1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/Parse/Parser.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "clang/Parse/RAIIObjectsForParser.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/TypoCorrection.h" 32 #include "llvm/ADT/SmallVector.h" 33 using namespace clang; 34 35 /// Simple precedence-based parser for binary/ternary operators. 36 /// 37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 38 /// production. C99 specifies that the LHS of an assignment operator should be 39 /// parsed as a unary-expression, but consistency dictates that it be a 40 /// conditional-expession. In practice, the important thing here is that the 41 /// LHS of an assignment has to be an l-value, which productions between 42 /// unary-expression and conditional-expression don't produce. Because we want 43 /// consistency, we parse the LHS as a conditional-expression, then check for 44 /// l-value-ness in semantic analysis stages. 45 /// 46 /// \verbatim 47 /// pm-expression: [C++ 5.5] 48 /// cast-expression 49 /// pm-expression '.*' cast-expression 50 /// pm-expression '->*' cast-expression 51 /// 52 /// multiplicative-expression: [C99 6.5.5] 53 /// Note: in C++, apply pm-expression instead of cast-expression 54 /// cast-expression 55 /// multiplicative-expression '*' cast-expression 56 /// multiplicative-expression '/' cast-expression 57 /// multiplicative-expression '%' cast-expression 58 /// 59 /// additive-expression: [C99 6.5.6] 60 /// multiplicative-expression 61 /// additive-expression '+' multiplicative-expression 62 /// additive-expression '-' multiplicative-expression 63 /// 64 /// shift-expression: [C99 6.5.7] 65 /// additive-expression 66 /// shift-expression '<<' additive-expression 67 /// shift-expression '>>' additive-expression 68 /// 69 /// compare-expression: [C++20 expr.spaceship] 70 /// shift-expression 71 /// compare-expression '<=>' shift-expression 72 /// 73 /// relational-expression: [C99 6.5.8] 74 /// compare-expression 75 /// relational-expression '<' compare-expression 76 /// relational-expression '>' compare-expression 77 /// relational-expression '<=' compare-expression 78 /// relational-expression '>=' compare-expression 79 /// 80 /// equality-expression: [C99 6.5.9] 81 /// relational-expression 82 /// equality-expression '==' relational-expression 83 /// equality-expression '!=' relational-expression 84 /// 85 /// AND-expression: [C99 6.5.10] 86 /// equality-expression 87 /// AND-expression '&' equality-expression 88 /// 89 /// exclusive-OR-expression: [C99 6.5.11] 90 /// AND-expression 91 /// exclusive-OR-expression '^' AND-expression 92 /// 93 /// inclusive-OR-expression: [C99 6.5.12] 94 /// exclusive-OR-expression 95 /// inclusive-OR-expression '|' exclusive-OR-expression 96 /// 97 /// logical-AND-expression: [C99 6.5.13] 98 /// inclusive-OR-expression 99 /// logical-AND-expression '&&' inclusive-OR-expression 100 /// 101 /// logical-OR-expression: [C99 6.5.14] 102 /// logical-AND-expression 103 /// logical-OR-expression '||' logical-AND-expression 104 /// 105 /// conditional-expression: [C99 6.5.15] 106 /// logical-OR-expression 107 /// logical-OR-expression '?' expression ':' conditional-expression 108 /// [GNU] logical-OR-expression '?' ':' conditional-expression 109 /// [C++] the third operand is an assignment-expression 110 /// 111 /// assignment-expression: [C99 6.5.16] 112 /// conditional-expression 113 /// unary-expression assignment-operator assignment-expression 114 /// [C++] throw-expression [C++ 15] 115 /// 116 /// assignment-operator: one of 117 /// = *= /= %= += -= <<= >>= &= ^= |= 118 /// 119 /// expression: [C99 6.5.17] 120 /// assignment-expression ...[opt] 121 /// expression ',' assignment-expression ...[opt] 122 /// \endverbatim 123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 124 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 125 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 126 } 127 128 /// This routine is called when the '@' is seen and consumed. 129 /// Current token is an Identifier and is not a 'try'. This 130 /// routine is necessary to disambiguate \@try-statement from, 131 /// for example, \@encode-expression. 132 /// 133 ExprResult 134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 135 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 136 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 137 } 138 139 /// This routine is called when a leading '__extension__' is seen and 140 /// consumed. This is necessary because the token gets consumed in the 141 /// process of disambiguating between an expression and a declaration. 142 ExprResult 143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 144 ExprResult LHS(true); 145 { 146 // Silence extension warnings in the sub-expression 147 ExtensionRAIIObject O(Diags); 148 149 LHS = ParseCastExpression(AnyCastExpr); 150 } 151 152 if (!LHS.isInvalid()) 153 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 154 LHS.get()); 155 156 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 157 } 158 159 /// Parse an expr that doesn't include (top-level) commas. 160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 161 if (Tok.is(tok::code_completion)) { 162 Actions.CodeCompleteExpression(getCurScope(), 163 PreferredType.get(Tok.getLocation())); 164 cutOffParsing(); 165 return ExprError(); 166 } 167 168 if (Tok.is(tok::kw_throw)) 169 return ParseThrowExpression(); 170 if (Tok.is(tok::kw_co_yield)) 171 return ParseCoyieldExpression(); 172 173 ExprResult LHS = ParseCastExpression(AnyCastExpr, 174 /*isAddressOfOperand=*/false, 175 isTypeCast); 176 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 177 } 178 179 /// Parse an assignment expression where part of an Objective-C message 180 /// send has already been parsed. 181 /// 182 /// In this case \p LBracLoc indicates the location of the '[' of the message 183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 184 /// the receiver of the message. 185 /// 186 /// Since this handles full assignment-expression's, it handles postfix 187 /// expressions and other binary operators for these expressions as well. 188 ExprResult 189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 190 SourceLocation SuperLoc, 191 ParsedType ReceiverType, 192 Expr *ReceiverExpr) { 193 ExprResult R 194 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 195 ReceiverType, ReceiverExpr); 196 R = ParsePostfixExpressionSuffix(R); 197 return ParseRHSOfBinaryExpression(R, prec::Assignment); 198 } 199 200 ExprResult 201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 202 assert(Actions.ExprEvalContexts.back().Context == 203 Sema::ExpressionEvaluationContext::ConstantEvaluated && 204 "Call this function only if your ExpressionEvaluationContext is " 205 "already ConstantEvaluated"); 206 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 207 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 208 return Actions.ActOnConstantExpression(Res); 209 } 210 211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { 212 // C++03 [basic.def.odr]p2: 213 // An expression is potentially evaluated unless it appears where an 214 // integral constant expression is required (see 5.19) [...]. 215 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 216 EnterExpressionEvaluationContext ConstantEvaluated( 217 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 218 return ParseConstantExpressionInExprEvalContext(isTypeCast); 219 } 220 221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 222 EnterExpressionEvaluationContext ConstantEvaluated( 223 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 224 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 225 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 226 return Actions.ActOnCaseExpr(CaseLoc, Res); 227 } 228 229 /// Parse a constraint-expression. 230 /// 231 /// \verbatim 232 /// constraint-expression: C++2a[temp.constr.decl]p1 233 /// logical-or-expression 234 /// \endverbatim 235 ExprResult Parser::ParseConstraintExpression() { 236 EnterExpressionEvaluationContext ConstantEvaluated( 237 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 238 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 239 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 240 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 241 Actions.CorrectDelayedTyposInExpr(Res); 242 return ExprError(); 243 } 244 return Res; 245 } 246 247 /// \brief Parse a constraint-logical-and-expression. 248 /// 249 /// \verbatim 250 /// C++2a[temp.constr.decl]p1 251 /// constraint-logical-and-expression: 252 /// primary-expression 253 /// constraint-logical-and-expression '&&' primary-expression 254 /// 255 /// \endverbatim 256 ExprResult 257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 258 EnterExpressionEvaluationContext ConstantEvaluated( 259 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 260 bool NotPrimaryExpression = false; 261 auto ParsePrimary = [&] () { 262 ExprResult E = ParseCastExpression(PrimaryExprOnly, 263 /*isAddressOfOperand=*/false, 264 /*isTypeCast=*/NotTypeCast, 265 /*isVectorLiteral=*/false, 266 &NotPrimaryExpression); 267 if (E.isInvalid()) 268 return ExprError(); 269 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 270 E = ParsePostfixExpressionSuffix(E); 271 // Use InclusiveOr, the precedence just after '&&' to not parse the 272 // next arguments to the logical and. 273 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 274 if (!E.isInvalid()) 275 Diag(E.get()->getExprLoc(), 276 Note 277 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 278 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 279 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 280 << FixItHint::CreateInsertion( 281 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 282 << E.get()->getSourceRange(); 283 return E; 284 }; 285 286 if (NotPrimaryExpression || 287 // Check if the following tokens must be a part of a non-primary 288 // expression 289 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 290 /*CPlusPlus11=*/true) > prec::LogicalAnd || 291 // Postfix operators other than '(' (which will be checked for in 292 // CheckConstraintExpression). 293 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 294 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 295 E = RecoverFromNonPrimary(E, /*Note=*/false); 296 if (E.isInvalid()) 297 return ExprError(); 298 NotPrimaryExpression = false; 299 } 300 bool PossibleNonPrimary; 301 bool IsConstraintExpr = 302 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 303 IsTrailingRequiresClause); 304 if (!IsConstraintExpr || PossibleNonPrimary) { 305 // Atomic constraint might be an unparenthesized non-primary expression 306 // (such as a binary operator), in which case we might get here (e.g. in 307 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 308 // the rest of the addition expression). Try to parse the rest of it here. 309 if (PossibleNonPrimary) 310 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 311 Actions.CorrectDelayedTyposInExpr(E); 312 return ExprError(); 313 } 314 return E; 315 }; 316 ExprResult LHS = ParsePrimary(); 317 if (LHS.isInvalid()) 318 return ExprError(); 319 while (Tok.is(tok::ampamp)) { 320 SourceLocation LogicalAndLoc = ConsumeToken(); 321 ExprResult RHS = ParsePrimary(); 322 if (RHS.isInvalid()) { 323 Actions.CorrectDelayedTyposInExpr(LHS); 324 return ExprError(); 325 } 326 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 327 tok::ampamp, LHS.get(), RHS.get()); 328 if (!Op.isUsable()) { 329 Actions.CorrectDelayedTyposInExpr(RHS); 330 Actions.CorrectDelayedTyposInExpr(LHS); 331 return ExprError(); 332 } 333 LHS = Op; 334 } 335 return LHS; 336 } 337 338 /// \brief Parse a constraint-logical-or-expression. 339 /// 340 /// \verbatim 341 /// C++2a[temp.constr.decl]p1 342 /// constraint-logical-or-expression: 343 /// constraint-logical-and-expression 344 /// constraint-logical-or-expression '||' 345 /// constraint-logical-and-expression 346 /// 347 /// \endverbatim 348 ExprResult 349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 350 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 351 if (!LHS.isUsable()) 352 return ExprError(); 353 while (Tok.is(tok::pipepipe)) { 354 SourceLocation LogicalOrLoc = ConsumeToken(); 355 ExprResult RHS = 356 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 357 if (!RHS.isUsable()) { 358 Actions.CorrectDelayedTyposInExpr(LHS); 359 return ExprError(); 360 } 361 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 362 tok::pipepipe, LHS.get(), RHS.get()); 363 if (!Op.isUsable()) { 364 Actions.CorrectDelayedTyposInExpr(RHS); 365 Actions.CorrectDelayedTyposInExpr(LHS); 366 return ExprError(); 367 } 368 LHS = Op; 369 } 370 return LHS; 371 } 372 373 bool Parser::isNotExpressionStart() { 374 tok::TokenKind K = Tok.getKind(); 375 if (K == tok::l_brace || K == tok::r_brace || 376 K == tok::kw_for || K == tok::kw_while || 377 K == tok::kw_if || K == tok::kw_else || 378 K == tok::kw_goto || K == tok::kw_try) 379 return true; 380 // If this is a decl-specifier, we can't be at the start of an expression. 381 return isKnownToBeDeclarationSpecifier(); 382 } 383 384 bool Parser::isFoldOperator(prec::Level Level) const { 385 return Level > prec::Unknown && Level != prec::Conditional && 386 Level != prec::Spaceship; 387 } 388 389 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 390 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 391 } 392 393 /// Parse a binary expression that starts with \p LHS and has a 394 /// precedence of at least \p MinPrec. 395 ExprResult 396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 397 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 398 GreaterThanIsOperator, 399 getLangOpts().CPlusPlus11); 400 SourceLocation ColonLoc; 401 402 auto SavedType = PreferredType; 403 while (1) { 404 // Every iteration may rely on a preferred type for the whole expression. 405 PreferredType = SavedType; 406 // If this token has a lower precedence than we are allowed to parse (e.g. 407 // because we are called recursively, or because the token is not a binop), 408 // then we are done! 409 if (NextTokPrec < MinPrec) 410 return LHS; 411 412 // Consume the operator, saving the operator token for error reporting. 413 Token OpToken = Tok; 414 ConsumeToken(); 415 416 if (OpToken.is(tok::caretcaret)) { 417 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 418 } 419 420 // If we're potentially in a template-id, we may now be able to determine 421 // whether we're actually in one or not. 422 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 423 tok::greatergreatergreater) && 424 checkPotentialAngleBracketDelimiter(OpToken)) 425 return ExprError(); 426 427 // Bail out when encountering a comma followed by a token which can't 428 // possibly be the start of an expression. For instance: 429 // int f() { return 1, } 430 // We can't do this before consuming the comma, because 431 // isNotExpressionStart() looks at the token stream. 432 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 433 PP.EnterToken(Tok, /*IsReinject*/true); 434 Tok = OpToken; 435 return LHS; 436 } 437 438 // If the next token is an ellipsis, then this is a fold-expression. Leave 439 // it alone so we can handle it in the paren expression. 440 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 441 // FIXME: We can't check this via lookahead before we consume the token 442 // because that tickles a lexer bug. 443 PP.EnterToken(Tok, /*IsReinject*/true); 444 Tok = OpToken; 445 return LHS; 446 } 447 448 // In Objective-C++, alternative operator tokens can be used as keyword args 449 // in message expressions. Unconsume the token so that it can reinterpreted 450 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 451 // [foo meth:0 and:0]; 452 // [foo not_eq]; 453 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 454 Tok.isOneOf(tok::colon, tok::r_square) && 455 OpToken.getIdentifierInfo() != nullptr) { 456 PP.EnterToken(Tok, /*IsReinject*/true); 457 Tok = OpToken; 458 return LHS; 459 } 460 461 // Special case handling for the ternary operator. 462 ExprResult TernaryMiddle(true); 463 if (NextTokPrec == prec::Conditional) { 464 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 465 // Parse a braced-init-list here for error recovery purposes. 466 SourceLocation BraceLoc = Tok.getLocation(); 467 TernaryMiddle = ParseBraceInitializer(); 468 if (!TernaryMiddle.isInvalid()) { 469 Diag(BraceLoc, diag::err_init_list_bin_op) 470 << /*RHS*/ 1 << PP.getSpelling(OpToken) 471 << Actions.getExprRange(TernaryMiddle.get()); 472 TernaryMiddle = ExprError(); 473 } 474 } else if (Tok.isNot(tok::colon)) { 475 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 476 ColonProtectionRAIIObject X(*this); 477 478 // Handle this production specially: 479 // logical-OR-expression '?' expression ':' conditional-expression 480 // In particular, the RHS of the '?' is 'expression', not 481 // 'logical-OR-expression' as we might expect. 482 TernaryMiddle = ParseExpression(); 483 } else { 484 // Special case handling of "X ? Y : Z" where Y is empty: 485 // logical-OR-expression '?' ':' conditional-expression [GNU] 486 TernaryMiddle = nullptr; 487 Diag(Tok, diag::ext_gnu_conditional_expr); 488 } 489 490 if (TernaryMiddle.isInvalid()) { 491 Actions.CorrectDelayedTyposInExpr(LHS); 492 LHS = ExprError(); 493 TernaryMiddle = nullptr; 494 } 495 496 if (!TryConsumeToken(tok::colon, ColonLoc)) { 497 // Otherwise, we're missing a ':'. Assume that this was a typo that 498 // the user forgot. If we're not in a macro expansion, we can suggest 499 // a fixit hint. If there were two spaces before the current token, 500 // suggest inserting the colon in between them, otherwise insert ": ". 501 SourceLocation FILoc = Tok.getLocation(); 502 const char *FIText = ": "; 503 const SourceManager &SM = PP.getSourceManager(); 504 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 505 assert(FILoc.isFileID()); 506 bool IsInvalid = false; 507 const char *SourcePtr = 508 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 509 if (!IsInvalid && *SourcePtr == ' ') { 510 SourcePtr = 511 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 512 if (!IsInvalid && *SourcePtr == ' ') { 513 FILoc = FILoc.getLocWithOffset(-1); 514 FIText = ":"; 515 } 516 } 517 } 518 519 Diag(Tok, diag::err_expected) 520 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 521 Diag(OpToken, diag::note_matching) << tok::question; 522 ColonLoc = Tok.getLocation(); 523 } 524 } 525 526 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 527 OpToken.getKind()); 528 // Parse another leaf here for the RHS of the operator. 529 // ParseCastExpression works here because all RHS expressions in C have it 530 // as a prefix, at least. However, in C++, an assignment-expression could 531 // be a throw-expression, which is not a valid cast-expression. 532 // Therefore we need some special-casing here. 533 // Also note that the third operand of the conditional operator is 534 // an assignment-expression in C++, and in C++11, we can have a 535 // braced-init-list on the RHS of an assignment. For better diagnostics, 536 // parse as if we were allowed braced-init-lists everywhere, and check that 537 // they only appear on the RHS of assignments later. 538 ExprResult RHS; 539 bool RHSIsInitList = false; 540 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 541 RHS = ParseBraceInitializer(); 542 RHSIsInitList = true; 543 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 544 RHS = ParseAssignmentExpression(); 545 else 546 RHS = ParseCastExpression(AnyCastExpr); 547 548 if (RHS.isInvalid()) { 549 // FIXME: Errors generated by the delayed typo correction should be 550 // printed before errors from parsing the RHS, not after. 551 Actions.CorrectDelayedTyposInExpr(LHS); 552 if (TernaryMiddle.isUsable()) 553 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 554 LHS = ExprError(); 555 } 556 557 // Remember the precedence of this operator and get the precedence of the 558 // operator immediately to the right of the RHS. 559 prec::Level ThisPrec = NextTokPrec; 560 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 561 getLangOpts().CPlusPlus11); 562 563 // Assignment and conditional expressions are right-associative. 564 bool isRightAssoc = ThisPrec == prec::Conditional || 565 ThisPrec == prec::Assignment; 566 567 // Get the precedence of the operator to the right of the RHS. If it binds 568 // more tightly with RHS than we do, evaluate it completely first. 569 if (ThisPrec < NextTokPrec || 570 (ThisPrec == NextTokPrec && isRightAssoc)) { 571 if (!RHS.isInvalid() && RHSIsInitList) { 572 Diag(Tok, diag::err_init_list_bin_op) 573 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 574 RHS = ExprError(); 575 } 576 // If this is left-associative, only parse things on the RHS that bind 577 // more tightly than the current operator. If it is left-associative, it 578 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 579 // A=(B=(C=D)), where each paren is a level of recursion here. 580 // The function takes ownership of the RHS. 581 RHS = ParseRHSOfBinaryExpression(RHS, 582 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 583 RHSIsInitList = false; 584 585 if (RHS.isInvalid()) { 586 // FIXME: Errors generated by the delayed typo correction should be 587 // printed before errors from ParseRHSOfBinaryExpression, not after. 588 Actions.CorrectDelayedTyposInExpr(LHS); 589 if (TernaryMiddle.isUsable()) 590 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 591 LHS = ExprError(); 592 } 593 594 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 595 getLangOpts().CPlusPlus11); 596 } 597 598 if (!RHS.isInvalid() && RHSIsInitList) { 599 if (ThisPrec == prec::Assignment) { 600 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 601 << Actions.getExprRange(RHS.get()); 602 } else if (ColonLoc.isValid()) { 603 Diag(ColonLoc, diag::err_init_list_bin_op) 604 << /*RHS*/1 << ":" 605 << Actions.getExprRange(RHS.get()); 606 LHS = ExprError(); 607 } else { 608 Diag(OpToken, diag::err_init_list_bin_op) 609 << /*RHS*/1 << PP.getSpelling(OpToken) 610 << Actions.getExprRange(RHS.get()); 611 LHS = ExprError(); 612 } 613 } 614 615 ExprResult OrigLHS = LHS; 616 if (!LHS.isInvalid()) { 617 // Combine the LHS and RHS into the LHS (e.g. build AST). 618 if (TernaryMiddle.isInvalid()) { 619 // If we're using '>>' as an operator within a template 620 // argument list (in C++98), suggest the addition of 621 // parentheses so that the code remains well-formed in C++0x. 622 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 623 SuggestParentheses(OpToken.getLocation(), 624 diag::warn_cxx11_right_shift_in_template_arg, 625 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 626 Actions.getExprRange(RHS.get()).getEnd())); 627 628 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 629 OpToken.getKind(), LHS.get(), RHS.get()); 630 631 } else { 632 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc, 633 LHS.get(), TernaryMiddle.get(), 634 RHS.get()); 635 } 636 // In this case, ActOnBinOp or ActOnConditionalOp performed the 637 // CorrectDelayedTyposInExpr check. 638 if (!getLangOpts().CPlusPlus) 639 continue; 640 } 641 642 // Ensure potential typos aren't left undiagnosed. 643 if (LHS.isInvalid()) { 644 Actions.CorrectDelayedTyposInExpr(OrigLHS); 645 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 646 Actions.CorrectDelayedTyposInExpr(RHS); 647 } 648 } 649 } 650 651 /// Parse a cast-expression, unary-expression or primary-expression, based 652 /// on \p ExprType. 653 /// 654 /// \p isAddressOfOperand exists because an id-expression that is the 655 /// operand of address-of gets special treatment due to member pointers. 656 /// 657 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 658 bool isAddressOfOperand, 659 TypeCastState isTypeCast, 660 bool isVectorLiteral, 661 bool *NotPrimaryExpression) { 662 bool NotCastExpr; 663 ExprResult Res = ParseCastExpression(ParseKind, 664 isAddressOfOperand, 665 NotCastExpr, 666 isTypeCast, 667 isVectorLiteral, 668 NotPrimaryExpression); 669 if (NotCastExpr) 670 Diag(Tok, diag::err_expected_expression); 671 return Res; 672 } 673 674 namespace { 675 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 676 public: 677 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 678 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 679 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 680 } 681 682 bool ValidateCandidate(const TypoCorrection &candidate) override { 683 NamedDecl *ND = candidate.getCorrectionDecl(); 684 if (!ND) 685 return candidate.isKeyword(); 686 687 if (isa<TypeDecl>(ND)) 688 return WantTypeSpecifiers; 689 690 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 691 return false; 692 693 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 694 return true; 695 696 for (auto *C : candidate) { 697 NamedDecl *ND = C->getUnderlyingDecl(); 698 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 699 return true; 700 } 701 return false; 702 } 703 704 std::unique_ptr<CorrectionCandidateCallback> clone() override { 705 return std::make_unique<CastExpressionIdValidator>(*this); 706 } 707 708 private: 709 Token NextToken; 710 bool AllowNonTypes; 711 }; 712 } 713 714 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 715 /// a unary-expression. 716 /// 717 /// \p isAddressOfOperand exists because an id-expression that is the operand 718 /// of address-of gets special treatment due to member pointers. NotCastExpr 719 /// is set to true if the token is not the start of a cast-expression, and no 720 /// diagnostic is emitted in this case and no tokens are consumed. 721 /// 722 /// \verbatim 723 /// cast-expression: [C99 6.5.4] 724 /// unary-expression 725 /// '(' type-name ')' cast-expression 726 /// 727 /// unary-expression: [C99 6.5.3] 728 /// postfix-expression 729 /// '++' unary-expression 730 /// '--' unary-expression 731 /// [Coro] 'co_await' cast-expression 732 /// unary-operator cast-expression 733 /// 'sizeof' unary-expression 734 /// 'sizeof' '(' type-name ')' 735 /// [C++11] 'sizeof' '...' '(' identifier ')' 736 /// [GNU] '__alignof' unary-expression 737 /// [GNU] '__alignof' '(' type-name ')' 738 /// [C11] '_Alignof' '(' type-name ')' 739 /// [C++11] 'alignof' '(' type-id ')' 740 /// [GNU] '&&' identifier 741 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 742 /// [C++] new-expression 743 /// [C++] delete-expression 744 /// 745 /// unary-operator: one of 746 /// '&' '*' '+' '-' '~' '!' 747 /// [GNU] '__extension__' '__real' '__imag' 748 /// 749 /// primary-expression: [C99 6.5.1] 750 /// [C99] identifier 751 /// [C++] id-expression 752 /// constant 753 /// string-literal 754 /// [C++] boolean-literal [C++ 2.13.5] 755 /// [C++11] 'nullptr' [C++11 2.14.7] 756 /// [C++11] user-defined-literal 757 /// '(' expression ')' 758 /// [C11] generic-selection 759 /// '__func__' [C99 6.4.2.2] 760 /// [GNU] '__FUNCTION__' 761 /// [MS] '__FUNCDNAME__' 762 /// [MS] 'L__FUNCTION__' 763 /// [MS] '__FUNCSIG__' 764 /// [MS] 'L__FUNCSIG__' 765 /// [GNU] '__PRETTY_FUNCTION__' 766 /// [GNU] '(' compound-statement ')' 767 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 768 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 769 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 770 /// assign-expr ')' 771 /// [GNU] '__builtin_FILE' '(' ')' 772 /// [GNU] '__builtin_FUNCTION' '(' ')' 773 /// [GNU] '__builtin_LINE' '(' ')' 774 /// [CLANG] '__builtin_COLUMN' '(' ')' 775 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 776 /// [GNU] '__null' 777 /// [OBJC] '[' objc-message-expr ']' 778 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 779 /// [OBJC] '\@protocol' '(' identifier ')' 780 /// [OBJC] '\@encode' '(' type-name ')' 781 /// [OBJC] objc-string-literal 782 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 783 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 784 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 785 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 786 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 787 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 788 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 789 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 790 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 791 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 792 /// [C++] 'this' [C++ 9.3.2] 793 /// [G++] unary-type-trait '(' type-id ')' 794 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 795 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 796 /// [clang] '^' block-literal 797 /// 798 /// constant: [C99 6.4.4] 799 /// integer-constant 800 /// floating-constant 801 /// enumeration-constant -> identifier 802 /// character-constant 803 /// 804 /// id-expression: [C++ 5.1] 805 /// unqualified-id 806 /// qualified-id 807 /// 808 /// unqualified-id: [C++ 5.1] 809 /// identifier 810 /// operator-function-id 811 /// conversion-function-id 812 /// '~' class-name 813 /// template-id 814 /// 815 /// new-expression: [C++ 5.3.4] 816 /// '::'[opt] 'new' new-placement[opt] new-type-id 817 /// new-initializer[opt] 818 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 819 /// new-initializer[opt] 820 /// 821 /// delete-expression: [C++ 5.3.5] 822 /// '::'[opt] 'delete' cast-expression 823 /// '::'[opt] 'delete' '[' ']' cast-expression 824 /// 825 /// [GNU/Embarcadero] unary-type-trait: 826 /// '__is_arithmetic' 827 /// '__is_floating_point' 828 /// '__is_integral' 829 /// '__is_lvalue_expr' 830 /// '__is_rvalue_expr' 831 /// '__is_complete_type' 832 /// '__is_void' 833 /// '__is_array' 834 /// '__is_function' 835 /// '__is_reference' 836 /// '__is_lvalue_reference' 837 /// '__is_rvalue_reference' 838 /// '__is_fundamental' 839 /// '__is_object' 840 /// '__is_scalar' 841 /// '__is_compound' 842 /// '__is_pointer' 843 /// '__is_member_object_pointer' 844 /// '__is_member_function_pointer' 845 /// '__is_member_pointer' 846 /// '__is_const' 847 /// '__is_volatile' 848 /// '__is_trivial' 849 /// '__is_standard_layout' 850 /// '__is_signed' 851 /// '__is_unsigned' 852 /// 853 /// [GNU] unary-type-trait: 854 /// '__has_nothrow_assign' 855 /// '__has_nothrow_copy' 856 /// '__has_nothrow_constructor' 857 /// '__has_trivial_assign' [TODO] 858 /// '__has_trivial_copy' [TODO] 859 /// '__has_trivial_constructor' 860 /// '__has_trivial_destructor' 861 /// '__has_virtual_destructor' 862 /// '__is_abstract' [TODO] 863 /// '__is_class' 864 /// '__is_empty' [TODO] 865 /// '__is_enum' 866 /// '__is_final' 867 /// '__is_pod' 868 /// '__is_polymorphic' 869 /// '__is_sealed' [MS] 870 /// '__is_trivial' 871 /// '__is_union' 872 /// '__has_unique_object_representations' 873 /// 874 /// [Clang] unary-type-trait: 875 /// '__is_aggregate' 876 /// '__trivially_copyable' 877 /// 878 /// binary-type-trait: 879 /// [GNU] '__is_base_of' 880 /// [MS] '__is_convertible_to' 881 /// '__is_convertible' 882 /// '__is_same' 883 /// 884 /// [Embarcadero] array-type-trait: 885 /// '__array_rank' 886 /// '__array_extent' 887 /// 888 /// [Embarcadero] expression-trait: 889 /// '__is_lvalue_expr' 890 /// '__is_rvalue_expr' 891 /// \endverbatim 892 /// 893 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 894 bool isAddressOfOperand, 895 bool &NotCastExpr, 896 TypeCastState isTypeCast, 897 bool isVectorLiteral, 898 bool *NotPrimaryExpression) { 899 ExprResult Res; 900 tok::TokenKind SavedKind = Tok.getKind(); 901 auto SavedType = PreferredType; 902 NotCastExpr = false; 903 904 // This handles all of cast-expression, unary-expression, postfix-expression, 905 // and primary-expression. We handle them together like this for efficiency 906 // and to simplify handling of an expression starting with a '(' token: which 907 // may be one of a parenthesized expression, cast-expression, compound literal 908 // expression, or statement expression. 909 // 910 // If the parsed tokens consist of a primary-expression, the cases below 911 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 912 // to handle the postfix expression suffixes. Cases that cannot be followed 913 // by postfix exprs should return without invoking 914 // ParsePostfixExpressionSuffix. 915 switch (SavedKind) { 916 case tok::l_paren: { 917 // If this expression is limited to being a unary-expression, the paren can 918 // not start a cast expression. 919 ParenParseOption ParenExprType; 920 switch (ParseKind) { 921 case CastParseKind::UnaryExprOnly: 922 if (!getLangOpts().CPlusPlus) 923 ParenExprType = CompoundLiteral; 924 LLVM_FALLTHROUGH; 925 case CastParseKind::AnyCastExpr: 926 ParenExprType = ParenParseOption::CastExpr; 927 break; 928 case CastParseKind::PrimaryExprOnly: 929 ParenExprType = FoldExpr; 930 break; 931 } 932 ParsedType CastTy; 933 SourceLocation RParenLoc; 934 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 935 isTypeCast == IsTypeCast, CastTy, RParenLoc); 936 937 if (isVectorLiteral) 938 return Res; 939 940 switch (ParenExprType) { 941 case SimpleExpr: break; // Nothing else to do. 942 case CompoundStmt: break; // Nothing else to do. 943 case CompoundLiteral: 944 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 945 // postfix-expression exist, parse them now. 946 break; 947 case CastExpr: 948 // We have parsed the cast-expression and no postfix-expr pieces are 949 // following. 950 return Res; 951 case FoldExpr: 952 // We only parsed a fold-expression. There might be postfix-expr pieces 953 // afterwards; parse them now. 954 break; 955 } 956 957 break; 958 } 959 960 // primary-expression 961 case tok::numeric_constant: 962 // constant: integer-constant 963 // constant: floating-constant 964 965 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 966 ConsumeToken(); 967 break; 968 969 case tok::kw_true: 970 case tok::kw_false: 971 Res = ParseCXXBoolLiteral(); 972 break; 973 974 case tok::kw___objc_yes: 975 case tok::kw___objc_no: 976 return ParseObjCBoolLiteral(); 977 978 case tok::kw_nullptr: 979 Diag(Tok, diag::warn_cxx98_compat_nullptr); 980 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 981 982 case tok::annot_primary_expr: 983 Res = getExprAnnotation(Tok); 984 ConsumeAnnotationToken(); 985 if (!Res.isInvalid() && Tok.is(tok::less)) 986 checkPotentialAngleBracket(Res); 987 break; 988 989 case tok::annot_non_type: 990 case tok::annot_non_type_dependent: 991 case tok::annot_non_type_undeclared: { 992 CXXScopeSpec SS; 993 Token Replacement; 994 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 995 assert(!Res.isUnset() && 996 "should not perform typo correction on annotation token"); 997 break; 998 } 999 1000 case tok::kw___super: 1001 case tok::kw_decltype: 1002 // Annotate the token and tail recurse. 1003 if (TryAnnotateTypeOrScopeToken()) 1004 return ExprError(); 1005 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1006 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1007 isVectorLiteral, NotPrimaryExpression); 1008 1009 case tok::identifier: { // primary-expression: identifier 1010 // unqualified-id: identifier 1011 // constant: enumeration-constant 1012 // Turn a potentially qualified name into a annot_typename or 1013 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1014 if (getLangOpts().CPlusPlus) { 1015 // Avoid the unnecessary parse-time lookup in the common case 1016 // where the syntax forbids a type. 1017 const Token &Next = NextToken(); 1018 1019 // If this identifier was reverted from a token ID, and the next token 1020 // is a parenthesis, this is likely to be a use of a type trait. Check 1021 // those tokens. 1022 if (Next.is(tok::l_paren) && 1023 Tok.is(tok::identifier) && 1024 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1025 IdentifierInfo *II = Tok.getIdentifierInfo(); 1026 // Build up the mapping of revertible type traits, for future use. 1027 if (RevertibleTypeTraits.empty()) { 1028 #define RTT_JOIN(X,Y) X##Y 1029 #define REVERTIBLE_TYPE_TRAIT(Name) \ 1030 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 1031 = RTT_JOIN(tok::kw_,Name) 1032 1033 REVERTIBLE_TYPE_TRAIT(__is_abstract); 1034 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 1035 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 1036 REVERTIBLE_TYPE_TRAIT(__is_array); 1037 REVERTIBLE_TYPE_TRAIT(__is_assignable); 1038 REVERTIBLE_TYPE_TRAIT(__is_base_of); 1039 REVERTIBLE_TYPE_TRAIT(__is_class); 1040 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 1041 REVERTIBLE_TYPE_TRAIT(__is_compound); 1042 REVERTIBLE_TYPE_TRAIT(__is_const); 1043 REVERTIBLE_TYPE_TRAIT(__is_constructible); 1044 REVERTIBLE_TYPE_TRAIT(__is_convertible); 1045 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 1046 REVERTIBLE_TYPE_TRAIT(__is_destructible); 1047 REVERTIBLE_TYPE_TRAIT(__is_empty); 1048 REVERTIBLE_TYPE_TRAIT(__is_enum); 1049 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 1050 REVERTIBLE_TYPE_TRAIT(__is_final); 1051 REVERTIBLE_TYPE_TRAIT(__is_function); 1052 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 1053 REVERTIBLE_TYPE_TRAIT(__is_integral); 1054 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 1055 REVERTIBLE_TYPE_TRAIT(__is_literal); 1056 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 1057 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 1058 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 1059 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 1060 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 1061 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 1062 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 1063 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 1064 REVERTIBLE_TYPE_TRAIT(__is_object); 1065 REVERTIBLE_TYPE_TRAIT(__is_pod); 1066 REVERTIBLE_TYPE_TRAIT(__is_pointer); 1067 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 1068 REVERTIBLE_TYPE_TRAIT(__is_reference); 1069 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 1070 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 1071 REVERTIBLE_TYPE_TRAIT(__is_same); 1072 REVERTIBLE_TYPE_TRAIT(__is_scalar); 1073 REVERTIBLE_TYPE_TRAIT(__is_sealed); 1074 REVERTIBLE_TYPE_TRAIT(__is_signed); 1075 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 1076 REVERTIBLE_TYPE_TRAIT(__is_trivial); 1077 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 1078 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 1079 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 1080 REVERTIBLE_TYPE_TRAIT(__is_union); 1081 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 1082 REVERTIBLE_TYPE_TRAIT(__is_void); 1083 REVERTIBLE_TYPE_TRAIT(__is_volatile); 1084 #undef REVERTIBLE_TYPE_TRAIT 1085 #undef RTT_JOIN 1086 } 1087 1088 // If we find that this is in fact the name of a type trait, 1089 // update the token kind in place and parse again to treat it as 1090 // the appropriate kind of type trait. 1091 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 1092 = RevertibleTypeTraits.find(II); 1093 if (Known != RevertibleTypeTraits.end()) { 1094 Tok.setKind(Known->second); 1095 return ParseCastExpression(ParseKind, isAddressOfOperand, 1096 NotCastExpr, isTypeCast, 1097 isVectorLiteral, NotPrimaryExpression); 1098 } 1099 } 1100 1101 if ((!ColonIsSacred && Next.is(tok::colon)) || 1102 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1103 tok::l_brace)) { 1104 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1105 if (TryAnnotateTypeOrScopeToken()) 1106 return ExprError(); 1107 if (!Tok.is(tok::identifier)) 1108 return ParseCastExpression(ParseKind, isAddressOfOperand, 1109 NotCastExpr, isTypeCast, 1110 isVectorLiteral, 1111 NotPrimaryExpression); 1112 } 1113 } 1114 1115 // Consume the identifier so that we can see if it is followed by a '(' or 1116 // '.'. 1117 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1118 SourceLocation ILoc = ConsumeToken(); 1119 1120 // Support 'Class.property' and 'super.property' notation. 1121 if (getLangOpts().ObjC && Tok.is(tok::period) && 1122 (Actions.getTypeName(II, ILoc, getCurScope()) || 1123 // Allow the base to be 'super' if in an objc-method. 1124 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1125 ConsumeToken(); 1126 1127 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1128 Actions.CodeCompleteObjCClassPropertyRefExpr( 1129 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1130 cutOffParsing(); 1131 return ExprError(); 1132 } 1133 // Allow either an identifier or the keyword 'class' (in C++). 1134 if (Tok.isNot(tok::identifier) && 1135 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1136 Diag(Tok, diag::err_expected_property_name); 1137 return ExprError(); 1138 } 1139 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1140 SourceLocation PropertyLoc = ConsumeToken(); 1141 1142 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 1143 ILoc, PropertyLoc); 1144 break; 1145 } 1146 1147 // In an Objective-C method, if we have "super" followed by an identifier, 1148 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1149 // that identifier, this is probably a message send with a missing open 1150 // bracket. Treat it as such. 1151 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1152 getCurScope()->isInObjcMethodScope() && 1153 ((Tok.is(tok::identifier) && 1154 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1155 Tok.is(tok::code_completion))) { 1156 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1157 nullptr); 1158 break; 1159 } 1160 1161 // If we have an Objective-C class name followed by an identifier 1162 // and either ':' or ']', this is an Objective-C class message 1163 // send that's missing the opening '['. Recovery 1164 // appropriately. Also take this path if we're performing code 1165 // completion after an Objective-C class name. 1166 if (getLangOpts().ObjC && 1167 ((Tok.is(tok::identifier) && !InMessageExpression) || 1168 Tok.is(tok::code_completion))) { 1169 const Token& Next = NextToken(); 1170 if (Tok.is(tok::code_completion) || 1171 Next.is(tok::colon) || Next.is(tok::r_square)) 1172 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1173 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1174 // Fake up a Declarator to use with ActOnTypeName. 1175 DeclSpec DS(AttrFactory); 1176 DS.SetRangeStart(ILoc); 1177 DS.SetRangeEnd(ILoc); 1178 const char *PrevSpec = nullptr; 1179 unsigned DiagID; 1180 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1181 Actions.getASTContext().getPrintingPolicy()); 1182 1183 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1184 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1185 DeclaratorInfo); 1186 if (Ty.isInvalid()) 1187 break; 1188 1189 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1190 SourceLocation(), 1191 Ty.get(), nullptr); 1192 break; 1193 } 1194 } 1195 1196 // Make sure to pass down the right value for isAddressOfOperand. 1197 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1198 isAddressOfOperand = false; 1199 1200 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1201 // need to know whether or not this identifier is a function designator or 1202 // not. 1203 UnqualifiedId Name; 1204 CXXScopeSpec ScopeSpec; 1205 SourceLocation TemplateKWLoc; 1206 Token Replacement; 1207 CastExpressionIdValidator Validator( 1208 /*Next=*/Tok, 1209 /*AllowTypes=*/isTypeCast != NotTypeCast, 1210 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1211 Validator.IsAddressOfOperand = isAddressOfOperand; 1212 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1213 Validator.WantExpressionKeywords = false; 1214 Validator.WantRemainingKeywords = false; 1215 } else { 1216 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1217 } 1218 Name.setIdentifier(&II, ILoc); 1219 Res = Actions.ActOnIdExpression( 1220 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1221 isAddressOfOperand, &Validator, 1222 /*IsInlineAsmIdentifier=*/false, 1223 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1224 if (!Res.isInvalid() && Res.isUnset()) { 1225 UnconsumeToken(Replacement); 1226 return ParseCastExpression(ParseKind, isAddressOfOperand, 1227 NotCastExpr, isTypeCast, 1228 /*isVectorLiteral=*/false, 1229 NotPrimaryExpression); 1230 } 1231 if (!Res.isInvalid() && Tok.is(tok::less)) 1232 checkPotentialAngleBracket(Res); 1233 break; 1234 } 1235 case tok::char_constant: // constant: character-constant 1236 case tok::wide_char_constant: 1237 case tok::utf8_char_constant: 1238 case tok::utf16_char_constant: 1239 case tok::utf32_char_constant: 1240 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1241 ConsumeToken(); 1242 break; 1243 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1244 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1245 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1246 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1247 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1248 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1249 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1250 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1251 ConsumeToken(); 1252 break; 1253 case tok::string_literal: // primary-expression: string-literal 1254 case tok::wide_string_literal: 1255 case tok::utf8_string_literal: 1256 case tok::utf16_string_literal: 1257 case tok::utf32_string_literal: 1258 Res = ParseStringLiteralExpression(true); 1259 break; 1260 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1261 Res = ParseGenericSelectionExpression(); 1262 break; 1263 case tok::kw___builtin_available: 1264 return ParseAvailabilityCheckExpr(Tok.getLocation()); 1265 case tok::kw___builtin_va_arg: 1266 case tok::kw___builtin_offsetof: 1267 case tok::kw___builtin_choose_expr: 1268 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1269 case tok::kw___builtin_convertvector: 1270 case tok::kw___builtin_COLUMN: 1271 case tok::kw___builtin_FILE: 1272 case tok::kw___builtin_FUNCTION: 1273 case tok::kw___builtin_LINE: 1274 if (NotPrimaryExpression) 1275 *NotPrimaryExpression = true; 1276 return ParseBuiltinPrimaryExpression(); 1277 case tok::kw___null: 1278 return Actions.ActOnGNUNullExpr(ConsumeToken()); 1279 1280 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1281 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1282 if (NotPrimaryExpression) 1283 *NotPrimaryExpression = true; 1284 // C++ [expr.unary] has: 1285 // unary-expression: 1286 // ++ cast-expression 1287 // -- cast-expression 1288 Token SavedTok = Tok; 1289 ConsumeToken(); 1290 1291 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1292 SavedTok.getLocation()); 1293 // One special case is implicitly handled here: if the preceding tokens are 1294 // an ambiguous cast expression, such as "(T())++", then we recurse to 1295 // determine whether the '++' is prefix or postfix. 1296 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1297 UnaryExprOnly : AnyCastExpr, 1298 /*isAddressOfOperand*/false, NotCastExpr, 1299 NotTypeCast); 1300 if (NotCastExpr) { 1301 // If we return with NotCastExpr = true, we must not consume any tokens, 1302 // so put the token back where we found it. 1303 assert(Res.isInvalid()); 1304 UnconsumeToken(SavedTok); 1305 return ExprError(); 1306 } 1307 if (!Res.isInvalid()) 1308 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1309 SavedKind, Res.get()); 1310 return Res; 1311 } 1312 case tok::amp: { // unary-expression: '&' cast-expression 1313 if (NotPrimaryExpression) 1314 *NotPrimaryExpression = true; 1315 // Special treatment because of member pointers 1316 SourceLocation SavedLoc = ConsumeToken(); 1317 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1318 Res = ParseCastExpression(AnyCastExpr, true); 1319 if (!Res.isInvalid()) 1320 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1321 return Res; 1322 } 1323 1324 case tok::star: // unary-expression: '*' cast-expression 1325 case tok::plus: // unary-expression: '+' cast-expression 1326 case tok::minus: // unary-expression: '-' cast-expression 1327 case tok::tilde: // unary-expression: '~' cast-expression 1328 case tok::exclaim: // unary-expression: '!' cast-expression 1329 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1330 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1331 if (NotPrimaryExpression) 1332 *NotPrimaryExpression = true; 1333 SourceLocation SavedLoc = ConsumeToken(); 1334 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1335 Res = ParseCastExpression(AnyCastExpr); 1336 if (!Res.isInvalid()) 1337 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1338 return Res; 1339 } 1340 1341 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1342 if (NotPrimaryExpression) 1343 *NotPrimaryExpression = true; 1344 SourceLocation CoawaitLoc = ConsumeToken(); 1345 Res = ParseCastExpression(AnyCastExpr); 1346 if (!Res.isInvalid()) 1347 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1348 return Res; 1349 } 1350 1351 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1352 // __extension__ silences extension warnings in the subexpression. 1353 if (NotPrimaryExpression) 1354 *NotPrimaryExpression = true; 1355 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1356 SourceLocation SavedLoc = ConsumeToken(); 1357 Res = ParseCastExpression(AnyCastExpr); 1358 if (!Res.isInvalid()) 1359 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1360 return Res; 1361 } 1362 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1363 if (!getLangOpts().C11) 1364 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 1365 LLVM_FALLTHROUGH; 1366 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1367 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1368 // unary-expression: '__alignof' '(' type-name ')' 1369 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1370 // unary-expression: 'sizeof' '(' type-name ')' 1371 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1372 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1373 case tok::kw___builtin_omp_required_simd_align: 1374 if (NotPrimaryExpression) 1375 *NotPrimaryExpression = true; 1376 return ParseUnaryExprOrTypeTraitExpression(); 1377 case tok::ampamp: { // unary-expression: '&&' identifier 1378 if (NotPrimaryExpression) 1379 *NotPrimaryExpression = true; 1380 SourceLocation AmpAmpLoc = ConsumeToken(); 1381 if (Tok.isNot(tok::identifier)) 1382 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1383 1384 if (getCurScope()->getFnParent() == nullptr) 1385 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1386 1387 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1388 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1389 Tok.getLocation()); 1390 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1391 ConsumeToken(); 1392 return Res; 1393 } 1394 case tok::kw_const_cast: 1395 case tok::kw_dynamic_cast: 1396 case tok::kw_reinterpret_cast: 1397 case tok::kw_static_cast: 1398 if (NotPrimaryExpression) 1399 *NotPrimaryExpression = true; 1400 Res = ParseCXXCasts(); 1401 break; 1402 case tok::kw___builtin_bit_cast: 1403 if (NotPrimaryExpression) 1404 *NotPrimaryExpression = true; 1405 Res = ParseBuiltinBitCast(); 1406 break; 1407 case tok::kw_typeid: 1408 if (NotPrimaryExpression) 1409 *NotPrimaryExpression = true; 1410 Res = ParseCXXTypeid(); 1411 break; 1412 case tok::kw___uuidof: 1413 if (NotPrimaryExpression) 1414 *NotPrimaryExpression = true; 1415 Res = ParseCXXUuidof(); 1416 break; 1417 case tok::kw_this: 1418 Res = ParseCXXThis(); 1419 break; 1420 1421 case tok::annot_typename: 1422 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1423 ParsedType Type = getTypeAnnotation(Tok); 1424 1425 // Fake up a Declarator to use with ActOnTypeName. 1426 DeclSpec DS(AttrFactory); 1427 DS.SetRangeStart(Tok.getLocation()); 1428 DS.SetRangeEnd(Tok.getLastLoc()); 1429 1430 const char *PrevSpec = nullptr; 1431 unsigned DiagID; 1432 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1433 PrevSpec, DiagID, Type, 1434 Actions.getASTContext().getPrintingPolicy()); 1435 1436 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1437 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1438 if (Ty.isInvalid()) 1439 break; 1440 1441 ConsumeAnnotationToken(); 1442 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1443 Ty.get(), nullptr); 1444 break; 1445 } 1446 LLVM_FALLTHROUGH; 1447 1448 case tok::annot_decltype: 1449 case tok::kw_char: 1450 case tok::kw_wchar_t: 1451 case tok::kw_char8_t: 1452 case tok::kw_char16_t: 1453 case tok::kw_char32_t: 1454 case tok::kw_bool: 1455 case tok::kw_short: 1456 case tok::kw_int: 1457 case tok::kw_long: 1458 case tok::kw___int64: 1459 case tok::kw___int128: 1460 case tok::kw_signed: 1461 case tok::kw_unsigned: 1462 case tok::kw_half: 1463 case tok::kw_float: 1464 case tok::kw_double: 1465 case tok::kw__Float16: 1466 case tok::kw___float128: 1467 case tok::kw_void: 1468 case tok::kw_typename: 1469 case tok::kw_typeof: 1470 case tok::kw___vector: 1471 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1472 #include "clang/Basic/OpenCLImageTypes.def" 1473 { 1474 if (!getLangOpts().CPlusPlus) { 1475 Diag(Tok, diag::err_expected_expression); 1476 return ExprError(); 1477 } 1478 1479 // Everything henceforth is a postfix-expression. 1480 if (NotPrimaryExpression) 1481 *NotPrimaryExpression = true; 1482 1483 if (SavedKind == tok::kw_typename) { 1484 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1485 // typename-specifier braced-init-list 1486 if (TryAnnotateTypeOrScopeToken()) 1487 return ExprError(); 1488 1489 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1490 // We are trying to parse a simple-type-specifier but might not get such 1491 // a token after error recovery. 1492 return ExprError(); 1493 } 1494 1495 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1496 // simple-type-specifier braced-init-list 1497 // 1498 DeclSpec DS(AttrFactory); 1499 1500 ParseCXXSimpleTypeSpecifier(DS); 1501 if (Tok.isNot(tok::l_paren) && 1502 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1503 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1504 << DS.getSourceRange()); 1505 1506 if (Tok.is(tok::l_brace)) 1507 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1508 1509 Res = ParseCXXTypeConstructExpression(DS); 1510 break; 1511 } 1512 1513 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1514 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1515 // (We can end up in this situation after tentative parsing.) 1516 if (TryAnnotateTypeOrScopeToken()) 1517 return ExprError(); 1518 if (!Tok.is(tok::annot_cxxscope)) 1519 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1520 isTypeCast, isVectorLiteral, 1521 NotPrimaryExpression); 1522 1523 Token Next = NextToken(); 1524 if (Next.is(tok::annot_template_id)) { 1525 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1526 if (TemplateId->Kind == TNK_Type_template) { 1527 // We have a qualified template-id that we know refers to a 1528 // type, translate it into a type and continue parsing as a 1529 // cast expression. 1530 CXXScopeSpec SS; 1531 ParseOptionalCXXScopeSpecifier(SS, nullptr, 1532 /*EnteringContext=*/false); 1533 AnnotateTemplateIdTokenAsType(); 1534 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1535 isTypeCast, isVectorLiteral, 1536 NotPrimaryExpression); 1537 } 1538 } 1539 1540 // Parse as an id-expression. 1541 Res = ParseCXXIdExpression(isAddressOfOperand); 1542 break; 1543 } 1544 1545 case tok::annot_template_id: { // [C++] template-id 1546 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1547 if (TemplateId->Kind == TNK_Type_template) { 1548 // We have a template-id that we know refers to a type, 1549 // translate it into a type and continue parsing as a cast 1550 // expression. 1551 AnnotateTemplateIdTokenAsType(); 1552 return ParseCastExpression(ParseKind, isAddressOfOperand, 1553 NotCastExpr, isTypeCast, isVectorLiteral, 1554 NotPrimaryExpression); 1555 } 1556 1557 // Fall through to treat the template-id as an id-expression. 1558 LLVM_FALLTHROUGH; 1559 } 1560 1561 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1562 Res = ParseCXXIdExpression(isAddressOfOperand); 1563 break; 1564 1565 case tok::coloncolon: { 1566 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1567 // annotates the token, tail recurse. 1568 if (TryAnnotateTypeOrScopeToken()) 1569 return ExprError(); 1570 if (!Tok.is(tok::coloncolon)) 1571 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1572 isVectorLiteral, NotPrimaryExpression); 1573 1574 // ::new -> [C++] new-expression 1575 // ::delete -> [C++] delete-expression 1576 SourceLocation CCLoc = ConsumeToken(); 1577 if (Tok.is(tok::kw_new)) { 1578 if (NotPrimaryExpression) 1579 *NotPrimaryExpression = true; 1580 return ParseCXXNewExpression(true, CCLoc); 1581 } 1582 if (Tok.is(tok::kw_delete)) { 1583 if (NotPrimaryExpression) 1584 *NotPrimaryExpression = true; 1585 return ParseCXXDeleteExpression(true, CCLoc); 1586 } 1587 1588 // This is not a type name or scope specifier, it is an invalid expression. 1589 Diag(CCLoc, diag::err_expected_expression); 1590 return ExprError(); 1591 } 1592 1593 case tok::kw_new: // [C++] new-expression 1594 if (NotPrimaryExpression) 1595 *NotPrimaryExpression = true; 1596 return ParseCXXNewExpression(false, Tok.getLocation()); 1597 1598 case tok::kw_delete: // [C++] delete-expression 1599 if (NotPrimaryExpression) 1600 *NotPrimaryExpression = true; 1601 return ParseCXXDeleteExpression(false, Tok.getLocation()); 1602 1603 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1604 if (NotPrimaryExpression) 1605 *NotPrimaryExpression = true; 1606 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1607 SourceLocation KeyLoc = ConsumeToken(); 1608 BalancedDelimiterTracker T(*this, tok::l_paren); 1609 1610 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1611 return ExprError(); 1612 // C++11 [expr.unary.noexcept]p1: 1613 // The noexcept operator determines whether the evaluation of its operand, 1614 // which is an unevaluated operand, can throw an exception. 1615 EnterExpressionEvaluationContext Unevaluated( 1616 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1617 ExprResult Result = ParseExpression(); 1618 1619 T.consumeClose(); 1620 1621 if (!Result.isInvalid()) 1622 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), 1623 Result.get(), T.getCloseLocation()); 1624 return Result; 1625 } 1626 1627 #define TYPE_TRAIT(N,Spelling,K) \ 1628 case tok::kw_##Spelling: 1629 #include "clang/Basic/TokenKinds.def" 1630 return ParseTypeTrait(); 1631 1632 case tok::kw___array_rank: 1633 case tok::kw___array_extent: 1634 if (NotPrimaryExpression) 1635 *NotPrimaryExpression = true; 1636 return ParseArrayTypeTrait(); 1637 1638 case tok::kw___is_lvalue_expr: 1639 case tok::kw___is_rvalue_expr: 1640 if (NotPrimaryExpression) 1641 *NotPrimaryExpression = true; 1642 return ParseExpressionTrait(); 1643 1644 case tok::at: { 1645 if (NotPrimaryExpression) 1646 *NotPrimaryExpression = true; 1647 SourceLocation AtLoc = ConsumeToken(); 1648 return ParseObjCAtExpression(AtLoc); 1649 } 1650 case tok::caret: 1651 Res = ParseBlockLiteralExpression(); 1652 break; 1653 case tok::code_completion: { 1654 Actions.CodeCompleteExpression(getCurScope(), 1655 PreferredType.get(Tok.getLocation())); 1656 cutOffParsing(); 1657 return ExprError(); 1658 } 1659 case tok::l_square: 1660 if (getLangOpts().CPlusPlus11) { 1661 if (getLangOpts().ObjC) { 1662 // C++11 lambda expressions and Objective-C message sends both start with a 1663 // square bracket. There are three possibilities here: 1664 // we have a valid lambda expression, we have an invalid lambda 1665 // expression, or we have something that doesn't appear to be a lambda. 1666 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1667 Res = TryParseLambdaExpression(); 1668 if (!Res.isInvalid() && !Res.get()) { 1669 // We assume Objective-C++ message expressions are not 1670 // primary-expressions. 1671 if (NotPrimaryExpression) 1672 *NotPrimaryExpression = true; 1673 Res = ParseObjCMessageExpression(); 1674 } 1675 break; 1676 } 1677 Res = ParseLambdaExpression(); 1678 break; 1679 } 1680 if (getLangOpts().ObjC) { 1681 Res = ParseObjCMessageExpression(); 1682 break; 1683 } 1684 LLVM_FALLTHROUGH; 1685 default: 1686 NotCastExpr = true; 1687 return ExprError(); 1688 } 1689 1690 // Check to see whether Res is a function designator only. If it is and we 1691 // are compiling for OpenCL, we need to return an error as this implies 1692 // that the address of the function is being taken, which is illegal in CL. 1693 1694 if (ParseKind == PrimaryExprOnly) 1695 // This is strictly a primary-expression - no postfix-expr pieces should be 1696 // parsed. 1697 return Res; 1698 1699 // These can be followed by postfix-expr pieces. 1700 PreferredType = SavedType; 1701 Res = ParsePostfixExpressionSuffix(Res); 1702 if (getLangOpts().OpenCL) 1703 if (Expr *PostfixExpr = Res.get()) { 1704 QualType Ty = PostfixExpr->getType(); 1705 if (!Ty.isNull() && Ty->isFunctionType()) { 1706 Diag(PostfixExpr->getExprLoc(), 1707 diag::err_opencl_taking_function_address_parser); 1708 return ExprError(); 1709 } 1710 } 1711 1712 return Res; 1713 } 1714 1715 /// Once the leading part of a postfix-expression is parsed, this 1716 /// method parses any suffixes that apply. 1717 /// 1718 /// \verbatim 1719 /// postfix-expression: [C99 6.5.2] 1720 /// primary-expression 1721 /// postfix-expression '[' expression ']' 1722 /// postfix-expression '[' braced-init-list ']' 1723 /// postfix-expression '(' argument-expression-list[opt] ')' 1724 /// postfix-expression '.' identifier 1725 /// postfix-expression '->' identifier 1726 /// postfix-expression '++' 1727 /// postfix-expression '--' 1728 /// '(' type-name ')' '{' initializer-list '}' 1729 /// '(' type-name ')' '{' initializer-list ',' '}' 1730 /// 1731 /// argument-expression-list: [C99 6.5.2] 1732 /// argument-expression ...[opt] 1733 /// argument-expression-list ',' assignment-expression ...[opt] 1734 /// \endverbatim 1735 ExprResult 1736 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1737 // Now that the primary-expression piece of the postfix-expression has been 1738 // parsed, see if there are any postfix-expression pieces here. 1739 SourceLocation Loc; 1740 auto SavedType = PreferredType; 1741 while (1) { 1742 // Each iteration relies on preferred type for the whole expression. 1743 PreferredType = SavedType; 1744 switch (Tok.getKind()) { 1745 case tok::code_completion: 1746 if (InMessageExpression) 1747 return LHS; 1748 1749 Actions.CodeCompletePostfixExpression( 1750 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1751 cutOffParsing(); 1752 return ExprError(); 1753 1754 case tok::identifier: 1755 // If we see identifier: after an expression, and we're not already in a 1756 // message send, then this is probably a message send with a missing 1757 // opening bracket '['. 1758 if (getLangOpts().ObjC && !InMessageExpression && 1759 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1760 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1761 nullptr, LHS.get()); 1762 break; 1763 } 1764 // Fall through; this isn't a message send. 1765 LLVM_FALLTHROUGH; 1766 1767 default: // Not a postfix-expression suffix. 1768 return LHS; 1769 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1770 // If we have a array postfix expression that starts on a new line and 1771 // Objective-C is enabled, it is highly likely that the user forgot a 1772 // semicolon after the base expression and that the array postfix-expr is 1773 // actually another message send. In this case, do some look-ahead to see 1774 // if the contents of the square brackets are obviously not a valid 1775 // expression and recover by pretending there is no suffix. 1776 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1777 isSimpleObjCMessageExpression()) 1778 return LHS; 1779 1780 // Reject array indices starting with a lambda-expression. '[[' is 1781 // reserved for attributes. 1782 if (CheckProhibitedCXX11Attribute()) { 1783 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1784 return ExprError(); 1785 } 1786 1787 BalancedDelimiterTracker T(*this, tok::l_square); 1788 T.consumeOpen(); 1789 Loc = T.getOpenLocation(); 1790 ExprResult Idx, Length; 1791 SourceLocation ColonLoc; 1792 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1793 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1794 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1795 Idx = ParseBraceInitializer(); 1796 } else if (getLangOpts().OpenMP) { 1797 ColonProtectionRAIIObject RAII(*this); 1798 // Parse [: or [ expr or [ expr : 1799 if (!Tok.is(tok::colon)) { 1800 // [ expr 1801 Idx = ParseExpression(); 1802 } 1803 if (Tok.is(tok::colon)) { 1804 // Consume ':' 1805 ColonLoc = ConsumeToken(); 1806 if (Tok.isNot(tok::r_square)) 1807 Length = ParseExpression(); 1808 } 1809 } else 1810 Idx = ParseExpression(); 1811 1812 SourceLocation RLoc = Tok.getLocation(); 1813 1814 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1815 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1816 Length = Actions.CorrectDelayedTyposInExpr(Length); 1817 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() && 1818 Tok.is(tok::r_square)) { 1819 if (ColonLoc.isValid()) { 1820 LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(), 1821 ColonLoc, Length.get(), RLoc); 1822 } else { 1823 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 1824 Idx.get(), RLoc); 1825 } 1826 } else { 1827 LHS = ExprError(); 1828 Idx = ExprError(); 1829 } 1830 1831 // Match the ']'. 1832 T.consumeClose(); 1833 break; 1834 } 1835 1836 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 1837 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 1838 // '(' argument-expression-list[opt] ')' 1839 tok::TokenKind OpKind = Tok.getKind(); 1840 InMessageExpressionRAIIObject InMessage(*this, false); 1841 1842 Expr *ExecConfig = nullptr; 1843 1844 BalancedDelimiterTracker PT(*this, tok::l_paren); 1845 1846 if (OpKind == tok::lesslessless) { 1847 ExprVector ExecConfigExprs; 1848 CommaLocsTy ExecConfigCommaLocs; 1849 SourceLocation OpenLoc = ConsumeToken(); 1850 1851 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { 1852 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1853 LHS = ExprError(); 1854 } 1855 1856 SourceLocation CloseLoc; 1857 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 1858 } else if (LHS.isInvalid()) { 1859 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1860 } else { 1861 // There was an error closing the brackets 1862 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 1863 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 1864 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1865 LHS = ExprError(); 1866 } 1867 1868 if (!LHS.isInvalid()) { 1869 if (ExpectAndConsume(tok::l_paren)) 1870 LHS = ExprError(); 1871 else 1872 Loc = PrevTokLocation; 1873 } 1874 1875 if (!LHS.isInvalid()) { 1876 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 1877 OpenLoc, 1878 ExecConfigExprs, 1879 CloseLoc); 1880 if (ECResult.isInvalid()) 1881 LHS = ExprError(); 1882 else 1883 ExecConfig = ECResult.get(); 1884 } 1885 } else { 1886 PT.consumeOpen(); 1887 Loc = PT.getOpenLocation(); 1888 } 1889 1890 ExprVector ArgExprs; 1891 CommaLocsTy CommaLocs; 1892 auto RunSignatureHelp = [&]() -> QualType { 1893 QualType PreferredType = Actions.ProduceCallSignatureHelp( 1894 getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation()); 1895 CalledSignatureHelp = true; 1896 return PreferredType; 1897 }; 1898 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 1899 if (Tok.isNot(tok::r_paren)) { 1900 if (ParseExpressionList(ArgExprs, CommaLocs, [&] { 1901 PreferredType.enterFunctionArgument(Tok.getLocation(), 1902 RunSignatureHelp); 1903 })) { 1904 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1905 // If we got an error when parsing expression list, we don't call 1906 // the CodeCompleteCall handler inside the parser. So call it here 1907 // to make sure we get overload suggestions even when we are in the 1908 // middle of a parameter. 1909 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 1910 RunSignatureHelp(); 1911 LHS = ExprError(); 1912 } else if (LHS.isInvalid()) { 1913 for (auto &E : ArgExprs) 1914 Actions.CorrectDelayedTyposInExpr(E); 1915 } 1916 } 1917 } 1918 1919 // Match the ')'. 1920 if (LHS.isInvalid()) { 1921 SkipUntil(tok::r_paren, StopAtSemi); 1922 } else if (Tok.isNot(tok::r_paren)) { 1923 bool HadDelayedTypo = false; 1924 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 1925 HadDelayedTypo = true; 1926 for (auto &E : ArgExprs) 1927 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 1928 HadDelayedTypo = true; 1929 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 1930 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 1931 // the unmatched l_paren. 1932 if (HadDelayedTypo) 1933 SkipUntil(tok::r_paren, StopAtSemi); 1934 else 1935 PT.consumeClose(); 1936 LHS = ExprError(); 1937 } else { 1938 assert((ArgExprs.size() == 0 || 1939 ArgExprs.size()-1 == CommaLocs.size())&& 1940 "Unexpected number of commas!"); 1941 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc, 1942 ArgExprs, Tok.getLocation(), 1943 ExecConfig); 1944 PT.consumeClose(); 1945 } 1946 1947 break; 1948 } 1949 case tok::arrow: 1950 case tok::period: { 1951 // postfix-expression: p-e '->' template[opt] id-expression 1952 // postfix-expression: p-e '.' template[opt] id-expression 1953 tok::TokenKind OpKind = Tok.getKind(); 1954 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 1955 1956 CXXScopeSpec SS; 1957 ParsedType ObjectType; 1958 bool MayBePseudoDestructor = false; 1959 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 1960 1961 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 1962 1963 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 1964 Expr *Base = OrigLHS; 1965 const Type* BaseType = Base->getType().getTypePtrOrNull(); 1966 if (BaseType && Tok.is(tok::l_paren) && 1967 (BaseType->isFunctionType() || 1968 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 1969 Diag(OpLoc, diag::err_function_is_not_record) 1970 << OpKind << Base->getSourceRange() 1971 << FixItHint::CreateRemoval(OpLoc); 1972 return ParsePostfixExpressionSuffix(Base); 1973 } 1974 1975 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, 1976 OpLoc, OpKind, ObjectType, 1977 MayBePseudoDestructor); 1978 if (LHS.isInvalid()) 1979 break; 1980 1981 ParseOptionalCXXScopeSpecifier(SS, ObjectType, 1982 /*EnteringContext=*/false, 1983 &MayBePseudoDestructor); 1984 if (SS.isNotEmpty()) 1985 ObjectType = nullptr; 1986 } 1987 1988 if (Tok.is(tok::code_completion)) { 1989 tok::TokenKind CorrectedOpKind = 1990 OpKind == tok::arrow ? tok::period : tok::arrow; 1991 ExprResult CorrectedLHS(/*Invalid=*/true); 1992 if (getLangOpts().CPlusPlus && OrigLHS) { 1993 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 1994 // hack. 1995 Sema::TentativeAnalysisScope Trap(Actions); 1996 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 1997 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 1998 MayBePseudoDestructor); 1999 } 2000 2001 Expr *Base = LHS.get(); 2002 Expr *CorrectedBase = CorrectedLHS.get(); 2003 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2004 CorrectedBase = Base; 2005 2006 // Code completion for a member access expression. 2007 Actions.CodeCompleteMemberReferenceExpr( 2008 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2009 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2010 PreferredType.get(Tok.getLocation())); 2011 2012 cutOffParsing(); 2013 return ExprError(); 2014 } 2015 2016 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2017 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2018 ObjectType); 2019 break; 2020 } 2021 2022 // Either the action has told us that this cannot be a 2023 // pseudo-destructor expression (based on the type of base 2024 // expression), or we didn't see a '~' in the right place. We 2025 // can still parse a destructor name here, but in that case it 2026 // names a real destructor. 2027 // Allow explicit constructor calls in Microsoft mode. 2028 // FIXME: Add support for explicit call of template constructor. 2029 SourceLocation TemplateKWLoc; 2030 UnqualifiedId Name; 2031 if (getLangOpts().ObjC && OpKind == tok::period && 2032 Tok.is(tok::kw_class)) { 2033 // Objective-C++: 2034 // After a '.' in a member access expression, treat the keyword 2035 // 'class' as if it were an identifier. 2036 // 2037 // This hack allows property access to the 'class' method because it is 2038 // such a common method name. For other C++ keywords that are 2039 // Objective-C method names, one must use the message send syntax. 2040 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2041 SourceLocation Loc = ConsumeToken(); 2042 Name.setIdentifier(Id, Loc); 2043 } else if (ParseUnqualifiedId(SS, 2044 /*EnteringContext=*/false, 2045 /*AllowDestructorName=*/true, 2046 /*AllowConstructorName=*/ 2047 getLangOpts().MicrosoftExt && 2048 SS.isNotEmpty(), 2049 /*AllowDeductionGuide=*/false, 2050 ObjectType, &TemplateKWLoc, Name)) { 2051 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2052 LHS = ExprError(); 2053 } 2054 2055 if (!LHS.isInvalid()) 2056 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2057 OpKind, SS, TemplateKWLoc, Name, 2058 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2059 : nullptr); 2060 if (!LHS.isInvalid() && Tok.is(tok::less)) 2061 checkPotentialAngleBracket(LHS); 2062 break; 2063 } 2064 case tok::plusplus: // postfix-expression: postfix-expression '++' 2065 case tok::minusminus: // postfix-expression: postfix-expression '--' 2066 if (!LHS.isInvalid()) { 2067 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2068 Tok.getKind(), LHS.get()); 2069 } 2070 ConsumeToken(); 2071 break; 2072 } 2073 } 2074 } 2075 2076 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2077 /// vec_step and we are at the start of an expression or a parenthesized 2078 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2079 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2080 /// 2081 /// \verbatim 2082 /// unary-expression: [C99 6.5.3] 2083 /// 'sizeof' unary-expression 2084 /// 'sizeof' '(' type-name ')' 2085 /// [GNU] '__alignof' unary-expression 2086 /// [GNU] '__alignof' '(' type-name ')' 2087 /// [C11] '_Alignof' '(' type-name ')' 2088 /// [C++0x] 'alignof' '(' type-id ')' 2089 /// 2090 /// [GNU] typeof-specifier: 2091 /// typeof ( expressions ) 2092 /// typeof ( type-name ) 2093 /// [GNU/C++] typeof unary-expression 2094 /// 2095 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2096 /// vec_step ( expressions ) 2097 /// vec_step ( type-name ) 2098 /// \endverbatim 2099 ExprResult 2100 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2101 bool &isCastExpr, 2102 ParsedType &CastTy, 2103 SourceRange &CastRange) { 2104 2105 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof, 2106 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2107 tok::kw___builtin_omp_required_simd_align) && 2108 "Not a typeof/sizeof/alignof/vec_step expression!"); 2109 2110 ExprResult Operand; 2111 2112 // If the operand doesn't start with an '(', it must be an expression. 2113 if (Tok.isNot(tok::l_paren)) { 2114 // If construct allows a form without parenthesis, user may forget to put 2115 // pathenthesis around type name. 2116 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2117 tok::kw__Alignof)) { 2118 if (isTypeIdUnambiguously()) { 2119 DeclSpec DS(AttrFactory); 2120 ParseSpecifierQualifierList(DS); 2121 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 2122 ParseDeclarator(DeclaratorInfo); 2123 2124 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2125 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2126 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2127 << OpTok.getName() 2128 << FixItHint::CreateInsertion(LParenLoc, "(") 2129 << FixItHint::CreateInsertion(RParenLoc, ")"); 2130 isCastExpr = true; 2131 return ExprEmpty(); 2132 } 2133 } 2134 2135 isCastExpr = false; 2136 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { 2137 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2138 << tok::l_paren; 2139 return ExprError(); 2140 } 2141 2142 Operand = ParseCastExpression(UnaryExprOnly); 2143 } else { 2144 // If it starts with a '(', we know that it is either a parenthesized 2145 // type-name, or it is a unary-expression that starts with a compound 2146 // literal, or starts with a primary-expression that is a parenthesized 2147 // expression. 2148 ParenParseOption ExprType = CastExpr; 2149 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2150 2151 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2152 false, CastTy, RParenLoc); 2153 CastRange = SourceRange(LParenLoc, RParenLoc); 2154 2155 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2156 // a type. 2157 if (ExprType == CastExpr) { 2158 isCastExpr = true; 2159 return ExprEmpty(); 2160 } 2161 2162 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { 2163 // GNU typeof in C requires the expression to be parenthesized. Not so for 2164 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2165 // the start of a unary-expression, but doesn't include any postfix 2166 // pieces. Parse these now if present. 2167 if (!Operand.isInvalid()) 2168 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2169 } 2170 } 2171 2172 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2173 isCastExpr = false; 2174 return Operand; 2175 } 2176 2177 2178 /// Parse a sizeof or alignof expression. 2179 /// 2180 /// \verbatim 2181 /// unary-expression: [C99 6.5.3] 2182 /// 'sizeof' unary-expression 2183 /// 'sizeof' '(' type-name ')' 2184 /// [C++11] 'sizeof' '...' '(' identifier ')' 2185 /// [GNU] '__alignof' unary-expression 2186 /// [GNU] '__alignof' '(' type-name ')' 2187 /// [C11] '_Alignof' '(' type-name ')' 2188 /// [C++11] 'alignof' '(' type-id ')' 2189 /// \endverbatim 2190 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2191 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2192 tok::kw__Alignof, tok::kw_vec_step, 2193 tok::kw___builtin_omp_required_simd_align) && 2194 "Not a sizeof/alignof/vec_step expression!"); 2195 Token OpTok = Tok; 2196 ConsumeToken(); 2197 2198 // [C++11] 'sizeof' '...' '(' identifier ')' 2199 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2200 SourceLocation EllipsisLoc = ConsumeToken(); 2201 SourceLocation LParenLoc, RParenLoc; 2202 IdentifierInfo *Name = nullptr; 2203 SourceLocation NameLoc; 2204 if (Tok.is(tok::l_paren)) { 2205 BalancedDelimiterTracker T(*this, tok::l_paren); 2206 T.consumeOpen(); 2207 LParenLoc = T.getOpenLocation(); 2208 if (Tok.is(tok::identifier)) { 2209 Name = Tok.getIdentifierInfo(); 2210 NameLoc = ConsumeToken(); 2211 T.consumeClose(); 2212 RParenLoc = T.getCloseLocation(); 2213 if (RParenLoc.isInvalid()) 2214 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2215 } else { 2216 Diag(Tok, diag::err_expected_parameter_pack); 2217 SkipUntil(tok::r_paren, StopAtSemi); 2218 } 2219 } else if (Tok.is(tok::identifier)) { 2220 Name = Tok.getIdentifierInfo(); 2221 NameLoc = ConsumeToken(); 2222 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2223 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2224 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2225 << Name 2226 << FixItHint::CreateInsertion(LParenLoc, "(") 2227 << FixItHint::CreateInsertion(RParenLoc, ")"); 2228 } else { 2229 Diag(Tok, diag::err_sizeof_parameter_pack); 2230 } 2231 2232 if (!Name) 2233 return ExprError(); 2234 2235 EnterExpressionEvaluationContext Unevaluated( 2236 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2237 Sema::ReuseLambdaContextDecl); 2238 2239 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2240 OpTok.getLocation(), 2241 *Name, NameLoc, 2242 RParenLoc); 2243 } 2244 2245 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2246 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2247 2248 EnterExpressionEvaluationContext Unevaluated( 2249 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2250 Sema::ReuseLambdaContextDecl); 2251 2252 bool isCastExpr; 2253 ParsedType CastTy; 2254 SourceRange CastRange; 2255 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2256 isCastExpr, 2257 CastTy, 2258 CastRange); 2259 2260 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2261 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2262 ExprKind = UETT_AlignOf; 2263 else if (OpTok.is(tok::kw___alignof)) 2264 ExprKind = UETT_PreferredAlignOf; 2265 else if (OpTok.is(tok::kw_vec_step)) 2266 ExprKind = UETT_VecStep; 2267 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align)) 2268 ExprKind = UETT_OpenMPRequiredSimdAlign; 2269 2270 if (isCastExpr) 2271 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2272 ExprKind, 2273 /*IsType=*/true, 2274 CastTy.getAsOpaquePtr(), 2275 CastRange); 2276 2277 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2278 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2279 2280 // If we get here, the operand to the sizeof/alignof was an expression. 2281 if (!Operand.isInvalid()) 2282 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2283 ExprKind, 2284 /*IsType=*/false, 2285 Operand.get(), 2286 CastRange); 2287 return Operand; 2288 } 2289 2290 /// ParseBuiltinPrimaryExpression 2291 /// 2292 /// \verbatim 2293 /// primary-expression: [C99 6.5.1] 2294 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2295 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2296 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2297 /// assign-expr ')' 2298 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2299 /// [GNU] '__builtin_FILE' '(' ')' 2300 /// [GNU] '__builtin_FUNCTION' '(' ')' 2301 /// [GNU] '__builtin_LINE' '(' ')' 2302 /// [CLANG] '__builtin_COLUMN' '(' ')' 2303 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2304 /// 2305 /// [GNU] offsetof-member-designator: 2306 /// [GNU] identifier 2307 /// [GNU] offsetof-member-designator '.' identifier 2308 /// [GNU] offsetof-member-designator '[' expression ']' 2309 /// \endverbatim 2310 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2311 ExprResult Res; 2312 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2313 2314 tok::TokenKind T = Tok.getKind(); 2315 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2316 2317 // All of these start with an open paren. 2318 if (Tok.isNot(tok::l_paren)) 2319 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2320 << tok::l_paren); 2321 2322 BalancedDelimiterTracker PT(*this, tok::l_paren); 2323 PT.consumeOpen(); 2324 2325 // TODO: Build AST. 2326 2327 switch (T) { 2328 default: llvm_unreachable("Not a builtin primary expression!"); 2329 case tok::kw___builtin_va_arg: { 2330 ExprResult Expr(ParseAssignmentExpression()); 2331 2332 if (ExpectAndConsume(tok::comma)) { 2333 SkipUntil(tok::r_paren, StopAtSemi); 2334 Expr = ExprError(); 2335 } 2336 2337 TypeResult Ty = ParseTypeName(); 2338 2339 if (Tok.isNot(tok::r_paren)) { 2340 Diag(Tok, diag::err_expected) << tok::r_paren; 2341 Expr = ExprError(); 2342 } 2343 2344 if (Expr.isInvalid() || Ty.isInvalid()) 2345 Res = ExprError(); 2346 else 2347 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2348 break; 2349 } 2350 case tok::kw___builtin_offsetof: { 2351 SourceLocation TypeLoc = Tok.getLocation(); 2352 TypeResult Ty = ParseTypeName(); 2353 if (Ty.isInvalid()) { 2354 SkipUntil(tok::r_paren, StopAtSemi); 2355 return ExprError(); 2356 } 2357 2358 if (ExpectAndConsume(tok::comma)) { 2359 SkipUntil(tok::r_paren, StopAtSemi); 2360 return ExprError(); 2361 } 2362 2363 // We must have at least one identifier here. 2364 if (Tok.isNot(tok::identifier)) { 2365 Diag(Tok, diag::err_expected) << tok::identifier; 2366 SkipUntil(tok::r_paren, StopAtSemi); 2367 return ExprError(); 2368 } 2369 2370 // Keep track of the various subcomponents we see. 2371 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2372 2373 Comps.push_back(Sema::OffsetOfComponent()); 2374 Comps.back().isBrackets = false; 2375 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2376 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2377 2378 // FIXME: This loop leaks the index expressions on error. 2379 while (1) { 2380 if (Tok.is(tok::period)) { 2381 // offsetof-member-designator: offsetof-member-designator '.' identifier 2382 Comps.push_back(Sema::OffsetOfComponent()); 2383 Comps.back().isBrackets = false; 2384 Comps.back().LocStart = ConsumeToken(); 2385 2386 if (Tok.isNot(tok::identifier)) { 2387 Diag(Tok, diag::err_expected) << tok::identifier; 2388 SkipUntil(tok::r_paren, StopAtSemi); 2389 return ExprError(); 2390 } 2391 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2392 Comps.back().LocEnd = ConsumeToken(); 2393 2394 } else if (Tok.is(tok::l_square)) { 2395 if (CheckProhibitedCXX11Attribute()) 2396 return ExprError(); 2397 2398 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2399 Comps.push_back(Sema::OffsetOfComponent()); 2400 Comps.back().isBrackets = true; 2401 BalancedDelimiterTracker ST(*this, tok::l_square); 2402 ST.consumeOpen(); 2403 Comps.back().LocStart = ST.getOpenLocation(); 2404 Res = ParseExpression(); 2405 if (Res.isInvalid()) { 2406 SkipUntil(tok::r_paren, StopAtSemi); 2407 return Res; 2408 } 2409 Comps.back().U.E = Res.get(); 2410 2411 ST.consumeClose(); 2412 Comps.back().LocEnd = ST.getCloseLocation(); 2413 } else { 2414 if (Tok.isNot(tok::r_paren)) { 2415 PT.consumeClose(); 2416 Res = ExprError(); 2417 } else if (Ty.isInvalid()) { 2418 Res = ExprError(); 2419 } else { 2420 PT.consumeClose(); 2421 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2422 Ty.get(), Comps, 2423 PT.getCloseLocation()); 2424 } 2425 break; 2426 } 2427 } 2428 break; 2429 } 2430 case tok::kw___builtin_choose_expr: { 2431 ExprResult Cond(ParseAssignmentExpression()); 2432 if (Cond.isInvalid()) { 2433 SkipUntil(tok::r_paren, StopAtSemi); 2434 return Cond; 2435 } 2436 if (ExpectAndConsume(tok::comma)) { 2437 SkipUntil(tok::r_paren, StopAtSemi); 2438 return ExprError(); 2439 } 2440 2441 ExprResult Expr1(ParseAssignmentExpression()); 2442 if (Expr1.isInvalid()) { 2443 SkipUntil(tok::r_paren, StopAtSemi); 2444 return Expr1; 2445 } 2446 if (ExpectAndConsume(tok::comma)) { 2447 SkipUntil(tok::r_paren, StopAtSemi); 2448 return ExprError(); 2449 } 2450 2451 ExprResult Expr2(ParseAssignmentExpression()); 2452 if (Expr2.isInvalid()) { 2453 SkipUntil(tok::r_paren, StopAtSemi); 2454 return Expr2; 2455 } 2456 if (Tok.isNot(tok::r_paren)) { 2457 Diag(Tok, diag::err_expected) << tok::r_paren; 2458 return ExprError(); 2459 } 2460 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2461 Expr2.get(), ConsumeParen()); 2462 break; 2463 } 2464 case tok::kw___builtin_astype: { 2465 // The first argument is an expression to be converted, followed by a comma. 2466 ExprResult Expr(ParseAssignmentExpression()); 2467 if (Expr.isInvalid()) { 2468 SkipUntil(tok::r_paren, StopAtSemi); 2469 return ExprError(); 2470 } 2471 2472 if (ExpectAndConsume(tok::comma)) { 2473 SkipUntil(tok::r_paren, StopAtSemi); 2474 return ExprError(); 2475 } 2476 2477 // Second argument is the type to bitcast to. 2478 TypeResult DestTy = ParseTypeName(); 2479 if (DestTy.isInvalid()) 2480 return ExprError(); 2481 2482 // Attempt to consume the r-paren. 2483 if (Tok.isNot(tok::r_paren)) { 2484 Diag(Tok, diag::err_expected) << tok::r_paren; 2485 SkipUntil(tok::r_paren, StopAtSemi); 2486 return ExprError(); 2487 } 2488 2489 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2490 ConsumeParen()); 2491 break; 2492 } 2493 case tok::kw___builtin_convertvector: { 2494 // The first argument is an expression to be converted, followed by a comma. 2495 ExprResult Expr(ParseAssignmentExpression()); 2496 if (Expr.isInvalid()) { 2497 SkipUntil(tok::r_paren, StopAtSemi); 2498 return ExprError(); 2499 } 2500 2501 if (ExpectAndConsume(tok::comma)) { 2502 SkipUntil(tok::r_paren, StopAtSemi); 2503 return ExprError(); 2504 } 2505 2506 // Second argument is the type to bitcast to. 2507 TypeResult DestTy = ParseTypeName(); 2508 if (DestTy.isInvalid()) 2509 return ExprError(); 2510 2511 // Attempt to consume the r-paren. 2512 if (Tok.isNot(tok::r_paren)) { 2513 Diag(Tok, diag::err_expected) << tok::r_paren; 2514 SkipUntil(tok::r_paren, StopAtSemi); 2515 return ExprError(); 2516 } 2517 2518 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2519 ConsumeParen()); 2520 break; 2521 } 2522 case tok::kw___builtin_COLUMN: 2523 case tok::kw___builtin_FILE: 2524 case tok::kw___builtin_FUNCTION: 2525 case tok::kw___builtin_LINE: { 2526 // Attempt to consume the r-paren. 2527 if (Tok.isNot(tok::r_paren)) { 2528 Diag(Tok, diag::err_expected) << tok::r_paren; 2529 SkipUntil(tok::r_paren, StopAtSemi); 2530 return ExprError(); 2531 } 2532 SourceLocExpr::IdentKind Kind = [&] { 2533 switch (T) { 2534 case tok::kw___builtin_FILE: 2535 return SourceLocExpr::File; 2536 case tok::kw___builtin_FUNCTION: 2537 return SourceLocExpr::Function; 2538 case tok::kw___builtin_LINE: 2539 return SourceLocExpr::Line; 2540 case tok::kw___builtin_COLUMN: 2541 return SourceLocExpr::Column; 2542 default: 2543 llvm_unreachable("invalid keyword"); 2544 } 2545 }(); 2546 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2547 break; 2548 } 2549 } 2550 2551 if (Res.isInvalid()) 2552 return ExprError(); 2553 2554 // These can be followed by postfix-expr pieces because they are 2555 // primary-expressions. 2556 return ParsePostfixExpressionSuffix(Res.get()); 2557 } 2558 2559 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2560 /// based on what is allowed by ExprType. The actual thing parsed is returned 2561 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2562 /// not the parsed cast-expression. 2563 /// 2564 /// \verbatim 2565 /// primary-expression: [C99 6.5.1] 2566 /// '(' expression ')' 2567 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2568 /// postfix-expression: [C99 6.5.2] 2569 /// '(' type-name ')' '{' initializer-list '}' 2570 /// '(' type-name ')' '{' initializer-list ',' '}' 2571 /// cast-expression: [C99 6.5.4] 2572 /// '(' type-name ')' cast-expression 2573 /// [ARC] bridged-cast-expression 2574 /// [ARC] bridged-cast-expression: 2575 /// (__bridge type-name) cast-expression 2576 /// (__bridge_transfer type-name) cast-expression 2577 /// (__bridge_retained type-name) cast-expression 2578 /// fold-expression: [C++1z] 2579 /// '(' cast-expression fold-operator '...' ')' 2580 /// '(' '...' fold-operator cast-expression ')' 2581 /// '(' cast-expression fold-operator '...' 2582 /// fold-operator cast-expression ')' 2583 /// \endverbatim 2584 ExprResult 2585 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2586 bool isTypeCast, ParsedType &CastTy, 2587 SourceLocation &RParenLoc) { 2588 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2589 ColonProtectionRAIIObject ColonProtection(*this, false); 2590 BalancedDelimiterTracker T(*this, tok::l_paren); 2591 if (T.consumeOpen()) 2592 return ExprError(); 2593 SourceLocation OpenLoc = T.getOpenLocation(); 2594 2595 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2596 2597 ExprResult Result(true); 2598 bool isAmbiguousTypeId; 2599 CastTy = nullptr; 2600 2601 if (Tok.is(tok::code_completion)) { 2602 Actions.CodeCompleteExpression( 2603 getCurScope(), PreferredType.get(Tok.getLocation()), 2604 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2605 cutOffParsing(); 2606 return ExprError(); 2607 } 2608 2609 // Diagnose use of bridge casts in non-arc mode. 2610 bool BridgeCast = (getLangOpts().ObjC && 2611 Tok.isOneOf(tok::kw___bridge, 2612 tok::kw___bridge_transfer, 2613 tok::kw___bridge_retained, 2614 tok::kw___bridge_retain)); 2615 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2616 if (!TryConsumeToken(tok::kw___bridge)) { 2617 StringRef BridgeCastName = Tok.getName(); 2618 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2619 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2620 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2621 << BridgeCastName 2622 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2623 } 2624 BridgeCast = false; 2625 } 2626 2627 // None of these cases should fall through with an invalid Result 2628 // unless they've already reported an error. 2629 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2630 Diag(Tok, diag::ext_gnu_statement_expr); 2631 2632 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2633 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2634 } else { 2635 // Find the nearest non-record decl context. Variables declared in a 2636 // statement expression behave as if they were declared in the enclosing 2637 // function, block, or other code construct. 2638 DeclContext *CodeDC = Actions.CurContext; 2639 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2640 CodeDC = CodeDC->getParent(); 2641 assert(CodeDC && !CodeDC->isFileContext() && 2642 "statement expr not in code context"); 2643 } 2644 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2645 2646 Actions.ActOnStartStmtExpr(); 2647 2648 StmtResult Stmt(ParseCompoundStatement(true)); 2649 ExprType = CompoundStmt; 2650 2651 // If the substmt parsed correctly, build the AST node. 2652 if (!Stmt.isInvalid()) { 2653 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation()); 2654 } else { 2655 Actions.ActOnStmtExprError(); 2656 } 2657 } 2658 } else if (ExprType >= CompoundLiteral && BridgeCast) { 2659 tok::TokenKind tokenKind = Tok.getKind(); 2660 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2661 2662 // Parse an Objective-C ARC ownership cast expression. 2663 ObjCBridgeCastKind Kind; 2664 if (tokenKind == tok::kw___bridge) 2665 Kind = OBC_Bridge; 2666 else if (tokenKind == tok::kw___bridge_transfer) 2667 Kind = OBC_BridgeTransfer; 2668 else if (tokenKind == tok::kw___bridge_retained) 2669 Kind = OBC_BridgeRetained; 2670 else { 2671 // As a hopefully temporary workaround, allow __bridge_retain as 2672 // a synonym for __bridge_retained, but only in system headers. 2673 assert(tokenKind == tok::kw___bridge_retain); 2674 Kind = OBC_BridgeRetained; 2675 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2676 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 2677 << FixItHint::CreateReplacement(BridgeKeywordLoc, 2678 "__bridge_retained"); 2679 } 2680 2681 TypeResult Ty = ParseTypeName(); 2682 T.consumeClose(); 2683 ColonProtection.restore(); 2684 RParenLoc = T.getCloseLocation(); 2685 2686 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 2687 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 2688 2689 if (Ty.isInvalid() || SubExpr.isInvalid()) 2690 return ExprError(); 2691 2692 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 2693 BridgeKeywordLoc, Ty.get(), 2694 RParenLoc, SubExpr.get()); 2695 } else if (ExprType >= CompoundLiteral && 2696 isTypeIdInParens(isAmbiguousTypeId)) { 2697 2698 // Otherwise, this is a compound literal expression or cast expression. 2699 2700 // In C++, if the type-id is ambiguous we disambiguate based on context. 2701 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 2702 // in which case we should treat it as type-id. 2703 // if stopIfCastExpr is false, we need to determine the context past the 2704 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 2705 if (isAmbiguousTypeId && !stopIfCastExpr) { 2706 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 2707 ColonProtection); 2708 RParenLoc = T.getCloseLocation(); 2709 return res; 2710 } 2711 2712 // Parse the type declarator. 2713 DeclSpec DS(AttrFactory); 2714 ParseSpecifierQualifierList(DS); 2715 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 2716 ParseDeclarator(DeclaratorInfo); 2717 2718 // If our type is followed by an identifier and either ':' or ']', then 2719 // this is probably an Objective-C message send where the leading '[' is 2720 // missing. Recover as if that were the case. 2721 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 2722 !InMessageExpression && getLangOpts().ObjC && 2723 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2724 TypeResult Ty; 2725 { 2726 InMessageExpressionRAIIObject InMessage(*this, false); 2727 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2728 } 2729 Result = ParseObjCMessageExpressionBody(SourceLocation(), 2730 SourceLocation(), 2731 Ty.get(), nullptr); 2732 } else { 2733 // Match the ')'. 2734 T.consumeClose(); 2735 ColonProtection.restore(); 2736 RParenLoc = T.getCloseLocation(); 2737 if (Tok.is(tok::l_brace)) { 2738 ExprType = CompoundLiteral; 2739 TypeResult Ty; 2740 { 2741 InMessageExpressionRAIIObject InMessage(*this, false); 2742 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2743 } 2744 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 2745 } 2746 2747 if (Tok.is(tok::l_paren)) { 2748 // This could be OpenCL vector Literals 2749 if (getLangOpts().OpenCL) 2750 { 2751 TypeResult Ty; 2752 { 2753 InMessageExpressionRAIIObject InMessage(*this, false); 2754 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2755 } 2756 if(Ty.isInvalid()) 2757 { 2758 return ExprError(); 2759 } 2760 QualType QT = Ty.get().get().getCanonicalType(); 2761 if (QT->isVectorType()) 2762 { 2763 // We parsed '(' vector-type-name ')' followed by '(' 2764 2765 // Parse the cast-expression that follows it next. 2766 // isVectorLiteral = true will make sure we don't parse any 2767 // Postfix expression yet 2768 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 2769 /*isAddressOfOperand=*/false, 2770 /*isTypeCast=*/IsTypeCast, 2771 /*isVectorLiteral=*/true); 2772 2773 if (!Result.isInvalid()) { 2774 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2775 DeclaratorInfo, CastTy, 2776 RParenLoc, Result.get()); 2777 } 2778 2779 // After we performed the cast we can check for postfix-expr pieces. 2780 if (!Result.isInvalid()) { 2781 Result = ParsePostfixExpressionSuffix(Result); 2782 } 2783 2784 return Result; 2785 } 2786 } 2787 } 2788 2789 if (ExprType == CastExpr) { 2790 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 2791 2792 if (DeclaratorInfo.isInvalidType()) 2793 return ExprError(); 2794 2795 // Note that this doesn't parse the subsequent cast-expression, it just 2796 // returns the parsed type to the callee. 2797 if (stopIfCastExpr) { 2798 TypeResult Ty; 2799 { 2800 InMessageExpressionRAIIObject InMessage(*this, false); 2801 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2802 } 2803 CastTy = Ty.get(); 2804 return ExprResult(); 2805 } 2806 2807 // Reject the cast of super idiom in ObjC. 2808 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 2809 Tok.getIdentifierInfo() == Ident_super && 2810 getCurScope()->isInObjcMethodScope() && 2811 GetLookAheadToken(1).isNot(tok::period)) { 2812 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 2813 << SourceRange(OpenLoc, RParenLoc); 2814 return ExprError(); 2815 } 2816 2817 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 2818 // Parse the cast-expression that follows it next. 2819 // TODO: For cast expression with CastTy. 2820 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 2821 /*isAddressOfOperand=*/false, 2822 /*isTypeCast=*/IsTypeCast); 2823 if (!Result.isInvalid()) { 2824 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2825 DeclaratorInfo, CastTy, 2826 RParenLoc, Result.get()); 2827 } 2828 return Result; 2829 } 2830 2831 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 2832 return ExprError(); 2833 } 2834 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 2835 isFoldOperator(NextToken().getKind())) { 2836 ExprType = FoldExpr; 2837 return ParseFoldExpression(ExprResult(), T); 2838 } else if (isTypeCast) { 2839 // Parse the expression-list. 2840 InMessageExpressionRAIIObject InMessage(*this, false); 2841 2842 ExprVector ArgExprs; 2843 CommaLocsTy CommaLocs; 2844 2845 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) { 2846 // FIXME: If we ever support comma expressions as operands to 2847 // fold-expressions, we'll need to allow multiple ArgExprs here. 2848 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 2849 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 2850 ExprType = FoldExpr; 2851 return ParseFoldExpression(ArgExprs[0], T); 2852 } 2853 2854 ExprType = SimpleExpr; 2855 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 2856 ArgExprs); 2857 } 2858 } else { 2859 InMessageExpressionRAIIObject InMessage(*this, false); 2860 2861 Result = ParseExpression(MaybeTypeCast); 2862 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) { 2863 // Correct typos in non-C++ code earlier so that implicit-cast-like 2864 // expressions are parsed correctly. 2865 Result = Actions.CorrectDelayedTyposInExpr(Result); 2866 } 2867 2868 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 2869 NextToken().is(tok::ellipsis)) { 2870 ExprType = FoldExpr; 2871 return ParseFoldExpression(Result, T); 2872 } 2873 ExprType = SimpleExpr; 2874 2875 // Don't build a paren expression unless we actually match a ')'. 2876 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 2877 Result = 2878 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 2879 } 2880 2881 // Match the ')'. 2882 if (Result.isInvalid()) { 2883 SkipUntil(tok::r_paren, StopAtSemi); 2884 return ExprError(); 2885 } 2886 2887 T.consumeClose(); 2888 RParenLoc = T.getCloseLocation(); 2889 return Result; 2890 } 2891 2892 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 2893 /// and we are at the left brace. 2894 /// 2895 /// \verbatim 2896 /// postfix-expression: [C99 6.5.2] 2897 /// '(' type-name ')' '{' initializer-list '}' 2898 /// '(' type-name ')' '{' initializer-list ',' '}' 2899 /// \endverbatim 2900 ExprResult 2901 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 2902 SourceLocation LParenLoc, 2903 SourceLocation RParenLoc) { 2904 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 2905 if (!getLangOpts().C99) // Compound literals don't exist in C90. 2906 Diag(LParenLoc, diag::ext_c99_compound_literal); 2907 ExprResult Result = ParseInitializer(); 2908 if (!Result.isInvalid() && Ty) 2909 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 2910 return Result; 2911 } 2912 2913 /// ParseStringLiteralExpression - This handles the various token types that 2914 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 2915 /// translation phase #6]. 2916 /// 2917 /// \verbatim 2918 /// primary-expression: [C99 6.5.1] 2919 /// string-literal 2920 /// \verbatim 2921 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 2922 assert(isTokenStringLiteral() && "Not a string literal!"); 2923 2924 // String concat. Note that keywords like __func__ and __FUNCTION__ are not 2925 // considered to be strings for concatenation purposes. 2926 SmallVector<Token, 4> StringToks; 2927 2928 do { 2929 StringToks.push_back(Tok); 2930 ConsumeStringToken(); 2931 } while (isTokenStringLiteral()); 2932 2933 // Pass the set of string tokens, ready for concatenation, to the actions. 2934 return Actions.ActOnStringLiteral(StringToks, 2935 AllowUserDefinedLiteral ? getCurScope() 2936 : nullptr); 2937 } 2938 2939 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 2940 /// [C11 6.5.1.1]. 2941 /// 2942 /// \verbatim 2943 /// generic-selection: 2944 /// _Generic ( assignment-expression , generic-assoc-list ) 2945 /// generic-assoc-list: 2946 /// generic-association 2947 /// generic-assoc-list , generic-association 2948 /// generic-association: 2949 /// type-name : assignment-expression 2950 /// default : assignment-expression 2951 /// \endverbatim 2952 ExprResult Parser::ParseGenericSelectionExpression() { 2953 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 2954 if (!getLangOpts().C11) 2955 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 2956 2957 SourceLocation KeyLoc = ConsumeToken(); 2958 BalancedDelimiterTracker T(*this, tok::l_paren); 2959 if (T.expectAndConsume()) 2960 return ExprError(); 2961 2962 ExprResult ControllingExpr; 2963 { 2964 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 2965 // not evaluated." 2966 EnterExpressionEvaluationContext Unevaluated( 2967 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 2968 ControllingExpr = 2969 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 2970 if (ControllingExpr.isInvalid()) { 2971 SkipUntil(tok::r_paren, StopAtSemi); 2972 return ExprError(); 2973 } 2974 } 2975 2976 if (ExpectAndConsume(tok::comma)) { 2977 SkipUntil(tok::r_paren, StopAtSemi); 2978 return ExprError(); 2979 } 2980 2981 SourceLocation DefaultLoc; 2982 TypeVector Types; 2983 ExprVector Exprs; 2984 do { 2985 ParsedType Ty; 2986 if (Tok.is(tok::kw_default)) { 2987 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 2988 // generic association." 2989 if (!DefaultLoc.isInvalid()) { 2990 Diag(Tok, diag::err_duplicate_default_assoc); 2991 Diag(DefaultLoc, diag::note_previous_default_assoc); 2992 SkipUntil(tok::r_paren, StopAtSemi); 2993 return ExprError(); 2994 } 2995 DefaultLoc = ConsumeToken(); 2996 Ty = nullptr; 2997 } else { 2998 ColonProtectionRAIIObject X(*this); 2999 TypeResult TR = ParseTypeName(); 3000 if (TR.isInvalid()) { 3001 SkipUntil(tok::r_paren, StopAtSemi); 3002 return ExprError(); 3003 } 3004 Ty = TR.get(); 3005 } 3006 Types.push_back(Ty); 3007 3008 if (ExpectAndConsume(tok::colon)) { 3009 SkipUntil(tok::r_paren, StopAtSemi); 3010 return ExprError(); 3011 } 3012 3013 // FIXME: These expressions should be parsed in a potentially potentially 3014 // evaluated context. 3015 ExprResult ER( 3016 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3017 if (ER.isInvalid()) { 3018 SkipUntil(tok::r_paren, StopAtSemi); 3019 return ExprError(); 3020 } 3021 Exprs.push_back(ER.get()); 3022 } while (TryConsumeToken(tok::comma)); 3023 3024 T.consumeClose(); 3025 if (T.getCloseLocation().isInvalid()) 3026 return ExprError(); 3027 3028 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 3029 T.getCloseLocation(), 3030 ControllingExpr.get(), 3031 Types, Exprs); 3032 } 3033 3034 /// Parse A C++1z fold-expression after the opening paren and optional 3035 /// left-hand-side expression. 3036 /// 3037 /// \verbatim 3038 /// fold-expression: 3039 /// ( cast-expression fold-operator ... ) 3040 /// ( ... fold-operator cast-expression ) 3041 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3042 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3043 BalancedDelimiterTracker &T) { 3044 if (LHS.isInvalid()) { 3045 T.skipToEnd(); 3046 return true; 3047 } 3048 3049 tok::TokenKind Kind = tok::unknown; 3050 SourceLocation FirstOpLoc; 3051 if (LHS.isUsable()) { 3052 Kind = Tok.getKind(); 3053 assert(isFoldOperator(Kind) && "missing fold-operator"); 3054 FirstOpLoc = ConsumeToken(); 3055 } 3056 3057 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3058 SourceLocation EllipsisLoc = ConsumeToken(); 3059 3060 ExprResult RHS; 3061 if (Tok.isNot(tok::r_paren)) { 3062 if (!isFoldOperator(Tok.getKind())) 3063 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3064 3065 if (Kind != tok::unknown && Tok.getKind() != Kind) 3066 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3067 << SourceRange(FirstOpLoc); 3068 Kind = Tok.getKind(); 3069 ConsumeToken(); 3070 3071 RHS = ParseExpression(); 3072 if (RHS.isInvalid()) { 3073 T.skipToEnd(); 3074 return true; 3075 } 3076 } 3077 3078 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3079 ? diag::warn_cxx14_compat_fold_expression 3080 : diag::ext_fold_expression); 3081 3082 T.consumeClose(); 3083 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind, 3084 EllipsisLoc, RHS.get(), T.getCloseLocation()); 3085 } 3086 3087 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3088 /// 3089 /// \verbatim 3090 /// argument-expression-list: 3091 /// assignment-expression 3092 /// argument-expression-list , assignment-expression 3093 /// 3094 /// [C++] expression-list: 3095 /// [C++] assignment-expression 3096 /// [C++] expression-list , assignment-expression 3097 /// 3098 /// [C++0x] expression-list: 3099 /// [C++0x] initializer-list 3100 /// 3101 /// [C++0x] initializer-list 3102 /// [C++0x] initializer-clause ...[opt] 3103 /// [C++0x] initializer-list , initializer-clause ...[opt] 3104 /// 3105 /// [C++0x] initializer-clause: 3106 /// [C++0x] assignment-expression 3107 /// [C++0x] braced-init-list 3108 /// \endverbatim 3109 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3110 SmallVectorImpl<SourceLocation> &CommaLocs, 3111 llvm::function_ref<void()> ExpressionStarts) { 3112 bool SawError = false; 3113 while (1) { 3114 if (ExpressionStarts) 3115 ExpressionStarts(); 3116 3117 ExprResult Expr; 3118 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3119 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3120 Expr = ParseBraceInitializer(); 3121 } else 3122 Expr = ParseAssignmentExpression(); 3123 3124 if (Tok.is(tok::ellipsis)) 3125 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3126 if (Expr.isInvalid()) { 3127 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3128 SawError = true; 3129 } else { 3130 Exprs.push_back(Expr.get()); 3131 } 3132 3133 if (Tok.isNot(tok::comma)) 3134 break; 3135 // Move to the next argument, remember where the comma was. 3136 Token Comma = Tok; 3137 CommaLocs.push_back(ConsumeToken()); 3138 3139 checkPotentialAngleBracketDelimiter(Comma); 3140 } 3141 if (SawError) { 3142 // Ensure typos get diagnosed when errors were encountered while parsing the 3143 // expression list. 3144 for (auto &E : Exprs) { 3145 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3146 if (Expr.isUsable()) E = Expr.get(); 3147 } 3148 } 3149 return SawError; 3150 } 3151 3152 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3153 /// used for misc language extensions. 3154 /// 3155 /// \verbatim 3156 /// simple-expression-list: 3157 /// assignment-expression 3158 /// simple-expression-list , assignment-expression 3159 /// \endverbatim 3160 bool 3161 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs, 3162 SmallVectorImpl<SourceLocation> &CommaLocs) { 3163 while (1) { 3164 ExprResult Expr = ParseAssignmentExpression(); 3165 if (Expr.isInvalid()) 3166 return true; 3167 3168 Exprs.push_back(Expr.get()); 3169 3170 if (Tok.isNot(tok::comma)) 3171 return false; 3172 3173 // Move to the next argument, remember where the comma was. 3174 Token Comma = Tok; 3175 CommaLocs.push_back(ConsumeToken()); 3176 3177 checkPotentialAngleBracketDelimiter(Comma); 3178 } 3179 } 3180 3181 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3182 /// 3183 /// \verbatim 3184 /// [clang] block-id: 3185 /// [clang] specifier-qualifier-list block-declarator 3186 /// \endverbatim 3187 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3188 if (Tok.is(tok::code_completion)) { 3189 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 3190 return cutOffParsing(); 3191 } 3192 3193 // Parse the specifier-qualifier-list piece. 3194 DeclSpec DS(AttrFactory); 3195 ParseSpecifierQualifierList(DS); 3196 3197 // Parse the block-declarator. 3198 Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext); 3199 DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition); 3200 ParseDeclarator(DeclaratorInfo); 3201 3202 MaybeParseGNUAttributes(DeclaratorInfo); 3203 3204 // Inform sema that we are starting a block. 3205 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3206 } 3207 3208 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3209 /// like ^(int x){ return x+1; } 3210 /// 3211 /// \verbatim 3212 /// block-literal: 3213 /// [clang] '^' block-args[opt] compound-statement 3214 /// [clang] '^' block-id compound-statement 3215 /// [clang] block-args: 3216 /// [clang] '(' parameter-list ')' 3217 /// \endverbatim 3218 ExprResult Parser::ParseBlockLiteralExpression() { 3219 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3220 SourceLocation CaretLoc = ConsumeToken(); 3221 3222 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3223 "block literal parsing"); 3224 3225 // Enter a scope to hold everything within the block. This includes the 3226 // argument decls, decls within the compound expression, etc. This also 3227 // allows determining whether a variable reference inside the block is 3228 // within or outside of the block. 3229 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3230 Scope::CompoundStmtScope | Scope::DeclScope); 3231 3232 // Inform sema that we are starting a block. 3233 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3234 3235 // Parse the return type if present. 3236 DeclSpec DS(AttrFactory); 3237 Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext); 3238 ParamInfo.setFunctionDefinitionKind(FDK_Definition); 3239 // FIXME: Since the return type isn't actually parsed, it can't be used to 3240 // fill ParamInfo with an initial valid range, so do it manually. 3241 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3242 3243 // If this block has arguments, parse them. There is no ambiguity here with 3244 // the expression case, because the expression case requires a parameter list. 3245 if (Tok.is(tok::l_paren)) { 3246 ParseParenDeclarator(ParamInfo); 3247 // Parse the pieces after the identifier as if we had "int(...)". 3248 // SetIdentifier sets the source range end, but in this case we're past 3249 // that location. 3250 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3251 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3252 ParamInfo.SetRangeEnd(Tmp); 3253 if (ParamInfo.isInvalidType()) { 3254 // If there was an error parsing the arguments, they may have 3255 // tried to use ^(x+y) which requires an argument list. Just 3256 // skip the whole block literal. 3257 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3258 return ExprError(); 3259 } 3260 3261 MaybeParseGNUAttributes(ParamInfo); 3262 3263 // Inform sema that we are starting a block. 3264 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3265 } else if (!Tok.is(tok::l_brace)) { 3266 ParseBlockId(CaretLoc); 3267 } else { 3268 // Otherwise, pretend we saw (void). 3269 SourceLocation NoLoc; 3270 ParamInfo.AddTypeInfo( 3271 DeclaratorChunk::getFunction(/*HasProto=*/true, 3272 /*IsAmbiguous=*/false, 3273 /*RParenLoc=*/NoLoc, 3274 /*ArgInfo=*/nullptr, 3275 /*NumParams=*/0, 3276 /*EllipsisLoc=*/NoLoc, 3277 /*RParenLoc=*/NoLoc, 3278 /*RefQualifierIsLvalueRef=*/true, 3279 /*RefQualifierLoc=*/NoLoc, 3280 /*MutableLoc=*/NoLoc, EST_None, 3281 /*ESpecRange=*/SourceRange(), 3282 /*Exceptions=*/nullptr, 3283 /*ExceptionRanges=*/nullptr, 3284 /*NumExceptions=*/0, 3285 /*NoexceptExpr=*/nullptr, 3286 /*ExceptionSpecTokens=*/nullptr, 3287 /*DeclsInPrototype=*/None, CaretLoc, 3288 CaretLoc, ParamInfo), 3289 CaretLoc); 3290 3291 MaybeParseGNUAttributes(ParamInfo); 3292 3293 // Inform sema that we are starting a block. 3294 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3295 } 3296 3297 3298 ExprResult Result(true); 3299 if (!Tok.is(tok::l_brace)) { 3300 // Saw something like: ^expr 3301 Diag(Tok, diag::err_expected_expression); 3302 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3303 return ExprError(); 3304 } 3305 3306 StmtResult Stmt(ParseCompoundStatementBody()); 3307 BlockScope.Exit(); 3308 if (!Stmt.isInvalid()) 3309 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3310 else 3311 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3312 return Result; 3313 } 3314 3315 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3316 /// 3317 /// '__objc_yes' 3318 /// '__objc_no' 3319 ExprResult Parser::ParseObjCBoolLiteral() { 3320 tok::TokenKind Kind = Tok.getKind(); 3321 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3322 } 3323 3324 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3325 /// true if invalid. 3326 static bool CheckAvailabilitySpecList(Parser &P, 3327 ArrayRef<AvailabilitySpec> AvailSpecs) { 3328 llvm::SmallSet<StringRef, 4> Platforms; 3329 bool HasOtherPlatformSpec = false; 3330 bool Valid = true; 3331 for (const auto &Spec : AvailSpecs) { 3332 if (Spec.isOtherPlatformSpec()) { 3333 if (HasOtherPlatformSpec) { 3334 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3335 Valid = false; 3336 } 3337 3338 HasOtherPlatformSpec = true; 3339 continue; 3340 } 3341 3342 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3343 if (!Inserted) { 3344 // Rule out multiple version specs referring to the same platform. 3345 // For example, we emit an error for: 3346 // @available(macos 10.10, macos 10.11, *) 3347 StringRef Platform = Spec.getPlatform(); 3348 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3349 << Spec.getEndLoc() << Platform; 3350 Valid = false; 3351 } 3352 } 3353 3354 if (!HasOtherPlatformSpec) { 3355 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3356 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3357 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3358 return true; 3359 } 3360 3361 return !Valid; 3362 } 3363 3364 /// Parse availability query specification. 3365 /// 3366 /// availability-spec: 3367 /// '*' 3368 /// identifier version-tuple 3369 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3370 if (Tok.is(tok::star)) { 3371 return AvailabilitySpec(ConsumeToken()); 3372 } else { 3373 // Parse the platform name. 3374 if (Tok.is(tok::code_completion)) { 3375 Actions.CodeCompleteAvailabilityPlatformName(); 3376 cutOffParsing(); 3377 return None; 3378 } 3379 if (Tok.isNot(tok::identifier)) { 3380 Diag(Tok, diag::err_avail_query_expected_platform_name); 3381 return None; 3382 } 3383 3384 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3385 SourceRange VersionRange; 3386 VersionTuple Version = ParseVersionTuple(VersionRange); 3387 3388 if (Version.empty()) 3389 return None; 3390 3391 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3392 StringRef Platform = 3393 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3394 3395 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3396 Diag(PlatformIdentifier->Loc, 3397 diag::err_avail_query_unrecognized_platform_name) 3398 << GivenPlatform; 3399 return None; 3400 } 3401 3402 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3403 VersionRange.getEnd()); 3404 } 3405 } 3406 3407 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3408 assert(Tok.is(tok::kw___builtin_available) || 3409 Tok.isObjCAtKeyword(tok::objc_available)); 3410 3411 // Eat the available or __builtin_available. 3412 ConsumeToken(); 3413 3414 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3415 if (Parens.expectAndConsume()) 3416 return ExprError(); 3417 3418 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3419 bool HasError = false; 3420 while (true) { 3421 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3422 if (!Spec) 3423 HasError = true; 3424 else 3425 AvailSpecs.push_back(*Spec); 3426 3427 if (!TryConsumeToken(tok::comma)) 3428 break; 3429 } 3430 3431 if (HasError) { 3432 SkipUntil(tok::r_paren, StopAtSemi); 3433 return ExprError(); 3434 } 3435 3436 CheckAvailabilitySpecList(*this, AvailSpecs); 3437 3438 if (Parens.consumeClose()) 3439 return ExprError(); 3440 3441 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3442 Parens.getCloseLocation()); 3443 } 3444