ShouldVisitRHS) { 14272 Region = RHSRegion; 14273 Visit(BO->getRHS()); 14274 } 14275 14276 Region = OldRegion; 14277 Tree.merge(LHSRegion); 14278 Tree.merge(RHSRegion); 14279 } 14280 14281 void VisitBinLAnd(const BinaryOperator *BO) { 14282 // C++11 [expr.log.and]p2: 14283 // If the second expression is evaluated, every value computation and 14284 // side effect associated with the first expression is sequenced before 14285 // every value computation and side effect associated with the 14286 // second expression. 14287 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 14288 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 14289 SequenceTree::Seq OldRegion = Region; 14290 14291 EvaluationTracker Eval(*this); 14292 { 14293 SequencedSubexpression Sequenced(*this); 14294 Region = LHSRegion; 14295 Visit(BO->getLHS()); 14296 } 14297 14298 // C++11 [expr.log.and]p1: 14299 // [...] the second operand is not evaluated if the first operand is false. 14300 bool EvalResult = false; 14301 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14302 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 14303 if (ShouldVisitRHS) { 14304 Region = RHSRegion; 14305 Visit(BO->getRHS()); 14306 } 14307 14308 Region = OldRegion; 14309 Tree.merge(LHSRegion); 14310 Tree.merge(RHSRegion); 14311 } 14312 14313 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 14314 // C++11 [expr.cond]p1: 14315 // [...] Every value computation and side effect associated with the first 14316 // expression is sequenced before every value computation and side effect 14317 // associated with the second or third expression. 14318 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 14319 14320 // No sequencing is specified between the true and false expression. 14321 // However since exactly one of both is going to be evaluated we can 14322 // consider them to be sequenced. This is needed to avoid warning on 14323 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 14324 // both the true and false expressions because we can't evaluate x. 14325 // This will still allow us to detect an expression like (pre C++17) 14326 // "(x ? y += 1 : y += 2) = y". 14327 // 14328 // We don't wrap the visitation of the true and false expression with 14329 // SequencedSubexpression because we don't want to downgrade modifications 14330 // as side effect in the true and false expressions after the visition 14331 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 14332 // not warn between the two "y++", but we should warn between the "y++" 14333 // and the "y". 14334 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 14335 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 14336 SequenceTree::Seq OldRegion = Region; 14337 14338 EvaluationTracker Eval(*this); 14339 { 14340 SequencedSubexpression Sequenced(*this); 14341 Region = ConditionRegion; 14342 Visit(CO->getCond()); 14343 } 14344 14345 // C++11 [expr.cond]p1: 14346 // [...] The first expression is contextually converted to bool (Clause 4). 14347 // It is evaluated and if it is true, the result of the conditional 14348 // expression is the value of the second expression, otherwise that of the 14349 // third expression. Only one of the second and third expressions is 14350 // evaluated. [...] 14351 bool EvalResult = false; 14352 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 14353 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 14354 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 14355 if (ShouldVisitTrueExpr) { 14356 Region = TrueRegion; 14357 Visit(CO->getTrueExpr()); 14358 } 14359 if (ShouldVisitFalseExpr) { 14360 Region = FalseRegion; 14361 Visit(CO->getFalseExpr()); 14362 } 14363 14364 Region = OldRegion; 14365 Tree.merge(ConditionRegion); 14366 Tree.merge(TrueRegion); 14367 Tree.merge(FalseRegion); 14368 } 14369 14370 void VisitCallExpr(const CallExpr *CE) { 14371 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 14372 14373 if (CE->isUnevaluatedBuiltinCall(Context)) 14374 return; 14375 14376 // C++11 [intro.execution]p15: 14377 // When calling a function [...], every value computation and side effect 14378 // associated with any argument expression, or with the postfix expression 14379 // designating the called function, is sequenced before execution of every 14380 // expression or statement in the body of the function [and thus before 14381 // the value computation of its result]. 14382 SequencedSubexpression Sequenced(*this); 14383 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 14384 // C++17 [expr.call]p5 14385 // The postfix-expression is sequenced before each expression in the 14386 // expression-list and any default argument. [...] 14387 SequenceTree::Seq CalleeRegion; 14388 SequenceTree::Seq OtherRegion; 14389 if (SemaRef.getLangOpts().CPlusPlus17) { 14390 CalleeRegion = Tree.allocate(Region); 14391 OtherRegion = Tree.allocate(Region); 14392 } else { 14393 CalleeRegion = Region; 14394 OtherRegion = Region; 14395 } 14396 SequenceTree::Seq OldRegion = Region; 14397 14398 // Visit the callee expression first. 14399 Region = CalleeRegion; 14400 if (SemaRef.getLangOpts().CPlusPlus17) { 14401 SequencedSubexpression Sequenced(*this); 14402 Visit(CE->getCallee()); 14403 } else { 14404 Visit(CE->getCallee()); 14405 } 14406 14407 // Then visit the argument expressions. 14408 Region = OtherRegion; 14409 for (const Expr *Argument : CE->arguments()) 14410 Visit(Argument); 14411 14412 Region = OldRegion; 14413 if (SemaRef.getLangOpts().CPlusPlus17) { 14414 Tree.merge(CalleeRegion); 14415 Tree.merge(OtherRegion); 14416 } 14417 }); 14418 } 14419 14420 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 14421 // C++17 [over.match.oper]p2: 14422 // [...] the operator notation is first transformed to the equivalent 14423 // function-call notation as summarized in Table 12 (where @ denotes one 14424 // of the operators covered in the specified subclause). However, the 14425 // operands are sequenced in the order prescribed for the built-in 14426 // operator (Clause 8). 14427 // 14428 // From the above only overloaded binary operators and overloaded call 14429 // operators have sequencing rules in C++17 that we need to handle 14430 // separately. 14431 if (!SemaRef.getLangOpts().CPlusPlus17 || 14432 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 14433 return VisitCallExpr(CXXOCE); 14434 14435 enum { 14436 NoSequencing, 14437 LHSBeforeRHS, 14438 RHSBeforeLHS, 14439 LHSBeforeRest 14440 } SequencingKind; 14441 switch (CXXOCE->getOperator()) { 14442 case OO_Equal: 14443 case OO_PlusEqual: 14444 case OO_MinusEqual: 14445 case OO_StarEqual: 14446 case OO_SlashEqual: 14447 case OO_PercentEqual: 14448 case OO_CaretEqual: 14449 case OO_AmpEqual: 14450 case OO_PipeEqual: 14451 case OO_LessLessEqual: 14452 case OO_GreaterGreaterEqual: 14453 SequencingKind = RHSBeforeLHS; 14454 break; 14455 14456 case OO_LessLess: 14457 case OO_GreaterGreater: 14458 case OO_AmpAmp: 14459 case OO_PipePipe: 14460 case OO_Comma: 14461 case OO_ArrowStar: 14462 case OO_Subscript: 14463 SequencingKind = LHSBeforeRHS; 14464 break; 14465 14466 case OO_Call: 14467 SequencingKind = LHSBeforeRest; 14468 break; 14469 14470 default: 14471 SequencingKind = NoSequencing; 14472 break; 14473 } 14474 14475 if (SequencingKind == NoSequencing) 14476 return VisitCallExpr(CXXOCE); 14477 14478 // This is a call, so all subexpressions are sequenced before the result. 14479 SequencedSubexpression Sequenced(*this); 14480 14481 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 14482 assert(SemaRef.getLangOpts().CPlusPlus17 && 14483 "Should only get there with C++17 and above!"); 14484 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 14485 "Should only get there with an overloaded binary operator" 14486 " or an overloaded call operator!"); 14487 14488 if (SequencingKind == LHSBeforeRest) { 14489 assert(CXXOCE->getOperator() == OO_Call && 14490 "We should only have an overloaded call operator here!"); 14491 14492 // This is very similar to VisitCallExpr, except that we only have the 14493 // C++17 case. The postfix-expression is the first argument of the 14494 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 14495 // are in the following arguments. 14496 // 14497 // Note that we intentionally do not visit the callee expression since 14498 // it is just a decayed reference to a function. 14499 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 14500 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 14501 SequenceTree::Seq OldRegion = Region; 14502 14503 assert(CXXOCE->getNumArgs() >= 1 && 14504 "An overloaded call operator must have at least one argument" 14505 " for the postfix-expression!"); 14506 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 14507 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 14508 CXXOCE->getNumArgs() - 1); 14509 14510 // Visit the postfix-expression first. 14511 { 14512 Region = PostfixExprRegion; 14513 SequencedSubexpression Sequenced(*this); 14514 Visit(PostfixExpr); 14515 } 14516 14517 // Then visit the argument expressions. 14518 Region = ArgsRegion; 14519 for (const Expr *Arg : Args) 14520 Visit(Arg); 14521 14522 Region = OldRegion; 14523 Tree.merge(PostfixExprRegion); 14524 Tree.merge(ArgsRegion); 14525 } else { 14526 assert(CXXOCE->getNumArgs() == 2 && 14527 "Should only have two arguments here!"); 14528 assert((SequencingKind == LHSBeforeRHS || 14529 SequencingKind == RHSBeforeLHS) && 14530 "Unexpected sequencing kind!"); 14531 14532 // We do not visit the callee expression since it is just a decayed 14533 // reference to a function. 14534 const Expr *E1 = CXXOCE->getArg(0); 14535 const Expr *E2 = CXXOCE->getArg(1); 14536 if (SequencingKind == RHSBeforeLHS) 14537 std::swap(E1, E2); 14538 14539 return VisitSequencedExpressions(E1, E2); 14540 } 14541 }); 14542 } 14543 14544 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 14545 // This is a call, so all subexpressions are sequenced before the result. 14546 SequencedSubexpression Sequenced(*this); 14547 14548 if (!CCE->isListInitialization()) 14549 return VisitExpr(CCE); 14550 14551 // In C++11, list initializations are sequenced. 14552 SmallVector<SequenceTree::Seq, 32> Elts; 14553 SequenceTree::Seq Parent = Region; 14554 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 14555 E = CCE->arg_end(); 14556 I != E; ++I) { 14557 Region = Tree.allocate(Parent); 14558 Elts.push_back(Region); 14559 Visit(*I); 14560 } 14561 14562 // Forget that the initializers are sequenced. 14563 Region = Parent; 14564 for (unsigned I = 0; I < Elts.size(); ++I) 14565 Tree.merge(Elts[I]); 14566 } 14567 14568 void VisitInitListExpr(const InitListExpr *ILE) { 14569 if (!SemaRef.getLangOpts().CPlusPlus11) 14570 return VisitExpr(ILE); 14571 14572 // In C++11, list initializations are sequenced. 14573 SmallVector<SequenceTree::Seq, 32> Elts; 14574 SequenceTree::Seq Parent = Region; 14575 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 14576 const Expr *E = ILE->getInit(I); 14577 if (!E) 14578 continue; 14579 Region = Tree.allocate(Parent); 14580 Elts.push_back(Region); 14581 Visit(E); 14582 } 14583 14584 // Forget that the initializers are sequenced. 14585 Region = Parent; 14586 for (unsigned I = 0; I < Elts.size(); ++I) 14587 Tree.merge(Elts[I]); 14588 } 14589 }; 14590 14591 } // namespace 14592 14593 void Sema::CheckUnsequencedOperations(const Expr *E) { 14594 SmallVector<const Expr *, 8> WorkList; 14595 WorkList.push_back(E); 14596 while (!WorkList.empty()) { 14597 const Expr *Item = WorkList.pop_back_val(); 14598 SequenceChecker(*this, Item, WorkList); 14599 } 14600 } 14601 14602 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 14603 bool IsConstexpr) { 14604 llvm::SaveAndRestore<bool> ConstantContext( 14605 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 14606 CheckImplicitConversions(E, CheckLoc); 14607 if (!E->isInstantiationDependent()) 14608 CheckUnsequencedOperations(E); 14609 if (!IsConstexpr && !E->isValueDependent()) 14610 CheckForIntOverflow(E); 14611 DiagnoseMisalignedMembers(); 14612 } 14613 14614 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 14615 FieldDecl *BitField, 14616 Expr *Init) { 14617 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 14618 } 14619 14620 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 14621 SourceLocation Loc) { 14622 if (!PType->isVariablyModifiedType()) 14623 return; 14624 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 14625 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 14626 return; 14627 } 14628 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 14629 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 14630 return; 14631 } 14632 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 14633 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 14634 return; 14635 } 14636 14637 const ArrayType *AT = S.Context.getAsArrayType(PType); 14638 if (!AT) 14639 return; 14640 14641 if (AT->getSizeModifier() != ArrayType::Star) { 14642 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 14643 return; 14644 } 14645 14646 S.Diag(Loc, diag::err_array_star_in_function_definition); 14647 } 14648 14649 /// CheckParmsForFunctionDef - Check that the parameters of the given 14650 /// function are appropriate for the definition of a function. This 14651 /// takes care of any checks that cannot be performed on the 14652 /// declaration itself, e.g., that the types of each of the function 14653 /// parameters are complete. 14654 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 14655 bool CheckParameterNames) { 14656 bool HasInvalidParm = false; 14657 for (ParmVarDecl *Param : Parameters) { 14658 // C99 6.7.5.3p4: the parameters in a parameter type list in a 14659 // function declarator that is part of a function definition of 14660 // that function shall not have incomplete type. 14661 // 14662 // This is also C++ [dcl.fct]p6. 14663 if (!Param->isInvalidDecl() && 14664 RequireCompleteType(Param->getLocation(), Param->getType(), 14665 diag::err_typecheck_decl_incomplete_type)) { 14666 Param->setInvalidDecl(); 14667 HasInvalidParm = true; 14668 } 14669 14670 // C99 6.9.1p5: If the declarator includes a parameter type list, the 14671 // declaration of each parameter shall include an identifier. 14672 if (CheckParameterNames && Param->getIdentifier() == nullptr && 14673 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 14674 // Diagnose this as an extension in C17 and earlier. 14675 if (!getLangOpts().C2x) 14676 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 14677 } 14678 14679 // C99 6.7.5.3p12: 14680 // If the function declarator is not part of a definition of that 14681 // function, parameters may have incomplete type and may use the [*] 14682 // notation in their sequences of declarator specifiers to specify 14683 // variable length array types. 14684 QualType PType = Param->getOriginalType(); 14685 // FIXME: This diagnostic should point the '[*]' if source-location 14686 // information is added for it. 14687 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 14688 14689 // If the parameter is a c++ class type and it has to be destructed in the 14690 // callee function, declare the destructor so that it can be called by the 14691 // callee function. Do not perform any direct access check on the dtor here. 14692 if (!Param->isInvalidDecl()) { 14693 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 14694 if (!ClassDecl->isInvalidDecl() && 14695 !ClassDecl->hasIrrelevantDestructor() && 14696 !ClassDecl->isDependentContext() && 14697 ClassDecl->isParamDestroyedInCallee()) { 14698 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 14699 MarkFunctionReferenced(Param->getLocation(), Destructor); 14700 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 14701 } 14702 } 14703 } 14704 14705 // Parameters with the pass_object_size attribute only need to be marked 14706 // constant at function definitions. Because we lack information about 14707 // whether we're on a declaration or definition when we're instantiating the 14708 // attribute, we need to check for constness here. 14709 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 14710 if (!Param->getType().isConstQualified()) 14711 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 14712 << Attr->getSpelling() << 1; 14713 14714 // Check for parameter names shadowing fields from the class. 14715 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 14716 // The owning context for the parameter should be the function, but we 14717 // want to see if this function's declaration context is a record. 14718 DeclContext *DC = Param->getDeclContext(); 14719 if (DC && DC->isFunctionOrMethod()) { 14720 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 14721 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 14722 RD, /*DeclIsField*/ false); 14723 } 14724 } 14725 } 14726 14727 return HasInvalidParm; 14728 } 14729 14730 Optional<std::pair<CharUnits, CharUnits>> 14731 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 14732 14733 /// Compute the alignment and offset of the base class object given the 14734 /// derived-to-base cast expression and the alignment and offset of the derived 14735 /// class object. 14736 static std::pair<CharUnits, CharUnits> 14737 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 14738 CharUnits BaseAlignment, CharUnits Offset, 14739 ASTContext &Ctx) { 14740 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 14741 ++PathI) { 14742 const CXXBaseSpecifier *Base = *PathI; 14743 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 14744 if (Base->isVirtual()) { 14745 // The complete object may have a lower alignment than the non-virtual 14746 // alignment of the base, in which case the base may be misaligned. Choose 14747 // the smaller of the non-virtual alignment and BaseAlignment, which is a 14748 // conservative lower bound of the complete object alignment. 14749 CharUnits NonVirtualAlignment = 14750 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 14751 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 14752 Offset = CharUnits::Zero(); 14753 } else { 14754 const ASTRecordLayout &RL = 14755 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 14756 Offset += RL.getBaseClassOffset(BaseDecl); 14757 } 14758 DerivedType = Base->getType(); 14759 } 14760 14761 return std::make_pair(BaseAlignment, Offset); 14762 } 14763 14764 /// Compute the alignment and offset of a binary additive operator. 14765 static Optional<std::pair<CharUnits, CharUnits>> 14766 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 14767 bool IsSub, ASTContext &Ctx) { 14768 QualType PointeeType = PtrE->getType()->getPointeeType(); 14769 14770 if (!PointeeType->isConstantSizeType()) 14771 return llvm::None; 14772 14773 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 14774 14775 if (!P) 14776 return llvm::None; 14777 14778 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 14779 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 14780 CharUnits Offset = EltSize * IdxRes->getExtValue(); 14781 if (IsSub) 14782 Offset = -Offset; 14783 return std::make_pair(P->first, P->second + Offset); 14784 } 14785 14786 // If the integer expression isn't a constant expression, compute the lower 14787 // bound of the alignment using the alignment and offset of the pointer 14788 // expression and the element size. 14789 return std::make_pair( 14790 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 14791 CharUnits::Zero()); 14792 } 14793 14794 /// This helper function takes an lvalue expression and returns the alignment of 14795 /// a VarDecl and a constant offset from the VarDecl. 14796 Optional<std::pair<CharUnits, CharUnits>> 14797 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 14798 E = E->IgnoreParens(); 14799 switch (E->getStmtClass()) { 14800 default: 14801 break; 14802 case Stmt::CStyleCastExprClass: 14803 case Stmt::CXXStaticCastExprClass: 14804 case Stmt::ImplicitCastExprClass: { 14805 auto *CE = cast<CastExpr>(E); 14806 const Expr *From = CE->getSubExpr(); 14807 switch (CE->getCastKind()) { 14808 default: 14809 break; 14810 case CK_NoOp: 14811 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14812 case CK_UncheckedDerivedToBase: 14813 case CK_DerivedToBase: { 14814 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14815 if (!P) 14816 break; 14817 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 14818 P->second, Ctx); 14819 } 14820 } 14821 break; 14822 } 14823 case Stmt::ArraySubscriptExprClass: { 14824 auto *ASE = cast<ArraySubscriptExpr>(E); 14825 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 14826 false, Ctx); 14827 } 14828 case Stmt::DeclRefExprClass: { 14829 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 14830 // FIXME: If VD is captured by copy or is an escaping __block variable, 14831 // use the alignment of VD's type. 14832 if (!VD->getType()->isReferenceType()) 14833 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 14834 if (VD->hasInit()) 14835 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 14836 } 14837 break; 14838 } 14839 case Stmt::MemberExprClass: { 14840 auto *ME = cast<MemberExpr>(E); 14841 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 14842 if (!FD || FD->getType()->isReferenceType() || 14843 FD->getParent()->isInvalidDecl()) 14844 break; 14845 Optional<std::pair<CharUnits, CharUnits>> P; 14846 if (ME->isArrow()) 14847 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 14848 else 14849 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 14850 if (!P) 14851 break; 14852 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 14853 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 14854 return std::make_pair(P->first, 14855 P->second + CharUnits::fromQuantity(Offset)); 14856 } 14857 case Stmt::UnaryOperatorClass: { 14858 auto *UO = cast<UnaryOperator>(E); 14859 switch (UO->getOpcode()) { 14860 default: 14861 break; 14862 case UO_Deref: 14863 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 14864 } 14865 break; 14866 } 14867 case Stmt::BinaryOperatorClass: { 14868 auto *BO = cast<BinaryOperator>(E); 14869 auto Opcode = BO->getOpcode(); 14870 switch (Opcode) { 14871 default: 14872 break; 14873 case BO_Comma: 14874 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 14875 } 14876 break; 14877 } 14878 } 14879 return llvm::None; 14880 } 14881 14882 /// This helper function takes a pointer expression and returns the alignment of 14883 /// a VarDecl and a constant offset from the VarDecl. 14884 Optional<std::pair<CharUnits, CharUnits>> 14885 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 14886 E = E->IgnoreParens(); 14887 switch (E->getStmtClass()) { 14888 default: 14889 break; 14890 case Stmt::CStyleCastExprClass: 14891 case Stmt::CXXStaticCastExprClass: 14892 case Stmt::ImplicitCastExprClass: { 14893 auto *CE = cast<CastExpr>(E); 14894 const Expr *From = CE->getSubExpr(); 14895 switch (CE->getCastKind()) { 14896 default: 14897 break; 14898 case CK_NoOp: 14899 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14900 case CK_ArrayToPointerDecay: 14901 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14902 case CK_UncheckedDerivedToBase: 14903 case CK_DerivedToBase: { 14904 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14905 if (!P) 14906 break; 14907 return getDerivedToBaseAlignmentAndOffset( 14908 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 14909 } 14910 } 14911 break; 14912 } 14913 case Stmt::CXXThisExprClass: { 14914 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 14915 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 14916 return std::make_pair(Alignment, CharUnits::Zero()); 14917 } 14918 case Stmt::UnaryOperatorClass: { 14919 auto *UO = cast<UnaryOperator>(E); 14920 if (UO->getOpcode() == UO_AddrOf) 14921 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 14922 break; 14923 } 14924 case Stmt::BinaryOperatorClass: { 14925 auto *BO = cast<BinaryOperator>(E); 14926 auto Opcode = BO->getOpcode(); 14927 switch (Opcode) { 14928 default: 14929 break; 14930 case BO_Add: 14931 case BO_Sub: { 14932 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 14933 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 14934 std::swap(LHS, RHS); 14935 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 14936 Ctx); 14937 } 14938 case BO_Comma: 14939 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 14940 } 14941 break; 14942 } 14943 } 14944 return llvm::None; 14945 } 14946 14947 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 14948 // See if we can compute the alignment of a VarDecl and an offset from it. 14949 Optional<std::pair<CharUnits, CharUnits>> P = 14950 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 14951 14952 if (P) 14953 return P->first.alignmentAtOffset(P->second); 14954 14955 // If that failed, return the type's alignment. 14956 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 14957 } 14958 14959 /// CheckCastAlign - Implements -Wcast-align, which warns when a 14960 /// pointer cast increases the alignment requirements. 14961 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 14962 // This is actually a lot of work to potentially be doing on every 14963 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 14964 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 14965 return; 14966 14967 // Ignore dependent types. 14968 if (T->isDependentType() || Op->getType()->isDependentType()) 14969 return; 14970 14971 // Require that the destination be a pointer type. 14972 const PointerType *DestPtr = T->getAs<PointerType>(); 14973 if (!DestPtr) return; 14974 14975 // If the destination has alignment 1, we're done. 14976 QualType DestPointee = DestPtr->getPointeeType(); 14977 if (DestPointee->isIncompleteType()) return; 14978 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 14979 if (DestAlign.isOne()) return; 14980 14981 // Require that the source be a pointer type. 14982 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 14983 if (!SrcPtr) return; 14984 QualType SrcPointee = SrcPtr->getPointeeType(); 14985 14986 // Explicitly allow casts from cv void*. We already implicitly 14987 // allowed casts to cv void*, since they have alignment 1. 14988 // Also allow casts involving incomplete types, which implicitly 14989 // includes 'void'. 14990 if (SrcPointee->isIncompleteType()) return; 14991 14992 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 14993 14994 if (SrcAlign >= DestAlign) return; 14995 14996 Diag(TRange.getBegin(), diag::warn_cast_align) 14997 << Op->getType() << T 14998 << static_cast<unsigned>(SrcAlign.getQuantity()) 14999 << static_cast<unsigned>(DestAlign.getQuantity()) 15000 << TRange << Op->getSourceRange(); 15001 } 15002 15003 /// Check whether this array fits the idiom of a size-one tail padded 15004 /// array member of a struct. 15005 /// 15006 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 15007 /// commonly used to emulate flexible arrays in C89 code. 15008 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 15009 const NamedDecl *ND) { 15010 if (Size != 1 || !ND) return false; 15011 15012 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 15013 if (!FD) return false; 15014 15015 // Don't consider sizes resulting from macro expansions or template argument 15016 // substitution to form C89 tail-padded arrays. 15017 15018 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 15019 while (TInfo) { 15020 TypeLoc TL = TInfo->getTypeLoc(); 15021 // Look through typedefs. 15022 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 15023 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 15024 TInfo = TDL->getTypeSourceInfo(); 15025 continue; 15026 } 15027 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 15028 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 15029 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 15030 return false; 15031 } 15032 break; 15033 } 15034 15035 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 15036 if (!RD) return false; 15037 if (RD->isUnion()) return false; 15038 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 15039 if (!CRD->isStandardLayout()) return false; 15040 } 15041 15042 // See if this is the last field decl in the record. 15043 const Decl *D = FD; 15044 while ((D = D->getNextDeclInContext())) 15045 if (isa<FieldDecl>(D)) 15046 return false; 15047 return true; 15048 } 15049 15050 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 15051 const ArraySubscriptExpr *ASE, 15052 bool AllowOnePastEnd, bool IndexNegated) { 15053 // Already diagnosed by the constant evaluator. 15054 if (isConstantEvaluated()) 15055 return; 15056 15057 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 15058 if (IndexExpr->isValueDependent()) 15059 return; 15060 15061 const Type *EffectiveType = 15062 BaseExpr->getType()->getPointeeOrArrayElementType(); 15063 BaseExpr = BaseExpr->IgnoreParenCasts(); 15064 const ConstantArrayType *ArrayTy = 15065 Context.getAsConstantArrayType(BaseExpr->getType()); 15066 15067 const Type *BaseType = 15068 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); 15069 bool IsUnboundedArray = (BaseType == nullptr); 15070 if (EffectiveType->isDependentType() || 15071 (!IsUnboundedArray && BaseType->isDependentType())) 15072 return; 15073 15074 Expr::EvalResult Result; 15075 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 15076 return; 15077 15078 llvm::APSInt index = Result.Val.getInt(); 15079 if (IndexNegated) { 15080 index.setIsUnsigned(false); 15081 index = -index; 15082 } 15083 15084 const NamedDecl *ND = nullptr; 15085 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15086 ND = DRE->getDecl(); 15087 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 15088 ND = ME->getMemberDecl(); 15089 15090 if (IsUnboundedArray) { 15091 if (index.isUnsigned() || !index.isNegative()) { 15092 const auto &ASTC = getASTContext(); 15093 unsigned AddrBits = 15094 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace( 15095 EffectiveType->getCanonicalTypeInternal())); 15096 if (index.getBitWidth() < AddrBits) 15097 index = index.zext(AddrBits); 15098 Optional<CharUnits> ElemCharUnits = 15099 ASTC.getTypeSizeInCharsIfKnown(EffectiveType); 15100 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void 15101 // pointer) bounds-checking isn't meaningful. 15102 if (!ElemCharUnits) 15103 return; 15104 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); 15105 // If index has more active bits than address space, we already know 15106 // we have a bounds violation to warn about. Otherwise, compute 15107 // address of (index + 1)th element, and warn about bounds violation 15108 // only if that address exceeds address space. 15109 if (index.getActiveBits() <= AddrBits) { 15110 bool Overflow; 15111 llvm::APInt Product(index); 15112 Product += 1; 15113 Product = Product.umul_ov(ElemBytes, Overflow); 15114 if (!Overflow && Product.getActiveBits() <= AddrBits) 15115 return; 15116 } 15117 15118 // Need to compute max possible elements in address space, since that 15119 // is included in diag message. 15120 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits); 15121 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth())); 15122 MaxElems += 1; 15123 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth()); 15124 MaxElems = MaxElems.udiv(ElemBytes); 15125 15126 unsigned DiagID = 15127 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds 15128 : diag::warn_ptr_arith_exceeds_max_addressable_bounds; 15129 15130 // Diag message shows element size in bits and in "bytes" (platform- 15131 // dependent CharUnits) 15132 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15133 PDiag(DiagID) 15134 << toString(index, 10, true) << AddrBits 15135 << (unsigned)ASTC.toBits(*ElemCharUnits) 15136 << toString(ElemBytes, 10, false) 15137 << toString(MaxElems, 10, false) 15138 << (unsigned)MaxElems.getLimitedValue(~0U) 15139 << IndexExpr->getSourceRange()); 15140 15141 if (!ND) { 15142 // Try harder to find a NamedDecl to point at in the note. 15143 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 15144 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 15145 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15146 ND = DRE->getDecl(); 15147 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 15148 ND = ME->getMemberDecl(); 15149 } 15150 15151 if (ND) 15152 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 15153 PDiag(diag::note_array_declared_here) << ND); 15154 } 15155 return; 15156 } 15157 15158 if (index.isUnsigned() || !index.isNegative()) { 15159 // It is possible that the type of the base expression after 15160 // IgnoreParenCasts is incomplete, even though the type of the base 15161 // expression before IgnoreParenCasts is complete (see PR39746 for an 15162 // example). In this case we have no information about whether the array 15163 // access exceeds the array bounds. However we can still diagnose an array 15164 // access which precedes the array bounds. 15165 if (BaseType->isIncompleteType()) 15166 return; 15167 15168 llvm::APInt size = ArrayTy->getSize(); 15169 if (!size.isStrictlyPositive()) 15170 return; 15171 15172 if (BaseType != EffectiveType) { 15173 // Make sure we're comparing apples to apples when comparing index to size 15174 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 15175 uint64_t array_typesize = Context.getTypeSize(BaseType); 15176 // Handle ptrarith_typesize being zero, such as when casting to void* 15177 if (!ptrarith_typesize) ptrarith_typesize = 1; 15178 if (ptrarith_typesize != array_typesize) { 15179 // There's a cast to a different size type involved 15180 uint64_t ratio = array_typesize / ptrarith_typesize; 15181 // TODO: Be smarter about handling cases where array_typesize is not a 15182 // multiple of ptrarith_typesize 15183 if (ptrarith_typesize * ratio == array_typesize) 15184 size *= llvm::APInt(size.getBitWidth(), ratio); 15185 } 15186 } 15187 15188 if (size.getBitWidth() > index.getBitWidth()) 15189 index = index.zext(size.getBitWidth()); 15190 else if (size.getBitWidth() < index.getBitWidth()) 15191 size = size.zext(index.getBitWidth()); 15192 15193 // For array subscripting the index must be less than size, but for pointer 15194 // arithmetic also allow the index (offset) to be equal to size since 15195 // computing the next address after the end of the array is legal and 15196 // commonly done e.g. in C++ iterators and range-based for loops. 15197 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 15198 return; 15199 15200 // Also don't warn for arrays of size 1 which are members of some 15201 // structure. These are often used to approximate flexible arrays in C89 15202 // code. 15203 if (IsTailPaddedMemberArray(*this, size, ND)) 15204 return; 15205 15206 // Suppress the warning if the subscript expression (as identified by the 15207 // ']' location) and the index expression are both from macro expansions 15208 // within a system header. 15209 if (ASE) { 15210 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 15211 ASE->getRBracketLoc()); 15212 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 15213 SourceLocation IndexLoc = 15214 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 15215 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 15216 return; 15217 } 15218 } 15219 15220 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds 15221 : diag::warn_ptr_arith_exceeds_bounds; 15222 15223 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15224 PDiag(DiagID) << toString(index, 10, true) 15225 << toString(size, 10, true) 15226 << (unsigned)size.getLimitedValue(~0U) 15227 << IndexExpr->getSourceRange()); 15228 } else { 15229 unsigned DiagID = diag::warn_array_index_precedes_bounds; 15230 if (!ASE) { 15231 DiagID = diag::warn_ptr_arith_precedes_bounds; 15232 if (index.isNegative()) index = -index; 15233 } 15234 15235 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15236 PDiag(DiagID) << toString(index, 10, true) 15237 << IndexExpr->getSourceRange()); 15238 } 15239 15240 if (!ND) { 15241 // Try harder to find a NamedDecl to point at in the note. 15242 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 15243 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 15244 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15245 ND = DRE->getDecl(); 15246 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 15247 ND = ME->getMemberDecl(); 15248 } 15249 15250 if (ND) 15251 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 15252 PDiag(diag::note_array_declared_here) << ND); 15253 } 15254 15255 void Sema::CheckArrayAccess(const Expr *expr) { 15256 int AllowOnePastEnd = 0; 15257 while (expr) { 15258 expr = expr->IgnoreParenImpCasts(); 15259 switch (expr->getStmtClass()) { 15260 case Stmt::ArraySubscriptExprClass: { 15261 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 15262 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 15263 AllowOnePastEnd > 0); 15264 expr = ASE->getBase(); 15265 break; 15266 } 15267 case Stmt::MemberExprClass: { 15268 expr = cast<MemberExpr>(expr)->getBase(); 15269 break; 15270 } 15271 case Stmt::OMPArraySectionExprClass: { 15272 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 15273 if (ASE->getLowerBound()) 15274 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 15275 /*ASE=*/nullptr, AllowOnePastEnd > 0); 15276 return; 15277 } 15278 case Stmt::UnaryOperatorClass: { 15279 // Only unwrap the * and & unary operators 15280 const UnaryOperator *UO = cast<UnaryOperator>(expr); 15281 expr = UO->getSubExpr(); 15282 switch (UO->getOpcode()) { 15283 case UO_AddrOf: 15284 AllowOnePastEnd++; 15285 break; 15286 case UO_Deref: 15287 AllowOnePastEnd--; 15288 break; 15289 default: 15290 return; 15291 } 15292 break; 15293 } 15294 case Stmt::ConditionalOperatorClass: { 15295 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 15296 if (const Expr *lhs = cond->getLHS()) 15297 CheckArrayAccess(lhs); 15298 if (const Expr *rhs = cond->getRHS()) 15299 CheckArrayAccess(rhs); 15300 return; 15301 } 15302 case Stmt::CXXOperatorCallExprClass: { 15303 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 15304 for (const auto *Arg : OCE->arguments()) 15305 CheckArrayAccess(Arg); 15306 return; 15307 } 15308 default: 15309 return; 15310 } 15311 } 15312 } 15313 15314 //===--- CHECK: Objective-C retain cycles ----------------------------------// 15315 15316 namespace { 15317 15318 struct RetainCycleOwner { 15319 VarDecl *Variable = nullptr; 15320 SourceRange Range; 15321 SourceLocation Loc; 15322 bool Indirect = false; 15323 15324 RetainCycleOwner() = default; 15325 15326 void setLocsFrom(Expr *e) { 15327 Loc = e->getExprLoc(); 15328 Range = e->getSourceRange(); 15329 } 15330 }; 15331 15332 } // namespace 15333 15334 /// Consider whether capturing the given variable can possibly lead to 15335 /// a retain cycle. 15336 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 15337 // In ARC, it's captured strongly iff the variable has __strong 15338 // lifetime. In MRR, it's captured strongly if the variable is 15339 // __block and has an appropriate type. 15340 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15341 return false; 15342 15343 owner.Variable = var; 15344 if (ref) 15345 owner.setLocsFrom(ref); 15346 return true; 15347 } 15348 15349 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 15350 while (true) { 15351 e = e->IgnoreParens(); 15352 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 15353 switch (cast->getCastKind()) { 15354 case CK_BitCast: 15355 case CK_LValueBitCast: 15356 case CK_LValueToRValue: 15357 case CK_ARCReclaimReturnedObject: 15358 e = cast->getSubExpr(); 15359 continue; 15360 15361 default: 15362 return false; 15363 } 15364 } 15365 15366 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 15367 ObjCIvarDecl *ivar = ref->getDecl(); 15368 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15369 return false; 15370 15371 // Try to find a retain cycle in the base. 15372 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 15373 return false; 15374 15375 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 15376 owner.Indirect = true; 15377 return true; 15378 } 15379 15380 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 15381 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 15382 if (!var) return false; 15383 return considerVariable(var, ref, owner); 15384 } 15385 15386 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 15387 if (member->isArrow()) return false; 15388 15389 // Don't count this as an indirect ownership. 15390 e = member->getBase(); 15391 continue; 15392 } 15393 15394 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 15395 // Only pay attention to pseudo-objects on property references. 15396 ObjCPropertyRefExpr *pre 15397 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 15398 ->IgnoreParens()); 15399 if (!pre) return false; 15400 if (pre->isImplicitProperty()) return false; 15401 ObjCPropertyDecl *property = pre->getExplicitProperty(); 15402 if (!property->isRetaining() && 15403 !(property->getPropertyIvarDecl() && 15404 property->getPropertyIvarDecl()->getType() 15405 .getObjCLifetime() == Qualifiers::OCL_Strong)) 15406 return false; 15407 15408 owner.Indirect = true; 15409 if (pre->isSuperReceiver()) { 15410 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 15411 if (!owner.Variable) 15412 return false; 15413 owner.Loc = pre->getLocation(); 15414 owner.Range = pre->getSourceRange(); 15415 return true; 15416 } 15417 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 15418 ->getSourceExpr()); 15419 continue; 15420 } 15421 15422 // Array ivars? 15423 15424 return false; 15425 } 15426 } 15427 15428 namespace { 15429 15430 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 15431 ASTContext &Context; 15432 VarDecl *Variable; 15433 Expr *Capturer = nullptr; 15434 bool VarWillBeReased = false; 15435 15436 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 15437 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 15438 Context(Context), Variable(variable) {} 15439 15440 void VisitDeclRefExpr(DeclRefExpr *ref) { 15441 if (ref->getDecl() == Variable && !Capturer) 15442 Capturer = ref; 15443 } 15444 15445 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 15446 if (Capturer) return; 15447 Visit(ref->getBase()); 15448 if (Capturer && ref->isFreeIvar()) 15449 Capturer = ref; 15450 } 15451 15452 void VisitBlockExpr(BlockExpr *block) { 15453 // Look inside nested blocks 15454 if (block->getBlockDecl()->capturesVariable(Variable)) 15455 Visit(block->getBlockDecl()->getBody()); 15456 } 15457 15458 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 15459 if (Capturer) return; 15460 if (OVE->getSourceExpr()) 15461 Visit(OVE->getSourceExpr()); 15462 } 15463 15464 void VisitBinaryOperator(BinaryOperator *BinOp) { 15465 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 15466 return; 15467 Expr *LHS = BinOp->getLHS(); 15468 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 15469 if (DRE->getDecl() != Variable) 15470 return; 15471 if (Expr *RHS = BinOp->getRHS()) { 15472 RHS = RHS->IgnoreParenCasts(); 15473 Optional<llvm::APSInt> Value; 15474 VarWillBeReased = 15475 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 15476 *Value == 0); 15477 } 15478 } 15479 } 15480 }; 15481 15482 } // namespace 15483 15484 /// Check whether the given argument is a block which captures a 15485 /// variable. 15486 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 15487 assert(owner.Variable && owner.Loc.isValid()); 15488 15489 e = e->IgnoreParenCasts(); 15490 15491 // Look through [^{...} copy] and Block_copy(^{...}). 15492 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 15493 Selector Cmd = ME->getSelector(); 15494 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 15495 e = ME->getInstanceReceiver(); 15496 if (!e) 15497 return nullptr; 15498 e = e->IgnoreParenCasts(); 15499 } 15500 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 15501 if (CE->getNumArgs() == 1) { 15502 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 15503 if (Fn) { 15504 const IdentifierInfo *FnI = Fn->getIdentifier(); 15505 if (FnI && FnI->isStr("_Block_copy")) { 15506 e = CE->getArg(0)->IgnoreParenCasts(); 15507 } 15508 } 15509 } 15510 } 15511 15512 BlockExpr *block = dyn_cast<BlockExpr>(e); 15513 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 15514 return nullptr; 15515 15516 FindCaptureVisitor visitor(S.Context, owner.Variable); 15517 visitor.Visit(block->getBlockDecl()->getBody()); 15518 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 15519 } 15520 15521 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 15522 RetainCycleOwner &owner) { 15523 assert(capturer); 15524 assert(owner.Variable && owner.Loc.isValid()); 15525 15526 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 15527 << owner.Variable << capturer->getSourceRange(); 15528 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 15529 << owner.Indirect << owner.Range; 15530 } 15531 15532 /// Check for a keyword selector that starts with the word 'add' or 15533 /// 'set'. 15534 static bool isSetterLikeSelector(Selector sel) { 15535 if (sel.isUnarySelector()) return false; 15536 15537 StringRef str = sel.getNameForSlot(0); 15538 while (!str.empty() && str.front() == '_') str = str.substr(1); 15539 if (str.startswith("set")) 15540 str = str.substr(3); 15541 else if (str.startswith("add")) { 15542 // Specially allow 'addOperationWithBlock:'. 15543 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 15544 return false; 15545 str = str.substr(3); 15546 } 15547 else 15548 return false; 15549 15550 if (str.empty()) return true; 15551 return !isLowercase(str.front()); 15552 } 15553 15554 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 15555 ObjCMessageExpr *Message) { 15556 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 15557 Message->getReceiverInterface(), 15558 NSAPI::ClassId_NSMutableArray); 15559 if (!IsMutableArray) { 15560 return None; 15561 } 15562 15563 Selector Sel = Message->getSelector(); 15564 15565 Optional<NSAPI::NSArrayMethodKind> MKOpt = 15566 S.NSAPIObj->getNSArrayMethodKind(Sel); 15567 if (!MKOpt) { 15568 return None; 15569 } 15570 15571 NSAPI::NSArrayMethodKind MK = *MKOpt; 15572 15573 switch (MK) { 15574 case NSAPI::NSMutableArr_addObject: 15575 case NSAPI::NSMutableArr_insertObjectAtIndex: 15576 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 15577 return 0; 15578 case NSAPI::NSMutableArr_replaceObjectAtIndex: 15579 return 1; 15580 15581 default: 15582 return None; 15583 } 15584 15585 return None; 15586 } 15587 15588 static 15589 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 15590 ObjCMessageExpr *Message) { 15591 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 15592 Message->getReceiverInterface(), 15593 NSAPI::ClassId_NSMutableDictionary); 15594 if (!IsMutableDictionary) { 15595 return None; 15596 } 15597 15598 Selector Sel = Message->getSelector(); 15599 15600 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 15601 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 15602 if (!MKOpt) { 15603 return None; 15604 } 15605 15606 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 15607 15608 switch (MK) { 15609 case NSAPI::NSMutableDict_setObjectForKey: 15610 case NSAPI::NSMutableDict_setValueForKey: 15611 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 15612 return 0; 15613 15614 default: 15615 return None; 15616 } 15617 15618 return None; 15619 } 15620 15621 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 15622 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 15623 Message->getReceiverInterface(), 15624 NSAPI::ClassId_NSMutableSet); 15625 15626 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 15627 Message->getReceiverInterface(), 15628 NSAPI::ClassId_NSMutableOrderedSet); 15629 if (!IsMutableSet && !IsMutableOrderedSet) { 15630 return None; 15631 } 15632 15633 Selector Sel = Message->getSelector(); 15634 15635 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 15636 if (!MKOpt) { 15637 return None; 15638 } 15639 15640 NSAPI::NSSetMethodKind MK = *MKOpt; 15641 15642 switch (MK) { 15643 case NSAPI::NSMutableSet_addObject: 15644 case NSAPI::NSOrderedSet_setObjectAtIndex: 15645 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 15646 case NSAPI::NSOrderedSet_insertObjectAtIndex: 15647 return 0; 15648 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 15649 return 1; 15650 } 15651 15652 return None; 15653 } 15654 15655 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 15656 if (!Message->isInstanceMessage()) { 15657 return; 15658 } 15659 15660 Optional<int> ArgOpt; 15661 15662 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 15663 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 15664 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 15665 return; 15666 } 15667 15668 int ArgIndex = *ArgOpt; 15669 15670 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 15671 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 15672 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 15673 } 15674 15675 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 15676 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15677 if (ArgRE->isObjCSelfExpr()) { 15678 Diag(Message->getSourceRange().getBegin(), 15679 diag::warn_objc_circular_container) 15680 << ArgRE->getDecl() << StringRef("'super'"); 15681 } 15682 } 15683 } else { 15684 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 15685 15686 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 15687 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 15688 } 15689 15690 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 15691 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15692 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 15693 ValueDecl *Decl = ReceiverRE->getDecl(); 15694 Diag(Message->getSourceRange().getBegin(), 15695 diag::warn_objc_circular_container) 15696 << Decl << Decl; 15697 if (!ArgRE->isObjCSelfExpr()) { 15698 Diag(Decl->getLocation(), 15699 diag::note_objc_circular_container_declared_here) 15700 << Decl; 15701 } 15702 } 15703 } 15704 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 15705 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 15706 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 15707 ObjCIvarDecl *Decl = IvarRE->getDecl(); 15708 Diag(Message->getSourceRange().getBegin(), 15709 diag::warn_objc_circular_container) 15710 << Decl << Decl; 15711 Diag(Decl->getLocation(), 15712 diag::note_objc_circular_container_declared_here) 15713 << Decl; 15714 } 15715 } 15716 } 15717 } 15718 } 15719 15720 /// Check a message send to see if it's likely to cause a retain cycle. 15721 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 15722 // Only check instance methods whose selector looks like a setter. 15723 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 15724 return; 15725 15726 // Try to find a variable that the receiver is strongly owned by. 15727 RetainCycleOwner owner; 15728 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 15729 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 15730 return; 15731 } else { 15732 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 15733 owner.Variable = getCurMethodDecl()->getSelfDecl(); 15734 owner.Loc = msg->getSuperLoc(); 15735 owner.Range = msg->getSuperLoc(); 15736 } 15737 15738 // Check whether the receiver is captured by any of the arguments. 15739 const ObjCMethodDecl *MD = msg->getMethodDecl(); 15740 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 15741 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 15742 // noescape blocks should not be retained by the method. 15743 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 15744 continue; 15745 return diagnoseRetainCycle(*this, capturer, owner); 15746 } 15747 } 15748 } 15749 15750 /// Check a property assign to see if it's likely to cause a retain cycle. 15751 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 15752 RetainCycleOwner owner; 15753 if (!findRetainCycleOwner(*this, receiver, owner)) 15754 return; 15755 15756 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 15757 diagnoseRetainCycle(*this, capturer, owner); 15758 } 15759 15760 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 15761 RetainCycleOwner Owner; 15762 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 15763 return; 15764 15765 // Because we don't have an expression for the variable, we have to set the 15766 // location explicitly here. 15767 Owner.Loc = Var->getLocation(); 15768 Owner.Range = Var->getSourceRange(); 15769 15770 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 15771 diagnoseRetainCycle(*this, Capturer, Owner); 15772 } 15773 15774 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 15775 Expr *RHS, bool isProperty) { 15776 // Check if RHS is an Objective-C object literal, which also can get 15777 // immediately zapped in a weak reference. Note that we explicitly 15778 // allow ObjCStringLiterals, since those are designed to never really die. 15779 RHS = RHS->IgnoreParenImpCasts(); 15780 15781 // This enum needs to match with the 'select' in 15782 // warn_objc_arc_literal_assign (off-by-1). 15783 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 15784 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 15785 return false; 15786 15787 S.Diag(Loc, diag::warn_arc_literal_assign) 15788 << (unsigned) Kind 15789 << (isProperty ? 0 : 1) 15790 << RHS->getSourceRange(); 15791 15792 return true; 15793 } 15794 15795 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 15796 Qualifiers::ObjCLifetime LT, 15797 Expr *RHS, bool isProperty) { 15798 // Strip off any implicit cast added to get to the one ARC-specific. 15799 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15800 if (cast->getCastKind() == CK_ARCConsumeObject) { 15801 S.Diag(Loc, diag::warn_arc_retained_assign) 15802 << (LT == Qualifiers::OCL_ExplicitNone) 15803 << (isProperty ? 0 : 1) 15804 << RHS->getSourceRange(); 15805 return true; 15806 } 15807 RHS = cast->getSubExpr(); 15808 } 15809 15810 if (LT == Qualifiers::OCL_Weak && 15811 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 15812 return true; 15813 15814 return false; 15815 } 15816 15817 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 15818 QualType LHS, Expr *RHS) { 15819 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 15820 15821 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 15822 return false; 15823 15824 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 15825 return true; 15826 15827 return false; 15828 } 15829 15830 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 15831 Expr *LHS, Expr *RHS) { 15832 QualType LHSType; 15833 // PropertyRef on LHS type need be directly obtained from 15834 // its declaration as it has a PseudoType. 15835 ObjCPropertyRefExpr *PRE 15836 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 15837 if (PRE && !PRE->isImplicitProperty()) { 15838 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15839 if (PD) 15840 LHSType = PD->getType(); 15841 } 15842 15843 if (LHSType.isNull()) 15844 LHSType = LHS->getType(); 15845 15846 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 15847 15848 if (LT == Qualifiers::OCL_Weak) { 15849 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 15850 getCurFunction()->markSafeWeakUse(LHS); 15851 } 15852 15853 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 15854 return; 15855 15856 // FIXME. Check for other life times. 15857 if (LT != Qualifiers::OCL_None) 15858 return; 15859 15860 if (PRE) { 15861 if (PRE->isImplicitProperty()) 15862 return; 15863 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15864 if (!PD) 15865 return; 15866 15867 unsigned Attributes = PD->getPropertyAttributes(); 15868 if (Attributes & ObjCPropertyAttribute::kind_assign) { 15869 // when 'assign' attribute was not explicitly specified 15870 // by user, ignore it and rely on property type itself 15871 // for lifetime info. 15872 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 15873 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 15874 LHSType->isObjCRetainableType()) 15875 return; 15876 15877 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15878 if (cast->getCastKind() == CK_ARCConsumeObject) { 15879 Diag(Loc, diag::warn_arc_retained_property_assign) 15880 << RHS->getSourceRange(); 15881 return; 15882 } 15883 RHS = cast->getSubExpr(); 15884 } 15885 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 15886 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 15887 return; 15888 } 15889 } 15890 } 15891 15892 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 15893 15894 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 15895 SourceLocation StmtLoc, 15896 const NullStmt *Body) { 15897 // Do not warn if the body is a macro that expands to nothing, e.g: 15898 // 15899 // #define CALL(x) 15900 // if (condition) 15901 // CALL(0); 15902 if (Body->hasLeadingEmptyMacro()) 15903 return false; 15904 15905 // Get line numbers of statement and body. 15906 bool StmtLineInvalid; 15907 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 15908 &StmtLineInvalid); 15909 if (StmtLineInvalid) 15910 return false; 15911 15912 bool BodyLineInvalid; 15913 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 15914 &BodyLineInvalid); 15915 if (BodyLineInvalid) 15916 return false; 15917 15918 // Warn if null statement and body are on the same line. 15919 if (StmtLine != BodyLine) 15920 return false; 15921 15922 return true; 15923 } 15924 15925 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 15926 const Stmt *Body, 15927 unsigned DiagID) { 15928 // Since this is a syntactic check, don't emit diagnostic for template 15929 // instantiations, this just adds noise. 15930 if (CurrentInstantiationScope) 15931 return; 15932 15933 // The body should be a null statement. 15934 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15935 if (!NBody) 15936 return; 15937 15938 // Do the usual checks. 15939 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15940 return; 15941 15942 Diag(NBody->getSemiLoc(), DiagID); 15943 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15944 } 15945 15946 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 15947 const Stmt *PossibleBody) { 15948 assert(!CurrentInstantiationScope); // Ensured by caller 15949 15950 SourceLocation StmtLoc; 15951 const Stmt *Body; 15952 unsigned DiagID; 15953 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 15954 StmtLoc = FS->getRParenLoc(); 15955 Body = FS->getBody(); 15956 DiagID = diag::warn_empty_for_body; 15957 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 15958 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 15959 Body = WS->getBody(); 15960 DiagID = diag::warn_empty_while_body; 15961 } else 15962 return; // Neither `for' nor `while'. 15963 15964 // The body should be a null statement. 15965 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15966 if (!NBody) 15967 return; 15968 15969 // Skip expensive checks if diagnostic is disabled. 15970 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 15971 return; 15972 15973 // Do the usual checks. 15974 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15975 return; 15976 15977 // `for(...);' and `while(...);' are popular idioms, so in order to keep 15978 // noise level low, emit diagnostics only if for/while is followed by a 15979 // CompoundStmt, e.g.: 15980 // for (int i = 0; i < n; i++); 15981 // { 15982 // a(i); 15983 // } 15984 // or if for/while is followed by a statement with more indentation 15985 // than for/while itself: 15986 // for (int i = 0; i < n; i++); 15987 // a(i); 15988 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 15989 if (!ProbableTypo) { 15990 bool BodyColInvalid; 15991 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 15992 PossibleBody->getBeginLoc(), &BodyColInvalid); 15993 if (BodyColInvalid) 15994 return; 15995 15996 bool StmtColInvalid; 15997 unsigned StmtCol = 15998 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 15999 if (StmtColInvalid) 16000 return; 16001 16002 if (BodyCol > StmtCol) 16003 ProbableTypo = true; 16004 } 16005 16006 if (ProbableTypo) { 16007 Diag(NBody->getSemiLoc(), DiagID); 16008 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 16009 } 16010 } 16011 16012 //===--- CHECK: Warn on self move with std::move. -------------------------===// 16013 16014 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 16015 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 16016 SourceLocation OpLoc) { 16017 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 16018 return; 16019 16020 if (inTemplateInstantiation()) 16021 return; 16022 16023 // Strip parens and casts away. 16024 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 16025 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 16026 16027 // Check for a call expression 16028 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 16029 if (!CE || CE->getNumArgs() != 1) 16030 return; 16031 16032 // Check for a call to std::move 16033 if (!CE->isCallToStdMove()) 16034 return; 16035 16036 // Get argument from std::move 16037 RHSExpr = CE->getArg(0); 16038 16039 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 16040 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 16041 16042 // Two DeclRefExpr's, check that the decls are the same. 16043 if (LHSDeclRef && RHSDeclRef) { 16044 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 16045 return; 16046 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 16047 RHSDeclRef->getDecl()->getCanonicalDecl()) 16048 return; 16049 16050 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16051 << LHSExpr->getSourceRange() 16052 << RHSExpr->getSourceRange(); 16053 return; 16054 } 16055 16056 // Member variables require a different approach to check for self moves. 16057 // MemberExpr's are the same if every nested MemberExpr refers to the same 16058 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 16059 // the base Expr's are CXXThisExpr's. 16060 const Expr *LHSBase = LHSExpr; 16061 const Expr *RHSBase = RHSExpr; 16062 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 16063 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 16064 if (!LHSME || !RHSME) 16065 return; 16066 16067 while (LHSME && RHSME) { 16068 if (LHSME->getMemberDecl()->getCanonicalDecl() != 16069 RHSME->getMemberDecl()->getCanonicalDecl()) 16070 return; 16071 16072 LHSBase = LHSME->getBase(); 16073 RHSBase = RHSME->getBase(); 16074 LHSME = dyn_cast<MemberExpr>(LHSBase); 16075 RHSME = dyn_cast<MemberExpr>(RHSBase); 16076 } 16077 16078 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 16079 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 16080 if (LHSDeclRef && RHSDeclRef) { 16081 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 16082 return; 16083 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 16084 RHSDeclRef->getDecl()->getCanonicalDecl()) 16085 return; 16086 16087 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16088 << LHSExpr->getSourceRange() 16089 << RHSExpr->getSourceRange(); 16090 return; 16091 } 16092 16093 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 16094 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16095 << LHSExpr->getSourceRange() 16096 << RHSExpr->getSourceRange(); 16097 } 16098 16099 //===--- Layout compatibility ----------------------------------------------// 16100 16101 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 16102 16103 /// Check if two enumeration types are layout-compatible. 16104 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 16105 // C++11 [dcl.enum] p8: 16106 // Two enumeration types are layout-compatible if they have the same 16107 // underlying type. 16108 return ED1->isComplete() && ED2->isComplete() && 16109 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 16110 } 16111 16112 /// Check if two fields are layout-compatible. 16113 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 16114 FieldDecl *Field2) { 16115 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 16116 return false; 16117 16118 if (Field1->isBitField() != Field2->isBitField()) 16119 return false; 16120 16121 if (Field1->isBitField()) { 16122 // Make sure that the bit-fields are the same length. 16123 unsigned Bits1 = Field1->getBitWidthValue(C); 16124 unsigned Bits2 = Field2->getBitWidthValue(C); 16125 16126 if (Bits1 != Bits2) 16127 return false; 16128 } 16129 16130 return true; 16131 } 16132 16133 /// Check if two standard-layout structs are layout-compatible. 16134 /// (C++11 [class.mem] p17) 16135 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 16136 RecordDecl *RD2) { 16137 // If both records are C++ classes, check that base classes match. 16138 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 16139 // If one of records is a CXXRecordDecl we are in C++ mode, 16140 // thus the other one is a CXXRecordDecl, too. 16141 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 16142 // Check number of base classes. 16143 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 16144 return false; 16145 16146 // Check the base classes. 16147 for (CXXRecordDecl::base_class_const_iterator 16148 Base1 = D1CXX->bases_begin(), 16149 BaseEnd1 = D1CXX->bases_end(), 16150 Base2 = D2CXX->bases_begin(); 16151 Base1 != BaseEnd1; 16152 ++Base1, ++Base2) { 16153 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 16154 return false; 16155 } 16156 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 16157 // If only RD2 is a C++ class, it should have zero base classes. 16158 if (D2CXX->getNumBases() > 0) 16159 return false; 16160 } 16161 16162 // Check the fields. 16163 RecordDecl::field_iterator Field2 = RD2->field_begin(), 16164 Field2End = RD2->field_end(), 16165 Field1 = RD1->field_begin(), 16166 Field1End = RD1->field_end(); 16167 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 16168 if (!isLayoutCompatible(C, *Field1, *Field2)) 16169 return false; 16170 } 16171 if (Field1 != Field1End || Field2 != Field2End) 16172 return false; 16173 16174 return true; 16175 } 16176 16177 /// Check if two standard-layout unions are layout-compatible. 16178 /// (C++11 [class.mem] p18) 16179 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 16180 RecordDecl *RD2) { 16181 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 16182 for (auto *Field2 : RD2->fields()) 16183 UnmatchedFields.insert(Field2); 16184 16185 for (auto *Field1 : RD1->fields()) { 16186 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 16187 I = UnmatchedFields.begin(), 16188 E = UnmatchedFields.end(); 16189 16190 for ( ; I != E; ++I) { 16191 if (isLayoutCompatible(C, Field1, *I)) { 16192 bool Result = UnmatchedFields.erase(*I); 16193 (void) Result; 16194 assert(Result); 16195 break; 16196 } 16197 } 16198 if (I == E) 16199 return false; 16200 } 16201 16202 return UnmatchedFields.empty(); 16203 } 16204 16205 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 16206 RecordDecl *RD2) { 16207 if (RD1->isUnion() != RD2->isUnion()) 16208 return false; 16209 16210 if (RD1->isUnion()) 16211 return isLayoutCompatibleUnion(C, RD1, RD2); 16212 else 16213 return isLayoutCompatibleStruct(C, RD1, RD2); 16214 } 16215 16216 /// Check if two types are layout-compatible in C++11 sense. 16217 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 16218 if (T1.isNull() || T2.isNull()) 16219 return false; 16220 16221 // C++11 [basic.types] p11: 16222 // If two types T1 and T2 are the same type, then T1 and T2 are 16223 // layout-compatible types. 16224 if (C.hasSameType(T1, T2)) 16225 return true; 16226 16227 T1 = T1.getCanonicalType().getUnqualifiedType(); 16228 T2 = T2.getCanonicalType().getUnqualifiedType(); 16229 16230 const Type::TypeClass TC1 = T1->getTypeClass(); 16231 const Type::TypeClass TC2 = T2->getTypeClass(); 16232 16233 if (TC1 != TC2) 16234 return false; 16235 16236 if (TC1 == Type::Enum) { 16237 return isLayoutCompatible(C, 16238 cast<EnumType>(T1)->getDecl(), 16239 cast<EnumType>(T2)->getDecl()); 16240 } else if (TC1 == Type::Record) { 16241 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 16242 return false; 16243 16244 return isLayoutCompatible(C, 16245 cast<RecordType>(T1)->getDecl(), 16246 cast<RecordType>(T2)->getDecl()); 16247 } 16248 16249 return false; 16250 } 16251 16252 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 16253 16254 /// Given a type tag expression find the type tag itself. 16255 /// 16256 /// \param TypeExpr Type tag expression, as it appears in user's code. 16257 /// 16258 /// \param VD Declaration of an identifier that appears in a type tag. 16259 /// 16260 /// \param MagicValue Type tag magic value. 16261 /// 16262 /// \param isConstantEvaluated whether the evalaution should be performed in 16263 16264 /// constant context. 16265 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 16266 const ValueDecl **VD, uint64_t *MagicValue, 16267 bool isConstantEvaluated) { 16268 while(true) { 16269 if (!TypeExpr) 16270 return false; 16271 16272 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 16273 16274 switch (TypeExpr->getStmtClass()) { 16275 case Stmt::UnaryOperatorClass: { 16276 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 16277 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 16278 TypeExpr = UO->getSubExpr(); 16279 continue; 16280 } 16281 return false; 16282 } 16283 16284 case Stmt::DeclRefExprClass: { 16285 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 16286 *VD = DRE->getDecl(); 16287 return true; 16288 } 16289 16290 case Stmt::IntegerLiteralClass: { 16291 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 16292 llvm::APInt MagicValueAPInt = IL->getValue(); 16293 if (MagicValueAPInt.getActiveBits() <= 64) { 16294 *MagicValue = MagicValueAPInt.getZExtValue(); 16295 return true; 16296 } else 16297 return false; 16298 } 16299 16300 case Stmt::BinaryConditionalOperatorClass: 16301 case Stmt::ConditionalOperatorClass: { 16302 const AbstractConditionalOperator *ACO = 16303 cast<AbstractConditionalOperator>(TypeExpr); 16304 bool Result; 16305 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 16306 isConstantEvaluated)) { 16307 if (Result) 16308 TypeExpr = ACO->getTrueExpr(); 16309 else 16310 TypeExpr = ACO->getFalseExpr(); 16311 continue; 16312 } 16313 return false; 16314 } 16315 16316 case Stmt::BinaryOperatorClass: { 16317 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 16318 if (BO->getOpcode() == BO_Comma) { 16319 TypeExpr = BO->getRHS(); 16320 continue; 16321 } 16322 return false; 16323 } 16324 16325 default: 16326 return false; 16327 } 16328 } 16329 } 16330 16331 /// Retrieve the C type corresponding to type tag TypeExpr. 16332 /// 16333 /// \param TypeExpr Expression that specifies a type tag. 16334 /// 16335 /// \param MagicValues Registered magic values. 16336 /// 16337 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 16338 /// kind. 16339 /// 16340 /// \param TypeInfo Information about the corresponding C type. 16341 /// 16342 /// \param isConstantEvaluated whether the evalaution should be performed in 16343 /// constant context. 16344 /// 16345 /// \returns true if the corresponding C type was found. 16346 static bool GetMatchingCType( 16347 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 16348 const ASTContext &Ctx, 16349 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 16350 *MagicValues, 16351 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 16352 bool isConstantEvaluated) { 16353 FoundWrongKind = false; 16354 16355 // Variable declaration that has type_tag_for_datatype attribute. 16356 const ValueDecl *VD = nullptr; 16357 16358 uint64_t MagicValue; 16359 16360 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 16361 return false; 16362 16363 if (VD) { 16364 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 16365 if (I->getArgumentKind() != ArgumentKind) { 16366 FoundWrongKind = true; 16367 return false; 16368 } 16369 TypeInfo.Type = I->getMatchingCType(); 16370 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 16371 TypeInfo.MustBeNull = I->getMustBeNull(); 16372 return true; 16373 } 16374 return false; 16375 } 16376 16377 if (!MagicValues) 16378 return false; 16379 16380 llvm::DenseMap<Sema::TypeTagMagicValue, 16381 Sema::TypeTagData>::const_iterator I = 16382 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 16383 if (I == MagicValues->end()) 16384 return false; 16385 16386 TypeInfo = I->second; 16387 return true; 16388 } 16389 16390 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 16391 uint64_t MagicValue, QualType Type, 16392 bool LayoutCompatible, 16393 bool MustBeNull) { 16394 if (!TypeTagForDatatypeMagicValues) 16395 TypeTagForDatatypeMagicValues.reset( 16396 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 16397 16398 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 16399 (*TypeTagForDatatypeMagicValues)[Magic] = 16400 TypeTagData(Type, LayoutCompatible, MustBeNull); 16401 } 16402 16403 static bool IsSameCharType(QualType T1, QualType T2) { 16404 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 16405 if (!BT1) 16406 return false; 16407 16408 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 16409 if (!BT2) 16410 return false; 16411 16412 BuiltinType::Kind T1Kind = BT1->getKind(); 16413 BuiltinType::Kind T2Kind = BT2->getKind(); 16414 16415 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 16416 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 16417 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 16418 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 16419 } 16420 16421 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 16422 const ArrayRef<const Expr *> ExprArgs, 16423 SourceLocation CallSiteLoc) { 16424 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 16425 bool IsPointerAttr = Attr->getIsPointer(); 16426 16427 // Retrieve the argument representing the 'type_tag'. 16428 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 16429 if (TypeTagIdxAST >= ExprArgs.size()) { 16430 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16431 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 16432 return; 16433 } 16434 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 16435 bool FoundWrongKind; 16436 TypeTagData TypeInfo; 16437 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 16438 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 16439 TypeInfo, isConstantEvaluated())) { 16440 if (FoundWrongKind) 16441 Diag(TypeTagExpr->getExprLoc(), 16442 diag::warn_type_tag_for_datatype_wrong_kind) 16443 << TypeTagExpr->getSourceRange(); 16444 return; 16445 } 16446 16447 // Retrieve the argument representing the 'arg_idx'. 16448 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 16449 if (ArgumentIdxAST >= ExprArgs.size()) { 16450 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16451 << 1 << Attr->getArgumentIdx().getSourceIndex(); 16452 return; 16453 } 16454 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 16455 if (IsPointerAttr) { 16456 // Skip implicit cast of pointer to `void *' (as a function argument). 16457 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 16458 if (ICE->getType()->isVoidPointerType() && 16459 ICE->getCastKind() == CK_BitCast) 16460 ArgumentExpr = ICE->getSubExpr(); 16461 } 16462 QualType ArgumentType = ArgumentExpr->getType(); 16463 16464 // Passing a `void*' pointer shouldn't trigger a warning. 16465 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 16466 return; 16467 16468 if (TypeInfo.MustBeNull) { 16469 // Type tag with matching void type requires a null pointer. 16470 if (!ArgumentExpr->isNullPointerConstant(Context, 16471 Expr::NPC_ValueDependentIsNotNull)) { 16472 Diag(ArgumentExpr->getExprLoc(), 16473 diag::warn_type_safety_null_pointer_required) 16474 << ArgumentKind->getName() 16475 << ArgumentExpr->getSourceRange() 16476 << TypeTagExpr->getSourceRange(); 16477 } 16478 return; 16479 } 16480 16481 QualType RequiredType = TypeInfo.Type; 16482 if (IsPointerAttr) 16483 RequiredType = Context.getPointerType(RequiredType); 16484 16485 bool mismatch = false; 16486 if (!TypeInfo.LayoutCompatible) { 16487 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 16488 16489 // C++11 [basic.fundamental] p1: 16490 // Plain char, signed char, and unsigned char are three distinct types. 16491 // 16492 // But we treat plain `char' as equivalent to `signed char' or `unsigned 16493 // char' depending on the current char signedness mode. 16494 if (mismatch) 16495 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 16496 RequiredType->getPointeeType())) || 16497 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 16498 mismatch = false; 16499 } else 16500 if (IsPointerAttr) 16501 mismatch = !isLayoutCompatible(Context, 16502 ArgumentType->getPointeeType(), 16503 RequiredType->getPointeeType()); 16504 else 16505 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 16506 16507 if (mismatch) 16508 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 16509 << ArgumentType << ArgumentKind 16510 << TypeInfo.LayoutCompatible << RequiredType 16511 << ArgumentExpr->getSourceRange() 16512 << TypeTagExpr->getSourceRange(); 16513 } 16514 16515 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 16516 CharUnits Alignment) { 16517 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 16518 } 16519 16520 void Sema::DiagnoseMisalignedMembers() { 16521 for (MisalignedMember &m : MisalignedMembers) { 16522 const NamedDecl *ND = m.RD; 16523 if (ND->getName().empty()) { 16524 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 16525 ND = TD; 16526 } 16527 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 16528 << m.MD << ND << m.E->getSourceRange(); 16529 } 16530 MisalignedMembers.clear(); 16531 } 16532 16533 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 16534 E = E->IgnoreParens(); 16535 if (!T->isPointerType() && !T->isIntegerType()) 16536 return; 16537 if (isa<UnaryOperator>(E) && 16538 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 16539 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 16540 if (isa<MemberExpr>(Op)) { 16541 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 16542 if (MA != MisalignedMembers.end() && 16543 (T->isIntegerType() || 16544 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 16545 Context.getTypeAlignInChars( 16546 T->getPointeeType()) <= MA->Alignment)))) 16547 MisalignedMembers.erase(MA); 16548 } 16549 } 16550 } 16551 16552 void Sema::RefersToMemberWithReducedAlignment( 16553 Expr *E, 16554 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 16555 Action) { 16556 const auto *ME = dyn_cast<MemberExpr>(E); 16557 if (!ME) 16558 return; 16559 16560 // No need to check expressions with an __unaligned-qualified type. 16561 if (E->getType().getQualifiers().hasUnaligned()) 16562 return; 16563 16564 // For a chain of MemberExpr like "a.b.c.d" this list 16565 // will keep FieldDecl's like [d, c, b]. 16566 SmallVector<FieldDecl *, 4> ReverseMemberChain; 16567 const MemberExpr *TopME = nullptr; 16568 bool AnyIsPacked = false; 16569 do { 16570 QualType BaseType = ME->getBase()->getType(); 16571 if (BaseType->isDependentType()) 16572 return; 16573 if (ME->isArrow()) 16574 BaseType = BaseType->getPointeeType(); 16575 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 16576 if (RD->isInvalidDecl()) 16577 return; 16578 16579 ValueDecl *MD = ME->getMemberDecl(); 16580 auto *FD = dyn_cast<FieldDecl>(MD); 16581 // We do not care about non-data members. 16582 if (!FD || FD->isInvalidDecl()) 16583 return; 16584 16585 AnyIsPacked = 16586 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 16587 ReverseMemberChain.push_back(FD); 16588 16589 TopME = ME; 16590 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 16591 } while (ME); 16592 assert(TopME && "We did not compute a topmost MemberExpr!"); 16593 16594 // Not the scope of this diagnostic. 16595 if (!AnyIsPacked) 16596 return; 16597 16598 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 16599 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 16600 // TODO: The innermost base of the member expression may be too complicated. 16601 // For now, just disregard these cases. This is left for future 16602 // improvement. 16603 if (!DRE && !isa<CXXThisExpr>(TopBase)) 16604 return; 16605 16606 // Alignment expected by the whole expression. 16607 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 16608 16609 // No need to do anything else with this case. 16610 if (ExpectedAlignment.isOne()) 16611 return; 16612 16613 // Synthesize offset of the whole access. 16614 CharUnits Offset; 16615 for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain)) 16616 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD)); 16617 16618 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 16619 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 16620 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 16621 16622 // The base expression of the innermost MemberExpr may give 16623 // stronger guarantees than the class containing the member. 16624 if (DRE && !TopME->isArrow()) { 16625 const ValueDecl *VD = DRE->getDecl(); 16626 if (!VD->getType()->isReferenceType()) 16627 CompleteObjectAlignment = 16628 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 16629 } 16630 16631 // Check if the synthesized offset fulfills the alignment. 16632 if (Offset % ExpectedAlignment != 0 || 16633 // It may fulfill the offset it but the effective alignment may still be 16634 // lower than the expected expression alignment. 16635 CompleteObjectAlignment < ExpectedAlignment) { 16636 // If this happens, we want to determine a sensible culprit of this. 16637 // Intuitively, watching the chain of member expressions from right to 16638 // left, we start with the required alignment (as required by the field 16639 // type) but some packed attribute in that chain has reduced the alignment. 16640 // It may happen that another packed structure increases it again. But if 16641 // we are here such increase has not been enough. So pointing the first 16642 // FieldDecl that either is packed or else its RecordDecl is, 16643 // seems reasonable. 16644 FieldDecl *FD = nullptr; 16645 CharUnits Alignment; 16646 for (FieldDecl *FDI : ReverseMemberChain) { 16647 if (FDI->hasAttr<PackedAttr>() || 16648 FDI->getParent()->hasAttr<PackedAttr>()) { 16649 FD = FDI; 16650 Alignment = std::min( 16651 Context.getTypeAlignInChars(FD->getType()), 16652 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 16653 break; 16654 } 16655 } 16656 assert(FD && "We did not find a packed FieldDecl!"); 16657 Action(E, FD->getParent(), FD, Alignment); 16658 } 16659 } 16660 16661 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 16662 using namespace std::placeholders; 16663 16664 RefersToMemberWithReducedAlignment( 16665 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 16666 _2, _3, _4)); 16667 } 16668 16669 // Check if \p Ty is a valid type for the elementwise math builtins. If it is 16670 // not a valid type, emit an error message and return true. Otherwise return 16671 // false. 16672 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc, 16673 QualType Ty) { 16674 if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) { 16675 S.Diag(Loc, diag::err_builtin_invalid_arg_type) 16676 << 1 << /* vector, integer or float ty*/ 0 << Ty; 16677 return true; 16678 } 16679 return false; 16680 } 16681 16682 bool Sema::SemaBuiltinElementwiseMathOneArg(CallExpr *TheCall) { 16683 if (checkArgCount(*this, TheCall, 1)) 16684 return true; 16685 16686 ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); 16687 SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc(); 16688 if (A.isInvalid()) 16689 return true; 16690 16691 TheCall->setArg(0, A.get()); 16692 QualType TyA = A.get()->getType(); 16693 if (checkMathBuiltinElementType(*this, ArgLoc, TyA)) 16694 return true; 16695 16696 QualType EltTy = TyA; 16697 if (auto *VecTy = EltTy->getAs<VectorType>()) 16698 EltTy = VecTy->getElementType(); 16699 if (EltTy->isUnsignedIntegerType()) 16700 return Diag(ArgLoc, diag::err_builtin_invalid_arg_type) 16701 << 1 << /*signed integer or float ty*/ 3 << TyA; 16702 16703 TheCall->setType(TyA); 16704 return false; 16705 } 16706 16707 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) { 16708 if (checkArgCount(*this, TheCall, 2)) 16709 return true; 16710 16711 ExprResult A = TheCall->getArg(0); 16712 ExprResult B = TheCall->getArg(1); 16713 // Do standard promotions between the two arguments, returning their common 16714 // type. 16715 QualType Res = 16716 UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison); 16717 if (A.isInvalid() || B.isInvalid()) 16718 return true; 16719 16720 QualType TyA = A.get()->getType(); 16721 QualType TyB = B.get()->getType(); 16722 16723 if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType()) 16724 return Diag(A.get()->getBeginLoc(), 16725 diag::err_typecheck_call_different_arg_types) 16726 << TyA << TyB; 16727 16728 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA)) 16729 return true; 16730 16731 TheCall->setArg(0, A.get()); 16732 TheCall->setArg(1, B.get()); 16733 TheCall->setType(Res); 16734 return false; 16735 } 16736 16737 bool Sema::SemaBuiltinReduceMath(CallExpr *TheCall) { 16738 if (checkArgCount(*this, TheCall, 1)) 16739 return true; 16740 16741 ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); 16742 if (A.isInvalid()) 16743 return true; 16744 16745 TheCall->setArg(0, A.get()); 16746 const VectorType *TyA = A.get()->getType()->getAs<VectorType>(); 16747 if (!TyA) { 16748 SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc(); 16749 return Diag(ArgLoc, diag::err_builtin_invalid_arg_type) 16750 << 1 << /* vector ty*/ 4 << A.get()->getType(); 16751 } 16752 16753 TheCall->setType(TyA->getElementType()); 16754 return false; 16755 } 16756 16757 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 16758 ExprResult CallResult) { 16759 if (checkArgCount(*this, TheCall, 1)) 16760 return ExprError(); 16761 16762 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 16763 if (MatrixArg.isInvalid()) 16764 return MatrixArg; 16765 Expr *Matrix = MatrixArg.get(); 16766 16767 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 16768 if (!MType) { 16769 Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type) 16770 << 1 << /* matrix ty*/ 1 << Matrix->getType(); 16771 return ExprError(); 16772 } 16773 16774 // Create returned matrix type by swapping rows and columns of the argument 16775 // matrix type. 16776 QualType ResultType = Context.getConstantMatrixType( 16777 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 16778 16779 // Change the return type to the type of the returned matrix. 16780 TheCall->setType(ResultType); 16781 16782 // Update call argument to use the possibly converted matrix argument. 16783 TheCall->setArg(0, Matrix); 16784 return CallResult; 16785 } 16786 16787 // Get and verify the matrix dimensions. 16788 static llvm::Optional<unsigned> 16789 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 16790 SourceLocation ErrorPos; 16791 Optional<llvm::APSInt> Value = 16792 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 16793 if (!Value) { 16794 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 16795 << Name; 16796 return {}; 16797 } 16798 uint64_t Dim = Value->getZExtValue(); 16799 if (!ConstantMatrixType::isDimensionValid(Dim)) { 16800 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 16801 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 16802 return {}; 16803 } 16804 return Dim; 16805 } 16806 16807 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 16808 ExprResult CallResult) { 16809 if (!getLangOpts().MatrixTypes) { 16810 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 16811 return ExprError(); 16812 } 16813 16814 if (checkArgCount(*this, TheCall, 4)) 16815 return ExprError(); 16816 16817 unsigned PtrArgIdx = 0; 16818 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16819 Expr *RowsExpr = TheCall->getArg(1); 16820 Expr *ColumnsExpr = TheCall->getArg(2); 16821 Expr *StrideExpr = TheCall->getArg(3); 16822 16823 bool ArgError = false; 16824 16825 // Check pointer argument. 16826 { 16827 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16828 if (PtrConv.isInvalid()) 16829 return PtrConv; 16830 PtrExpr = PtrConv.get(); 16831 TheCall->setArg(0, PtrExpr); 16832 if (PtrExpr->isTypeDependent()) { 16833 TheCall->setType(Context.DependentTy); 16834 return TheCall; 16835 } 16836 } 16837 16838 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16839 QualType ElementTy; 16840 if (!PtrTy) { 16841 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 16842 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); 16843 ArgError = true; 16844 } else { 16845 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 16846 16847 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 16848 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 16849 << PtrArgIdx + 1 << /* pointer to element ty*/ 2 16850 << PtrExpr->getType(); 16851 ArgError = true; 16852 } 16853 } 16854 16855 // Apply default Lvalue conversions and convert the expression to size_t. 16856 auto ApplyArgumentConversions = [this](Expr *E) { 16857 ExprResult Conv = DefaultLvalueConversion(E); 16858 if (Conv.isInvalid()) 16859 return Conv; 16860 16861 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 16862 }; 16863 16864 // Apply conversion to row and column expressions. 16865 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 16866 if (!RowsConv.isInvalid()) { 16867 RowsExpr = RowsConv.get(); 16868 TheCall->setArg(1, RowsExpr); 16869 } else 16870 RowsExpr = nullptr; 16871 16872 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 16873 if (!ColumnsConv.isInvalid()) { 16874 ColumnsExpr = ColumnsConv.get(); 16875 TheCall->setArg(2, ColumnsExpr); 16876 } else 16877 ColumnsExpr = nullptr; 16878 16879 // If any any part of the result matrix type is still pending, just use 16880 // Context.DependentTy, until all parts are resolved. 16881 if ((RowsExpr && RowsExpr->isTypeDependent()) || 16882 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 16883 TheCall->setType(Context.DependentTy); 16884 return CallResult; 16885 } 16886 16887 // Check row and column dimensions. 16888 llvm::Optional<unsigned> MaybeRows; 16889 if (RowsExpr) 16890 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 16891 16892 llvm::Optional<unsigned> MaybeColumns; 16893 if (ColumnsExpr) 16894 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 16895 16896 // Check stride argument. 16897 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 16898 if (StrideConv.isInvalid()) 16899 return ExprError(); 16900 StrideExpr = StrideConv.get(); 16901 TheCall->setArg(3, StrideExpr); 16902 16903 if (MaybeRows) { 16904 if (Optional<llvm::APSInt> Value = 16905 StrideExpr->getIntegerConstantExpr(Context)) { 16906 uint64_t Stride = Value->getZExtValue(); 16907 if (Stride < *MaybeRows) { 16908 Diag(StrideExpr->getBeginLoc(), 16909 diag::err_builtin_matrix_stride_too_small); 16910 ArgError = true; 16911 } 16912 } 16913 } 16914 16915 if (ArgError || !MaybeRows || !MaybeColumns) 16916 return ExprError(); 16917 16918 TheCall->setType( 16919 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 16920 return CallResult; 16921 } 16922 16923 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 16924 ExprResult CallResult) { 16925 if (checkArgCount(*this, TheCall, 3)) 16926 return ExprError(); 16927 16928 unsigned PtrArgIdx = 1; 16929 Expr *MatrixExpr = TheCall->getArg(0); 16930 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16931 Expr *StrideExpr = TheCall->getArg(2); 16932 16933 bool ArgError = false; 16934 16935 { 16936 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 16937 if (MatrixConv.isInvalid()) 16938 return MatrixConv; 16939 MatrixExpr = MatrixConv.get(); 16940 TheCall->setArg(0, MatrixExpr); 16941 } 16942 if (MatrixExpr->isTypeDependent()) { 16943 TheCall->setType(Context.DependentTy); 16944 return TheCall; 16945 } 16946 16947 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 16948 if (!MatrixTy) { 16949 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 16950 << 1 << /*matrix ty */ 1 << MatrixExpr->getType(); 16951 ArgError = true; 16952 } 16953 16954 { 16955 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16956 if (PtrConv.isInvalid()) 16957 return PtrConv; 16958 PtrExpr = PtrConv.get(); 16959 TheCall->setArg(1, PtrExpr); 16960 if (PtrExpr->isTypeDependent()) { 16961 TheCall->setType(Context.DependentTy); 16962 return TheCall; 16963 } 16964 } 16965 16966 // Check pointer argument. 16967 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16968 if (!PtrTy) { 16969 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 16970 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); 16971 ArgError = true; 16972 } else { 16973 QualType ElementTy = PtrTy->getPointeeType(); 16974 if (ElementTy.isConstQualified()) { 16975 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 16976 ArgError = true; 16977 } 16978 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 16979 if (MatrixTy && 16980 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 16981 Diag(PtrExpr->getBeginLoc(), 16982 diag::err_builtin_matrix_pointer_arg_mismatch) 16983 << ElementTy << MatrixTy->getElementType(); 16984 ArgError = true; 16985 } 16986 } 16987 16988 // Apply default Lvalue conversions and convert the stride expression to 16989 // size_t. 16990 { 16991 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 16992 if (StrideConv.isInvalid()) 16993 return StrideConv; 16994 16995 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 16996 if (StrideConv.isInvalid()) 16997 return StrideConv; 16998 StrideExpr = StrideConv.get(); 16999 TheCall->setArg(2, StrideExpr); 17000 } 17001 17002 // Check stride argument. 17003 if (MatrixTy) { 17004 if (Optional<llvm::APSInt> Value = 17005 StrideExpr->getIntegerConstantExpr(Context)) { 17006 uint64_t Stride = Value->getZExtValue(); 17007 if (Stride < MatrixTy->getNumRows()) { 17008 Diag(StrideExpr->getBeginLoc(), 17009 diag::err_builtin_matrix_stride_too_small); 17010 ArgError = true; 17011 } 17012 } 17013 } 17014 17015 if (ArgError) 17016 return ExprError(); 17017 17018 return CallResult; 17019 } 17020 17021 /// \brief Enforce the bounds of a TCB 17022 /// CheckTCBEnforcement - Enforces that every function in a named TCB only 17023 /// directly calls other functions in the same TCB as marked by the enforce_tcb 17024 /// and enforce_tcb_leaf attributes. 17025 void Sema::CheckTCBEnforcement(const CallExpr *TheCall, 17026 const FunctionDecl *Callee) { 17027 const FunctionDecl *Caller = getCurFunctionDecl(); 17028 17029 // Calls to builtins are not enforced. 17030 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() || 17031 Callee->getBuiltinID() != 0) 17032 return; 17033 17034 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find 17035 // all TCBs the callee is a part of. 17036 llvm::StringSet<> CalleeTCBs; 17037 for_each(Callee->specific_attrs<EnforceTCBAttr>(), 17038 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 17039 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(), 17040 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 17041 17042 // Go through the TCBs the caller is a part of and emit warnings if Caller 17043 // is in a TCB that the Callee is not. 17044 for_each( 17045 Caller->specific_attrs<EnforceTCBAttr>(), 17046 [&](const auto *A) { 17047 StringRef CallerTCB = A->getTCBName(); 17048 if (CalleeTCBs.count(CallerTCB) == 0) { 17049 this->Diag(TheCall->getExprLoc(), 17050 diag::warn_tcb_enforcement_violation) << Callee 17051 << CallerTCB; 17052 } 17053 }); 17054 } 17055