xref: /freebsd-src/contrib/llvm-project/clang/lib/Parse/ParseExpr.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Lex/LiteralSupport.h"
27 #include "clang/Parse/Parser.h"
28 #include "clang/Parse/RAIIObjectsForParser.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/TypoCorrection.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include <optional>
36 using namespace clang;
37 
38 /// Simple precedence-based parser for binary/ternary operators.
39 ///
40 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
41 /// production.  C99 specifies that the LHS of an assignment operator should be
42 /// parsed as a unary-expression, but consistency dictates that it be a
43 /// conditional-expession.  In practice, the important thing here is that the
44 /// LHS of an assignment has to be an l-value, which productions between
45 /// unary-expression and conditional-expression don't produce.  Because we want
46 /// consistency, we parse the LHS as a conditional-expression, then check for
47 /// l-value-ness in semantic analysis stages.
48 ///
49 /// \verbatim
50 ///       pm-expression: [C++ 5.5]
51 ///         cast-expression
52 ///         pm-expression '.*' cast-expression
53 ///         pm-expression '->*' cast-expression
54 ///
55 ///       multiplicative-expression: [C99 6.5.5]
56 ///     Note: in C++, apply pm-expression instead of cast-expression
57 ///         cast-expression
58 ///         multiplicative-expression '*' cast-expression
59 ///         multiplicative-expression '/' cast-expression
60 ///         multiplicative-expression '%' cast-expression
61 ///
62 ///       additive-expression: [C99 6.5.6]
63 ///         multiplicative-expression
64 ///         additive-expression '+' multiplicative-expression
65 ///         additive-expression '-' multiplicative-expression
66 ///
67 ///       shift-expression: [C99 6.5.7]
68 ///         additive-expression
69 ///         shift-expression '<<' additive-expression
70 ///         shift-expression '>>' additive-expression
71 ///
72 ///       compare-expression: [C++20 expr.spaceship]
73 ///         shift-expression
74 ///         compare-expression '<=>' shift-expression
75 ///
76 ///       relational-expression: [C99 6.5.8]
77 ///         compare-expression
78 ///         relational-expression '<' compare-expression
79 ///         relational-expression '>' compare-expression
80 ///         relational-expression '<=' compare-expression
81 ///         relational-expression '>=' compare-expression
82 ///
83 ///       equality-expression: [C99 6.5.9]
84 ///         relational-expression
85 ///         equality-expression '==' relational-expression
86 ///         equality-expression '!=' relational-expression
87 ///
88 ///       AND-expression: [C99 6.5.10]
89 ///         equality-expression
90 ///         AND-expression '&' equality-expression
91 ///
92 ///       exclusive-OR-expression: [C99 6.5.11]
93 ///         AND-expression
94 ///         exclusive-OR-expression '^' AND-expression
95 ///
96 ///       inclusive-OR-expression: [C99 6.5.12]
97 ///         exclusive-OR-expression
98 ///         inclusive-OR-expression '|' exclusive-OR-expression
99 ///
100 ///       logical-AND-expression: [C99 6.5.13]
101 ///         inclusive-OR-expression
102 ///         logical-AND-expression '&&' inclusive-OR-expression
103 ///
104 ///       logical-OR-expression: [C99 6.5.14]
105 ///         logical-AND-expression
106 ///         logical-OR-expression '||' logical-AND-expression
107 ///
108 ///       conditional-expression: [C99 6.5.15]
109 ///         logical-OR-expression
110 ///         logical-OR-expression '?' expression ':' conditional-expression
111 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
112 /// [C++] the third operand is an assignment-expression
113 ///
114 ///       assignment-expression: [C99 6.5.16]
115 ///         conditional-expression
116 ///         unary-expression assignment-operator assignment-expression
117 /// [C++]   throw-expression [C++ 15]
118 ///
119 ///       assignment-operator: one of
120 ///         = *= /= %= += -= <<= >>= &= ^= |=
121 ///
122 ///       expression: [C99 6.5.17]
123 ///         assignment-expression ...[opt]
124 ///         expression ',' assignment-expression ...[opt]
125 /// \endverbatim
126 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
127   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
128   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
129 }
130 
131 /// This routine is called when the '@' is seen and consumed.
132 /// Current token is an Identifier and is not a 'try'. This
133 /// routine is necessary to disambiguate \@try-statement from,
134 /// for example, \@encode-expression.
135 ///
136 ExprResult
137 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
138   ExprResult LHS(ParseObjCAtExpression(AtLoc));
139   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
140 }
141 
142 /// This routine is called when a leading '__extension__' is seen and
143 /// consumed.  This is necessary because the token gets consumed in the
144 /// process of disambiguating between an expression and a declaration.
145 ExprResult
146 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
147   ExprResult LHS(true);
148   {
149     // Silence extension warnings in the sub-expression
150     ExtensionRAIIObject O(Diags);
151 
152     LHS = ParseCastExpression(AnyCastExpr);
153   }
154 
155   if (!LHS.isInvalid())
156     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
157                                LHS.get());
158 
159   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
160 }
161 
162 /// Parse an expr that doesn't include (top-level) commas.
163 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
164   if (Tok.is(tok::code_completion)) {
165     cutOffParsing();
166     Actions.CodeCompleteExpression(getCurScope(),
167                                    PreferredType.get(Tok.getLocation()));
168     return ExprError();
169   }
170 
171   if (Tok.is(tok::kw_throw))
172     return ParseThrowExpression();
173   if (Tok.is(tok::kw_co_yield))
174     return ParseCoyieldExpression();
175 
176   ExprResult LHS = ParseCastExpression(AnyCastExpr,
177                                        /*isAddressOfOperand=*/false,
178                                        isTypeCast);
179   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
180 }
181 
182 /// Parse an assignment expression where part of an Objective-C message
183 /// send has already been parsed.
184 ///
185 /// In this case \p LBracLoc indicates the location of the '[' of the message
186 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
187 /// the receiver of the message.
188 ///
189 /// Since this handles full assignment-expression's, it handles postfix
190 /// expressions and other binary operators for these expressions as well.
191 ExprResult
192 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
193                                                     SourceLocation SuperLoc,
194                                                     ParsedType ReceiverType,
195                                                     Expr *ReceiverExpr) {
196   ExprResult R
197     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
198                                      ReceiverType, ReceiverExpr);
199   R = ParsePostfixExpressionSuffix(R);
200   return ParseRHSOfBinaryExpression(R, prec::Assignment);
201 }
202 
203 ExprResult
204 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
205   assert(Actions.ExprEvalContexts.back().Context ==
206              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
207          "Call this function only if your ExpressionEvaluationContext is "
208          "already ConstantEvaluated");
209   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
210   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
211   return Actions.ActOnConstantExpression(Res);
212 }
213 
214 ExprResult Parser::ParseConstantExpression() {
215   // C++03 [basic.def.odr]p2:
216   //   An expression is potentially evaluated unless it appears where an
217   //   integral constant expression is required (see 5.19) [...].
218   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
219   EnterExpressionEvaluationContext ConstantEvaluated(
220       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
221   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
222 }
223 
224 ExprResult Parser::ParseArrayBoundExpression() {
225   EnterExpressionEvaluationContext ConstantEvaluated(
226       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
227   // If we parse the bound of a VLA... we parse a non-constant
228   // constant-expression!
229   Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
230   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
231 }
232 
233 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
234   EnterExpressionEvaluationContext ConstantEvaluated(
235       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
236   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
237   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
238   return Actions.ActOnCaseExpr(CaseLoc, Res);
239 }
240 
241 /// Parse a constraint-expression.
242 ///
243 /// \verbatim
244 ///       constraint-expression: C++2a[temp.constr.decl]p1
245 ///         logical-or-expression
246 /// \endverbatim
247 ExprResult Parser::ParseConstraintExpression() {
248   EnterExpressionEvaluationContext ConstantEvaluated(
249       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
250   ExprResult LHS(ParseCastExpression(AnyCastExpr));
251   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
252   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
253     Actions.CorrectDelayedTyposInExpr(Res);
254     return ExprError();
255   }
256   return Res;
257 }
258 
259 /// \brief Parse a constraint-logical-and-expression.
260 ///
261 /// \verbatim
262 ///       C++2a[temp.constr.decl]p1
263 ///       constraint-logical-and-expression:
264 ///         primary-expression
265 ///         constraint-logical-and-expression '&&' primary-expression
266 ///
267 /// \endverbatim
268 ExprResult
269 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
270   EnterExpressionEvaluationContext ConstantEvaluated(
271       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
272   bool NotPrimaryExpression = false;
273   auto ParsePrimary = [&] () {
274     ExprResult E = ParseCastExpression(PrimaryExprOnly,
275                                        /*isAddressOfOperand=*/false,
276                                        /*isTypeCast=*/NotTypeCast,
277                                        /*isVectorLiteral=*/false,
278                                        &NotPrimaryExpression);
279     if (E.isInvalid())
280       return ExprError();
281     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
282         E = ParsePostfixExpressionSuffix(E);
283         // Use InclusiveOr, the precedence just after '&&' to not parse the
284         // next arguments to the logical and.
285         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
286         if (!E.isInvalid())
287           Diag(E.get()->getExprLoc(),
288                Note
289                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
290                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
291                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
292                << FixItHint::CreateInsertion(
293                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
294                << E.get()->getSourceRange();
295         return E;
296     };
297 
298     if (NotPrimaryExpression ||
299         // Check if the following tokens must be a part of a non-primary
300         // expression
301         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
302                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
303         // Postfix operators other than '(' (which will be checked for in
304         // CheckConstraintExpression).
305         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
306         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
307       E = RecoverFromNonPrimary(E, /*Note=*/false);
308       if (E.isInvalid())
309         return ExprError();
310       NotPrimaryExpression = false;
311     }
312     bool PossibleNonPrimary;
313     bool IsConstraintExpr =
314         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
315                                           IsTrailingRequiresClause);
316     if (!IsConstraintExpr || PossibleNonPrimary) {
317       // Atomic constraint might be an unparenthesized non-primary expression
318       // (such as a binary operator), in which case we might get here (e.g. in
319       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
320       // the rest of the addition expression). Try to parse the rest of it here.
321       if (PossibleNonPrimary)
322         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
323       Actions.CorrectDelayedTyposInExpr(E);
324       return ExprError();
325     }
326     return E;
327   };
328   ExprResult LHS = ParsePrimary();
329   if (LHS.isInvalid())
330     return ExprError();
331   while (Tok.is(tok::ampamp)) {
332     SourceLocation LogicalAndLoc = ConsumeToken();
333     ExprResult RHS = ParsePrimary();
334     if (RHS.isInvalid()) {
335       Actions.CorrectDelayedTyposInExpr(LHS);
336       return ExprError();
337     }
338     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
339                                        tok::ampamp, LHS.get(), RHS.get());
340     if (!Op.isUsable()) {
341       Actions.CorrectDelayedTyposInExpr(RHS);
342       Actions.CorrectDelayedTyposInExpr(LHS);
343       return ExprError();
344     }
345     LHS = Op;
346   }
347   return LHS;
348 }
349 
350 /// \brief Parse a constraint-logical-or-expression.
351 ///
352 /// \verbatim
353 ///       C++2a[temp.constr.decl]p1
354 ///       constraint-logical-or-expression:
355 ///         constraint-logical-and-expression
356 ///         constraint-logical-or-expression '||'
357 ///             constraint-logical-and-expression
358 ///
359 /// \endverbatim
360 ExprResult
361 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
362   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
363   if (!LHS.isUsable())
364     return ExprError();
365   while (Tok.is(tok::pipepipe)) {
366     SourceLocation LogicalOrLoc = ConsumeToken();
367     ExprResult RHS =
368         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
369     if (!RHS.isUsable()) {
370       Actions.CorrectDelayedTyposInExpr(LHS);
371       return ExprError();
372     }
373     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
374                                        tok::pipepipe, LHS.get(), RHS.get());
375     if (!Op.isUsable()) {
376       Actions.CorrectDelayedTyposInExpr(RHS);
377       Actions.CorrectDelayedTyposInExpr(LHS);
378       return ExprError();
379     }
380     LHS = Op;
381   }
382   return LHS;
383 }
384 
385 bool Parser::isNotExpressionStart() {
386   tok::TokenKind K = Tok.getKind();
387   if (K == tok::l_brace || K == tok::r_brace  ||
388       K == tok::kw_for  || K == tok::kw_while ||
389       K == tok::kw_if   || K == tok::kw_else  ||
390       K == tok::kw_goto || K == tok::kw_try)
391     return true;
392   // If this is a decl-specifier, we can't be at the start of an expression.
393   return isKnownToBeDeclarationSpecifier();
394 }
395 
396 bool Parser::isFoldOperator(prec::Level Level) const {
397   return Level > prec::Unknown && Level != prec::Conditional &&
398          Level != prec::Spaceship;
399 }
400 
401 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
402   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
403 }
404 
405 /// Parse a binary expression that starts with \p LHS and has a
406 /// precedence of at least \p MinPrec.
407 ExprResult
408 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
409   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
410                                                GreaterThanIsOperator,
411                                                getLangOpts().CPlusPlus11);
412   SourceLocation ColonLoc;
413 
414   auto SavedType = PreferredType;
415   while (true) {
416     // Every iteration may rely on a preferred type for the whole expression.
417     PreferredType = SavedType;
418     // If this token has a lower precedence than we are allowed to parse (e.g.
419     // because we are called recursively, or because the token is not a binop),
420     // then we are done!
421     if (NextTokPrec < MinPrec)
422       return LHS;
423 
424     // Consume the operator, saving the operator token for error reporting.
425     Token OpToken = Tok;
426     ConsumeToken();
427 
428     if (OpToken.is(tok::caretcaret)) {
429       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
430     }
431 
432     // If we're potentially in a template-id, we may now be able to determine
433     // whether we're actually in one or not.
434     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
435                         tok::greatergreatergreater) &&
436         checkPotentialAngleBracketDelimiter(OpToken))
437       return ExprError();
438 
439     // Bail out when encountering a comma followed by a token which can't
440     // possibly be the start of an expression. For instance:
441     //   int f() { return 1, }
442     // We can't do this before consuming the comma, because
443     // isNotExpressionStart() looks at the token stream.
444     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
445       PP.EnterToken(Tok, /*IsReinject*/true);
446       Tok = OpToken;
447       return LHS;
448     }
449 
450     // If the next token is an ellipsis, then this is a fold-expression. Leave
451     // it alone so we can handle it in the paren expression.
452     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
453       // FIXME: We can't check this via lookahead before we consume the token
454       // because that tickles a lexer bug.
455       PP.EnterToken(Tok, /*IsReinject*/true);
456       Tok = OpToken;
457       return LHS;
458     }
459 
460     // In Objective-C++, alternative operator tokens can be used as keyword args
461     // in message expressions. Unconsume the token so that it can reinterpreted
462     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
463     //   [foo meth:0 and:0];
464     //   [foo not_eq];
465     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
466         Tok.isOneOf(tok::colon, tok::r_square) &&
467         OpToken.getIdentifierInfo() != nullptr) {
468       PP.EnterToken(Tok, /*IsReinject*/true);
469       Tok = OpToken;
470       return LHS;
471     }
472 
473     // Special case handling for the ternary operator.
474     ExprResult TernaryMiddle(true);
475     if (NextTokPrec == prec::Conditional) {
476       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
477         // Parse a braced-init-list here for error recovery purposes.
478         SourceLocation BraceLoc = Tok.getLocation();
479         TernaryMiddle = ParseBraceInitializer();
480         if (!TernaryMiddle.isInvalid()) {
481           Diag(BraceLoc, diag::err_init_list_bin_op)
482               << /*RHS*/ 1 << PP.getSpelling(OpToken)
483               << Actions.getExprRange(TernaryMiddle.get());
484           TernaryMiddle = ExprError();
485         }
486       } else if (Tok.isNot(tok::colon)) {
487         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
488         ColonProtectionRAIIObject X(*this);
489 
490         // Handle this production specially:
491         //   logical-OR-expression '?' expression ':' conditional-expression
492         // In particular, the RHS of the '?' is 'expression', not
493         // 'logical-OR-expression' as we might expect.
494         TernaryMiddle = ParseExpression();
495       } else {
496         // Special case handling of "X ? Y : Z" where Y is empty:
497         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
498         TernaryMiddle = nullptr;
499         Diag(Tok, diag::ext_gnu_conditional_expr);
500       }
501 
502       if (TernaryMiddle.isInvalid()) {
503         Actions.CorrectDelayedTyposInExpr(LHS);
504         LHS = ExprError();
505         TernaryMiddle = nullptr;
506       }
507 
508       if (!TryConsumeToken(tok::colon, ColonLoc)) {
509         // Otherwise, we're missing a ':'.  Assume that this was a typo that
510         // the user forgot. If we're not in a macro expansion, we can suggest
511         // a fixit hint. If there were two spaces before the current token,
512         // suggest inserting the colon in between them, otherwise insert ": ".
513         SourceLocation FILoc = Tok.getLocation();
514         const char *FIText = ": ";
515         const SourceManager &SM = PP.getSourceManager();
516         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
517           assert(FILoc.isFileID());
518           bool IsInvalid = false;
519           const char *SourcePtr =
520             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
521           if (!IsInvalid && *SourcePtr == ' ') {
522             SourcePtr =
523               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
524             if (!IsInvalid && *SourcePtr == ' ') {
525               FILoc = FILoc.getLocWithOffset(-1);
526               FIText = ":";
527             }
528           }
529         }
530 
531         Diag(Tok, diag::err_expected)
532             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
533         Diag(OpToken, diag::note_matching) << tok::question;
534         ColonLoc = Tok.getLocation();
535       }
536     }
537 
538     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
539                               OpToken.getKind());
540     // Parse another leaf here for the RHS of the operator.
541     // ParseCastExpression works here because all RHS expressions in C have it
542     // as a prefix, at least. However, in C++, an assignment-expression could
543     // be a throw-expression, which is not a valid cast-expression.
544     // Therefore we need some special-casing here.
545     // Also note that the third operand of the conditional operator is
546     // an assignment-expression in C++, and in C++11, we can have a
547     // braced-init-list on the RHS of an assignment. For better diagnostics,
548     // parse as if we were allowed braced-init-lists everywhere, and check that
549     // they only appear on the RHS of assignments later.
550     ExprResult RHS;
551     bool RHSIsInitList = false;
552     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
553       RHS = ParseBraceInitializer();
554       RHSIsInitList = true;
555     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
556       RHS = ParseAssignmentExpression();
557     else
558       RHS = ParseCastExpression(AnyCastExpr);
559 
560     if (RHS.isInvalid()) {
561       // FIXME: Errors generated by the delayed typo correction should be
562       // printed before errors from parsing the RHS, not after.
563       Actions.CorrectDelayedTyposInExpr(LHS);
564       if (TernaryMiddle.isUsable())
565         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
566       LHS = ExprError();
567     }
568 
569     // Remember the precedence of this operator and get the precedence of the
570     // operator immediately to the right of the RHS.
571     prec::Level ThisPrec = NextTokPrec;
572     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
573                                      getLangOpts().CPlusPlus11);
574 
575     // Assignment and conditional expressions are right-associative.
576     bool isRightAssoc = ThisPrec == prec::Conditional ||
577                         ThisPrec == prec::Assignment;
578 
579     // Get the precedence of the operator to the right of the RHS.  If it binds
580     // more tightly with RHS than we do, evaluate it completely first.
581     if (ThisPrec < NextTokPrec ||
582         (ThisPrec == NextTokPrec && isRightAssoc)) {
583       if (!RHS.isInvalid() && RHSIsInitList) {
584         Diag(Tok, diag::err_init_list_bin_op)
585           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
586         RHS = ExprError();
587       }
588       // If this is left-associative, only parse things on the RHS that bind
589       // more tightly than the current operator.  If it is left-associative, it
590       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
591       // A=(B=(C=D)), where each paren is a level of recursion here.
592       // The function takes ownership of the RHS.
593       RHS = ParseRHSOfBinaryExpression(RHS,
594                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
595       RHSIsInitList = false;
596 
597       if (RHS.isInvalid()) {
598         // FIXME: Errors generated by the delayed typo correction should be
599         // printed before errors from ParseRHSOfBinaryExpression, not after.
600         Actions.CorrectDelayedTyposInExpr(LHS);
601         if (TernaryMiddle.isUsable())
602           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
603         LHS = ExprError();
604       }
605 
606       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
607                                        getLangOpts().CPlusPlus11);
608     }
609 
610     if (!RHS.isInvalid() && RHSIsInitList) {
611       if (ThisPrec == prec::Assignment) {
612         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
613           << Actions.getExprRange(RHS.get());
614       } else if (ColonLoc.isValid()) {
615         Diag(ColonLoc, diag::err_init_list_bin_op)
616           << /*RHS*/1 << ":"
617           << Actions.getExprRange(RHS.get());
618         LHS = ExprError();
619       } else {
620         Diag(OpToken, diag::err_init_list_bin_op)
621           << /*RHS*/1 << PP.getSpelling(OpToken)
622           << Actions.getExprRange(RHS.get());
623         LHS = ExprError();
624       }
625     }
626 
627     ExprResult OrigLHS = LHS;
628     if (!LHS.isInvalid()) {
629       // Combine the LHS and RHS into the LHS (e.g. build AST).
630       if (TernaryMiddle.isInvalid()) {
631         // If we're using '>>' as an operator within a template
632         // argument list (in C++98), suggest the addition of
633         // parentheses so that the code remains well-formed in C++0x.
634         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
635           SuggestParentheses(OpToken.getLocation(),
636                              diag::warn_cxx11_right_shift_in_template_arg,
637                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
638                                      Actions.getExprRange(RHS.get()).getEnd()));
639 
640         ExprResult BinOp =
641             Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
642                                OpToken.getKind(), LHS.get(), RHS.get());
643         if (BinOp.isInvalid())
644           BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
645                                              RHS.get()->getEndLoc(),
646                                              {LHS.get(), RHS.get()});
647 
648         LHS = BinOp;
649       } else {
650         ExprResult CondOp = Actions.ActOnConditionalOp(
651             OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
652             RHS.get());
653         if (CondOp.isInvalid()) {
654           std::vector<clang::Expr *> Args;
655           // TernaryMiddle can be null for the GNU conditional expr extension.
656           if (TernaryMiddle.get())
657             Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
658           else
659             Args = {LHS.get(), RHS.get()};
660           CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
661                                               RHS.get()->getEndLoc(), Args);
662         }
663 
664         LHS = CondOp;
665       }
666       // In this case, ActOnBinOp or ActOnConditionalOp performed the
667       // CorrectDelayedTyposInExpr check.
668       if (!getLangOpts().CPlusPlus)
669         continue;
670     }
671 
672     // Ensure potential typos aren't left undiagnosed.
673     if (LHS.isInvalid()) {
674       Actions.CorrectDelayedTyposInExpr(OrigLHS);
675       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
676       Actions.CorrectDelayedTyposInExpr(RHS);
677     }
678   }
679 }
680 
681 /// Parse a cast-expression, unary-expression or primary-expression, based
682 /// on \p ExprType.
683 ///
684 /// \p isAddressOfOperand exists because an id-expression that is the
685 /// operand of address-of gets special treatment due to member pointers.
686 ///
687 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
688                                        bool isAddressOfOperand,
689                                        TypeCastState isTypeCast,
690                                        bool isVectorLiteral,
691                                        bool *NotPrimaryExpression) {
692   bool NotCastExpr;
693   ExprResult Res = ParseCastExpression(ParseKind,
694                                        isAddressOfOperand,
695                                        NotCastExpr,
696                                        isTypeCast,
697                                        isVectorLiteral,
698                                        NotPrimaryExpression);
699   if (NotCastExpr)
700     Diag(Tok, diag::err_expected_expression);
701   return Res;
702 }
703 
704 namespace {
705 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
706  public:
707   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
708       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
709     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
710   }
711 
712   bool ValidateCandidate(const TypoCorrection &candidate) override {
713     NamedDecl *ND = candidate.getCorrectionDecl();
714     if (!ND)
715       return candidate.isKeyword();
716 
717     if (isa<TypeDecl>(ND))
718       return WantTypeSpecifiers;
719 
720     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
721       return false;
722 
723     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
724       return true;
725 
726     for (auto *C : candidate) {
727       NamedDecl *ND = C->getUnderlyingDecl();
728       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
729         return true;
730     }
731     return false;
732   }
733 
734   std::unique_ptr<CorrectionCandidateCallback> clone() override {
735     return std::make_unique<CastExpressionIdValidator>(*this);
736   }
737 
738  private:
739   Token NextToken;
740   bool AllowNonTypes;
741 };
742 }
743 
744 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
745 /// a unary-expression.
746 ///
747 /// \p isAddressOfOperand exists because an id-expression that is the operand
748 /// of address-of gets special treatment due to member pointers. NotCastExpr
749 /// is set to true if the token is not the start of a cast-expression, and no
750 /// diagnostic is emitted in this case and no tokens are consumed.
751 ///
752 /// \verbatim
753 ///       cast-expression: [C99 6.5.4]
754 ///         unary-expression
755 ///         '(' type-name ')' cast-expression
756 ///
757 ///       unary-expression:  [C99 6.5.3]
758 ///         postfix-expression
759 ///         '++' unary-expression
760 ///         '--' unary-expression
761 /// [Coro]  'co_await' cast-expression
762 ///         unary-operator cast-expression
763 ///         'sizeof' unary-expression
764 ///         'sizeof' '(' type-name ')'
765 /// [C++11] 'sizeof' '...' '(' identifier ')'
766 /// [GNU]   '__alignof' unary-expression
767 /// [GNU]   '__alignof' '(' type-name ')'
768 /// [C11]   '_Alignof' '(' type-name ')'
769 /// [C++11] 'alignof' '(' type-id ')'
770 /// [GNU]   '&&' identifier
771 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
772 /// [C++]   new-expression
773 /// [C++]   delete-expression
774 ///
775 ///       unary-operator: one of
776 ///         '&'  '*'  '+'  '-'  '~'  '!'
777 /// [GNU]   '__extension__'  '__real'  '__imag'
778 ///
779 ///       primary-expression: [C99 6.5.1]
780 /// [C99]   identifier
781 /// [C++]   id-expression
782 ///         constant
783 ///         string-literal
784 /// [C++]   boolean-literal  [C++ 2.13.5]
785 /// [C++11] 'nullptr'        [C++11 2.14.7]
786 /// [C++11] user-defined-literal
787 ///         '(' expression ')'
788 /// [C11]   generic-selection
789 /// [C++2a] requires-expression
790 ///         '__func__'        [C99 6.4.2.2]
791 /// [GNU]   '__FUNCTION__'
792 /// [MS]    '__FUNCDNAME__'
793 /// [MS]    'L__FUNCTION__'
794 /// [MS]    '__FUNCSIG__'
795 /// [MS]    'L__FUNCSIG__'
796 /// [GNU]   '__PRETTY_FUNCTION__'
797 /// [GNU]   '(' compound-statement ')'
798 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
799 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
800 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
801 ///                                     assign-expr ')'
802 /// [GNU]   '__builtin_FILE' '(' ')'
803 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
804 /// [GNU]   '__builtin_FUNCTION' '(' ')'
805 /// [MS]    '__builtin_FUNCSIG' '(' ')'
806 /// [GNU]   '__builtin_LINE' '(' ')'
807 /// [CLANG] '__builtin_COLUMN' '(' ')'
808 /// [GNU]   '__builtin_source_location' '(' ')'
809 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
810 /// [GNU]   '__null'
811 /// [OBJC]  '[' objc-message-expr ']'
812 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
813 /// [OBJC]  '\@protocol' '(' identifier ')'
814 /// [OBJC]  '\@encode' '(' type-name ')'
815 /// [OBJC]  objc-string-literal
816 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
817 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
818 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
819 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
820 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
821 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
822 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
823 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
824 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
825 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
826 /// [C++]   'this'          [C++ 9.3.2]
827 /// [G++]   unary-type-trait '(' type-id ')'
828 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
829 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
830 /// [clang] '^' block-literal
831 ///
832 ///       constant: [C99 6.4.4]
833 ///         integer-constant
834 ///         floating-constant
835 ///         enumeration-constant -> identifier
836 ///         character-constant
837 ///
838 ///       id-expression: [C++ 5.1]
839 ///                   unqualified-id
840 ///                   qualified-id
841 ///
842 ///       unqualified-id: [C++ 5.1]
843 ///                   identifier
844 ///                   operator-function-id
845 ///                   conversion-function-id
846 ///                   '~' class-name
847 ///                   template-id
848 ///
849 ///       new-expression: [C++ 5.3.4]
850 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
851 ///                                     new-initializer[opt]
852 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
853 ///                                     new-initializer[opt]
854 ///
855 ///       delete-expression: [C++ 5.3.5]
856 ///                   '::'[opt] 'delete' cast-expression
857 ///                   '::'[opt] 'delete' '[' ']' cast-expression
858 ///
859 /// [GNU/Embarcadero] unary-type-trait:
860 ///                   '__is_arithmetic'
861 ///                   '__is_floating_point'
862 ///                   '__is_integral'
863 ///                   '__is_lvalue_expr'
864 ///                   '__is_rvalue_expr'
865 ///                   '__is_complete_type'
866 ///                   '__is_void'
867 ///                   '__is_array'
868 ///                   '__is_function'
869 ///                   '__is_reference'
870 ///                   '__is_lvalue_reference'
871 ///                   '__is_rvalue_reference'
872 ///                   '__is_fundamental'
873 ///                   '__is_object'
874 ///                   '__is_scalar'
875 ///                   '__is_compound'
876 ///                   '__is_pointer'
877 ///                   '__is_member_object_pointer'
878 ///                   '__is_member_function_pointer'
879 ///                   '__is_member_pointer'
880 ///                   '__is_const'
881 ///                   '__is_volatile'
882 ///                   '__is_trivial'
883 ///                   '__is_standard_layout'
884 ///                   '__is_signed'
885 ///                   '__is_unsigned'
886 ///
887 /// [GNU] unary-type-trait:
888 ///                   '__has_nothrow_assign'
889 ///                   '__has_nothrow_copy'
890 ///                   '__has_nothrow_constructor'
891 ///                   '__has_trivial_assign'                  [TODO]
892 ///                   '__has_trivial_copy'                    [TODO]
893 ///                   '__has_trivial_constructor'
894 ///                   '__has_trivial_destructor'
895 ///                   '__has_virtual_destructor'
896 ///                   '__is_abstract'                         [TODO]
897 ///                   '__is_class'
898 ///                   '__is_empty'                            [TODO]
899 ///                   '__is_enum'
900 ///                   '__is_final'
901 ///                   '__is_pod'
902 ///                   '__is_polymorphic'
903 ///                   '__is_sealed'                           [MS]
904 ///                   '__is_trivial'
905 ///                   '__is_union'
906 ///                   '__has_unique_object_representations'
907 ///
908 /// [Clang] unary-type-trait:
909 ///                   '__is_aggregate'
910 ///                   '__trivially_copyable'
911 ///
912 ///       binary-type-trait:
913 /// [GNU]             '__is_base_of'
914 /// [MS]              '__is_convertible_to'
915 ///                   '__is_convertible'
916 ///                   '__is_same'
917 ///
918 /// [Embarcadero] array-type-trait:
919 ///                   '__array_rank'
920 ///                   '__array_extent'
921 ///
922 /// [Embarcadero] expression-trait:
923 ///                   '__is_lvalue_expr'
924 ///                   '__is_rvalue_expr'
925 /// \endverbatim
926 ///
927 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
928                                        bool isAddressOfOperand,
929                                        bool &NotCastExpr,
930                                        TypeCastState isTypeCast,
931                                        bool isVectorLiteral,
932                                        bool *NotPrimaryExpression) {
933   ExprResult Res;
934   tok::TokenKind SavedKind = Tok.getKind();
935   auto SavedType = PreferredType;
936   NotCastExpr = false;
937 
938   // Are postfix-expression suffix operators permitted after this
939   // cast-expression? If not, and we find some, we'll parse them anyway and
940   // diagnose them.
941   bool AllowSuffix = true;
942 
943   // This handles all of cast-expression, unary-expression, postfix-expression,
944   // and primary-expression.  We handle them together like this for efficiency
945   // and to simplify handling of an expression starting with a '(' token: which
946   // may be one of a parenthesized expression, cast-expression, compound literal
947   // expression, or statement expression.
948   //
949   // If the parsed tokens consist of a primary-expression, the cases below
950   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
951   // to handle the postfix expression suffixes.  Cases that cannot be followed
952   // by postfix exprs should set AllowSuffix to false.
953   switch (SavedKind) {
954   case tok::l_paren: {
955     // If this expression is limited to being a unary-expression, the paren can
956     // not start a cast expression.
957     ParenParseOption ParenExprType;
958     switch (ParseKind) {
959       case CastParseKind::UnaryExprOnly:
960         assert(getLangOpts().CPlusPlus && "not possible to get here in C");
961         [[fallthrough]];
962       case CastParseKind::AnyCastExpr:
963         ParenExprType = ParenParseOption::CastExpr;
964         break;
965       case CastParseKind::PrimaryExprOnly:
966         ParenExprType = FoldExpr;
967         break;
968     }
969     ParsedType CastTy;
970     SourceLocation RParenLoc;
971     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
972                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
973 
974     // FIXME: What should we do if a vector literal is followed by a
975     // postfix-expression suffix? Usually postfix operators are permitted on
976     // literals.
977     if (isVectorLiteral)
978       return Res;
979 
980     switch (ParenExprType) {
981     case SimpleExpr:   break;    // Nothing else to do.
982     case CompoundStmt: break;  // Nothing else to do.
983     case CompoundLiteral:
984       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
985       // postfix-expression exist, parse them now.
986       break;
987     case CastExpr:
988       // We have parsed the cast-expression and no postfix-expr pieces are
989       // following.
990       return Res;
991     case FoldExpr:
992       // We only parsed a fold-expression. There might be postfix-expr pieces
993       // afterwards; parse them now.
994       break;
995     }
996 
997     break;
998   }
999 
1000     // primary-expression
1001   case tok::numeric_constant:
1002     // constant: integer-constant
1003     // constant: floating-constant
1004 
1005     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
1006     ConsumeToken();
1007     break;
1008 
1009   case tok::kw_true:
1010   case tok::kw_false:
1011     Res = ParseCXXBoolLiteral();
1012     break;
1013 
1014   case tok::kw___objc_yes:
1015   case tok::kw___objc_no:
1016     Res = ParseObjCBoolLiteral();
1017     break;
1018 
1019   case tok::kw_nullptr:
1020     if (getLangOpts().CPlusPlus)
1021       Diag(Tok, diag::warn_cxx98_compat_nullptr);
1022     else
1023       Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword
1024                                   : diag::ext_c_nullptr) << Tok.getName();
1025 
1026     Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1027     break;
1028 
1029   case tok::annot_primary_expr:
1030   case tok::annot_overload_set:
1031     Res = getExprAnnotation(Tok);
1032     if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1033       Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1034     ConsumeAnnotationToken();
1035     if (!Res.isInvalid() && Tok.is(tok::less))
1036       checkPotentialAngleBracket(Res);
1037     break;
1038 
1039   case tok::annot_non_type:
1040   case tok::annot_non_type_dependent:
1041   case tok::annot_non_type_undeclared: {
1042     CXXScopeSpec SS;
1043     Token Replacement;
1044     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1045     assert(!Res.isUnset() &&
1046            "should not perform typo correction on annotation token");
1047     break;
1048   }
1049 
1050   case tok::kw___super:
1051   case tok::kw_decltype:
1052     // Annotate the token and tail recurse.
1053     if (TryAnnotateTypeOrScopeToken())
1054       return ExprError();
1055     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1056     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1057                                isVectorLiteral, NotPrimaryExpression);
1058 
1059   case tok::identifier:
1060   ParseIdentifier: {    // primary-expression: identifier
1061                         // unqualified-id: identifier
1062                         // constant: enumeration-constant
1063     // Turn a potentially qualified name into a annot_typename or
1064     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1065     if (getLangOpts().CPlusPlus) {
1066       // Avoid the unnecessary parse-time lookup in the common case
1067       // where the syntax forbids a type.
1068       const Token &Next = NextToken();
1069 
1070       // If this identifier was reverted from a token ID, and the next token
1071       // is a parenthesis, this is likely to be a use of a type trait. Check
1072       // those tokens.
1073       if (Next.is(tok::l_paren) &&
1074           Tok.is(tok::identifier) &&
1075           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1076         IdentifierInfo *II = Tok.getIdentifierInfo();
1077         // Build up the mapping of revertible type traits, for future use.
1078         if (RevertibleTypeTraits.empty()) {
1079 #define RTT_JOIN(X,Y) X##Y
1080 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
1081           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1082             = RTT_JOIN(tok::kw_,Name)
1083 
1084           REVERTIBLE_TYPE_TRAIT(__is_abstract);
1085           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1086           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1087           REVERTIBLE_TYPE_TRAIT(__is_array);
1088           REVERTIBLE_TYPE_TRAIT(__is_assignable);
1089           REVERTIBLE_TYPE_TRAIT(__is_base_of);
1090           REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
1091           REVERTIBLE_TYPE_TRAIT(__is_class);
1092           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1093           REVERTIBLE_TYPE_TRAIT(__is_compound);
1094           REVERTIBLE_TYPE_TRAIT(__is_const);
1095           REVERTIBLE_TYPE_TRAIT(__is_constructible);
1096           REVERTIBLE_TYPE_TRAIT(__is_convertible);
1097           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1098           REVERTIBLE_TYPE_TRAIT(__is_destructible);
1099           REVERTIBLE_TYPE_TRAIT(__is_empty);
1100           REVERTIBLE_TYPE_TRAIT(__is_enum);
1101           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1102           REVERTIBLE_TYPE_TRAIT(__is_final);
1103           REVERTIBLE_TYPE_TRAIT(__is_function);
1104           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1105           REVERTIBLE_TYPE_TRAIT(__is_integral);
1106           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1107           REVERTIBLE_TYPE_TRAIT(__is_literal);
1108           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1109           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1110           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1111           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1112           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1113           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1114           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1115           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1116           REVERTIBLE_TYPE_TRAIT(__is_nullptr);
1117           REVERTIBLE_TYPE_TRAIT(__is_object);
1118           REVERTIBLE_TYPE_TRAIT(__is_pod);
1119           REVERTIBLE_TYPE_TRAIT(__is_pointer);
1120           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1121           REVERTIBLE_TYPE_TRAIT(__is_reference);
1122           REVERTIBLE_TYPE_TRAIT(__is_referenceable);
1123           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1124           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1125           REVERTIBLE_TYPE_TRAIT(__is_same);
1126           REVERTIBLE_TYPE_TRAIT(__is_scalar);
1127           REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
1128           REVERTIBLE_TYPE_TRAIT(__is_sealed);
1129           REVERTIBLE_TYPE_TRAIT(__is_signed);
1130           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1131           REVERTIBLE_TYPE_TRAIT(__is_trivial);
1132           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1133           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1134           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1135           REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
1136           REVERTIBLE_TYPE_TRAIT(__is_union);
1137           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1138           REVERTIBLE_TYPE_TRAIT(__is_void);
1139           REVERTIBLE_TYPE_TRAIT(__is_volatile);
1140           REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary);
1141           REVERTIBLE_TYPE_TRAIT(__reference_constructs_from_temporary);
1142 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait)                                     \
1143   REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
1144 #include "clang/Basic/TransformTypeTraits.def"
1145 #undef REVERTIBLE_TYPE_TRAIT
1146 #undef RTT_JOIN
1147         }
1148 
1149         // If we find that this is in fact the name of a type trait,
1150         // update the token kind in place and parse again to treat it as
1151         // the appropriate kind of type trait.
1152         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1153           = RevertibleTypeTraits.find(II);
1154         if (Known != RevertibleTypeTraits.end()) {
1155           Tok.setKind(Known->second);
1156           return ParseCastExpression(ParseKind, isAddressOfOperand,
1157                                      NotCastExpr, isTypeCast,
1158                                      isVectorLiteral, NotPrimaryExpression);
1159         }
1160       }
1161 
1162       if ((!ColonIsSacred && Next.is(tok::colon)) ||
1163           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1164                        tok::l_brace)) {
1165         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1166         if (TryAnnotateTypeOrScopeToken())
1167           return ExprError();
1168         if (!Tok.is(tok::identifier))
1169           return ParseCastExpression(ParseKind, isAddressOfOperand,
1170                                      NotCastExpr, isTypeCast,
1171                                      isVectorLiteral,
1172                                      NotPrimaryExpression);
1173       }
1174     }
1175 
1176     // Consume the identifier so that we can see if it is followed by a '(' or
1177     // '.'.
1178     IdentifierInfo &II = *Tok.getIdentifierInfo();
1179     SourceLocation ILoc = ConsumeToken();
1180 
1181     // Support 'Class.property' and 'super.property' notation.
1182     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1183         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1184          // Allow the base to be 'super' if in an objc-method.
1185          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1186       ConsumeToken();
1187 
1188       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1189         cutOffParsing();
1190         Actions.CodeCompleteObjCClassPropertyRefExpr(
1191             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1192         return ExprError();
1193       }
1194       // Allow either an identifier or the keyword 'class' (in C++).
1195       if (Tok.isNot(tok::identifier) &&
1196           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1197         Diag(Tok, diag::err_expected_property_name);
1198         return ExprError();
1199       }
1200       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1201       SourceLocation PropertyLoc = ConsumeToken();
1202 
1203       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1204                                               ILoc, PropertyLoc);
1205       break;
1206     }
1207 
1208     // In an Objective-C method, if we have "super" followed by an identifier,
1209     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1210     // that identifier, this is probably a message send with a missing open
1211     // bracket. Treat it as such.
1212     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1213         getCurScope()->isInObjcMethodScope() &&
1214         ((Tok.is(tok::identifier) &&
1215          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1216          Tok.is(tok::code_completion))) {
1217       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1218                                            nullptr);
1219       break;
1220     }
1221 
1222     // If we have an Objective-C class name followed by an identifier
1223     // and either ':' or ']', this is an Objective-C class message
1224     // send that's missing the opening '['. Recovery
1225     // appropriately. Also take this path if we're performing code
1226     // completion after an Objective-C class name.
1227     if (getLangOpts().ObjC &&
1228         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1229          Tok.is(tok::code_completion))) {
1230       const Token& Next = NextToken();
1231       if (Tok.is(tok::code_completion) ||
1232           Next.is(tok::colon) || Next.is(tok::r_square))
1233         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1234           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1235             // Fake up a Declarator to use with ActOnTypeName.
1236             DeclSpec DS(AttrFactory);
1237             DS.SetRangeStart(ILoc);
1238             DS.SetRangeEnd(ILoc);
1239             const char *PrevSpec = nullptr;
1240             unsigned DiagID;
1241             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1242                                Actions.getASTContext().getPrintingPolicy());
1243 
1244             Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1245                                       DeclaratorContext::TypeName);
1246             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1247                                                   DeclaratorInfo);
1248             if (Ty.isInvalid())
1249               break;
1250 
1251             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1252                                                  SourceLocation(),
1253                                                  Ty.get(), nullptr);
1254             break;
1255           }
1256     }
1257 
1258     // Make sure to pass down the right value for isAddressOfOperand.
1259     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1260       isAddressOfOperand = false;
1261 
1262     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1263     // need to know whether or not this identifier is a function designator or
1264     // not.
1265     UnqualifiedId Name;
1266     CXXScopeSpec ScopeSpec;
1267     SourceLocation TemplateKWLoc;
1268     Token Replacement;
1269     CastExpressionIdValidator Validator(
1270         /*Next=*/Tok,
1271         /*AllowTypes=*/isTypeCast != NotTypeCast,
1272         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1273     Validator.IsAddressOfOperand = isAddressOfOperand;
1274     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1275       Validator.WantExpressionKeywords = false;
1276       Validator.WantRemainingKeywords = false;
1277     } else {
1278       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1279     }
1280     Name.setIdentifier(&II, ILoc);
1281     Res = Actions.ActOnIdExpression(
1282         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1283         isAddressOfOperand, &Validator,
1284         /*IsInlineAsmIdentifier=*/false,
1285         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1286     if (!Res.isInvalid() && Res.isUnset()) {
1287       UnconsumeToken(Replacement);
1288       return ParseCastExpression(ParseKind, isAddressOfOperand,
1289                                  NotCastExpr, isTypeCast,
1290                                  /*isVectorLiteral=*/false,
1291                                  NotPrimaryExpression);
1292     }
1293     if (!Res.isInvalid() && Tok.is(tok::less))
1294       checkPotentialAngleBracket(Res);
1295     break;
1296   }
1297   case tok::char_constant:     // constant: character-constant
1298   case tok::wide_char_constant:
1299   case tok::utf8_char_constant:
1300   case tok::utf16_char_constant:
1301   case tok::utf32_char_constant:
1302     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1303     ConsumeToken();
1304     break;
1305   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1306   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1307   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1308   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1309   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1310   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1311   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1312     // Function local predefined macros are represented by PredefinedExpr except
1313     // when Microsoft extensions are enabled and one of these macros is adjacent
1314     // to a string literal or another one of these macros.
1315     if (!(getLangOpts().MicrosoftExt &&
1316           tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
1317           tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) {
1318       Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1319       ConsumeToken();
1320       break;
1321     }
1322     [[fallthrough]]; // treat MS function local macros as concatenable strings
1323   case tok::string_literal:    // primary-expression: string-literal
1324   case tok::wide_string_literal:
1325   case tok::utf8_string_literal:
1326   case tok::utf16_string_literal:
1327   case tok::utf32_string_literal:
1328     Res = ParseStringLiteralExpression(true);
1329     break;
1330   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1331     Res = ParseGenericSelectionExpression();
1332     break;
1333   case tok::kw___builtin_available:
1334     Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1335     break;
1336   case tok::kw___builtin_va_arg:
1337   case tok::kw___builtin_offsetof:
1338   case tok::kw___builtin_choose_expr:
1339   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1340   case tok::kw___builtin_convertvector:
1341   case tok::kw___builtin_COLUMN:
1342   case tok::kw___builtin_FILE:
1343   case tok::kw___builtin_FILE_NAME:
1344   case tok::kw___builtin_FUNCTION:
1345   case tok::kw___builtin_FUNCSIG:
1346   case tok::kw___builtin_LINE:
1347   case tok::kw___builtin_source_location:
1348     if (NotPrimaryExpression)
1349       *NotPrimaryExpression = true;
1350     // This parses the complete suffix; we can return early.
1351     return ParseBuiltinPrimaryExpression();
1352   case tok::kw___null:
1353     Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1354     break;
1355 
1356   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1357   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1358     if (NotPrimaryExpression)
1359       *NotPrimaryExpression = true;
1360     // C++ [expr.unary] has:
1361     //   unary-expression:
1362     //     ++ cast-expression
1363     //     -- cast-expression
1364     Token SavedTok = Tok;
1365     ConsumeToken();
1366 
1367     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1368                              SavedTok.getLocation());
1369     // One special case is implicitly handled here: if the preceding tokens are
1370     // an ambiguous cast expression, such as "(T())++", then we recurse to
1371     // determine whether the '++' is prefix or postfix.
1372     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1373                                   UnaryExprOnly : AnyCastExpr,
1374                               /*isAddressOfOperand*/false, NotCastExpr,
1375                               NotTypeCast);
1376     if (NotCastExpr) {
1377       // If we return with NotCastExpr = true, we must not consume any tokens,
1378       // so put the token back where we found it.
1379       assert(Res.isInvalid());
1380       UnconsumeToken(SavedTok);
1381       return ExprError();
1382     }
1383     if (!Res.isInvalid()) {
1384       Expr *Arg = Res.get();
1385       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1386                                  SavedKind, Arg);
1387       if (Res.isInvalid())
1388         Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1389                                          Arg->getEndLoc(), Arg);
1390     }
1391     return Res;
1392   }
1393   case tok::amp: {         // unary-expression: '&' cast-expression
1394     if (NotPrimaryExpression)
1395       *NotPrimaryExpression = true;
1396     // Special treatment because of member pointers
1397     SourceLocation SavedLoc = ConsumeToken();
1398     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1399 
1400     Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1401     if (!Res.isInvalid()) {
1402       Expr *Arg = Res.get();
1403       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1404       if (Res.isInvalid())
1405         Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1406                                          Arg);
1407     }
1408     return Res;
1409   }
1410 
1411   case tok::star:          // unary-expression: '*' cast-expression
1412   case tok::plus:          // unary-expression: '+' cast-expression
1413   case tok::minus:         // unary-expression: '-' cast-expression
1414   case tok::tilde:         // unary-expression: '~' cast-expression
1415   case tok::exclaim:       // unary-expression: '!' cast-expression
1416   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1417   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1418     if (NotPrimaryExpression)
1419       *NotPrimaryExpression = true;
1420     SourceLocation SavedLoc = ConsumeToken();
1421     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1422     Res = ParseCastExpression(AnyCastExpr);
1423     if (!Res.isInvalid()) {
1424       Expr *Arg = Res.get();
1425       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1426                                  isAddressOfOperand);
1427       if (Res.isInvalid())
1428         Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1429     }
1430     return Res;
1431   }
1432 
1433   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1434     if (NotPrimaryExpression)
1435       *NotPrimaryExpression = true;
1436     SourceLocation CoawaitLoc = ConsumeToken();
1437     Res = ParseCastExpression(AnyCastExpr);
1438     if (!Res.isInvalid())
1439       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1440     return Res;
1441   }
1442 
1443   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1444     // __extension__ silences extension warnings in the subexpression.
1445     if (NotPrimaryExpression)
1446       *NotPrimaryExpression = true;
1447     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1448     SourceLocation SavedLoc = ConsumeToken();
1449     Res = ParseCastExpression(AnyCastExpr);
1450     if (!Res.isInvalid())
1451       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1452     return Res;
1453   }
1454   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1455     if (!getLangOpts().C11)
1456       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1457     [[fallthrough]];
1458   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1459   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1460                            // unary-expression: '__alignof' '(' type-name ')'
1461   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1462                            // unary-expression: 'sizeof' '(' type-name ')'
1463   // unary-expression: '__datasizeof' unary-expression
1464   // unary-expression: '__datasizeof' '(' type-name ')'
1465   case tok::kw___datasizeof:
1466   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1467   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1468   case tok::kw___builtin_omp_required_simd_align:
1469   case tok::kw___builtin_vectorelements:
1470     if (NotPrimaryExpression)
1471       *NotPrimaryExpression = true;
1472     AllowSuffix = false;
1473     Res = ParseUnaryExprOrTypeTraitExpression();
1474     break;
1475   case tok::ampamp: {      // unary-expression: '&&' identifier
1476     if (NotPrimaryExpression)
1477       *NotPrimaryExpression = true;
1478     SourceLocation AmpAmpLoc = ConsumeToken();
1479     if (Tok.isNot(tok::identifier))
1480       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1481 
1482     if (getCurScope()->getFnParent() == nullptr)
1483       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1484 
1485     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1486     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1487                                                 Tok.getLocation());
1488     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1489     ConsumeToken();
1490     AllowSuffix = false;
1491     break;
1492   }
1493   case tok::kw_const_cast:
1494   case tok::kw_dynamic_cast:
1495   case tok::kw_reinterpret_cast:
1496   case tok::kw_static_cast:
1497   case tok::kw_addrspace_cast:
1498     if (NotPrimaryExpression)
1499       *NotPrimaryExpression = true;
1500     Res = ParseCXXCasts();
1501     break;
1502   case tok::kw___builtin_bit_cast:
1503     if (NotPrimaryExpression)
1504       *NotPrimaryExpression = true;
1505     Res = ParseBuiltinBitCast();
1506     break;
1507   case tok::kw_typeid:
1508     if (NotPrimaryExpression)
1509       *NotPrimaryExpression = true;
1510     Res = ParseCXXTypeid();
1511     break;
1512   case tok::kw___uuidof:
1513     if (NotPrimaryExpression)
1514       *NotPrimaryExpression = true;
1515     Res = ParseCXXUuidof();
1516     break;
1517   case tok::kw_this:
1518     Res = ParseCXXThis();
1519     break;
1520   case tok::kw___builtin_sycl_unique_stable_name:
1521     Res = ParseSYCLUniqueStableNameExpression();
1522     break;
1523 
1524   case tok::annot_typename:
1525     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1526       TypeResult Type = getTypeAnnotation(Tok);
1527 
1528       // Fake up a Declarator to use with ActOnTypeName.
1529       DeclSpec DS(AttrFactory);
1530       DS.SetRangeStart(Tok.getLocation());
1531       DS.SetRangeEnd(Tok.getLastLoc());
1532 
1533       const char *PrevSpec = nullptr;
1534       unsigned DiagID;
1535       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1536                          PrevSpec, DiagID, Type,
1537                          Actions.getASTContext().getPrintingPolicy());
1538 
1539       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1540                                 DeclaratorContext::TypeName);
1541       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1542       if (Ty.isInvalid())
1543         break;
1544 
1545       ConsumeAnnotationToken();
1546       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1547                                            Ty.get(), nullptr);
1548       break;
1549     }
1550     [[fallthrough]];
1551 
1552   case tok::annot_decltype:
1553   case tok::kw_char:
1554   case tok::kw_wchar_t:
1555   case tok::kw_char8_t:
1556   case tok::kw_char16_t:
1557   case tok::kw_char32_t:
1558   case tok::kw_bool:
1559   case tok::kw_short:
1560   case tok::kw_int:
1561   case tok::kw_long:
1562   case tok::kw___int64:
1563   case tok::kw___int128:
1564   case tok::kw__ExtInt:
1565   case tok::kw__BitInt:
1566   case tok::kw_signed:
1567   case tok::kw_unsigned:
1568   case tok::kw_half:
1569   case tok::kw_float:
1570   case tok::kw_double:
1571   case tok::kw___bf16:
1572   case tok::kw__Float16:
1573   case tok::kw___float128:
1574   case tok::kw___ibm128:
1575   case tok::kw_void:
1576   case tok::kw_auto:
1577   case tok::kw_typename:
1578   case tok::kw_typeof:
1579   case tok::kw___vector:
1580   case tok::kw__Accum:
1581   case tok::kw__Fract:
1582   case tok::kw__Sat:
1583 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1584 #include "clang/Basic/OpenCLImageTypes.def"
1585   {
1586     if (!getLangOpts().CPlusPlus) {
1587       Diag(Tok, diag::err_expected_expression);
1588       return ExprError();
1589     }
1590 
1591     // Everything henceforth is a postfix-expression.
1592     if (NotPrimaryExpression)
1593       *NotPrimaryExpression = true;
1594 
1595     if (SavedKind == tok::kw_typename) {
1596       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1597       //                     typename-specifier braced-init-list
1598       if (TryAnnotateTypeOrScopeToken())
1599         return ExprError();
1600 
1601       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1602         // We are trying to parse a simple-type-specifier but might not get such
1603         // a token after error recovery.
1604         return ExprError();
1605     }
1606 
1607     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1608     //                     simple-type-specifier braced-init-list
1609     //
1610     DeclSpec DS(AttrFactory);
1611 
1612     ParseCXXSimpleTypeSpecifier(DS);
1613     if (Tok.isNot(tok::l_paren) &&
1614         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1615       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1616                          << DS.getSourceRange());
1617 
1618     if (Tok.is(tok::l_brace))
1619       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1620 
1621     Res = ParseCXXTypeConstructExpression(DS);
1622     break;
1623   }
1624 
1625   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1626     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1627     // (We can end up in this situation after tentative parsing.)
1628     if (TryAnnotateTypeOrScopeToken())
1629       return ExprError();
1630     if (!Tok.is(tok::annot_cxxscope))
1631       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1632                                  isTypeCast, isVectorLiteral,
1633                                  NotPrimaryExpression);
1634 
1635     Token Next = NextToken();
1636     if (Next.is(tok::annot_template_id)) {
1637       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1638       if (TemplateId->Kind == TNK_Type_template) {
1639         // We have a qualified template-id that we know refers to a
1640         // type, translate it into a type and continue parsing as a
1641         // cast expression.
1642         CXXScopeSpec SS;
1643         ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1644                                        /*ObjectHasErrors=*/false,
1645                                        /*EnteringContext=*/false);
1646         AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1647         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1648                                    isTypeCast, isVectorLiteral,
1649                                    NotPrimaryExpression);
1650       }
1651     }
1652 
1653     // Parse as an id-expression.
1654     Res = ParseCXXIdExpression(isAddressOfOperand);
1655     break;
1656   }
1657 
1658   case tok::annot_template_id: { // [C++]          template-id
1659     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1660     if (TemplateId->Kind == TNK_Type_template) {
1661       // We have a template-id that we know refers to a type,
1662       // translate it into a type and continue parsing as a cast
1663       // expression.
1664       CXXScopeSpec SS;
1665       AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1666       return ParseCastExpression(ParseKind, isAddressOfOperand,
1667                                  NotCastExpr, isTypeCast, isVectorLiteral,
1668                                  NotPrimaryExpression);
1669     }
1670 
1671     // Fall through to treat the template-id as an id-expression.
1672     [[fallthrough]];
1673   }
1674 
1675   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1676     Res = ParseCXXIdExpression(isAddressOfOperand);
1677     break;
1678 
1679   case tok::coloncolon: {
1680     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1681     // annotates the token, tail recurse.
1682     if (TryAnnotateTypeOrScopeToken())
1683       return ExprError();
1684     if (!Tok.is(tok::coloncolon))
1685       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1686                                  isVectorLiteral, NotPrimaryExpression);
1687 
1688     // ::new -> [C++] new-expression
1689     // ::delete -> [C++] delete-expression
1690     SourceLocation CCLoc = ConsumeToken();
1691     if (Tok.is(tok::kw_new)) {
1692       if (NotPrimaryExpression)
1693         *NotPrimaryExpression = true;
1694       Res = ParseCXXNewExpression(true, CCLoc);
1695       AllowSuffix = false;
1696       break;
1697     }
1698     if (Tok.is(tok::kw_delete)) {
1699       if (NotPrimaryExpression)
1700         *NotPrimaryExpression = true;
1701       Res = ParseCXXDeleteExpression(true, CCLoc);
1702       AllowSuffix = false;
1703       break;
1704     }
1705 
1706     // This is not a type name or scope specifier, it is an invalid expression.
1707     Diag(CCLoc, diag::err_expected_expression);
1708     return ExprError();
1709   }
1710 
1711   case tok::kw_new: // [C++] new-expression
1712     if (NotPrimaryExpression)
1713       *NotPrimaryExpression = true;
1714     Res = ParseCXXNewExpression(false, Tok.getLocation());
1715     AllowSuffix = false;
1716     break;
1717 
1718   case tok::kw_delete: // [C++] delete-expression
1719     if (NotPrimaryExpression)
1720       *NotPrimaryExpression = true;
1721     Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1722     AllowSuffix = false;
1723     break;
1724 
1725   case tok::kw_requires: // [C++2a] requires-expression
1726     Res = ParseRequiresExpression();
1727     AllowSuffix = false;
1728     break;
1729 
1730   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1731     if (NotPrimaryExpression)
1732       *NotPrimaryExpression = true;
1733     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1734     SourceLocation KeyLoc = ConsumeToken();
1735     BalancedDelimiterTracker T(*this, tok::l_paren);
1736 
1737     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1738       return ExprError();
1739     // C++11 [expr.unary.noexcept]p1:
1740     //   The noexcept operator determines whether the evaluation of its operand,
1741     //   which is an unevaluated operand, can throw an exception.
1742     EnterExpressionEvaluationContext Unevaluated(
1743         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1744     Res = ParseExpression();
1745 
1746     T.consumeClose();
1747 
1748     if (!Res.isInvalid())
1749       Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1750                                       T.getCloseLocation());
1751     AllowSuffix = false;
1752     break;
1753   }
1754 
1755 #define TYPE_TRAIT(N,Spelling,K) \
1756   case tok::kw_##Spelling:
1757 #include "clang/Basic/TokenKinds.def"
1758     Res = ParseTypeTrait();
1759     break;
1760 
1761   case tok::kw___array_rank:
1762   case tok::kw___array_extent:
1763     if (NotPrimaryExpression)
1764       *NotPrimaryExpression = true;
1765     Res = ParseArrayTypeTrait();
1766     break;
1767 
1768   case tok::kw___is_lvalue_expr:
1769   case tok::kw___is_rvalue_expr:
1770     if (NotPrimaryExpression)
1771       *NotPrimaryExpression = true;
1772     Res = ParseExpressionTrait();
1773     break;
1774 
1775   case tok::at: {
1776     if (NotPrimaryExpression)
1777       *NotPrimaryExpression = true;
1778     SourceLocation AtLoc = ConsumeToken();
1779     return ParseObjCAtExpression(AtLoc);
1780   }
1781   case tok::caret:
1782     Res = ParseBlockLiteralExpression();
1783     break;
1784   case tok::code_completion: {
1785     cutOffParsing();
1786     Actions.CodeCompleteExpression(getCurScope(),
1787                                    PreferredType.get(Tok.getLocation()));
1788     return ExprError();
1789   }
1790 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1791 #include "clang/Basic/TransformTypeTraits.def"
1792     // HACK: libstdc++ uses some of the transform-type-traits as alias
1793     // templates, so we need to work around this.
1794     if (!NextToken().is(tok::l_paren)) {
1795       Tok.setKind(tok::identifier);
1796       Diag(Tok, diag::ext_keyword_as_ident)
1797           << Tok.getIdentifierInfo()->getName() << 0;
1798       goto ParseIdentifier;
1799     }
1800     goto ExpectedExpression;
1801   case tok::l_square:
1802     if (getLangOpts().CPlusPlus11) {
1803       if (getLangOpts().ObjC) {
1804         // C++11 lambda expressions and Objective-C message sends both start with a
1805         // square bracket.  There are three possibilities here:
1806         // we have a valid lambda expression, we have an invalid lambda
1807         // expression, or we have something that doesn't appear to be a lambda.
1808         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1809         Res = TryParseLambdaExpression();
1810         if (!Res.isInvalid() && !Res.get()) {
1811           // We assume Objective-C++ message expressions are not
1812           // primary-expressions.
1813           if (NotPrimaryExpression)
1814             *NotPrimaryExpression = true;
1815           Res = ParseObjCMessageExpression();
1816         }
1817         break;
1818       }
1819       Res = ParseLambdaExpression();
1820       break;
1821     }
1822     if (getLangOpts().ObjC) {
1823       Res = ParseObjCMessageExpression();
1824       break;
1825     }
1826     [[fallthrough]];
1827   default:
1828   ExpectedExpression:
1829     NotCastExpr = true;
1830     return ExprError();
1831   }
1832 
1833   // Check to see whether Res is a function designator only. If it is and we
1834   // are compiling for OpenCL, we need to return an error as this implies
1835   // that the address of the function is being taken, which is illegal in CL.
1836 
1837   if (ParseKind == PrimaryExprOnly)
1838     // This is strictly a primary-expression - no postfix-expr pieces should be
1839     // parsed.
1840     return Res;
1841 
1842   if (!AllowSuffix) {
1843     // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1844     // error already.
1845     if (Res.isInvalid())
1846       return Res;
1847 
1848     switch (Tok.getKind()) {
1849     case tok::l_square:
1850     case tok::l_paren:
1851     case tok::plusplus:
1852     case tok::minusminus:
1853       // "expected ';'" or similar is probably the right diagnostic here. Let
1854       // the caller decide what to do.
1855       if (Tok.isAtStartOfLine())
1856         return Res;
1857 
1858       [[fallthrough]];
1859     case tok::period:
1860     case tok::arrow:
1861       break;
1862 
1863     default:
1864       return Res;
1865     }
1866 
1867     // This was a unary-expression for which a postfix-expression suffix is
1868     // not permitted by the grammar (eg, a sizeof expression or
1869     // new-expression or similar). Diagnose but parse the suffix anyway.
1870     Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1871         << Tok.getKind() << Res.get()->getSourceRange()
1872         << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1873         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1874                                       ")");
1875   }
1876 
1877   // These can be followed by postfix-expr pieces.
1878   PreferredType = SavedType;
1879   Res = ParsePostfixExpressionSuffix(Res);
1880   if (getLangOpts().OpenCL &&
1881       !getActions().getOpenCLOptions().isAvailableOption(
1882           "__cl_clang_function_pointers", getLangOpts()))
1883     if (Expr *PostfixExpr = Res.get()) {
1884       QualType Ty = PostfixExpr->getType();
1885       if (!Ty.isNull() && Ty->isFunctionType()) {
1886         Diag(PostfixExpr->getExprLoc(),
1887              diag::err_opencl_taking_function_address_parser);
1888         return ExprError();
1889       }
1890     }
1891 
1892   return Res;
1893 }
1894 
1895 /// Once the leading part of a postfix-expression is parsed, this
1896 /// method parses any suffixes that apply.
1897 ///
1898 /// \verbatim
1899 ///       postfix-expression: [C99 6.5.2]
1900 ///         primary-expression
1901 ///         postfix-expression '[' expression ']'
1902 ///         postfix-expression '[' braced-init-list ']'
1903 ///         postfix-expression '[' expression-list [opt] ']'  [C++23 12.4.5]
1904 ///         postfix-expression '(' argument-expression-list[opt] ')'
1905 ///         postfix-expression '.' identifier
1906 ///         postfix-expression '->' identifier
1907 ///         postfix-expression '++'
1908 ///         postfix-expression '--'
1909 ///         '(' type-name ')' '{' initializer-list '}'
1910 ///         '(' type-name ')' '{' initializer-list ',' '}'
1911 ///
1912 ///       argument-expression-list: [C99 6.5.2]
1913 ///         argument-expression ...[opt]
1914 ///         argument-expression-list ',' assignment-expression ...[opt]
1915 /// \endverbatim
1916 ExprResult
1917 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1918   // Now that the primary-expression piece of the postfix-expression has been
1919   // parsed, see if there are any postfix-expression pieces here.
1920   SourceLocation Loc;
1921   auto SavedType = PreferredType;
1922   while (true) {
1923     // Each iteration relies on preferred type for the whole expression.
1924     PreferredType = SavedType;
1925     switch (Tok.getKind()) {
1926     case tok::code_completion:
1927       if (InMessageExpression)
1928         return LHS;
1929 
1930       cutOffParsing();
1931       Actions.CodeCompletePostfixExpression(
1932           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1933       return ExprError();
1934 
1935     case tok::identifier:
1936       // If we see identifier: after an expression, and we're not already in a
1937       // message send, then this is probably a message send with a missing
1938       // opening bracket '['.
1939       if (getLangOpts().ObjC && !InMessageExpression &&
1940           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1941         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1942                                              nullptr, LHS.get());
1943         break;
1944       }
1945       // Fall through; this isn't a message send.
1946       [[fallthrough]];
1947 
1948     default:  // Not a postfix-expression suffix.
1949       return LHS;
1950     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1951       // If we have a array postfix expression that starts on a new line and
1952       // Objective-C is enabled, it is highly likely that the user forgot a
1953       // semicolon after the base expression and that the array postfix-expr is
1954       // actually another message send.  In this case, do some look-ahead to see
1955       // if the contents of the square brackets are obviously not a valid
1956       // expression and recover by pretending there is no suffix.
1957       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1958           isSimpleObjCMessageExpression())
1959         return LHS;
1960 
1961       // Reject array indices starting with a lambda-expression. '[[' is
1962       // reserved for attributes.
1963       if (CheckProhibitedCXX11Attribute()) {
1964         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1965         return ExprError();
1966       }
1967       BalancedDelimiterTracker T(*this, tok::l_square);
1968       T.consumeOpen();
1969       Loc = T.getOpenLocation();
1970       ExprResult Length, Stride;
1971       SourceLocation ColonLocFirst, ColonLocSecond;
1972       ExprVector ArgExprs;
1973       bool HasError = false;
1974       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1975 
1976       // We try to parse a list of indexes in all language mode first
1977       // and, in we find 0 or one index, we try to parse an OpenMP array
1978       // section. This allow us to support C++23 multi dimensional subscript and
1979       // OpenMp sections in the same language mode.
1980       if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) {
1981         if (!getLangOpts().CPlusPlus23) {
1982           ExprResult Idx;
1983           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1984             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1985             Idx = ParseBraceInitializer();
1986           } else {
1987             Idx = ParseExpression(); // May be a comma expression
1988           }
1989           LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1990           Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1991           if (Idx.isInvalid()) {
1992             HasError = true;
1993           } else {
1994             ArgExprs.push_back(Idx.get());
1995           }
1996         } else if (Tok.isNot(tok::r_square)) {
1997           if (ParseExpressionList(ArgExprs)) {
1998             LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1999             HasError = true;
2000           }
2001         }
2002       }
2003 
2004       if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
2005         ColonProtectionRAIIObject RAII(*this);
2006         if (Tok.is(tok::colon)) {
2007           // Consume ':'
2008           ColonLocFirst = ConsumeToken();
2009           if (Tok.isNot(tok::r_square) &&
2010               (getLangOpts().OpenMP < 50 ||
2011                ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
2012             Length = ParseExpression();
2013             Length = Actions.CorrectDelayedTyposInExpr(Length);
2014           }
2015         }
2016         if (getLangOpts().OpenMP >= 50 &&
2017             (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
2018              OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
2019             Tok.is(tok::colon)) {
2020           // Consume ':'
2021           ColonLocSecond = ConsumeToken();
2022           if (Tok.isNot(tok::r_square)) {
2023             Stride = ParseExpression();
2024           }
2025         }
2026       }
2027 
2028       SourceLocation RLoc = Tok.getLocation();
2029       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2030 
2031       if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2032           !Stride.isInvalid() && Tok.is(tok::r_square)) {
2033         if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2034           LHS = Actions.ActOnOMPArraySectionExpr(
2035               LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2036               ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
2037         } else {
2038           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2039                                                 ArgExprs, RLoc);
2040         }
2041       } else {
2042         LHS = ExprError();
2043       }
2044 
2045       // Match the ']'.
2046       T.consumeClose();
2047       break;
2048     }
2049 
2050     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
2051     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
2052                                //   '(' argument-expression-list[opt] ')'
2053       tok::TokenKind OpKind = Tok.getKind();
2054       InMessageExpressionRAIIObject InMessage(*this, false);
2055 
2056       Expr *ExecConfig = nullptr;
2057 
2058       BalancedDelimiterTracker PT(*this, tok::l_paren);
2059 
2060       if (OpKind == tok::lesslessless) {
2061         ExprVector ExecConfigExprs;
2062         SourceLocation OpenLoc = ConsumeToken();
2063 
2064         if (ParseSimpleExpressionList(ExecConfigExprs)) {
2065           (void)Actions.CorrectDelayedTyposInExpr(LHS);
2066           LHS = ExprError();
2067         }
2068 
2069         SourceLocation CloseLoc;
2070         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2071         } else if (LHS.isInvalid()) {
2072           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2073         } else {
2074           // There was an error closing the brackets
2075           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2076           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2077           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2078           LHS = ExprError();
2079         }
2080 
2081         if (!LHS.isInvalid()) {
2082           if (ExpectAndConsume(tok::l_paren))
2083             LHS = ExprError();
2084           else
2085             Loc = PrevTokLocation;
2086         }
2087 
2088         if (!LHS.isInvalid()) {
2089           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2090                                     OpenLoc,
2091                                     ExecConfigExprs,
2092                                     CloseLoc);
2093           if (ECResult.isInvalid())
2094             LHS = ExprError();
2095           else
2096             ExecConfig = ECResult.get();
2097         }
2098       } else {
2099         PT.consumeOpen();
2100         Loc = PT.getOpenLocation();
2101       }
2102 
2103       ExprVector ArgExprs;
2104       auto RunSignatureHelp = [&]() -> QualType {
2105         QualType PreferredType = Actions.ProduceCallSignatureHelp(
2106             LHS.get(), ArgExprs, PT.getOpenLocation());
2107         CalledSignatureHelp = true;
2108         return PreferredType;
2109       };
2110       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2111         if (Tok.isNot(tok::r_paren)) {
2112           if (ParseExpressionList(ArgExprs, [&] {
2113                 PreferredType.enterFunctionArgument(Tok.getLocation(),
2114                                                     RunSignatureHelp);
2115               })) {
2116             (void)Actions.CorrectDelayedTyposInExpr(LHS);
2117             // If we got an error when parsing expression list, we don't call
2118             // the CodeCompleteCall handler inside the parser. So call it here
2119             // to make sure we get overload suggestions even when we are in the
2120             // middle of a parameter.
2121             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2122               RunSignatureHelp();
2123             LHS = ExprError();
2124           } else if (LHS.isInvalid()) {
2125             for (auto &E : ArgExprs)
2126               Actions.CorrectDelayedTyposInExpr(E);
2127           }
2128         }
2129       }
2130 
2131       // Match the ')'.
2132       if (LHS.isInvalid()) {
2133         SkipUntil(tok::r_paren, StopAtSemi);
2134       } else if (Tok.isNot(tok::r_paren)) {
2135         bool HadDelayedTypo = false;
2136         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2137           HadDelayedTypo = true;
2138         for (auto &E : ArgExprs)
2139           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2140             HadDelayedTypo = true;
2141         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2142         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2143         // the unmatched l_paren.
2144         if (HadDelayedTypo)
2145           SkipUntil(tok::r_paren, StopAtSemi);
2146         else
2147           PT.consumeClose();
2148         LHS = ExprError();
2149       } else {
2150         Expr *Fn = LHS.get();
2151         SourceLocation RParLoc = Tok.getLocation();
2152         LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2153                                     ExecConfig);
2154         if (LHS.isInvalid()) {
2155           ArgExprs.insert(ArgExprs.begin(), Fn);
2156           LHS =
2157               Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2158         }
2159         PT.consumeClose();
2160       }
2161 
2162       break;
2163     }
2164     case tok::arrow:
2165     case tok::period: {
2166       // postfix-expression: p-e '->' template[opt] id-expression
2167       // postfix-expression: p-e '.' template[opt] id-expression
2168       tok::TokenKind OpKind = Tok.getKind();
2169       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2170 
2171       CXXScopeSpec SS;
2172       ParsedType ObjectType;
2173       bool MayBePseudoDestructor = false;
2174       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2175 
2176       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2177 
2178       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2179         Expr *Base = OrigLHS;
2180         const Type* BaseType = Base->getType().getTypePtrOrNull();
2181         if (BaseType && Tok.is(tok::l_paren) &&
2182             (BaseType->isFunctionType() ||
2183              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2184           Diag(OpLoc, diag::err_function_is_not_record)
2185               << OpKind << Base->getSourceRange()
2186               << FixItHint::CreateRemoval(OpLoc);
2187           return ParsePostfixExpressionSuffix(Base);
2188         }
2189 
2190         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2191                                                    OpKind, ObjectType,
2192                                                    MayBePseudoDestructor);
2193         if (LHS.isInvalid()) {
2194           // Clang will try to perform expression based completion as a
2195           // fallback, which is confusing in case of member references. So we
2196           // stop here without any completions.
2197           if (Tok.is(tok::code_completion)) {
2198             cutOffParsing();
2199             return ExprError();
2200           }
2201           break;
2202         }
2203         ParseOptionalCXXScopeSpecifier(
2204             SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2205             /*EnteringContext=*/false, &MayBePseudoDestructor);
2206         if (SS.isNotEmpty())
2207           ObjectType = nullptr;
2208       }
2209 
2210       if (Tok.is(tok::code_completion)) {
2211         tok::TokenKind CorrectedOpKind =
2212             OpKind == tok::arrow ? tok::period : tok::arrow;
2213         ExprResult CorrectedLHS(/*Invalid=*/true);
2214         if (getLangOpts().CPlusPlus && OrigLHS) {
2215           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2216           // hack.
2217           Sema::TentativeAnalysisScope Trap(Actions);
2218           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2219               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2220               MayBePseudoDestructor);
2221         }
2222 
2223         Expr *Base = LHS.get();
2224         Expr *CorrectedBase = CorrectedLHS.get();
2225         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2226           CorrectedBase = Base;
2227 
2228         // Code completion for a member access expression.
2229         cutOffParsing();
2230         Actions.CodeCompleteMemberReferenceExpr(
2231             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2232             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2233             PreferredType.get(Tok.getLocation()));
2234 
2235         return ExprError();
2236       }
2237 
2238       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2239         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2240                                        ObjectType);
2241         break;
2242       }
2243 
2244       // Either the action has told us that this cannot be a
2245       // pseudo-destructor expression (based on the type of base
2246       // expression), or we didn't see a '~' in the right place. We
2247       // can still parse a destructor name here, but in that case it
2248       // names a real destructor.
2249       // Allow explicit constructor calls in Microsoft mode.
2250       // FIXME: Add support for explicit call of template constructor.
2251       SourceLocation TemplateKWLoc;
2252       UnqualifiedId Name;
2253       if (getLangOpts().ObjC && OpKind == tok::period &&
2254           Tok.is(tok::kw_class)) {
2255         // Objective-C++:
2256         //   After a '.' in a member access expression, treat the keyword
2257         //   'class' as if it were an identifier.
2258         //
2259         // This hack allows property access to the 'class' method because it is
2260         // such a common method name. For other C++ keywords that are
2261         // Objective-C method names, one must use the message send syntax.
2262         IdentifierInfo *Id = Tok.getIdentifierInfo();
2263         SourceLocation Loc = ConsumeToken();
2264         Name.setIdentifier(Id, Loc);
2265       } else if (ParseUnqualifiedId(
2266                      SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2267                      /*EnteringContext=*/false,
2268                      /*AllowDestructorName=*/true,
2269                      /*AllowConstructorName=*/
2270                      getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2271                      /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2272         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2273         LHS = ExprError();
2274       }
2275 
2276       if (!LHS.isInvalid())
2277         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2278                                             OpKind, SS, TemplateKWLoc, Name,
2279                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2280                                                    : nullptr);
2281       if (!LHS.isInvalid()) {
2282         if (Tok.is(tok::less))
2283           checkPotentialAngleBracket(LHS);
2284       } else if (OrigLHS && Name.isValid()) {
2285         // Preserve the LHS if the RHS is an invalid member.
2286         LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2287                                          Name.getEndLoc(), {OrigLHS});
2288       }
2289       break;
2290     }
2291     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2292     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2293       if (!LHS.isInvalid()) {
2294         Expr *Arg = LHS.get();
2295         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2296                                           Tok.getKind(), Arg);
2297         if (LHS.isInvalid())
2298           LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2299                                            Tok.getLocation(), Arg);
2300       }
2301       ConsumeToken();
2302       break;
2303     }
2304   }
2305 }
2306 
2307 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2308 /// vec_step and we are at the start of an expression or a parenthesized
2309 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2310 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2311 ///
2312 /// \verbatim
2313 ///       unary-expression:  [C99 6.5.3]
2314 ///         'sizeof' unary-expression
2315 ///         'sizeof' '(' type-name ')'
2316 /// [Clang] '__datasizeof' unary-expression
2317 /// [Clang] '__datasizeof' '(' type-name ')'
2318 /// [GNU]   '__alignof' unary-expression
2319 /// [GNU]   '__alignof' '(' type-name ')'
2320 /// [C11]   '_Alignof' '(' type-name ')'
2321 /// [C++0x] 'alignof' '(' type-id ')'
2322 ///
2323 /// [GNU]   typeof-specifier:
2324 ///           typeof ( expressions )
2325 ///           typeof ( type-name )
2326 /// [GNU/C++] typeof unary-expression
2327 /// [C23]   typeof-specifier:
2328 ///           typeof '(' typeof-specifier-argument ')'
2329 ///           typeof_unqual '(' typeof-specifier-argument ')'
2330 ///
2331 ///         typeof-specifier-argument:
2332 ///           expression
2333 ///           type-name
2334 ///
2335 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2336 ///           vec_step ( expressions )
2337 ///           vec_step ( type-name )
2338 /// \endverbatim
2339 ExprResult
2340 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2341                                            bool &isCastExpr,
2342                                            ParsedType &CastTy,
2343                                            SourceRange &CastRange) {
2344 
2345   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2346                        tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof,
2347                        tok::kw__Alignof, tok::kw_vec_step,
2348                        tok::kw___builtin_omp_required_simd_align,
2349                        tok::kw___builtin_vectorelements) &&
2350          "Not a typeof/sizeof/alignof/vec_step expression!");
2351 
2352   ExprResult Operand;
2353 
2354   // If the operand doesn't start with an '(', it must be an expression.
2355   if (Tok.isNot(tok::l_paren)) {
2356     // If construct allows a form without parenthesis, user may forget to put
2357     // pathenthesis around type name.
2358     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2359                       tok::kw_alignof, tok::kw__Alignof)) {
2360       if (isTypeIdUnambiguously()) {
2361         DeclSpec DS(AttrFactory);
2362         ParseSpecifierQualifierList(DS);
2363         Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2364                                   DeclaratorContext::TypeName);
2365         ParseDeclarator(DeclaratorInfo);
2366 
2367         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2368         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2369         if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2370           Diag(OpTok.getLocation(),
2371                diag::err_expected_parentheses_around_typename)
2372               << OpTok.getName();
2373         } else {
2374           Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2375               << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2376               << FixItHint::CreateInsertion(RParenLoc, ")");
2377         }
2378         isCastExpr = true;
2379         return ExprEmpty();
2380       }
2381     }
2382 
2383     isCastExpr = false;
2384     if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2385         !getLangOpts().CPlusPlus) {
2386       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2387                                           << tok::l_paren;
2388       return ExprError();
2389     }
2390 
2391     Operand = ParseCastExpression(UnaryExprOnly);
2392   } else {
2393     // If it starts with a '(', we know that it is either a parenthesized
2394     // type-name, or it is a unary-expression that starts with a compound
2395     // literal, or starts with a primary-expression that is a parenthesized
2396     // expression.
2397     ParenParseOption ExprType = CastExpr;
2398     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2399 
2400     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2401                                    false, CastTy, RParenLoc);
2402     CastRange = SourceRange(LParenLoc, RParenLoc);
2403 
2404     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2405     // a type.
2406     if (ExprType == CastExpr) {
2407       isCastExpr = true;
2408       return ExprEmpty();
2409     }
2410 
2411     if (getLangOpts().CPlusPlus ||
2412         !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2413       // GNU typeof in C requires the expression to be parenthesized. Not so for
2414       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2415       // the start of a unary-expression, but doesn't include any postfix
2416       // pieces. Parse these now if present.
2417       if (!Operand.isInvalid())
2418         Operand = ParsePostfixExpressionSuffix(Operand.get());
2419     }
2420   }
2421 
2422   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2423   isCastExpr = false;
2424   return Operand;
2425 }
2426 
2427 /// Parse a __builtin_sycl_unique_stable_name expression.  Accepts a type-id as
2428 /// a parameter.
2429 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2430   assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2431          "Not __builtin_sycl_unique_stable_name");
2432 
2433   SourceLocation OpLoc = ConsumeToken();
2434   BalancedDelimiterTracker T(*this, tok::l_paren);
2435 
2436   // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2437   if (T.expectAndConsume(diag::err_expected_lparen_after,
2438                          "__builtin_sycl_unique_stable_name"))
2439     return ExprError();
2440 
2441   TypeResult Ty = ParseTypeName();
2442 
2443   if (Ty.isInvalid()) {
2444     T.skipToEnd();
2445     return ExprError();
2446   }
2447 
2448   if (T.consumeClose())
2449     return ExprError();
2450 
2451   return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2452                                                T.getCloseLocation(), Ty.get());
2453 }
2454 
2455 /// Parse a sizeof or alignof expression.
2456 ///
2457 /// \verbatim
2458 ///       unary-expression:  [C99 6.5.3]
2459 ///         'sizeof' unary-expression
2460 ///         'sizeof' '(' type-name ')'
2461 /// [C++11] 'sizeof' '...' '(' identifier ')'
2462 /// [Clang] '__datasizeof' unary-expression
2463 /// [Clang] '__datasizeof' '(' type-name ')'
2464 /// [GNU]   '__alignof' unary-expression
2465 /// [GNU]   '__alignof' '(' type-name ')'
2466 /// [C11]   '_Alignof' '(' type-name ')'
2467 /// [C++11] 'alignof' '(' type-id ')'
2468 /// \endverbatim
2469 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2470   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2471                      tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2472                      tok::kw___builtin_omp_required_simd_align,
2473                      tok::kw___builtin_vectorelements) &&
2474          "Not a sizeof/alignof/vec_step expression!");
2475   Token OpTok = Tok;
2476   ConsumeToken();
2477 
2478   // [C++11] 'sizeof' '...' '(' identifier ')'
2479   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2480     SourceLocation EllipsisLoc = ConsumeToken();
2481     SourceLocation LParenLoc, RParenLoc;
2482     IdentifierInfo *Name = nullptr;
2483     SourceLocation NameLoc;
2484     if (Tok.is(tok::l_paren)) {
2485       BalancedDelimiterTracker T(*this, tok::l_paren);
2486       T.consumeOpen();
2487       LParenLoc = T.getOpenLocation();
2488       if (Tok.is(tok::identifier)) {
2489         Name = Tok.getIdentifierInfo();
2490         NameLoc = ConsumeToken();
2491         T.consumeClose();
2492         RParenLoc = T.getCloseLocation();
2493         if (RParenLoc.isInvalid())
2494           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2495       } else {
2496         Diag(Tok, diag::err_expected_parameter_pack);
2497         SkipUntil(tok::r_paren, StopAtSemi);
2498       }
2499     } else if (Tok.is(tok::identifier)) {
2500       Name = Tok.getIdentifierInfo();
2501       NameLoc = ConsumeToken();
2502       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2503       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2504       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2505         << Name
2506         << FixItHint::CreateInsertion(LParenLoc, "(")
2507         << FixItHint::CreateInsertion(RParenLoc, ")");
2508     } else {
2509       Diag(Tok, diag::err_sizeof_parameter_pack);
2510     }
2511 
2512     if (!Name)
2513       return ExprError();
2514 
2515     EnterExpressionEvaluationContext Unevaluated(
2516         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2517         Sema::ReuseLambdaContextDecl);
2518 
2519     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2520                                                 OpTok.getLocation(),
2521                                                 *Name, NameLoc,
2522                                                 RParenLoc);
2523   }
2524 
2525   if (getLangOpts().CPlusPlus &&
2526       OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2527     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2528   else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof))
2529     Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName();
2530 
2531   EnterExpressionEvaluationContext Unevaluated(
2532       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2533       Sema::ReuseLambdaContextDecl);
2534 
2535   bool isCastExpr;
2536   ParsedType CastTy;
2537   SourceRange CastRange;
2538   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2539                                                           isCastExpr,
2540                                                           CastTy,
2541                                                           CastRange);
2542 
2543   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2544   switch (OpTok.getKind()) {
2545   case tok::kw_alignof:
2546   case tok::kw__Alignof:
2547     ExprKind = UETT_AlignOf;
2548     break;
2549   case tok::kw___alignof:
2550     ExprKind = UETT_PreferredAlignOf;
2551     break;
2552   case tok::kw_vec_step:
2553     ExprKind = UETT_VecStep;
2554     break;
2555   case tok::kw___builtin_omp_required_simd_align:
2556     ExprKind = UETT_OpenMPRequiredSimdAlign;
2557     break;
2558   case tok::kw___datasizeof:
2559     ExprKind = UETT_DataSizeOf;
2560     break;
2561   case tok::kw___builtin_vectorelements:
2562     ExprKind = UETT_VectorElements;
2563     break;
2564   default:
2565     break;
2566   }
2567 
2568   if (isCastExpr)
2569     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2570                                                  ExprKind,
2571                                                  /*IsType=*/true,
2572                                                  CastTy.getAsOpaquePtr(),
2573                                                  CastRange);
2574 
2575   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2576     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2577 
2578   // If we get here, the operand to the sizeof/alignof was an expression.
2579   if (!Operand.isInvalid())
2580     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2581                                                     ExprKind,
2582                                                     /*IsType=*/false,
2583                                                     Operand.get(),
2584                                                     CastRange);
2585   return Operand;
2586 }
2587 
2588 /// ParseBuiltinPrimaryExpression
2589 ///
2590 /// \verbatim
2591 ///       primary-expression: [C99 6.5.1]
2592 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2593 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2594 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2595 ///                                     assign-expr ')'
2596 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2597 /// [GNU]   '__builtin_FILE' '(' ')'
2598 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
2599 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2600 /// [MS]    '__builtin_FUNCSIG' '(' ')'
2601 /// [GNU]   '__builtin_LINE' '(' ')'
2602 /// [CLANG] '__builtin_COLUMN' '(' ')'
2603 /// [GNU]   '__builtin_source_location' '(' ')'
2604 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2605 ///
2606 /// [GNU] offsetof-member-designator:
2607 /// [GNU]   identifier
2608 /// [GNU]   offsetof-member-designator '.' identifier
2609 /// [GNU]   offsetof-member-designator '[' expression ']'
2610 /// \endverbatim
2611 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2612   ExprResult Res;
2613   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2614 
2615   tok::TokenKind T = Tok.getKind();
2616   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2617 
2618   // All of these start with an open paren.
2619   if (Tok.isNot(tok::l_paren))
2620     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2621                                                          << tok::l_paren);
2622 
2623   BalancedDelimiterTracker PT(*this, tok::l_paren);
2624   PT.consumeOpen();
2625 
2626   // TODO: Build AST.
2627 
2628   switch (T) {
2629   default: llvm_unreachable("Not a builtin primary expression!");
2630   case tok::kw___builtin_va_arg: {
2631     ExprResult Expr(ParseAssignmentExpression());
2632 
2633     if (ExpectAndConsume(tok::comma)) {
2634       SkipUntil(tok::r_paren, StopAtSemi);
2635       Expr = ExprError();
2636     }
2637 
2638     TypeResult Ty = ParseTypeName();
2639 
2640     if (Tok.isNot(tok::r_paren)) {
2641       Diag(Tok, diag::err_expected) << tok::r_paren;
2642       Expr = ExprError();
2643     }
2644 
2645     if (Expr.isInvalid() || Ty.isInvalid())
2646       Res = ExprError();
2647     else
2648       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2649     break;
2650   }
2651   case tok::kw___builtin_offsetof: {
2652     SourceLocation TypeLoc = Tok.getLocation();
2653     auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2654     if (Tok.getLocation().isMacroID()) {
2655       StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2656           Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2657       if (MacroName == "offsetof")
2658         OOK = Sema::OffsetOfKind::OOK_Macro;
2659     }
2660     TypeResult Ty;
2661     {
2662       OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2663       Ty = ParseTypeName();
2664       if (Ty.isInvalid()) {
2665         SkipUntil(tok::r_paren, StopAtSemi);
2666         return ExprError();
2667       }
2668     }
2669 
2670     if (ExpectAndConsume(tok::comma)) {
2671       SkipUntil(tok::r_paren, StopAtSemi);
2672       return ExprError();
2673     }
2674 
2675     // We must have at least one identifier here.
2676     if (Tok.isNot(tok::identifier)) {
2677       Diag(Tok, diag::err_expected) << tok::identifier;
2678       SkipUntil(tok::r_paren, StopAtSemi);
2679       return ExprError();
2680     }
2681 
2682     // Keep track of the various subcomponents we see.
2683     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2684 
2685     Comps.push_back(Sema::OffsetOfComponent());
2686     Comps.back().isBrackets = false;
2687     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2688     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2689 
2690     // FIXME: This loop leaks the index expressions on error.
2691     while (true) {
2692       if (Tok.is(tok::period)) {
2693         // offsetof-member-designator: offsetof-member-designator '.' identifier
2694         Comps.push_back(Sema::OffsetOfComponent());
2695         Comps.back().isBrackets = false;
2696         Comps.back().LocStart = ConsumeToken();
2697 
2698         if (Tok.isNot(tok::identifier)) {
2699           Diag(Tok, diag::err_expected) << tok::identifier;
2700           SkipUntil(tok::r_paren, StopAtSemi);
2701           return ExprError();
2702         }
2703         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2704         Comps.back().LocEnd = ConsumeToken();
2705       } else if (Tok.is(tok::l_square)) {
2706         if (CheckProhibitedCXX11Attribute())
2707           return ExprError();
2708 
2709         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2710         Comps.push_back(Sema::OffsetOfComponent());
2711         Comps.back().isBrackets = true;
2712         BalancedDelimiterTracker ST(*this, tok::l_square);
2713         ST.consumeOpen();
2714         Comps.back().LocStart = ST.getOpenLocation();
2715         Res = ParseExpression();
2716         if (Res.isInvalid()) {
2717           SkipUntil(tok::r_paren, StopAtSemi);
2718           return Res;
2719         }
2720         Comps.back().U.E = Res.get();
2721 
2722         ST.consumeClose();
2723         Comps.back().LocEnd = ST.getCloseLocation();
2724       } else {
2725         if (Tok.isNot(tok::r_paren)) {
2726           PT.consumeClose();
2727           Res = ExprError();
2728         } else if (Ty.isInvalid()) {
2729           Res = ExprError();
2730         } else {
2731           PT.consumeClose();
2732           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2733                                              Ty.get(), Comps,
2734                                              PT.getCloseLocation());
2735         }
2736         break;
2737       }
2738     }
2739     break;
2740   }
2741   case tok::kw___builtin_choose_expr: {
2742     ExprResult Cond(ParseAssignmentExpression());
2743     if (Cond.isInvalid()) {
2744       SkipUntil(tok::r_paren, StopAtSemi);
2745       return Cond;
2746     }
2747     if (ExpectAndConsume(tok::comma)) {
2748       SkipUntil(tok::r_paren, StopAtSemi);
2749       return ExprError();
2750     }
2751 
2752     ExprResult Expr1(ParseAssignmentExpression());
2753     if (Expr1.isInvalid()) {
2754       SkipUntil(tok::r_paren, StopAtSemi);
2755       return Expr1;
2756     }
2757     if (ExpectAndConsume(tok::comma)) {
2758       SkipUntil(tok::r_paren, StopAtSemi);
2759       return ExprError();
2760     }
2761 
2762     ExprResult Expr2(ParseAssignmentExpression());
2763     if (Expr2.isInvalid()) {
2764       SkipUntil(tok::r_paren, StopAtSemi);
2765       return Expr2;
2766     }
2767     if (Tok.isNot(tok::r_paren)) {
2768       Diag(Tok, diag::err_expected) << tok::r_paren;
2769       return ExprError();
2770     }
2771     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2772                                   Expr2.get(), ConsumeParen());
2773     break;
2774   }
2775   case tok::kw___builtin_astype: {
2776     // The first argument is an expression to be converted, followed by a comma.
2777     ExprResult Expr(ParseAssignmentExpression());
2778     if (Expr.isInvalid()) {
2779       SkipUntil(tok::r_paren, StopAtSemi);
2780       return ExprError();
2781     }
2782 
2783     if (ExpectAndConsume(tok::comma)) {
2784       SkipUntil(tok::r_paren, StopAtSemi);
2785       return ExprError();
2786     }
2787 
2788     // Second argument is the type to bitcast to.
2789     TypeResult DestTy = ParseTypeName();
2790     if (DestTy.isInvalid())
2791       return ExprError();
2792 
2793     // Attempt to consume the r-paren.
2794     if (Tok.isNot(tok::r_paren)) {
2795       Diag(Tok, diag::err_expected) << tok::r_paren;
2796       SkipUntil(tok::r_paren, StopAtSemi);
2797       return ExprError();
2798     }
2799 
2800     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2801                                   ConsumeParen());
2802     break;
2803   }
2804   case tok::kw___builtin_convertvector: {
2805     // The first argument is an expression to be converted, followed by a comma.
2806     ExprResult Expr(ParseAssignmentExpression());
2807     if (Expr.isInvalid()) {
2808       SkipUntil(tok::r_paren, StopAtSemi);
2809       return ExprError();
2810     }
2811 
2812     if (ExpectAndConsume(tok::comma)) {
2813       SkipUntil(tok::r_paren, StopAtSemi);
2814       return ExprError();
2815     }
2816 
2817     // Second argument is the type to bitcast to.
2818     TypeResult DestTy = ParseTypeName();
2819     if (DestTy.isInvalid())
2820       return ExprError();
2821 
2822     // Attempt to consume the r-paren.
2823     if (Tok.isNot(tok::r_paren)) {
2824       Diag(Tok, diag::err_expected) << tok::r_paren;
2825       SkipUntil(tok::r_paren, StopAtSemi);
2826       return ExprError();
2827     }
2828 
2829     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2830                                          ConsumeParen());
2831     break;
2832   }
2833   case tok::kw___builtin_COLUMN:
2834   case tok::kw___builtin_FILE:
2835   case tok::kw___builtin_FILE_NAME:
2836   case tok::kw___builtin_FUNCTION:
2837   case tok::kw___builtin_FUNCSIG:
2838   case tok::kw___builtin_LINE:
2839   case tok::kw___builtin_source_location: {
2840     // Attempt to consume the r-paren.
2841     if (Tok.isNot(tok::r_paren)) {
2842       Diag(Tok, diag::err_expected) << tok::r_paren;
2843       SkipUntil(tok::r_paren, StopAtSemi);
2844       return ExprError();
2845     }
2846     SourceLocIdentKind Kind = [&] {
2847       switch (T) {
2848       case tok::kw___builtin_FILE:
2849         return SourceLocIdentKind::File;
2850       case tok::kw___builtin_FILE_NAME:
2851         return SourceLocIdentKind::FileName;
2852       case tok::kw___builtin_FUNCTION:
2853         return SourceLocIdentKind::Function;
2854       case tok::kw___builtin_FUNCSIG:
2855         return SourceLocIdentKind::FuncSig;
2856       case tok::kw___builtin_LINE:
2857         return SourceLocIdentKind::Line;
2858       case tok::kw___builtin_COLUMN:
2859         return SourceLocIdentKind::Column;
2860       case tok::kw___builtin_source_location:
2861         return SourceLocIdentKind::SourceLocStruct;
2862       default:
2863         llvm_unreachable("invalid keyword");
2864       }
2865     }();
2866     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2867     break;
2868   }
2869   }
2870 
2871   if (Res.isInvalid())
2872     return ExprError();
2873 
2874   // These can be followed by postfix-expr pieces because they are
2875   // primary-expressions.
2876   return ParsePostfixExpressionSuffix(Res.get());
2877 }
2878 
2879 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2880   assert(Tok.is(tok::l_square) && "Expected open bracket");
2881   bool ErrorFound = true;
2882   TentativeParsingAction TPA(*this);
2883   do {
2884     if (Tok.isNot(tok::l_square))
2885       break;
2886     // Consume '['
2887     ConsumeBracket();
2888     // Skip inner expression.
2889     while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2890                       StopAtSemi | StopBeforeMatch))
2891       ;
2892     if (Tok.isNot(tok::r_square))
2893       break;
2894     // Consume ']'
2895     ConsumeBracket();
2896     // Found ')' - done.
2897     if (Tok.is(tok::r_paren)) {
2898       ErrorFound = false;
2899       break;
2900     }
2901   } while (Tok.isNot(tok::annot_pragma_openmp_end));
2902   TPA.Revert();
2903   return !ErrorFound;
2904 }
2905 
2906 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2907 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2908 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2909 /// not the parsed cast-expression.
2910 ///
2911 /// \verbatim
2912 ///       primary-expression: [C99 6.5.1]
2913 ///         '(' expression ')'
2914 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2915 ///       postfix-expression: [C99 6.5.2]
2916 ///         '(' type-name ')' '{' initializer-list '}'
2917 ///         '(' type-name ')' '{' initializer-list ',' '}'
2918 ///       cast-expression: [C99 6.5.4]
2919 ///         '(' type-name ')' cast-expression
2920 /// [ARC]   bridged-cast-expression
2921 /// [ARC] bridged-cast-expression:
2922 ///         (__bridge type-name) cast-expression
2923 ///         (__bridge_transfer type-name) cast-expression
2924 ///         (__bridge_retained type-name) cast-expression
2925 ///       fold-expression: [C++1z]
2926 ///         '(' cast-expression fold-operator '...' ')'
2927 ///         '(' '...' fold-operator cast-expression ')'
2928 ///         '(' cast-expression fold-operator '...'
2929 ///                 fold-operator cast-expression ')'
2930 /// [OPENMP] Array shaping operation
2931 ///       '(' '[' expression ']' { '[' expression ']' } cast-expression
2932 /// \endverbatim
2933 ExprResult
2934 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2935                              bool isTypeCast, ParsedType &CastTy,
2936                              SourceLocation &RParenLoc) {
2937   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2938   ColonProtectionRAIIObject ColonProtection(*this, false);
2939   BalancedDelimiterTracker T(*this, tok::l_paren);
2940   if (T.consumeOpen())
2941     return ExprError();
2942   SourceLocation OpenLoc = T.getOpenLocation();
2943 
2944   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2945 
2946   ExprResult Result(true);
2947   bool isAmbiguousTypeId;
2948   CastTy = nullptr;
2949 
2950   if (Tok.is(tok::code_completion)) {
2951     cutOffParsing();
2952     Actions.CodeCompleteExpression(
2953         getCurScope(), PreferredType.get(Tok.getLocation()),
2954         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2955     return ExprError();
2956   }
2957 
2958   // Diagnose use of bridge casts in non-arc mode.
2959   bool BridgeCast = (getLangOpts().ObjC &&
2960                      Tok.isOneOf(tok::kw___bridge,
2961                                  tok::kw___bridge_transfer,
2962                                  tok::kw___bridge_retained,
2963                                  tok::kw___bridge_retain));
2964   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2965     if (!TryConsumeToken(tok::kw___bridge)) {
2966       StringRef BridgeCastName = Tok.getName();
2967       SourceLocation BridgeKeywordLoc = ConsumeToken();
2968       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2969         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2970           << BridgeCastName
2971           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2972     }
2973     BridgeCast = false;
2974   }
2975 
2976   // None of these cases should fall through with an invalid Result
2977   // unless they've already reported an error.
2978   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2979     Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2980                                   : diag::ext_gnu_statement_expr);
2981 
2982     checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2983 
2984     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2985       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2986     } else {
2987       // Find the nearest non-record decl context. Variables declared in a
2988       // statement expression behave as if they were declared in the enclosing
2989       // function, block, or other code construct.
2990       DeclContext *CodeDC = Actions.CurContext;
2991       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2992         CodeDC = CodeDC->getParent();
2993         assert(CodeDC && !CodeDC->isFileContext() &&
2994                "statement expr not in code context");
2995       }
2996       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2997 
2998       Actions.ActOnStartStmtExpr();
2999 
3000       StmtResult Stmt(ParseCompoundStatement(true));
3001       ExprType = CompoundStmt;
3002 
3003       // If the substmt parsed correctly, build the AST node.
3004       if (!Stmt.isInvalid()) {
3005         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
3006                                        Tok.getLocation());
3007       } else {
3008         Actions.ActOnStmtExprError();
3009       }
3010     }
3011   } else if (ExprType >= CompoundLiteral && BridgeCast) {
3012     tok::TokenKind tokenKind = Tok.getKind();
3013     SourceLocation BridgeKeywordLoc = ConsumeToken();
3014 
3015     // Parse an Objective-C ARC ownership cast expression.
3016     ObjCBridgeCastKind Kind;
3017     if (tokenKind == tok::kw___bridge)
3018       Kind = OBC_Bridge;
3019     else if (tokenKind == tok::kw___bridge_transfer)
3020       Kind = OBC_BridgeTransfer;
3021     else if (tokenKind == tok::kw___bridge_retained)
3022       Kind = OBC_BridgeRetained;
3023     else {
3024       // As a hopefully temporary workaround, allow __bridge_retain as
3025       // a synonym for __bridge_retained, but only in system headers.
3026       assert(tokenKind == tok::kw___bridge_retain);
3027       Kind = OBC_BridgeRetained;
3028       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3029         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
3030           << FixItHint::CreateReplacement(BridgeKeywordLoc,
3031                                           "__bridge_retained");
3032     }
3033 
3034     TypeResult Ty = ParseTypeName();
3035     T.consumeClose();
3036     ColonProtection.restore();
3037     RParenLoc = T.getCloseLocation();
3038 
3039     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
3040     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
3041 
3042     if (Ty.isInvalid() || SubExpr.isInvalid())
3043       return ExprError();
3044 
3045     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
3046                                         BridgeKeywordLoc, Ty.get(),
3047                                         RParenLoc, SubExpr.get());
3048   } else if (ExprType >= CompoundLiteral &&
3049              isTypeIdInParens(isAmbiguousTypeId)) {
3050 
3051     // Otherwise, this is a compound literal expression or cast expression.
3052 
3053     // In C++, if the type-id is ambiguous we disambiguate based on context.
3054     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
3055     // in which case we should treat it as type-id.
3056     // if stopIfCastExpr is false, we need to determine the context past the
3057     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
3058     if (isAmbiguousTypeId && !stopIfCastExpr) {
3059       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
3060                                                         ColonProtection);
3061       RParenLoc = T.getCloseLocation();
3062       return res;
3063     }
3064 
3065     // Parse the type declarator.
3066     DeclSpec DS(AttrFactory);
3067     ParseSpecifierQualifierList(DS);
3068     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3069                               DeclaratorContext::TypeName);
3070     ParseDeclarator(DeclaratorInfo);
3071 
3072     // If our type is followed by an identifier and either ':' or ']', then
3073     // this is probably an Objective-C message send where the leading '[' is
3074     // missing. Recover as if that were the case.
3075     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3076         !InMessageExpression && getLangOpts().ObjC &&
3077         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3078       TypeResult Ty;
3079       {
3080         InMessageExpressionRAIIObject InMessage(*this, false);
3081         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3082       }
3083       Result = ParseObjCMessageExpressionBody(SourceLocation(),
3084                                               SourceLocation(),
3085                                               Ty.get(), nullptr);
3086     } else {
3087       // Match the ')'.
3088       T.consumeClose();
3089       ColonProtection.restore();
3090       RParenLoc = T.getCloseLocation();
3091       if (Tok.is(tok::l_brace)) {
3092         ExprType = CompoundLiteral;
3093         TypeResult Ty;
3094         {
3095           InMessageExpressionRAIIObject InMessage(*this, false);
3096           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3097         }
3098         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3099       }
3100 
3101       if (Tok.is(tok::l_paren)) {
3102         // This could be OpenCL vector Literals
3103         if (getLangOpts().OpenCL)
3104         {
3105           TypeResult Ty;
3106           {
3107             InMessageExpressionRAIIObject InMessage(*this, false);
3108             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3109           }
3110           if(Ty.isInvalid())
3111           {
3112              return ExprError();
3113           }
3114           QualType QT = Ty.get().get().getCanonicalType();
3115           if (QT->isVectorType())
3116           {
3117             // We parsed '(' vector-type-name ')' followed by '('
3118 
3119             // Parse the cast-expression that follows it next.
3120             // isVectorLiteral = true will make sure we don't parse any
3121             // Postfix expression yet
3122             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3123                                          /*isAddressOfOperand=*/false,
3124                                          /*isTypeCast=*/IsTypeCast,
3125                                          /*isVectorLiteral=*/true);
3126 
3127             if (!Result.isInvalid()) {
3128               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3129                                              DeclaratorInfo, CastTy,
3130                                              RParenLoc, Result.get());
3131             }
3132 
3133             // After we performed the cast we can check for postfix-expr pieces.
3134             if (!Result.isInvalid()) {
3135               Result = ParsePostfixExpressionSuffix(Result);
3136             }
3137 
3138             return Result;
3139           }
3140         }
3141       }
3142 
3143       if (ExprType == CastExpr) {
3144         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3145 
3146         if (DeclaratorInfo.isInvalidType())
3147           return ExprError();
3148 
3149         // Note that this doesn't parse the subsequent cast-expression, it just
3150         // returns the parsed type to the callee.
3151         if (stopIfCastExpr) {
3152           TypeResult Ty;
3153           {
3154             InMessageExpressionRAIIObject InMessage(*this, false);
3155             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3156           }
3157           CastTy = Ty.get();
3158           return ExprResult();
3159         }
3160 
3161         // Reject the cast of super idiom in ObjC.
3162         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3163             Tok.getIdentifierInfo() == Ident_super &&
3164             getCurScope()->isInObjcMethodScope() &&
3165             GetLookAheadToken(1).isNot(tok::period)) {
3166           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3167             << SourceRange(OpenLoc, RParenLoc);
3168           return ExprError();
3169         }
3170 
3171         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3172         // Parse the cast-expression that follows it next.
3173         // TODO: For cast expression with CastTy.
3174         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3175                                      /*isAddressOfOperand=*/false,
3176                                      /*isTypeCast=*/IsTypeCast);
3177         if (!Result.isInvalid()) {
3178           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3179                                          DeclaratorInfo, CastTy,
3180                                          RParenLoc, Result.get());
3181         }
3182         return Result;
3183       }
3184 
3185       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3186       return ExprError();
3187     }
3188   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3189              isFoldOperator(NextToken().getKind())) {
3190     ExprType = FoldExpr;
3191     return ParseFoldExpression(ExprResult(), T);
3192   } else if (isTypeCast) {
3193     // Parse the expression-list.
3194     InMessageExpressionRAIIObject InMessage(*this, false);
3195     ExprVector ArgExprs;
3196 
3197     if (!ParseSimpleExpressionList(ArgExprs)) {
3198       // FIXME: If we ever support comma expressions as operands to
3199       // fold-expressions, we'll need to allow multiple ArgExprs here.
3200       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3201           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3202         ExprType = FoldExpr;
3203         return ParseFoldExpression(ArgExprs[0], T);
3204       }
3205 
3206       ExprType = SimpleExpr;
3207       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3208                                           ArgExprs);
3209     }
3210   } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3211              ExprType == CastExpr && Tok.is(tok::l_square) &&
3212              tryParseOpenMPArrayShapingCastPart()) {
3213     bool ErrorFound = false;
3214     SmallVector<Expr *, 4> OMPDimensions;
3215     SmallVector<SourceRange, 4> OMPBracketsRanges;
3216     do {
3217       BalancedDelimiterTracker TS(*this, tok::l_square);
3218       TS.consumeOpen();
3219       ExprResult NumElements =
3220           Actions.CorrectDelayedTyposInExpr(ParseExpression());
3221       if (!NumElements.isUsable()) {
3222         ErrorFound = true;
3223         while (!SkipUntil(tok::r_square, tok::r_paren,
3224                           StopAtSemi | StopBeforeMatch))
3225           ;
3226       }
3227       TS.consumeClose();
3228       OMPDimensions.push_back(NumElements.get());
3229       OMPBracketsRanges.push_back(TS.getRange());
3230     } while (Tok.isNot(tok::r_paren));
3231     // Match the ')'.
3232     T.consumeClose();
3233     RParenLoc = T.getCloseLocation();
3234     Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3235     if (ErrorFound) {
3236       Result = ExprError();
3237     } else if (!Result.isInvalid()) {
3238       Result = Actions.ActOnOMPArrayShapingExpr(
3239           Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3240     }
3241     return Result;
3242   } else {
3243     InMessageExpressionRAIIObject InMessage(*this, false);
3244 
3245     Result = ParseExpression(MaybeTypeCast);
3246     if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3247       // Correct typos in non-C++ code earlier so that implicit-cast-like
3248       // expressions are parsed correctly.
3249       Result = Actions.CorrectDelayedTyposInExpr(Result);
3250     }
3251 
3252     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3253         NextToken().is(tok::ellipsis)) {
3254       ExprType = FoldExpr;
3255       return ParseFoldExpression(Result, T);
3256     }
3257     ExprType = SimpleExpr;
3258 
3259     // Don't build a paren expression unless we actually match a ')'.
3260     if (!Result.isInvalid() && Tok.is(tok::r_paren))
3261       Result =
3262           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3263   }
3264 
3265   // Match the ')'.
3266   if (Result.isInvalid()) {
3267     SkipUntil(tok::r_paren, StopAtSemi);
3268     return ExprError();
3269   }
3270 
3271   T.consumeClose();
3272   RParenLoc = T.getCloseLocation();
3273   return Result;
3274 }
3275 
3276 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3277 /// and we are at the left brace.
3278 ///
3279 /// \verbatim
3280 ///       postfix-expression: [C99 6.5.2]
3281 ///         '(' type-name ')' '{' initializer-list '}'
3282 ///         '(' type-name ')' '{' initializer-list ',' '}'
3283 /// \endverbatim
3284 ExprResult
3285 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3286                                        SourceLocation LParenLoc,
3287                                        SourceLocation RParenLoc) {
3288   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3289   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3290     Diag(LParenLoc, diag::ext_c99_compound_literal);
3291   PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3292   ExprResult Result = ParseInitializer();
3293   if (!Result.isInvalid() && Ty)
3294     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3295   return Result;
3296 }
3297 
3298 /// ParseStringLiteralExpression - This handles the various token types that
3299 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3300 /// translation phase #6].
3301 ///
3302 /// \verbatim
3303 ///       primary-expression: [C99 6.5.1]
3304 ///         string-literal
3305 /// \verbatim
3306 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3307   return ParseStringLiteralExpression(AllowUserDefinedLiteral,
3308                                       /*Unevaluated=*/false);
3309 }
3310 
3311 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() {
3312   return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false,
3313                                       /*Unevaluated=*/true);
3314 }
3315 
3316 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral,
3317                                                 bool Unevaluated) {
3318   assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
3319          "Not a string-literal-like token!");
3320 
3321   // String concatenation.
3322   // Note: some keywords like __FUNCTION__ are not considered to be strings
3323   // for concatenation purposes, unless Microsoft extensions are enabled.
3324   SmallVector<Token, 4> StringToks;
3325 
3326   do {
3327     StringToks.push_back(Tok);
3328     ConsumeAnyToken();
3329   } while (tokenIsLikeStringLiteral(Tok, getLangOpts()));
3330 
3331   if (Unevaluated) {
3332     assert(!AllowUserDefinedLiteral && "UDL are always evaluated");
3333     return Actions.ActOnUnevaluatedStringLiteral(StringToks);
3334   }
3335 
3336   // Pass the set of string tokens, ready for concatenation, to the actions.
3337   return Actions.ActOnStringLiteral(StringToks,
3338                                     AllowUserDefinedLiteral ? getCurScope()
3339                                                             : nullptr);
3340 }
3341 
3342 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3343 /// [C11 6.5.1.1].
3344 ///
3345 /// \verbatim
3346 ///    generic-selection:
3347 ///           _Generic ( assignment-expression , generic-assoc-list )
3348 ///    generic-assoc-list:
3349 ///           generic-association
3350 ///           generic-assoc-list , generic-association
3351 ///    generic-association:
3352 ///           type-name : assignment-expression
3353 ///           default : assignment-expression
3354 /// \endverbatim
3355 ///
3356 /// As an extension, Clang also accepts:
3357 /// \verbatim
3358 ///   generic-selection:
3359 ///          _Generic ( type-name, generic-assoc-list )
3360 /// \endverbatim
3361 ExprResult Parser::ParseGenericSelectionExpression() {
3362   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3363   if (!getLangOpts().C11)
3364     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3365 
3366   SourceLocation KeyLoc = ConsumeToken();
3367   BalancedDelimiterTracker T(*this, tok::l_paren);
3368   if (T.expectAndConsume())
3369     return ExprError();
3370 
3371   // We either have a controlling expression or we have a controlling type, and
3372   // we need to figure out which it is.
3373   TypeResult ControllingType;
3374   ExprResult ControllingExpr;
3375   if (isTypeIdForGenericSelection()) {
3376     ControllingType = ParseTypeName();
3377     if (ControllingType.isInvalid()) {
3378       SkipUntil(tok::r_paren, StopAtSemi);
3379       return ExprError();
3380     }
3381     const auto *LIT = cast<LocInfoType>(ControllingType.get().get());
3382     SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
3383     Diag(Loc, diag::ext_generic_with_type_arg);
3384   } else {
3385     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3386     // not evaluated."
3387     EnterExpressionEvaluationContext Unevaluated(
3388         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3389     ControllingExpr =
3390         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3391     if (ControllingExpr.isInvalid()) {
3392       SkipUntil(tok::r_paren, StopAtSemi);
3393       return ExprError();
3394     }
3395   }
3396 
3397   if (ExpectAndConsume(tok::comma)) {
3398     SkipUntil(tok::r_paren, StopAtSemi);
3399     return ExprError();
3400   }
3401 
3402   SourceLocation DefaultLoc;
3403   SmallVector<ParsedType, 12> Types;
3404   ExprVector Exprs;
3405   do {
3406     ParsedType Ty;
3407     if (Tok.is(tok::kw_default)) {
3408       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3409       // generic association."
3410       if (!DefaultLoc.isInvalid()) {
3411         Diag(Tok, diag::err_duplicate_default_assoc);
3412         Diag(DefaultLoc, diag::note_previous_default_assoc);
3413         SkipUntil(tok::r_paren, StopAtSemi);
3414         return ExprError();
3415       }
3416       DefaultLoc = ConsumeToken();
3417       Ty = nullptr;
3418     } else {
3419       ColonProtectionRAIIObject X(*this);
3420       TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3421       if (TR.isInvalid()) {
3422         SkipUntil(tok::r_paren, StopAtSemi);
3423         return ExprError();
3424       }
3425       Ty = TR.get();
3426     }
3427     Types.push_back(Ty);
3428 
3429     if (ExpectAndConsume(tok::colon)) {
3430       SkipUntil(tok::r_paren, StopAtSemi);
3431       return ExprError();
3432     }
3433 
3434     // FIXME: These expressions should be parsed in a potentially potentially
3435     // evaluated context.
3436     ExprResult ER(
3437         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3438     if (ER.isInvalid()) {
3439       SkipUntil(tok::r_paren, StopAtSemi);
3440       return ExprError();
3441     }
3442     Exprs.push_back(ER.get());
3443   } while (TryConsumeToken(tok::comma));
3444 
3445   T.consumeClose();
3446   if (T.getCloseLocation().isInvalid())
3447     return ExprError();
3448 
3449   void *ExprOrTy = ControllingExpr.isUsable()
3450                        ? ControllingExpr.get()
3451                        : ControllingType.get().getAsOpaquePtr();
3452 
3453   return Actions.ActOnGenericSelectionExpr(
3454       KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(),
3455       ExprOrTy, Types, Exprs);
3456 }
3457 
3458 /// Parse A C++1z fold-expression after the opening paren and optional
3459 /// left-hand-side expression.
3460 ///
3461 /// \verbatim
3462 ///   fold-expression:
3463 ///       ( cast-expression fold-operator ... )
3464 ///       ( ... fold-operator cast-expression )
3465 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
3466 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3467                                        BalancedDelimiterTracker &T) {
3468   if (LHS.isInvalid()) {
3469     T.skipToEnd();
3470     return true;
3471   }
3472 
3473   tok::TokenKind Kind = tok::unknown;
3474   SourceLocation FirstOpLoc;
3475   if (LHS.isUsable()) {
3476     Kind = Tok.getKind();
3477     assert(isFoldOperator(Kind) && "missing fold-operator");
3478     FirstOpLoc = ConsumeToken();
3479   }
3480 
3481   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3482   SourceLocation EllipsisLoc = ConsumeToken();
3483 
3484   ExprResult RHS;
3485   if (Tok.isNot(tok::r_paren)) {
3486     if (!isFoldOperator(Tok.getKind()))
3487       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3488 
3489     if (Kind != tok::unknown && Tok.getKind() != Kind)
3490       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3491         << SourceRange(FirstOpLoc);
3492     Kind = Tok.getKind();
3493     ConsumeToken();
3494 
3495     RHS = ParseExpression();
3496     if (RHS.isInvalid()) {
3497       T.skipToEnd();
3498       return true;
3499     }
3500   }
3501 
3502   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3503                         ? diag::warn_cxx14_compat_fold_expression
3504                         : diag::ext_fold_expression);
3505 
3506   T.consumeClose();
3507   return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3508                                   Kind, EllipsisLoc, RHS.get(),
3509                                   T.getCloseLocation());
3510 }
3511 
3512 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3513 ///
3514 /// \verbatim
3515 ///       argument-expression-list:
3516 ///         assignment-expression
3517 ///         argument-expression-list , assignment-expression
3518 ///
3519 /// [C++] expression-list:
3520 /// [C++]   assignment-expression
3521 /// [C++]   expression-list , assignment-expression
3522 ///
3523 /// [C++0x] expression-list:
3524 /// [C++0x]   initializer-list
3525 ///
3526 /// [C++0x] initializer-list
3527 /// [C++0x]   initializer-clause ...[opt]
3528 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3529 ///
3530 /// [C++0x] initializer-clause:
3531 /// [C++0x]   assignment-expression
3532 /// [C++0x]   braced-init-list
3533 /// \endverbatim
3534 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3535                                  llvm::function_ref<void()> ExpressionStarts,
3536                                  bool FailImmediatelyOnInvalidExpr,
3537                                  bool EarlyTypoCorrection) {
3538   bool SawError = false;
3539   while (true) {
3540     if (ExpressionStarts)
3541       ExpressionStarts();
3542 
3543     ExprResult Expr;
3544     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3545       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3546       Expr = ParseBraceInitializer();
3547     } else
3548       Expr = ParseAssignmentExpression();
3549 
3550     if (EarlyTypoCorrection)
3551       Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3552 
3553     if (Tok.is(tok::ellipsis))
3554       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3555     else if (Tok.is(tok::code_completion)) {
3556       // There's nothing to suggest in here as we parsed a full expression.
3557       // Instead fail and propagate the error since caller might have something
3558       // the suggest, e.g. signature help in function call. Note that this is
3559       // performed before pushing the \p Expr, so that signature help can report
3560       // current argument correctly.
3561       SawError = true;
3562       cutOffParsing();
3563       break;
3564     }
3565     if (Expr.isInvalid()) {
3566       SawError = true;
3567       if (FailImmediatelyOnInvalidExpr)
3568         break;
3569       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3570     } else {
3571       Exprs.push_back(Expr.get());
3572     }
3573 
3574     if (Tok.isNot(tok::comma))
3575       break;
3576     // Move to the next argument, remember where the comma was.
3577     Token Comma = Tok;
3578     ConsumeToken();
3579     checkPotentialAngleBracketDelimiter(Comma);
3580   }
3581   if (SawError) {
3582     // Ensure typos get diagnosed when errors were encountered while parsing the
3583     // expression list.
3584     for (auto &E : Exprs) {
3585       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3586       if (Expr.isUsable()) E = Expr.get();
3587     }
3588   }
3589   return SawError;
3590 }
3591 
3592 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3593 /// used for misc language extensions.
3594 ///
3595 /// \verbatim
3596 ///       simple-expression-list:
3597 ///         assignment-expression
3598 ///         simple-expression-list , assignment-expression
3599 /// \endverbatim
3600 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3601   while (true) {
3602     ExprResult Expr = ParseAssignmentExpression();
3603     if (Expr.isInvalid())
3604       return true;
3605 
3606     Exprs.push_back(Expr.get());
3607 
3608     // We might be parsing the LHS of a fold-expression. If we reached the fold
3609     // operator, stop.
3610     if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3611       return false;
3612 
3613     // Move to the next argument, remember where the comma was.
3614     Token Comma = Tok;
3615     ConsumeToken();
3616     checkPotentialAngleBracketDelimiter(Comma);
3617   }
3618 }
3619 
3620 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3621 ///
3622 /// \verbatim
3623 /// [clang] block-id:
3624 /// [clang]   specifier-qualifier-list block-declarator
3625 /// \endverbatim
3626 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3627   if (Tok.is(tok::code_completion)) {
3628     cutOffParsing();
3629     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3630     return;
3631   }
3632 
3633   // Parse the specifier-qualifier-list piece.
3634   DeclSpec DS(AttrFactory);
3635   ParseSpecifierQualifierList(DS);
3636 
3637   // Parse the block-declarator.
3638   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3639                             DeclaratorContext::BlockLiteral);
3640   DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3641   ParseDeclarator(DeclaratorInfo);
3642 
3643   MaybeParseGNUAttributes(DeclaratorInfo);
3644 
3645   // Inform sema that we are starting a block.
3646   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3647 }
3648 
3649 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3650 /// like ^(int x){ return x+1; }
3651 ///
3652 /// \verbatim
3653 ///         block-literal:
3654 /// [clang]   '^' block-args[opt] compound-statement
3655 /// [clang]   '^' block-id compound-statement
3656 /// [clang] block-args:
3657 /// [clang]   '(' parameter-list ')'
3658 /// \endverbatim
3659 ExprResult Parser::ParseBlockLiteralExpression() {
3660   assert(Tok.is(tok::caret) && "block literal starts with ^");
3661   SourceLocation CaretLoc = ConsumeToken();
3662 
3663   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3664                                 "block literal parsing");
3665 
3666   // Enter a scope to hold everything within the block.  This includes the
3667   // argument decls, decls within the compound expression, etc.  This also
3668   // allows determining whether a variable reference inside the block is
3669   // within or outside of the block.
3670   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3671                                   Scope::CompoundStmtScope | Scope::DeclScope);
3672 
3673   // Inform sema that we are starting a block.
3674   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3675 
3676   // Parse the return type if present.
3677   DeclSpec DS(AttrFactory);
3678   Declarator ParamInfo(DS, ParsedAttributesView::none(),
3679                        DeclaratorContext::BlockLiteral);
3680   ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3681   // FIXME: Since the return type isn't actually parsed, it can't be used to
3682   // fill ParamInfo with an initial valid range, so do it manually.
3683   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3684 
3685   // If this block has arguments, parse them.  There is no ambiguity here with
3686   // the expression case, because the expression case requires a parameter list.
3687   if (Tok.is(tok::l_paren)) {
3688     ParseParenDeclarator(ParamInfo);
3689     // Parse the pieces after the identifier as if we had "int(...)".
3690     // SetIdentifier sets the source range end, but in this case we're past
3691     // that location.
3692     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3693     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3694     ParamInfo.SetRangeEnd(Tmp);
3695     if (ParamInfo.isInvalidType()) {
3696       // If there was an error parsing the arguments, they may have
3697       // tried to use ^(x+y) which requires an argument list.  Just
3698       // skip the whole block literal.
3699       Actions.ActOnBlockError(CaretLoc, getCurScope());
3700       return ExprError();
3701     }
3702 
3703     MaybeParseGNUAttributes(ParamInfo);
3704 
3705     // Inform sema that we are starting a block.
3706     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3707   } else if (!Tok.is(tok::l_brace)) {
3708     ParseBlockId(CaretLoc);
3709   } else {
3710     // Otherwise, pretend we saw (void).
3711     SourceLocation NoLoc;
3712     ParamInfo.AddTypeInfo(
3713         DeclaratorChunk::getFunction(/*HasProto=*/true,
3714                                      /*IsAmbiguous=*/false,
3715                                      /*RParenLoc=*/NoLoc,
3716                                      /*ArgInfo=*/nullptr,
3717                                      /*NumParams=*/0,
3718                                      /*EllipsisLoc=*/NoLoc,
3719                                      /*RParenLoc=*/NoLoc,
3720                                      /*RefQualifierIsLvalueRef=*/true,
3721                                      /*RefQualifierLoc=*/NoLoc,
3722                                      /*MutableLoc=*/NoLoc, EST_None,
3723                                      /*ESpecRange=*/SourceRange(),
3724                                      /*Exceptions=*/nullptr,
3725                                      /*ExceptionRanges=*/nullptr,
3726                                      /*NumExceptions=*/0,
3727                                      /*NoexceptExpr=*/nullptr,
3728                                      /*ExceptionSpecTokens=*/nullptr,
3729                                      /*DeclsInPrototype=*/std::nullopt,
3730                                      CaretLoc, CaretLoc, ParamInfo),
3731         CaretLoc);
3732 
3733     MaybeParseGNUAttributes(ParamInfo);
3734 
3735     // Inform sema that we are starting a block.
3736     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3737   }
3738 
3739 
3740   ExprResult Result(true);
3741   if (!Tok.is(tok::l_brace)) {
3742     // Saw something like: ^expr
3743     Diag(Tok, diag::err_expected_expression);
3744     Actions.ActOnBlockError(CaretLoc, getCurScope());
3745     return ExprError();
3746   }
3747 
3748   StmtResult Stmt(ParseCompoundStatementBody());
3749   BlockScope.Exit();
3750   if (!Stmt.isInvalid())
3751     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3752   else
3753     Actions.ActOnBlockError(CaretLoc, getCurScope());
3754   return Result;
3755 }
3756 
3757 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3758 ///
3759 ///         '__objc_yes'
3760 ///         '__objc_no'
3761 ExprResult Parser::ParseObjCBoolLiteral() {
3762   tok::TokenKind Kind = Tok.getKind();
3763   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3764 }
3765 
3766 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3767 /// true if invalid.
3768 static bool CheckAvailabilitySpecList(Parser &P,
3769                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3770   llvm::SmallSet<StringRef, 4> Platforms;
3771   bool HasOtherPlatformSpec = false;
3772   bool Valid = true;
3773   for (const auto &Spec : AvailSpecs) {
3774     if (Spec.isOtherPlatformSpec()) {
3775       if (HasOtherPlatformSpec) {
3776         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3777         Valid = false;
3778       }
3779 
3780       HasOtherPlatformSpec = true;
3781       continue;
3782     }
3783 
3784     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3785     if (!Inserted) {
3786       // Rule out multiple version specs referring to the same platform.
3787       // For example, we emit an error for:
3788       // @available(macos 10.10, macos 10.11, *)
3789       StringRef Platform = Spec.getPlatform();
3790       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3791           << Spec.getEndLoc() << Platform;
3792       Valid = false;
3793     }
3794   }
3795 
3796   if (!HasOtherPlatformSpec) {
3797     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3798     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3799         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3800     return true;
3801   }
3802 
3803   return !Valid;
3804 }
3805 
3806 /// Parse availability query specification.
3807 ///
3808 ///  availability-spec:
3809 ///     '*'
3810 ///     identifier version-tuple
3811 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3812   if (Tok.is(tok::star)) {
3813     return AvailabilitySpec(ConsumeToken());
3814   } else {
3815     // Parse the platform name.
3816     if (Tok.is(tok::code_completion)) {
3817       cutOffParsing();
3818       Actions.CodeCompleteAvailabilityPlatformName();
3819       return std::nullopt;
3820     }
3821     if (Tok.isNot(tok::identifier)) {
3822       Diag(Tok, diag::err_avail_query_expected_platform_name);
3823       return std::nullopt;
3824     }
3825 
3826     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3827     SourceRange VersionRange;
3828     VersionTuple Version = ParseVersionTuple(VersionRange);
3829 
3830     if (Version.empty())
3831       return std::nullopt;
3832 
3833     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3834     StringRef Platform =
3835         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3836 
3837     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3838       Diag(PlatformIdentifier->Loc,
3839            diag::err_avail_query_unrecognized_platform_name)
3840           << GivenPlatform;
3841       return std::nullopt;
3842     }
3843 
3844     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3845                             VersionRange.getEnd());
3846   }
3847 }
3848 
3849 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3850   assert(Tok.is(tok::kw___builtin_available) ||
3851          Tok.isObjCAtKeyword(tok::objc_available));
3852 
3853   // Eat the available or __builtin_available.
3854   ConsumeToken();
3855 
3856   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3857   if (Parens.expectAndConsume())
3858     return ExprError();
3859 
3860   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3861   bool HasError = false;
3862   while (true) {
3863     std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3864     if (!Spec)
3865       HasError = true;
3866     else
3867       AvailSpecs.push_back(*Spec);
3868 
3869     if (!TryConsumeToken(tok::comma))
3870       break;
3871   }
3872 
3873   if (HasError) {
3874     SkipUntil(tok::r_paren, StopAtSemi);
3875     return ExprError();
3876   }
3877 
3878   CheckAvailabilitySpecList(*this, AvailSpecs);
3879 
3880   if (Parens.consumeClose())
3881     return ExprError();
3882 
3883   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3884                                                 Parens.getCloseLocation());
3885 }
3886