xref: /freebsd-src/contrib/llvm-project/clang/lib/Parse/ParseExprCXX.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Parse/RAIIObjectsForParser.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/ParsedTemplate.h"
23 #include "clang/Sema/Scope.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <numeric>
26 
27 using namespace clang;
28 
29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30   switch (Kind) {
31     // template name
32     case tok::unknown:             return 0;
33     // casts
34     case tok::kw_addrspace_cast:   return 1;
35     case tok::kw_const_cast:       return 2;
36     case tok::kw_dynamic_cast:     return 3;
37     case tok::kw_reinterpret_cast: return 4;
38     case tok::kw_static_cast:      return 5;
39     default:
40       llvm_unreachable("Unknown type for digraph error message.");
41   }
42 }
43 
44 // Are the two tokens adjacent in the same source file?
45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46   SourceManager &SM = PP.getSourceManager();
47   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50 }
51 
52 // Suggest fixit for "<::" after a cast.
53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55   // Pull '<:' and ':' off token stream.
56   if (!AtDigraph)
57     PP.Lex(DigraphToken);
58   PP.Lex(ColonToken);
59 
60   SourceRange Range;
61   Range.setBegin(DigraphToken.getLocation());
62   Range.setEnd(ColonToken.getLocation());
63   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64       << SelectDigraphErrorMessage(Kind)
65       << FixItHint::CreateReplacement(Range, "< ::");
66 
67   // Update token information to reflect their change in token type.
68   ColonToken.setKind(tok::coloncolon);
69   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70   ColonToken.setLength(2);
71   DigraphToken.setKind(tok::less);
72   DigraphToken.setLength(1);
73 
74   // Push new tokens back to token stream.
75   PP.EnterToken(ColonToken, /*IsReinject*/ true);
76   if (!AtDigraph)
77     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78 }
79 
80 // Check for '<::' which should be '< ::' instead of '[:' when following
81 // a template name.
82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83                                         bool EnteringContext,
84                                         IdentifierInfo &II, CXXScopeSpec &SS) {
85   if (!Next.is(tok::l_square) || Next.getLength() != 2)
86     return;
87 
88   Token SecondToken = GetLookAheadToken(2);
89   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90     return;
91 
92   TemplateTy Template;
93   UnqualifiedId TemplateName;
94   TemplateName.setIdentifier(&II, Tok.getLocation());
95   bool MemberOfUnknownSpecialization;
96   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97                               TemplateName, ObjectType, EnteringContext,
98                               Template, MemberOfUnknownSpecialization))
99     return;
100 
101   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102              /*AtDigraph*/false);
103 }
104 
105 /// Parse global scope or nested-name-specifier if present.
106 ///
107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108 /// may be preceded by '::'). Note that this routine will not parse ::new or
109 /// ::delete; it will just leave them in the token stream.
110 ///
111 ///       '::'[opt] nested-name-specifier
112 ///       '::'
113 ///
114 ///       nested-name-specifier:
115 ///         type-name '::'
116 ///         namespace-name '::'
117 ///         nested-name-specifier identifier '::'
118 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
119 ///
120 ///
121 /// \param SS the scope specifier that will be set to the parsed
122 /// nested-name-specifier (or empty)
123 ///
124 /// \param ObjectType if this nested-name-specifier is being parsed following
125 /// the "." or "->" of a member access expression, this parameter provides the
126 /// type of the object whose members are being accessed.
127 ///
128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
129 /// expression, indicates whether the original subexpressions had any errors.
130 /// When true, diagnostics for missing 'template' keyword will be supressed.
131 ///
132 /// \param EnteringContext whether we will be entering into the context of
133 /// the nested-name-specifier after parsing it.
134 ///
135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
136 /// indicates whether this nested-name-specifier may be part of a
137 /// pseudo-destructor name. In this case, the flag will be set false
138 /// if we don't actually end up parsing a destructor name. Moreover,
139 /// if we do end up determining that we are parsing a destructor name,
140 /// the last component of the nested-name-specifier is not parsed as
141 /// part of the scope specifier.
142 ///
143 /// \param IsTypename If \c true, this nested-name-specifier is known to be
144 /// part of a type name. This is used to improve error recovery.
145 ///
146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147 /// filled in with the leading identifier in the last component of the
148 /// nested-name-specifier, if any.
149 ///
150 /// \param OnlyNamespace If true, only considers namespaces in lookup.
151 ///
152 ///
153 /// \returns true if there was an error parsing a scope specifier
154 bool Parser::ParseOptionalCXXScopeSpecifier(
155     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157     IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158   assert(getLangOpts().CPlusPlus &&
159          "Call sites of this function should be guarded by checking for C++");
160 
161   if (Tok.is(tok::annot_cxxscope)) {
162     assert(!LastII && "want last identifier but have already annotated scope");
163     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
164     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165                                                  Tok.getAnnotationRange(),
166                                                  SS);
167     ConsumeAnnotationToken();
168     return false;
169   }
170 
171   // Has to happen before any "return false"s in this function.
172   bool CheckForDestructor = false;
173   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174     CheckForDestructor = true;
175     *MayBePseudoDestructor = false;
176   }
177 
178   if (LastII)
179     *LastII = nullptr;
180 
181   bool HasScopeSpecifier = false;
182 
183   if (Tok.is(tok::coloncolon)) {
184     // ::new and ::delete aren't nested-name-specifiers.
185     tok::TokenKind NextKind = NextToken().getKind();
186     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187       return false;
188 
189     if (NextKind == tok::l_brace) {
190       // It is invalid to have :: {, consume the scope qualifier and pretend
191       // like we never saw it.
192       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193     } else {
194       // '::' - Global scope qualifier.
195       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196         return true;
197 
198       HasScopeSpecifier = true;
199     }
200   }
201 
202   if (Tok.is(tok::kw___super)) {
203     SourceLocation SuperLoc = ConsumeToken();
204     if (!Tok.is(tok::coloncolon)) {
205       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206       return true;
207     }
208 
209     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210   }
211 
212   if (!HasScopeSpecifier &&
213       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214     DeclSpec DS(AttrFactory);
215     SourceLocation DeclLoc = Tok.getLocation();
216     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
217 
218     SourceLocation CCLoc;
219     // Work around a standard defect: 'decltype(auto)::' is not a
220     // nested-name-specifier.
221     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222         !TryConsumeToken(tok::coloncolon, CCLoc)) {
223       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224       return false;
225     }
226 
227     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229 
230     HasScopeSpecifier = true;
231   }
232 
233   // Preferred type might change when parsing qualifiers, we need the original.
234   auto SavedType = PreferredType;
235   while (true) {
236     if (HasScopeSpecifier) {
237       if (Tok.is(tok::code_completion)) {
238         cutOffParsing();
239         // Code completion for a nested-name-specifier, where the code
240         // completion token follows the '::'.
241         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242                                         InUsingDeclaration, ObjectType.get(),
243                                         SavedType.get(SS.getBeginLoc()));
244         // Include code completion token into the range of the scope otherwise
245         // when we try to annotate the scope tokens the dangling code completion
246         // token will cause assertion in
247         // Preprocessor::AnnotatePreviousCachedTokens.
248         SS.setEndLoc(Tok.getLocation());
249         return true;
250       }
251 
252       // C++ [basic.lookup.classref]p5:
253       //   If the qualified-id has the form
254       //
255       //       ::class-name-or-namespace-name::...
256       //
257       //   the class-name-or-namespace-name is looked up in global scope as a
258       //   class-name or namespace-name.
259       //
260       // To implement this, we clear out the object type as soon as we've
261       // seen a leading '::' or part of a nested-name-specifier.
262       ObjectType = nullptr;
263     }
264 
265     // nested-name-specifier:
266     //   nested-name-specifier 'template'[opt] simple-template-id '::'
267 
268     // Parse the optional 'template' keyword, then make sure we have
269     // 'identifier <' after it.
270     if (Tok.is(tok::kw_template)) {
271       // If we don't have a scope specifier or an object type, this isn't a
272       // nested-name-specifier, since they aren't allowed to start with
273       // 'template'.
274       if (!HasScopeSpecifier && !ObjectType)
275         break;
276 
277       TentativeParsingAction TPA(*this);
278       SourceLocation TemplateKWLoc = ConsumeToken();
279 
280       UnqualifiedId TemplateName;
281       if (Tok.is(tok::identifier)) {
282         // Consume the identifier.
283         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284         ConsumeToken();
285       } else if (Tok.is(tok::kw_operator)) {
286         // We don't need to actually parse the unqualified-id in this case,
287         // because a simple-template-id cannot start with 'operator', but
288         // go ahead and parse it anyway for consistency with the case where
289         // we already annotated the template-id.
290         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291                                        TemplateName)) {
292           TPA.Commit();
293           break;
294         }
295 
296         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298           Diag(TemplateName.getSourceRange().getBegin(),
299                diag::err_id_after_template_in_nested_name_spec)
300             << TemplateName.getSourceRange();
301           TPA.Commit();
302           break;
303         }
304       } else {
305         TPA.Revert();
306         break;
307       }
308 
309       // If the next token is not '<', we have a qualified-id that refers
310       // to a template name, such as T::template apply, but is not a
311       // template-id.
312       if (Tok.isNot(tok::less)) {
313         TPA.Revert();
314         break;
315       }
316 
317       // Commit to parsing the template-id.
318       TPA.Commit();
319       TemplateTy Template;
320       TemplateNameKind TNK = Actions.ActOnTemplateName(
321           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322           EnteringContext, Template, /*AllowInjectedClassName*/ true);
323       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324                                   TemplateName, false))
325         return true;
326 
327       continue;
328     }
329 
330     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331       // We have
332       //
333       //   template-id '::'
334       //
335       // So we need to check whether the template-id is a simple-template-id of
336       // the right kind (it should name a type or be dependent), and then
337       // convert it into a type within the nested-name-specifier.
338       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340         *MayBePseudoDestructor = true;
341         return false;
342       }
343 
344       if (LastII)
345         *LastII = TemplateId->Name;
346 
347       // Consume the template-id token.
348       ConsumeAnnotationToken();
349 
350       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
351       SourceLocation CCLoc = ConsumeToken();
352 
353       HasScopeSpecifier = true;
354 
355       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356                                          TemplateId->NumArgs);
357 
358       if (TemplateId->isInvalid() ||
359           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360                                               SS,
361                                               TemplateId->TemplateKWLoc,
362                                               TemplateId->Template,
363                                               TemplateId->TemplateNameLoc,
364                                               TemplateId->LAngleLoc,
365                                               TemplateArgsPtr,
366                                               TemplateId->RAngleLoc,
367                                               CCLoc,
368                                               EnteringContext)) {
369         SourceLocation StartLoc
370           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371                                       : TemplateId->TemplateNameLoc;
372         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373       }
374 
375       continue;
376     }
377 
378     // The rest of the nested-name-specifier possibilities start with
379     // tok::identifier.
380     if (Tok.isNot(tok::identifier))
381       break;
382 
383     IdentifierInfo &II = *Tok.getIdentifierInfo();
384 
385     // nested-name-specifier:
386     //   type-name '::'
387     //   namespace-name '::'
388     //   nested-name-specifier identifier '::'
389     Token Next = NextToken();
390     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391                                     ObjectType);
392 
393     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
394     // and emit a fixit hint for it.
395     if (Next.is(tok::colon) && !ColonIsSacred) {
396       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397                                             EnteringContext) &&
398           // If the token after the colon isn't an identifier, it's still an
399           // error, but they probably meant something else strange so don't
400           // recover like this.
401           PP.LookAhead(1).is(tok::identifier)) {
402         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403           << FixItHint::CreateReplacement(Next.getLocation(), "::");
404         // Recover as if the user wrote '::'.
405         Next.setKind(tok::coloncolon);
406       }
407     }
408 
409     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410       // It is invalid to have :: {, consume the scope qualifier and pretend
411       // like we never saw it.
412       Token Identifier = Tok; // Stash away the identifier.
413       ConsumeToken();         // Eat the identifier, current token is now '::'.
414       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415           << tok::identifier;
416       UnconsumeToken(Identifier); // Stick the identifier back.
417       Next = NextToken();         // Point Next at the '{' token.
418     }
419 
420     if (Next.is(tok::coloncolon)) {
421       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422         *MayBePseudoDestructor = true;
423         return false;
424       }
425 
426       if (ColonIsSacred) {
427         const Token &Next2 = GetLookAheadToken(2);
428         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431               << Next2.getName()
432               << FixItHint::CreateReplacement(Next.getLocation(), ":");
433           Token ColonColon;
434           PP.Lex(ColonColon);
435           ColonColon.setKind(tok::colon);
436           PP.EnterToken(ColonColon, /*IsReinject*/ true);
437           break;
438         }
439       }
440 
441       if (LastII)
442         *LastII = &II;
443 
444       // We have an identifier followed by a '::'. Lookup this name
445       // as the name in a nested-name-specifier.
446       Token Identifier = Tok;
447       SourceLocation IdLoc = ConsumeToken();
448       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
449              "NextToken() not working properly!");
450       Token ColonColon = Tok;
451       SourceLocation CCLoc = ConsumeToken();
452 
453       bool IsCorrectedToColon = false;
454       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455       if (Actions.ActOnCXXNestedNameSpecifier(
456               getCurScope(), IdInfo, EnteringContext, SS, false,
457               CorrectionFlagPtr, OnlyNamespace)) {
458         // Identifier is not recognized as a nested name, but we can have
459         // mistyped '::' instead of ':'.
460         if (CorrectionFlagPtr && IsCorrectedToColon) {
461           ColonColon.setKind(tok::colon);
462           PP.EnterToken(Tok, /*IsReinject*/ true);
463           PP.EnterToken(ColonColon, /*IsReinject*/ true);
464           Tok = Identifier;
465           break;
466         }
467         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468       }
469       HasScopeSpecifier = true;
470       continue;
471     }
472 
473     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474 
475     // nested-name-specifier:
476     //   type-name '<'
477     if (Next.is(tok::less)) {
478 
479       TemplateTy Template;
480       UnqualifiedId TemplateName;
481       TemplateName.setIdentifier(&II, Tok.getLocation());
482       bool MemberOfUnknownSpecialization;
483       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484                                               /*hasTemplateKeyword=*/false,
485                                                         TemplateName,
486                                                         ObjectType,
487                                                         EnteringContext,
488                                                         Template,
489                                               MemberOfUnknownSpecialization)) {
490         // If lookup didn't find anything, we treat the name as a template-name
491         // anyway. C++20 requires this, and in prior language modes it improves
492         // error recovery. But before we commit to this, check that we actually
493         // have something that looks like a template-argument-list next.
494         if (!IsTypename && TNK == TNK_Undeclared_template &&
495             isTemplateArgumentList(1) == TPResult::False)
496           break;
497 
498         // We have found a template name, so annotate this token
499         // with a template-id annotation. We do not permit the
500         // template-id to be translated into a type annotation,
501         // because some clients (e.g., the parsing of class template
502         // specializations) still want to see the original template-id
503         // token, and it might not be a type at all (e.g. a concept name in a
504         // type-constraint).
505         ConsumeToken();
506         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507                                     TemplateName, false))
508           return true;
509         continue;
510       }
511 
512       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514         // If we had errors before, ObjectType can be dependent even without any
515         // templates. Do not report missing template keyword in that case.
516         if (!ObjectHadErrors) {
517           // We have something like t::getAs<T>, where getAs is a
518           // member of an unknown specialization. However, this will only
519           // parse correctly as a template, so suggest the keyword 'template'
520           // before 'getAs' and treat this as a dependent template name.
521           unsigned DiagID = diag::err_missing_dependent_template_keyword;
522           if (getLangOpts().MicrosoftExt)
523             DiagID = diag::warn_missing_dependent_template_keyword;
524 
525           Diag(Tok.getLocation(), DiagID)
526               << II.getName()
527               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528         }
529 
530         SourceLocation TemplateNameLoc = ConsumeToken();
531 
532         TemplateNameKind TNK = Actions.ActOnTemplateName(
533             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534             EnteringContext, Template, /*AllowInjectedClassName*/ true);
535         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536                                     TemplateName, false))
537           return true;
538 
539         continue;
540       }
541     }
542 
543     // We don't have any tokens that form the beginning of a
544     // nested-name-specifier, so we're done.
545     break;
546   }
547 
548   // Even if we didn't see any pieces of a nested-name-specifier, we
549   // still check whether there is a tilde in this position, which
550   // indicates a potential pseudo-destructor.
551   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552     *MayBePseudoDestructor = true;
553 
554   return false;
555 }
556 
557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558                                            bool isAddressOfOperand,
559                                            Token &Replacement) {
560   ExprResult E;
561 
562   // We may have already annotated this id-expression.
563   switch (Tok.getKind()) {
564   case tok::annot_non_type: {
565     NamedDecl *ND = getNonTypeAnnotation(Tok);
566     SourceLocation Loc = ConsumeAnnotationToken();
567     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568     break;
569   }
570 
571   case tok::annot_non_type_dependent: {
572     IdentifierInfo *II = getIdentifierAnnotation(Tok);
573     SourceLocation Loc = ConsumeAnnotationToken();
574 
575     // This is only the direct operand of an & operator if it is not
576     // followed by a postfix-expression suffix.
577     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578       isAddressOfOperand = false;
579 
580     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581                                                       isAddressOfOperand);
582     break;
583   }
584 
585   case tok::annot_non_type_undeclared: {
586     assert(SS.isEmpty() &&
587            "undeclared non-type annotation should be unqualified");
588     IdentifierInfo *II = getIdentifierAnnotation(Tok);
589     SourceLocation Loc = ConsumeAnnotationToken();
590     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591     break;
592   }
593 
594   default:
595     SourceLocation TemplateKWLoc;
596     UnqualifiedId Name;
597     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598                            /*ObjectHadErrors=*/false,
599                            /*EnteringContext=*/false,
600                            /*AllowDestructorName=*/false,
601                            /*AllowConstructorName=*/false,
602                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603       return ExprError();
604 
605     // This is only the direct operand of an & operator if it is not
606     // followed by a postfix-expression suffix.
607     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608       isAddressOfOperand = false;
609 
610     E = Actions.ActOnIdExpression(
611         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613         &Replacement);
614     break;
615   }
616 
617   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618     checkPotentialAngleBracket(E);
619   return E;
620 }
621 
622 /// ParseCXXIdExpression - Handle id-expression.
623 ///
624 ///       id-expression:
625 ///         unqualified-id
626 ///         qualified-id
627 ///
628 ///       qualified-id:
629 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630 ///         '::' identifier
631 ///         '::' operator-function-id
632 ///         '::' template-id
633 ///
634 /// NOTE: The standard specifies that, for qualified-id, the parser does not
635 /// expect:
636 ///
637 ///   '::' conversion-function-id
638 ///   '::' '~' class-name
639 ///
640 /// This may cause a slight inconsistency on diagnostics:
641 ///
642 /// class C {};
643 /// namespace A {}
644 /// void f() {
645 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
646 ///                  // namespace.
647 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
648 /// }
649 ///
650 /// We simplify the parser a bit and make it work like:
651 ///
652 ///       qualified-id:
653 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654 ///         '::' unqualified-id
655 ///
656 /// That way Sema can handle and report similar errors for namespaces and the
657 /// global scope.
658 ///
659 /// The isAddressOfOperand parameter indicates that this id-expression is a
660 /// direct operand of the address-of operator. This is, besides member contexts,
661 /// the only place where a qualified-id naming a non-static class member may
662 /// appear.
663 ///
664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665   // qualified-id:
666   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667   //   '::' unqualified-id
668   //
669   CXXScopeSpec SS;
670   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671                                  /*ObjectHadErrors=*/false,
672                                  /*EnteringContext=*/false);
673 
674   Token Replacement;
675   ExprResult Result =
676       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677   if (Result.isUnset()) {
678     // If the ExprResult is valid but null, then typo correction suggested a
679     // keyword replacement that needs to be reparsed.
680     UnconsumeToken(Replacement);
681     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682   }
683   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
684                               "for a previous keyword suggestion");
685   return Result;
686 }
687 
688 /// ParseLambdaExpression - Parse a C++11 lambda expression.
689 ///
690 ///       lambda-expression:
691 ///         lambda-introducer lambda-declarator compound-statement
692 ///         lambda-introducer '<' template-parameter-list '>'
693 ///             requires-clause[opt] lambda-declarator compound-statement
694 ///
695 ///       lambda-introducer:
696 ///         '[' lambda-capture[opt] ']'
697 ///
698 ///       lambda-capture:
699 ///         capture-default
700 ///         capture-list
701 ///         capture-default ',' capture-list
702 ///
703 ///       capture-default:
704 ///         '&'
705 ///         '='
706 ///
707 ///       capture-list:
708 ///         capture
709 ///         capture-list ',' capture
710 ///
711 ///       capture:
712 ///         simple-capture
713 ///         init-capture     [C++1y]
714 ///
715 ///       simple-capture:
716 ///         identifier
717 ///         '&' identifier
718 ///         'this'
719 ///
720 ///       init-capture:      [C++1y]
721 ///         identifier initializer
722 ///         '&' identifier initializer
723 ///
724 ///       lambda-declarator:
725 ///         lambda-specifiers     [C++2b]
726 ///         '(' parameter-declaration-clause ')' lambda-specifiers
727 ///             requires-clause[opt]
728 ///
729 ///       lambda-specifiers:
730 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
731 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
732 ///
733 ExprResult Parser::ParseLambdaExpression() {
734   // Parse lambda-introducer.
735   LambdaIntroducer Intro;
736   if (ParseLambdaIntroducer(Intro)) {
737     SkipUntil(tok::r_square, StopAtSemi);
738     SkipUntil(tok::l_brace, StopAtSemi);
739     SkipUntil(tok::r_brace, StopAtSemi);
740     return ExprError();
741   }
742 
743   return ParseLambdaExpressionAfterIntroducer(Intro);
744 }
745 
746 /// Use lookahead and potentially tentative parsing to determine if we are
747 /// looking at a C++11 lambda expression, and parse it if we are.
748 ///
749 /// If we are not looking at a lambda expression, returns ExprError().
750 ExprResult Parser::TryParseLambdaExpression() {
751   assert(getLangOpts().CPlusPlus11
752          && Tok.is(tok::l_square)
753          && "Not at the start of a possible lambda expression.");
754 
755   const Token Next = NextToken();
756   if (Next.is(tok::eof)) // Nothing else to lookup here...
757     return ExprEmpty();
758 
759   const Token After = GetLookAheadToken(2);
760   // If lookahead indicates this is a lambda...
761   if (Next.is(tok::r_square) ||     // []
762       Next.is(tok::equal) ||        // [=
763       (Next.is(tok::amp) &&         // [&] or [&,
764        After.isOneOf(tok::r_square, tok::comma)) ||
765       (Next.is(tok::identifier) &&  // [identifier]
766        After.is(tok::r_square)) ||
767       Next.is(tok::ellipsis)) {     // [...
768     return ParseLambdaExpression();
769   }
770 
771   // If lookahead indicates an ObjC message send...
772   // [identifier identifier
773   if (Next.is(tok::identifier) && After.is(tok::identifier))
774     return ExprEmpty();
775 
776   // Here, we're stuck: lambda introducers and Objective-C message sends are
777   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
778   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
779   // writing two routines to parse a lambda introducer, just try to parse
780   // a lambda introducer first, and fall back if that fails.
781   LambdaIntroducer Intro;
782   {
783     TentativeParsingAction TPA(*this);
784     LambdaIntroducerTentativeParse Tentative;
785     if (ParseLambdaIntroducer(Intro, &Tentative)) {
786       TPA.Commit();
787       return ExprError();
788     }
789 
790     switch (Tentative) {
791     case LambdaIntroducerTentativeParse::Success:
792       TPA.Commit();
793       break;
794 
795     case LambdaIntroducerTentativeParse::Incomplete:
796       // Didn't fully parse the lambda-introducer, try again with a
797       // non-tentative parse.
798       TPA.Revert();
799       Intro = LambdaIntroducer();
800       if (ParseLambdaIntroducer(Intro))
801         return ExprError();
802       break;
803 
804     case LambdaIntroducerTentativeParse::MessageSend:
805     case LambdaIntroducerTentativeParse::Invalid:
806       // Not a lambda-introducer, might be a message send.
807       TPA.Revert();
808       return ExprEmpty();
809     }
810   }
811 
812   return ParseLambdaExpressionAfterIntroducer(Intro);
813 }
814 
815 /// Parse a lambda introducer.
816 /// \param Intro A LambdaIntroducer filled in with information about the
817 ///        contents of the lambda-introducer.
818 /// \param Tentative If non-null, we are disambiguating between a
819 ///        lambda-introducer and some other construct. In this mode, we do not
820 ///        produce any diagnostics or take any other irreversible action unless
821 ///        we're sure that this is a lambda-expression.
822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823 ///         the caller should bail out / recover.
824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825                                    LambdaIntroducerTentativeParse *Tentative) {
826   if (Tentative)
827     *Tentative = LambdaIntroducerTentativeParse::Success;
828 
829   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
830   BalancedDelimiterTracker T(*this, tok::l_square);
831   T.consumeOpen();
832 
833   Intro.Range.setBegin(T.getOpenLocation());
834 
835   bool First = true;
836 
837   // Produce a diagnostic if we're not tentatively parsing; otherwise track
838   // that our parse has failed.
839   auto Invalid = [&](llvm::function_ref<void()> Action) {
840     if (Tentative) {
841       *Tentative = LambdaIntroducerTentativeParse::Invalid;
842       return false;
843     }
844     Action();
845     return true;
846   };
847 
848   // Perform some irreversible action if this is a non-tentative parse;
849   // otherwise note that our actions were incomplete.
850   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851     if (Tentative)
852       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853     else
854       Action();
855   };
856 
857   // Parse capture-default.
858   if (Tok.is(tok::amp) &&
859       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860     Intro.Default = LCD_ByRef;
861     Intro.DefaultLoc = ConsumeToken();
862     First = false;
863     if (!Tok.getIdentifierInfo()) {
864       // This can only be a lambda; no need for tentative parsing any more.
865       // '[[and]]' can still be an attribute, though.
866       Tentative = nullptr;
867     }
868   } else if (Tok.is(tok::equal)) {
869     Intro.Default = LCD_ByCopy;
870     Intro.DefaultLoc = ConsumeToken();
871     First = false;
872     Tentative = nullptr;
873   }
874 
875   while (Tok.isNot(tok::r_square)) {
876     if (!First) {
877       if (Tok.isNot(tok::comma)) {
878         // Provide a completion for a lambda introducer here. Except
879         // in Objective-C, where this is Almost Surely meant to be a message
880         // send. In that case, fail here and let the ObjC message
881         // expression parser perform the completion.
882         if (Tok.is(tok::code_completion) &&
883             !(getLangOpts().ObjC && Tentative)) {
884           cutOffParsing();
885           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886                                                /*AfterAmpersand=*/false);
887           break;
888         }
889 
890         return Invalid([&] {
891           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892         });
893       }
894       ConsumeToken();
895     }
896 
897     if (Tok.is(tok::code_completion)) {
898       cutOffParsing();
899       // If we're in Objective-C++ and we have a bare '[', then this is more
900       // likely to be a message receiver.
901       if (getLangOpts().ObjC && Tentative && First)
902         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903       else
904         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905                                              /*AfterAmpersand=*/false);
906       break;
907     }
908 
909     First = false;
910 
911     // Parse capture.
912     LambdaCaptureKind Kind = LCK_ByCopy;
913     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914     SourceLocation Loc;
915     IdentifierInfo *Id = nullptr;
916     SourceLocation EllipsisLocs[4];
917     ExprResult Init;
918     SourceLocation LocStart = Tok.getLocation();
919 
920     if (Tok.is(tok::star)) {
921       Loc = ConsumeToken();
922       if (Tok.is(tok::kw_this)) {
923         ConsumeToken();
924         Kind = LCK_StarThis;
925       } else {
926         return Invalid([&] {
927           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928         });
929       }
930     } else if (Tok.is(tok::kw_this)) {
931       Kind = LCK_This;
932       Loc = ConsumeToken();
933     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934                NextToken().isOneOf(tok::comma, tok::r_square) &&
935                Intro.Default == LCD_None) {
936       // We have a lone "&" or "=" which is either a misplaced capture-default
937       // or the start of a capture (in the "&" case) with the rest of the
938       // capture missing. Both are an error but a misplaced capture-default
939       // is more likely if we don't already have a capture default.
940       return Invalid(
941           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942     } else {
943       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944 
945       if (Tok.is(tok::amp)) {
946         Kind = LCK_ByRef;
947         ConsumeToken();
948 
949         if (Tok.is(tok::code_completion)) {
950           cutOffParsing();
951           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952                                                /*AfterAmpersand=*/true);
953           break;
954         }
955       }
956 
957       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958 
959       if (Tok.is(tok::identifier)) {
960         Id = Tok.getIdentifierInfo();
961         Loc = ConsumeToken();
962       } else if (Tok.is(tok::kw_this)) {
963         return Invalid([&] {
964           // FIXME: Suggest a fixit here.
965           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966         });
967       } else {
968         return Invalid([&] {
969           Diag(Tok.getLocation(), diag::err_expected_capture);
970         });
971       }
972 
973       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974 
975       if (Tok.is(tok::l_paren)) {
976         BalancedDelimiterTracker Parens(*this, tok::l_paren);
977         Parens.consumeOpen();
978 
979         InitKind = LambdaCaptureInitKind::DirectInit;
980 
981         ExprVector Exprs;
982         CommaLocsTy Commas;
983         if (Tentative) {
984           Parens.skipToEnd();
985           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986         } else if (ParseExpressionList(Exprs, Commas)) {
987           Parens.skipToEnd();
988           Init = ExprError();
989         } else {
990           Parens.consumeClose();
991           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992                                             Parens.getCloseLocation(),
993                                             Exprs);
994         }
995       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996         // Each lambda init-capture forms its own full expression, which clears
997         // Actions.MaybeODRUseExprs. So create an expression evaluation context
998         // to save the necessary state, and restore it later.
999         EnterExpressionEvaluationContext EC(
1000             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001 
1002         if (TryConsumeToken(tok::equal))
1003           InitKind = LambdaCaptureInitKind::CopyInit;
1004         else
1005           InitKind = LambdaCaptureInitKind::ListInit;
1006 
1007         if (!Tentative) {
1008           Init = ParseInitializer();
1009         } else if (Tok.is(tok::l_brace)) {
1010           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011           Braces.consumeOpen();
1012           Braces.skipToEnd();
1013           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014         } else {
1015           // We're disambiguating this:
1016           //
1017           //   [..., x = expr
1018           //
1019           // We need to find the end of the following expression in order to
1020           // determine whether this is an Obj-C message send's receiver, a
1021           // C99 designator, or a lambda init-capture.
1022           //
1023           // Parse the expression to find where it ends, and annotate it back
1024           // onto the tokens. We would have parsed this expression the same way
1025           // in either case: both the RHS of an init-capture and the RHS of an
1026           // assignment expression are parsed as an initializer-clause, and in
1027           // neither case can anything be added to the scope between the '[' and
1028           // here.
1029           //
1030           // FIXME: This is horrible. Adding a mechanism to skip an expression
1031           // would be much cleaner.
1032           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033           // that instead. (And if we see a ':' with no matching '?', we can
1034           // classify this as an Obj-C message send.)
1035           SourceLocation StartLoc = Tok.getLocation();
1036           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037           Init = ParseInitializer();
1038           if (!Init.isInvalid())
1039             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040 
1041           if (Tok.getLocation() != StartLoc) {
1042             // Back out the lexing of the token after the initializer.
1043             PP.RevertCachedTokens(1);
1044 
1045             // Replace the consumed tokens with an appropriate annotation.
1046             Tok.setLocation(StartLoc);
1047             Tok.setKind(tok::annot_primary_expr);
1048             setExprAnnotation(Tok, Init);
1049             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050             PP.AnnotateCachedTokens(Tok);
1051 
1052             // Consume the annotated initializer.
1053             ConsumeAnnotationToken();
1054           }
1055         }
1056       }
1057 
1058       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059     }
1060 
1061     // Check if this is a message send before we act on a possible init-capture.
1062     if (Tentative && Tok.is(tok::identifier) &&
1063         NextToken().isOneOf(tok::colon, tok::r_square)) {
1064       // This can only be a message send. We're done with disambiguation.
1065       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066       return false;
1067     }
1068 
1069     // Ensure that any ellipsis was in the right place.
1070     SourceLocation EllipsisLoc;
1071     if (llvm::any_of(EllipsisLocs,
1072                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1073       // The '...' should appear before the identifier in an init-capture, and
1074       // after the identifier otherwise.
1075       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076       SourceLocation *ExpectedEllipsisLoc =
1077           !InitCapture      ? &EllipsisLocs[2] :
1078           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079                               &EllipsisLocs[0];
1080       EllipsisLoc = *ExpectedEllipsisLoc;
1081 
1082       unsigned DiagID = 0;
1083       if (EllipsisLoc.isInvalid()) {
1084         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085         for (SourceLocation Loc : EllipsisLocs) {
1086           if (Loc.isValid())
1087             EllipsisLoc = Loc;
1088         }
1089       } else {
1090         unsigned NumEllipses = std::accumulate(
1091             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093         if (NumEllipses > 1)
1094           DiagID = diag::err_lambda_capture_multiple_ellipses;
1095       }
1096       if (DiagID) {
1097         NonTentativeAction([&] {
1098           // Point the diagnostic at the first misplaced ellipsis.
1099           SourceLocation DiagLoc;
1100           for (SourceLocation &Loc : EllipsisLocs) {
1101             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102               DiagLoc = Loc;
1103               break;
1104             }
1105           }
1106           assert(DiagLoc.isValid() && "no location for diagnostic");
1107 
1108           // Issue the diagnostic and produce fixits showing where the ellipsis
1109           // should have been written.
1110           auto &&D = Diag(DiagLoc, DiagID);
1111           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112             SourceLocation ExpectedLoc =
1113                 InitCapture ? Loc
1114                             : Lexer::getLocForEndOfToken(
1115                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1116             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117           }
1118           for (SourceLocation &Loc : EllipsisLocs) {
1119             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120               D << FixItHint::CreateRemoval(Loc);
1121           }
1122         });
1123       }
1124     }
1125 
1126     // Process the init-capture initializers now rather than delaying until we
1127     // form the lambda-expression so that they can be handled in the context
1128     // enclosing the lambda-expression, rather than in the context of the
1129     // lambda-expression itself.
1130     ParsedType InitCaptureType;
1131     if (Init.isUsable())
1132       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133     if (Init.isUsable()) {
1134       NonTentativeAction([&] {
1135         // Get the pointer and store it in an lvalue, so we can use it as an
1136         // out argument.
1137         Expr *InitExpr = Init.get();
1138         // This performs any lvalue-to-rvalue conversions if necessary, which
1139         // can affect what gets captured in the containing decl-context.
1140         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142         Init = InitExpr;
1143       });
1144     }
1145 
1146     SourceLocation LocEnd = PrevTokLocation;
1147 
1148     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149                      InitCaptureType, SourceRange(LocStart, LocEnd));
1150   }
1151 
1152   T.consumeClose();
1153   Intro.Range.setEnd(T.getCloseLocation());
1154   return false;
1155 }
1156 
1157 static void tryConsumeLambdaSpecifierToken(Parser &P,
1158                                            SourceLocation &MutableLoc,
1159                                            SourceLocation &ConstexprLoc,
1160                                            SourceLocation &ConstevalLoc,
1161                                            SourceLocation &DeclEndLoc) {
1162   assert(MutableLoc.isInvalid());
1163   assert(ConstexprLoc.isInvalid());
1164   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165   // to the final of those locations. Emit an error if we have multiple
1166   // copies of those keywords and recover.
1167 
1168   while (true) {
1169     switch (P.getCurToken().getKind()) {
1170     case tok::kw_mutable: {
1171       if (MutableLoc.isValid()) {
1172         P.Diag(P.getCurToken().getLocation(),
1173                diag::err_lambda_decl_specifier_repeated)
1174             << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175       }
1176       MutableLoc = P.ConsumeToken();
1177       DeclEndLoc = MutableLoc;
1178       break /*switch*/;
1179     }
1180     case tok::kw_constexpr:
1181       if (ConstexprLoc.isValid()) {
1182         P.Diag(P.getCurToken().getLocation(),
1183                diag::err_lambda_decl_specifier_repeated)
1184             << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185       }
1186       ConstexprLoc = P.ConsumeToken();
1187       DeclEndLoc = ConstexprLoc;
1188       break /*switch*/;
1189     case tok::kw_consteval:
1190       if (ConstevalLoc.isValid()) {
1191         P.Diag(P.getCurToken().getLocation(),
1192                diag::err_lambda_decl_specifier_repeated)
1193             << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194       }
1195       ConstevalLoc = P.ConsumeToken();
1196       DeclEndLoc = ConstevalLoc;
1197       break /*switch*/;
1198     default:
1199       return;
1200     }
1201   }
1202 }
1203 
1204 static void
1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206                                   DeclSpec &DS) {
1207   if (ConstexprLoc.isValid()) {
1208     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209                              ? diag::ext_constexpr_on_lambda_cxx17
1210                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1211     const char *PrevSpec = nullptr;
1212     unsigned DiagID = 0;
1213     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214                         DiagID);
1215     assert(PrevSpec == nullptr && DiagID == 0 &&
1216            "Constexpr cannot have been set previously!");
1217   }
1218 }
1219 
1220 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221                                               SourceLocation ConstevalLoc,
1222                                               DeclSpec &DS) {
1223   if (ConstevalLoc.isValid()) {
1224     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225     const char *PrevSpec = nullptr;
1226     unsigned DiagID = 0;
1227     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228                         DiagID);
1229     if (DiagID != 0)
1230       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231   }
1232 }
1233 
1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235 /// expression.
1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237                      LambdaIntroducer &Intro) {
1238   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240 
1241   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242                                 "lambda expression parsing");
1243 
1244 
1245 
1246   // FIXME: Call into Actions to add any init-capture declarations to the
1247   // scope while parsing the lambda-declarator and compound-statement.
1248 
1249   // Parse lambda-declarator[opt].
1250   DeclSpec DS(AttrFactory);
1251   Declarator D(DS, DeclaratorContext::LambdaExpr);
1252   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253   Actions.PushLambdaScope();
1254 
1255   ParsedAttributes Attr(AttrFactory);
1256   if (getLangOpts().CUDA) {
1257     // In CUDA code, GNU attributes are allowed to appear immediately after the
1258     // "[...]", even if there is no "(...)" before the lambda body.
1259     MaybeParseGNUAttributes(D);
1260   }
1261 
1262   // Helper to emit a warning if we see a CUDA host/device/global attribute
1263   // after '(...)'. nvcc doesn't accept this.
1264   auto WarnIfHasCUDATargetAttr = [&] {
1265     if (getLangOpts().CUDA)
1266       for (const ParsedAttr &A : Attr)
1267         if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268             A.getKind() == ParsedAttr::AT_CUDAHost ||
1269             A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270           Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271               << A.getAttrName()->getName();
1272   };
1273 
1274   MultiParseScope TemplateParamScope(*this);
1275   if (Tok.is(tok::less)) {
1276     Diag(Tok, getLangOpts().CPlusPlus20
1277                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278                   : diag::ext_lambda_template_parameter_list);
1279 
1280     SmallVector<NamedDecl*, 4> TemplateParams;
1281     SourceLocation LAngleLoc, RAngleLoc;
1282     if (ParseTemplateParameters(TemplateParamScope,
1283                                 CurTemplateDepthTracker.getDepth(),
1284                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1285       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286       return ExprError();
1287     }
1288 
1289     if (TemplateParams.empty()) {
1290       Diag(RAngleLoc,
1291            diag::err_lambda_template_parameter_list_empty);
1292     } else {
1293       ExprResult RequiresClause;
1294       if (TryConsumeToken(tok::kw_requires)) {
1295         RequiresClause =
1296             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297                 /*IsTrailingRequiresClause=*/false));
1298         if (RequiresClause.isInvalid())
1299           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300       }
1301 
1302       Actions.ActOnLambdaExplicitTemplateParameterList(
1303           LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304       ++CurTemplateDepthTracker;
1305     }
1306   }
1307 
1308   // Implement WG21 P2173, which allows attributes immediately before the
1309   // lambda declarator and applies them to the corresponding function operator
1310   // or operator template declaration. We accept this as a conforming extension
1311   // in all language modes that support lambdas.
1312   if (isCXX11AttributeSpecifier()) {
1313     Diag(Tok, getLangOpts().CPlusPlus2b
1314                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315                   : diag::ext_decl_attrs_on_lambda);
1316     MaybeParseCXX11Attributes(D);
1317   }
1318 
1319   TypeResult TrailingReturnType;
1320   SourceLocation TrailingReturnTypeLoc;
1321 
1322   auto ParseLambdaSpecifiers =
1323       [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324           MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325           SourceLocation EllipsisLoc) {
1326         SourceLocation DeclEndLoc = RParenLoc;
1327 
1328         // GNU-style attributes must be parsed before the mutable specifier to
1329         // be compatible with GCC. MSVC-style attributes must be parsed before
1330         // the mutable specifier to be compatible with MSVC.
1331         MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332 
1333         // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334         // the DeclEndLoc.
1335         SourceLocation MutableLoc;
1336         SourceLocation ConstexprLoc;
1337         SourceLocation ConstevalLoc;
1338         tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339                                        ConstevalLoc, DeclEndLoc);
1340 
1341         addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342         addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343         // Parse exception-specification[opt].
1344         ExceptionSpecificationType ESpecType = EST_None;
1345         SourceRange ESpecRange;
1346         SmallVector<ParsedType, 2> DynamicExceptions;
1347         SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348         ExprResult NoexceptExpr;
1349         CachedTokens *ExceptionSpecTokens;
1350         ESpecType = tryParseExceptionSpecification(
1351             /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352             DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353 
1354         if (ESpecType != EST_None)
1355           DeclEndLoc = ESpecRange.getEnd();
1356 
1357         // Parse attribute-specifier[opt].
1358         MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1359 
1360         // Parse OpenCL addr space attribute.
1361         if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1362                         tok::kw___constant, tok::kw___generic)) {
1363           ParseOpenCLQualifiers(DS.getAttributes());
1364           ConsumeToken();
1365         }
1366 
1367         SourceLocation FunLocalRangeEnd = DeclEndLoc;
1368 
1369         // Parse trailing-return-type[opt].
1370         if (Tok.is(tok::arrow)) {
1371           FunLocalRangeEnd = Tok.getLocation();
1372           SourceRange Range;
1373           TrailingReturnType = ParseTrailingReturnType(
1374               Range, /*MayBeFollowedByDirectInit*/ false);
1375           TrailingReturnTypeLoc = Range.getBegin();
1376           if (Range.getEnd().isValid())
1377             DeclEndLoc = Range.getEnd();
1378         }
1379 
1380         SourceLocation NoLoc;
1381         D.AddTypeInfo(
1382             DeclaratorChunk::getFunction(
1383                 /*HasProto=*/true,
1384                 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1385                 ParamInfo.size(), EllipsisLoc, RParenLoc,
1386                 /*RefQualifierIsLvalueRef=*/true,
1387                 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1388                 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1389                 DynamicExceptions.size(),
1390                 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1391                 /*ExceptionSpecTokens*/ nullptr,
1392                 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1393                 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1394             std::move(Attr), DeclEndLoc);
1395       };
1396 
1397   if (Tok.is(tok::l_paren)) {
1398     ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1399                                         Scope::FunctionDeclarationScope |
1400                                         Scope::DeclScope);
1401 
1402     BalancedDelimiterTracker T(*this, tok::l_paren);
1403     T.consumeOpen();
1404     SourceLocation LParenLoc = T.getOpenLocation();
1405 
1406     // Parse parameter-declaration-clause.
1407     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1408     SourceLocation EllipsisLoc;
1409 
1410     if (Tok.isNot(tok::r_paren)) {
1411       Actions.RecordParsingTemplateParameterDepth(
1412           CurTemplateDepthTracker.getOriginalDepth());
1413 
1414       ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1415                                       EllipsisLoc);
1416       // For a generic lambda, each 'auto' within the parameter declaration
1417       // clause creates a template type parameter, so increment the depth.
1418       // If we've parsed any explicit template parameters, then the depth will
1419       // have already been incremented. So we make sure that at most a single
1420       // depth level is added.
1421       if (Actions.getCurGenericLambda())
1422         CurTemplateDepthTracker.setAddedDepth(1);
1423     }
1424 
1425     T.consumeClose();
1426 
1427     // Parse lambda-specifiers.
1428     ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1429                           ParamInfo, EllipsisLoc);
1430 
1431     // Parse requires-clause[opt].
1432     if (Tok.is(tok::kw_requires))
1433       ParseTrailingRequiresClause(D);
1434   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1435                          tok::kw_constexpr, tok::kw_consteval,
1436                          tok::kw___private, tok::kw___global, tok::kw___local,
1437                          tok::kw___constant, tok::kw___generic,
1438                          tok::kw_requires, tok::kw_noexcept) ||
1439              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1440     if (!getLangOpts().CPlusPlus2b)
1441       // It's common to forget that one needs '()' before 'mutable', an
1442       // attribute specifier, the result type, or the requires clause. Deal with
1443       // this.
1444       Diag(Tok, diag::ext_lambda_missing_parens)
1445           << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1446 
1447     SourceLocation NoLoc;
1448     // Parse lambda-specifiers.
1449     std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1450     ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1451                           EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1452   }
1453 
1454   WarnIfHasCUDATargetAttr();
1455 
1456   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1457   // it.
1458   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1459                         Scope::CompoundStmtScope;
1460   ParseScope BodyScope(this, ScopeFlags);
1461 
1462   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1463 
1464   // Parse compound-statement.
1465   if (!Tok.is(tok::l_brace)) {
1466     Diag(Tok, diag::err_expected_lambda_body);
1467     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1468     return ExprError();
1469   }
1470 
1471   StmtResult Stmt(ParseCompoundStatementBody());
1472   BodyScope.Exit();
1473   TemplateParamScope.Exit();
1474 
1475   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1476     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1477 
1478   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1479   return ExprError();
1480 }
1481 
1482 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1483 /// type.
1484 ///
1485 ///       postfix-expression: [C++ 5.2p1]
1486 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1487 ///         'static_cast' '<' type-name '>' '(' expression ')'
1488 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1489 ///         'const_cast' '<' type-name '>' '(' expression ')'
1490 ///
1491 /// C++ for OpenCL s2.3.1 adds:
1492 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
1493 ExprResult Parser::ParseCXXCasts() {
1494   tok::TokenKind Kind = Tok.getKind();
1495   const char *CastName = nullptr; // For error messages
1496 
1497   switch (Kind) {
1498   default: llvm_unreachable("Unknown C++ cast!");
1499   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1500   case tok::kw_const_cast:       CastName = "const_cast";       break;
1501   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1502   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1503   case tok::kw_static_cast:      CastName = "static_cast";      break;
1504   }
1505 
1506   SourceLocation OpLoc = ConsumeToken();
1507   SourceLocation LAngleBracketLoc = Tok.getLocation();
1508 
1509   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1510   // diagnose error, suggest fix, and recover parsing.
1511   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1512     Token Next = NextToken();
1513     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1514       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1515   }
1516 
1517   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1518     return ExprError();
1519 
1520   // Parse the common declaration-specifiers piece.
1521   DeclSpec DS(AttrFactory);
1522   ParseSpecifierQualifierList(DS);
1523 
1524   // Parse the abstract-declarator, if present.
1525   Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1526   ParseDeclarator(DeclaratorInfo);
1527 
1528   SourceLocation RAngleBracketLoc = Tok.getLocation();
1529 
1530   if (ExpectAndConsume(tok::greater))
1531     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1532 
1533   BalancedDelimiterTracker T(*this, tok::l_paren);
1534 
1535   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1536     return ExprError();
1537 
1538   ExprResult Result = ParseExpression();
1539 
1540   // Match the ')'.
1541   T.consumeClose();
1542 
1543   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1544     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1545                                        LAngleBracketLoc, DeclaratorInfo,
1546                                        RAngleBracketLoc,
1547                                        T.getOpenLocation(), Result.get(),
1548                                        T.getCloseLocation());
1549 
1550   return Result;
1551 }
1552 
1553 /// ParseCXXTypeid - This handles the C++ typeid expression.
1554 ///
1555 ///       postfix-expression: [C++ 5.2p1]
1556 ///         'typeid' '(' expression ')'
1557 ///         'typeid' '(' type-id ')'
1558 ///
1559 ExprResult Parser::ParseCXXTypeid() {
1560   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1561 
1562   SourceLocation OpLoc = ConsumeToken();
1563   SourceLocation LParenLoc, RParenLoc;
1564   BalancedDelimiterTracker T(*this, tok::l_paren);
1565 
1566   // typeid expressions are always parenthesized.
1567   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1568     return ExprError();
1569   LParenLoc = T.getOpenLocation();
1570 
1571   ExprResult Result;
1572 
1573   // C++0x [expr.typeid]p3:
1574   //   When typeid is applied to an expression other than an lvalue of a
1575   //   polymorphic class type [...] The expression is an unevaluated
1576   //   operand (Clause 5).
1577   //
1578   // Note that we can't tell whether the expression is an lvalue of a
1579   // polymorphic class type until after we've parsed the expression; we
1580   // speculatively assume the subexpression is unevaluated, and fix it up
1581   // later.
1582   //
1583   // We enter the unevaluated context before trying to determine whether we
1584   // have a type-id, because the tentative parse logic will try to resolve
1585   // names, and must treat them as unevaluated.
1586   EnterExpressionEvaluationContext Unevaluated(
1587       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1588       Sema::ReuseLambdaContextDecl);
1589 
1590   if (isTypeIdInParens()) {
1591     TypeResult Ty = ParseTypeName();
1592 
1593     // Match the ')'.
1594     T.consumeClose();
1595     RParenLoc = T.getCloseLocation();
1596     if (Ty.isInvalid() || RParenLoc.isInvalid())
1597       return ExprError();
1598 
1599     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1600                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1601   } else {
1602     Result = ParseExpression();
1603 
1604     // Match the ')'.
1605     if (Result.isInvalid())
1606       SkipUntil(tok::r_paren, StopAtSemi);
1607     else {
1608       T.consumeClose();
1609       RParenLoc = T.getCloseLocation();
1610       if (RParenLoc.isInvalid())
1611         return ExprError();
1612 
1613       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1614                                       Result.get(), RParenLoc);
1615     }
1616   }
1617 
1618   return Result;
1619 }
1620 
1621 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1622 ///
1623 ///         '__uuidof' '(' expression ')'
1624 ///         '__uuidof' '(' type-id ')'
1625 ///
1626 ExprResult Parser::ParseCXXUuidof() {
1627   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1628 
1629   SourceLocation OpLoc = ConsumeToken();
1630   BalancedDelimiterTracker T(*this, tok::l_paren);
1631 
1632   // __uuidof expressions are always parenthesized.
1633   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1634     return ExprError();
1635 
1636   ExprResult Result;
1637 
1638   if (isTypeIdInParens()) {
1639     TypeResult Ty = ParseTypeName();
1640 
1641     // Match the ')'.
1642     T.consumeClose();
1643 
1644     if (Ty.isInvalid())
1645       return ExprError();
1646 
1647     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1648                                     Ty.get().getAsOpaquePtr(),
1649                                     T.getCloseLocation());
1650   } else {
1651     EnterExpressionEvaluationContext Unevaluated(
1652         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1653     Result = ParseExpression();
1654 
1655     // Match the ')'.
1656     if (Result.isInvalid())
1657       SkipUntil(tok::r_paren, StopAtSemi);
1658     else {
1659       T.consumeClose();
1660 
1661       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1662                                       /*isType=*/false,
1663                                       Result.get(), T.getCloseLocation());
1664     }
1665   }
1666 
1667   return Result;
1668 }
1669 
1670 /// Parse a C++ pseudo-destructor expression after the base,
1671 /// . or -> operator, and nested-name-specifier have already been
1672 /// parsed. We're handling this fragment of the grammar:
1673 ///
1674 ///       postfix-expression: [C++2a expr.post]
1675 ///         postfix-expression . template[opt] id-expression
1676 ///         postfix-expression -> template[opt] id-expression
1677 ///
1678 ///       id-expression:
1679 ///         qualified-id
1680 ///         unqualified-id
1681 ///
1682 ///       qualified-id:
1683 ///         nested-name-specifier template[opt] unqualified-id
1684 ///
1685 ///       nested-name-specifier:
1686 ///         type-name ::
1687 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1688 ///                                         allowed in C++ grammar by accident
1689 ///         nested-name-specifier identifier ::
1690 ///         nested-name-specifier template[opt] simple-template-id ::
1691 ///         [...]
1692 ///
1693 ///       unqualified-id:
1694 ///         ~ type-name
1695 ///         ~ decltype-specifier
1696 ///         [...]
1697 ///
1698 /// ... where the all but the last component of the nested-name-specifier
1699 /// has already been parsed, and the base expression is not of a non-dependent
1700 /// class type.
1701 ExprResult
1702 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1703                                  tok::TokenKind OpKind,
1704                                  CXXScopeSpec &SS,
1705                                  ParsedType ObjectType) {
1706   // If the last component of the (optional) nested-name-specifier is
1707   // template[opt] simple-template-id, it has already been annotated.
1708   UnqualifiedId FirstTypeName;
1709   SourceLocation CCLoc;
1710   if (Tok.is(tok::identifier)) {
1711     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1712     ConsumeToken();
1713     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1714     CCLoc = ConsumeToken();
1715   } else if (Tok.is(tok::annot_template_id)) {
1716     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1717     // FIXME: Carry on and build an AST representation for tooling.
1718     if (TemplateId->isInvalid())
1719       return ExprError();
1720     FirstTypeName.setTemplateId(TemplateId);
1721     ConsumeAnnotationToken();
1722     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1723     CCLoc = ConsumeToken();
1724   } else {
1725     assert(SS.isEmpty() && "missing last component of nested name specifier");
1726     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1727   }
1728 
1729   // Parse the tilde.
1730   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1731   SourceLocation TildeLoc = ConsumeToken();
1732 
1733   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1734     DeclSpec DS(AttrFactory);
1735     ParseDecltypeSpecifier(DS);
1736     if (DS.getTypeSpecType() == TST_error)
1737       return ExprError();
1738     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1739                                              TildeLoc, DS);
1740   }
1741 
1742   if (!Tok.is(tok::identifier)) {
1743     Diag(Tok, diag::err_destructor_tilde_identifier);
1744     return ExprError();
1745   }
1746 
1747   // Parse the second type.
1748   UnqualifiedId SecondTypeName;
1749   IdentifierInfo *Name = Tok.getIdentifierInfo();
1750   SourceLocation NameLoc = ConsumeToken();
1751   SecondTypeName.setIdentifier(Name, NameLoc);
1752 
1753   // If there is a '<', the second type name is a template-id. Parse
1754   // it as such.
1755   //
1756   // FIXME: This is not a context in which a '<' is assumed to start a template
1757   // argument list. This affects examples such as
1758   //   void f(auto *p) { p->~X<int>(); }
1759   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1760   // example, so we accept it anyway.
1761   if (Tok.is(tok::less) &&
1762       ParseUnqualifiedIdTemplateId(
1763           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1764           Name, NameLoc, false, SecondTypeName,
1765           /*AssumeTemplateId=*/true))
1766     return ExprError();
1767 
1768   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1769                                            SS, FirstTypeName, CCLoc, TildeLoc,
1770                                            SecondTypeName);
1771 }
1772 
1773 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1774 ///
1775 ///       boolean-literal: [C++ 2.13.5]
1776 ///         'true'
1777 ///         'false'
1778 ExprResult Parser::ParseCXXBoolLiteral() {
1779   tok::TokenKind Kind = Tok.getKind();
1780   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1781 }
1782 
1783 /// ParseThrowExpression - This handles the C++ throw expression.
1784 ///
1785 ///       throw-expression: [C++ 15]
1786 ///         'throw' assignment-expression[opt]
1787 ExprResult Parser::ParseThrowExpression() {
1788   assert(Tok.is(tok::kw_throw) && "Not throw!");
1789   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1790 
1791   // If the current token isn't the start of an assignment-expression,
1792   // then the expression is not present.  This handles things like:
1793   //   "C ? throw : (void)42", which is crazy but legal.
1794   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1795   case tok::semi:
1796   case tok::r_paren:
1797   case tok::r_square:
1798   case tok::r_brace:
1799   case tok::colon:
1800   case tok::comma:
1801     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1802 
1803   default:
1804     ExprResult Expr(ParseAssignmentExpression());
1805     if (Expr.isInvalid()) return Expr;
1806     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1807   }
1808 }
1809 
1810 /// Parse the C++ Coroutines co_yield expression.
1811 ///
1812 ///       co_yield-expression:
1813 ///         'co_yield' assignment-expression[opt]
1814 ExprResult Parser::ParseCoyieldExpression() {
1815   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1816 
1817   SourceLocation Loc = ConsumeToken();
1818   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1819                                          : ParseAssignmentExpression();
1820   if (!Expr.isInvalid())
1821     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1822   return Expr;
1823 }
1824 
1825 /// ParseCXXThis - This handles the C++ 'this' pointer.
1826 ///
1827 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1828 /// a non-lvalue expression whose value is the address of the object for which
1829 /// the function is called.
1830 ExprResult Parser::ParseCXXThis() {
1831   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1832   SourceLocation ThisLoc = ConsumeToken();
1833   return Actions.ActOnCXXThis(ThisLoc);
1834 }
1835 
1836 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1837 /// Can be interpreted either as function-style casting ("int(x)")
1838 /// or class type construction ("ClassType(x,y,z)")
1839 /// or creation of a value-initialized type ("int()").
1840 /// See [C++ 5.2.3].
1841 ///
1842 ///       postfix-expression: [C++ 5.2p1]
1843 ///         simple-type-specifier '(' expression-list[opt] ')'
1844 /// [C++0x] simple-type-specifier braced-init-list
1845 ///         typename-specifier '(' expression-list[opt] ')'
1846 /// [C++0x] typename-specifier braced-init-list
1847 ///
1848 /// In C++1z onwards, the type specifier can also be a template-name.
1849 ExprResult
1850 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1851   Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
1852   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1853 
1854   assert((Tok.is(tok::l_paren) ||
1855           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1856          && "Expected '(' or '{'!");
1857 
1858   if (Tok.is(tok::l_brace)) {
1859     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1860     ExprResult Init = ParseBraceInitializer();
1861     if (Init.isInvalid())
1862       return Init;
1863     Expr *InitList = Init.get();
1864     return Actions.ActOnCXXTypeConstructExpr(
1865         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1866         InitList->getEndLoc(), /*ListInitialization=*/true);
1867   } else {
1868     BalancedDelimiterTracker T(*this, tok::l_paren);
1869     T.consumeOpen();
1870 
1871     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1872 
1873     ExprVector Exprs;
1874     CommaLocsTy CommaLocs;
1875 
1876     auto RunSignatureHelp = [&]() {
1877       QualType PreferredType;
1878       if (TypeRep)
1879         PreferredType = Actions.ProduceConstructorSignatureHelp(
1880             getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
1881             DS.getEndLoc(), Exprs, T.getOpenLocation());
1882       CalledSignatureHelp = true;
1883       return PreferredType;
1884     };
1885 
1886     if (Tok.isNot(tok::r_paren)) {
1887       if (ParseExpressionList(Exprs, CommaLocs, [&] {
1888             PreferredType.enterFunctionArgument(Tok.getLocation(),
1889                                                 RunSignatureHelp);
1890           })) {
1891         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1892           RunSignatureHelp();
1893         SkipUntil(tok::r_paren, StopAtSemi);
1894         return ExprError();
1895       }
1896     }
1897 
1898     // Match the ')'.
1899     T.consumeClose();
1900 
1901     // TypeRep could be null, if it references an invalid typedef.
1902     if (!TypeRep)
1903       return ExprError();
1904 
1905     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1906            "Unexpected number of commas!");
1907     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1908                                              Exprs, T.getCloseLocation(),
1909                                              /*ListInitialization=*/false);
1910   }
1911 }
1912 
1913 Parser::DeclGroupPtrTy
1914 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1915                                              ParsedAttributesWithRange &Attrs) {
1916   assert(Tok.is(tok::kw_using) && "Expected using");
1917   assert((Context == DeclaratorContext::ForInit ||
1918           Context == DeclaratorContext::SelectionInit) &&
1919          "Unexpected Declarator Context");
1920   DeclGroupPtrTy DG;
1921   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1922 
1923   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1924   if (!DG)
1925     return DG;
1926 
1927   Diag(DeclStart, !getLangOpts().CPlusPlus2b
1928                       ? diag::ext_alias_in_init_statement
1929                       : diag::warn_cxx20_alias_in_init_statement)
1930       << SourceRange(DeclStart, DeclEnd);
1931 
1932   return DG;
1933 }
1934 
1935 /// ParseCXXCondition - if/switch/while condition expression.
1936 ///
1937 ///       condition:
1938 ///         expression
1939 ///         type-specifier-seq declarator '=' assignment-expression
1940 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1941 /// [C++11] type-specifier-seq declarator braced-init-list
1942 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1943 ///             brace-or-equal-initializer
1944 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1945 ///             '=' assignment-expression
1946 ///
1947 /// In C++1z, a condition may in some contexts be preceded by an
1948 /// optional init-statement. This function will parse that too.
1949 ///
1950 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1951 /// will be parsed and stored here.
1952 ///
1953 /// \param Loc The location of the start of the statement that requires this
1954 /// condition, e.g., the "for" in a for loop.
1955 ///
1956 /// \param FRI If non-null, a for range declaration is permitted, and if
1957 /// present will be parsed and stored here, and a null result will be returned.
1958 ///
1959 /// \param EnterForConditionScope If true, enter a continue/break scope at the
1960 /// appropriate moment for a 'for' loop.
1961 ///
1962 /// \returns The parsed condition.
1963 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1964                                                 SourceLocation Loc,
1965                                                 Sema::ConditionKind CK,
1966                                                 ForRangeInfo *FRI,
1967                                                 bool EnterForConditionScope) {
1968   // Helper to ensure we always enter a continue/break scope if requested.
1969   struct ForConditionScopeRAII {
1970     Scope *S;
1971     void enter(bool IsConditionVariable) {
1972       if (S) {
1973         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1974         S->setIsConditionVarScope(IsConditionVariable);
1975       }
1976     }
1977     ~ForConditionScopeRAII() {
1978       if (S)
1979         S->setIsConditionVarScope(false);
1980     }
1981   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
1982 
1983   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1984   PreferredType.enterCondition(Actions, Tok.getLocation());
1985 
1986   if (Tok.is(tok::code_completion)) {
1987     cutOffParsing();
1988     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1989     return Sema::ConditionError();
1990   }
1991 
1992   ParsedAttributesWithRange attrs(AttrFactory);
1993   MaybeParseCXX11Attributes(attrs);
1994 
1995   const auto WarnOnInit = [this, &CK] {
1996     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
1997                                 ? diag::warn_cxx14_compat_init_statement
1998                                 : diag::ext_init_statement)
1999         << (CK == Sema::ConditionKind::Switch);
2000   };
2001 
2002   // Determine what kind of thing we have.
2003   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2004   case ConditionOrInitStatement::Expression: {
2005     // If this is a for loop, we're entering its condition.
2006     ForConditionScope.enter(/*IsConditionVariable=*/false);
2007 
2008     ProhibitAttributes(attrs);
2009 
2010     // We can have an empty expression here.
2011     //   if (; true);
2012     if (InitStmt && Tok.is(tok::semi)) {
2013       WarnOnInit();
2014       SourceLocation SemiLoc = Tok.getLocation();
2015       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2016         Diag(SemiLoc, diag::warn_empty_init_statement)
2017             << (CK == Sema::ConditionKind::Switch)
2018             << FixItHint::CreateRemoval(SemiLoc);
2019       }
2020       ConsumeToken();
2021       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2022       return ParseCXXCondition(nullptr, Loc, CK);
2023     }
2024 
2025     // Parse the expression.
2026     ExprResult Expr = ParseExpression(); // expression
2027     if (Expr.isInvalid())
2028       return Sema::ConditionError();
2029 
2030     if (InitStmt && Tok.is(tok::semi)) {
2031       WarnOnInit();
2032       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2033       ConsumeToken();
2034       return ParseCXXCondition(nullptr, Loc, CK);
2035     }
2036 
2037     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
2038   }
2039 
2040   case ConditionOrInitStatement::InitStmtDecl: {
2041     WarnOnInit();
2042     DeclGroupPtrTy DG;
2043     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2044     if (Tok.is(tok::kw_using))
2045       DG = ParseAliasDeclarationInInitStatement(
2046           DeclaratorContext::SelectionInit, attrs);
2047     else
2048       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2049                                   attrs, /*RequireSemi=*/true);
2050     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2051     return ParseCXXCondition(nullptr, Loc, CK);
2052   }
2053 
2054   case ConditionOrInitStatement::ForRangeDecl: {
2055     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2056     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2057     // permitted here.
2058     assert(FRI && "should not parse a for range declaration here");
2059     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2060     DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
2061                                                DeclEnd, attrs, false, FRI);
2062     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2063     assert((FRI->ColonLoc.isValid() || !DG) &&
2064            "cannot find for range declaration");
2065     return Sema::ConditionResult();
2066   }
2067 
2068   case ConditionOrInitStatement::ConditionDecl:
2069   case ConditionOrInitStatement::Error:
2070     break;
2071   }
2072 
2073   // If this is a for loop, we're entering its condition.
2074   ForConditionScope.enter(/*IsConditionVariable=*/true);
2075 
2076   // type-specifier-seq
2077   DeclSpec DS(AttrFactory);
2078   DS.takeAttributesFrom(attrs);
2079   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2080 
2081   // declarator
2082   Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
2083   ParseDeclarator(DeclaratorInfo);
2084 
2085   // simple-asm-expr[opt]
2086   if (Tok.is(tok::kw_asm)) {
2087     SourceLocation Loc;
2088     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2089     if (AsmLabel.isInvalid()) {
2090       SkipUntil(tok::semi, StopAtSemi);
2091       return Sema::ConditionError();
2092     }
2093     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2094     DeclaratorInfo.SetRangeEnd(Loc);
2095   }
2096 
2097   // If attributes are present, parse them.
2098   MaybeParseGNUAttributes(DeclaratorInfo);
2099 
2100   // Type-check the declaration itself.
2101   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2102                                                         DeclaratorInfo);
2103   if (Dcl.isInvalid())
2104     return Sema::ConditionError();
2105   Decl *DeclOut = Dcl.get();
2106 
2107   // '=' assignment-expression
2108   // If a '==' or '+=' is found, suggest a fixit to '='.
2109   bool CopyInitialization = isTokenEqualOrEqualTypo();
2110   if (CopyInitialization)
2111     ConsumeToken();
2112 
2113   ExprResult InitExpr = ExprError();
2114   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2115     Diag(Tok.getLocation(),
2116          diag::warn_cxx98_compat_generalized_initializer_lists);
2117     InitExpr = ParseBraceInitializer();
2118   } else if (CopyInitialization) {
2119     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2120     InitExpr = ParseAssignmentExpression();
2121   } else if (Tok.is(tok::l_paren)) {
2122     // This was probably an attempt to initialize the variable.
2123     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2124     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2125       RParen = ConsumeParen();
2126     Diag(DeclOut->getLocation(),
2127          diag::err_expected_init_in_condition_lparen)
2128       << SourceRange(LParen, RParen);
2129   } else {
2130     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2131   }
2132 
2133   if (!InitExpr.isInvalid())
2134     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2135   else
2136     Actions.ActOnInitializerError(DeclOut);
2137 
2138   Actions.FinalizeDeclaration(DeclOut);
2139   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2140 }
2141 
2142 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2143 /// This should only be called when the current token is known to be part of
2144 /// simple-type-specifier.
2145 ///
2146 ///       simple-type-specifier:
2147 ///         '::'[opt] nested-name-specifier[opt] type-name
2148 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2149 ///         char
2150 ///         wchar_t
2151 ///         bool
2152 ///         short
2153 ///         int
2154 ///         long
2155 ///         signed
2156 ///         unsigned
2157 ///         float
2158 ///         double
2159 ///         void
2160 /// [GNU]   typeof-specifier
2161 /// [C++0x] auto               [TODO]
2162 ///
2163 ///       type-name:
2164 ///         class-name
2165 ///         enum-name
2166 ///         typedef-name
2167 ///
2168 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2169   DS.SetRangeStart(Tok.getLocation());
2170   const char *PrevSpec;
2171   unsigned DiagID;
2172   SourceLocation Loc = Tok.getLocation();
2173   const clang::PrintingPolicy &Policy =
2174       Actions.getASTContext().getPrintingPolicy();
2175 
2176   switch (Tok.getKind()) {
2177   case tok::identifier:   // foo::bar
2178   case tok::coloncolon:   // ::foo::bar
2179     llvm_unreachable("Annotation token should already be formed!");
2180   default:
2181     llvm_unreachable("Not a simple-type-specifier token!");
2182 
2183   // type-name
2184   case tok::annot_typename: {
2185     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2186                        getTypeAnnotation(Tok), Policy);
2187     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2188     ConsumeAnnotationToken();
2189 
2190     DS.Finish(Actions, Policy);
2191     return;
2192   }
2193 
2194   case tok::kw__ExtInt:
2195   case tok::kw__BitInt: {
2196     DiagnoseBitIntUse(Tok);
2197     ExprResult ER = ParseExtIntegerArgument();
2198     if (ER.isInvalid())
2199       DS.SetTypeSpecError();
2200     else
2201       DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2202 
2203     // Do this here because we have already consumed the close paren.
2204     DS.SetRangeEnd(PrevTokLocation);
2205     DS.Finish(Actions, Policy);
2206     return;
2207   }
2208 
2209   // builtin types
2210   case tok::kw_short:
2211     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2212                         Policy);
2213     break;
2214   case tok::kw_long:
2215     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2216                         Policy);
2217     break;
2218   case tok::kw___int64:
2219     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2220                         Policy);
2221     break;
2222   case tok::kw_signed:
2223     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2224     break;
2225   case tok::kw_unsigned:
2226     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2227     break;
2228   case tok::kw_void:
2229     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2230     break;
2231   case tok::kw_char:
2232     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2233     break;
2234   case tok::kw_int:
2235     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2236     break;
2237   case tok::kw___int128:
2238     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2239     break;
2240   case tok::kw___bf16:
2241     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2242     break;
2243   case tok::kw_half:
2244     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2245     break;
2246   case tok::kw_float:
2247     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2248     break;
2249   case tok::kw_double:
2250     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2251     break;
2252   case tok::kw__Float16:
2253     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2254     break;
2255   case tok::kw___float128:
2256     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2257     break;
2258   case tok::kw___ibm128:
2259     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2260     break;
2261   case tok::kw_wchar_t:
2262     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2263     break;
2264   case tok::kw_char8_t:
2265     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2266     break;
2267   case tok::kw_char16_t:
2268     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2269     break;
2270   case tok::kw_char32_t:
2271     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2272     break;
2273   case tok::kw_bool:
2274     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2275     break;
2276 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2277   case tok::kw_##ImgType##_t:                                                  \
2278     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2279                        Policy);                                                \
2280     break;
2281 #include "clang/Basic/OpenCLImageTypes.def"
2282 
2283   case tok::annot_decltype:
2284   case tok::kw_decltype:
2285     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2286     return DS.Finish(Actions, Policy);
2287 
2288   // GNU typeof support.
2289   case tok::kw_typeof:
2290     ParseTypeofSpecifier(DS);
2291     DS.Finish(Actions, Policy);
2292     return;
2293   }
2294   ConsumeAnyToken();
2295   DS.SetRangeEnd(PrevTokLocation);
2296   DS.Finish(Actions, Policy);
2297 }
2298 
2299 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2300 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2301 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2302 /// by parsing the type-specifier-seq, because these sequences are
2303 /// typically followed by some form of declarator. Returns true and
2304 /// emits diagnostics if this is not a type-specifier-seq, false
2305 /// otherwise.
2306 ///
2307 ///   type-specifier-seq: [C++ 8.1]
2308 ///     type-specifier type-specifier-seq[opt]
2309 ///
2310 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2311   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2312   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2313   return false;
2314 }
2315 
2316 /// Finish parsing a C++ unqualified-id that is a template-id of
2317 /// some form.
2318 ///
2319 /// This routine is invoked when a '<' is encountered after an identifier or
2320 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2321 /// whether the unqualified-id is actually a template-id. This routine will
2322 /// then parse the template arguments and form the appropriate template-id to
2323 /// return to the caller.
2324 ///
2325 /// \param SS the nested-name-specifier that precedes this template-id, if
2326 /// we're actually parsing a qualified-id.
2327 ///
2328 /// \param ObjectType if this unqualified-id occurs within a member access
2329 /// expression, the type of the base object whose member is being accessed.
2330 ///
2331 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2332 /// expression, indicates whether the original subexpressions had any errors.
2333 ///
2334 /// \param Name for constructor and destructor names, this is the actual
2335 /// identifier that may be a template-name.
2336 ///
2337 /// \param NameLoc the location of the class-name in a constructor or
2338 /// destructor.
2339 ///
2340 /// \param EnteringContext whether we're entering the scope of the
2341 /// nested-name-specifier.
2342 ///
2343 /// \param Id as input, describes the template-name or operator-function-id
2344 /// that precedes the '<'. If template arguments were parsed successfully,
2345 /// will be updated with the template-id.
2346 ///
2347 /// \param AssumeTemplateId When true, this routine will assume that the name
2348 /// refers to a template without performing name lookup to verify.
2349 ///
2350 /// \returns true if a parse error occurred, false otherwise.
2351 bool Parser::ParseUnqualifiedIdTemplateId(
2352     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2353     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2354     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2355   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2356 
2357   TemplateTy Template;
2358   TemplateNameKind TNK = TNK_Non_template;
2359   switch (Id.getKind()) {
2360   case UnqualifiedIdKind::IK_Identifier:
2361   case UnqualifiedIdKind::IK_OperatorFunctionId:
2362   case UnqualifiedIdKind::IK_LiteralOperatorId:
2363     if (AssumeTemplateId) {
2364       // We defer the injected-class-name checks until we've found whether
2365       // this template-id is used to form a nested-name-specifier or not.
2366       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2367                                       ObjectType, EnteringContext, Template,
2368                                       /*AllowInjectedClassName*/ true);
2369     } else {
2370       bool MemberOfUnknownSpecialization;
2371       TNK = Actions.isTemplateName(getCurScope(), SS,
2372                                    TemplateKWLoc.isValid(), Id,
2373                                    ObjectType, EnteringContext, Template,
2374                                    MemberOfUnknownSpecialization);
2375       // If lookup found nothing but we're assuming that this is a template
2376       // name, double-check that makes sense syntactically before committing
2377       // to it.
2378       if (TNK == TNK_Undeclared_template &&
2379           isTemplateArgumentList(0) == TPResult::False)
2380         return false;
2381 
2382       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2383           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2384         // If we had errors before, ObjectType can be dependent even without any
2385         // templates, do not report missing template keyword in that case.
2386         if (!ObjectHadErrors) {
2387           // We have something like t->getAs<T>(), where getAs is a
2388           // member of an unknown specialization. However, this will only
2389           // parse correctly as a template, so suggest the keyword 'template'
2390           // before 'getAs' and treat this as a dependent template name.
2391           std::string Name;
2392           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2393             Name = std::string(Id.Identifier->getName());
2394           else {
2395             Name = "operator ";
2396             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2397               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2398             else
2399               Name += Id.Identifier->getName();
2400           }
2401           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2402               << Name
2403               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2404         }
2405         TNK = Actions.ActOnTemplateName(
2406             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2407             Template, /*AllowInjectedClassName*/ true);
2408       } else if (TNK == TNK_Non_template) {
2409         return false;
2410       }
2411     }
2412     break;
2413 
2414   case UnqualifiedIdKind::IK_ConstructorName: {
2415     UnqualifiedId TemplateName;
2416     bool MemberOfUnknownSpecialization;
2417     TemplateName.setIdentifier(Name, NameLoc);
2418     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2419                                  TemplateName, ObjectType,
2420                                  EnteringContext, Template,
2421                                  MemberOfUnknownSpecialization);
2422     if (TNK == TNK_Non_template)
2423       return false;
2424     break;
2425   }
2426 
2427   case UnqualifiedIdKind::IK_DestructorName: {
2428     UnqualifiedId TemplateName;
2429     bool MemberOfUnknownSpecialization;
2430     TemplateName.setIdentifier(Name, NameLoc);
2431     if (ObjectType) {
2432       TNK = Actions.ActOnTemplateName(
2433           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2434           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2435     } else {
2436       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2437                                    TemplateName, ObjectType,
2438                                    EnteringContext, Template,
2439                                    MemberOfUnknownSpecialization);
2440 
2441       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2442         Diag(NameLoc, diag::err_destructor_template_id)
2443           << Name << SS.getRange();
2444         // Carry on to parse the template arguments before bailing out.
2445       }
2446     }
2447     break;
2448   }
2449 
2450   default:
2451     return false;
2452   }
2453 
2454   // Parse the enclosed template argument list.
2455   SourceLocation LAngleLoc, RAngleLoc;
2456   TemplateArgList TemplateArgs;
2457   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
2458                                        RAngleLoc))
2459     return true;
2460 
2461   // If this is a non-template, we already issued a diagnostic.
2462   if (TNK == TNK_Non_template)
2463     return true;
2464 
2465   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2466       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2467       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2468     // Form a parsed representation of the template-id to be stored in the
2469     // UnqualifiedId.
2470 
2471     // FIXME: Store name for literal operator too.
2472     IdentifierInfo *TemplateII =
2473         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2474                                                          : nullptr;
2475     OverloadedOperatorKind OpKind =
2476         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2477             ? OO_None
2478             : Id.OperatorFunctionId.Operator;
2479 
2480     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2481         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2482         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2483 
2484     Id.setTemplateId(TemplateId);
2485     return false;
2486   }
2487 
2488   // Bundle the template arguments together.
2489   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2490 
2491   // Constructor and destructor names.
2492   TypeResult Type = Actions.ActOnTemplateIdType(
2493       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2494       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2495   if (Type.isInvalid())
2496     return true;
2497 
2498   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2499     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2500   else
2501     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2502 
2503   return false;
2504 }
2505 
2506 /// Parse an operator-function-id or conversion-function-id as part
2507 /// of a C++ unqualified-id.
2508 ///
2509 /// This routine is responsible only for parsing the operator-function-id or
2510 /// conversion-function-id; it does not handle template arguments in any way.
2511 ///
2512 /// \code
2513 ///       operator-function-id: [C++ 13.5]
2514 ///         'operator' operator
2515 ///
2516 ///       operator: one of
2517 ///            new   delete  new[]   delete[]
2518 ///            +     -    *  /    %  ^    &   |   ~
2519 ///            !     =    <  >    += -=   *=  /=  %=
2520 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2521 ///            <=    >=   && ||   ++ --   ,   ->* ->
2522 ///            ()    []   <=>
2523 ///
2524 ///       conversion-function-id: [C++ 12.3.2]
2525 ///         operator conversion-type-id
2526 ///
2527 ///       conversion-type-id:
2528 ///         type-specifier-seq conversion-declarator[opt]
2529 ///
2530 ///       conversion-declarator:
2531 ///         ptr-operator conversion-declarator[opt]
2532 /// \endcode
2533 ///
2534 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2535 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2536 ///
2537 /// \param EnteringContext whether we are entering the scope of the
2538 /// nested-name-specifier.
2539 ///
2540 /// \param ObjectType if this unqualified-id occurs within a member access
2541 /// expression, the type of the base object whose member is being accessed.
2542 ///
2543 /// \param Result on a successful parse, contains the parsed unqualified-id.
2544 ///
2545 /// \returns true if parsing fails, false otherwise.
2546 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2547                                         ParsedType ObjectType,
2548                                         UnqualifiedId &Result) {
2549   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2550 
2551   // Consume the 'operator' keyword.
2552   SourceLocation KeywordLoc = ConsumeToken();
2553 
2554   // Determine what kind of operator name we have.
2555   unsigned SymbolIdx = 0;
2556   SourceLocation SymbolLocations[3];
2557   OverloadedOperatorKind Op = OO_None;
2558   switch (Tok.getKind()) {
2559     case tok::kw_new:
2560     case tok::kw_delete: {
2561       bool isNew = Tok.getKind() == tok::kw_new;
2562       // Consume the 'new' or 'delete'.
2563       SymbolLocations[SymbolIdx++] = ConsumeToken();
2564       // Check for array new/delete.
2565       if (Tok.is(tok::l_square) &&
2566           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2567         // Consume the '[' and ']'.
2568         BalancedDelimiterTracker T(*this, tok::l_square);
2569         T.consumeOpen();
2570         T.consumeClose();
2571         if (T.getCloseLocation().isInvalid())
2572           return true;
2573 
2574         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2575         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2576         Op = isNew? OO_Array_New : OO_Array_Delete;
2577       } else {
2578         Op = isNew? OO_New : OO_Delete;
2579       }
2580       break;
2581     }
2582 
2583 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2584     case tok::Token:                                                     \
2585       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2586       Op = OO_##Name;                                                    \
2587       break;
2588 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2589 #include "clang/Basic/OperatorKinds.def"
2590 
2591     case tok::l_paren: {
2592       // Consume the '(' and ')'.
2593       BalancedDelimiterTracker T(*this, tok::l_paren);
2594       T.consumeOpen();
2595       T.consumeClose();
2596       if (T.getCloseLocation().isInvalid())
2597         return true;
2598 
2599       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2600       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2601       Op = OO_Call;
2602       break;
2603     }
2604 
2605     case tok::l_square: {
2606       // Consume the '[' and ']'.
2607       BalancedDelimiterTracker T(*this, tok::l_square);
2608       T.consumeOpen();
2609       T.consumeClose();
2610       if (T.getCloseLocation().isInvalid())
2611         return true;
2612 
2613       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2614       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2615       Op = OO_Subscript;
2616       break;
2617     }
2618 
2619     case tok::code_completion: {
2620       // Don't try to parse any further.
2621       cutOffParsing();
2622       // Code completion for the operator name.
2623       Actions.CodeCompleteOperatorName(getCurScope());
2624       return true;
2625     }
2626 
2627     default:
2628       break;
2629   }
2630 
2631   if (Op != OO_None) {
2632     // We have parsed an operator-function-id.
2633     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2634     return false;
2635   }
2636 
2637   // Parse a literal-operator-id.
2638   //
2639   //   literal-operator-id: C++11 [over.literal]
2640   //     operator string-literal identifier
2641   //     operator user-defined-string-literal
2642 
2643   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2644     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2645 
2646     SourceLocation DiagLoc;
2647     unsigned DiagId = 0;
2648 
2649     // We're past translation phase 6, so perform string literal concatenation
2650     // before checking for "".
2651     SmallVector<Token, 4> Toks;
2652     SmallVector<SourceLocation, 4> TokLocs;
2653     while (isTokenStringLiteral()) {
2654       if (!Tok.is(tok::string_literal) && !DiagId) {
2655         // C++11 [over.literal]p1:
2656         //   The string-literal or user-defined-string-literal in a
2657         //   literal-operator-id shall have no encoding-prefix [...].
2658         DiagLoc = Tok.getLocation();
2659         DiagId = diag::err_literal_operator_string_prefix;
2660       }
2661       Toks.push_back(Tok);
2662       TokLocs.push_back(ConsumeStringToken());
2663     }
2664 
2665     StringLiteralParser Literal(Toks, PP);
2666     if (Literal.hadError)
2667       return true;
2668 
2669     // Grab the literal operator's suffix, which will be either the next token
2670     // or a ud-suffix from the string literal.
2671     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2672     IdentifierInfo *II = nullptr;
2673     SourceLocation SuffixLoc;
2674     if (IsUDSuffix) {
2675       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2676       SuffixLoc =
2677         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2678                                        Literal.getUDSuffixOffset(),
2679                                        PP.getSourceManager(), getLangOpts());
2680     } else if (Tok.is(tok::identifier)) {
2681       II = Tok.getIdentifierInfo();
2682       SuffixLoc = ConsumeToken();
2683       TokLocs.push_back(SuffixLoc);
2684     } else {
2685       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2686       return true;
2687     }
2688 
2689     // The string literal must be empty.
2690     if (!Literal.GetString().empty() || Literal.Pascal) {
2691       // C++11 [over.literal]p1:
2692       //   The string-literal or user-defined-string-literal in a
2693       //   literal-operator-id shall [...] contain no characters
2694       //   other than the implicit terminating '\0'.
2695       DiagLoc = TokLocs.front();
2696       DiagId = diag::err_literal_operator_string_not_empty;
2697     }
2698 
2699     if (DiagId) {
2700       // This isn't a valid literal-operator-id, but we think we know
2701       // what the user meant. Tell them what they should have written.
2702       SmallString<32> Str;
2703       Str += "\"\"";
2704       Str += II->getName();
2705       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2706           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2707     }
2708 
2709     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2710 
2711     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2712   }
2713 
2714   // Parse a conversion-function-id.
2715   //
2716   //   conversion-function-id: [C++ 12.3.2]
2717   //     operator conversion-type-id
2718   //
2719   //   conversion-type-id:
2720   //     type-specifier-seq conversion-declarator[opt]
2721   //
2722   //   conversion-declarator:
2723   //     ptr-operator conversion-declarator[opt]
2724 
2725   // Parse the type-specifier-seq.
2726   DeclSpec DS(AttrFactory);
2727   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2728     return true;
2729 
2730   // Parse the conversion-declarator, which is merely a sequence of
2731   // ptr-operators.
2732   Declarator D(DS, DeclaratorContext::ConversionId);
2733   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2734 
2735   // Finish up the type.
2736   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2737   if (Ty.isInvalid())
2738     return true;
2739 
2740   // Note that this is a conversion-function-id.
2741   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2742                                  D.getSourceRange().getEnd());
2743   return false;
2744 }
2745 
2746 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2747 /// name of an entity.
2748 ///
2749 /// \code
2750 ///       unqualified-id: [C++ expr.prim.general]
2751 ///         identifier
2752 ///         operator-function-id
2753 ///         conversion-function-id
2754 /// [C++0x] literal-operator-id [TODO]
2755 ///         ~ class-name
2756 ///         template-id
2757 ///
2758 /// \endcode
2759 ///
2760 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2761 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2762 ///
2763 /// \param ObjectType if this unqualified-id occurs within a member access
2764 /// expression, the type of the base object whose member is being accessed.
2765 ///
2766 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2767 /// expression, indicates whether the original subexpressions had any errors.
2768 /// When true, diagnostics for missing 'template' keyword will be supressed.
2769 ///
2770 /// \param EnteringContext whether we are entering the scope of the
2771 /// nested-name-specifier.
2772 ///
2773 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2774 ///
2775 /// \param AllowConstructorName whether we allow parsing a constructor name.
2776 ///
2777 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2778 ///
2779 /// \param Result on a successful parse, contains the parsed unqualified-id.
2780 ///
2781 /// \returns true if parsing fails, false otherwise.
2782 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2783                                 bool ObjectHadErrors, bool EnteringContext,
2784                                 bool AllowDestructorName,
2785                                 bool AllowConstructorName,
2786                                 bool AllowDeductionGuide,
2787                                 SourceLocation *TemplateKWLoc,
2788                                 UnqualifiedId &Result) {
2789   if (TemplateKWLoc)
2790     *TemplateKWLoc = SourceLocation();
2791 
2792   // Handle 'A::template B'. This is for template-ids which have not
2793   // already been annotated by ParseOptionalCXXScopeSpecifier().
2794   bool TemplateSpecified = false;
2795   if (Tok.is(tok::kw_template)) {
2796     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2797       TemplateSpecified = true;
2798       *TemplateKWLoc = ConsumeToken();
2799     } else {
2800       SourceLocation TemplateLoc = ConsumeToken();
2801       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2802         << FixItHint::CreateRemoval(TemplateLoc);
2803     }
2804   }
2805 
2806   // unqualified-id:
2807   //   identifier
2808   //   template-id (when it hasn't already been annotated)
2809   if (Tok.is(tok::identifier)) {
2810     // Consume the identifier.
2811     IdentifierInfo *Id = Tok.getIdentifierInfo();
2812     SourceLocation IdLoc = ConsumeToken();
2813 
2814     if (!getLangOpts().CPlusPlus) {
2815       // If we're not in C++, only identifiers matter. Record the
2816       // identifier and return.
2817       Result.setIdentifier(Id, IdLoc);
2818       return false;
2819     }
2820 
2821     ParsedTemplateTy TemplateName;
2822     if (AllowConstructorName &&
2823         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2824       // We have parsed a constructor name.
2825       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2826                                                  EnteringContext);
2827       if (!Ty)
2828         return true;
2829       Result.setConstructorName(Ty, IdLoc, IdLoc);
2830     } else if (getLangOpts().CPlusPlus17 &&
2831                AllowDeductionGuide && SS.isEmpty() &&
2832                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2833                                             &TemplateName)) {
2834       // We have parsed a template-name naming a deduction guide.
2835       Result.setDeductionGuideName(TemplateName, IdLoc);
2836     } else {
2837       // We have parsed an identifier.
2838       Result.setIdentifier(Id, IdLoc);
2839     }
2840 
2841     // If the next token is a '<', we may have a template.
2842     TemplateTy Template;
2843     if (Tok.is(tok::less))
2844       return ParseUnqualifiedIdTemplateId(
2845           SS, ObjectType, ObjectHadErrors,
2846           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2847           EnteringContext, Result, TemplateSpecified);
2848     else if (TemplateSpecified &&
2849              Actions.ActOnTemplateName(
2850                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2851                  EnteringContext, Template,
2852                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2853       return true;
2854 
2855     return false;
2856   }
2857 
2858   // unqualified-id:
2859   //   template-id (already parsed and annotated)
2860   if (Tok.is(tok::annot_template_id)) {
2861     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2862 
2863     // FIXME: Consider passing invalid template-ids on to callers; they may
2864     // be able to recover better than we can.
2865     if (TemplateId->isInvalid()) {
2866       ConsumeAnnotationToken();
2867       return true;
2868     }
2869 
2870     // If the template-name names the current class, then this is a constructor
2871     if (AllowConstructorName && TemplateId->Name &&
2872         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2873       if (SS.isSet()) {
2874         // C++ [class.qual]p2 specifies that a qualified template-name
2875         // is taken as the constructor name where a constructor can be
2876         // declared. Thus, the template arguments are extraneous, so
2877         // complain about them and remove them entirely.
2878         Diag(TemplateId->TemplateNameLoc,
2879              diag::err_out_of_line_constructor_template_id)
2880           << TemplateId->Name
2881           << FixItHint::CreateRemoval(
2882                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2883         ParsedType Ty = Actions.getConstructorName(
2884             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2885             EnteringContext);
2886         if (!Ty)
2887           return true;
2888         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2889                                   TemplateId->RAngleLoc);
2890         ConsumeAnnotationToken();
2891         return false;
2892       }
2893 
2894       Result.setConstructorTemplateId(TemplateId);
2895       ConsumeAnnotationToken();
2896       return false;
2897     }
2898 
2899     // We have already parsed a template-id; consume the annotation token as
2900     // our unqualified-id.
2901     Result.setTemplateId(TemplateId);
2902     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2903     if (TemplateLoc.isValid()) {
2904       if (TemplateKWLoc && (ObjectType || SS.isSet()))
2905         *TemplateKWLoc = TemplateLoc;
2906       else
2907         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2908             << FixItHint::CreateRemoval(TemplateLoc);
2909     }
2910     ConsumeAnnotationToken();
2911     return false;
2912   }
2913 
2914   // unqualified-id:
2915   //   operator-function-id
2916   //   conversion-function-id
2917   if (Tok.is(tok::kw_operator)) {
2918     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2919       return true;
2920 
2921     // If we have an operator-function-id or a literal-operator-id and the next
2922     // token is a '<', we may have a
2923     //
2924     //   template-id:
2925     //     operator-function-id < template-argument-list[opt] >
2926     TemplateTy Template;
2927     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2928          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2929         Tok.is(tok::less))
2930       return ParseUnqualifiedIdTemplateId(
2931           SS, ObjectType, ObjectHadErrors,
2932           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2933           SourceLocation(), EnteringContext, Result, TemplateSpecified);
2934     else if (TemplateSpecified &&
2935              Actions.ActOnTemplateName(
2936                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2937                  EnteringContext, Template,
2938                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2939       return true;
2940 
2941     return false;
2942   }
2943 
2944   if (getLangOpts().CPlusPlus &&
2945       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2946     // C++ [expr.unary.op]p10:
2947     //   There is an ambiguity in the unary-expression ~X(), where X is a
2948     //   class-name. The ambiguity is resolved in favor of treating ~ as a
2949     //    unary complement rather than treating ~X as referring to a destructor.
2950 
2951     // Parse the '~'.
2952     SourceLocation TildeLoc = ConsumeToken();
2953 
2954     if (TemplateSpecified) {
2955       // C++ [temp.names]p3:
2956       //   A name prefixed by the keyword template shall be a template-id [...]
2957       //
2958       // A template-id cannot begin with a '~' token. This would never work
2959       // anyway: x.~A<int>() would specify that the destructor is a template,
2960       // not that 'A' is a template.
2961       //
2962       // FIXME: Suggest replacing the attempted destructor name with a correct
2963       // destructor name and recover. (This is not trivial if this would become
2964       // a pseudo-destructor name).
2965       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2966         << Tok.getLocation();
2967       return true;
2968     }
2969 
2970     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2971       DeclSpec DS(AttrFactory);
2972       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2973       if (ParsedType Type =
2974               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2975         Result.setDestructorName(TildeLoc, Type, EndLoc);
2976         return false;
2977       }
2978       return true;
2979     }
2980 
2981     // Parse the class-name.
2982     if (Tok.isNot(tok::identifier)) {
2983       Diag(Tok, diag::err_destructor_tilde_identifier);
2984       return true;
2985     }
2986 
2987     // If the user wrote ~T::T, correct it to T::~T.
2988     DeclaratorScopeObj DeclScopeObj(*this, SS);
2989     if (NextToken().is(tok::coloncolon)) {
2990       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2991       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2992       // it will confuse this recovery logic.
2993       ColonProtectionRAIIObject ColonRAII(*this, false);
2994 
2995       if (SS.isSet()) {
2996         AnnotateScopeToken(SS, /*NewAnnotation*/true);
2997         SS.clear();
2998       }
2999       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3000                                          EnteringContext))
3001         return true;
3002       if (SS.isNotEmpty())
3003         ObjectType = nullptr;
3004       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3005           !SS.isSet()) {
3006         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3007         return true;
3008       }
3009 
3010       // Recover as if the tilde had been written before the identifier.
3011       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3012         << FixItHint::CreateRemoval(TildeLoc)
3013         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3014 
3015       // Temporarily enter the scope for the rest of this function.
3016       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3017         DeclScopeObj.EnterDeclaratorScope();
3018     }
3019 
3020     // Parse the class-name (or template-name in a simple-template-id).
3021     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3022     SourceLocation ClassNameLoc = ConsumeToken();
3023 
3024     if (Tok.is(tok::less)) {
3025       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3026       return ParseUnqualifiedIdTemplateId(
3027           SS, ObjectType, ObjectHadErrors,
3028           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3029           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3030     }
3031 
3032     // Note that this is a destructor name.
3033     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3034                                               ClassNameLoc, getCurScope(),
3035                                               SS, ObjectType,
3036                                               EnteringContext);
3037     if (!Ty)
3038       return true;
3039 
3040     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3041     return false;
3042   }
3043 
3044   Diag(Tok, diag::err_expected_unqualified_id)
3045     << getLangOpts().CPlusPlus;
3046   return true;
3047 }
3048 
3049 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3050 /// memory in a typesafe manner and call constructors.
3051 ///
3052 /// This method is called to parse the new expression after the optional :: has
3053 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3054 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3055 ///
3056 ///        new-expression:
3057 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3058 ///                                     new-initializer[opt]
3059 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3060 ///                                     new-initializer[opt]
3061 ///
3062 ///        new-placement:
3063 ///                   '(' expression-list ')'
3064 ///
3065 ///        new-type-id:
3066 ///                   type-specifier-seq new-declarator[opt]
3067 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3068 ///
3069 ///        new-declarator:
3070 ///                   ptr-operator new-declarator[opt]
3071 ///                   direct-new-declarator
3072 ///
3073 ///        new-initializer:
3074 ///                   '(' expression-list[opt] ')'
3075 /// [C++0x]           braced-init-list
3076 ///
3077 ExprResult
3078 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3079   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3080   ConsumeToken();   // Consume 'new'
3081 
3082   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3083   // second form of new-expression. It can't be a new-type-id.
3084 
3085   ExprVector PlacementArgs;
3086   SourceLocation PlacementLParen, PlacementRParen;
3087 
3088   SourceRange TypeIdParens;
3089   DeclSpec DS(AttrFactory);
3090   Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
3091   if (Tok.is(tok::l_paren)) {
3092     // If it turns out to be a placement, we change the type location.
3093     BalancedDelimiterTracker T(*this, tok::l_paren);
3094     T.consumeOpen();
3095     PlacementLParen = T.getOpenLocation();
3096     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3097       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3098       return ExprError();
3099     }
3100 
3101     T.consumeClose();
3102     PlacementRParen = T.getCloseLocation();
3103     if (PlacementRParen.isInvalid()) {
3104       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3105       return ExprError();
3106     }
3107 
3108     if (PlacementArgs.empty()) {
3109       // Reset the placement locations. There was no placement.
3110       TypeIdParens = T.getRange();
3111       PlacementLParen = PlacementRParen = SourceLocation();
3112     } else {
3113       // We still need the type.
3114       if (Tok.is(tok::l_paren)) {
3115         BalancedDelimiterTracker T(*this, tok::l_paren);
3116         T.consumeOpen();
3117         MaybeParseGNUAttributes(DeclaratorInfo);
3118         ParseSpecifierQualifierList(DS);
3119         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3120         ParseDeclarator(DeclaratorInfo);
3121         T.consumeClose();
3122         TypeIdParens = T.getRange();
3123       } else {
3124         MaybeParseGNUAttributes(DeclaratorInfo);
3125         if (ParseCXXTypeSpecifierSeq(DS))
3126           DeclaratorInfo.setInvalidType(true);
3127         else {
3128           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3129           ParseDeclaratorInternal(DeclaratorInfo,
3130                                   &Parser::ParseDirectNewDeclarator);
3131         }
3132       }
3133     }
3134   } else {
3135     // A new-type-id is a simplified type-id, where essentially the
3136     // direct-declarator is replaced by a direct-new-declarator.
3137     MaybeParseGNUAttributes(DeclaratorInfo);
3138     if (ParseCXXTypeSpecifierSeq(DS))
3139       DeclaratorInfo.setInvalidType(true);
3140     else {
3141       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3142       ParseDeclaratorInternal(DeclaratorInfo,
3143                               &Parser::ParseDirectNewDeclarator);
3144     }
3145   }
3146   if (DeclaratorInfo.isInvalidType()) {
3147     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3148     return ExprError();
3149   }
3150 
3151   ExprResult Initializer;
3152 
3153   if (Tok.is(tok::l_paren)) {
3154     SourceLocation ConstructorLParen, ConstructorRParen;
3155     ExprVector ConstructorArgs;
3156     BalancedDelimiterTracker T(*this, tok::l_paren);
3157     T.consumeOpen();
3158     ConstructorLParen = T.getOpenLocation();
3159     if (Tok.isNot(tok::r_paren)) {
3160       CommaLocsTy CommaLocs;
3161       auto RunSignatureHelp = [&]() {
3162         ParsedType TypeRep =
3163             Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3164         QualType PreferredType;
3165         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3166         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3167         // `new decltype(invalid) (^)`.
3168         if (TypeRep)
3169           PreferredType = Actions.ProduceConstructorSignatureHelp(
3170               getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
3171               DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
3172         CalledSignatureHelp = true;
3173         return PreferredType;
3174       };
3175       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3176             PreferredType.enterFunctionArgument(Tok.getLocation(),
3177                                                 RunSignatureHelp);
3178           })) {
3179         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3180           RunSignatureHelp();
3181         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3182         return ExprError();
3183       }
3184     }
3185     T.consumeClose();
3186     ConstructorRParen = T.getCloseLocation();
3187     if (ConstructorRParen.isInvalid()) {
3188       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3189       return ExprError();
3190     }
3191     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3192                                              ConstructorRParen,
3193                                              ConstructorArgs);
3194   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3195     Diag(Tok.getLocation(),
3196          diag::warn_cxx98_compat_generalized_initializer_lists);
3197     Initializer = ParseBraceInitializer();
3198   }
3199   if (Initializer.isInvalid())
3200     return Initializer;
3201 
3202   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3203                              PlacementArgs, PlacementRParen,
3204                              TypeIdParens, DeclaratorInfo, Initializer.get());
3205 }
3206 
3207 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3208 /// passed to ParseDeclaratorInternal.
3209 ///
3210 ///        direct-new-declarator:
3211 ///                   '[' expression[opt] ']'
3212 ///                   direct-new-declarator '[' constant-expression ']'
3213 ///
3214 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3215   // Parse the array dimensions.
3216   bool First = true;
3217   while (Tok.is(tok::l_square)) {
3218     // An array-size expression can't start with a lambda.
3219     if (CheckProhibitedCXX11Attribute())
3220       continue;
3221 
3222     BalancedDelimiterTracker T(*this, tok::l_square);
3223     T.consumeOpen();
3224 
3225     ExprResult Size =
3226         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3227               : ParseConstantExpression();
3228     if (Size.isInvalid()) {
3229       // Recover
3230       SkipUntil(tok::r_square, StopAtSemi);
3231       return;
3232     }
3233     First = false;
3234 
3235     T.consumeClose();
3236 
3237     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3238     ParsedAttributes Attrs(AttrFactory);
3239     MaybeParseCXX11Attributes(Attrs);
3240 
3241     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3242                                             /*isStatic=*/false, /*isStar=*/false,
3243                                             Size.get(), T.getOpenLocation(),
3244                                             T.getCloseLocation()),
3245                   std::move(Attrs), T.getCloseLocation());
3246 
3247     if (T.getCloseLocation().isInvalid())
3248       return;
3249   }
3250 }
3251 
3252 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3253 /// This ambiguity appears in the syntax of the C++ new operator.
3254 ///
3255 ///        new-expression:
3256 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3257 ///                                     new-initializer[opt]
3258 ///
3259 ///        new-placement:
3260 ///                   '(' expression-list ')'
3261 ///
3262 bool Parser::ParseExpressionListOrTypeId(
3263                                    SmallVectorImpl<Expr*> &PlacementArgs,
3264                                          Declarator &D) {
3265   // The '(' was already consumed.
3266   if (isTypeIdInParens()) {
3267     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3268     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3269     ParseDeclarator(D);
3270     return D.isInvalidType();
3271   }
3272 
3273   // It's not a type, it has to be an expression list.
3274   // Discard the comma locations - ActOnCXXNew has enough parameters.
3275   CommaLocsTy CommaLocs;
3276   return ParseExpressionList(PlacementArgs, CommaLocs);
3277 }
3278 
3279 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3280 /// to free memory allocated by new.
3281 ///
3282 /// This method is called to parse the 'delete' expression after the optional
3283 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3284 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3285 /// 'delete' token.
3286 ///
3287 ///        delete-expression:
3288 ///                   '::'[opt] 'delete' cast-expression
3289 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3290 ExprResult
3291 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3292   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3293   ConsumeToken(); // Consume 'delete'
3294 
3295   // Array delete?
3296   bool ArrayDelete = false;
3297   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3298     // C++11 [expr.delete]p1:
3299     //   Whenever the delete keyword is followed by empty square brackets, it
3300     //   shall be interpreted as [array delete].
3301     //   [Footnote: A lambda expression with a lambda-introducer that consists
3302     //              of empty square brackets can follow the delete keyword if
3303     //              the lambda expression is enclosed in parentheses.]
3304 
3305     const Token Next = GetLookAheadToken(2);
3306 
3307     // Basic lookahead to check if we have a lambda expression.
3308     if (Next.isOneOf(tok::l_brace, tok::less) ||
3309         (Next.is(tok::l_paren) &&
3310          (GetLookAheadToken(3).is(tok::r_paren) ||
3311           (GetLookAheadToken(3).is(tok::identifier) &&
3312            GetLookAheadToken(4).is(tok::identifier))))) {
3313       TentativeParsingAction TPA(*this);
3314       SourceLocation LSquareLoc = Tok.getLocation();
3315       SourceLocation RSquareLoc = NextToken().getLocation();
3316 
3317       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3318       // case.
3319       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3320       SourceLocation RBraceLoc;
3321       bool EmitFixIt = false;
3322       if (Tok.is(tok::l_brace)) {
3323         ConsumeBrace();
3324         SkipUntil(tok::r_brace, StopBeforeMatch);
3325         RBraceLoc = Tok.getLocation();
3326         EmitFixIt = true;
3327       }
3328 
3329       TPA.Revert();
3330 
3331       if (EmitFixIt)
3332         Diag(Start, diag::err_lambda_after_delete)
3333             << SourceRange(Start, RSquareLoc)
3334             << FixItHint::CreateInsertion(LSquareLoc, "(")
3335             << FixItHint::CreateInsertion(
3336                    Lexer::getLocForEndOfToken(
3337                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3338                    ")");
3339       else
3340         Diag(Start, diag::err_lambda_after_delete)
3341             << SourceRange(Start, RSquareLoc);
3342 
3343       // Warn that the non-capturing lambda isn't surrounded by parentheses
3344       // to disambiguate it from 'delete[]'.
3345       ExprResult Lambda = ParseLambdaExpression();
3346       if (Lambda.isInvalid())
3347         return ExprError();
3348 
3349       // Evaluate any postfix expressions used on the lambda.
3350       Lambda = ParsePostfixExpressionSuffix(Lambda);
3351       if (Lambda.isInvalid())
3352         return ExprError();
3353       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3354                                     Lambda.get());
3355     }
3356 
3357     ArrayDelete = true;
3358     BalancedDelimiterTracker T(*this, tok::l_square);
3359 
3360     T.consumeOpen();
3361     T.consumeClose();
3362     if (T.getCloseLocation().isInvalid())
3363       return ExprError();
3364   }
3365 
3366   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3367   if (Operand.isInvalid())
3368     return Operand;
3369 
3370   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3371 }
3372 
3373 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3374 /// C++2a [expr.prim.req]p1
3375 ///     A requires-expression provides a concise way to express requirements on
3376 ///     template arguments. A requirement is one that can be checked by name
3377 ///     lookup (6.4) or by checking properties of types and expressions.
3378 ///
3379 ///     requires-expression:
3380 ///         'requires' requirement-parameter-list[opt] requirement-body
3381 ///
3382 ///     requirement-parameter-list:
3383 ///         '(' parameter-declaration-clause[opt] ')'
3384 ///
3385 ///     requirement-body:
3386 ///         '{' requirement-seq '}'
3387 ///
3388 ///     requirement-seq:
3389 ///         requirement
3390 ///         requirement-seq requirement
3391 ///
3392 ///     requirement:
3393 ///         simple-requirement
3394 ///         type-requirement
3395 ///         compound-requirement
3396 ///         nested-requirement
3397 ExprResult Parser::ParseRequiresExpression() {
3398   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3399   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3400 
3401   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3402   if (Tok.is(tok::l_paren)) {
3403     // requirement parameter list is present.
3404     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3405                                     Scope::DeclScope);
3406     BalancedDelimiterTracker Parens(*this, tok::l_paren);
3407     Parens.consumeOpen();
3408     if (!Tok.is(tok::r_paren)) {
3409       ParsedAttributes FirstArgAttrs(getAttrFactory());
3410       SourceLocation EllipsisLoc;
3411       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3412       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3413                                       FirstArgAttrs, LocalParameters,
3414                                       EllipsisLoc);
3415       if (EllipsisLoc.isValid())
3416         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3417       for (auto &ParamInfo : LocalParameters)
3418         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3419     }
3420     Parens.consumeClose();
3421   }
3422 
3423   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3424   if (Braces.expectAndConsume())
3425     return ExprError();
3426 
3427   // Start of requirement list
3428   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3429 
3430   // C++2a [expr.prim.req]p2
3431   //   Expressions appearing within a requirement-body are unevaluated operands.
3432   EnterExpressionEvaluationContext Ctx(
3433       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3434 
3435   ParseScope BodyScope(this, Scope::DeclScope);
3436   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3437       RequiresKWLoc, LocalParameterDecls, getCurScope());
3438 
3439   if (Tok.is(tok::r_brace)) {
3440     // Grammar does not allow an empty body.
3441     // requirement-body:
3442     //   { requirement-seq }
3443     // requirement-seq:
3444     //   requirement
3445     //   requirement-seq requirement
3446     Diag(Tok, diag::err_empty_requires_expr);
3447     // Continue anyway and produce a requires expr with no requirements.
3448   } else {
3449     while (!Tok.is(tok::r_brace)) {
3450       switch (Tok.getKind()) {
3451       case tok::l_brace: {
3452         // Compound requirement
3453         // C++ [expr.prim.req.compound]
3454         //     compound-requirement:
3455         //         '{' expression '}' 'noexcept'[opt]
3456         //             return-type-requirement[opt] ';'
3457         //     return-type-requirement:
3458         //         trailing-return-type
3459         //         '->' cv-qualifier-seq[opt] constrained-parameter
3460         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3461         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3462         ExprBraces.consumeOpen();
3463         ExprResult Expression =
3464             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3465         if (!Expression.isUsable()) {
3466           ExprBraces.skipToEnd();
3467           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3468           break;
3469         }
3470         if (ExprBraces.consumeClose())
3471           ExprBraces.skipToEnd();
3472 
3473         concepts::Requirement *Req = nullptr;
3474         SourceLocation NoexceptLoc;
3475         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3476         if (Tok.is(tok::semi)) {
3477           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3478           if (Req)
3479             Requirements.push_back(Req);
3480           break;
3481         }
3482         if (!TryConsumeToken(tok::arrow))
3483           // User probably forgot the arrow, remind them and try to continue.
3484           Diag(Tok, diag::err_requires_expr_missing_arrow)
3485               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3486         // Try to parse a 'type-constraint'
3487         if (TryAnnotateTypeConstraint()) {
3488           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3489           break;
3490         }
3491         if (!isTypeConstraintAnnotation()) {
3492           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3493           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3494           break;
3495         }
3496         CXXScopeSpec SS;
3497         if (Tok.is(tok::annot_cxxscope)) {
3498           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3499                                                        Tok.getAnnotationRange(),
3500                                                        SS);
3501           ConsumeAnnotationToken();
3502         }
3503 
3504         Req = Actions.ActOnCompoundRequirement(
3505             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3506             TemplateParameterDepth);
3507         ConsumeAnnotationToken();
3508         if (Req)
3509           Requirements.push_back(Req);
3510         break;
3511       }
3512       default: {
3513         bool PossibleRequiresExprInSimpleRequirement = false;
3514         if (Tok.is(tok::kw_requires)) {
3515           auto IsNestedRequirement = [&] {
3516             RevertingTentativeParsingAction TPA(*this);
3517             ConsumeToken(); // 'requires'
3518             if (Tok.is(tok::l_brace))
3519               // This is a requires expression
3520               // requires (T t) {
3521               //   requires { t++; };
3522               //   ...      ^
3523               // }
3524               return false;
3525             if (Tok.is(tok::l_paren)) {
3526               // This might be the parameter list of a requires expression
3527               ConsumeParen();
3528               auto Res = TryParseParameterDeclarationClause();
3529               if (Res != TPResult::False) {
3530                 // Skip to the closing parenthesis
3531                 // FIXME: Don't traverse these tokens twice (here and in
3532                 //  TryParseParameterDeclarationClause).
3533                 unsigned Depth = 1;
3534                 while (Depth != 0) {
3535                   if (Tok.is(tok::l_paren))
3536                     Depth++;
3537                   else if (Tok.is(tok::r_paren))
3538                     Depth--;
3539                   ConsumeAnyToken();
3540                 }
3541                 // requires (T t) {
3542                 //   requires () ?
3543                 //   ...         ^
3544                 //   - OR -
3545                 //   requires (int x) ?
3546                 //   ...              ^
3547                 // }
3548                 if (Tok.is(tok::l_brace))
3549                   // requires (...) {
3550                   //                ^ - a requires expression as a
3551                   //                    simple-requirement.
3552                   return false;
3553               }
3554             }
3555             return true;
3556           };
3557           if (IsNestedRequirement()) {
3558             ConsumeToken();
3559             // Nested requirement
3560             // C++ [expr.prim.req.nested]
3561             //     nested-requirement:
3562             //         'requires' constraint-expression ';'
3563             ExprResult ConstraintExpr =
3564                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3565             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3566               SkipUntil(tok::semi, tok::r_brace,
3567                         SkipUntilFlags::StopBeforeMatch);
3568               break;
3569             }
3570             if (auto *Req =
3571                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3572               Requirements.push_back(Req);
3573             else {
3574               SkipUntil(tok::semi, tok::r_brace,
3575                         SkipUntilFlags::StopBeforeMatch);
3576               break;
3577             }
3578             break;
3579           } else
3580             PossibleRequiresExprInSimpleRequirement = true;
3581         } else if (Tok.is(tok::kw_typename)) {
3582           // This might be 'typename T::value_type;' (a type requirement) or
3583           // 'typename T::value_type{};' (a simple requirement).
3584           TentativeParsingAction TPA(*this);
3585 
3586           // We need to consume the typename to allow 'requires { typename a; }'
3587           SourceLocation TypenameKWLoc = ConsumeToken();
3588           if (TryAnnotateCXXScopeToken()) {
3589             TPA.Commit();
3590             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3591             break;
3592           }
3593           CXXScopeSpec SS;
3594           if (Tok.is(tok::annot_cxxscope)) {
3595             Actions.RestoreNestedNameSpecifierAnnotation(
3596                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3597             ConsumeAnnotationToken();
3598           }
3599 
3600           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3601               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3602             TPA.Commit();
3603             SourceLocation NameLoc = Tok.getLocation();
3604             IdentifierInfo *II = nullptr;
3605             TemplateIdAnnotation *TemplateId = nullptr;
3606             if (Tok.is(tok::identifier)) {
3607               II = Tok.getIdentifierInfo();
3608               ConsumeToken();
3609             } else {
3610               TemplateId = takeTemplateIdAnnotation(Tok);
3611               ConsumeAnnotationToken();
3612               if (TemplateId->isInvalid())
3613                 break;
3614             }
3615 
3616             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3617                                                          NameLoc, II,
3618                                                          TemplateId)) {
3619               Requirements.push_back(Req);
3620             }
3621             break;
3622           }
3623           TPA.Revert();
3624         }
3625         // Simple requirement
3626         // C++ [expr.prim.req.simple]
3627         //     simple-requirement:
3628         //         expression ';'
3629         SourceLocation StartLoc = Tok.getLocation();
3630         ExprResult Expression =
3631             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3632         if (!Expression.isUsable()) {
3633           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3634           break;
3635         }
3636         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3637           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3638               << FixItHint::CreateInsertion(StartLoc, "requires");
3639         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3640           Requirements.push_back(Req);
3641         else {
3642           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3643           break;
3644         }
3645         // User may have tried to put some compound requirement stuff here
3646         if (Tok.is(tok::kw_noexcept)) {
3647           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3648               << FixItHint::CreateInsertion(StartLoc, "{")
3649               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3650           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3651           break;
3652         }
3653         break;
3654       }
3655       }
3656       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3657         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3658         TryConsumeToken(tok::semi);
3659         break;
3660       }
3661     }
3662     if (Requirements.empty()) {
3663       // Don't emit an empty requires expr here to avoid confusing the user with
3664       // other diagnostics quoting an empty requires expression they never
3665       // wrote.
3666       Braces.consumeClose();
3667       Actions.ActOnFinishRequiresExpr();
3668       return ExprError();
3669     }
3670   }
3671   Braces.consumeClose();
3672   Actions.ActOnFinishRequiresExpr();
3673   return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3674                                    Requirements, Braces.getCloseLocation());
3675 }
3676 
3677 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3678   switch (kind) {
3679   default: llvm_unreachable("Not a known type trait");
3680 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3681 case tok::kw_ ## Spelling: return UTT_ ## Name;
3682 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3683 case tok::kw_ ## Spelling: return BTT_ ## Name;
3684 #include "clang/Basic/TokenKinds.def"
3685 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3686   case tok::kw_ ## Spelling: return TT_ ## Name;
3687 #include "clang/Basic/TokenKinds.def"
3688   }
3689 }
3690 
3691 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3692   switch (kind) {
3693   default:
3694     llvm_unreachable("Not a known array type trait");
3695 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3696   case tok::kw_##Spelling:                                                     \
3697     return ATT_##Name;
3698 #include "clang/Basic/TokenKinds.def"
3699   }
3700 }
3701 
3702 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3703   switch (kind) {
3704   default:
3705     llvm_unreachable("Not a known unary expression trait.");
3706 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3707   case tok::kw_##Spelling:                                                     \
3708     return ET_##Name;
3709 #include "clang/Basic/TokenKinds.def"
3710   }
3711 }
3712 
3713 static unsigned TypeTraitArity(tok::TokenKind kind) {
3714   switch (kind) {
3715     default: llvm_unreachable("Not a known type trait");
3716 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3717 #include "clang/Basic/TokenKinds.def"
3718   }
3719 }
3720 
3721 /// Parse the built-in type-trait pseudo-functions that allow
3722 /// implementation of the TR1/C++11 type traits templates.
3723 ///
3724 ///       primary-expression:
3725 ///          unary-type-trait '(' type-id ')'
3726 ///          binary-type-trait '(' type-id ',' type-id ')'
3727 ///          type-trait '(' type-id-seq ')'
3728 ///
3729 ///       type-id-seq:
3730 ///          type-id ...[opt] type-id-seq[opt]
3731 ///
3732 ExprResult Parser::ParseTypeTrait() {
3733   tok::TokenKind Kind = Tok.getKind();
3734   unsigned Arity = TypeTraitArity(Kind);
3735 
3736   SourceLocation Loc = ConsumeToken();
3737 
3738   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3739   if (Parens.expectAndConsume())
3740     return ExprError();
3741 
3742   SmallVector<ParsedType, 2> Args;
3743   do {
3744     // Parse the next type.
3745     TypeResult Ty = ParseTypeName();
3746     if (Ty.isInvalid()) {
3747       Parens.skipToEnd();
3748       return ExprError();
3749     }
3750 
3751     // Parse the ellipsis, if present.
3752     if (Tok.is(tok::ellipsis)) {
3753       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3754       if (Ty.isInvalid()) {
3755         Parens.skipToEnd();
3756         return ExprError();
3757       }
3758     }
3759 
3760     // Add this type to the list of arguments.
3761     Args.push_back(Ty.get());
3762   } while (TryConsumeToken(tok::comma));
3763 
3764   if (Parens.consumeClose())
3765     return ExprError();
3766 
3767   SourceLocation EndLoc = Parens.getCloseLocation();
3768 
3769   if (Arity && Args.size() != Arity) {
3770     Diag(EndLoc, diag::err_type_trait_arity)
3771       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3772     return ExprError();
3773   }
3774 
3775   if (!Arity && Args.empty()) {
3776     Diag(EndLoc, diag::err_type_trait_arity)
3777       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3778     return ExprError();
3779   }
3780 
3781   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3782 }
3783 
3784 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3785 /// pseudo-functions.
3786 ///
3787 ///       primary-expression:
3788 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3789 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3790 ///
3791 ExprResult Parser::ParseArrayTypeTrait() {
3792   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3793   SourceLocation Loc = ConsumeToken();
3794 
3795   BalancedDelimiterTracker T(*this, tok::l_paren);
3796   if (T.expectAndConsume())
3797     return ExprError();
3798 
3799   TypeResult Ty = ParseTypeName();
3800   if (Ty.isInvalid()) {
3801     SkipUntil(tok::comma, StopAtSemi);
3802     SkipUntil(tok::r_paren, StopAtSemi);
3803     return ExprError();
3804   }
3805 
3806   switch (ATT) {
3807   case ATT_ArrayRank: {
3808     T.consumeClose();
3809     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3810                                        T.getCloseLocation());
3811   }
3812   case ATT_ArrayExtent: {
3813     if (ExpectAndConsume(tok::comma)) {
3814       SkipUntil(tok::r_paren, StopAtSemi);
3815       return ExprError();
3816     }
3817 
3818     ExprResult DimExpr = ParseExpression();
3819     T.consumeClose();
3820 
3821     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3822                                        T.getCloseLocation());
3823   }
3824   }
3825   llvm_unreachable("Invalid ArrayTypeTrait!");
3826 }
3827 
3828 /// ParseExpressionTrait - Parse built-in expression-trait
3829 /// pseudo-functions like __is_lvalue_expr( xxx ).
3830 ///
3831 ///       primary-expression:
3832 /// [Embarcadero]     expression-trait '(' expression ')'
3833 ///
3834 ExprResult Parser::ParseExpressionTrait() {
3835   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3836   SourceLocation Loc = ConsumeToken();
3837 
3838   BalancedDelimiterTracker T(*this, tok::l_paren);
3839   if (T.expectAndConsume())
3840     return ExprError();
3841 
3842   ExprResult Expr = ParseExpression();
3843 
3844   T.consumeClose();
3845 
3846   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3847                                       T.getCloseLocation());
3848 }
3849 
3850 
3851 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3852 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3853 /// based on the context past the parens.
3854 ExprResult
3855 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3856                                          ParsedType &CastTy,
3857                                          BalancedDelimiterTracker &Tracker,
3858                                          ColonProtectionRAIIObject &ColonProt) {
3859   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3860   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3861   assert(isTypeIdInParens() && "Not a type-id!");
3862 
3863   ExprResult Result(true);
3864   CastTy = nullptr;
3865 
3866   // We need to disambiguate a very ugly part of the C++ syntax:
3867   //
3868   // (T())x;  - type-id
3869   // (T())*x; - type-id
3870   // (T())/x; - expression
3871   // (T());   - expression
3872   //
3873   // The bad news is that we cannot use the specialized tentative parser, since
3874   // it can only verify that the thing inside the parens can be parsed as
3875   // type-id, it is not useful for determining the context past the parens.
3876   //
3877   // The good news is that the parser can disambiguate this part without
3878   // making any unnecessary Action calls.
3879   //
3880   // It uses a scheme similar to parsing inline methods. The parenthesized
3881   // tokens are cached, the context that follows is determined (possibly by
3882   // parsing a cast-expression), and then we re-introduce the cached tokens
3883   // into the token stream and parse them appropriately.
3884 
3885   ParenParseOption ParseAs;
3886   CachedTokens Toks;
3887 
3888   // Store the tokens of the parentheses. We will parse them after we determine
3889   // the context that follows them.
3890   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3891     // We didn't find the ')' we expected.
3892     Tracker.consumeClose();
3893     return ExprError();
3894   }
3895 
3896   if (Tok.is(tok::l_brace)) {
3897     ParseAs = CompoundLiteral;
3898   } else {
3899     bool NotCastExpr;
3900     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3901       NotCastExpr = true;
3902     } else {
3903       // Try parsing the cast-expression that may follow.
3904       // If it is not a cast-expression, NotCastExpr will be true and no token
3905       // will be consumed.
3906       ColonProt.restore();
3907       Result = ParseCastExpression(AnyCastExpr,
3908                                    false/*isAddressofOperand*/,
3909                                    NotCastExpr,
3910                                    // type-id has priority.
3911                                    IsTypeCast);
3912     }
3913 
3914     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3915     // an expression.
3916     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3917   }
3918 
3919   // Create a fake EOF to mark end of Toks buffer.
3920   Token AttrEnd;
3921   AttrEnd.startToken();
3922   AttrEnd.setKind(tok::eof);
3923   AttrEnd.setLocation(Tok.getLocation());
3924   AttrEnd.setEofData(Toks.data());
3925   Toks.push_back(AttrEnd);
3926 
3927   // The current token should go after the cached tokens.
3928   Toks.push_back(Tok);
3929   // Re-enter the stored parenthesized tokens into the token stream, so we may
3930   // parse them now.
3931   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3932                       /*IsReinject*/ true);
3933   // Drop the current token and bring the first cached one. It's the same token
3934   // as when we entered this function.
3935   ConsumeAnyToken();
3936 
3937   if (ParseAs >= CompoundLiteral) {
3938     // Parse the type declarator.
3939     DeclSpec DS(AttrFactory);
3940     Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3941     {
3942       ColonProtectionRAIIObject InnerColonProtection(*this);
3943       ParseSpecifierQualifierList(DS);
3944       ParseDeclarator(DeclaratorInfo);
3945     }
3946 
3947     // Match the ')'.
3948     Tracker.consumeClose();
3949     ColonProt.restore();
3950 
3951     // Consume EOF marker for Toks buffer.
3952     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3953     ConsumeAnyToken();
3954 
3955     if (ParseAs == CompoundLiteral) {
3956       ExprType = CompoundLiteral;
3957       if (DeclaratorInfo.isInvalidType())
3958         return ExprError();
3959 
3960       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3961       return ParseCompoundLiteralExpression(Ty.get(),
3962                                             Tracker.getOpenLocation(),
3963                                             Tracker.getCloseLocation());
3964     }
3965 
3966     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3967     assert(ParseAs == CastExpr);
3968 
3969     if (DeclaratorInfo.isInvalidType())
3970       return ExprError();
3971 
3972     // Result is what ParseCastExpression returned earlier.
3973     if (!Result.isInvalid())
3974       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3975                                     DeclaratorInfo, CastTy,
3976                                     Tracker.getCloseLocation(), Result.get());
3977     return Result;
3978   }
3979 
3980   // Not a compound literal, and not followed by a cast-expression.
3981   assert(ParseAs == SimpleExpr);
3982 
3983   ExprType = SimpleExpr;
3984   Result = ParseExpression();
3985   if (!Result.isInvalid() && Tok.is(tok::r_paren))
3986     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3987                                     Tok.getLocation(), Result.get());
3988 
3989   // Match the ')'.
3990   if (Result.isInvalid()) {
3991     while (Tok.isNot(tok::eof))
3992       ConsumeAnyToken();
3993     assert(Tok.getEofData() == AttrEnd.getEofData());
3994     ConsumeAnyToken();
3995     return ExprError();
3996   }
3997 
3998   Tracker.consumeClose();
3999   // Consume EOF marker for Toks buffer.
4000   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4001   ConsumeAnyToken();
4002   return Result;
4003 }
4004 
4005 /// Parse a __builtin_bit_cast(T, E).
4006 ExprResult Parser::ParseBuiltinBitCast() {
4007   SourceLocation KWLoc = ConsumeToken();
4008 
4009   BalancedDelimiterTracker T(*this, tok::l_paren);
4010   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4011     return ExprError();
4012 
4013   // Parse the common declaration-specifiers piece.
4014   DeclSpec DS(AttrFactory);
4015   ParseSpecifierQualifierList(DS);
4016 
4017   // Parse the abstract-declarator, if present.
4018   Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
4019   ParseDeclarator(DeclaratorInfo);
4020 
4021   if (ExpectAndConsume(tok::comma)) {
4022     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4023     SkipUntil(tok::r_paren, StopAtSemi);
4024     return ExprError();
4025   }
4026 
4027   ExprResult Operand = ParseExpression();
4028 
4029   if (T.consumeClose())
4030     return ExprError();
4031 
4032   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4033     return ExprError();
4034 
4035   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4036                                          T.getCloseLocation());
4037 }
4038