xref: /freebsd-src/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 /// Checks that a call expression's argument count is the desired number.
113 /// This is useful when doing custom type-checking.  Returns true on error.
114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115   unsigned argCount = call->getNumArgs();
116   if (argCount == desiredArgCount) return false;
117 
118   if (argCount < desiredArgCount)
119     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120            << 0 /*function call*/ << desiredArgCount << argCount
121            << call->getSourceRange();
122 
123   // Highlight all the excess arguments.
124   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125                     call->getArg(argCount - 1)->getEndLoc());
126 
127   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128     << 0 /*function call*/ << desiredArgCount << argCount
129     << call->getArg(1)->getSourceRange();
130 }
131 
132 /// Check that the first argument to __builtin_annotation is an integer
133 /// and the second argument is a non-wide string literal.
134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135   if (checkArgCount(S, TheCall, 2))
136     return true;
137 
138   // First argument should be an integer.
139   Expr *ValArg = TheCall->getArg(0);
140   QualType Ty = ValArg->getType();
141   if (!Ty->isIntegerType()) {
142     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143         << ValArg->getSourceRange();
144     return true;
145   }
146 
147   // Second argument should be a constant string.
148   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150   if (!Literal || !Literal->isAscii()) {
151     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152         << StrArg->getSourceRange();
153     return true;
154   }
155 
156   TheCall->setType(Ty);
157   return false;
158 }
159 
160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161   // We need at least one argument.
162   if (TheCall->getNumArgs() < 1) {
163     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164         << 0 << 1 << TheCall->getNumArgs()
165         << TheCall->getCallee()->getSourceRange();
166     return true;
167   }
168 
169   // All arguments should be wide string literals.
170   for (Expr *Arg : TheCall->arguments()) {
171     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172     if (!Literal || !Literal->isWide()) {
173       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174           << Arg->getSourceRange();
175       return true;
176     }
177   }
178 
179   return false;
180 }
181 
182 /// Check that the argument to __builtin_addressof is a glvalue, and set the
183 /// result type to the corresponding pointer type.
184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185   if (checkArgCount(S, TheCall, 1))
186     return true;
187 
188   ExprResult Arg(TheCall->getArg(0));
189   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190   if (ResultType.isNull())
191     return true;
192 
193   TheCall->setArg(0, Arg.get());
194   TheCall->setType(ResultType);
195   return false;
196 }
197 
198 /// Check the number of arguments and set the result type to
199 /// the argument type.
200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
201   if (checkArgCount(S, TheCall, 1))
202     return true;
203 
204   TheCall->setType(TheCall->getArg(0)->getType());
205   return false;
206 }
207 
208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
210 /// type (but not a function pointer) and that the alignment is a power-of-two.
211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
212   if (checkArgCount(S, TheCall, 2))
213     return true;
214 
215   clang::Expr *Source = TheCall->getArg(0);
216   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
217 
218   auto IsValidIntegerType = [](QualType Ty) {
219     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
220   };
221   QualType SrcTy = Source->getType();
222   // We should also be able to use it with arrays (but not functions!).
223   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
224     SrcTy = S.Context.getDecayedType(SrcTy);
225   }
226   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
227       SrcTy->isFunctionPointerType()) {
228     // FIXME: this is not quite the right error message since we don't allow
229     // floating point types, or member pointers.
230     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
231         << SrcTy;
232     return true;
233   }
234 
235   clang::Expr *AlignOp = TheCall->getArg(1);
236   if (!IsValidIntegerType(AlignOp->getType())) {
237     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
238         << AlignOp->getType();
239     return true;
240   }
241   Expr::EvalResult AlignResult;
242   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
243   // We can't check validity of alignment if it is value dependent.
244   if (!AlignOp->isValueDependent() &&
245       AlignOp->EvaluateAsInt(AlignResult, S.Context,
246                              Expr::SE_AllowSideEffects)) {
247     llvm::APSInt AlignValue = AlignResult.Val.getInt();
248     llvm::APSInt MaxValue(
249         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
250     if (AlignValue < 1) {
251       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
252       return true;
253     }
254     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
255       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
256           << toString(MaxValue, 10);
257       return true;
258     }
259     if (!AlignValue.isPowerOf2()) {
260       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
261       return true;
262     }
263     if (AlignValue == 1) {
264       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
265           << IsBooleanAlignBuiltin;
266     }
267   }
268 
269   ExprResult SrcArg = S.PerformCopyInitialization(
270       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
271       SourceLocation(), Source);
272   if (SrcArg.isInvalid())
273     return true;
274   TheCall->setArg(0, SrcArg.get());
275   ExprResult AlignArg =
276       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
277                                       S.Context, AlignOp->getType(), false),
278                                   SourceLocation(), AlignOp);
279   if (AlignArg.isInvalid())
280     return true;
281   TheCall->setArg(1, AlignArg.get());
282   // For align_up/align_down, the return type is the same as the (potentially
283   // decayed) argument type including qualifiers. For is_aligned(), the result
284   // is always bool.
285   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
286   return false;
287 }
288 
289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
290                                 unsigned BuiltinID) {
291   if (checkArgCount(S, TheCall, 3))
292     return true;
293 
294   // First two arguments should be integers.
295   for (unsigned I = 0; I < 2; ++I) {
296     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
297     if (Arg.isInvalid()) return true;
298     TheCall->setArg(I, Arg.get());
299 
300     QualType Ty = Arg.get()->getType();
301     if (!Ty->isIntegerType()) {
302       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
303           << Ty << Arg.get()->getSourceRange();
304       return true;
305     }
306   }
307 
308   // Third argument should be a pointer to a non-const integer.
309   // IRGen correctly handles volatile, restrict, and address spaces, and
310   // the other qualifiers aren't possible.
311   {
312     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
313     if (Arg.isInvalid()) return true;
314     TheCall->setArg(2, Arg.get());
315 
316     QualType Ty = Arg.get()->getType();
317     const auto *PtrTy = Ty->getAs<PointerType>();
318     if (!PtrTy ||
319         !PtrTy->getPointeeType()->isIntegerType() ||
320         PtrTy->getPointeeType().isConstQualified()) {
321       S.Diag(Arg.get()->getBeginLoc(),
322              diag::err_overflow_builtin_must_be_ptr_int)
323         << Ty << Arg.get()->getSourceRange();
324       return true;
325     }
326   }
327 
328   // Disallow signed ExtIntType args larger than 128 bits to mul function until
329   // we improve backend support.
330   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
331     for (unsigned I = 0; I < 3; ++I) {
332       const auto Arg = TheCall->getArg(I);
333       // Third argument will be a pointer.
334       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
335       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
336           S.getASTContext().getIntWidth(Ty) > 128)
337         return S.Diag(Arg->getBeginLoc(),
338                       diag::err_overflow_builtin_ext_int_max_size)
339                << 128;
340     }
341   }
342 
343   return false;
344 }
345 
346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
347   if (checkArgCount(S, BuiltinCall, 2))
348     return true;
349 
350   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
351   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
352   Expr *Call = BuiltinCall->getArg(0);
353   Expr *Chain = BuiltinCall->getArg(1);
354 
355   if (Call->getStmtClass() != Stmt::CallExprClass) {
356     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
357         << Call->getSourceRange();
358     return true;
359   }
360 
361   auto CE = cast<CallExpr>(Call);
362   if (CE->getCallee()->getType()->isBlockPointerType()) {
363     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
364         << Call->getSourceRange();
365     return true;
366   }
367 
368   const Decl *TargetDecl = CE->getCalleeDecl();
369   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
370     if (FD->getBuiltinID()) {
371       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
372           << Call->getSourceRange();
373       return true;
374     }
375 
376   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
377     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
378         << Call->getSourceRange();
379     return true;
380   }
381 
382   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
383   if (ChainResult.isInvalid())
384     return true;
385   if (!ChainResult.get()->getType()->isPointerType()) {
386     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
387         << Chain->getSourceRange();
388     return true;
389   }
390 
391   QualType ReturnTy = CE->getCallReturnType(S.Context);
392   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
393   QualType BuiltinTy = S.Context.getFunctionType(
394       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
395   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
396 
397   Builtin =
398       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
399 
400   BuiltinCall->setType(CE->getType());
401   BuiltinCall->setValueKind(CE->getValueKind());
402   BuiltinCall->setObjectKind(CE->getObjectKind());
403   BuiltinCall->setCallee(Builtin);
404   BuiltinCall->setArg(1, ChainResult.get());
405 
406   return false;
407 }
408 
409 namespace {
410 
411 class ScanfDiagnosticFormatHandler
412     : public analyze_format_string::FormatStringHandler {
413   // Accepts the argument index (relative to the first destination index) of the
414   // argument whose size we want.
415   using ComputeSizeFunction =
416       llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
417 
418   // Accepts the argument index (relative to the first destination index), the
419   // destination size, and the source size).
420   using DiagnoseFunction =
421       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
422 
423   ComputeSizeFunction ComputeSizeArgument;
424   DiagnoseFunction Diagnose;
425 
426 public:
427   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
428                                DiagnoseFunction Diagnose)
429       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
430 
431   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
432                             const char *StartSpecifier,
433                             unsigned specifierLen) override {
434     if (!FS.consumesDataArgument())
435       return true;
436 
437     unsigned NulByte = 0;
438     switch ((FS.getConversionSpecifier().getKind())) {
439     default:
440       return true;
441     case analyze_format_string::ConversionSpecifier::sArg:
442     case analyze_format_string::ConversionSpecifier::ScanListArg:
443       NulByte = 1;
444       break;
445     case analyze_format_string::ConversionSpecifier::cArg:
446       break;
447     }
448 
449     auto OptionalFW = FS.getFieldWidth();
450     if (OptionalFW.getHowSpecified() !=
451         analyze_format_string::OptionalAmount::HowSpecified::Constant)
452       return true;
453 
454     unsigned SourceSize = OptionalFW.getConstantAmount() + NulByte;
455 
456     auto DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
457     if (!DestSizeAPS)
458       return true;
459 
460     unsigned DestSize = DestSizeAPS->getZExtValue();
461 
462     if (DestSize < SourceSize)
463       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
464 
465     return true;
466   }
467 };
468 
469 class EstimateSizeFormatHandler
470     : public analyze_format_string::FormatStringHandler {
471   size_t Size;
472 
473 public:
474   EstimateSizeFormatHandler(StringRef Format)
475       : Size(std::min(Format.find(0), Format.size()) +
476              1 /* null byte always written by sprintf */) {}
477 
478   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
479                              const char *, unsigned SpecifierLen) override {
480 
481     const size_t FieldWidth = computeFieldWidth(FS);
482     const size_t Precision = computePrecision(FS);
483 
484     // The actual format.
485     switch (FS.getConversionSpecifier().getKind()) {
486     // Just a char.
487     case analyze_format_string::ConversionSpecifier::cArg:
488     case analyze_format_string::ConversionSpecifier::CArg:
489       Size += std::max(FieldWidth, (size_t)1);
490       break;
491     // Just an integer.
492     case analyze_format_string::ConversionSpecifier::dArg:
493     case analyze_format_string::ConversionSpecifier::DArg:
494     case analyze_format_string::ConversionSpecifier::iArg:
495     case analyze_format_string::ConversionSpecifier::oArg:
496     case analyze_format_string::ConversionSpecifier::OArg:
497     case analyze_format_string::ConversionSpecifier::uArg:
498     case analyze_format_string::ConversionSpecifier::UArg:
499     case analyze_format_string::ConversionSpecifier::xArg:
500     case analyze_format_string::ConversionSpecifier::XArg:
501       Size += std::max(FieldWidth, Precision);
502       break;
503 
504     // %g style conversion switches between %f or %e style dynamically.
505     // %f always takes less space, so default to it.
506     case analyze_format_string::ConversionSpecifier::gArg:
507     case analyze_format_string::ConversionSpecifier::GArg:
508 
509     // Floating point number in the form '[+]ddd.ddd'.
510     case analyze_format_string::ConversionSpecifier::fArg:
511     case analyze_format_string::ConversionSpecifier::FArg:
512       Size += std::max(FieldWidth, 1 /* integer part */ +
513                                        (Precision ? 1 + Precision
514                                                   : 0) /* period + decimal */);
515       break;
516 
517     // Floating point number in the form '[-]d.ddde[+-]dd'.
518     case analyze_format_string::ConversionSpecifier::eArg:
519     case analyze_format_string::ConversionSpecifier::EArg:
520       Size +=
521           std::max(FieldWidth,
522                    1 /* integer part */ +
523                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
524                        1 /* e or E letter */ + 2 /* exponent */);
525       break;
526 
527     // Floating point number in the form '[-]0xh.hhhhp±dd'.
528     case analyze_format_string::ConversionSpecifier::aArg:
529     case analyze_format_string::ConversionSpecifier::AArg:
530       Size +=
531           std::max(FieldWidth,
532                    2 /* 0x */ + 1 /* integer part */ +
533                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
534                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
535       break;
536 
537     // Just a string.
538     case analyze_format_string::ConversionSpecifier::sArg:
539     case analyze_format_string::ConversionSpecifier::SArg:
540       Size += FieldWidth;
541       break;
542 
543     // Just a pointer in the form '0xddd'.
544     case analyze_format_string::ConversionSpecifier::pArg:
545       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
546       break;
547 
548     // A plain percent.
549     case analyze_format_string::ConversionSpecifier::PercentArg:
550       Size += 1;
551       break;
552 
553     default:
554       break;
555     }
556 
557     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
558 
559     if (FS.hasAlternativeForm()) {
560       switch (FS.getConversionSpecifier().getKind()) {
561       default:
562         break;
563       // Force a leading '0'.
564       case analyze_format_string::ConversionSpecifier::oArg:
565         Size += 1;
566         break;
567       // Force a leading '0x'.
568       case analyze_format_string::ConversionSpecifier::xArg:
569       case analyze_format_string::ConversionSpecifier::XArg:
570         Size += 2;
571         break;
572       // Force a period '.' before decimal, even if precision is 0.
573       case analyze_format_string::ConversionSpecifier::aArg:
574       case analyze_format_string::ConversionSpecifier::AArg:
575       case analyze_format_string::ConversionSpecifier::eArg:
576       case analyze_format_string::ConversionSpecifier::EArg:
577       case analyze_format_string::ConversionSpecifier::fArg:
578       case analyze_format_string::ConversionSpecifier::FArg:
579       case analyze_format_string::ConversionSpecifier::gArg:
580       case analyze_format_string::ConversionSpecifier::GArg:
581         Size += (Precision ? 0 : 1);
582         break;
583       }
584     }
585     assert(SpecifierLen <= Size && "no underflow");
586     Size -= SpecifierLen;
587     return true;
588   }
589 
590   size_t getSizeLowerBound() const { return Size; }
591 
592 private:
593   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
594     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
595     size_t FieldWidth = 0;
596     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
597       FieldWidth = FW.getConstantAmount();
598     return FieldWidth;
599   }
600 
601   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
602     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
603     size_t Precision = 0;
604 
605     // See man 3 printf for default precision value based on the specifier.
606     switch (FW.getHowSpecified()) {
607     case analyze_format_string::OptionalAmount::NotSpecified:
608       switch (FS.getConversionSpecifier().getKind()) {
609       default:
610         break;
611       case analyze_format_string::ConversionSpecifier::dArg: // %d
612       case analyze_format_string::ConversionSpecifier::DArg: // %D
613       case analyze_format_string::ConversionSpecifier::iArg: // %i
614         Precision = 1;
615         break;
616       case analyze_format_string::ConversionSpecifier::oArg: // %d
617       case analyze_format_string::ConversionSpecifier::OArg: // %D
618       case analyze_format_string::ConversionSpecifier::uArg: // %d
619       case analyze_format_string::ConversionSpecifier::UArg: // %D
620       case analyze_format_string::ConversionSpecifier::xArg: // %d
621       case analyze_format_string::ConversionSpecifier::XArg: // %D
622         Precision = 1;
623         break;
624       case analyze_format_string::ConversionSpecifier::fArg: // %f
625       case analyze_format_string::ConversionSpecifier::FArg: // %F
626       case analyze_format_string::ConversionSpecifier::eArg: // %e
627       case analyze_format_string::ConversionSpecifier::EArg: // %E
628       case analyze_format_string::ConversionSpecifier::gArg: // %g
629       case analyze_format_string::ConversionSpecifier::GArg: // %G
630         Precision = 6;
631         break;
632       case analyze_format_string::ConversionSpecifier::pArg: // %d
633         Precision = 1;
634         break;
635       }
636       break;
637     case analyze_format_string::OptionalAmount::Constant:
638       Precision = FW.getConstantAmount();
639       break;
640     default:
641       break;
642     }
643     return Precision;
644   }
645 };
646 
647 } // namespace
648 
649 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
650                                                CallExpr *TheCall) {
651   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
652       isConstantEvaluated())
653     return;
654 
655   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
656   if (!BuiltinID)
657     return;
658 
659   const TargetInfo &TI = getASTContext().getTargetInfo();
660   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
661 
662   auto ComputeExplicitObjectSizeArgument =
663       [&](unsigned Index) -> Optional<llvm::APSInt> {
664     Expr::EvalResult Result;
665     Expr *SizeArg = TheCall->getArg(Index);
666     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
667       return llvm::None;
668     return Result.Val.getInt();
669   };
670 
671   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
672     // If the parameter has a pass_object_size attribute, then we should use its
673     // (potentially) more strict checking mode. Otherwise, conservatively assume
674     // type 0.
675     int BOSType = 0;
676     // This check can fail for variadic functions.
677     if (Index < FD->getNumParams()) {
678       if (const auto *POS =
679               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
680         BOSType = POS->getType();
681     }
682 
683     const Expr *ObjArg = TheCall->getArg(Index);
684     uint64_t Result;
685     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
686       return llvm::None;
687 
688     // Get the object size in the target's size_t width.
689     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
690   };
691 
692   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
693     Expr *ObjArg = TheCall->getArg(Index);
694     uint64_t Result;
695     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
696       return llvm::None;
697     // Add 1 for null byte.
698     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
699   };
700 
701   Optional<llvm::APSInt> SourceSize;
702   Optional<llvm::APSInt> DestinationSize;
703   unsigned DiagID = 0;
704   bool IsChkVariant = false;
705 
706   auto GetFunctionName = [&]() {
707     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
708     // Skim off the details of whichever builtin was called to produce a better
709     // diagnostic, as it's unlikely that the user wrote the __builtin
710     // explicitly.
711     if (IsChkVariant) {
712       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
713       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
714     } else if (FunctionName.startswith("__builtin_")) {
715       FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
716     }
717     return FunctionName;
718   };
719 
720   switch (BuiltinID) {
721   default:
722     return;
723   case Builtin::BI__builtin_strcpy:
724   case Builtin::BIstrcpy: {
725     DiagID = diag::warn_fortify_strlen_overflow;
726     SourceSize = ComputeStrLenArgument(1);
727     DestinationSize = ComputeSizeArgument(0);
728     break;
729   }
730 
731   case Builtin::BI__builtin___strcpy_chk: {
732     DiagID = diag::warn_fortify_strlen_overflow;
733     SourceSize = ComputeStrLenArgument(1);
734     DestinationSize = ComputeExplicitObjectSizeArgument(2);
735     IsChkVariant = true;
736     break;
737   }
738 
739   case Builtin::BIscanf:
740   case Builtin::BIfscanf:
741   case Builtin::BIsscanf: {
742     unsigned FormatIndex = 1;
743     unsigned DataIndex = 2;
744     if (BuiltinID == Builtin::BIscanf) {
745       FormatIndex = 0;
746       DataIndex = 1;
747     }
748 
749     const auto *FormatExpr =
750         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
751 
752     const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
753     if (!Format)
754       return;
755 
756     if (!Format->isAscii() && !Format->isUTF8())
757       return;
758 
759     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
760                         unsigned SourceSize) {
761       DiagID = diag::warn_fortify_scanf_overflow;
762       unsigned Index = ArgIndex + DataIndex;
763       StringRef FunctionName = GetFunctionName();
764       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
765                           PDiag(DiagID) << FunctionName << (Index + 1)
766                                         << DestSize << SourceSize);
767     };
768 
769     StringRef FormatStrRef = Format->getString();
770     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
771       return ComputeSizeArgument(Index + DataIndex);
772     };
773     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
774     const char *FormatBytes = FormatStrRef.data();
775     const ConstantArrayType *T =
776         Context.getAsConstantArrayType(Format->getType());
777     assert(T && "String literal not of constant array type!");
778     size_t TypeSize = T->getSize().getZExtValue();
779 
780     // In case there's a null byte somewhere.
781     size_t StrLen =
782         std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
783 
784     analyze_format_string::ParseScanfString(H, FormatBytes,
785                                             FormatBytes + StrLen, getLangOpts(),
786                                             Context.getTargetInfo());
787 
788     // Unlike the other cases, in this one we have already issued the diagnostic
789     // here, so no need to continue (because unlike the other cases, here the
790     // diagnostic refers to the argument number).
791     return;
792   }
793 
794   case Builtin::BIsprintf:
795   case Builtin::BI__builtin___sprintf_chk: {
796     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
797     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
798 
799     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
800 
801       if (!Format->isAscii() && !Format->isUTF8())
802         return;
803 
804       StringRef FormatStrRef = Format->getString();
805       EstimateSizeFormatHandler H(FormatStrRef);
806       const char *FormatBytes = FormatStrRef.data();
807       const ConstantArrayType *T =
808           Context.getAsConstantArrayType(Format->getType());
809       assert(T && "String literal not of constant array type!");
810       size_t TypeSize = T->getSize().getZExtValue();
811 
812       // In case there's a null byte somewhere.
813       size_t StrLen =
814           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
815       if (!analyze_format_string::ParsePrintfString(
816               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
817               Context.getTargetInfo(), false)) {
818         DiagID = diag::warn_fortify_source_format_overflow;
819         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
820                          .extOrTrunc(SizeTypeWidth);
821         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
822           DestinationSize = ComputeExplicitObjectSizeArgument(2);
823           IsChkVariant = true;
824         } else {
825           DestinationSize = ComputeSizeArgument(0);
826         }
827         break;
828       }
829     }
830     return;
831   }
832   case Builtin::BI__builtin___memcpy_chk:
833   case Builtin::BI__builtin___memmove_chk:
834   case Builtin::BI__builtin___memset_chk:
835   case Builtin::BI__builtin___strlcat_chk:
836   case Builtin::BI__builtin___strlcpy_chk:
837   case Builtin::BI__builtin___strncat_chk:
838   case Builtin::BI__builtin___strncpy_chk:
839   case Builtin::BI__builtin___stpncpy_chk:
840   case Builtin::BI__builtin___memccpy_chk:
841   case Builtin::BI__builtin___mempcpy_chk: {
842     DiagID = diag::warn_builtin_chk_overflow;
843     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
844     DestinationSize =
845         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
846     IsChkVariant = true;
847     break;
848   }
849 
850   case Builtin::BI__builtin___snprintf_chk:
851   case Builtin::BI__builtin___vsnprintf_chk: {
852     DiagID = diag::warn_builtin_chk_overflow;
853     SourceSize = ComputeExplicitObjectSizeArgument(1);
854     DestinationSize = ComputeExplicitObjectSizeArgument(3);
855     IsChkVariant = true;
856     break;
857   }
858 
859   case Builtin::BIstrncat:
860   case Builtin::BI__builtin_strncat:
861   case Builtin::BIstrncpy:
862   case Builtin::BI__builtin_strncpy:
863   case Builtin::BIstpncpy:
864   case Builtin::BI__builtin_stpncpy: {
865     // Whether these functions overflow depends on the runtime strlen of the
866     // string, not just the buffer size, so emitting the "always overflow"
867     // diagnostic isn't quite right. We should still diagnose passing a buffer
868     // size larger than the destination buffer though; this is a runtime abort
869     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
870     DiagID = diag::warn_fortify_source_size_mismatch;
871     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
872     DestinationSize = ComputeSizeArgument(0);
873     break;
874   }
875 
876   case Builtin::BImemcpy:
877   case Builtin::BI__builtin_memcpy:
878   case Builtin::BImemmove:
879   case Builtin::BI__builtin_memmove:
880   case Builtin::BImemset:
881   case Builtin::BI__builtin_memset:
882   case Builtin::BImempcpy:
883   case Builtin::BI__builtin_mempcpy: {
884     DiagID = diag::warn_fortify_source_overflow;
885     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
886     DestinationSize = ComputeSizeArgument(0);
887     break;
888   }
889   case Builtin::BIsnprintf:
890   case Builtin::BI__builtin_snprintf:
891   case Builtin::BIvsnprintf:
892   case Builtin::BI__builtin_vsnprintf: {
893     DiagID = diag::warn_fortify_source_size_mismatch;
894     SourceSize = ComputeExplicitObjectSizeArgument(1);
895     DestinationSize = ComputeSizeArgument(0);
896     break;
897   }
898   }
899 
900   if (!SourceSize || !DestinationSize ||
901       SourceSize.getValue().ule(DestinationSize.getValue()))
902     return;
903 
904   StringRef FunctionName = GetFunctionName();
905 
906   SmallString<16> DestinationStr;
907   SmallString<16> SourceStr;
908   DestinationSize->toString(DestinationStr, /*Radix=*/10);
909   SourceSize->toString(SourceStr, /*Radix=*/10);
910   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
911                       PDiag(DiagID)
912                           << FunctionName << DestinationStr << SourceStr);
913 }
914 
915 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
916                                      Scope::ScopeFlags NeededScopeFlags,
917                                      unsigned DiagID) {
918   // Scopes aren't available during instantiation. Fortunately, builtin
919   // functions cannot be template args so they cannot be formed through template
920   // instantiation. Therefore checking once during the parse is sufficient.
921   if (SemaRef.inTemplateInstantiation())
922     return false;
923 
924   Scope *S = SemaRef.getCurScope();
925   while (S && !S->isSEHExceptScope())
926     S = S->getParent();
927   if (!S || !(S->getFlags() & NeededScopeFlags)) {
928     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
929     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
930         << DRE->getDecl()->getIdentifier();
931     return true;
932   }
933 
934   return false;
935 }
936 
937 static inline bool isBlockPointer(Expr *Arg) {
938   return Arg->getType()->isBlockPointerType();
939 }
940 
941 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
942 /// void*, which is a requirement of device side enqueue.
943 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
944   const BlockPointerType *BPT =
945       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
946   ArrayRef<QualType> Params =
947       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
948   unsigned ArgCounter = 0;
949   bool IllegalParams = false;
950   // Iterate through the block parameters until either one is found that is not
951   // a local void*, or the block is valid.
952   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
953        I != E; ++I, ++ArgCounter) {
954     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
955         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
956             LangAS::opencl_local) {
957       // Get the location of the error. If a block literal has been passed
958       // (BlockExpr) then we can point straight to the offending argument,
959       // else we just point to the variable reference.
960       SourceLocation ErrorLoc;
961       if (isa<BlockExpr>(BlockArg)) {
962         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
963         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
964       } else if (isa<DeclRefExpr>(BlockArg)) {
965         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
966       }
967       S.Diag(ErrorLoc,
968              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
969       IllegalParams = true;
970     }
971   }
972 
973   return IllegalParams;
974 }
975 
976 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
977   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
978     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
979         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
980     return true;
981   }
982   return false;
983 }
984 
985 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
986   if (checkArgCount(S, TheCall, 2))
987     return true;
988 
989   if (checkOpenCLSubgroupExt(S, TheCall))
990     return true;
991 
992   // First argument is an ndrange_t type.
993   Expr *NDRangeArg = TheCall->getArg(0);
994   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
995     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996         << TheCall->getDirectCallee() << "'ndrange_t'";
997     return true;
998   }
999 
1000   Expr *BlockArg = TheCall->getArg(1);
1001   if (!isBlockPointer(BlockArg)) {
1002     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1003         << TheCall->getDirectCallee() << "block";
1004     return true;
1005   }
1006   return checkOpenCLBlockArgs(S, BlockArg);
1007 }
1008 
1009 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1010 /// get_kernel_work_group_size
1011 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
1012 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1013   if (checkArgCount(S, TheCall, 1))
1014     return true;
1015 
1016   Expr *BlockArg = TheCall->getArg(0);
1017   if (!isBlockPointer(BlockArg)) {
1018     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019         << TheCall->getDirectCallee() << "block";
1020     return true;
1021   }
1022   return checkOpenCLBlockArgs(S, BlockArg);
1023 }
1024 
1025 /// Diagnose integer type and any valid implicit conversion to it.
1026 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1027                                       const QualType &IntType);
1028 
1029 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1030                                             unsigned Start, unsigned End) {
1031   bool IllegalParams = false;
1032   for (unsigned I = Start; I <= End; ++I)
1033     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1034                                               S.Context.getSizeType());
1035   return IllegalParams;
1036 }
1037 
1038 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1039 /// 'local void*' parameter of passed block.
1040 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1041                                            Expr *BlockArg,
1042                                            unsigned NumNonVarArgs) {
1043   const BlockPointerType *BPT =
1044       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1045   unsigned NumBlockParams =
1046       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1047   unsigned TotalNumArgs = TheCall->getNumArgs();
1048 
1049   // For each argument passed to the block, a corresponding uint needs to
1050   // be passed to describe the size of the local memory.
1051   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1052     S.Diag(TheCall->getBeginLoc(),
1053            diag::err_opencl_enqueue_kernel_local_size_args);
1054     return true;
1055   }
1056 
1057   // Check that the sizes of the local memory are specified by integers.
1058   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1059                                          TotalNumArgs - 1);
1060 }
1061 
1062 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1063 /// overload formats specified in Table 6.13.17.1.
1064 /// int enqueue_kernel(queue_t queue,
1065 ///                    kernel_enqueue_flags_t flags,
1066 ///                    const ndrange_t ndrange,
1067 ///                    void (^block)(void))
1068 /// int enqueue_kernel(queue_t queue,
1069 ///                    kernel_enqueue_flags_t flags,
1070 ///                    const ndrange_t ndrange,
1071 ///                    uint num_events_in_wait_list,
1072 ///                    clk_event_t *event_wait_list,
1073 ///                    clk_event_t *event_ret,
1074 ///                    void (^block)(void))
1075 /// int enqueue_kernel(queue_t queue,
1076 ///                    kernel_enqueue_flags_t flags,
1077 ///                    const ndrange_t ndrange,
1078 ///                    void (^block)(local void*, ...),
1079 ///                    uint size0, ...)
1080 /// int enqueue_kernel(queue_t queue,
1081 ///                    kernel_enqueue_flags_t flags,
1082 ///                    const ndrange_t ndrange,
1083 ///                    uint num_events_in_wait_list,
1084 ///                    clk_event_t *event_wait_list,
1085 ///                    clk_event_t *event_ret,
1086 ///                    void (^block)(local void*, ...),
1087 ///                    uint size0, ...)
1088 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1089   unsigned NumArgs = TheCall->getNumArgs();
1090 
1091   if (NumArgs < 4) {
1092     S.Diag(TheCall->getBeginLoc(),
1093            diag::err_typecheck_call_too_few_args_at_least)
1094         << 0 << 4 << NumArgs;
1095     return true;
1096   }
1097 
1098   Expr *Arg0 = TheCall->getArg(0);
1099   Expr *Arg1 = TheCall->getArg(1);
1100   Expr *Arg2 = TheCall->getArg(2);
1101   Expr *Arg3 = TheCall->getArg(3);
1102 
1103   // First argument always needs to be a queue_t type.
1104   if (!Arg0->getType()->isQueueT()) {
1105     S.Diag(TheCall->getArg(0)->getBeginLoc(),
1106            diag::err_opencl_builtin_expected_type)
1107         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1108     return true;
1109   }
1110 
1111   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1112   if (!Arg1->getType()->isIntegerType()) {
1113     S.Diag(TheCall->getArg(1)->getBeginLoc(),
1114            diag::err_opencl_builtin_expected_type)
1115         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1116     return true;
1117   }
1118 
1119   // Third argument is always an ndrange_t type.
1120   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1121     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1122            diag::err_opencl_builtin_expected_type)
1123         << TheCall->getDirectCallee() << "'ndrange_t'";
1124     return true;
1125   }
1126 
1127   // With four arguments, there is only one form that the function could be
1128   // called in: no events and no variable arguments.
1129   if (NumArgs == 4) {
1130     // check that the last argument is the right block type.
1131     if (!isBlockPointer(Arg3)) {
1132       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1133           << TheCall->getDirectCallee() << "block";
1134       return true;
1135     }
1136     // we have a block type, check the prototype
1137     const BlockPointerType *BPT =
1138         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1139     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1140       S.Diag(Arg3->getBeginLoc(),
1141              diag::err_opencl_enqueue_kernel_blocks_no_args);
1142       return true;
1143     }
1144     return false;
1145   }
1146   // we can have block + varargs.
1147   if (isBlockPointer(Arg3))
1148     return (checkOpenCLBlockArgs(S, Arg3) ||
1149             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1150   // last two cases with either exactly 7 args or 7 args and varargs.
1151   if (NumArgs >= 7) {
1152     // check common block argument.
1153     Expr *Arg6 = TheCall->getArg(6);
1154     if (!isBlockPointer(Arg6)) {
1155       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1156           << TheCall->getDirectCallee() << "block";
1157       return true;
1158     }
1159     if (checkOpenCLBlockArgs(S, Arg6))
1160       return true;
1161 
1162     // Forth argument has to be any integer type.
1163     if (!Arg3->getType()->isIntegerType()) {
1164       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1165              diag::err_opencl_builtin_expected_type)
1166           << TheCall->getDirectCallee() << "integer";
1167       return true;
1168     }
1169     // check remaining common arguments.
1170     Expr *Arg4 = TheCall->getArg(4);
1171     Expr *Arg5 = TheCall->getArg(5);
1172 
1173     // Fifth argument is always passed as a pointer to clk_event_t.
1174     if (!Arg4->isNullPointerConstant(S.Context,
1175                                      Expr::NPC_ValueDependentIsNotNull) &&
1176         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1177       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1178              diag::err_opencl_builtin_expected_type)
1179           << TheCall->getDirectCallee()
1180           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1181       return true;
1182     }
1183 
1184     // Sixth argument is always passed as a pointer to clk_event_t.
1185     if (!Arg5->isNullPointerConstant(S.Context,
1186                                      Expr::NPC_ValueDependentIsNotNull) &&
1187         !(Arg5->getType()->isPointerType() &&
1188           Arg5->getType()->getPointeeType()->isClkEventT())) {
1189       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1190              diag::err_opencl_builtin_expected_type)
1191           << TheCall->getDirectCallee()
1192           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1193       return true;
1194     }
1195 
1196     if (NumArgs == 7)
1197       return false;
1198 
1199     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1200   }
1201 
1202   // None of the specific case has been detected, give generic error
1203   S.Diag(TheCall->getBeginLoc(),
1204          diag::err_opencl_enqueue_kernel_incorrect_args);
1205   return true;
1206 }
1207 
1208 /// Returns OpenCL access qual.
1209 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1210     return D->getAttr<OpenCLAccessAttr>();
1211 }
1212 
1213 /// Returns true if pipe element type is different from the pointer.
1214 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1215   const Expr *Arg0 = Call->getArg(0);
1216   // First argument type should always be pipe.
1217   if (!Arg0->getType()->isPipeType()) {
1218     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1219         << Call->getDirectCallee() << Arg0->getSourceRange();
1220     return true;
1221   }
1222   OpenCLAccessAttr *AccessQual =
1223       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1224   // Validates the access qualifier is compatible with the call.
1225   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1226   // read_only and write_only, and assumed to be read_only if no qualifier is
1227   // specified.
1228   switch (Call->getDirectCallee()->getBuiltinID()) {
1229   case Builtin::BIread_pipe:
1230   case Builtin::BIreserve_read_pipe:
1231   case Builtin::BIcommit_read_pipe:
1232   case Builtin::BIwork_group_reserve_read_pipe:
1233   case Builtin::BIsub_group_reserve_read_pipe:
1234   case Builtin::BIwork_group_commit_read_pipe:
1235   case Builtin::BIsub_group_commit_read_pipe:
1236     if (!(!AccessQual || AccessQual->isReadOnly())) {
1237       S.Diag(Arg0->getBeginLoc(),
1238              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1239           << "read_only" << Arg0->getSourceRange();
1240       return true;
1241     }
1242     break;
1243   case Builtin::BIwrite_pipe:
1244   case Builtin::BIreserve_write_pipe:
1245   case Builtin::BIcommit_write_pipe:
1246   case Builtin::BIwork_group_reserve_write_pipe:
1247   case Builtin::BIsub_group_reserve_write_pipe:
1248   case Builtin::BIwork_group_commit_write_pipe:
1249   case Builtin::BIsub_group_commit_write_pipe:
1250     if (!(AccessQual && AccessQual->isWriteOnly())) {
1251       S.Diag(Arg0->getBeginLoc(),
1252              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1253           << "write_only" << Arg0->getSourceRange();
1254       return true;
1255     }
1256     break;
1257   default:
1258     break;
1259   }
1260   return false;
1261 }
1262 
1263 /// Returns true if pipe element type is different from the pointer.
1264 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1265   const Expr *Arg0 = Call->getArg(0);
1266   const Expr *ArgIdx = Call->getArg(Idx);
1267   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1268   const QualType EltTy = PipeTy->getElementType();
1269   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1270   // The Idx argument should be a pointer and the type of the pointer and
1271   // the type of pipe element should also be the same.
1272   if (!ArgTy ||
1273       !S.Context.hasSameType(
1274           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1275     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1276         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1277         << ArgIdx->getType() << ArgIdx->getSourceRange();
1278     return true;
1279   }
1280   return false;
1281 }
1282 
1283 // Performs semantic analysis for the read/write_pipe call.
1284 // \param S Reference to the semantic analyzer.
1285 // \param Call A pointer to the builtin call.
1286 // \return True if a semantic error has been found, false otherwise.
1287 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1288   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1289   // functions have two forms.
1290   switch (Call->getNumArgs()) {
1291   case 2:
1292     if (checkOpenCLPipeArg(S, Call))
1293       return true;
1294     // The call with 2 arguments should be
1295     // read/write_pipe(pipe T, T*).
1296     // Check packet type T.
1297     if (checkOpenCLPipePacketType(S, Call, 1))
1298       return true;
1299     break;
1300 
1301   case 4: {
1302     if (checkOpenCLPipeArg(S, Call))
1303       return true;
1304     // The call with 4 arguments should be
1305     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1306     // Check reserve_id_t.
1307     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1308       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1309           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1310           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1311       return true;
1312     }
1313 
1314     // Check the index.
1315     const Expr *Arg2 = Call->getArg(2);
1316     if (!Arg2->getType()->isIntegerType() &&
1317         !Arg2->getType()->isUnsignedIntegerType()) {
1318       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1319           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1320           << Arg2->getType() << Arg2->getSourceRange();
1321       return true;
1322     }
1323 
1324     // Check packet type T.
1325     if (checkOpenCLPipePacketType(S, Call, 3))
1326       return true;
1327   } break;
1328   default:
1329     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1330         << Call->getDirectCallee() << Call->getSourceRange();
1331     return true;
1332   }
1333 
1334   return false;
1335 }
1336 
1337 // Performs a semantic analysis on the {work_group_/sub_group_
1338 //        /_}reserve_{read/write}_pipe
1339 // \param S Reference to the semantic analyzer.
1340 // \param Call The call to the builtin function to be analyzed.
1341 // \return True if a semantic error was found, false otherwise.
1342 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1343   if (checkArgCount(S, Call, 2))
1344     return true;
1345 
1346   if (checkOpenCLPipeArg(S, Call))
1347     return true;
1348 
1349   // Check the reserve size.
1350   if (!Call->getArg(1)->getType()->isIntegerType() &&
1351       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1352     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1353         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1354         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1355     return true;
1356   }
1357 
1358   // Since return type of reserve_read/write_pipe built-in function is
1359   // reserve_id_t, which is not defined in the builtin def file , we used int
1360   // as return type and need to override the return type of these functions.
1361   Call->setType(S.Context.OCLReserveIDTy);
1362 
1363   return false;
1364 }
1365 
1366 // Performs a semantic analysis on {work_group_/sub_group_
1367 //        /_}commit_{read/write}_pipe
1368 // \param S Reference to the semantic analyzer.
1369 // \param Call The call to the builtin function to be analyzed.
1370 // \return True if a semantic error was found, false otherwise.
1371 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1372   if (checkArgCount(S, Call, 2))
1373     return true;
1374 
1375   if (checkOpenCLPipeArg(S, Call))
1376     return true;
1377 
1378   // Check reserve_id_t.
1379   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1380     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1381         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1382         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1383     return true;
1384   }
1385 
1386   return false;
1387 }
1388 
1389 // Performs a semantic analysis on the call to built-in Pipe
1390 //        Query Functions.
1391 // \param S Reference to the semantic analyzer.
1392 // \param Call The call to the builtin function to be analyzed.
1393 // \return True if a semantic error was found, false otherwise.
1394 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1395   if (checkArgCount(S, Call, 1))
1396     return true;
1397 
1398   if (!Call->getArg(0)->getType()->isPipeType()) {
1399     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1400         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1401     return true;
1402   }
1403 
1404   return false;
1405 }
1406 
1407 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1408 // Performs semantic analysis for the to_global/local/private call.
1409 // \param S Reference to the semantic analyzer.
1410 // \param BuiltinID ID of the builtin function.
1411 // \param Call A pointer to the builtin call.
1412 // \return True if a semantic error has been found, false otherwise.
1413 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1414                                     CallExpr *Call) {
1415   if (checkArgCount(S, Call, 1))
1416     return true;
1417 
1418   auto RT = Call->getArg(0)->getType();
1419   if (!RT->isPointerType() || RT->getPointeeType()
1420       .getAddressSpace() == LangAS::opencl_constant) {
1421     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1422         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1423     return true;
1424   }
1425 
1426   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1427     S.Diag(Call->getArg(0)->getBeginLoc(),
1428            diag::warn_opencl_generic_address_space_arg)
1429         << Call->getDirectCallee()->getNameInfo().getAsString()
1430         << Call->getArg(0)->getSourceRange();
1431   }
1432 
1433   RT = RT->getPointeeType();
1434   auto Qual = RT.getQualifiers();
1435   switch (BuiltinID) {
1436   case Builtin::BIto_global:
1437     Qual.setAddressSpace(LangAS::opencl_global);
1438     break;
1439   case Builtin::BIto_local:
1440     Qual.setAddressSpace(LangAS::opencl_local);
1441     break;
1442   case Builtin::BIto_private:
1443     Qual.setAddressSpace(LangAS::opencl_private);
1444     break;
1445   default:
1446     llvm_unreachable("Invalid builtin function");
1447   }
1448   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1449       RT.getUnqualifiedType(), Qual)));
1450 
1451   return false;
1452 }
1453 
1454 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1455   if (checkArgCount(S, TheCall, 1))
1456     return ExprError();
1457 
1458   // Compute __builtin_launder's parameter type from the argument.
1459   // The parameter type is:
1460   //  * The type of the argument if it's not an array or function type,
1461   //  Otherwise,
1462   //  * The decayed argument type.
1463   QualType ParamTy = [&]() {
1464     QualType ArgTy = TheCall->getArg(0)->getType();
1465     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1466       return S.Context.getPointerType(Ty->getElementType());
1467     if (ArgTy->isFunctionType()) {
1468       return S.Context.getPointerType(ArgTy);
1469     }
1470     return ArgTy;
1471   }();
1472 
1473   TheCall->setType(ParamTy);
1474 
1475   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1476     if (!ParamTy->isPointerType())
1477       return 0;
1478     if (ParamTy->isFunctionPointerType())
1479       return 1;
1480     if (ParamTy->isVoidPointerType())
1481       return 2;
1482     return llvm::Optional<unsigned>{};
1483   }();
1484   if (DiagSelect.hasValue()) {
1485     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1486         << DiagSelect.getValue() << TheCall->getSourceRange();
1487     return ExprError();
1488   }
1489 
1490   // We either have an incomplete class type, or we have a class template
1491   // whose instantiation has not been forced. Example:
1492   //
1493   //   template <class T> struct Foo { T value; };
1494   //   Foo<int> *p = nullptr;
1495   //   auto *d = __builtin_launder(p);
1496   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1497                             diag::err_incomplete_type))
1498     return ExprError();
1499 
1500   assert(ParamTy->getPointeeType()->isObjectType() &&
1501          "Unhandled non-object pointer case");
1502 
1503   InitializedEntity Entity =
1504       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1505   ExprResult Arg =
1506       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1507   if (Arg.isInvalid())
1508     return ExprError();
1509   TheCall->setArg(0, Arg.get());
1510 
1511   return TheCall;
1512 }
1513 
1514 // Emit an error and return true if the current architecture is not in the list
1515 // of supported architectures.
1516 static bool
1517 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1518                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1519   llvm::Triple::ArchType CurArch =
1520       S.getASTContext().getTargetInfo().getTriple().getArch();
1521   if (llvm::is_contained(SupportedArchs, CurArch))
1522     return false;
1523   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1524       << TheCall->getSourceRange();
1525   return true;
1526 }
1527 
1528 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1529                                  SourceLocation CallSiteLoc);
1530 
1531 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1532                                       CallExpr *TheCall) {
1533   switch (TI.getTriple().getArch()) {
1534   default:
1535     // Some builtins don't require additional checking, so just consider these
1536     // acceptable.
1537     return false;
1538   case llvm::Triple::arm:
1539   case llvm::Triple::armeb:
1540   case llvm::Triple::thumb:
1541   case llvm::Triple::thumbeb:
1542     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1543   case llvm::Triple::aarch64:
1544   case llvm::Triple::aarch64_32:
1545   case llvm::Triple::aarch64_be:
1546     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1547   case llvm::Triple::bpfeb:
1548   case llvm::Triple::bpfel:
1549     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1550   case llvm::Triple::hexagon:
1551     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1552   case llvm::Triple::mips:
1553   case llvm::Triple::mipsel:
1554   case llvm::Triple::mips64:
1555   case llvm::Triple::mips64el:
1556     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1557   case llvm::Triple::systemz:
1558     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1559   case llvm::Triple::x86:
1560   case llvm::Triple::x86_64:
1561     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1562   case llvm::Triple::ppc:
1563   case llvm::Triple::ppcle:
1564   case llvm::Triple::ppc64:
1565   case llvm::Triple::ppc64le:
1566     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1567   case llvm::Triple::amdgcn:
1568     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1569   case llvm::Triple::riscv32:
1570   case llvm::Triple::riscv64:
1571     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1572   }
1573 }
1574 
1575 ExprResult
1576 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1577                                CallExpr *TheCall) {
1578   ExprResult TheCallResult(TheCall);
1579 
1580   // Find out if any arguments are required to be integer constant expressions.
1581   unsigned ICEArguments = 0;
1582   ASTContext::GetBuiltinTypeError Error;
1583   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1584   if (Error != ASTContext::GE_None)
1585     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1586 
1587   // If any arguments are required to be ICE's, check and diagnose.
1588   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1589     // Skip arguments not required to be ICE's.
1590     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1591 
1592     llvm::APSInt Result;
1593     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1594       return true;
1595     ICEArguments &= ~(1 << ArgNo);
1596   }
1597 
1598   switch (BuiltinID) {
1599   case Builtin::BI__builtin___CFStringMakeConstantString:
1600     assert(TheCall->getNumArgs() == 1 &&
1601            "Wrong # arguments to builtin CFStringMakeConstantString");
1602     if (CheckObjCString(TheCall->getArg(0)))
1603       return ExprError();
1604     break;
1605   case Builtin::BI__builtin_ms_va_start:
1606   case Builtin::BI__builtin_stdarg_start:
1607   case Builtin::BI__builtin_va_start:
1608     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1609       return ExprError();
1610     break;
1611   case Builtin::BI__va_start: {
1612     switch (Context.getTargetInfo().getTriple().getArch()) {
1613     case llvm::Triple::aarch64:
1614     case llvm::Triple::arm:
1615     case llvm::Triple::thumb:
1616       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1617         return ExprError();
1618       break;
1619     default:
1620       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1621         return ExprError();
1622       break;
1623     }
1624     break;
1625   }
1626 
1627   // The acquire, release, and no fence variants are ARM and AArch64 only.
1628   case Builtin::BI_interlockedbittestandset_acq:
1629   case Builtin::BI_interlockedbittestandset_rel:
1630   case Builtin::BI_interlockedbittestandset_nf:
1631   case Builtin::BI_interlockedbittestandreset_acq:
1632   case Builtin::BI_interlockedbittestandreset_rel:
1633   case Builtin::BI_interlockedbittestandreset_nf:
1634     if (CheckBuiltinTargetSupport(
1635             *this, BuiltinID, TheCall,
1636             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1637       return ExprError();
1638     break;
1639 
1640   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1641   case Builtin::BI_bittest64:
1642   case Builtin::BI_bittestandcomplement64:
1643   case Builtin::BI_bittestandreset64:
1644   case Builtin::BI_bittestandset64:
1645   case Builtin::BI_interlockedbittestandreset64:
1646   case Builtin::BI_interlockedbittestandset64:
1647     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1648                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1649                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1650       return ExprError();
1651     break;
1652 
1653   case Builtin::BI__builtin_isgreater:
1654   case Builtin::BI__builtin_isgreaterequal:
1655   case Builtin::BI__builtin_isless:
1656   case Builtin::BI__builtin_islessequal:
1657   case Builtin::BI__builtin_islessgreater:
1658   case Builtin::BI__builtin_isunordered:
1659     if (SemaBuiltinUnorderedCompare(TheCall))
1660       return ExprError();
1661     break;
1662   case Builtin::BI__builtin_fpclassify:
1663     if (SemaBuiltinFPClassification(TheCall, 6))
1664       return ExprError();
1665     break;
1666   case Builtin::BI__builtin_isfinite:
1667   case Builtin::BI__builtin_isinf:
1668   case Builtin::BI__builtin_isinf_sign:
1669   case Builtin::BI__builtin_isnan:
1670   case Builtin::BI__builtin_isnormal:
1671   case Builtin::BI__builtin_signbit:
1672   case Builtin::BI__builtin_signbitf:
1673   case Builtin::BI__builtin_signbitl:
1674     if (SemaBuiltinFPClassification(TheCall, 1))
1675       return ExprError();
1676     break;
1677   case Builtin::BI__builtin_shufflevector:
1678     return SemaBuiltinShuffleVector(TheCall);
1679     // TheCall will be freed by the smart pointer here, but that's fine, since
1680     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1681   case Builtin::BI__builtin_prefetch:
1682     if (SemaBuiltinPrefetch(TheCall))
1683       return ExprError();
1684     break;
1685   case Builtin::BI__builtin_alloca_with_align:
1686     if (SemaBuiltinAllocaWithAlign(TheCall))
1687       return ExprError();
1688     LLVM_FALLTHROUGH;
1689   case Builtin::BI__builtin_alloca:
1690     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1691         << TheCall->getDirectCallee();
1692     break;
1693   case Builtin::BI__arithmetic_fence:
1694     if (SemaBuiltinArithmeticFence(TheCall))
1695       return ExprError();
1696     break;
1697   case Builtin::BI__assume:
1698   case Builtin::BI__builtin_assume:
1699     if (SemaBuiltinAssume(TheCall))
1700       return ExprError();
1701     break;
1702   case Builtin::BI__builtin_assume_aligned:
1703     if (SemaBuiltinAssumeAligned(TheCall))
1704       return ExprError();
1705     break;
1706   case Builtin::BI__builtin_dynamic_object_size:
1707   case Builtin::BI__builtin_object_size:
1708     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1709       return ExprError();
1710     break;
1711   case Builtin::BI__builtin_longjmp:
1712     if (SemaBuiltinLongjmp(TheCall))
1713       return ExprError();
1714     break;
1715   case Builtin::BI__builtin_setjmp:
1716     if (SemaBuiltinSetjmp(TheCall))
1717       return ExprError();
1718     break;
1719   case Builtin::BI__builtin_classify_type:
1720     if (checkArgCount(*this, TheCall, 1)) return true;
1721     TheCall->setType(Context.IntTy);
1722     break;
1723   case Builtin::BI__builtin_complex:
1724     if (SemaBuiltinComplex(TheCall))
1725       return ExprError();
1726     break;
1727   case Builtin::BI__builtin_constant_p: {
1728     if (checkArgCount(*this, TheCall, 1)) return true;
1729     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1730     if (Arg.isInvalid()) return true;
1731     TheCall->setArg(0, Arg.get());
1732     TheCall->setType(Context.IntTy);
1733     break;
1734   }
1735   case Builtin::BI__builtin_launder:
1736     return SemaBuiltinLaunder(*this, TheCall);
1737   case Builtin::BI__sync_fetch_and_add:
1738   case Builtin::BI__sync_fetch_and_add_1:
1739   case Builtin::BI__sync_fetch_and_add_2:
1740   case Builtin::BI__sync_fetch_and_add_4:
1741   case Builtin::BI__sync_fetch_and_add_8:
1742   case Builtin::BI__sync_fetch_and_add_16:
1743   case Builtin::BI__sync_fetch_and_sub:
1744   case Builtin::BI__sync_fetch_and_sub_1:
1745   case Builtin::BI__sync_fetch_and_sub_2:
1746   case Builtin::BI__sync_fetch_and_sub_4:
1747   case Builtin::BI__sync_fetch_and_sub_8:
1748   case Builtin::BI__sync_fetch_and_sub_16:
1749   case Builtin::BI__sync_fetch_and_or:
1750   case Builtin::BI__sync_fetch_and_or_1:
1751   case Builtin::BI__sync_fetch_and_or_2:
1752   case Builtin::BI__sync_fetch_and_or_4:
1753   case Builtin::BI__sync_fetch_and_or_8:
1754   case Builtin::BI__sync_fetch_and_or_16:
1755   case Builtin::BI__sync_fetch_and_and:
1756   case Builtin::BI__sync_fetch_and_and_1:
1757   case Builtin::BI__sync_fetch_and_and_2:
1758   case Builtin::BI__sync_fetch_and_and_4:
1759   case Builtin::BI__sync_fetch_and_and_8:
1760   case Builtin::BI__sync_fetch_and_and_16:
1761   case Builtin::BI__sync_fetch_and_xor:
1762   case Builtin::BI__sync_fetch_and_xor_1:
1763   case Builtin::BI__sync_fetch_and_xor_2:
1764   case Builtin::BI__sync_fetch_and_xor_4:
1765   case Builtin::BI__sync_fetch_and_xor_8:
1766   case Builtin::BI__sync_fetch_and_xor_16:
1767   case Builtin::BI__sync_fetch_and_nand:
1768   case Builtin::BI__sync_fetch_and_nand_1:
1769   case Builtin::BI__sync_fetch_and_nand_2:
1770   case Builtin::BI__sync_fetch_and_nand_4:
1771   case Builtin::BI__sync_fetch_and_nand_8:
1772   case Builtin::BI__sync_fetch_and_nand_16:
1773   case Builtin::BI__sync_add_and_fetch:
1774   case Builtin::BI__sync_add_and_fetch_1:
1775   case Builtin::BI__sync_add_and_fetch_2:
1776   case Builtin::BI__sync_add_and_fetch_4:
1777   case Builtin::BI__sync_add_and_fetch_8:
1778   case Builtin::BI__sync_add_and_fetch_16:
1779   case Builtin::BI__sync_sub_and_fetch:
1780   case Builtin::BI__sync_sub_and_fetch_1:
1781   case Builtin::BI__sync_sub_and_fetch_2:
1782   case Builtin::BI__sync_sub_and_fetch_4:
1783   case Builtin::BI__sync_sub_and_fetch_8:
1784   case Builtin::BI__sync_sub_and_fetch_16:
1785   case Builtin::BI__sync_and_and_fetch:
1786   case Builtin::BI__sync_and_and_fetch_1:
1787   case Builtin::BI__sync_and_and_fetch_2:
1788   case Builtin::BI__sync_and_and_fetch_4:
1789   case Builtin::BI__sync_and_and_fetch_8:
1790   case Builtin::BI__sync_and_and_fetch_16:
1791   case Builtin::BI__sync_or_and_fetch:
1792   case Builtin::BI__sync_or_and_fetch_1:
1793   case Builtin::BI__sync_or_and_fetch_2:
1794   case Builtin::BI__sync_or_and_fetch_4:
1795   case Builtin::BI__sync_or_and_fetch_8:
1796   case Builtin::BI__sync_or_and_fetch_16:
1797   case Builtin::BI__sync_xor_and_fetch:
1798   case Builtin::BI__sync_xor_and_fetch_1:
1799   case Builtin::BI__sync_xor_and_fetch_2:
1800   case Builtin::BI__sync_xor_and_fetch_4:
1801   case Builtin::BI__sync_xor_and_fetch_8:
1802   case Builtin::BI__sync_xor_and_fetch_16:
1803   case Builtin::BI__sync_nand_and_fetch:
1804   case Builtin::BI__sync_nand_and_fetch_1:
1805   case Builtin::BI__sync_nand_and_fetch_2:
1806   case Builtin::BI__sync_nand_and_fetch_4:
1807   case Builtin::BI__sync_nand_and_fetch_8:
1808   case Builtin::BI__sync_nand_and_fetch_16:
1809   case Builtin::BI__sync_val_compare_and_swap:
1810   case Builtin::BI__sync_val_compare_and_swap_1:
1811   case Builtin::BI__sync_val_compare_and_swap_2:
1812   case Builtin::BI__sync_val_compare_and_swap_4:
1813   case Builtin::BI__sync_val_compare_and_swap_8:
1814   case Builtin::BI__sync_val_compare_and_swap_16:
1815   case Builtin::BI__sync_bool_compare_and_swap:
1816   case Builtin::BI__sync_bool_compare_and_swap_1:
1817   case Builtin::BI__sync_bool_compare_and_swap_2:
1818   case Builtin::BI__sync_bool_compare_and_swap_4:
1819   case Builtin::BI__sync_bool_compare_and_swap_8:
1820   case Builtin::BI__sync_bool_compare_and_swap_16:
1821   case Builtin::BI__sync_lock_test_and_set:
1822   case Builtin::BI__sync_lock_test_and_set_1:
1823   case Builtin::BI__sync_lock_test_and_set_2:
1824   case Builtin::BI__sync_lock_test_and_set_4:
1825   case Builtin::BI__sync_lock_test_and_set_8:
1826   case Builtin::BI__sync_lock_test_and_set_16:
1827   case Builtin::BI__sync_lock_release:
1828   case Builtin::BI__sync_lock_release_1:
1829   case Builtin::BI__sync_lock_release_2:
1830   case Builtin::BI__sync_lock_release_4:
1831   case Builtin::BI__sync_lock_release_8:
1832   case Builtin::BI__sync_lock_release_16:
1833   case Builtin::BI__sync_swap:
1834   case Builtin::BI__sync_swap_1:
1835   case Builtin::BI__sync_swap_2:
1836   case Builtin::BI__sync_swap_4:
1837   case Builtin::BI__sync_swap_8:
1838   case Builtin::BI__sync_swap_16:
1839     return SemaBuiltinAtomicOverloaded(TheCallResult);
1840   case Builtin::BI__sync_synchronize:
1841     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1842         << TheCall->getCallee()->getSourceRange();
1843     break;
1844   case Builtin::BI__builtin_nontemporal_load:
1845   case Builtin::BI__builtin_nontemporal_store:
1846     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1847   case Builtin::BI__builtin_memcpy_inline: {
1848     clang::Expr *SizeOp = TheCall->getArg(2);
1849     // We warn about copying to or from `nullptr` pointers when `size` is
1850     // greater than 0. When `size` is value dependent we cannot evaluate its
1851     // value so we bail out.
1852     if (SizeOp->isValueDependent())
1853       break;
1854     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
1855       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1856       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1857     }
1858     break;
1859   }
1860 #define BUILTIN(ID, TYPE, ATTRS)
1861 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1862   case Builtin::BI##ID: \
1863     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1864 #include "clang/Basic/Builtins.def"
1865   case Builtin::BI__annotation:
1866     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1867       return ExprError();
1868     break;
1869   case Builtin::BI__builtin_annotation:
1870     if (SemaBuiltinAnnotation(*this, TheCall))
1871       return ExprError();
1872     break;
1873   case Builtin::BI__builtin_addressof:
1874     if (SemaBuiltinAddressof(*this, TheCall))
1875       return ExprError();
1876     break;
1877   case Builtin::BI__builtin_is_aligned:
1878   case Builtin::BI__builtin_align_up:
1879   case Builtin::BI__builtin_align_down:
1880     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1881       return ExprError();
1882     break;
1883   case Builtin::BI__builtin_add_overflow:
1884   case Builtin::BI__builtin_sub_overflow:
1885   case Builtin::BI__builtin_mul_overflow:
1886     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1887       return ExprError();
1888     break;
1889   case Builtin::BI__builtin_operator_new:
1890   case Builtin::BI__builtin_operator_delete: {
1891     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1892     ExprResult Res =
1893         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1894     if (Res.isInvalid())
1895       CorrectDelayedTyposInExpr(TheCallResult.get());
1896     return Res;
1897   }
1898   case Builtin::BI__builtin_dump_struct: {
1899     // We first want to ensure we are called with 2 arguments
1900     if (checkArgCount(*this, TheCall, 2))
1901       return ExprError();
1902     // Ensure that the first argument is of type 'struct XX *'
1903     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1904     const QualType PtrArgType = PtrArg->getType();
1905     if (!PtrArgType->isPointerType() ||
1906         !PtrArgType->getPointeeType()->isRecordType()) {
1907       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1908           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1909           << "structure pointer";
1910       return ExprError();
1911     }
1912 
1913     // Ensure that the second argument is of type 'FunctionType'
1914     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1915     const QualType FnPtrArgType = FnPtrArg->getType();
1916     if (!FnPtrArgType->isPointerType()) {
1917       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1918           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1919           << FnPtrArgType << "'int (*)(const char *, ...)'";
1920       return ExprError();
1921     }
1922 
1923     const auto *FuncType =
1924         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1925 
1926     if (!FuncType) {
1927       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1928           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1929           << FnPtrArgType << "'int (*)(const char *, ...)'";
1930       return ExprError();
1931     }
1932 
1933     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1934       if (!FT->getNumParams()) {
1935         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1936             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1937             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1938         return ExprError();
1939       }
1940       QualType PT = FT->getParamType(0);
1941       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1942           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1943           !PT->getPointeeType().isConstQualified()) {
1944         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1945             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1946             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1947         return ExprError();
1948       }
1949     }
1950 
1951     TheCall->setType(Context.IntTy);
1952     break;
1953   }
1954   case Builtin::BI__builtin_expect_with_probability: {
1955     // We first want to ensure we are called with 3 arguments
1956     if (checkArgCount(*this, TheCall, 3))
1957       return ExprError();
1958     // then check probability is constant float in range [0.0, 1.0]
1959     const Expr *ProbArg = TheCall->getArg(2);
1960     SmallVector<PartialDiagnosticAt, 8> Notes;
1961     Expr::EvalResult Eval;
1962     Eval.Diag = &Notes;
1963     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1964         !Eval.Val.isFloat()) {
1965       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1966           << ProbArg->getSourceRange();
1967       for (const PartialDiagnosticAt &PDiag : Notes)
1968         Diag(PDiag.first, PDiag.second);
1969       return ExprError();
1970     }
1971     llvm::APFloat Probability = Eval.Val.getFloat();
1972     bool LoseInfo = false;
1973     Probability.convert(llvm::APFloat::IEEEdouble(),
1974                         llvm::RoundingMode::Dynamic, &LoseInfo);
1975     if (!(Probability >= llvm::APFloat(0.0) &&
1976           Probability <= llvm::APFloat(1.0))) {
1977       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1978           << ProbArg->getSourceRange();
1979       return ExprError();
1980     }
1981     break;
1982   }
1983   case Builtin::BI__builtin_preserve_access_index:
1984     if (SemaBuiltinPreserveAI(*this, TheCall))
1985       return ExprError();
1986     break;
1987   case Builtin::BI__builtin_call_with_static_chain:
1988     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1989       return ExprError();
1990     break;
1991   case Builtin::BI__exception_code:
1992   case Builtin::BI_exception_code:
1993     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1994                                  diag::err_seh___except_block))
1995       return ExprError();
1996     break;
1997   case Builtin::BI__exception_info:
1998   case Builtin::BI_exception_info:
1999     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2000                                  diag::err_seh___except_filter))
2001       return ExprError();
2002     break;
2003   case Builtin::BI__GetExceptionInfo:
2004     if (checkArgCount(*this, TheCall, 1))
2005       return ExprError();
2006 
2007     if (CheckCXXThrowOperand(
2008             TheCall->getBeginLoc(),
2009             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2010             TheCall))
2011       return ExprError();
2012 
2013     TheCall->setType(Context.VoidPtrTy);
2014     break;
2015   // OpenCL v2.0, s6.13.16 - Pipe functions
2016   case Builtin::BIread_pipe:
2017   case Builtin::BIwrite_pipe:
2018     // Since those two functions are declared with var args, we need a semantic
2019     // check for the argument.
2020     if (SemaBuiltinRWPipe(*this, TheCall))
2021       return ExprError();
2022     break;
2023   case Builtin::BIreserve_read_pipe:
2024   case Builtin::BIreserve_write_pipe:
2025   case Builtin::BIwork_group_reserve_read_pipe:
2026   case Builtin::BIwork_group_reserve_write_pipe:
2027     if (SemaBuiltinReserveRWPipe(*this, TheCall))
2028       return ExprError();
2029     break;
2030   case Builtin::BIsub_group_reserve_read_pipe:
2031   case Builtin::BIsub_group_reserve_write_pipe:
2032     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2033         SemaBuiltinReserveRWPipe(*this, TheCall))
2034       return ExprError();
2035     break;
2036   case Builtin::BIcommit_read_pipe:
2037   case Builtin::BIcommit_write_pipe:
2038   case Builtin::BIwork_group_commit_read_pipe:
2039   case Builtin::BIwork_group_commit_write_pipe:
2040     if (SemaBuiltinCommitRWPipe(*this, TheCall))
2041       return ExprError();
2042     break;
2043   case Builtin::BIsub_group_commit_read_pipe:
2044   case Builtin::BIsub_group_commit_write_pipe:
2045     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2046         SemaBuiltinCommitRWPipe(*this, TheCall))
2047       return ExprError();
2048     break;
2049   case Builtin::BIget_pipe_num_packets:
2050   case Builtin::BIget_pipe_max_packets:
2051     if (SemaBuiltinPipePackets(*this, TheCall))
2052       return ExprError();
2053     break;
2054   case Builtin::BIto_global:
2055   case Builtin::BIto_local:
2056   case Builtin::BIto_private:
2057     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2058       return ExprError();
2059     break;
2060   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2061   case Builtin::BIenqueue_kernel:
2062     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2063       return ExprError();
2064     break;
2065   case Builtin::BIget_kernel_work_group_size:
2066   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2067     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2068       return ExprError();
2069     break;
2070   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2071   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2072     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2073       return ExprError();
2074     break;
2075   case Builtin::BI__builtin_os_log_format:
2076     Cleanup.setExprNeedsCleanups(true);
2077     LLVM_FALLTHROUGH;
2078   case Builtin::BI__builtin_os_log_format_buffer_size:
2079     if (SemaBuiltinOSLogFormat(TheCall))
2080       return ExprError();
2081     break;
2082   case Builtin::BI__builtin_frame_address:
2083   case Builtin::BI__builtin_return_address: {
2084     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2085       return ExprError();
2086 
2087     // -Wframe-address warning if non-zero passed to builtin
2088     // return/frame address.
2089     Expr::EvalResult Result;
2090     if (!TheCall->getArg(0)->isValueDependent() &&
2091         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2092         Result.Val.getInt() != 0)
2093       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2094           << ((BuiltinID == Builtin::BI__builtin_return_address)
2095                   ? "__builtin_return_address"
2096                   : "__builtin_frame_address")
2097           << TheCall->getSourceRange();
2098     break;
2099   }
2100 
2101   case Builtin::BI__builtin_elementwise_abs:
2102     if (SemaBuiltinElementwiseMathOneArg(TheCall))
2103       return ExprError();
2104     break;
2105   case Builtin::BI__builtin_elementwise_min:
2106   case Builtin::BI__builtin_elementwise_max:
2107     if (SemaBuiltinElementwiseMath(TheCall))
2108       return ExprError();
2109     break;
2110   case Builtin::BI__builtin_reduce_max:
2111   case Builtin::BI__builtin_reduce_min:
2112     if (SemaBuiltinReduceMath(TheCall))
2113       return ExprError();
2114     break;
2115   case Builtin::BI__builtin_matrix_transpose:
2116     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2117 
2118   case Builtin::BI__builtin_matrix_column_major_load:
2119     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2120 
2121   case Builtin::BI__builtin_matrix_column_major_store:
2122     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2123 
2124   case Builtin::BI__builtin_get_device_side_mangled_name: {
2125     auto Check = [](CallExpr *TheCall) {
2126       if (TheCall->getNumArgs() != 1)
2127         return false;
2128       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2129       if (!DRE)
2130         return false;
2131       auto *D = DRE->getDecl();
2132       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2133         return false;
2134       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2135              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2136     };
2137     if (!Check(TheCall)) {
2138       Diag(TheCall->getBeginLoc(),
2139            diag::err_hip_invalid_args_builtin_mangled_name);
2140       return ExprError();
2141     }
2142   }
2143   }
2144 
2145   // Since the target specific builtins for each arch overlap, only check those
2146   // of the arch we are compiling for.
2147   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2148     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2149       assert(Context.getAuxTargetInfo() &&
2150              "Aux Target Builtin, but not an aux target?");
2151 
2152       if (CheckTSBuiltinFunctionCall(
2153               *Context.getAuxTargetInfo(),
2154               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2155         return ExprError();
2156     } else {
2157       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2158                                      TheCall))
2159         return ExprError();
2160     }
2161   }
2162 
2163   return TheCallResult;
2164 }
2165 
2166 // Get the valid immediate range for the specified NEON type code.
2167 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2168   NeonTypeFlags Type(t);
2169   int IsQuad = ForceQuad ? true : Type.isQuad();
2170   switch (Type.getEltType()) {
2171   case NeonTypeFlags::Int8:
2172   case NeonTypeFlags::Poly8:
2173     return shift ? 7 : (8 << IsQuad) - 1;
2174   case NeonTypeFlags::Int16:
2175   case NeonTypeFlags::Poly16:
2176     return shift ? 15 : (4 << IsQuad) - 1;
2177   case NeonTypeFlags::Int32:
2178     return shift ? 31 : (2 << IsQuad) - 1;
2179   case NeonTypeFlags::Int64:
2180   case NeonTypeFlags::Poly64:
2181     return shift ? 63 : (1 << IsQuad) - 1;
2182   case NeonTypeFlags::Poly128:
2183     return shift ? 127 : (1 << IsQuad) - 1;
2184   case NeonTypeFlags::Float16:
2185     assert(!shift && "cannot shift float types!");
2186     return (4 << IsQuad) - 1;
2187   case NeonTypeFlags::Float32:
2188     assert(!shift && "cannot shift float types!");
2189     return (2 << IsQuad) - 1;
2190   case NeonTypeFlags::Float64:
2191     assert(!shift && "cannot shift float types!");
2192     return (1 << IsQuad) - 1;
2193   case NeonTypeFlags::BFloat16:
2194     assert(!shift && "cannot shift float types!");
2195     return (4 << IsQuad) - 1;
2196   }
2197   llvm_unreachable("Invalid NeonTypeFlag!");
2198 }
2199 
2200 /// getNeonEltType - Return the QualType corresponding to the elements of
2201 /// the vector type specified by the NeonTypeFlags.  This is used to check
2202 /// the pointer arguments for Neon load/store intrinsics.
2203 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2204                                bool IsPolyUnsigned, bool IsInt64Long) {
2205   switch (Flags.getEltType()) {
2206   case NeonTypeFlags::Int8:
2207     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2208   case NeonTypeFlags::Int16:
2209     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2210   case NeonTypeFlags::Int32:
2211     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2212   case NeonTypeFlags::Int64:
2213     if (IsInt64Long)
2214       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2215     else
2216       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2217                                 : Context.LongLongTy;
2218   case NeonTypeFlags::Poly8:
2219     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2220   case NeonTypeFlags::Poly16:
2221     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2222   case NeonTypeFlags::Poly64:
2223     if (IsInt64Long)
2224       return Context.UnsignedLongTy;
2225     else
2226       return Context.UnsignedLongLongTy;
2227   case NeonTypeFlags::Poly128:
2228     break;
2229   case NeonTypeFlags::Float16:
2230     return Context.HalfTy;
2231   case NeonTypeFlags::Float32:
2232     return Context.FloatTy;
2233   case NeonTypeFlags::Float64:
2234     return Context.DoubleTy;
2235   case NeonTypeFlags::BFloat16:
2236     return Context.BFloat16Ty;
2237   }
2238   llvm_unreachable("Invalid NeonTypeFlag!");
2239 }
2240 
2241 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2242   // Range check SVE intrinsics that take immediate values.
2243   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2244 
2245   switch (BuiltinID) {
2246   default:
2247     return false;
2248 #define GET_SVE_IMMEDIATE_CHECK
2249 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2250 #undef GET_SVE_IMMEDIATE_CHECK
2251   }
2252 
2253   // Perform all the immediate checks for this builtin call.
2254   bool HasError = false;
2255   for (auto &I : ImmChecks) {
2256     int ArgNum, CheckTy, ElementSizeInBits;
2257     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2258 
2259     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2260 
2261     // Function that checks whether the operand (ArgNum) is an immediate
2262     // that is one of the predefined values.
2263     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2264                                    int ErrDiag) -> bool {
2265       // We can't check the value of a dependent argument.
2266       Expr *Arg = TheCall->getArg(ArgNum);
2267       if (Arg->isTypeDependent() || Arg->isValueDependent())
2268         return false;
2269 
2270       // Check constant-ness first.
2271       llvm::APSInt Imm;
2272       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2273         return true;
2274 
2275       if (!CheckImm(Imm.getSExtValue()))
2276         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2277       return false;
2278     };
2279 
2280     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2281     case SVETypeFlags::ImmCheck0_31:
2282       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2283         HasError = true;
2284       break;
2285     case SVETypeFlags::ImmCheck0_13:
2286       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2287         HasError = true;
2288       break;
2289     case SVETypeFlags::ImmCheck1_16:
2290       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2291         HasError = true;
2292       break;
2293     case SVETypeFlags::ImmCheck0_7:
2294       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2295         HasError = true;
2296       break;
2297     case SVETypeFlags::ImmCheckExtract:
2298       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2299                                       (2048 / ElementSizeInBits) - 1))
2300         HasError = true;
2301       break;
2302     case SVETypeFlags::ImmCheckShiftRight:
2303       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2304         HasError = true;
2305       break;
2306     case SVETypeFlags::ImmCheckShiftRightNarrow:
2307       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2308                                       ElementSizeInBits / 2))
2309         HasError = true;
2310       break;
2311     case SVETypeFlags::ImmCheckShiftLeft:
2312       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2313                                       ElementSizeInBits - 1))
2314         HasError = true;
2315       break;
2316     case SVETypeFlags::ImmCheckLaneIndex:
2317       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2318                                       (128 / (1 * ElementSizeInBits)) - 1))
2319         HasError = true;
2320       break;
2321     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2322       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2323                                       (128 / (2 * ElementSizeInBits)) - 1))
2324         HasError = true;
2325       break;
2326     case SVETypeFlags::ImmCheckLaneIndexDot:
2327       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2328                                       (128 / (4 * ElementSizeInBits)) - 1))
2329         HasError = true;
2330       break;
2331     case SVETypeFlags::ImmCheckComplexRot90_270:
2332       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2333                               diag::err_rotation_argument_to_cadd))
2334         HasError = true;
2335       break;
2336     case SVETypeFlags::ImmCheckComplexRotAll90:
2337       if (CheckImmediateInSet(
2338               [](int64_t V) {
2339                 return V == 0 || V == 90 || V == 180 || V == 270;
2340               },
2341               diag::err_rotation_argument_to_cmla))
2342         HasError = true;
2343       break;
2344     case SVETypeFlags::ImmCheck0_1:
2345       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2346         HasError = true;
2347       break;
2348     case SVETypeFlags::ImmCheck0_2:
2349       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2350         HasError = true;
2351       break;
2352     case SVETypeFlags::ImmCheck0_3:
2353       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2354         HasError = true;
2355       break;
2356     }
2357   }
2358 
2359   return HasError;
2360 }
2361 
2362 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2363                                         unsigned BuiltinID, CallExpr *TheCall) {
2364   llvm::APSInt Result;
2365   uint64_t mask = 0;
2366   unsigned TV = 0;
2367   int PtrArgNum = -1;
2368   bool HasConstPtr = false;
2369   switch (BuiltinID) {
2370 #define GET_NEON_OVERLOAD_CHECK
2371 #include "clang/Basic/arm_neon.inc"
2372 #include "clang/Basic/arm_fp16.inc"
2373 #undef GET_NEON_OVERLOAD_CHECK
2374   }
2375 
2376   // For NEON intrinsics which are overloaded on vector element type, validate
2377   // the immediate which specifies which variant to emit.
2378   unsigned ImmArg = TheCall->getNumArgs()-1;
2379   if (mask) {
2380     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2381       return true;
2382 
2383     TV = Result.getLimitedValue(64);
2384     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2385       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2386              << TheCall->getArg(ImmArg)->getSourceRange();
2387   }
2388 
2389   if (PtrArgNum >= 0) {
2390     // Check that pointer arguments have the specified type.
2391     Expr *Arg = TheCall->getArg(PtrArgNum);
2392     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2393       Arg = ICE->getSubExpr();
2394     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2395     QualType RHSTy = RHS.get()->getType();
2396 
2397     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2398     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2399                           Arch == llvm::Triple::aarch64_32 ||
2400                           Arch == llvm::Triple::aarch64_be;
2401     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2402     QualType EltTy =
2403         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2404     if (HasConstPtr)
2405       EltTy = EltTy.withConst();
2406     QualType LHSTy = Context.getPointerType(EltTy);
2407     AssignConvertType ConvTy;
2408     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2409     if (RHS.isInvalid())
2410       return true;
2411     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2412                                  RHS.get(), AA_Assigning))
2413       return true;
2414   }
2415 
2416   // For NEON intrinsics which take an immediate value as part of the
2417   // instruction, range check them here.
2418   unsigned i = 0, l = 0, u = 0;
2419   switch (BuiltinID) {
2420   default:
2421     return false;
2422   #define GET_NEON_IMMEDIATE_CHECK
2423   #include "clang/Basic/arm_neon.inc"
2424   #include "clang/Basic/arm_fp16.inc"
2425   #undef GET_NEON_IMMEDIATE_CHECK
2426   }
2427 
2428   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2429 }
2430 
2431 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2432   switch (BuiltinID) {
2433   default:
2434     return false;
2435   #include "clang/Basic/arm_mve_builtin_sema.inc"
2436   }
2437 }
2438 
2439 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2440                                        CallExpr *TheCall) {
2441   bool Err = false;
2442   switch (BuiltinID) {
2443   default:
2444     return false;
2445 #include "clang/Basic/arm_cde_builtin_sema.inc"
2446   }
2447 
2448   if (Err)
2449     return true;
2450 
2451   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2452 }
2453 
2454 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2455                                         const Expr *CoprocArg, bool WantCDE) {
2456   if (isConstantEvaluated())
2457     return false;
2458 
2459   // We can't check the value of a dependent argument.
2460   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2461     return false;
2462 
2463   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2464   int64_t CoprocNo = CoprocNoAP.getExtValue();
2465   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2466 
2467   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2468   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2469 
2470   if (IsCDECoproc != WantCDE)
2471     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2472            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2473 
2474   return false;
2475 }
2476 
2477 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2478                                         unsigned MaxWidth) {
2479   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2480           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2481           BuiltinID == ARM::BI__builtin_arm_strex ||
2482           BuiltinID == ARM::BI__builtin_arm_stlex ||
2483           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2484           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2485           BuiltinID == AArch64::BI__builtin_arm_strex ||
2486           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2487          "unexpected ARM builtin");
2488   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2489                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2490                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2491                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2492 
2493   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2494 
2495   // Ensure that we have the proper number of arguments.
2496   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2497     return true;
2498 
2499   // Inspect the pointer argument of the atomic builtin.  This should always be
2500   // a pointer type, whose element is an integral scalar or pointer type.
2501   // Because it is a pointer type, we don't have to worry about any implicit
2502   // casts here.
2503   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2504   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2505   if (PointerArgRes.isInvalid())
2506     return true;
2507   PointerArg = PointerArgRes.get();
2508 
2509   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2510   if (!pointerType) {
2511     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2512         << PointerArg->getType() << PointerArg->getSourceRange();
2513     return true;
2514   }
2515 
2516   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2517   // task is to insert the appropriate casts into the AST. First work out just
2518   // what the appropriate type is.
2519   QualType ValType = pointerType->getPointeeType();
2520   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2521   if (IsLdrex)
2522     AddrType.addConst();
2523 
2524   // Issue a warning if the cast is dodgy.
2525   CastKind CastNeeded = CK_NoOp;
2526   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2527     CastNeeded = CK_BitCast;
2528     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2529         << PointerArg->getType() << Context.getPointerType(AddrType)
2530         << AA_Passing << PointerArg->getSourceRange();
2531   }
2532 
2533   // Finally, do the cast and replace the argument with the corrected version.
2534   AddrType = Context.getPointerType(AddrType);
2535   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2536   if (PointerArgRes.isInvalid())
2537     return true;
2538   PointerArg = PointerArgRes.get();
2539 
2540   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2541 
2542   // In general, we allow ints, floats and pointers to be loaded and stored.
2543   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2544       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2545     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2546         << PointerArg->getType() << PointerArg->getSourceRange();
2547     return true;
2548   }
2549 
2550   // But ARM doesn't have instructions to deal with 128-bit versions.
2551   if (Context.getTypeSize(ValType) > MaxWidth) {
2552     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2553     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2554         << PointerArg->getType() << PointerArg->getSourceRange();
2555     return true;
2556   }
2557 
2558   switch (ValType.getObjCLifetime()) {
2559   case Qualifiers::OCL_None:
2560   case Qualifiers::OCL_ExplicitNone:
2561     // okay
2562     break;
2563 
2564   case Qualifiers::OCL_Weak:
2565   case Qualifiers::OCL_Strong:
2566   case Qualifiers::OCL_Autoreleasing:
2567     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2568         << ValType << PointerArg->getSourceRange();
2569     return true;
2570   }
2571 
2572   if (IsLdrex) {
2573     TheCall->setType(ValType);
2574     return false;
2575   }
2576 
2577   // Initialize the argument to be stored.
2578   ExprResult ValArg = TheCall->getArg(0);
2579   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2580       Context, ValType, /*consume*/ false);
2581   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2582   if (ValArg.isInvalid())
2583     return true;
2584   TheCall->setArg(0, ValArg.get());
2585 
2586   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2587   // but the custom checker bypasses all default analysis.
2588   TheCall->setType(Context.IntTy);
2589   return false;
2590 }
2591 
2592 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2593                                        CallExpr *TheCall) {
2594   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2595       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2596       BuiltinID == ARM::BI__builtin_arm_strex ||
2597       BuiltinID == ARM::BI__builtin_arm_stlex) {
2598     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2599   }
2600 
2601   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2602     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2603       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2604   }
2605 
2606   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2607       BuiltinID == ARM::BI__builtin_arm_wsr64)
2608     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2609 
2610   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2611       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2612       BuiltinID == ARM::BI__builtin_arm_wsr ||
2613       BuiltinID == ARM::BI__builtin_arm_wsrp)
2614     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2615 
2616   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2617     return true;
2618   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2619     return true;
2620   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2621     return true;
2622 
2623   // For intrinsics which take an immediate value as part of the instruction,
2624   // range check them here.
2625   // FIXME: VFP Intrinsics should error if VFP not present.
2626   switch (BuiltinID) {
2627   default: return false;
2628   case ARM::BI__builtin_arm_ssat:
2629     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2630   case ARM::BI__builtin_arm_usat:
2631     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2632   case ARM::BI__builtin_arm_ssat16:
2633     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2634   case ARM::BI__builtin_arm_usat16:
2635     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2636   case ARM::BI__builtin_arm_vcvtr_f:
2637   case ARM::BI__builtin_arm_vcvtr_d:
2638     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2639   case ARM::BI__builtin_arm_dmb:
2640   case ARM::BI__builtin_arm_dsb:
2641   case ARM::BI__builtin_arm_isb:
2642   case ARM::BI__builtin_arm_dbg:
2643     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2644   case ARM::BI__builtin_arm_cdp:
2645   case ARM::BI__builtin_arm_cdp2:
2646   case ARM::BI__builtin_arm_mcr:
2647   case ARM::BI__builtin_arm_mcr2:
2648   case ARM::BI__builtin_arm_mrc:
2649   case ARM::BI__builtin_arm_mrc2:
2650   case ARM::BI__builtin_arm_mcrr:
2651   case ARM::BI__builtin_arm_mcrr2:
2652   case ARM::BI__builtin_arm_mrrc:
2653   case ARM::BI__builtin_arm_mrrc2:
2654   case ARM::BI__builtin_arm_ldc:
2655   case ARM::BI__builtin_arm_ldcl:
2656   case ARM::BI__builtin_arm_ldc2:
2657   case ARM::BI__builtin_arm_ldc2l:
2658   case ARM::BI__builtin_arm_stc:
2659   case ARM::BI__builtin_arm_stcl:
2660   case ARM::BI__builtin_arm_stc2:
2661   case ARM::BI__builtin_arm_stc2l:
2662     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2663            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2664                                         /*WantCDE*/ false);
2665   }
2666 }
2667 
2668 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2669                                            unsigned BuiltinID,
2670                                            CallExpr *TheCall) {
2671   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2672       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2673       BuiltinID == AArch64::BI__builtin_arm_strex ||
2674       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2675     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2676   }
2677 
2678   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2679     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2680       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2681       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2682       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2683   }
2684 
2685   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2686       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2687     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2688 
2689   // Memory Tagging Extensions (MTE) Intrinsics
2690   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2691       BuiltinID == AArch64::BI__builtin_arm_addg ||
2692       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2693       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2694       BuiltinID == AArch64::BI__builtin_arm_stg ||
2695       BuiltinID == AArch64::BI__builtin_arm_subp) {
2696     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2697   }
2698 
2699   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2700       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2701       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2702       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2703     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2704 
2705   // Only check the valid encoding range. Any constant in this range would be
2706   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2707   // an exception for incorrect registers. This matches MSVC behavior.
2708   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2709       BuiltinID == AArch64::BI_WriteStatusReg)
2710     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2711 
2712   if (BuiltinID == AArch64::BI__getReg)
2713     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2714 
2715   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2716     return true;
2717 
2718   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2719     return true;
2720 
2721   // For intrinsics which take an immediate value as part of the instruction,
2722   // range check them here.
2723   unsigned i = 0, l = 0, u = 0;
2724   switch (BuiltinID) {
2725   default: return false;
2726   case AArch64::BI__builtin_arm_dmb:
2727   case AArch64::BI__builtin_arm_dsb:
2728   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2729   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2730   }
2731 
2732   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2733 }
2734 
2735 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2736   if (Arg->getType()->getAsPlaceholderType())
2737     return false;
2738 
2739   // The first argument needs to be a record field access.
2740   // If it is an array element access, we delay decision
2741   // to BPF backend to check whether the access is a
2742   // field access or not.
2743   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2744           isa<MemberExpr>(Arg->IgnoreParens()) ||
2745           isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
2746 }
2747 
2748 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2749                             QualType VectorTy, QualType EltTy) {
2750   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2751   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2752     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2753         << Call->getSourceRange() << VectorEltTy << EltTy;
2754     return false;
2755   }
2756   return true;
2757 }
2758 
2759 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2760   QualType ArgType = Arg->getType();
2761   if (ArgType->getAsPlaceholderType())
2762     return false;
2763 
2764   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2765   // format:
2766   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2767   //   2. <type> var;
2768   //      __builtin_preserve_type_info(var, flag);
2769   if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
2770       !isa<UnaryOperator>(Arg->IgnoreParens()))
2771     return false;
2772 
2773   // Typedef type.
2774   if (ArgType->getAs<TypedefType>())
2775     return true;
2776 
2777   // Record type or Enum type.
2778   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2779   if (const auto *RT = Ty->getAs<RecordType>()) {
2780     if (!RT->getDecl()->getDeclName().isEmpty())
2781       return true;
2782   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2783     if (!ET->getDecl()->getDeclName().isEmpty())
2784       return true;
2785   }
2786 
2787   return false;
2788 }
2789 
2790 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2791   QualType ArgType = Arg->getType();
2792   if (ArgType->getAsPlaceholderType())
2793     return false;
2794 
2795   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2796   // format:
2797   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2798   //                                 flag);
2799   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2800   if (!UO)
2801     return false;
2802 
2803   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2804   if (!CE)
2805     return false;
2806   if (CE->getCastKind() != CK_IntegralToPointer &&
2807       CE->getCastKind() != CK_NullToPointer)
2808     return false;
2809 
2810   // The integer must be from an EnumConstantDecl.
2811   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2812   if (!DR)
2813     return false;
2814 
2815   const EnumConstantDecl *Enumerator =
2816       dyn_cast<EnumConstantDecl>(DR->getDecl());
2817   if (!Enumerator)
2818     return false;
2819 
2820   // The type must be EnumType.
2821   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2822   const auto *ET = Ty->getAs<EnumType>();
2823   if (!ET)
2824     return false;
2825 
2826   // The enum value must be supported.
2827   return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
2828 }
2829 
2830 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2831                                        CallExpr *TheCall) {
2832   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2833           BuiltinID == BPF::BI__builtin_btf_type_id ||
2834           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2835           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2836          "unexpected BPF builtin");
2837 
2838   if (checkArgCount(*this, TheCall, 2))
2839     return true;
2840 
2841   // The second argument needs to be a constant int
2842   Expr *Arg = TheCall->getArg(1);
2843   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2844   diag::kind kind;
2845   if (!Value) {
2846     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2847       kind = diag::err_preserve_field_info_not_const;
2848     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2849       kind = diag::err_btf_type_id_not_const;
2850     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2851       kind = diag::err_preserve_type_info_not_const;
2852     else
2853       kind = diag::err_preserve_enum_value_not_const;
2854     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2855     return true;
2856   }
2857 
2858   // The first argument
2859   Arg = TheCall->getArg(0);
2860   bool InvalidArg = false;
2861   bool ReturnUnsignedInt = true;
2862   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2863     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2864       InvalidArg = true;
2865       kind = diag::err_preserve_field_info_not_field;
2866     }
2867   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2868     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2869       InvalidArg = true;
2870       kind = diag::err_preserve_type_info_invalid;
2871     }
2872   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2873     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2874       InvalidArg = true;
2875       kind = diag::err_preserve_enum_value_invalid;
2876     }
2877     ReturnUnsignedInt = false;
2878   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2879     ReturnUnsignedInt = false;
2880   }
2881 
2882   if (InvalidArg) {
2883     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2884     return true;
2885   }
2886 
2887   if (ReturnUnsignedInt)
2888     TheCall->setType(Context.UnsignedIntTy);
2889   else
2890     TheCall->setType(Context.UnsignedLongTy);
2891   return false;
2892 }
2893 
2894 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2895   struct ArgInfo {
2896     uint8_t OpNum;
2897     bool IsSigned;
2898     uint8_t BitWidth;
2899     uint8_t Align;
2900   };
2901   struct BuiltinInfo {
2902     unsigned BuiltinID;
2903     ArgInfo Infos[2];
2904   };
2905 
2906   static BuiltinInfo Infos[] = {
2907     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2908     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2909     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2910     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2911     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2912     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2913     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2914     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2915     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2916     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2917     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2918 
2919     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2921     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2922     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2923     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2924     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2925     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2926     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2927     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2928     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2929     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2930 
2931     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2932     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2933     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2934     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2936     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2937     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2938     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2939     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2940     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2941     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2942     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2943     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2944     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2945     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2946     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2947     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2948     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2949     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2950     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2951     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2952     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2953     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2954     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2955     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2956     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2957     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2958     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2959     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2960     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2961     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2962     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2963     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2964     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2965     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2966     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2967     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2968     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2969     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2970     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2971     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2972     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2973     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2974     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2975     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2976     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2977     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2978     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2979     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2980     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2981     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2982     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2983                                                       {{ 1, false, 6,  0 }} },
2984     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2985     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2986     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2987     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2988     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2989     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2990     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2991                                                       {{ 1, false, 5,  0 }} },
2992     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2993     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2994     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2995     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2996     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2997     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2998                                                        { 2, false, 5,  0 }} },
2999     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3000                                                        { 2, false, 6,  0 }} },
3001     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3002                                                        { 3, false, 5,  0 }} },
3003     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3004                                                        { 3, false, 6,  0 }} },
3005     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3006     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3007     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3008     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3009     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3010     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3011     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3012     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3013     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3014     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3015     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3016     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3017     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3018     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3019     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3020     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3021                                                       {{ 2, false, 4,  0 },
3022                                                        { 3, false, 5,  0 }} },
3023     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3024                                                       {{ 2, false, 4,  0 },
3025                                                        { 3, false, 5,  0 }} },
3026     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3027                                                       {{ 2, false, 4,  0 },
3028                                                        { 3, false, 5,  0 }} },
3029     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3030                                                       {{ 2, false, 4,  0 },
3031                                                        { 3, false, 5,  0 }} },
3032     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3033     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3034     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3035     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3036     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3037     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3038     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3039     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3040     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3041     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3042     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3043                                                        { 2, false, 5,  0 }} },
3044     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3045                                                        { 2, false, 6,  0 }} },
3046     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3047     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3048     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3049     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3050     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3051     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3052     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3053     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3054     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3055                                                       {{ 1, false, 4,  0 }} },
3056     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3057     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3058                                                       {{ 1, false, 4,  0 }} },
3059     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3060     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3061     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3062     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3063     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3064     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3065     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3066     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3067     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3068     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3069     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3070     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3071     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3072     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3073     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3074     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3075     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3076     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3077     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3078     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3079                                                       {{ 3, false, 1,  0 }} },
3080     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3081     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3082     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3083     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3084                                                       {{ 3, false, 1,  0 }} },
3085     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3086     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3087     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3088     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3089                                                       {{ 3, false, 1,  0 }} },
3090   };
3091 
3092   // Use a dynamically initialized static to sort the table exactly once on
3093   // first run.
3094   static const bool SortOnce =
3095       (llvm::sort(Infos,
3096                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3097                    return LHS.BuiltinID < RHS.BuiltinID;
3098                  }),
3099        true);
3100   (void)SortOnce;
3101 
3102   const BuiltinInfo *F = llvm::partition_point(
3103       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3104   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3105     return false;
3106 
3107   bool Error = false;
3108 
3109   for (const ArgInfo &A : F->Infos) {
3110     // Ignore empty ArgInfo elements.
3111     if (A.BitWidth == 0)
3112       continue;
3113 
3114     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3115     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3116     if (!A.Align) {
3117       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3118     } else {
3119       unsigned M = 1 << A.Align;
3120       Min *= M;
3121       Max *= M;
3122       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3123       Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3124     }
3125   }
3126   return Error;
3127 }
3128 
3129 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3130                                            CallExpr *TheCall) {
3131   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3132 }
3133 
3134 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3135                                         unsigned BuiltinID, CallExpr *TheCall) {
3136   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3137          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3138 }
3139 
3140 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3141                                CallExpr *TheCall) {
3142 
3143   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3144       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3145     if (!TI.hasFeature("dsp"))
3146       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3147   }
3148 
3149   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3150       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3151     if (!TI.hasFeature("dspr2"))
3152       return Diag(TheCall->getBeginLoc(),
3153                   diag::err_mips_builtin_requires_dspr2);
3154   }
3155 
3156   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3157       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3158     if (!TI.hasFeature("msa"))
3159       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3160   }
3161 
3162   return false;
3163 }
3164 
3165 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3166 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3167 // ordering for DSP is unspecified. MSA is ordered by the data format used
3168 // by the underlying instruction i.e., df/m, df/n and then by size.
3169 //
3170 // FIXME: The size tests here should instead be tablegen'd along with the
3171 //        definitions from include/clang/Basic/BuiltinsMips.def.
3172 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3173 //        be too.
3174 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3175   unsigned i = 0, l = 0, u = 0, m = 0;
3176   switch (BuiltinID) {
3177   default: return false;
3178   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3179   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3180   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3181   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3182   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3183   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3184   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3185   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3186   // df/m field.
3187   // These intrinsics take an unsigned 3 bit immediate.
3188   case Mips::BI__builtin_msa_bclri_b:
3189   case Mips::BI__builtin_msa_bnegi_b:
3190   case Mips::BI__builtin_msa_bseti_b:
3191   case Mips::BI__builtin_msa_sat_s_b:
3192   case Mips::BI__builtin_msa_sat_u_b:
3193   case Mips::BI__builtin_msa_slli_b:
3194   case Mips::BI__builtin_msa_srai_b:
3195   case Mips::BI__builtin_msa_srari_b:
3196   case Mips::BI__builtin_msa_srli_b:
3197   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3198   case Mips::BI__builtin_msa_binsli_b:
3199   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3200   // These intrinsics take an unsigned 4 bit immediate.
3201   case Mips::BI__builtin_msa_bclri_h:
3202   case Mips::BI__builtin_msa_bnegi_h:
3203   case Mips::BI__builtin_msa_bseti_h:
3204   case Mips::BI__builtin_msa_sat_s_h:
3205   case Mips::BI__builtin_msa_sat_u_h:
3206   case Mips::BI__builtin_msa_slli_h:
3207   case Mips::BI__builtin_msa_srai_h:
3208   case Mips::BI__builtin_msa_srari_h:
3209   case Mips::BI__builtin_msa_srli_h:
3210   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3211   case Mips::BI__builtin_msa_binsli_h:
3212   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3213   // These intrinsics take an unsigned 5 bit immediate.
3214   // The first block of intrinsics actually have an unsigned 5 bit field,
3215   // not a df/n field.
3216   case Mips::BI__builtin_msa_cfcmsa:
3217   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3218   case Mips::BI__builtin_msa_clei_u_b:
3219   case Mips::BI__builtin_msa_clei_u_h:
3220   case Mips::BI__builtin_msa_clei_u_w:
3221   case Mips::BI__builtin_msa_clei_u_d:
3222   case Mips::BI__builtin_msa_clti_u_b:
3223   case Mips::BI__builtin_msa_clti_u_h:
3224   case Mips::BI__builtin_msa_clti_u_w:
3225   case Mips::BI__builtin_msa_clti_u_d:
3226   case Mips::BI__builtin_msa_maxi_u_b:
3227   case Mips::BI__builtin_msa_maxi_u_h:
3228   case Mips::BI__builtin_msa_maxi_u_w:
3229   case Mips::BI__builtin_msa_maxi_u_d:
3230   case Mips::BI__builtin_msa_mini_u_b:
3231   case Mips::BI__builtin_msa_mini_u_h:
3232   case Mips::BI__builtin_msa_mini_u_w:
3233   case Mips::BI__builtin_msa_mini_u_d:
3234   case Mips::BI__builtin_msa_addvi_b:
3235   case Mips::BI__builtin_msa_addvi_h:
3236   case Mips::BI__builtin_msa_addvi_w:
3237   case Mips::BI__builtin_msa_addvi_d:
3238   case Mips::BI__builtin_msa_bclri_w:
3239   case Mips::BI__builtin_msa_bnegi_w:
3240   case Mips::BI__builtin_msa_bseti_w:
3241   case Mips::BI__builtin_msa_sat_s_w:
3242   case Mips::BI__builtin_msa_sat_u_w:
3243   case Mips::BI__builtin_msa_slli_w:
3244   case Mips::BI__builtin_msa_srai_w:
3245   case Mips::BI__builtin_msa_srari_w:
3246   case Mips::BI__builtin_msa_srli_w:
3247   case Mips::BI__builtin_msa_srlri_w:
3248   case Mips::BI__builtin_msa_subvi_b:
3249   case Mips::BI__builtin_msa_subvi_h:
3250   case Mips::BI__builtin_msa_subvi_w:
3251   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3252   case Mips::BI__builtin_msa_binsli_w:
3253   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3254   // These intrinsics take an unsigned 6 bit immediate.
3255   case Mips::BI__builtin_msa_bclri_d:
3256   case Mips::BI__builtin_msa_bnegi_d:
3257   case Mips::BI__builtin_msa_bseti_d:
3258   case Mips::BI__builtin_msa_sat_s_d:
3259   case Mips::BI__builtin_msa_sat_u_d:
3260   case Mips::BI__builtin_msa_slli_d:
3261   case Mips::BI__builtin_msa_srai_d:
3262   case Mips::BI__builtin_msa_srari_d:
3263   case Mips::BI__builtin_msa_srli_d:
3264   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3265   case Mips::BI__builtin_msa_binsli_d:
3266   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3267   // These intrinsics take a signed 5 bit immediate.
3268   case Mips::BI__builtin_msa_ceqi_b:
3269   case Mips::BI__builtin_msa_ceqi_h:
3270   case Mips::BI__builtin_msa_ceqi_w:
3271   case Mips::BI__builtin_msa_ceqi_d:
3272   case Mips::BI__builtin_msa_clti_s_b:
3273   case Mips::BI__builtin_msa_clti_s_h:
3274   case Mips::BI__builtin_msa_clti_s_w:
3275   case Mips::BI__builtin_msa_clti_s_d:
3276   case Mips::BI__builtin_msa_clei_s_b:
3277   case Mips::BI__builtin_msa_clei_s_h:
3278   case Mips::BI__builtin_msa_clei_s_w:
3279   case Mips::BI__builtin_msa_clei_s_d:
3280   case Mips::BI__builtin_msa_maxi_s_b:
3281   case Mips::BI__builtin_msa_maxi_s_h:
3282   case Mips::BI__builtin_msa_maxi_s_w:
3283   case Mips::BI__builtin_msa_maxi_s_d:
3284   case Mips::BI__builtin_msa_mini_s_b:
3285   case Mips::BI__builtin_msa_mini_s_h:
3286   case Mips::BI__builtin_msa_mini_s_w:
3287   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3288   // These intrinsics take an unsigned 8 bit immediate.
3289   case Mips::BI__builtin_msa_andi_b:
3290   case Mips::BI__builtin_msa_nori_b:
3291   case Mips::BI__builtin_msa_ori_b:
3292   case Mips::BI__builtin_msa_shf_b:
3293   case Mips::BI__builtin_msa_shf_h:
3294   case Mips::BI__builtin_msa_shf_w:
3295   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3296   case Mips::BI__builtin_msa_bseli_b:
3297   case Mips::BI__builtin_msa_bmnzi_b:
3298   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3299   // df/n format
3300   // These intrinsics take an unsigned 4 bit immediate.
3301   case Mips::BI__builtin_msa_copy_s_b:
3302   case Mips::BI__builtin_msa_copy_u_b:
3303   case Mips::BI__builtin_msa_insve_b:
3304   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3305   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3306   // These intrinsics take an unsigned 3 bit immediate.
3307   case Mips::BI__builtin_msa_copy_s_h:
3308   case Mips::BI__builtin_msa_copy_u_h:
3309   case Mips::BI__builtin_msa_insve_h:
3310   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3311   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3312   // These intrinsics take an unsigned 2 bit immediate.
3313   case Mips::BI__builtin_msa_copy_s_w:
3314   case Mips::BI__builtin_msa_copy_u_w:
3315   case Mips::BI__builtin_msa_insve_w:
3316   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3317   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3318   // These intrinsics take an unsigned 1 bit immediate.
3319   case Mips::BI__builtin_msa_copy_s_d:
3320   case Mips::BI__builtin_msa_copy_u_d:
3321   case Mips::BI__builtin_msa_insve_d:
3322   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3323   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3324   // Memory offsets and immediate loads.
3325   // These intrinsics take a signed 10 bit immediate.
3326   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3327   case Mips::BI__builtin_msa_ldi_h:
3328   case Mips::BI__builtin_msa_ldi_w:
3329   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3330   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3331   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3332   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3333   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3334   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3335   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3336   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3337   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3338   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3339   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3340   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3341   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3342   }
3343 
3344   if (!m)
3345     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3346 
3347   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3348          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3349 }
3350 
3351 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3352 /// advancing the pointer over the consumed characters. The decoded type is
3353 /// returned. If the decoded type represents a constant integer with a
3354 /// constraint on its value then Mask is set to that value. The type descriptors
3355 /// used in Str are specific to PPC MMA builtins and are documented in the file
3356 /// defining the PPC builtins.
3357 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3358                                         unsigned &Mask) {
3359   bool RequireICE = false;
3360   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3361   switch (*Str++) {
3362   case 'V':
3363     return Context.getVectorType(Context.UnsignedCharTy, 16,
3364                                  VectorType::VectorKind::AltiVecVector);
3365   case 'i': {
3366     char *End;
3367     unsigned size = strtoul(Str, &End, 10);
3368     assert(End != Str && "Missing constant parameter constraint");
3369     Str = End;
3370     Mask = size;
3371     return Context.IntTy;
3372   }
3373   case 'W': {
3374     char *End;
3375     unsigned size = strtoul(Str, &End, 10);
3376     assert(End != Str && "Missing PowerPC MMA type size");
3377     Str = End;
3378     QualType Type;
3379     switch (size) {
3380   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3381     case size: Type = Context.Id##Ty; break;
3382   #include "clang/Basic/PPCTypes.def"
3383     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3384     }
3385     bool CheckVectorArgs = false;
3386     while (!CheckVectorArgs) {
3387       switch (*Str++) {
3388       case '*':
3389         Type = Context.getPointerType(Type);
3390         break;
3391       case 'C':
3392         Type = Type.withConst();
3393         break;
3394       default:
3395         CheckVectorArgs = true;
3396         --Str;
3397         break;
3398       }
3399     }
3400     return Type;
3401   }
3402   default:
3403     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3404   }
3405 }
3406 
3407 static bool isPPC_64Builtin(unsigned BuiltinID) {
3408   // These builtins only work on PPC 64bit targets.
3409   switch (BuiltinID) {
3410   case PPC::BI__builtin_divde:
3411   case PPC::BI__builtin_divdeu:
3412   case PPC::BI__builtin_bpermd:
3413   case PPC::BI__builtin_ppc_ldarx:
3414   case PPC::BI__builtin_ppc_stdcx:
3415   case PPC::BI__builtin_ppc_tdw:
3416   case PPC::BI__builtin_ppc_trapd:
3417   case PPC::BI__builtin_ppc_cmpeqb:
3418   case PPC::BI__builtin_ppc_setb:
3419   case PPC::BI__builtin_ppc_mulhd:
3420   case PPC::BI__builtin_ppc_mulhdu:
3421   case PPC::BI__builtin_ppc_maddhd:
3422   case PPC::BI__builtin_ppc_maddhdu:
3423   case PPC::BI__builtin_ppc_maddld:
3424   case PPC::BI__builtin_ppc_load8r:
3425   case PPC::BI__builtin_ppc_store8r:
3426   case PPC::BI__builtin_ppc_insert_exp:
3427   case PPC::BI__builtin_ppc_extract_sig:
3428   case PPC::BI__builtin_ppc_addex:
3429   case PPC::BI__builtin_darn:
3430   case PPC::BI__builtin_darn_raw:
3431   case PPC::BI__builtin_ppc_compare_and_swaplp:
3432   case PPC::BI__builtin_ppc_fetch_and_addlp:
3433   case PPC::BI__builtin_ppc_fetch_and_andlp:
3434   case PPC::BI__builtin_ppc_fetch_and_orlp:
3435   case PPC::BI__builtin_ppc_fetch_and_swaplp:
3436     return true;
3437   }
3438   return false;
3439 }
3440 
3441 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3442                              StringRef FeatureToCheck, unsigned DiagID,
3443                              StringRef DiagArg = "") {
3444   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3445     return false;
3446 
3447   if (DiagArg.empty())
3448     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3449   else
3450     S.Diag(TheCall->getBeginLoc(), DiagID)
3451         << DiagArg << TheCall->getSourceRange();
3452 
3453   return true;
3454 }
3455 
3456 /// Returns true if the argument consists of one contiguous run of 1s with any
3457 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3458 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3459 /// since all 1s are not contiguous.
3460 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3461   llvm::APSInt Result;
3462   // We can't check the value of a dependent argument.
3463   Expr *Arg = TheCall->getArg(ArgNum);
3464   if (Arg->isTypeDependent() || Arg->isValueDependent())
3465     return false;
3466 
3467   // Check constant-ness first.
3468   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3469     return true;
3470 
3471   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3472   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3473     return false;
3474 
3475   return Diag(TheCall->getBeginLoc(),
3476               diag::err_argument_not_contiguous_bit_field)
3477          << ArgNum << Arg->getSourceRange();
3478 }
3479 
3480 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3481                                        CallExpr *TheCall) {
3482   unsigned i = 0, l = 0, u = 0;
3483   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3484   llvm::APSInt Result;
3485 
3486   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3487     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3488            << TheCall->getSourceRange();
3489 
3490   switch (BuiltinID) {
3491   default: return false;
3492   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3493   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3494     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3495            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3496   case PPC::BI__builtin_altivec_dss:
3497     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3498   case PPC::BI__builtin_tbegin:
3499   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3500   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3501   case PPC::BI__builtin_tabortwc:
3502   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3503   case PPC::BI__builtin_tabortwci:
3504   case PPC::BI__builtin_tabortdci:
3505     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3506            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3507   // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
3508   // __builtin_(un)pack_longdouble are available only if long double uses IBM
3509   // extended double representation.
3510   case PPC::BI__builtin_unpack_longdouble:
3511     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
3512       return true;
3513     LLVM_FALLTHROUGH;
3514   case PPC::BI__builtin_pack_longdouble:
3515     if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
3516       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
3517              << "ibmlongdouble";
3518     return false;
3519   case PPC::BI__builtin_altivec_dst:
3520   case PPC::BI__builtin_altivec_dstt:
3521   case PPC::BI__builtin_altivec_dstst:
3522   case PPC::BI__builtin_altivec_dststt:
3523     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3524   case PPC::BI__builtin_vsx_xxpermdi:
3525   case PPC::BI__builtin_vsx_xxsldwi:
3526     return SemaBuiltinVSX(TheCall);
3527   case PPC::BI__builtin_divwe:
3528   case PPC::BI__builtin_divweu:
3529   case PPC::BI__builtin_divde:
3530   case PPC::BI__builtin_divdeu:
3531     return SemaFeatureCheck(*this, TheCall, "extdiv",
3532                             diag::err_ppc_builtin_only_on_arch, "7");
3533   case PPC::BI__builtin_bpermd:
3534     return SemaFeatureCheck(*this, TheCall, "bpermd",
3535                             diag::err_ppc_builtin_only_on_arch, "7");
3536   case PPC::BI__builtin_unpack_vector_int128:
3537     return SemaFeatureCheck(*this, TheCall, "vsx",
3538                             diag::err_ppc_builtin_only_on_arch, "7") ||
3539            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3540   case PPC::BI__builtin_pack_vector_int128:
3541     return SemaFeatureCheck(*this, TheCall, "vsx",
3542                             diag::err_ppc_builtin_only_on_arch, "7");
3543   case PPC::BI__builtin_altivec_vgnb:
3544      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3545   case PPC::BI__builtin_altivec_vec_replace_elt:
3546   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3547     QualType VecTy = TheCall->getArg(0)->getType();
3548     QualType EltTy = TheCall->getArg(1)->getType();
3549     unsigned Width = Context.getIntWidth(EltTy);
3550     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3551            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3552   }
3553   case PPC::BI__builtin_vsx_xxeval:
3554      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3555   case PPC::BI__builtin_altivec_vsldbi:
3556      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3557   case PPC::BI__builtin_altivec_vsrdbi:
3558      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3559   case PPC::BI__builtin_vsx_xxpermx:
3560      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3561   case PPC::BI__builtin_ppc_tw:
3562   case PPC::BI__builtin_ppc_tdw:
3563     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3564   case PPC::BI__builtin_ppc_cmpeqb:
3565   case PPC::BI__builtin_ppc_setb:
3566   case PPC::BI__builtin_ppc_maddhd:
3567   case PPC::BI__builtin_ppc_maddhdu:
3568   case PPC::BI__builtin_ppc_maddld:
3569     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3570                             diag::err_ppc_builtin_only_on_arch, "9");
3571   case PPC::BI__builtin_ppc_cmprb:
3572     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3573                             diag::err_ppc_builtin_only_on_arch, "9") ||
3574            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3575   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3576   // be a constant that represents a contiguous bit field.
3577   case PPC::BI__builtin_ppc_rlwnm:
3578     return SemaValueIsRunOfOnes(TheCall, 2);
3579   case PPC::BI__builtin_ppc_rlwimi:
3580   case PPC::BI__builtin_ppc_rldimi:
3581     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3582            SemaValueIsRunOfOnes(TheCall, 3);
3583   case PPC::BI__builtin_ppc_extract_exp:
3584   case PPC::BI__builtin_ppc_extract_sig:
3585   case PPC::BI__builtin_ppc_insert_exp:
3586     return SemaFeatureCheck(*this, TheCall, "power9-vector",
3587                             diag::err_ppc_builtin_only_on_arch, "9");
3588   case PPC::BI__builtin_ppc_addex: {
3589     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3590                          diag::err_ppc_builtin_only_on_arch, "9") ||
3591         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3592       return true;
3593     // Output warning for reserved values 1 to 3.
3594     int ArgValue =
3595         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3596     if (ArgValue != 0)
3597       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3598           << ArgValue;
3599     return false;
3600   }
3601   case PPC::BI__builtin_ppc_mtfsb0:
3602   case PPC::BI__builtin_ppc_mtfsb1:
3603     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3604   case PPC::BI__builtin_ppc_mtfsf:
3605     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3606   case PPC::BI__builtin_ppc_mtfsfi:
3607     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3608            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3609   case PPC::BI__builtin_ppc_alignx:
3610     return SemaBuiltinConstantArgPower2(TheCall, 0);
3611   case PPC::BI__builtin_ppc_rdlam:
3612     return SemaValueIsRunOfOnes(TheCall, 2);
3613   case PPC::BI__builtin_ppc_icbt:
3614   case PPC::BI__builtin_ppc_sthcx:
3615   case PPC::BI__builtin_ppc_stbcx:
3616   case PPC::BI__builtin_ppc_lharx:
3617   case PPC::BI__builtin_ppc_lbarx:
3618     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3619                             diag::err_ppc_builtin_only_on_arch, "8");
3620   case PPC::BI__builtin_vsx_ldrmb:
3621   case PPC::BI__builtin_vsx_strmb:
3622     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3623                             diag::err_ppc_builtin_only_on_arch, "8") ||
3624            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3625   case PPC::BI__builtin_altivec_vcntmbb:
3626   case PPC::BI__builtin_altivec_vcntmbh:
3627   case PPC::BI__builtin_altivec_vcntmbw:
3628   case PPC::BI__builtin_altivec_vcntmbd:
3629     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3630   case PPC::BI__builtin_darn:
3631   case PPC::BI__builtin_darn_raw:
3632   case PPC::BI__builtin_darn_32:
3633     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3634                             diag::err_ppc_builtin_only_on_arch, "9");
3635   case PPC::BI__builtin_vsx_xxgenpcvbm:
3636   case PPC::BI__builtin_vsx_xxgenpcvhm:
3637   case PPC::BI__builtin_vsx_xxgenpcvwm:
3638   case PPC::BI__builtin_vsx_xxgenpcvdm:
3639     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3640   case PPC::BI__builtin_ppc_compare_exp_uo:
3641   case PPC::BI__builtin_ppc_compare_exp_lt:
3642   case PPC::BI__builtin_ppc_compare_exp_gt:
3643   case PPC::BI__builtin_ppc_compare_exp_eq:
3644     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3645                             diag::err_ppc_builtin_only_on_arch, "9") ||
3646            SemaFeatureCheck(*this, TheCall, "vsx",
3647                             diag::err_ppc_builtin_requires_vsx);
3648   case PPC::BI__builtin_ppc_test_data_class: {
3649     // Check if the first argument of the __builtin_ppc_test_data_class call is
3650     // valid. The argument must be either a 'float' or a 'double'.
3651     QualType ArgType = TheCall->getArg(0)->getType();
3652     if (ArgType != QualType(Context.FloatTy) &&
3653         ArgType != QualType(Context.DoubleTy))
3654       return Diag(TheCall->getBeginLoc(),
3655                   diag::err_ppc_invalid_test_data_class_type);
3656     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3657                             diag::err_ppc_builtin_only_on_arch, "9") ||
3658            SemaFeatureCheck(*this, TheCall, "vsx",
3659                             diag::err_ppc_builtin_requires_vsx) ||
3660            SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
3661   }
3662   case PPC::BI__builtin_ppc_load8r:
3663   case PPC::BI__builtin_ppc_store8r:
3664     return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
3665                             diag::err_ppc_builtin_only_on_arch, "7");
3666 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc)                                 \
3667   case PPC::BI__builtin_##Name:                                                \
3668     return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
3669 #include "clang/Basic/BuiltinsPPC.def"
3670   }
3671   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3672 }
3673 
3674 // Check if the given type is a non-pointer PPC MMA type. This function is used
3675 // in Sema to prevent invalid uses of restricted PPC MMA types.
3676 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3677   if (Type->isPointerType() || Type->isArrayType())
3678     return false;
3679 
3680   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3681 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3682   if (false
3683 #include "clang/Basic/PPCTypes.def"
3684      ) {
3685     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3686     return true;
3687   }
3688   return false;
3689 }
3690 
3691 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3692                                           CallExpr *TheCall) {
3693   // position of memory order and scope arguments in the builtin
3694   unsigned OrderIndex, ScopeIndex;
3695   switch (BuiltinID) {
3696   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3697   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3698   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3699   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3700     OrderIndex = 2;
3701     ScopeIndex = 3;
3702     break;
3703   case AMDGPU::BI__builtin_amdgcn_fence:
3704     OrderIndex = 0;
3705     ScopeIndex = 1;
3706     break;
3707   default:
3708     return false;
3709   }
3710 
3711   ExprResult Arg = TheCall->getArg(OrderIndex);
3712   auto ArgExpr = Arg.get();
3713   Expr::EvalResult ArgResult;
3714 
3715   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3716     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3717            << ArgExpr->getType();
3718   auto Ord = ArgResult.Val.getInt().getZExtValue();
3719 
3720   // Check validity of memory ordering as per C11 / C++11's memody model.
3721   // Only fence needs check. Atomic dec/inc allow all memory orders.
3722   if (!llvm::isValidAtomicOrderingCABI(Ord))
3723     return Diag(ArgExpr->getBeginLoc(),
3724                 diag::warn_atomic_op_has_invalid_memory_order)
3725            << ArgExpr->getSourceRange();
3726   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3727   case llvm::AtomicOrderingCABI::relaxed:
3728   case llvm::AtomicOrderingCABI::consume:
3729     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3730       return Diag(ArgExpr->getBeginLoc(),
3731                   diag::warn_atomic_op_has_invalid_memory_order)
3732              << ArgExpr->getSourceRange();
3733     break;
3734   case llvm::AtomicOrderingCABI::acquire:
3735   case llvm::AtomicOrderingCABI::release:
3736   case llvm::AtomicOrderingCABI::acq_rel:
3737   case llvm::AtomicOrderingCABI::seq_cst:
3738     break;
3739   }
3740 
3741   Arg = TheCall->getArg(ScopeIndex);
3742   ArgExpr = Arg.get();
3743   Expr::EvalResult ArgResult1;
3744   // Check that sync scope is a constant literal
3745   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3746     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3747            << ArgExpr->getType();
3748 
3749   return false;
3750 }
3751 
3752 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3753   llvm::APSInt Result;
3754 
3755   // We can't check the value of a dependent argument.
3756   Expr *Arg = TheCall->getArg(ArgNum);
3757   if (Arg->isTypeDependent() || Arg->isValueDependent())
3758     return false;
3759 
3760   // Check constant-ness first.
3761   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3762     return true;
3763 
3764   int64_t Val = Result.getSExtValue();
3765   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3766     return false;
3767 
3768   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3769          << Arg->getSourceRange();
3770 }
3771 
3772 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3773                                          unsigned BuiltinID,
3774                                          CallExpr *TheCall) {
3775   // CodeGenFunction can also detect this, but this gives a better error
3776   // message.
3777   bool FeatureMissing = false;
3778   SmallVector<StringRef> ReqFeatures;
3779   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3780   Features.split(ReqFeatures, ',');
3781 
3782   // Check if each required feature is included
3783   for (StringRef F : ReqFeatures) {
3784     if (TI.hasFeature(F))
3785       continue;
3786 
3787     // If the feature is 64bit, alter the string so it will print better in
3788     // the diagnostic.
3789     if (F == "64bit")
3790       F = "RV64";
3791 
3792     // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3793     F.consume_front("experimental-");
3794     std::string FeatureStr = F.str();
3795     FeatureStr[0] = std::toupper(FeatureStr[0]);
3796 
3797     // Error message
3798     FeatureMissing = true;
3799     Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
3800         << TheCall->getSourceRange() << StringRef(FeatureStr);
3801   }
3802 
3803   if (FeatureMissing)
3804     return true;
3805 
3806   switch (BuiltinID) {
3807   case RISCVVector::BI__builtin_rvv_vsetvli:
3808     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
3809            CheckRISCVLMUL(TheCall, 2);
3810   case RISCVVector::BI__builtin_rvv_vsetvlimax:
3811     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
3812            CheckRISCVLMUL(TheCall, 1);
3813   }
3814 
3815   return false;
3816 }
3817 
3818 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3819                                            CallExpr *TheCall) {
3820   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3821     Expr *Arg = TheCall->getArg(0);
3822     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3823       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3824         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3825                << Arg->getSourceRange();
3826   }
3827 
3828   // For intrinsics which take an immediate value as part of the instruction,
3829   // range check them here.
3830   unsigned i = 0, l = 0, u = 0;
3831   switch (BuiltinID) {
3832   default: return false;
3833   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3834   case SystemZ::BI__builtin_s390_verimb:
3835   case SystemZ::BI__builtin_s390_verimh:
3836   case SystemZ::BI__builtin_s390_verimf:
3837   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3838   case SystemZ::BI__builtin_s390_vfaeb:
3839   case SystemZ::BI__builtin_s390_vfaeh:
3840   case SystemZ::BI__builtin_s390_vfaef:
3841   case SystemZ::BI__builtin_s390_vfaebs:
3842   case SystemZ::BI__builtin_s390_vfaehs:
3843   case SystemZ::BI__builtin_s390_vfaefs:
3844   case SystemZ::BI__builtin_s390_vfaezb:
3845   case SystemZ::BI__builtin_s390_vfaezh:
3846   case SystemZ::BI__builtin_s390_vfaezf:
3847   case SystemZ::BI__builtin_s390_vfaezbs:
3848   case SystemZ::BI__builtin_s390_vfaezhs:
3849   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3850   case SystemZ::BI__builtin_s390_vfisb:
3851   case SystemZ::BI__builtin_s390_vfidb:
3852     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3853            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3854   case SystemZ::BI__builtin_s390_vftcisb:
3855   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3856   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3857   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3858   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3859   case SystemZ::BI__builtin_s390_vstrcb:
3860   case SystemZ::BI__builtin_s390_vstrch:
3861   case SystemZ::BI__builtin_s390_vstrcf:
3862   case SystemZ::BI__builtin_s390_vstrczb:
3863   case SystemZ::BI__builtin_s390_vstrczh:
3864   case SystemZ::BI__builtin_s390_vstrczf:
3865   case SystemZ::BI__builtin_s390_vstrcbs:
3866   case SystemZ::BI__builtin_s390_vstrchs:
3867   case SystemZ::BI__builtin_s390_vstrcfs:
3868   case SystemZ::BI__builtin_s390_vstrczbs:
3869   case SystemZ::BI__builtin_s390_vstrczhs:
3870   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3871   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3872   case SystemZ::BI__builtin_s390_vfminsb:
3873   case SystemZ::BI__builtin_s390_vfmaxsb:
3874   case SystemZ::BI__builtin_s390_vfmindb:
3875   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3876   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3877   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3878   case SystemZ::BI__builtin_s390_vclfnhs:
3879   case SystemZ::BI__builtin_s390_vclfnls:
3880   case SystemZ::BI__builtin_s390_vcfn:
3881   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
3882   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
3883   }
3884   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3885 }
3886 
3887 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3888 /// This checks that the target supports __builtin_cpu_supports and
3889 /// that the string argument is constant and valid.
3890 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3891                                    CallExpr *TheCall) {
3892   Expr *Arg = TheCall->getArg(0);
3893 
3894   // Check if the argument is a string literal.
3895   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3896     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3897            << Arg->getSourceRange();
3898 
3899   // Check the contents of the string.
3900   StringRef Feature =
3901       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3902   if (!TI.validateCpuSupports(Feature))
3903     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3904            << Arg->getSourceRange();
3905   return false;
3906 }
3907 
3908 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3909 /// This checks that the target supports __builtin_cpu_is and
3910 /// that the string argument is constant and valid.
3911 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3912   Expr *Arg = TheCall->getArg(0);
3913 
3914   // Check if the argument is a string literal.
3915   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3916     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3917            << Arg->getSourceRange();
3918 
3919   // Check the contents of the string.
3920   StringRef Feature =
3921       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3922   if (!TI.validateCpuIs(Feature))
3923     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3924            << Arg->getSourceRange();
3925   return false;
3926 }
3927 
3928 // Check if the rounding mode is legal.
3929 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3930   // Indicates if this instruction has rounding control or just SAE.
3931   bool HasRC = false;
3932 
3933   unsigned ArgNum = 0;
3934   switch (BuiltinID) {
3935   default:
3936     return false;
3937   case X86::BI__builtin_ia32_vcvttsd2si32:
3938   case X86::BI__builtin_ia32_vcvttsd2si64:
3939   case X86::BI__builtin_ia32_vcvttsd2usi32:
3940   case X86::BI__builtin_ia32_vcvttsd2usi64:
3941   case X86::BI__builtin_ia32_vcvttss2si32:
3942   case X86::BI__builtin_ia32_vcvttss2si64:
3943   case X86::BI__builtin_ia32_vcvttss2usi32:
3944   case X86::BI__builtin_ia32_vcvttss2usi64:
3945   case X86::BI__builtin_ia32_vcvttsh2si32:
3946   case X86::BI__builtin_ia32_vcvttsh2si64:
3947   case X86::BI__builtin_ia32_vcvttsh2usi32:
3948   case X86::BI__builtin_ia32_vcvttsh2usi64:
3949     ArgNum = 1;
3950     break;
3951   case X86::BI__builtin_ia32_maxpd512:
3952   case X86::BI__builtin_ia32_maxps512:
3953   case X86::BI__builtin_ia32_minpd512:
3954   case X86::BI__builtin_ia32_minps512:
3955   case X86::BI__builtin_ia32_maxph512:
3956   case X86::BI__builtin_ia32_minph512:
3957     ArgNum = 2;
3958     break;
3959   case X86::BI__builtin_ia32_vcvtph2pd512_mask:
3960   case X86::BI__builtin_ia32_vcvtph2psx512_mask:
3961   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3962   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3963   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3964   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3965   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3966   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3967   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3968   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3969   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3970   case X86::BI__builtin_ia32_vcvttph2w512_mask:
3971   case X86::BI__builtin_ia32_vcvttph2uw512_mask:
3972   case X86::BI__builtin_ia32_vcvttph2dq512_mask:
3973   case X86::BI__builtin_ia32_vcvttph2udq512_mask:
3974   case X86::BI__builtin_ia32_vcvttph2qq512_mask:
3975   case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
3976   case X86::BI__builtin_ia32_exp2pd_mask:
3977   case X86::BI__builtin_ia32_exp2ps_mask:
3978   case X86::BI__builtin_ia32_getexppd512_mask:
3979   case X86::BI__builtin_ia32_getexpps512_mask:
3980   case X86::BI__builtin_ia32_getexpph512_mask:
3981   case X86::BI__builtin_ia32_rcp28pd_mask:
3982   case X86::BI__builtin_ia32_rcp28ps_mask:
3983   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3984   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3985   case X86::BI__builtin_ia32_vcomisd:
3986   case X86::BI__builtin_ia32_vcomiss:
3987   case X86::BI__builtin_ia32_vcomish:
3988   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3989     ArgNum = 3;
3990     break;
3991   case X86::BI__builtin_ia32_cmppd512_mask:
3992   case X86::BI__builtin_ia32_cmpps512_mask:
3993   case X86::BI__builtin_ia32_cmpsd_mask:
3994   case X86::BI__builtin_ia32_cmpss_mask:
3995   case X86::BI__builtin_ia32_cmpsh_mask:
3996   case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
3997   case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
3998   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3999   case X86::BI__builtin_ia32_getexpsd128_round_mask:
4000   case X86::BI__builtin_ia32_getexpss128_round_mask:
4001   case X86::BI__builtin_ia32_getexpsh128_round_mask:
4002   case X86::BI__builtin_ia32_getmantpd512_mask:
4003   case X86::BI__builtin_ia32_getmantps512_mask:
4004   case X86::BI__builtin_ia32_getmantph512_mask:
4005   case X86::BI__builtin_ia32_maxsd_round_mask:
4006   case X86::BI__builtin_ia32_maxss_round_mask:
4007   case X86::BI__builtin_ia32_maxsh_round_mask:
4008   case X86::BI__builtin_ia32_minsd_round_mask:
4009   case X86::BI__builtin_ia32_minss_round_mask:
4010   case X86::BI__builtin_ia32_minsh_round_mask:
4011   case X86::BI__builtin_ia32_rcp28sd_round_mask:
4012   case X86::BI__builtin_ia32_rcp28ss_round_mask:
4013   case X86::BI__builtin_ia32_reducepd512_mask:
4014   case X86::BI__builtin_ia32_reduceps512_mask:
4015   case X86::BI__builtin_ia32_reduceph512_mask:
4016   case X86::BI__builtin_ia32_rndscalepd_mask:
4017   case X86::BI__builtin_ia32_rndscaleps_mask:
4018   case X86::BI__builtin_ia32_rndscaleph_mask:
4019   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4020   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4021     ArgNum = 4;
4022     break;
4023   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4024   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4025   case X86::BI__builtin_ia32_fixupimmps512_mask:
4026   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4027   case X86::BI__builtin_ia32_fixupimmsd_mask:
4028   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4029   case X86::BI__builtin_ia32_fixupimmss_mask:
4030   case X86::BI__builtin_ia32_fixupimmss_maskz:
4031   case X86::BI__builtin_ia32_getmantsd_round_mask:
4032   case X86::BI__builtin_ia32_getmantss_round_mask:
4033   case X86::BI__builtin_ia32_getmantsh_round_mask:
4034   case X86::BI__builtin_ia32_rangepd512_mask:
4035   case X86::BI__builtin_ia32_rangeps512_mask:
4036   case X86::BI__builtin_ia32_rangesd128_round_mask:
4037   case X86::BI__builtin_ia32_rangess128_round_mask:
4038   case X86::BI__builtin_ia32_reducesd_mask:
4039   case X86::BI__builtin_ia32_reducess_mask:
4040   case X86::BI__builtin_ia32_reducesh_mask:
4041   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4042   case X86::BI__builtin_ia32_rndscaless_round_mask:
4043   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4044     ArgNum = 5;
4045     break;
4046   case X86::BI__builtin_ia32_vcvtsd2si64:
4047   case X86::BI__builtin_ia32_vcvtsd2si32:
4048   case X86::BI__builtin_ia32_vcvtsd2usi32:
4049   case X86::BI__builtin_ia32_vcvtsd2usi64:
4050   case X86::BI__builtin_ia32_vcvtss2si32:
4051   case X86::BI__builtin_ia32_vcvtss2si64:
4052   case X86::BI__builtin_ia32_vcvtss2usi32:
4053   case X86::BI__builtin_ia32_vcvtss2usi64:
4054   case X86::BI__builtin_ia32_vcvtsh2si32:
4055   case X86::BI__builtin_ia32_vcvtsh2si64:
4056   case X86::BI__builtin_ia32_vcvtsh2usi32:
4057   case X86::BI__builtin_ia32_vcvtsh2usi64:
4058   case X86::BI__builtin_ia32_sqrtpd512:
4059   case X86::BI__builtin_ia32_sqrtps512:
4060   case X86::BI__builtin_ia32_sqrtph512:
4061     ArgNum = 1;
4062     HasRC = true;
4063     break;
4064   case X86::BI__builtin_ia32_addph512:
4065   case X86::BI__builtin_ia32_divph512:
4066   case X86::BI__builtin_ia32_mulph512:
4067   case X86::BI__builtin_ia32_subph512:
4068   case X86::BI__builtin_ia32_addpd512:
4069   case X86::BI__builtin_ia32_addps512:
4070   case X86::BI__builtin_ia32_divpd512:
4071   case X86::BI__builtin_ia32_divps512:
4072   case X86::BI__builtin_ia32_mulpd512:
4073   case X86::BI__builtin_ia32_mulps512:
4074   case X86::BI__builtin_ia32_subpd512:
4075   case X86::BI__builtin_ia32_subps512:
4076   case X86::BI__builtin_ia32_cvtsi2sd64:
4077   case X86::BI__builtin_ia32_cvtsi2ss32:
4078   case X86::BI__builtin_ia32_cvtsi2ss64:
4079   case X86::BI__builtin_ia32_cvtusi2sd64:
4080   case X86::BI__builtin_ia32_cvtusi2ss32:
4081   case X86::BI__builtin_ia32_cvtusi2ss64:
4082   case X86::BI__builtin_ia32_vcvtusi2sh:
4083   case X86::BI__builtin_ia32_vcvtusi642sh:
4084   case X86::BI__builtin_ia32_vcvtsi2sh:
4085   case X86::BI__builtin_ia32_vcvtsi642sh:
4086     ArgNum = 2;
4087     HasRC = true;
4088     break;
4089   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4090   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4091   case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4092   case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4093   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4094   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4095   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4096   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4097   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4098   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4099   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4100   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4101   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4102   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4103   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4104   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4105   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4106   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4107   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4108   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4109   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4110   case X86::BI__builtin_ia32_vcvtph2w512_mask:
4111   case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4112   case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4113   case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4114   case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4115   case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4116   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4117   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4118     ArgNum = 3;
4119     HasRC = true;
4120     break;
4121   case X86::BI__builtin_ia32_addsh_round_mask:
4122   case X86::BI__builtin_ia32_addss_round_mask:
4123   case X86::BI__builtin_ia32_addsd_round_mask:
4124   case X86::BI__builtin_ia32_divsh_round_mask:
4125   case X86::BI__builtin_ia32_divss_round_mask:
4126   case X86::BI__builtin_ia32_divsd_round_mask:
4127   case X86::BI__builtin_ia32_mulsh_round_mask:
4128   case X86::BI__builtin_ia32_mulss_round_mask:
4129   case X86::BI__builtin_ia32_mulsd_round_mask:
4130   case X86::BI__builtin_ia32_subsh_round_mask:
4131   case X86::BI__builtin_ia32_subss_round_mask:
4132   case X86::BI__builtin_ia32_subsd_round_mask:
4133   case X86::BI__builtin_ia32_scalefph512_mask:
4134   case X86::BI__builtin_ia32_scalefpd512_mask:
4135   case X86::BI__builtin_ia32_scalefps512_mask:
4136   case X86::BI__builtin_ia32_scalefsd_round_mask:
4137   case X86::BI__builtin_ia32_scalefss_round_mask:
4138   case X86::BI__builtin_ia32_scalefsh_round_mask:
4139   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4140   case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4141   case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4142   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4143   case X86::BI__builtin_ia32_sqrtss_round_mask:
4144   case X86::BI__builtin_ia32_sqrtsh_round_mask:
4145   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4146   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4147   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4148   case X86::BI__builtin_ia32_vfmaddss3_mask:
4149   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4150   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4151   case X86::BI__builtin_ia32_vfmaddsh3_mask:
4152   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4153   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4154   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4155   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4156   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4157   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4158   case X86::BI__builtin_ia32_vfmaddps512_mask:
4159   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4160   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4161   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4162   case X86::BI__builtin_ia32_vfmaddph512_mask:
4163   case X86::BI__builtin_ia32_vfmaddph512_maskz:
4164   case X86::BI__builtin_ia32_vfmaddph512_mask3:
4165   case X86::BI__builtin_ia32_vfmsubph512_mask3:
4166   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4167   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4168   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4169   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4170   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4171   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4172   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4173   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4174   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4175   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4176   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4177   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4178   case X86::BI__builtin_ia32_vfmaddcsh_mask:
4179   case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4180   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4181   case X86::BI__builtin_ia32_vfmaddcph512_mask:
4182   case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4183   case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4184   case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4185   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4186   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4187   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4188   case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4189   case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4190   case X86::BI__builtin_ia32_vfmulcsh_mask:
4191   case X86::BI__builtin_ia32_vfmulcph512_mask:
4192   case X86::BI__builtin_ia32_vfcmulcsh_mask:
4193   case X86::BI__builtin_ia32_vfcmulcph512_mask:
4194     ArgNum = 4;
4195     HasRC = true;
4196     break;
4197   }
4198 
4199   llvm::APSInt Result;
4200 
4201   // We can't check the value of a dependent argument.
4202   Expr *Arg = TheCall->getArg(ArgNum);
4203   if (Arg->isTypeDependent() || Arg->isValueDependent())
4204     return false;
4205 
4206   // Check constant-ness first.
4207   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4208     return true;
4209 
4210   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4211   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4212   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4213   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4214   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4215       Result == 8/*ROUND_NO_EXC*/ ||
4216       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4217       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4218     return false;
4219 
4220   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4221          << Arg->getSourceRange();
4222 }
4223 
4224 // Check if the gather/scatter scale is legal.
4225 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4226                                              CallExpr *TheCall) {
4227   unsigned ArgNum = 0;
4228   switch (BuiltinID) {
4229   default:
4230     return false;
4231   case X86::BI__builtin_ia32_gatherpfdpd:
4232   case X86::BI__builtin_ia32_gatherpfdps:
4233   case X86::BI__builtin_ia32_gatherpfqpd:
4234   case X86::BI__builtin_ia32_gatherpfqps:
4235   case X86::BI__builtin_ia32_scatterpfdpd:
4236   case X86::BI__builtin_ia32_scatterpfdps:
4237   case X86::BI__builtin_ia32_scatterpfqpd:
4238   case X86::BI__builtin_ia32_scatterpfqps:
4239     ArgNum = 3;
4240     break;
4241   case X86::BI__builtin_ia32_gatherd_pd:
4242   case X86::BI__builtin_ia32_gatherd_pd256:
4243   case X86::BI__builtin_ia32_gatherq_pd:
4244   case X86::BI__builtin_ia32_gatherq_pd256:
4245   case X86::BI__builtin_ia32_gatherd_ps:
4246   case X86::BI__builtin_ia32_gatherd_ps256:
4247   case X86::BI__builtin_ia32_gatherq_ps:
4248   case X86::BI__builtin_ia32_gatherq_ps256:
4249   case X86::BI__builtin_ia32_gatherd_q:
4250   case X86::BI__builtin_ia32_gatherd_q256:
4251   case X86::BI__builtin_ia32_gatherq_q:
4252   case X86::BI__builtin_ia32_gatherq_q256:
4253   case X86::BI__builtin_ia32_gatherd_d:
4254   case X86::BI__builtin_ia32_gatherd_d256:
4255   case X86::BI__builtin_ia32_gatherq_d:
4256   case X86::BI__builtin_ia32_gatherq_d256:
4257   case X86::BI__builtin_ia32_gather3div2df:
4258   case X86::BI__builtin_ia32_gather3div2di:
4259   case X86::BI__builtin_ia32_gather3div4df:
4260   case X86::BI__builtin_ia32_gather3div4di:
4261   case X86::BI__builtin_ia32_gather3div4sf:
4262   case X86::BI__builtin_ia32_gather3div4si:
4263   case X86::BI__builtin_ia32_gather3div8sf:
4264   case X86::BI__builtin_ia32_gather3div8si:
4265   case X86::BI__builtin_ia32_gather3siv2df:
4266   case X86::BI__builtin_ia32_gather3siv2di:
4267   case X86::BI__builtin_ia32_gather3siv4df:
4268   case X86::BI__builtin_ia32_gather3siv4di:
4269   case X86::BI__builtin_ia32_gather3siv4sf:
4270   case X86::BI__builtin_ia32_gather3siv4si:
4271   case X86::BI__builtin_ia32_gather3siv8sf:
4272   case X86::BI__builtin_ia32_gather3siv8si:
4273   case X86::BI__builtin_ia32_gathersiv8df:
4274   case X86::BI__builtin_ia32_gathersiv16sf:
4275   case X86::BI__builtin_ia32_gatherdiv8df:
4276   case X86::BI__builtin_ia32_gatherdiv16sf:
4277   case X86::BI__builtin_ia32_gathersiv8di:
4278   case X86::BI__builtin_ia32_gathersiv16si:
4279   case X86::BI__builtin_ia32_gatherdiv8di:
4280   case X86::BI__builtin_ia32_gatherdiv16si:
4281   case X86::BI__builtin_ia32_scatterdiv2df:
4282   case X86::BI__builtin_ia32_scatterdiv2di:
4283   case X86::BI__builtin_ia32_scatterdiv4df:
4284   case X86::BI__builtin_ia32_scatterdiv4di:
4285   case X86::BI__builtin_ia32_scatterdiv4sf:
4286   case X86::BI__builtin_ia32_scatterdiv4si:
4287   case X86::BI__builtin_ia32_scatterdiv8sf:
4288   case X86::BI__builtin_ia32_scatterdiv8si:
4289   case X86::BI__builtin_ia32_scattersiv2df:
4290   case X86::BI__builtin_ia32_scattersiv2di:
4291   case X86::BI__builtin_ia32_scattersiv4df:
4292   case X86::BI__builtin_ia32_scattersiv4di:
4293   case X86::BI__builtin_ia32_scattersiv4sf:
4294   case X86::BI__builtin_ia32_scattersiv4si:
4295   case X86::BI__builtin_ia32_scattersiv8sf:
4296   case X86::BI__builtin_ia32_scattersiv8si:
4297   case X86::BI__builtin_ia32_scattersiv8df:
4298   case X86::BI__builtin_ia32_scattersiv16sf:
4299   case X86::BI__builtin_ia32_scatterdiv8df:
4300   case X86::BI__builtin_ia32_scatterdiv16sf:
4301   case X86::BI__builtin_ia32_scattersiv8di:
4302   case X86::BI__builtin_ia32_scattersiv16si:
4303   case X86::BI__builtin_ia32_scatterdiv8di:
4304   case X86::BI__builtin_ia32_scatterdiv16si:
4305     ArgNum = 4;
4306     break;
4307   }
4308 
4309   llvm::APSInt Result;
4310 
4311   // We can't check the value of a dependent argument.
4312   Expr *Arg = TheCall->getArg(ArgNum);
4313   if (Arg->isTypeDependent() || Arg->isValueDependent())
4314     return false;
4315 
4316   // Check constant-ness first.
4317   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4318     return true;
4319 
4320   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4321     return false;
4322 
4323   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4324          << Arg->getSourceRange();
4325 }
4326 
4327 enum { TileRegLow = 0, TileRegHigh = 7 };
4328 
4329 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4330                                              ArrayRef<int> ArgNums) {
4331   for (int ArgNum : ArgNums) {
4332     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4333       return true;
4334   }
4335   return false;
4336 }
4337 
4338 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4339                                         ArrayRef<int> ArgNums) {
4340   // Because the max number of tile register is TileRegHigh + 1, so here we use
4341   // each bit to represent the usage of them in bitset.
4342   std::bitset<TileRegHigh + 1> ArgValues;
4343   for (int ArgNum : ArgNums) {
4344     Expr *Arg = TheCall->getArg(ArgNum);
4345     if (Arg->isTypeDependent() || Arg->isValueDependent())
4346       continue;
4347 
4348     llvm::APSInt Result;
4349     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4350       return true;
4351     int ArgExtValue = Result.getExtValue();
4352     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4353            "Incorrect tile register num.");
4354     if (ArgValues.test(ArgExtValue))
4355       return Diag(TheCall->getBeginLoc(),
4356                   diag::err_x86_builtin_tile_arg_duplicate)
4357              << TheCall->getArg(ArgNum)->getSourceRange();
4358     ArgValues.set(ArgExtValue);
4359   }
4360   return false;
4361 }
4362 
4363 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4364                                                 ArrayRef<int> ArgNums) {
4365   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4366          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4367 }
4368 
4369 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4370   switch (BuiltinID) {
4371   default:
4372     return false;
4373   case X86::BI__builtin_ia32_tileloadd64:
4374   case X86::BI__builtin_ia32_tileloaddt164:
4375   case X86::BI__builtin_ia32_tilestored64:
4376   case X86::BI__builtin_ia32_tilezero:
4377     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4378   case X86::BI__builtin_ia32_tdpbssd:
4379   case X86::BI__builtin_ia32_tdpbsud:
4380   case X86::BI__builtin_ia32_tdpbusd:
4381   case X86::BI__builtin_ia32_tdpbuud:
4382   case X86::BI__builtin_ia32_tdpbf16ps:
4383     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4384   }
4385 }
4386 static bool isX86_32Builtin(unsigned BuiltinID) {
4387   // These builtins only work on x86-32 targets.
4388   switch (BuiltinID) {
4389   case X86::BI__builtin_ia32_readeflags_u32:
4390   case X86::BI__builtin_ia32_writeeflags_u32:
4391     return true;
4392   }
4393 
4394   return false;
4395 }
4396 
4397 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4398                                        CallExpr *TheCall) {
4399   if (BuiltinID == X86::BI__builtin_cpu_supports)
4400     return SemaBuiltinCpuSupports(*this, TI, TheCall);
4401 
4402   if (BuiltinID == X86::BI__builtin_cpu_is)
4403     return SemaBuiltinCpuIs(*this, TI, TheCall);
4404 
4405   // Check for 32-bit only builtins on a 64-bit target.
4406   const llvm::Triple &TT = TI.getTriple();
4407   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4408     return Diag(TheCall->getCallee()->getBeginLoc(),
4409                 diag::err_32_bit_builtin_64_bit_tgt);
4410 
4411   // If the intrinsic has rounding or SAE make sure its valid.
4412   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4413     return true;
4414 
4415   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4416   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4417     return true;
4418 
4419   // If the intrinsic has a tile arguments, make sure they are valid.
4420   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4421     return true;
4422 
4423   // For intrinsics which take an immediate value as part of the instruction,
4424   // range check them here.
4425   int i = 0, l = 0, u = 0;
4426   switch (BuiltinID) {
4427   default:
4428     return false;
4429   case X86::BI__builtin_ia32_vec_ext_v2si:
4430   case X86::BI__builtin_ia32_vec_ext_v2di:
4431   case X86::BI__builtin_ia32_vextractf128_pd256:
4432   case X86::BI__builtin_ia32_vextractf128_ps256:
4433   case X86::BI__builtin_ia32_vextractf128_si256:
4434   case X86::BI__builtin_ia32_extract128i256:
4435   case X86::BI__builtin_ia32_extractf64x4_mask:
4436   case X86::BI__builtin_ia32_extracti64x4_mask:
4437   case X86::BI__builtin_ia32_extractf32x8_mask:
4438   case X86::BI__builtin_ia32_extracti32x8_mask:
4439   case X86::BI__builtin_ia32_extractf64x2_256_mask:
4440   case X86::BI__builtin_ia32_extracti64x2_256_mask:
4441   case X86::BI__builtin_ia32_extractf32x4_256_mask:
4442   case X86::BI__builtin_ia32_extracti32x4_256_mask:
4443     i = 1; l = 0; u = 1;
4444     break;
4445   case X86::BI__builtin_ia32_vec_set_v2di:
4446   case X86::BI__builtin_ia32_vinsertf128_pd256:
4447   case X86::BI__builtin_ia32_vinsertf128_ps256:
4448   case X86::BI__builtin_ia32_vinsertf128_si256:
4449   case X86::BI__builtin_ia32_insert128i256:
4450   case X86::BI__builtin_ia32_insertf32x8:
4451   case X86::BI__builtin_ia32_inserti32x8:
4452   case X86::BI__builtin_ia32_insertf64x4:
4453   case X86::BI__builtin_ia32_inserti64x4:
4454   case X86::BI__builtin_ia32_insertf64x2_256:
4455   case X86::BI__builtin_ia32_inserti64x2_256:
4456   case X86::BI__builtin_ia32_insertf32x4_256:
4457   case X86::BI__builtin_ia32_inserti32x4_256:
4458     i = 2; l = 0; u = 1;
4459     break;
4460   case X86::BI__builtin_ia32_vpermilpd:
4461   case X86::BI__builtin_ia32_vec_ext_v4hi:
4462   case X86::BI__builtin_ia32_vec_ext_v4si:
4463   case X86::BI__builtin_ia32_vec_ext_v4sf:
4464   case X86::BI__builtin_ia32_vec_ext_v4di:
4465   case X86::BI__builtin_ia32_extractf32x4_mask:
4466   case X86::BI__builtin_ia32_extracti32x4_mask:
4467   case X86::BI__builtin_ia32_extractf64x2_512_mask:
4468   case X86::BI__builtin_ia32_extracti64x2_512_mask:
4469     i = 1; l = 0; u = 3;
4470     break;
4471   case X86::BI_mm_prefetch:
4472   case X86::BI__builtin_ia32_vec_ext_v8hi:
4473   case X86::BI__builtin_ia32_vec_ext_v8si:
4474     i = 1; l = 0; u = 7;
4475     break;
4476   case X86::BI__builtin_ia32_sha1rnds4:
4477   case X86::BI__builtin_ia32_blendpd:
4478   case X86::BI__builtin_ia32_shufpd:
4479   case X86::BI__builtin_ia32_vec_set_v4hi:
4480   case X86::BI__builtin_ia32_vec_set_v4si:
4481   case X86::BI__builtin_ia32_vec_set_v4di:
4482   case X86::BI__builtin_ia32_shuf_f32x4_256:
4483   case X86::BI__builtin_ia32_shuf_f64x2_256:
4484   case X86::BI__builtin_ia32_shuf_i32x4_256:
4485   case X86::BI__builtin_ia32_shuf_i64x2_256:
4486   case X86::BI__builtin_ia32_insertf64x2_512:
4487   case X86::BI__builtin_ia32_inserti64x2_512:
4488   case X86::BI__builtin_ia32_insertf32x4:
4489   case X86::BI__builtin_ia32_inserti32x4:
4490     i = 2; l = 0; u = 3;
4491     break;
4492   case X86::BI__builtin_ia32_vpermil2pd:
4493   case X86::BI__builtin_ia32_vpermil2pd256:
4494   case X86::BI__builtin_ia32_vpermil2ps:
4495   case X86::BI__builtin_ia32_vpermil2ps256:
4496     i = 3; l = 0; u = 3;
4497     break;
4498   case X86::BI__builtin_ia32_cmpb128_mask:
4499   case X86::BI__builtin_ia32_cmpw128_mask:
4500   case X86::BI__builtin_ia32_cmpd128_mask:
4501   case X86::BI__builtin_ia32_cmpq128_mask:
4502   case X86::BI__builtin_ia32_cmpb256_mask:
4503   case X86::BI__builtin_ia32_cmpw256_mask:
4504   case X86::BI__builtin_ia32_cmpd256_mask:
4505   case X86::BI__builtin_ia32_cmpq256_mask:
4506   case X86::BI__builtin_ia32_cmpb512_mask:
4507   case X86::BI__builtin_ia32_cmpw512_mask:
4508   case X86::BI__builtin_ia32_cmpd512_mask:
4509   case X86::BI__builtin_ia32_cmpq512_mask:
4510   case X86::BI__builtin_ia32_ucmpb128_mask:
4511   case X86::BI__builtin_ia32_ucmpw128_mask:
4512   case X86::BI__builtin_ia32_ucmpd128_mask:
4513   case X86::BI__builtin_ia32_ucmpq128_mask:
4514   case X86::BI__builtin_ia32_ucmpb256_mask:
4515   case X86::BI__builtin_ia32_ucmpw256_mask:
4516   case X86::BI__builtin_ia32_ucmpd256_mask:
4517   case X86::BI__builtin_ia32_ucmpq256_mask:
4518   case X86::BI__builtin_ia32_ucmpb512_mask:
4519   case X86::BI__builtin_ia32_ucmpw512_mask:
4520   case X86::BI__builtin_ia32_ucmpd512_mask:
4521   case X86::BI__builtin_ia32_ucmpq512_mask:
4522   case X86::BI__builtin_ia32_vpcomub:
4523   case X86::BI__builtin_ia32_vpcomuw:
4524   case X86::BI__builtin_ia32_vpcomud:
4525   case X86::BI__builtin_ia32_vpcomuq:
4526   case X86::BI__builtin_ia32_vpcomb:
4527   case X86::BI__builtin_ia32_vpcomw:
4528   case X86::BI__builtin_ia32_vpcomd:
4529   case X86::BI__builtin_ia32_vpcomq:
4530   case X86::BI__builtin_ia32_vec_set_v8hi:
4531   case X86::BI__builtin_ia32_vec_set_v8si:
4532     i = 2; l = 0; u = 7;
4533     break;
4534   case X86::BI__builtin_ia32_vpermilpd256:
4535   case X86::BI__builtin_ia32_roundps:
4536   case X86::BI__builtin_ia32_roundpd:
4537   case X86::BI__builtin_ia32_roundps256:
4538   case X86::BI__builtin_ia32_roundpd256:
4539   case X86::BI__builtin_ia32_getmantpd128_mask:
4540   case X86::BI__builtin_ia32_getmantpd256_mask:
4541   case X86::BI__builtin_ia32_getmantps128_mask:
4542   case X86::BI__builtin_ia32_getmantps256_mask:
4543   case X86::BI__builtin_ia32_getmantpd512_mask:
4544   case X86::BI__builtin_ia32_getmantps512_mask:
4545   case X86::BI__builtin_ia32_getmantph128_mask:
4546   case X86::BI__builtin_ia32_getmantph256_mask:
4547   case X86::BI__builtin_ia32_getmantph512_mask:
4548   case X86::BI__builtin_ia32_vec_ext_v16qi:
4549   case X86::BI__builtin_ia32_vec_ext_v16hi:
4550     i = 1; l = 0; u = 15;
4551     break;
4552   case X86::BI__builtin_ia32_pblendd128:
4553   case X86::BI__builtin_ia32_blendps:
4554   case X86::BI__builtin_ia32_blendpd256:
4555   case X86::BI__builtin_ia32_shufpd256:
4556   case X86::BI__builtin_ia32_roundss:
4557   case X86::BI__builtin_ia32_roundsd:
4558   case X86::BI__builtin_ia32_rangepd128_mask:
4559   case X86::BI__builtin_ia32_rangepd256_mask:
4560   case X86::BI__builtin_ia32_rangepd512_mask:
4561   case X86::BI__builtin_ia32_rangeps128_mask:
4562   case X86::BI__builtin_ia32_rangeps256_mask:
4563   case X86::BI__builtin_ia32_rangeps512_mask:
4564   case X86::BI__builtin_ia32_getmantsd_round_mask:
4565   case X86::BI__builtin_ia32_getmantss_round_mask:
4566   case X86::BI__builtin_ia32_getmantsh_round_mask:
4567   case X86::BI__builtin_ia32_vec_set_v16qi:
4568   case X86::BI__builtin_ia32_vec_set_v16hi:
4569     i = 2; l = 0; u = 15;
4570     break;
4571   case X86::BI__builtin_ia32_vec_ext_v32qi:
4572     i = 1; l = 0; u = 31;
4573     break;
4574   case X86::BI__builtin_ia32_cmpps:
4575   case X86::BI__builtin_ia32_cmpss:
4576   case X86::BI__builtin_ia32_cmppd:
4577   case X86::BI__builtin_ia32_cmpsd:
4578   case X86::BI__builtin_ia32_cmpps256:
4579   case X86::BI__builtin_ia32_cmppd256:
4580   case X86::BI__builtin_ia32_cmpps128_mask:
4581   case X86::BI__builtin_ia32_cmppd128_mask:
4582   case X86::BI__builtin_ia32_cmpps256_mask:
4583   case X86::BI__builtin_ia32_cmppd256_mask:
4584   case X86::BI__builtin_ia32_cmpps512_mask:
4585   case X86::BI__builtin_ia32_cmppd512_mask:
4586   case X86::BI__builtin_ia32_cmpsd_mask:
4587   case X86::BI__builtin_ia32_cmpss_mask:
4588   case X86::BI__builtin_ia32_vec_set_v32qi:
4589     i = 2; l = 0; u = 31;
4590     break;
4591   case X86::BI__builtin_ia32_permdf256:
4592   case X86::BI__builtin_ia32_permdi256:
4593   case X86::BI__builtin_ia32_permdf512:
4594   case X86::BI__builtin_ia32_permdi512:
4595   case X86::BI__builtin_ia32_vpermilps:
4596   case X86::BI__builtin_ia32_vpermilps256:
4597   case X86::BI__builtin_ia32_vpermilpd512:
4598   case X86::BI__builtin_ia32_vpermilps512:
4599   case X86::BI__builtin_ia32_pshufd:
4600   case X86::BI__builtin_ia32_pshufd256:
4601   case X86::BI__builtin_ia32_pshufd512:
4602   case X86::BI__builtin_ia32_pshufhw:
4603   case X86::BI__builtin_ia32_pshufhw256:
4604   case X86::BI__builtin_ia32_pshufhw512:
4605   case X86::BI__builtin_ia32_pshuflw:
4606   case X86::BI__builtin_ia32_pshuflw256:
4607   case X86::BI__builtin_ia32_pshuflw512:
4608   case X86::BI__builtin_ia32_vcvtps2ph:
4609   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4610   case X86::BI__builtin_ia32_vcvtps2ph256:
4611   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4612   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4613   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4614   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4615   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4616   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4617   case X86::BI__builtin_ia32_rndscaleps_mask:
4618   case X86::BI__builtin_ia32_rndscalepd_mask:
4619   case X86::BI__builtin_ia32_rndscaleph_mask:
4620   case X86::BI__builtin_ia32_reducepd128_mask:
4621   case X86::BI__builtin_ia32_reducepd256_mask:
4622   case X86::BI__builtin_ia32_reducepd512_mask:
4623   case X86::BI__builtin_ia32_reduceps128_mask:
4624   case X86::BI__builtin_ia32_reduceps256_mask:
4625   case X86::BI__builtin_ia32_reduceps512_mask:
4626   case X86::BI__builtin_ia32_reduceph128_mask:
4627   case X86::BI__builtin_ia32_reduceph256_mask:
4628   case X86::BI__builtin_ia32_reduceph512_mask:
4629   case X86::BI__builtin_ia32_prold512:
4630   case X86::BI__builtin_ia32_prolq512:
4631   case X86::BI__builtin_ia32_prold128:
4632   case X86::BI__builtin_ia32_prold256:
4633   case X86::BI__builtin_ia32_prolq128:
4634   case X86::BI__builtin_ia32_prolq256:
4635   case X86::BI__builtin_ia32_prord512:
4636   case X86::BI__builtin_ia32_prorq512:
4637   case X86::BI__builtin_ia32_prord128:
4638   case X86::BI__builtin_ia32_prord256:
4639   case X86::BI__builtin_ia32_prorq128:
4640   case X86::BI__builtin_ia32_prorq256:
4641   case X86::BI__builtin_ia32_fpclasspd128_mask:
4642   case X86::BI__builtin_ia32_fpclasspd256_mask:
4643   case X86::BI__builtin_ia32_fpclassps128_mask:
4644   case X86::BI__builtin_ia32_fpclassps256_mask:
4645   case X86::BI__builtin_ia32_fpclassps512_mask:
4646   case X86::BI__builtin_ia32_fpclasspd512_mask:
4647   case X86::BI__builtin_ia32_fpclassph128_mask:
4648   case X86::BI__builtin_ia32_fpclassph256_mask:
4649   case X86::BI__builtin_ia32_fpclassph512_mask:
4650   case X86::BI__builtin_ia32_fpclasssd_mask:
4651   case X86::BI__builtin_ia32_fpclassss_mask:
4652   case X86::BI__builtin_ia32_fpclasssh_mask:
4653   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4654   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4655   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4656   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4657   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4658   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4659   case X86::BI__builtin_ia32_kshiftliqi:
4660   case X86::BI__builtin_ia32_kshiftlihi:
4661   case X86::BI__builtin_ia32_kshiftlisi:
4662   case X86::BI__builtin_ia32_kshiftlidi:
4663   case X86::BI__builtin_ia32_kshiftriqi:
4664   case X86::BI__builtin_ia32_kshiftrihi:
4665   case X86::BI__builtin_ia32_kshiftrisi:
4666   case X86::BI__builtin_ia32_kshiftridi:
4667     i = 1; l = 0; u = 255;
4668     break;
4669   case X86::BI__builtin_ia32_vperm2f128_pd256:
4670   case X86::BI__builtin_ia32_vperm2f128_ps256:
4671   case X86::BI__builtin_ia32_vperm2f128_si256:
4672   case X86::BI__builtin_ia32_permti256:
4673   case X86::BI__builtin_ia32_pblendw128:
4674   case X86::BI__builtin_ia32_pblendw256:
4675   case X86::BI__builtin_ia32_blendps256:
4676   case X86::BI__builtin_ia32_pblendd256:
4677   case X86::BI__builtin_ia32_palignr128:
4678   case X86::BI__builtin_ia32_palignr256:
4679   case X86::BI__builtin_ia32_palignr512:
4680   case X86::BI__builtin_ia32_alignq512:
4681   case X86::BI__builtin_ia32_alignd512:
4682   case X86::BI__builtin_ia32_alignd128:
4683   case X86::BI__builtin_ia32_alignd256:
4684   case X86::BI__builtin_ia32_alignq128:
4685   case X86::BI__builtin_ia32_alignq256:
4686   case X86::BI__builtin_ia32_vcomisd:
4687   case X86::BI__builtin_ia32_vcomiss:
4688   case X86::BI__builtin_ia32_shuf_f32x4:
4689   case X86::BI__builtin_ia32_shuf_f64x2:
4690   case X86::BI__builtin_ia32_shuf_i32x4:
4691   case X86::BI__builtin_ia32_shuf_i64x2:
4692   case X86::BI__builtin_ia32_shufpd512:
4693   case X86::BI__builtin_ia32_shufps:
4694   case X86::BI__builtin_ia32_shufps256:
4695   case X86::BI__builtin_ia32_shufps512:
4696   case X86::BI__builtin_ia32_dbpsadbw128:
4697   case X86::BI__builtin_ia32_dbpsadbw256:
4698   case X86::BI__builtin_ia32_dbpsadbw512:
4699   case X86::BI__builtin_ia32_vpshldd128:
4700   case X86::BI__builtin_ia32_vpshldd256:
4701   case X86::BI__builtin_ia32_vpshldd512:
4702   case X86::BI__builtin_ia32_vpshldq128:
4703   case X86::BI__builtin_ia32_vpshldq256:
4704   case X86::BI__builtin_ia32_vpshldq512:
4705   case X86::BI__builtin_ia32_vpshldw128:
4706   case X86::BI__builtin_ia32_vpshldw256:
4707   case X86::BI__builtin_ia32_vpshldw512:
4708   case X86::BI__builtin_ia32_vpshrdd128:
4709   case X86::BI__builtin_ia32_vpshrdd256:
4710   case X86::BI__builtin_ia32_vpshrdd512:
4711   case X86::BI__builtin_ia32_vpshrdq128:
4712   case X86::BI__builtin_ia32_vpshrdq256:
4713   case X86::BI__builtin_ia32_vpshrdq512:
4714   case X86::BI__builtin_ia32_vpshrdw128:
4715   case X86::BI__builtin_ia32_vpshrdw256:
4716   case X86::BI__builtin_ia32_vpshrdw512:
4717     i = 2; l = 0; u = 255;
4718     break;
4719   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4720   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4721   case X86::BI__builtin_ia32_fixupimmps512_mask:
4722   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4723   case X86::BI__builtin_ia32_fixupimmsd_mask:
4724   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4725   case X86::BI__builtin_ia32_fixupimmss_mask:
4726   case X86::BI__builtin_ia32_fixupimmss_maskz:
4727   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4728   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4729   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4730   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4731   case X86::BI__builtin_ia32_fixupimmps128_mask:
4732   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4733   case X86::BI__builtin_ia32_fixupimmps256_mask:
4734   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4735   case X86::BI__builtin_ia32_pternlogd512_mask:
4736   case X86::BI__builtin_ia32_pternlogd512_maskz:
4737   case X86::BI__builtin_ia32_pternlogq512_mask:
4738   case X86::BI__builtin_ia32_pternlogq512_maskz:
4739   case X86::BI__builtin_ia32_pternlogd128_mask:
4740   case X86::BI__builtin_ia32_pternlogd128_maskz:
4741   case X86::BI__builtin_ia32_pternlogd256_mask:
4742   case X86::BI__builtin_ia32_pternlogd256_maskz:
4743   case X86::BI__builtin_ia32_pternlogq128_mask:
4744   case X86::BI__builtin_ia32_pternlogq128_maskz:
4745   case X86::BI__builtin_ia32_pternlogq256_mask:
4746   case X86::BI__builtin_ia32_pternlogq256_maskz:
4747     i = 3; l = 0; u = 255;
4748     break;
4749   case X86::BI__builtin_ia32_gatherpfdpd:
4750   case X86::BI__builtin_ia32_gatherpfdps:
4751   case X86::BI__builtin_ia32_gatherpfqpd:
4752   case X86::BI__builtin_ia32_gatherpfqps:
4753   case X86::BI__builtin_ia32_scatterpfdpd:
4754   case X86::BI__builtin_ia32_scatterpfdps:
4755   case X86::BI__builtin_ia32_scatterpfqpd:
4756   case X86::BI__builtin_ia32_scatterpfqps:
4757     i = 4; l = 2; u = 3;
4758     break;
4759   case X86::BI__builtin_ia32_reducesd_mask:
4760   case X86::BI__builtin_ia32_reducess_mask:
4761   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4762   case X86::BI__builtin_ia32_rndscaless_round_mask:
4763   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4764   case X86::BI__builtin_ia32_reducesh_mask:
4765     i = 4; l = 0; u = 255;
4766     break;
4767   }
4768 
4769   // Note that we don't force a hard error on the range check here, allowing
4770   // template-generated or macro-generated dead code to potentially have out-of-
4771   // range values. These need to code generate, but don't need to necessarily
4772   // make any sense. We use a warning that defaults to an error.
4773   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4774 }
4775 
4776 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4777 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4778 /// Returns true when the format fits the function and the FormatStringInfo has
4779 /// been populated.
4780 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4781                                FormatStringInfo *FSI) {
4782   FSI->HasVAListArg = Format->getFirstArg() == 0;
4783   FSI->FormatIdx = Format->getFormatIdx() - 1;
4784   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4785 
4786   // The way the format attribute works in GCC, the implicit this argument
4787   // of member functions is counted. However, it doesn't appear in our own
4788   // lists, so decrement format_idx in that case.
4789   if (IsCXXMember) {
4790     if(FSI->FormatIdx == 0)
4791       return false;
4792     --FSI->FormatIdx;
4793     if (FSI->FirstDataArg != 0)
4794       --FSI->FirstDataArg;
4795   }
4796   return true;
4797 }
4798 
4799 /// Checks if a the given expression evaluates to null.
4800 ///
4801 /// Returns true if the value evaluates to null.
4802 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4803   // If the expression has non-null type, it doesn't evaluate to null.
4804   if (auto nullability
4805         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4806     if (*nullability == NullabilityKind::NonNull)
4807       return false;
4808   }
4809 
4810   // As a special case, transparent unions initialized with zero are
4811   // considered null for the purposes of the nonnull attribute.
4812   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4813     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4814       if (const CompoundLiteralExpr *CLE =
4815           dyn_cast<CompoundLiteralExpr>(Expr))
4816         if (const InitListExpr *ILE =
4817             dyn_cast<InitListExpr>(CLE->getInitializer()))
4818           Expr = ILE->getInit(0);
4819   }
4820 
4821   bool Result;
4822   return (!Expr->isValueDependent() &&
4823           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4824           !Result);
4825 }
4826 
4827 static void CheckNonNullArgument(Sema &S,
4828                                  const Expr *ArgExpr,
4829                                  SourceLocation CallSiteLoc) {
4830   if (CheckNonNullExpr(S, ArgExpr))
4831     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4832                           S.PDiag(diag::warn_null_arg)
4833                               << ArgExpr->getSourceRange());
4834 }
4835 
4836 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4837   FormatStringInfo FSI;
4838   if ((GetFormatStringType(Format) == FST_NSString) &&
4839       getFormatStringInfo(Format, false, &FSI)) {
4840     Idx = FSI.FormatIdx;
4841     return true;
4842   }
4843   return false;
4844 }
4845 
4846 /// Diagnose use of %s directive in an NSString which is being passed
4847 /// as formatting string to formatting method.
4848 static void
4849 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4850                                         const NamedDecl *FDecl,
4851                                         Expr **Args,
4852                                         unsigned NumArgs) {
4853   unsigned Idx = 0;
4854   bool Format = false;
4855   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4856   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4857     Idx = 2;
4858     Format = true;
4859   }
4860   else
4861     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4862       if (S.GetFormatNSStringIdx(I, Idx)) {
4863         Format = true;
4864         break;
4865       }
4866     }
4867   if (!Format || NumArgs <= Idx)
4868     return;
4869   const Expr *FormatExpr = Args[Idx];
4870   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4871     FormatExpr = CSCE->getSubExpr();
4872   const StringLiteral *FormatString;
4873   if (const ObjCStringLiteral *OSL =
4874       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4875     FormatString = OSL->getString();
4876   else
4877     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4878   if (!FormatString)
4879     return;
4880   if (S.FormatStringHasSArg(FormatString)) {
4881     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4882       << "%s" << 1 << 1;
4883     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4884       << FDecl->getDeclName();
4885   }
4886 }
4887 
4888 /// Determine whether the given type has a non-null nullability annotation.
4889 static bool isNonNullType(ASTContext &ctx, QualType type) {
4890   if (auto nullability = type->getNullability(ctx))
4891     return *nullability == NullabilityKind::NonNull;
4892 
4893   return false;
4894 }
4895 
4896 static void CheckNonNullArguments(Sema &S,
4897                                   const NamedDecl *FDecl,
4898                                   const FunctionProtoType *Proto,
4899                                   ArrayRef<const Expr *> Args,
4900                                   SourceLocation CallSiteLoc) {
4901   assert((FDecl || Proto) && "Need a function declaration or prototype");
4902 
4903   // Already checked by by constant evaluator.
4904   if (S.isConstantEvaluated())
4905     return;
4906   // Check the attributes attached to the method/function itself.
4907   llvm::SmallBitVector NonNullArgs;
4908   if (FDecl) {
4909     // Handle the nonnull attribute on the function/method declaration itself.
4910     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4911       if (!NonNull->args_size()) {
4912         // Easy case: all pointer arguments are nonnull.
4913         for (const auto *Arg : Args)
4914           if (S.isValidPointerAttrType(Arg->getType()))
4915             CheckNonNullArgument(S, Arg, CallSiteLoc);
4916         return;
4917       }
4918 
4919       for (const ParamIdx &Idx : NonNull->args()) {
4920         unsigned IdxAST = Idx.getASTIndex();
4921         if (IdxAST >= Args.size())
4922           continue;
4923         if (NonNullArgs.empty())
4924           NonNullArgs.resize(Args.size());
4925         NonNullArgs.set(IdxAST);
4926       }
4927     }
4928   }
4929 
4930   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4931     // Handle the nonnull attribute on the parameters of the
4932     // function/method.
4933     ArrayRef<ParmVarDecl*> parms;
4934     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4935       parms = FD->parameters();
4936     else
4937       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4938 
4939     unsigned ParamIndex = 0;
4940     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4941          I != E; ++I, ++ParamIndex) {
4942       const ParmVarDecl *PVD = *I;
4943       if (PVD->hasAttr<NonNullAttr>() ||
4944           isNonNullType(S.Context, PVD->getType())) {
4945         if (NonNullArgs.empty())
4946           NonNullArgs.resize(Args.size());
4947 
4948         NonNullArgs.set(ParamIndex);
4949       }
4950     }
4951   } else {
4952     // If we have a non-function, non-method declaration but no
4953     // function prototype, try to dig out the function prototype.
4954     if (!Proto) {
4955       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4956         QualType type = VD->getType().getNonReferenceType();
4957         if (auto pointerType = type->getAs<PointerType>())
4958           type = pointerType->getPointeeType();
4959         else if (auto blockType = type->getAs<BlockPointerType>())
4960           type = blockType->getPointeeType();
4961         // FIXME: data member pointers?
4962 
4963         // Dig out the function prototype, if there is one.
4964         Proto = type->getAs<FunctionProtoType>();
4965       }
4966     }
4967 
4968     // Fill in non-null argument information from the nullability
4969     // information on the parameter types (if we have them).
4970     if (Proto) {
4971       unsigned Index = 0;
4972       for (auto paramType : Proto->getParamTypes()) {
4973         if (isNonNullType(S.Context, paramType)) {
4974           if (NonNullArgs.empty())
4975             NonNullArgs.resize(Args.size());
4976 
4977           NonNullArgs.set(Index);
4978         }
4979 
4980         ++Index;
4981       }
4982     }
4983   }
4984 
4985   // Check for non-null arguments.
4986   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4987        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4988     if (NonNullArgs[ArgIndex])
4989       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4990   }
4991 }
4992 
4993 /// Warn if a pointer or reference argument passed to a function points to an
4994 /// object that is less aligned than the parameter. This can happen when
4995 /// creating a typedef with a lower alignment than the original type and then
4996 /// calling functions defined in terms of the original type.
4997 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
4998                              StringRef ParamName, QualType ArgTy,
4999                              QualType ParamTy) {
5000 
5001   // If a function accepts a pointer or reference type
5002   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5003     return;
5004 
5005   // If the parameter is a pointer type, get the pointee type for the
5006   // argument too. If the parameter is a reference type, don't try to get
5007   // the pointee type for the argument.
5008   if (ParamTy->isPointerType())
5009     ArgTy = ArgTy->getPointeeType();
5010 
5011   // Remove reference or pointer
5012   ParamTy = ParamTy->getPointeeType();
5013 
5014   // Find expected alignment, and the actual alignment of the passed object.
5015   // getTypeAlignInChars requires complete types
5016   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5017       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5018       ArgTy->isUndeducedType())
5019     return;
5020 
5021   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5022   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5023 
5024   // If the argument is less aligned than the parameter, there is a
5025   // potential alignment issue.
5026   if (ArgAlign < ParamAlign)
5027     Diag(Loc, diag::warn_param_mismatched_alignment)
5028         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5029         << ParamName << (FDecl != nullptr) << FDecl;
5030 }
5031 
5032 /// Handles the checks for format strings, non-POD arguments to vararg
5033 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5034 /// attributes.
5035 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5036                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
5037                      bool IsMemberFunction, SourceLocation Loc,
5038                      SourceRange Range, VariadicCallType CallType) {
5039   // FIXME: We should check as much as we can in the template definition.
5040   if (CurContext->isDependentContext())
5041     return;
5042 
5043   // Printf and scanf checking.
5044   llvm::SmallBitVector CheckedVarArgs;
5045   if (FDecl) {
5046     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5047       // Only create vector if there are format attributes.
5048       CheckedVarArgs.resize(Args.size());
5049 
5050       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5051                            CheckedVarArgs);
5052     }
5053   }
5054 
5055   // Refuse POD arguments that weren't caught by the format string
5056   // checks above.
5057   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5058   if (CallType != VariadicDoesNotApply &&
5059       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5060     unsigned NumParams = Proto ? Proto->getNumParams()
5061                        : FDecl && isa<FunctionDecl>(FDecl)
5062                            ? cast<FunctionDecl>(FDecl)->getNumParams()
5063                        : FDecl && isa<ObjCMethodDecl>(FDecl)
5064                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
5065                        : 0;
5066 
5067     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5068       // Args[ArgIdx] can be null in malformed code.
5069       if (const Expr *Arg = Args[ArgIdx]) {
5070         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5071           checkVariadicArgument(Arg, CallType);
5072       }
5073     }
5074   }
5075 
5076   if (FDecl || Proto) {
5077     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5078 
5079     // Type safety checking.
5080     if (FDecl) {
5081       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5082         CheckArgumentWithTypeTag(I, Args, Loc);
5083     }
5084   }
5085 
5086   // Check that passed arguments match the alignment of original arguments.
5087   // Try to get the missing prototype from the declaration.
5088   if (!Proto && FDecl) {
5089     const auto *FT = FDecl->getFunctionType();
5090     if (isa_and_nonnull<FunctionProtoType>(FT))
5091       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5092   }
5093   if (Proto) {
5094     // For variadic functions, we may have more args than parameters.
5095     // For some K&R functions, we may have less args than parameters.
5096     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5097     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5098       // Args[ArgIdx] can be null in malformed code.
5099       if (const Expr *Arg = Args[ArgIdx]) {
5100         if (Arg->containsErrors())
5101           continue;
5102 
5103         QualType ParamTy = Proto->getParamType(ArgIdx);
5104         QualType ArgTy = Arg->getType();
5105         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5106                           ArgTy, ParamTy);
5107       }
5108     }
5109   }
5110 
5111   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5112     auto *AA = FDecl->getAttr<AllocAlignAttr>();
5113     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5114     if (!Arg->isValueDependent()) {
5115       Expr::EvalResult Align;
5116       if (Arg->EvaluateAsInt(Align, Context)) {
5117         const llvm::APSInt &I = Align.Val.getInt();
5118         if (!I.isPowerOf2())
5119           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5120               << Arg->getSourceRange();
5121 
5122         if (I > Sema::MaximumAlignment)
5123           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5124               << Arg->getSourceRange() << Sema::MaximumAlignment;
5125       }
5126     }
5127   }
5128 
5129   if (FD)
5130     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5131 }
5132 
5133 /// CheckConstructorCall - Check a constructor call for correctness and safety
5134 /// properties not enforced by the C type system.
5135 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5136                                 ArrayRef<const Expr *> Args,
5137                                 const FunctionProtoType *Proto,
5138                                 SourceLocation Loc) {
5139   VariadicCallType CallType =
5140       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5141 
5142   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5143   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5144                     Context.getPointerType(Ctor->getThisObjectType()));
5145 
5146   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5147             Loc, SourceRange(), CallType);
5148 }
5149 
5150 /// CheckFunctionCall - Check a direct function call for various correctness
5151 /// and safety properties not strictly enforced by the C type system.
5152 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5153                              const FunctionProtoType *Proto) {
5154   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5155                               isa<CXXMethodDecl>(FDecl);
5156   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5157                           IsMemberOperatorCall;
5158   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5159                                                   TheCall->getCallee());
5160   Expr** Args = TheCall->getArgs();
5161   unsigned NumArgs = TheCall->getNumArgs();
5162 
5163   Expr *ImplicitThis = nullptr;
5164   if (IsMemberOperatorCall) {
5165     // If this is a call to a member operator, hide the first argument
5166     // from checkCall.
5167     // FIXME: Our choice of AST representation here is less than ideal.
5168     ImplicitThis = Args[0];
5169     ++Args;
5170     --NumArgs;
5171   } else if (IsMemberFunction)
5172     ImplicitThis =
5173         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5174 
5175   if (ImplicitThis) {
5176     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5177     // used.
5178     QualType ThisType = ImplicitThis->getType();
5179     if (!ThisType->isPointerType()) {
5180       assert(!ThisType->isReferenceType());
5181       ThisType = Context.getPointerType(ThisType);
5182     }
5183 
5184     QualType ThisTypeFromDecl =
5185         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5186 
5187     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5188                       ThisTypeFromDecl);
5189   }
5190 
5191   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5192             IsMemberFunction, TheCall->getRParenLoc(),
5193             TheCall->getCallee()->getSourceRange(), CallType);
5194 
5195   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5196   // None of the checks below are needed for functions that don't have
5197   // simple names (e.g., C++ conversion functions).
5198   if (!FnInfo)
5199     return false;
5200 
5201   CheckTCBEnforcement(TheCall, FDecl);
5202 
5203   CheckAbsoluteValueFunction(TheCall, FDecl);
5204   CheckMaxUnsignedZero(TheCall, FDecl);
5205 
5206   if (getLangOpts().ObjC)
5207     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5208 
5209   unsigned CMId = FDecl->getMemoryFunctionKind();
5210 
5211   // Handle memory setting and copying functions.
5212   switch (CMId) {
5213   case 0:
5214     return false;
5215   case Builtin::BIstrlcpy: // fallthrough
5216   case Builtin::BIstrlcat:
5217     CheckStrlcpycatArguments(TheCall, FnInfo);
5218     break;
5219   case Builtin::BIstrncat:
5220     CheckStrncatArguments(TheCall, FnInfo);
5221     break;
5222   case Builtin::BIfree:
5223     CheckFreeArguments(TheCall);
5224     break;
5225   default:
5226     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5227   }
5228 
5229   return false;
5230 }
5231 
5232 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5233                                ArrayRef<const Expr *> Args) {
5234   VariadicCallType CallType =
5235       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5236 
5237   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5238             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5239             CallType);
5240 
5241   return false;
5242 }
5243 
5244 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5245                             const FunctionProtoType *Proto) {
5246   QualType Ty;
5247   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5248     Ty = V->getType().getNonReferenceType();
5249   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5250     Ty = F->getType().getNonReferenceType();
5251   else
5252     return false;
5253 
5254   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5255       !Ty->isFunctionProtoType())
5256     return false;
5257 
5258   VariadicCallType CallType;
5259   if (!Proto || !Proto->isVariadic()) {
5260     CallType = VariadicDoesNotApply;
5261   } else if (Ty->isBlockPointerType()) {
5262     CallType = VariadicBlock;
5263   } else { // Ty->isFunctionPointerType()
5264     CallType = VariadicFunction;
5265   }
5266 
5267   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5268             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5269             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5270             TheCall->getCallee()->getSourceRange(), CallType);
5271 
5272   return false;
5273 }
5274 
5275 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5276 /// such as function pointers returned from functions.
5277 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5278   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5279                                                   TheCall->getCallee());
5280   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5281             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5282             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5283             TheCall->getCallee()->getSourceRange(), CallType);
5284 
5285   return false;
5286 }
5287 
5288 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5289   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5290     return false;
5291 
5292   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5293   switch (Op) {
5294   case AtomicExpr::AO__c11_atomic_init:
5295   case AtomicExpr::AO__opencl_atomic_init:
5296     llvm_unreachable("There is no ordering argument for an init");
5297 
5298   case AtomicExpr::AO__c11_atomic_load:
5299   case AtomicExpr::AO__opencl_atomic_load:
5300   case AtomicExpr::AO__hip_atomic_load:
5301   case AtomicExpr::AO__atomic_load_n:
5302   case AtomicExpr::AO__atomic_load:
5303     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5304            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5305 
5306   case AtomicExpr::AO__c11_atomic_store:
5307   case AtomicExpr::AO__opencl_atomic_store:
5308   case AtomicExpr::AO__hip_atomic_store:
5309   case AtomicExpr::AO__atomic_store:
5310   case AtomicExpr::AO__atomic_store_n:
5311     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5312            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5313            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5314 
5315   default:
5316     return true;
5317   }
5318 }
5319 
5320 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5321                                          AtomicExpr::AtomicOp Op) {
5322   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5323   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5324   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5325   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5326                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5327                          Op);
5328 }
5329 
5330 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5331                                  SourceLocation RParenLoc, MultiExprArg Args,
5332                                  AtomicExpr::AtomicOp Op,
5333                                  AtomicArgumentOrder ArgOrder) {
5334   // All the non-OpenCL operations take one of the following forms.
5335   // The OpenCL operations take the __c11 forms with one extra argument for
5336   // synchronization scope.
5337   enum {
5338     // C    __c11_atomic_init(A *, C)
5339     Init,
5340 
5341     // C    __c11_atomic_load(A *, int)
5342     Load,
5343 
5344     // void __atomic_load(A *, CP, int)
5345     LoadCopy,
5346 
5347     // void __atomic_store(A *, CP, int)
5348     Copy,
5349 
5350     // C    __c11_atomic_add(A *, M, int)
5351     Arithmetic,
5352 
5353     // C    __atomic_exchange_n(A *, CP, int)
5354     Xchg,
5355 
5356     // void __atomic_exchange(A *, C *, CP, int)
5357     GNUXchg,
5358 
5359     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5360     C11CmpXchg,
5361 
5362     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5363     GNUCmpXchg
5364   } Form = Init;
5365 
5366   const unsigned NumForm = GNUCmpXchg + 1;
5367   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5368   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5369   // where:
5370   //   C is an appropriate type,
5371   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5372   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5373   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5374   //   the int parameters are for orderings.
5375 
5376   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5377       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5378       "need to update code for modified forms");
5379   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5380                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5381                         AtomicExpr::AO__atomic_load,
5382                 "need to update code for modified C11 atomics");
5383   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5384                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5385   bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
5386                Op <= AtomicExpr::AO__hip_atomic_fetch_max;
5387   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5388                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5389                IsOpenCL;
5390   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5391              Op == AtomicExpr::AO__atomic_store_n ||
5392              Op == AtomicExpr::AO__atomic_exchange_n ||
5393              Op == AtomicExpr::AO__atomic_compare_exchange_n;
5394   bool IsAddSub = false;
5395 
5396   switch (Op) {
5397   case AtomicExpr::AO__c11_atomic_init:
5398   case AtomicExpr::AO__opencl_atomic_init:
5399     Form = Init;
5400     break;
5401 
5402   case AtomicExpr::AO__c11_atomic_load:
5403   case AtomicExpr::AO__opencl_atomic_load:
5404   case AtomicExpr::AO__hip_atomic_load:
5405   case AtomicExpr::AO__atomic_load_n:
5406     Form = Load;
5407     break;
5408 
5409   case AtomicExpr::AO__atomic_load:
5410     Form = LoadCopy;
5411     break;
5412 
5413   case AtomicExpr::AO__c11_atomic_store:
5414   case AtomicExpr::AO__opencl_atomic_store:
5415   case AtomicExpr::AO__hip_atomic_store:
5416   case AtomicExpr::AO__atomic_store:
5417   case AtomicExpr::AO__atomic_store_n:
5418     Form = Copy;
5419     break;
5420   case AtomicExpr::AO__hip_atomic_fetch_add:
5421   case AtomicExpr::AO__hip_atomic_fetch_min:
5422   case AtomicExpr::AO__hip_atomic_fetch_max:
5423   case AtomicExpr::AO__c11_atomic_fetch_add:
5424   case AtomicExpr::AO__c11_atomic_fetch_sub:
5425   case AtomicExpr::AO__opencl_atomic_fetch_add:
5426   case AtomicExpr::AO__opencl_atomic_fetch_sub:
5427   case AtomicExpr::AO__atomic_fetch_add:
5428   case AtomicExpr::AO__atomic_fetch_sub:
5429   case AtomicExpr::AO__atomic_add_fetch:
5430   case AtomicExpr::AO__atomic_sub_fetch:
5431     IsAddSub = true;
5432     Form = Arithmetic;
5433     break;
5434   case AtomicExpr::AO__c11_atomic_fetch_and:
5435   case AtomicExpr::AO__c11_atomic_fetch_or:
5436   case AtomicExpr::AO__c11_atomic_fetch_xor:
5437   case AtomicExpr::AO__hip_atomic_fetch_and:
5438   case AtomicExpr::AO__hip_atomic_fetch_or:
5439   case AtomicExpr::AO__hip_atomic_fetch_xor:
5440   case AtomicExpr::AO__c11_atomic_fetch_nand:
5441   case AtomicExpr::AO__opencl_atomic_fetch_and:
5442   case AtomicExpr::AO__opencl_atomic_fetch_or:
5443   case AtomicExpr::AO__opencl_atomic_fetch_xor:
5444   case AtomicExpr::AO__atomic_fetch_and:
5445   case AtomicExpr::AO__atomic_fetch_or:
5446   case AtomicExpr::AO__atomic_fetch_xor:
5447   case AtomicExpr::AO__atomic_fetch_nand:
5448   case AtomicExpr::AO__atomic_and_fetch:
5449   case AtomicExpr::AO__atomic_or_fetch:
5450   case AtomicExpr::AO__atomic_xor_fetch:
5451   case AtomicExpr::AO__atomic_nand_fetch:
5452     Form = Arithmetic;
5453     break;
5454   case AtomicExpr::AO__c11_atomic_fetch_min:
5455   case AtomicExpr::AO__c11_atomic_fetch_max:
5456   case AtomicExpr::AO__opencl_atomic_fetch_min:
5457   case AtomicExpr::AO__opencl_atomic_fetch_max:
5458   case AtomicExpr::AO__atomic_min_fetch:
5459   case AtomicExpr::AO__atomic_max_fetch:
5460   case AtomicExpr::AO__atomic_fetch_min:
5461   case AtomicExpr::AO__atomic_fetch_max:
5462     Form = Arithmetic;
5463     break;
5464 
5465   case AtomicExpr::AO__c11_atomic_exchange:
5466   case AtomicExpr::AO__hip_atomic_exchange:
5467   case AtomicExpr::AO__opencl_atomic_exchange:
5468   case AtomicExpr::AO__atomic_exchange_n:
5469     Form = Xchg;
5470     break;
5471 
5472   case AtomicExpr::AO__atomic_exchange:
5473     Form = GNUXchg;
5474     break;
5475 
5476   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5477   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5478   case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
5479   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5480   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5481   case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
5482     Form = C11CmpXchg;
5483     break;
5484 
5485   case AtomicExpr::AO__atomic_compare_exchange:
5486   case AtomicExpr::AO__atomic_compare_exchange_n:
5487     Form = GNUCmpXchg;
5488     break;
5489   }
5490 
5491   unsigned AdjustedNumArgs = NumArgs[Form];
5492   if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init)
5493     ++AdjustedNumArgs;
5494   // Check we have the right number of arguments.
5495   if (Args.size() < AdjustedNumArgs) {
5496     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5497         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5498         << ExprRange;
5499     return ExprError();
5500   } else if (Args.size() > AdjustedNumArgs) {
5501     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5502          diag::err_typecheck_call_too_many_args)
5503         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5504         << ExprRange;
5505     return ExprError();
5506   }
5507 
5508   // Inspect the first argument of the atomic operation.
5509   Expr *Ptr = Args[0];
5510   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5511   if (ConvertedPtr.isInvalid())
5512     return ExprError();
5513 
5514   Ptr = ConvertedPtr.get();
5515   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5516   if (!pointerType) {
5517     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5518         << Ptr->getType() << Ptr->getSourceRange();
5519     return ExprError();
5520   }
5521 
5522   // For a __c11 builtin, this should be a pointer to an _Atomic type.
5523   QualType AtomTy = pointerType->getPointeeType(); // 'A'
5524   QualType ValType = AtomTy; // 'C'
5525   if (IsC11) {
5526     if (!AtomTy->isAtomicType()) {
5527       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5528           << Ptr->getType() << Ptr->getSourceRange();
5529       return ExprError();
5530     }
5531     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5532         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5533       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5534           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5535           << Ptr->getSourceRange();
5536       return ExprError();
5537     }
5538     ValType = AtomTy->castAs<AtomicType>()->getValueType();
5539   } else if (Form != Load && Form != LoadCopy) {
5540     if (ValType.isConstQualified()) {
5541       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5542           << Ptr->getType() << Ptr->getSourceRange();
5543       return ExprError();
5544     }
5545   }
5546 
5547   // For an arithmetic operation, the implied arithmetic must be well-formed.
5548   if (Form == Arithmetic) {
5549     // GCC does not enforce these rules for GNU atomics, but we do to help catch
5550     // trivial type errors.
5551     auto IsAllowedValueType = [&](QualType ValType) {
5552       if (ValType->isIntegerType())
5553         return true;
5554       if (ValType->isPointerType())
5555         return true;
5556       if (!ValType->isFloatingType())
5557         return false;
5558       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5559       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5560           &Context.getTargetInfo().getLongDoubleFormat() ==
5561               &llvm::APFloat::x87DoubleExtended())
5562         return false;
5563       return true;
5564     };
5565     if (IsAddSub && !IsAllowedValueType(ValType)) {
5566       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5567           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5568       return ExprError();
5569     }
5570     if (!IsAddSub && !ValType->isIntegerType()) {
5571       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5572           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5573       return ExprError();
5574     }
5575     if (IsC11 && ValType->isPointerType() &&
5576         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5577                             diag::err_incomplete_type)) {
5578       return ExprError();
5579     }
5580   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5581     // For __atomic_*_n operations, the value type must be a scalar integral or
5582     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5583     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5584         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5585     return ExprError();
5586   }
5587 
5588   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5589       !AtomTy->isScalarType()) {
5590     // For GNU atomics, require a trivially-copyable type. This is not part of
5591     // the GNU atomics specification but we enforce it for consistency with
5592     // other atomics which generally all require a trivially-copyable type. This
5593     // is because atomics just copy bits.
5594     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5595         << Ptr->getType() << Ptr->getSourceRange();
5596     return ExprError();
5597   }
5598 
5599   switch (ValType.getObjCLifetime()) {
5600   case Qualifiers::OCL_None:
5601   case Qualifiers::OCL_ExplicitNone:
5602     // okay
5603     break;
5604 
5605   case Qualifiers::OCL_Weak:
5606   case Qualifiers::OCL_Strong:
5607   case Qualifiers::OCL_Autoreleasing:
5608     // FIXME: Can this happen? By this point, ValType should be known
5609     // to be trivially copyable.
5610     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5611         << ValType << Ptr->getSourceRange();
5612     return ExprError();
5613   }
5614 
5615   // All atomic operations have an overload which takes a pointer to a volatile
5616   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
5617   // into the result or the other operands. Similarly atomic_load takes a
5618   // pointer to a const 'A'.
5619   ValType.removeLocalVolatile();
5620   ValType.removeLocalConst();
5621   QualType ResultType = ValType;
5622   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5623       Form == Init)
5624     ResultType = Context.VoidTy;
5625   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5626     ResultType = Context.BoolTy;
5627 
5628   // The type of a parameter passed 'by value'. In the GNU atomics, such
5629   // arguments are actually passed as pointers.
5630   QualType ByValType = ValType; // 'CP'
5631   bool IsPassedByAddress = false;
5632   if (!IsC11 && !IsHIP && !IsN) {
5633     ByValType = Ptr->getType();
5634     IsPassedByAddress = true;
5635   }
5636 
5637   SmallVector<Expr *, 5> APIOrderedArgs;
5638   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5639     APIOrderedArgs.push_back(Args[0]);
5640     switch (Form) {
5641     case Init:
5642     case Load:
5643       APIOrderedArgs.push_back(Args[1]); // Val1/Order
5644       break;
5645     case LoadCopy:
5646     case Copy:
5647     case Arithmetic:
5648     case Xchg:
5649       APIOrderedArgs.push_back(Args[2]); // Val1
5650       APIOrderedArgs.push_back(Args[1]); // Order
5651       break;
5652     case GNUXchg:
5653       APIOrderedArgs.push_back(Args[2]); // Val1
5654       APIOrderedArgs.push_back(Args[3]); // Val2
5655       APIOrderedArgs.push_back(Args[1]); // Order
5656       break;
5657     case C11CmpXchg:
5658       APIOrderedArgs.push_back(Args[2]); // Val1
5659       APIOrderedArgs.push_back(Args[4]); // Val2
5660       APIOrderedArgs.push_back(Args[1]); // Order
5661       APIOrderedArgs.push_back(Args[3]); // OrderFail
5662       break;
5663     case GNUCmpXchg:
5664       APIOrderedArgs.push_back(Args[2]); // Val1
5665       APIOrderedArgs.push_back(Args[4]); // Val2
5666       APIOrderedArgs.push_back(Args[5]); // Weak
5667       APIOrderedArgs.push_back(Args[1]); // Order
5668       APIOrderedArgs.push_back(Args[3]); // OrderFail
5669       break;
5670     }
5671   } else
5672     APIOrderedArgs.append(Args.begin(), Args.end());
5673 
5674   // The first argument's non-CV pointer type is used to deduce the type of
5675   // subsequent arguments, except for:
5676   //  - weak flag (always converted to bool)
5677   //  - memory order (always converted to int)
5678   //  - scope  (always converted to int)
5679   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5680     QualType Ty;
5681     if (i < NumVals[Form] + 1) {
5682       switch (i) {
5683       case 0:
5684         // The first argument is always a pointer. It has a fixed type.
5685         // It is always dereferenced, a nullptr is undefined.
5686         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5687         // Nothing else to do: we already know all we want about this pointer.
5688         continue;
5689       case 1:
5690         // The second argument is the non-atomic operand. For arithmetic, this
5691         // is always passed by value, and for a compare_exchange it is always
5692         // passed by address. For the rest, GNU uses by-address and C11 uses
5693         // by-value.
5694         assert(Form != Load);
5695         if (Form == Arithmetic && ValType->isPointerType())
5696           Ty = Context.getPointerDiffType();
5697         else if (Form == Init || Form == Arithmetic)
5698           Ty = ValType;
5699         else if (Form == Copy || Form == Xchg) {
5700           if (IsPassedByAddress) {
5701             // The value pointer is always dereferenced, a nullptr is undefined.
5702             CheckNonNullArgument(*this, APIOrderedArgs[i],
5703                                  ExprRange.getBegin());
5704           }
5705           Ty = ByValType;
5706         } else {
5707           Expr *ValArg = APIOrderedArgs[i];
5708           // The value pointer is always dereferenced, a nullptr is undefined.
5709           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5710           LangAS AS = LangAS::Default;
5711           // Keep address space of non-atomic pointer type.
5712           if (const PointerType *PtrTy =
5713                   ValArg->getType()->getAs<PointerType>()) {
5714             AS = PtrTy->getPointeeType().getAddressSpace();
5715           }
5716           Ty = Context.getPointerType(
5717               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5718         }
5719         break;
5720       case 2:
5721         // The third argument to compare_exchange / GNU exchange is the desired
5722         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5723         if (IsPassedByAddress)
5724           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5725         Ty = ByValType;
5726         break;
5727       case 3:
5728         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5729         Ty = Context.BoolTy;
5730         break;
5731       }
5732     } else {
5733       // The order(s) and scope are always converted to int.
5734       Ty = Context.IntTy;
5735     }
5736 
5737     InitializedEntity Entity =
5738         InitializedEntity::InitializeParameter(Context, Ty, false);
5739     ExprResult Arg = APIOrderedArgs[i];
5740     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5741     if (Arg.isInvalid())
5742       return true;
5743     APIOrderedArgs[i] = Arg.get();
5744   }
5745 
5746   // Permute the arguments into a 'consistent' order.
5747   SmallVector<Expr*, 5> SubExprs;
5748   SubExprs.push_back(Ptr);
5749   switch (Form) {
5750   case Init:
5751     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5752     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5753     break;
5754   case Load:
5755     SubExprs.push_back(APIOrderedArgs[1]); // Order
5756     break;
5757   case LoadCopy:
5758   case Copy:
5759   case Arithmetic:
5760   case Xchg:
5761     SubExprs.push_back(APIOrderedArgs[2]); // Order
5762     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5763     break;
5764   case GNUXchg:
5765     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5766     SubExprs.push_back(APIOrderedArgs[3]); // Order
5767     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5768     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5769     break;
5770   case C11CmpXchg:
5771     SubExprs.push_back(APIOrderedArgs[3]); // Order
5772     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5773     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5774     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5775     break;
5776   case GNUCmpXchg:
5777     SubExprs.push_back(APIOrderedArgs[4]); // Order
5778     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5779     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5780     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5781     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5782     break;
5783   }
5784 
5785   if (SubExprs.size() >= 2 && Form != Init) {
5786     if (Optional<llvm::APSInt> Result =
5787             SubExprs[1]->getIntegerConstantExpr(Context))
5788       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5789         Diag(SubExprs[1]->getBeginLoc(),
5790              diag::warn_atomic_op_has_invalid_memory_order)
5791             << SubExprs[1]->getSourceRange();
5792   }
5793 
5794   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5795     auto *Scope = Args[Args.size() - 1];
5796     if (Optional<llvm::APSInt> Result =
5797             Scope->getIntegerConstantExpr(Context)) {
5798       if (!ScopeModel->isValid(Result->getZExtValue()))
5799         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5800             << Scope->getSourceRange();
5801     }
5802     SubExprs.push_back(Scope);
5803   }
5804 
5805   AtomicExpr *AE = new (Context)
5806       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5807 
5808   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5809        Op == AtomicExpr::AO__c11_atomic_store ||
5810        Op == AtomicExpr::AO__opencl_atomic_load ||
5811        Op == AtomicExpr::AO__hip_atomic_load ||
5812        Op == AtomicExpr::AO__opencl_atomic_store ||
5813        Op == AtomicExpr::AO__hip_atomic_store) &&
5814       Context.AtomicUsesUnsupportedLibcall(AE))
5815     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5816         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5817              Op == AtomicExpr::AO__opencl_atomic_load ||
5818              Op == AtomicExpr::AO__hip_atomic_load)
5819                 ? 0
5820                 : 1);
5821 
5822   if (ValType->isExtIntType()) {
5823     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5824     return ExprError();
5825   }
5826 
5827   return AE;
5828 }
5829 
5830 /// checkBuiltinArgument - Given a call to a builtin function, perform
5831 /// normal type-checking on the given argument, updating the call in
5832 /// place.  This is useful when a builtin function requires custom
5833 /// type-checking for some of its arguments but not necessarily all of
5834 /// them.
5835 ///
5836 /// Returns true on error.
5837 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5838   FunctionDecl *Fn = E->getDirectCallee();
5839   assert(Fn && "builtin call without direct callee!");
5840 
5841   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5842   InitializedEntity Entity =
5843     InitializedEntity::InitializeParameter(S.Context, Param);
5844 
5845   ExprResult Arg = E->getArg(0);
5846   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5847   if (Arg.isInvalid())
5848     return true;
5849 
5850   E->setArg(ArgIndex, Arg.get());
5851   return false;
5852 }
5853 
5854 /// We have a call to a function like __sync_fetch_and_add, which is an
5855 /// overloaded function based on the pointer type of its first argument.
5856 /// The main BuildCallExpr routines have already promoted the types of
5857 /// arguments because all of these calls are prototyped as void(...).
5858 ///
5859 /// This function goes through and does final semantic checking for these
5860 /// builtins, as well as generating any warnings.
5861 ExprResult
5862 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5863   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5864   Expr *Callee = TheCall->getCallee();
5865   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5866   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5867 
5868   // Ensure that we have at least one argument to do type inference from.
5869   if (TheCall->getNumArgs() < 1) {
5870     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5871         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5872     return ExprError();
5873   }
5874 
5875   // Inspect the first argument of the atomic builtin.  This should always be
5876   // a pointer type, whose element is an integral scalar or pointer type.
5877   // Because it is a pointer type, we don't have to worry about any implicit
5878   // casts here.
5879   // FIXME: We don't allow floating point scalars as input.
5880   Expr *FirstArg = TheCall->getArg(0);
5881   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5882   if (FirstArgResult.isInvalid())
5883     return ExprError();
5884   FirstArg = FirstArgResult.get();
5885   TheCall->setArg(0, FirstArg);
5886 
5887   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5888   if (!pointerType) {
5889     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5890         << FirstArg->getType() << FirstArg->getSourceRange();
5891     return ExprError();
5892   }
5893 
5894   QualType ValType = pointerType->getPointeeType();
5895   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5896       !ValType->isBlockPointerType()) {
5897     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5898         << FirstArg->getType() << FirstArg->getSourceRange();
5899     return ExprError();
5900   }
5901 
5902   if (ValType.isConstQualified()) {
5903     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5904         << FirstArg->getType() << FirstArg->getSourceRange();
5905     return ExprError();
5906   }
5907 
5908   switch (ValType.getObjCLifetime()) {
5909   case Qualifiers::OCL_None:
5910   case Qualifiers::OCL_ExplicitNone:
5911     // okay
5912     break;
5913 
5914   case Qualifiers::OCL_Weak:
5915   case Qualifiers::OCL_Strong:
5916   case Qualifiers::OCL_Autoreleasing:
5917     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5918         << ValType << FirstArg->getSourceRange();
5919     return ExprError();
5920   }
5921 
5922   // Strip any qualifiers off ValType.
5923   ValType = ValType.getUnqualifiedType();
5924 
5925   // The majority of builtins return a value, but a few have special return
5926   // types, so allow them to override appropriately below.
5927   QualType ResultType = ValType;
5928 
5929   // We need to figure out which concrete builtin this maps onto.  For example,
5930   // __sync_fetch_and_add with a 2 byte object turns into
5931   // __sync_fetch_and_add_2.
5932 #define BUILTIN_ROW(x) \
5933   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5934     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5935 
5936   static const unsigned BuiltinIndices[][5] = {
5937     BUILTIN_ROW(__sync_fetch_and_add),
5938     BUILTIN_ROW(__sync_fetch_and_sub),
5939     BUILTIN_ROW(__sync_fetch_and_or),
5940     BUILTIN_ROW(__sync_fetch_and_and),
5941     BUILTIN_ROW(__sync_fetch_and_xor),
5942     BUILTIN_ROW(__sync_fetch_and_nand),
5943 
5944     BUILTIN_ROW(__sync_add_and_fetch),
5945     BUILTIN_ROW(__sync_sub_and_fetch),
5946     BUILTIN_ROW(__sync_and_and_fetch),
5947     BUILTIN_ROW(__sync_or_and_fetch),
5948     BUILTIN_ROW(__sync_xor_and_fetch),
5949     BUILTIN_ROW(__sync_nand_and_fetch),
5950 
5951     BUILTIN_ROW(__sync_val_compare_and_swap),
5952     BUILTIN_ROW(__sync_bool_compare_and_swap),
5953     BUILTIN_ROW(__sync_lock_test_and_set),
5954     BUILTIN_ROW(__sync_lock_release),
5955     BUILTIN_ROW(__sync_swap)
5956   };
5957 #undef BUILTIN_ROW
5958 
5959   // Determine the index of the size.
5960   unsigned SizeIndex;
5961   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5962   case 1: SizeIndex = 0; break;
5963   case 2: SizeIndex = 1; break;
5964   case 4: SizeIndex = 2; break;
5965   case 8: SizeIndex = 3; break;
5966   case 16: SizeIndex = 4; break;
5967   default:
5968     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5969         << FirstArg->getType() << FirstArg->getSourceRange();
5970     return ExprError();
5971   }
5972 
5973   // Each of these builtins has one pointer argument, followed by some number of
5974   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5975   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5976   // as the number of fixed args.
5977   unsigned BuiltinID = FDecl->getBuiltinID();
5978   unsigned BuiltinIndex, NumFixed = 1;
5979   bool WarnAboutSemanticsChange = false;
5980   switch (BuiltinID) {
5981   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5982   case Builtin::BI__sync_fetch_and_add:
5983   case Builtin::BI__sync_fetch_and_add_1:
5984   case Builtin::BI__sync_fetch_and_add_2:
5985   case Builtin::BI__sync_fetch_and_add_4:
5986   case Builtin::BI__sync_fetch_and_add_8:
5987   case Builtin::BI__sync_fetch_and_add_16:
5988     BuiltinIndex = 0;
5989     break;
5990 
5991   case Builtin::BI__sync_fetch_and_sub:
5992   case Builtin::BI__sync_fetch_and_sub_1:
5993   case Builtin::BI__sync_fetch_and_sub_2:
5994   case Builtin::BI__sync_fetch_and_sub_4:
5995   case Builtin::BI__sync_fetch_and_sub_8:
5996   case Builtin::BI__sync_fetch_and_sub_16:
5997     BuiltinIndex = 1;
5998     break;
5999 
6000   case Builtin::BI__sync_fetch_and_or:
6001   case Builtin::BI__sync_fetch_and_or_1:
6002   case Builtin::BI__sync_fetch_and_or_2:
6003   case Builtin::BI__sync_fetch_and_or_4:
6004   case Builtin::BI__sync_fetch_and_or_8:
6005   case Builtin::BI__sync_fetch_and_or_16:
6006     BuiltinIndex = 2;
6007     break;
6008 
6009   case Builtin::BI__sync_fetch_and_and:
6010   case Builtin::BI__sync_fetch_and_and_1:
6011   case Builtin::BI__sync_fetch_and_and_2:
6012   case Builtin::BI__sync_fetch_and_and_4:
6013   case Builtin::BI__sync_fetch_and_and_8:
6014   case Builtin::BI__sync_fetch_and_and_16:
6015     BuiltinIndex = 3;
6016     break;
6017 
6018   case Builtin::BI__sync_fetch_and_xor:
6019   case Builtin::BI__sync_fetch_and_xor_1:
6020   case Builtin::BI__sync_fetch_and_xor_2:
6021   case Builtin::BI__sync_fetch_and_xor_4:
6022   case Builtin::BI__sync_fetch_and_xor_8:
6023   case Builtin::BI__sync_fetch_and_xor_16:
6024     BuiltinIndex = 4;
6025     break;
6026 
6027   case Builtin::BI__sync_fetch_and_nand:
6028   case Builtin::BI__sync_fetch_and_nand_1:
6029   case Builtin::BI__sync_fetch_and_nand_2:
6030   case Builtin::BI__sync_fetch_and_nand_4:
6031   case Builtin::BI__sync_fetch_and_nand_8:
6032   case Builtin::BI__sync_fetch_and_nand_16:
6033     BuiltinIndex = 5;
6034     WarnAboutSemanticsChange = true;
6035     break;
6036 
6037   case Builtin::BI__sync_add_and_fetch:
6038   case Builtin::BI__sync_add_and_fetch_1:
6039   case Builtin::BI__sync_add_and_fetch_2:
6040   case Builtin::BI__sync_add_and_fetch_4:
6041   case Builtin::BI__sync_add_and_fetch_8:
6042   case Builtin::BI__sync_add_and_fetch_16:
6043     BuiltinIndex = 6;
6044     break;
6045 
6046   case Builtin::BI__sync_sub_and_fetch:
6047   case Builtin::BI__sync_sub_and_fetch_1:
6048   case Builtin::BI__sync_sub_and_fetch_2:
6049   case Builtin::BI__sync_sub_and_fetch_4:
6050   case Builtin::BI__sync_sub_and_fetch_8:
6051   case Builtin::BI__sync_sub_and_fetch_16:
6052     BuiltinIndex = 7;
6053     break;
6054 
6055   case Builtin::BI__sync_and_and_fetch:
6056   case Builtin::BI__sync_and_and_fetch_1:
6057   case Builtin::BI__sync_and_and_fetch_2:
6058   case Builtin::BI__sync_and_and_fetch_4:
6059   case Builtin::BI__sync_and_and_fetch_8:
6060   case Builtin::BI__sync_and_and_fetch_16:
6061     BuiltinIndex = 8;
6062     break;
6063 
6064   case Builtin::BI__sync_or_and_fetch:
6065   case Builtin::BI__sync_or_and_fetch_1:
6066   case Builtin::BI__sync_or_and_fetch_2:
6067   case Builtin::BI__sync_or_and_fetch_4:
6068   case Builtin::BI__sync_or_and_fetch_8:
6069   case Builtin::BI__sync_or_and_fetch_16:
6070     BuiltinIndex = 9;
6071     break;
6072 
6073   case Builtin::BI__sync_xor_and_fetch:
6074   case Builtin::BI__sync_xor_and_fetch_1:
6075   case Builtin::BI__sync_xor_and_fetch_2:
6076   case Builtin::BI__sync_xor_and_fetch_4:
6077   case Builtin::BI__sync_xor_and_fetch_8:
6078   case Builtin::BI__sync_xor_and_fetch_16:
6079     BuiltinIndex = 10;
6080     break;
6081 
6082   case Builtin::BI__sync_nand_and_fetch:
6083   case Builtin::BI__sync_nand_and_fetch_1:
6084   case Builtin::BI__sync_nand_and_fetch_2:
6085   case Builtin::BI__sync_nand_and_fetch_4:
6086   case Builtin::BI__sync_nand_and_fetch_8:
6087   case Builtin::BI__sync_nand_and_fetch_16:
6088     BuiltinIndex = 11;
6089     WarnAboutSemanticsChange = true;
6090     break;
6091 
6092   case Builtin::BI__sync_val_compare_and_swap:
6093   case Builtin::BI__sync_val_compare_and_swap_1:
6094   case Builtin::BI__sync_val_compare_and_swap_2:
6095   case Builtin::BI__sync_val_compare_and_swap_4:
6096   case Builtin::BI__sync_val_compare_and_swap_8:
6097   case Builtin::BI__sync_val_compare_and_swap_16:
6098     BuiltinIndex = 12;
6099     NumFixed = 2;
6100     break;
6101 
6102   case Builtin::BI__sync_bool_compare_and_swap:
6103   case Builtin::BI__sync_bool_compare_and_swap_1:
6104   case Builtin::BI__sync_bool_compare_and_swap_2:
6105   case Builtin::BI__sync_bool_compare_and_swap_4:
6106   case Builtin::BI__sync_bool_compare_and_swap_8:
6107   case Builtin::BI__sync_bool_compare_and_swap_16:
6108     BuiltinIndex = 13;
6109     NumFixed = 2;
6110     ResultType = Context.BoolTy;
6111     break;
6112 
6113   case Builtin::BI__sync_lock_test_and_set:
6114   case Builtin::BI__sync_lock_test_and_set_1:
6115   case Builtin::BI__sync_lock_test_and_set_2:
6116   case Builtin::BI__sync_lock_test_and_set_4:
6117   case Builtin::BI__sync_lock_test_and_set_8:
6118   case Builtin::BI__sync_lock_test_and_set_16:
6119     BuiltinIndex = 14;
6120     break;
6121 
6122   case Builtin::BI__sync_lock_release:
6123   case Builtin::BI__sync_lock_release_1:
6124   case Builtin::BI__sync_lock_release_2:
6125   case Builtin::BI__sync_lock_release_4:
6126   case Builtin::BI__sync_lock_release_8:
6127   case Builtin::BI__sync_lock_release_16:
6128     BuiltinIndex = 15;
6129     NumFixed = 0;
6130     ResultType = Context.VoidTy;
6131     break;
6132 
6133   case Builtin::BI__sync_swap:
6134   case Builtin::BI__sync_swap_1:
6135   case Builtin::BI__sync_swap_2:
6136   case Builtin::BI__sync_swap_4:
6137   case Builtin::BI__sync_swap_8:
6138   case Builtin::BI__sync_swap_16:
6139     BuiltinIndex = 16;
6140     break;
6141   }
6142 
6143   // Now that we know how many fixed arguments we expect, first check that we
6144   // have at least that many.
6145   if (TheCall->getNumArgs() < 1+NumFixed) {
6146     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6147         << 0 << 1 + NumFixed << TheCall->getNumArgs()
6148         << Callee->getSourceRange();
6149     return ExprError();
6150   }
6151 
6152   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6153       << Callee->getSourceRange();
6154 
6155   if (WarnAboutSemanticsChange) {
6156     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6157         << Callee->getSourceRange();
6158   }
6159 
6160   // Get the decl for the concrete builtin from this, we can tell what the
6161   // concrete integer type we should convert to is.
6162   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6163   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6164   FunctionDecl *NewBuiltinDecl;
6165   if (NewBuiltinID == BuiltinID)
6166     NewBuiltinDecl = FDecl;
6167   else {
6168     // Perform builtin lookup to avoid redeclaring it.
6169     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6170     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6171     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6172     assert(Res.getFoundDecl());
6173     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6174     if (!NewBuiltinDecl)
6175       return ExprError();
6176   }
6177 
6178   // The first argument --- the pointer --- has a fixed type; we
6179   // deduce the types of the rest of the arguments accordingly.  Walk
6180   // the remaining arguments, converting them to the deduced value type.
6181   for (unsigned i = 0; i != NumFixed; ++i) {
6182     ExprResult Arg = TheCall->getArg(i+1);
6183 
6184     // GCC does an implicit conversion to the pointer or integer ValType.  This
6185     // can fail in some cases (1i -> int**), check for this error case now.
6186     // Initialize the argument.
6187     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6188                                                    ValType, /*consume*/ false);
6189     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6190     if (Arg.isInvalid())
6191       return ExprError();
6192 
6193     // Okay, we have something that *can* be converted to the right type.  Check
6194     // to see if there is a potentially weird extension going on here.  This can
6195     // happen when you do an atomic operation on something like an char* and
6196     // pass in 42.  The 42 gets converted to char.  This is even more strange
6197     // for things like 45.123 -> char, etc.
6198     // FIXME: Do this check.
6199     TheCall->setArg(i+1, Arg.get());
6200   }
6201 
6202   // Create a new DeclRefExpr to refer to the new decl.
6203   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6204       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6205       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6206       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6207 
6208   // Set the callee in the CallExpr.
6209   // FIXME: This loses syntactic information.
6210   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6211   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6212                                               CK_BuiltinFnToFnPtr);
6213   TheCall->setCallee(PromotedCall.get());
6214 
6215   // Change the result type of the call to match the original value type. This
6216   // is arbitrary, but the codegen for these builtins ins design to handle it
6217   // gracefully.
6218   TheCall->setType(ResultType);
6219 
6220   // Prohibit use of _ExtInt with atomic builtins.
6221   // The arguments would have already been converted to the first argument's
6222   // type, so only need to check the first argument.
6223   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
6224   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
6225     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6226     return ExprError();
6227   }
6228 
6229   return TheCallResult;
6230 }
6231 
6232 /// SemaBuiltinNontemporalOverloaded - We have a call to
6233 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6234 /// overloaded function based on the pointer type of its last argument.
6235 ///
6236 /// This function goes through and does final semantic checking for these
6237 /// builtins.
6238 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6239   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6240   DeclRefExpr *DRE =
6241       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6242   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6243   unsigned BuiltinID = FDecl->getBuiltinID();
6244   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6245           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6246          "Unexpected nontemporal load/store builtin!");
6247   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6248   unsigned numArgs = isStore ? 2 : 1;
6249 
6250   // Ensure that we have the proper number of arguments.
6251   if (checkArgCount(*this, TheCall, numArgs))
6252     return ExprError();
6253 
6254   // Inspect the last argument of the nontemporal builtin.  This should always
6255   // be a pointer type, from which we imply the type of the memory access.
6256   // Because it is a pointer type, we don't have to worry about any implicit
6257   // casts here.
6258   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6259   ExprResult PointerArgResult =
6260       DefaultFunctionArrayLvalueConversion(PointerArg);
6261 
6262   if (PointerArgResult.isInvalid())
6263     return ExprError();
6264   PointerArg = PointerArgResult.get();
6265   TheCall->setArg(numArgs - 1, PointerArg);
6266 
6267   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6268   if (!pointerType) {
6269     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6270         << PointerArg->getType() << PointerArg->getSourceRange();
6271     return ExprError();
6272   }
6273 
6274   QualType ValType = pointerType->getPointeeType();
6275 
6276   // Strip any qualifiers off ValType.
6277   ValType = ValType.getUnqualifiedType();
6278   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6279       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6280       !ValType->isVectorType()) {
6281     Diag(DRE->getBeginLoc(),
6282          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6283         << PointerArg->getType() << PointerArg->getSourceRange();
6284     return ExprError();
6285   }
6286 
6287   if (!isStore) {
6288     TheCall->setType(ValType);
6289     return TheCallResult;
6290   }
6291 
6292   ExprResult ValArg = TheCall->getArg(0);
6293   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6294       Context, ValType, /*consume*/ false);
6295   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6296   if (ValArg.isInvalid())
6297     return ExprError();
6298 
6299   TheCall->setArg(0, ValArg.get());
6300   TheCall->setType(Context.VoidTy);
6301   return TheCallResult;
6302 }
6303 
6304 /// CheckObjCString - Checks that the argument to the builtin
6305 /// CFString constructor is correct
6306 /// Note: It might also make sense to do the UTF-16 conversion here (would
6307 /// simplify the backend).
6308 bool Sema::CheckObjCString(Expr *Arg) {
6309   Arg = Arg->IgnoreParenCasts();
6310   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6311 
6312   if (!Literal || !Literal->isAscii()) {
6313     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6314         << Arg->getSourceRange();
6315     return true;
6316   }
6317 
6318   if (Literal->containsNonAsciiOrNull()) {
6319     StringRef String = Literal->getString();
6320     unsigned NumBytes = String.size();
6321     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6322     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6323     llvm::UTF16 *ToPtr = &ToBuf[0];
6324 
6325     llvm::ConversionResult Result =
6326         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6327                                  ToPtr + NumBytes, llvm::strictConversion);
6328     // Check for conversion failure.
6329     if (Result != llvm::conversionOK)
6330       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6331           << Arg->getSourceRange();
6332   }
6333   return false;
6334 }
6335 
6336 /// CheckObjCString - Checks that the format string argument to the os_log()
6337 /// and os_trace() functions is correct, and converts it to const char *.
6338 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6339   Arg = Arg->IgnoreParenCasts();
6340   auto *Literal = dyn_cast<StringLiteral>(Arg);
6341   if (!Literal) {
6342     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6343       Literal = ObjcLiteral->getString();
6344     }
6345   }
6346 
6347   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6348     return ExprError(
6349         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6350         << Arg->getSourceRange());
6351   }
6352 
6353   ExprResult Result(Literal);
6354   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6355   InitializedEntity Entity =
6356       InitializedEntity::InitializeParameter(Context, ResultTy, false);
6357   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6358   return Result;
6359 }
6360 
6361 /// Check that the user is calling the appropriate va_start builtin for the
6362 /// target and calling convention.
6363 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6364   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6365   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6366   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6367                     TT.getArch() == llvm::Triple::aarch64_32);
6368   bool IsWindows = TT.isOSWindows();
6369   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6370   if (IsX64 || IsAArch64) {
6371     CallingConv CC = CC_C;
6372     if (const FunctionDecl *FD = S.getCurFunctionDecl())
6373       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6374     if (IsMSVAStart) {
6375       // Don't allow this in System V ABI functions.
6376       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6377         return S.Diag(Fn->getBeginLoc(),
6378                       diag::err_ms_va_start_used_in_sysv_function);
6379     } else {
6380       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6381       // On x64 Windows, don't allow this in System V ABI functions.
6382       // (Yes, that means there's no corresponding way to support variadic
6383       // System V ABI functions on Windows.)
6384       if ((IsWindows && CC == CC_X86_64SysV) ||
6385           (!IsWindows && CC == CC_Win64))
6386         return S.Diag(Fn->getBeginLoc(),
6387                       diag::err_va_start_used_in_wrong_abi_function)
6388                << !IsWindows;
6389     }
6390     return false;
6391   }
6392 
6393   if (IsMSVAStart)
6394     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6395   return false;
6396 }
6397 
6398 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6399                                              ParmVarDecl **LastParam = nullptr) {
6400   // Determine whether the current function, block, or obj-c method is variadic
6401   // and get its parameter list.
6402   bool IsVariadic = false;
6403   ArrayRef<ParmVarDecl *> Params;
6404   DeclContext *Caller = S.CurContext;
6405   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6406     IsVariadic = Block->isVariadic();
6407     Params = Block->parameters();
6408   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6409     IsVariadic = FD->isVariadic();
6410     Params = FD->parameters();
6411   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6412     IsVariadic = MD->isVariadic();
6413     // FIXME: This isn't correct for methods (results in bogus warning).
6414     Params = MD->parameters();
6415   } else if (isa<CapturedDecl>(Caller)) {
6416     // We don't support va_start in a CapturedDecl.
6417     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6418     return true;
6419   } else {
6420     // This must be some other declcontext that parses exprs.
6421     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6422     return true;
6423   }
6424 
6425   if (!IsVariadic) {
6426     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6427     return true;
6428   }
6429 
6430   if (LastParam)
6431     *LastParam = Params.empty() ? nullptr : Params.back();
6432 
6433   return false;
6434 }
6435 
6436 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6437 /// for validity.  Emit an error and return true on failure; return false
6438 /// on success.
6439 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6440   Expr *Fn = TheCall->getCallee();
6441 
6442   if (checkVAStartABI(*this, BuiltinID, Fn))
6443     return true;
6444 
6445   if (checkArgCount(*this, TheCall, 2))
6446     return true;
6447 
6448   // Type-check the first argument normally.
6449   if (checkBuiltinArgument(*this, TheCall, 0))
6450     return true;
6451 
6452   // Check that the current function is variadic, and get its last parameter.
6453   ParmVarDecl *LastParam;
6454   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6455     return true;
6456 
6457   // Verify that the second argument to the builtin is the last argument of the
6458   // current function or method.
6459   bool SecondArgIsLastNamedArgument = false;
6460   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6461 
6462   // These are valid if SecondArgIsLastNamedArgument is false after the next
6463   // block.
6464   QualType Type;
6465   SourceLocation ParamLoc;
6466   bool IsCRegister = false;
6467 
6468   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6469     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6470       SecondArgIsLastNamedArgument = PV == LastParam;
6471 
6472       Type = PV->getType();
6473       ParamLoc = PV->getLocation();
6474       IsCRegister =
6475           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6476     }
6477   }
6478 
6479   if (!SecondArgIsLastNamedArgument)
6480     Diag(TheCall->getArg(1)->getBeginLoc(),
6481          diag::warn_second_arg_of_va_start_not_last_named_param);
6482   else if (IsCRegister || Type->isReferenceType() ||
6483            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6484              // Promotable integers are UB, but enumerations need a bit of
6485              // extra checking to see what their promotable type actually is.
6486              if (!Type->isPromotableIntegerType())
6487                return false;
6488              if (!Type->isEnumeralType())
6489                return true;
6490              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6491              return !(ED &&
6492                       Context.typesAreCompatible(ED->getPromotionType(), Type));
6493            }()) {
6494     unsigned Reason = 0;
6495     if (Type->isReferenceType())  Reason = 1;
6496     else if (IsCRegister)         Reason = 2;
6497     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6498     Diag(ParamLoc, diag::note_parameter_type) << Type;
6499   }
6500 
6501   TheCall->setType(Context.VoidTy);
6502   return false;
6503 }
6504 
6505 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6506   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
6507     const LangOptions &LO = getLangOpts();
6508 
6509     if (LO.CPlusPlus)
6510       return Arg->getType()
6511                  .getCanonicalType()
6512                  .getTypePtr()
6513                  ->getPointeeType()
6514                  .withoutLocalFastQualifiers() == Context.CharTy;
6515 
6516     // In C, allow aliasing through `char *`, this is required for AArch64 at
6517     // least.
6518     return true;
6519   };
6520 
6521   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6522   //                 const char *named_addr);
6523 
6524   Expr *Func = Call->getCallee();
6525 
6526   if (Call->getNumArgs() < 3)
6527     return Diag(Call->getEndLoc(),
6528                 diag::err_typecheck_call_too_few_args_at_least)
6529            << 0 /*function call*/ << 3 << Call->getNumArgs();
6530 
6531   // Type-check the first argument normally.
6532   if (checkBuiltinArgument(*this, Call, 0))
6533     return true;
6534 
6535   // Check that the current function is variadic.
6536   if (checkVAStartIsInVariadicFunction(*this, Func))
6537     return true;
6538 
6539   // __va_start on Windows does not validate the parameter qualifiers
6540 
6541   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6542   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6543 
6544   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6545   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6546 
6547   const QualType &ConstCharPtrTy =
6548       Context.getPointerType(Context.CharTy.withConst());
6549   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
6550     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6551         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6552         << 0                                      /* qualifier difference */
6553         << 3                                      /* parameter mismatch */
6554         << 2 << Arg1->getType() << ConstCharPtrTy;
6555 
6556   const QualType SizeTy = Context.getSizeType();
6557   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6558     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6559         << Arg2->getType() << SizeTy << 1 /* different class */
6560         << 0                              /* qualifier difference */
6561         << 3                              /* parameter mismatch */
6562         << 3 << Arg2->getType() << SizeTy;
6563 
6564   return false;
6565 }
6566 
6567 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6568 /// friends.  This is declared to take (...), so we have to check everything.
6569 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6570   if (checkArgCount(*this, TheCall, 2))
6571     return true;
6572 
6573   ExprResult OrigArg0 = TheCall->getArg(0);
6574   ExprResult OrigArg1 = TheCall->getArg(1);
6575 
6576   // Do standard promotions between the two arguments, returning their common
6577   // type.
6578   QualType Res = UsualArithmeticConversions(
6579       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6580   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6581     return true;
6582 
6583   // Make sure any conversions are pushed back into the call; this is
6584   // type safe since unordered compare builtins are declared as "_Bool
6585   // foo(...)".
6586   TheCall->setArg(0, OrigArg0.get());
6587   TheCall->setArg(1, OrigArg1.get());
6588 
6589   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6590     return false;
6591 
6592   // If the common type isn't a real floating type, then the arguments were
6593   // invalid for this operation.
6594   if (Res.isNull() || !Res->isRealFloatingType())
6595     return Diag(OrigArg0.get()->getBeginLoc(),
6596                 diag::err_typecheck_call_invalid_ordered_compare)
6597            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6598            << SourceRange(OrigArg0.get()->getBeginLoc(),
6599                           OrigArg1.get()->getEndLoc());
6600 
6601   return false;
6602 }
6603 
6604 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6605 /// __builtin_isnan and friends.  This is declared to take (...), so we have
6606 /// to check everything. We expect the last argument to be a floating point
6607 /// value.
6608 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6609   if (checkArgCount(*this, TheCall, NumArgs))
6610     return true;
6611 
6612   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6613   // on all preceding parameters just being int.  Try all of those.
6614   for (unsigned i = 0; i < NumArgs - 1; ++i) {
6615     Expr *Arg = TheCall->getArg(i);
6616 
6617     if (Arg->isTypeDependent())
6618       return false;
6619 
6620     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6621 
6622     if (Res.isInvalid())
6623       return true;
6624     TheCall->setArg(i, Res.get());
6625   }
6626 
6627   Expr *OrigArg = TheCall->getArg(NumArgs-1);
6628 
6629   if (OrigArg->isTypeDependent())
6630     return false;
6631 
6632   // Usual Unary Conversions will convert half to float, which we want for
6633   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6634   // type how it is, but do normal L->Rvalue conversions.
6635   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6636     OrigArg = UsualUnaryConversions(OrigArg).get();
6637   else
6638     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6639   TheCall->setArg(NumArgs - 1, OrigArg);
6640 
6641   // This operation requires a non-_Complex floating-point number.
6642   if (!OrigArg->getType()->isRealFloatingType())
6643     return Diag(OrigArg->getBeginLoc(),
6644                 diag::err_typecheck_call_invalid_unary_fp)
6645            << OrigArg->getType() << OrigArg->getSourceRange();
6646 
6647   return false;
6648 }
6649 
6650 /// Perform semantic analysis for a call to __builtin_complex.
6651 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6652   if (checkArgCount(*this, TheCall, 2))
6653     return true;
6654 
6655   bool Dependent = false;
6656   for (unsigned I = 0; I != 2; ++I) {
6657     Expr *Arg = TheCall->getArg(I);
6658     QualType T = Arg->getType();
6659     if (T->isDependentType()) {
6660       Dependent = true;
6661       continue;
6662     }
6663 
6664     // Despite supporting _Complex int, GCC requires a real floating point type
6665     // for the operands of __builtin_complex.
6666     if (!T->isRealFloatingType()) {
6667       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6668              << Arg->getType() << Arg->getSourceRange();
6669     }
6670 
6671     ExprResult Converted = DefaultLvalueConversion(Arg);
6672     if (Converted.isInvalid())
6673       return true;
6674     TheCall->setArg(I, Converted.get());
6675   }
6676 
6677   if (Dependent) {
6678     TheCall->setType(Context.DependentTy);
6679     return false;
6680   }
6681 
6682   Expr *Real = TheCall->getArg(0);
6683   Expr *Imag = TheCall->getArg(1);
6684   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6685     return Diag(Real->getBeginLoc(),
6686                 diag::err_typecheck_call_different_arg_types)
6687            << Real->getType() << Imag->getType()
6688            << Real->getSourceRange() << Imag->getSourceRange();
6689   }
6690 
6691   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6692   // don't allow this builtin to form those types either.
6693   // FIXME: Should we allow these types?
6694   if (Real->getType()->isFloat16Type())
6695     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6696            << "_Float16";
6697   if (Real->getType()->isHalfType())
6698     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6699            << "half";
6700 
6701   TheCall->setType(Context.getComplexType(Real->getType()));
6702   return false;
6703 }
6704 
6705 // Customized Sema Checking for VSX builtins that have the following signature:
6706 // vector [...] builtinName(vector [...], vector [...], const int);
6707 // Which takes the same type of vectors (any legal vector type) for the first
6708 // two arguments and takes compile time constant for the third argument.
6709 // Example builtins are :
6710 // vector double vec_xxpermdi(vector double, vector double, int);
6711 // vector short vec_xxsldwi(vector short, vector short, int);
6712 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6713   unsigned ExpectedNumArgs = 3;
6714   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6715     return true;
6716 
6717   // Check the third argument is a compile time constant
6718   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6719     return Diag(TheCall->getBeginLoc(),
6720                 diag::err_vsx_builtin_nonconstant_argument)
6721            << 3 /* argument index */ << TheCall->getDirectCallee()
6722            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6723                           TheCall->getArg(2)->getEndLoc());
6724 
6725   QualType Arg1Ty = TheCall->getArg(0)->getType();
6726   QualType Arg2Ty = TheCall->getArg(1)->getType();
6727 
6728   // Check the type of argument 1 and argument 2 are vectors.
6729   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6730   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6731       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6732     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6733            << TheCall->getDirectCallee()
6734            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6735                           TheCall->getArg(1)->getEndLoc());
6736   }
6737 
6738   // Check the first two arguments are the same type.
6739   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6740     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6741            << TheCall->getDirectCallee()
6742            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6743                           TheCall->getArg(1)->getEndLoc());
6744   }
6745 
6746   // When default clang type checking is turned off and the customized type
6747   // checking is used, the returning type of the function must be explicitly
6748   // set. Otherwise it is _Bool by default.
6749   TheCall->setType(Arg1Ty);
6750 
6751   return false;
6752 }
6753 
6754 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6755 // This is declared to take (...), so we have to check everything.
6756 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6757   if (TheCall->getNumArgs() < 2)
6758     return ExprError(Diag(TheCall->getEndLoc(),
6759                           diag::err_typecheck_call_too_few_args_at_least)
6760                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6761                      << TheCall->getSourceRange());
6762 
6763   // Determine which of the following types of shufflevector we're checking:
6764   // 1) unary, vector mask: (lhs, mask)
6765   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6766   QualType resType = TheCall->getArg(0)->getType();
6767   unsigned numElements = 0;
6768 
6769   if (!TheCall->getArg(0)->isTypeDependent() &&
6770       !TheCall->getArg(1)->isTypeDependent()) {
6771     QualType LHSType = TheCall->getArg(0)->getType();
6772     QualType RHSType = TheCall->getArg(1)->getType();
6773 
6774     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6775       return ExprError(
6776           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6777           << TheCall->getDirectCallee()
6778           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6779                          TheCall->getArg(1)->getEndLoc()));
6780 
6781     numElements = LHSType->castAs<VectorType>()->getNumElements();
6782     unsigned numResElements = TheCall->getNumArgs() - 2;
6783 
6784     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6785     // with mask.  If so, verify that RHS is an integer vector type with the
6786     // same number of elts as lhs.
6787     if (TheCall->getNumArgs() == 2) {
6788       if (!RHSType->hasIntegerRepresentation() ||
6789           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6790         return ExprError(Diag(TheCall->getBeginLoc(),
6791                               diag::err_vec_builtin_incompatible_vector)
6792                          << TheCall->getDirectCallee()
6793                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6794                                         TheCall->getArg(1)->getEndLoc()));
6795     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6796       return ExprError(Diag(TheCall->getBeginLoc(),
6797                             diag::err_vec_builtin_incompatible_vector)
6798                        << TheCall->getDirectCallee()
6799                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6800                                       TheCall->getArg(1)->getEndLoc()));
6801     } else if (numElements != numResElements) {
6802       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6803       resType = Context.getVectorType(eltType, numResElements,
6804                                       VectorType::GenericVector);
6805     }
6806   }
6807 
6808   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6809     if (TheCall->getArg(i)->isTypeDependent() ||
6810         TheCall->getArg(i)->isValueDependent())
6811       continue;
6812 
6813     Optional<llvm::APSInt> Result;
6814     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6815       return ExprError(Diag(TheCall->getBeginLoc(),
6816                             diag::err_shufflevector_nonconstant_argument)
6817                        << TheCall->getArg(i)->getSourceRange());
6818 
6819     // Allow -1 which will be translated to undef in the IR.
6820     if (Result->isSigned() && Result->isAllOnes())
6821       continue;
6822 
6823     if (Result->getActiveBits() > 64 ||
6824         Result->getZExtValue() >= numElements * 2)
6825       return ExprError(Diag(TheCall->getBeginLoc(),
6826                             diag::err_shufflevector_argument_too_large)
6827                        << TheCall->getArg(i)->getSourceRange());
6828   }
6829 
6830   SmallVector<Expr*, 32> exprs;
6831 
6832   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6833     exprs.push_back(TheCall->getArg(i));
6834     TheCall->setArg(i, nullptr);
6835   }
6836 
6837   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6838                                          TheCall->getCallee()->getBeginLoc(),
6839                                          TheCall->getRParenLoc());
6840 }
6841 
6842 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6843 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6844                                        SourceLocation BuiltinLoc,
6845                                        SourceLocation RParenLoc) {
6846   ExprValueKind VK = VK_PRValue;
6847   ExprObjectKind OK = OK_Ordinary;
6848   QualType DstTy = TInfo->getType();
6849   QualType SrcTy = E->getType();
6850 
6851   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6852     return ExprError(Diag(BuiltinLoc,
6853                           diag::err_convertvector_non_vector)
6854                      << E->getSourceRange());
6855   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6856     return ExprError(Diag(BuiltinLoc,
6857                           diag::err_convertvector_non_vector_type));
6858 
6859   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6860     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6861     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6862     if (SrcElts != DstElts)
6863       return ExprError(Diag(BuiltinLoc,
6864                             diag::err_convertvector_incompatible_vector)
6865                        << E->getSourceRange());
6866   }
6867 
6868   return new (Context)
6869       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6870 }
6871 
6872 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6873 // This is declared to take (const void*, ...) and can take two
6874 // optional constant int args.
6875 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6876   unsigned NumArgs = TheCall->getNumArgs();
6877 
6878   if (NumArgs > 3)
6879     return Diag(TheCall->getEndLoc(),
6880                 diag::err_typecheck_call_too_many_args_at_most)
6881            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6882 
6883   // Argument 0 is checked for us and the remaining arguments must be
6884   // constant integers.
6885   for (unsigned i = 1; i != NumArgs; ++i)
6886     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6887       return true;
6888 
6889   return false;
6890 }
6891 
6892 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
6893 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
6894   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
6895     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
6896            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6897   if (checkArgCount(*this, TheCall, 1))
6898     return true;
6899   Expr *Arg = TheCall->getArg(0);
6900   if (Arg->isInstantiationDependent())
6901     return false;
6902 
6903   QualType ArgTy = Arg->getType();
6904   if (!ArgTy->hasFloatingRepresentation())
6905     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
6906            << ArgTy;
6907   if (Arg->isLValue()) {
6908     ExprResult FirstArg = DefaultLvalueConversion(Arg);
6909     TheCall->setArg(0, FirstArg.get());
6910   }
6911   TheCall->setType(TheCall->getArg(0)->getType());
6912   return false;
6913 }
6914 
6915 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6916 // __assume does not evaluate its arguments, and should warn if its argument
6917 // has side effects.
6918 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6919   Expr *Arg = TheCall->getArg(0);
6920   if (Arg->isInstantiationDependent()) return false;
6921 
6922   if (Arg->HasSideEffects(Context))
6923     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6924         << Arg->getSourceRange()
6925         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6926 
6927   return false;
6928 }
6929 
6930 /// Handle __builtin_alloca_with_align. This is declared
6931 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6932 /// than 8.
6933 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6934   // The alignment must be a constant integer.
6935   Expr *Arg = TheCall->getArg(1);
6936 
6937   // We can't check the value of a dependent argument.
6938   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6939     if (const auto *UE =
6940             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6941       if (UE->getKind() == UETT_AlignOf ||
6942           UE->getKind() == UETT_PreferredAlignOf)
6943         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6944             << Arg->getSourceRange();
6945 
6946     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6947 
6948     if (!Result.isPowerOf2())
6949       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6950              << Arg->getSourceRange();
6951 
6952     if (Result < Context.getCharWidth())
6953       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6954              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6955 
6956     if (Result > std::numeric_limits<int32_t>::max())
6957       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6958              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6959   }
6960 
6961   return false;
6962 }
6963 
6964 /// Handle __builtin_assume_aligned. This is declared
6965 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6966 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6967   unsigned NumArgs = TheCall->getNumArgs();
6968 
6969   if (NumArgs > 3)
6970     return Diag(TheCall->getEndLoc(),
6971                 diag::err_typecheck_call_too_many_args_at_most)
6972            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6973 
6974   // The alignment must be a constant integer.
6975   Expr *Arg = TheCall->getArg(1);
6976 
6977   // We can't check the value of a dependent argument.
6978   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6979     llvm::APSInt Result;
6980     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6981       return true;
6982 
6983     if (!Result.isPowerOf2())
6984       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6985              << Arg->getSourceRange();
6986 
6987     if (Result > Sema::MaximumAlignment)
6988       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6989           << Arg->getSourceRange() << Sema::MaximumAlignment;
6990   }
6991 
6992   if (NumArgs > 2) {
6993     ExprResult Arg(TheCall->getArg(2));
6994     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6995       Context.getSizeType(), false);
6996     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6997     if (Arg.isInvalid()) return true;
6998     TheCall->setArg(2, Arg.get());
6999   }
7000 
7001   return false;
7002 }
7003 
7004 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
7005   unsigned BuiltinID =
7006       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
7007   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
7008 
7009   unsigned NumArgs = TheCall->getNumArgs();
7010   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
7011   if (NumArgs < NumRequiredArgs) {
7012     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
7013            << 0 /* function call */ << NumRequiredArgs << NumArgs
7014            << TheCall->getSourceRange();
7015   }
7016   if (NumArgs >= NumRequiredArgs + 0x100) {
7017     return Diag(TheCall->getEndLoc(),
7018                 diag::err_typecheck_call_too_many_args_at_most)
7019            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7020            << TheCall->getSourceRange();
7021   }
7022   unsigned i = 0;
7023 
7024   // For formatting call, check buffer arg.
7025   if (!IsSizeCall) {
7026     ExprResult Arg(TheCall->getArg(i));
7027     InitializedEntity Entity = InitializedEntity::InitializeParameter(
7028         Context, Context.VoidPtrTy, false);
7029     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7030     if (Arg.isInvalid())
7031       return true;
7032     TheCall->setArg(i, Arg.get());
7033     i++;
7034   }
7035 
7036   // Check string literal arg.
7037   unsigned FormatIdx = i;
7038   {
7039     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7040     if (Arg.isInvalid())
7041       return true;
7042     TheCall->setArg(i, Arg.get());
7043     i++;
7044   }
7045 
7046   // Make sure variadic args are scalar.
7047   unsigned FirstDataArg = i;
7048   while (i < NumArgs) {
7049     ExprResult Arg = DefaultVariadicArgumentPromotion(
7050         TheCall->getArg(i), VariadicFunction, nullptr);
7051     if (Arg.isInvalid())
7052       return true;
7053     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7054     if (ArgSize.getQuantity() >= 0x100) {
7055       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7056              << i << (int)ArgSize.getQuantity() << 0xff
7057              << TheCall->getSourceRange();
7058     }
7059     TheCall->setArg(i, Arg.get());
7060     i++;
7061   }
7062 
7063   // Check formatting specifiers. NOTE: We're only doing this for the non-size
7064   // call to avoid duplicate diagnostics.
7065   if (!IsSizeCall) {
7066     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7067     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7068     bool Success = CheckFormatArguments(
7069         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
7070         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7071         CheckedVarArgs);
7072     if (!Success)
7073       return true;
7074   }
7075 
7076   if (IsSizeCall) {
7077     TheCall->setType(Context.getSizeType());
7078   } else {
7079     TheCall->setType(Context.VoidPtrTy);
7080   }
7081   return false;
7082 }
7083 
7084 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7085 /// TheCall is a constant expression.
7086 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7087                                   llvm::APSInt &Result) {
7088   Expr *Arg = TheCall->getArg(ArgNum);
7089   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7090   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7091 
7092   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7093 
7094   Optional<llvm::APSInt> R;
7095   if (!(R = Arg->getIntegerConstantExpr(Context)))
7096     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7097            << FDecl->getDeclName() << Arg->getSourceRange();
7098   Result = *R;
7099   return false;
7100 }
7101 
7102 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7103 /// TheCall is a constant expression in the range [Low, High].
7104 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7105                                        int Low, int High, bool RangeIsError) {
7106   if (isConstantEvaluated())
7107     return false;
7108   llvm::APSInt Result;
7109 
7110   // We can't check the value of a dependent argument.
7111   Expr *Arg = TheCall->getArg(ArgNum);
7112   if (Arg->isTypeDependent() || Arg->isValueDependent())
7113     return false;
7114 
7115   // Check constant-ness first.
7116   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7117     return true;
7118 
7119   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7120     if (RangeIsError)
7121       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7122              << toString(Result, 10) << Low << High << Arg->getSourceRange();
7123     else
7124       // Defer the warning until we know if the code will be emitted so that
7125       // dead code can ignore this.
7126       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7127                           PDiag(diag::warn_argument_invalid_range)
7128                               << toString(Result, 10) << Low << High
7129                               << Arg->getSourceRange());
7130   }
7131 
7132   return false;
7133 }
7134 
7135 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7136 /// TheCall is a constant expression is a multiple of Num..
7137 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7138                                           unsigned Num) {
7139   llvm::APSInt Result;
7140 
7141   // We can't check the value of a dependent argument.
7142   Expr *Arg = TheCall->getArg(ArgNum);
7143   if (Arg->isTypeDependent() || Arg->isValueDependent())
7144     return false;
7145 
7146   // Check constant-ness first.
7147   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7148     return true;
7149 
7150   if (Result.getSExtValue() % Num != 0)
7151     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7152            << Num << Arg->getSourceRange();
7153 
7154   return false;
7155 }
7156 
7157 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7158 /// constant expression representing a power of 2.
7159 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7160   llvm::APSInt Result;
7161 
7162   // We can't check the value of a dependent argument.
7163   Expr *Arg = TheCall->getArg(ArgNum);
7164   if (Arg->isTypeDependent() || Arg->isValueDependent())
7165     return false;
7166 
7167   // Check constant-ness first.
7168   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7169     return true;
7170 
7171   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7172   // and only if x is a power of 2.
7173   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7174     return false;
7175 
7176   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7177          << Arg->getSourceRange();
7178 }
7179 
7180 static bool IsShiftedByte(llvm::APSInt Value) {
7181   if (Value.isNegative())
7182     return false;
7183 
7184   // Check if it's a shifted byte, by shifting it down
7185   while (true) {
7186     // If the value fits in the bottom byte, the check passes.
7187     if (Value < 0x100)
7188       return true;
7189 
7190     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7191     // fails.
7192     if ((Value & 0xFF) != 0)
7193       return false;
7194 
7195     // If the bottom 8 bits are all 0, but something above that is nonzero,
7196     // then shifting the value right by 8 bits won't affect whether it's a
7197     // shifted byte or not. So do that, and go round again.
7198     Value >>= 8;
7199   }
7200 }
7201 
7202 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7203 /// a constant expression representing an arbitrary byte value shifted left by
7204 /// a multiple of 8 bits.
7205 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7206                                              unsigned ArgBits) {
7207   llvm::APSInt Result;
7208 
7209   // We can't check the value of a dependent argument.
7210   Expr *Arg = TheCall->getArg(ArgNum);
7211   if (Arg->isTypeDependent() || Arg->isValueDependent())
7212     return false;
7213 
7214   // Check constant-ness first.
7215   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7216     return true;
7217 
7218   // Truncate to the given size.
7219   Result = Result.getLoBits(ArgBits);
7220   Result.setIsUnsigned(true);
7221 
7222   if (IsShiftedByte(Result))
7223     return false;
7224 
7225   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7226          << Arg->getSourceRange();
7227 }
7228 
7229 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7230 /// TheCall is a constant expression representing either a shifted byte value,
7231 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7232 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7233 /// Arm MVE intrinsics.
7234 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7235                                                    int ArgNum,
7236                                                    unsigned ArgBits) {
7237   llvm::APSInt Result;
7238 
7239   // We can't check the value of a dependent argument.
7240   Expr *Arg = TheCall->getArg(ArgNum);
7241   if (Arg->isTypeDependent() || Arg->isValueDependent())
7242     return false;
7243 
7244   // Check constant-ness first.
7245   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7246     return true;
7247 
7248   // Truncate to the given size.
7249   Result = Result.getLoBits(ArgBits);
7250   Result.setIsUnsigned(true);
7251 
7252   // Check to see if it's in either of the required forms.
7253   if (IsShiftedByte(Result) ||
7254       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7255     return false;
7256 
7257   return Diag(TheCall->getBeginLoc(),
7258               diag::err_argument_not_shifted_byte_or_xxff)
7259          << Arg->getSourceRange();
7260 }
7261 
7262 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7263 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7264   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7265     if (checkArgCount(*this, TheCall, 2))
7266       return true;
7267     Expr *Arg0 = TheCall->getArg(0);
7268     Expr *Arg1 = TheCall->getArg(1);
7269 
7270     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7271     if (FirstArg.isInvalid())
7272       return true;
7273     QualType FirstArgType = FirstArg.get()->getType();
7274     if (!FirstArgType->isAnyPointerType())
7275       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7276                << "first" << FirstArgType << Arg0->getSourceRange();
7277     TheCall->setArg(0, FirstArg.get());
7278 
7279     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7280     if (SecArg.isInvalid())
7281       return true;
7282     QualType SecArgType = SecArg.get()->getType();
7283     if (!SecArgType->isIntegerType())
7284       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7285                << "second" << SecArgType << Arg1->getSourceRange();
7286 
7287     // Derive the return type from the pointer argument.
7288     TheCall->setType(FirstArgType);
7289     return false;
7290   }
7291 
7292   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7293     if (checkArgCount(*this, TheCall, 2))
7294       return true;
7295 
7296     Expr *Arg0 = TheCall->getArg(0);
7297     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7298     if (FirstArg.isInvalid())
7299       return true;
7300     QualType FirstArgType = FirstArg.get()->getType();
7301     if (!FirstArgType->isAnyPointerType())
7302       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7303                << "first" << FirstArgType << Arg0->getSourceRange();
7304     TheCall->setArg(0, FirstArg.get());
7305 
7306     // Derive the return type from the pointer argument.
7307     TheCall->setType(FirstArgType);
7308 
7309     // Second arg must be an constant in range [0,15]
7310     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7311   }
7312 
7313   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7314     if (checkArgCount(*this, TheCall, 2))
7315       return true;
7316     Expr *Arg0 = TheCall->getArg(0);
7317     Expr *Arg1 = TheCall->getArg(1);
7318 
7319     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7320     if (FirstArg.isInvalid())
7321       return true;
7322     QualType FirstArgType = FirstArg.get()->getType();
7323     if (!FirstArgType->isAnyPointerType())
7324       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7325                << "first" << FirstArgType << Arg0->getSourceRange();
7326 
7327     QualType SecArgType = Arg1->getType();
7328     if (!SecArgType->isIntegerType())
7329       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7330                << "second" << SecArgType << Arg1->getSourceRange();
7331     TheCall->setType(Context.IntTy);
7332     return false;
7333   }
7334 
7335   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7336       BuiltinID == AArch64::BI__builtin_arm_stg) {
7337     if (checkArgCount(*this, TheCall, 1))
7338       return true;
7339     Expr *Arg0 = TheCall->getArg(0);
7340     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7341     if (FirstArg.isInvalid())
7342       return true;
7343 
7344     QualType FirstArgType = FirstArg.get()->getType();
7345     if (!FirstArgType->isAnyPointerType())
7346       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7347                << "first" << FirstArgType << Arg0->getSourceRange();
7348     TheCall->setArg(0, FirstArg.get());
7349 
7350     // Derive the return type from the pointer argument.
7351     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7352       TheCall->setType(FirstArgType);
7353     return false;
7354   }
7355 
7356   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7357     Expr *ArgA = TheCall->getArg(0);
7358     Expr *ArgB = TheCall->getArg(1);
7359 
7360     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7361     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7362 
7363     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7364       return true;
7365 
7366     QualType ArgTypeA = ArgExprA.get()->getType();
7367     QualType ArgTypeB = ArgExprB.get()->getType();
7368 
7369     auto isNull = [&] (Expr *E) -> bool {
7370       return E->isNullPointerConstant(
7371                         Context, Expr::NPC_ValueDependentIsNotNull); };
7372 
7373     // argument should be either a pointer or null
7374     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7375       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7376         << "first" << ArgTypeA << ArgA->getSourceRange();
7377 
7378     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7379       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7380         << "second" << ArgTypeB << ArgB->getSourceRange();
7381 
7382     // Ensure Pointee types are compatible
7383     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7384         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7385       QualType pointeeA = ArgTypeA->getPointeeType();
7386       QualType pointeeB = ArgTypeB->getPointeeType();
7387       if (!Context.typesAreCompatible(
7388              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7389              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7390         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7391           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
7392           << ArgB->getSourceRange();
7393       }
7394     }
7395 
7396     // at least one argument should be pointer type
7397     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7398       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7399         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7400 
7401     if (isNull(ArgA)) // adopt type of the other pointer
7402       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7403 
7404     if (isNull(ArgB))
7405       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7406 
7407     TheCall->setArg(0, ArgExprA.get());
7408     TheCall->setArg(1, ArgExprB.get());
7409     TheCall->setType(Context.LongLongTy);
7410     return false;
7411   }
7412   assert(false && "Unhandled ARM MTE intrinsic");
7413   return true;
7414 }
7415 
7416 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7417 /// TheCall is an ARM/AArch64 special register string literal.
7418 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7419                                     int ArgNum, unsigned ExpectedFieldNum,
7420                                     bool AllowName) {
7421   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7422                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7423                       BuiltinID == ARM::BI__builtin_arm_rsr ||
7424                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7425                       BuiltinID == ARM::BI__builtin_arm_wsr ||
7426                       BuiltinID == ARM::BI__builtin_arm_wsrp;
7427   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7428                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7429                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
7430                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7431                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
7432                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
7433   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
7434 
7435   // We can't check the value of a dependent argument.
7436   Expr *Arg = TheCall->getArg(ArgNum);
7437   if (Arg->isTypeDependent() || Arg->isValueDependent())
7438     return false;
7439 
7440   // Check if the argument is a string literal.
7441   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7442     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7443            << Arg->getSourceRange();
7444 
7445   // Check the type of special register given.
7446   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7447   SmallVector<StringRef, 6> Fields;
7448   Reg.split(Fields, ":");
7449 
7450   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7451     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7452            << Arg->getSourceRange();
7453 
7454   // If the string is the name of a register then we cannot check that it is
7455   // valid here but if the string is of one the forms described in ACLE then we
7456   // can check that the supplied fields are integers and within the valid
7457   // ranges.
7458   if (Fields.size() > 1) {
7459     bool FiveFields = Fields.size() == 5;
7460 
7461     bool ValidString = true;
7462     if (IsARMBuiltin) {
7463       ValidString &= Fields[0].startswith_insensitive("cp") ||
7464                      Fields[0].startswith_insensitive("p");
7465       if (ValidString)
7466         Fields[0] = Fields[0].drop_front(
7467             Fields[0].startswith_insensitive("cp") ? 2 : 1);
7468 
7469       ValidString &= Fields[2].startswith_insensitive("c");
7470       if (ValidString)
7471         Fields[2] = Fields[2].drop_front(1);
7472 
7473       if (FiveFields) {
7474         ValidString &= Fields[3].startswith_insensitive("c");
7475         if (ValidString)
7476           Fields[3] = Fields[3].drop_front(1);
7477       }
7478     }
7479 
7480     SmallVector<int, 5> Ranges;
7481     if (FiveFields)
7482       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7483     else
7484       Ranges.append({15, 7, 15});
7485 
7486     for (unsigned i=0; i<Fields.size(); ++i) {
7487       int IntField;
7488       ValidString &= !Fields[i].getAsInteger(10, IntField);
7489       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7490     }
7491 
7492     if (!ValidString)
7493       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7494              << Arg->getSourceRange();
7495   } else if (IsAArch64Builtin && Fields.size() == 1) {
7496     // If the register name is one of those that appear in the condition below
7497     // and the special register builtin being used is one of the write builtins,
7498     // then we require that the argument provided for writing to the register
7499     // is an integer constant expression. This is because it will be lowered to
7500     // an MSR (immediate) instruction, so we need to know the immediate at
7501     // compile time.
7502     if (TheCall->getNumArgs() != 2)
7503       return false;
7504 
7505     std::string RegLower = Reg.lower();
7506     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7507         RegLower != "pan" && RegLower != "uao")
7508       return false;
7509 
7510     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7511   }
7512 
7513   return false;
7514 }
7515 
7516 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7517 /// Emit an error and return true on failure; return false on success.
7518 /// TypeStr is a string containing the type descriptor of the value returned by
7519 /// the builtin and the descriptors of the expected type of the arguments.
7520 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
7521                                  const char *TypeStr) {
7522 
7523   assert((TypeStr[0] != '\0') &&
7524          "Invalid types in PPC MMA builtin declaration");
7525 
7526   switch (BuiltinID) {
7527   default:
7528     // This function is called in CheckPPCBuiltinFunctionCall where the
7529     // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
7530     // we are isolating the pair vector memop builtins that can be used with mma
7531     // off so the default case is every builtin that requires mma and paired
7532     // vector memops.
7533     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7534                          diag::err_ppc_builtin_only_on_arch, "10") ||
7535         SemaFeatureCheck(*this, TheCall, "mma",
7536                          diag::err_ppc_builtin_only_on_arch, "10"))
7537       return true;
7538     break;
7539   case PPC::BI__builtin_vsx_lxvp:
7540   case PPC::BI__builtin_vsx_stxvp:
7541   case PPC::BI__builtin_vsx_assemble_pair:
7542   case PPC::BI__builtin_vsx_disassemble_pair:
7543     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7544                          diag::err_ppc_builtin_only_on_arch, "10"))
7545       return true;
7546     break;
7547   }
7548 
7549   unsigned Mask = 0;
7550   unsigned ArgNum = 0;
7551 
7552   // The first type in TypeStr is the type of the value returned by the
7553   // builtin. So we first read that type and change the type of TheCall.
7554   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7555   TheCall->setType(type);
7556 
7557   while (*TypeStr != '\0') {
7558     Mask = 0;
7559     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7560     if (ArgNum >= TheCall->getNumArgs()) {
7561       ArgNum++;
7562       break;
7563     }
7564 
7565     Expr *Arg = TheCall->getArg(ArgNum);
7566     QualType PassedType = Arg->getType();
7567     QualType StrippedRVType = PassedType.getCanonicalType();
7568 
7569     // Strip Restrict/Volatile qualifiers.
7570     if (StrippedRVType.isRestrictQualified() ||
7571         StrippedRVType.isVolatileQualified())
7572       StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
7573 
7574     // The only case where the argument type and expected type are allowed to
7575     // mismatch is if the argument type is a non-void pointer (or array) and
7576     // expected type is a void pointer.
7577     if (StrippedRVType != ExpectedType)
7578       if (!(ExpectedType->isVoidPointerType() &&
7579             (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
7580         return Diag(Arg->getBeginLoc(),
7581                     diag::err_typecheck_convert_incompatible)
7582                << PassedType << ExpectedType << 1 << 0 << 0;
7583 
7584     // If the value of the Mask is not 0, we have a constraint in the size of
7585     // the integer argument so here we ensure the argument is a constant that
7586     // is in the valid range.
7587     if (Mask != 0 &&
7588         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7589       return true;
7590 
7591     ArgNum++;
7592   }
7593 
7594   // In case we exited early from the previous loop, there are other types to
7595   // read from TypeStr. So we need to read them all to ensure we have the right
7596   // number of arguments in TheCall and if it is not the case, to display a
7597   // better error message.
7598   while (*TypeStr != '\0') {
7599     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7600     ArgNum++;
7601   }
7602   if (checkArgCount(*this, TheCall, ArgNum))
7603     return true;
7604 
7605   return false;
7606 }
7607 
7608 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7609 /// This checks that the target supports __builtin_longjmp and
7610 /// that val is a constant 1.
7611 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7612   if (!Context.getTargetInfo().hasSjLjLowering())
7613     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7614            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7615 
7616   Expr *Arg = TheCall->getArg(1);
7617   llvm::APSInt Result;
7618 
7619   // TODO: This is less than ideal. Overload this to take a value.
7620   if (SemaBuiltinConstantArg(TheCall, 1, Result))
7621     return true;
7622 
7623   if (Result != 1)
7624     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7625            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7626 
7627   return false;
7628 }
7629 
7630 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7631 /// This checks that the target supports __builtin_setjmp.
7632 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7633   if (!Context.getTargetInfo().hasSjLjLowering())
7634     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7635            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7636   return false;
7637 }
7638 
7639 namespace {
7640 
7641 class UncoveredArgHandler {
7642   enum { Unknown = -1, AllCovered = -2 };
7643 
7644   signed FirstUncoveredArg = Unknown;
7645   SmallVector<const Expr *, 4> DiagnosticExprs;
7646 
7647 public:
7648   UncoveredArgHandler() = default;
7649 
7650   bool hasUncoveredArg() const {
7651     return (FirstUncoveredArg >= 0);
7652   }
7653 
7654   unsigned getUncoveredArg() const {
7655     assert(hasUncoveredArg() && "no uncovered argument");
7656     return FirstUncoveredArg;
7657   }
7658 
7659   void setAllCovered() {
7660     // A string has been found with all arguments covered, so clear out
7661     // the diagnostics.
7662     DiagnosticExprs.clear();
7663     FirstUncoveredArg = AllCovered;
7664   }
7665 
7666   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7667     assert(NewFirstUncoveredArg >= 0 && "Outside range");
7668 
7669     // Don't update if a previous string covers all arguments.
7670     if (FirstUncoveredArg == AllCovered)
7671       return;
7672 
7673     // UncoveredArgHandler tracks the highest uncovered argument index
7674     // and with it all the strings that match this index.
7675     if (NewFirstUncoveredArg == FirstUncoveredArg)
7676       DiagnosticExprs.push_back(StrExpr);
7677     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7678       DiagnosticExprs.clear();
7679       DiagnosticExprs.push_back(StrExpr);
7680       FirstUncoveredArg = NewFirstUncoveredArg;
7681     }
7682   }
7683 
7684   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7685 };
7686 
7687 enum StringLiteralCheckType {
7688   SLCT_NotALiteral,
7689   SLCT_UncheckedLiteral,
7690   SLCT_CheckedLiteral
7691 };
7692 
7693 } // namespace
7694 
7695 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7696                                      BinaryOperatorKind BinOpKind,
7697                                      bool AddendIsRight) {
7698   unsigned BitWidth = Offset.getBitWidth();
7699   unsigned AddendBitWidth = Addend.getBitWidth();
7700   // There might be negative interim results.
7701   if (Addend.isUnsigned()) {
7702     Addend = Addend.zext(++AddendBitWidth);
7703     Addend.setIsSigned(true);
7704   }
7705   // Adjust the bit width of the APSInts.
7706   if (AddendBitWidth > BitWidth) {
7707     Offset = Offset.sext(AddendBitWidth);
7708     BitWidth = AddendBitWidth;
7709   } else if (BitWidth > AddendBitWidth) {
7710     Addend = Addend.sext(BitWidth);
7711   }
7712 
7713   bool Ov = false;
7714   llvm::APSInt ResOffset = Offset;
7715   if (BinOpKind == BO_Add)
7716     ResOffset = Offset.sadd_ov(Addend, Ov);
7717   else {
7718     assert(AddendIsRight && BinOpKind == BO_Sub &&
7719            "operator must be add or sub with addend on the right");
7720     ResOffset = Offset.ssub_ov(Addend, Ov);
7721   }
7722 
7723   // We add an offset to a pointer here so we should support an offset as big as
7724   // possible.
7725   if (Ov) {
7726     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
7727            "index (intermediate) result too big");
7728     Offset = Offset.sext(2 * BitWidth);
7729     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7730     return;
7731   }
7732 
7733   Offset = ResOffset;
7734 }
7735 
7736 namespace {
7737 
7738 // This is a wrapper class around StringLiteral to support offsetted string
7739 // literals as format strings. It takes the offset into account when returning
7740 // the string and its length or the source locations to display notes correctly.
7741 class FormatStringLiteral {
7742   const StringLiteral *FExpr;
7743   int64_t Offset;
7744 
7745  public:
7746   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7747       : FExpr(fexpr), Offset(Offset) {}
7748 
7749   StringRef getString() const {
7750     return FExpr->getString().drop_front(Offset);
7751   }
7752 
7753   unsigned getByteLength() const {
7754     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7755   }
7756 
7757   unsigned getLength() const { return FExpr->getLength() - Offset; }
7758   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7759 
7760   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7761 
7762   QualType getType() const { return FExpr->getType(); }
7763 
7764   bool isAscii() const { return FExpr->isAscii(); }
7765   bool isWide() const { return FExpr->isWide(); }
7766   bool isUTF8() const { return FExpr->isUTF8(); }
7767   bool isUTF16() const { return FExpr->isUTF16(); }
7768   bool isUTF32() const { return FExpr->isUTF32(); }
7769   bool isPascal() const { return FExpr->isPascal(); }
7770 
7771   SourceLocation getLocationOfByte(
7772       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7773       const TargetInfo &Target, unsigned *StartToken = nullptr,
7774       unsigned *StartTokenByteOffset = nullptr) const {
7775     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7776                                     StartToken, StartTokenByteOffset);
7777   }
7778 
7779   SourceLocation getBeginLoc() const LLVM_READONLY {
7780     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7781   }
7782 
7783   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7784 };
7785 
7786 }  // namespace
7787 
7788 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7789                               const Expr *OrigFormatExpr,
7790                               ArrayRef<const Expr *> Args,
7791                               bool HasVAListArg, unsigned format_idx,
7792                               unsigned firstDataArg,
7793                               Sema::FormatStringType Type,
7794                               bool inFunctionCall,
7795                               Sema::VariadicCallType CallType,
7796                               llvm::SmallBitVector &CheckedVarArgs,
7797                               UncoveredArgHandler &UncoveredArg,
7798                               bool IgnoreStringsWithoutSpecifiers);
7799 
7800 // Determine if an expression is a string literal or constant string.
7801 // If this function returns false on the arguments to a function expecting a
7802 // format string, we will usually need to emit a warning.
7803 // True string literals are then checked by CheckFormatString.
7804 static StringLiteralCheckType
7805 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7806                       bool HasVAListArg, unsigned format_idx,
7807                       unsigned firstDataArg, Sema::FormatStringType Type,
7808                       Sema::VariadicCallType CallType, bool InFunctionCall,
7809                       llvm::SmallBitVector &CheckedVarArgs,
7810                       UncoveredArgHandler &UncoveredArg,
7811                       llvm::APSInt Offset,
7812                       bool IgnoreStringsWithoutSpecifiers = false) {
7813   if (S.isConstantEvaluated())
7814     return SLCT_NotALiteral;
7815  tryAgain:
7816   assert(Offset.isSigned() && "invalid offset");
7817 
7818   if (E->isTypeDependent() || E->isValueDependent())
7819     return SLCT_NotALiteral;
7820 
7821   E = E->IgnoreParenCasts();
7822 
7823   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7824     // Technically -Wformat-nonliteral does not warn about this case.
7825     // The behavior of printf and friends in this case is implementation
7826     // dependent.  Ideally if the format string cannot be null then
7827     // it should have a 'nonnull' attribute in the function prototype.
7828     return SLCT_UncheckedLiteral;
7829 
7830   switch (E->getStmtClass()) {
7831   case Stmt::BinaryConditionalOperatorClass:
7832   case Stmt::ConditionalOperatorClass: {
7833     // The expression is a literal if both sub-expressions were, and it was
7834     // completely checked only if both sub-expressions were checked.
7835     const AbstractConditionalOperator *C =
7836         cast<AbstractConditionalOperator>(E);
7837 
7838     // Determine whether it is necessary to check both sub-expressions, for
7839     // example, because the condition expression is a constant that can be
7840     // evaluated at compile time.
7841     bool CheckLeft = true, CheckRight = true;
7842 
7843     bool Cond;
7844     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7845                                                  S.isConstantEvaluated())) {
7846       if (Cond)
7847         CheckRight = false;
7848       else
7849         CheckLeft = false;
7850     }
7851 
7852     // We need to maintain the offsets for the right and the left hand side
7853     // separately to check if every possible indexed expression is a valid
7854     // string literal. They might have different offsets for different string
7855     // literals in the end.
7856     StringLiteralCheckType Left;
7857     if (!CheckLeft)
7858       Left = SLCT_UncheckedLiteral;
7859     else {
7860       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7861                                    HasVAListArg, format_idx, firstDataArg,
7862                                    Type, CallType, InFunctionCall,
7863                                    CheckedVarArgs, UncoveredArg, Offset,
7864                                    IgnoreStringsWithoutSpecifiers);
7865       if (Left == SLCT_NotALiteral || !CheckRight) {
7866         return Left;
7867       }
7868     }
7869 
7870     StringLiteralCheckType Right = checkFormatStringExpr(
7871         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7872         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7873         IgnoreStringsWithoutSpecifiers);
7874 
7875     return (CheckLeft && Left < Right) ? Left : Right;
7876   }
7877 
7878   case Stmt::ImplicitCastExprClass:
7879     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7880     goto tryAgain;
7881 
7882   case Stmt::OpaqueValueExprClass:
7883     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7884       E = src;
7885       goto tryAgain;
7886     }
7887     return SLCT_NotALiteral;
7888 
7889   case Stmt::PredefinedExprClass:
7890     // While __func__, etc., are technically not string literals, they
7891     // cannot contain format specifiers and thus are not a security
7892     // liability.
7893     return SLCT_UncheckedLiteral;
7894 
7895   case Stmt::DeclRefExprClass: {
7896     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7897 
7898     // As an exception, do not flag errors for variables binding to
7899     // const string literals.
7900     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7901       bool isConstant = false;
7902       QualType T = DR->getType();
7903 
7904       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7905         isConstant = AT->getElementType().isConstant(S.Context);
7906       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7907         isConstant = T.isConstant(S.Context) &&
7908                      PT->getPointeeType().isConstant(S.Context);
7909       } else if (T->isObjCObjectPointerType()) {
7910         // In ObjC, there is usually no "const ObjectPointer" type,
7911         // so don't check if the pointee type is constant.
7912         isConstant = T.isConstant(S.Context);
7913       }
7914 
7915       if (isConstant) {
7916         if (const Expr *Init = VD->getAnyInitializer()) {
7917           // Look through initializers like const char c[] = { "foo" }
7918           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7919             if (InitList->isStringLiteralInit())
7920               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7921           }
7922           return checkFormatStringExpr(S, Init, Args,
7923                                        HasVAListArg, format_idx,
7924                                        firstDataArg, Type, CallType,
7925                                        /*InFunctionCall*/ false, CheckedVarArgs,
7926                                        UncoveredArg, Offset);
7927         }
7928       }
7929 
7930       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7931       // special check to see if the format string is a function parameter
7932       // of the function calling the printf function.  If the function
7933       // has an attribute indicating it is a printf-like function, then we
7934       // should suppress warnings concerning non-literals being used in a call
7935       // to a vprintf function.  For example:
7936       //
7937       // void
7938       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7939       //      va_list ap;
7940       //      va_start(ap, fmt);
7941       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7942       //      ...
7943       // }
7944       if (HasVAListArg) {
7945         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7946           if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) {
7947             int PVIndex = PV->getFunctionScopeIndex() + 1;
7948             for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
7949               // adjust for implicit parameter
7950               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
7951                 if (MD->isInstance())
7952                   ++PVIndex;
7953               // We also check if the formats are compatible.
7954               // We can't pass a 'scanf' string to a 'printf' function.
7955               if (PVIndex == PVFormat->getFormatIdx() &&
7956                   Type == S.GetFormatStringType(PVFormat))
7957                 return SLCT_UncheckedLiteral;
7958             }
7959           }
7960         }
7961       }
7962     }
7963 
7964     return SLCT_NotALiteral;
7965   }
7966 
7967   case Stmt::CallExprClass:
7968   case Stmt::CXXMemberCallExprClass: {
7969     const CallExpr *CE = cast<CallExpr>(E);
7970     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7971       bool IsFirst = true;
7972       StringLiteralCheckType CommonResult;
7973       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7974         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7975         StringLiteralCheckType Result = checkFormatStringExpr(
7976             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7977             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7978             IgnoreStringsWithoutSpecifiers);
7979         if (IsFirst) {
7980           CommonResult = Result;
7981           IsFirst = false;
7982         }
7983       }
7984       if (!IsFirst)
7985         return CommonResult;
7986 
7987       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7988         unsigned BuiltinID = FD->getBuiltinID();
7989         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7990             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7991           const Expr *Arg = CE->getArg(0);
7992           return checkFormatStringExpr(S, Arg, Args,
7993                                        HasVAListArg, format_idx,
7994                                        firstDataArg, Type, CallType,
7995                                        InFunctionCall, CheckedVarArgs,
7996                                        UncoveredArg, Offset,
7997                                        IgnoreStringsWithoutSpecifiers);
7998         }
7999       }
8000     }
8001 
8002     return SLCT_NotALiteral;
8003   }
8004   case Stmt::ObjCMessageExprClass: {
8005     const auto *ME = cast<ObjCMessageExpr>(E);
8006     if (const auto *MD = ME->getMethodDecl()) {
8007       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
8008         // As a special case heuristic, if we're using the method -[NSBundle
8009         // localizedStringForKey:value:table:], ignore any key strings that lack
8010         // format specifiers. The idea is that if the key doesn't have any
8011         // format specifiers then its probably just a key to map to the
8012         // localized strings. If it does have format specifiers though, then its
8013         // likely that the text of the key is the format string in the
8014         // programmer's language, and should be checked.
8015         const ObjCInterfaceDecl *IFace;
8016         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
8017             IFace->getIdentifier()->isStr("NSBundle") &&
8018             MD->getSelector().isKeywordSelector(
8019                 {"localizedStringForKey", "value", "table"})) {
8020           IgnoreStringsWithoutSpecifiers = true;
8021         }
8022 
8023         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8024         return checkFormatStringExpr(
8025             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8026             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8027             IgnoreStringsWithoutSpecifiers);
8028       }
8029     }
8030 
8031     return SLCT_NotALiteral;
8032   }
8033   case Stmt::ObjCStringLiteralClass:
8034   case Stmt::StringLiteralClass: {
8035     const StringLiteral *StrE = nullptr;
8036 
8037     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8038       StrE = ObjCFExpr->getString();
8039     else
8040       StrE = cast<StringLiteral>(E);
8041 
8042     if (StrE) {
8043       if (Offset.isNegative() || Offset > StrE->getLength()) {
8044         // TODO: It would be better to have an explicit warning for out of
8045         // bounds literals.
8046         return SLCT_NotALiteral;
8047       }
8048       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8049       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
8050                         firstDataArg, Type, InFunctionCall, CallType,
8051                         CheckedVarArgs, UncoveredArg,
8052                         IgnoreStringsWithoutSpecifiers);
8053       return SLCT_CheckedLiteral;
8054     }
8055 
8056     return SLCT_NotALiteral;
8057   }
8058   case Stmt::BinaryOperatorClass: {
8059     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8060 
8061     // A string literal + an int offset is still a string literal.
8062     if (BinOp->isAdditiveOp()) {
8063       Expr::EvalResult LResult, RResult;
8064 
8065       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8066           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8067       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8068           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8069 
8070       if (LIsInt != RIsInt) {
8071         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8072 
8073         if (LIsInt) {
8074           if (BinOpKind == BO_Add) {
8075             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8076             E = BinOp->getRHS();
8077             goto tryAgain;
8078           }
8079         } else {
8080           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8081           E = BinOp->getLHS();
8082           goto tryAgain;
8083         }
8084       }
8085     }
8086 
8087     return SLCT_NotALiteral;
8088   }
8089   case Stmt::UnaryOperatorClass: {
8090     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8091     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8092     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8093       Expr::EvalResult IndexResult;
8094       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8095                                        Expr::SE_NoSideEffects,
8096                                        S.isConstantEvaluated())) {
8097         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8098                    /*RHS is int*/ true);
8099         E = ASE->getBase();
8100         goto tryAgain;
8101       }
8102     }
8103 
8104     return SLCT_NotALiteral;
8105   }
8106 
8107   default:
8108     return SLCT_NotALiteral;
8109   }
8110 }
8111 
8112 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8113   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8114       .Case("scanf", FST_Scanf)
8115       .Cases("printf", "printf0", FST_Printf)
8116       .Cases("NSString", "CFString", FST_NSString)
8117       .Case("strftime", FST_Strftime)
8118       .Case("strfmon", FST_Strfmon)
8119       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8120       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8121       .Case("os_trace", FST_OSLog)
8122       .Case("os_log", FST_OSLog)
8123       .Default(FST_Unknown);
8124 }
8125 
8126 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8127 /// functions) for correct use of format strings.
8128 /// Returns true if a format string has been fully checked.
8129 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8130                                 ArrayRef<const Expr *> Args,
8131                                 bool IsCXXMember,
8132                                 VariadicCallType CallType,
8133                                 SourceLocation Loc, SourceRange Range,
8134                                 llvm::SmallBitVector &CheckedVarArgs) {
8135   FormatStringInfo FSI;
8136   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
8137     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
8138                                 FSI.FirstDataArg, GetFormatStringType(Format),
8139                                 CallType, Loc, Range, CheckedVarArgs);
8140   return false;
8141 }
8142 
8143 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8144                                 bool HasVAListArg, unsigned format_idx,
8145                                 unsigned firstDataArg, FormatStringType Type,
8146                                 VariadicCallType CallType,
8147                                 SourceLocation Loc, SourceRange Range,
8148                                 llvm::SmallBitVector &CheckedVarArgs) {
8149   // CHECK: printf/scanf-like function is called with no format string.
8150   if (format_idx >= Args.size()) {
8151     Diag(Loc, diag::warn_missing_format_string) << Range;
8152     return false;
8153   }
8154 
8155   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8156 
8157   // CHECK: format string is not a string literal.
8158   //
8159   // Dynamically generated format strings are difficult to
8160   // automatically vet at compile time.  Requiring that format strings
8161   // are string literals: (1) permits the checking of format strings by
8162   // the compiler and thereby (2) can practically remove the source of
8163   // many format string exploits.
8164 
8165   // Format string can be either ObjC string (e.g. @"%d") or
8166   // C string (e.g. "%d")
8167   // ObjC string uses the same format specifiers as C string, so we can use
8168   // the same format string checking logic for both ObjC and C strings.
8169   UncoveredArgHandler UncoveredArg;
8170   StringLiteralCheckType CT =
8171       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8172                             format_idx, firstDataArg, Type, CallType,
8173                             /*IsFunctionCall*/ true, CheckedVarArgs,
8174                             UncoveredArg,
8175                             /*no string offset*/ llvm::APSInt(64, false) = 0);
8176 
8177   // Generate a diagnostic where an uncovered argument is detected.
8178   if (UncoveredArg.hasUncoveredArg()) {
8179     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8180     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8181     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8182   }
8183 
8184   if (CT != SLCT_NotALiteral)
8185     // Literal format string found, check done!
8186     return CT == SLCT_CheckedLiteral;
8187 
8188   // Strftime is particular as it always uses a single 'time' argument,
8189   // so it is safe to pass a non-literal string.
8190   if (Type == FST_Strftime)
8191     return false;
8192 
8193   // Do not emit diag when the string param is a macro expansion and the
8194   // format is either NSString or CFString. This is a hack to prevent
8195   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8196   // which are usually used in place of NS and CF string literals.
8197   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8198   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8199     return false;
8200 
8201   // If there are no arguments specified, warn with -Wformat-security, otherwise
8202   // warn only with -Wformat-nonliteral.
8203   if (Args.size() == firstDataArg) {
8204     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8205       << OrigFormatExpr->getSourceRange();
8206     switch (Type) {
8207     default:
8208       break;
8209     case FST_Kprintf:
8210     case FST_FreeBSDKPrintf:
8211     case FST_Printf:
8212       Diag(FormatLoc, diag::note_format_security_fixit)
8213         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8214       break;
8215     case FST_NSString:
8216       Diag(FormatLoc, diag::note_format_security_fixit)
8217         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8218       break;
8219     }
8220   } else {
8221     Diag(FormatLoc, diag::warn_format_nonliteral)
8222       << OrigFormatExpr->getSourceRange();
8223   }
8224   return false;
8225 }
8226 
8227 namespace {
8228 
8229 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8230 protected:
8231   Sema &S;
8232   const FormatStringLiteral *FExpr;
8233   const Expr *OrigFormatExpr;
8234   const Sema::FormatStringType FSType;
8235   const unsigned FirstDataArg;
8236   const unsigned NumDataArgs;
8237   const char *Beg; // Start of format string.
8238   const bool HasVAListArg;
8239   ArrayRef<const Expr *> Args;
8240   unsigned FormatIdx;
8241   llvm::SmallBitVector CoveredArgs;
8242   bool usesPositionalArgs = false;
8243   bool atFirstArg = true;
8244   bool inFunctionCall;
8245   Sema::VariadicCallType CallType;
8246   llvm::SmallBitVector &CheckedVarArgs;
8247   UncoveredArgHandler &UncoveredArg;
8248 
8249 public:
8250   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8251                      const Expr *origFormatExpr,
8252                      const Sema::FormatStringType type, unsigned firstDataArg,
8253                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
8254                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8255                      bool inFunctionCall, Sema::VariadicCallType callType,
8256                      llvm::SmallBitVector &CheckedVarArgs,
8257                      UncoveredArgHandler &UncoveredArg)
8258       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8259         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8260         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8261         inFunctionCall(inFunctionCall), CallType(callType),
8262         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8263     CoveredArgs.resize(numDataArgs);
8264     CoveredArgs.reset();
8265   }
8266 
8267   void DoneProcessing();
8268 
8269   void HandleIncompleteSpecifier(const char *startSpecifier,
8270                                  unsigned specifierLen) override;
8271 
8272   void HandleInvalidLengthModifier(
8273                            const analyze_format_string::FormatSpecifier &FS,
8274                            const analyze_format_string::ConversionSpecifier &CS,
8275                            const char *startSpecifier, unsigned specifierLen,
8276                            unsigned DiagID);
8277 
8278   void HandleNonStandardLengthModifier(
8279                     const analyze_format_string::FormatSpecifier &FS,
8280                     const char *startSpecifier, unsigned specifierLen);
8281 
8282   void HandleNonStandardConversionSpecifier(
8283                     const analyze_format_string::ConversionSpecifier &CS,
8284                     const char *startSpecifier, unsigned specifierLen);
8285 
8286   void HandlePosition(const char *startPos, unsigned posLen) override;
8287 
8288   void HandleInvalidPosition(const char *startSpecifier,
8289                              unsigned specifierLen,
8290                              analyze_format_string::PositionContext p) override;
8291 
8292   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8293 
8294   void HandleNullChar(const char *nullCharacter) override;
8295 
8296   template <typename Range>
8297   static void
8298   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8299                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8300                        bool IsStringLocation, Range StringRange,
8301                        ArrayRef<FixItHint> Fixit = None);
8302 
8303 protected:
8304   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8305                                         const char *startSpec,
8306                                         unsigned specifierLen,
8307                                         const char *csStart, unsigned csLen);
8308 
8309   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8310                                          const char *startSpec,
8311                                          unsigned specifierLen);
8312 
8313   SourceRange getFormatStringRange();
8314   CharSourceRange getSpecifierRange(const char *startSpecifier,
8315                                     unsigned specifierLen);
8316   SourceLocation getLocationOfByte(const char *x);
8317 
8318   const Expr *getDataArg(unsigned i) const;
8319 
8320   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8321                     const analyze_format_string::ConversionSpecifier &CS,
8322                     const char *startSpecifier, unsigned specifierLen,
8323                     unsigned argIndex);
8324 
8325   template <typename Range>
8326   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8327                             bool IsStringLocation, Range StringRange,
8328                             ArrayRef<FixItHint> Fixit = None);
8329 };
8330 
8331 } // namespace
8332 
8333 SourceRange CheckFormatHandler::getFormatStringRange() {
8334   return OrigFormatExpr->getSourceRange();
8335 }
8336 
8337 CharSourceRange CheckFormatHandler::
8338 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8339   SourceLocation Start = getLocationOfByte(startSpecifier);
8340   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
8341 
8342   // Advance the end SourceLocation by one due to half-open ranges.
8343   End = End.getLocWithOffset(1);
8344 
8345   return CharSourceRange::getCharRange(Start, End);
8346 }
8347 
8348 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8349   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8350                                   S.getLangOpts(), S.Context.getTargetInfo());
8351 }
8352 
8353 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8354                                                    unsigned specifierLen){
8355   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8356                        getLocationOfByte(startSpecifier),
8357                        /*IsStringLocation*/true,
8358                        getSpecifierRange(startSpecifier, specifierLen));
8359 }
8360 
8361 void CheckFormatHandler::HandleInvalidLengthModifier(
8362     const analyze_format_string::FormatSpecifier &FS,
8363     const analyze_format_string::ConversionSpecifier &CS,
8364     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8365   using namespace analyze_format_string;
8366 
8367   const LengthModifier &LM = FS.getLengthModifier();
8368   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8369 
8370   // See if we know how to fix this length modifier.
8371   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8372   if (FixedLM) {
8373     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8374                          getLocationOfByte(LM.getStart()),
8375                          /*IsStringLocation*/true,
8376                          getSpecifierRange(startSpecifier, specifierLen));
8377 
8378     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8379       << FixedLM->toString()
8380       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8381 
8382   } else {
8383     FixItHint Hint;
8384     if (DiagID == diag::warn_format_nonsensical_length)
8385       Hint = FixItHint::CreateRemoval(LMRange);
8386 
8387     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8388                          getLocationOfByte(LM.getStart()),
8389                          /*IsStringLocation*/true,
8390                          getSpecifierRange(startSpecifier, specifierLen),
8391                          Hint);
8392   }
8393 }
8394 
8395 void CheckFormatHandler::HandleNonStandardLengthModifier(
8396     const analyze_format_string::FormatSpecifier &FS,
8397     const char *startSpecifier, unsigned specifierLen) {
8398   using namespace analyze_format_string;
8399 
8400   const LengthModifier &LM = FS.getLengthModifier();
8401   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8402 
8403   // See if we know how to fix this length modifier.
8404   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8405   if (FixedLM) {
8406     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8407                            << LM.toString() << 0,
8408                          getLocationOfByte(LM.getStart()),
8409                          /*IsStringLocation*/true,
8410                          getSpecifierRange(startSpecifier, specifierLen));
8411 
8412     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8413       << FixedLM->toString()
8414       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8415 
8416   } else {
8417     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8418                            << LM.toString() << 0,
8419                          getLocationOfByte(LM.getStart()),
8420                          /*IsStringLocation*/true,
8421                          getSpecifierRange(startSpecifier, specifierLen));
8422   }
8423 }
8424 
8425 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8426     const analyze_format_string::ConversionSpecifier &CS,
8427     const char *startSpecifier, unsigned specifierLen) {
8428   using namespace analyze_format_string;
8429 
8430   // See if we know how to fix this conversion specifier.
8431   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8432   if (FixedCS) {
8433     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8434                           << CS.toString() << /*conversion specifier*/1,
8435                          getLocationOfByte(CS.getStart()),
8436                          /*IsStringLocation*/true,
8437                          getSpecifierRange(startSpecifier, specifierLen));
8438 
8439     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8440     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8441       << FixedCS->toString()
8442       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8443   } else {
8444     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8445                           << CS.toString() << /*conversion specifier*/1,
8446                          getLocationOfByte(CS.getStart()),
8447                          /*IsStringLocation*/true,
8448                          getSpecifierRange(startSpecifier, specifierLen));
8449   }
8450 }
8451 
8452 void CheckFormatHandler::HandlePosition(const char *startPos,
8453                                         unsigned posLen) {
8454   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8455                                getLocationOfByte(startPos),
8456                                /*IsStringLocation*/true,
8457                                getSpecifierRange(startPos, posLen));
8458 }
8459 
8460 void
8461 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8462                                      analyze_format_string::PositionContext p) {
8463   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8464                          << (unsigned) p,
8465                        getLocationOfByte(startPos), /*IsStringLocation*/true,
8466                        getSpecifierRange(startPos, posLen));
8467 }
8468 
8469 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8470                                             unsigned posLen) {
8471   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8472                                getLocationOfByte(startPos),
8473                                /*IsStringLocation*/true,
8474                                getSpecifierRange(startPos, posLen));
8475 }
8476 
8477 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8478   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8479     // The presence of a null character is likely an error.
8480     EmitFormatDiagnostic(
8481       S.PDiag(diag::warn_printf_format_string_contains_null_char),
8482       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8483       getFormatStringRange());
8484   }
8485 }
8486 
8487 // Note that this may return NULL if there was an error parsing or building
8488 // one of the argument expressions.
8489 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8490   return Args[FirstDataArg + i];
8491 }
8492 
8493 void CheckFormatHandler::DoneProcessing() {
8494   // Does the number of data arguments exceed the number of
8495   // format conversions in the format string?
8496   if (!HasVAListArg) {
8497       // Find any arguments that weren't covered.
8498     CoveredArgs.flip();
8499     signed notCoveredArg = CoveredArgs.find_first();
8500     if (notCoveredArg >= 0) {
8501       assert((unsigned)notCoveredArg < NumDataArgs);
8502       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8503     } else {
8504       UncoveredArg.setAllCovered();
8505     }
8506   }
8507 }
8508 
8509 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8510                                    const Expr *ArgExpr) {
8511   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
8512          "Invalid state");
8513 
8514   if (!ArgExpr)
8515     return;
8516 
8517   SourceLocation Loc = ArgExpr->getBeginLoc();
8518 
8519   if (S.getSourceManager().isInSystemMacro(Loc))
8520     return;
8521 
8522   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8523   for (auto E : DiagnosticExprs)
8524     PDiag << E->getSourceRange();
8525 
8526   CheckFormatHandler::EmitFormatDiagnostic(
8527                                   S, IsFunctionCall, DiagnosticExprs[0],
8528                                   PDiag, Loc, /*IsStringLocation*/false,
8529                                   DiagnosticExprs[0]->getSourceRange());
8530 }
8531 
8532 bool
8533 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8534                                                      SourceLocation Loc,
8535                                                      const char *startSpec,
8536                                                      unsigned specifierLen,
8537                                                      const char *csStart,
8538                                                      unsigned csLen) {
8539   bool keepGoing = true;
8540   if (argIndex < NumDataArgs) {
8541     // Consider the argument coverered, even though the specifier doesn't
8542     // make sense.
8543     CoveredArgs.set(argIndex);
8544   }
8545   else {
8546     // If argIndex exceeds the number of data arguments we
8547     // don't issue a warning because that is just a cascade of warnings (and
8548     // they may have intended '%%' anyway). We don't want to continue processing
8549     // the format string after this point, however, as we will like just get
8550     // gibberish when trying to match arguments.
8551     keepGoing = false;
8552   }
8553 
8554   StringRef Specifier(csStart, csLen);
8555 
8556   // If the specifier in non-printable, it could be the first byte of a UTF-8
8557   // sequence. In that case, print the UTF-8 code point. If not, print the byte
8558   // hex value.
8559   std::string CodePointStr;
8560   if (!llvm::sys::locale::isPrint(*csStart)) {
8561     llvm::UTF32 CodePoint;
8562     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8563     const llvm::UTF8 *E =
8564         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8565     llvm::ConversionResult Result =
8566         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8567 
8568     if (Result != llvm::conversionOK) {
8569       unsigned char FirstChar = *csStart;
8570       CodePoint = (llvm::UTF32)FirstChar;
8571     }
8572 
8573     llvm::raw_string_ostream OS(CodePointStr);
8574     if (CodePoint < 256)
8575       OS << "\\x" << llvm::format("%02x", CodePoint);
8576     else if (CodePoint <= 0xFFFF)
8577       OS << "\\u" << llvm::format("%04x", CodePoint);
8578     else
8579       OS << "\\U" << llvm::format("%08x", CodePoint);
8580     OS.flush();
8581     Specifier = CodePointStr;
8582   }
8583 
8584   EmitFormatDiagnostic(
8585       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8586       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8587 
8588   return keepGoing;
8589 }
8590 
8591 void
8592 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8593                                                       const char *startSpec,
8594                                                       unsigned specifierLen) {
8595   EmitFormatDiagnostic(
8596     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8597     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8598 }
8599 
8600 bool
8601 CheckFormatHandler::CheckNumArgs(
8602   const analyze_format_string::FormatSpecifier &FS,
8603   const analyze_format_string::ConversionSpecifier &CS,
8604   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8605 
8606   if (argIndex >= NumDataArgs) {
8607     PartialDiagnostic PDiag = FS.usesPositionalArg()
8608       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8609            << (argIndex+1) << NumDataArgs)
8610       : S.PDiag(diag::warn_printf_insufficient_data_args);
8611     EmitFormatDiagnostic(
8612       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8613       getSpecifierRange(startSpecifier, specifierLen));
8614 
8615     // Since more arguments than conversion tokens are given, by extension
8616     // all arguments are covered, so mark this as so.
8617     UncoveredArg.setAllCovered();
8618     return false;
8619   }
8620   return true;
8621 }
8622 
8623 template<typename Range>
8624 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8625                                               SourceLocation Loc,
8626                                               bool IsStringLocation,
8627                                               Range StringRange,
8628                                               ArrayRef<FixItHint> FixIt) {
8629   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8630                        Loc, IsStringLocation, StringRange, FixIt);
8631 }
8632 
8633 /// If the format string is not within the function call, emit a note
8634 /// so that the function call and string are in diagnostic messages.
8635 ///
8636 /// \param InFunctionCall if true, the format string is within the function
8637 /// call and only one diagnostic message will be produced.  Otherwise, an
8638 /// extra note will be emitted pointing to location of the format string.
8639 ///
8640 /// \param ArgumentExpr the expression that is passed as the format string
8641 /// argument in the function call.  Used for getting locations when two
8642 /// diagnostics are emitted.
8643 ///
8644 /// \param PDiag the callee should already have provided any strings for the
8645 /// diagnostic message.  This function only adds locations and fixits
8646 /// to diagnostics.
8647 ///
8648 /// \param Loc primary location for diagnostic.  If two diagnostics are
8649 /// required, one will be at Loc and a new SourceLocation will be created for
8650 /// the other one.
8651 ///
8652 /// \param IsStringLocation if true, Loc points to the format string should be
8653 /// used for the note.  Otherwise, Loc points to the argument list and will
8654 /// be used with PDiag.
8655 ///
8656 /// \param StringRange some or all of the string to highlight.  This is
8657 /// templated so it can accept either a CharSourceRange or a SourceRange.
8658 ///
8659 /// \param FixIt optional fix it hint for the format string.
8660 template <typename Range>
8661 void CheckFormatHandler::EmitFormatDiagnostic(
8662     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8663     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8664     Range StringRange, ArrayRef<FixItHint> FixIt) {
8665   if (InFunctionCall) {
8666     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8667     D << StringRange;
8668     D << FixIt;
8669   } else {
8670     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8671       << ArgumentExpr->getSourceRange();
8672 
8673     const Sema::SemaDiagnosticBuilder &Note =
8674       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8675              diag::note_format_string_defined);
8676 
8677     Note << StringRange;
8678     Note << FixIt;
8679   }
8680 }
8681 
8682 //===--- CHECK: Printf format string checking ------------------------------===//
8683 
8684 namespace {
8685 
8686 class CheckPrintfHandler : public CheckFormatHandler {
8687 public:
8688   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8689                      const Expr *origFormatExpr,
8690                      const Sema::FormatStringType type, unsigned firstDataArg,
8691                      unsigned numDataArgs, bool isObjC, const char *beg,
8692                      bool hasVAListArg, ArrayRef<const Expr *> Args,
8693                      unsigned formatIdx, bool inFunctionCall,
8694                      Sema::VariadicCallType CallType,
8695                      llvm::SmallBitVector &CheckedVarArgs,
8696                      UncoveredArgHandler &UncoveredArg)
8697       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8698                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8699                            inFunctionCall, CallType, CheckedVarArgs,
8700                            UncoveredArg) {}
8701 
8702   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8703 
8704   /// Returns true if '%@' specifiers are allowed in the format string.
8705   bool allowsObjCArg() const {
8706     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8707            FSType == Sema::FST_OSTrace;
8708   }
8709 
8710   bool HandleInvalidPrintfConversionSpecifier(
8711                                       const analyze_printf::PrintfSpecifier &FS,
8712                                       const char *startSpecifier,
8713                                       unsigned specifierLen) override;
8714 
8715   void handleInvalidMaskType(StringRef MaskType) override;
8716 
8717   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8718                              const char *startSpecifier,
8719                              unsigned specifierLen) override;
8720   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8721                        const char *StartSpecifier,
8722                        unsigned SpecifierLen,
8723                        const Expr *E);
8724 
8725   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8726                     const char *startSpecifier, unsigned specifierLen);
8727   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8728                            const analyze_printf::OptionalAmount &Amt,
8729                            unsigned type,
8730                            const char *startSpecifier, unsigned specifierLen);
8731   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8732                   const analyze_printf::OptionalFlag &flag,
8733                   const char *startSpecifier, unsigned specifierLen);
8734   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8735                          const analyze_printf::OptionalFlag &ignoredFlag,
8736                          const analyze_printf::OptionalFlag &flag,
8737                          const char *startSpecifier, unsigned specifierLen);
8738   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8739                            const Expr *E);
8740 
8741   void HandleEmptyObjCModifierFlag(const char *startFlag,
8742                                    unsigned flagLen) override;
8743 
8744   void HandleInvalidObjCModifierFlag(const char *startFlag,
8745                                             unsigned flagLen) override;
8746 
8747   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8748                                            const char *flagsEnd,
8749                                            const char *conversionPosition)
8750                                              override;
8751 };
8752 
8753 } // namespace
8754 
8755 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8756                                       const analyze_printf::PrintfSpecifier &FS,
8757                                       const char *startSpecifier,
8758                                       unsigned specifierLen) {
8759   const analyze_printf::PrintfConversionSpecifier &CS =
8760     FS.getConversionSpecifier();
8761 
8762   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8763                                           getLocationOfByte(CS.getStart()),
8764                                           startSpecifier, specifierLen,
8765                                           CS.getStart(), CS.getLength());
8766 }
8767 
8768 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8769   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8770 }
8771 
8772 bool CheckPrintfHandler::HandleAmount(
8773                                const analyze_format_string::OptionalAmount &Amt,
8774                                unsigned k, const char *startSpecifier,
8775                                unsigned specifierLen) {
8776   if (Amt.hasDataArgument()) {
8777     if (!HasVAListArg) {
8778       unsigned argIndex = Amt.getArgIndex();
8779       if (argIndex >= NumDataArgs) {
8780         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8781                                << k,
8782                              getLocationOfByte(Amt.getStart()),
8783                              /*IsStringLocation*/true,
8784                              getSpecifierRange(startSpecifier, specifierLen));
8785         // Don't do any more checking.  We will just emit
8786         // spurious errors.
8787         return false;
8788       }
8789 
8790       // Type check the data argument.  It should be an 'int'.
8791       // Although not in conformance with C99, we also allow the argument to be
8792       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8793       // doesn't emit a warning for that case.
8794       CoveredArgs.set(argIndex);
8795       const Expr *Arg = getDataArg(argIndex);
8796       if (!Arg)
8797         return false;
8798 
8799       QualType T = Arg->getType();
8800 
8801       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8802       assert(AT.isValid());
8803 
8804       if (!AT.matchesType(S.Context, T)) {
8805         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8806                                << k << AT.getRepresentativeTypeName(S.Context)
8807                                << T << Arg->getSourceRange(),
8808                              getLocationOfByte(Amt.getStart()),
8809                              /*IsStringLocation*/true,
8810                              getSpecifierRange(startSpecifier, specifierLen));
8811         // Don't do any more checking.  We will just emit
8812         // spurious errors.
8813         return false;
8814       }
8815     }
8816   }
8817   return true;
8818 }
8819 
8820 void CheckPrintfHandler::HandleInvalidAmount(
8821                                       const analyze_printf::PrintfSpecifier &FS,
8822                                       const analyze_printf::OptionalAmount &Amt,
8823                                       unsigned type,
8824                                       const char *startSpecifier,
8825                                       unsigned specifierLen) {
8826   const analyze_printf::PrintfConversionSpecifier &CS =
8827     FS.getConversionSpecifier();
8828 
8829   FixItHint fixit =
8830     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8831       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8832                                  Amt.getConstantLength()))
8833       : FixItHint();
8834 
8835   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8836                          << type << CS.toString(),
8837                        getLocationOfByte(Amt.getStart()),
8838                        /*IsStringLocation*/true,
8839                        getSpecifierRange(startSpecifier, specifierLen),
8840                        fixit);
8841 }
8842 
8843 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8844                                     const analyze_printf::OptionalFlag &flag,
8845                                     const char *startSpecifier,
8846                                     unsigned specifierLen) {
8847   // Warn about pointless flag with a fixit removal.
8848   const analyze_printf::PrintfConversionSpecifier &CS =
8849     FS.getConversionSpecifier();
8850   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8851                          << flag.toString() << CS.toString(),
8852                        getLocationOfByte(flag.getPosition()),
8853                        /*IsStringLocation*/true,
8854                        getSpecifierRange(startSpecifier, specifierLen),
8855                        FixItHint::CreateRemoval(
8856                          getSpecifierRange(flag.getPosition(), 1)));
8857 }
8858 
8859 void CheckPrintfHandler::HandleIgnoredFlag(
8860                                 const analyze_printf::PrintfSpecifier &FS,
8861                                 const analyze_printf::OptionalFlag &ignoredFlag,
8862                                 const analyze_printf::OptionalFlag &flag,
8863                                 const char *startSpecifier,
8864                                 unsigned specifierLen) {
8865   // Warn about ignored flag with a fixit removal.
8866   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8867                          << ignoredFlag.toString() << flag.toString(),
8868                        getLocationOfByte(ignoredFlag.getPosition()),
8869                        /*IsStringLocation*/true,
8870                        getSpecifierRange(startSpecifier, specifierLen),
8871                        FixItHint::CreateRemoval(
8872                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8873 }
8874 
8875 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8876                                                      unsigned flagLen) {
8877   // Warn about an empty flag.
8878   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8879                        getLocationOfByte(startFlag),
8880                        /*IsStringLocation*/true,
8881                        getSpecifierRange(startFlag, flagLen));
8882 }
8883 
8884 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8885                                                        unsigned flagLen) {
8886   // Warn about an invalid flag.
8887   auto Range = getSpecifierRange(startFlag, flagLen);
8888   StringRef flag(startFlag, flagLen);
8889   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8890                       getLocationOfByte(startFlag),
8891                       /*IsStringLocation*/true,
8892                       Range, FixItHint::CreateRemoval(Range));
8893 }
8894 
8895 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8896     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8897     // Warn about using '[...]' without a '@' conversion.
8898     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8899     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8900     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8901                          getLocationOfByte(conversionPosition),
8902                          /*IsStringLocation*/true,
8903                          Range, FixItHint::CreateRemoval(Range));
8904 }
8905 
8906 // Determines if the specified is a C++ class or struct containing
8907 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8908 // "c_str()").
8909 template<typename MemberKind>
8910 static llvm::SmallPtrSet<MemberKind*, 1>
8911 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8912   const RecordType *RT = Ty->getAs<RecordType>();
8913   llvm::SmallPtrSet<MemberKind*, 1> Results;
8914 
8915   if (!RT)
8916     return Results;
8917   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8918   if (!RD || !RD->getDefinition())
8919     return Results;
8920 
8921   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8922                  Sema::LookupMemberName);
8923   R.suppressDiagnostics();
8924 
8925   // We just need to include all members of the right kind turned up by the
8926   // filter, at this point.
8927   if (S.LookupQualifiedName(R, RT->getDecl()))
8928     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8929       NamedDecl *decl = (*I)->getUnderlyingDecl();
8930       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8931         Results.insert(FK);
8932     }
8933   return Results;
8934 }
8935 
8936 /// Check if we could call '.c_str()' on an object.
8937 ///
8938 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8939 /// allow the call, or if it would be ambiguous).
8940 bool Sema::hasCStrMethod(const Expr *E) {
8941   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8942 
8943   MethodSet Results =
8944       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8945   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8946        MI != ME; ++MI)
8947     if ((*MI)->getMinRequiredArguments() == 0)
8948       return true;
8949   return false;
8950 }
8951 
8952 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8953 // better diagnostic if so. AT is assumed to be valid.
8954 // Returns true when a c_str() conversion method is found.
8955 bool CheckPrintfHandler::checkForCStrMembers(
8956     const analyze_printf::ArgType &AT, const Expr *E) {
8957   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8958 
8959   MethodSet Results =
8960       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8961 
8962   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8963        MI != ME; ++MI) {
8964     const CXXMethodDecl *Method = *MI;
8965     if (Method->getMinRequiredArguments() == 0 &&
8966         AT.matchesType(S.Context, Method->getReturnType())) {
8967       // FIXME: Suggest parens if the expression needs them.
8968       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8969       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8970           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8971       return true;
8972     }
8973   }
8974 
8975   return false;
8976 }
8977 
8978 bool
8979 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8980                                             &FS,
8981                                           const char *startSpecifier,
8982                                           unsigned specifierLen) {
8983   using namespace analyze_format_string;
8984   using namespace analyze_printf;
8985 
8986   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8987 
8988   if (FS.consumesDataArgument()) {
8989     if (atFirstArg) {
8990         atFirstArg = false;
8991         usesPositionalArgs = FS.usesPositionalArg();
8992     }
8993     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8994       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8995                                         startSpecifier, specifierLen);
8996       return false;
8997     }
8998   }
8999 
9000   // First check if the field width, precision, and conversion specifier
9001   // have matching data arguments.
9002   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
9003                     startSpecifier, specifierLen)) {
9004     return false;
9005   }
9006 
9007   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
9008                     startSpecifier, specifierLen)) {
9009     return false;
9010   }
9011 
9012   if (!CS.consumesDataArgument()) {
9013     // FIXME: Technically specifying a precision or field width here
9014     // makes no sense.  Worth issuing a warning at some point.
9015     return true;
9016   }
9017 
9018   // Consume the argument.
9019   unsigned argIndex = FS.getArgIndex();
9020   if (argIndex < NumDataArgs) {
9021     // The check to see if the argIndex is valid will come later.
9022     // We set the bit here because we may exit early from this
9023     // function if we encounter some other error.
9024     CoveredArgs.set(argIndex);
9025   }
9026 
9027   // FreeBSD kernel extensions.
9028   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9029       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9030     // We need at least two arguments.
9031     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9032       return false;
9033 
9034     // Claim the second argument.
9035     CoveredArgs.set(argIndex + 1);
9036 
9037     // Type check the first argument (int for %b, pointer for %D)
9038     const Expr *Ex = getDataArg(argIndex);
9039     const analyze_printf::ArgType &AT =
9040       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9041         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9042     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9043       EmitFormatDiagnostic(
9044           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9045               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9046               << false << Ex->getSourceRange(),
9047           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9048           getSpecifierRange(startSpecifier, specifierLen));
9049 
9050     // Type check the second argument (char * for both %b and %D)
9051     Ex = getDataArg(argIndex + 1);
9052     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9053     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9054       EmitFormatDiagnostic(
9055           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9056               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9057               << false << Ex->getSourceRange(),
9058           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9059           getSpecifierRange(startSpecifier, specifierLen));
9060 
9061      return true;
9062   }
9063 
9064   // Check for using an Objective-C specific conversion specifier
9065   // in a non-ObjC literal.
9066   if (!allowsObjCArg() && CS.isObjCArg()) {
9067     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9068                                                   specifierLen);
9069   }
9070 
9071   // %P can only be used with os_log.
9072   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9073     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9074                                                   specifierLen);
9075   }
9076 
9077   // %n is not allowed with os_log.
9078   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9079     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9080                          getLocationOfByte(CS.getStart()),
9081                          /*IsStringLocation*/ false,
9082                          getSpecifierRange(startSpecifier, specifierLen));
9083 
9084     return true;
9085   }
9086 
9087   // Only scalars are allowed for os_trace.
9088   if (FSType == Sema::FST_OSTrace &&
9089       (CS.getKind() == ConversionSpecifier::PArg ||
9090        CS.getKind() == ConversionSpecifier::sArg ||
9091        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9092     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9093                                                   specifierLen);
9094   }
9095 
9096   // Check for use of public/private annotation outside of os_log().
9097   if (FSType != Sema::FST_OSLog) {
9098     if (FS.isPublic().isSet()) {
9099       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9100                                << "public",
9101                            getLocationOfByte(FS.isPublic().getPosition()),
9102                            /*IsStringLocation*/ false,
9103                            getSpecifierRange(startSpecifier, specifierLen));
9104     }
9105     if (FS.isPrivate().isSet()) {
9106       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9107                                << "private",
9108                            getLocationOfByte(FS.isPrivate().getPosition()),
9109                            /*IsStringLocation*/ false,
9110                            getSpecifierRange(startSpecifier, specifierLen));
9111     }
9112   }
9113 
9114   // Check for invalid use of field width
9115   if (!FS.hasValidFieldWidth()) {
9116     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9117         startSpecifier, specifierLen);
9118   }
9119 
9120   // Check for invalid use of precision
9121   if (!FS.hasValidPrecision()) {
9122     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9123         startSpecifier, specifierLen);
9124   }
9125 
9126   // Precision is mandatory for %P specifier.
9127   if (CS.getKind() == ConversionSpecifier::PArg &&
9128       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9129     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9130                          getLocationOfByte(startSpecifier),
9131                          /*IsStringLocation*/ false,
9132                          getSpecifierRange(startSpecifier, specifierLen));
9133   }
9134 
9135   // Check each flag does not conflict with any other component.
9136   if (!FS.hasValidThousandsGroupingPrefix())
9137     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9138   if (!FS.hasValidLeadingZeros())
9139     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9140   if (!FS.hasValidPlusPrefix())
9141     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9142   if (!FS.hasValidSpacePrefix())
9143     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9144   if (!FS.hasValidAlternativeForm())
9145     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9146   if (!FS.hasValidLeftJustified())
9147     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9148 
9149   // Check that flags are not ignored by another flag
9150   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9151     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9152         startSpecifier, specifierLen);
9153   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9154     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9155             startSpecifier, specifierLen);
9156 
9157   // Check the length modifier is valid with the given conversion specifier.
9158   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9159                                  S.getLangOpts()))
9160     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9161                                 diag::warn_format_nonsensical_length);
9162   else if (!FS.hasStandardLengthModifier())
9163     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9164   else if (!FS.hasStandardLengthConversionCombination())
9165     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9166                                 diag::warn_format_non_standard_conversion_spec);
9167 
9168   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9169     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9170 
9171   // The remaining checks depend on the data arguments.
9172   if (HasVAListArg)
9173     return true;
9174 
9175   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9176     return false;
9177 
9178   const Expr *Arg = getDataArg(argIndex);
9179   if (!Arg)
9180     return true;
9181 
9182   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9183 }
9184 
9185 static bool requiresParensToAddCast(const Expr *E) {
9186   // FIXME: We should have a general way to reason about operator
9187   // precedence and whether parens are actually needed here.
9188   // Take care of a few common cases where they aren't.
9189   const Expr *Inside = E->IgnoreImpCasts();
9190   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9191     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9192 
9193   switch (Inside->getStmtClass()) {
9194   case Stmt::ArraySubscriptExprClass:
9195   case Stmt::CallExprClass:
9196   case Stmt::CharacterLiteralClass:
9197   case Stmt::CXXBoolLiteralExprClass:
9198   case Stmt::DeclRefExprClass:
9199   case Stmt::FloatingLiteralClass:
9200   case Stmt::IntegerLiteralClass:
9201   case Stmt::MemberExprClass:
9202   case Stmt::ObjCArrayLiteralClass:
9203   case Stmt::ObjCBoolLiteralExprClass:
9204   case Stmt::ObjCBoxedExprClass:
9205   case Stmt::ObjCDictionaryLiteralClass:
9206   case Stmt::ObjCEncodeExprClass:
9207   case Stmt::ObjCIvarRefExprClass:
9208   case Stmt::ObjCMessageExprClass:
9209   case Stmt::ObjCPropertyRefExprClass:
9210   case Stmt::ObjCStringLiteralClass:
9211   case Stmt::ObjCSubscriptRefExprClass:
9212   case Stmt::ParenExprClass:
9213   case Stmt::StringLiteralClass:
9214   case Stmt::UnaryOperatorClass:
9215     return false;
9216   default:
9217     return true;
9218   }
9219 }
9220 
9221 static std::pair<QualType, StringRef>
9222 shouldNotPrintDirectly(const ASTContext &Context,
9223                        QualType IntendedTy,
9224                        const Expr *E) {
9225   // Use a 'while' to peel off layers of typedefs.
9226   QualType TyTy = IntendedTy;
9227   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9228     StringRef Name = UserTy->getDecl()->getName();
9229     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9230       .Case("CFIndex", Context.getNSIntegerType())
9231       .Case("NSInteger", Context.getNSIntegerType())
9232       .Case("NSUInteger", Context.getNSUIntegerType())
9233       .Case("SInt32", Context.IntTy)
9234       .Case("UInt32", Context.UnsignedIntTy)
9235       .Default(QualType());
9236 
9237     if (!CastTy.isNull())
9238       return std::make_pair(CastTy, Name);
9239 
9240     TyTy = UserTy->desugar();
9241   }
9242 
9243   // Strip parens if necessary.
9244   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9245     return shouldNotPrintDirectly(Context,
9246                                   PE->getSubExpr()->getType(),
9247                                   PE->getSubExpr());
9248 
9249   // If this is a conditional expression, then its result type is constructed
9250   // via usual arithmetic conversions and thus there might be no necessary
9251   // typedef sugar there.  Recurse to operands to check for NSInteger &
9252   // Co. usage condition.
9253   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9254     QualType TrueTy, FalseTy;
9255     StringRef TrueName, FalseName;
9256 
9257     std::tie(TrueTy, TrueName) =
9258       shouldNotPrintDirectly(Context,
9259                              CO->getTrueExpr()->getType(),
9260                              CO->getTrueExpr());
9261     std::tie(FalseTy, FalseName) =
9262       shouldNotPrintDirectly(Context,
9263                              CO->getFalseExpr()->getType(),
9264                              CO->getFalseExpr());
9265 
9266     if (TrueTy == FalseTy)
9267       return std::make_pair(TrueTy, TrueName);
9268     else if (TrueTy.isNull())
9269       return std::make_pair(FalseTy, FalseName);
9270     else if (FalseTy.isNull())
9271       return std::make_pair(TrueTy, TrueName);
9272   }
9273 
9274   return std::make_pair(QualType(), StringRef());
9275 }
9276 
9277 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9278 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9279 /// type do not count.
9280 static bool
9281 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9282   QualType From = ICE->getSubExpr()->getType();
9283   QualType To = ICE->getType();
9284   // It's an integer promotion if the destination type is the promoted
9285   // source type.
9286   if (ICE->getCastKind() == CK_IntegralCast &&
9287       From->isPromotableIntegerType() &&
9288       S.Context.getPromotedIntegerType(From) == To)
9289     return true;
9290   // Look through vector types, since we do default argument promotion for
9291   // those in OpenCL.
9292   if (const auto *VecTy = From->getAs<ExtVectorType>())
9293     From = VecTy->getElementType();
9294   if (const auto *VecTy = To->getAs<ExtVectorType>())
9295     To = VecTy->getElementType();
9296   // It's a floating promotion if the source type is a lower rank.
9297   return ICE->getCastKind() == CK_FloatingCast &&
9298          S.Context.getFloatingTypeOrder(From, To) < 0;
9299 }
9300 
9301 bool
9302 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9303                                     const char *StartSpecifier,
9304                                     unsigned SpecifierLen,
9305                                     const Expr *E) {
9306   using namespace analyze_format_string;
9307   using namespace analyze_printf;
9308 
9309   // Now type check the data expression that matches the
9310   // format specifier.
9311   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9312   if (!AT.isValid())
9313     return true;
9314 
9315   QualType ExprTy = E->getType();
9316   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9317     ExprTy = TET->getUnderlyingExpr()->getType();
9318   }
9319 
9320   // Diagnose attempts to print a boolean value as a character. Unlike other
9321   // -Wformat diagnostics, this is fine from a type perspective, but it still
9322   // doesn't make sense.
9323   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9324       E->isKnownToHaveBooleanValue()) {
9325     const CharSourceRange &CSR =
9326         getSpecifierRange(StartSpecifier, SpecifierLen);
9327     SmallString<4> FSString;
9328     llvm::raw_svector_ostream os(FSString);
9329     FS.toString(os);
9330     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9331                              << FSString,
9332                          E->getExprLoc(), false, CSR);
9333     return true;
9334   }
9335 
9336   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9337   if (Match == analyze_printf::ArgType::Match)
9338     return true;
9339 
9340   // Look through argument promotions for our error message's reported type.
9341   // This includes the integral and floating promotions, but excludes array
9342   // and function pointer decay (seeing that an argument intended to be a
9343   // string has type 'char [6]' is probably more confusing than 'char *') and
9344   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9345   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9346     if (isArithmeticArgumentPromotion(S, ICE)) {
9347       E = ICE->getSubExpr();
9348       ExprTy = E->getType();
9349 
9350       // Check if we didn't match because of an implicit cast from a 'char'
9351       // or 'short' to an 'int'.  This is done because printf is a varargs
9352       // function.
9353       if (ICE->getType() == S.Context.IntTy ||
9354           ICE->getType() == S.Context.UnsignedIntTy) {
9355         // All further checking is done on the subexpression
9356         const analyze_printf::ArgType::MatchKind ImplicitMatch =
9357             AT.matchesType(S.Context, ExprTy);
9358         if (ImplicitMatch == analyze_printf::ArgType::Match)
9359           return true;
9360         if (ImplicitMatch == ArgType::NoMatchPedantic ||
9361             ImplicitMatch == ArgType::NoMatchTypeConfusion)
9362           Match = ImplicitMatch;
9363       }
9364     }
9365   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9366     // Special case for 'a', which has type 'int' in C.
9367     // Note, however, that we do /not/ want to treat multibyte constants like
9368     // 'MooV' as characters! This form is deprecated but still exists. In
9369     // addition, don't treat expressions as of type 'char' if one byte length
9370     // modifier is provided.
9371     if (ExprTy == S.Context.IntTy &&
9372         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9373       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9374         ExprTy = S.Context.CharTy;
9375   }
9376 
9377   // Look through enums to their underlying type.
9378   bool IsEnum = false;
9379   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9380     ExprTy = EnumTy->getDecl()->getIntegerType();
9381     IsEnum = true;
9382   }
9383 
9384   // %C in an Objective-C context prints a unichar, not a wchar_t.
9385   // If the argument is an integer of some kind, believe the %C and suggest
9386   // a cast instead of changing the conversion specifier.
9387   QualType IntendedTy = ExprTy;
9388   if (isObjCContext() &&
9389       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9390     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9391         !ExprTy->isCharType()) {
9392       // 'unichar' is defined as a typedef of unsigned short, but we should
9393       // prefer using the typedef if it is visible.
9394       IntendedTy = S.Context.UnsignedShortTy;
9395 
9396       // While we are here, check if the value is an IntegerLiteral that happens
9397       // to be within the valid range.
9398       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9399         const llvm::APInt &V = IL->getValue();
9400         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9401           return true;
9402       }
9403 
9404       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9405                           Sema::LookupOrdinaryName);
9406       if (S.LookupName(Result, S.getCurScope())) {
9407         NamedDecl *ND = Result.getFoundDecl();
9408         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9409           if (TD->getUnderlyingType() == IntendedTy)
9410             IntendedTy = S.Context.getTypedefType(TD);
9411       }
9412     }
9413   }
9414 
9415   // Special-case some of Darwin's platform-independence types by suggesting
9416   // casts to primitive types that are known to be large enough.
9417   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9418   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9419     QualType CastTy;
9420     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9421     if (!CastTy.isNull()) {
9422       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9423       // (long in ASTContext). Only complain to pedants.
9424       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9425           (AT.isSizeT() || AT.isPtrdiffT()) &&
9426           AT.matchesType(S.Context, CastTy))
9427         Match = ArgType::NoMatchPedantic;
9428       IntendedTy = CastTy;
9429       ShouldNotPrintDirectly = true;
9430     }
9431   }
9432 
9433   // We may be able to offer a FixItHint if it is a supported type.
9434   PrintfSpecifier fixedFS = FS;
9435   bool Success =
9436       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9437 
9438   if (Success) {
9439     // Get the fix string from the fixed format specifier
9440     SmallString<16> buf;
9441     llvm::raw_svector_ostream os(buf);
9442     fixedFS.toString(os);
9443 
9444     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9445 
9446     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9447       unsigned Diag;
9448       switch (Match) {
9449       case ArgType::Match: llvm_unreachable("expected non-matching");
9450       case ArgType::NoMatchPedantic:
9451         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9452         break;
9453       case ArgType::NoMatchTypeConfusion:
9454         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9455         break;
9456       case ArgType::NoMatch:
9457         Diag = diag::warn_format_conversion_argument_type_mismatch;
9458         break;
9459       }
9460 
9461       // In this case, the specifier is wrong and should be changed to match
9462       // the argument.
9463       EmitFormatDiagnostic(S.PDiag(Diag)
9464                                << AT.getRepresentativeTypeName(S.Context)
9465                                << IntendedTy << IsEnum << E->getSourceRange(),
9466                            E->getBeginLoc(),
9467                            /*IsStringLocation*/ false, SpecRange,
9468                            FixItHint::CreateReplacement(SpecRange, os.str()));
9469     } else {
9470       // The canonical type for formatting this value is different from the
9471       // actual type of the expression. (This occurs, for example, with Darwin's
9472       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9473       // should be printed as 'long' for 64-bit compatibility.)
9474       // Rather than emitting a normal format/argument mismatch, we want to
9475       // add a cast to the recommended type (and correct the format string
9476       // if necessary).
9477       SmallString<16> CastBuf;
9478       llvm::raw_svector_ostream CastFix(CastBuf);
9479       CastFix << "(";
9480       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9481       CastFix << ")";
9482 
9483       SmallVector<FixItHint,4> Hints;
9484       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9485         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9486 
9487       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9488         // If there's already a cast present, just replace it.
9489         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9490         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9491 
9492       } else if (!requiresParensToAddCast(E)) {
9493         // If the expression has high enough precedence,
9494         // just write the C-style cast.
9495         Hints.push_back(
9496             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9497       } else {
9498         // Otherwise, add parens around the expression as well as the cast.
9499         CastFix << "(";
9500         Hints.push_back(
9501             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9502 
9503         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9504         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9505       }
9506 
9507       if (ShouldNotPrintDirectly) {
9508         // The expression has a type that should not be printed directly.
9509         // We extract the name from the typedef because we don't want to show
9510         // the underlying type in the diagnostic.
9511         StringRef Name;
9512         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9513           Name = TypedefTy->getDecl()->getName();
9514         else
9515           Name = CastTyName;
9516         unsigned Diag = Match == ArgType::NoMatchPedantic
9517                             ? diag::warn_format_argument_needs_cast_pedantic
9518                             : diag::warn_format_argument_needs_cast;
9519         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9520                                            << E->getSourceRange(),
9521                              E->getBeginLoc(), /*IsStringLocation=*/false,
9522                              SpecRange, Hints);
9523       } else {
9524         // In this case, the expression could be printed using a different
9525         // specifier, but we've decided that the specifier is probably correct
9526         // and we should cast instead. Just use the normal warning message.
9527         EmitFormatDiagnostic(
9528             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9529                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9530                 << E->getSourceRange(),
9531             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9532       }
9533     }
9534   } else {
9535     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9536                                                    SpecifierLen);
9537     // Since the warning for passing non-POD types to variadic functions
9538     // was deferred until now, we emit a warning for non-POD
9539     // arguments here.
9540     switch (S.isValidVarArgType(ExprTy)) {
9541     case Sema::VAK_Valid:
9542     case Sema::VAK_ValidInCXX11: {
9543       unsigned Diag;
9544       switch (Match) {
9545       case ArgType::Match: llvm_unreachable("expected non-matching");
9546       case ArgType::NoMatchPedantic:
9547         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9548         break;
9549       case ArgType::NoMatchTypeConfusion:
9550         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9551         break;
9552       case ArgType::NoMatch:
9553         Diag = diag::warn_format_conversion_argument_type_mismatch;
9554         break;
9555       }
9556 
9557       EmitFormatDiagnostic(
9558           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9559                         << IsEnum << CSR << E->getSourceRange(),
9560           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9561       break;
9562     }
9563     case Sema::VAK_Undefined:
9564     case Sema::VAK_MSVCUndefined:
9565       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9566                                << S.getLangOpts().CPlusPlus11 << ExprTy
9567                                << CallType
9568                                << AT.getRepresentativeTypeName(S.Context) << CSR
9569                                << E->getSourceRange(),
9570                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9571       checkForCStrMembers(AT, E);
9572       break;
9573 
9574     case Sema::VAK_Invalid:
9575       if (ExprTy->isObjCObjectType())
9576         EmitFormatDiagnostic(
9577             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9578                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9579                 << AT.getRepresentativeTypeName(S.Context) << CSR
9580                 << E->getSourceRange(),
9581             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9582       else
9583         // FIXME: If this is an initializer list, suggest removing the braces
9584         // or inserting a cast to the target type.
9585         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9586             << isa<InitListExpr>(E) << ExprTy << CallType
9587             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9588       break;
9589     }
9590 
9591     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
9592            "format string specifier index out of range");
9593     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9594   }
9595 
9596   return true;
9597 }
9598 
9599 //===--- CHECK: Scanf format string checking ------------------------------===//
9600 
9601 namespace {
9602 
9603 class CheckScanfHandler : public CheckFormatHandler {
9604 public:
9605   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9606                     const Expr *origFormatExpr, Sema::FormatStringType type,
9607                     unsigned firstDataArg, unsigned numDataArgs,
9608                     const char *beg, bool hasVAListArg,
9609                     ArrayRef<const Expr *> Args, unsigned formatIdx,
9610                     bool inFunctionCall, Sema::VariadicCallType CallType,
9611                     llvm::SmallBitVector &CheckedVarArgs,
9612                     UncoveredArgHandler &UncoveredArg)
9613       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9614                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
9615                            inFunctionCall, CallType, CheckedVarArgs,
9616                            UncoveredArg) {}
9617 
9618   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9619                             const char *startSpecifier,
9620                             unsigned specifierLen) override;
9621 
9622   bool HandleInvalidScanfConversionSpecifier(
9623           const analyze_scanf::ScanfSpecifier &FS,
9624           const char *startSpecifier,
9625           unsigned specifierLen) override;
9626 
9627   void HandleIncompleteScanList(const char *start, const char *end) override;
9628 };
9629 
9630 } // namespace
9631 
9632 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9633                                                  const char *end) {
9634   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9635                        getLocationOfByte(end), /*IsStringLocation*/true,
9636                        getSpecifierRange(start, end - start));
9637 }
9638 
9639 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9640                                         const analyze_scanf::ScanfSpecifier &FS,
9641                                         const char *startSpecifier,
9642                                         unsigned specifierLen) {
9643   const analyze_scanf::ScanfConversionSpecifier &CS =
9644     FS.getConversionSpecifier();
9645 
9646   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9647                                           getLocationOfByte(CS.getStart()),
9648                                           startSpecifier, specifierLen,
9649                                           CS.getStart(), CS.getLength());
9650 }
9651 
9652 bool CheckScanfHandler::HandleScanfSpecifier(
9653                                        const analyze_scanf::ScanfSpecifier &FS,
9654                                        const char *startSpecifier,
9655                                        unsigned specifierLen) {
9656   using namespace analyze_scanf;
9657   using namespace analyze_format_string;
9658 
9659   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9660 
9661   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
9662   // be used to decide if we are using positional arguments consistently.
9663   if (FS.consumesDataArgument()) {
9664     if (atFirstArg) {
9665       atFirstArg = false;
9666       usesPositionalArgs = FS.usesPositionalArg();
9667     }
9668     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9669       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9670                                         startSpecifier, specifierLen);
9671       return false;
9672     }
9673   }
9674 
9675   // Check if the field with is non-zero.
9676   const OptionalAmount &Amt = FS.getFieldWidth();
9677   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9678     if (Amt.getConstantAmount() == 0) {
9679       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9680                                                    Amt.getConstantLength());
9681       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9682                            getLocationOfByte(Amt.getStart()),
9683                            /*IsStringLocation*/true, R,
9684                            FixItHint::CreateRemoval(R));
9685     }
9686   }
9687 
9688   if (!FS.consumesDataArgument()) {
9689     // FIXME: Technically specifying a precision or field width here
9690     // makes no sense.  Worth issuing a warning at some point.
9691     return true;
9692   }
9693 
9694   // Consume the argument.
9695   unsigned argIndex = FS.getArgIndex();
9696   if (argIndex < NumDataArgs) {
9697       // The check to see if the argIndex is valid will come later.
9698       // We set the bit here because we may exit early from this
9699       // function if we encounter some other error.
9700     CoveredArgs.set(argIndex);
9701   }
9702 
9703   // Check the length modifier is valid with the given conversion specifier.
9704   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9705                                  S.getLangOpts()))
9706     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9707                                 diag::warn_format_nonsensical_length);
9708   else if (!FS.hasStandardLengthModifier())
9709     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9710   else if (!FS.hasStandardLengthConversionCombination())
9711     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9712                                 diag::warn_format_non_standard_conversion_spec);
9713 
9714   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9715     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9716 
9717   // The remaining checks depend on the data arguments.
9718   if (HasVAListArg)
9719     return true;
9720 
9721   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9722     return false;
9723 
9724   // Check that the argument type matches the format specifier.
9725   const Expr *Ex = getDataArg(argIndex);
9726   if (!Ex)
9727     return true;
9728 
9729   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9730 
9731   if (!AT.isValid()) {
9732     return true;
9733   }
9734 
9735   analyze_format_string::ArgType::MatchKind Match =
9736       AT.matchesType(S.Context, Ex->getType());
9737   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9738   if (Match == analyze_format_string::ArgType::Match)
9739     return true;
9740 
9741   ScanfSpecifier fixedFS = FS;
9742   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9743                                  S.getLangOpts(), S.Context);
9744 
9745   unsigned Diag =
9746       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9747                : diag::warn_format_conversion_argument_type_mismatch;
9748 
9749   if (Success) {
9750     // Get the fix string from the fixed format specifier.
9751     SmallString<128> buf;
9752     llvm::raw_svector_ostream os(buf);
9753     fixedFS.toString(os);
9754 
9755     EmitFormatDiagnostic(
9756         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9757                       << Ex->getType() << false << Ex->getSourceRange(),
9758         Ex->getBeginLoc(),
9759         /*IsStringLocation*/ false,
9760         getSpecifierRange(startSpecifier, specifierLen),
9761         FixItHint::CreateReplacement(
9762             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9763   } else {
9764     EmitFormatDiagnostic(S.PDiag(Diag)
9765                              << AT.getRepresentativeTypeName(S.Context)
9766                              << Ex->getType() << false << Ex->getSourceRange(),
9767                          Ex->getBeginLoc(),
9768                          /*IsStringLocation*/ false,
9769                          getSpecifierRange(startSpecifier, specifierLen));
9770   }
9771 
9772   return true;
9773 }
9774 
9775 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9776                               const Expr *OrigFormatExpr,
9777                               ArrayRef<const Expr *> Args,
9778                               bool HasVAListArg, unsigned format_idx,
9779                               unsigned firstDataArg,
9780                               Sema::FormatStringType Type,
9781                               bool inFunctionCall,
9782                               Sema::VariadicCallType CallType,
9783                               llvm::SmallBitVector &CheckedVarArgs,
9784                               UncoveredArgHandler &UncoveredArg,
9785                               bool IgnoreStringsWithoutSpecifiers) {
9786   // CHECK: is the format string a wide literal?
9787   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9788     CheckFormatHandler::EmitFormatDiagnostic(
9789         S, inFunctionCall, Args[format_idx],
9790         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9791         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9792     return;
9793   }
9794 
9795   // Str - The format string.  NOTE: this is NOT null-terminated!
9796   StringRef StrRef = FExpr->getString();
9797   const char *Str = StrRef.data();
9798   // Account for cases where the string literal is truncated in a declaration.
9799   const ConstantArrayType *T =
9800     S.Context.getAsConstantArrayType(FExpr->getType());
9801   assert(T && "String literal not of constant array type!");
9802   size_t TypeSize = T->getSize().getZExtValue();
9803   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9804   const unsigned numDataArgs = Args.size() - firstDataArg;
9805 
9806   if (IgnoreStringsWithoutSpecifiers &&
9807       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9808           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9809     return;
9810 
9811   // Emit a warning if the string literal is truncated and does not contain an
9812   // embedded null character.
9813   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
9814     CheckFormatHandler::EmitFormatDiagnostic(
9815         S, inFunctionCall, Args[format_idx],
9816         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9817         FExpr->getBeginLoc(),
9818         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9819     return;
9820   }
9821 
9822   // CHECK: empty format string?
9823   if (StrLen == 0 && numDataArgs > 0) {
9824     CheckFormatHandler::EmitFormatDiagnostic(
9825         S, inFunctionCall, Args[format_idx],
9826         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9827         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9828     return;
9829   }
9830 
9831   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9832       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9833       Type == Sema::FST_OSTrace) {
9834     CheckPrintfHandler H(
9835         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9836         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9837         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9838         CheckedVarArgs, UncoveredArg);
9839 
9840     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9841                                                   S.getLangOpts(),
9842                                                   S.Context.getTargetInfo(),
9843                                             Type == Sema::FST_FreeBSDKPrintf))
9844       H.DoneProcessing();
9845   } else if (Type == Sema::FST_Scanf) {
9846     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9847                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9848                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9849 
9850     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9851                                                  S.getLangOpts(),
9852                                                  S.Context.getTargetInfo()))
9853       H.DoneProcessing();
9854   } // TODO: handle other formats
9855 }
9856 
9857 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9858   // Str - The format string.  NOTE: this is NOT null-terminated!
9859   StringRef StrRef = FExpr->getString();
9860   const char *Str = StrRef.data();
9861   // Account for cases where the string literal is truncated in a declaration.
9862   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9863   assert(T && "String literal not of constant array type!");
9864   size_t TypeSize = T->getSize().getZExtValue();
9865   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9866   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9867                                                          getLangOpts(),
9868                                                          Context.getTargetInfo());
9869 }
9870 
9871 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9872 
9873 // Returns the related absolute value function that is larger, of 0 if one
9874 // does not exist.
9875 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9876   switch (AbsFunction) {
9877   default:
9878     return 0;
9879 
9880   case Builtin::BI__builtin_abs:
9881     return Builtin::BI__builtin_labs;
9882   case Builtin::BI__builtin_labs:
9883     return Builtin::BI__builtin_llabs;
9884   case Builtin::BI__builtin_llabs:
9885     return 0;
9886 
9887   case Builtin::BI__builtin_fabsf:
9888     return Builtin::BI__builtin_fabs;
9889   case Builtin::BI__builtin_fabs:
9890     return Builtin::BI__builtin_fabsl;
9891   case Builtin::BI__builtin_fabsl:
9892     return 0;
9893 
9894   case Builtin::BI__builtin_cabsf:
9895     return Builtin::BI__builtin_cabs;
9896   case Builtin::BI__builtin_cabs:
9897     return Builtin::BI__builtin_cabsl;
9898   case Builtin::BI__builtin_cabsl:
9899     return 0;
9900 
9901   case Builtin::BIabs:
9902     return Builtin::BIlabs;
9903   case Builtin::BIlabs:
9904     return Builtin::BIllabs;
9905   case Builtin::BIllabs:
9906     return 0;
9907 
9908   case Builtin::BIfabsf:
9909     return Builtin::BIfabs;
9910   case Builtin::BIfabs:
9911     return Builtin::BIfabsl;
9912   case Builtin::BIfabsl:
9913     return 0;
9914 
9915   case Builtin::BIcabsf:
9916    return Builtin::BIcabs;
9917   case Builtin::BIcabs:
9918     return Builtin::BIcabsl;
9919   case Builtin::BIcabsl:
9920     return 0;
9921   }
9922 }
9923 
9924 // Returns the argument type of the absolute value function.
9925 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9926                                              unsigned AbsType) {
9927   if (AbsType == 0)
9928     return QualType();
9929 
9930   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9931   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9932   if (Error != ASTContext::GE_None)
9933     return QualType();
9934 
9935   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9936   if (!FT)
9937     return QualType();
9938 
9939   if (FT->getNumParams() != 1)
9940     return QualType();
9941 
9942   return FT->getParamType(0);
9943 }
9944 
9945 // Returns the best absolute value function, or zero, based on type and
9946 // current absolute value function.
9947 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9948                                    unsigned AbsFunctionKind) {
9949   unsigned BestKind = 0;
9950   uint64_t ArgSize = Context.getTypeSize(ArgType);
9951   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9952        Kind = getLargerAbsoluteValueFunction(Kind)) {
9953     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9954     if (Context.getTypeSize(ParamType) >= ArgSize) {
9955       if (BestKind == 0)
9956         BestKind = Kind;
9957       else if (Context.hasSameType(ParamType, ArgType)) {
9958         BestKind = Kind;
9959         break;
9960       }
9961     }
9962   }
9963   return BestKind;
9964 }
9965 
9966 enum AbsoluteValueKind {
9967   AVK_Integer,
9968   AVK_Floating,
9969   AVK_Complex
9970 };
9971 
9972 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9973   if (T->isIntegralOrEnumerationType())
9974     return AVK_Integer;
9975   if (T->isRealFloatingType())
9976     return AVK_Floating;
9977   if (T->isAnyComplexType())
9978     return AVK_Complex;
9979 
9980   llvm_unreachable("Type not integer, floating, or complex");
9981 }
9982 
9983 // Changes the absolute value function to a different type.  Preserves whether
9984 // the function is a builtin.
9985 static unsigned changeAbsFunction(unsigned AbsKind,
9986                                   AbsoluteValueKind ValueKind) {
9987   switch (ValueKind) {
9988   case AVK_Integer:
9989     switch (AbsKind) {
9990     default:
9991       return 0;
9992     case Builtin::BI__builtin_fabsf:
9993     case Builtin::BI__builtin_fabs:
9994     case Builtin::BI__builtin_fabsl:
9995     case Builtin::BI__builtin_cabsf:
9996     case Builtin::BI__builtin_cabs:
9997     case Builtin::BI__builtin_cabsl:
9998       return Builtin::BI__builtin_abs;
9999     case Builtin::BIfabsf:
10000     case Builtin::BIfabs:
10001     case Builtin::BIfabsl:
10002     case Builtin::BIcabsf:
10003     case Builtin::BIcabs:
10004     case Builtin::BIcabsl:
10005       return Builtin::BIabs;
10006     }
10007   case AVK_Floating:
10008     switch (AbsKind) {
10009     default:
10010       return 0;
10011     case Builtin::BI__builtin_abs:
10012     case Builtin::BI__builtin_labs:
10013     case Builtin::BI__builtin_llabs:
10014     case Builtin::BI__builtin_cabsf:
10015     case Builtin::BI__builtin_cabs:
10016     case Builtin::BI__builtin_cabsl:
10017       return Builtin::BI__builtin_fabsf;
10018     case Builtin::BIabs:
10019     case Builtin::BIlabs:
10020     case Builtin::BIllabs:
10021     case Builtin::BIcabsf:
10022     case Builtin::BIcabs:
10023     case Builtin::BIcabsl:
10024       return Builtin::BIfabsf;
10025     }
10026   case AVK_Complex:
10027     switch (AbsKind) {
10028     default:
10029       return 0;
10030     case Builtin::BI__builtin_abs:
10031     case Builtin::BI__builtin_labs:
10032     case Builtin::BI__builtin_llabs:
10033     case Builtin::BI__builtin_fabsf:
10034     case Builtin::BI__builtin_fabs:
10035     case Builtin::BI__builtin_fabsl:
10036       return Builtin::BI__builtin_cabsf;
10037     case Builtin::BIabs:
10038     case Builtin::BIlabs:
10039     case Builtin::BIllabs:
10040     case Builtin::BIfabsf:
10041     case Builtin::BIfabs:
10042     case Builtin::BIfabsl:
10043       return Builtin::BIcabsf;
10044     }
10045   }
10046   llvm_unreachable("Unable to convert function");
10047 }
10048 
10049 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10050   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10051   if (!FnInfo)
10052     return 0;
10053 
10054   switch (FDecl->getBuiltinID()) {
10055   default:
10056     return 0;
10057   case Builtin::BI__builtin_abs:
10058   case Builtin::BI__builtin_fabs:
10059   case Builtin::BI__builtin_fabsf:
10060   case Builtin::BI__builtin_fabsl:
10061   case Builtin::BI__builtin_labs:
10062   case Builtin::BI__builtin_llabs:
10063   case Builtin::BI__builtin_cabs:
10064   case Builtin::BI__builtin_cabsf:
10065   case Builtin::BI__builtin_cabsl:
10066   case Builtin::BIabs:
10067   case Builtin::BIlabs:
10068   case Builtin::BIllabs:
10069   case Builtin::BIfabs:
10070   case Builtin::BIfabsf:
10071   case Builtin::BIfabsl:
10072   case Builtin::BIcabs:
10073   case Builtin::BIcabsf:
10074   case Builtin::BIcabsl:
10075     return FDecl->getBuiltinID();
10076   }
10077   llvm_unreachable("Unknown Builtin type");
10078 }
10079 
10080 // If the replacement is valid, emit a note with replacement function.
10081 // Additionally, suggest including the proper header if not already included.
10082 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10083                             unsigned AbsKind, QualType ArgType) {
10084   bool EmitHeaderHint = true;
10085   const char *HeaderName = nullptr;
10086   const char *FunctionName = nullptr;
10087   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10088     FunctionName = "std::abs";
10089     if (ArgType->isIntegralOrEnumerationType()) {
10090       HeaderName = "cstdlib";
10091     } else if (ArgType->isRealFloatingType()) {
10092       HeaderName = "cmath";
10093     } else {
10094       llvm_unreachable("Invalid Type");
10095     }
10096 
10097     // Lookup all std::abs
10098     if (NamespaceDecl *Std = S.getStdNamespace()) {
10099       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10100       R.suppressDiagnostics();
10101       S.LookupQualifiedName(R, Std);
10102 
10103       for (const auto *I : R) {
10104         const FunctionDecl *FDecl = nullptr;
10105         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10106           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10107         } else {
10108           FDecl = dyn_cast<FunctionDecl>(I);
10109         }
10110         if (!FDecl)
10111           continue;
10112 
10113         // Found std::abs(), check that they are the right ones.
10114         if (FDecl->getNumParams() != 1)
10115           continue;
10116 
10117         // Check that the parameter type can handle the argument.
10118         QualType ParamType = FDecl->getParamDecl(0)->getType();
10119         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10120             S.Context.getTypeSize(ArgType) <=
10121                 S.Context.getTypeSize(ParamType)) {
10122           // Found a function, don't need the header hint.
10123           EmitHeaderHint = false;
10124           break;
10125         }
10126       }
10127     }
10128   } else {
10129     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10130     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10131 
10132     if (HeaderName) {
10133       DeclarationName DN(&S.Context.Idents.get(FunctionName));
10134       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10135       R.suppressDiagnostics();
10136       S.LookupName(R, S.getCurScope());
10137 
10138       if (R.isSingleResult()) {
10139         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10140         if (FD && FD->getBuiltinID() == AbsKind) {
10141           EmitHeaderHint = false;
10142         } else {
10143           return;
10144         }
10145       } else if (!R.empty()) {
10146         return;
10147       }
10148     }
10149   }
10150 
10151   S.Diag(Loc, diag::note_replace_abs_function)
10152       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10153 
10154   if (!HeaderName)
10155     return;
10156 
10157   if (!EmitHeaderHint)
10158     return;
10159 
10160   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10161                                                     << FunctionName;
10162 }
10163 
10164 template <std::size_t StrLen>
10165 static bool IsStdFunction(const FunctionDecl *FDecl,
10166                           const char (&Str)[StrLen]) {
10167   if (!FDecl)
10168     return false;
10169   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10170     return false;
10171   if (!FDecl->isInStdNamespace())
10172     return false;
10173 
10174   return true;
10175 }
10176 
10177 // Warn when using the wrong abs() function.
10178 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10179                                       const FunctionDecl *FDecl) {
10180   if (Call->getNumArgs() != 1)
10181     return;
10182 
10183   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10184   bool IsStdAbs = IsStdFunction(FDecl, "abs");
10185   if (AbsKind == 0 && !IsStdAbs)
10186     return;
10187 
10188   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10189   QualType ParamType = Call->getArg(0)->getType();
10190 
10191   // Unsigned types cannot be negative.  Suggest removing the absolute value
10192   // function call.
10193   if (ArgType->isUnsignedIntegerType()) {
10194     const char *FunctionName =
10195         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10196     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10197     Diag(Call->getExprLoc(), diag::note_remove_abs)
10198         << FunctionName
10199         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10200     return;
10201   }
10202 
10203   // Taking the absolute value of a pointer is very suspicious, they probably
10204   // wanted to index into an array, dereference a pointer, call a function, etc.
10205   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10206     unsigned DiagType = 0;
10207     if (ArgType->isFunctionType())
10208       DiagType = 1;
10209     else if (ArgType->isArrayType())
10210       DiagType = 2;
10211 
10212     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10213     return;
10214   }
10215 
10216   // std::abs has overloads which prevent most of the absolute value problems
10217   // from occurring.
10218   if (IsStdAbs)
10219     return;
10220 
10221   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10222   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10223 
10224   // The argument and parameter are the same kind.  Check if they are the right
10225   // size.
10226   if (ArgValueKind == ParamValueKind) {
10227     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10228       return;
10229 
10230     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10231     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10232         << FDecl << ArgType << ParamType;
10233 
10234     if (NewAbsKind == 0)
10235       return;
10236 
10237     emitReplacement(*this, Call->getExprLoc(),
10238                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10239     return;
10240   }
10241 
10242   // ArgValueKind != ParamValueKind
10243   // The wrong type of absolute value function was used.  Attempt to find the
10244   // proper one.
10245   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10246   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10247   if (NewAbsKind == 0)
10248     return;
10249 
10250   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10251       << FDecl << ParamValueKind << ArgValueKind;
10252 
10253   emitReplacement(*this, Call->getExprLoc(),
10254                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10255 }
10256 
10257 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10258 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10259                                 const FunctionDecl *FDecl) {
10260   if (!Call || !FDecl) return;
10261 
10262   // Ignore template specializations and macros.
10263   if (inTemplateInstantiation()) return;
10264   if (Call->getExprLoc().isMacroID()) return;
10265 
10266   // Only care about the one template argument, two function parameter std::max
10267   if (Call->getNumArgs() != 2) return;
10268   if (!IsStdFunction(FDecl, "max")) return;
10269   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10270   if (!ArgList) return;
10271   if (ArgList->size() != 1) return;
10272 
10273   // Check that template type argument is unsigned integer.
10274   const auto& TA = ArgList->get(0);
10275   if (TA.getKind() != TemplateArgument::Type) return;
10276   QualType ArgType = TA.getAsType();
10277   if (!ArgType->isUnsignedIntegerType()) return;
10278 
10279   // See if either argument is a literal zero.
10280   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10281     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10282     if (!MTE) return false;
10283     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10284     if (!Num) return false;
10285     if (Num->getValue() != 0) return false;
10286     return true;
10287   };
10288 
10289   const Expr *FirstArg = Call->getArg(0);
10290   const Expr *SecondArg = Call->getArg(1);
10291   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10292   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10293 
10294   // Only warn when exactly one argument is zero.
10295   if (IsFirstArgZero == IsSecondArgZero) return;
10296 
10297   SourceRange FirstRange = FirstArg->getSourceRange();
10298   SourceRange SecondRange = SecondArg->getSourceRange();
10299 
10300   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10301 
10302   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10303       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10304 
10305   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10306   SourceRange RemovalRange;
10307   if (IsFirstArgZero) {
10308     RemovalRange = SourceRange(FirstRange.getBegin(),
10309                                SecondRange.getBegin().getLocWithOffset(-1));
10310   } else {
10311     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10312                                SecondRange.getEnd());
10313   }
10314 
10315   Diag(Call->getExprLoc(), diag::note_remove_max_call)
10316         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10317         << FixItHint::CreateRemoval(RemovalRange);
10318 }
10319 
10320 //===--- CHECK: Standard memory functions ---------------------------------===//
10321 
10322 /// Takes the expression passed to the size_t parameter of functions
10323 /// such as memcmp, strncat, etc and warns if it's a comparison.
10324 ///
10325 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10326 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10327                                            IdentifierInfo *FnName,
10328                                            SourceLocation FnLoc,
10329                                            SourceLocation RParenLoc) {
10330   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10331   if (!Size)
10332     return false;
10333 
10334   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10335   if (!Size->isComparisonOp() && !Size->isLogicalOp())
10336     return false;
10337 
10338   SourceRange SizeRange = Size->getSourceRange();
10339   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10340       << SizeRange << FnName;
10341   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10342       << FnName
10343       << FixItHint::CreateInsertion(
10344              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10345       << FixItHint::CreateRemoval(RParenLoc);
10346   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10347       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10348       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10349                                     ")");
10350 
10351   return true;
10352 }
10353 
10354 /// Determine whether the given type is or contains a dynamic class type
10355 /// (e.g., whether it has a vtable).
10356 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10357                                                      bool &IsContained) {
10358   // Look through array types while ignoring qualifiers.
10359   const Type *Ty = T->getBaseElementTypeUnsafe();
10360   IsContained = false;
10361 
10362   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10363   RD = RD ? RD->getDefinition() : nullptr;
10364   if (!RD || RD->isInvalidDecl())
10365     return nullptr;
10366 
10367   if (RD->isDynamicClass())
10368     return RD;
10369 
10370   // Check all the fields.  If any bases were dynamic, the class is dynamic.
10371   // It's impossible for a class to transitively contain itself by value, so
10372   // infinite recursion is impossible.
10373   for (auto *FD : RD->fields()) {
10374     bool SubContained;
10375     if (const CXXRecordDecl *ContainedRD =
10376             getContainedDynamicClass(FD->getType(), SubContained)) {
10377       IsContained = true;
10378       return ContainedRD;
10379     }
10380   }
10381 
10382   return nullptr;
10383 }
10384 
10385 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10386   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10387     if (Unary->getKind() == UETT_SizeOf)
10388       return Unary;
10389   return nullptr;
10390 }
10391 
10392 /// If E is a sizeof expression, returns its argument expression,
10393 /// otherwise returns NULL.
10394 static const Expr *getSizeOfExprArg(const Expr *E) {
10395   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10396     if (!SizeOf->isArgumentType())
10397       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10398   return nullptr;
10399 }
10400 
10401 /// If E is a sizeof expression, returns its argument type.
10402 static QualType getSizeOfArgType(const Expr *E) {
10403   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10404     return SizeOf->getTypeOfArgument();
10405   return QualType();
10406 }
10407 
10408 namespace {
10409 
10410 struct SearchNonTrivialToInitializeField
10411     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10412   using Super =
10413       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10414 
10415   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10416 
10417   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10418                      SourceLocation SL) {
10419     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10420       asDerived().visitArray(PDIK, AT, SL);
10421       return;
10422     }
10423 
10424     Super::visitWithKind(PDIK, FT, SL);
10425   }
10426 
10427   void visitARCStrong(QualType FT, SourceLocation SL) {
10428     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10429   }
10430   void visitARCWeak(QualType FT, SourceLocation SL) {
10431     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10432   }
10433   void visitStruct(QualType FT, SourceLocation SL) {
10434     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10435       visit(FD->getType(), FD->getLocation());
10436   }
10437   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10438                   const ArrayType *AT, SourceLocation SL) {
10439     visit(getContext().getBaseElementType(AT), SL);
10440   }
10441   void visitTrivial(QualType FT, SourceLocation SL) {}
10442 
10443   static void diag(QualType RT, const Expr *E, Sema &S) {
10444     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10445   }
10446 
10447   ASTContext &getContext() { return S.getASTContext(); }
10448 
10449   const Expr *E;
10450   Sema &S;
10451 };
10452 
10453 struct SearchNonTrivialToCopyField
10454     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10455   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10456 
10457   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10458 
10459   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10460                      SourceLocation SL) {
10461     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10462       asDerived().visitArray(PCK, AT, SL);
10463       return;
10464     }
10465 
10466     Super::visitWithKind(PCK, FT, SL);
10467   }
10468 
10469   void visitARCStrong(QualType FT, SourceLocation SL) {
10470     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10471   }
10472   void visitARCWeak(QualType FT, SourceLocation SL) {
10473     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10474   }
10475   void visitStruct(QualType FT, SourceLocation SL) {
10476     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10477       visit(FD->getType(), FD->getLocation());
10478   }
10479   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10480                   SourceLocation SL) {
10481     visit(getContext().getBaseElementType(AT), SL);
10482   }
10483   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10484                 SourceLocation SL) {}
10485   void visitTrivial(QualType FT, SourceLocation SL) {}
10486   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10487 
10488   static void diag(QualType RT, const Expr *E, Sema &S) {
10489     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10490   }
10491 
10492   ASTContext &getContext() { return S.getASTContext(); }
10493 
10494   const Expr *E;
10495   Sema &S;
10496 };
10497 
10498 }
10499 
10500 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10501 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10502   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10503 
10504   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10505     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10506       return false;
10507 
10508     return doesExprLikelyComputeSize(BO->getLHS()) ||
10509            doesExprLikelyComputeSize(BO->getRHS());
10510   }
10511 
10512   return getAsSizeOfExpr(SizeofExpr) != nullptr;
10513 }
10514 
10515 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10516 ///
10517 /// \code
10518 ///   #define MACRO 0
10519 ///   foo(MACRO);
10520 ///   foo(0);
10521 /// \endcode
10522 ///
10523 /// This should return true for the first call to foo, but not for the second
10524 /// (regardless of whether foo is a macro or function).
10525 static bool isArgumentExpandedFromMacro(SourceManager &SM,
10526                                         SourceLocation CallLoc,
10527                                         SourceLocation ArgLoc) {
10528   if (!CallLoc.isMacroID())
10529     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10530 
10531   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10532          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10533 }
10534 
10535 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10536 /// last two arguments transposed.
10537 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10538   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10539     return;
10540 
10541   const Expr *SizeArg =
10542     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10543 
10544   auto isLiteralZero = [](const Expr *E) {
10545     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10546   };
10547 
10548   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10549   SourceLocation CallLoc = Call->getRParenLoc();
10550   SourceManager &SM = S.getSourceManager();
10551   if (isLiteralZero(SizeArg) &&
10552       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10553 
10554     SourceLocation DiagLoc = SizeArg->getExprLoc();
10555 
10556     // Some platforms #define bzero to __builtin_memset. See if this is the
10557     // case, and if so, emit a better diagnostic.
10558     if (BId == Builtin::BIbzero ||
10559         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10560                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
10561       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10562       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10563     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10564       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10565       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10566     }
10567     return;
10568   }
10569 
10570   // If the second argument to a memset is a sizeof expression and the third
10571   // isn't, this is also likely an error. This should catch
10572   // 'memset(buf, sizeof(buf), 0xff)'.
10573   if (BId == Builtin::BImemset &&
10574       doesExprLikelyComputeSize(Call->getArg(1)) &&
10575       !doesExprLikelyComputeSize(Call->getArg(2))) {
10576     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10577     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10578     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10579     return;
10580   }
10581 }
10582 
10583 /// Check for dangerous or invalid arguments to memset().
10584 ///
10585 /// This issues warnings on known problematic, dangerous or unspecified
10586 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10587 /// function calls.
10588 ///
10589 /// \param Call The call expression to diagnose.
10590 void Sema::CheckMemaccessArguments(const CallExpr *Call,
10591                                    unsigned BId,
10592                                    IdentifierInfo *FnName) {
10593   assert(BId != 0);
10594 
10595   // It is possible to have a non-standard definition of memset.  Validate
10596   // we have enough arguments, and if not, abort further checking.
10597   unsigned ExpectedNumArgs =
10598       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10599   if (Call->getNumArgs() < ExpectedNumArgs)
10600     return;
10601 
10602   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10603                       BId == Builtin::BIstrndup ? 1 : 2);
10604   unsigned LenArg =
10605       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10606   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10607 
10608   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10609                                      Call->getBeginLoc(), Call->getRParenLoc()))
10610     return;
10611 
10612   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10613   CheckMemaccessSize(*this, BId, Call);
10614 
10615   // We have special checking when the length is a sizeof expression.
10616   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10617   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10618   llvm::FoldingSetNodeID SizeOfArgID;
10619 
10620   // Although widely used, 'bzero' is not a standard function. Be more strict
10621   // with the argument types before allowing diagnostics and only allow the
10622   // form bzero(ptr, sizeof(...)).
10623   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10624   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10625     return;
10626 
10627   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10628     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10629     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10630 
10631     QualType DestTy = Dest->getType();
10632     QualType PointeeTy;
10633     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10634       PointeeTy = DestPtrTy->getPointeeType();
10635 
10636       // Never warn about void type pointers. This can be used to suppress
10637       // false positives.
10638       if (PointeeTy->isVoidType())
10639         continue;
10640 
10641       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10642       // actually comparing the expressions for equality. Because computing the
10643       // expression IDs can be expensive, we only do this if the diagnostic is
10644       // enabled.
10645       if (SizeOfArg &&
10646           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10647                            SizeOfArg->getExprLoc())) {
10648         // We only compute IDs for expressions if the warning is enabled, and
10649         // cache the sizeof arg's ID.
10650         if (SizeOfArgID == llvm::FoldingSetNodeID())
10651           SizeOfArg->Profile(SizeOfArgID, Context, true);
10652         llvm::FoldingSetNodeID DestID;
10653         Dest->Profile(DestID, Context, true);
10654         if (DestID == SizeOfArgID) {
10655           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10656           //       over sizeof(src) as well.
10657           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10658           StringRef ReadableName = FnName->getName();
10659 
10660           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10661             if (UnaryOp->getOpcode() == UO_AddrOf)
10662               ActionIdx = 1; // If its an address-of operator, just remove it.
10663           if (!PointeeTy->isIncompleteType() &&
10664               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10665             ActionIdx = 2; // If the pointee's size is sizeof(char),
10666                            // suggest an explicit length.
10667 
10668           // If the function is defined as a builtin macro, do not show macro
10669           // expansion.
10670           SourceLocation SL = SizeOfArg->getExprLoc();
10671           SourceRange DSR = Dest->getSourceRange();
10672           SourceRange SSR = SizeOfArg->getSourceRange();
10673           SourceManager &SM = getSourceManager();
10674 
10675           if (SM.isMacroArgExpansion(SL)) {
10676             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10677             SL = SM.getSpellingLoc(SL);
10678             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10679                              SM.getSpellingLoc(DSR.getEnd()));
10680             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10681                              SM.getSpellingLoc(SSR.getEnd()));
10682           }
10683 
10684           DiagRuntimeBehavior(SL, SizeOfArg,
10685                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10686                                 << ReadableName
10687                                 << PointeeTy
10688                                 << DestTy
10689                                 << DSR
10690                                 << SSR);
10691           DiagRuntimeBehavior(SL, SizeOfArg,
10692                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10693                                 << ActionIdx
10694                                 << SSR);
10695 
10696           break;
10697         }
10698       }
10699 
10700       // Also check for cases where the sizeof argument is the exact same
10701       // type as the memory argument, and where it points to a user-defined
10702       // record type.
10703       if (SizeOfArgTy != QualType()) {
10704         if (PointeeTy->isRecordType() &&
10705             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10706           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10707                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
10708                                 << FnName << SizeOfArgTy << ArgIdx
10709                                 << PointeeTy << Dest->getSourceRange()
10710                                 << LenExpr->getSourceRange());
10711           break;
10712         }
10713       }
10714     } else if (DestTy->isArrayType()) {
10715       PointeeTy = DestTy;
10716     }
10717 
10718     if (PointeeTy == QualType())
10719       continue;
10720 
10721     // Always complain about dynamic classes.
10722     bool IsContained;
10723     if (const CXXRecordDecl *ContainedRD =
10724             getContainedDynamicClass(PointeeTy, IsContained)) {
10725 
10726       unsigned OperationType = 0;
10727       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10728       // "overwritten" if we're warning about the destination for any call
10729       // but memcmp; otherwise a verb appropriate to the call.
10730       if (ArgIdx != 0 || IsCmp) {
10731         if (BId == Builtin::BImemcpy)
10732           OperationType = 1;
10733         else if(BId == Builtin::BImemmove)
10734           OperationType = 2;
10735         else if (IsCmp)
10736           OperationType = 3;
10737       }
10738 
10739       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10740                           PDiag(diag::warn_dyn_class_memaccess)
10741                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10742                               << IsContained << ContainedRD << OperationType
10743                               << Call->getCallee()->getSourceRange());
10744     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10745              BId != Builtin::BImemset)
10746       DiagRuntimeBehavior(
10747         Dest->getExprLoc(), Dest,
10748         PDiag(diag::warn_arc_object_memaccess)
10749           << ArgIdx << FnName << PointeeTy
10750           << Call->getCallee()->getSourceRange());
10751     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10752       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10753           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10754         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10755                             PDiag(diag::warn_cstruct_memaccess)
10756                                 << ArgIdx << FnName << PointeeTy << 0);
10757         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10758       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10759                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10760         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10761                             PDiag(diag::warn_cstruct_memaccess)
10762                                 << ArgIdx << FnName << PointeeTy << 1);
10763         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10764       } else {
10765         continue;
10766       }
10767     } else
10768       continue;
10769 
10770     DiagRuntimeBehavior(
10771       Dest->getExprLoc(), Dest,
10772       PDiag(diag::note_bad_memaccess_silence)
10773         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10774     break;
10775   }
10776 }
10777 
10778 // A little helper routine: ignore addition and subtraction of integer literals.
10779 // This intentionally does not ignore all integer constant expressions because
10780 // we don't want to remove sizeof().
10781 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10782   Ex = Ex->IgnoreParenCasts();
10783 
10784   while (true) {
10785     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10786     if (!BO || !BO->isAdditiveOp())
10787       break;
10788 
10789     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10790     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10791 
10792     if (isa<IntegerLiteral>(RHS))
10793       Ex = LHS;
10794     else if (isa<IntegerLiteral>(LHS))
10795       Ex = RHS;
10796     else
10797       break;
10798   }
10799 
10800   return Ex;
10801 }
10802 
10803 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10804                                                       ASTContext &Context) {
10805   // Only handle constant-sized or VLAs, but not flexible members.
10806   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10807     // Only issue the FIXIT for arrays of size > 1.
10808     if (CAT->getSize().getSExtValue() <= 1)
10809       return false;
10810   } else if (!Ty->isVariableArrayType()) {
10811     return false;
10812   }
10813   return true;
10814 }
10815 
10816 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10817 // be the size of the source, instead of the destination.
10818 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10819                                     IdentifierInfo *FnName) {
10820 
10821   // Don't crash if the user has the wrong number of arguments
10822   unsigned NumArgs = Call->getNumArgs();
10823   if ((NumArgs != 3) && (NumArgs != 4))
10824     return;
10825 
10826   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10827   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10828   const Expr *CompareWithSrc = nullptr;
10829 
10830   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10831                                      Call->getBeginLoc(), Call->getRParenLoc()))
10832     return;
10833 
10834   // Look for 'strlcpy(dst, x, sizeof(x))'
10835   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10836     CompareWithSrc = Ex;
10837   else {
10838     // Look for 'strlcpy(dst, x, strlen(x))'
10839     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10840       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10841           SizeCall->getNumArgs() == 1)
10842         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10843     }
10844   }
10845 
10846   if (!CompareWithSrc)
10847     return;
10848 
10849   // Determine if the argument to sizeof/strlen is equal to the source
10850   // argument.  In principle there's all kinds of things you could do
10851   // here, for instance creating an == expression and evaluating it with
10852   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10853   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10854   if (!SrcArgDRE)
10855     return;
10856 
10857   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10858   if (!CompareWithSrcDRE ||
10859       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10860     return;
10861 
10862   const Expr *OriginalSizeArg = Call->getArg(2);
10863   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10864       << OriginalSizeArg->getSourceRange() << FnName;
10865 
10866   // Output a FIXIT hint if the destination is an array (rather than a
10867   // pointer to an array).  This could be enhanced to handle some
10868   // pointers if we know the actual size, like if DstArg is 'array+2'
10869   // we could say 'sizeof(array)-2'.
10870   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10871   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10872     return;
10873 
10874   SmallString<128> sizeString;
10875   llvm::raw_svector_ostream OS(sizeString);
10876   OS << "sizeof(";
10877   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10878   OS << ")";
10879 
10880   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10881       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10882                                       OS.str());
10883 }
10884 
10885 /// Check if two expressions refer to the same declaration.
10886 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10887   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10888     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10889       return D1->getDecl() == D2->getDecl();
10890   return false;
10891 }
10892 
10893 static const Expr *getStrlenExprArg(const Expr *E) {
10894   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10895     const FunctionDecl *FD = CE->getDirectCallee();
10896     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10897       return nullptr;
10898     return CE->getArg(0)->IgnoreParenCasts();
10899   }
10900   return nullptr;
10901 }
10902 
10903 // Warn on anti-patterns as the 'size' argument to strncat.
10904 // The correct size argument should look like following:
10905 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10906 void Sema::CheckStrncatArguments(const CallExpr *CE,
10907                                  IdentifierInfo *FnName) {
10908   // Don't crash if the user has the wrong number of arguments.
10909   if (CE->getNumArgs() < 3)
10910     return;
10911   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10912   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10913   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10914 
10915   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10916                                      CE->getRParenLoc()))
10917     return;
10918 
10919   // Identify common expressions, which are wrongly used as the size argument
10920   // to strncat and may lead to buffer overflows.
10921   unsigned PatternType = 0;
10922   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10923     // - sizeof(dst)
10924     if (referToTheSameDecl(SizeOfArg, DstArg))
10925       PatternType = 1;
10926     // - sizeof(src)
10927     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10928       PatternType = 2;
10929   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10930     if (BE->getOpcode() == BO_Sub) {
10931       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10932       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10933       // - sizeof(dst) - strlen(dst)
10934       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10935           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10936         PatternType = 1;
10937       // - sizeof(src) - (anything)
10938       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10939         PatternType = 2;
10940     }
10941   }
10942 
10943   if (PatternType == 0)
10944     return;
10945 
10946   // Generate the diagnostic.
10947   SourceLocation SL = LenArg->getBeginLoc();
10948   SourceRange SR = LenArg->getSourceRange();
10949   SourceManager &SM = getSourceManager();
10950 
10951   // If the function is defined as a builtin macro, do not show macro expansion.
10952   if (SM.isMacroArgExpansion(SL)) {
10953     SL = SM.getSpellingLoc(SL);
10954     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10955                      SM.getSpellingLoc(SR.getEnd()));
10956   }
10957 
10958   // Check if the destination is an array (rather than a pointer to an array).
10959   QualType DstTy = DstArg->getType();
10960   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10961                                                                     Context);
10962   if (!isKnownSizeArray) {
10963     if (PatternType == 1)
10964       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10965     else
10966       Diag(SL, diag::warn_strncat_src_size) << SR;
10967     return;
10968   }
10969 
10970   if (PatternType == 1)
10971     Diag(SL, diag::warn_strncat_large_size) << SR;
10972   else
10973     Diag(SL, diag::warn_strncat_src_size) << SR;
10974 
10975   SmallString<128> sizeString;
10976   llvm::raw_svector_ostream OS(sizeString);
10977   OS << "sizeof(";
10978   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10979   OS << ") - ";
10980   OS << "strlen(";
10981   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10982   OS << ") - 1";
10983 
10984   Diag(SL, diag::note_strncat_wrong_size)
10985     << FixItHint::CreateReplacement(SR, OS.str());
10986 }
10987 
10988 namespace {
10989 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10990                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10991   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
10992     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10993         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
10994     return;
10995   }
10996 }
10997 
10998 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10999                                  const UnaryOperator *UnaryExpr) {
11000   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
11001     const Decl *D = Lvalue->getDecl();
11002     if (isa<DeclaratorDecl>(D))
11003       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
11004         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
11005   }
11006 
11007   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
11008     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
11009                                       Lvalue->getMemberDecl());
11010 }
11011 
11012 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
11013                             const UnaryOperator *UnaryExpr) {
11014   const auto *Lambda = dyn_cast<LambdaExpr>(
11015       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
11016   if (!Lambda)
11017     return;
11018 
11019   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11020       << CalleeName << 2 /*object: lambda expression*/;
11021 }
11022 
11023 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11024                                   const DeclRefExpr *Lvalue) {
11025   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11026   if (Var == nullptr)
11027     return;
11028 
11029   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11030       << CalleeName << 0 /*object: */ << Var;
11031 }
11032 
11033 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11034                             const CastExpr *Cast) {
11035   SmallString<128> SizeString;
11036   llvm::raw_svector_ostream OS(SizeString);
11037 
11038   clang::CastKind Kind = Cast->getCastKind();
11039   if (Kind == clang::CK_BitCast &&
11040       !Cast->getSubExpr()->getType()->isFunctionPointerType())
11041     return;
11042   if (Kind == clang::CK_IntegralToPointer &&
11043       !isa<IntegerLiteral>(
11044           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11045     return;
11046 
11047   switch (Cast->getCastKind()) {
11048   case clang::CK_BitCast:
11049   case clang::CK_IntegralToPointer:
11050   case clang::CK_FunctionToPointerDecay:
11051     OS << '\'';
11052     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11053     OS << '\'';
11054     break;
11055   default:
11056     return;
11057   }
11058 
11059   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11060       << CalleeName << 0 /*object: */ << OS.str();
11061 }
11062 } // namespace
11063 
11064 /// Alerts the user that they are attempting to free a non-malloc'd object.
11065 void Sema::CheckFreeArguments(const CallExpr *E) {
11066   const std::string CalleeName =
11067       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11068 
11069   { // Prefer something that doesn't involve a cast to make things simpler.
11070     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11071     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11072       switch (UnaryExpr->getOpcode()) {
11073       case UnaryOperator::Opcode::UO_AddrOf:
11074         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11075       case UnaryOperator::Opcode::UO_Plus:
11076         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11077       default:
11078         break;
11079       }
11080 
11081     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11082       if (Lvalue->getType()->isArrayType())
11083         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11084 
11085     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11086       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11087           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11088       return;
11089     }
11090 
11091     if (isa<BlockExpr>(Arg)) {
11092       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11093           << CalleeName << 1 /*object: block*/;
11094       return;
11095     }
11096   }
11097   // Maybe the cast was important, check after the other cases.
11098   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11099     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11100 }
11101 
11102 void
11103 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11104                          SourceLocation ReturnLoc,
11105                          bool isObjCMethod,
11106                          const AttrVec *Attrs,
11107                          const FunctionDecl *FD) {
11108   // Check if the return value is null but should not be.
11109   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11110        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11111       CheckNonNullExpr(*this, RetValExp))
11112     Diag(ReturnLoc, diag::warn_null_ret)
11113       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11114 
11115   // C++11 [basic.stc.dynamic.allocation]p4:
11116   //   If an allocation function declared with a non-throwing
11117   //   exception-specification fails to allocate storage, it shall return
11118   //   a null pointer. Any other allocation function that fails to allocate
11119   //   storage shall indicate failure only by throwing an exception [...]
11120   if (FD) {
11121     OverloadedOperatorKind Op = FD->getOverloadedOperator();
11122     if (Op == OO_New || Op == OO_Array_New) {
11123       const FunctionProtoType *Proto
11124         = FD->getType()->castAs<FunctionProtoType>();
11125       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11126           CheckNonNullExpr(*this, RetValExp))
11127         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11128           << FD << getLangOpts().CPlusPlus11;
11129     }
11130   }
11131 
11132   // PPC MMA non-pointer types are not allowed as return type. Checking the type
11133   // here prevent the user from using a PPC MMA type as trailing return type.
11134   if (Context.getTargetInfo().getTriple().isPPC64())
11135     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11136 }
11137 
11138 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
11139 
11140 /// Check for comparisons of floating point operands using != and ==.
11141 /// Issue a warning if these are no self-comparisons, as they are not likely
11142 /// to do what the programmer intended.
11143 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
11144   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11145   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11146 
11147   // Special case: check for x == x (which is OK).
11148   // Do not emit warnings for such cases.
11149   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11150     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11151       if (DRL->getDecl() == DRR->getDecl())
11152         return;
11153 
11154   // Special case: check for comparisons against literals that can be exactly
11155   //  represented by APFloat.  In such cases, do not emit a warning.  This
11156   //  is a heuristic: often comparison against such literals are used to
11157   //  detect if a value in a variable has not changed.  This clearly can
11158   //  lead to false negatives.
11159   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11160     if (FLL->isExact())
11161       return;
11162   } else
11163     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11164       if (FLR->isExact())
11165         return;
11166 
11167   // Check for comparisons with builtin types.
11168   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11169     if (CL->getBuiltinCallee())
11170       return;
11171 
11172   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11173     if (CR->getBuiltinCallee())
11174       return;
11175 
11176   // Emit the diagnostic.
11177   Diag(Loc, diag::warn_floatingpoint_eq)
11178     << LHS->getSourceRange() << RHS->getSourceRange();
11179 }
11180 
11181 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11182 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11183 
11184 namespace {
11185 
11186 /// Structure recording the 'active' range of an integer-valued
11187 /// expression.
11188 struct IntRange {
11189   /// The number of bits active in the int. Note that this includes exactly one
11190   /// sign bit if !NonNegative.
11191   unsigned Width;
11192 
11193   /// True if the int is known not to have negative values. If so, all leading
11194   /// bits before Width are known zero, otherwise they are known to be the
11195   /// same as the MSB within Width.
11196   bool NonNegative;
11197 
11198   IntRange(unsigned Width, bool NonNegative)
11199       : Width(Width), NonNegative(NonNegative) {}
11200 
11201   /// Number of bits excluding the sign bit.
11202   unsigned valueBits() const {
11203     return NonNegative ? Width : Width - 1;
11204   }
11205 
11206   /// Returns the range of the bool type.
11207   static IntRange forBoolType() {
11208     return IntRange(1, true);
11209   }
11210 
11211   /// Returns the range of an opaque value of the given integral type.
11212   static IntRange forValueOfType(ASTContext &C, QualType T) {
11213     return forValueOfCanonicalType(C,
11214                           T->getCanonicalTypeInternal().getTypePtr());
11215   }
11216 
11217   /// Returns the range of an opaque value of a canonical integral type.
11218   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11219     assert(T->isCanonicalUnqualified());
11220 
11221     if (const VectorType *VT = dyn_cast<VectorType>(T))
11222       T = VT->getElementType().getTypePtr();
11223     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11224       T = CT->getElementType().getTypePtr();
11225     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11226       T = AT->getValueType().getTypePtr();
11227 
11228     if (!C.getLangOpts().CPlusPlus) {
11229       // For enum types in C code, use the underlying datatype.
11230       if (const EnumType *ET = dyn_cast<EnumType>(T))
11231         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11232     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11233       // For enum types in C++, use the known bit width of the enumerators.
11234       EnumDecl *Enum = ET->getDecl();
11235       // In C++11, enums can have a fixed underlying type. Use this type to
11236       // compute the range.
11237       if (Enum->isFixed()) {
11238         return IntRange(C.getIntWidth(QualType(T, 0)),
11239                         !ET->isSignedIntegerOrEnumerationType());
11240       }
11241 
11242       unsigned NumPositive = Enum->getNumPositiveBits();
11243       unsigned NumNegative = Enum->getNumNegativeBits();
11244 
11245       if (NumNegative == 0)
11246         return IntRange(NumPositive, true/*NonNegative*/);
11247       else
11248         return IntRange(std::max(NumPositive + 1, NumNegative),
11249                         false/*NonNegative*/);
11250     }
11251 
11252     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11253       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11254 
11255     const BuiltinType *BT = cast<BuiltinType>(T);
11256     assert(BT->isInteger());
11257 
11258     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11259   }
11260 
11261   /// Returns the "target" range of a canonical integral type, i.e.
11262   /// the range of values expressible in the type.
11263   ///
11264   /// This matches forValueOfCanonicalType except that enums have the
11265   /// full range of their type, not the range of their enumerators.
11266   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11267     assert(T->isCanonicalUnqualified());
11268 
11269     if (const VectorType *VT = dyn_cast<VectorType>(T))
11270       T = VT->getElementType().getTypePtr();
11271     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11272       T = CT->getElementType().getTypePtr();
11273     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11274       T = AT->getValueType().getTypePtr();
11275     if (const EnumType *ET = dyn_cast<EnumType>(T))
11276       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11277 
11278     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11279       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11280 
11281     const BuiltinType *BT = cast<BuiltinType>(T);
11282     assert(BT->isInteger());
11283 
11284     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11285   }
11286 
11287   /// Returns the supremum of two ranges: i.e. their conservative merge.
11288   static IntRange join(IntRange L, IntRange R) {
11289     bool Unsigned = L.NonNegative && R.NonNegative;
11290     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11291                     L.NonNegative && R.NonNegative);
11292   }
11293 
11294   /// Return the range of a bitwise-AND of the two ranges.
11295   static IntRange bit_and(IntRange L, IntRange R) {
11296     unsigned Bits = std::max(L.Width, R.Width);
11297     bool NonNegative = false;
11298     if (L.NonNegative) {
11299       Bits = std::min(Bits, L.Width);
11300       NonNegative = true;
11301     }
11302     if (R.NonNegative) {
11303       Bits = std::min(Bits, R.Width);
11304       NonNegative = true;
11305     }
11306     return IntRange(Bits, NonNegative);
11307   }
11308 
11309   /// Return the range of a sum of the two ranges.
11310   static IntRange sum(IntRange L, IntRange R) {
11311     bool Unsigned = L.NonNegative && R.NonNegative;
11312     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11313                     Unsigned);
11314   }
11315 
11316   /// Return the range of a difference of the two ranges.
11317   static IntRange difference(IntRange L, IntRange R) {
11318     // We need a 1-bit-wider range if:
11319     //   1) LHS can be negative: least value can be reduced.
11320     //   2) RHS can be negative: greatest value can be increased.
11321     bool CanWiden = !L.NonNegative || !R.NonNegative;
11322     bool Unsigned = L.NonNegative && R.Width == 0;
11323     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11324                         !Unsigned,
11325                     Unsigned);
11326   }
11327 
11328   /// Return the range of a product of the two ranges.
11329   static IntRange product(IntRange L, IntRange R) {
11330     // If both LHS and RHS can be negative, we can form
11331     //   -2^L * -2^R = 2^(L + R)
11332     // which requires L + R + 1 value bits to represent.
11333     bool CanWiden = !L.NonNegative && !R.NonNegative;
11334     bool Unsigned = L.NonNegative && R.NonNegative;
11335     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11336                     Unsigned);
11337   }
11338 
11339   /// Return the range of a remainder operation between the two ranges.
11340   static IntRange rem(IntRange L, IntRange R) {
11341     // The result of a remainder can't be larger than the result of
11342     // either side. The sign of the result is the sign of the LHS.
11343     bool Unsigned = L.NonNegative;
11344     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11345                     Unsigned);
11346   }
11347 };
11348 
11349 } // namespace
11350 
11351 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11352                               unsigned MaxWidth) {
11353   if (value.isSigned() && value.isNegative())
11354     return IntRange(value.getMinSignedBits(), false);
11355 
11356   if (value.getBitWidth() > MaxWidth)
11357     value = value.trunc(MaxWidth);
11358 
11359   // isNonNegative() just checks the sign bit without considering
11360   // signedness.
11361   return IntRange(value.getActiveBits(), true);
11362 }
11363 
11364 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11365                               unsigned MaxWidth) {
11366   if (result.isInt())
11367     return GetValueRange(C, result.getInt(), MaxWidth);
11368 
11369   if (result.isVector()) {
11370     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11371     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11372       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11373       R = IntRange::join(R, El);
11374     }
11375     return R;
11376   }
11377 
11378   if (result.isComplexInt()) {
11379     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11380     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11381     return IntRange::join(R, I);
11382   }
11383 
11384   // This can happen with lossless casts to intptr_t of "based" lvalues.
11385   // Assume it might use arbitrary bits.
11386   // FIXME: The only reason we need to pass the type in here is to get
11387   // the sign right on this one case.  It would be nice if APValue
11388   // preserved this.
11389   assert(result.isLValue() || result.isAddrLabelDiff());
11390   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11391 }
11392 
11393 static QualType GetExprType(const Expr *E) {
11394   QualType Ty = E->getType();
11395   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11396     Ty = AtomicRHS->getValueType();
11397   return Ty;
11398 }
11399 
11400 /// Pseudo-evaluate the given integer expression, estimating the
11401 /// range of values it might take.
11402 ///
11403 /// \param MaxWidth The width to which the value will be truncated.
11404 /// \param Approximate If \c true, return a likely range for the result: in
11405 ///        particular, assume that arithmetic on narrower types doesn't leave
11406 ///        those types. If \c false, return a range including all possible
11407 ///        result values.
11408 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11409                              bool InConstantContext, bool Approximate) {
11410   E = E->IgnoreParens();
11411 
11412   // Try a full evaluation first.
11413   Expr::EvalResult result;
11414   if (E->EvaluateAsRValue(result, C, InConstantContext))
11415     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11416 
11417   // I think we only want to look through implicit casts here; if the
11418   // user has an explicit widening cast, we should treat the value as
11419   // being of the new, wider type.
11420   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11421     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11422       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11423                           Approximate);
11424 
11425     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11426 
11427     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11428                          CE->getCastKind() == CK_BooleanToSignedIntegral;
11429 
11430     // Assume that non-integer casts can span the full range of the type.
11431     if (!isIntegerCast)
11432       return OutputTypeRange;
11433 
11434     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11435                                      std::min(MaxWidth, OutputTypeRange.Width),
11436                                      InConstantContext, Approximate);
11437 
11438     // Bail out if the subexpr's range is as wide as the cast type.
11439     if (SubRange.Width >= OutputTypeRange.Width)
11440       return OutputTypeRange;
11441 
11442     // Otherwise, we take the smaller width, and we're non-negative if
11443     // either the output type or the subexpr is.
11444     return IntRange(SubRange.Width,
11445                     SubRange.NonNegative || OutputTypeRange.NonNegative);
11446   }
11447 
11448   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11449     // If we can fold the condition, just take that operand.
11450     bool CondResult;
11451     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11452       return GetExprRange(C,
11453                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11454                           MaxWidth, InConstantContext, Approximate);
11455 
11456     // Otherwise, conservatively merge.
11457     // GetExprRange requires an integer expression, but a throw expression
11458     // results in a void type.
11459     Expr *E = CO->getTrueExpr();
11460     IntRange L = E->getType()->isVoidType()
11461                      ? IntRange{0, true}
11462                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11463     E = CO->getFalseExpr();
11464     IntRange R = E->getType()->isVoidType()
11465                      ? IntRange{0, true}
11466                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11467     return IntRange::join(L, R);
11468   }
11469 
11470   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11471     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11472 
11473     switch (BO->getOpcode()) {
11474     case BO_Cmp:
11475       llvm_unreachable("builtin <=> should have class type");
11476 
11477     // Boolean-valued operations are single-bit and positive.
11478     case BO_LAnd:
11479     case BO_LOr:
11480     case BO_LT:
11481     case BO_GT:
11482     case BO_LE:
11483     case BO_GE:
11484     case BO_EQ:
11485     case BO_NE:
11486       return IntRange::forBoolType();
11487 
11488     // The type of the assignments is the type of the LHS, so the RHS
11489     // is not necessarily the same type.
11490     case BO_MulAssign:
11491     case BO_DivAssign:
11492     case BO_RemAssign:
11493     case BO_AddAssign:
11494     case BO_SubAssign:
11495     case BO_XorAssign:
11496     case BO_OrAssign:
11497       // TODO: bitfields?
11498       return IntRange::forValueOfType(C, GetExprType(E));
11499 
11500     // Simple assignments just pass through the RHS, which will have
11501     // been coerced to the LHS type.
11502     case BO_Assign:
11503       // TODO: bitfields?
11504       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11505                           Approximate);
11506 
11507     // Operations with opaque sources are black-listed.
11508     case BO_PtrMemD:
11509     case BO_PtrMemI:
11510       return IntRange::forValueOfType(C, GetExprType(E));
11511 
11512     // Bitwise-and uses the *infinum* of the two source ranges.
11513     case BO_And:
11514     case BO_AndAssign:
11515       Combine = IntRange::bit_and;
11516       break;
11517 
11518     // Left shift gets black-listed based on a judgement call.
11519     case BO_Shl:
11520       // ...except that we want to treat '1 << (blah)' as logically
11521       // positive.  It's an important idiom.
11522       if (IntegerLiteral *I
11523             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11524         if (I->getValue() == 1) {
11525           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11526           return IntRange(R.Width, /*NonNegative*/ true);
11527         }
11528       }
11529       LLVM_FALLTHROUGH;
11530 
11531     case BO_ShlAssign:
11532       return IntRange::forValueOfType(C, GetExprType(E));
11533 
11534     // Right shift by a constant can narrow its left argument.
11535     case BO_Shr:
11536     case BO_ShrAssign: {
11537       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11538                                 Approximate);
11539 
11540       // If the shift amount is a positive constant, drop the width by
11541       // that much.
11542       if (Optional<llvm::APSInt> shift =
11543               BO->getRHS()->getIntegerConstantExpr(C)) {
11544         if (shift->isNonNegative()) {
11545           unsigned zext = shift->getZExtValue();
11546           if (zext >= L.Width)
11547             L.Width = (L.NonNegative ? 0 : 1);
11548           else
11549             L.Width -= zext;
11550         }
11551       }
11552 
11553       return L;
11554     }
11555 
11556     // Comma acts as its right operand.
11557     case BO_Comma:
11558       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11559                           Approximate);
11560 
11561     case BO_Add:
11562       if (!Approximate)
11563         Combine = IntRange::sum;
11564       break;
11565 
11566     case BO_Sub:
11567       if (BO->getLHS()->getType()->isPointerType())
11568         return IntRange::forValueOfType(C, GetExprType(E));
11569       if (!Approximate)
11570         Combine = IntRange::difference;
11571       break;
11572 
11573     case BO_Mul:
11574       if (!Approximate)
11575         Combine = IntRange::product;
11576       break;
11577 
11578     // The width of a division result is mostly determined by the size
11579     // of the LHS.
11580     case BO_Div: {
11581       // Don't 'pre-truncate' the operands.
11582       unsigned opWidth = C.getIntWidth(GetExprType(E));
11583       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11584                                 Approximate);
11585 
11586       // If the divisor is constant, use that.
11587       if (Optional<llvm::APSInt> divisor =
11588               BO->getRHS()->getIntegerConstantExpr(C)) {
11589         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11590         if (log2 >= L.Width)
11591           L.Width = (L.NonNegative ? 0 : 1);
11592         else
11593           L.Width = std::min(L.Width - log2, MaxWidth);
11594         return L;
11595       }
11596 
11597       // Otherwise, just use the LHS's width.
11598       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11599       // could be -1.
11600       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11601                                 Approximate);
11602       return IntRange(L.Width, L.NonNegative && R.NonNegative);
11603     }
11604 
11605     case BO_Rem:
11606       Combine = IntRange::rem;
11607       break;
11608 
11609     // The default behavior is okay for these.
11610     case BO_Xor:
11611     case BO_Or:
11612       break;
11613     }
11614 
11615     // Combine the two ranges, but limit the result to the type in which we
11616     // performed the computation.
11617     QualType T = GetExprType(E);
11618     unsigned opWidth = C.getIntWidth(T);
11619     IntRange L =
11620         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11621     IntRange R =
11622         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11623     IntRange C = Combine(L, R);
11624     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11625     C.Width = std::min(C.Width, MaxWidth);
11626     return C;
11627   }
11628 
11629   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11630     switch (UO->getOpcode()) {
11631     // Boolean-valued operations are white-listed.
11632     case UO_LNot:
11633       return IntRange::forBoolType();
11634 
11635     // Operations with opaque sources are black-listed.
11636     case UO_Deref:
11637     case UO_AddrOf: // should be impossible
11638       return IntRange::forValueOfType(C, GetExprType(E));
11639 
11640     default:
11641       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11642                           Approximate);
11643     }
11644   }
11645 
11646   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11647     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11648                         Approximate);
11649 
11650   if (const auto *BitField = E->getSourceBitField())
11651     return IntRange(BitField->getBitWidthValue(C),
11652                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
11653 
11654   return IntRange::forValueOfType(C, GetExprType(E));
11655 }
11656 
11657 static IntRange GetExprRange(ASTContext &C, const Expr *E,
11658                              bool InConstantContext, bool Approximate) {
11659   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11660                       Approximate);
11661 }
11662 
11663 /// Checks whether the given value, which currently has the given
11664 /// source semantics, has the same value when coerced through the
11665 /// target semantics.
11666 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11667                                  const llvm::fltSemantics &Src,
11668                                  const llvm::fltSemantics &Tgt) {
11669   llvm::APFloat truncated = value;
11670 
11671   bool ignored;
11672   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11673   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11674 
11675   return truncated.bitwiseIsEqual(value);
11676 }
11677 
11678 /// Checks whether the given value, which currently has the given
11679 /// source semantics, has the same value when coerced through the
11680 /// target semantics.
11681 ///
11682 /// The value might be a vector of floats (or a complex number).
11683 static bool IsSameFloatAfterCast(const APValue &value,
11684                                  const llvm::fltSemantics &Src,
11685                                  const llvm::fltSemantics &Tgt) {
11686   if (value.isFloat())
11687     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11688 
11689   if (value.isVector()) {
11690     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11691       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11692         return false;
11693     return true;
11694   }
11695 
11696   assert(value.isComplexFloat());
11697   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11698           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11699 }
11700 
11701 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11702                                        bool IsListInit = false);
11703 
11704 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11705   // Suppress cases where we are comparing against an enum constant.
11706   if (const DeclRefExpr *DR =
11707       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11708     if (isa<EnumConstantDecl>(DR->getDecl()))
11709       return true;
11710 
11711   // Suppress cases where the value is expanded from a macro, unless that macro
11712   // is how a language represents a boolean literal. This is the case in both C
11713   // and Objective-C.
11714   SourceLocation BeginLoc = E->getBeginLoc();
11715   if (BeginLoc.isMacroID()) {
11716     StringRef MacroName = Lexer::getImmediateMacroName(
11717         BeginLoc, S.getSourceManager(), S.getLangOpts());
11718     return MacroName != "YES" && MacroName != "NO" &&
11719            MacroName != "true" && MacroName != "false";
11720   }
11721 
11722   return false;
11723 }
11724 
11725 static bool isKnownToHaveUnsignedValue(Expr *E) {
11726   return E->getType()->isIntegerType() &&
11727          (!E->getType()->isSignedIntegerType() ||
11728           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11729 }
11730 
11731 namespace {
11732 /// The promoted range of values of a type. In general this has the
11733 /// following structure:
11734 ///
11735 ///     |-----------| . . . |-----------|
11736 ///     ^           ^       ^           ^
11737 ///    Min       HoleMin  HoleMax      Max
11738 ///
11739 /// ... where there is only a hole if a signed type is promoted to unsigned
11740 /// (in which case Min and Max are the smallest and largest representable
11741 /// values).
11742 struct PromotedRange {
11743   // Min, or HoleMax if there is a hole.
11744   llvm::APSInt PromotedMin;
11745   // Max, or HoleMin if there is a hole.
11746   llvm::APSInt PromotedMax;
11747 
11748   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11749     if (R.Width == 0)
11750       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11751     else if (R.Width >= BitWidth && !Unsigned) {
11752       // Promotion made the type *narrower*. This happens when promoting
11753       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11754       // Treat all values of 'signed int' as being in range for now.
11755       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11756       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11757     } else {
11758       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11759                         .extOrTrunc(BitWidth);
11760       PromotedMin.setIsUnsigned(Unsigned);
11761 
11762       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11763                         .extOrTrunc(BitWidth);
11764       PromotedMax.setIsUnsigned(Unsigned);
11765     }
11766   }
11767 
11768   // Determine whether this range is contiguous (has no hole).
11769   bool isContiguous() const { return PromotedMin <= PromotedMax; }
11770 
11771   // Where a constant value is within the range.
11772   enum ComparisonResult {
11773     LT = 0x1,
11774     LE = 0x2,
11775     GT = 0x4,
11776     GE = 0x8,
11777     EQ = 0x10,
11778     NE = 0x20,
11779     InRangeFlag = 0x40,
11780 
11781     Less = LE | LT | NE,
11782     Min = LE | InRangeFlag,
11783     InRange = InRangeFlag,
11784     Max = GE | InRangeFlag,
11785     Greater = GE | GT | NE,
11786 
11787     OnlyValue = LE | GE | EQ | InRangeFlag,
11788     InHole = NE
11789   };
11790 
11791   ComparisonResult compare(const llvm::APSInt &Value) const {
11792     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11793            Value.isUnsigned() == PromotedMin.isUnsigned());
11794     if (!isContiguous()) {
11795       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11796       if (Value.isMinValue()) return Min;
11797       if (Value.isMaxValue()) return Max;
11798       if (Value >= PromotedMin) return InRange;
11799       if (Value <= PromotedMax) return InRange;
11800       return InHole;
11801     }
11802 
11803     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11804     case -1: return Less;
11805     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11806     case 1:
11807       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11808       case -1: return InRange;
11809       case 0: return Max;
11810       case 1: return Greater;
11811       }
11812     }
11813 
11814     llvm_unreachable("impossible compare result");
11815   }
11816 
11817   static llvm::Optional<StringRef>
11818   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11819     if (Op == BO_Cmp) {
11820       ComparisonResult LTFlag = LT, GTFlag = GT;
11821       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11822 
11823       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11824       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11825       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11826       return llvm::None;
11827     }
11828 
11829     ComparisonResult TrueFlag, FalseFlag;
11830     if (Op == BO_EQ) {
11831       TrueFlag = EQ;
11832       FalseFlag = NE;
11833     } else if (Op == BO_NE) {
11834       TrueFlag = NE;
11835       FalseFlag = EQ;
11836     } else {
11837       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11838         TrueFlag = LT;
11839         FalseFlag = GE;
11840       } else {
11841         TrueFlag = GT;
11842         FalseFlag = LE;
11843       }
11844       if (Op == BO_GE || Op == BO_LE)
11845         std::swap(TrueFlag, FalseFlag);
11846     }
11847     if (R & TrueFlag)
11848       return StringRef("true");
11849     if (R & FalseFlag)
11850       return StringRef("false");
11851     return llvm::None;
11852   }
11853 };
11854 }
11855 
11856 static bool HasEnumType(Expr *E) {
11857   // Strip off implicit integral promotions.
11858   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11859     if (ICE->getCastKind() != CK_IntegralCast &&
11860         ICE->getCastKind() != CK_NoOp)
11861       break;
11862     E = ICE->getSubExpr();
11863   }
11864 
11865   return E->getType()->isEnumeralType();
11866 }
11867 
11868 static int classifyConstantValue(Expr *Constant) {
11869   // The values of this enumeration are used in the diagnostics
11870   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11871   enum ConstantValueKind {
11872     Miscellaneous = 0,
11873     LiteralTrue,
11874     LiteralFalse
11875   };
11876   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11877     return BL->getValue() ? ConstantValueKind::LiteralTrue
11878                           : ConstantValueKind::LiteralFalse;
11879   return ConstantValueKind::Miscellaneous;
11880 }
11881 
11882 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11883                                         Expr *Constant, Expr *Other,
11884                                         const llvm::APSInt &Value,
11885                                         bool RhsConstant) {
11886   if (S.inTemplateInstantiation())
11887     return false;
11888 
11889   Expr *OriginalOther = Other;
11890 
11891   Constant = Constant->IgnoreParenImpCasts();
11892   Other = Other->IgnoreParenImpCasts();
11893 
11894   // Suppress warnings on tautological comparisons between values of the same
11895   // enumeration type. There are only two ways we could warn on this:
11896   //  - If the constant is outside the range of representable values of
11897   //    the enumeration. In such a case, we should warn about the cast
11898   //    to enumeration type, not about the comparison.
11899   //  - If the constant is the maximum / minimum in-range value. For an
11900   //    enumeratin type, such comparisons can be meaningful and useful.
11901   if (Constant->getType()->isEnumeralType() &&
11902       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11903     return false;
11904 
11905   IntRange OtherValueRange = GetExprRange(
11906       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11907 
11908   QualType OtherT = Other->getType();
11909   if (const auto *AT = OtherT->getAs<AtomicType>())
11910     OtherT = AT->getValueType();
11911   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11912 
11913   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11914   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11915   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11916                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11917                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11918 
11919   // Whether we're treating Other as being a bool because of the form of
11920   // expression despite it having another type (typically 'int' in C).
11921   bool OtherIsBooleanDespiteType =
11922       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11923   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11924     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11925 
11926   // Check if all values in the range of possible values of this expression
11927   // lead to the same comparison outcome.
11928   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11929                                         Value.isUnsigned());
11930   auto Cmp = OtherPromotedValueRange.compare(Value);
11931   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11932   if (!Result)
11933     return false;
11934 
11935   // Also consider the range determined by the type alone. This allows us to
11936   // classify the warning under the proper diagnostic group.
11937   bool TautologicalTypeCompare = false;
11938   {
11939     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11940                                          Value.isUnsigned());
11941     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11942     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11943                                                        RhsConstant)) {
11944       TautologicalTypeCompare = true;
11945       Cmp = TypeCmp;
11946       Result = TypeResult;
11947     }
11948   }
11949 
11950   // Don't warn if the non-constant operand actually always evaluates to the
11951   // same value.
11952   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11953     return false;
11954 
11955   // Suppress the diagnostic for an in-range comparison if the constant comes
11956   // from a macro or enumerator. We don't want to diagnose
11957   //
11958   //   some_long_value <= INT_MAX
11959   //
11960   // when sizeof(int) == sizeof(long).
11961   bool InRange = Cmp & PromotedRange::InRangeFlag;
11962   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11963     return false;
11964 
11965   // A comparison of an unsigned bit-field against 0 is really a type problem,
11966   // even though at the type level the bit-field might promote to 'signed int'.
11967   if (Other->refersToBitField() && InRange && Value == 0 &&
11968       Other->getType()->isUnsignedIntegerOrEnumerationType())
11969     TautologicalTypeCompare = true;
11970 
11971   // If this is a comparison to an enum constant, include that
11972   // constant in the diagnostic.
11973   const EnumConstantDecl *ED = nullptr;
11974   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11975     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11976 
11977   // Should be enough for uint128 (39 decimal digits)
11978   SmallString<64> PrettySourceValue;
11979   llvm::raw_svector_ostream OS(PrettySourceValue);
11980   if (ED) {
11981     OS << '\'' << *ED << "' (" << Value << ")";
11982   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11983                Constant->IgnoreParenImpCasts())) {
11984     OS << (BL->getValue() ? "YES" : "NO");
11985   } else {
11986     OS << Value;
11987   }
11988 
11989   if (!TautologicalTypeCompare) {
11990     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11991         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11992         << E->getOpcodeStr() << OS.str() << *Result
11993         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11994     return true;
11995   }
11996 
11997   if (IsObjCSignedCharBool) {
11998     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11999                           S.PDiag(diag::warn_tautological_compare_objc_bool)
12000                               << OS.str() << *Result);
12001     return true;
12002   }
12003 
12004   // FIXME: We use a somewhat different formatting for the in-range cases and
12005   // cases involving boolean values for historical reasons. We should pick a
12006   // consistent way of presenting these diagnostics.
12007   if (!InRange || Other->isKnownToHaveBooleanValue()) {
12008 
12009     S.DiagRuntimeBehavior(
12010         E->getOperatorLoc(), E,
12011         S.PDiag(!InRange ? diag::warn_out_of_range_compare
12012                          : diag::warn_tautological_bool_compare)
12013             << OS.str() << classifyConstantValue(Constant) << OtherT
12014             << OtherIsBooleanDespiteType << *Result
12015             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
12016   } else {
12017     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
12018     unsigned Diag =
12019         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12020             ? (HasEnumType(OriginalOther)
12021                    ? diag::warn_unsigned_enum_always_true_comparison
12022                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12023                               : diag::warn_unsigned_always_true_comparison)
12024             : diag::warn_tautological_constant_compare;
12025 
12026     S.Diag(E->getOperatorLoc(), Diag)
12027         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12028         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12029   }
12030 
12031   return true;
12032 }
12033 
12034 /// Analyze the operands of the given comparison.  Implements the
12035 /// fallback case from AnalyzeComparison.
12036 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12037   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12038   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12039 }
12040 
12041 /// Implements -Wsign-compare.
12042 ///
12043 /// \param E the binary operator to check for warnings
12044 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12045   // The type the comparison is being performed in.
12046   QualType T = E->getLHS()->getType();
12047 
12048   // Only analyze comparison operators where both sides have been converted to
12049   // the same type.
12050   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12051     return AnalyzeImpConvsInComparison(S, E);
12052 
12053   // Don't analyze value-dependent comparisons directly.
12054   if (E->isValueDependent())
12055     return AnalyzeImpConvsInComparison(S, E);
12056 
12057   Expr *LHS = E->getLHS();
12058   Expr *RHS = E->getRHS();
12059 
12060   if (T->isIntegralType(S.Context)) {
12061     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12062     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12063 
12064     // We don't care about expressions whose result is a constant.
12065     if (RHSValue && LHSValue)
12066       return AnalyzeImpConvsInComparison(S, E);
12067 
12068     // We only care about expressions where just one side is literal
12069     if ((bool)RHSValue ^ (bool)LHSValue) {
12070       // Is the constant on the RHS or LHS?
12071       const bool RhsConstant = (bool)RHSValue;
12072       Expr *Const = RhsConstant ? RHS : LHS;
12073       Expr *Other = RhsConstant ? LHS : RHS;
12074       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12075 
12076       // Check whether an integer constant comparison results in a value
12077       // of 'true' or 'false'.
12078       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12079         return AnalyzeImpConvsInComparison(S, E);
12080     }
12081   }
12082 
12083   if (!T->hasUnsignedIntegerRepresentation()) {
12084     // We don't do anything special if this isn't an unsigned integral
12085     // comparison:  we're only interested in integral comparisons, and
12086     // signed comparisons only happen in cases we don't care to warn about.
12087     return AnalyzeImpConvsInComparison(S, E);
12088   }
12089 
12090   LHS = LHS->IgnoreParenImpCasts();
12091   RHS = RHS->IgnoreParenImpCasts();
12092 
12093   if (!S.getLangOpts().CPlusPlus) {
12094     // Avoid warning about comparison of integers with different signs when
12095     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12096     // the type of `E`.
12097     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12098       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12099     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12100       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12101   }
12102 
12103   // Check to see if one of the (unmodified) operands is of different
12104   // signedness.
12105   Expr *signedOperand, *unsignedOperand;
12106   if (LHS->getType()->hasSignedIntegerRepresentation()) {
12107     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12108            "unsigned comparison between two signed integer expressions?");
12109     signedOperand = LHS;
12110     unsignedOperand = RHS;
12111   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12112     signedOperand = RHS;
12113     unsignedOperand = LHS;
12114   } else {
12115     return AnalyzeImpConvsInComparison(S, E);
12116   }
12117 
12118   // Otherwise, calculate the effective range of the signed operand.
12119   IntRange signedRange = GetExprRange(
12120       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12121 
12122   // Go ahead and analyze implicit conversions in the operands.  Note
12123   // that we skip the implicit conversions on both sides.
12124   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12125   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12126 
12127   // If the signed range is non-negative, -Wsign-compare won't fire.
12128   if (signedRange.NonNegative)
12129     return;
12130 
12131   // For (in)equality comparisons, if the unsigned operand is a
12132   // constant which cannot collide with a overflowed signed operand,
12133   // then reinterpreting the signed operand as unsigned will not
12134   // change the result of the comparison.
12135   if (E->isEqualityOp()) {
12136     unsigned comparisonWidth = S.Context.getIntWidth(T);
12137     IntRange unsignedRange =
12138         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12139                      /*Approximate*/ true);
12140 
12141     // We should never be unable to prove that the unsigned operand is
12142     // non-negative.
12143     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12144 
12145     if (unsignedRange.Width < comparisonWidth)
12146       return;
12147   }
12148 
12149   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12150                         S.PDiag(diag::warn_mixed_sign_comparison)
12151                             << LHS->getType() << RHS->getType()
12152                             << LHS->getSourceRange() << RHS->getSourceRange());
12153 }
12154 
12155 /// Analyzes an attempt to assign the given value to a bitfield.
12156 ///
12157 /// Returns true if there was something fishy about the attempt.
12158 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12159                                       SourceLocation InitLoc) {
12160   assert(Bitfield->isBitField());
12161   if (Bitfield->isInvalidDecl())
12162     return false;
12163 
12164   // White-list bool bitfields.
12165   QualType BitfieldType = Bitfield->getType();
12166   if (BitfieldType->isBooleanType())
12167      return false;
12168 
12169   if (BitfieldType->isEnumeralType()) {
12170     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12171     // If the underlying enum type was not explicitly specified as an unsigned
12172     // type and the enum contain only positive values, MSVC++ will cause an
12173     // inconsistency by storing this as a signed type.
12174     if (S.getLangOpts().CPlusPlus11 &&
12175         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12176         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12177         BitfieldEnumDecl->getNumNegativeBits() == 0) {
12178       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12179           << BitfieldEnumDecl;
12180     }
12181   }
12182 
12183   if (Bitfield->getType()->isBooleanType())
12184     return false;
12185 
12186   // Ignore value- or type-dependent expressions.
12187   if (Bitfield->getBitWidth()->isValueDependent() ||
12188       Bitfield->getBitWidth()->isTypeDependent() ||
12189       Init->isValueDependent() ||
12190       Init->isTypeDependent())
12191     return false;
12192 
12193   Expr *OriginalInit = Init->IgnoreParenImpCasts();
12194   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12195 
12196   Expr::EvalResult Result;
12197   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12198                                    Expr::SE_AllowSideEffects)) {
12199     // The RHS is not constant.  If the RHS has an enum type, make sure the
12200     // bitfield is wide enough to hold all the values of the enum without
12201     // truncation.
12202     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12203       EnumDecl *ED = EnumTy->getDecl();
12204       bool SignedBitfield = BitfieldType->isSignedIntegerType();
12205 
12206       // Enum types are implicitly signed on Windows, so check if there are any
12207       // negative enumerators to see if the enum was intended to be signed or
12208       // not.
12209       bool SignedEnum = ED->getNumNegativeBits() > 0;
12210 
12211       // Check for surprising sign changes when assigning enum values to a
12212       // bitfield of different signedness.  If the bitfield is signed and we
12213       // have exactly the right number of bits to store this unsigned enum,
12214       // suggest changing the enum to an unsigned type. This typically happens
12215       // on Windows where unfixed enums always use an underlying type of 'int'.
12216       unsigned DiagID = 0;
12217       if (SignedEnum && !SignedBitfield) {
12218         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12219       } else if (SignedBitfield && !SignedEnum &&
12220                  ED->getNumPositiveBits() == FieldWidth) {
12221         DiagID = diag::warn_signed_bitfield_enum_conversion;
12222       }
12223 
12224       if (DiagID) {
12225         S.Diag(InitLoc, DiagID) << Bitfield << ED;
12226         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12227         SourceRange TypeRange =
12228             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12229         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12230             << SignedEnum << TypeRange;
12231       }
12232 
12233       // Compute the required bitwidth. If the enum has negative values, we need
12234       // one more bit than the normal number of positive bits to represent the
12235       // sign bit.
12236       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12237                                                   ED->getNumNegativeBits())
12238                                        : ED->getNumPositiveBits();
12239 
12240       // Check the bitwidth.
12241       if (BitsNeeded > FieldWidth) {
12242         Expr *WidthExpr = Bitfield->getBitWidth();
12243         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12244             << Bitfield << ED;
12245         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12246             << BitsNeeded << ED << WidthExpr->getSourceRange();
12247       }
12248     }
12249 
12250     return false;
12251   }
12252 
12253   llvm::APSInt Value = Result.Val.getInt();
12254 
12255   unsigned OriginalWidth = Value.getBitWidth();
12256 
12257   if (!Value.isSigned() || Value.isNegative())
12258     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12259       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12260         OriginalWidth = Value.getMinSignedBits();
12261 
12262   if (OriginalWidth <= FieldWidth)
12263     return false;
12264 
12265   // Compute the value which the bitfield will contain.
12266   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12267   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12268 
12269   // Check whether the stored value is equal to the original value.
12270   TruncatedValue = TruncatedValue.extend(OriginalWidth);
12271   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12272     return false;
12273 
12274   // Special-case bitfields of width 1: booleans are naturally 0/1, and
12275   // therefore don't strictly fit into a signed bitfield of width 1.
12276   if (FieldWidth == 1 && Value == 1)
12277     return false;
12278 
12279   std::string PrettyValue = toString(Value, 10);
12280   std::string PrettyTrunc = toString(TruncatedValue, 10);
12281 
12282   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12283     << PrettyValue << PrettyTrunc << OriginalInit->getType()
12284     << Init->getSourceRange();
12285 
12286   return true;
12287 }
12288 
12289 /// Analyze the given simple or compound assignment for warning-worthy
12290 /// operations.
12291 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12292   // Just recurse on the LHS.
12293   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12294 
12295   // We want to recurse on the RHS as normal unless we're assigning to
12296   // a bitfield.
12297   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12298     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12299                                   E->getOperatorLoc())) {
12300       // Recurse, ignoring any implicit conversions on the RHS.
12301       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12302                                         E->getOperatorLoc());
12303     }
12304   }
12305 
12306   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12307 
12308   // Diagnose implicitly sequentially-consistent atomic assignment.
12309   if (E->getLHS()->getType()->isAtomicType())
12310     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12311 }
12312 
12313 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12314 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12315                             SourceLocation CContext, unsigned diag,
12316                             bool pruneControlFlow = false) {
12317   if (pruneControlFlow) {
12318     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12319                           S.PDiag(diag)
12320                               << SourceType << T << E->getSourceRange()
12321                               << SourceRange(CContext));
12322     return;
12323   }
12324   S.Diag(E->getExprLoc(), diag)
12325     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12326 }
12327 
12328 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12329 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12330                             SourceLocation CContext,
12331                             unsigned diag, bool pruneControlFlow = false) {
12332   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12333 }
12334 
12335 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12336   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12337       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12338 }
12339 
12340 static void adornObjCBoolConversionDiagWithTernaryFixit(
12341     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12342   Expr *Ignored = SourceExpr->IgnoreImplicit();
12343   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12344     Ignored = OVE->getSourceExpr();
12345   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12346                      isa<BinaryOperator>(Ignored) ||
12347                      isa<CXXOperatorCallExpr>(Ignored);
12348   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12349   if (NeedsParens)
12350     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12351             << FixItHint::CreateInsertion(EndLoc, ")");
12352   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12353 }
12354 
12355 /// Diagnose an implicit cast from a floating point value to an integer value.
12356 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12357                                     SourceLocation CContext) {
12358   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12359   const bool PruneWarnings = S.inTemplateInstantiation();
12360 
12361   Expr *InnerE = E->IgnoreParenImpCasts();
12362   // We also want to warn on, e.g., "int i = -1.234"
12363   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12364     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12365       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12366 
12367   const bool IsLiteral =
12368       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12369 
12370   llvm::APFloat Value(0.0);
12371   bool IsConstant =
12372     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12373   if (!IsConstant) {
12374     if (isObjCSignedCharBool(S, T)) {
12375       return adornObjCBoolConversionDiagWithTernaryFixit(
12376           S, E,
12377           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12378               << E->getType());
12379     }
12380 
12381     return DiagnoseImpCast(S, E, T, CContext,
12382                            diag::warn_impcast_float_integer, PruneWarnings);
12383   }
12384 
12385   bool isExact = false;
12386 
12387   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12388                             T->hasUnsignedIntegerRepresentation());
12389   llvm::APFloat::opStatus Result = Value.convertToInteger(
12390       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12391 
12392   // FIXME: Force the precision of the source value down so we don't print
12393   // digits which are usually useless (we don't really care here if we
12394   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
12395   // would automatically print the shortest representation, but it's a bit
12396   // tricky to implement.
12397   SmallString<16> PrettySourceValue;
12398   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12399   precision = (precision * 59 + 195) / 196;
12400   Value.toString(PrettySourceValue, precision);
12401 
12402   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12403     return adornObjCBoolConversionDiagWithTernaryFixit(
12404         S, E,
12405         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12406             << PrettySourceValue);
12407   }
12408 
12409   if (Result == llvm::APFloat::opOK && isExact) {
12410     if (IsLiteral) return;
12411     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12412                            PruneWarnings);
12413   }
12414 
12415   // Conversion of a floating-point value to a non-bool integer where the
12416   // integral part cannot be represented by the integer type is undefined.
12417   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12418     return DiagnoseImpCast(
12419         S, E, T, CContext,
12420         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12421                   : diag::warn_impcast_float_to_integer_out_of_range,
12422         PruneWarnings);
12423 
12424   unsigned DiagID = 0;
12425   if (IsLiteral) {
12426     // Warn on floating point literal to integer.
12427     DiagID = diag::warn_impcast_literal_float_to_integer;
12428   } else if (IntegerValue == 0) {
12429     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
12430       return DiagnoseImpCast(S, E, T, CContext,
12431                              diag::warn_impcast_float_integer, PruneWarnings);
12432     }
12433     // Warn on non-zero to zero conversion.
12434     DiagID = diag::warn_impcast_float_to_integer_zero;
12435   } else {
12436     if (IntegerValue.isUnsigned()) {
12437       if (!IntegerValue.isMaxValue()) {
12438         return DiagnoseImpCast(S, E, T, CContext,
12439                                diag::warn_impcast_float_integer, PruneWarnings);
12440       }
12441     } else {  // IntegerValue.isSigned()
12442       if (!IntegerValue.isMaxSignedValue() &&
12443           !IntegerValue.isMinSignedValue()) {
12444         return DiagnoseImpCast(S, E, T, CContext,
12445                                diag::warn_impcast_float_integer, PruneWarnings);
12446       }
12447     }
12448     // Warn on evaluatable floating point expression to integer conversion.
12449     DiagID = diag::warn_impcast_float_to_integer;
12450   }
12451 
12452   SmallString<16> PrettyTargetValue;
12453   if (IsBool)
12454     PrettyTargetValue = Value.isZero() ? "false" : "true";
12455   else
12456     IntegerValue.toString(PrettyTargetValue);
12457 
12458   if (PruneWarnings) {
12459     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12460                           S.PDiag(DiagID)
12461                               << E->getType() << T.getUnqualifiedType()
12462                               << PrettySourceValue << PrettyTargetValue
12463                               << E->getSourceRange() << SourceRange(CContext));
12464   } else {
12465     S.Diag(E->getExprLoc(), DiagID)
12466         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12467         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12468   }
12469 }
12470 
12471 /// Analyze the given compound assignment for the possible losing of
12472 /// floating-point precision.
12473 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12474   assert(isa<CompoundAssignOperator>(E) &&
12475          "Must be compound assignment operation");
12476   // Recurse on the LHS and RHS in here
12477   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12478   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12479 
12480   if (E->getLHS()->getType()->isAtomicType())
12481     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12482 
12483   // Now check the outermost expression
12484   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12485   const auto *RBT = cast<CompoundAssignOperator>(E)
12486                         ->getComputationResultType()
12487                         ->getAs<BuiltinType>();
12488 
12489   // The below checks assume source is floating point.
12490   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12491 
12492   // If source is floating point but target is an integer.
12493   if (ResultBT->isInteger())
12494     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12495                            E->getExprLoc(), diag::warn_impcast_float_integer);
12496 
12497   if (!ResultBT->isFloatingPoint())
12498     return;
12499 
12500   // If both source and target are floating points, warn about losing precision.
12501   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12502       QualType(ResultBT, 0), QualType(RBT, 0));
12503   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12504     // warn about dropping FP rank.
12505     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12506                     diag::warn_impcast_float_result_precision);
12507 }
12508 
12509 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12510                                       IntRange Range) {
12511   if (!Range.Width) return "0";
12512 
12513   llvm::APSInt ValueInRange = Value;
12514   ValueInRange.setIsSigned(!Range.NonNegative);
12515   ValueInRange = ValueInRange.trunc(Range.Width);
12516   return toString(ValueInRange, 10);
12517 }
12518 
12519 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12520   if (!isa<ImplicitCastExpr>(Ex))
12521     return false;
12522 
12523   Expr *InnerE = Ex->IgnoreParenImpCasts();
12524   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12525   const Type *Source =
12526     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12527   if (Target->isDependentType())
12528     return false;
12529 
12530   const BuiltinType *FloatCandidateBT =
12531     dyn_cast<BuiltinType>(ToBool ? Source : Target);
12532   const Type *BoolCandidateType = ToBool ? Target : Source;
12533 
12534   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12535           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12536 }
12537 
12538 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12539                                              SourceLocation CC) {
12540   unsigned NumArgs = TheCall->getNumArgs();
12541   for (unsigned i = 0; i < NumArgs; ++i) {
12542     Expr *CurrA = TheCall->getArg(i);
12543     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12544       continue;
12545 
12546     bool IsSwapped = ((i > 0) &&
12547         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12548     IsSwapped |= ((i < (NumArgs - 1)) &&
12549         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12550     if (IsSwapped) {
12551       // Warn on this floating-point to bool conversion.
12552       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12553                       CurrA->getType(), CC,
12554                       diag::warn_impcast_floating_point_to_bool);
12555     }
12556   }
12557 }
12558 
12559 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12560                                    SourceLocation CC) {
12561   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12562                         E->getExprLoc()))
12563     return;
12564 
12565   // Don't warn on functions which have return type nullptr_t.
12566   if (isa<CallExpr>(E))
12567     return;
12568 
12569   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12570   const Expr::NullPointerConstantKind NullKind =
12571       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12572   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12573     return;
12574 
12575   // Return if target type is a safe conversion.
12576   if (T->isAnyPointerType() || T->isBlockPointerType() ||
12577       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12578     return;
12579 
12580   SourceLocation Loc = E->getSourceRange().getBegin();
12581 
12582   // Venture through the macro stacks to get to the source of macro arguments.
12583   // The new location is a better location than the complete location that was
12584   // passed in.
12585   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12586   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12587 
12588   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
12589   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12590     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12591         Loc, S.SourceMgr, S.getLangOpts());
12592     if (MacroName == "NULL")
12593       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12594   }
12595 
12596   // Only warn if the null and context location are in the same macro expansion.
12597   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12598     return;
12599 
12600   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12601       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12602       << FixItHint::CreateReplacement(Loc,
12603                                       S.getFixItZeroLiteralForType(T, Loc));
12604 }
12605 
12606 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12607                                   ObjCArrayLiteral *ArrayLiteral);
12608 
12609 static void
12610 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12611                            ObjCDictionaryLiteral *DictionaryLiteral);
12612 
12613 /// Check a single element within a collection literal against the
12614 /// target element type.
12615 static void checkObjCCollectionLiteralElement(Sema &S,
12616                                               QualType TargetElementType,
12617                                               Expr *Element,
12618                                               unsigned ElementKind) {
12619   // Skip a bitcast to 'id' or qualified 'id'.
12620   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12621     if (ICE->getCastKind() == CK_BitCast &&
12622         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12623       Element = ICE->getSubExpr();
12624   }
12625 
12626   QualType ElementType = Element->getType();
12627   ExprResult ElementResult(Element);
12628   if (ElementType->getAs<ObjCObjectPointerType>() &&
12629       S.CheckSingleAssignmentConstraints(TargetElementType,
12630                                          ElementResult,
12631                                          false, false)
12632         != Sema::Compatible) {
12633     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12634         << ElementType << ElementKind << TargetElementType
12635         << Element->getSourceRange();
12636   }
12637 
12638   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12639     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12640   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12641     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12642 }
12643 
12644 /// Check an Objective-C array literal being converted to the given
12645 /// target type.
12646 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12647                                   ObjCArrayLiteral *ArrayLiteral) {
12648   if (!S.NSArrayDecl)
12649     return;
12650 
12651   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12652   if (!TargetObjCPtr)
12653     return;
12654 
12655   if (TargetObjCPtr->isUnspecialized() ||
12656       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12657         != S.NSArrayDecl->getCanonicalDecl())
12658     return;
12659 
12660   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12661   if (TypeArgs.size() != 1)
12662     return;
12663 
12664   QualType TargetElementType = TypeArgs[0];
12665   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12666     checkObjCCollectionLiteralElement(S, TargetElementType,
12667                                       ArrayLiteral->getElement(I),
12668                                       0);
12669   }
12670 }
12671 
12672 /// Check an Objective-C dictionary literal being converted to the given
12673 /// target type.
12674 static void
12675 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12676                            ObjCDictionaryLiteral *DictionaryLiteral) {
12677   if (!S.NSDictionaryDecl)
12678     return;
12679 
12680   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12681   if (!TargetObjCPtr)
12682     return;
12683 
12684   if (TargetObjCPtr->isUnspecialized() ||
12685       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12686         != S.NSDictionaryDecl->getCanonicalDecl())
12687     return;
12688 
12689   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12690   if (TypeArgs.size() != 2)
12691     return;
12692 
12693   QualType TargetKeyType = TypeArgs[0];
12694   QualType TargetObjectType = TypeArgs[1];
12695   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12696     auto Element = DictionaryLiteral->getKeyValueElement(I);
12697     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12698     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12699   }
12700 }
12701 
12702 // Helper function to filter out cases for constant width constant conversion.
12703 // Don't warn on char array initialization or for non-decimal values.
12704 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12705                                           SourceLocation CC) {
12706   // If initializing from a constant, and the constant starts with '0',
12707   // then it is a binary, octal, or hexadecimal.  Allow these constants
12708   // to fill all the bits, even if there is a sign change.
12709   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12710     const char FirstLiteralCharacter =
12711         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12712     if (FirstLiteralCharacter == '0')
12713       return false;
12714   }
12715 
12716   // If the CC location points to a '{', and the type is char, then assume
12717   // assume it is an array initialization.
12718   if (CC.isValid() && T->isCharType()) {
12719     const char FirstContextCharacter =
12720         S.getSourceManager().getCharacterData(CC)[0];
12721     if (FirstContextCharacter == '{')
12722       return false;
12723   }
12724 
12725   return true;
12726 }
12727 
12728 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12729   const auto *IL = dyn_cast<IntegerLiteral>(E);
12730   if (!IL) {
12731     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12732       if (UO->getOpcode() == UO_Minus)
12733         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12734     }
12735   }
12736 
12737   return IL;
12738 }
12739 
12740 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12741   E = E->IgnoreParenImpCasts();
12742   SourceLocation ExprLoc = E->getExprLoc();
12743 
12744   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12745     BinaryOperator::Opcode Opc = BO->getOpcode();
12746     Expr::EvalResult Result;
12747     // Do not diagnose unsigned shifts.
12748     if (Opc == BO_Shl) {
12749       const auto *LHS = getIntegerLiteral(BO->getLHS());
12750       const auto *RHS = getIntegerLiteral(BO->getRHS());
12751       if (LHS && LHS->getValue() == 0)
12752         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12753       else if (!E->isValueDependent() && LHS && RHS &&
12754                RHS->getValue().isNonNegative() &&
12755                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12756         S.Diag(ExprLoc, diag::warn_left_shift_always)
12757             << (Result.Val.getInt() != 0);
12758       else if (E->getType()->isSignedIntegerType())
12759         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12760     }
12761   }
12762 
12763   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12764     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12765     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12766     if (!LHS || !RHS)
12767       return;
12768     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12769         (RHS->getValue() == 0 || RHS->getValue() == 1))
12770       // Do not diagnose common idioms.
12771       return;
12772     if (LHS->getValue() != 0 && RHS->getValue() != 0)
12773       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12774   }
12775 }
12776 
12777 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12778                                     SourceLocation CC,
12779                                     bool *ICContext = nullptr,
12780                                     bool IsListInit = false) {
12781   if (E->isTypeDependent() || E->isValueDependent()) return;
12782 
12783   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
12784   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
12785   if (Source == Target) return;
12786   if (Target->isDependentType()) return;
12787 
12788   // If the conversion context location is invalid don't complain. We also
12789   // don't want to emit a warning if the issue occurs from the expansion of
12790   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12791   // delay this check as long as possible. Once we detect we are in that
12792   // scenario, we just return.
12793   if (CC.isInvalid())
12794     return;
12795 
12796   if (Source->isAtomicType())
12797     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12798 
12799   // Diagnose implicit casts to bool.
12800   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12801     if (isa<StringLiteral>(E))
12802       // Warn on string literal to bool.  Checks for string literals in logical
12803       // and expressions, for instance, assert(0 && "error here"), are
12804       // prevented by a check in AnalyzeImplicitConversions().
12805       return DiagnoseImpCast(S, E, T, CC,
12806                              diag::warn_impcast_string_literal_to_bool);
12807     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12808         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12809       // This covers the literal expressions that evaluate to Objective-C
12810       // objects.
12811       return DiagnoseImpCast(S, E, T, CC,
12812                              diag::warn_impcast_objective_c_literal_to_bool);
12813     }
12814     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12815       // Warn on pointer to bool conversion that is always true.
12816       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12817                                      SourceRange(CC));
12818     }
12819   }
12820 
12821   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12822   // is a typedef for signed char (macOS), then that constant value has to be 1
12823   // or 0.
12824   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12825     Expr::EvalResult Result;
12826     if (E->EvaluateAsInt(Result, S.getASTContext(),
12827                          Expr::SE_AllowSideEffects)) {
12828       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12829         adornObjCBoolConversionDiagWithTernaryFixit(
12830             S, E,
12831             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12832                 << toString(Result.Val.getInt(), 10));
12833       }
12834       return;
12835     }
12836   }
12837 
12838   // Check implicit casts from Objective-C collection literals to specialized
12839   // collection types, e.g., NSArray<NSString *> *.
12840   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12841     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12842   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12843     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12844 
12845   // Strip vector types.
12846   if (isa<VectorType>(Source)) {
12847     if (Target->isVLSTBuiltinType() &&
12848         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
12849                                          QualType(Source, 0)) ||
12850          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
12851                                             QualType(Source, 0))))
12852       return;
12853 
12854     if (!isa<VectorType>(Target)) {
12855       if (S.SourceMgr.isInSystemMacro(CC))
12856         return;
12857       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12858     }
12859 
12860     // If the vector cast is cast between two vectors of the same size, it is
12861     // a bitcast, not a conversion.
12862     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12863       return;
12864 
12865     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12866     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12867   }
12868   if (auto VecTy = dyn_cast<VectorType>(Target))
12869     Target = VecTy->getElementType().getTypePtr();
12870 
12871   // Strip complex types.
12872   if (isa<ComplexType>(Source)) {
12873     if (!isa<ComplexType>(Target)) {
12874       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12875         return;
12876 
12877       return DiagnoseImpCast(S, E, T, CC,
12878                              S.getLangOpts().CPlusPlus
12879                                  ? diag::err_impcast_complex_scalar
12880                                  : diag::warn_impcast_complex_scalar);
12881     }
12882 
12883     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12884     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12885   }
12886 
12887   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12888   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12889 
12890   // If the source is floating point...
12891   if (SourceBT && SourceBT->isFloatingPoint()) {
12892     // ...and the target is floating point...
12893     if (TargetBT && TargetBT->isFloatingPoint()) {
12894       // ...then warn if we're dropping FP rank.
12895 
12896       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12897           QualType(SourceBT, 0), QualType(TargetBT, 0));
12898       if (Order > 0) {
12899         // Don't warn about float constants that are precisely
12900         // representable in the target type.
12901         Expr::EvalResult result;
12902         if (E->EvaluateAsRValue(result, S.Context)) {
12903           // Value might be a float, a float vector, or a float complex.
12904           if (IsSameFloatAfterCast(result.Val,
12905                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12906                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12907             return;
12908         }
12909 
12910         if (S.SourceMgr.isInSystemMacro(CC))
12911           return;
12912 
12913         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12914       }
12915       // ... or possibly if we're increasing rank, too
12916       else if (Order < 0) {
12917         if (S.SourceMgr.isInSystemMacro(CC))
12918           return;
12919 
12920         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12921       }
12922       return;
12923     }
12924 
12925     // If the target is integral, always warn.
12926     if (TargetBT && TargetBT->isInteger()) {
12927       if (S.SourceMgr.isInSystemMacro(CC))
12928         return;
12929 
12930       DiagnoseFloatingImpCast(S, E, T, CC);
12931     }
12932 
12933     // Detect the case where a call result is converted from floating-point to
12934     // to bool, and the final argument to the call is converted from bool, to
12935     // discover this typo:
12936     //
12937     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12938     //
12939     // FIXME: This is an incredibly special case; is there some more general
12940     // way to detect this class of misplaced-parentheses bug?
12941     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12942       // Check last argument of function call to see if it is an
12943       // implicit cast from a type matching the type the result
12944       // is being cast to.
12945       CallExpr *CEx = cast<CallExpr>(E);
12946       if (unsigned NumArgs = CEx->getNumArgs()) {
12947         Expr *LastA = CEx->getArg(NumArgs - 1);
12948         Expr *InnerE = LastA->IgnoreParenImpCasts();
12949         if (isa<ImplicitCastExpr>(LastA) &&
12950             InnerE->getType()->isBooleanType()) {
12951           // Warn on this floating-point to bool conversion
12952           DiagnoseImpCast(S, E, T, CC,
12953                           diag::warn_impcast_floating_point_to_bool);
12954         }
12955       }
12956     }
12957     return;
12958   }
12959 
12960   // Valid casts involving fixed point types should be accounted for here.
12961   if (Source->isFixedPointType()) {
12962     if (Target->isUnsaturatedFixedPointType()) {
12963       Expr::EvalResult Result;
12964       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12965                                   S.isConstantEvaluated())) {
12966         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12967         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12968         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12969         if (Value > MaxVal || Value < MinVal) {
12970           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12971                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12972                                     << Value.toString() << T
12973                                     << E->getSourceRange()
12974                                     << clang::SourceRange(CC));
12975           return;
12976         }
12977       }
12978     } else if (Target->isIntegerType()) {
12979       Expr::EvalResult Result;
12980       if (!S.isConstantEvaluated() &&
12981           E->EvaluateAsFixedPoint(Result, S.Context,
12982                                   Expr::SE_AllowSideEffects)) {
12983         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12984 
12985         bool Overflowed;
12986         llvm::APSInt IntResult = FXResult.convertToInt(
12987             S.Context.getIntWidth(T),
12988             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12989 
12990         if (Overflowed) {
12991           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12992                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12993                                     << FXResult.toString() << T
12994                                     << E->getSourceRange()
12995                                     << clang::SourceRange(CC));
12996           return;
12997         }
12998       }
12999     }
13000   } else if (Target->isUnsaturatedFixedPointType()) {
13001     if (Source->isIntegerType()) {
13002       Expr::EvalResult Result;
13003       if (!S.isConstantEvaluated() &&
13004           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
13005         llvm::APSInt Value = Result.Val.getInt();
13006 
13007         bool Overflowed;
13008         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
13009             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
13010 
13011         if (Overflowed) {
13012           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13013                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13014                                     << toString(Value, /*Radix=*/10) << T
13015                                     << E->getSourceRange()
13016                                     << clang::SourceRange(CC));
13017           return;
13018         }
13019       }
13020     }
13021   }
13022 
13023   // If we are casting an integer type to a floating point type without
13024   // initialization-list syntax, we might lose accuracy if the floating
13025   // point type has a narrower significand than the integer type.
13026   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13027       TargetBT->isFloatingType() && !IsListInit) {
13028     // Determine the number of precision bits in the source integer type.
13029     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13030                                         /*Approximate*/ true);
13031     unsigned int SourcePrecision = SourceRange.Width;
13032 
13033     // Determine the number of precision bits in the
13034     // target floating point type.
13035     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13036         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13037 
13038     if (SourcePrecision > 0 && TargetPrecision > 0 &&
13039         SourcePrecision > TargetPrecision) {
13040 
13041       if (Optional<llvm::APSInt> SourceInt =
13042               E->getIntegerConstantExpr(S.Context)) {
13043         // If the source integer is a constant, convert it to the target
13044         // floating point type. Issue a warning if the value changes
13045         // during the whole conversion.
13046         llvm::APFloat TargetFloatValue(
13047             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13048         llvm::APFloat::opStatus ConversionStatus =
13049             TargetFloatValue.convertFromAPInt(
13050                 *SourceInt, SourceBT->isSignedInteger(),
13051                 llvm::APFloat::rmNearestTiesToEven);
13052 
13053         if (ConversionStatus != llvm::APFloat::opOK) {
13054           SmallString<32> PrettySourceValue;
13055           SourceInt->toString(PrettySourceValue, 10);
13056           SmallString<32> PrettyTargetValue;
13057           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13058 
13059           S.DiagRuntimeBehavior(
13060               E->getExprLoc(), E,
13061               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13062                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
13063                   << E->getSourceRange() << clang::SourceRange(CC));
13064         }
13065       } else {
13066         // Otherwise, the implicit conversion may lose precision.
13067         DiagnoseImpCast(S, E, T, CC,
13068                         diag::warn_impcast_integer_float_precision);
13069       }
13070     }
13071   }
13072 
13073   DiagnoseNullConversion(S, E, T, CC);
13074 
13075   S.DiscardMisalignedMemberAddress(Target, E);
13076 
13077   if (Target->isBooleanType())
13078     DiagnoseIntInBoolContext(S, E);
13079 
13080   if (!Source->isIntegerType() || !Target->isIntegerType())
13081     return;
13082 
13083   // TODO: remove this early return once the false positives for constant->bool
13084   // in templates, macros, etc, are reduced or removed.
13085   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13086     return;
13087 
13088   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13089       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13090     return adornObjCBoolConversionDiagWithTernaryFixit(
13091         S, E,
13092         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13093             << E->getType());
13094   }
13095 
13096   IntRange SourceTypeRange =
13097       IntRange::forTargetOfCanonicalType(S.Context, Source);
13098   IntRange LikelySourceRange =
13099       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13100   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13101 
13102   if (LikelySourceRange.Width > TargetRange.Width) {
13103     // If the source is a constant, use a default-on diagnostic.
13104     // TODO: this should happen for bitfield stores, too.
13105     Expr::EvalResult Result;
13106     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13107                          S.isConstantEvaluated())) {
13108       llvm::APSInt Value(32);
13109       Value = Result.Val.getInt();
13110 
13111       if (S.SourceMgr.isInSystemMacro(CC))
13112         return;
13113 
13114       std::string PrettySourceValue = toString(Value, 10);
13115       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13116 
13117       S.DiagRuntimeBehavior(
13118           E->getExprLoc(), E,
13119           S.PDiag(diag::warn_impcast_integer_precision_constant)
13120               << PrettySourceValue << PrettyTargetValue << E->getType() << T
13121               << E->getSourceRange() << SourceRange(CC));
13122       return;
13123     }
13124 
13125     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13126     if (S.SourceMgr.isInSystemMacro(CC))
13127       return;
13128 
13129     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13130       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13131                              /* pruneControlFlow */ true);
13132     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13133   }
13134 
13135   if (TargetRange.Width > SourceTypeRange.Width) {
13136     if (auto *UO = dyn_cast<UnaryOperator>(E))
13137       if (UO->getOpcode() == UO_Minus)
13138         if (Source->isUnsignedIntegerType()) {
13139           if (Target->isUnsignedIntegerType())
13140             return DiagnoseImpCast(S, E, T, CC,
13141                                    diag::warn_impcast_high_order_zero_bits);
13142           if (Target->isSignedIntegerType())
13143             return DiagnoseImpCast(S, E, T, CC,
13144                                    diag::warn_impcast_nonnegative_result);
13145         }
13146   }
13147 
13148   if (TargetRange.Width == LikelySourceRange.Width &&
13149       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13150       Source->isSignedIntegerType()) {
13151     // Warn when doing a signed to signed conversion, warn if the positive
13152     // source value is exactly the width of the target type, which will
13153     // cause a negative value to be stored.
13154 
13155     Expr::EvalResult Result;
13156     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13157         !S.SourceMgr.isInSystemMacro(CC)) {
13158       llvm::APSInt Value = Result.Val.getInt();
13159       if (isSameWidthConstantConversion(S, E, T, CC)) {
13160         std::string PrettySourceValue = toString(Value, 10);
13161         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13162 
13163         S.DiagRuntimeBehavior(
13164             E->getExprLoc(), E,
13165             S.PDiag(diag::warn_impcast_integer_precision_constant)
13166                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13167                 << E->getSourceRange() << SourceRange(CC));
13168         return;
13169       }
13170     }
13171 
13172     // Fall through for non-constants to give a sign conversion warning.
13173   }
13174 
13175   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13176       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13177        LikelySourceRange.Width == TargetRange.Width)) {
13178     if (S.SourceMgr.isInSystemMacro(CC))
13179       return;
13180 
13181     unsigned DiagID = diag::warn_impcast_integer_sign;
13182 
13183     // Traditionally, gcc has warned about this under -Wsign-compare.
13184     // We also want to warn about it in -Wconversion.
13185     // So if -Wconversion is off, use a completely identical diagnostic
13186     // in the sign-compare group.
13187     // The conditional-checking code will
13188     if (ICContext) {
13189       DiagID = diag::warn_impcast_integer_sign_conditional;
13190       *ICContext = true;
13191     }
13192 
13193     return DiagnoseImpCast(S, E, T, CC, DiagID);
13194   }
13195 
13196   // Diagnose conversions between different enumeration types.
13197   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13198   // type, to give us better diagnostics.
13199   QualType SourceType = E->getType();
13200   if (!S.getLangOpts().CPlusPlus) {
13201     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13202       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13203         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13204         SourceType = S.Context.getTypeDeclType(Enum);
13205         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13206       }
13207   }
13208 
13209   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13210     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13211       if (SourceEnum->getDecl()->hasNameForLinkage() &&
13212           TargetEnum->getDecl()->hasNameForLinkage() &&
13213           SourceEnum != TargetEnum) {
13214         if (S.SourceMgr.isInSystemMacro(CC))
13215           return;
13216 
13217         return DiagnoseImpCast(S, E, SourceType, T, CC,
13218                                diag::warn_impcast_different_enum_types);
13219       }
13220 }
13221 
13222 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13223                                      SourceLocation CC, QualType T);
13224 
13225 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13226                                     SourceLocation CC, bool &ICContext) {
13227   E = E->IgnoreParenImpCasts();
13228 
13229   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13230     return CheckConditionalOperator(S, CO, CC, T);
13231 
13232   AnalyzeImplicitConversions(S, E, CC);
13233   if (E->getType() != T)
13234     return CheckImplicitConversion(S, E, T, CC, &ICContext);
13235 }
13236 
13237 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13238                                      SourceLocation CC, QualType T) {
13239   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13240 
13241   Expr *TrueExpr = E->getTrueExpr();
13242   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13243     TrueExpr = BCO->getCommon();
13244 
13245   bool Suspicious = false;
13246   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13247   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13248 
13249   if (T->isBooleanType())
13250     DiagnoseIntInBoolContext(S, E);
13251 
13252   // If -Wconversion would have warned about either of the candidates
13253   // for a signedness conversion to the context type...
13254   if (!Suspicious) return;
13255 
13256   // ...but it's currently ignored...
13257   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13258     return;
13259 
13260   // ...then check whether it would have warned about either of the
13261   // candidates for a signedness conversion to the condition type.
13262   if (E->getType() == T) return;
13263 
13264   Suspicious = false;
13265   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13266                           E->getType(), CC, &Suspicious);
13267   if (!Suspicious)
13268     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13269                             E->getType(), CC, &Suspicious);
13270 }
13271 
13272 /// Check conversion of given expression to boolean.
13273 /// Input argument E is a logical expression.
13274 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13275   if (S.getLangOpts().Bool)
13276     return;
13277   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13278     return;
13279   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13280 }
13281 
13282 namespace {
13283 struct AnalyzeImplicitConversionsWorkItem {
13284   Expr *E;
13285   SourceLocation CC;
13286   bool IsListInit;
13287 };
13288 }
13289 
13290 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13291 /// that should be visited are added to WorkList.
13292 static void AnalyzeImplicitConversions(
13293     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13294     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13295   Expr *OrigE = Item.E;
13296   SourceLocation CC = Item.CC;
13297 
13298   QualType T = OrigE->getType();
13299   Expr *E = OrigE->IgnoreParenImpCasts();
13300 
13301   // Propagate whether we are in a C++ list initialization expression.
13302   // If so, we do not issue warnings for implicit int-float conversion
13303   // precision loss, because C++11 narrowing already handles it.
13304   bool IsListInit = Item.IsListInit ||
13305                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13306 
13307   if (E->isTypeDependent() || E->isValueDependent())
13308     return;
13309 
13310   Expr *SourceExpr = E;
13311   // Examine, but don't traverse into the source expression of an
13312   // OpaqueValueExpr, since it may have multiple parents and we don't want to
13313   // emit duplicate diagnostics. Its fine to examine the form or attempt to
13314   // evaluate it in the context of checking the specific conversion to T though.
13315   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13316     if (auto *Src = OVE->getSourceExpr())
13317       SourceExpr = Src;
13318 
13319   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13320     if (UO->getOpcode() == UO_Not &&
13321         UO->getSubExpr()->isKnownToHaveBooleanValue())
13322       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13323           << OrigE->getSourceRange() << T->isBooleanType()
13324           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13325 
13326   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
13327     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
13328         BO->getLHS()->isKnownToHaveBooleanValue() &&
13329         BO->getRHS()->isKnownToHaveBooleanValue() &&
13330         BO->getLHS()->HasSideEffects(S.Context) &&
13331         BO->getRHS()->HasSideEffects(S.Context)) {
13332       S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
13333           << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
13334           << FixItHint::CreateReplacement(
13335                  BO->getOperatorLoc(),
13336                  (BO->getOpcode() == BO_And ? "&&" : "||"));
13337       S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
13338     }
13339 
13340   // For conditional operators, we analyze the arguments as if they
13341   // were being fed directly into the output.
13342   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13343     CheckConditionalOperator(S, CO, CC, T);
13344     return;
13345   }
13346 
13347   // Check implicit argument conversions for function calls.
13348   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13349     CheckImplicitArgumentConversions(S, Call, CC);
13350 
13351   // Go ahead and check any implicit conversions we might have skipped.
13352   // The non-canonical typecheck is just an optimization;
13353   // CheckImplicitConversion will filter out dead implicit conversions.
13354   if (SourceExpr->getType() != T)
13355     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13356 
13357   // Now continue drilling into this expression.
13358 
13359   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13360     // The bound subexpressions in a PseudoObjectExpr are not reachable
13361     // as transitive children.
13362     // FIXME: Use a more uniform representation for this.
13363     for (auto *SE : POE->semantics())
13364       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13365         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13366   }
13367 
13368   // Skip past explicit casts.
13369   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13370     E = CE->getSubExpr()->IgnoreParenImpCasts();
13371     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13372       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13373     WorkList.push_back({E, CC, IsListInit});
13374     return;
13375   }
13376 
13377   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13378     // Do a somewhat different check with comparison operators.
13379     if (BO->isComparisonOp())
13380       return AnalyzeComparison(S, BO);
13381 
13382     // And with simple assignments.
13383     if (BO->getOpcode() == BO_Assign)
13384       return AnalyzeAssignment(S, BO);
13385     // And with compound assignments.
13386     if (BO->isAssignmentOp())
13387       return AnalyzeCompoundAssignment(S, BO);
13388   }
13389 
13390   // These break the otherwise-useful invariant below.  Fortunately,
13391   // we don't really need to recurse into them, because any internal
13392   // expressions should have been analyzed already when they were
13393   // built into statements.
13394   if (isa<StmtExpr>(E)) return;
13395 
13396   // Don't descend into unevaluated contexts.
13397   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13398 
13399   // Now just recurse over the expression's children.
13400   CC = E->getExprLoc();
13401   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13402   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13403   for (Stmt *SubStmt : E->children()) {
13404     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13405     if (!ChildExpr)
13406       continue;
13407 
13408     if (IsLogicalAndOperator &&
13409         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13410       // Ignore checking string literals that are in logical and operators.
13411       // This is a common pattern for asserts.
13412       continue;
13413     WorkList.push_back({ChildExpr, CC, IsListInit});
13414   }
13415 
13416   if (BO && BO->isLogicalOp()) {
13417     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13418     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13419       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13420 
13421     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13422     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13423       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13424   }
13425 
13426   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13427     if (U->getOpcode() == UO_LNot) {
13428       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13429     } else if (U->getOpcode() != UO_AddrOf) {
13430       if (U->getSubExpr()->getType()->isAtomicType())
13431         S.Diag(U->getSubExpr()->getBeginLoc(),
13432                diag::warn_atomic_implicit_seq_cst);
13433     }
13434   }
13435 }
13436 
13437 /// AnalyzeImplicitConversions - Find and report any interesting
13438 /// implicit conversions in the given expression.  There are a couple
13439 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
13440 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13441                                        bool IsListInit/*= false*/) {
13442   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13443   WorkList.push_back({OrigE, CC, IsListInit});
13444   while (!WorkList.empty())
13445     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13446 }
13447 
13448 /// Diagnose integer type and any valid implicit conversion to it.
13449 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13450   // Taking into account implicit conversions,
13451   // allow any integer.
13452   if (!E->getType()->isIntegerType()) {
13453     S.Diag(E->getBeginLoc(),
13454            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13455     return true;
13456   }
13457   // Potentially emit standard warnings for implicit conversions if enabled
13458   // using -Wconversion.
13459   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13460   return false;
13461 }
13462 
13463 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13464 // Returns true when emitting a warning about taking the address of a reference.
13465 static bool CheckForReference(Sema &SemaRef, const Expr *E,
13466                               const PartialDiagnostic &PD) {
13467   E = E->IgnoreParenImpCasts();
13468 
13469   const FunctionDecl *FD = nullptr;
13470 
13471   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13472     if (!DRE->getDecl()->getType()->isReferenceType())
13473       return false;
13474   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13475     if (!M->getMemberDecl()->getType()->isReferenceType())
13476       return false;
13477   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13478     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13479       return false;
13480     FD = Call->getDirectCallee();
13481   } else {
13482     return false;
13483   }
13484 
13485   SemaRef.Diag(E->getExprLoc(), PD);
13486 
13487   // If possible, point to location of function.
13488   if (FD) {
13489     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13490   }
13491 
13492   return true;
13493 }
13494 
13495 // Returns true if the SourceLocation is expanded from any macro body.
13496 // Returns false if the SourceLocation is invalid, is from not in a macro
13497 // expansion, or is from expanded from a top-level macro argument.
13498 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13499   if (Loc.isInvalid())
13500     return false;
13501 
13502   while (Loc.isMacroID()) {
13503     if (SM.isMacroBodyExpansion(Loc))
13504       return true;
13505     Loc = SM.getImmediateMacroCallerLoc(Loc);
13506   }
13507 
13508   return false;
13509 }
13510 
13511 /// Diagnose pointers that are always non-null.
13512 /// \param E the expression containing the pointer
13513 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13514 /// compared to a null pointer
13515 /// \param IsEqual True when the comparison is equal to a null pointer
13516 /// \param Range Extra SourceRange to highlight in the diagnostic
13517 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13518                                         Expr::NullPointerConstantKind NullKind,
13519                                         bool IsEqual, SourceRange Range) {
13520   if (!E)
13521     return;
13522 
13523   // Don't warn inside macros.
13524   if (E->getExprLoc().isMacroID()) {
13525     const SourceManager &SM = getSourceManager();
13526     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13527         IsInAnyMacroBody(SM, Range.getBegin()))
13528       return;
13529   }
13530   E = E->IgnoreImpCasts();
13531 
13532   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13533 
13534   if (isa<CXXThisExpr>(E)) {
13535     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13536                                 : diag::warn_this_bool_conversion;
13537     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13538     return;
13539   }
13540 
13541   bool IsAddressOf = false;
13542 
13543   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13544     if (UO->getOpcode() != UO_AddrOf)
13545       return;
13546     IsAddressOf = true;
13547     E = UO->getSubExpr();
13548   }
13549 
13550   if (IsAddressOf) {
13551     unsigned DiagID = IsCompare
13552                           ? diag::warn_address_of_reference_null_compare
13553                           : diag::warn_address_of_reference_bool_conversion;
13554     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13555                                          << IsEqual;
13556     if (CheckForReference(*this, E, PD)) {
13557       return;
13558     }
13559   }
13560 
13561   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13562     bool IsParam = isa<NonNullAttr>(NonnullAttr);
13563     std::string Str;
13564     llvm::raw_string_ostream S(Str);
13565     E->printPretty(S, nullptr, getPrintingPolicy());
13566     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13567                                 : diag::warn_cast_nonnull_to_bool;
13568     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13569       << E->getSourceRange() << Range << IsEqual;
13570     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13571   };
13572 
13573   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13574   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13575     if (auto *Callee = Call->getDirectCallee()) {
13576       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13577         ComplainAboutNonnullParamOrCall(A);
13578         return;
13579       }
13580     }
13581   }
13582 
13583   // Expect to find a single Decl.  Skip anything more complicated.
13584   ValueDecl *D = nullptr;
13585   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13586     D = R->getDecl();
13587   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13588     D = M->getMemberDecl();
13589   }
13590 
13591   // Weak Decls can be null.
13592   if (!D || D->isWeak())
13593     return;
13594 
13595   // Check for parameter decl with nonnull attribute
13596   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13597     if (getCurFunction() &&
13598         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13599       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13600         ComplainAboutNonnullParamOrCall(A);
13601         return;
13602       }
13603 
13604       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13605         // Skip function template not specialized yet.
13606         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13607           return;
13608         auto ParamIter = llvm::find(FD->parameters(), PV);
13609         assert(ParamIter != FD->param_end());
13610         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13611 
13612         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13613           if (!NonNull->args_size()) {
13614               ComplainAboutNonnullParamOrCall(NonNull);
13615               return;
13616           }
13617 
13618           for (const ParamIdx &ArgNo : NonNull->args()) {
13619             if (ArgNo.getASTIndex() == ParamNo) {
13620               ComplainAboutNonnullParamOrCall(NonNull);
13621               return;
13622             }
13623           }
13624         }
13625       }
13626     }
13627   }
13628 
13629   QualType T = D->getType();
13630   const bool IsArray = T->isArrayType();
13631   const bool IsFunction = T->isFunctionType();
13632 
13633   // Address of function is used to silence the function warning.
13634   if (IsAddressOf && IsFunction) {
13635     return;
13636   }
13637 
13638   // Found nothing.
13639   if (!IsAddressOf && !IsFunction && !IsArray)
13640     return;
13641 
13642   // Pretty print the expression for the diagnostic.
13643   std::string Str;
13644   llvm::raw_string_ostream S(Str);
13645   E->printPretty(S, nullptr, getPrintingPolicy());
13646 
13647   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13648                               : diag::warn_impcast_pointer_to_bool;
13649   enum {
13650     AddressOf,
13651     FunctionPointer,
13652     ArrayPointer
13653   } DiagType;
13654   if (IsAddressOf)
13655     DiagType = AddressOf;
13656   else if (IsFunction)
13657     DiagType = FunctionPointer;
13658   else if (IsArray)
13659     DiagType = ArrayPointer;
13660   else
13661     llvm_unreachable("Could not determine diagnostic.");
13662   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13663                                 << Range << IsEqual;
13664 
13665   if (!IsFunction)
13666     return;
13667 
13668   // Suggest '&' to silence the function warning.
13669   Diag(E->getExprLoc(), diag::note_function_warning_silence)
13670       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13671 
13672   // Check to see if '()' fixit should be emitted.
13673   QualType ReturnType;
13674   UnresolvedSet<4> NonTemplateOverloads;
13675   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13676   if (ReturnType.isNull())
13677     return;
13678 
13679   if (IsCompare) {
13680     // There are two cases here.  If there is null constant, the only suggest
13681     // for a pointer return type.  If the null is 0, then suggest if the return
13682     // type is a pointer or an integer type.
13683     if (!ReturnType->isPointerType()) {
13684       if (NullKind == Expr::NPCK_ZeroExpression ||
13685           NullKind == Expr::NPCK_ZeroLiteral) {
13686         if (!ReturnType->isIntegerType())
13687           return;
13688       } else {
13689         return;
13690       }
13691     }
13692   } else { // !IsCompare
13693     // For function to bool, only suggest if the function pointer has bool
13694     // return type.
13695     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13696       return;
13697   }
13698   Diag(E->getExprLoc(), diag::note_function_to_function_call)
13699       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13700 }
13701 
13702 /// Diagnoses "dangerous" implicit conversions within the given
13703 /// expression (which is a full expression).  Implements -Wconversion
13704 /// and -Wsign-compare.
13705 ///
13706 /// \param CC the "context" location of the implicit conversion, i.e.
13707 ///   the most location of the syntactic entity requiring the implicit
13708 ///   conversion
13709 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13710   // Don't diagnose in unevaluated contexts.
13711   if (isUnevaluatedContext())
13712     return;
13713 
13714   // Don't diagnose for value- or type-dependent expressions.
13715   if (E->isTypeDependent() || E->isValueDependent())
13716     return;
13717 
13718   // Check for array bounds violations in cases where the check isn't triggered
13719   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13720   // ArraySubscriptExpr is on the RHS of a variable initialization.
13721   CheckArrayAccess(E);
13722 
13723   // This is not the right CC for (e.g.) a variable initialization.
13724   AnalyzeImplicitConversions(*this, E, CC);
13725 }
13726 
13727 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13728 /// Input argument E is a logical expression.
13729 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13730   ::CheckBoolLikeConversion(*this, E, CC);
13731 }
13732 
13733 /// Diagnose when expression is an integer constant expression and its evaluation
13734 /// results in integer overflow
13735 void Sema::CheckForIntOverflow (Expr *E) {
13736   // Use a work list to deal with nested struct initializers.
13737   SmallVector<Expr *, 2> Exprs(1, E);
13738 
13739   do {
13740     Expr *OriginalE = Exprs.pop_back_val();
13741     Expr *E = OriginalE->IgnoreParenCasts();
13742 
13743     if (isa<BinaryOperator>(E)) {
13744       E->EvaluateForOverflow(Context);
13745       continue;
13746     }
13747 
13748     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13749       Exprs.append(InitList->inits().begin(), InitList->inits().end());
13750     else if (isa<ObjCBoxedExpr>(OriginalE))
13751       E->EvaluateForOverflow(Context);
13752     else if (auto Call = dyn_cast<CallExpr>(E))
13753       Exprs.append(Call->arg_begin(), Call->arg_end());
13754     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13755       Exprs.append(Message->arg_begin(), Message->arg_end());
13756   } while (!Exprs.empty());
13757 }
13758 
13759 namespace {
13760 
13761 /// Visitor for expressions which looks for unsequenced operations on the
13762 /// same object.
13763 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13764   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13765 
13766   /// A tree of sequenced regions within an expression. Two regions are
13767   /// unsequenced if one is an ancestor or a descendent of the other. When we
13768   /// finish processing an expression with sequencing, such as a comma
13769   /// expression, we fold its tree nodes into its parent, since they are
13770   /// unsequenced with respect to nodes we will visit later.
13771   class SequenceTree {
13772     struct Value {
13773       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13774       unsigned Parent : 31;
13775       unsigned Merged : 1;
13776     };
13777     SmallVector<Value, 8> Values;
13778 
13779   public:
13780     /// A region within an expression which may be sequenced with respect
13781     /// to some other region.
13782     class Seq {
13783       friend class SequenceTree;
13784 
13785       unsigned Index;
13786 
13787       explicit Seq(unsigned N) : Index(N) {}
13788 
13789     public:
13790       Seq() : Index(0) {}
13791     };
13792 
13793     SequenceTree() { Values.push_back(Value(0)); }
13794     Seq root() const { return Seq(0); }
13795 
13796     /// Create a new sequence of operations, which is an unsequenced
13797     /// subset of \p Parent. This sequence of operations is sequenced with
13798     /// respect to other children of \p Parent.
13799     Seq allocate(Seq Parent) {
13800       Values.push_back(Value(Parent.Index));
13801       return Seq(Values.size() - 1);
13802     }
13803 
13804     /// Merge a sequence of operations into its parent.
13805     void merge(Seq S) {
13806       Values[S.Index].Merged = true;
13807     }
13808 
13809     /// Determine whether two operations are unsequenced. This operation
13810     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13811     /// should have been merged into its parent as appropriate.
13812     bool isUnsequenced(Seq Cur, Seq Old) {
13813       unsigned C = representative(Cur.Index);
13814       unsigned Target = representative(Old.Index);
13815       while (C >= Target) {
13816         if (C == Target)
13817           return true;
13818         C = Values[C].Parent;
13819       }
13820       return false;
13821     }
13822 
13823   private:
13824     /// Pick a representative for a sequence.
13825     unsigned representative(unsigned K) {
13826       if (Values[K].Merged)
13827         // Perform path compression as we go.
13828         return Values[K].Parent = representative(Values[K].Parent);
13829       return K;
13830     }
13831   };
13832 
13833   /// An object for which we can track unsequenced uses.
13834   using Object = const NamedDecl *;
13835 
13836   /// Different flavors of object usage which we track. We only track the
13837   /// least-sequenced usage of each kind.
13838   enum UsageKind {
13839     /// A read of an object. Multiple unsequenced reads are OK.
13840     UK_Use,
13841 
13842     /// A modification of an object which is sequenced before the value
13843     /// computation of the expression, such as ++n in C++.
13844     UK_ModAsValue,
13845 
13846     /// A modification of an object which is not sequenced before the value
13847     /// computation of the expression, such as n++.
13848     UK_ModAsSideEffect,
13849 
13850     UK_Count = UK_ModAsSideEffect + 1
13851   };
13852 
13853   /// Bundle together a sequencing region and the expression corresponding
13854   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13855   struct Usage {
13856     const Expr *UsageExpr;
13857     SequenceTree::Seq Seq;
13858 
13859     Usage() : UsageExpr(nullptr), Seq() {}
13860   };
13861 
13862   struct UsageInfo {
13863     Usage Uses[UK_Count];
13864 
13865     /// Have we issued a diagnostic for this object already?
13866     bool Diagnosed;
13867 
13868     UsageInfo() : Uses(), Diagnosed(false) {}
13869   };
13870   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13871 
13872   Sema &SemaRef;
13873 
13874   /// Sequenced regions within the expression.
13875   SequenceTree Tree;
13876 
13877   /// Declaration modifications and references which we have seen.
13878   UsageInfoMap UsageMap;
13879 
13880   /// The region we are currently within.
13881   SequenceTree::Seq Region;
13882 
13883   /// Filled in with declarations which were modified as a side-effect
13884   /// (that is, post-increment operations).
13885   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13886 
13887   /// Expressions to check later. We defer checking these to reduce
13888   /// stack usage.
13889   SmallVectorImpl<const Expr *> &WorkList;
13890 
13891   /// RAII object wrapping the visitation of a sequenced subexpression of an
13892   /// expression. At the end of this process, the side-effects of the evaluation
13893   /// become sequenced with respect to the value computation of the result, so
13894   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13895   /// UK_ModAsValue.
13896   struct SequencedSubexpression {
13897     SequencedSubexpression(SequenceChecker &Self)
13898       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13899       Self.ModAsSideEffect = &ModAsSideEffect;
13900     }
13901 
13902     ~SequencedSubexpression() {
13903       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13904         // Add a new usage with usage kind UK_ModAsValue, and then restore
13905         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13906         // the previous one was empty).
13907         UsageInfo &UI = Self.UsageMap[M.first];
13908         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13909         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13910         SideEffectUsage = M.second;
13911       }
13912       Self.ModAsSideEffect = OldModAsSideEffect;
13913     }
13914 
13915     SequenceChecker &Self;
13916     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13917     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13918   };
13919 
13920   /// RAII object wrapping the visitation of a subexpression which we might
13921   /// choose to evaluate as a constant. If any subexpression is evaluated and
13922   /// found to be non-constant, this allows us to suppress the evaluation of
13923   /// the outer expression.
13924   class EvaluationTracker {
13925   public:
13926     EvaluationTracker(SequenceChecker &Self)
13927         : Self(Self), Prev(Self.EvalTracker) {
13928       Self.EvalTracker = this;
13929     }
13930 
13931     ~EvaluationTracker() {
13932       Self.EvalTracker = Prev;
13933       if (Prev)
13934         Prev->EvalOK &= EvalOK;
13935     }
13936 
13937     bool evaluate(const Expr *E, bool &Result) {
13938       if (!EvalOK || E->isValueDependent())
13939         return false;
13940       EvalOK = E->EvaluateAsBooleanCondition(
13941           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13942       return EvalOK;
13943     }
13944 
13945   private:
13946     SequenceChecker &Self;
13947     EvaluationTracker *Prev;
13948     bool EvalOK = true;
13949   } *EvalTracker = nullptr;
13950 
13951   /// Find the object which is produced by the specified expression,
13952   /// if any.
13953   Object getObject(const Expr *E, bool Mod) const {
13954     E = E->IgnoreParenCasts();
13955     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13956       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13957         return getObject(UO->getSubExpr(), Mod);
13958     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13959       if (BO->getOpcode() == BO_Comma)
13960         return getObject(BO->getRHS(), Mod);
13961       if (Mod && BO->isAssignmentOp())
13962         return getObject(BO->getLHS(), Mod);
13963     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13964       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13965       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13966         return ME->getMemberDecl();
13967     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13968       // FIXME: If this is a reference, map through to its value.
13969       return DRE->getDecl();
13970     return nullptr;
13971   }
13972 
13973   /// Note that an object \p O was modified or used by an expression
13974   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13975   /// the object \p O as obtained via the \p UsageMap.
13976   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13977     // Get the old usage for the given object and usage kind.
13978     Usage &U = UI.Uses[UK];
13979     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13980       // If we have a modification as side effect and are in a sequenced
13981       // subexpression, save the old Usage so that we can restore it later
13982       // in SequencedSubexpression::~SequencedSubexpression.
13983       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13984         ModAsSideEffect->push_back(std::make_pair(O, U));
13985       // Then record the new usage with the current sequencing region.
13986       U.UsageExpr = UsageExpr;
13987       U.Seq = Region;
13988     }
13989   }
13990 
13991   /// Check whether a modification or use of an object \p O in an expression
13992   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13993   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13994   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13995   /// usage and false we are checking for a mod-use unsequenced usage.
13996   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13997                   UsageKind OtherKind, bool IsModMod) {
13998     if (UI.Diagnosed)
13999       return;
14000 
14001     const Usage &U = UI.Uses[OtherKind];
14002     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
14003       return;
14004 
14005     const Expr *Mod = U.UsageExpr;
14006     const Expr *ModOrUse = UsageExpr;
14007     if (OtherKind == UK_Use)
14008       std::swap(Mod, ModOrUse);
14009 
14010     SemaRef.DiagRuntimeBehavior(
14011         Mod->getExprLoc(), {Mod, ModOrUse},
14012         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
14013                                : diag::warn_unsequenced_mod_use)
14014             << O << SourceRange(ModOrUse->getExprLoc()));
14015     UI.Diagnosed = true;
14016   }
14017 
14018   // A note on note{Pre, Post}{Use, Mod}:
14019   //
14020   // (It helps to follow the algorithm with an expression such as
14021   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14022   //  operations before C++17 and both are well-defined in C++17).
14023   //
14024   // When visiting a node which uses/modify an object we first call notePreUse
14025   // or notePreMod before visiting its sub-expression(s). At this point the
14026   // children of the current node have not yet been visited and so the eventual
14027   // uses/modifications resulting from the children of the current node have not
14028   // been recorded yet.
14029   //
14030   // We then visit the children of the current node. After that notePostUse or
14031   // notePostMod is called. These will 1) detect an unsequenced modification
14032   // as side effect (as in "k++ + k") and 2) add a new usage with the
14033   // appropriate usage kind.
14034   //
14035   // We also have to be careful that some operation sequences modification as
14036   // side effect as well (for example: || or ,). To account for this we wrap
14037   // the visitation of such a sub-expression (for example: the LHS of || or ,)
14038   // with SequencedSubexpression. SequencedSubexpression is an RAII object
14039   // which record usages which are modifications as side effect, and then
14040   // downgrade them (or more accurately restore the previous usage which was a
14041   // modification as side effect) when exiting the scope of the sequenced
14042   // subexpression.
14043 
14044   void notePreUse(Object O, const Expr *UseExpr) {
14045     UsageInfo &UI = UsageMap[O];
14046     // Uses conflict with other modifications.
14047     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14048   }
14049 
14050   void notePostUse(Object O, const Expr *UseExpr) {
14051     UsageInfo &UI = UsageMap[O];
14052     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14053                /*IsModMod=*/false);
14054     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14055   }
14056 
14057   void notePreMod(Object O, const Expr *ModExpr) {
14058     UsageInfo &UI = UsageMap[O];
14059     // Modifications conflict with other modifications and with uses.
14060     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14061     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14062   }
14063 
14064   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14065     UsageInfo &UI = UsageMap[O];
14066     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14067                /*IsModMod=*/true);
14068     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14069   }
14070 
14071 public:
14072   SequenceChecker(Sema &S, const Expr *E,
14073                   SmallVectorImpl<const Expr *> &WorkList)
14074       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14075     Visit(E);
14076     // Silence a -Wunused-private-field since WorkList is now unused.
14077     // TODO: Evaluate if it can be used, and if not remove it.
14078     (void)this->WorkList;
14079   }
14080 
14081   void VisitStmt(const Stmt *S) {
14082     // Skip all statements which aren't expressions for now.
14083   }
14084 
14085   void VisitExpr(const Expr *E) {
14086     // By default, just recurse to evaluated subexpressions.
14087     Base::VisitStmt(E);
14088   }
14089 
14090   void VisitCastExpr(const CastExpr *E) {
14091     Object O = Object();
14092     if (E->getCastKind() == CK_LValueToRValue)
14093       O = getObject(E->getSubExpr(), false);
14094 
14095     if (O)
14096       notePreUse(O, E);
14097     VisitExpr(E);
14098     if (O)
14099       notePostUse(O, E);
14100   }
14101 
14102   void VisitSequencedExpressions(const Expr *SequencedBefore,
14103                                  const Expr *SequencedAfter) {
14104     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14105     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14106     SequenceTree::Seq OldRegion = Region;
14107 
14108     {
14109       SequencedSubexpression SeqBefore(*this);
14110       Region = BeforeRegion;
14111       Visit(SequencedBefore);
14112     }
14113 
14114     Region = AfterRegion;
14115     Visit(SequencedAfter);
14116 
14117     Region = OldRegion;
14118 
14119     Tree.merge(BeforeRegion);
14120     Tree.merge(AfterRegion);
14121   }
14122 
14123   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14124     // C++17 [expr.sub]p1:
14125     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14126     //   expression E1 is sequenced before the expression E2.
14127     if (SemaRef.getLangOpts().CPlusPlus17)
14128       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14129     else {
14130       Visit(ASE->getLHS());
14131       Visit(ASE->getRHS());
14132     }
14133   }
14134 
14135   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14136   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14137   void VisitBinPtrMem(const BinaryOperator *BO) {
14138     // C++17 [expr.mptr.oper]p4:
14139     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14140     //  the expression E1 is sequenced before the expression E2.
14141     if (SemaRef.getLangOpts().CPlusPlus17)
14142       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14143     else {
14144       Visit(BO->getLHS());
14145       Visit(BO->getRHS());
14146     }
14147   }
14148 
14149   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14150   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14151   void VisitBinShlShr(const BinaryOperator *BO) {
14152     // C++17 [expr.shift]p4:
14153     //  The expression E1 is sequenced before the expression E2.
14154     if (SemaRef.getLangOpts().CPlusPlus17)
14155       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14156     else {
14157       Visit(BO->getLHS());
14158       Visit(BO->getRHS());
14159     }
14160   }
14161 
14162   void VisitBinComma(const BinaryOperator *BO) {
14163     // C++11 [expr.comma]p1:
14164     //   Every value computation and side effect associated with the left
14165     //   expression is sequenced before every value computation and side
14166     //   effect associated with the right expression.
14167     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14168   }
14169 
14170   void VisitBinAssign(const BinaryOperator *BO) {
14171     SequenceTree::Seq RHSRegion;
14172     SequenceTree::Seq LHSRegion;
14173     if (SemaRef.getLangOpts().CPlusPlus17) {
14174       RHSRegion = Tree.allocate(Region);
14175       LHSRegion = Tree.allocate(Region);
14176     } else {
14177       RHSRegion = Region;
14178       LHSRegion = Region;
14179     }
14180     SequenceTree::Seq OldRegion = Region;
14181 
14182     // C++11 [expr.ass]p1:
14183     //  [...] the assignment is sequenced after the value computation
14184     //  of the right and left operands, [...]
14185     //
14186     // so check it before inspecting the operands and update the
14187     // map afterwards.
14188     Object O = getObject(BO->getLHS(), /*Mod=*/true);
14189     if (O)
14190       notePreMod(O, BO);
14191 
14192     if (SemaRef.getLangOpts().CPlusPlus17) {
14193       // C++17 [expr.ass]p1:
14194       //  [...] The right operand is sequenced before the left operand. [...]
14195       {
14196         SequencedSubexpression SeqBefore(*this);
14197         Region = RHSRegion;
14198         Visit(BO->getRHS());
14199       }
14200 
14201       Region = LHSRegion;
14202       Visit(BO->getLHS());
14203 
14204       if (O && isa<CompoundAssignOperator>(BO))
14205         notePostUse(O, BO);
14206 
14207     } else {
14208       // C++11 does not specify any sequencing between the LHS and RHS.
14209       Region = LHSRegion;
14210       Visit(BO->getLHS());
14211 
14212       if (O && isa<CompoundAssignOperator>(BO))
14213         notePostUse(O, BO);
14214 
14215       Region = RHSRegion;
14216       Visit(BO->getRHS());
14217     }
14218 
14219     // C++11 [expr.ass]p1:
14220     //  the assignment is sequenced [...] before the value computation of the
14221     //  assignment expression.
14222     // C11 6.5.16/3 has no such rule.
14223     Region = OldRegion;
14224     if (O)
14225       notePostMod(O, BO,
14226                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14227                                                   : UK_ModAsSideEffect);
14228     if (SemaRef.getLangOpts().CPlusPlus17) {
14229       Tree.merge(RHSRegion);
14230       Tree.merge(LHSRegion);
14231     }
14232   }
14233 
14234   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14235     VisitBinAssign(CAO);
14236   }
14237 
14238   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14239   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14240   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14241     Object O = getObject(UO->getSubExpr(), true);
14242     if (!O)
14243       return VisitExpr(UO);
14244 
14245     notePreMod(O, UO);
14246     Visit(UO->getSubExpr());
14247     // C++11 [expr.pre.incr]p1:
14248     //   the expression ++x is equivalent to x+=1
14249     notePostMod(O, UO,
14250                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14251                                                 : UK_ModAsSideEffect);
14252   }
14253 
14254   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14255   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14256   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14257     Object O = getObject(UO->getSubExpr(), true);
14258     if (!O)
14259       return VisitExpr(UO);
14260 
14261     notePreMod(O, UO);
14262     Visit(UO->getSubExpr());
14263     notePostMod(O, UO, UK_ModAsSideEffect);
14264   }
14265 
14266   void VisitBinLOr(const BinaryOperator *BO) {
14267     // C++11 [expr.log.or]p2:
14268     //  If the second expression is evaluated, every value computation and
14269     //  side effect associated with the first expression is sequenced before
14270     //  every value computation and side effect associated with the
14271     //  second expression.
14272     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14273     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14274     SequenceTree::Seq OldRegion = Region;
14275 
14276     EvaluationTracker Eval(*this);
14277     {
14278       SequencedSubexpression Sequenced(*this);
14279       Region = LHSRegion;
14280       Visit(BO->getLHS());
14281     }
14282 
14283     // C++11 [expr.log.or]p1:
14284     //  [...] the second operand is not evaluated if the first operand
14285     //  evaluates to true.
14286     bool EvalResult = false;
14287     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14288     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14289     if (ShouldVisitRHS) {
14290       Region = RHSRegion;
14291       Visit(BO->getRHS());
14292     }
14293 
14294     Region = OldRegion;
14295     Tree.merge(LHSRegion);
14296     Tree.merge(RHSRegion);
14297   }
14298 
14299   void VisitBinLAnd(const BinaryOperator *BO) {
14300     // C++11 [expr.log.and]p2:
14301     //  If the second expression is evaluated, every value computation and
14302     //  side effect associated with the first expression is sequenced before
14303     //  every value computation and side effect associated with the
14304     //  second expression.
14305     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14306     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14307     SequenceTree::Seq OldRegion = Region;
14308 
14309     EvaluationTracker Eval(*this);
14310     {
14311       SequencedSubexpression Sequenced(*this);
14312       Region = LHSRegion;
14313       Visit(BO->getLHS());
14314     }
14315 
14316     // C++11 [expr.log.and]p1:
14317     //  [...] the second operand is not evaluated if the first operand is false.
14318     bool EvalResult = false;
14319     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14320     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14321     if (ShouldVisitRHS) {
14322       Region = RHSRegion;
14323       Visit(BO->getRHS());
14324     }
14325 
14326     Region = OldRegion;
14327     Tree.merge(LHSRegion);
14328     Tree.merge(RHSRegion);
14329   }
14330 
14331   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14332     // C++11 [expr.cond]p1:
14333     //  [...] Every value computation and side effect associated with the first
14334     //  expression is sequenced before every value computation and side effect
14335     //  associated with the second or third expression.
14336     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14337 
14338     // No sequencing is specified between the true and false expression.
14339     // However since exactly one of both is going to be evaluated we can
14340     // consider them to be sequenced. This is needed to avoid warning on
14341     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14342     // both the true and false expressions because we can't evaluate x.
14343     // This will still allow us to detect an expression like (pre C++17)
14344     // "(x ? y += 1 : y += 2) = y".
14345     //
14346     // We don't wrap the visitation of the true and false expression with
14347     // SequencedSubexpression because we don't want to downgrade modifications
14348     // as side effect in the true and false expressions after the visition
14349     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14350     // not warn between the two "y++", but we should warn between the "y++"
14351     // and the "y".
14352     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14353     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14354     SequenceTree::Seq OldRegion = Region;
14355 
14356     EvaluationTracker Eval(*this);
14357     {
14358       SequencedSubexpression Sequenced(*this);
14359       Region = ConditionRegion;
14360       Visit(CO->getCond());
14361     }
14362 
14363     // C++11 [expr.cond]p1:
14364     // [...] The first expression is contextually converted to bool (Clause 4).
14365     // It is evaluated and if it is true, the result of the conditional
14366     // expression is the value of the second expression, otherwise that of the
14367     // third expression. Only one of the second and third expressions is
14368     // evaluated. [...]
14369     bool EvalResult = false;
14370     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14371     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14372     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14373     if (ShouldVisitTrueExpr) {
14374       Region = TrueRegion;
14375       Visit(CO->getTrueExpr());
14376     }
14377     if (ShouldVisitFalseExpr) {
14378       Region = FalseRegion;
14379       Visit(CO->getFalseExpr());
14380     }
14381 
14382     Region = OldRegion;
14383     Tree.merge(ConditionRegion);
14384     Tree.merge(TrueRegion);
14385     Tree.merge(FalseRegion);
14386   }
14387 
14388   void VisitCallExpr(const CallExpr *CE) {
14389     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14390 
14391     if (CE->isUnevaluatedBuiltinCall(Context))
14392       return;
14393 
14394     // C++11 [intro.execution]p15:
14395     //   When calling a function [...], every value computation and side effect
14396     //   associated with any argument expression, or with the postfix expression
14397     //   designating the called function, is sequenced before execution of every
14398     //   expression or statement in the body of the function [and thus before
14399     //   the value computation of its result].
14400     SequencedSubexpression Sequenced(*this);
14401     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14402       // C++17 [expr.call]p5
14403       //   The postfix-expression is sequenced before each expression in the
14404       //   expression-list and any default argument. [...]
14405       SequenceTree::Seq CalleeRegion;
14406       SequenceTree::Seq OtherRegion;
14407       if (SemaRef.getLangOpts().CPlusPlus17) {
14408         CalleeRegion = Tree.allocate(Region);
14409         OtherRegion = Tree.allocate(Region);
14410       } else {
14411         CalleeRegion = Region;
14412         OtherRegion = Region;
14413       }
14414       SequenceTree::Seq OldRegion = Region;
14415 
14416       // Visit the callee expression first.
14417       Region = CalleeRegion;
14418       if (SemaRef.getLangOpts().CPlusPlus17) {
14419         SequencedSubexpression Sequenced(*this);
14420         Visit(CE->getCallee());
14421       } else {
14422         Visit(CE->getCallee());
14423       }
14424 
14425       // Then visit the argument expressions.
14426       Region = OtherRegion;
14427       for (const Expr *Argument : CE->arguments())
14428         Visit(Argument);
14429 
14430       Region = OldRegion;
14431       if (SemaRef.getLangOpts().CPlusPlus17) {
14432         Tree.merge(CalleeRegion);
14433         Tree.merge(OtherRegion);
14434       }
14435     });
14436   }
14437 
14438   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14439     // C++17 [over.match.oper]p2:
14440     //   [...] the operator notation is first transformed to the equivalent
14441     //   function-call notation as summarized in Table 12 (where @ denotes one
14442     //   of the operators covered in the specified subclause). However, the
14443     //   operands are sequenced in the order prescribed for the built-in
14444     //   operator (Clause 8).
14445     //
14446     // From the above only overloaded binary operators and overloaded call
14447     // operators have sequencing rules in C++17 that we need to handle
14448     // separately.
14449     if (!SemaRef.getLangOpts().CPlusPlus17 ||
14450         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14451       return VisitCallExpr(CXXOCE);
14452 
14453     enum {
14454       NoSequencing,
14455       LHSBeforeRHS,
14456       RHSBeforeLHS,
14457       LHSBeforeRest
14458     } SequencingKind;
14459     switch (CXXOCE->getOperator()) {
14460     case OO_Equal:
14461     case OO_PlusEqual:
14462     case OO_MinusEqual:
14463     case OO_StarEqual:
14464     case OO_SlashEqual:
14465     case OO_PercentEqual:
14466     case OO_CaretEqual:
14467     case OO_AmpEqual:
14468     case OO_PipeEqual:
14469     case OO_LessLessEqual:
14470     case OO_GreaterGreaterEqual:
14471       SequencingKind = RHSBeforeLHS;
14472       break;
14473 
14474     case OO_LessLess:
14475     case OO_GreaterGreater:
14476     case OO_AmpAmp:
14477     case OO_PipePipe:
14478     case OO_Comma:
14479     case OO_ArrowStar:
14480     case OO_Subscript:
14481       SequencingKind = LHSBeforeRHS;
14482       break;
14483 
14484     case OO_Call:
14485       SequencingKind = LHSBeforeRest;
14486       break;
14487 
14488     default:
14489       SequencingKind = NoSequencing;
14490       break;
14491     }
14492 
14493     if (SequencingKind == NoSequencing)
14494       return VisitCallExpr(CXXOCE);
14495 
14496     // This is a call, so all subexpressions are sequenced before the result.
14497     SequencedSubexpression Sequenced(*this);
14498 
14499     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14500       assert(SemaRef.getLangOpts().CPlusPlus17 &&
14501              "Should only get there with C++17 and above!");
14502       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
14503              "Should only get there with an overloaded binary operator"
14504              " or an overloaded call operator!");
14505 
14506       if (SequencingKind == LHSBeforeRest) {
14507         assert(CXXOCE->getOperator() == OO_Call &&
14508                "We should only have an overloaded call operator here!");
14509 
14510         // This is very similar to VisitCallExpr, except that we only have the
14511         // C++17 case. The postfix-expression is the first argument of the
14512         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14513         // are in the following arguments.
14514         //
14515         // Note that we intentionally do not visit the callee expression since
14516         // it is just a decayed reference to a function.
14517         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14518         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14519         SequenceTree::Seq OldRegion = Region;
14520 
14521         assert(CXXOCE->getNumArgs() >= 1 &&
14522                "An overloaded call operator must have at least one argument"
14523                " for the postfix-expression!");
14524         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14525         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14526                                           CXXOCE->getNumArgs() - 1);
14527 
14528         // Visit the postfix-expression first.
14529         {
14530           Region = PostfixExprRegion;
14531           SequencedSubexpression Sequenced(*this);
14532           Visit(PostfixExpr);
14533         }
14534 
14535         // Then visit the argument expressions.
14536         Region = ArgsRegion;
14537         for (const Expr *Arg : Args)
14538           Visit(Arg);
14539 
14540         Region = OldRegion;
14541         Tree.merge(PostfixExprRegion);
14542         Tree.merge(ArgsRegion);
14543       } else {
14544         assert(CXXOCE->getNumArgs() == 2 &&
14545                "Should only have two arguments here!");
14546         assert((SequencingKind == LHSBeforeRHS ||
14547                 SequencingKind == RHSBeforeLHS) &&
14548                "Unexpected sequencing kind!");
14549 
14550         // We do not visit the callee expression since it is just a decayed
14551         // reference to a function.
14552         const Expr *E1 = CXXOCE->getArg(0);
14553         const Expr *E2 = CXXOCE->getArg(1);
14554         if (SequencingKind == RHSBeforeLHS)
14555           std::swap(E1, E2);
14556 
14557         return VisitSequencedExpressions(E1, E2);
14558       }
14559     });
14560   }
14561 
14562   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14563     // This is a call, so all subexpressions are sequenced before the result.
14564     SequencedSubexpression Sequenced(*this);
14565 
14566     if (!CCE->isListInitialization())
14567       return VisitExpr(CCE);
14568 
14569     // In C++11, list initializations are sequenced.
14570     SmallVector<SequenceTree::Seq, 32> Elts;
14571     SequenceTree::Seq Parent = Region;
14572     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14573                                               E = CCE->arg_end();
14574          I != E; ++I) {
14575       Region = Tree.allocate(Parent);
14576       Elts.push_back(Region);
14577       Visit(*I);
14578     }
14579 
14580     // Forget that the initializers are sequenced.
14581     Region = Parent;
14582     for (unsigned I = 0; I < Elts.size(); ++I)
14583       Tree.merge(Elts[I]);
14584   }
14585 
14586   void VisitInitListExpr(const InitListExpr *ILE) {
14587     if (!SemaRef.getLangOpts().CPlusPlus11)
14588       return VisitExpr(ILE);
14589 
14590     // In C++11, list initializations are sequenced.
14591     SmallVector<SequenceTree::Seq, 32> Elts;
14592     SequenceTree::Seq Parent = Region;
14593     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14594       const Expr *E = ILE->getInit(I);
14595       if (!E)
14596         continue;
14597       Region = Tree.allocate(Parent);
14598       Elts.push_back(Region);
14599       Visit(E);
14600     }
14601 
14602     // Forget that the initializers are sequenced.
14603     Region = Parent;
14604     for (unsigned I = 0; I < Elts.size(); ++I)
14605       Tree.merge(Elts[I]);
14606   }
14607 };
14608 
14609 } // namespace
14610 
14611 void Sema::CheckUnsequencedOperations(const Expr *E) {
14612   SmallVector<const Expr *, 8> WorkList;
14613   WorkList.push_back(E);
14614   while (!WorkList.empty()) {
14615     const Expr *Item = WorkList.pop_back_val();
14616     SequenceChecker(*this, Item, WorkList);
14617   }
14618 }
14619 
14620 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14621                               bool IsConstexpr) {
14622   llvm::SaveAndRestore<bool> ConstantContext(
14623       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14624   CheckImplicitConversions(E, CheckLoc);
14625   if (!E->isInstantiationDependent())
14626     CheckUnsequencedOperations(E);
14627   if (!IsConstexpr && !E->isValueDependent())
14628     CheckForIntOverflow(E);
14629   DiagnoseMisalignedMembers();
14630 }
14631 
14632 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14633                                        FieldDecl *BitField,
14634                                        Expr *Init) {
14635   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14636 }
14637 
14638 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14639                                          SourceLocation Loc) {
14640   if (!PType->isVariablyModifiedType())
14641     return;
14642   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14643     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14644     return;
14645   }
14646   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14647     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14648     return;
14649   }
14650   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14651     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14652     return;
14653   }
14654 
14655   const ArrayType *AT = S.Context.getAsArrayType(PType);
14656   if (!AT)
14657     return;
14658 
14659   if (AT->getSizeModifier() != ArrayType::Star) {
14660     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14661     return;
14662   }
14663 
14664   S.Diag(Loc, diag::err_array_star_in_function_definition);
14665 }
14666 
14667 /// CheckParmsForFunctionDef - Check that the parameters of the given
14668 /// function are appropriate for the definition of a function. This
14669 /// takes care of any checks that cannot be performed on the
14670 /// declaration itself, e.g., that the types of each of the function
14671 /// parameters are complete.
14672 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14673                                     bool CheckParameterNames) {
14674   bool HasInvalidParm = false;
14675   for (ParmVarDecl *Param : Parameters) {
14676     // C99 6.7.5.3p4: the parameters in a parameter type list in a
14677     // function declarator that is part of a function definition of
14678     // that function shall not have incomplete type.
14679     //
14680     // This is also C++ [dcl.fct]p6.
14681     if (!Param->isInvalidDecl() &&
14682         RequireCompleteType(Param->getLocation(), Param->getType(),
14683                             diag::err_typecheck_decl_incomplete_type)) {
14684       Param->setInvalidDecl();
14685       HasInvalidParm = true;
14686     }
14687 
14688     // C99 6.9.1p5: If the declarator includes a parameter type list, the
14689     // declaration of each parameter shall include an identifier.
14690     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14691         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14692       // Diagnose this as an extension in C17 and earlier.
14693       if (!getLangOpts().C2x)
14694         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14695     }
14696 
14697     // C99 6.7.5.3p12:
14698     //   If the function declarator is not part of a definition of that
14699     //   function, parameters may have incomplete type and may use the [*]
14700     //   notation in their sequences of declarator specifiers to specify
14701     //   variable length array types.
14702     QualType PType = Param->getOriginalType();
14703     // FIXME: This diagnostic should point the '[*]' if source-location
14704     // information is added for it.
14705     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14706 
14707     // If the parameter is a c++ class type and it has to be destructed in the
14708     // callee function, declare the destructor so that it can be called by the
14709     // callee function. Do not perform any direct access check on the dtor here.
14710     if (!Param->isInvalidDecl()) {
14711       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14712         if (!ClassDecl->isInvalidDecl() &&
14713             !ClassDecl->hasIrrelevantDestructor() &&
14714             !ClassDecl->isDependentContext() &&
14715             ClassDecl->isParamDestroyedInCallee()) {
14716           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14717           MarkFunctionReferenced(Param->getLocation(), Destructor);
14718           DiagnoseUseOfDecl(Destructor, Param->getLocation());
14719         }
14720       }
14721     }
14722 
14723     // Parameters with the pass_object_size attribute only need to be marked
14724     // constant at function definitions. Because we lack information about
14725     // whether we're on a declaration or definition when we're instantiating the
14726     // attribute, we need to check for constness here.
14727     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14728       if (!Param->getType().isConstQualified())
14729         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14730             << Attr->getSpelling() << 1;
14731 
14732     // Check for parameter names shadowing fields from the class.
14733     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14734       // The owning context for the parameter should be the function, but we
14735       // want to see if this function's declaration context is a record.
14736       DeclContext *DC = Param->getDeclContext();
14737       if (DC && DC->isFunctionOrMethod()) {
14738         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14739           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14740                                      RD, /*DeclIsField*/ false);
14741       }
14742     }
14743   }
14744 
14745   return HasInvalidParm;
14746 }
14747 
14748 Optional<std::pair<CharUnits, CharUnits>>
14749 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14750 
14751 /// Compute the alignment and offset of the base class object given the
14752 /// derived-to-base cast expression and the alignment and offset of the derived
14753 /// class object.
14754 static std::pair<CharUnits, CharUnits>
14755 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14756                                    CharUnits BaseAlignment, CharUnits Offset,
14757                                    ASTContext &Ctx) {
14758   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14759        ++PathI) {
14760     const CXXBaseSpecifier *Base = *PathI;
14761     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14762     if (Base->isVirtual()) {
14763       // The complete object may have a lower alignment than the non-virtual
14764       // alignment of the base, in which case the base may be misaligned. Choose
14765       // the smaller of the non-virtual alignment and BaseAlignment, which is a
14766       // conservative lower bound of the complete object alignment.
14767       CharUnits NonVirtualAlignment =
14768           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14769       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14770       Offset = CharUnits::Zero();
14771     } else {
14772       const ASTRecordLayout &RL =
14773           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14774       Offset += RL.getBaseClassOffset(BaseDecl);
14775     }
14776     DerivedType = Base->getType();
14777   }
14778 
14779   return std::make_pair(BaseAlignment, Offset);
14780 }
14781 
14782 /// Compute the alignment and offset of a binary additive operator.
14783 static Optional<std::pair<CharUnits, CharUnits>>
14784 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
14785                                      bool IsSub, ASTContext &Ctx) {
14786   QualType PointeeType = PtrE->getType()->getPointeeType();
14787 
14788   if (!PointeeType->isConstantSizeType())
14789     return llvm::None;
14790 
14791   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
14792 
14793   if (!P)
14794     return llvm::None;
14795 
14796   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
14797   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
14798     CharUnits Offset = EltSize * IdxRes->getExtValue();
14799     if (IsSub)
14800       Offset = -Offset;
14801     return std::make_pair(P->first, P->second + Offset);
14802   }
14803 
14804   // If the integer expression isn't a constant expression, compute the lower
14805   // bound of the alignment using the alignment and offset of the pointer
14806   // expression and the element size.
14807   return std::make_pair(
14808       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
14809       CharUnits::Zero());
14810 }
14811 
14812 /// This helper function takes an lvalue expression and returns the alignment of
14813 /// a VarDecl and a constant offset from the VarDecl.
14814 Optional<std::pair<CharUnits, CharUnits>>
14815 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14816   E = E->IgnoreParens();
14817   switch (E->getStmtClass()) {
14818   default:
14819     break;
14820   case Stmt::CStyleCastExprClass:
14821   case Stmt::CXXStaticCastExprClass:
14822   case Stmt::ImplicitCastExprClass: {
14823     auto *CE = cast<CastExpr>(E);
14824     const Expr *From = CE->getSubExpr();
14825     switch (CE->getCastKind()) {
14826     default:
14827       break;
14828     case CK_NoOp:
14829       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14830     case CK_UncheckedDerivedToBase:
14831     case CK_DerivedToBase: {
14832       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14833       if (!P)
14834         break;
14835       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14836                                                 P->second, Ctx);
14837     }
14838     }
14839     break;
14840   }
14841   case Stmt::ArraySubscriptExprClass: {
14842     auto *ASE = cast<ArraySubscriptExpr>(E);
14843     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14844                                                 false, Ctx);
14845   }
14846   case Stmt::DeclRefExprClass: {
14847     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14848       // FIXME: If VD is captured by copy or is an escaping __block variable,
14849       // use the alignment of VD's type.
14850       if (!VD->getType()->isReferenceType())
14851         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14852       if (VD->hasInit())
14853         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14854     }
14855     break;
14856   }
14857   case Stmt::MemberExprClass: {
14858     auto *ME = cast<MemberExpr>(E);
14859     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14860     if (!FD || FD->getType()->isReferenceType() ||
14861         FD->getParent()->isInvalidDecl())
14862       break;
14863     Optional<std::pair<CharUnits, CharUnits>> P;
14864     if (ME->isArrow())
14865       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14866     else
14867       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14868     if (!P)
14869       break;
14870     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14871     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14872     return std::make_pair(P->first,
14873                           P->second + CharUnits::fromQuantity(Offset));
14874   }
14875   case Stmt::UnaryOperatorClass: {
14876     auto *UO = cast<UnaryOperator>(E);
14877     switch (UO->getOpcode()) {
14878     default:
14879       break;
14880     case UO_Deref:
14881       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14882     }
14883     break;
14884   }
14885   case Stmt::BinaryOperatorClass: {
14886     auto *BO = cast<BinaryOperator>(E);
14887     auto Opcode = BO->getOpcode();
14888     switch (Opcode) {
14889     default:
14890       break;
14891     case BO_Comma:
14892       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14893     }
14894     break;
14895   }
14896   }
14897   return llvm::None;
14898 }
14899 
14900 /// This helper function takes a pointer expression and returns the alignment of
14901 /// a VarDecl and a constant offset from the VarDecl.
14902 Optional<std::pair<CharUnits, CharUnits>>
14903 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14904   E = E->IgnoreParens();
14905   switch (E->getStmtClass()) {
14906   default:
14907     break;
14908   case Stmt::CStyleCastExprClass:
14909   case Stmt::CXXStaticCastExprClass:
14910   case Stmt::ImplicitCastExprClass: {
14911     auto *CE = cast<CastExpr>(E);
14912     const Expr *From = CE->getSubExpr();
14913     switch (CE->getCastKind()) {
14914     default:
14915       break;
14916     case CK_NoOp:
14917       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14918     case CK_ArrayToPointerDecay:
14919       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14920     case CK_UncheckedDerivedToBase:
14921     case CK_DerivedToBase: {
14922       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14923       if (!P)
14924         break;
14925       return getDerivedToBaseAlignmentAndOffset(
14926           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14927     }
14928     }
14929     break;
14930   }
14931   case Stmt::CXXThisExprClass: {
14932     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14933     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14934     return std::make_pair(Alignment, CharUnits::Zero());
14935   }
14936   case Stmt::UnaryOperatorClass: {
14937     auto *UO = cast<UnaryOperator>(E);
14938     if (UO->getOpcode() == UO_AddrOf)
14939       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14940     break;
14941   }
14942   case Stmt::BinaryOperatorClass: {
14943     auto *BO = cast<BinaryOperator>(E);
14944     auto Opcode = BO->getOpcode();
14945     switch (Opcode) {
14946     default:
14947       break;
14948     case BO_Add:
14949     case BO_Sub: {
14950       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14951       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14952         std::swap(LHS, RHS);
14953       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14954                                                   Ctx);
14955     }
14956     case BO_Comma:
14957       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14958     }
14959     break;
14960   }
14961   }
14962   return llvm::None;
14963 }
14964 
14965 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14966   // See if we can compute the alignment of a VarDecl and an offset from it.
14967   Optional<std::pair<CharUnits, CharUnits>> P =
14968       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14969 
14970   if (P)
14971     return P->first.alignmentAtOffset(P->second);
14972 
14973   // If that failed, return the type's alignment.
14974   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14975 }
14976 
14977 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14978 /// pointer cast increases the alignment requirements.
14979 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14980   // This is actually a lot of work to potentially be doing on every
14981   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14982   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14983     return;
14984 
14985   // Ignore dependent types.
14986   if (T->isDependentType() || Op->getType()->isDependentType())
14987     return;
14988 
14989   // Require that the destination be a pointer type.
14990   const PointerType *DestPtr = T->getAs<PointerType>();
14991   if (!DestPtr) return;
14992 
14993   // If the destination has alignment 1, we're done.
14994   QualType DestPointee = DestPtr->getPointeeType();
14995   if (DestPointee->isIncompleteType()) return;
14996   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14997   if (DestAlign.isOne()) return;
14998 
14999   // Require that the source be a pointer type.
15000   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
15001   if (!SrcPtr) return;
15002   QualType SrcPointee = SrcPtr->getPointeeType();
15003 
15004   // Explicitly allow casts from cv void*.  We already implicitly
15005   // allowed casts to cv void*, since they have alignment 1.
15006   // Also allow casts involving incomplete types, which implicitly
15007   // includes 'void'.
15008   if (SrcPointee->isIncompleteType()) return;
15009 
15010   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
15011 
15012   if (SrcAlign >= DestAlign) return;
15013 
15014   Diag(TRange.getBegin(), diag::warn_cast_align)
15015     << Op->getType() << T
15016     << static_cast<unsigned>(SrcAlign.getQuantity())
15017     << static_cast<unsigned>(DestAlign.getQuantity())
15018     << TRange << Op->getSourceRange();
15019 }
15020 
15021 /// Check whether this array fits the idiom of a size-one tail padded
15022 /// array member of a struct.
15023 ///
15024 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
15025 /// commonly used to emulate flexible arrays in C89 code.
15026 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15027                                     const NamedDecl *ND) {
15028   if (Size != 1 || !ND) return false;
15029 
15030   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15031   if (!FD) return false;
15032 
15033   // Don't consider sizes resulting from macro expansions or template argument
15034   // substitution to form C89 tail-padded arrays.
15035 
15036   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15037   while (TInfo) {
15038     TypeLoc TL = TInfo->getTypeLoc();
15039     // Look through typedefs.
15040     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15041       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15042       TInfo = TDL->getTypeSourceInfo();
15043       continue;
15044     }
15045     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15046       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15047       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15048         return false;
15049     }
15050     break;
15051   }
15052 
15053   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15054   if (!RD) return false;
15055   if (RD->isUnion()) return false;
15056   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15057     if (!CRD->isStandardLayout()) return false;
15058   }
15059 
15060   // See if this is the last field decl in the record.
15061   const Decl *D = FD;
15062   while ((D = D->getNextDeclInContext()))
15063     if (isa<FieldDecl>(D))
15064       return false;
15065   return true;
15066 }
15067 
15068 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15069                             const ArraySubscriptExpr *ASE,
15070                             bool AllowOnePastEnd, bool IndexNegated) {
15071   // Already diagnosed by the constant evaluator.
15072   if (isConstantEvaluated())
15073     return;
15074 
15075   IndexExpr = IndexExpr->IgnoreParenImpCasts();
15076   if (IndexExpr->isValueDependent())
15077     return;
15078 
15079   const Type *EffectiveType =
15080       BaseExpr->getType()->getPointeeOrArrayElementType();
15081   BaseExpr = BaseExpr->IgnoreParenCasts();
15082   const ConstantArrayType *ArrayTy =
15083       Context.getAsConstantArrayType(BaseExpr->getType());
15084 
15085   const Type *BaseType =
15086       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15087   bool IsUnboundedArray = (BaseType == nullptr);
15088   if (EffectiveType->isDependentType() ||
15089       (!IsUnboundedArray && BaseType->isDependentType()))
15090     return;
15091 
15092   Expr::EvalResult Result;
15093   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15094     return;
15095 
15096   llvm::APSInt index = Result.Val.getInt();
15097   if (IndexNegated) {
15098     index.setIsUnsigned(false);
15099     index = -index;
15100   }
15101 
15102   const NamedDecl *ND = nullptr;
15103   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15104     ND = DRE->getDecl();
15105   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15106     ND = ME->getMemberDecl();
15107 
15108   if (IsUnboundedArray) {
15109     if (index.isUnsigned() || !index.isNegative()) {
15110       const auto &ASTC = getASTContext();
15111       unsigned AddrBits =
15112           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15113               EffectiveType->getCanonicalTypeInternal()));
15114       if (index.getBitWidth() < AddrBits)
15115         index = index.zext(AddrBits);
15116       Optional<CharUnits> ElemCharUnits =
15117           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15118       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15119       // pointer) bounds-checking isn't meaningful.
15120       if (!ElemCharUnits)
15121         return;
15122       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15123       // If index has more active bits than address space, we already know
15124       // we have a bounds violation to warn about.  Otherwise, compute
15125       // address of (index + 1)th element, and warn about bounds violation
15126       // only if that address exceeds address space.
15127       if (index.getActiveBits() <= AddrBits) {
15128         bool Overflow;
15129         llvm::APInt Product(index);
15130         Product += 1;
15131         Product = Product.umul_ov(ElemBytes, Overflow);
15132         if (!Overflow && Product.getActiveBits() <= AddrBits)
15133           return;
15134       }
15135 
15136       // Need to compute max possible elements in address space, since that
15137       // is included in diag message.
15138       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15139       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15140       MaxElems += 1;
15141       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15142       MaxElems = MaxElems.udiv(ElemBytes);
15143 
15144       unsigned DiagID =
15145           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15146               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15147 
15148       // Diag message shows element size in bits and in "bytes" (platform-
15149       // dependent CharUnits)
15150       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15151                           PDiag(DiagID)
15152                               << toString(index, 10, true) << AddrBits
15153                               << (unsigned)ASTC.toBits(*ElemCharUnits)
15154                               << toString(ElemBytes, 10, false)
15155                               << toString(MaxElems, 10, false)
15156                               << (unsigned)MaxElems.getLimitedValue(~0U)
15157                               << IndexExpr->getSourceRange());
15158 
15159       if (!ND) {
15160         // Try harder to find a NamedDecl to point at in the note.
15161         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15162           BaseExpr = ASE->getBase()->IgnoreParenCasts();
15163         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15164           ND = DRE->getDecl();
15165         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15166           ND = ME->getMemberDecl();
15167       }
15168 
15169       if (ND)
15170         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15171                             PDiag(diag::note_array_declared_here) << ND);
15172     }
15173     return;
15174   }
15175 
15176   if (index.isUnsigned() || !index.isNegative()) {
15177     // It is possible that the type of the base expression after
15178     // IgnoreParenCasts is incomplete, even though the type of the base
15179     // expression before IgnoreParenCasts is complete (see PR39746 for an
15180     // example). In this case we have no information about whether the array
15181     // access exceeds the array bounds. However we can still diagnose an array
15182     // access which precedes the array bounds.
15183     if (BaseType->isIncompleteType())
15184       return;
15185 
15186     llvm::APInt size = ArrayTy->getSize();
15187     if (!size.isStrictlyPositive())
15188       return;
15189 
15190     if (BaseType != EffectiveType) {
15191       // Make sure we're comparing apples to apples when comparing index to size
15192       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15193       uint64_t array_typesize = Context.getTypeSize(BaseType);
15194       // Handle ptrarith_typesize being zero, such as when casting to void*
15195       if (!ptrarith_typesize) ptrarith_typesize = 1;
15196       if (ptrarith_typesize != array_typesize) {
15197         // There's a cast to a different size type involved
15198         uint64_t ratio = array_typesize / ptrarith_typesize;
15199         // TODO: Be smarter about handling cases where array_typesize is not a
15200         // multiple of ptrarith_typesize
15201         if (ptrarith_typesize * ratio == array_typesize)
15202           size *= llvm::APInt(size.getBitWidth(), ratio);
15203       }
15204     }
15205 
15206     if (size.getBitWidth() > index.getBitWidth())
15207       index = index.zext(size.getBitWidth());
15208     else if (size.getBitWidth() < index.getBitWidth())
15209       size = size.zext(index.getBitWidth());
15210 
15211     // For array subscripting the index must be less than size, but for pointer
15212     // arithmetic also allow the index (offset) to be equal to size since
15213     // computing the next address after the end of the array is legal and
15214     // commonly done e.g. in C++ iterators and range-based for loops.
15215     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15216       return;
15217 
15218     // Also don't warn for arrays of size 1 which are members of some
15219     // structure. These are often used to approximate flexible arrays in C89
15220     // code.
15221     if (IsTailPaddedMemberArray(*this, size, ND))
15222       return;
15223 
15224     // Suppress the warning if the subscript expression (as identified by the
15225     // ']' location) and the index expression are both from macro expansions
15226     // within a system header.
15227     if (ASE) {
15228       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15229           ASE->getRBracketLoc());
15230       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15231         SourceLocation IndexLoc =
15232             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15233         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15234           return;
15235       }
15236     }
15237 
15238     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15239                           : diag::warn_ptr_arith_exceeds_bounds;
15240 
15241     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15242                         PDiag(DiagID) << toString(index, 10, true)
15243                                       << toString(size, 10, true)
15244                                       << (unsigned)size.getLimitedValue(~0U)
15245                                       << IndexExpr->getSourceRange());
15246   } else {
15247     unsigned DiagID = diag::warn_array_index_precedes_bounds;
15248     if (!ASE) {
15249       DiagID = diag::warn_ptr_arith_precedes_bounds;
15250       if (index.isNegative()) index = -index;
15251     }
15252 
15253     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15254                         PDiag(DiagID) << toString(index, 10, true)
15255                                       << IndexExpr->getSourceRange());
15256   }
15257 
15258   if (!ND) {
15259     // Try harder to find a NamedDecl to point at in the note.
15260     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15261       BaseExpr = ASE->getBase()->IgnoreParenCasts();
15262     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15263       ND = DRE->getDecl();
15264     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15265       ND = ME->getMemberDecl();
15266   }
15267 
15268   if (ND)
15269     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15270                         PDiag(diag::note_array_declared_here) << ND);
15271 }
15272 
15273 void Sema::CheckArrayAccess(const Expr *expr) {
15274   int AllowOnePastEnd = 0;
15275   while (expr) {
15276     expr = expr->IgnoreParenImpCasts();
15277     switch (expr->getStmtClass()) {
15278       case Stmt::ArraySubscriptExprClass: {
15279         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15280         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15281                          AllowOnePastEnd > 0);
15282         expr = ASE->getBase();
15283         break;
15284       }
15285       case Stmt::MemberExprClass: {
15286         expr = cast<MemberExpr>(expr)->getBase();
15287         break;
15288       }
15289       case Stmt::OMPArraySectionExprClass: {
15290         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15291         if (ASE->getLowerBound())
15292           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15293                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
15294         return;
15295       }
15296       case Stmt::UnaryOperatorClass: {
15297         // Only unwrap the * and & unary operators
15298         const UnaryOperator *UO = cast<UnaryOperator>(expr);
15299         expr = UO->getSubExpr();
15300         switch (UO->getOpcode()) {
15301           case UO_AddrOf:
15302             AllowOnePastEnd++;
15303             break;
15304           case UO_Deref:
15305             AllowOnePastEnd--;
15306             break;
15307           default:
15308             return;
15309         }
15310         break;
15311       }
15312       case Stmt::ConditionalOperatorClass: {
15313         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15314         if (const Expr *lhs = cond->getLHS())
15315           CheckArrayAccess(lhs);
15316         if (const Expr *rhs = cond->getRHS())
15317           CheckArrayAccess(rhs);
15318         return;
15319       }
15320       case Stmt::CXXOperatorCallExprClass: {
15321         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15322         for (const auto *Arg : OCE->arguments())
15323           CheckArrayAccess(Arg);
15324         return;
15325       }
15326       default:
15327         return;
15328     }
15329   }
15330 }
15331 
15332 //===--- CHECK: Objective-C retain cycles ----------------------------------//
15333 
15334 namespace {
15335 
15336 struct RetainCycleOwner {
15337   VarDecl *Variable = nullptr;
15338   SourceRange Range;
15339   SourceLocation Loc;
15340   bool Indirect = false;
15341 
15342   RetainCycleOwner() = default;
15343 
15344   void setLocsFrom(Expr *e) {
15345     Loc = e->getExprLoc();
15346     Range = e->getSourceRange();
15347   }
15348 };
15349 
15350 } // namespace
15351 
15352 /// Consider whether capturing the given variable can possibly lead to
15353 /// a retain cycle.
15354 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15355   // In ARC, it's captured strongly iff the variable has __strong
15356   // lifetime.  In MRR, it's captured strongly if the variable is
15357   // __block and has an appropriate type.
15358   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15359     return false;
15360 
15361   owner.Variable = var;
15362   if (ref)
15363     owner.setLocsFrom(ref);
15364   return true;
15365 }
15366 
15367 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15368   while (true) {
15369     e = e->IgnoreParens();
15370     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15371       switch (cast->getCastKind()) {
15372       case CK_BitCast:
15373       case CK_LValueBitCast:
15374       case CK_LValueToRValue:
15375       case CK_ARCReclaimReturnedObject:
15376         e = cast->getSubExpr();
15377         continue;
15378 
15379       default:
15380         return false;
15381       }
15382     }
15383 
15384     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15385       ObjCIvarDecl *ivar = ref->getDecl();
15386       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15387         return false;
15388 
15389       // Try to find a retain cycle in the base.
15390       if (!findRetainCycleOwner(S, ref->getBase(), owner))
15391         return false;
15392 
15393       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15394       owner.Indirect = true;
15395       return true;
15396     }
15397 
15398     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15399       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15400       if (!var) return false;
15401       return considerVariable(var, ref, owner);
15402     }
15403 
15404     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15405       if (member->isArrow()) return false;
15406 
15407       // Don't count this as an indirect ownership.
15408       e = member->getBase();
15409       continue;
15410     }
15411 
15412     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15413       // Only pay attention to pseudo-objects on property references.
15414       ObjCPropertyRefExpr *pre
15415         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15416                                               ->IgnoreParens());
15417       if (!pre) return false;
15418       if (pre->isImplicitProperty()) return false;
15419       ObjCPropertyDecl *property = pre->getExplicitProperty();
15420       if (!property->isRetaining() &&
15421           !(property->getPropertyIvarDecl() &&
15422             property->getPropertyIvarDecl()->getType()
15423               .getObjCLifetime() == Qualifiers::OCL_Strong))
15424           return false;
15425 
15426       owner.Indirect = true;
15427       if (pre->isSuperReceiver()) {
15428         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15429         if (!owner.Variable)
15430           return false;
15431         owner.Loc = pre->getLocation();
15432         owner.Range = pre->getSourceRange();
15433         return true;
15434       }
15435       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15436                               ->getSourceExpr());
15437       continue;
15438     }
15439 
15440     // Array ivars?
15441 
15442     return false;
15443   }
15444 }
15445 
15446 namespace {
15447 
15448   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15449     ASTContext &Context;
15450     VarDecl *Variable;
15451     Expr *Capturer = nullptr;
15452     bool VarWillBeReased = false;
15453 
15454     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15455         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15456           Context(Context), Variable(variable) {}
15457 
15458     void VisitDeclRefExpr(DeclRefExpr *ref) {
15459       if (ref->getDecl() == Variable && !Capturer)
15460         Capturer = ref;
15461     }
15462 
15463     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15464       if (Capturer) return;
15465       Visit(ref->getBase());
15466       if (Capturer && ref->isFreeIvar())
15467         Capturer = ref;
15468     }
15469 
15470     void VisitBlockExpr(BlockExpr *block) {
15471       // Look inside nested blocks
15472       if (block->getBlockDecl()->capturesVariable(Variable))
15473         Visit(block->getBlockDecl()->getBody());
15474     }
15475 
15476     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15477       if (Capturer) return;
15478       if (OVE->getSourceExpr())
15479         Visit(OVE->getSourceExpr());
15480     }
15481 
15482     void VisitBinaryOperator(BinaryOperator *BinOp) {
15483       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15484         return;
15485       Expr *LHS = BinOp->getLHS();
15486       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15487         if (DRE->getDecl() != Variable)
15488           return;
15489         if (Expr *RHS = BinOp->getRHS()) {
15490           RHS = RHS->IgnoreParenCasts();
15491           Optional<llvm::APSInt> Value;
15492           VarWillBeReased =
15493               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15494                *Value == 0);
15495         }
15496       }
15497     }
15498   };
15499 
15500 } // namespace
15501 
15502 /// Check whether the given argument is a block which captures a
15503 /// variable.
15504 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15505   assert(owner.Variable && owner.Loc.isValid());
15506 
15507   e = e->IgnoreParenCasts();
15508 
15509   // Look through [^{...} copy] and Block_copy(^{...}).
15510   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15511     Selector Cmd = ME->getSelector();
15512     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15513       e = ME->getInstanceReceiver();
15514       if (!e)
15515         return nullptr;
15516       e = e->IgnoreParenCasts();
15517     }
15518   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15519     if (CE->getNumArgs() == 1) {
15520       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15521       if (Fn) {
15522         const IdentifierInfo *FnI = Fn->getIdentifier();
15523         if (FnI && FnI->isStr("_Block_copy")) {
15524           e = CE->getArg(0)->IgnoreParenCasts();
15525         }
15526       }
15527     }
15528   }
15529 
15530   BlockExpr *block = dyn_cast<BlockExpr>(e);
15531   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15532     return nullptr;
15533 
15534   FindCaptureVisitor visitor(S.Context, owner.Variable);
15535   visitor.Visit(block->getBlockDecl()->getBody());
15536   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15537 }
15538 
15539 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15540                                 RetainCycleOwner &owner) {
15541   assert(capturer);
15542   assert(owner.Variable && owner.Loc.isValid());
15543 
15544   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15545     << owner.Variable << capturer->getSourceRange();
15546   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15547     << owner.Indirect << owner.Range;
15548 }
15549 
15550 /// Check for a keyword selector that starts with the word 'add' or
15551 /// 'set'.
15552 static bool isSetterLikeSelector(Selector sel) {
15553   if (sel.isUnarySelector()) return false;
15554 
15555   StringRef str = sel.getNameForSlot(0);
15556   while (!str.empty() && str.front() == '_') str = str.substr(1);
15557   if (str.startswith("set"))
15558     str = str.substr(3);
15559   else if (str.startswith("add")) {
15560     // Specially allow 'addOperationWithBlock:'.
15561     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15562       return false;
15563     str = str.substr(3);
15564   }
15565   else
15566     return false;
15567 
15568   if (str.empty()) return true;
15569   return !isLowercase(str.front());
15570 }
15571 
15572 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15573                                                     ObjCMessageExpr *Message) {
15574   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15575                                                 Message->getReceiverInterface(),
15576                                                 NSAPI::ClassId_NSMutableArray);
15577   if (!IsMutableArray) {
15578     return None;
15579   }
15580 
15581   Selector Sel = Message->getSelector();
15582 
15583   Optional<NSAPI::NSArrayMethodKind> MKOpt =
15584     S.NSAPIObj->getNSArrayMethodKind(Sel);
15585   if (!MKOpt) {
15586     return None;
15587   }
15588 
15589   NSAPI::NSArrayMethodKind MK = *MKOpt;
15590 
15591   switch (MK) {
15592     case NSAPI::NSMutableArr_addObject:
15593     case NSAPI::NSMutableArr_insertObjectAtIndex:
15594     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15595       return 0;
15596     case NSAPI::NSMutableArr_replaceObjectAtIndex:
15597       return 1;
15598 
15599     default:
15600       return None;
15601   }
15602 
15603   return None;
15604 }
15605 
15606 static
15607 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15608                                                   ObjCMessageExpr *Message) {
15609   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15610                                             Message->getReceiverInterface(),
15611                                             NSAPI::ClassId_NSMutableDictionary);
15612   if (!IsMutableDictionary) {
15613     return None;
15614   }
15615 
15616   Selector Sel = Message->getSelector();
15617 
15618   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15619     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15620   if (!MKOpt) {
15621     return None;
15622   }
15623 
15624   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15625 
15626   switch (MK) {
15627     case NSAPI::NSMutableDict_setObjectForKey:
15628     case NSAPI::NSMutableDict_setValueForKey:
15629     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15630       return 0;
15631 
15632     default:
15633       return None;
15634   }
15635 
15636   return None;
15637 }
15638 
15639 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15640   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15641                                                 Message->getReceiverInterface(),
15642                                                 NSAPI::ClassId_NSMutableSet);
15643 
15644   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15645                                             Message->getReceiverInterface(),
15646                                             NSAPI::ClassId_NSMutableOrderedSet);
15647   if (!IsMutableSet && !IsMutableOrderedSet) {
15648     return None;
15649   }
15650 
15651   Selector Sel = Message->getSelector();
15652 
15653   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15654   if (!MKOpt) {
15655     return None;
15656   }
15657 
15658   NSAPI::NSSetMethodKind MK = *MKOpt;
15659 
15660   switch (MK) {
15661     case NSAPI::NSMutableSet_addObject:
15662     case NSAPI::NSOrderedSet_setObjectAtIndex:
15663     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15664     case NSAPI::NSOrderedSet_insertObjectAtIndex:
15665       return 0;
15666     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15667       return 1;
15668   }
15669 
15670   return None;
15671 }
15672 
15673 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15674   if (!Message->isInstanceMessage()) {
15675     return;
15676   }
15677 
15678   Optional<int> ArgOpt;
15679 
15680   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15681       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15682       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15683     return;
15684   }
15685 
15686   int ArgIndex = *ArgOpt;
15687 
15688   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15689   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15690     Arg = OE->getSourceExpr()->IgnoreImpCasts();
15691   }
15692 
15693   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15694     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15695       if (ArgRE->isObjCSelfExpr()) {
15696         Diag(Message->getSourceRange().getBegin(),
15697              diag::warn_objc_circular_container)
15698           << ArgRE->getDecl() << StringRef("'super'");
15699       }
15700     }
15701   } else {
15702     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15703 
15704     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15705       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15706     }
15707 
15708     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15709       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15710         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15711           ValueDecl *Decl = ReceiverRE->getDecl();
15712           Diag(Message->getSourceRange().getBegin(),
15713                diag::warn_objc_circular_container)
15714             << Decl << Decl;
15715           if (!ArgRE->isObjCSelfExpr()) {
15716             Diag(Decl->getLocation(),
15717                  diag::note_objc_circular_container_declared_here)
15718               << Decl;
15719           }
15720         }
15721       }
15722     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15723       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15724         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15725           ObjCIvarDecl *Decl = IvarRE->getDecl();
15726           Diag(Message->getSourceRange().getBegin(),
15727                diag::warn_objc_circular_container)
15728             << Decl << Decl;
15729           Diag(Decl->getLocation(),
15730                diag::note_objc_circular_container_declared_here)
15731             << Decl;
15732         }
15733       }
15734     }
15735   }
15736 }
15737 
15738 /// Check a message send to see if it's likely to cause a retain cycle.
15739 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15740   // Only check instance methods whose selector looks like a setter.
15741   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15742     return;
15743 
15744   // Try to find a variable that the receiver is strongly owned by.
15745   RetainCycleOwner owner;
15746   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15747     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15748       return;
15749   } else {
15750     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
15751     owner.Variable = getCurMethodDecl()->getSelfDecl();
15752     owner.Loc = msg->getSuperLoc();
15753     owner.Range = msg->getSuperLoc();
15754   }
15755 
15756   // Check whether the receiver is captured by any of the arguments.
15757   const ObjCMethodDecl *MD = msg->getMethodDecl();
15758   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15759     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15760       // noescape blocks should not be retained by the method.
15761       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15762         continue;
15763       return diagnoseRetainCycle(*this, capturer, owner);
15764     }
15765   }
15766 }
15767 
15768 /// Check a property assign to see if it's likely to cause a retain cycle.
15769 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15770   RetainCycleOwner owner;
15771   if (!findRetainCycleOwner(*this, receiver, owner))
15772     return;
15773 
15774   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15775     diagnoseRetainCycle(*this, capturer, owner);
15776 }
15777 
15778 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15779   RetainCycleOwner Owner;
15780   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15781     return;
15782 
15783   // Because we don't have an expression for the variable, we have to set the
15784   // location explicitly here.
15785   Owner.Loc = Var->getLocation();
15786   Owner.Range = Var->getSourceRange();
15787 
15788   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
15789     diagnoseRetainCycle(*this, Capturer, Owner);
15790 }
15791 
15792 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
15793                                      Expr *RHS, bool isProperty) {
15794   // Check if RHS is an Objective-C object literal, which also can get
15795   // immediately zapped in a weak reference.  Note that we explicitly
15796   // allow ObjCStringLiterals, since those are designed to never really die.
15797   RHS = RHS->IgnoreParenImpCasts();
15798 
15799   // This enum needs to match with the 'select' in
15800   // warn_objc_arc_literal_assign (off-by-1).
15801   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
15802   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
15803     return false;
15804 
15805   S.Diag(Loc, diag::warn_arc_literal_assign)
15806     << (unsigned) Kind
15807     << (isProperty ? 0 : 1)
15808     << RHS->getSourceRange();
15809 
15810   return true;
15811 }
15812 
15813 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
15814                                     Qualifiers::ObjCLifetime LT,
15815                                     Expr *RHS, bool isProperty) {
15816   // Strip off any implicit cast added to get to the one ARC-specific.
15817   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15818     if (cast->getCastKind() == CK_ARCConsumeObject) {
15819       S.Diag(Loc, diag::warn_arc_retained_assign)
15820         << (LT == Qualifiers::OCL_ExplicitNone)
15821         << (isProperty ? 0 : 1)
15822         << RHS->getSourceRange();
15823       return true;
15824     }
15825     RHS = cast->getSubExpr();
15826   }
15827 
15828   if (LT == Qualifiers::OCL_Weak &&
15829       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
15830     return true;
15831 
15832   return false;
15833 }
15834 
15835 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
15836                               QualType LHS, Expr *RHS) {
15837   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
15838 
15839   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
15840     return false;
15841 
15842   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
15843     return true;
15844 
15845   return false;
15846 }
15847 
15848 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
15849                               Expr *LHS, Expr *RHS) {
15850   QualType LHSType;
15851   // PropertyRef on LHS type need be directly obtained from
15852   // its declaration as it has a PseudoType.
15853   ObjCPropertyRefExpr *PRE
15854     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
15855   if (PRE && !PRE->isImplicitProperty()) {
15856     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15857     if (PD)
15858       LHSType = PD->getType();
15859   }
15860 
15861   if (LHSType.isNull())
15862     LHSType = LHS->getType();
15863 
15864   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
15865 
15866   if (LT == Qualifiers::OCL_Weak) {
15867     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
15868       getCurFunction()->markSafeWeakUse(LHS);
15869   }
15870 
15871   if (checkUnsafeAssigns(Loc, LHSType, RHS))
15872     return;
15873 
15874   // FIXME. Check for other life times.
15875   if (LT != Qualifiers::OCL_None)
15876     return;
15877 
15878   if (PRE) {
15879     if (PRE->isImplicitProperty())
15880       return;
15881     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15882     if (!PD)
15883       return;
15884 
15885     unsigned Attributes = PD->getPropertyAttributes();
15886     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15887       // when 'assign' attribute was not explicitly specified
15888       // by user, ignore it and rely on property type itself
15889       // for lifetime info.
15890       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15891       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15892           LHSType->isObjCRetainableType())
15893         return;
15894 
15895       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15896         if (cast->getCastKind() == CK_ARCConsumeObject) {
15897           Diag(Loc, diag::warn_arc_retained_property_assign)
15898           << RHS->getSourceRange();
15899           return;
15900         }
15901         RHS = cast->getSubExpr();
15902       }
15903     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15904       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15905         return;
15906     }
15907   }
15908 }
15909 
15910 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15911 
15912 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15913                                         SourceLocation StmtLoc,
15914                                         const NullStmt *Body) {
15915   // Do not warn if the body is a macro that expands to nothing, e.g:
15916   //
15917   // #define CALL(x)
15918   // if (condition)
15919   //   CALL(0);
15920   if (Body->hasLeadingEmptyMacro())
15921     return false;
15922 
15923   // Get line numbers of statement and body.
15924   bool StmtLineInvalid;
15925   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15926                                                       &StmtLineInvalid);
15927   if (StmtLineInvalid)
15928     return false;
15929 
15930   bool BodyLineInvalid;
15931   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15932                                                       &BodyLineInvalid);
15933   if (BodyLineInvalid)
15934     return false;
15935 
15936   // Warn if null statement and body are on the same line.
15937   if (StmtLine != BodyLine)
15938     return false;
15939 
15940   return true;
15941 }
15942 
15943 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15944                                  const Stmt *Body,
15945                                  unsigned DiagID) {
15946   // Since this is a syntactic check, don't emit diagnostic for template
15947   // instantiations, this just adds noise.
15948   if (CurrentInstantiationScope)
15949     return;
15950 
15951   // The body should be a null statement.
15952   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15953   if (!NBody)
15954     return;
15955 
15956   // Do the usual checks.
15957   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15958     return;
15959 
15960   Diag(NBody->getSemiLoc(), DiagID);
15961   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15962 }
15963 
15964 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15965                                  const Stmt *PossibleBody) {
15966   assert(!CurrentInstantiationScope); // Ensured by caller
15967 
15968   SourceLocation StmtLoc;
15969   const Stmt *Body;
15970   unsigned DiagID;
15971   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15972     StmtLoc = FS->getRParenLoc();
15973     Body = FS->getBody();
15974     DiagID = diag::warn_empty_for_body;
15975   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15976     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15977     Body = WS->getBody();
15978     DiagID = diag::warn_empty_while_body;
15979   } else
15980     return; // Neither `for' nor `while'.
15981 
15982   // The body should be a null statement.
15983   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15984   if (!NBody)
15985     return;
15986 
15987   // Skip expensive checks if diagnostic is disabled.
15988   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15989     return;
15990 
15991   // Do the usual checks.
15992   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15993     return;
15994 
15995   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15996   // noise level low, emit diagnostics only if for/while is followed by a
15997   // CompoundStmt, e.g.:
15998   //    for (int i = 0; i < n; i++);
15999   //    {
16000   //      a(i);
16001   //    }
16002   // or if for/while is followed by a statement with more indentation
16003   // than for/while itself:
16004   //    for (int i = 0; i < n; i++);
16005   //      a(i);
16006   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
16007   if (!ProbableTypo) {
16008     bool BodyColInvalid;
16009     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
16010         PossibleBody->getBeginLoc(), &BodyColInvalid);
16011     if (BodyColInvalid)
16012       return;
16013 
16014     bool StmtColInvalid;
16015     unsigned StmtCol =
16016         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
16017     if (StmtColInvalid)
16018       return;
16019 
16020     if (BodyCol > StmtCol)
16021       ProbableTypo = true;
16022   }
16023 
16024   if (ProbableTypo) {
16025     Diag(NBody->getSemiLoc(), DiagID);
16026     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16027   }
16028 }
16029 
16030 //===--- CHECK: Warn on self move with std::move. -------------------------===//
16031 
16032 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
16033 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16034                              SourceLocation OpLoc) {
16035   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16036     return;
16037 
16038   if (inTemplateInstantiation())
16039     return;
16040 
16041   // Strip parens and casts away.
16042   LHSExpr = LHSExpr->IgnoreParenImpCasts();
16043   RHSExpr = RHSExpr->IgnoreParenImpCasts();
16044 
16045   // Check for a call expression
16046   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16047   if (!CE || CE->getNumArgs() != 1)
16048     return;
16049 
16050   // Check for a call to std::move
16051   if (!CE->isCallToStdMove())
16052     return;
16053 
16054   // Get argument from std::move
16055   RHSExpr = CE->getArg(0);
16056 
16057   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16058   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16059 
16060   // Two DeclRefExpr's, check that the decls are the same.
16061   if (LHSDeclRef && RHSDeclRef) {
16062     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16063       return;
16064     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16065         RHSDeclRef->getDecl()->getCanonicalDecl())
16066       return;
16067 
16068     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16069                                         << LHSExpr->getSourceRange()
16070                                         << RHSExpr->getSourceRange();
16071     return;
16072   }
16073 
16074   // Member variables require a different approach to check for self moves.
16075   // MemberExpr's are the same if every nested MemberExpr refers to the same
16076   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16077   // the base Expr's are CXXThisExpr's.
16078   const Expr *LHSBase = LHSExpr;
16079   const Expr *RHSBase = RHSExpr;
16080   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16081   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16082   if (!LHSME || !RHSME)
16083     return;
16084 
16085   while (LHSME && RHSME) {
16086     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16087         RHSME->getMemberDecl()->getCanonicalDecl())
16088       return;
16089 
16090     LHSBase = LHSME->getBase();
16091     RHSBase = RHSME->getBase();
16092     LHSME = dyn_cast<MemberExpr>(LHSBase);
16093     RHSME = dyn_cast<MemberExpr>(RHSBase);
16094   }
16095 
16096   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16097   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16098   if (LHSDeclRef && RHSDeclRef) {
16099     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16100       return;
16101     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16102         RHSDeclRef->getDecl()->getCanonicalDecl())
16103       return;
16104 
16105     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16106                                         << LHSExpr->getSourceRange()
16107                                         << RHSExpr->getSourceRange();
16108     return;
16109   }
16110 
16111   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16112     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16113                                         << LHSExpr->getSourceRange()
16114                                         << RHSExpr->getSourceRange();
16115 }
16116 
16117 //===--- Layout compatibility ----------------------------------------------//
16118 
16119 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16120 
16121 /// Check if two enumeration types are layout-compatible.
16122 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16123   // C++11 [dcl.enum] p8:
16124   // Two enumeration types are layout-compatible if they have the same
16125   // underlying type.
16126   return ED1->isComplete() && ED2->isComplete() &&
16127          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16128 }
16129 
16130 /// Check if two fields are layout-compatible.
16131 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16132                                FieldDecl *Field2) {
16133   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16134     return false;
16135 
16136   if (Field1->isBitField() != Field2->isBitField())
16137     return false;
16138 
16139   if (Field1->isBitField()) {
16140     // Make sure that the bit-fields are the same length.
16141     unsigned Bits1 = Field1->getBitWidthValue(C);
16142     unsigned Bits2 = Field2->getBitWidthValue(C);
16143 
16144     if (Bits1 != Bits2)
16145       return false;
16146   }
16147 
16148   return true;
16149 }
16150 
16151 /// Check if two standard-layout structs are layout-compatible.
16152 /// (C++11 [class.mem] p17)
16153 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16154                                      RecordDecl *RD2) {
16155   // If both records are C++ classes, check that base classes match.
16156   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16157     // If one of records is a CXXRecordDecl we are in C++ mode,
16158     // thus the other one is a CXXRecordDecl, too.
16159     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16160     // Check number of base classes.
16161     if (D1CXX->getNumBases() != D2CXX->getNumBases())
16162       return false;
16163 
16164     // Check the base classes.
16165     for (CXXRecordDecl::base_class_const_iterator
16166                Base1 = D1CXX->bases_begin(),
16167            BaseEnd1 = D1CXX->bases_end(),
16168               Base2 = D2CXX->bases_begin();
16169          Base1 != BaseEnd1;
16170          ++Base1, ++Base2) {
16171       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16172         return false;
16173     }
16174   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16175     // If only RD2 is a C++ class, it should have zero base classes.
16176     if (D2CXX->getNumBases() > 0)
16177       return false;
16178   }
16179 
16180   // Check the fields.
16181   RecordDecl::field_iterator Field2 = RD2->field_begin(),
16182                              Field2End = RD2->field_end(),
16183                              Field1 = RD1->field_begin(),
16184                              Field1End = RD1->field_end();
16185   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16186     if (!isLayoutCompatible(C, *Field1, *Field2))
16187       return false;
16188   }
16189   if (Field1 != Field1End || Field2 != Field2End)
16190     return false;
16191 
16192   return true;
16193 }
16194 
16195 /// Check if two standard-layout unions are layout-compatible.
16196 /// (C++11 [class.mem] p18)
16197 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16198                                     RecordDecl *RD2) {
16199   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16200   for (auto *Field2 : RD2->fields())
16201     UnmatchedFields.insert(Field2);
16202 
16203   for (auto *Field1 : RD1->fields()) {
16204     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16205         I = UnmatchedFields.begin(),
16206         E = UnmatchedFields.end();
16207 
16208     for ( ; I != E; ++I) {
16209       if (isLayoutCompatible(C, Field1, *I)) {
16210         bool Result = UnmatchedFields.erase(*I);
16211         (void) Result;
16212         assert(Result);
16213         break;
16214       }
16215     }
16216     if (I == E)
16217       return false;
16218   }
16219 
16220   return UnmatchedFields.empty();
16221 }
16222 
16223 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16224                                RecordDecl *RD2) {
16225   if (RD1->isUnion() != RD2->isUnion())
16226     return false;
16227 
16228   if (RD1->isUnion())
16229     return isLayoutCompatibleUnion(C, RD1, RD2);
16230   else
16231     return isLayoutCompatibleStruct(C, RD1, RD2);
16232 }
16233 
16234 /// Check if two types are layout-compatible in C++11 sense.
16235 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16236   if (T1.isNull() || T2.isNull())
16237     return false;
16238 
16239   // C++11 [basic.types] p11:
16240   // If two types T1 and T2 are the same type, then T1 and T2 are
16241   // layout-compatible types.
16242   if (C.hasSameType(T1, T2))
16243     return true;
16244 
16245   T1 = T1.getCanonicalType().getUnqualifiedType();
16246   T2 = T2.getCanonicalType().getUnqualifiedType();
16247 
16248   const Type::TypeClass TC1 = T1->getTypeClass();
16249   const Type::TypeClass TC2 = T2->getTypeClass();
16250 
16251   if (TC1 != TC2)
16252     return false;
16253 
16254   if (TC1 == Type::Enum) {
16255     return isLayoutCompatible(C,
16256                               cast<EnumType>(T1)->getDecl(),
16257                               cast<EnumType>(T2)->getDecl());
16258   } else if (TC1 == Type::Record) {
16259     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16260       return false;
16261 
16262     return isLayoutCompatible(C,
16263                               cast<RecordType>(T1)->getDecl(),
16264                               cast<RecordType>(T2)->getDecl());
16265   }
16266 
16267   return false;
16268 }
16269 
16270 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16271 
16272 /// Given a type tag expression find the type tag itself.
16273 ///
16274 /// \param TypeExpr Type tag expression, as it appears in user's code.
16275 ///
16276 /// \param VD Declaration of an identifier that appears in a type tag.
16277 ///
16278 /// \param MagicValue Type tag magic value.
16279 ///
16280 /// \param isConstantEvaluated whether the evalaution should be performed in
16281 
16282 /// constant context.
16283 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16284                             const ValueDecl **VD, uint64_t *MagicValue,
16285                             bool isConstantEvaluated) {
16286   while(true) {
16287     if (!TypeExpr)
16288       return false;
16289 
16290     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16291 
16292     switch (TypeExpr->getStmtClass()) {
16293     case Stmt::UnaryOperatorClass: {
16294       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16295       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16296         TypeExpr = UO->getSubExpr();
16297         continue;
16298       }
16299       return false;
16300     }
16301 
16302     case Stmt::DeclRefExprClass: {
16303       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16304       *VD = DRE->getDecl();
16305       return true;
16306     }
16307 
16308     case Stmt::IntegerLiteralClass: {
16309       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16310       llvm::APInt MagicValueAPInt = IL->getValue();
16311       if (MagicValueAPInt.getActiveBits() <= 64) {
16312         *MagicValue = MagicValueAPInt.getZExtValue();
16313         return true;
16314       } else
16315         return false;
16316     }
16317 
16318     case Stmt::BinaryConditionalOperatorClass:
16319     case Stmt::ConditionalOperatorClass: {
16320       const AbstractConditionalOperator *ACO =
16321           cast<AbstractConditionalOperator>(TypeExpr);
16322       bool Result;
16323       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16324                                                      isConstantEvaluated)) {
16325         if (Result)
16326           TypeExpr = ACO->getTrueExpr();
16327         else
16328           TypeExpr = ACO->getFalseExpr();
16329         continue;
16330       }
16331       return false;
16332     }
16333 
16334     case Stmt::BinaryOperatorClass: {
16335       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16336       if (BO->getOpcode() == BO_Comma) {
16337         TypeExpr = BO->getRHS();
16338         continue;
16339       }
16340       return false;
16341     }
16342 
16343     default:
16344       return false;
16345     }
16346   }
16347 }
16348 
16349 /// Retrieve the C type corresponding to type tag TypeExpr.
16350 ///
16351 /// \param TypeExpr Expression that specifies a type tag.
16352 ///
16353 /// \param MagicValues Registered magic values.
16354 ///
16355 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16356 ///        kind.
16357 ///
16358 /// \param TypeInfo Information about the corresponding C type.
16359 ///
16360 /// \param isConstantEvaluated whether the evalaution should be performed in
16361 /// constant context.
16362 ///
16363 /// \returns true if the corresponding C type was found.
16364 static bool GetMatchingCType(
16365     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16366     const ASTContext &Ctx,
16367     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16368         *MagicValues,
16369     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16370     bool isConstantEvaluated) {
16371   FoundWrongKind = false;
16372 
16373   // Variable declaration that has type_tag_for_datatype attribute.
16374   const ValueDecl *VD = nullptr;
16375 
16376   uint64_t MagicValue;
16377 
16378   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16379     return false;
16380 
16381   if (VD) {
16382     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16383       if (I->getArgumentKind() != ArgumentKind) {
16384         FoundWrongKind = true;
16385         return false;
16386       }
16387       TypeInfo.Type = I->getMatchingCType();
16388       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16389       TypeInfo.MustBeNull = I->getMustBeNull();
16390       return true;
16391     }
16392     return false;
16393   }
16394 
16395   if (!MagicValues)
16396     return false;
16397 
16398   llvm::DenseMap<Sema::TypeTagMagicValue,
16399                  Sema::TypeTagData>::const_iterator I =
16400       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16401   if (I == MagicValues->end())
16402     return false;
16403 
16404   TypeInfo = I->second;
16405   return true;
16406 }
16407 
16408 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16409                                       uint64_t MagicValue, QualType Type,
16410                                       bool LayoutCompatible,
16411                                       bool MustBeNull) {
16412   if (!TypeTagForDatatypeMagicValues)
16413     TypeTagForDatatypeMagicValues.reset(
16414         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16415 
16416   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16417   (*TypeTagForDatatypeMagicValues)[Magic] =
16418       TypeTagData(Type, LayoutCompatible, MustBeNull);
16419 }
16420 
16421 static bool IsSameCharType(QualType T1, QualType T2) {
16422   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16423   if (!BT1)
16424     return false;
16425 
16426   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16427   if (!BT2)
16428     return false;
16429 
16430   BuiltinType::Kind T1Kind = BT1->getKind();
16431   BuiltinType::Kind T2Kind = BT2->getKind();
16432 
16433   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
16434          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
16435          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16436          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16437 }
16438 
16439 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16440                                     const ArrayRef<const Expr *> ExprArgs,
16441                                     SourceLocation CallSiteLoc) {
16442   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16443   bool IsPointerAttr = Attr->getIsPointer();
16444 
16445   // Retrieve the argument representing the 'type_tag'.
16446   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16447   if (TypeTagIdxAST >= ExprArgs.size()) {
16448     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16449         << 0 << Attr->getTypeTagIdx().getSourceIndex();
16450     return;
16451   }
16452   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16453   bool FoundWrongKind;
16454   TypeTagData TypeInfo;
16455   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16456                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16457                         TypeInfo, isConstantEvaluated())) {
16458     if (FoundWrongKind)
16459       Diag(TypeTagExpr->getExprLoc(),
16460            diag::warn_type_tag_for_datatype_wrong_kind)
16461         << TypeTagExpr->getSourceRange();
16462     return;
16463   }
16464 
16465   // Retrieve the argument representing the 'arg_idx'.
16466   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16467   if (ArgumentIdxAST >= ExprArgs.size()) {
16468     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16469         << 1 << Attr->getArgumentIdx().getSourceIndex();
16470     return;
16471   }
16472   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16473   if (IsPointerAttr) {
16474     // Skip implicit cast of pointer to `void *' (as a function argument).
16475     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16476       if (ICE->getType()->isVoidPointerType() &&
16477           ICE->getCastKind() == CK_BitCast)
16478         ArgumentExpr = ICE->getSubExpr();
16479   }
16480   QualType ArgumentType = ArgumentExpr->getType();
16481 
16482   // Passing a `void*' pointer shouldn't trigger a warning.
16483   if (IsPointerAttr && ArgumentType->isVoidPointerType())
16484     return;
16485 
16486   if (TypeInfo.MustBeNull) {
16487     // Type tag with matching void type requires a null pointer.
16488     if (!ArgumentExpr->isNullPointerConstant(Context,
16489                                              Expr::NPC_ValueDependentIsNotNull)) {
16490       Diag(ArgumentExpr->getExprLoc(),
16491            diag::warn_type_safety_null_pointer_required)
16492           << ArgumentKind->getName()
16493           << ArgumentExpr->getSourceRange()
16494           << TypeTagExpr->getSourceRange();
16495     }
16496     return;
16497   }
16498 
16499   QualType RequiredType = TypeInfo.Type;
16500   if (IsPointerAttr)
16501     RequiredType = Context.getPointerType(RequiredType);
16502 
16503   bool mismatch = false;
16504   if (!TypeInfo.LayoutCompatible) {
16505     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16506 
16507     // C++11 [basic.fundamental] p1:
16508     // Plain char, signed char, and unsigned char are three distinct types.
16509     //
16510     // But we treat plain `char' as equivalent to `signed char' or `unsigned
16511     // char' depending on the current char signedness mode.
16512     if (mismatch)
16513       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16514                                            RequiredType->getPointeeType())) ||
16515           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16516         mismatch = false;
16517   } else
16518     if (IsPointerAttr)
16519       mismatch = !isLayoutCompatible(Context,
16520                                      ArgumentType->getPointeeType(),
16521                                      RequiredType->getPointeeType());
16522     else
16523       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16524 
16525   if (mismatch)
16526     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16527         << ArgumentType << ArgumentKind
16528         << TypeInfo.LayoutCompatible << RequiredType
16529         << ArgumentExpr->getSourceRange()
16530         << TypeTagExpr->getSourceRange();
16531 }
16532 
16533 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16534                                          CharUnits Alignment) {
16535   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16536 }
16537 
16538 void Sema::DiagnoseMisalignedMembers() {
16539   for (MisalignedMember &m : MisalignedMembers) {
16540     const NamedDecl *ND = m.RD;
16541     if (ND->getName().empty()) {
16542       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16543         ND = TD;
16544     }
16545     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16546         << m.MD << ND << m.E->getSourceRange();
16547   }
16548   MisalignedMembers.clear();
16549 }
16550 
16551 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16552   E = E->IgnoreParens();
16553   if (!T->isPointerType() && !T->isIntegerType())
16554     return;
16555   if (isa<UnaryOperator>(E) &&
16556       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16557     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16558     if (isa<MemberExpr>(Op)) {
16559       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16560       if (MA != MisalignedMembers.end() &&
16561           (T->isIntegerType() ||
16562            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16563                                    Context.getTypeAlignInChars(
16564                                        T->getPointeeType()) <= MA->Alignment))))
16565         MisalignedMembers.erase(MA);
16566     }
16567   }
16568 }
16569 
16570 void Sema::RefersToMemberWithReducedAlignment(
16571     Expr *E,
16572     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16573         Action) {
16574   const auto *ME = dyn_cast<MemberExpr>(E);
16575   if (!ME)
16576     return;
16577 
16578   // No need to check expressions with an __unaligned-qualified type.
16579   if (E->getType().getQualifiers().hasUnaligned())
16580     return;
16581 
16582   // For a chain of MemberExpr like "a.b.c.d" this list
16583   // will keep FieldDecl's like [d, c, b].
16584   SmallVector<FieldDecl *, 4> ReverseMemberChain;
16585   const MemberExpr *TopME = nullptr;
16586   bool AnyIsPacked = false;
16587   do {
16588     QualType BaseType = ME->getBase()->getType();
16589     if (BaseType->isDependentType())
16590       return;
16591     if (ME->isArrow())
16592       BaseType = BaseType->getPointeeType();
16593     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16594     if (RD->isInvalidDecl())
16595       return;
16596 
16597     ValueDecl *MD = ME->getMemberDecl();
16598     auto *FD = dyn_cast<FieldDecl>(MD);
16599     // We do not care about non-data members.
16600     if (!FD || FD->isInvalidDecl())
16601       return;
16602 
16603     AnyIsPacked =
16604         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16605     ReverseMemberChain.push_back(FD);
16606 
16607     TopME = ME;
16608     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16609   } while (ME);
16610   assert(TopME && "We did not compute a topmost MemberExpr!");
16611 
16612   // Not the scope of this diagnostic.
16613   if (!AnyIsPacked)
16614     return;
16615 
16616   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16617   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16618   // TODO: The innermost base of the member expression may be too complicated.
16619   // For now, just disregard these cases. This is left for future
16620   // improvement.
16621   if (!DRE && !isa<CXXThisExpr>(TopBase))
16622       return;
16623 
16624   // Alignment expected by the whole expression.
16625   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16626 
16627   // No need to do anything else with this case.
16628   if (ExpectedAlignment.isOne())
16629     return;
16630 
16631   // Synthesize offset of the whole access.
16632   CharUnits Offset;
16633   for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
16634     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
16635 
16636   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16637   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16638       ReverseMemberChain.back()->getParent()->getTypeForDecl());
16639 
16640   // The base expression of the innermost MemberExpr may give
16641   // stronger guarantees than the class containing the member.
16642   if (DRE && !TopME->isArrow()) {
16643     const ValueDecl *VD = DRE->getDecl();
16644     if (!VD->getType()->isReferenceType())
16645       CompleteObjectAlignment =
16646           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16647   }
16648 
16649   // Check if the synthesized offset fulfills the alignment.
16650   if (Offset % ExpectedAlignment != 0 ||
16651       // It may fulfill the offset it but the effective alignment may still be
16652       // lower than the expected expression alignment.
16653       CompleteObjectAlignment < ExpectedAlignment) {
16654     // If this happens, we want to determine a sensible culprit of this.
16655     // Intuitively, watching the chain of member expressions from right to
16656     // left, we start with the required alignment (as required by the field
16657     // type) but some packed attribute in that chain has reduced the alignment.
16658     // It may happen that another packed structure increases it again. But if
16659     // we are here such increase has not been enough. So pointing the first
16660     // FieldDecl that either is packed or else its RecordDecl is,
16661     // seems reasonable.
16662     FieldDecl *FD = nullptr;
16663     CharUnits Alignment;
16664     for (FieldDecl *FDI : ReverseMemberChain) {
16665       if (FDI->hasAttr<PackedAttr>() ||
16666           FDI->getParent()->hasAttr<PackedAttr>()) {
16667         FD = FDI;
16668         Alignment = std::min(
16669             Context.getTypeAlignInChars(FD->getType()),
16670             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16671         break;
16672       }
16673     }
16674     assert(FD && "We did not find a packed FieldDecl!");
16675     Action(E, FD->getParent(), FD, Alignment);
16676   }
16677 }
16678 
16679 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16680   using namespace std::placeholders;
16681 
16682   RefersToMemberWithReducedAlignment(
16683       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16684                      _2, _3, _4));
16685 }
16686 
16687 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
16688 // not a valid type, emit an error message and return true. Otherwise return
16689 // false.
16690 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
16691                                         QualType Ty) {
16692   if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
16693     S.Diag(Loc, diag::err_builtin_invalid_arg_type)
16694         << 1 << /* vector, integer or float ty*/ 0 << Ty;
16695     return true;
16696   }
16697   return false;
16698 }
16699 
16700 bool Sema::SemaBuiltinElementwiseMathOneArg(CallExpr *TheCall) {
16701   if (checkArgCount(*this, TheCall, 1))
16702     return true;
16703 
16704   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16705   SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc();
16706   if (A.isInvalid())
16707     return true;
16708 
16709   TheCall->setArg(0, A.get());
16710   QualType TyA = A.get()->getType();
16711   if (checkMathBuiltinElementType(*this, ArgLoc, TyA))
16712     return true;
16713 
16714   QualType EltTy = TyA;
16715   if (auto *VecTy = EltTy->getAs<VectorType>())
16716     EltTy = VecTy->getElementType();
16717   if (EltTy->isUnsignedIntegerType())
16718     return Diag(ArgLoc, diag::err_builtin_invalid_arg_type)
16719            << 1 << /*signed integer or float ty*/ 3 << TyA;
16720 
16721   TheCall->setType(TyA);
16722   return false;
16723 }
16724 
16725 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
16726   if (checkArgCount(*this, TheCall, 2))
16727     return true;
16728 
16729   ExprResult A = TheCall->getArg(0);
16730   ExprResult B = TheCall->getArg(1);
16731   // Do standard promotions between the two arguments, returning their common
16732   // type.
16733   QualType Res =
16734       UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
16735   if (A.isInvalid() || B.isInvalid())
16736     return true;
16737 
16738   QualType TyA = A.get()->getType();
16739   QualType TyB = B.get()->getType();
16740 
16741   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
16742     return Diag(A.get()->getBeginLoc(),
16743                 diag::err_typecheck_call_different_arg_types)
16744            << TyA << TyB;
16745 
16746   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16747     return true;
16748 
16749   TheCall->setArg(0, A.get());
16750   TheCall->setArg(1, B.get());
16751   TheCall->setType(Res);
16752   return false;
16753 }
16754 
16755 bool Sema::SemaBuiltinReduceMath(CallExpr *TheCall) {
16756   if (checkArgCount(*this, TheCall, 1))
16757     return true;
16758 
16759   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16760   if (A.isInvalid())
16761     return true;
16762 
16763   TheCall->setArg(0, A.get());
16764   const VectorType *TyA = A.get()->getType()->getAs<VectorType>();
16765   if (!TyA) {
16766     SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc();
16767     return Diag(ArgLoc, diag::err_builtin_invalid_arg_type)
16768            << 1 << /* vector ty*/ 4 << A.get()->getType();
16769   }
16770 
16771   TheCall->setType(TyA->getElementType());
16772   return false;
16773 }
16774 
16775 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16776                                             ExprResult CallResult) {
16777   if (checkArgCount(*this, TheCall, 1))
16778     return ExprError();
16779 
16780   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16781   if (MatrixArg.isInvalid())
16782     return MatrixArg;
16783   Expr *Matrix = MatrixArg.get();
16784 
16785   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16786   if (!MType) {
16787     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16788         << 1 << /* matrix ty*/ 1 << Matrix->getType();
16789     return ExprError();
16790   }
16791 
16792   // Create returned matrix type by swapping rows and columns of the argument
16793   // matrix type.
16794   QualType ResultType = Context.getConstantMatrixType(
16795       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16796 
16797   // Change the return type to the type of the returned matrix.
16798   TheCall->setType(ResultType);
16799 
16800   // Update call argument to use the possibly converted matrix argument.
16801   TheCall->setArg(0, Matrix);
16802   return CallResult;
16803 }
16804 
16805 // Get and verify the matrix dimensions.
16806 static llvm::Optional<unsigned>
16807 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
16808   SourceLocation ErrorPos;
16809   Optional<llvm::APSInt> Value =
16810       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
16811   if (!Value) {
16812     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
16813         << Name;
16814     return {};
16815   }
16816   uint64_t Dim = Value->getZExtValue();
16817   if (!ConstantMatrixType::isDimensionValid(Dim)) {
16818     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
16819         << Name << ConstantMatrixType::getMaxElementsPerDimension();
16820     return {};
16821   }
16822   return Dim;
16823 }
16824 
16825 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
16826                                                   ExprResult CallResult) {
16827   if (!getLangOpts().MatrixTypes) {
16828     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
16829     return ExprError();
16830   }
16831 
16832   if (checkArgCount(*this, TheCall, 4))
16833     return ExprError();
16834 
16835   unsigned PtrArgIdx = 0;
16836   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16837   Expr *RowsExpr = TheCall->getArg(1);
16838   Expr *ColumnsExpr = TheCall->getArg(2);
16839   Expr *StrideExpr = TheCall->getArg(3);
16840 
16841   bool ArgError = false;
16842 
16843   // Check pointer argument.
16844   {
16845     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16846     if (PtrConv.isInvalid())
16847       return PtrConv;
16848     PtrExpr = PtrConv.get();
16849     TheCall->setArg(0, PtrExpr);
16850     if (PtrExpr->isTypeDependent()) {
16851       TheCall->setType(Context.DependentTy);
16852       return TheCall;
16853     }
16854   }
16855 
16856   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16857   QualType ElementTy;
16858   if (!PtrTy) {
16859     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16860         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
16861     ArgError = true;
16862   } else {
16863     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
16864 
16865     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
16866       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16867           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
16868           << PtrExpr->getType();
16869       ArgError = true;
16870     }
16871   }
16872 
16873   // Apply default Lvalue conversions and convert the expression to size_t.
16874   auto ApplyArgumentConversions = [this](Expr *E) {
16875     ExprResult Conv = DefaultLvalueConversion(E);
16876     if (Conv.isInvalid())
16877       return Conv;
16878 
16879     return tryConvertExprToType(Conv.get(), Context.getSizeType());
16880   };
16881 
16882   // Apply conversion to row and column expressions.
16883   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
16884   if (!RowsConv.isInvalid()) {
16885     RowsExpr = RowsConv.get();
16886     TheCall->setArg(1, RowsExpr);
16887   } else
16888     RowsExpr = nullptr;
16889 
16890   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
16891   if (!ColumnsConv.isInvalid()) {
16892     ColumnsExpr = ColumnsConv.get();
16893     TheCall->setArg(2, ColumnsExpr);
16894   } else
16895     ColumnsExpr = nullptr;
16896 
16897   // If any any part of the result matrix type is still pending, just use
16898   // Context.DependentTy, until all parts are resolved.
16899   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
16900       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
16901     TheCall->setType(Context.DependentTy);
16902     return CallResult;
16903   }
16904 
16905   // Check row and column dimensions.
16906   llvm::Optional<unsigned> MaybeRows;
16907   if (RowsExpr)
16908     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
16909 
16910   llvm::Optional<unsigned> MaybeColumns;
16911   if (ColumnsExpr)
16912     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
16913 
16914   // Check stride argument.
16915   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
16916   if (StrideConv.isInvalid())
16917     return ExprError();
16918   StrideExpr = StrideConv.get();
16919   TheCall->setArg(3, StrideExpr);
16920 
16921   if (MaybeRows) {
16922     if (Optional<llvm::APSInt> Value =
16923             StrideExpr->getIntegerConstantExpr(Context)) {
16924       uint64_t Stride = Value->getZExtValue();
16925       if (Stride < *MaybeRows) {
16926         Diag(StrideExpr->getBeginLoc(),
16927              diag::err_builtin_matrix_stride_too_small);
16928         ArgError = true;
16929       }
16930     }
16931   }
16932 
16933   if (ArgError || !MaybeRows || !MaybeColumns)
16934     return ExprError();
16935 
16936   TheCall->setType(
16937       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
16938   return CallResult;
16939 }
16940 
16941 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
16942                                                    ExprResult CallResult) {
16943   if (checkArgCount(*this, TheCall, 3))
16944     return ExprError();
16945 
16946   unsigned PtrArgIdx = 1;
16947   Expr *MatrixExpr = TheCall->getArg(0);
16948   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16949   Expr *StrideExpr = TheCall->getArg(2);
16950 
16951   bool ArgError = false;
16952 
16953   {
16954     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
16955     if (MatrixConv.isInvalid())
16956       return MatrixConv;
16957     MatrixExpr = MatrixConv.get();
16958     TheCall->setArg(0, MatrixExpr);
16959   }
16960   if (MatrixExpr->isTypeDependent()) {
16961     TheCall->setType(Context.DependentTy);
16962     return TheCall;
16963   }
16964 
16965   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
16966   if (!MatrixTy) {
16967     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16968         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
16969     ArgError = true;
16970   }
16971 
16972   {
16973     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16974     if (PtrConv.isInvalid())
16975       return PtrConv;
16976     PtrExpr = PtrConv.get();
16977     TheCall->setArg(1, PtrExpr);
16978     if (PtrExpr->isTypeDependent()) {
16979       TheCall->setType(Context.DependentTy);
16980       return TheCall;
16981     }
16982   }
16983 
16984   // Check pointer argument.
16985   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16986   if (!PtrTy) {
16987     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16988         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
16989     ArgError = true;
16990   } else {
16991     QualType ElementTy = PtrTy->getPointeeType();
16992     if (ElementTy.isConstQualified()) {
16993       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16994       ArgError = true;
16995     }
16996     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16997     if (MatrixTy &&
16998         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16999       Diag(PtrExpr->getBeginLoc(),
17000            diag::err_builtin_matrix_pointer_arg_mismatch)
17001           << ElementTy << MatrixTy->getElementType();
17002       ArgError = true;
17003     }
17004   }
17005 
17006   // Apply default Lvalue conversions and convert the stride expression to
17007   // size_t.
17008   {
17009     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
17010     if (StrideConv.isInvalid())
17011       return StrideConv;
17012 
17013     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
17014     if (StrideConv.isInvalid())
17015       return StrideConv;
17016     StrideExpr = StrideConv.get();
17017     TheCall->setArg(2, StrideExpr);
17018   }
17019 
17020   // Check stride argument.
17021   if (MatrixTy) {
17022     if (Optional<llvm::APSInt> Value =
17023             StrideExpr->getIntegerConstantExpr(Context)) {
17024       uint64_t Stride = Value->getZExtValue();
17025       if (Stride < MatrixTy->getNumRows()) {
17026         Diag(StrideExpr->getBeginLoc(),
17027              diag::err_builtin_matrix_stride_too_small);
17028         ArgError = true;
17029       }
17030     }
17031   }
17032 
17033   if (ArgError)
17034     return ExprError();
17035 
17036   return CallResult;
17037 }
17038 
17039 /// \brief Enforce the bounds of a TCB
17040 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
17041 /// directly calls other functions in the same TCB as marked by the enforce_tcb
17042 /// and enforce_tcb_leaf attributes.
17043 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
17044                                const FunctionDecl *Callee) {
17045   const FunctionDecl *Caller = getCurFunctionDecl();
17046 
17047   // Calls to builtins are not enforced.
17048   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
17049       Callee->getBuiltinID() != 0)
17050     return;
17051 
17052   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17053   // all TCBs the callee is a part of.
17054   llvm::StringSet<> CalleeTCBs;
17055   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
17056            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17057   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
17058            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17059 
17060   // Go through the TCBs the caller is a part of and emit warnings if Caller
17061   // is in a TCB that the Callee is not.
17062   for_each(
17063       Caller->specific_attrs<EnforceTCBAttr>(),
17064       [&](const auto *A) {
17065         StringRef CallerTCB = A->getTCBName();
17066         if (CalleeTCBs.count(CallerTCB) == 0) {
17067           this->Diag(TheCall->getExprLoc(),
17068                      diag::warn_tcb_enforcement_violation) << Callee
17069                                                            << CallerTCB;
17070         }
17071       });
17072 }
17073