1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "clang/Lex/LiteralSupport.h" 27 #include "clang/Parse/Parser.h" 28 #include "clang/Parse/RAIIObjectsForParser.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/EnterExpressionEvaluationContext.h" 31 #include "clang/Sema/ParsedTemplate.h" 32 #include "clang/Sema/Scope.h" 33 #include "clang/Sema/TypoCorrection.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include <optional> 36 using namespace clang; 37 38 /// Simple precedence-based parser for binary/ternary operators. 39 /// 40 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 41 /// production. C99 specifies that the LHS of an assignment operator should be 42 /// parsed as a unary-expression, but consistency dictates that it be a 43 /// conditional-expession. In practice, the important thing here is that the 44 /// LHS of an assignment has to be an l-value, which productions between 45 /// unary-expression and conditional-expression don't produce. Because we want 46 /// consistency, we parse the LHS as a conditional-expression, then check for 47 /// l-value-ness in semantic analysis stages. 48 /// 49 /// \verbatim 50 /// pm-expression: [C++ 5.5] 51 /// cast-expression 52 /// pm-expression '.*' cast-expression 53 /// pm-expression '->*' cast-expression 54 /// 55 /// multiplicative-expression: [C99 6.5.5] 56 /// Note: in C++, apply pm-expression instead of cast-expression 57 /// cast-expression 58 /// multiplicative-expression '*' cast-expression 59 /// multiplicative-expression '/' cast-expression 60 /// multiplicative-expression '%' cast-expression 61 /// 62 /// additive-expression: [C99 6.5.6] 63 /// multiplicative-expression 64 /// additive-expression '+' multiplicative-expression 65 /// additive-expression '-' multiplicative-expression 66 /// 67 /// shift-expression: [C99 6.5.7] 68 /// additive-expression 69 /// shift-expression '<<' additive-expression 70 /// shift-expression '>>' additive-expression 71 /// 72 /// compare-expression: [C++20 expr.spaceship] 73 /// shift-expression 74 /// compare-expression '<=>' shift-expression 75 /// 76 /// relational-expression: [C99 6.5.8] 77 /// compare-expression 78 /// relational-expression '<' compare-expression 79 /// relational-expression '>' compare-expression 80 /// relational-expression '<=' compare-expression 81 /// relational-expression '>=' compare-expression 82 /// 83 /// equality-expression: [C99 6.5.9] 84 /// relational-expression 85 /// equality-expression '==' relational-expression 86 /// equality-expression '!=' relational-expression 87 /// 88 /// AND-expression: [C99 6.5.10] 89 /// equality-expression 90 /// AND-expression '&' equality-expression 91 /// 92 /// exclusive-OR-expression: [C99 6.5.11] 93 /// AND-expression 94 /// exclusive-OR-expression '^' AND-expression 95 /// 96 /// inclusive-OR-expression: [C99 6.5.12] 97 /// exclusive-OR-expression 98 /// inclusive-OR-expression '|' exclusive-OR-expression 99 /// 100 /// logical-AND-expression: [C99 6.5.13] 101 /// inclusive-OR-expression 102 /// logical-AND-expression '&&' inclusive-OR-expression 103 /// 104 /// logical-OR-expression: [C99 6.5.14] 105 /// logical-AND-expression 106 /// logical-OR-expression '||' logical-AND-expression 107 /// 108 /// conditional-expression: [C99 6.5.15] 109 /// logical-OR-expression 110 /// logical-OR-expression '?' expression ':' conditional-expression 111 /// [GNU] logical-OR-expression '?' ':' conditional-expression 112 /// [C++] the third operand is an assignment-expression 113 /// 114 /// assignment-expression: [C99 6.5.16] 115 /// conditional-expression 116 /// unary-expression assignment-operator assignment-expression 117 /// [C++] throw-expression [C++ 15] 118 /// 119 /// assignment-operator: one of 120 /// = *= /= %= += -= <<= >>= &= ^= |= 121 /// 122 /// expression: [C99 6.5.17] 123 /// assignment-expression ...[opt] 124 /// expression ',' assignment-expression ...[opt] 125 /// \endverbatim 126 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 127 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 128 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 129 } 130 131 /// This routine is called when the '@' is seen and consumed. 132 /// Current token is an Identifier and is not a 'try'. This 133 /// routine is necessary to disambiguate \@try-statement from, 134 /// for example, \@encode-expression. 135 /// 136 ExprResult 137 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 138 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 139 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 140 } 141 142 /// This routine is called when a leading '__extension__' is seen and 143 /// consumed. This is necessary because the token gets consumed in the 144 /// process of disambiguating between an expression and a declaration. 145 ExprResult 146 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 147 ExprResult LHS(true); 148 { 149 // Silence extension warnings in the sub-expression 150 ExtensionRAIIObject O(Diags); 151 152 LHS = ParseCastExpression(AnyCastExpr); 153 } 154 155 if (!LHS.isInvalid()) 156 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 157 LHS.get()); 158 159 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 160 } 161 162 /// Parse an expr that doesn't include (top-level) commas. 163 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 164 if (Tok.is(tok::code_completion)) { 165 cutOffParsing(); 166 Actions.CodeCompleteExpression(getCurScope(), 167 PreferredType.get(Tok.getLocation())); 168 return ExprError(); 169 } 170 171 if (Tok.is(tok::kw_throw)) 172 return ParseThrowExpression(); 173 if (Tok.is(tok::kw_co_yield)) 174 return ParseCoyieldExpression(); 175 176 ExprResult LHS = ParseCastExpression(AnyCastExpr, 177 /*isAddressOfOperand=*/false, 178 isTypeCast); 179 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 180 } 181 182 /// Parse an assignment expression where part of an Objective-C message 183 /// send has already been parsed. 184 /// 185 /// In this case \p LBracLoc indicates the location of the '[' of the message 186 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 187 /// the receiver of the message. 188 /// 189 /// Since this handles full assignment-expression's, it handles postfix 190 /// expressions and other binary operators for these expressions as well. 191 ExprResult 192 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 193 SourceLocation SuperLoc, 194 ParsedType ReceiverType, 195 Expr *ReceiverExpr) { 196 ExprResult R 197 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 198 ReceiverType, ReceiverExpr); 199 R = ParsePostfixExpressionSuffix(R); 200 return ParseRHSOfBinaryExpression(R, prec::Assignment); 201 } 202 203 ExprResult 204 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 205 assert(Actions.ExprEvalContexts.back().Context == 206 Sema::ExpressionEvaluationContext::ConstantEvaluated && 207 "Call this function only if your ExpressionEvaluationContext is " 208 "already ConstantEvaluated"); 209 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 210 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 211 return Actions.ActOnConstantExpression(Res); 212 } 213 214 ExprResult Parser::ParseConstantExpression() { 215 // C++03 [basic.def.odr]p2: 216 // An expression is potentially evaluated unless it appears where an 217 // integral constant expression is required (see 5.19) [...]. 218 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 219 EnterExpressionEvaluationContext ConstantEvaluated( 220 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 221 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 222 } 223 224 ExprResult Parser::ParseArrayBoundExpression() { 225 EnterExpressionEvaluationContext ConstantEvaluated( 226 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 227 // If we parse the bound of a VLA... we parse a non-constant 228 // constant-expression! 229 Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true; 230 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 231 } 232 233 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 234 EnterExpressionEvaluationContext ConstantEvaluated( 235 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 236 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 237 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 238 return Actions.ActOnCaseExpr(CaseLoc, Res); 239 } 240 241 /// Parse a constraint-expression. 242 /// 243 /// \verbatim 244 /// constraint-expression: C++2a[temp.constr.decl]p1 245 /// logical-or-expression 246 /// \endverbatim 247 ExprResult Parser::ParseConstraintExpression() { 248 EnterExpressionEvaluationContext ConstantEvaluated( 249 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 250 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 251 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 252 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 253 Actions.CorrectDelayedTyposInExpr(Res); 254 return ExprError(); 255 } 256 return Res; 257 } 258 259 /// \brief Parse a constraint-logical-and-expression. 260 /// 261 /// \verbatim 262 /// C++2a[temp.constr.decl]p1 263 /// constraint-logical-and-expression: 264 /// primary-expression 265 /// constraint-logical-and-expression '&&' primary-expression 266 /// 267 /// \endverbatim 268 ExprResult 269 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 270 EnterExpressionEvaluationContext ConstantEvaluated( 271 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 272 bool NotPrimaryExpression = false; 273 auto ParsePrimary = [&] () { 274 ExprResult E = ParseCastExpression(PrimaryExprOnly, 275 /*isAddressOfOperand=*/false, 276 /*isTypeCast=*/NotTypeCast, 277 /*isVectorLiteral=*/false, 278 &NotPrimaryExpression); 279 if (E.isInvalid()) 280 return ExprError(); 281 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 282 E = ParsePostfixExpressionSuffix(E); 283 // Use InclusiveOr, the precedence just after '&&' to not parse the 284 // next arguments to the logical and. 285 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 286 if (!E.isInvalid()) 287 Diag(E.get()->getExprLoc(), 288 Note 289 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 290 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 291 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 292 << FixItHint::CreateInsertion( 293 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 294 << E.get()->getSourceRange(); 295 return E; 296 }; 297 298 if (NotPrimaryExpression || 299 // Check if the following tokens must be a part of a non-primary 300 // expression 301 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 302 /*CPlusPlus11=*/true) > prec::LogicalAnd || 303 // Postfix operators other than '(' (which will be checked for in 304 // CheckConstraintExpression). 305 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 306 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 307 E = RecoverFromNonPrimary(E, /*Note=*/false); 308 if (E.isInvalid()) 309 return ExprError(); 310 NotPrimaryExpression = false; 311 } 312 bool PossibleNonPrimary; 313 bool IsConstraintExpr = 314 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 315 IsTrailingRequiresClause); 316 if (!IsConstraintExpr || PossibleNonPrimary) { 317 // Atomic constraint might be an unparenthesized non-primary expression 318 // (such as a binary operator), in which case we might get here (e.g. in 319 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 320 // the rest of the addition expression). Try to parse the rest of it here. 321 if (PossibleNonPrimary) 322 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 323 Actions.CorrectDelayedTyposInExpr(E); 324 return ExprError(); 325 } 326 return E; 327 }; 328 ExprResult LHS = ParsePrimary(); 329 if (LHS.isInvalid()) 330 return ExprError(); 331 while (Tok.is(tok::ampamp)) { 332 SourceLocation LogicalAndLoc = ConsumeToken(); 333 ExprResult RHS = ParsePrimary(); 334 if (RHS.isInvalid()) { 335 Actions.CorrectDelayedTyposInExpr(LHS); 336 return ExprError(); 337 } 338 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 339 tok::ampamp, LHS.get(), RHS.get()); 340 if (!Op.isUsable()) { 341 Actions.CorrectDelayedTyposInExpr(RHS); 342 Actions.CorrectDelayedTyposInExpr(LHS); 343 return ExprError(); 344 } 345 LHS = Op; 346 } 347 return LHS; 348 } 349 350 /// \brief Parse a constraint-logical-or-expression. 351 /// 352 /// \verbatim 353 /// C++2a[temp.constr.decl]p1 354 /// constraint-logical-or-expression: 355 /// constraint-logical-and-expression 356 /// constraint-logical-or-expression '||' 357 /// constraint-logical-and-expression 358 /// 359 /// \endverbatim 360 ExprResult 361 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 362 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 363 if (!LHS.isUsable()) 364 return ExprError(); 365 while (Tok.is(tok::pipepipe)) { 366 SourceLocation LogicalOrLoc = ConsumeToken(); 367 ExprResult RHS = 368 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 369 if (!RHS.isUsable()) { 370 Actions.CorrectDelayedTyposInExpr(LHS); 371 return ExprError(); 372 } 373 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 374 tok::pipepipe, LHS.get(), RHS.get()); 375 if (!Op.isUsable()) { 376 Actions.CorrectDelayedTyposInExpr(RHS); 377 Actions.CorrectDelayedTyposInExpr(LHS); 378 return ExprError(); 379 } 380 LHS = Op; 381 } 382 return LHS; 383 } 384 385 bool Parser::isNotExpressionStart() { 386 tok::TokenKind K = Tok.getKind(); 387 if (K == tok::l_brace || K == tok::r_brace || 388 K == tok::kw_for || K == tok::kw_while || 389 K == tok::kw_if || K == tok::kw_else || 390 K == tok::kw_goto || K == tok::kw_try) 391 return true; 392 // If this is a decl-specifier, we can't be at the start of an expression. 393 return isKnownToBeDeclarationSpecifier(); 394 } 395 396 bool Parser::isFoldOperator(prec::Level Level) const { 397 return Level > prec::Unknown && Level != prec::Conditional && 398 Level != prec::Spaceship; 399 } 400 401 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 402 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 403 } 404 405 /// Parse a binary expression that starts with \p LHS and has a 406 /// precedence of at least \p MinPrec. 407 ExprResult 408 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 409 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 410 GreaterThanIsOperator, 411 getLangOpts().CPlusPlus11); 412 SourceLocation ColonLoc; 413 414 auto SavedType = PreferredType; 415 while (true) { 416 // Every iteration may rely on a preferred type for the whole expression. 417 PreferredType = SavedType; 418 // If this token has a lower precedence than we are allowed to parse (e.g. 419 // because we are called recursively, or because the token is not a binop), 420 // then we are done! 421 if (NextTokPrec < MinPrec) 422 return LHS; 423 424 // Consume the operator, saving the operator token for error reporting. 425 Token OpToken = Tok; 426 ConsumeToken(); 427 428 if (OpToken.is(tok::caretcaret)) { 429 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 430 } 431 432 // If we're potentially in a template-id, we may now be able to determine 433 // whether we're actually in one or not. 434 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 435 tok::greatergreatergreater) && 436 checkPotentialAngleBracketDelimiter(OpToken)) 437 return ExprError(); 438 439 // Bail out when encountering a comma followed by a token which can't 440 // possibly be the start of an expression. For instance: 441 // int f() { return 1, } 442 // We can't do this before consuming the comma, because 443 // isNotExpressionStart() looks at the token stream. 444 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 445 PP.EnterToken(Tok, /*IsReinject*/true); 446 Tok = OpToken; 447 return LHS; 448 } 449 450 // If the next token is an ellipsis, then this is a fold-expression. Leave 451 // it alone so we can handle it in the paren expression. 452 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 453 // FIXME: We can't check this via lookahead before we consume the token 454 // because that tickles a lexer bug. 455 PP.EnterToken(Tok, /*IsReinject*/true); 456 Tok = OpToken; 457 return LHS; 458 } 459 460 // In Objective-C++, alternative operator tokens can be used as keyword args 461 // in message expressions. Unconsume the token so that it can reinterpreted 462 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 463 // [foo meth:0 and:0]; 464 // [foo not_eq]; 465 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 466 Tok.isOneOf(tok::colon, tok::r_square) && 467 OpToken.getIdentifierInfo() != nullptr) { 468 PP.EnterToken(Tok, /*IsReinject*/true); 469 Tok = OpToken; 470 return LHS; 471 } 472 473 // Special case handling for the ternary operator. 474 ExprResult TernaryMiddle(true); 475 if (NextTokPrec == prec::Conditional) { 476 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 477 // Parse a braced-init-list here for error recovery purposes. 478 SourceLocation BraceLoc = Tok.getLocation(); 479 TernaryMiddle = ParseBraceInitializer(); 480 if (!TernaryMiddle.isInvalid()) { 481 Diag(BraceLoc, diag::err_init_list_bin_op) 482 << /*RHS*/ 1 << PP.getSpelling(OpToken) 483 << Actions.getExprRange(TernaryMiddle.get()); 484 TernaryMiddle = ExprError(); 485 } 486 } else if (Tok.isNot(tok::colon)) { 487 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 488 ColonProtectionRAIIObject X(*this); 489 490 // Handle this production specially: 491 // logical-OR-expression '?' expression ':' conditional-expression 492 // In particular, the RHS of the '?' is 'expression', not 493 // 'logical-OR-expression' as we might expect. 494 TernaryMiddle = ParseExpression(); 495 } else { 496 // Special case handling of "X ? Y : Z" where Y is empty: 497 // logical-OR-expression '?' ':' conditional-expression [GNU] 498 TernaryMiddle = nullptr; 499 Diag(Tok, diag::ext_gnu_conditional_expr); 500 } 501 502 if (TernaryMiddle.isInvalid()) { 503 Actions.CorrectDelayedTyposInExpr(LHS); 504 LHS = ExprError(); 505 TernaryMiddle = nullptr; 506 } 507 508 if (!TryConsumeToken(tok::colon, ColonLoc)) { 509 // Otherwise, we're missing a ':'. Assume that this was a typo that 510 // the user forgot. If we're not in a macro expansion, we can suggest 511 // a fixit hint. If there were two spaces before the current token, 512 // suggest inserting the colon in between them, otherwise insert ": ". 513 SourceLocation FILoc = Tok.getLocation(); 514 const char *FIText = ": "; 515 const SourceManager &SM = PP.getSourceManager(); 516 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 517 assert(FILoc.isFileID()); 518 bool IsInvalid = false; 519 const char *SourcePtr = 520 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 521 if (!IsInvalid && *SourcePtr == ' ') { 522 SourcePtr = 523 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 524 if (!IsInvalid && *SourcePtr == ' ') { 525 FILoc = FILoc.getLocWithOffset(-1); 526 FIText = ":"; 527 } 528 } 529 } 530 531 Diag(Tok, diag::err_expected) 532 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 533 Diag(OpToken, diag::note_matching) << tok::question; 534 ColonLoc = Tok.getLocation(); 535 } 536 } 537 538 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 539 OpToken.getKind()); 540 // Parse another leaf here for the RHS of the operator. 541 // ParseCastExpression works here because all RHS expressions in C have it 542 // as a prefix, at least. However, in C++, an assignment-expression could 543 // be a throw-expression, which is not a valid cast-expression. 544 // Therefore we need some special-casing here. 545 // Also note that the third operand of the conditional operator is 546 // an assignment-expression in C++, and in C++11, we can have a 547 // braced-init-list on the RHS of an assignment. For better diagnostics, 548 // parse as if we were allowed braced-init-lists everywhere, and check that 549 // they only appear on the RHS of assignments later. 550 ExprResult RHS; 551 bool RHSIsInitList = false; 552 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 553 RHS = ParseBraceInitializer(); 554 RHSIsInitList = true; 555 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 556 RHS = ParseAssignmentExpression(); 557 else 558 RHS = ParseCastExpression(AnyCastExpr); 559 560 if (RHS.isInvalid()) { 561 // FIXME: Errors generated by the delayed typo correction should be 562 // printed before errors from parsing the RHS, not after. 563 Actions.CorrectDelayedTyposInExpr(LHS); 564 if (TernaryMiddle.isUsable()) 565 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 566 LHS = ExprError(); 567 } 568 569 // Remember the precedence of this operator and get the precedence of the 570 // operator immediately to the right of the RHS. 571 prec::Level ThisPrec = NextTokPrec; 572 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 573 getLangOpts().CPlusPlus11); 574 575 // Assignment and conditional expressions are right-associative. 576 bool isRightAssoc = ThisPrec == prec::Conditional || 577 ThisPrec == prec::Assignment; 578 579 // Get the precedence of the operator to the right of the RHS. If it binds 580 // more tightly with RHS than we do, evaluate it completely first. 581 if (ThisPrec < NextTokPrec || 582 (ThisPrec == NextTokPrec && isRightAssoc)) { 583 if (!RHS.isInvalid() && RHSIsInitList) { 584 Diag(Tok, diag::err_init_list_bin_op) 585 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 586 RHS = ExprError(); 587 } 588 // If this is left-associative, only parse things on the RHS that bind 589 // more tightly than the current operator. If it is left-associative, it 590 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 591 // A=(B=(C=D)), where each paren is a level of recursion here. 592 // The function takes ownership of the RHS. 593 RHS = ParseRHSOfBinaryExpression(RHS, 594 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 595 RHSIsInitList = false; 596 597 if (RHS.isInvalid()) { 598 // FIXME: Errors generated by the delayed typo correction should be 599 // printed before errors from ParseRHSOfBinaryExpression, not after. 600 Actions.CorrectDelayedTyposInExpr(LHS); 601 if (TernaryMiddle.isUsable()) 602 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 603 LHS = ExprError(); 604 } 605 606 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 607 getLangOpts().CPlusPlus11); 608 } 609 610 if (!RHS.isInvalid() && RHSIsInitList) { 611 if (ThisPrec == prec::Assignment) { 612 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 613 << Actions.getExprRange(RHS.get()); 614 } else if (ColonLoc.isValid()) { 615 Diag(ColonLoc, diag::err_init_list_bin_op) 616 << /*RHS*/1 << ":" 617 << Actions.getExprRange(RHS.get()); 618 LHS = ExprError(); 619 } else { 620 Diag(OpToken, diag::err_init_list_bin_op) 621 << /*RHS*/1 << PP.getSpelling(OpToken) 622 << Actions.getExprRange(RHS.get()); 623 LHS = ExprError(); 624 } 625 } 626 627 ExprResult OrigLHS = LHS; 628 if (!LHS.isInvalid()) { 629 // Combine the LHS and RHS into the LHS (e.g. build AST). 630 if (TernaryMiddle.isInvalid()) { 631 // If we're using '>>' as an operator within a template 632 // argument list (in C++98), suggest the addition of 633 // parentheses so that the code remains well-formed in C++0x. 634 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 635 SuggestParentheses(OpToken.getLocation(), 636 diag::warn_cxx11_right_shift_in_template_arg, 637 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 638 Actions.getExprRange(RHS.get()).getEnd())); 639 640 ExprResult BinOp = 641 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 642 OpToken.getKind(), LHS.get(), RHS.get()); 643 if (BinOp.isInvalid()) 644 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 645 RHS.get()->getEndLoc(), 646 {LHS.get(), RHS.get()}); 647 648 LHS = BinOp; 649 } else { 650 ExprResult CondOp = Actions.ActOnConditionalOp( 651 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 652 RHS.get()); 653 if (CondOp.isInvalid()) { 654 std::vector<clang::Expr *> Args; 655 // TernaryMiddle can be null for the GNU conditional expr extension. 656 if (TernaryMiddle.get()) 657 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 658 else 659 Args = {LHS.get(), RHS.get()}; 660 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 661 RHS.get()->getEndLoc(), Args); 662 } 663 664 LHS = CondOp; 665 } 666 // In this case, ActOnBinOp or ActOnConditionalOp performed the 667 // CorrectDelayedTyposInExpr check. 668 if (!getLangOpts().CPlusPlus) 669 continue; 670 } 671 672 // Ensure potential typos aren't left undiagnosed. 673 if (LHS.isInvalid()) { 674 Actions.CorrectDelayedTyposInExpr(OrigLHS); 675 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 676 Actions.CorrectDelayedTyposInExpr(RHS); 677 } 678 } 679 } 680 681 /// Parse a cast-expression, unary-expression or primary-expression, based 682 /// on \p ExprType. 683 /// 684 /// \p isAddressOfOperand exists because an id-expression that is the 685 /// operand of address-of gets special treatment due to member pointers. 686 /// 687 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 688 bool isAddressOfOperand, 689 TypeCastState isTypeCast, 690 bool isVectorLiteral, 691 bool *NotPrimaryExpression) { 692 bool NotCastExpr; 693 ExprResult Res = ParseCastExpression(ParseKind, 694 isAddressOfOperand, 695 NotCastExpr, 696 isTypeCast, 697 isVectorLiteral, 698 NotPrimaryExpression); 699 if (NotCastExpr) 700 Diag(Tok, diag::err_expected_expression); 701 return Res; 702 } 703 704 namespace { 705 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 706 public: 707 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 708 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 709 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 710 } 711 712 bool ValidateCandidate(const TypoCorrection &candidate) override { 713 NamedDecl *ND = candidate.getCorrectionDecl(); 714 if (!ND) 715 return candidate.isKeyword(); 716 717 if (isa<TypeDecl>(ND)) 718 return WantTypeSpecifiers; 719 720 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 721 return false; 722 723 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 724 return true; 725 726 for (auto *C : candidate) { 727 NamedDecl *ND = C->getUnderlyingDecl(); 728 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 729 return true; 730 } 731 return false; 732 } 733 734 std::unique_ptr<CorrectionCandidateCallback> clone() override { 735 return std::make_unique<CastExpressionIdValidator>(*this); 736 } 737 738 private: 739 Token NextToken; 740 bool AllowNonTypes; 741 }; 742 } 743 744 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 745 /// a unary-expression. 746 /// 747 /// \p isAddressOfOperand exists because an id-expression that is the operand 748 /// of address-of gets special treatment due to member pointers. NotCastExpr 749 /// is set to true if the token is not the start of a cast-expression, and no 750 /// diagnostic is emitted in this case and no tokens are consumed. 751 /// 752 /// \verbatim 753 /// cast-expression: [C99 6.5.4] 754 /// unary-expression 755 /// '(' type-name ')' cast-expression 756 /// 757 /// unary-expression: [C99 6.5.3] 758 /// postfix-expression 759 /// '++' unary-expression 760 /// '--' unary-expression 761 /// [Coro] 'co_await' cast-expression 762 /// unary-operator cast-expression 763 /// 'sizeof' unary-expression 764 /// 'sizeof' '(' type-name ')' 765 /// [C++11] 'sizeof' '...' '(' identifier ')' 766 /// [GNU] '__alignof' unary-expression 767 /// [GNU] '__alignof' '(' type-name ')' 768 /// [C11] '_Alignof' '(' type-name ')' 769 /// [C++11] 'alignof' '(' type-id ')' 770 /// [GNU] '&&' identifier 771 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 772 /// [C++] new-expression 773 /// [C++] delete-expression 774 /// 775 /// unary-operator: one of 776 /// '&' '*' '+' '-' '~' '!' 777 /// [GNU] '__extension__' '__real' '__imag' 778 /// 779 /// primary-expression: [C99 6.5.1] 780 /// [C99] identifier 781 /// [C++] id-expression 782 /// constant 783 /// string-literal 784 /// [C++] boolean-literal [C++ 2.13.5] 785 /// [C++11] 'nullptr' [C++11 2.14.7] 786 /// [C++11] user-defined-literal 787 /// '(' expression ')' 788 /// [C11] generic-selection 789 /// [C++2a] requires-expression 790 /// '__func__' [C99 6.4.2.2] 791 /// [GNU] '__FUNCTION__' 792 /// [MS] '__FUNCDNAME__' 793 /// [MS] 'L__FUNCTION__' 794 /// [MS] '__FUNCSIG__' 795 /// [MS] 'L__FUNCSIG__' 796 /// [GNU] '__PRETTY_FUNCTION__' 797 /// [GNU] '(' compound-statement ')' 798 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 799 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 800 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 801 /// assign-expr ')' 802 /// [GNU] '__builtin_FILE' '(' ')' 803 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 804 /// [GNU] '__builtin_FUNCTION' '(' ')' 805 /// [MS] '__builtin_FUNCSIG' '(' ')' 806 /// [GNU] '__builtin_LINE' '(' ')' 807 /// [CLANG] '__builtin_COLUMN' '(' ')' 808 /// [GNU] '__builtin_source_location' '(' ')' 809 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 810 /// [GNU] '__null' 811 /// [OBJC] '[' objc-message-expr ']' 812 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 813 /// [OBJC] '\@protocol' '(' identifier ')' 814 /// [OBJC] '\@encode' '(' type-name ')' 815 /// [OBJC] objc-string-literal 816 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 817 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 818 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 819 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 820 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 821 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 822 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 823 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 824 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 825 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 826 /// [C++] 'this' [C++ 9.3.2] 827 /// [G++] unary-type-trait '(' type-id ')' 828 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 829 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 830 /// [clang] '^' block-literal 831 /// 832 /// constant: [C99 6.4.4] 833 /// integer-constant 834 /// floating-constant 835 /// enumeration-constant -> identifier 836 /// character-constant 837 /// 838 /// id-expression: [C++ 5.1] 839 /// unqualified-id 840 /// qualified-id 841 /// 842 /// unqualified-id: [C++ 5.1] 843 /// identifier 844 /// operator-function-id 845 /// conversion-function-id 846 /// '~' class-name 847 /// template-id 848 /// 849 /// new-expression: [C++ 5.3.4] 850 /// '::'[opt] 'new' new-placement[opt] new-type-id 851 /// new-initializer[opt] 852 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 853 /// new-initializer[opt] 854 /// 855 /// delete-expression: [C++ 5.3.5] 856 /// '::'[opt] 'delete' cast-expression 857 /// '::'[opt] 'delete' '[' ']' cast-expression 858 /// 859 /// [GNU/Embarcadero] unary-type-trait: 860 /// '__is_arithmetic' 861 /// '__is_floating_point' 862 /// '__is_integral' 863 /// '__is_lvalue_expr' 864 /// '__is_rvalue_expr' 865 /// '__is_complete_type' 866 /// '__is_void' 867 /// '__is_array' 868 /// '__is_function' 869 /// '__is_reference' 870 /// '__is_lvalue_reference' 871 /// '__is_rvalue_reference' 872 /// '__is_fundamental' 873 /// '__is_object' 874 /// '__is_scalar' 875 /// '__is_compound' 876 /// '__is_pointer' 877 /// '__is_member_object_pointer' 878 /// '__is_member_function_pointer' 879 /// '__is_member_pointer' 880 /// '__is_const' 881 /// '__is_volatile' 882 /// '__is_trivial' 883 /// '__is_standard_layout' 884 /// '__is_signed' 885 /// '__is_unsigned' 886 /// 887 /// [GNU] unary-type-trait: 888 /// '__has_nothrow_assign' 889 /// '__has_nothrow_copy' 890 /// '__has_nothrow_constructor' 891 /// '__has_trivial_assign' [TODO] 892 /// '__has_trivial_copy' [TODO] 893 /// '__has_trivial_constructor' 894 /// '__has_trivial_destructor' 895 /// '__has_virtual_destructor' 896 /// '__is_abstract' [TODO] 897 /// '__is_class' 898 /// '__is_empty' [TODO] 899 /// '__is_enum' 900 /// '__is_final' 901 /// '__is_pod' 902 /// '__is_polymorphic' 903 /// '__is_sealed' [MS] 904 /// '__is_trivial' 905 /// '__is_union' 906 /// '__has_unique_object_representations' 907 /// 908 /// [Clang] unary-type-trait: 909 /// '__is_aggregate' 910 /// '__trivially_copyable' 911 /// 912 /// binary-type-trait: 913 /// [GNU] '__is_base_of' 914 /// [MS] '__is_convertible_to' 915 /// '__is_convertible' 916 /// '__is_same' 917 /// 918 /// [Embarcadero] array-type-trait: 919 /// '__array_rank' 920 /// '__array_extent' 921 /// 922 /// [Embarcadero] expression-trait: 923 /// '__is_lvalue_expr' 924 /// '__is_rvalue_expr' 925 /// \endverbatim 926 /// 927 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 928 bool isAddressOfOperand, 929 bool &NotCastExpr, 930 TypeCastState isTypeCast, 931 bool isVectorLiteral, 932 bool *NotPrimaryExpression) { 933 ExprResult Res; 934 tok::TokenKind SavedKind = Tok.getKind(); 935 auto SavedType = PreferredType; 936 NotCastExpr = false; 937 938 // Are postfix-expression suffix operators permitted after this 939 // cast-expression? If not, and we find some, we'll parse them anyway and 940 // diagnose them. 941 bool AllowSuffix = true; 942 943 // This handles all of cast-expression, unary-expression, postfix-expression, 944 // and primary-expression. We handle them together like this for efficiency 945 // and to simplify handling of an expression starting with a '(' token: which 946 // may be one of a parenthesized expression, cast-expression, compound literal 947 // expression, or statement expression. 948 // 949 // If the parsed tokens consist of a primary-expression, the cases below 950 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 951 // to handle the postfix expression suffixes. Cases that cannot be followed 952 // by postfix exprs should set AllowSuffix to false. 953 switch (SavedKind) { 954 case tok::l_paren: { 955 // If this expression is limited to being a unary-expression, the paren can 956 // not start a cast expression. 957 ParenParseOption ParenExprType; 958 switch (ParseKind) { 959 case CastParseKind::UnaryExprOnly: 960 assert(getLangOpts().CPlusPlus && "not possible to get here in C"); 961 [[fallthrough]]; 962 case CastParseKind::AnyCastExpr: 963 ParenExprType = ParenParseOption::CastExpr; 964 break; 965 case CastParseKind::PrimaryExprOnly: 966 ParenExprType = FoldExpr; 967 break; 968 } 969 ParsedType CastTy; 970 SourceLocation RParenLoc; 971 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 972 isTypeCast == IsTypeCast, CastTy, RParenLoc); 973 974 // FIXME: What should we do if a vector literal is followed by a 975 // postfix-expression suffix? Usually postfix operators are permitted on 976 // literals. 977 if (isVectorLiteral) 978 return Res; 979 980 switch (ParenExprType) { 981 case SimpleExpr: break; // Nothing else to do. 982 case CompoundStmt: break; // Nothing else to do. 983 case CompoundLiteral: 984 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 985 // postfix-expression exist, parse them now. 986 break; 987 case CastExpr: 988 // We have parsed the cast-expression and no postfix-expr pieces are 989 // following. 990 return Res; 991 case FoldExpr: 992 // We only parsed a fold-expression. There might be postfix-expr pieces 993 // afterwards; parse them now. 994 break; 995 } 996 997 break; 998 } 999 1000 // primary-expression 1001 case tok::numeric_constant: 1002 // constant: integer-constant 1003 // constant: floating-constant 1004 1005 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 1006 ConsumeToken(); 1007 break; 1008 1009 case tok::kw_true: 1010 case tok::kw_false: 1011 Res = ParseCXXBoolLiteral(); 1012 break; 1013 1014 case tok::kw___objc_yes: 1015 case tok::kw___objc_no: 1016 Res = ParseObjCBoolLiteral(); 1017 break; 1018 1019 case tok::kw_nullptr: 1020 if (getLangOpts().CPlusPlus) 1021 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1022 else 1023 Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword 1024 : diag::ext_c_nullptr) << Tok.getName(); 1025 1026 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1027 break; 1028 1029 case tok::annot_primary_expr: 1030 case tok::annot_overload_set: 1031 Res = getExprAnnotation(Tok); 1032 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set) 1033 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get()); 1034 ConsumeAnnotationToken(); 1035 if (!Res.isInvalid() && Tok.is(tok::less)) 1036 checkPotentialAngleBracket(Res); 1037 break; 1038 1039 case tok::annot_non_type: 1040 case tok::annot_non_type_dependent: 1041 case tok::annot_non_type_undeclared: { 1042 CXXScopeSpec SS; 1043 Token Replacement; 1044 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1045 assert(!Res.isUnset() && 1046 "should not perform typo correction on annotation token"); 1047 break; 1048 } 1049 1050 case tok::kw___super: 1051 case tok::kw_decltype: 1052 // Annotate the token and tail recurse. 1053 if (TryAnnotateTypeOrScopeToken()) 1054 return ExprError(); 1055 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1056 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1057 isVectorLiteral, NotPrimaryExpression); 1058 1059 case tok::identifier: 1060 ParseIdentifier: { // primary-expression: identifier 1061 // unqualified-id: identifier 1062 // constant: enumeration-constant 1063 // Turn a potentially qualified name into a annot_typename or 1064 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1065 if (getLangOpts().CPlusPlus) { 1066 // Avoid the unnecessary parse-time lookup in the common case 1067 // where the syntax forbids a type. 1068 const Token &Next = NextToken(); 1069 1070 // If this identifier was reverted from a token ID, and the next token 1071 // is a parenthesis, this is likely to be a use of a type trait. Check 1072 // those tokens. 1073 if (Next.is(tok::l_paren) && 1074 Tok.is(tok::identifier) && 1075 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1076 IdentifierInfo *II = Tok.getIdentifierInfo(); 1077 // Build up the mapping of revertible type traits, for future use. 1078 if (RevertibleTypeTraits.empty()) { 1079 #define RTT_JOIN(X,Y) X##Y 1080 #define REVERTIBLE_TYPE_TRAIT(Name) \ 1081 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 1082 = RTT_JOIN(tok::kw_,Name) 1083 1084 REVERTIBLE_TYPE_TRAIT(__is_abstract); 1085 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 1086 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 1087 REVERTIBLE_TYPE_TRAIT(__is_array); 1088 REVERTIBLE_TYPE_TRAIT(__is_assignable); 1089 REVERTIBLE_TYPE_TRAIT(__is_base_of); 1090 REVERTIBLE_TYPE_TRAIT(__is_bounded_array); 1091 REVERTIBLE_TYPE_TRAIT(__is_class); 1092 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 1093 REVERTIBLE_TYPE_TRAIT(__is_compound); 1094 REVERTIBLE_TYPE_TRAIT(__is_const); 1095 REVERTIBLE_TYPE_TRAIT(__is_constructible); 1096 REVERTIBLE_TYPE_TRAIT(__is_convertible); 1097 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 1098 REVERTIBLE_TYPE_TRAIT(__is_destructible); 1099 REVERTIBLE_TYPE_TRAIT(__is_empty); 1100 REVERTIBLE_TYPE_TRAIT(__is_enum); 1101 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 1102 REVERTIBLE_TYPE_TRAIT(__is_final); 1103 REVERTIBLE_TYPE_TRAIT(__is_function); 1104 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 1105 REVERTIBLE_TYPE_TRAIT(__is_integral); 1106 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 1107 REVERTIBLE_TYPE_TRAIT(__is_literal); 1108 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 1109 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 1110 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 1111 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 1112 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 1113 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 1114 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 1115 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 1116 REVERTIBLE_TYPE_TRAIT(__is_nullptr); 1117 REVERTIBLE_TYPE_TRAIT(__is_object); 1118 REVERTIBLE_TYPE_TRAIT(__is_pod); 1119 REVERTIBLE_TYPE_TRAIT(__is_pointer); 1120 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 1121 REVERTIBLE_TYPE_TRAIT(__is_reference); 1122 REVERTIBLE_TYPE_TRAIT(__is_referenceable); 1123 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 1124 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 1125 REVERTIBLE_TYPE_TRAIT(__is_same); 1126 REVERTIBLE_TYPE_TRAIT(__is_scalar); 1127 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum); 1128 REVERTIBLE_TYPE_TRAIT(__is_sealed); 1129 REVERTIBLE_TYPE_TRAIT(__is_signed); 1130 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 1131 REVERTIBLE_TYPE_TRAIT(__is_trivial); 1132 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 1133 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 1134 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 1135 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array); 1136 REVERTIBLE_TYPE_TRAIT(__is_union); 1137 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 1138 REVERTIBLE_TYPE_TRAIT(__is_void); 1139 REVERTIBLE_TYPE_TRAIT(__is_volatile); 1140 REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary); 1141 REVERTIBLE_TYPE_TRAIT(__reference_constructs_from_temporary); 1142 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \ 1143 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait)); 1144 #include "clang/Basic/TransformTypeTraits.def" 1145 #undef REVERTIBLE_TYPE_TRAIT 1146 #undef RTT_JOIN 1147 } 1148 1149 // If we find that this is in fact the name of a type trait, 1150 // update the token kind in place and parse again to treat it as 1151 // the appropriate kind of type trait. 1152 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 1153 = RevertibleTypeTraits.find(II); 1154 if (Known != RevertibleTypeTraits.end()) { 1155 Tok.setKind(Known->second); 1156 return ParseCastExpression(ParseKind, isAddressOfOperand, 1157 NotCastExpr, isTypeCast, 1158 isVectorLiteral, NotPrimaryExpression); 1159 } 1160 } 1161 1162 if ((!ColonIsSacred && Next.is(tok::colon)) || 1163 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1164 tok::l_brace)) { 1165 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1166 if (TryAnnotateTypeOrScopeToken()) 1167 return ExprError(); 1168 if (!Tok.is(tok::identifier)) 1169 return ParseCastExpression(ParseKind, isAddressOfOperand, 1170 NotCastExpr, isTypeCast, 1171 isVectorLiteral, 1172 NotPrimaryExpression); 1173 } 1174 } 1175 1176 // Consume the identifier so that we can see if it is followed by a '(' or 1177 // '.'. 1178 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1179 SourceLocation ILoc = ConsumeToken(); 1180 1181 // Support 'Class.property' and 'super.property' notation. 1182 if (getLangOpts().ObjC && Tok.is(tok::period) && 1183 (Actions.getTypeName(II, ILoc, getCurScope()) || 1184 // Allow the base to be 'super' if in an objc-method. 1185 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1186 ConsumeToken(); 1187 1188 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1189 cutOffParsing(); 1190 Actions.CodeCompleteObjCClassPropertyRefExpr( 1191 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1192 return ExprError(); 1193 } 1194 // Allow either an identifier or the keyword 'class' (in C++). 1195 if (Tok.isNot(tok::identifier) && 1196 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1197 Diag(Tok, diag::err_expected_property_name); 1198 return ExprError(); 1199 } 1200 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1201 SourceLocation PropertyLoc = ConsumeToken(); 1202 1203 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 1204 ILoc, PropertyLoc); 1205 break; 1206 } 1207 1208 // In an Objective-C method, if we have "super" followed by an identifier, 1209 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1210 // that identifier, this is probably a message send with a missing open 1211 // bracket. Treat it as such. 1212 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1213 getCurScope()->isInObjcMethodScope() && 1214 ((Tok.is(tok::identifier) && 1215 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1216 Tok.is(tok::code_completion))) { 1217 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1218 nullptr); 1219 break; 1220 } 1221 1222 // If we have an Objective-C class name followed by an identifier 1223 // and either ':' or ']', this is an Objective-C class message 1224 // send that's missing the opening '['. Recovery 1225 // appropriately. Also take this path if we're performing code 1226 // completion after an Objective-C class name. 1227 if (getLangOpts().ObjC && 1228 ((Tok.is(tok::identifier) && !InMessageExpression) || 1229 Tok.is(tok::code_completion))) { 1230 const Token& Next = NextToken(); 1231 if (Tok.is(tok::code_completion) || 1232 Next.is(tok::colon) || Next.is(tok::r_square)) 1233 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1234 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1235 // Fake up a Declarator to use with ActOnTypeName. 1236 DeclSpec DS(AttrFactory); 1237 DS.SetRangeStart(ILoc); 1238 DS.SetRangeEnd(ILoc); 1239 const char *PrevSpec = nullptr; 1240 unsigned DiagID; 1241 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1242 Actions.getASTContext().getPrintingPolicy()); 1243 1244 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1245 DeclaratorContext::TypeName); 1246 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1247 DeclaratorInfo); 1248 if (Ty.isInvalid()) 1249 break; 1250 1251 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1252 SourceLocation(), 1253 Ty.get(), nullptr); 1254 break; 1255 } 1256 } 1257 1258 // Make sure to pass down the right value for isAddressOfOperand. 1259 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1260 isAddressOfOperand = false; 1261 1262 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1263 // need to know whether or not this identifier is a function designator or 1264 // not. 1265 UnqualifiedId Name; 1266 CXXScopeSpec ScopeSpec; 1267 SourceLocation TemplateKWLoc; 1268 Token Replacement; 1269 CastExpressionIdValidator Validator( 1270 /*Next=*/Tok, 1271 /*AllowTypes=*/isTypeCast != NotTypeCast, 1272 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1273 Validator.IsAddressOfOperand = isAddressOfOperand; 1274 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1275 Validator.WantExpressionKeywords = false; 1276 Validator.WantRemainingKeywords = false; 1277 } else { 1278 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1279 } 1280 Name.setIdentifier(&II, ILoc); 1281 Res = Actions.ActOnIdExpression( 1282 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1283 isAddressOfOperand, &Validator, 1284 /*IsInlineAsmIdentifier=*/false, 1285 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1286 if (!Res.isInvalid() && Res.isUnset()) { 1287 UnconsumeToken(Replacement); 1288 return ParseCastExpression(ParseKind, isAddressOfOperand, 1289 NotCastExpr, isTypeCast, 1290 /*isVectorLiteral=*/false, 1291 NotPrimaryExpression); 1292 } 1293 if (!Res.isInvalid() && Tok.is(tok::less)) 1294 checkPotentialAngleBracket(Res); 1295 break; 1296 } 1297 case tok::char_constant: // constant: character-constant 1298 case tok::wide_char_constant: 1299 case tok::utf8_char_constant: 1300 case tok::utf16_char_constant: 1301 case tok::utf32_char_constant: 1302 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1303 ConsumeToken(); 1304 break; 1305 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1306 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1307 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1308 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1309 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1310 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1311 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1312 // Function local predefined macros are represented by PredefinedExpr except 1313 // when Microsoft extensions are enabled and one of these macros is adjacent 1314 // to a string literal or another one of these macros. 1315 if (!(getLangOpts().MicrosoftExt && 1316 tokenIsLikeStringLiteral(Tok, getLangOpts()) && 1317 tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) { 1318 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1319 ConsumeToken(); 1320 break; 1321 } 1322 [[fallthrough]]; // treat MS function local macros as concatenable strings 1323 case tok::string_literal: // primary-expression: string-literal 1324 case tok::wide_string_literal: 1325 case tok::utf8_string_literal: 1326 case tok::utf16_string_literal: 1327 case tok::utf32_string_literal: 1328 Res = ParseStringLiteralExpression(true); 1329 break; 1330 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1331 Res = ParseGenericSelectionExpression(); 1332 break; 1333 case tok::kw___builtin_available: 1334 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1335 break; 1336 case tok::kw___builtin_va_arg: 1337 case tok::kw___builtin_offsetof: 1338 case tok::kw___builtin_choose_expr: 1339 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1340 case tok::kw___builtin_convertvector: 1341 case tok::kw___builtin_COLUMN: 1342 case tok::kw___builtin_FILE: 1343 case tok::kw___builtin_FILE_NAME: 1344 case tok::kw___builtin_FUNCTION: 1345 case tok::kw___builtin_FUNCSIG: 1346 case tok::kw___builtin_LINE: 1347 case tok::kw___builtin_source_location: 1348 if (NotPrimaryExpression) 1349 *NotPrimaryExpression = true; 1350 // This parses the complete suffix; we can return early. 1351 return ParseBuiltinPrimaryExpression(); 1352 case tok::kw___null: 1353 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1354 break; 1355 1356 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1357 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1358 if (NotPrimaryExpression) 1359 *NotPrimaryExpression = true; 1360 // C++ [expr.unary] has: 1361 // unary-expression: 1362 // ++ cast-expression 1363 // -- cast-expression 1364 Token SavedTok = Tok; 1365 ConsumeToken(); 1366 1367 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1368 SavedTok.getLocation()); 1369 // One special case is implicitly handled here: if the preceding tokens are 1370 // an ambiguous cast expression, such as "(T())++", then we recurse to 1371 // determine whether the '++' is prefix or postfix. 1372 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1373 UnaryExprOnly : AnyCastExpr, 1374 /*isAddressOfOperand*/false, NotCastExpr, 1375 NotTypeCast); 1376 if (NotCastExpr) { 1377 // If we return with NotCastExpr = true, we must not consume any tokens, 1378 // so put the token back where we found it. 1379 assert(Res.isInvalid()); 1380 UnconsumeToken(SavedTok); 1381 return ExprError(); 1382 } 1383 if (!Res.isInvalid()) { 1384 Expr *Arg = Res.get(); 1385 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1386 SavedKind, Arg); 1387 if (Res.isInvalid()) 1388 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1389 Arg->getEndLoc(), Arg); 1390 } 1391 return Res; 1392 } 1393 case tok::amp: { // unary-expression: '&' cast-expression 1394 if (NotPrimaryExpression) 1395 *NotPrimaryExpression = true; 1396 // Special treatment because of member pointers 1397 SourceLocation SavedLoc = ConsumeToken(); 1398 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1399 1400 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true); 1401 if (!Res.isInvalid()) { 1402 Expr *Arg = Res.get(); 1403 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1404 if (Res.isInvalid()) 1405 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1406 Arg); 1407 } 1408 return Res; 1409 } 1410 1411 case tok::star: // unary-expression: '*' cast-expression 1412 case tok::plus: // unary-expression: '+' cast-expression 1413 case tok::minus: // unary-expression: '-' cast-expression 1414 case tok::tilde: // unary-expression: '~' cast-expression 1415 case tok::exclaim: // unary-expression: '!' cast-expression 1416 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1417 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1418 if (NotPrimaryExpression) 1419 *NotPrimaryExpression = true; 1420 SourceLocation SavedLoc = ConsumeToken(); 1421 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1422 Res = ParseCastExpression(AnyCastExpr); 1423 if (!Res.isInvalid()) { 1424 Expr *Arg = Res.get(); 1425 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg, 1426 isAddressOfOperand); 1427 if (Res.isInvalid()) 1428 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1429 } 1430 return Res; 1431 } 1432 1433 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1434 if (NotPrimaryExpression) 1435 *NotPrimaryExpression = true; 1436 SourceLocation CoawaitLoc = ConsumeToken(); 1437 Res = ParseCastExpression(AnyCastExpr); 1438 if (!Res.isInvalid()) 1439 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1440 return Res; 1441 } 1442 1443 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1444 // __extension__ silences extension warnings in the subexpression. 1445 if (NotPrimaryExpression) 1446 *NotPrimaryExpression = true; 1447 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1448 SourceLocation SavedLoc = ConsumeToken(); 1449 Res = ParseCastExpression(AnyCastExpr); 1450 if (!Res.isInvalid()) 1451 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1452 return Res; 1453 } 1454 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1455 if (!getLangOpts().C11) 1456 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 1457 [[fallthrough]]; 1458 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1459 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1460 // unary-expression: '__alignof' '(' type-name ')' 1461 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1462 // unary-expression: 'sizeof' '(' type-name ')' 1463 // unary-expression: '__datasizeof' unary-expression 1464 // unary-expression: '__datasizeof' '(' type-name ')' 1465 case tok::kw___datasizeof: 1466 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1467 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1468 case tok::kw___builtin_omp_required_simd_align: 1469 case tok::kw___builtin_vectorelements: 1470 if (NotPrimaryExpression) 1471 *NotPrimaryExpression = true; 1472 AllowSuffix = false; 1473 Res = ParseUnaryExprOrTypeTraitExpression(); 1474 break; 1475 case tok::ampamp: { // unary-expression: '&&' identifier 1476 if (NotPrimaryExpression) 1477 *NotPrimaryExpression = true; 1478 SourceLocation AmpAmpLoc = ConsumeToken(); 1479 if (Tok.isNot(tok::identifier)) 1480 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1481 1482 if (getCurScope()->getFnParent() == nullptr) 1483 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1484 1485 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1486 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1487 Tok.getLocation()); 1488 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1489 ConsumeToken(); 1490 AllowSuffix = false; 1491 break; 1492 } 1493 case tok::kw_const_cast: 1494 case tok::kw_dynamic_cast: 1495 case tok::kw_reinterpret_cast: 1496 case tok::kw_static_cast: 1497 case tok::kw_addrspace_cast: 1498 if (NotPrimaryExpression) 1499 *NotPrimaryExpression = true; 1500 Res = ParseCXXCasts(); 1501 break; 1502 case tok::kw___builtin_bit_cast: 1503 if (NotPrimaryExpression) 1504 *NotPrimaryExpression = true; 1505 Res = ParseBuiltinBitCast(); 1506 break; 1507 case tok::kw_typeid: 1508 if (NotPrimaryExpression) 1509 *NotPrimaryExpression = true; 1510 Res = ParseCXXTypeid(); 1511 break; 1512 case tok::kw___uuidof: 1513 if (NotPrimaryExpression) 1514 *NotPrimaryExpression = true; 1515 Res = ParseCXXUuidof(); 1516 break; 1517 case tok::kw_this: 1518 Res = ParseCXXThis(); 1519 break; 1520 case tok::kw___builtin_sycl_unique_stable_name: 1521 Res = ParseSYCLUniqueStableNameExpression(); 1522 break; 1523 1524 case tok::annot_typename: 1525 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1526 TypeResult Type = getTypeAnnotation(Tok); 1527 1528 // Fake up a Declarator to use with ActOnTypeName. 1529 DeclSpec DS(AttrFactory); 1530 DS.SetRangeStart(Tok.getLocation()); 1531 DS.SetRangeEnd(Tok.getLastLoc()); 1532 1533 const char *PrevSpec = nullptr; 1534 unsigned DiagID; 1535 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1536 PrevSpec, DiagID, Type, 1537 Actions.getASTContext().getPrintingPolicy()); 1538 1539 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1540 DeclaratorContext::TypeName); 1541 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1542 if (Ty.isInvalid()) 1543 break; 1544 1545 ConsumeAnnotationToken(); 1546 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1547 Ty.get(), nullptr); 1548 break; 1549 } 1550 [[fallthrough]]; 1551 1552 case tok::annot_decltype: 1553 case tok::kw_char: 1554 case tok::kw_wchar_t: 1555 case tok::kw_char8_t: 1556 case tok::kw_char16_t: 1557 case tok::kw_char32_t: 1558 case tok::kw_bool: 1559 case tok::kw_short: 1560 case tok::kw_int: 1561 case tok::kw_long: 1562 case tok::kw___int64: 1563 case tok::kw___int128: 1564 case tok::kw__ExtInt: 1565 case tok::kw__BitInt: 1566 case tok::kw_signed: 1567 case tok::kw_unsigned: 1568 case tok::kw_half: 1569 case tok::kw_float: 1570 case tok::kw_double: 1571 case tok::kw___bf16: 1572 case tok::kw__Float16: 1573 case tok::kw___float128: 1574 case tok::kw___ibm128: 1575 case tok::kw_void: 1576 case tok::kw_auto: 1577 case tok::kw_typename: 1578 case tok::kw_typeof: 1579 case tok::kw___vector: 1580 case tok::kw__Accum: 1581 case tok::kw__Fract: 1582 case tok::kw__Sat: 1583 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1584 #include "clang/Basic/OpenCLImageTypes.def" 1585 { 1586 if (!getLangOpts().CPlusPlus) { 1587 Diag(Tok, diag::err_expected_expression); 1588 return ExprError(); 1589 } 1590 1591 // Everything henceforth is a postfix-expression. 1592 if (NotPrimaryExpression) 1593 *NotPrimaryExpression = true; 1594 1595 if (SavedKind == tok::kw_typename) { 1596 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1597 // typename-specifier braced-init-list 1598 if (TryAnnotateTypeOrScopeToken()) 1599 return ExprError(); 1600 1601 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1602 // We are trying to parse a simple-type-specifier but might not get such 1603 // a token after error recovery. 1604 return ExprError(); 1605 } 1606 1607 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1608 // simple-type-specifier braced-init-list 1609 // 1610 DeclSpec DS(AttrFactory); 1611 1612 ParseCXXSimpleTypeSpecifier(DS); 1613 if (Tok.isNot(tok::l_paren) && 1614 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1615 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1616 << DS.getSourceRange()); 1617 1618 if (Tok.is(tok::l_brace)) 1619 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1620 1621 Res = ParseCXXTypeConstructExpression(DS); 1622 break; 1623 } 1624 1625 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1626 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1627 // (We can end up in this situation after tentative parsing.) 1628 if (TryAnnotateTypeOrScopeToken()) 1629 return ExprError(); 1630 if (!Tok.is(tok::annot_cxxscope)) 1631 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1632 isTypeCast, isVectorLiteral, 1633 NotPrimaryExpression); 1634 1635 Token Next = NextToken(); 1636 if (Next.is(tok::annot_template_id)) { 1637 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1638 if (TemplateId->Kind == TNK_Type_template) { 1639 // We have a qualified template-id that we know refers to a 1640 // type, translate it into a type and continue parsing as a 1641 // cast expression. 1642 CXXScopeSpec SS; 1643 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1644 /*ObjectHasErrors=*/false, 1645 /*EnteringContext=*/false); 1646 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1647 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1648 isTypeCast, isVectorLiteral, 1649 NotPrimaryExpression); 1650 } 1651 } 1652 1653 // Parse as an id-expression. 1654 Res = ParseCXXIdExpression(isAddressOfOperand); 1655 break; 1656 } 1657 1658 case tok::annot_template_id: { // [C++] template-id 1659 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1660 if (TemplateId->Kind == TNK_Type_template) { 1661 // We have a template-id that we know refers to a type, 1662 // translate it into a type and continue parsing as a cast 1663 // expression. 1664 CXXScopeSpec SS; 1665 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1666 return ParseCastExpression(ParseKind, isAddressOfOperand, 1667 NotCastExpr, isTypeCast, isVectorLiteral, 1668 NotPrimaryExpression); 1669 } 1670 1671 // Fall through to treat the template-id as an id-expression. 1672 [[fallthrough]]; 1673 } 1674 1675 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1676 Res = ParseCXXIdExpression(isAddressOfOperand); 1677 break; 1678 1679 case tok::coloncolon: { 1680 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1681 // annotates the token, tail recurse. 1682 if (TryAnnotateTypeOrScopeToken()) 1683 return ExprError(); 1684 if (!Tok.is(tok::coloncolon)) 1685 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1686 isVectorLiteral, NotPrimaryExpression); 1687 1688 // ::new -> [C++] new-expression 1689 // ::delete -> [C++] delete-expression 1690 SourceLocation CCLoc = ConsumeToken(); 1691 if (Tok.is(tok::kw_new)) { 1692 if (NotPrimaryExpression) 1693 *NotPrimaryExpression = true; 1694 Res = ParseCXXNewExpression(true, CCLoc); 1695 AllowSuffix = false; 1696 break; 1697 } 1698 if (Tok.is(tok::kw_delete)) { 1699 if (NotPrimaryExpression) 1700 *NotPrimaryExpression = true; 1701 Res = ParseCXXDeleteExpression(true, CCLoc); 1702 AllowSuffix = false; 1703 break; 1704 } 1705 1706 // This is not a type name or scope specifier, it is an invalid expression. 1707 Diag(CCLoc, diag::err_expected_expression); 1708 return ExprError(); 1709 } 1710 1711 case tok::kw_new: // [C++] new-expression 1712 if (NotPrimaryExpression) 1713 *NotPrimaryExpression = true; 1714 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1715 AllowSuffix = false; 1716 break; 1717 1718 case tok::kw_delete: // [C++] delete-expression 1719 if (NotPrimaryExpression) 1720 *NotPrimaryExpression = true; 1721 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1722 AllowSuffix = false; 1723 break; 1724 1725 case tok::kw_requires: // [C++2a] requires-expression 1726 Res = ParseRequiresExpression(); 1727 AllowSuffix = false; 1728 break; 1729 1730 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1731 if (NotPrimaryExpression) 1732 *NotPrimaryExpression = true; 1733 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1734 SourceLocation KeyLoc = ConsumeToken(); 1735 BalancedDelimiterTracker T(*this, tok::l_paren); 1736 1737 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1738 return ExprError(); 1739 // C++11 [expr.unary.noexcept]p1: 1740 // The noexcept operator determines whether the evaluation of its operand, 1741 // which is an unevaluated operand, can throw an exception. 1742 EnterExpressionEvaluationContext Unevaluated( 1743 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1744 Res = ParseExpression(); 1745 1746 T.consumeClose(); 1747 1748 if (!Res.isInvalid()) 1749 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1750 T.getCloseLocation()); 1751 AllowSuffix = false; 1752 break; 1753 } 1754 1755 #define TYPE_TRAIT(N,Spelling,K) \ 1756 case tok::kw_##Spelling: 1757 #include "clang/Basic/TokenKinds.def" 1758 Res = ParseTypeTrait(); 1759 break; 1760 1761 case tok::kw___array_rank: 1762 case tok::kw___array_extent: 1763 if (NotPrimaryExpression) 1764 *NotPrimaryExpression = true; 1765 Res = ParseArrayTypeTrait(); 1766 break; 1767 1768 case tok::kw___is_lvalue_expr: 1769 case tok::kw___is_rvalue_expr: 1770 if (NotPrimaryExpression) 1771 *NotPrimaryExpression = true; 1772 Res = ParseExpressionTrait(); 1773 break; 1774 1775 case tok::at: { 1776 if (NotPrimaryExpression) 1777 *NotPrimaryExpression = true; 1778 SourceLocation AtLoc = ConsumeToken(); 1779 return ParseObjCAtExpression(AtLoc); 1780 } 1781 case tok::caret: 1782 Res = ParseBlockLiteralExpression(); 1783 break; 1784 case tok::code_completion: { 1785 cutOffParsing(); 1786 Actions.CodeCompleteExpression(getCurScope(), 1787 PreferredType.get(Tok.getLocation())); 1788 return ExprError(); 1789 } 1790 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: 1791 #include "clang/Basic/TransformTypeTraits.def" 1792 // HACK: libstdc++ uses some of the transform-type-traits as alias 1793 // templates, so we need to work around this. 1794 if (!NextToken().is(tok::l_paren)) { 1795 Tok.setKind(tok::identifier); 1796 Diag(Tok, diag::ext_keyword_as_ident) 1797 << Tok.getIdentifierInfo()->getName() << 0; 1798 goto ParseIdentifier; 1799 } 1800 goto ExpectedExpression; 1801 case tok::l_square: 1802 if (getLangOpts().CPlusPlus11) { 1803 if (getLangOpts().ObjC) { 1804 // C++11 lambda expressions and Objective-C message sends both start with a 1805 // square bracket. There are three possibilities here: 1806 // we have a valid lambda expression, we have an invalid lambda 1807 // expression, or we have something that doesn't appear to be a lambda. 1808 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1809 Res = TryParseLambdaExpression(); 1810 if (!Res.isInvalid() && !Res.get()) { 1811 // We assume Objective-C++ message expressions are not 1812 // primary-expressions. 1813 if (NotPrimaryExpression) 1814 *NotPrimaryExpression = true; 1815 Res = ParseObjCMessageExpression(); 1816 } 1817 break; 1818 } 1819 Res = ParseLambdaExpression(); 1820 break; 1821 } 1822 if (getLangOpts().ObjC) { 1823 Res = ParseObjCMessageExpression(); 1824 break; 1825 } 1826 [[fallthrough]]; 1827 default: 1828 ExpectedExpression: 1829 NotCastExpr = true; 1830 return ExprError(); 1831 } 1832 1833 // Check to see whether Res is a function designator only. If it is and we 1834 // are compiling for OpenCL, we need to return an error as this implies 1835 // that the address of the function is being taken, which is illegal in CL. 1836 1837 if (ParseKind == PrimaryExprOnly) 1838 // This is strictly a primary-expression - no postfix-expr pieces should be 1839 // parsed. 1840 return Res; 1841 1842 if (!AllowSuffix) { 1843 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1844 // error already. 1845 if (Res.isInvalid()) 1846 return Res; 1847 1848 switch (Tok.getKind()) { 1849 case tok::l_square: 1850 case tok::l_paren: 1851 case tok::plusplus: 1852 case tok::minusminus: 1853 // "expected ';'" or similar is probably the right diagnostic here. Let 1854 // the caller decide what to do. 1855 if (Tok.isAtStartOfLine()) 1856 return Res; 1857 1858 [[fallthrough]]; 1859 case tok::period: 1860 case tok::arrow: 1861 break; 1862 1863 default: 1864 return Res; 1865 } 1866 1867 // This was a unary-expression for which a postfix-expression suffix is 1868 // not permitted by the grammar (eg, a sizeof expression or 1869 // new-expression or similar). Diagnose but parse the suffix anyway. 1870 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1871 << Tok.getKind() << Res.get()->getSourceRange() 1872 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1873 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1874 ")"); 1875 } 1876 1877 // These can be followed by postfix-expr pieces. 1878 PreferredType = SavedType; 1879 Res = ParsePostfixExpressionSuffix(Res); 1880 if (getLangOpts().OpenCL && 1881 !getActions().getOpenCLOptions().isAvailableOption( 1882 "__cl_clang_function_pointers", getLangOpts())) 1883 if (Expr *PostfixExpr = Res.get()) { 1884 QualType Ty = PostfixExpr->getType(); 1885 if (!Ty.isNull() && Ty->isFunctionType()) { 1886 Diag(PostfixExpr->getExprLoc(), 1887 diag::err_opencl_taking_function_address_parser); 1888 return ExprError(); 1889 } 1890 } 1891 1892 return Res; 1893 } 1894 1895 /// Once the leading part of a postfix-expression is parsed, this 1896 /// method parses any suffixes that apply. 1897 /// 1898 /// \verbatim 1899 /// postfix-expression: [C99 6.5.2] 1900 /// primary-expression 1901 /// postfix-expression '[' expression ']' 1902 /// postfix-expression '[' braced-init-list ']' 1903 /// postfix-expression '[' expression-list [opt] ']' [C++23 12.4.5] 1904 /// postfix-expression '(' argument-expression-list[opt] ')' 1905 /// postfix-expression '.' identifier 1906 /// postfix-expression '->' identifier 1907 /// postfix-expression '++' 1908 /// postfix-expression '--' 1909 /// '(' type-name ')' '{' initializer-list '}' 1910 /// '(' type-name ')' '{' initializer-list ',' '}' 1911 /// 1912 /// argument-expression-list: [C99 6.5.2] 1913 /// argument-expression ...[opt] 1914 /// argument-expression-list ',' assignment-expression ...[opt] 1915 /// \endverbatim 1916 ExprResult 1917 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1918 // Now that the primary-expression piece of the postfix-expression has been 1919 // parsed, see if there are any postfix-expression pieces here. 1920 SourceLocation Loc; 1921 auto SavedType = PreferredType; 1922 while (true) { 1923 // Each iteration relies on preferred type for the whole expression. 1924 PreferredType = SavedType; 1925 switch (Tok.getKind()) { 1926 case tok::code_completion: 1927 if (InMessageExpression) 1928 return LHS; 1929 1930 cutOffParsing(); 1931 Actions.CodeCompletePostfixExpression( 1932 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1933 return ExprError(); 1934 1935 case tok::identifier: 1936 // If we see identifier: after an expression, and we're not already in a 1937 // message send, then this is probably a message send with a missing 1938 // opening bracket '['. 1939 if (getLangOpts().ObjC && !InMessageExpression && 1940 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1941 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1942 nullptr, LHS.get()); 1943 break; 1944 } 1945 // Fall through; this isn't a message send. 1946 [[fallthrough]]; 1947 1948 default: // Not a postfix-expression suffix. 1949 return LHS; 1950 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1951 // If we have a array postfix expression that starts on a new line and 1952 // Objective-C is enabled, it is highly likely that the user forgot a 1953 // semicolon after the base expression and that the array postfix-expr is 1954 // actually another message send. In this case, do some look-ahead to see 1955 // if the contents of the square brackets are obviously not a valid 1956 // expression and recover by pretending there is no suffix. 1957 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1958 isSimpleObjCMessageExpression()) 1959 return LHS; 1960 1961 // Reject array indices starting with a lambda-expression. '[[' is 1962 // reserved for attributes. 1963 if (CheckProhibitedCXX11Attribute()) { 1964 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1965 return ExprError(); 1966 } 1967 BalancedDelimiterTracker T(*this, tok::l_square); 1968 T.consumeOpen(); 1969 Loc = T.getOpenLocation(); 1970 ExprResult Length, Stride; 1971 SourceLocation ColonLocFirst, ColonLocSecond; 1972 ExprVector ArgExprs; 1973 bool HasError = false; 1974 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1975 1976 // We try to parse a list of indexes in all language mode first 1977 // and, in we find 0 or one index, we try to parse an OpenMP array 1978 // section. This allow us to support C++23 multi dimensional subscript and 1979 // OpenMp sections in the same language mode. 1980 if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) { 1981 if (!getLangOpts().CPlusPlus23) { 1982 ExprResult Idx; 1983 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1984 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1985 Idx = ParseBraceInitializer(); 1986 } else { 1987 Idx = ParseExpression(); // May be a comma expression 1988 } 1989 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1990 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1991 if (Idx.isInvalid()) { 1992 HasError = true; 1993 } else { 1994 ArgExprs.push_back(Idx.get()); 1995 } 1996 } else if (Tok.isNot(tok::r_square)) { 1997 if (ParseExpressionList(ArgExprs)) { 1998 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1999 HasError = true; 2000 } 2001 } 2002 } 2003 2004 if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) { 2005 ColonProtectionRAIIObject RAII(*this); 2006 if (Tok.is(tok::colon)) { 2007 // Consume ':' 2008 ColonLocFirst = ConsumeToken(); 2009 if (Tok.isNot(tok::r_square) && 2010 (getLangOpts().OpenMP < 50 || 2011 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) { 2012 Length = ParseExpression(); 2013 Length = Actions.CorrectDelayedTyposInExpr(Length); 2014 } 2015 } 2016 if (getLangOpts().OpenMP >= 50 && 2017 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 2018 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 2019 Tok.is(tok::colon)) { 2020 // Consume ':' 2021 ColonLocSecond = ConsumeToken(); 2022 if (Tok.isNot(tok::r_square)) { 2023 Stride = ParseExpression(); 2024 } 2025 } 2026 } 2027 2028 SourceLocation RLoc = Tok.getLocation(); 2029 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2030 2031 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() && 2032 !Stride.isInvalid() && Tok.is(tok::r_square)) { 2033 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 2034 LHS = Actions.ActOnOMPArraySectionExpr( 2035 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 2036 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc); 2037 } else { 2038 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 2039 ArgExprs, RLoc); 2040 } 2041 } else { 2042 LHS = ExprError(); 2043 } 2044 2045 // Match the ']'. 2046 T.consumeClose(); 2047 break; 2048 } 2049 2050 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 2051 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 2052 // '(' argument-expression-list[opt] ')' 2053 tok::TokenKind OpKind = Tok.getKind(); 2054 InMessageExpressionRAIIObject InMessage(*this, false); 2055 2056 Expr *ExecConfig = nullptr; 2057 2058 BalancedDelimiterTracker PT(*this, tok::l_paren); 2059 2060 if (OpKind == tok::lesslessless) { 2061 ExprVector ExecConfigExprs; 2062 SourceLocation OpenLoc = ConsumeToken(); 2063 2064 if (ParseSimpleExpressionList(ExecConfigExprs)) { 2065 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2066 LHS = ExprError(); 2067 } 2068 2069 SourceLocation CloseLoc; 2070 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 2071 } else if (LHS.isInvalid()) { 2072 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2073 } else { 2074 // There was an error closing the brackets 2075 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 2076 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 2077 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2078 LHS = ExprError(); 2079 } 2080 2081 if (!LHS.isInvalid()) { 2082 if (ExpectAndConsume(tok::l_paren)) 2083 LHS = ExprError(); 2084 else 2085 Loc = PrevTokLocation; 2086 } 2087 2088 if (!LHS.isInvalid()) { 2089 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 2090 OpenLoc, 2091 ExecConfigExprs, 2092 CloseLoc); 2093 if (ECResult.isInvalid()) 2094 LHS = ExprError(); 2095 else 2096 ExecConfig = ECResult.get(); 2097 } 2098 } else { 2099 PT.consumeOpen(); 2100 Loc = PT.getOpenLocation(); 2101 } 2102 2103 ExprVector ArgExprs; 2104 auto RunSignatureHelp = [&]() -> QualType { 2105 QualType PreferredType = Actions.ProduceCallSignatureHelp( 2106 LHS.get(), ArgExprs, PT.getOpenLocation()); 2107 CalledSignatureHelp = true; 2108 return PreferredType; 2109 }; 2110 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2111 if (Tok.isNot(tok::r_paren)) { 2112 if (ParseExpressionList(ArgExprs, [&] { 2113 PreferredType.enterFunctionArgument(Tok.getLocation(), 2114 RunSignatureHelp); 2115 })) { 2116 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2117 // If we got an error when parsing expression list, we don't call 2118 // the CodeCompleteCall handler inside the parser. So call it here 2119 // to make sure we get overload suggestions even when we are in the 2120 // middle of a parameter. 2121 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2122 RunSignatureHelp(); 2123 LHS = ExprError(); 2124 } else if (LHS.isInvalid()) { 2125 for (auto &E : ArgExprs) 2126 Actions.CorrectDelayedTyposInExpr(E); 2127 } 2128 } 2129 } 2130 2131 // Match the ')'. 2132 if (LHS.isInvalid()) { 2133 SkipUntil(tok::r_paren, StopAtSemi); 2134 } else if (Tok.isNot(tok::r_paren)) { 2135 bool HadDelayedTypo = false; 2136 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2137 HadDelayedTypo = true; 2138 for (auto &E : ArgExprs) 2139 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2140 HadDelayedTypo = true; 2141 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2142 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2143 // the unmatched l_paren. 2144 if (HadDelayedTypo) 2145 SkipUntil(tok::r_paren, StopAtSemi); 2146 else 2147 PT.consumeClose(); 2148 LHS = ExprError(); 2149 } else { 2150 Expr *Fn = LHS.get(); 2151 SourceLocation RParLoc = Tok.getLocation(); 2152 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2153 ExecConfig); 2154 if (LHS.isInvalid()) { 2155 ArgExprs.insert(ArgExprs.begin(), Fn); 2156 LHS = 2157 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2158 } 2159 PT.consumeClose(); 2160 } 2161 2162 break; 2163 } 2164 case tok::arrow: 2165 case tok::period: { 2166 // postfix-expression: p-e '->' template[opt] id-expression 2167 // postfix-expression: p-e '.' template[opt] id-expression 2168 tok::TokenKind OpKind = Tok.getKind(); 2169 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2170 2171 CXXScopeSpec SS; 2172 ParsedType ObjectType; 2173 bool MayBePseudoDestructor = false; 2174 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2175 2176 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2177 2178 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2179 Expr *Base = OrigLHS; 2180 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2181 if (BaseType && Tok.is(tok::l_paren) && 2182 (BaseType->isFunctionType() || 2183 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2184 Diag(OpLoc, diag::err_function_is_not_record) 2185 << OpKind << Base->getSourceRange() 2186 << FixItHint::CreateRemoval(OpLoc); 2187 return ParsePostfixExpressionSuffix(Base); 2188 } 2189 2190 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2191 OpKind, ObjectType, 2192 MayBePseudoDestructor); 2193 if (LHS.isInvalid()) { 2194 // Clang will try to perform expression based completion as a 2195 // fallback, which is confusing in case of member references. So we 2196 // stop here without any completions. 2197 if (Tok.is(tok::code_completion)) { 2198 cutOffParsing(); 2199 return ExprError(); 2200 } 2201 break; 2202 } 2203 ParseOptionalCXXScopeSpecifier( 2204 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2205 /*EnteringContext=*/false, &MayBePseudoDestructor); 2206 if (SS.isNotEmpty()) 2207 ObjectType = nullptr; 2208 } 2209 2210 if (Tok.is(tok::code_completion)) { 2211 tok::TokenKind CorrectedOpKind = 2212 OpKind == tok::arrow ? tok::period : tok::arrow; 2213 ExprResult CorrectedLHS(/*Invalid=*/true); 2214 if (getLangOpts().CPlusPlus && OrigLHS) { 2215 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2216 // hack. 2217 Sema::TentativeAnalysisScope Trap(Actions); 2218 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2219 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2220 MayBePseudoDestructor); 2221 } 2222 2223 Expr *Base = LHS.get(); 2224 Expr *CorrectedBase = CorrectedLHS.get(); 2225 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2226 CorrectedBase = Base; 2227 2228 // Code completion for a member access expression. 2229 cutOffParsing(); 2230 Actions.CodeCompleteMemberReferenceExpr( 2231 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2232 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2233 PreferredType.get(Tok.getLocation())); 2234 2235 return ExprError(); 2236 } 2237 2238 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2239 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2240 ObjectType); 2241 break; 2242 } 2243 2244 // Either the action has told us that this cannot be a 2245 // pseudo-destructor expression (based on the type of base 2246 // expression), or we didn't see a '~' in the right place. We 2247 // can still parse a destructor name here, but in that case it 2248 // names a real destructor. 2249 // Allow explicit constructor calls in Microsoft mode. 2250 // FIXME: Add support for explicit call of template constructor. 2251 SourceLocation TemplateKWLoc; 2252 UnqualifiedId Name; 2253 if (getLangOpts().ObjC && OpKind == tok::period && 2254 Tok.is(tok::kw_class)) { 2255 // Objective-C++: 2256 // After a '.' in a member access expression, treat the keyword 2257 // 'class' as if it were an identifier. 2258 // 2259 // This hack allows property access to the 'class' method because it is 2260 // such a common method name. For other C++ keywords that are 2261 // Objective-C method names, one must use the message send syntax. 2262 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2263 SourceLocation Loc = ConsumeToken(); 2264 Name.setIdentifier(Id, Loc); 2265 } else if (ParseUnqualifiedId( 2266 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2267 /*EnteringContext=*/false, 2268 /*AllowDestructorName=*/true, 2269 /*AllowConstructorName=*/ 2270 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2271 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2272 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2273 LHS = ExprError(); 2274 } 2275 2276 if (!LHS.isInvalid()) 2277 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2278 OpKind, SS, TemplateKWLoc, Name, 2279 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2280 : nullptr); 2281 if (!LHS.isInvalid()) { 2282 if (Tok.is(tok::less)) 2283 checkPotentialAngleBracket(LHS); 2284 } else if (OrigLHS && Name.isValid()) { 2285 // Preserve the LHS if the RHS is an invalid member. 2286 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2287 Name.getEndLoc(), {OrigLHS}); 2288 } 2289 break; 2290 } 2291 case tok::plusplus: // postfix-expression: postfix-expression '++' 2292 case tok::minusminus: // postfix-expression: postfix-expression '--' 2293 if (!LHS.isInvalid()) { 2294 Expr *Arg = LHS.get(); 2295 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2296 Tok.getKind(), Arg); 2297 if (LHS.isInvalid()) 2298 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2299 Tok.getLocation(), Arg); 2300 } 2301 ConsumeToken(); 2302 break; 2303 } 2304 } 2305 } 2306 2307 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2308 /// vec_step and we are at the start of an expression or a parenthesized 2309 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2310 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2311 /// 2312 /// \verbatim 2313 /// unary-expression: [C99 6.5.3] 2314 /// 'sizeof' unary-expression 2315 /// 'sizeof' '(' type-name ')' 2316 /// [Clang] '__datasizeof' unary-expression 2317 /// [Clang] '__datasizeof' '(' type-name ')' 2318 /// [GNU] '__alignof' unary-expression 2319 /// [GNU] '__alignof' '(' type-name ')' 2320 /// [C11] '_Alignof' '(' type-name ')' 2321 /// [C++0x] 'alignof' '(' type-id ')' 2322 /// 2323 /// [GNU] typeof-specifier: 2324 /// typeof ( expressions ) 2325 /// typeof ( type-name ) 2326 /// [GNU/C++] typeof unary-expression 2327 /// [C23] typeof-specifier: 2328 /// typeof '(' typeof-specifier-argument ')' 2329 /// typeof_unqual '(' typeof-specifier-argument ')' 2330 /// 2331 /// typeof-specifier-argument: 2332 /// expression 2333 /// type-name 2334 /// 2335 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2336 /// vec_step ( expressions ) 2337 /// vec_step ( type-name ) 2338 /// \endverbatim 2339 ExprResult 2340 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2341 bool &isCastExpr, 2342 ParsedType &CastTy, 2343 SourceRange &CastRange) { 2344 2345 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof, 2346 tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof, 2347 tok::kw__Alignof, tok::kw_vec_step, 2348 tok::kw___builtin_omp_required_simd_align, 2349 tok::kw___builtin_vectorelements) && 2350 "Not a typeof/sizeof/alignof/vec_step expression!"); 2351 2352 ExprResult Operand; 2353 2354 // If the operand doesn't start with an '(', it must be an expression. 2355 if (Tok.isNot(tok::l_paren)) { 2356 // If construct allows a form without parenthesis, user may forget to put 2357 // pathenthesis around type name. 2358 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2359 tok::kw_alignof, tok::kw__Alignof)) { 2360 if (isTypeIdUnambiguously()) { 2361 DeclSpec DS(AttrFactory); 2362 ParseSpecifierQualifierList(DS); 2363 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 2364 DeclaratorContext::TypeName); 2365 ParseDeclarator(DeclaratorInfo); 2366 2367 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2368 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2369 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) { 2370 Diag(OpTok.getLocation(), 2371 diag::err_expected_parentheses_around_typename) 2372 << OpTok.getName(); 2373 } else { 2374 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2375 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(") 2376 << FixItHint::CreateInsertion(RParenLoc, ")"); 2377 } 2378 isCastExpr = true; 2379 return ExprEmpty(); 2380 } 2381 } 2382 2383 isCastExpr = false; 2384 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) && 2385 !getLangOpts().CPlusPlus) { 2386 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2387 << tok::l_paren; 2388 return ExprError(); 2389 } 2390 2391 Operand = ParseCastExpression(UnaryExprOnly); 2392 } else { 2393 // If it starts with a '(', we know that it is either a parenthesized 2394 // type-name, or it is a unary-expression that starts with a compound 2395 // literal, or starts with a primary-expression that is a parenthesized 2396 // expression. 2397 ParenParseOption ExprType = CastExpr; 2398 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2399 2400 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2401 false, CastTy, RParenLoc); 2402 CastRange = SourceRange(LParenLoc, RParenLoc); 2403 2404 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2405 // a type. 2406 if (ExprType == CastExpr) { 2407 isCastExpr = true; 2408 return ExprEmpty(); 2409 } 2410 2411 if (getLangOpts().CPlusPlus || 2412 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) { 2413 // GNU typeof in C requires the expression to be parenthesized. Not so for 2414 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2415 // the start of a unary-expression, but doesn't include any postfix 2416 // pieces. Parse these now if present. 2417 if (!Operand.isInvalid()) 2418 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2419 } 2420 } 2421 2422 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2423 isCastExpr = false; 2424 return Operand; 2425 } 2426 2427 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as 2428 /// a parameter. 2429 ExprResult Parser::ParseSYCLUniqueStableNameExpression() { 2430 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) && 2431 "Not __builtin_sycl_unique_stable_name"); 2432 2433 SourceLocation OpLoc = ConsumeToken(); 2434 BalancedDelimiterTracker T(*this, tok::l_paren); 2435 2436 // __builtin_sycl_unique_stable_name expressions are always parenthesized. 2437 if (T.expectAndConsume(diag::err_expected_lparen_after, 2438 "__builtin_sycl_unique_stable_name")) 2439 return ExprError(); 2440 2441 TypeResult Ty = ParseTypeName(); 2442 2443 if (Ty.isInvalid()) { 2444 T.skipToEnd(); 2445 return ExprError(); 2446 } 2447 2448 if (T.consumeClose()) 2449 return ExprError(); 2450 2451 return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(), 2452 T.getCloseLocation(), Ty.get()); 2453 } 2454 2455 /// Parse a sizeof or alignof expression. 2456 /// 2457 /// \verbatim 2458 /// unary-expression: [C99 6.5.3] 2459 /// 'sizeof' unary-expression 2460 /// 'sizeof' '(' type-name ')' 2461 /// [C++11] 'sizeof' '...' '(' identifier ')' 2462 /// [Clang] '__datasizeof' unary-expression 2463 /// [Clang] '__datasizeof' '(' type-name ')' 2464 /// [GNU] '__alignof' unary-expression 2465 /// [GNU] '__alignof' '(' type-name ')' 2466 /// [C11] '_Alignof' '(' type-name ')' 2467 /// [C++11] 'alignof' '(' type-id ')' 2468 /// \endverbatim 2469 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2470 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2471 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2472 tok::kw___builtin_omp_required_simd_align, 2473 tok::kw___builtin_vectorelements) && 2474 "Not a sizeof/alignof/vec_step expression!"); 2475 Token OpTok = Tok; 2476 ConsumeToken(); 2477 2478 // [C++11] 'sizeof' '...' '(' identifier ')' 2479 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2480 SourceLocation EllipsisLoc = ConsumeToken(); 2481 SourceLocation LParenLoc, RParenLoc; 2482 IdentifierInfo *Name = nullptr; 2483 SourceLocation NameLoc; 2484 if (Tok.is(tok::l_paren)) { 2485 BalancedDelimiterTracker T(*this, tok::l_paren); 2486 T.consumeOpen(); 2487 LParenLoc = T.getOpenLocation(); 2488 if (Tok.is(tok::identifier)) { 2489 Name = Tok.getIdentifierInfo(); 2490 NameLoc = ConsumeToken(); 2491 T.consumeClose(); 2492 RParenLoc = T.getCloseLocation(); 2493 if (RParenLoc.isInvalid()) 2494 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2495 } else { 2496 Diag(Tok, diag::err_expected_parameter_pack); 2497 SkipUntil(tok::r_paren, StopAtSemi); 2498 } 2499 } else if (Tok.is(tok::identifier)) { 2500 Name = Tok.getIdentifierInfo(); 2501 NameLoc = ConsumeToken(); 2502 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2503 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2504 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2505 << Name 2506 << FixItHint::CreateInsertion(LParenLoc, "(") 2507 << FixItHint::CreateInsertion(RParenLoc, ")"); 2508 } else { 2509 Diag(Tok, diag::err_sizeof_parameter_pack); 2510 } 2511 2512 if (!Name) 2513 return ExprError(); 2514 2515 EnterExpressionEvaluationContext Unevaluated( 2516 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2517 Sema::ReuseLambdaContextDecl); 2518 2519 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2520 OpTok.getLocation(), 2521 *Name, NameLoc, 2522 RParenLoc); 2523 } 2524 2525 if (getLangOpts().CPlusPlus && 2526 OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2527 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2528 else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof)) 2529 Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName(); 2530 2531 EnterExpressionEvaluationContext Unevaluated( 2532 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2533 Sema::ReuseLambdaContextDecl); 2534 2535 bool isCastExpr; 2536 ParsedType CastTy; 2537 SourceRange CastRange; 2538 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2539 isCastExpr, 2540 CastTy, 2541 CastRange); 2542 2543 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2544 switch (OpTok.getKind()) { 2545 case tok::kw_alignof: 2546 case tok::kw__Alignof: 2547 ExprKind = UETT_AlignOf; 2548 break; 2549 case tok::kw___alignof: 2550 ExprKind = UETT_PreferredAlignOf; 2551 break; 2552 case tok::kw_vec_step: 2553 ExprKind = UETT_VecStep; 2554 break; 2555 case tok::kw___builtin_omp_required_simd_align: 2556 ExprKind = UETT_OpenMPRequiredSimdAlign; 2557 break; 2558 case tok::kw___datasizeof: 2559 ExprKind = UETT_DataSizeOf; 2560 break; 2561 case tok::kw___builtin_vectorelements: 2562 ExprKind = UETT_VectorElements; 2563 break; 2564 default: 2565 break; 2566 } 2567 2568 if (isCastExpr) 2569 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2570 ExprKind, 2571 /*IsType=*/true, 2572 CastTy.getAsOpaquePtr(), 2573 CastRange); 2574 2575 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2576 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2577 2578 // If we get here, the operand to the sizeof/alignof was an expression. 2579 if (!Operand.isInvalid()) 2580 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2581 ExprKind, 2582 /*IsType=*/false, 2583 Operand.get(), 2584 CastRange); 2585 return Operand; 2586 } 2587 2588 /// ParseBuiltinPrimaryExpression 2589 /// 2590 /// \verbatim 2591 /// primary-expression: [C99 6.5.1] 2592 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2593 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2594 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2595 /// assign-expr ')' 2596 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2597 /// [GNU] '__builtin_FILE' '(' ')' 2598 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 2599 /// [GNU] '__builtin_FUNCTION' '(' ')' 2600 /// [MS] '__builtin_FUNCSIG' '(' ')' 2601 /// [GNU] '__builtin_LINE' '(' ')' 2602 /// [CLANG] '__builtin_COLUMN' '(' ')' 2603 /// [GNU] '__builtin_source_location' '(' ')' 2604 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2605 /// 2606 /// [GNU] offsetof-member-designator: 2607 /// [GNU] identifier 2608 /// [GNU] offsetof-member-designator '.' identifier 2609 /// [GNU] offsetof-member-designator '[' expression ']' 2610 /// \endverbatim 2611 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2612 ExprResult Res; 2613 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2614 2615 tok::TokenKind T = Tok.getKind(); 2616 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2617 2618 // All of these start with an open paren. 2619 if (Tok.isNot(tok::l_paren)) 2620 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2621 << tok::l_paren); 2622 2623 BalancedDelimiterTracker PT(*this, tok::l_paren); 2624 PT.consumeOpen(); 2625 2626 // TODO: Build AST. 2627 2628 switch (T) { 2629 default: llvm_unreachable("Not a builtin primary expression!"); 2630 case tok::kw___builtin_va_arg: { 2631 ExprResult Expr(ParseAssignmentExpression()); 2632 2633 if (ExpectAndConsume(tok::comma)) { 2634 SkipUntil(tok::r_paren, StopAtSemi); 2635 Expr = ExprError(); 2636 } 2637 2638 TypeResult Ty = ParseTypeName(); 2639 2640 if (Tok.isNot(tok::r_paren)) { 2641 Diag(Tok, diag::err_expected) << tok::r_paren; 2642 Expr = ExprError(); 2643 } 2644 2645 if (Expr.isInvalid() || Ty.isInvalid()) 2646 Res = ExprError(); 2647 else 2648 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2649 break; 2650 } 2651 case tok::kw___builtin_offsetof: { 2652 SourceLocation TypeLoc = Tok.getLocation(); 2653 auto OOK = Sema::OffsetOfKind::OOK_Builtin; 2654 if (Tok.getLocation().isMacroID()) { 2655 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 2656 Tok.getLocation(), PP.getSourceManager(), getLangOpts()); 2657 if (MacroName == "offsetof") 2658 OOK = Sema::OffsetOfKind::OOK_Macro; 2659 } 2660 TypeResult Ty; 2661 { 2662 OffsetOfStateRAIIObject InOffsetof(*this, OOK); 2663 Ty = ParseTypeName(); 2664 if (Ty.isInvalid()) { 2665 SkipUntil(tok::r_paren, StopAtSemi); 2666 return ExprError(); 2667 } 2668 } 2669 2670 if (ExpectAndConsume(tok::comma)) { 2671 SkipUntil(tok::r_paren, StopAtSemi); 2672 return ExprError(); 2673 } 2674 2675 // We must have at least one identifier here. 2676 if (Tok.isNot(tok::identifier)) { 2677 Diag(Tok, diag::err_expected) << tok::identifier; 2678 SkipUntil(tok::r_paren, StopAtSemi); 2679 return ExprError(); 2680 } 2681 2682 // Keep track of the various subcomponents we see. 2683 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2684 2685 Comps.push_back(Sema::OffsetOfComponent()); 2686 Comps.back().isBrackets = false; 2687 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2688 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2689 2690 // FIXME: This loop leaks the index expressions on error. 2691 while (true) { 2692 if (Tok.is(tok::period)) { 2693 // offsetof-member-designator: offsetof-member-designator '.' identifier 2694 Comps.push_back(Sema::OffsetOfComponent()); 2695 Comps.back().isBrackets = false; 2696 Comps.back().LocStart = ConsumeToken(); 2697 2698 if (Tok.isNot(tok::identifier)) { 2699 Diag(Tok, diag::err_expected) << tok::identifier; 2700 SkipUntil(tok::r_paren, StopAtSemi); 2701 return ExprError(); 2702 } 2703 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2704 Comps.back().LocEnd = ConsumeToken(); 2705 } else if (Tok.is(tok::l_square)) { 2706 if (CheckProhibitedCXX11Attribute()) 2707 return ExprError(); 2708 2709 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2710 Comps.push_back(Sema::OffsetOfComponent()); 2711 Comps.back().isBrackets = true; 2712 BalancedDelimiterTracker ST(*this, tok::l_square); 2713 ST.consumeOpen(); 2714 Comps.back().LocStart = ST.getOpenLocation(); 2715 Res = ParseExpression(); 2716 if (Res.isInvalid()) { 2717 SkipUntil(tok::r_paren, StopAtSemi); 2718 return Res; 2719 } 2720 Comps.back().U.E = Res.get(); 2721 2722 ST.consumeClose(); 2723 Comps.back().LocEnd = ST.getCloseLocation(); 2724 } else { 2725 if (Tok.isNot(tok::r_paren)) { 2726 PT.consumeClose(); 2727 Res = ExprError(); 2728 } else if (Ty.isInvalid()) { 2729 Res = ExprError(); 2730 } else { 2731 PT.consumeClose(); 2732 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2733 Ty.get(), Comps, 2734 PT.getCloseLocation()); 2735 } 2736 break; 2737 } 2738 } 2739 break; 2740 } 2741 case tok::kw___builtin_choose_expr: { 2742 ExprResult Cond(ParseAssignmentExpression()); 2743 if (Cond.isInvalid()) { 2744 SkipUntil(tok::r_paren, StopAtSemi); 2745 return Cond; 2746 } 2747 if (ExpectAndConsume(tok::comma)) { 2748 SkipUntil(tok::r_paren, StopAtSemi); 2749 return ExprError(); 2750 } 2751 2752 ExprResult Expr1(ParseAssignmentExpression()); 2753 if (Expr1.isInvalid()) { 2754 SkipUntil(tok::r_paren, StopAtSemi); 2755 return Expr1; 2756 } 2757 if (ExpectAndConsume(tok::comma)) { 2758 SkipUntil(tok::r_paren, StopAtSemi); 2759 return ExprError(); 2760 } 2761 2762 ExprResult Expr2(ParseAssignmentExpression()); 2763 if (Expr2.isInvalid()) { 2764 SkipUntil(tok::r_paren, StopAtSemi); 2765 return Expr2; 2766 } 2767 if (Tok.isNot(tok::r_paren)) { 2768 Diag(Tok, diag::err_expected) << tok::r_paren; 2769 return ExprError(); 2770 } 2771 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2772 Expr2.get(), ConsumeParen()); 2773 break; 2774 } 2775 case tok::kw___builtin_astype: { 2776 // The first argument is an expression to be converted, followed by a comma. 2777 ExprResult Expr(ParseAssignmentExpression()); 2778 if (Expr.isInvalid()) { 2779 SkipUntil(tok::r_paren, StopAtSemi); 2780 return ExprError(); 2781 } 2782 2783 if (ExpectAndConsume(tok::comma)) { 2784 SkipUntil(tok::r_paren, StopAtSemi); 2785 return ExprError(); 2786 } 2787 2788 // Second argument is the type to bitcast to. 2789 TypeResult DestTy = ParseTypeName(); 2790 if (DestTy.isInvalid()) 2791 return ExprError(); 2792 2793 // Attempt to consume the r-paren. 2794 if (Tok.isNot(tok::r_paren)) { 2795 Diag(Tok, diag::err_expected) << tok::r_paren; 2796 SkipUntil(tok::r_paren, StopAtSemi); 2797 return ExprError(); 2798 } 2799 2800 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2801 ConsumeParen()); 2802 break; 2803 } 2804 case tok::kw___builtin_convertvector: { 2805 // The first argument is an expression to be converted, followed by a comma. 2806 ExprResult Expr(ParseAssignmentExpression()); 2807 if (Expr.isInvalid()) { 2808 SkipUntil(tok::r_paren, StopAtSemi); 2809 return ExprError(); 2810 } 2811 2812 if (ExpectAndConsume(tok::comma)) { 2813 SkipUntil(tok::r_paren, StopAtSemi); 2814 return ExprError(); 2815 } 2816 2817 // Second argument is the type to bitcast to. 2818 TypeResult DestTy = ParseTypeName(); 2819 if (DestTy.isInvalid()) 2820 return ExprError(); 2821 2822 // Attempt to consume the r-paren. 2823 if (Tok.isNot(tok::r_paren)) { 2824 Diag(Tok, diag::err_expected) << tok::r_paren; 2825 SkipUntil(tok::r_paren, StopAtSemi); 2826 return ExprError(); 2827 } 2828 2829 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2830 ConsumeParen()); 2831 break; 2832 } 2833 case tok::kw___builtin_COLUMN: 2834 case tok::kw___builtin_FILE: 2835 case tok::kw___builtin_FILE_NAME: 2836 case tok::kw___builtin_FUNCTION: 2837 case tok::kw___builtin_FUNCSIG: 2838 case tok::kw___builtin_LINE: 2839 case tok::kw___builtin_source_location: { 2840 // Attempt to consume the r-paren. 2841 if (Tok.isNot(tok::r_paren)) { 2842 Diag(Tok, diag::err_expected) << tok::r_paren; 2843 SkipUntil(tok::r_paren, StopAtSemi); 2844 return ExprError(); 2845 } 2846 SourceLocIdentKind Kind = [&] { 2847 switch (T) { 2848 case tok::kw___builtin_FILE: 2849 return SourceLocIdentKind::File; 2850 case tok::kw___builtin_FILE_NAME: 2851 return SourceLocIdentKind::FileName; 2852 case tok::kw___builtin_FUNCTION: 2853 return SourceLocIdentKind::Function; 2854 case tok::kw___builtin_FUNCSIG: 2855 return SourceLocIdentKind::FuncSig; 2856 case tok::kw___builtin_LINE: 2857 return SourceLocIdentKind::Line; 2858 case tok::kw___builtin_COLUMN: 2859 return SourceLocIdentKind::Column; 2860 case tok::kw___builtin_source_location: 2861 return SourceLocIdentKind::SourceLocStruct; 2862 default: 2863 llvm_unreachable("invalid keyword"); 2864 } 2865 }(); 2866 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2867 break; 2868 } 2869 } 2870 2871 if (Res.isInvalid()) 2872 return ExprError(); 2873 2874 // These can be followed by postfix-expr pieces because they are 2875 // primary-expressions. 2876 return ParsePostfixExpressionSuffix(Res.get()); 2877 } 2878 2879 bool Parser::tryParseOpenMPArrayShapingCastPart() { 2880 assert(Tok.is(tok::l_square) && "Expected open bracket"); 2881 bool ErrorFound = true; 2882 TentativeParsingAction TPA(*this); 2883 do { 2884 if (Tok.isNot(tok::l_square)) 2885 break; 2886 // Consume '[' 2887 ConsumeBracket(); 2888 // Skip inner expression. 2889 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 2890 StopAtSemi | StopBeforeMatch)) 2891 ; 2892 if (Tok.isNot(tok::r_square)) 2893 break; 2894 // Consume ']' 2895 ConsumeBracket(); 2896 // Found ')' - done. 2897 if (Tok.is(tok::r_paren)) { 2898 ErrorFound = false; 2899 break; 2900 } 2901 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 2902 TPA.Revert(); 2903 return !ErrorFound; 2904 } 2905 2906 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2907 /// based on what is allowed by ExprType. The actual thing parsed is returned 2908 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2909 /// not the parsed cast-expression. 2910 /// 2911 /// \verbatim 2912 /// primary-expression: [C99 6.5.1] 2913 /// '(' expression ')' 2914 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2915 /// postfix-expression: [C99 6.5.2] 2916 /// '(' type-name ')' '{' initializer-list '}' 2917 /// '(' type-name ')' '{' initializer-list ',' '}' 2918 /// cast-expression: [C99 6.5.4] 2919 /// '(' type-name ')' cast-expression 2920 /// [ARC] bridged-cast-expression 2921 /// [ARC] bridged-cast-expression: 2922 /// (__bridge type-name) cast-expression 2923 /// (__bridge_transfer type-name) cast-expression 2924 /// (__bridge_retained type-name) cast-expression 2925 /// fold-expression: [C++1z] 2926 /// '(' cast-expression fold-operator '...' ')' 2927 /// '(' '...' fold-operator cast-expression ')' 2928 /// '(' cast-expression fold-operator '...' 2929 /// fold-operator cast-expression ')' 2930 /// [OPENMP] Array shaping operation 2931 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 2932 /// \endverbatim 2933 ExprResult 2934 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2935 bool isTypeCast, ParsedType &CastTy, 2936 SourceLocation &RParenLoc) { 2937 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2938 ColonProtectionRAIIObject ColonProtection(*this, false); 2939 BalancedDelimiterTracker T(*this, tok::l_paren); 2940 if (T.consumeOpen()) 2941 return ExprError(); 2942 SourceLocation OpenLoc = T.getOpenLocation(); 2943 2944 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2945 2946 ExprResult Result(true); 2947 bool isAmbiguousTypeId; 2948 CastTy = nullptr; 2949 2950 if (Tok.is(tok::code_completion)) { 2951 cutOffParsing(); 2952 Actions.CodeCompleteExpression( 2953 getCurScope(), PreferredType.get(Tok.getLocation()), 2954 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2955 return ExprError(); 2956 } 2957 2958 // Diagnose use of bridge casts in non-arc mode. 2959 bool BridgeCast = (getLangOpts().ObjC && 2960 Tok.isOneOf(tok::kw___bridge, 2961 tok::kw___bridge_transfer, 2962 tok::kw___bridge_retained, 2963 tok::kw___bridge_retain)); 2964 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2965 if (!TryConsumeToken(tok::kw___bridge)) { 2966 StringRef BridgeCastName = Tok.getName(); 2967 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2968 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2969 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2970 << BridgeCastName 2971 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2972 } 2973 BridgeCast = false; 2974 } 2975 2976 // None of these cases should fall through with an invalid Result 2977 // unless they've already reported an error. 2978 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2979 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro 2980 : diag::ext_gnu_statement_expr); 2981 2982 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin); 2983 2984 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2985 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2986 } else { 2987 // Find the nearest non-record decl context. Variables declared in a 2988 // statement expression behave as if they were declared in the enclosing 2989 // function, block, or other code construct. 2990 DeclContext *CodeDC = Actions.CurContext; 2991 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2992 CodeDC = CodeDC->getParent(); 2993 assert(CodeDC && !CodeDC->isFileContext() && 2994 "statement expr not in code context"); 2995 } 2996 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2997 2998 Actions.ActOnStartStmtExpr(); 2999 3000 StmtResult Stmt(ParseCompoundStatement(true)); 3001 ExprType = CompoundStmt; 3002 3003 // If the substmt parsed correctly, build the AST node. 3004 if (!Stmt.isInvalid()) { 3005 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 3006 Tok.getLocation()); 3007 } else { 3008 Actions.ActOnStmtExprError(); 3009 } 3010 } 3011 } else if (ExprType >= CompoundLiteral && BridgeCast) { 3012 tok::TokenKind tokenKind = Tok.getKind(); 3013 SourceLocation BridgeKeywordLoc = ConsumeToken(); 3014 3015 // Parse an Objective-C ARC ownership cast expression. 3016 ObjCBridgeCastKind Kind; 3017 if (tokenKind == tok::kw___bridge) 3018 Kind = OBC_Bridge; 3019 else if (tokenKind == tok::kw___bridge_transfer) 3020 Kind = OBC_BridgeTransfer; 3021 else if (tokenKind == tok::kw___bridge_retained) 3022 Kind = OBC_BridgeRetained; 3023 else { 3024 // As a hopefully temporary workaround, allow __bridge_retain as 3025 // a synonym for __bridge_retained, but only in system headers. 3026 assert(tokenKind == tok::kw___bridge_retain); 3027 Kind = OBC_BridgeRetained; 3028 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 3029 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 3030 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3031 "__bridge_retained"); 3032 } 3033 3034 TypeResult Ty = ParseTypeName(); 3035 T.consumeClose(); 3036 ColonProtection.restore(); 3037 RParenLoc = T.getCloseLocation(); 3038 3039 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 3040 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 3041 3042 if (Ty.isInvalid() || SubExpr.isInvalid()) 3043 return ExprError(); 3044 3045 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 3046 BridgeKeywordLoc, Ty.get(), 3047 RParenLoc, SubExpr.get()); 3048 } else if (ExprType >= CompoundLiteral && 3049 isTypeIdInParens(isAmbiguousTypeId)) { 3050 3051 // Otherwise, this is a compound literal expression or cast expression. 3052 3053 // In C++, if the type-id is ambiguous we disambiguate based on context. 3054 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 3055 // in which case we should treat it as type-id. 3056 // if stopIfCastExpr is false, we need to determine the context past the 3057 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 3058 if (isAmbiguousTypeId && !stopIfCastExpr) { 3059 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 3060 ColonProtection); 3061 RParenLoc = T.getCloseLocation(); 3062 return res; 3063 } 3064 3065 // Parse the type declarator. 3066 DeclSpec DS(AttrFactory); 3067 ParseSpecifierQualifierList(DS); 3068 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3069 DeclaratorContext::TypeName); 3070 ParseDeclarator(DeclaratorInfo); 3071 3072 // If our type is followed by an identifier and either ':' or ']', then 3073 // this is probably an Objective-C message send where the leading '[' is 3074 // missing. Recover as if that were the case. 3075 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 3076 !InMessageExpression && getLangOpts().ObjC && 3077 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 3078 TypeResult Ty; 3079 { 3080 InMessageExpressionRAIIObject InMessage(*this, false); 3081 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3082 } 3083 Result = ParseObjCMessageExpressionBody(SourceLocation(), 3084 SourceLocation(), 3085 Ty.get(), nullptr); 3086 } else { 3087 // Match the ')'. 3088 T.consumeClose(); 3089 ColonProtection.restore(); 3090 RParenLoc = T.getCloseLocation(); 3091 if (Tok.is(tok::l_brace)) { 3092 ExprType = CompoundLiteral; 3093 TypeResult Ty; 3094 { 3095 InMessageExpressionRAIIObject InMessage(*this, false); 3096 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3097 } 3098 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 3099 } 3100 3101 if (Tok.is(tok::l_paren)) { 3102 // This could be OpenCL vector Literals 3103 if (getLangOpts().OpenCL) 3104 { 3105 TypeResult Ty; 3106 { 3107 InMessageExpressionRAIIObject InMessage(*this, false); 3108 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3109 } 3110 if(Ty.isInvalid()) 3111 { 3112 return ExprError(); 3113 } 3114 QualType QT = Ty.get().get().getCanonicalType(); 3115 if (QT->isVectorType()) 3116 { 3117 // We parsed '(' vector-type-name ')' followed by '(' 3118 3119 // Parse the cast-expression that follows it next. 3120 // isVectorLiteral = true will make sure we don't parse any 3121 // Postfix expression yet 3122 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3123 /*isAddressOfOperand=*/false, 3124 /*isTypeCast=*/IsTypeCast, 3125 /*isVectorLiteral=*/true); 3126 3127 if (!Result.isInvalid()) { 3128 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3129 DeclaratorInfo, CastTy, 3130 RParenLoc, Result.get()); 3131 } 3132 3133 // After we performed the cast we can check for postfix-expr pieces. 3134 if (!Result.isInvalid()) { 3135 Result = ParsePostfixExpressionSuffix(Result); 3136 } 3137 3138 return Result; 3139 } 3140 } 3141 } 3142 3143 if (ExprType == CastExpr) { 3144 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3145 3146 if (DeclaratorInfo.isInvalidType()) 3147 return ExprError(); 3148 3149 // Note that this doesn't parse the subsequent cast-expression, it just 3150 // returns the parsed type to the callee. 3151 if (stopIfCastExpr) { 3152 TypeResult Ty; 3153 { 3154 InMessageExpressionRAIIObject InMessage(*this, false); 3155 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3156 } 3157 CastTy = Ty.get(); 3158 return ExprResult(); 3159 } 3160 3161 // Reject the cast of super idiom in ObjC. 3162 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3163 Tok.getIdentifierInfo() == Ident_super && 3164 getCurScope()->isInObjcMethodScope() && 3165 GetLookAheadToken(1).isNot(tok::period)) { 3166 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3167 << SourceRange(OpenLoc, RParenLoc); 3168 return ExprError(); 3169 } 3170 3171 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3172 // Parse the cast-expression that follows it next. 3173 // TODO: For cast expression with CastTy. 3174 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3175 /*isAddressOfOperand=*/false, 3176 /*isTypeCast=*/IsTypeCast); 3177 if (!Result.isInvalid()) { 3178 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3179 DeclaratorInfo, CastTy, 3180 RParenLoc, Result.get()); 3181 } 3182 return Result; 3183 } 3184 3185 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3186 return ExprError(); 3187 } 3188 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3189 isFoldOperator(NextToken().getKind())) { 3190 ExprType = FoldExpr; 3191 return ParseFoldExpression(ExprResult(), T); 3192 } else if (isTypeCast) { 3193 // Parse the expression-list. 3194 InMessageExpressionRAIIObject InMessage(*this, false); 3195 ExprVector ArgExprs; 3196 3197 if (!ParseSimpleExpressionList(ArgExprs)) { 3198 // FIXME: If we ever support comma expressions as operands to 3199 // fold-expressions, we'll need to allow multiple ArgExprs here. 3200 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3201 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3202 ExprType = FoldExpr; 3203 return ParseFoldExpression(ArgExprs[0], T); 3204 } 3205 3206 ExprType = SimpleExpr; 3207 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3208 ArgExprs); 3209 } 3210 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3211 ExprType == CastExpr && Tok.is(tok::l_square) && 3212 tryParseOpenMPArrayShapingCastPart()) { 3213 bool ErrorFound = false; 3214 SmallVector<Expr *, 4> OMPDimensions; 3215 SmallVector<SourceRange, 4> OMPBracketsRanges; 3216 do { 3217 BalancedDelimiterTracker TS(*this, tok::l_square); 3218 TS.consumeOpen(); 3219 ExprResult NumElements = 3220 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3221 if (!NumElements.isUsable()) { 3222 ErrorFound = true; 3223 while (!SkipUntil(tok::r_square, tok::r_paren, 3224 StopAtSemi | StopBeforeMatch)) 3225 ; 3226 } 3227 TS.consumeClose(); 3228 OMPDimensions.push_back(NumElements.get()); 3229 OMPBracketsRanges.push_back(TS.getRange()); 3230 } while (Tok.isNot(tok::r_paren)); 3231 // Match the ')'. 3232 T.consumeClose(); 3233 RParenLoc = T.getCloseLocation(); 3234 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3235 if (ErrorFound) { 3236 Result = ExprError(); 3237 } else if (!Result.isInvalid()) { 3238 Result = Actions.ActOnOMPArrayShapingExpr( 3239 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3240 } 3241 return Result; 3242 } else { 3243 InMessageExpressionRAIIObject InMessage(*this, false); 3244 3245 Result = ParseExpression(MaybeTypeCast); 3246 if (!getLangOpts().CPlusPlus && Result.isUsable()) { 3247 // Correct typos in non-C++ code earlier so that implicit-cast-like 3248 // expressions are parsed correctly. 3249 Result = Actions.CorrectDelayedTyposInExpr(Result); 3250 } 3251 3252 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3253 NextToken().is(tok::ellipsis)) { 3254 ExprType = FoldExpr; 3255 return ParseFoldExpression(Result, T); 3256 } 3257 ExprType = SimpleExpr; 3258 3259 // Don't build a paren expression unless we actually match a ')'. 3260 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3261 Result = 3262 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3263 } 3264 3265 // Match the ')'. 3266 if (Result.isInvalid()) { 3267 SkipUntil(tok::r_paren, StopAtSemi); 3268 return ExprError(); 3269 } 3270 3271 T.consumeClose(); 3272 RParenLoc = T.getCloseLocation(); 3273 return Result; 3274 } 3275 3276 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3277 /// and we are at the left brace. 3278 /// 3279 /// \verbatim 3280 /// postfix-expression: [C99 6.5.2] 3281 /// '(' type-name ')' '{' initializer-list '}' 3282 /// '(' type-name ')' '{' initializer-list ',' '}' 3283 /// \endverbatim 3284 ExprResult 3285 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3286 SourceLocation LParenLoc, 3287 SourceLocation RParenLoc) { 3288 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3289 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3290 Diag(LParenLoc, diag::ext_c99_compound_literal); 3291 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get()); 3292 ExprResult Result = ParseInitializer(); 3293 if (!Result.isInvalid() && Ty) 3294 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3295 return Result; 3296 } 3297 3298 /// ParseStringLiteralExpression - This handles the various token types that 3299 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3300 /// translation phase #6]. 3301 /// 3302 /// \verbatim 3303 /// primary-expression: [C99 6.5.1] 3304 /// string-literal 3305 /// \verbatim 3306 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3307 return ParseStringLiteralExpression(AllowUserDefinedLiteral, 3308 /*Unevaluated=*/false); 3309 } 3310 3311 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() { 3312 return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false, 3313 /*Unevaluated=*/true); 3314 } 3315 3316 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral, 3317 bool Unevaluated) { 3318 assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) && 3319 "Not a string-literal-like token!"); 3320 3321 // String concatenation. 3322 // Note: some keywords like __FUNCTION__ are not considered to be strings 3323 // for concatenation purposes, unless Microsoft extensions are enabled. 3324 SmallVector<Token, 4> StringToks; 3325 3326 do { 3327 StringToks.push_back(Tok); 3328 ConsumeAnyToken(); 3329 } while (tokenIsLikeStringLiteral(Tok, getLangOpts())); 3330 3331 if (Unevaluated) { 3332 assert(!AllowUserDefinedLiteral && "UDL are always evaluated"); 3333 return Actions.ActOnUnevaluatedStringLiteral(StringToks); 3334 } 3335 3336 // Pass the set of string tokens, ready for concatenation, to the actions. 3337 return Actions.ActOnStringLiteral(StringToks, 3338 AllowUserDefinedLiteral ? getCurScope() 3339 : nullptr); 3340 } 3341 3342 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3343 /// [C11 6.5.1.1]. 3344 /// 3345 /// \verbatim 3346 /// generic-selection: 3347 /// _Generic ( assignment-expression , generic-assoc-list ) 3348 /// generic-assoc-list: 3349 /// generic-association 3350 /// generic-assoc-list , generic-association 3351 /// generic-association: 3352 /// type-name : assignment-expression 3353 /// default : assignment-expression 3354 /// \endverbatim 3355 /// 3356 /// As an extension, Clang also accepts: 3357 /// \verbatim 3358 /// generic-selection: 3359 /// _Generic ( type-name, generic-assoc-list ) 3360 /// \endverbatim 3361 ExprResult Parser::ParseGenericSelectionExpression() { 3362 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3363 if (!getLangOpts().C11) 3364 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3365 3366 SourceLocation KeyLoc = ConsumeToken(); 3367 BalancedDelimiterTracker T(*this, tok::l_paren); 3368 if (T.expectAndConsume()) 3369 return ExprError(); 3370 3371 // We either have a controlling expression or we have a controlling type, and 3372 // we need to figure out which it is. 3373 TypeResult ControllingType; 3374 ExprResult ControllingExpr; 3375 if (isTypeIdForGenericSelection()) { 3376 ControllingType = ParseTypeName(); 3377 if (ControllingType.isInvalid()) { 3378 SkipUntil(tok::r_paren, StopAtSemi); 3379 return ExprError(); 3380 } 3381 const auto *LIT = cast<LocInfoType>(ControllingType.get().get()); 3382 SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 3383 Diag(Loc, diag::ext_generic_with_type_arg); 3384 } else { 3385 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3386 // not evaluated." 3387 EnterExpressionEvaluationContext Unevaluated( 3388 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3389 ControllingExpr = 3390 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3391 if (ControllingExpr.isInvalid()) { 3392 SkipUntil(tok::r_paren, StopAtSemi); 3393 return ExprError(); 3394 } 3395 } 3396 3397 if (ExpectAndConsume(tok::comma)) { 3398 SkipUntil(tok::r_paren, StopAtSemi); 3399 return ExprError(); 3400 } 3401 3402 SourceLocation DefaultLoc; 3403 SmallVector<ParsedType, 12> Types; 3404 ExprVector Exprs; 3405 do { 3406 ParsedType Ty; 3407 if (Tok.is(tok::kw_default)) { 3408 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3409 // generic association." 3410 if (!DefaultLoc.isInvalid()) { 3411 Diag(Tok, diag::err_duplicate_default_assoc); 3412 Diag(DefaultLoc, diag::note_previous_default_assoc); 3413 SkipUntil(tok::r_paren, StopAtSemi); 3414 return ExprError(); 3415 } 3416 DefaultLoc = ConsumeToken(); 3417 Ty = nullptr; 3418 } else { 3419 ColonProtectionRAIIObject X(*this); 3420 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association); 3421 if (TR.isInvalid()) { 3422 SkipUntil(tok::r_paren, StopAtSemi); 3423 return ExprError(); 3424 } 3425 Ty = TR.get(); 3426 } 3427 Types.push_back(Ty); 3428 3429 if (ExpectAndConsume(tok::colon)) { 3430 SkipUntil(tok::r_paren, StopAtSemi); 3431 return ExprError(); 3432 } 3433 3434 // FIXME: These expressions should be parsed in a potentially potentially 3435 // evaluated context. 3436 ExprResult ER( 3437 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3438 if (ER.isInvalid()) { 3439 SkipUntil(tok::r_paren, StopAtSemi); 3440 return ExprError(); 3441 } 3442 Exprs.push_back(ER.get()); 3443 } while (TryConsumeToken(tok::comma)); 3444 3445 T.consumeClose(); 3446 if (T.getCloseLocation().isInvalid()) 3447 return ExprError(); 3448 3449 void *ExprOrTy = ControllingExpr.isUsable() 3450 ? ControllingExpr.get() 3451 : ControllingType.get().getAsOpaquePtr(); 3452 3453 return Actions.ActOnGenericSelectionExpr( 3454 KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(), 3455 ExprOrTy, Types, Exprs); 3456 } 3457 3458 /// Parse A C++1z fold-expression after the opening paren and optional 3459 /// left-hand-side expression. 3460 /// 3461 /// \verbatim 3462 /// fold-expression: 3463 /// ( cast-expression fold-operator ... ) 3464 /// ( ... fold-operator cast-expression ) 3465 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3466 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3467 BalancedDelimiterTracker &T) { 3468 if (LHS.isInvalid()) { 3469 T.skipToEnd(); 3470 return true; 3471 } 3472 3473 tok::TokenKind Kind = tok::unknown; 3474 SourceLocation FirstOpLoc; 3475 if (LHS.isUsable()) { 3476 Kind = Tok.getKind(); 3477 assert(isFoldOperator(Kind) && "missing fold-operator"); 3478 FirstOpLoc = ConsumeToken(); 3479 } 3480 3481 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3482 SourceLocation EllipsisLoc = ConsumeToken(); 3483 3484 ExprResult RHS; 3485 if (Tok.isNot(tok::r_paren)) { 3486 if (!isFoldOperator(Tok.getKind())) 3487 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3488 3489 if (Kind != tok::unknown && Tok.getKind() != Kind) 3490 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3491 << SourceRange(FirstOpLoc); 3492 Kind = Tok.getKind(); 3493 ConsumeToken(); 3494 3495 RHS = ParseExpression(); 3496 if (RHS.isInvalid()) { 3497 T.skipToEnd(); 3498 return true; 3499 } 3500 } 3501 3502 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3503 ? diag::warn_cxx14_compat_fold_expression 3504 : diag::ext_fold_expression); 3505 3506 T.consumeClose(); 3507 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(), 3508 Kind, EllipsisLoc, RHS.get(), 3509 T.getCloseLocation()); 3510 } 3511 3512 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3513 /// 3514 /// \verbatim 3515 /// argument-expression-list: 3516 /// assignment-expression 3517 /// argument-expression-list , assignment-expression 3518 /// 3519 /// [C++] expression-list: 3520 /// [C++] assignment-expression 3521 /// [C++] expression-list , assignment-expression 3522 /// 3523 /// [C++0x] expression-list: 3524 /// [C++0x] initializer-list 3525 /// 3526 /// [C++0x] initializer-list 3527 /// [C++0x] initializer-clause ...[opt] 3528 /// [C++0x] initializer-list , initializer-clause ...[opt] 3529 /// 3530 /// [C++0x] initializer-clause: 3531 /// [C++0x] assignment-expression 3532 /// [C++0x] braced-init-list 3533 /// \endverbatim 3534 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3535 llvm::function_ref<void()> ExpressionStarts, 3536 bool FailImmediatelyOnInvalidExpr, 3537 bool EarlyTypoCorrection) { 3538 bool SawError = false; 3539 while (true) { 3540 if (ExpressionStarts) 3541 ExpressionStarts(); 3542 3543 ExprResult Expr; 3544 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3545 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3546 Expr = ParseBraceInitializer(); 3547 } else 3548 Expr = ParseAssignmentExpression(); 3549 3550 if (EarlyTypoCorrection) 3551 Expr = Actions.CorrectDelayedTyposInExpr(Expr); 3552 3553 if (Tok.is(tok::ellipsis)) 3554 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3555 else if (Tok.is(tok::code_completion)) { 3556 // There's nothing to suggest in here as we parsed a full expression. 3557 // Instead fail and propagate the error since caller might have something 3558 // the suggest, e.g. signature help in function call. Note that this is 3559 // performed before pushing the \p Expr, so that signature help can report 3560 // current argument correctly. 3561 SawError = true; 3562 cutOffParsing(); 3563 break; 3564 } 3565 if (Expr.isInvalid()) { 3566 SawError = true; 3567 if (FailImmediatelyOnInvalidExpr) 3568 break; 3569 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3570 } else { 3571 Exprs.push_back(Expr.get()); 3572 } 3573 3574 if (Tok.isNot(tok::comma)) 3575 break; 3576 // Move to the next argument, remember where the comma was. 3577 Token Comma = Tok; 3578 ConsumeToken(); 3579 checkPotentialAngleBracketDelimiter(Comma); 3580 } 3581 if (SawError) { 3582 // Ensure typos get diagnosed when errors were encountered while parsing the 3583 // expression list. 3584 for (auto &E : Exprs) { 3585 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3586 if (Expr.isUsable()) E = Expr.get(); 3587 } 3588 } 3589 return SawError; 3590 } 3591 3592 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3593 /// used for misc language extensions. 3594 /// 3595 /// \verbatim 3596 /// simple-expression-list: 3597 /// assignment-expression 3598 /// simple-expression-list , assignment-expression 3599 /// \endverbatim 3600 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) { 3601 while (true) { 3602 ExprResult Expr = ParseAssignmentExpression(); 3603 if (Expr.isInvalid()) 3604 return true; 3605 3606 Exprs.push_back(Expr.get()); 3607 3608 // We might be parsing the LHS of a fold-expression. If we reached the fold 3609 // operator, stop. 3610 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis)) 3611 return false; 3612 3613 // Move to the next argument, remember where the comma was. 3614 Token Comma = Tok; 3615 ConsumeToken(); 3616 checkPotentialAngleBracketDelimiter(Comma); 3617 } 3618 } 3619 3620 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3621 /// 3622 /// \verbatim 3623 /// [clang] block-id: 3624 /// [clang] specifier-qualifier-list block-declarator 3625 /// \endverbatim 3626 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3627 if (Tok.is(tok::code_completion)) { 3628 cutOffParsing(); 3629 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 3630 return; 3631 } 3632 3633 // Parse the specifier-qualifier-list piece. 3634 DeclSpec DS(AttrFactory); 3635 ParseSpecifierQualifierList(DS); 3636 3637 // Parse the block-declarator. 3638 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3639 DeclaratorContext::BlockLiteral); 3640 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3641 ParseDeclarator(DeclaratorInfo); 3642 3643 MaybeParseGNUAttributes(DeclaratorInfo); 3644 3645 // Inform sema that we are starting a block. 3646 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3647 } 3648 3649 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3650 /// like ^(int x){ return x+1; } 3651 /// 3652 /// \verbatim 3653 /// block-literal: 3654 /// [clang] '^' block-args[opt] compound-statement 3655 /// [clang] '^' block-id compound-statement 3656 /// [clang] block-args: 3657 /// [clang] '(' parameter-list ')' 3658 /// \endverbatim 3659 ExprResult Parser::ParseBlockLiteralExpression() { 3660 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3661 SourceLocation CaretLoc = ConsumeToken(); 3662 3663 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3664 "block literal parsing"); 3665 3666 // Enter a scope to hold everything within the block. This includes the 3667 // argument decls, decls within the compound expression, etc. This also 3668 // allows determining whether a variable reference inside the block is 3669 // within or outside of the block. 3670 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3671 Scope::CompoundStmtScope | Scope::DeclScope); 3672 3673 // Inform sema that we are starting a block. 3674 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3675 3676 // Parse the return type if present. 3677 DeclSpec DS(AttrFactory); 3678 Declarator ParamInfo(DS, ParsedAttributesView::none(), 3679 DeclaratorContext::BlockLiteral); 3680 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3681 // FIXME: Since the return type isn't actually parsed, it can't be used to 3682 // fill ParamInfo with an initial valid range, so do it manually. 3683 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3684 3685 // If this block has arguments, parse them. There is no ambiguity here with 3686 // the expression case, because the expression case requires a parameter list. 3687 if (Tok.is(tok::l_paren)) { 3688 ParseParenDeclarator(ParamInfo); 3689 // Parse the pieces after the identifier as if we had "int(...)". 3690 // SetIdentifier sets the source range end, but in this case we're past 3691 // that location. 3692 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3693 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3694 ParamInfo.SetRangeEnd(Tmp); 3695 if (ParamInfo.isInvalidType()) { 3696 // If there was an error parsing the arguments, they may have 3697 // tried to use ^(x+y) which requires an argument list. Just 3698 // skip the whole block literal. 3699 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3700 return ExprError(); 3701 } 3702 3703 MaybeParseGNUAttributes(ParamInfo); 3704 3705 // Inform sema that we are starting a block. 3706 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3707 } else if (!Tok.is(tok::l_brace)) { 3708 ParseBlockId(CaretLoc); 3709 } else { 3710 // Otherwise, pretend we saw (void). 3711 SourceLocation NoLoc; 3712 ParamInfo.AddTypeInfo( 3713 DeclaratorChunk::getFunction(/*HasProto=*/true, 3714 /*IsAmbiguous=*/false, 3715 /*RParenLoc=*/NoLoc, 3716 /*ArgInfo=*/nullptr, 3717 /*NumParams=*/0, 3718 /*EllipsisLoc=*/NoLoc, 3719 /*RParenLoc=*/NoLoc, 3720 /*RefQualifierIsLvalueRef=*/true, 3721 /*RefQualifierLoc=*/NoLoc, 3722 /*MutableLoc=*/NoLoc, EST_None, 3723 /*ESpecRange=*/SourceRange(), 3724 /*Exceptions=*/nullptr, 3725 /*ExceptionRanges=*/nullptr, 3726 /*NumExceptions=*/0, 3727 /*NoexceptExpr=*/nullptr, 3728 /*ExceptionSpecTokens=*/nullptr, 3729 /*DeclsInPrototype=*/std::nullopt, 3730 CaretLoc, CaretLoc, ParamInfo), 3731 CaretLoc); 3732 3733 MaybeParseGNUAttributes(ParamInfo); 3734 3735 // Inform sema that we are starting a block. 3736 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3737 } 3738 3739 3740 ExprResult Result(true); 3741 if (!Tok.is(tok::l_brace)) { 3742 // Saw something like: ^expr 3743 Diag(Tok, diag::err_expected_expression); 3744 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3745 return ExprError(); 3746 } 3747 3748 StmtResult Stmt(ParseCompoundStatementBody()); 3749 BlockScope.Exit(); 3750 if (!Stmt.isInvalid()) 3751 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3752 else 3753 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3754 return Result; 3755 } 3756 3757 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3758 /// 3759 /// '__objc_yes' 3760 /// '__objc_no' 3761 ExprResult Parser::ParseObjCBoolLiteral() { 3762 tok::TokenKind Kind = Tok.getKind(); 3763 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3764 } 3765 3766 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3767 /// true if invalid. 3768 static bool CheckAvailabilitySpecList(Parser &P, 3769 ArrayRef<AvailabilitySpec> AvailSpecs) { 3770 llvm::SmallSet<StringRef, 4> Platforms; 3771 bool HasOtherPlatformSpec = false; 3772 bool Valid = true; 3773 for (const auto &Spec : AvailSpecs) { 3774 if (Spec.isOtherPlatformSpec()) { 3775 if (HasOtherPlatformSpec) { 3776 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3777 Valid = false; 3778 } 3779 3780 HasOtherPlatformSpec = true; 3781 continue; 3782 } 3783 3784 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3785 if (!Inserted) { 3786 // Rule out multiple version specs referring to the same platform. 3787 // For example, we emit an error for: 3788 // @available(macos 10.10, macos 10.11, *) 3789 StringRef Platform = Spec.getPlatform(); 3790 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3791 << Spec.getEndLoc() << Platform; 3792 Valid = false; 3793 } 3794 } 3795 3796 if (!HasOtherPlatformSpec) { 3797 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3798 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3799 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3800 return true; 3801 } 3802 3803 return !Valid; 3804 } 3805 3806 /// Parse availability query specification. 3807 /// 3808 /// availability-spec: 3809 /// '*' 3810 /// identifier version-tuple 3811 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3812 if (Tok.is(tok::star)) { 3813 return AvailabilitySpec(ConsumeToken()); 3814 } else { 3815 // Parse the platform name. 3816 if (Tok.is(tok::code_completion)) { 3817 cutOffParsing(); 3818 Actions.CodeCompleteAvailabilityPlatformName(); 3819 return std::nullopt; 3820 } 3821 if (Tok.isNot(tok::identifier)) { 3822 Diag(Tok, diag::err_avail_query_expected_platform_name); 3823 return std::nullopt; 3824 } 3825 3826 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3827 SourceRange VersionRange; 3828 VersionTuple Version = ParseVersionTuple(VersionRange); 3829 3830 if (Version.empty()) 3831 return std::nullopt; 3832 3833 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3834 StringRef Platform = 3835 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3836 3837 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3838 Diag(PlatformIdentifier->Loc, 3839 diag::err_avail_query_unrecognized_platform_name) 3840 << GivenPlatform; 3841 return std::nullopt; 3842 } 3843 3844 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3845 VersionRange.getEnd()); 3846 } 3847 } 3848 3849 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3850 assert(Tok.is(tok::kw___builtin_available) || 3851 Tok.isObjCAtKeyword(tok::objc_available)); 3852 3853 // Eat the available or __builtin_available. 3854 ConsumeToken(); 3855 3856 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3857 if (Parens.expectAndConsume()) 3858 return ExprError(); 3859 3860 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3861 bool HasError = false; 3862 while (true) { 3863 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3864 if (!Spec) 3865 HasError = true; 3866 else 3867 AvailSpecs.push_back(*Spec); 3868 3869 if (!TryConsumeToken(tok::comma)) 3870 break; 3871 } 3872 3873 if (HasError) { 3874 SkipUntil(tok::r_paren, StopAtSemi); 3875 return ExprError(); 3876 } 3877 3878 CheckAvailabilitySpecList(*this, AvailSpecs); 3879 3880 if (Parens.consumeClose()) 3881 return ExprError(); 3882 3883 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3884 Parens.getCloseLocation()); 3885 } 3886