xref: /freebsd-src/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Declaration portions of the Parser interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/PrettyDeclStackTrace.h"
16 #include "clang/Basic/AddressSpaces.h"
17 #include "clang/Basic/AttributeCommonInfo.h"
18 #include "clang/Basic/Attributes.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Basic/TokenKinds.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Parse/Parser.h"
24 #include "clang/Parse/RAIIObjectsForParser.h"
25 #include "clang/Sema/EnterExpressionEvaluationContext.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaDiagnostic.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include <optional>
34 
35 using namespace clang;
36 
37 //===----------------------------------------------------------------------===//
38 // C99 6.7: Declarations.
39 //===----------------------------------------------------------------------===//
40 
41 /// ParseTypeName
42 ///       type-name: [C99 6.7.6]
43 ///         specifier-qualifier-list abstract-declarator[opt]
44 ///
45 /// Called type-id in C++.
46 TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context,
47                                  AccessSpecifier AS, Decl **OwnedType,
48                                  ParsedAttributes *Attrs) {
49   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50   if (DSC == DeclSpecContext::DSC_normal)
51     DSC = DeclSpecContext::DSC_type_specifier;
52 
53   // Parse the common declaration-specifiers piece.
54   DeclSpec DS(AttrFactory);
55   if (Attrs)
56     DS.addAttributes(*Attrs);
57   ParseSpecifierQualifierList(DS, AS, DSC);
58   if (OwnedType)
59     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60 
61   // Move declspec attributes to ParsedAttributes
62   if (Attrs) {
63     llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
64     for (ParsedAttr &AL : DS.getAttributes()) {
65       if (AL.isDeclspecAttribute())
66         ToBeMoved.push_back(&AL);
67     }
68 
69     for (ParsedAttr *AL : ToBeMoved)
70       Attrs->takeOneFrom(DS.getAttributes(), AL);
71   }
72 
73   // Parse the abstract-declarator, if present.
74   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context);
75   ParseDeclarator(DeclaratorInfo);
76   if (Range)
77     *Range = DeclaratorInfo.getSourceRange();
78 
79   if (DeclaratorInfo.isInvalidType())
80     return true;
81 
82   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
83 }
84 
85 /// Normalizes an attribute name by dropping prefixed and suffixed __.
86 static StringRef normalizeAttrName(StringRef Name) {
87   if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__"))
88     return Name.drop_front(2).drop_back(2);
89   return Name;
90 }
91 
92 /// isAttributeLateParsed - Return true if the attribute has arguments that
93 /// require late parsing.
94 static bool isAttributeLateParsed(const IdentifierInfo &II) {
95 #define CLANG_ATTR_LATE_PARSED_LIST
96     return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
97 #include "clang/Parse/AttrParserStringSwitches.inc"
98         .Default(false);
99 #undef CLANG_ATTR_LATE_PARSED_LIST
100 }
101 
102 /// Check if the a start and end source location expand to the same macro.
103 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
104                                      SourceLocation EndLoc) {
105   if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
106     return false;
107 
108   SourceManager &SM = PP.getSourceManager();
109   if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
110     return false;
111 
112   bool AttrStartIsInMacro =
113       Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
114   bool AttrEndIsInMacro =
115       Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
116   return AttrStartIsInMacro && AttrEndIsInMacro;
117 }
118 
119 void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs,
120                              LateParsedAttrList *LateAttrs) {
121   bool MoreToParse;
122   do {
123     // Assume there's nothing left to parse, but if any attributes are in fact
124     // parsed, loop to ensure all specified attribute combinations are parsed.
125     MoreToParse = false;
126     if (WhichAttrKinds & PAKM_CXX11)
127       MoreToParse |= MaybeParseCXX11Attributes(Attrs);
128     if (WhichAttrKinds & PAKM_GNU)
129       MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs);
130     if (WhichAttrKinds & PAKM_Declspec)
131       MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs);
132   } while (MoreToParse);
133 }
134 
135 /// ParseGNUAttributes - Parse a non-empty attributes list.
136 ///
137 /// [GNU] attributes:
138 ///         attribute
139 ///         attributes attribute
140 ///
141 /// [GNU]  attribute:
142 ///          '__attribute__' '(' '(' attribute-list ')' ')'
143 ///
144 /// [GNU]  attribute-list:
145 ///          attrib
146 ///          attribute_list ',' attrib
147 ///
148 /// [GNU]  attrib:
149 ///          empty
150 ///          attrib-name
151 ///          attrib-name '(' identifier ')'
152 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
153 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
154 ///
155 /// [GNU]  attrib-name:
156 ///          identifier
157 ///          typespec
158 ///          typequal
159 ///          storageclass
160 ///
161 /// Whether an attribute takes an 'identifier' is determined by the
162 /// attrib-name. GCC's behavior here is not worth imitating:
163 ///
164 ///  * In C mode, if the attribute argument list starts with an identifier
165 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
166 ///    a type, it is parsed as an identifier. If the attribute actually
167 ///    wanted an expression, it's out of luck (but it turns out that no
168 ///    attributes work that way, because C constant expressions are very
169 ///    limited).
170 ///  * In C++ mode, if the attribute argument list starts with an identifier,
171 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
172 ///    At block scope, any additional tokens between the identifier and the
173 ///    ',' or ')' are ignored, otherwise they produce a parse error.
174 ///
175 /// We follow the C++ model, but don't allow junk after the identifier.
176 void Parser::ParseGNUAttributes(ParsedAttributes &Attrs,
177                                 LateParsedAttrList *LateAttrs, Declarator *D) {
178   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
179 
180   SourceLocation StartLoc = Tok.getLocation();
181   SourceLocation EndLoc = StartLoc;
182 
183   while (Tok.is(tok::kw___attribute)) {
184     SourceLocation AttrTokLoc = ConsumeToken();
185     unsigned OldNumAttrs = Attrs.size();
186     unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
187 
188     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
189                          "attribute")) {
190       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
191       return;
192     }
193     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
194       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
195       return;
196     }
197     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
198     do {
199       // Eat preceeding commas to allow __attribute__((,,,foo))
200       while (TryConsumeToken(tok::comma))
201         ;
202 
203       // Expect an identifier or declaration specifier (const, int, etc.)
204       if (Tok.isAnnotation())
205         break;
206       if (Tok.is(tok::code_completion)) {
207         cutOffParsing();
208         Actions.CodeCompleteAttribute(AttributeCommonInfo::Syntax::AS_GNU);
209         break;
210       }
211       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
212       if (!AttrName)
213         break;
214 
215       SourceLocation AttrNameLoc = ConsumeToken();
216 
217       if (Tok.isNot(tok::l_paren)) {
218         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
219                      ParsedAttr::Form::GNU());
220         continue;
221       }
222 
223       // Handle "parameterized" attributes
224       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
225         ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr,
226                               SourceLocation(), ParsedAttr::Form::GNU(), D);
227         continue;
228       }
229 
230       // Handle attributes with arguments that require late parsing.
231       LateParsedAttribute *LA =
232           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
233       LateAttrs->push_back(LA);
234 
235       // Attributes in a class are parsed at the end of the class, along
236       // with other late-parsed declarations.
237       if (!ClassStack.empty() && !LateAttrs->parseSoon())
238         getCurrentClass().LateParsedDeclarations.push_back(LA);
239 
240       // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
241       // recursively consumes balanced parens.
242       LA->Toks.push_back(Tok);
243       ConsumeParen();
244       // Consume everything up to and including the matching right parens.
245       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
246 
247       Token Eof;
248       Eof.startToken();
249       Eof.setLocation(Tok.getLocation());
250       LA->Toks.push_back(Eof);
251     } while (Tok.is(tok::comma));
252 
253     if (ExpectAndConsume(tok::r_paren))
254       SkipUntil(tok::r_paren, StopAtSemi);
255     SourceLocation Loc = Tok.getLocation();
256     if (ExpectAndConsume(tok::r_paren))
257       SkipUntil(tok::r_paren, StopAtSemi);
258     EndLoc = Loc;
259 
260     // If this was declared in a macro, attach the macro IdentifierInfo to the
261     // parsed attribute.
262     auto &SM = PP.getSourceManager();
263     if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
264         FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
265       CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
266       StringRef FoundName =
267           Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
268       IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
269 
270       for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
271         Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
272 
273       if (LateAttrs) {
274         for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
275           (*LateAttrs)[i]->MacroII = MacroII;
276       }
277     }
278   }
279 
280   Attrs.Range = SourceRange(StartLoc, EndLoc);
281 }
282 
283 /// Determine whether the given attribute has an identifier argument.
284 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
285 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
286   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287 #include "clang/Parse/AttrParserStringSwitches.inc"
288            .Default(false);
289 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
290 }
291 
292 /// Determine whether the given attribute has an identifier argument.
293 static ParsedAttributeArgumentsProperties
294 attributeStringLiteralListArg(const IdentifierInfo &II) {
295 #define CLANG_ATTR_STRING_LITERAL_ARG_LIST
296   return llvm::StringSwitch<uint32_t>(normalizeAttrName(II.getName()))
297 #include "clang/Parse/AttrParserStringSwitches.inc"
298       .Default(0);
299 #undef CLANG_ATTR_STRING_LITERAL_ARG_LIST
300 }
301 
302 /// Determine whether the given attribute has a variadic identifier argument.
303 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
304 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
305   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
306 #include "clang/Parse/AttrParserStringSwitches.inc"
307            .Default(false);
308 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
309 }
310 
311 /// Determine whether the given attribute treats kw_this as an identifier.
312 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
313 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
314   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
315 #include "clang/Parse/AttrParserStringSwitches.inc"
316            .Default(false);
317 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
318 }
319 
320 /// Determine if an attribute accepts parameter packs.
321 static bool attributeAcceptsExprPack(const IdentifierInfo &II) {
322 #define CLANG_ATTR_ACCEPTS_EXPR_PACK
323   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
324 #include "clang/Parse/AttrParserStringSwitches.inc"
325       .Default(false);
326 #undef CLANG_ATTR_ACCEPTS_EXPR_PACK
327 }
328 
329 /// Determine whether the given attribute parses a type argument.
330 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
331 #define CLANG_ATTR_TYPE_ARG_LIST
332   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
333 #include "clang/Parse/AttrParserStringSwitches.inc"
334            .Default(false);
335 #undef CLANG_ATTR_TYPE_ARG_LIST
336 }
337 
338 /// Determine whether the given attribute requires parsing its arguments
339 /// in an unevaluated context or not.
340 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
341 #define CLANG_ATTR_ARG_CONTEXT_LIST
342   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
343 #include "clang/Parse/AttrParserStringSwitches.inc"
344            .Default(false);
345 #undef CLANG_ATTR_ARG_CONTEXT_LIST
346 }
347 
348 IdentifierLoc *Parser::ParseIdentifierLoc() {
349   assert(Tok.is(tok::identifier) && "expected an identifier");
350   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
351                                             Tok.getLocation(),
352                                             Tok.getIdentifierInfo());
353   ConsumeToken();
354   return IL;
355 }
356 
357 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
358                                        SourceLocation AttrNameLoc,
359                                        ParsedAttributes &Attrs,
360                                        IdentifierInfo *ScopeName,
361                                        SourceLocation ScopeLoc,
362                                        ParsedAttr::Form Form) {
363   BalancedDelimiterTracker Parens(*this, tok::l_paren);
364   Parens.consumeOpen();
365 
366   TypeResult T;
367   if (Tok.isNot(tok::r_paren))
368     T = ParseTypeName();
369 
370   if (Parens.consumeClose())
371     return;
372 
373   if (T.isInvalid())
374     return;
375 
376   if (T.isUsable())
377     Attrs.addNewTypeAttr(&AttrName,
378                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
379                          ScopeName, ScopeLoc, T.get(), Form);
380   else
381     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
382                  ScopeName, ScopeLoc, nullptr, 0, Form);
383 }
384 
385 ExprResult
386 Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) {
387   if (Tok.is(tok::l_paren)) {
388     BalancedDelimiterTracker Paren(*this, tok::l_paren);
389     Paren.consumeOpen();
390     ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName);
391     Paren.consumeClose();
392     return Res;
393   }
394   if (!isTokenStringLiteral()) {
395     Diag(Tok.getLocation(), diag::err_expected_string_literal)
396         << /*in attribute...*/ 4 << AttrName.getName();
397     return ExprError();
398   }
399   return ParseUnevaluatedStringLiteralExpression();
400 }
401 
402 bool Parser::ParseAttributeArgumentList(
403     const IdentifierInfo &AttrName, SmallVectorImpl<Expr *> &Exprs,
404     ParsedAttributeArgumentsProperties ArgsProperties) {
405   bool SawError = false;
406   unsigned Arg = 0;
407   while (true) {
408     ExprResult Expr;
409     if (ArgsProperties.isStringLiteralArg(Arg)) {
410       Expr = ParseUnevaluatedStringInAttribute(AttrName);
411     } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
412       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
413       Expr = ParseBraceInitializer();
414     } else {
415       Expr = ParseAssignmentExpression();
416     }
417     Expr = Actions.CorrectDelayedTyposInExpr(Expr);
418 
419     if (Tok.is(tok::ellipsis))
420       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
421     else if (Tok.is(tok::code_completion)) {
422       // There's nothing to suggest in here as we parsed a full expression.
423       // Instead fail and propagate the error since caller might have something
424       // the suggest, e.g. signature help in function call. Note that this is
425       // performed before pushing the \p Expr, so that signature help can report
426       // current argument correctly.
427       SawError = true;
428       cutOffParsing();
429       break;
430     }
431 
432     if (Expr.isInvalid()) {
433       SawError = true;
434       break;
435     }
436 
437     Exprs.push_back(Expr.get());
438 
439     if (Tok.isNot(tok::comma))
440       break;
441     // Move to the next argument, remember where the comma was.
442     Token Comma = Tok;
443     ConsumeToken();
444     checkPotentialAngleBracketDelimiter(Comma);
445     Arg++;
446   }
447 
448   if (SawError) {
449     // Ensure typos get diagnosed when errors were encountered while parsing the
450     // expression list.
451     for (auto &E : Exprs) {
452       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
453       if (Expr.isUsable())
454         E = Expr.get();
455     }
456   }
457   return SawError;
458 }
459 
460 unsigned Parser::ParseAttributeArgsCommon(
461     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
462     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
463     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
464   // Ignore the left paren location for now.
465   ConsumeParen();
466 
467   bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
468   bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
469   bool AttributeHasVariadicIdentifierArg =
470       attributeHasVariadicIdentifierArg(*AttrName);
471 
472   // Interpret "kw_this" as an identifier if the attributed requests it.
473   if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
474     Tok.setKind(tok::identifier);
475 
476   ArgsVector ArgExprs;
477   if (Tok.is(tok::identifier)) {
478     // If this attribute wants an 'identifier' argument, make it so.
479     bool IsIdentifierArg = AttributeHasVariadicIdentifierArg ||
480                            attributeHasIdentifierArg(*AttrName);
481     ParsedAttr::Kind AttrKind =
482         ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
483 
484     // If we don't know how to parse this attribute, but this is the only
485     // token in this argument, assume it's meant to be an identifier.
486     if (AttrKind == ParsedAttr::UnknownAttribute ||
487         AttrKind == ParsedAttr::IgnoredAttribute) {
488       const Token &Next = NextToken();
489       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
490     }
491 
492     if (IsIdentifierArg)
493       ArgExprs.push_back(ParseIdentifierLoc());
494   }
495 
496   ParsedType TheParsedType;
497   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
498     // Eat the comma.
499     if (!ArgExprs.empty())
500       ConsumeToken();
501 
502     if (AttributeIsTypeArgAttr) {
503       // FIXME: Multiple type arguments are not implemented.
504       TypeResult T = ParseTypeName();
505       if (T.isInvalid()) {
506         SkipUntil(tok::r_paren, StopAtSemi);
507         return 0;
508       }
509       if (T.isUsable())
510         TheParsedType = T.get();
511     } else if (AttributeHasVariadicIdentifierArg) {
512       // Parse variadic identifier arg. This can either consume identifiers or
513       // expressions. Variadic identifier args do not support parameter packs
514       // because those are typically used for attributes with enumeration
515       // arguments, and those enumerations are not something the user could
516       // express via a pack.
517       do {
518         // Interpret "kw_this" as an identifier if the attributed requests it.
519         if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
520           Tok.setKind(tok::identifier);
521 
522         ExprResult ArgExpr;
523         if (Tok.is(tok::identifier)) {
524           ArgExprs.push_back(ParseIdentifierLoc());
525         } else {
526           bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
527           EnterExpressionEvaluationContext Unevaluated(
528               Actions,
529               Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
530                      : Sema::ExpressionEvaluationContext::ConstantEvaluated);
531 
532           ExprResult ArgExpr(
533               Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
534 
535           if (ArgExpr.isInvalid()) {
536             SkipUntil(tok::r_paren, StopAtSemi);
537             return 0;
538           }
539           ArgExprs.push_back(ArgExpr.get());
540         }
541         // Eat the comma, move to the next argument
542       } while (TryConsumeToken(tok::comma));
543     } else {
544       // General case. Parse all available expressions.
545       bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
546       EnterExpressionEvaluationContext Unevaluated(
547           Actions, Uneval
548                        ? Sema::ExpressionEvaluationContext::Unevaluated
549                        : Sema::ExpressionEvaluationContext::ConstantEvaluated);
550 
551       ExprVector ParsedExprs;
552       ParsedAttributeArgumentsProperties ArgProperties =
553           attributeStringLiteralListArg(*AttrName);
554       if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) {
555         SkipUntil(tok::r_paren, StopAtSemi);
556         return 0;
557       }
558 
559       // Pack expansion must currently be explicitly supported by an attribute.
560       for (size_t I = 0; I < ParsedExprs.size(); ++I) {
561         if (!isa<PackExpansionExpr>(ParsedExprs[I]))
562           continue;
563 
564         if (!attributeAcceptsExprPack(*AttrName)) {
565           Diag(Tok.getLocation(),
566                diag::err_attribute_argument_parm_pack_not_supported)
567               << AttrName;
568           SkipUntil(tok::r_paren, StopAtSemi);
569           return 0;
570         }
571       }
572 
573       ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end());
574     }
575   }
576 
577   SourceLocation RParen = Tok.getLocation();
578   if (!ExpectAndConsume(tok::r_paren)) {
579     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
580 
581     if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
582       Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
583                            ScopeName, ScopeLoc, TheParsedType, Form);
584     } else {
585       Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
586                    ArgExprs.data(), ArgExprs.size(), Form);
587     }
588   }
589 
590   if (EndLoc)
591     *EndLoc = RParen;
592 
593   return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
594 }
595 
596 /// Parse the arguments to a parameterized GNU attribute or
597 /// a C++11 attribute in "gnu" namespace.
598 void Parser::ParseGNUAttributeArgs(
599     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
600     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
601     SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) {
602 
603   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
604 
605   ParsedAttr::Kind AttrKind =
606       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
607 
608   if (AttrKind == ParsedAttr::AT_Availability) {
609     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
610                                ScopeLoc, Form);
611     return;
612   } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
613     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
614                                        ScopeName, ScopeLoc, Form);
615     return;
616   } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
617     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
618                                     ScopeName, ScopeLoc, Form);
619     return;
620   } else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
621     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
622                                ScopeLoc, Form);
623     return;
624   } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
625     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
626                                      ScopeName, ScopeLoc, Form);
627     return;
628   } else if (attributeIsTypeArgAttr(*AttrName)) {
629     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName,
630                               ScopeLoc, Form);
631     return;
632   }
633 
634   // These may refer to the function arguments, but need to be parsed early to
635   // participate in determining whether it's a redeclaration.
636   std::optional<ParseScope> PrototypeScope;
637   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
638       D && D->isFunctionDeclarator()) {
639     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
640     PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
641                                      Scope::FunctionDeclarationScope |
642                                      Scope::DeclScope);
643     for (unsigned i = 0; i != FTI.NumParams; ++i) {
644       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
645       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
646     }
647   }
648 
649   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
650                            ScopeLoc, Form);
651 }
652 
653 unsigned Parser::ParseClangAttributeArgs(
654     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
655     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
656     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
657   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
658 
659   ParsedAttr::Kind AttrKind =
660       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
661 
662   switch (AttrKind) {
663   default:
664     return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
665                                     ScopeName, ScopeLoc, Form);
666   case ParsedAttr::AT_ExternalSourceSymbol:
667     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
668                                        ScopeName, ScopeLoc, Form);
669     break;
670   case ParsedAttr::AT_Availability:
671     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
672                                ScopeLoc, Form);
673     break;
674   case ParsedAttr::AT_ObjCBridgeRelated:
675     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
676                                     ScopeName, ScopeLoc, Form);
677     break;
678   case ParsedAttr::AT_SwiftNewType:
679     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
680                                ScopeLoc, Form);
681     break;
682   case ParsedAttr::AT_TypeTagForDatatype:
683     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
684                                      ScopeName, ScopeLoc, Form);
685     break;
686   }
687   return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
688 }
689 
690 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
691                                         SourceLocation AttrNameLoc,
692                                         ParsedAttributes &Attrs) {
693   unsigned ExistingAttrs = Attrs.size();
694 
695   // If the attribute isn't known, we will not attempt to parse any
696   // arguments.
697   if (!hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, AttrName,
698                     getTargetInfo(), getLangOpts())) {
699     // Eat the left paren, then skip to the ending right paren.
700     ConsumeParen();
701     SkipUntil(tok::r_paren);
702     return false;
703   }
704 
705   SourceLocation OpenParenLoc = Tok.getLocation();
706 
707   if (AttrName->getName() == "property") {
708     // The property declspec is more complex in that it can take one or two
709     // assignment expressions as a parameter, but the lhs of the assignment
710     // must be named get or put.
711 
712     BalancedDelimiterTracker T(*this, tok::l_paren);
713     T.expectAndConsume(diag::err_expected_lparen_after,
714                        AttrName->getNameStart(), tok::r_paren);
715 
716     enum AccessorKind {
717       AK_Invalid = -1,
718       AK_Put = 0,
719       AK_Get = 1 // indices into AccessorNames
720     };
721     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
722     bool HasInvalidAccessor = false;
723 
724     // Parse the accessor specifications.
725     while (true) {
726       // Stop if this doesn't look like an accessor spec.
727       if (!Tok.is(tok::identifier)) {
728         // If the user wrote a completely empty list, use a special diagnostic.
729         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
730             AccessorNames[AK_Put] == nullptr &&
731             AccessorNames[AK_Get] == nullptr) {
732           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
733           break;
734         }
735 
736         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
737         break;
738       }
739 
740       AccessorKind Kind;
741       SourceLocation KindLoc = Tok.getLocation();
742       StringRef KindStr = Tok.getIdentifierInfo()->getName();
743       if (KindStr == "get") {
744         Kind = AK_Get;
745       } else if (KindStr == "put") {
746         Kind = AK_Put;
747 
748         // Recover from the common mistake of using 'set' instead of 'put'.
749       } else if (KindStr == "set") {
750         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
751             << FixItHint::CreateReplacement(KindLoc, "put");
752         Kind = AK_Put;
753 
754         // Handle the mistake of forgetting the accessor kind by skipping
755         // this accessor.
756       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
757         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
758         ConsumeToken();
759         HasInvalidAccessor = true;
760         goto next_property_accessor;
761 
762         // Otherwise, complain about the unknown accessor kind.
763       } else {
764         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
765         HasInvalidAccessor = true;
766         Kind = AK_Invalid;
767 
768         // Try to keep parsing unless it doesn't look like an accessor spec.
769         if (!NextToken().is(tok::equal))
770           break;
771       }
772 
773       // Consume the identifier.
774       ConsumeToken();
775 
776       // Consume the '='.
777       if (!TryConsumeToken(tok::equal)) {
778         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
779             << KindStr;
780         break;
781       }
782 
783       // Expect the method name.
784       if (!Tok.is(tok::identifier)) {
785         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
786         break;
787       }
788 
789       if (Kind == AK_Invalid) {
790         // Just drop invalid accessors.
791       } else if (AccessorNames[Kind] != nullptr) {
792         // Complain about the repeated accessor, ignore it, and keep parsing.
793         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
794       } else {
795         AccessorNames[Kind] = Tok.getIdentifierInfo();
796       }
797       ConsumeToken();
798 
799     next_property_accessor:
800       // Keep processing accessors until we run out.
801       if (TryConsumeToken(tok::comma))
802         continue;
803 
804       // If we run into the ')', stop without consuming it.
805       if (Tok.is(tok::r_paren))
806         break;
807 
808       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
809       break;
810     }
811 
812     // Only add the property attribute if it was well-formed.
813     if (!HasInvalidAccessor)
814       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
815                                AccessorNames[AK_Get], AccessorNames[AK_Put],
816                                ParsedAttr::Form::Declspec());
817     T.skipToEnd();
818     return !HasInvalidAccessor;
819   }
820 
821   unsigned NumArgs =
822       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
823                                SourceLocation(), ParsedAttr::Form::Declspec());
824 
825   // If this attribute's args were parsed, and it was expected to have
826   // arguments but none were provided, emit a diagnostic.
827   if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) {
828     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
829     return false;
830   }
831   return true;
832 }
833 
834 /// [MS] decl-specifier:
835 ///             __declspec ( extended-decl-modifier-seq )
836 ///
837 /// [MS] extended-decl-modifier-seq:
838 ///             extended-decl-modifier[opt]
839 ///             extended-decl-modifier extended-decl-modifier-seq
840 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) {
841   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
842   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
843 
844   SourceLocation StartLoc = Tok.getLocation();
845   SourceLocation EndLoc = StartLoc;
846 
847   while (Tok.is(tok::kw___declspec)) {
848     ConsumeToken();
849     BalancedDelimiterTracker T(*this, tok::l_paren);
850     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
851                            tok::r_paren))
852       return;
853 
854     // An empty declspec is perfectly legal and should not warn.  Additionally,
855     // you can specify multiple attributes per declspec.
856     while (Tok.isNot(tok::r_paren)) {
857       // Attribute not present.
858       if (TryConsumeToken(tok::comma))
859         continue;
860 
861       if (Tok.is(tok::code_completion)) {
862         cutOffParsing();
863         Actions.CodeCompleteAttribute(AttributeCommonInfo::AS_Declspec);
864         return;
865       }
866 
867       // We expect either a well-known identifier or a generic string.  Anything
868       // else is a malformed declspec.
869       bool IsString = Tok.getKind() == tok::string_literal;
870       if (!IsString && Tok.getKind() != tok::identifier &&
871           Tok.getKind() != tok::kw_restrict) {
872         Diag(Tok, diag::err_ms_declspec_type);
873         T.skipToEnd();
874         return;
875       }
876 
877       IdentifierInfo *AttrName;
878       SourceLocation AttrNameLoc;
879       if (IsString) {
880         SmallString<8> StrBuffer;
881         bool Invalid = false;
882         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
883         if (Invalid) {
884           T.skipToEnd();
885           return;
886         }
887         AttrName = PP.getIdentifierInfo(Str);
888         AttrNameLoc = ConsumeStringToken();
889       } else {
890         AttrName = Tok.getIdentifierInfo();
891         AttrNameLoc = ConsumeToken();
892       }
893 
894       bool AttrHandled = false;
895 
896       // Parse attribute arguments.
897       if (Tok.is(tok::l_paren))
898         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
899       else if (AttrName->getName() == "property")
900         // The property attribute must have an argument list.
901         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
902             << AttrName->getName();
903 
904       if (!AttrHandled)
905         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
906                      ParsedAttr::Form::Declspec());
907     }
908     T.consumeClose();
909     EndLoc = T.getCloseLocation();
910   }
911 
912   Attrs.Range = SourceRange(StartLoc, EndLoc);
913 }
914 
915 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
916   // Treat these like attributes
917   while (true) {
918     auto Kind = Tok.getKind();
919     switch (Kind) {
920     case tok::kw___fastcall:
921     case tok::kw___stdcall:
922     case tok::kw___thiscall:
923     case tok::kw___regcall:
924     case tok::kw___cdecl:
925     case tok::kw___vectorcall:
926     case tok::kw___ptr64:
927     case tok::kw___w64:
928     case tok::kw___ptr32:
929     case tok::kw___sptr:
930     case tok::kw___uptr: {
931       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
932       SourceLocation AttrNameLoc = ConsumeToken();
933       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
934                    Kind);
935       break;
936     }
937     default:
938       return;
939     }
940   }
941 }
942 
943 void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) {
944   assert(Tok.is(tok::kw___funcref));
945   SourceLocation StartLoc = Tok.getLocation();
946   if (!getTargetInfo().getTriple().isWasm()) {
947     ConsumeToken();
948     Diag(StartLoc, diag::err_wasm_funcref_not_wasm);
949     return;
950   }
951 
952   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
953   SourceLocation AttrNameLoc = ConsumeToken();
954   attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
955                /*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0,
956                tok::kw___funcref);
957 }
958 
959 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
960   SourceLocation StartLoc = Tok.getLocation();
961   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
962 
963   if (EndLoc.isValid()) {
964     SourceRange Range(StartLoc, EndLoc);
965     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
966   }
967 }
968 
969 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
970   SourceLocation EndLoc;
971 
972   while (true) {
973     switch (Tok.getKind()) {
974     case tok::kw_const:
975     case tok::kw_volatile:
976     case tok::kw___fastcall:
977     case tok::kw___stdcall:
978     case tok::kw___thiscall:
979     case tok::kw___cdecl:
980     case tok::kw___vectorcall:
981     case tok::kw___ptr32:
982     case tok::kw___ptr64:
983     case tok::kw___w64:
984     case tok::kw___unaligned:
985     case tok::kw___sptr:
986     case tok::kw___uptr:
987       EndLoc = ConsumeToken();
988       break;
989     default:
990       return EndLoc;
991     }
992   }
993 }
994 
995 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
996   // Treat these like attributes
997   while (Tok.is(tok::kw___pascal)) {
998     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
999     SourceLocation AttrNameLoc = ConsumeToken();
1000     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1001                  tok::kw___pascal);
1002   }
1003 }
1004 
1005 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
1006   // Treat these like attributes
1007   while (Tok.is(tok::kw___kernel)) {
1008     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1009     SourceLocation AttrNameLoc = ConsumeToken();
1010     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1011                  tok::kw___kernel);
1012   }
1013 }
1014 
1015 void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) {
1016   while (Tok.is(tok::kw___noinline__)) {
1017     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1018     SourceLocation AttrNameLoc = ConsumeToken();
1019     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1020                  tok::kw___noinline__);
1021   }
1022 }
1023 
1024 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
1025   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1026   SourceLocation AttrNameLoc = Tok.getLocation();
1027   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1028                Tok.getKind());
1029 }
1030 
1031 bool Parser::isHLSLQualifier(const Token &Tok) const {
1032   return Tok.is(tok::kw_groupshared);
1033 }
1034 
1035 void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) {
1036   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1037   auto Kind = Tok.getKind();
1038   SourceLocation AttrNameLoc = ConsumeToken();
1039   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind);
1040 }
1041 
1042 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
1043   // Treat these like attributes, even though they're type specifiers.
1044   while (true) {
1045     auto Kind = Tok.getKind();
1046     switch (Kind) {
1047     case tok::kw__Nonnull:
1048     case tok::kw__Nullable:
1049     case tok::kw__Nullable_result:
1050     case tok::kw__Null_unspecified: {
1051       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1052       SourceLocation AttrNameLoc = ConsumeToken();
1053       if (!getLangOpts().ObjC)
1054         Diag(AttrNameLoc, diag::ext_nullability)
1055           << AttrName;
1056       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1057                    Kind);
1058       break;
1059     }
1060     default:
1061       return;
1062     }
1063   }
1064 }
1065 
1066 static bool VersionNumberSeparator(const char Separator) {
1067   return (Separator == '.' || Separator == '_');
1068 }
1069 
1070 /// Parse a version number.
1071 ///
1072 /// version:
1073 ///   simple-integer
1074 ///   simple-integer '.' simple-integer
1075 ///   simple-integer '_' simple-integer
1076 ///   simple-integer '.' simple-integer '.' simple-integer
1077 ///   simple-integer '_' simple-integer '_' simple-integer
1078 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
1079   Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
1080 
1081   if (!Tok.is(tok::numeric_constant)) {
1082     Diag(Tok, diag::err_expected_version);
1083     SkipUntil(tok::comma, tok::r_paren,
1084               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1085     return VersionTuple();
1086   }
1087 
1088   // Parse the major (and possibly minor and subminor) versions, which
1089   // are stored in the numeric constant. We utilize a quirk of the
1090   // lexer, which is that it handles something like 1.2.3 as a single
1091   // numeric constant, rather than two separate tokens.
1092   SmallString<512> Buffer;
1093   Buffer.resize(Tok.getLength()+1);
1094   const char *ThisTokBegin = &Buffer[0];
1095 
1096   // Get the spelling of the token, which eliminates trigraphs, etc.
1097   bool Invalid = false;
1098   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1099   if (Invalid)
1100     return VersionTuple();
1101 
1102   // Parse the major version.
1103   unsigned AfterMajor = 0;
1104   unsigned Major = 0;
1105   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
1106     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
1107     ++AfterMajor;
1108   }
1109 
1110   if (AfterMajor == 0) {
1111     Diag(Tok, diag::err_expected_version);
1112     SkipUntil(tok::comma, tok::r_paren,
1113               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1114     return VersionTuple();
1115   }
1116 
1117   if (AfterMajor == ActualLength) {
1118     ConsumeToken();
1119 
1120     // We only had a single version component.
1121     if (Major == 0) {
1122       Diag(Tok, diag::err_zero_version);
1123       return VersionTuple();
1124     }
1125 
1126     return VersionTuple(Major);
1127   }
1128 
1129   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
1130   if (!VersionNumberSeparator(AfterMajorSeparator)
1131       || (AfterMajor + 1 == ActualLength)) {
1132     Diag(Tok, diag::err_expected_version);
1133     SkipUntil(tok::comma, tok::r_paren,
1134               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1135     return VersionTuple();
1136   }
1137 
1138   // Parse the minor version.
1139   unsigned AfterMinor = AfterMajor + 1;
1140   unsigned Minor = 0;
1141   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
1142     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
1143     ++AfterMinor;
1144   }
1145 
1146   if (AfterMinor == ActualLength) {
1147     ConsumeToken();
1148 
1149     // We had major.minor.
1150     if (Major == 0 && Minor == 0) {
1151       Diag(Tok, diag::err_zero_version);
1152       return VersionTuple();
1153     }
1154 
1155     return VersionTuple(Major, Minor);
1156   }
1157 
1158   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
1159   // If what follows is not a '.' or '_', we have a problem.
1160   if (!VersionNumberSeparator(AfterMinorSeparator)) {
1161     Diag(Tok, diag::err_expected_version);
1162     SkipUntil(tok::comma, tok::r_paren,
1163               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1164     return VersionTuple();
1165   }
1166 
1167   // Warn if separators, be it '.' or '_', do not match.
1168   if (AfterMajorSeparator != AfterMinorSeparator)
1169     Diag(Tok, diag::warn_expected_consistent_version_separator);
1170 
1171   // Parse the subminor version.
1172   unsigned AfterSubminor = AfterMinor + 1;
1173   unsigned Subminor = 0;
1174   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
1175     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
1176     ++AfterSubminor;
1177   }
1178 
1179   if (AfterSubminor != ActualLength) {
1180     Diag(Tok, diag::err_expected_version);
1181     SkipUntil(tok::comma, tok::r_paren,
1182               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1183     return VersionTuple();
1184   }
1185   ConsumeToken();
1186   return VersionTuple(Major, Minor, Subminor);
1187 }
1188 
1189 /// Parse the contents of the "availability" attribute.
1190 ///
1191 /// availability-attribute:
1192 ///   'availability' '(' platform ',' opt-strict version-arg-list,
1193 ///                      opt-replacement, opt-message')'
1194 ///
1195 /// platform:
1196 ///   identifier
1197 ///
1198 /// opt-strict:
1199 ///   'strict' ','
1200 ///
1201 /// version-arg-list:
1202 ///   version-arg
1203 ///   version-arg ',' version-arg-list
1204 ///
1205 /// version-arg:
1206 ///   'introduced' '=' version
1207 ///   'deprecated' '=' version
1208 ///   'obsoleted' = version
1209 ///   'unavailable'
1210 /// opt-replacement:
1211 ///   'replacement' '=' <string>
1212 /// opt-message:
1213 ///   'message' '=' <string>
1214 void Parser::ParseAvailabilityAttribute(
1215     IdentifierInfo &Availability, SourceLocation AvailabilityLoc,
1216     ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName,
1217     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1218   enum { Introduced, Deprecated, Obsoleted, Unknown };
1219   AvailabilityChange Changes[Unknown];
1220   ExprResult MessageExpr, ReplacementExpr;
1221 
1222   // Opening '('.
1223   BalancedDelimiterTracker T(*this, tok::l_paren);
1224   if (T.consumeOpen()) {
1225     Diag(Tok, diag::err_expected) << tok::l_paren;
1226     return;
1227   }
1228 
1229   // Parse the platform name.
1230   if (Tok.isNot(tok::identifier)) {
1231     Diag(Tok, diag::err_availability_expected_platform);
1232     SkipUntil(tok::r_paren, StopAtSemi);
1233     return;
1234   }
1235   IdentifierLoc *Platform = ParseIdentifierLoc();
1236   if (const IdentifierInfo *const Ident = Platform->Ident) {
1237     // Canonicalize platform name from "macosx" to "macos".
1238     if (Ident->getName() == "macosx")
1239       Platform->Ident = PP.getIdentifierInfo("macos");
1240     // Canonicalize platform name from "macosx_app_extension" to
1241     // "macos_app_extension".
1242     else if (Ident->getName() == "macosx_app_extension")
1243       Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1244     else
1245       Platform->Ident = PP.getIdentifierInfo(
1246           AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1247   }
1248 
1249   // Parse the ',' following the platform name.
1250   if (ExpectAndConsume(tok::comma)) {
1251     SkipUntil(tok::r_paren, StopAtSemi);
1252     return;
1253   }
1254 
1255   // If we haven't grabbed the pointers for the identifiers
1256   // "introduced", "deprecated", and "obsoleted", do so now.
1257   if (!Ident_introduced) {
1258     Ident_introduced = PP.getIdentifierInfo("introduced");
1259     Ident_deprecated = PP.getIdentifierInfo("deprecated");
1260     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1261     Ident_unavailable = PP.getIdentifierInfo("unavailable");
1262     Ident_message = PP.getIdentifierInfo("message");
1263     Ident_strict = PP.getIdentifierInfo("strict");
1264     Ident_replacement = PP.getIdentifierInfo("replacement");
1265   }
1266 
1267   // Parse the optional "strict", the optional "replacement" and the set of
1268   // introductions/deprecations/removals.
1269   SourceLocation UnavailableLoc, StrictLoc;
1270   do {
1271     if (Tok.isNot(tok::identifier)) {
1272       Diag(Tok, diag::err_availability_expected_change);
1273       SkipUntil(tok::r_paren, StopAtSemi);
1274       return;
1275     }
1276     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1277     SourceLocation KeywordLoc = ConsumeToken();
1278 
1279     if (Keyword == Ident_strict) {
1280       if (StrictLoc.isValid()) {
1281         Diag(KeywordLoc, diag::err_availability_redundant)
1282           << Keyword << SourceRange(StrictLoc);
1283       }
1284       StrictLoc = KeywordLoc;
1285       continue;
1286     }
1287 
1288     if (Keyword == Ident_unavailable) {
1289       if (UnavailableLoc.isValid()) {
1290         Diag(KeywordLoc, diag::err_availability_redundant)
1291           << Keyword << SourceRange(UnavailableLoc);
1292       }
1293       UnavailableLoc = KeywordLoc;
1294       continue;
1295     }
1296 
1297     if (Keyword == Ident_deprecated && Platform->Ident &&
1298         Platform->Ident->isStr("swift")) {
1299       // For swift, we deprecate for all versions.
1300       if (Changes[Deprecated].KeywordLoc.isValid()) {
1301         Diag(KeywordLoc, diag::err_availability_redundant)
1302           << Keyword
1303           << SourceRange(Changes[Deprecated].KeywordLoc);
1304       }
1305 
1306       Changes[Deprecated].KeywordLoc = KeywordLoc;
1307       // Use a fake version here.
1308       Changes[Deprecated].Version = VersionTuple(1);
1309       continue;
1310     }
1311 
1312     if (Tok.isNot(tok::equal)) {
1313       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1314       SkipUntil(tok::r_paren, StopAtSemi);
1315       return;
1316     }
1317     ConsumeToken();
1318     if (Keyword == Ident_message || Keyword == Ident_replacement) {
1319       if (!isTokenStringLiteral()) {
1320         Diag(Tok, diag::err_expected_string_literal)
1321           << /*Source='availability attribute'*/2;
1322         SkipUntil(tok::r_paren, StopAtSemi);
1323         return;
1324       }
1325       if (Keyword == Ident_message) {
1326         MessageExpr = ParseUnevaluatedStringLiteralExpression();
1327         break;
1328       } else {
1329         ReplacementExpr = ParseUnevaluatedStringLiteralExpression();
1330         continue;
1331       }
1332     }
1333 
1334     // Special handling of 'NA' only when applied to introduced or
1335     // deprecated.
1336     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1337         Tok.is(tok::identifier)) {
1338       IdentifierInfo *NA = Tok.getIdentifierInfo();
1339       if (NA->getName() == "NA") {
1340         ConsumeToken();
1341         if (Keyword == Ident_introduced)
1342           UnavailableLoc = KeywordLoc;
1343         continue;
1344       }
1345     }
1346 
1347     SourceRange VersionRange;
1348     VersionTuple Version = ParseVersionTuple(VersionRange);
1349 
1350     if (Version.empty()) {
1351       SkipUntil(tok::r_paren, StopAtSemi);
1352       return;
1353     }
1354 
1355     unsigned Index;
1356     if (Keyword == Ident_introduced)
1357       Index = Introduced;
1358     else if (Keyword == Ident_deprecated)
1359       Index = Deprecated;
1360     else if (Keyword == Ident_obsoleted)
1361       Index = Obsoleted;
1362     else
1363       Index = Unknown;
1364 
1365     if (Index < Unknown) {
1366       if (!Changes[Index].KeywordLoc.isInvalid()) {
1367         Diag(KeywordLoc, diag::err_availability_redundant)
1368           << Keyword
1369           << SourceRange(Changes[Index].KeywordLoc,
1370                          Changes[Index].VersionRange.getEnd());
1371       }
1372 
1373       Changes[Index].KeywordLoc = KeywordLoc;
1374       Changes[Index].Version = Version;
1375       Changes[Index].VersionRange = VersionRange;
1376     } else {
1377       Diag(KeywordLoc, diag::err_availability_unknown_change)
1378         << Keyword << VersionRange;
1379     }
1380 
1381   } while (TryConsumeToken(tok::comma));
1382 
1383   // Closing ')'.
1384   if (T.consumeClose())
1385     return;
1386 
1387   if (endLoc)
1388     *endLoc = T.getCloseLocation();
1389 
1390   // The 'unavailable' availability cannot be combined with any other
1391   // availability changes. Make sure that hasn't happened.
1392   if (UnavailableLoc.isValid()) {
1393     bool Complained = false;
1394     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1395       if (Changes[Index].KeywordLoc.isValid()) {
1396         if (!Complained) {
1397           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1398             << SourceRange(Changes[Index].KeywordLoc,
1399                            Changes[Index].VersionRange.getEnd());
1400           Complained = true;
1401         }
1402 
1403         // Clear out the availability.
1404         Changes[Index] = AvailabilityChange();
1405       }
1406     }
1407   }
1408 
1409   // Record this attribute
1410   attrs.addNew(&Availability,
1411                SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName,
1412                ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated],
1413                Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form,
1414                StrictLoc, ReplacementExpr.get());
1415 }
1416 
1417 /// Parse the contents of the "external_source_symbol" attribute.
1418 ///
1419 /// external-source-symbol-attribute:
1420 ///   'external_source_symbol' '(' keyword-arg-list ')'
1421 ///
1422 /// keyword-arg-list:
1423 ///   keyword-arg
1424 ///   keyword-arg ',' keyword-arg-list
1425 ///
1426 /// keyword-arg:
1427 ///   'language' '=' <string>
1428 ///   'defined_in' '=' <string>
1429 ///   'USR' '=' <string>
1430 ///   'generated_declaration'
1431 void Parser::ParseExternalSourceSymbolAttribute(
1432     IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1433     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1434     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1435   // Opening '('.
1436   BalancedDelimiterTracker T(*this, tok::l_paren);
1437   if (T.expectAndConsume())
1438     return;
1439 
1440   // Initialize the pointers for the keyword identifiers when required.
1441   if (!Ident_language) {
1442     Ident_language = PP.getIdentifierInfo("language");
1443     Ident_defined_in = PP.getIdentifierInfo("defined_in");
1444     Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1445     Ident_USR = PP.getIdentifierInfo("USR");
1446   }
1447 
1448   ExprResult Language;
1449   bool HasLanguage = false;
1450   ExprResult DefinedInExpr;
1451   bool HasDefinedIn = false;
1452   IdentifierLoc *GeneratedDeclaration = nullptr;
1453   ExprResult USR;
1454   bool HasUSR = false;
1455 
1456   // Parse the language/defined_in/generated_declaration keywords
1457   do {
1458     if (Tok.isNot(tok::identifier)) {
1459       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1460       SkipUntil(tok::r_paren, StopAtSemi);
1461       return;
1462     }
1463 
1464     SourceLocation KeywordLoc = Tok.getLocation();
1465     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1466     if (Keyword == Ident_generated_declaration) {
1467       if (GeneratedDeclaration) {
1468         Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1469         SkipUntil(tok::r_paren, StopAtSemi);
1470         return;
1471       }
1472       GeneratedDeclaration = ParseIdentifierLoc();
1473       continue;
1474     }
1475 
1476     if (Keyword != Ident_language && Keyword != Ident_defined_in &&
1477         Keyword != Ident_USR) {
1478       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1479       SkipUntil(tok::r_paren, StopAtSemi);
1480       return;
1481     }
1482 
1483     ConsumeToken();
1484     if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1485                          Keyword->getName())) {
1486       SkipUntil(tok::r_paren, StopAtSemi);
1487       return;
1488     }
1489 
1490     bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn,
1491          HadUSR = HasUSR;
1492     if (Keyword == Ident_language)
1493       HasLanguage = true;
1494     else if (Keyword == Ident_USR)
1495       HasUSR = true;
1496     else
1497       HasDefinedIn = true;
1498 
1499     if (!isTokenStringLiteral()) {
1500       Diag(Tok, diag::err_expected_string_literal)
1501           << /*Source='external_source_symbol attribute'*/ 3
1502           << /*language | source container | USR*/ (
1503                  Keyword == Ident_language
1504                      ? 0
1505                      : (Keyword == Ident_defined_in ? 1 : 2));
1506       SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1507       continue;
1508     }
1509     if (Keyword == Ident_language) {
1510       if (HadLanguage) {
1511         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1512             << Keyword;
1513         ParseUnevaluatedStringLiteralExpression();
1514         continue;
1515       }
1516       Language = ParseUnevaluatedStringLiteralExpression();
1517     } else if (Keyword == Ident_USR) {
1518       if (HadUSR) {
1519         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1520             << Keyword;
1521         ParseUnevaluatedStringLiteralExpression();
1522         continue;
1523       }
1524       USR = ParseUnevaluatedStringLiteralExpression();
1525     } else {
1526       assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1527       if (HadDefinedIn) {
1528         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1529             << Keyword;
1530         ParseUnevaluatedStringLiteralExpression();
1531         continue;
1532       }
1533       DefinedInExpr = ParseUnevaluatedStringLiteralExpression();
1534     }
1535   } while (TryConsumeToken(tok::comma));
1536 
1537   // Closing ')'.
1538   if (T.consumeClose())
1539     return;
1540   if (EndLoc)
1541     *EndLoc = T.getCloseLocation();
1542 
1543   ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration,
1544                       USR.get()};
1545   Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1546                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1547 }
1548 
1549 /// Parse the contents of the "objc_bridge_related" attribute.
1550 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1551 /// related_class:
1552 ///     Identifier
1553 ///
1554 /// opt-class_method:
1555 ///     Identifier: | <empty>
1556 ///
1557 /// opt-instance_method:
1558 ///     Identifier | <empty>
1559 ///
1560 void Parser::ParseObjCBridgeRelatedAttribute(
1561     IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc,
1562     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1563     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1564   // Opening '('.
1565   BalancedDelimiterTracker T(*this, tok::l_paren);
1566   if (T.consumeOpen()) {
1567     Diag(Tok, diag::err_expected) << tok::l_paren;
1568     return;
1569   }
1570 
1571   // Parse the related class name.
1572   if (Tok.isNot(tok::identifier)) {
1573     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1574     SkipUntil(tok::r_paren, StopAtSemi);
1575     return;
1576   }
1577   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1578   if (ExpectAndConsume(tok::comma)) {
1579     SkipUntil(tok::r_paren, StopAtSemi);
1580     return;
1581   }
1582 
1583   // Parse class method name.  It's non-optional in the sense that a trailing
1584   // comma is required, but it can be the empty string, and then we record a
1585   // nullptr.
1586   IdentifierLoc *ClassMethod = nullptr;
1587   if (Tok.is(tok::identifier)) {
1588     ClassMethod = ParseIdentifierLoc();
1589     if (!TryConsumeToken(tok::colon)) {
1590       Diag(Tok, diag::err_objcbridge_related_selector_name);
1591       SkipUntil(tok::r_paren, StopAtSemi);
1592       return;
1593     }
1594   }
1595   if (!TryConsumeToken(tok::comma)) {
1596     if (Tok.is(tok::colon))
1597       Diag(Tok, diag::err_objcbridge_related_selector_name);
1598     else
1599       Diag(Tok, diag::err_expected) << tok::comma;
1600     SkipUntil(tok::r_paren, StopAtSemi);
1601     return;
1602   }
1603 
1604   // Parse instance method name.  Also non-optional but empty string is
1605   // permitted.
1606   IdentifierLoc *InstanceMethod = nullptr;
1607   if (Tok.is(tok::identifier))
1608     InstanceMethod = ParseIdentifierLoc();
1609   else if (Tok.isNot(tok::r_paren)) {
1610     Diag(Tok, diag::err_expected) << tok::r_paren;
1611     SkipUntil(tok::r_paren, StopAtSemi);
1612     return;
1613   }
1614 
1615   // Closing ')'.
1616   if (T.consumeClose())
1617     return;
1618 
1619   if (EndLoc)
1620     *EndLoc = T.getCloseLocation();
1621 
1622   // Record this attribute
1623   Attrs.addNew(&ObjCBridgeRelated,
1624                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1625                ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod,
1626                Form);
1627 }
1628 
1629 void Parser::ParseSwiftNewTypeAttribute(
1630     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1631     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1632     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1633   BalancedDelimiterTracker T(*this, tok::l_paren);
1634 
1635   // Opening '('
1636   if (T.consumeOpen()) {
1637     Diag(Tok, diag::err_expected) << tok::l_paren;
1638     return;
1639   }
1640 
1641   if (Tok.is(tok::r_paren)) {
1642     Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
1643     T.consumeClose();
1644     return;
1645   }
1646   if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
1647     Diag(Tok, diag::warn_attribute_type_not_supported)
1648         << &AttrName << Tok.getIdentifierInfo();
1649     if (!isTokenSpecial())
1650       ConsumeToken();
1651     T.consumeClose();
1652     return;
1653   }
1654 
1655   auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
1656                                           Tok.getIdentifierInfo());
1657   ConsumeToken();
1658 
1659   // Closing ')'
1660   if (T.consumeClose())
1661     return;
1662   if (EndLoc)
1663     *EndLoc = T.getCloseLocation();
1664 
1665   ArgsUnion Args[] = {SwiftType};
1666   Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
1667                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1668 }
1669 
1670 void Parser::ParseTypeTagForDatatypeAttribute(
1671     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1672     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1673     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1674   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1675 
1676   BalancedDelimiterTracker T(*this, tok::l_paren);
1677   T.consumeOpen();
1678 
1679   if (Tok.isNot(tok::identifier)) {
1680     Diag(Tok, diag::err_expected) << tok::identifier;
1681     T.skipToEnd();
1682     return;
1683   }
1684   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1685 
1686   if (ExpectAndConsume(tok::comma)) {
1687     T.skipToEnd();
1688     return;
1689   }
1690 
1691   SourceRange MatchingCTypeRange;
1692   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1693   if (MatchingCType.isInvalid()) {
1694     T.skipToEnd();
1695     return;
1696   }
1697 
1698   bool LayoutCompatible = false;
1699   bool MustBeNull = false;
1700   while (TryConsumeToken(tok::comma)) {
1701     if (Tok.isNot(tok::identifier)) {
1702       Diag(Tok, diag::err_expected) << tok::identifier;
1703       T.skipToEnd();
1704       return;
1705     }
1706     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1707     if (Flag->isStr("layout_compatible"))
1708       LayoutCompatible = true;
1709     else if (Flag->isStr("must_be_null"))
1710       MustBeNull = true;
1711     else {
1712       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1713       T.skipToEnd();
1714       return;
1715     }
1716     ConsumeToken(); // consume flag
1717   }
1718 
1719   if (!T.consumeClose()) {
1720     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1721                                    ArgumentKind, MatchingCType.get(),
1722                                    LayoutCompatible, MustBeNull, Form);
1723   }
1724 
1725   if (EndLoc)
1726     *EndLoc = T.getCloseLocation();
1727 }
1728 
1729 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1730 /// of a C++11 attribute-specifier in a location where an attribute is not
1731 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1732 /// situation.
1733 ///
1734 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1735 /// this doesn't appear to actually be an attribute-specifier, and the caller
1736 /// should try to parse it.
1737 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1738   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1739 
1740   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1741   case CAK_NotAttributeSpecifier:
1742     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1743     return false;
1744 
1745   case CAK_InvalidAttributeSpecifier:
1746     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1747     return false;
1748 
1749   case CAK_AttributeSpecifier:
1750     // Parse and discard the attributes.
1751     SourceLocation BeginLoc = ConsumeBracket();
1752     ConsumeBracket();
1753     SkipUntil(tok::r_square);
1754     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1755     SourceLocation EndLoc = ConsumeBracket();
1756     Diag(BeginLoc, diag::err_attributes_not_allowed)
1757       << SourceRange(BeginLoc, EndLoc);
1758     return true;
1759   }
1760   llvm_unreachable("All cases handled above.");
1761 }
1762 
1763 /// We have found the opening square brackets of a C++11
1764 /// attribute-specifier in a location where an attribute is not permitted, but
1765 /// we know where the attributes ought to be written. Parse them anyway, and
1766 /// provide a fixit moving them to the right place.
1767 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs,
1768                                              SourceLocation CorrectLocation) {
1769   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1770          Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute());
1771 
1772   // Consume the attributes.
1773   auto Keyword =
1774       Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr;
1775   SourceLocation Loc = Tok.getLocation();
1776   ParseCXX11Attributes(Attrs);
1777   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1778   // FIXME: use err_attributes_misplaced
1779   (Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword
1780            : Diag(Loc, diag::err_attributes_not_allowed))
1781       << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1782       << FixItHint::CreateRemoval(AttrRange);
1783 }
1784 
1785 void Parser::DiagnoseProhibitedAttributes(
1786     const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) {
1787   auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front();
1788   if (CorrectLocation.isValid()) {
1789     CharSourceRange AttrRange(Attrs.Range, true);
1790     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1791          ? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr
1792          : Diag(CorrectLocation, diag::err_attributes_misplaced))
1793         << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1794         << FixItHint::CreateRemoval(AttrRange);
1795   } else {
1796     const SourceRange &Range = Attrs.Range;
1797     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1798          ? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr
1799          : Diag(Range.getBegin(), diag::err_attributes_not_allowed))
1800         << Range;
1801   }
1802 }
1803 
1804 void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs,
1805                                      unsigned AttrDiagID,
1806                                      unsigned KeywordDiagID,
1807                                      bool DiagnoseEmptyAttrs,
1808                                      bool WarnOnUnknownAttrs) {
1809 
1810   if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
1811     // An attribute list has been parsed, but it was empty.
1812     // This is the case for [[]].
1813     const auto &LangOpts = getLangOpts();
1814     auto &SM = PP.getSourceManager();
1815     Token FirstLSquare;
1816     Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
1817 
1818     if (FirstLSquare.is(tok::l_square)) {
1819       std::optional<Token> SecondLSquare =
1820           Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
1821 
1822       if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
1823         // The attribute range starts with [[, but is empty. So this must
1824         // be [[]], which we are supposed to diagnose because
1825         // DiagnoseEmptyAttrs is true.
1826         Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range;
1827         return;
1828       }
1829     }
1830   }
1831 
1832   for (const ParsedAttr &AL : Attrs) {
1833     if (AL.isRegularKeywordAttribute()) {
1834       Diag(AL.getLoc(), KeywordDiagID) << AL;
1835       AL.setInvalid();
1836       continue;
1837     }
1838     if (!AL.isStandardAttributeSyntax())
1839       continue;
1840     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
1841       if (WarnOnUnknownAttrs)
1842         Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
1843             << AL << AL.getRange();
1844     } else {
1845       Diag(AL.getLoc(), AttrDiagID) << AL;
1846       AL.setInvalid();
1847     }
1848   }
1849 }
1850 
1851 void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) {
1852   for (const ParsedAttr &PA : Attrs) {
1853     if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute())
1854       Diag(PA.getLoc(), diag::ext_cxx11_attr_placement)
1855           << PA << PA.isRegularKeywordAttribute() << PA.getRange();
1856   }
1857 }
1858 
1859 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1860 // applies to var, not the type Foo.
1861 // As an exception to the rule, __declspec(align(...)) before the
1862 // class-key affects the type instead of the variable.
1863 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1864 // variable.
1865 // This function moves attributes that should apply to the type off DS to Attrs.
1866 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs,
1867                                             DeclSpec &DS,
1868                                             Sema::TagUseKind TUK) {
1869   if (TUK == Sema::TUK_Reference)
1870     return;
1871 
1872   llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1873 
1874   for (ParsedAttr &AL : DS.getAttributes()) {
1875     if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1876          AL.isDeclspecAttribute()) ||
1877         AL.isMicrosoftAttribute())
1878       ToBeMoved.push_back(&AL);
1879   }
1880 
1881   for (ParsedAttr *AL : ToBeMoved) {
1882     DS.getAttributes().remove(AL);
1883     Attrs.addAtEnd(AL);
1884   }
1885 }
1886 
1887 /// ParseDeclaration - Parse a full 'declaration', which consists of
1888 /// declaration-specifiers, some number of declarators, and a semicolon.
1889 /// 'Context' should be a DeclaratorContext value.  This returns the
1890 /// location of the semicolon in DeclEnd.
1891 ///
1892 ///       declaration: [C99 6.7]
1893 ///         block-declaration ->
1894 ///           simple-declaration
1895 ///           others                   [FIXME]
1896 /// [C++]   template-declaration
1897 /// [C++]   namespace-definition
1898 /// [C++]   using-directive
1899 /// [C++]   using-declaration
1900 /// [C++11/C11] static_assert-declaration
1901 ///         others... [FIXME]
1902 ///
1903 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1904                                                 SourceLocation &DeclEnd,
1905                                                 ParsedAttributes &DeclAttrs,
1906                                                 ParsedAttributes &DeclSpecAttrs,
1907                                                 SourceLocation *DeclSpecStart) {
1908   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1909   // Must temporarily exit the objective-c container scope for
1910   // parsing c none objective-c decls.
1911   ObjCDeclContextSwitch ObjCDC(*this);
1912 
1913   Decl *SingleDecl = nullptr;
1914   switch (Tok.getKind()) {
1915   case tok::kw_template:
1916   case tok::kw_export:
1917     ProhibitAttributes(DeclAttrs);
1918     ProhibitAttributes(DeclSpecAttrs);
1919     SingleDecl =
1920         ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs);
1921     break;
1922   case tok::kw_inline:
1923     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1924     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1925       ProhibitAttributes(DeclAttrs);
1926       ProhibitAttributes(DeclSpecAttrs);
1927       SourceLocation InlineLoc = ConsumeToken();
1928       return ParseNamespace(Context, DeclEnd, InlineLoc);
1929     }
1930     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
1931                                   true, nullptr, DeclSpecStart);
1932 
1933   case tok::kw_cbuffer:
1934   case tok::kw_tbuffer:
1935     SingleDecl = ParseHLSLBuffer(DeclEnd);
1936     break;
1937   case tok::kw_namespace:
1938     ProhibitAttributes(DeclAttrs);
1939     ProhibitAttributes(DeclSpecAttrs);
1940     return ParseNamespace(Context, DeclEnd);
1941   case tok::kw_using: {
1942     ParsedAttributes Attrs(AttrFactory);
1943     takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs);
1944     return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1945                                             DeclEnd, Attrs);
1946   }
1947   case tok::kw_static_assert:
1948   case tok::kw__Static_assert:
1949     ProhibitAttributes(DeclAttrs);
1950     ProhibitAttributes(DeclSpecAttrs);
1951     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1952     break;
1953   default:
1954     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
1955                                   true, nullptr, DeclSpecStart);
1956   }
1957 
1958   // This routine returns a DeclGroup, if the thing we parsed only contains a
1959   // single decl, convert it now.
1960   return Actions.ConvertDeclToDeclGroup(SingleDecl);
1961 }
1962 
1963 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1964 ///         declaration-specifiers init-declarator-list[opt] ';'
1965 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1966 ///             init-declarator-list ';'
1967 ///[C90/C++]init-declarator-list ';'                             [TODO]
1968 /// [OMP]   threadprivate-directive
1969 /// [OMP]   allocate-directive                                   [TODO]
1970 ///
1971 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1972 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1973 ///
1974 /// If RequireSemi is false, this does not check for a ';' at the end of the
1975 /// declaration.  If it is true, it checks for and eats it.
1976 ///
1977 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1978 /// of a simple-declaration. If we find that we are, we also parse the
1979 /// for-range-initializer, and place it here.
1980 ///
1981 /// DeclSpecStart is used when decl-specifiers are parsed before parsing
1982 /// the Declaration. The SourceLocation for this Decl is set to
1983 /// DeclSpecStart if DeclSpecStart is non-null.
1984 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
1985     DeclaratorContext Context, SourceLocation &DeclEnd,
1986     ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs,
1987     bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) {
1988   // Need to retain these for diagnostics before we add them to the DeclSepc.
1989   ParsedAttributesView OriginalDeclSpecAttrs;
1990   OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end());
1991   OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range;
1992 
1993   // Parse the common declaration-specifiers piece.
1994   ParsingDeclSpec DS(*this);
1995   DS.takeAttributesFrom(DeclSpecAttrs);
1996 
1997   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1998   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1999 
2000   // If we had a free-standing type definition with a missing semicolon, we
2001   // may get this far before the problem becomes obvious.
2002   if (DS.hasTagDefinition() &&
2003       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
2004     return nullptr;
2005 
2006   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
2007   // declaration-specifiers init-declarator-list[opt] ';'
2008   if (Tok.is(tok::semi)) {
2009     ProhibitAttributes(DeclAttrs);
2010     DeclEnd = Tok.getLocation();
2011     if (RequireSemi) ConsumeToken();
2012     RecordDecl *AnonRecord = nullptr;
2013     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
2014         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
2015     Actions.ActOnDefinedDeclarationSpecifier(TheDecl);
2016     DS.complete(TheDecl);
2017     if (AnonRecord) {
2018       Decl* decls[] = {AnonRecord, TheDecl};
2019       return Actions.BuildDeclaratorGroup(decls);
2020     }
2021     return Actions.ConvertDeclToDeclGroup(TheDecl);
2022   }
2023 
2024   if (DS.hasTagDefinition())
2025     Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl());
2026 
2027   if (DeclSpecStart)
2028     DS.SetRangeStart(*DeclSpecStart);
2029 
2030   return ParseDeclGroup(DS, Context, DeclAttrs, &DeclEnd, FRI);
2031 }
2032 
2033 /// Returns true if this might be the start of a declarator, or a common typo
2034 /// for a declarator.
2035 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
2036   switch (Tok.getKind()) {
2037   case tok::annot_cxxscope:
2038   case tok::annot_template_id:
2039   case tok::caret:
2040   case tok::code_completion:
2041   case tok::coloncolon:
2042   case tok::ellipsis:
2043   case tok::kw___attribute:
2044   case tok::kw_operator:
2045   case tok::l_paren:
2046   case tok::star:
2047     return true;
2048 
2049   case tok::amp:
2050   case tok::ampamp:
2051     return getLangOpts().CPlusPlus;
2052 
2053   case tok::l_square: // Might be an attribute on an unnamed bit-field.
2054     return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
2055            NextToken().is(tok::l_square);
2056 
2057   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
2058     return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
2059 
2060   case tok::identifier:
2061     switch (NextToken().getKind()) {
2062     case tok::code_completion:
2063     case tok::coloncolon:
2064     case tok::comma:
2065     case tok::equal:
2066     case tok::equalequal: // Might be a typo for '='.
2067     case tok::kw_alignas:
2068     case tok::kw_asm:
2069     case tok::kw___attribute:
2070     case tok::l_brace:
2071     case tok::l_paren:
2072     case tok::l_square:
2073     case tok::less:
2074     case tok::r_brace:
2075     case tok::r_paren:
2076     case tok::r_square:
2077     case tok::semi:
2078       return true;
2079 
2080     case tok::colon:
2081       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
2082       // and in block scope it's probably a label. Inside a class definition,
2083       // this is a bit-field.
2084       return Context == DeclaratorContext::Member ||
2085              (getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
2086 
2087     case tok::identifier: // Possible virt-specifier.
2088       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
2089 
2090     default:
2091       return Tok.isRegularKeywordAttribute();
2092     }
2093 
2094   default:
2095     return Tok.isRegularKeywordAttribute();
2096   }
2097 }
2098 
2099 /// Skip until we reach something which seems like a sensible place to pick
2100 /// up parsing after a malformed declaration. This will sometimes stop sooner
2101 /// than SkipUntil(tok::r_brace) would, but will never stop later.
2102 void Parser::SkipMalformedDecl() {
2103   while (true) {
2104     switch (Tok.getKind()) {
2105     case tok::l_brace:
2106       // Skip until matching }, then stop. We've probably skipped over
2107       // a malformed class or function definition or similar.
2108       ConsumeBrace();
2109       SkipUntil(tok::r_brace);
2110       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
2111         // This declaration isn't over yet. Keep skipping.
2112         continue;
2113       }
2114       TryConsumeToken(tok::semi);
2115       return;
2116 
2117     case tok::l_square:
2118       ConsumeBracket();
2119       SkipUntil(tok::r_square);
2120       continue;
2121 
2122     case tok::l_paren:
2123       ConsumeParen();
2124       SkipUntil(tok::r_paren);
2125       continue;
2126 
2127     case tok::r_brace:
2128       return;
2129 
2130     case tok::semi:
2131       ConsumeToken();
2132       return;
2133 
2134     case tok::kw_inline:
2135       // 'inline namespace' at the start of a line is almost certainly
2136       // a good place to pick back up parsing, except in an Objective-C
2137       // @interface context.
2138       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
2139           (!ParsingInObjCContainer || CurParsedObjCImpl))
2140         return;
2141       break;
2142 
2143     case tok::kw_namespace:
2144       // 'namespace' at the start of a line is almost certainly a good
2145       // place to pick back up parsing, except in an Objective-C
2146       // @interface context.
2147       if (Tok.isAtStartOfLine() &&
2148           (!ParsingInObjCContainer || CurParsedObjCImpl))
2149         return;
2150       break;
2151 
2152     case tok::at:
2153       // @end is very much like } in Objective-C contexts.
2154       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
2155           ParsingInObjCContainer)
2156         return;
2157       break;
2158 
2159     case tok::minus:
2160     case tok::plus:
2161       // - and + probably start new method declarations in Objective-C contexts.
2162       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
2163         return;
2164       break;
2165 
2166     case tok::eof:
2167     case tok::annot_module_begin:
2168     case tok::annot_module_end:
2169     case tok::annot_module_include:
2170     case tok::annot_repl_input_end:
2171       return;
2172 
2173     default:
2174       break;
2175     }
2176 
2177     ConsumeAnyToken();
2178   }
2179 }
2180 
2181 /// ParseDeclGroup - Having concluded that this is either a function
2182 /// definition or a group of object declarations, actually parse the
2183 /// result.
2184 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2185                                               DeclaratorContext Context,
2186                                               ParsedAttributes &Attrs,
2187                                               SourceLocation *DeclEnd,
2188                                               ForRangeInit *FRI) {
2189   // Parse the first declarator.
2190   // Consume all of the attributes from `Attrs` by moving them to our own local
2191   // list. This ensures that we will not attempt to interpret them as statement
2192   // attributes higher up the callchain.
2193   ParsedAttributes LocalAttrs(AttrFactory);
2194   LocalAttrs.takeAllFrom(Attrs);
2195   ParsingDeclarator D(*this, DS, LocalAttrs, Context);
2196   ParseDeclarator(D);
2197 
2198   // Bail out if the first declarator didn't seem well-formed.
2199   if (!D.hasName() && !D.mayOmitIdentifier()) {
2200     SkipMalformedDecl();
2201     return nullptr;
2202   }
2203 
2204   if (getLangOpts().HLSL)
2205     MaybeParseHLSLSemantics(D);
2206 
2207   if (Tok.is(tok::kw_requires))
2208     ParseTrailingRequiresClause(D);
2209 
2210   // Save late-parsed attributes for now; they need to be parsed in the
2211   // appropriate function scope after the function Decl has been constructed.
2212   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2213   LateParsedAttrList LateParsedAttrs(true);
2214   if (D.isFunctionDeclarator()) {
2215     MaybeParseGNUAttributes(D, &LateParsedAttrs);
2216 
2217     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2218     // attribute. If we find the keyword here, tell the user to put it
2219     // at the start instead.
2220     if (Tok.is(tok::kw__Noreturn)) {
2221       SourceLocation Loc = ConsumeToken();
2222       const char *PrevSpec;
2223       unsigned DiagID;
2224 
2225       // We can offer a fixit if it's valid to mark this function as _Noreturn
2226       // and we don't have any other declarators in this declaration.
2227       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2228       MaybeParseGNUAttributes(D, &LateParsedAttrs);
2229       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2230 
2231       Diag(Loc, diag::err_c11_noreturn_misplaced)
2232           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2233           << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2234                     : FixItHint());
2235     }
2236 
2237     // Check to see if we have a function *definition* which must have a body.
2238     if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
2239       cutOffParsing();
2240       Actions.CodeCompleteAfterFunctionEquals(D);
2241       return nullptr;
2242     }
2243     // We're at the point where the parsing of function declarator is finished.
2244     //
2245     // A common error is that users accidently add a virtual specifier
2246     // (e.g. override) in an out-line method definition.
2247     // We attempt to recover by stripping all these specifiers coming after
2248     // the declarator.
2249     while (auto Specifier = isCXX11VirtSpecifier()) {
2250       Diag(Tok, diag::err_virt_specifier_outside_class)
2251           << VirtSpecifiers::getSpecifierName(Specifier)
2252           << FixItHint::CreateRemoval(Tok.getLocation());
2253       ConsumeToken();
2254     }
2255     // Look at the next token to make sure that this isn't a function
2256     // declaration.  We have to check this because __attribute__ might be the
2257     // start of a function definition in GCC-extended K&R C.
2258     if (!isDeclarationAfterDeclarator()) {
2259 
2260       // Function definitions are only allowed at file scope and in C++ classes.
2261       // The C++ inline method definition case is handled elsewhere, so we only
2262       // need to handle the file scope definition case.
2263       if (Context == DeclaratorContext::File) {
2264         if (isStartOfFunctionDefinition(D)) {
2265           if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2266             Diag(Tok, diag::err_function_declared_typedef);
2267 
2268             // Recover by treating the 'typedef' as spurious.
2269             DS.ClearStorageClassSpecs();
2270           }
2271 
2272           Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
2273                                                   &LateParsedAttrs);
2274           return Actions.ConvertDeclToDeclGroup(TheDecl);
2275         }
2276 
2277         if (isDeclarationSpecifier(ImplicitTypenameContext::No) ||
2278             Tok.is(tok::kw_namespace)) {
2279           // If there is an invalid declaration specifier or a namespace
2280           // definition right after the function prototype, then we must be in a
2281           // missing semicolon case where this isn't actually a body.  Just fall
2282           // through into the code that handles it as a prototype, and let the
2283           // top-level code handle the erroneous declspec where it would
2284           // otherwise expect a comma or semicolon. Note that
2285           // isDeclarationSpecifier already covers 'inline namespace', since
2286           // 'inline' can be a declaration specifier.
2287         } else {
2288           Diag(Tok, diag::err_expected_fn_body);
2289           SkipUntil(tok::semi);
2290           return nullptr;
2291         }
2292       } else {
2293         if (Tok.is(tok::l_brace)) {
2294           Diag(Tok, diag::err_function_definition_not_allowed);
2295           SkipMalformedDecl();
2296           return nullptr;
2297         }
2298       }
2299     }
2300   }
2301 
2302   if (ParseAsmAttributesAfterDeclarator(D))
2303     return nullptr;
2304 
2305   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2306   // must parse and analyze the for-range-initializer before the declaration is
2307   // analyzed.
2308   //
2309   // Handle the Objective-C for-in loop variable similarly, although we
2310   // don't need to parse the container in advance.
2311   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2312     bool IsForRangeLoop = false;
2313     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2314       IsForRangeLoop = true;
2315       if (getLangOpts().OpenMP)
2316         Actions.startOpenMPCXXRangeFor();
2317       if (Tok.is(tok::l_brace))
2318         FRI->RangeExpr = ParseBraceInitializer();
2319       else
2320         FRI->RangeExpr = ParseExpression();
2321     }
2322 
2323     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2324     if (IsForRangeLoop) {
2325       Actions.ActOnCXXForRangeDecl(ThisDecl);
2326     } else {
2327       // Obj-C for loop
2328       if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2329         VD->setObjCForDecl(true);
2330     }
2331     Actions.FinalizeDeclaration(ThisDecl);
2332     D.complete(ThisDecl);
2333     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2334   }
2335 
2336   SmallVector<Decl *, 8> DeclsInGroup;
2337   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2338       D, ParsedTemplateInfo(), FRI);
2339   if (LateParsedAttrs.size() > 0)
2340     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2341   D.complete(FirstDecl);
2342   if (FirstDecl)
2343     DeclsInGroup.push_back(FirstDecl);
2344 
2345   bool ExpectSemi = Context != DeclaratorContext::ForInit;
2346 
2347   // If we don't have a comma, it is either the end of the list (a ';') or an
2348   // error, bail out.
2349   SourceLocation CommaLoc;
2350   while (TryConsumeToken(tok::comma, CommaLoc)) {
2351     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2352       // This comma was followed by a line-break and something which can't be
2353       // the start of a declarator. The comma was probably a typo for a
2354       // semicolon.
2355       Diag(CommaLoc, diag::err_expected_semi_declaration)
2356         << FixItHint::CreateReplacement(CommaLoc, ";");
2357       ExpectSemi = false;
2358       break;
2359     }
2360 
2361     // Parse the next declarator.
2362     D.clear();
2363     D.setCommaLoc(CommaLoc);
2364 
2365     // Accept attributes in an init-declarator.  In the first declarator in a
2366     // declaration, these would be part of the declspec.  In subsequent
2367     // declarators, they become part of the declarator itself, so that they
2368     // don't apply to declarators after *this* one.  Examples:
2369     //    short __attribute__((common)) var;    -> declspec
2370     //    short var __attribute__((common));    -> declarator
2371     //    short x, __attribute__((common)) var;    -> declarator
2372     MaybeParseGNUAttributes(D);
2373 
2374     // MSVC parses but ignores qualifiers after the comma as an extension.
2375     if (getLangOpts().MicrosoftExt)
2376       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2377 
2378     ParseDeclarator(D);
2379 
2380     if (getLangOpts().HLSL)
2381       MaybeParseHLSLSemantics(D);
2382 
2383     if (!D.isInvalidType()) {
2384       // C++2a [dcl.decl]p1
2385       //    init-declarator:
2386       //	      declarator initializer[opt]
2387       //        declarator requires-clause
2388       if (Tok.is(tok::kw_requires))
2389         ParseTrailingRequiresClause(D);
2390       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2391       D.complete(ThisDecl);
2392       if (ThisDecl)
2393         DeclsInGroup.push_back(ThisDecl);
2394     }
2395   }
2396 
2397   if (DeclEnd)
2398     *DeclEnd = Tok.getLocation();
2399 
2400   if (ExpectSemi && ExpectAndConsumeSemi(
2401                         Context == DeclaratorContext::File
2402                             ? diag::err_invalid_token_after_toplevel_declarator
2403                             : diag::err_expected_semi_declaration)) {
2404     // Okay, there was no semicolon and one was expected.  If we see a
2405     // declaration specifier, just assume it was missing and continue parsing.
2406     // Otherwise things are very confused and we skip to recover.
2407     if (!isDeclarationSpecifier(ImplicitTypenameContext::No))
2408       SkipMalformedDecl();
2409   }
2410 
2411   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2412 }
2413 
2414 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2415 /// declarator. Returns true on an error.
2416 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2417   // If a simple-asm-expr is present, parse it.
2418   if (Tok.is(tok::kw_asm)) {
2419     SourceLocation Loc;
2420     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2421     if (AsmLabel.isInvalid()) {
2422       SkipUntil(tok::semi, StopBeforeMatch);
2423       return true;
2424     }
2425 
2426     D.setAsmLabel(AsmLabel.get());
2427     D.SetRangeEnd(Loc);
2428   }
2429 
2430   MaybeParseGNUAttributes(D);
2431   return false;
2432 }
2433 
2434 /// Parse 'declaration' after parsing 'declaration-specifiers
2435 /// declarator'. This method parses the remainder of the declaration
2436 /// (including any attributes or initializer, among other things) and
2437 /// finalizes the declaration.
2438 ///
2439 ///       init-declarator: [C99 6.7]
2440 ///         declarator
2441 ///         declarator '=' initializer
2442 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2443 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2444 /// [C++]   declarator initializer[opt]
2445 ///
2446 /// [C++] initializer:
2447 /// [C++]   '=' initializer-clause
2448 /// [C++]   '(' expression-list ')'
2449 /// [C++0x] '=' 'default'                                                [TODO]
2450 /// [C++0x] '=' 'delete'
2451 /// [C++0x] braced-init-list
2452 ///
2453 /// According to the standard grammar, =default and =delete are function
2454 /// definitions, but that definitely doesn't fit with the parser here.
2455 ///
2456 Decl *Parser::ParseDeclarationAfterDeclarator(
2457     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2458   if (ParseAsmAttributesAfterDeclarator(D))
2459     return nullptr;
2460 
2461   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2462 }
2463 
2464 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2465     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2466   // RAII type used to track whether we're inside an initializer.
2467   struct InitializerScopeRAII {
2468     Parser &P;
2469     Declarator &D;
2470     Decl *ThisDecl;
2471 
2472     InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2473         : P(P), D(D), ThisDecl(ThisDecl) {
2474       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2475         Scope *S = nullptr;
2476         if (D.getCXXScopeSpec().isSet()) {
2477           P.EnterScope(0);
2478           S = P.getCurScope();
2479         }
2480         P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2481       }
2482     }
2483     ~InitializerScopeRAII() { pop(); }
2484     void pop() {
2485       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2486         Scope *S = nullptr;
2487         if (D.getCXXScopeSpec().isSet())
2488           S = P.getCurScope();
2489         P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2490         if (S)
2491           P.ExitScope();
2492       }
2493       ThisDecl = nullptr;
2494     }
2495   };
2496 
2497   enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
2498   InitKind TheInitKind;
2499   // If a '==' or '+=' is found, suggest a fixit to '='.
2500   if (isTokenEqualOrEqualTypo())
2501     TheInitKind = InitKind::Equal;
2502   else if (Tok.is(tok::l_paren))
2503     TheInitKind = InitKind::CXXDirect;
2504   else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2505            (!CurParsedObjCImpl || !D.isFunctionDeclarator()))
2506     TheInitKind = InitKind::CXXBraced;
2507   else
2508     TheInitKind = InitKind::Uninitialized;
2509   if (TheInitKind != InitKind::Uninitialized)
2510     D.setHasInitializer();
2511 
2512   // Inform Sema that we just parsed this declarator.
2513   Decl *ThisDecl = nullptr;
2514   Decl *OuterDecl = nullptr;
2515   switch (TemplateInfo.Kind) {
2516   case ParsedTemplateInfo::NonTemplate:
2517     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2518     break;
2519 
2520   case ParsedTemplateInfo::Template:
2521   case ParsedTemplateInfo::ExplicitSpecialization: {
2522     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2523                                                *TemplateInfo.TemplateParams,
2524                                                D);
2525     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
2526       // Re-direct this decl to refer to the templated decl so that we can
2527       // initialize it.
2528       ThisDecl = VT->getTemplatedDecl();
2529       OuterDecl = VT;
2530     }
2531     break;
2532   }
2533   case ParsedTemplateInfo::ExplicitInstantiation: {
2534     if (Tok.is(tok::semi)) {
2535       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2536           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2537       if (ThisRes.isInvalid()) {
2538         SkipUntil(tok::semi, StopBeforeMatch);
2539         return nullptr;
2540       }
2541       ThisDecl = ThisRes.get();
2542     } else {
2543       // FIXME: This check should be for a variable template instantiation only.
2544 
2545       // Check that this is a valid instantiation
2546       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2547         // If the declarator-id is not a template-id, issue a diagnostic and
2548         // recover by ignoring the 'template' keyword.
2549         Diag(Tok, diag::err_template_defn_explicit_instantiation)
2550             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2551         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2552       } else {
2553         SourceLocation LAngleLoc =
2554             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2555         Diag(D.getIdentifierLoc(),
2556              diag::err_explicit_instantiation_with_definition)
2557             << SourceRange(TemplateInfo.TemplateLoc)
2558             << FixItHint::CreateInsertion(LAngleLoc, "<>");
2559 
2560         // Recover as if it were an explicit specialization.
2561         TemplateParameterLists FakedParamLists;
2562         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2563             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2564             std::nullopt, LAngleLoc, nullptr));
2565 
2566         ThisDecl =
2567             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2568       }
2569     }
2570     break;
2571     }
2572   }
2573 
2574   Sema::CUDATargetContextRAII X(Actions, Sema::CTCK_InitGlobalVar, ThisDecl);
2575   switch (TheInitKind) {
2576   // Parse declarator '=' initializer.
2577   case InitKind::Equal: {
2578     SourceLocation EqualLoc = ConsumeToken();
2579 
2580     if (Tok.is(tok::kw_delete)) {
2581       if (D.isFunctionDeclarator())
2582         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2583           << 1 /* delete */;
2584       else
2585         Diag(ConsumeToken(), diag::err_deleted_non_function);
2586     } else if (Tok.is(tok::kw_default)) {
2587       if (D.isFunctionDeclarator())
2588         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2589           << 0 /* default */;
2590       else
2591         Diag(ConsumeToken(), diag::err_default_special_members)
2592             << getLangOpts().CPlusPlus20;
2593     } else {
2594       InitializerScopeRAII InitScope(*this, D, ThisDecl);
2595 
2596       if (Tok.is(tok::code_completion)) {
2597         cutOffParsing();
2598         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2599         Actions.FinalizeDeclaration(ThisDecl);
2600         return nullptr;
2601       }
2602 
2603       PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2604       ExprResult Init = ParseInitializer();
2605 
2606       // If this is the only decl in (possibly) range based for statement,
2607       // our best guess is that the user meant ':' instead of '='.
2608       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2609         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2610             << FixItHint::CreateReplacement(EqualLoc, ":");
2611         // We are trying to stop parser from looking for ';' in this for
2612         // statement, therefore preventing spurious errors to be issued.
2613         FRI->ColonLoc = EqualLoc;
2614         Init = ExprError();
2615         FRI->RangeExpr = Init;
2616       }
2617 
2618       InitScope.pop();
2619 
2620       if (Init.isInvalid()) {
2621         SmallVector<tok::TokenKind, 2> StopTokens;
2622         StopTokens.push_back(tok::comma);
2623         if (D.getContext() == DeclaratorContext::ForInit ||
2624             D.getContext() == DeclaratorContext::SelectionInit)
2625           StopTokens.push_back(tok::r_paren);
2626         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2627         Actions.ActOnInitializerError(ThisDecl);
2628       } else
2629         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2630                                      /*DirectInit=*/false);
2631     }
2632     break;
2633   }
2634   case InitKind::CXXDirect: {
2635     // Parse C++ direct initializer: '(' expression-list ')'
2636     BalancedDelimiterTracker T(*this, tok::l_paren);
2637     T.consumeOpen();
2638 
2639     ExprVector Exprs;
2640 
2641     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2642 
2643     auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2644     auto RunSignatureHelp = [&]() {
2645       QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2646           ThisVarDecl->getType()->getCanonicalTypeInternal(),
2647           ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2648           /*Braced=*/false);
2649       CalledSignatureHelp = true;
2650       return PreferredType;
2651     };
2652     auto SetPreferredType = [&] {
2653       PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2654     };
2655 
2656     llvm::function_ref<void()> ExpressionStarts;
2657     if (ThisVarDecl) {
2658       // ParseExpressionList can sometimes succeed even when ThisDecl is not
2659       // VarDecl. This is an error and it is reported in a call to
2660       // Actions.ActOnInitializerError(). However, we call
2661       // ProduceConstructorSignatureHelp only on VarDecls.
2662       ExpressionStarts = SetPreferredType;
2663     }
2664     if (ParseExpressionList(Exprs, ExpressionStarts)) {
2665       if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2666         Actions.ProduceConstructorSignatureHelp(
2667             ThisVarDecl->getType()->getCanonicalTypeInternal(),
2668             ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2669             /*Braced=*/false);
2670         CalledSignatureHelp = true;
2671       }
2672       Actions.ActOnInitializerError(ThisDecl);
2673       SkipUntil(tok::r_paren, StopAtSemi);
2674     } else {
2675       // Match the ')'.
2676       T.consumeClose();
2677       InitScope.pop();
2678 
2679       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2680                                                           T.getCloseLocation(),
2681                                                           Exprs);
2682       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2683                                    /*DirectInit=*/true);
2684     }
2685     break;
2686   }
2687   case InitKind::CXXBraced: {
2688     // Parse C++0x braced-init-list.
2689     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2690 
2691     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2692 
2693     PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2694     ExprResult Init(ParseBraceInitializer());
2695 
2696     InitScope.pop();
2697 
2698     if (Init.isInvalid()) {
2699       Actions.ActOnInitializerError(ThisDecl);
2700     } else
2701       Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2702     break;
2703   }
2704   case InitKind::Uninitialized: {
2705     Actions.ActOnUninitializedDecl(ThisDecl);
2706     break;
2707   }
2708   }
2709 
2710   Actions.FinalizeDeclaration(ThisDecl);
2711   return OuterDecl ? OuterDecl : ThisDecl;
2712 }
2713 
2714 /// ParseSpecifierQualifierList
2715 ///        specifier-qualifier-list:
2716 ///          type-specifier specifier-qualifier-list[opt]
2717 ///          type-qualifier specifier-qualifier-list[opt]
2718 /// [GNU]    attributes     specifier-qualifier-list[opt]
2719 ///
2720 void Parser::ParseSpecifierQualifierList(
2721     DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename,
2722     AccessSpecifier AS, DeclSpecContext DSC) {
2723   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2724   /// parse declaration-specifiers and complain about extra stuff.
2725   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2726   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC, nullptr,
2727                              AllowImplicitTypename);
2728 
2729   // Validate declspec for type-name.
2730   unsigned Specs = DS.getParsedSpecifiers();
2731   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2732     Diag(Tok, diag::err_expected_type);
2733     DS.SetTypeSpecError();
2734   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2735     Diag(Tok, diag::err_typename_requires_specqual);
2736     if (!DS.hasTypeSpecifier())
2737       DS.SetTypeSpecError();
2738   }
2739 
2740   // Issue diagnostic and remove storage class if present.
2741   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2742     if (DS.getStorageClassSpecLoc().isValid())
2743       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2744     else
2745       Diag(DS.getThreadStorageClassSpecLoc(),
2746            diag::err_typename_invalid_storageclass);
2747     DS.ClearStorageClassSpecs();
2748   }
2749 
2750   // Issue diagnostic and remove function specifier if present.
2751   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2752     if (DS.isInlineSpecified())
2753       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2754     if (DS.isVirtualSpecified())
2755       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2756     if (DS.hasExplicitSpecifier())
2757       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2758     if (DS.isNoreturnSpecified())
2759       Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec);
2760     DS.ClearFunctionSpecs();
2761   }
2762 
2763   // Issue diagnostic and remove constexpr specifier if present.
2764   if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2765     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2766         << static_cast<int>(DS.getConstexprSpecifier());
2767     DS.ClearConstexprSpec();
2768   }
2769 }
2770 
2771 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2772 /// specified token is valid after the identifier in a declarator which
2773 /// immediately follows the declspec.  For example, these things are valid:
2774 ///
2775 ///      int x   [             4];         // direct-declarator
2776 ///      int x   (             int y);     // direct-declarator
2777 ///  int(int x   )                         // direct-declarator
2778 ///      int x   ;                         // simple-declaration
2779 ///      int x   =             17;         // init-declarator-list
2780 ///      int x   ,             y;          // init-declarator-list
2781 ///      int x   __asm__       ("foo");    // init-declarator-list
2782 ///      int x   :             4;          // struct-declarator
2783 ///      int x   {             5};         // C++'0x unified initializers
2784 ///
2785 /// This is not, because 'x' does not immediately follow the declspec (though
2786 /// ')' happens to be valid anyway).
2787 ///    int (x)
2788 ///
2789 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2790   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2791                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2792                    tok::colon);
2793 }
2794 
2795 /// ParseImplicitInt - This method is called when we have an non-typename
2796 /// identifier in a declspec (which normally terminates the decl spec) when
2797 /// the declspec has no type specifier.  In this case, the declspec is either
2798 /// malformed or is "implicit int" (in K&R and C89).
2799 ///
2800 /// This method handles diagnosing this prettily and returns false if the
2801 /// declspec is done being processed.  If it recovers and thinks there may be
2802 /// other pieces of declspec after it, it returns true.
2803 ///
2804 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2805                               const ParsedTemplateInfo &TemplateInfo,
2806                               AccessSpecifier AS, DeclSpecContext DSC,
2807                               ParsedAttributes &Attrs) {
2808   assert(Tok.is(tok::identifier) && "should have identifier");
2809 
2810   SourceLocation Loc = Tok.getLocation();
2811   // If we see an identifier that is not a type name, we normally would
2812   // parse it as the identifier being declared.  However, when a typename
2813   // is typo'd or the definition is not included, this will incorrectly
2814   // parse the typename as the identifier name and fall over misparsing
2815   // later parts of the diagnostic.
2816   //
2817   // As such, we try to do some look-ahead in cases where this would
2818   // otherwise be an "implicit-int" case to see if this is invalid.  For
2819   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2820   // an identifier with implicit int, we'd get a parse error because the
2821   // next token is obviously invalid for a type.  Parse these as a case
2822   // with an invalid type specifier.
2823   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2824 
2825   // Since we know that this either implicit int (which is rare) or an
2826   // error, do lookahead to try to do better recovery. This never applies
2827   // within a type specifier. Outside of C++, we allow this even if the
2828   // language doesn't "officially" support implicit int -- we support
2829   // implicit int as an extension in some language modes.
2830   if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() &&
2831       isValidAfterIdentifierInDeclarator(NextToken())) {
2832     // If this token is valid for implicit int, e.g. "static x = 4", then
2833     // we just avoid eating the identifier, so it will be parsed as the
2834     // identifier in the declarator.
2835     return false;
2836   }
2837 
2838   // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2839   // for incomplete declarations such as `pipe p`.
2840   if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2841     return false;
2842 
2843   if (getLangOpts().CPlusPlus &&
2844       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2845     // Don't require a type specifier if we have the 'auto' storage class
2846     // specifier in C++98 -- we'll promote it to a type specifier.
2847     if (SS)
2848       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2849     return false;
2850   }
2851 
2852   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2853       getLangOpts().MSVCCompat) {
2854     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2855     // Give Sema a chance to recover if we are in a template with dependent base
2856     // classes.
2857     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2858             *Tok.getIdentifierInfo(), Tok.getLocation(),
2859             DSC == DeclSpecContext::DSC_template_type_arg)) {
2860       const char *PrevSpec;
2861       unsigned DiagID;
2862       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2863                          Actions.getASTContext().getPrintingPolicy());
2864       DS.SetRangeEnd(Tok.getLocation());
2865       ConsumeToken();
2866       return false;
2867     }
2868   }
2869 
2870   // Otherwise, if we don't consume this token, we are going to emit an
2871   // error anyway.  Try to recover from various common problems.  Check
2872   // to see if this was a reference to a tag name without a tag specified.
2873   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2874   //
2875   // C++ doesn't need this, and isTagName doesn't take SS.
2876   if (SS == nullptr) {
2877     const char *TagName = nullptr, *FixitTagName = nullptr;
2878     tok::TokenKind TagKind = tok::unknown;
2879 
2880     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2881       default: break;
2882       case DeclSpec::TST_enum:
2883         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2884       case DeclSpec::TST_union:
2885         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2886       case DeclSpec::TST_struct:
2887         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2888       case DeclSpec::TST_interface:
2889         TagName="__interface"; FixitTagName = "__interface ";
2890         TagKind=tok::kw___interface;break;
2891       case DeclSpec::TST_class:
2892         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2893     }
2894 
2895     if (TagName) {
2896       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2897       LookupResult R(Actions, TokenName, SourceLocation(),
2898                      Sema::LookupOrdinaryName);
2899 
2900       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2901         << TokenName << TagName << getLangOpts().CPlusPlus
2902         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2903 
2904       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2905         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2906              I != IEnd; ++I)
2907           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2908             << TokenName << TagName;
2909       }
2910 
2911       // Parse this as a tag as if the missing tag were present.
2912       if (TagKind == tok::kw_enum)
2913         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2914                            DeclSpecContext::DSC_normal);
2915       else
2916         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2917                             /*EnteringContext*/ false,
2918                             DeclSpecContext::DSC_normal, Attrs);
2919       return true;
2920     }
2921   }
2922 
2923   // Determine whether this identifier could plausibly be the name of something
2924   // being declared (with a missing type).
2925   if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2926                                 DSC == DeclSpecContext::DSC_class)) {
2927     // Look ahead to the next token to try to figure out what this declaration
2928     // was supposed to be.
2929     switch (NextToken().getKind()) {
2930     case tok::l_paren: {
2931       // static x(4); // 'x' is not a type
2932       // x(int n);    // 'x' is not a type
2933       // x (*p)[];    // 'x' is a type
2934       //
2935       // Since we're in an error case, we can afford to perform a tentative
2936       // parse to determine which case we're in.
2937       TentativeParsingAction PA(*this);
2938       ConsumeToken();
2939       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2940       PA.Revert();
2941 
2942       if (TPR != TPResult::False) {
2943         // The identifier is followed by a parenthesized declarator.
2944         // It's supposed to be a type.
2945         break;
2946       }
2947 
2948       // If we're in a context where we could be declaring a constructor,
2949       // check whether this is a constructor declaration with a bogus name.
2950       if (DSC == DeclSpecContext::DSC_class ||
2951           (DSC == DeclSpecContext::DSC_top_level && SS)) {
2952         IdentifierInfo *II = Tok.getIdentifierInfo();
2953         if (Actions.isCurrentClassNameTypo(II, SS)) {
2954           Diag(Loc, diag::err_constructor_bad_name)
2955             << Tok.getIdentifierInfo() << II
2956             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2957           Tok.setIdentifierInfo(II);
2958         }
2959       }
2960       // Fall through.
2961       [[fallthrough]];
2962     }
2963     case tok::comma:
2964     case tok::equal:
2965     case tok::kw_asm:
2966     case tok::l_brace:
2967     case tok::l_square:
2968     case tok::semi:
2969       // This looks like a variable or function declaration. The type is
2970       // probably missing. We're done parsing decl-specifiers.
2971       // But only if we are not in a function prototype scope.
2972       if (getCurScope()->isFunctionPrototypeScope())
2973         break;
2974       if (SS)
2975         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2976       return false;
2977 
2978     default:
2979       // This is probably supposed to be a type. This includes cases like:
2980       //   int f(itn);
2981       //   struct S { unsigned : 4; };
2982       break;
2983     }
2984   }
2985 
2986   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2987   // and attempt to recover.
2988   ParsedType T;
2989   IdentifierInfo *II = Tok.getIdentifierInfo();
2990   bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2991   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2992                                   IsTemplateName);
2993   if (T) {
2994     // The action has suggested that the type T could be used. Set that as
2995     // the type in the declaration specifiers, consume the would-be type
2996     // name token, and we're done.
2997     const char *PrevSpec;
2998     unsigned DiagID;
2999     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3000                        Actions.getASTContext().getPrintingPolicy());
3001     DS.SetRangeEnd(Tok.getLocation());
3002     ConsumeToken();
3003     // There may be other declaration specifiers after this.
3004     return true;
3005   } else if (II != Tok.getIdentifierInfo()) {
3006     // If no type was suggested, the correction is to a keyword
3007     Tok.setKind(II->getTokenID());
3008     // There may be other declaration specifiers after this.
3009     return true;
3010   }
3011 
3012   // Otherwise, the action had no suggestion for us.  Mark this as an error.
3013   DS.SetTypeSpecError();
3014   DS.SetRangeEnd(Tok.getLocation());
3015   ConsumeToken();
3016 
3017   // Eat any following template arguments.
3018   if (IsTemplateName) {
3019     SourceLocation LAngle, RAngle;
3020     TemplateArgList Args;
3021     ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
3022   }
3023 
3024   // TODO: Could inject an invalid typedef decl in an enclosing scope to
3025   // avoid rippling error messages on subsequent uses of the same type,
3026   // could be useful if #include was forgotten.
3027   return true;
3028 }
3029 
3030 /// Determine the declaration specifier context from the declarator
3031 /// context.
3032 ///
3033 /// \param Context the declarator context, which is one of the
3034 /// DeclaratorContext enumerator values.
3035 Parser::DeclSpecContext
3036 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
3037   switch (Context) {
3038   case DeclaratorContext::Member:
3039     return DeclSpecContext::DSC_class;
3040   case DeclaratorContext::File:
3041     return DeclSpecContext::DSC_top_level;
3042   case DeclaratorContext::TemplateParam:
3043     return DeclSpecContext::DSC_template_param;
3044   case DeclaratorContext::TemplateArg:
3045     return DeclSpecContext::DSC_template_arg;
3046   case DeclaratorContext::TemplateTypeArg:
3047     return DeclSpecContext::DSC_template_type_arg;
3048   case DeclaratorContext::TrailingReturn:
3049   case DeclaratorContext::TrailingReturnVar:
3050     return DeclSpecContext::DSC_trailing;
3051   case DeclaratorContext::AliasDecl:
3052   case DeclaratorContext::AliasTemplate:
3053     return DeclSpecContext::DSC_alias_declaration;
3054   case DeclaratorContext::Association:
3055     return DeclSpecContext::DSC_association;
3056   case DeclaratorContext::TypeName:
3057     return DeclSpecContext::DSC_type_specifier;
3058   case DeclaratorContext::Condition:
3059     return DeclSpecContext::DSC_condition;
3060   case DeclaratorContext::ConversionId:
3061     return DeclSpecContext::DSC_conv_operator;
3062   case DeclaratorContext::CXXNew:
3063     return DeclSpecContext::DSC_new;
3064   case DeclaratorContext::Prototype:
3065   case DeclaratorContext::ObjCResult:
3066   case DeclaratorContext::ObjCParameter:
3067   case DeclaratorContext::KNRTypeList:
3068   case DeclaratorContext::FunctionalCast:
3069   case DeclaratorContext::Block:
3070   case DeclaratorContext::ForInit:
3071   case DeclaratorContext::SelectionInit:
3072   case DeclaratorContext::CXXCatch:
3073   case DeclaratorContext::ObjCCatch:
3074   case DeclaratorContext::BlockLiteral:
3075   case DeclaratorContext::LambdaExpr:
3076   case DeclaratorContext::LambdaExprParameter:
3077   case DeclaratorContext::RequiresExpr:
3078     return DeclSpecContext::DSC_normal;
3079   }
3080 
3081   llvm_unreachable("Missing DeclaratorContext case");
3082 }
3083 
3084 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
3085 ///
3086 /// [C11]   type-id
3087 /// [C11]   constant-expression
3088 /// [C++0x] type-id ...[opt]
3089 /// [C++0x] assignment-expression ...[opt]
3090 ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start,
3091                                       SourceLocation &EllipsisLoc, bool &IsType,
3092                                       ParsedType &TypeResult) {
3093   ExprResult ER;
3094   if (isTypeIdInParens()) {
3095     SourceLocation TypeLoc = Tok.getLocation();
3096     ParsedType Ty = ParseTypeName().get();
3097     SourceRange TypeRange(Start, Tok.getLocation());
3098     if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange))
3099       return ExprError();
3100     TypeResult = Ty;
3101     IsType = true;
3102   } else {
3103     ER = ParseConstantExpression();
3104     IsType = false;
3105   }
3106 
3107   if (getLangOpts().CPlusPlus11)
3108     TryConsumeToken(tok::ellipsis, EllipsisLoc);
3109 
3110   return ER;
3111 }
3112 
3113 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
3114 /// attribute to Attrs.
3115 ///
3116 /// alignment-specifier:
3117 /// [C11]   '_Alignas' '(' type-id ')'
3118 /// [C11]   '_Alignas' '(' constant-expression ')'
3119 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
3120 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
3121 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
3122                                      SourceLocation *EndLoc) {
3123   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
3124          "Not an alignment-specifier!");
3125   Token KWTok = Tok;
3126   IdentifierInfo *KWName = KWTok.getIdentifierInfo();
3127   auto Kind = KWTok.getKind();
3128   SourceLocation KWLoc = ConsumeToken();
3129 
3130   BalancedDelimiterTracker T(*this, tok::l_paren);
3131   if (T.expectAndConsume())
3132     return;
3133 
3134   bool IsType;
3135   ParsedType TypeResult;
3136   SourceLocation EllipsisLoc;
3137   ExprResult ArgExpr =
3138       ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(),
3139                          EllipsisLoc, IsType, TypeResult);
3140   if (ArgExpr.isInvalid()) {
3141     T.skipToEnd();
3142     return;
3143   }
3144 
3145   T.consumeClose();
3146   if (EndLoc)
3147     *EndLoc = T.getCloseLocation();
3148 
3149   if (IsType) {
3150     Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind,
3151                          EllipsisLoc);
3152   } else {
3153     ArgsVector ArgExprs;
3154     ArgExprs.push_back(ArgExpr.get());
3155     Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind,
3156                  EllipsisLoc);
3157   }
3158 }
3159 
3160 ExprResult Parser::ParseExtIntegerArgument() {
3161   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
3162          "Not an extended int type");
3163   ConsumeToken();
3164 
3165   BalancedDelimiterTracker T(*this, tok::l_paren);
3166   if (T.expectAndConsume())
3167     return ExprError();
3168 
3169   ExprResult ER = ParseConstantExpression();
3170   if (ER.isInvalid()) {
3171     T.skipToEnd();
3172     return ExprError();
3173   }
3174 
3175   if(T.consumeClose())
3176     return ExprError();
3177   return ER;
3178 }
3179 
3180 /// Determine whether we're looking at something that might be a declarator
3181 /// in a simple-declaration. If it can't possibly be a declarator, maybe
3182 /// diagnose a missing semicolon after a prior tag definition in the decl
3183 /// specifier.
3184 ///
3185 /// \return \c true if an error occurred and this can't be any kind of
3186 /// declaration.
3187 bool
3188 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
3189                                               DeclSpecContext DSContext,
3190                                               LateParsedAttrList *LateAttrs) {
3191   assert(DS.hasTagDefinition() && "shouldn't call this");
3192 
3193   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3194                           DSContext == DeclSpecContext::DSC_top_level);
3195 
3196   if (getLangOpts().CPlusPlus &&
3197       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
3198                   tok::annot_template_id) &&
3199       TryAnnotateCXXScopeToken(EnteringContext)) {
3200     SkipMalformedDecl();
3201     return true;
3202   }
3203 
3204   bool HasScope = Tok.is(tok::annot_cxxscope);
3205   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
3206   Token AfterScope = HasScope ? NextToken() : Tok;
3207 
3208   // Determine whether the following tokens could possibly be a
3209   // declarator.
3210   bool MightBeDeclarator = true;
3211   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
3212     // A declarator-id can't start with 'typename'.
3213     MightBeDeclarator = false;
3214   } else if (AfterScope.is(tok::annot_template_id)) {
3215     // If we have a type expressed as a template-id, this cannot be a
3216     // declarator-id (such a type cannot be redeclared in a simple-declaration).
3217     TemplateIdAnnotation *Annot =
3218         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
3219     if (Annot->Kind == TNK_Type_template)
3220       MightBeDeclarator = false;
3221   } else if (AfterScope.is(tok::identifier)) {
3222     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
3223 
3224     // These tokens cannot come after the declarator-id in a
3225     // simple-declaration, and are likely to come after a type-specifier.
3226     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
3227                      tok::annot_cxxscope, tok::coloncolon)) {
3228       // Missing a semicolon.
3229       MightBeDeclarator = false;
3230     } else if (HasScope) {
3231       // If the declarator-id has a scope specifier, it must redeclare a
3232       // previously-declared entity. If that's a type (and this is not a
3233       // typedef), that's an error.
3234       CXXScopeSpec SS;
3235       Actions.RestoreNestedNameSpecifierAnnotation(
3236           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3237       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
3238       Sema::NameClassification Classification = Actions.ClassifyName(
3239           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
3240           /*CCC=*/nullptr);
3241       switch (Classification.getKind()) {
3242       case Sema::NC_Error:
3243         SkipMalformedDecl();
3244         return true;
3245 
3246       case Sema::NC_Keyword:
3247         llvm_unreachable("typo correction is not possible here");
3248 
3249       case Sema::NC_Type:
3250       case Sema::NC_TypeTemplate:
3251       case Sema::NC_UndeclaredNonType:
3252       case Sema::NC_UndeclaredTemplate:
3253         // Not a previously-declared non-type entity.
3254         MightBeDeclarator = false;
3255         break;
3256 
3257       case Sema::NC_Unknown:
3258       case Sema::NC_NonType:
3259       case Sema::NC_DependentNonType:
3260       case Sema::NC_OverloadSet:
3261       case Sema::NC_VarTemplate:
3262       case Sema::NC_FunctionTemplate:
3263       case Sema::NC_Concept:
3264         // Might be a redeclaration of a prior entity.
3265         break;
3266       }
3267     }
3268   }
3269 
3270   if (MightBeDeclarator)
3271     return false;
3272 
3273   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
3274   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
3275        diag::err_expected_after)
3276       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
3277 
3278   // Try to recover from the typo, by dropping the tag definition and parsing
3279   // the problematic tokens as a type.
3280   //
3281   // FIXME: Split the DeclSpec into pieces for the standalone
3282   // declaration and pieces for the following declaration, instead
3283   // of assuming that all the other pieces attach to new declaration,
3284   // and call ParsedFreeStandingDeclSpec as appropriate.
3285   DS.ClearTypeSpecType();
3286   ParsedTemplateInfo NotATemplate;
3287   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
3288   return false;
3289 }
3290 
3291 /// ParseDeclarationSpecifiers
3292 ///       declaration-specifiers: [C99 6.7]
3293 ///         storage-class-specifier declaration-specifiers[opt]
3294 ///         type-specifier declaration-specifiers[opt]
3295 /// [C99]   function-specifier declaration-specifiers[opt]
3296 /// [C11]   alignment-specifier declaration-specifiers[opt]
3297 /// [GNU]   attributes declaration-specifiers[opt]
3298 /// [Clang] '__module_private__' declaration-specifiers[opt]
3299 /// [ObjC1] '__kindof' declaration-specifiers[opt]
3300 ///
3301 ///       storage-class-specifier: [C99 6.7.1]
3302 ///         'typedef'
3303 ///         'extern'
3304 ///         'static'
3305 ///         'auto'
3306 ///         'register'
3307 /// [C++]   'mutable'
3308 /// [C++11] 'thread_local'
3309 /// [C11]   '_Thread_local'
3310 /// [GNU]   '__thread'
3311 ///       function-specifier: [C99 6.7.4]
3312 /// [C99]   'inline'
3313 /// [C++]   'virtual'
3314 /// [C++]   'explicit'
3315 /// [OpenCL] '__kernel'
3316 ///       'friend': [C++ dcl.friend]
3317 ///       'constexpr': [C++0x dcl.constexpr]
3318 void Parser::ParseDeclarationSpecifiers(
3319     DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS,
3320     DeclSpecContext DSContext, LateParsedAttrList *LateAttrs,
3321     ImplicitTypenameContext AllowImplicitTypename) {
3322   if (DS.getSourceRange().isInvalid()) {
3323     // Start the range at the current token but make the end of the range
3324     // invalid.  This will make the entire range invalid unless we successfully
3325     // consume a token.
3326     DS.SetRangeStart(Tok.getLocation());
3327     DS.SetRangeEnd(SourceLocation());
3328   }
3329 
3330   // If we are in a operator context, convert it back into a type specifier
3331   // context for better error handling later on.
3332   if (DSContext == DeclSpecContext::DSC_conv_operator) {
3333     // No implicit typename here.
3334     AllowImplicitTypename = ImplicitTypenameContext::No;
3335     DSContext = DeclSpecContext::DSC_type_specifier;
3336   }
3337 
3338   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3339                           DSContext == DeclSpecContext::DSC_top_level);
3340   bool AttrsLastTime = false;
3341   ParsedAttributes attrs(AttrFactory);
3342   // We use Sema's policy to get bool macros right.
3343   PrintingPolicy Policy = Actions.getPrintingPolicy();
3344   while (true) {
3345     bool isInvalid = false;
3346     bool isStorageClass = false;
3347     const char *PrevSpec = nullptr;
3348     unsigned DiagID = 0;
3349 
3350     // This value needs to be set to the location of the last token if the last
3351     // token of the specifier is already consumed.
3352     SourceLocation ConsumedEnd;
3353 
3354     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3355     // implementation for VS2013 uses _Atomic as an identifier for one of the
3356     // classes in <atomic>.
3357     //
3358     // A typedef declaration containing _Atomic<...> is among the places where
3359     // the class is used.  If we are currently parsing such a declaration, treat
3360     // the token as an identifier.
3361     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3362         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3363         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3364       Tok.setKind(tok::identifier);
3365 
3366     SourceLocation Loc = Tok.getLocation();
3367 
3368     // Helper for image types in OpenCL.
3369     auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) {
3370       // Check if the image type is supported and otherwise turn the keyword into an identifier
3371       // because image types from extensions are not reserved identifiers.
3372       if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) {
3373         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3374         Tok.setKind(tok::identifier);
3375         return false;
3376       }
3377       isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy);
3378       return true;
3379     };
3380 
3381     // Turn off usual access checking for template specializations and
3382     // instantiations.
3383     bool IsTemplateSpecOrInst =
3384         (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3385          TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3386 
3387     switch (Tok.getKind()) {
3388     default:
3389       if (Tok.isRegularKeywordAttribute())
3390         goto Attribute;
3391 
3392     DoneWithDeclSpec:
3393       if (!AttrsLastTime)
3394         ProhibitAttributes(attrs);
3395       else {
3396         // Reject C++11 / C23 attributes that aren't type attributes.
3397         for (const ParsedAttr &PA : attrs) {
3398           if (!PA.isCXX11Attribute() && !PA.isC23Attribute() &&
3399               !PA.isRegularKeywordAttribute())
3400             continue;
3401           if (PA.getKind() == ParsedAttr::UnknownAttribute)
3402             // We will warn about the unknown attribute elsewhere (in
3403             // SemaDeclAttr.cpp)
3404             continue;
3405           // GCC ignores this attribute when placed on the DeclSpec in [[]]
3406           // syntax, so we do the same.
3407           if (PA.getKind() == ParsedAttr::AT_VectorSize) {
3408             Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA;
3409             PA.setInvalid();
3410             continue;
3411           }
3412           // We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they
3413           // are type attributes, because we historically haven't allowed these
3414           // to be used as type attributes in C++11 / C23 syntax.
3415           if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound &&
3416               PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck)
3417             continue;
3418           Diag(PA.getLoc(), diag::err_attribute_not_type_attr)
3419               << PA << PA.isRegularKeywordAttribute();
3420           PA.setInvalid();
3421         }
3422 
3423         DS.takeAttributesFrom(attrs);
3424       }
3425 
3426       // If this is not a declaration specifier token, we're done reading decl
3427       // specifiers.  First verify that DeclSpec's are consistent.
3428       DS.Finish(Actions, Policy);
3429       return;
3430 
3431     case tok::l_square:
3432     case tok::kw_alignas:
3433       if (!isAllowedCXX11AttributeSpecifier())
3434         goto DoneWithDeclSpec;
3435 
3436     Attribute:
3437       ProhibitAttributes(attrs);
3438       // FIXME: It would be good to recover by accepting the attributes,
3439       //        but attempting to do that now would cause serious
3440       //        madness in terms of diagnostics.
3441       attrs.clear();
3442       attrs.Range = SourceRange();
3443 
3444       ParseCXX11Attributes(attrs);
3445       AttrsLastTime = true;
3446       continue;
3447 
3448     case tok::code_completion: {
3449       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
3450       if (DS.hasTypeSpecifier()) {
3451         bool AllowNonIdentifiers
3452           = (getCurScope()->getFlags() & (Scope::ControlScope |
3453                                           Scope::BlockScope |
3454                                           Scope::TemplateParamScope |
3455                                           Scope::FunctionPrototypeScope |
3456                                           Scope::AtCatchScope)) == 0;
3457         bool AllowNestedNameSpecifiers
3458           = DSContext == DeclSpecContext::DSC_top_level ||
3459             (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3460 
3461         cutOffParsing();
3462         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3463                                      AllowNonIdentifiers,
3464                                      AllowNestedNameSpecifiers);
3465         return;
3466       }
3467 
3468       // Class context can appear inside a function/block, so prioritise that.
3469       if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3470         CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3471                                                       : Sema::PCC_Template;
3472       else if (DSContext == DeclSpecContext::DSC_class)
3473         CCC = Sema::PCC_Class;
3474       else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3475         CCC = Sema::PCC_LocalDeclarationSpecifiers;
3476       else if (CurParsedObjCImpl)
3477         CCC = Sema::PCC_ObjCImplementation;
3478 
3479       cutOffParsing();
3480       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3481       return;
3482     }
3483 
3484     case tok::coloncolon: // ::foo::bar
3485       // C++ scope specifier.  Annotate and loop, or bail out on error.
3486       if (TryAnnotateCXXScopeToken(EnteringContext)) {
3487         if (!DS.hasTypeSpecifier())
3488           DS.SetTypeSpecError();
3489         goto DoneWithDeclSpec;
3490       }
3491       if (Tok.is(tok::coloncolon)) // ::new or ::delete
3492         goto DoneWithDeclSpec;
3493       continue;
3494 
3495     case tok::annot_cxxscope: {
3496       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3497         goto DoneWithDeclSpec;
3498 
3499       CXXScopeSpec SS;
3500       if (TemplateInfo.TemplateParams)
3501         SS.setTemplateParamLists(*TemplateInfo.TemplateParams);
3502       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3503                                                    Tok.getAnnotationRange(),
3504                                                    SS);
3505 
3506       // We are looking for a qualified typename.
3507       Token Next = NextToken();
3508 
3509       TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
3510                                              ? takeTemplateIdAnnotation(Next)
3511                                              : nullptr;
3512       if (TemplateId && TemplateId->hasInvalidName()) {
3513         // We found something like 'T::U<Args> x', but U is not a template.
3514         // Assume it was supposed to be a type.
3515         DS.SetTypeSpecError();
3516         ConsumeAnnotationToken();
3517         break;
3518       }
3519 
3520       if (TemplateId && TemplateId->Kind == TNK_Type_template) {
3521         // We have a qualified template-id, e.g., N::A<int>
3522 
3523         // If this would be a valid constructor declaration with template
3524         // arguments, we will reject the attempt to form an invalid type-id
3525         // referring to the injected-class-name when we annotate the token,
3526         // per C++ [class.qual]p2.
3527         //
3528         // To improve diagnostics for this case, parse the declaration as a
3529         // constructor (and reject the extra template arguments later).
3530         if ((DSContext == DeclSpecContext::DSC_top_level ||
3531              DSContext == DeclSpecContext::DSC_class) &&
3532             TemplateId->Name &&
3533             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3534             isConstructorDeclarator(/*Unqualified=*/false,
3535                                     /*DeductionGuide=*/false,
3536                                     DS.isFriendSpecified())) {
3537           // The user meant this to be an out-of-line constructor
3538           // definition, but template arguments are not allowed
3539           // there.  Just allow this as a constructor; we'll
3540           // complain about it later.
3541           goto DoneWithDeclSpec;
3542         }
3543 
3544         DS.getTypeSpecScope() = SS;
3545         ConsumeAnnotationToken(); // The C++ scope.
3546         assert(Tok.is(tok::annot_template_id) &&
3547                "ParseOptionalCXXScopeSpecifier not working");
3548         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3549         continue;
3550       }
3551 
3552       if (TemplateId && TemplateId->Kind == TNK_Concept_template) {
3553         DS.getTypeSpecScope() = SS;
3554         // This is probably a qualified placeholder-specifier, e.g., ::C<int>
3555         // auto ... Consume the scope annotation and continue to consume the
3556         // template-id as a placeholder-specifier. Let the next iteration
3557         // diagnose a missing auto.
3558         ConsumeAnnotationToken();
3559         continue;
3560       }
3561 
3562       if (Next.is(tok::annot_typename)) {
3563         DS.getTypeSpecScope() = SS;
3564         ConsumeAnnotationToken(); // The C++ scope.
3565         TypeResult T = getTypeAnnotation(Tok);
3566         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3567                                        Tok.getAnnotationEndLoc(),
3568                                        PrevSpec, DiagID, T, Policy);
3569         if (isInvalid)
3570           break;
3571         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3572         ConsumeAnnotationToken(); // The typename
3573       }
3574 
3575       if (AllowImplicitTypename == ImplicitTypenameContext::Yes &&
3576           Next.is(tok::annot_template_id) &&
3577           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3578                   ->Kind == TNK_Dependent_template_name) {
3579         DS.getTypeSpecScope() = SS;
3580         ConsumeAnnotationToken(); // The C++ scope.
3581         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3582         continue;
3583       }
3584 
3585       if (Next.isNot(tok::identifier))
3586         goto DoneWithDeclSpec;
3587 
3588       // Check whether this is a constructor declaration. If we're in a
3589       // context where the identifier could be a class name, and it has the
3590       // shape of a constructor declaration, process it as one.
3591       if ((DSContext == DeclSpecContext::DSC_top_level ||
3592            DSContext == DeclSpecContext::DSC_class) &&
3593           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3594                                      &SS) &&
3595           isConstructorDeclarator(/*Unqualified=*/false,
3596                                   /*DeductionGuide=*/false,
3597                                   DS.isFriendSpecified(),
3598                                   &TemplateInfo))
3599         goto DoneWithDeclSpec;
3600 
3601       // C++20 [temp.spec] 13.9/6.
3602       // This disables the access checking rules for function template explicit
3603       // instantiation and explicit specialization:
3604       // - `return type`.
3605       SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3606 
3607       ParsedType TypeRep = Actions.getTypeName(
3608           *Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS,
3609           false, false, nullptr,
3610           /*IsCtorOrDtorName=*/false,
3611           /*WantNontrivialTypeSourceInfo=*/true,
3612           isClassTemplateDeductionContext(DSContext), AllowImplicitTypename);
3613 
3614       if (IsTemplateSpecOrInst)
3615         SAC.done();
3616 
3617       // If the referenced identifier is not a type, then this declspec is
3618       // erroneous: We already checked about that it has no type specifier, and
3619       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3620       // typename.
3621       if (!TypeRep) {
3622         if (TryAnnotateTypeConstraint())
3623           goto DoneWithDeclSpec;
3624         if (Tok.isNot(tok::annot_cxxscope) ||
3625             NextToken().isNot(tok::identifier))
3626           continue;
3627         // Eat the scope spec so the identifier is current.
3628         ConsumeAnnotationToken();
3629         ParsedAttributes Attrs(AttrFactory);
3630         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3631           if (!Attrs.empty()) {
3632             AttrsLastTime = true;
3633             attrs.takeAllFrom(Attrs);
3634           }
3635           continue;
3636         }
3637         goto DoneWithDeclSpec;
3638       }
3639 
3640       DS.getTypeSpecScope() = SS;
3641       ConsumeAnnotationToken(); // The C++ scope.
3642 
3643       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3644                                      DiagID, TypeRep, Policy);
3645       if (isInvalid)
3646         break;
3647 
3648       DS.SetRangeEnd(Tok.getLocation());
3649       ConsumeToken(); // The typename.
3650 
3651       continue;
3652     }
3653 
3654     case tok::annot_typename: {
3655       // If we've previously seen a tag definition, we were almost surely
3656       // missing a semicolon after it.
3657       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3658         goto DoneWithDeclSpec;
3659 
3660       TypeResult T = getTypeAnnotation(Tok);
3661       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3662                                      DiagID, T, Policy);
3663       if (isInvalid)
3664         break;
3665 
3666       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3667       ConsumeAnnotationToken(); // The typename
3668 
3669       continue;
3670     }
3671 
3672     case tok::kw___is_signed:
3673       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3674       // typically treats it as a trait. If we see __is_signed as it appears
3675       // in libstdc++, e.g.,
3676       //
3677       //   static const bool __is_signed;
3678       //
3679       // then treat __is_signed as an identifier rather than as a keyword.
3680       if (DS.getTypeSpecType() == TST_bool &&
3681           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3682           DS.getStorageClassSpec() == DeclSpec::SCS_static)
3683         TryKeywordIdentFallback(true);
3684 
3685       // We're done with the declaration-specifiers.
3686       goto DoneWithDeclSpec;
3687 
3688       // typedef-name
3689     case tok::kw___super:
3690     case tok::kw_decltype:
3691     case tok::identifier:
3692     ParseIdentifier: {
3693       // This identifier can only be a typedef name if we haven't already seen
3694       // a type-specifier.  Without this check we misparse:
3695       //  typedef int X; struct Y { short X; };  as 'short int'.
3696       if (DS.hasTypeSpecifier())
3697         goto DoneWithDeclSpec;
3698 
3699       // If the token is an identifier named "__declspec" and Microsoft
3700       // extensions are not enabled, it is likely that there will be cascading
3701       // parse errors if this really is a __declspec attribute. Attempt to
3702       // recognize that scenario and recover gracefully.
3703       if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3704           Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3705         Diag(Loc, diag::err_ms_attributes_not_enabled);
3706 
3707         // The next token should be an open paren. If it is, eat the entire
3708         // attribute declaration and continue.
3709         if (NextToken().is(tok::l_paren)) {
3710           // Consume the __declspec identifier.
3711           ConsumeToken();
3712 
3713           // Eat the parens and everything between them.
3714           BalancedDelimiterTracker T(*this, tok::l_paren);
3715           if (T.consumeOpen()) {
3716             assert(false && "Not a left paren?");
3717             return;
3718           }
3719           T.skipToEnd();
3720           continue;
3721         }
3722       }
3723 
3724       // In C++, check to see if this is a scope specifier like foo::bar::, if
3725       // so handle it as such.  This is important for ctor parsing.
3726       if (getLangOpts().CPlusPlus) {
3727         // C++20 [temp.spec] 13.9/6.
3728         // This disables the access checking rules for function template
3729         // explicit instantiation and explicit specialization:
3730         // - `return type`.
3731         SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3732 
3733         const bool Success = TryAnnotateCXXScopeToken(EnteringContext);
3734 
3735         if (IsTemplateSpecOrInst)
3736           SAC.done();
3737 
3738         if (Success) {
3739           if (IsTemplateSpecOrInst)
3740             SAC.redelay();
3741           DS.SetTypeSpecError();
3742           goto DoneWithDeclSpec;
3743         }
3744 
3745         if (!Tok.is(tok::identifier))
3746           continue;
3747       }
3748 
3749       // Check for need to substitute AltiVec keyword tokens.
3750       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3751         break;
3752 
3753       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3754       //                allow the use of a typedef name as a type specifier.
3755       if (DS.isTypeAltiVecVector())
3756         goto DoneWithDeclSpec;
3757 
3758       if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3759           isObjCInstancetype()) {
3760         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3761         assert(TypeRep);
3762         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3763                                        DiagID, TypeRep, Policy);
3764         if (isInvalid)
3765           break;
3766 
3767         DS.SetRangeEnd(Loc);
3768         ConsumeToken();
3769         continue;
3770       }
3771 
3772       // If we're in a context where the identifier could be a class name,
3773       // check whether this is a constructor declaration.
3774       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3775           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3776           isConstructorDeclarator(/*Unqualified=*/true,
3777                                   /*DeductionGuide=*/false,
3778                                   DS.isFriendSpecified()))
3779         goto DoneWithDeclSpec;
3780 
3781       ParsedType TypeRep = Actions.getTypeName(
3782           *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3783           false, false, nullptr, false, false,
3784           isClassTemplateDeductionContext(DSContext));
3785 
3786       // If this is not a typedef name, don't parse it as part of the declspec,
3787       // it must be an implicit int or an error.
3788       if (!TypeRep) {
3789         if (TryAnnotateTypeConstraint())
3790           goto DoneWithDeclSpec;
3791         if (Tok.isNot(tok::identifier))
3792           continue;
3793         ParsedAttributes Attrs(AttrFactory);
3794         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3795           if (!Attrs.empty()) {
3796             AttrsLastTime = true;
3797             attrs.takeAllFrom(Attrs);
3798           }
3799           continue;
3800         }
3801         goto DoneWithDeclSpec;
3802       }
3803 
3804       // Likewise, if this is a context where the identifier could be a template
3805       // name, check whether this is a deduction guide declaration.
3806       CXXScopeSpec SS;
3807       if (getLangOpts().CPlusPlus17 &&
3808           (DSContext == DeclSpecContext::DSC_class ||
3809            DSContext == DeclSpecContext::DSC_top_level) &&
3810           Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3811                                        Tok.getLocation(), SS) &&
3812           isConstructorDeclarator(/*Unqualified*/ true,
3813                                   /*DeductionGuide*/ true))
3814         goto DoneWithDeclSpec;
3815 
3816       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3817                                      DiagID, TypeRep, Policy);
3818       if (isInvalid)
3819         break;
3820 
3821       DS.SetRangeEnd(Tok.getLocation());
3822       ConsumeToken(); // The identifier
3823 
3824       // Objective-C supports type arguments and protocol references
3825       // following an Objective-C object or object pointer
3826       // type. Handle either one of them.
3827       if (Tok.is(tok::less) && getLangOpts().ObjC) {
3828         SourceLocation NewEndLoc;
3829         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3830                                   Loc, TypeRep, /*consumeLastToken=*/true,
3831                                   NewEndLoc);
3832         if (NewTypeRep.isUsable()) {
3833           DS.UpdateTypeRep(NewTypeRep.get());
3834           DS.SetRangeEnd(NewEndLoc);
3835         }
3836       }
3837 
3838       // Need to support trailing type qualifiers (e.g. "id<p> const").
3839       // If a type specifier follows, it will be diagnosed elsewhere.
3840       continue;
3841     }
3842 
3843       // type-name or placeholder-specifier
3844     case tok::annot_template_id: {
3845       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3846 
3847       if (TemplateId->hasInvalidName()) {
3848         DS.SetTypeSpecError();
3849         break;
3850       }
3851 
3852       if (TemplateId->Kind == TNK_Concept_template) {
3853         // If we've already diagnosed that this type-constraint has invalid
3854         // arguments, drop it and just form 'auto' or 'decltype(auto)'.
3855         if (TemplateId->hasInvalidArgs())
3856           TemplateId = nullptr;
3857 
3858         // Any of the following tokens are likely the start of the user
3859         // forgetting 'auto' or 'decltype(auto)', so diagnose.
3860         // Note: if updating this list, please make sure we update
3861         // isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have
3862         // a matching list.
3863         if (NextToken().isOneOf(tok::identifier, tok::kw_const,
3864                                 tok::kw_volatile, tok::kw_restrict, tok::amp,
3865                                 tok::ampamp)) {
3866           Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
3867               << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
3868           // Attempt to continue as if 'auto' was placed here.
3869           isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3870                                          TemplateId, Policy);
3871           break;
3872         }
3873         if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
3874             goto DoneWithDeclSpec;
3875 
3876         if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId))
3877             TemplateId = nullptr;
3878 
3879         ConsumeAnnotationToken();
3880         SourceLocation AutoLoc = Tok.getLocation();
3881         if (TryConsumeToken(tok::kw_decltype)) {
3882           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3883           if (Tracker.consumeOpen()) {
3884             // Something like `void foo(Iterator decltype i)`
3885             Diag(Tok, diag::err_expected) << tok::l_paren;
3886           } else {
3887             if (!TryConsumeToken(tok::kw_auto)) {
3888               // Something like `void foo(Iterator decltype(int) i)`
3889               Tracker.skipToEnd();
3890               Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
3891                 << FixItHint::CreateReplacement(SourceRange(AutoLoc,
3892                                                             Tok.getLocation()),
3893                                                 "auto");
3894             } else {
3895               Tracker.consumeClose();
3896             }
3897           }
3898           ConsumedEnd = Tok.getLocation();
3899           DS.setTypeArgumentRange(Tracker.getRange());
3900           // Even if something went wrong above, continue as if we've seen
3901           // `decltype(auto)`.
3902           isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
3903                                          DiagID, TemplateId, Policy);
3904         } else {
3905           isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID,
3906                                          TemplateId, Policy);
3907         }
3908         break;
3909       }
3910 
3911       if (TemplateId->Kind != TNK_Type_template &&
3912           TemplateId->Kind != TNK_Undeclared_template) {
3913         // This template-id does not refer to a type name, so we're
3914         // done with the type-specifiers.
3915         goto DoneWithDeclSpec;
3916       }
3917 
3918       // If we're in a context where the template-id could be a
3919       // constructor name or specialization, check whether this is a
3920       // constructor declaration.
3921       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3922           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3923           isConstructorDeclarator(/*Unqualified=*/true,
3924                                   /*DeductionGuide=*/false,
3925                                   DS.isFriendSpecified()))
3926         goto DoneWithDeclSpec;
3927 
3928       // Turn the template-id annotation token into a type annotation
3929       // token, then try again to parse it as a type-specifier.
3930       CXXScopeSpec SS;
3931       AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3932       continue;
3933     }
3934 
3935     // Attributes support.
3936     case tok::kw___attribute:
3937     case tok::kw___declspec:
3938       ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs);
3939       continue;
3940 
3941     // Microsoft single token adornments.
3942     case tok::kw___forceinline: {
3943       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3944       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3945       SourceLocation AttrNameLoc = Tok.getLocation();
3946       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3947                                 nullptr, 0, tok::kw___forceinline);
3948       break;
3949     }
3950 
3951     case tok::kw___unaligned:
3952       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3953                                  getLangOpts());
3954       break;
3955 
3956     case tok::kw___sptr:
3957     case tok::kw___uptr:
3958     case tok::kw___ptr64:
3959     case tok::kw___ptr32:
3960     case tok::kw___w64:
3961     case tok::kw___cdecl:
3962     case tok::kw___stdcall:
3963     case tok::kw___fastcall:
3964     case tok::kw___thiscall:
3965     case tok::kw___regcall:
3966     case tok::kw___vectorcall:
3967       ParseMicrosoftTypeAttributes(DS.getAttributes());
3968       continue;
3969 
3970     case tok::kw___funcref:
3971       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
3972       continue;
3973 
3974     // Borland single token adornments.
3975     case tok::kw___pascal:
3976       ParseBorlandTypeAttributes(DS.getAttributes());
3977       continue;
3978 
3979     // OpenCL single token adornments.
3980     case tok::kw___kernel:
3981       ParseOpenCLKernelAttributes(DS.getAttributes());
3982       continue;
3983 
3984     // CUDA/HIP single token adornments.
3985     case tok::kw___noinline__:
3986       ParseCUDAFunctionAttributes(DS.getAttributes());
3987       continue;
3988 
3989     // Nullability type specifiers.
3990     case tok::kw__Nonnull:
3991     case tok::kw__Nullable:
3992     case tok::kw__Nullable_result:
3993     case tok::kw__Null_unspecified:
3994       ParseNullabilityTypeSpecifiers(DS.getAttributes());
3995       continue;
3996 
3997     // Objective-C 'kindof' types.
3998     case tok::kw___kindof:
3999       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4000                                 nullptr, 0, tok::kw___kindof);
4001       (void)ConsumeToken();
4002       continue;
4003 
4004     // storage-class-specifier
4005     case tok::kw_typedef:
4006       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
4007                                          PrevSpec, DiagID, Policy);
4008       isStorageClass = true;
4009       break;
4010     case tok::kw_extern:
4011       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4012         Diag(Tok, diag::ext_thread_before) << "extern";
4013       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
4014                                          PrevSpec, DiagID, Policy);
4015       isStorageClass = true;
4016       break;
4017     case tok::kw___private_extern__:
4018       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
4019                                          Loc, PrevSpec, DiagID, Policy);
4020       isStorageClass = true;
4021       break;
4022     case tok::kw_static:
4023       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4024         Diag(Tok, diag::ext_thread_before) << "static";
4025       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
4026                                          PrevSpec, DiagID, Policy);
4027       isStorageClass = true;
4028       break;
4029     case tok::kw_auto:
4030       if (getLangOpts().CPlusPlus11 || getLangOpts().C23) {
4031         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
4032           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4033                                              PrevSpec, DiagID, Policy);
4034           if (!isInvalid && !getLangOpts().C23)
4035             Diag(Tok, diag::ext_auto_storage_class)
4036               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4037         } else
4038           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
4039                                          DiagID, Policy);
4040       } else
4041         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4042                                            PrevSpec, DiagID, Policy);
4043       isStorageClass = true;
4044       break;
4045     case tok::kw___auto_type:
4046       Diag(Tok, diag::ext_auto_type);
4047       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
4048                                      DiagID, Policy);
4049       break;
4050     case tok::kw_register:
4051       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
4052                                          PrevSpec, DiagID, Policy);
4053       isStorageClass = true;
4054       break;
4055     case tok::kw_mutable:
4056       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
4057                                          PrevSpec, DiagID, Policy);
4058       isStorageClass = true;
4059       break;
4060     case tok::kw___thread:
4061       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
4062                                                PrevSpec, DiagID);
4063       isStorageClass = true;
4064       break;
4065     case tok::kw_thread_local:
4066       if (getLangOpts().C23)
4067         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4068       // We map thread_local to _Thread_local in C23 mode so it retains the C
4069       // semantics rather than getting the C++ semantics.
4070       // FIXME: diagnostics will show _Thread_local when the user wrote
4071       // thread_local in source in C23 mode; we need some general way to
4072       // identify which way the user spelled the keyword in source.
4073       isInvalid = DS.SetStorageClassSpecThread(
4074           getLangOpts().C23 ? DeclSpec::TSCS__Thread_local
4075                             : DeclSpec::TSCS_thread_local,
4076           Loc, PrevSpec, DiagID);
4077       isStorageClass = true;
4078       break;
4079     case tok::kw__Thread_local:
4080       if (!getLangOpts().C11)
4081         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4082       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
4083                                                Loc, PrevSpec, DiagID);
4084       isStorageClass = true;
4085       break;
4086 
4087     // function-specifier
4088     case tok::kw_inline:
4089       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
4090       break;
4091     case tok::kw_virtual:
4092       // C++ for OpenCL does not allow virtual function qualifier, to avoid
4093       // function pointers restricted in OpenCL v2.0 s6.9.a.
4094       if (getLangOpts().OpenCLCPlusPlus &&
4095           !getActions().getOpenCLOptions().isAvailableOption(
4096               "__cl_clang_function_pointers", getLangOpts())) {
4097         DiagID = diag::err_openclcxx_virtual_function;
4098         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4099         isInvalid = true;
4100       } else {
4101         isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
4102       }
4103       break;
4104     case tok::kw_explicit: {
4105       SourceLocation ExplicitLoc = Loc;
4106       SourceLocation CloseParenLoc;
4107       ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
4108       ConsumedEnd = ExplicitLoc;
4109       ConsumeToken(); // kw_explicit
4110       if (Tok.is(tok::l_paren)) {
4111         if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
4112           Diag(Tok.getLocation(), getLangOpts().CPlusPlus20
4113                                       ? diag::warn_cxx17_compat_explicit_bool
4114                                       : diag::ext_explicit_bool);
4115 
4116           ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
4117           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4118           Tracker.consumeOpen();
4119 
4120           EnterExpressionEvaluationContext ConstantEvaluated(
4121               Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4122 
4123           ExplicitExpr = ParseConstantExpressionInExprEvalContext();
4124           ConsumedEnd = Tok.getLocation();
4125           if (ExplicitExpr.isUsable()) {
4126             CloseParenLoc = Tok.getLocation();
4127             Tracker.consumeClose();
4128             ExplicitSpec =
4129                 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
4130           } else
4131             Tracker.skipToEnd();
4132         } else {
4133           Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
4134         }
4135       }
4136       isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
4137                                              ExplicitSpec, CloseParenLoc);
4138       break;
4139     }
4140     case tok::kw__Noreturn:
4141       if (!getLangOpts().C11)
4142         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4143       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
4144       break;
4145 
4146     // alignment-specifier
4147     case tok::kw__Alignas:
4148       if (!getLangOpts().C11)
4149         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4150       ParseAlignmentSpecifier(DS.getAttributes());
4151       continue;
4152 
4153     // friend
4154     case tok::kw_friend:
4155       if (DSContext == DeclSpecContext::DSC_class)
4156         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
4157       else {
4158         PrevSpec = ""; // not actually used by the diagnostic
4159         DiagID = diag::err_friend_invalid_in_context;
4160         isInvalid = true;
4161       }
4162       break;
4163 
4164     // Modules
4165     case tok::kw___module_private__:
4166       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
4167       break;
4168 
4169     // constexpr, consteval, constinit specifiers
4170     case tok::kw_constexpr:
4171       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, Loc,
4172                                       PrevSpec, DiagID);
4173       break;
4174     case tok::kw_consteval:
4175       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Consteval, Loc,
4176                                       PrevSpec, DiagID);
4177       break;
4178     case tok::kw_constinit:
4179       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constinit, Loc,
4180                                       PrevSpec, DiagID);
4181       break;
4182 
4183     // type-specifier
4184     case tok::kw_short:
4185       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec,
4186                                       DiagID, Policy);
4187       break;
4188     case tok::kw_long:
4189       if (DS.getTypeSpecWidth() != TypeSpecifierWidth::Long)
4190         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec,
4191                                         DiagID, Policy);
4192       else
4193         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4194                                         PrevSpec, DiagID, Policy);
4195       break;
4196     case tok::kw___int64:
4197       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4198                                       PrevSpec, DiagID, Policy);
4199       break;
4200     case tok::kw_signed:
4201       isInvalid =
4202           DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
4203       break;
4204     case tok::kw_unsigned:
4205       isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec,
4206                                      DiagID);
4207       break;
4208     case tok::kw__Complex:
4209       if (!getLangOpts().C99)
4210         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4211       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
4212                                         DiagID);
4213       break;
4214     case tok::kw__Imaginary:
4215       if (!getLangOpts().C99)
4216         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4217       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
4218                                         DiagID);
4219       break;
4220     case tok::kw_void:
4221       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
4222                                      DiagID, Policy);
4223       break;
4224     case tok::kw_char:
4225       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
4226                                      DiagID, Policy);
4227       break;
4228     case tok::kw_int:
4229       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
4230                                      DiagID, Policy);
4231       break;
4232     case tok::kw__ExtInt:
4233     case tok::kw__BitInt: {
4234       DiagnoseBitIntUse(Tok);
4235       ExprResult ER = ParseExtIntegerArgument();
4236       if (ER.isInvalid())
4237         continue;
4238       isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
4239       ConsumedEnd = PrevTokLocation;
4240       break;
4241     }
4242     case tok::kw___int128:
4243       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
4244                                      DiagID, Policy);
4245       break;
4246     case tok::kw_half:
4247       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
4248                                      DiagID, Policy);
4249       break;
4250     case tok::kw___bf16:
4251       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec,
4252                                      DiagID, Policy);
4253       break;
4254     case tok::kw_float:
4255       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
4256                                      DiagID, Policy);
4257       break;
4258     case tok::kw_double:
4259       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
4260                                      DiagID, Policy);
4261       break;
4262     case tok::kw__Float16:
4263       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
4264                                      DiagID, Policy);
4265       break;
4266     case tok::kw__Accum:
4267       assert(getLangOpts().FixedPoint &&
4268              "This keyword is only used when fixed point types are enabled "
4269              "with `-ffixed-point`");
4270       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID,
4271                                      Policy);
4272       break;
4273     case tok::kw__Fract:
4274       assert(getLangOpts().FixedPoint &&
4275              "This keyword is only used when fixed point types are enabled "
4276              "with `-ffixed-point`");
4277       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID,
4278                                      Policy);
4279       break;
4280     case tok::kw__Sat:
4281       assert(getLangOpts().FixedPoint &&
4282              "This keyword is only used when fixed point types are enabled "
4283              "with `-ffixed-point`");
4284       isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
4285       break;
4286     case tok::kw___float128:
4287       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
4288                                      DiagID, Policy);
4289       break;
4290     case tok::kw___ibm128:
4291       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec,
4292                                      DiagID, Policy);
4293       break;
4294     case tok::kw_wchar_t:
4295       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
4296                                      DiagID, Policy);
4297       break;
4298     case tok::kw_char8_t:
4299       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
4300                                      DiagID, Policy);
4301       break;
4302     case tok::kw_char16_t:
4303       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
4304                                      DiagID, Policy);
4305       break;
4306     case tok::kw_char32_t:
4307       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
4308                                      DiagID, Policy);
4309       break;
4310     case tok::kw_bool:
4311       if (getLangOpts().C23)
4312         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4313       [[fallthrough]];
4314     case tok::kw__Bool:
4315       if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
4316         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4317 
4318       if (Tok.is(tok::kw_bool) &&
4319           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
4320           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
4321         PrevSpec = ""; // Not used by the diagnostic.
4322         DiagID = diag::err_bool_redeclaration;
4323         // For better error recovery.
4324         Tok.setKind(tok::identifier);
4325         isInvalid = true;
4326       } else {
4327         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
4328                                        DiagID, Policy);
4329       }
4330       break;
4331     case tok::kw__Decimal32:
4332       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
4333                                      DiagID, Policy);
4334       break;
4335     case tok::kw__Decimal64:
4336       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
4337                                      DiagID, Policy);
4338       break;
4339     case tok::kw__Decimal128:
4340       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
4341                                      DiagID, Policy);
4342       break;
4343     case tok::kw___vector:
4344       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
4345       break;
4346     case tok::kw___pixel:
4347       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
4348       break;
4349     case tok::kw___bool:
4350       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
4351       break;
4352     case tok::kw_pipe:
4353       if (!getLangOpts().OpenCL ||
4354           getLangOpts().getOpenCLCompatibleVersion() < 200) {
4355         // OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier
4356         // should support the "pipe" word as identifier.
4357         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
4358         Tok.setKind(tok::identifier);
4359         goto DoneWithDeclSpec;
4360       } else if (!getLangOpts().OpenCLPipes) {
4361         DiagID = diag::err_opencl_unknown_type_specifier;
4362         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4363         isInvalid = true;
4364       } else
4365         isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
4366       break;
4367 // We only need to enumerate each image type once.
4368 #define IMAGE_READ_WRITE_TYPE(Type, Id, Ext)
4369 #define IMAGE_WRITE_TYPE(Type, Id, Ext)
4370 #define IMAGE_READ_TYPE(ImgType, Id, Ext) \
4371     case tok::kw_##ImgType##_t: \
4372       if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \
4373         goto DoneWithDeclSpec; \
4374       break;
4375 #include "clang/Basic/OpenCLImageTypes.def"
4376     case tok::kw___unknown_anytype:
4377       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
4378                                      PrevSpec, DiagID, Policy);
4379       break;
4380 
4381     // class-specifier:
4382     case tok::kw_class:
4383     case tok::kw_struct:
4384     case tok::kw___interface:
4385     case tok::kw_union: {
4386       tok::TokenKind Kind = Tok.getKind();
4387       ConsumeToken();
4388 
4389       // These are attributes following class specifiers.
4390       // To produce better diagnostic, we parse them when
4391       // parsing class specifier.
4392       ParsedAttributes Attributes(AttrFactory);
4393       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
4394                           EnteringContext, DSContext, Attributes);
4395 
4396       // If there are attributes following class specifier,
4397       // take them over and handle them here.
4398       if (!Attributes.empty()) {
4399         AttrsLastTime = true;
4400         attrs.takeAllFrom(Attributes);
4401       }
4402       continue;
4403     }
4404 
4405     // enum-specifier:
4406     case tok::kw_enum:
4407       ConsumeToken();
4408       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
4409       continue;
4410 
4411     // cv-qualifier:
4412     case tok::kw_const:
4413       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
4414                                  getLangOpts());
4415       break;
4416     case tok::kw_volatile:
4417       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4418                                  getLangOpts());
4419       break;
4420     case tok::kw_restrict:
4421       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4422                                  getLangOpts());
4423       break;
4424 
4425     // C++ typename-specifier:
4426     case tok::kw_typename:
4427       if (TryAnnotateTypeOrScopeToken()) {
4428         DS.SetTypeSpecError();
4429         goto DoneWithDeclSpec;
4430       }
4431       if (!Tok.is(tok::kw_typename))
4432         continue;
4433       break;
4434 
4435     // C23/GNU typeof support.
4436     case tok::kw_typeof:
4437     case tok::kw_typeof_unqual:
4438       ParseTypeofSpecifier(DS);
4439       continue;
4440 
4441     case tok::annot_decltype:
4442       ParseDecltypeSpecifier(DS);
4443       continue;
4444 
4445     case tok::annot_pragma_pack:
4446       HandlePragmaPack();
4447       continue;
4448 
4449     case tok::annot_pragma_ms_pragma:
4450       HandlePragmaMSPragma();
4451       continue;
4452 
4453     case tok::annot_pragma_ms_vtordisp:
4454       HandlePragmaMSVtorDisp();
4455       continue;
4456 
4457     case tok::annot_pragma_ms_pointers_to_members:
4458       HandlePragmaMSPointersToMembers();
4459       continue;
4460 
4461 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
4462 #include "clang/Basic/TransformTypeTraits.def"
4463       // HACK: libstdc++ already uses '__remove_cv' as an alias template so we
4464       // work around this by expecting all transform type traits to be suffixed
4465       // with '('. They're an identifier otherwise.
4466       if (!MaybeParseTypeTransformTypeSpecifier(DS))
4467         goto ParseIdentifier;
4468       continue;
4469 
4470     case tok::kw__Atomic:
4471       // C11 6.7.2.4/4:
4472       //   If the _Atomic keyword is immediately followed by a left parenthesis,
4473       //   it is interpreted as a type specifier (with a type name), not as a
4474       //   type qualifier.
4475       if (!getLangOpts().C11)
4476         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4477 
4478       if (NextToken().is(tok::l_paren)) {
4479         ParseAtomicSpecifier(DS);
4480         continue;
4481       }
4482       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4483                                  getLangOpts());
4484       break;
4485 
4486     // OpenCL address space qualifiers:
4487     case tok::kw___generic:
4488       // generic address space is introduced only in OpenCL v2.0
4489       // see OpenCL C Spec v2.0 s6.5.5
4490       // OpenCL v3.0 introduces __opencl_c_generic_address_space
4491       // feature macro to indicate if generic address space is supported
4492       if (!Actions.getLangOpts().OpenCLGenericAddressSpace) {
4493         DiagID = diag::err_opencl_unknown_type_specifier;
4494         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4495         isInvalid = true;
4496         break;
4497       }
4498       [[fallthrough]];
4499     case tok::kw_private:
4500       // It's fine (but redundant) to check this for __generic on the
4501       // fallthrough path; we only form the __generic token in OpenCL mode.
4502       if (!getLangOpts().OpenCL)
4503         goto DoneWithDeclSpec;
4504       [[fallthrough]];
4505     case tok::kw___private:
4506     case tok::kw___global:
4507     case tok::kw___local:
4508     case tok::kw___constant:
4509     // OpenCL access qualifiers:
4510     case tok::kw___read_only:
4511     case tok::kw___write_only:
4512     case tok::kw___read_write:
4513       ParseOpenCLQualifiers(DS.getAttributes());
4514       break;
4515 
4516     case tok::kw_groupshared:
4517     case tok::kw_in:
4518     case tok::kw_inout:
4519     case tok::kw_out:
4520       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
4521       ParseHLSLQualifiers(DS.getAttributes());
4522       continue;
4523 
4524     case tok::less:
4525       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
4526       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
4527       // but we support it.
4528       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
4529         goto DoneWithDeclSpec;
4530 
4531       SourceLocation StartLoc = Tok.getLocation();
4532       SourceLocation EndLoc;
4533       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
4534       if (Type.isUsable()) {
4535         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
4536                                PrevSpec, DiagID, Type.get(),
4537                                Actions.getASTContext().getPrintingPolicy()))
4538           Diag(StartLoc, DiagID) << PrevSpec;
4539 
4540         DS.SetRangeEnd(EndLoc);
4541       } else {
4542         DS.SetTypeSpecError();
4543       }
4544 
4545       // Need to support trailing type qualifiers (e.g. "id<p> const").
4546       // If a type specifier follows, it will be diagnosed elsewhere.
4547       continue;
4548     }
4549 
4550     DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
4551 
4552     // If the specifier wasn't legal, issue a diagnostic.
4553     if (isInvalid) {
4554       assert(PrevSpec && "Method did not return previous specifier!");
4555       assert(DiagID);
4556 
4557       if (DiagID == diag::ext_duplicate_declspec ||
4558           DiagID == diag::ext_warn_duplicate_declspec ||
4559           DiagID == diag::err_duplicate_declspec)
4560         Diag(Loc, DiagID) << PrevSpec
4561                           << FixItHint::CreateRemoval(
4562                                  SourceRange(Loc, DS.getEndLoc()));
4563       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4564         Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec
4565                           << isStorageClass;
4566       } else
4567         Diag(Loc, DiagID) << PrevSpec;
4568     }
4569 
4570     if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4571       // After an error the next token can be an annotation token.
4572       ConsumeAnyToken();
4573 
4574     AttrsLastTime = false;
4575   }
4576 }
4577 
4578 /// ParseStructDeclaration - Parse a struct declaration without the terminating
4579 /// semicolon.
4580 ///
4581 /// Note that a struct declaration refers to a declaration in a struct,
4582 /// not to the declaration of a struct.
4583 ///
4584 ///       struct-declaration:
4585 /// [C23]   attributes-specifier-seq[opt]
4586 ///           specifier-qualifier-list struct-declarator-list
4587 /// [GNU]   __extension__ struct-declaration
4588 /// [GNU]   specifier-qualifier-list
4589 ///       struct-declarator-list:
4590 ///         struct-declarator
4591 ///         struct-declarator-list ',' struct-declarator
4592 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4593 ///       struct-declarator:
4594 ///         declarator
4595 /// [GNU]   declarator attributes[opt]
4596 ///         declarator[opt] ':' constant-expression
4597 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4598 ///
4599 void Parser::ParseStructDeclaration(
4600     ParsingDeclSpec &DS,
4601     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4602 
4603   if (Tok.is(tok::kw___extension__)) {
4604     // __extension__ silences extension warnings in the subexpression.
4605     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4606     ConsumeToken();
4607     return ParseStructDeclaration(DS, FieldsCallback);
4608   }
4609 
4610   // Parse leading attributes.
4611   ParsedAttributes Attrs(AttrFactory);
4612   MaybeParseCXX11Attributes(Attrs);
4613 
4614   // Parse the common specifier-qualifiers-list piece.
4615   ParseSpecifierQualifierList(DS);
4616 
4617   // If there are no declarators, this is a free-standing declaration
4618   // specifier. Let the actions module cope with it.
4619   if (Tok.is(tok::semi)) {
4620     // C23 6.7.2.1p9 : "The optional attribute specifier sequence in a
4621     // member declaration appertains to each of the members declared by the
4622     // member declarator list; it shall not appear if the optional member
4623     // declarator list is omitted."
4624     ProhibitAttributes(Attrs);
4625     RecordDecl *AnonRecord = nullptr;
4626     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
4627         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
4628     assert(!AnonRecord && "Did not expect anonymous struct or union here");
4629     DS.complete(TheDecl);
4630     return;
4631   }
4632 
4633   // Read struct-declarators until we find the semicolon.
4634   bool FirstDeclarator = true;
4635   SourceLocation CommaLoc;
4636   while (true) {
4637     ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs);
4638     DeclaratorInfo.D.setCommaLoc(CommaLoc);
4639 
4640     // Attributes are only allowed here on successive declarators.
4641     if (!FirstDeclarator) {
4642       // However, this does not apply for [[]] attributes (which could show up
4643       // before or after the __attribute__ attributes).
4644       DiagnoseAndSkipCXX11Attributes();
4645       MaybeParseGNUAttributes(DeclaratorInfo.D);
4646       DiagnoseAndSkipCXX11Attributes();
4647     }
4648 
4649     /// struct-declarator: declarator
4650     /// struct-declarator: declarator[opt] ':' constant-expression
4651     if (Tok.isNot(tok::colon)) {
4652       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4653       ColonProtectionRAIIObject X(*this);
4654       ParseDeclarator(DeclaratorInfo.D);
4655     } else
4656       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4657 
4658     if (TryConsumeToken(tok::colon)) {
4659       ExprResult Res(ParseConstantExpression());
4660       if (Res.isInvalid())
4661         SkipUntil(tok::semi, StopBeforeMatch);
4662       else
4663         DeclaratorInfo.BitfieldSize = Res.get();
4664     }
4665 
4666     // If attributes exist after the declarator, parse them.
4667     MaybeParseGNUAttributes(DeclaratorInfo.D);
4668 
4669     // We're done with this declarator;  invoke the callback.
4670     FieldsCallback(DeclaratorInfo);
4671 
4672     // If we don't have a comma, it is either the end of the list (a ';')
4673     // or an error, bail out.
4674     if (!TryConsumeToken(tok::comma, CommaLoc))
4675       return;
4676 
4677     FirstDeclarator = false;
4678   }
4679 }
4680 
4681 /// ParseStructUnionBody
4682 ///       struct-contents:
4683 ///         struct-declaration-list
4684 /// [EXT]   empty
4685 /// [GNU]   "struct-declaration-list" without terminating ';'
4686 ///       struct-declaration-list:
4687 ///         struct-declaration
4688 ///         struct-declaration-list struct-declaration
4689 /// [OBC]   '@' 'defs' '(' class-name ')'
4690 ///
4691 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4692                                   DeclSpec::TST TagType, RecordDecl *TagDecl) {
4693   PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4694                                       "parsing struct/union body");
4695   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4696 
4697   BalancedDelimiterTracker T(*this, tok::l_brace);
4698   if (T.consumeOpen())
4699     return;
4700 
4701   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4702   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4703 
4704   // While we still have something to read, read the declarations in the struct.
4705   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4706          Tok.isNot(tok::eof)) {
4707     // Each iteration of this loop reads one struct-declaration.
4708 
4709     // Check for extraneous top-level semicolon.
4710     if (Tok.is(tok::semi)) {
4711       ConsumeExtraSemi(InsideStruct, TagType);
4712       continue;
4713     }
4714 
4715     // Parse _Static_assert declaration.
4716     if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) {
4717       SourceLocation DeclEnd;
4718       ParseStaticAssertDeclaration(DeclEnd);
4719       continue;
4720     }
4721 
4722     if (Tok.is(tok::annot_pragma_pack)) {
4723       HandlePragmaPack();
4724       continue;
4725     }
4726 
4727     if (Tok.is(tok::annot_pragma_align)) {
4728       HandlePragmaAlign();
4729       continue;
4730     }
4731 
4732     if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) {
4733       // Result can be ignored, because it must be always empty.
4734       AccessSpecifier AS = AS_none;
4735       ParsedAttributes Attrs(AttrFactory);
4736       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4737       continue;
4738     }
4739 
4740     if (Tok.is(tok::annot_pragma_openacc)) {
4741       ParseOpenACCDirectiveDecl();
4742       continue;
4743     }
4744 
4745     if (tok::isPragmaAnnotation(Tok.getKind())) {
4746       Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
4747           << DeclSpec::getSpecifierName(
4748                  TagType, Actions.getASTContext().getPrintingPolicy());
4749       ConsumeAnnotationToken();
4750       continue;
4751     }
4752 
4753     if (!Tok.is(tok::at)) {
4754       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4755         // Install the declarator into the current TagDecl.
4756         Decl *Field =
4757             Actions.ActOnField(getCurScope(), TagDecl,
4758                                FD.D.getDeclSpec().getSourceRange().getBegin(),
4759                                FD.D, FD.BitfieldSize);
4760         FD.complete(Field);
4761       };
4762 
4763       // Parse all the comma separated declarators.
4764       ParsingDeclSpec DS(*this);
4765       ParseStructDeclaration(DS, CFieldCallback);
4766     } else { // Handle @defs
4767       ConsumeToken();
4768       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4769         Diag(Tok, diag::err_unexpected_at);
4770         SkipUntil(tok::semi);
4771         continue;
4772       }
4773       ConsumeToken();
4774       ExpectAndConsume(tok::l_paren);
4775       if (!Tok.is(tok::identifier)) {
4776         Diag(Tok, diag::err_expected) << tok::identifier;
4777         SkipUntil(tok::semi);
4778         continue;
4779       }
4780       SmallVector<Decl *, 16> Fields;
4781       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4782                         Tok.getIdentifierInfo(), Fields);
4783       ConsumeToken();
4784       ExpectAndConsume(tok::r_paren);
4785     }
4786 
4787     if (TryConsumeToken(tok::semi))
4788       continue;
4789 
4790     if (Tok.is(tok::r_brace)) {
4791       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4792       break;
4793     }
4794 
4795     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4796     // Skip to end of block or statement to avoid ext-warning on extra ';'.
4797     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4798     // If we stopped at a ';', eat it.
4799     TryConsumeToken(tok::semi);
4800   }
4801 
4802   T.consumeClose();
4803 
4804   ParsedAttributes attrs(AttrFactory);
4805   // If attributes exist after struct contents, parse them.
4806   MaybeParseGNUAttributes(attrs);
4807 
4808   SmallVector<Decl *, 32> FieldDecls(TagDecl->fields());
4809 
4810   Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4811                       T.getOpenLocation(), T.getCloseLocation(), attrs);
4812   StructScope.Exit();
4813   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4814 }
4815 
4816 /// ParseEnumSpecifier
4817 ///       enum-specifier: [C99 6.7.2.2]
4818 ///         'enum' identifier[opt] '{' enumerator-list '}'
4819 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4820 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4821 ///                                                 '}' attributes[opt]
4822 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4823 ///                                                 '}'
4824 ///         'enum' identifier
4825 /// [GNU]   'enum' attributes[opt] identifier
4826 ///
4827 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4828 /// [C++11] enum-head '{' enumerator-list ','  '}'
4829 ///
4830 ///       enum-head: [C++11]
4831 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4832 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4833 ///             identifier enum-base[opt]
4834 ///
4835 ///       enum-key: [C++11]
4836 ///         'enum'
4837 ///         'enum' 'class'
4838 ///         'enum' 'struct'
4839 ///
4840 ///       enum-base: [C++11]
4841 ///         ':' type-specifier-seq
4842 ///
4843 /// [C++] elaborated-type-specifier:
4844 /// [C++]   'enum' nested-name-specifier[opt] identifier
4845 ///
4846 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4847                                 const ParsedTemplateInfo &TemplateInfo,
4848                                 AccessSpecifier AS, DeclSpecContext DSC) {
4849   // Parse the tag portion of this.
4850   if (Tok.is(tok::code_completion)) {
4851     // Code completion for an enum name.
4852     cutOffParsing();
4853     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4854     DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration.
4855     return;
4856   }
4857 
4858   // If attributes exist after tag, parse them.
4859   ParsedAttributes attrs(AttrFactory);
4860   MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
4861 
4862   SourceLocation ScopedEnumKWLoc;
4863   bool IsScopedUsingClassTag = false;
4864 
4865   // In C++11, recognize 'enum class' and 'enum struct'.
4866   if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) {
4867     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4868                                         : diag::ext_scoped_enum);
4869     IsScopedUsingClassTag = Tok.is(tok::kw_class);
4870     ScopedEnumKWLoc = ConsumeToken();
4871 
4872     // Attributes are not allowed between these keywords.  Diagnose,
4873     // but then just treat them like they appeared in the right place.
4874     ProhibitAttributes(attrs);
4875 
4876     // They are allowed afterwards, though.
4877     MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
4878   }
4879 
4880   // C++11 [temp.explicit]p12:
4881   //   The usual access controls do not apply to names used to specify
4882   //   explicit instantiations.
4883   // We extend this to also cover explicit specializations.  Note that
4884   // we don't suppress if this turns out to be an elaborated type
4885   // specifier.
4886   bool shouldDelayDiagsInTag =
4887     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4888      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4889   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4890 
4891   // Determine whether this declaration is permitted to have an enum-base.
4892   AllowDefiningTypeSpec AllowEnumSpecifier =
4893       isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus);
4894   bool CanBeOpaqueEnumDeclaration =
4895       DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
4896   bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
4897                           getLangOpts().MicrosoftExt) &&
4898                          (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
4899                           CanBeOpaqueEnumDeclaration);
4900 
4901   CXXScopeSpec &SS = DS.getTypeSpecScope();
4902   if (getLangOpts().CPlusPlus) {
4903     // "enum foo : bar;" is not a potential typo for "enum foo::bar;".
4904     ColonProtectionRAIIObject X(*this);
4905 
4906     CXXScopeSpec Spec;
4907     if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
4908                                        /*ObjectHasErrors=*/false,
4909                                        /*EnteringContext=*/true))
4910       return;
4911 
4912     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4913       Diag(Tok, diag::err_expected) << tok::identifier;
4914       DS.SetTypeSpecError();
4915       if (Tok.isNot(tok::l_brace)) {
4916         // Has no name and is not a definition.
4917         // Skip the rest of this declarator, up until the comma or semicolon.
4918         SkipUntil(tok::comma, StopAtSemi);
4919         return;
4920       }
4921     }
4922 
4923     SS = Spec;
4924   }
4925 
4926   // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
4927   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4928       Tok.isNot(tok::colon)) {
4929     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4930 
4931     DS.SetTypeSpecError();
4932     // Skip the rest of this declarator, up until the comma or semicolon.
4933     SkipUntil(tok::comma, StopAtSemi);
4934     return;
4935   }
4936 
4937   // If an identifier is present, consume and remember it.
4938   IdentifierInfo *Name = nullptr;
4939   SourceLocation NameLoc;
4940   if (Tok.is(tok::identifier)) {
4941     Name = Tok.getIdentifierInfo();
4942     NameLoc = ConsumeToken();
4943   }
4944 
4945   if (!Name && ScopedEnumKWLoc.isValid()) {
4946     // C++0x 7.2p2: The optional identifier shall not be omitted in the
4947     // declaration of a scoped enumeration.
4948     Diag(Tok, diag::err_scoped_enum_missing_identifier);
4949     ScopedEnumKWLoc = SourceLocation();
4950     IsScopedUsingClassTag = false;
4951   }
4952 
4953   // Okay, end the suppression area.  We'll decide whether to emit the
4954   // diagnostics in a second.
4955   if (shouldDelayDiagsInTag)
4956     diagsFromTag.done();
4957 
4958   TypeResult BaseType;
4959   SourceRange BaseRange;
4960 
4961   bool CanBeBitfield =
4962       getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name;
4963 
4964   // Parse the fixed underlying type.
4965   if (Tok.is(tok::colon)) {
4966     // This might be an enum-base or part of some unrelated enclosing context.
4967     //
4968     // 'enum E : base' is permitted in two circumstances:
4969     //
4970     // 1) As a defining-type-specifier, when followed by '{'.
4971     // 2) As the sole constituent of a complete declaration -- when DS is empty
4972     //    and the next token is ';'.
4973     //
4974     // The restriction to defining-type-specifiers is important to allow parsing
4975     //   a ? new enum E : int{}
4976     //   _Generic(a, enum E : int{})
4977     // properly.
4978     //
4979     // One additional consideration applies:
4980     //
4981     // C++ [dcl.enum]p1:
4982     //   A ':' following "enum nested-name-specifier[opt] identifier" within
4983     //   the decl-specifier-seq of a member-declaration is parsed as part of
4984     //   an enum-base.
4985     //
4986     // Other language modes supporting enumerations with fixed underlying types
4987     // do not have clear rules on this, so we disambiguate to determine whether
4988     // the tokens form a bit-field width or an enum-base.
4989 
4990     if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
4991       // Outside C++11, do not interpret the tokens as an enum-base if they do
4992       // not make sense as one. In C++11, it's an error if this happens.
4993       if (getLangOpts().CPlusPlus11)
4994         Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
4995     } else if (CanHaveEnumBase || !ColonIsSacred) {
4996       SourceLocation ColonLoc = ConsumeToken();
4997 
4998       // Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
4999       // because under -fms-extensions,
5000       //   enum E : int *p;
5001       // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
5002       DeclSpec DS(AttrFactory);
5003       // enum-base is not assumed to be a type and therefore requires the
5004       // typename keyword [p0634r3].
5005       ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS,
5006                                   DeclSpecContext::DSC_type_specifier);
5007       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
5008                                 DeclaratorContext::TypeName);
5009       BaseType = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
5010 
5011       BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
5012 
5013       if (!getLangOpts().ObjC && !getLangOpts().C23) {
5014         if (getLangOpts().CPlusPlus11)
5015           Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
5016               << BaseRange;
5017         else if (getLangOpts().CPlusPlus)
5018           Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
5019               << BaseRange;
5020         else if (getLangOpts().MicrosoftExt)
5021           Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
5022               << BaseRange;
5023         else
5024           Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
5025               << BaseRange;
5026       }
5027     }
5028   }
5029 
5030   // There are four options here.  If we have 'friend enum foo;' then this is a
5031   // friend declaration, and cannot have an accompanying definition. If we have
5032   // 'enum foo;', then this is a forward declaration.  If we have
5033   // 'enum foo {...' then this is a definition. Otherwise we have something
5034   // like 'enum foo xyz', a reference.
5035   //
5036   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
5037   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
5038   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
5039   //
5040   Sema::TagUseKind TUK;
5041   if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
5042     TUK = Sema::TUK_Reference;
5043   else if (Tok.is(tok::l_brace)) {
5044     if (DS.isFriendSpecified()) {
5045       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
5046         << SourceRange(DS.getFriendSpecLoc());
5047       ConsumeBrace();
5048       SkipUntil(tok::r_brace, StopAtSemi);
5049       // Discard any other definition-only pieces.
5050       attrs.clear();
5051       ScopedEnumKWLoc = SourceLocation();
5052       IsScopedUsingClassTag = false;
5053       BaseType = TypeResult();
5054       TUK = Sema::TUK_Friend;
5055     } else {
5056       TUK = Sema::TUK_Definition;
5057     }
5058   } else if (!isTypeSpecifier(DSC) &&
5059              (Tok.is(tok::semi) ||
5060               (Tok.isAtStartOfLine() &&
5061                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
5062     // An opaque-enum-declaration is required to be standalone (no preceding or
5063     // following tokens in the declaration). Sema enforces this separately by
5064     // diagnosing anything else in the DeclSpec.
5065     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
5066     if (Tok.isNot(tok::semi)) {
5067       // A semicolon was missing after this declaration. Diagnose and recover.
5068       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5069       PP.EnterToken(Tok, /*IsReinject=*/true);
5070       Tok.setKind(tok::semi);
5071     }
5072   } else {
5073     TUK = Sema::TUK_Reference;
5074   }
5075 
5076   bool IsElaboratedTypeSpecifier =
5077       TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend;
5078 
5079   // If this is an elaborated type specifier nested in a larger declaration,
5080   // and we delayed diagnostics before, just merge them into the current pool.
5081   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
5082     diagsFromTag.redelay();
5083   }
5084 
5085   MultiTemplateParamsArg TParams;
5086   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
5087       TUK != Sema::TUK_Reference) {
5088     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
5089       // Skip the rest of this declarator, up until the comma or semicolon.
5090       Diag(Tok, diag::err_enum_template);
5091       SkipUntil(tok::comma, StopAtSemi);
5092       return;
5093     }
5094 
5095     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
5096       // Enumerations can't be explicitly instantiated.
5097       DS.SetTypeSpecError();
5098       Diag(StartLoc, diag::err_explicit_instantiation_enum);
5099       return;
5100     }
5101 
5102     assert(TemplateInfo.TemplateParams && "no template parameters");
5103     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
5104                                      TemplateInfo.TemplateParams->size());
5105     SS.setTemplateParamLists(TParams);
5106   }
5107 
5108   if (!Name && TUK != Sema::TUK_Definition) {
5109     Diag(Tok, diag::err_enumerator_unnamed_no_def);
5110 
5111     DS.SetTypeSpecError();
5112     // Skip the rest of this declarator, up until the comma or semicolon.
5113     SkipUntil(tok::comma, StopAtSemi);
5114     return;
5115   }
5116 
5117   // An elaborated-type-specifier has a much more constrained grammar:
5118   //
5119   //   'enum' nested-name-specifier[opt] identifier
5120   //
5121   // If we parsed any other bits, reject them now.
5122   //
5123   // MSVC and (for now at least) Objective-C permit a full enum-specifier
5124   // or opaque-enum-declaration anywhere.
5125   if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
5126       !getLangOpts().ObjC) {
5127     ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed,
5128                             diag::err_keyword_not_allowed,
5129                             /*DiagnoseEmptyAttrs=*/true);
5130     if (BaseType.isUsable())
5131       Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
5132           << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
5133     else if (ScopedEnumKWLoc.isValid())
5134       Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
5135         << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
5136   }
5137 
5138   stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
5139 
5140   Sema::SkipBodyInfo SkipBody;
5141   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
5142       NextToken().is(tok::identifier))
5143     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
5144                                               NextToken().getIdentifierInfo(),
5145                                               NextToken().getLocation());
5146 
5147   bool Owned = false;
5148   bool IsDependent = false;
5149   const char *PrevSpec = nullptr;
5150   unsigned DiagID;
5151   Decl *TagDecl =
5152       Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS,
5153                     Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(),
5154                     TParams, Owned, IsDependent, ScopedEnumKWLoc,
5155                     IsScopedUsingClassTag,
5156                     BaseType, DSC == DeclSpecContext::DSC_type_specifier,
5157                     DSC == DeclSpecContext::DSC_template_param ||
5158                         DSC == DeclSpecContext::DSC_template_type_arg,
5159                     OffsetOfState, &SkipBody).get();
5160 
5161   if (SkipBody.ShouldSkip) {
5162     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
5163 
5164     BalancedDelimiterTracker T(*this, tok::l_brace);
5165     T.consumeOpen();
5166     T.skipToEnd();
5167 
5168     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5169                            NameLoc.isValid() ? NameLoc : StartLoc,
5170                            PrevSpec, DiagID, TagDecl, Owned,
5171                            Actions.getASTContext().getPrintingPolicy()))
5172       Diag(StartLoc, DiagID) << PrevSpec;
5173     return;
5174   }
5175 
5176   if (IsDependent) {
5177     // This enum has a dependent nested-name-specifier. Handle it as a
5178     // dependent tag.
5179     if (!Name) {
5180       DS.SetTypeSpecError();
5181       Diag(Tok, diag::err_expected_type_name_after_typename);
5182       return;
5183     }
5184 
5185     TypeResult Type = Actions.ActOnDependentTag(
5186         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
5187     if (Type.isInvalid()) {
5188       DS.SetTypeSpecError();
5189       return;
5190     }
5191 
5192     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
5193                            NameLoc.isValid() ? NameLoc : StartLoc,
5194                            PrevSpec, DiagID, Type.get(),
5195                            Actions.getASTContext().getPrintingPolicy()))
5196       Diag(StartLoc, DiagID) << PrevSpec;
5197 
5198     return;
5199   }
5200 
5201   if (!TagDecl) {
5202     // The action failed to produce an enumeration tag. If this is a
5203     // definition, consume the entire definition.
5204     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
5205       ConsumeBrace();
5206       SkipUntil(tok::r_brace, StopAtSemi);
5207     }
5208 
5209     DS.SetTypeSpecError();
5210     return;
5211   }
5212 
5213   if (Tok.is(tok::l_brace) && TUK == Sema::TUK_Definition) {
5214     Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
5215     ParseEnumBody(StartLoc, D);
5216     if (SkipBody.CheckSameAsPrevious &&
5217         !Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) {
5218       DS.SetTypeSpecError();
5219       return;
5220     }
5221   }
5222 
5223   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5224                          NameLoc.isValid() ? NameLoc : StartLoc,
5225                          PrevSpec, DiagID, TagDecl, Owned,
5226                          Actions.getASTContext().getPrintingPolicy()))
5227     Diag(StartLoc, DiagID) << PrevSpec;
5228 }
5229 
5230 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
5231 ///       enumerator-list:
5232 ///         enumerator
5233 ///         enumerator-list ',' enumerator
5234 ///       enumerator:
5235 ///         enumeration-constant attributes[opt]
5236 ///         enumeration-constant attributes[opt] '=' constant-expression
5237 ///       enumeration-constant:
5238 ///         identifier
5239 ///
5240 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
5241   // Enter the scope of the enum body and start the definition.
5242   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
5243   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
5244 
5245   BalancedDelimiterTracker T(*this, tok::l_brace);
5246   T.consumeOpen();
5247 
5248   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
5249   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
5250     Diag(Tok, diag::err_empty_enum);
5251 
5252   SmallVector<Decl *, 32> EnumConstantDecls;
5253   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
5254 
5255   Decl *LastEnumConstDecl = nullptr;
5256 
5257   // Parse the enumerator-list.
5258   while (Tok.isNot(tok::r_brace)) {
5259     // Parse enumerator. If failed, try skipping till the start of the next
5260     // enumerator definition.
5261     if (Tok.isNot(tok::identifier)) {
5262       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
5263       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
5264           TryConsumeToken(tok::comma))
5265         continue;
5266       break;
5267     }
5268     IdentifierInfo *Ident = Tok.getIdentifierInfo();
5269     SourceLocation IdentLoc = ConsumeToken();
5270 
5271     // If attributes exist after the enumerator, parse them.
5272     ParsedAttributes attrs(AttrFactory);
5273     MaybeParseGNUAttributes(attrs);
5274     if (isAllowedCXX11AttributeSpecifier()) {
5275       if (getLangOpts().CPlusPlus)
5276         Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
5277                                     ? diag::warn_cxx14_compat_ns_enum_attribute
5278                                     : diag::ext_ns_enum_attribute)
5279             << 1 /*enumerator*/;
5280       ParseCXX11Attributes(attrs);
5281     }
5282 
5283     SourceLocation EqualLoc;
5284     ExprResult AssignedVal;
5285     EnumAvailabilityDiags.emplace_back(*this);
5286 
5287     EnterExpressionEvaluationContext ConstantEvaluated(
5288         Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5289     if (TryConsumeToken(tok::equal, EqualLoc)) {
5290       AssignedVal = ParseConstantExpressionInExprEvalContext();
5291       if (AssignedVal.isInvalid())
5292         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
5293     }
5294 
5295     // Install the enumerator constant into EnumDecl.
5296     Decl *EnumConstDecl = Actions.ActOnEnumConstant(
5297         getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
5298         EqualLoc, AssignedVal.get());
5299     EnumAvailabilityDiags.back().done();
5300 
5301     EnumConstantDecls.push_back(EnumConstDecl);
5302     LastEnumConstDecl = EnumConstDecl;
5303 
5304     if (Tok.is(tok::identifier)) {
5305       // We're missing a comma between enumerators.
5306       SourceLocation Loc = getEndOfPreviousToken();
5307       Diag(Loc, diag::err_enumerator_list_missing_comma)
5308         << FixItHint::CreateInsertion(Loc, ", ");
5309       continue;
5310     }
5311 
5312     // Emumerator definition must be finished, only comma or r_brace are
5313     // allowed here.
5314     SourceLocation CommaLoc;
5315     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
5316       if (EqualLoc.isValid())
5317         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
5318                                                            << tok::comma;
5319       else
5320         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
5321       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
5322         if (TryConsumeToken(tok::comma, CommaLoc))
5323           continue;
5324       } else {
5325         break;
5326       }
5327     }
5328 
5329     // If comma is followed by r_brace, emit appropriate warning.
5330     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
5331       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
5332         Diag(CommaLoc, getLangOpts().CPlusPlus ?
5333                diag::ext_enumerator_list_comma_cxx :
5334                diag::ext_enumerator_list_comma_c)
5335           << FixItHint::CreateRemoval(CommaLoc);
5336       else if (getLangOpts().CPlusPlus11)
5337         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
5338           << FixItHint::CreateRemoval(CommaLoc);
5339       break;
5340     }
5341   }
5342 
5343   // Eat the }.
5344   T.consumeClose();
5345 
5346   // If attributes exist after the identifier list, parse them.
5347   ParsedAttributes attrs(AttrFactory);
5348   MaybeParseGNUAttributes(attrs);
5349 
5350   Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
5351                         getCurScope(), attrs);
5352 
5353   // Now handle enum constant availability diagnostics.
5354   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
5355   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
5356     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
5357     EnumAvailabilityDiags[i].redelay();
5358     PD.complete(EnumConstantDecls[i]);
5359   }
5360 
5361   EnumScope.Exit();
5362   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
5363 
5364   // The next token must be valid after an enum definition. If not, a ';'
5365   // was probably forgotten.
5366   bool CanBeBitfield = getCurScope()->isClassScope();
5367   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
5368     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5369     // Push this token back into the preprocessor and change our current token
5370     // to ';' so that the rest of the code recovers as though there were an
5371     // ';' after the definition.
5372     PP.EnterToken(Tok, /*IsReinject=*/true);
5373     Tok.setKind(tok::semi);
5374   }
5375 }
5376 
5377 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
5378 /// is definitely a type-specifier.  Return false if it isn't part of a type
5379 /// specifier or if we're not sure.
5380 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
5381   switch (Tok.getKind()) {
5382   default: return false;
5383     // type-specifiers
5384   case tok::kw_short:
5385   case tok::kw_long:
5386   case tok::kw___int64:
5387   case tok::kw___int128:
5388   case tok::kw_signed:
5389   case tok::kw_unsigned:
5390   case tok::kw__Complex:
5391   case tok::kw__Imaginary:
5392   case tok::kw_void:
5393   case tok::kw_char:
5394   case tok::kw_wchar_t:
5395   case tok::kw_char8_t:
5396   case tok::kw_char16_t:
5397   case tok::kw_char32_t:
5398   case tok::kw_int:
5399   case tok::kw__ExtInt:
5400   case tok::kw__BitInt:
5401   case tok::kw___bf16:
5402   case tok::kw_half:
5403   case tok::kw_float:
5404   case tok::kw_double:
5405   case tok::kw__Accum:
5406   case tok::kw__Fract:
5407   case tok::kw__Float16:
5408   case tok::kw___float128:
5409   case tok::kw___ibm128:
5410   case tok::kw_bool:
5411   case tok::kw__Bool:
5412   case tok::kw__Decimal32:
5413   case tok::kw__Decimal64:
5414   case tok::kw__Decimal128:
5415   case tok::kw___vector:
5416 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5417 #include "clang/Basic/OpenCLImageTypes.def"
5418 
5419     // struct-or-union-specifier (C99) or class-specifier (C++)
5420   case tok::kw_class:
5421   case tok::kw_struct:
5422   case tok::kw___interface:
5423   case tok::kw_union:
5424     // enum-specifier
5425   case tok::kw_enum:
5426 
5427     // typedef-name
5428   case tok::annot_typename:
5429     return true;
5430   }
5431 }
5432 
5433 /// isTypeSpecifierQualifier - Return true if the current token could be the
5434 /// start of a specifier-qualifier-list.
5435 bool Parser::isTypeSpecifierQualifier() {
5436   switch (Tok.getKind()) {
5437   default: return false;
5438 
5439   case tok::identifier:   // foo::bar
5440     if (TryAltiVecVectorToken())
5441       return true;
5442     [[fallthrough]];
5443   case tok::kw_typename:  // typename T::type
5444     // Annotate typenames and C++ scope specifiers.  If we get one, just
5445     // recurse to handle whatever we get.
5446     if (TryAnnotateTypeOrScopeToken())
5447       return true;
5448     if (Tok.is(tok::identifier))
5449       return false;
5450     return isTypeSpecifierQualifier();
5451 
5452   case tok::coloncolon:   // ::foo::bar
5453     if (NextToken().is(tok::kw_new) ||    // ::new
5454         NextToken().is(tok::kw_delete))   // ::delete
5455       return false;
5456 
5457     if (TryAnnotateTypeOrScopeToken())
5458       return true;
5459     return isTypeSpecifierQualifier();
5460 
5461     // GNU attributes support.
5462   case tok::kw___attribute:
5463     // C23/GNU typeof support.
5464   case tok::kw_typeof:
5465   case tok::kw_typeof_unqual:
5466 
5467     // type-specifiers
5468   case tok::kw_short:
5469   case tok::kw_long:
5470   case tok::kw___int64:
5471   case tok::kw___int128:
5472   case tok::kw_signed:
5473   case tok::kw_unsigned:
5474   case tok::kw__Complex:
5475   case tok::kw__Imaginary:
5476   case tok::kw_void:
5477   case tok::kw_char:
5478   case tok::kw_wchar_t:
5479   case tok::kw_char8_t:
5480   case tok::kw_char16_t:
5481   case tok::kw_char32_t:
5482   case tok::kw_int:
5483   case tok::kw__ExtInt:
5484   case tok::kw__BitInt:
5485   case tok::kw_half:
5486   case tok::kw___bf16:
5487   case tok::kw_float:
5488   case tok::kw_double:
5489   case tok::kw__Accum:
5490   case tok::kw__Fract:
5491   case tok::kw__Float16:
5492   case tok::kw___float128:
5493   case tok::kw___ibm128:
5494   case tok::kw_bool:
5495   case tok::kw__Bool:
5496   case tok::kw__Decimal32:
5497   case tok::kw__Decimal64:
5498   case tok::kw__Decimal128:
5499   case tok::kw___vector:
5500 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5501 #include "clang/Basic/OpenCLImageTypes.def"
5502 
5503     // struct-or-union-specifier (C99) or class-specifier (C++)
5504   case tok::kw_class:
5505   case tok::kw_struct:
5506   case tok::kw___interface:
5507   case tok::kw_union:
5508     // enum-specifier
5509   case tok::kw_enum:
5510 
5511     // type-qualifier
5512   case tok::kw_const:
5513   case tok::kw_volatile:
5514   case tok::kw_restrict:
5515   case tok::kw__Sat:
5516 
5517     // Debugger support.
5518   case tok::kw___unknown_anytype:
5519 
5520     // typedef-name
5521   case tok::annot_typename:
5522     return true;
5523 
5524     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5525   case tok::less:
5526     return getLangOpts().ObjC;
5527 
5528   case tok::kw___cdecl:
5529   case tok::kw___stdcall:
5530   case tok::kw___fastcall:
5531   case tok::kw___thiscall:
5532   case tok::kw___regcall:
5533   case tok::kw___vectorcall:
5534   case tok::kw___w64:
5535   case tok::kw___ptr64:
5536   case tok::kw___ptr32:
5537   case tok::kw___pascal:
5538   case tok::kw___unaligned:
5539 
5540   case tok::kw__Nonnull:
5541   case tok::kw__Nullable:
5542   case tok::kw__Nullable_result:
5543   case tok::kw__Null_unspecified:
5544 
5545   case tok::kw___kindof:
5546 
5547   case tok::kw___private:
5548   case tok::kw___local:
5549   case tok::kw___global:
5550   case tok::kw___constant:
5551   case tok::kw___generic:
5552   case tok::kw___read_only:
5553   case tok::kw___read_write:
5554   case tok::kw___write_only:
5555   case tok::kw___funcref:
5556     return true;
5557 
5558   case tok::kw_private:
5559     return getLangOpts().OpenCL;
5560 
5561   // C11 _Atomic
5562   case tok::kw__Atomic:
5563     return true;
5564 
5565   // HLSL type qualifiers
5566   case tok::kw_groupshared:
5567   case tok::kw_in:
5568   case tok::kw_inout:
5569   case tok::kw_out:
5570     return getLangOpts().HLSL;
5571   }
5572 }
5573 
5574 Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() {
5575   assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode");
5576 
5577   // Parse a top-level-stmt.
5578   Parser::StmtVector Stmts;
5579   ParsedStmtContext SubStmtCtx = ParsedStmtContext();
5580   Actions.PushFunctionScope();
5581   StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx);
5582   Actions.PopFunctionScopeInfo();
5583   if (!R.isUsable())
5584     return nullptr;
5585 
5586   SmallVector<Decl *, 2> DeclsInGroup;
5587   DeclsInGroup.push_back(Actions.ActOnTopLevelStmtDecl(R.get()));
5588 
5589   if (Tok.is(tok::annot_repl_input_end) &&
5590       Tok.getAnnotationValue() != nullptr) {
5591     ConsumeAnnotationToken();
5592     cast<TopLevelStmtDecl>(DeclsInGroup.back())->setSemiMissing();
5593   }
5594 
5595   // Currently happens for things like  -fms-extensions and use `__if_exists`.
5596   for (Stmt *S : Stmts)
5597     DeclsInGroup.push_back(Actions.ActOnTopLevelStmtDecl(S));
5598 
5599   return Actions.BuildDeclaratorGroup(DeclsInGroup);
5600 }
5601 
5602 /// isDeclarationSpecifier() - Return true if the current token is part of a
5603 /// declaration specifier.
5604 ///
5605 /// \param AllowImplicitTypename whether this is a context where T::type [T
5606 /// dependent] can appear.
5607 /// \param DisambiguatingWithExpression True to indicate that the purpose of
5608 /// this check is to disambiguate between an expression and a declaration.
5609 bool Parser::isDeclarationSpecifier(
5610     ImplicitTypenameContext AllowImplicitTypename,
5611     bool DisambiguatingWithExpression) {
5612   switch (Tok.getKind()) {
5613   default: return false;
5614 
5615   // OpenCL 2.0 and later define this keyword.
5616   case tok::kw_pipe:
5617     return getLangOpts().OpenCL &&
5618            getLangOpts().getOpenCLCompatibleVersion() >= 200;
5619 
5620   case tok::identifier:   // foo::bar
5621     // Unfortunate hack to support "Class.factoryMethod" notation.
5622     if (getLangOpts().ObjC && NextToken().is(tok::period))
5623       return false;
5624     if (TryAltiVecVectorToken())
5625       return true;
5626     [[fallthrough]];
5627   case tok::kw_decltype: // decltype(T())::type
5628   case tok::kw_typename: // typename T::type
5629     // Annotate typenames and C++ scope specifiers.  If we get one, just
5630     // recurse to handle whatever we get.
5631     if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename))
5632       return true;
5633     if (TryAnnotateTypeConstraint())
5634       return true;
5635     if (Tok.is(tok::identifier))
5636       return false;
5637 
5638     // If we're in Objective-C and we have an Objective-C class type followed
5639     // by an identifier and then either ':' or ']', in a place where an
5640     // expression is permitted, then this is probably a class message send
5641     // missing the initial '['. In this case, we won't consider this to be
5642     // the start of a declaration.
5643     if (DisambiguatingWithExpression &&
5644         isStartOfObjCClassMessageMissingOpenBracket())
5645       return false;
5646 
5647     return isDeclarationSpecifier(AllowImplicitTypename);
5648 
5649   case tok::coloncolon:   // ::foo::bar
5650     if (!getLangOpts().CPlusPlus)
5651       return false;
5652     if (NextToken().is(tok::kw_new) ||    // ::new
5653         NextToken().is(tok::kw_delete))   // ::delete
5654       return false;
5655 
5656     // Annotate typenames and C++ scope specifiers.  If we get one, just
5657     // recurse to handle whatever we get.
5658     if (TryAnnotateTypeOrScopeToken())
5659       return true;
5660     return isDeclarationSpecifier(ImplicitTypenameContext::No);
5661 
5662     // storage-class-specifier
5663   case tok::kw_typedef:
5664   case tok::kw_extern:
5665   case tok::kw___private_extern__:
5666   case tok::kw_static:
5667   case tok::kw_auto:
5668   case tok::kw___auto_type:
5669   case tok::kw_register:
5670   case tok::kw___thread:
5671   case tok::kw_thread_local:
5672   case tok::kw__Thread_local:
5673 
5674     // Modules
5675   case tok::kw___module_private__:
5676 
5677     // Debugger support
5678   case tok::kw___unknown_anytype:
5679 
5680     // type-specifiers
5681   case tok::kw_short:
5682   case tok::kw_long:
5683   case tok::kw___int64:
5684   case tok::kw___int128:
5685   case tok::kw_signed:
5686   case tok::kw_unsigned:
5687   case tok::kw__Complex:
5688   case tok::kw__Imaginary:
5689   case tok::kw_void:
5690   case tok::kw_char:
5691   case tok::kw_wchar_t:
5692   case tok::kw_char8_t:
5693   case tok::kw_char16_t:
5694   case tok::kw_char32_t:
5695 
5696   case tok::kw_int:
5697   case tok::kw__ExtInt:
5698   case tok::kw__BitInt:
5699   case tok::kw_half:
5700   case tok::kw___bf16:
5701   case tok::kw_float:
5702   case tok::kw_double:
5703   case tok::kw__Accum:
5704   case tok::kw__Fract:
5705   case tok::kw__Float16:
5706   case tok::kw___float128:
5707   case tok::kw___ibm128:
5708   case tok::kw_bool:
5709   case tok::kw__Bool:
5710   case tok::kw__Decimal32:
5711   case tok::kw__Decimal64:
5712   case tok::kw__Decimal128:
5713   case tok::kw___vector:
5714 
5715     // struct-or-union-specifier (C99) or class-specifier (C++)
5716   case tok::kw_class:
5717   case tok::kw_struct:
5718   case tok::kw_union:
5719   case tok::kw___interface:
5720     // enum-specifier
5721   case tok::kw_enum:
5722 
5723     // type-qualifier
5724   case tok::kw_const:
5725   case tok::kw_volatile:
5726   case tok::kw_restrict:
5727   case tok::kw__Sat:
5728 
5729     // function-specifier
5730   case tok::kw_inline:
5731   case tok::kw_virtual:
5732   case tok::kw_explicit:
5733   case tok::kw__Noreturn:
5734 
5735     // alignment-specifier
5736   case tok::kw__Alignas:
5737 
5738     // friend keyword.
5739   case tok::kw_friend:
5740 
5741     // static_assert-declaration
5742   case tok::kw_static_assert:
5743   case tok::kw__Static_assert:
5744 
5745     // C23/GNU typeof support.
5746   case tok::kw_typeof:
5747   case tok::kw_typeof_unqual:
5748 
5749     // GNU attributes.
5750   case tok::kw___attribute:
5751 
5752     // C++11 decltype and constexpr.
5753   case tok::annot_decltype:
5754   case tok::kw_constexpr:
5755 
5756     // C++20 consteval and constinit.
5757   case tok::kw_consteval:
5758   case tok::kw_constinit:
5759 
5760     // C11 _Atomic
5761   case tok::kw__Atomic:
5762     return true;
5763 
5764     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5765   case tok::less:
5766     return getLangOpts().ObjC;
5767 
5768     // typedef-name
5769   case tok::annot_typename:
5770     return !DisambiguatingWithExpression ||
5771            !isStartOfObjCClassMessageMissingOpenBracket();
5772 
5773     // placeholder-type-specifier
5774   case tok::annot_template_id: {
5775     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
5776     if (TemplateId->hasInvalidName())
5777       return true;
5778     // FIXME: What about type templates that have only been annotated as
5779     // annot_template_id, not as annot_typename?
5780     return isTypeConstraintAnnotation() &&
5781            (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
5782   }
5783 
5784   case tok::annot_cxxscope: {
5785     TemplateIdAnnotation *TemplateId =
5786         NextToken().is(tok::annot_template_id)
5787             ? takeTemplateIdAnnotation(NextToken())
5788             : nullptr;
5789     if (TemplateId && TemplateId->hasInvalidName())
5790       return true;
5791     // FIXME: What about type templates that have only been annotated as
5792     // annot_template_id, not as annot_typename?
5793     if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
5794       return true;
5795     return isTypeConstraintAnnotation() &&
5796         GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
5797   }
5798 
5799   case tok::kw___declspec:
5800   case tok::kw___cdecl:
5801   case tok::kw___stdcall:
5802   case tok::kw___fastcall:
5803   case tok::kw___thiscall:
5804   case tok::kw___regcall:
5805   case tok::kw___vectorcall:
5806   case tok::kw___w64:
5807   case tok::kw___sptr:
5808   case tok::kw___uptr:
5809   case tok::kw___ptr64:
5810   case tok::kw___ptr32:
5811   case tok::kw___forceinline:
5812   case tok::kw___pascal:
5813   case tok::kw___unaligned:
5814 
5815   case tok::kw__Nonnull:
5816   case tok::kw__Nullable:
5817   case tok::kw__Nullable_result:
5818   case tok::kw__Null_unspecified:
5819 
5820   case tok::kw___kindof:
5821 
5822   case tok::kw___private:
5823   case tok::kw___local:
5824   case tok::kw___global:
5825   case tok::kw___constant:
5826   case tok::kw___generic:
5827   case tok::kw___read_only:
5828   case tok::kw___read_write:
5829   case tok::kw___write_only:
5830 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5831 #include "clang/Basic/OpenCLImageTypes.def"
5832 
5833   case tok::kw___funcref:
5834   case tok::kw_groupshared:
5835     return true;
5836 
5837   case tok::kw_private:
5838     return getLangOpts().OpenCL;
5839   }
5840 }
5841 
5842 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide,
5843                                      DeclSpec::FriendSpecified IsFriend,
5844                                      const ParsedTemplateInfo *TemplateInfo) {
5845   RevertingTentativeParsingAction TPA(*this);
5846   // Parse the C++ scope specifier.
5847   CXXScopeSpec SS;
5848   if (TemplateInfo && TemplateInfo->TemplateParams)
5849     SS.setTemplateParamLists(*TemplateInfo->TemplateParams);
5850 
5851   if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
5852                                      /*ObjectHasErrors=*/false,
5853                                      /*EnteringContext=*/true)) {
5854     return false;
5855   }
5856 
5857   // Parse the constructor name.
5858   if (Tok.is(tok::identifier)) {
5859     // We already know that we have a constructor name; just consume
5860     // the token.
5861     ConsumeToken();
5862   } else if (Tok.is(tok::annot_template_id)) {
5863     ConsumeAnnotationToken();
5864   } else {
5865     return false;
5866   }
5867 
5868   // There may be attributes here, appertaining to the constructor name or type
5869   // we just stepped past.
5870   SkipCXX11Attributes();
5871 
5872   // Current class name must be followed by a left parenthesis.
5873   if (Tok.isNot(tok::l_paren)) {
5874     return false;
5875   }
5876   ConsumeParen();
5877 
5878   // A right parenthesis, or ellipsis followed by a right parenthesis signals
5879   // that we have a constructor.
5880   if (Tok.is(tok::r_paren) ||
5881       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5882     return true;
5883   }
5884 
5885   // A C++11 attribute here signals that we have a constructor, and is an
5886   // attribute on the first constructor parameter.
5887   if (getLangOpts().CPlusPlus11 &&
5888       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5889                                 /*OuterMightBeMessageSend*/ true)) {
5890     return true;
5891   }
5892 
5893   // If we need to, enter the specified scope.
5894   DeclaratorScopeObj DeclScopeObj(*this, SS);
5895   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5896     DeclScopeObj.EnterDeclaratorScope();
5897 
5898   // Optionally skip Microsoft attributes.
5899   ParsedAttributes Attrs(AttrFactory);
5900   MaybeParseMicrosoftAttributes(Attrs);
5901 
5902   // Check whether the next token(s) are part of a declaration
5903   // specifier, in which case we have the start of a parameter and,
5904   // therefore, we know that this is a constructor.
5905   // Due to an ambiguity with implicit typename, the above is not enough.
5906   // Additionally, check to see if we are a friend.
5907   // If we parsed a scope specifier as well as friend,
5908   // we might be parsing a friend constructor.
5909   bool IsConstructor = false;
5910   ImplicitTypenameContext ITC = IsFriend && !SS.isSet()
5911                                     ? ImplicitTypenameContext::No
5912                                     : ImplicitTypenameContext::Yes;
5913   // Constructors cannot have this parameters, but we support that scenario here
5914   // to improve diagnostic.
5915   if (Tok.is(tok::kw_this)) {
5916     ConsumeToken();
5917     return isDeclarationSpecifier(ITC);
5918   }
5919 
5920   if (isDeclarationSpecifier(ITC))
5921     IsConstructor = true;
5922   else if (Tok.is(tok::identifier) ||
5923            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5924     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5925     // This might be a parenthesized member name, but is more likely to
5926     // be a constructor declaration with an invalid argument type. Keep
5927     // looking.
5928     if (Tok.is(tok::annot_cxxscope))
5929       ConsumeAnnotationToken();
5930     ConsumeToken();
5931 
5932     // If this is not a constructor, we must be parsing a declarator,
5933     // which must have one of the following syntactic forms (see the
5934     // grammar extract at the start of ParseDirectDeclarator):
5935     switch (Tok.getKind()) {
5936     case tok::l_paren:
5937       // C(X   (   int));
5938     case tok::l_square:
5939       // C(X   [   5]);
5940       // C(X   [   [attribute]]);
5941     case tok::coloncolon:
5942       // C(X   ::   Y);
5943       // C(X   ::   *p);
5944       // Assume this isn't a constructor, rather than assuming it's a
5945       // constructor with an unnamed parameter of an ill-formed type.
5946       break;
5947 
5948     case tok::r_paren:
5949       // C(X   )
5950 
5951       // Skip past the right-paren and any following attributes to get to
5952       // the function body or trailing-return-type.
5953       ConsumeParen();
5954       SkipCXX11Attributes();
5955 
5956       if (DeductionGuide) {
5957         // C(X) -> ... is a deduction guide.
5958         IsConstructor = Tok.is(tok::arrow);
5959         break;
5960       }
5961       if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5962         // Assume these were meant to be constructors:
5963         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5964         //   C(X)   try  (this is otherwise ill-formed).
5965         IsConstructor = true;
5966       }
5967       if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5968         // If we have a constructor name within the class definition,
5969         // assume these were meant to be constructors:
5970         //   C(X)   {
5971         //   C(X)   ;
5972         // ... because otherwise we would be declaring a non-static data
5973         // member that is ill-formed because it's of the same type as its
5974         // surrounding class.
5975         //
5976         // FIXME: We can actually do this whether or not the name is qualified,
5977         // because if it is qualified in this context it must be being used as
5978         // a constructor name.
5979         // currently, so we're somewhat conservative here.
5980         IsConstructor = IsUnqualified;
5981       }
5982       break;
5983 
5984     default:
5985       IsConstructor = true;
5986       break;
5987     }
5988   }
5989   return IsConstructor;
5990 }
5991 
5992 /// ParseTypeQualifierListOpt
5993 ///          type-qualifier-list: [C99 6.7.5]
5994 ///            type-qualifier
5995 /// [vendor]   attributes
5996 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5997 ///            type-qualifier-list type-qualifier
5998 /// [vendor]   type-qualifier-list attributes
5999 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
6000 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
6001 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
6002 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
6003 /// AttrRequirements bitmask values.
6004 void Parser::ParseTypeQualifierListOpt(
6005     DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
6006     bool IdentifierRequired,
6007     std::optional<llvm::function_ref<void()>> CodeCompletionHandler) {
6008   if ((AttrReqs & AR_CXX11AttributesParsed) &&
6009       isAllowedCXX11AttributeSpecifier()) {
6010     ParsedAttributes Attrs(AttrFactory);
6011     ParseCXX11Attributes(Attrs);
6012     DS.takeAttributesFrom(Attrs);
6013   }
6014 
6015   SourceLocation EndLoc;
6016 
6017   while (true) {
6018     bool isInvalid = false;
6019     const char *PrevSpec = nullptr;
6020     unsigned DiagID = 0;
6021     SourceLocation Loc = Tok.getLocation();
6022 
6023     switch (Tok.getKind()) {
6024     case tok::code_completion:
6025       cutOffParsing();
6026       if (CodeCompletionHandler)
6027         (*CodeCompletionHandler)();
6028       else
6029         Actions.CodeCompleteTypeQualifiers(DS);
6030       return;
6031 
6032     case tok::kw_const:
6033       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
6034                                  getLangOpts());
6035       break;
6036     case tok::kw_volatile:
6037       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
6038                                  getLangOpts());
6039       break;
6040     case tok::kw_restrict:
6041       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
6042                                  getLangOpts());
6043       break;
6044     case tok::kw__Atomic:
6045       if (!AtomicAllowed)
6046         goto DoneWithTypeQuals;
6047       if (!getLangOpts().C11)
6048         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
6049       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
6050                                  getLangOpts());
6051       break;
6052 
6053     // OpenCL qualifiers:
6054     case tok::kw_private:
6055       if (!getLangOpts().OpenCL)
6056         goto DoneWithTypeQuals;
6057       [[fallthrough]];
6058     case tok::kw___private:
6059     case tok::kw___global:
6060     case tok::kw___local:
6061     case tok::kw___constant:
6062     case tok::kw___generic:
6063     case tok::kw___read_only:
6064     case tok::kw___write_only:
6065     case tok::kw___read_write:
6066       ParseOpenCLQualifiers(DS.getAttributes());
6067       break;
6068 
6069     case tok::kw_groupshared:
6070     case tok::kw_in:
6071     case tok::kw_inout:
6072     case tok::kw_out:
6073       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
6074       ParseHLSLQualifiers(DS.getAttributes());
6075       continue;
6076 
6077     case tok::kw___unaligned:
6078       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
6079                                  getLangOpts());
6080       break;
6081     case tok::kw___uptr:
6082       // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
6083       // with the MS modifier keyword.
6084       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
6085           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
6086         if (TryKeywordIdentFallback(false))
6087           continue;
6088       }
6089       [[fallthrough]];
6090     case tok::kw___sptr:
6091     case tok::kw___w64:
6092     case tok::kw___ptr64:
6093     case tok::kw___ptr32:
6094     case tok::kw___cdecl:
6095     case tok::kw___stdcall:
6096     case tok::kw___fastcall:
6097     case tok::kw___thiscall:
6098     case tok::kw___regcall:
6099     case tok::kw___vectorcall:
6100       if (AttrReqs & AR_DeclspecAttributesParsed) {
6101         ParseMicrosoftTypeAttributes(DS.getAttributes());
6102         continue;
6103       }
6104       goto DoneWithTypeQuals;
6105 
6106     case tok::kw___funcref:
6107       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
6108       continue;
6109       goto DoneWithTypeQuals;
6110 
6111     case tok::kw___pascal:
6112       if (AttrReqs & AR_VendorAttributesParsed) {
6113         ParseBorlandTypeAttributes(DS.getAttributes());
6114         continue;
6115       }
6116       goto DoneWithTypeQuals;
6117 
6118     // Nullability type specifiers.
6119     case tok::kw__Nonnull:
6120     case tok::kw__Nullable:
6121     case tok::kw__Nullable_result:
6122     case tok::kw__Null_unspecified:
6123       ParseNullabilityTypeSpecifiers(DS.getAttributes());
6124       continue;
6125 
6126     // Objective-C 'kindof' types.
6127     case tok::kw___kindof:
6128       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
6129                                 nullptr, 0, tok::kw___kindof);
6130       (void)ConsumeToken();
6131       continue;
6132 
6133     case tok::kw___attribute:
6134       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
6135         // When GNU attributes are expressly forbidden, diagnose their usage.
6136         Diag(Tok, diag::err_attributes_not_allowed);
6137 
6138       // Parse the attributes even if they are rejected to ensure that error
6139       // recovery is graceful.
6140       if (AttrReqs & AR_GNUAttributesParsed ||
6141           AttrReqs & AR_GNUAttributesParsedAndRejected) {
6142         ParseGNUAttributes(DS.getAttributes());
6143         continue; // do *not* consume the next token!
6144       }
6145       // otherwise, FALL THROUGH!
6146       [[fallthrough]];
6147     default:
6148       DoneWithTypeQuals:
6149       // If this is not a type-qualifier token, we're done reading type
6150       // qualifiers.  First verify that DeclSpec's are consistent.
6151       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
6152       if (EndLoc.isValid())
6153         DS.SetRangeEnd(EndLoc);
6154       return;
6155     }
6156 
6157     // If the specifier combination wasn't legal, issue a diagnostic.
6158     if (isInvalid) {
6159       assert(PrevSpec && "Method did not return previous specifier!");
6160       Diag(Tok, DiagID) << PrevSpec;
6161     }
6162     EndLoc = ConsumeToken();
6163   }
6164 }
6165 
6166 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
6167 void Parser::ParseDeclarator(Declarator &D) {
6168   /// This implements the 'declarator' production in the C grammar, then checks
6169   /// for well-formedness and issues diagnostics.
6170   Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6171     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6172   });
6173 }
6174 
6175 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
6176                                DeclaratorContext TheContext) {
6177   if (Kind == tok::star || Kind == tok::caret)
6178     return true;
6179 
6180   // OpenCL 2.0 and later define this keyword.
6181   if (Kind == tok::kw_pipe && Lang.OpenCL &&
6182       Lang.getOpenCLCompatibleVersion() >= 200)
6183     return true;
6184 
6185   if (!Lang.CPlusPlus)
6186     return false;
6187 
6188   if (Kind == tok::amp)
6189     return true;
6190 
6191   // We parse rvalue refs in C++03, because otherwise the errors are scary.
6192   // But we must not parse them in conversion-type-ids and new-type-ids, since
6193   // those can be legitimately followed by a && operator.
6194   // (The same thing can in theory happen after a trailing-return-type, but
6195   // since those are a C++11 feature, there is no rejects-valid issue there.)
6196   if (Kind == tok::ampamp)
6197     return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId &&
6198                                 TheContext != DeclaratorContext::CXXNew);
6199 
6200   return false;
6201 }
6202 
6203 // Indicates whether the given declarator is a pipe declarator.
6204 static bool isPipeDeclarator(const Declarator &D) {
6205   const unsigned NumTypes = D.getNumTypeObjects();
6206 
6207   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
6208     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
6209       return true;
6210 
6211   return false;
6212 }
6213 
6214 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
6215 /// is parsed by the function passed to it. Pass null, and the direct-declarator
6216 /// isn't parsed at all, making this function effectively parse the C++
6217 /// ptr-operator production.
6218 ///
6219 /// If the grammar of this construct is extended, matching changes must also be
6220 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
6221 /// isConstructorDeclarator.
6222 ///
6223 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
6224 /// [C]     pointer[opt] direct-declarator
6225 /// [C++]   direct-declarator
6226 /// [C++]   ptr-operator declarator
6227 ///
6228 ///       pointer: [C99 6.7.5]
6229 ///         '*' type-qualifier-list[opt]
6230 ///         '*' type-qualifier-list[opt] pointer
6231 ///
6232 ///       ptr-operator:
6233 ///         '*' cv-qualifier-seq[opt]
6234 ///         '&'
6235 /// [C++0x] '&&'
6236 /// [GNU]   '&' restrict[opt] attributes[opt]
6237 /// [GNU?]  '&&' restrict[opt] attributes[opt]
6238 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
6239 void Parser::ParseDeclaratorInternal(Declarator &D,
6240                                      DirectDeclParseFunction DirectDeclParser) {
6241   if (Diags.hasAllExtensionsSilenced())
6242     D.setExtension();
6243 
6244   // C++ member pointers start with a '::' or a nested-name.
6245   // Member pointers get special handling, since there's no place for the
6246   // scope spec in the generic path below.
6247   if (getLangOpts().CPlusPlus &&
6248       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
6249        (Tok.is(tok::identifier) &&
6250         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
6251        Tok.is(tok::annot_cxxscope))) {
6252     bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6253                            D.getContext() == DeclaratorContext::Member;
6254     CXXScopeSpec SS;
6255     SS.setTemplateParamLists(D.getTemplateParameterLists());
6256     ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6257                                    /*ObjectHasErrors=*/false, EnteringContext);
6258 
6259     if (SS.isNotEmpty()) {
6260       if (Tok.isNot(tok::star)) {
6261         // The scope spec really belongs to the direct-declarator.
6262         if (D.mayHaveIdentifier())
6263           D.getCXXScopeSpec() = SS;
6264         else
6265           AnnotateScopeToken(SS, true);
6266 
6267         if (DirectDeclParser)
6268           (this->*DirectDeclParser)(D);
6269         return;
6270       }
6271 
6272       if (SS.isValid()) {
6273         checkCompoundToken(SS.getEndLoc(), tok::coloncolon,
6274                            CompoundToken::MemberPtr);
6275       }
6276 
6277       SourceLocation StarLoc = ConsumeToken();
6278       D.SetRangeEnd(StarLoc);
6279       DeclSpec DS(AttrFactory);
6280       ParseTypeQualifierListOpt(DS);
6281       D.ExtendWithDeclSpec(DS);
6282 
6283       // Recurse to parse whatever is left.
6284       Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6285         ParseDeclaratorInternal(D, DirectDeclParser);
6286       });
6287 
6288       // Sema will have to catch (syntactically invalid) pointers into global
6289       // scope. It has to catch pointers into namespace scope anyway.
6290       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
6291                         SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
6292                     std::move(DS.getAttributes()),
6293                     /* Don't replace range end. */ SourceLocation());
6294       return;
6295     }
6296   }
6297 
6298   tok::TokenKind Kind = Tok.getKind();
6299 
6300   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) {
6301     DeclSpec DS(AttrFactory);
6302     ParseTypeQualifierListOpt(DS);
6303 
6304     D.AddTypeInfo(
6305         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
6306         std::move(DS.getAttributes()), SourceLocation());
6307   }
6308 
6309   // Not a pointer, C++ reference, or block.
6310   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
6311     if (DirectDeclParser)
6312       (this->*DirectDeclParser)(D);
6313     return;
6314   }
6315 
6316   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
6317   // '&&' -> rvalue reference
6318   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
6319   D.SetRangeEnd(Loc);
6320 
6321   if (Kind == tok::star || Kind == tok::caret) {
6322     // Is a pointer.
6323     DeclSpec DS(AttrFactory);
6324 
6325     // GNU attributes are not allowed here in a new-type-id, but Declspec and
6326     // C++11 attributes are allowed.
6327     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
6328                     ((D.getContext() != DeclaratorContext::CXXNew)
6329                          ? AR_GNUAttributesParsed
6330                          : AR_GNUAttributesParsedAndRejected);
6331     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
6332     D.ExtendWithDeclSpec(DS);
6333 
6334     // Recursively parse the declarator.
6335     Actions.runWithSufficientStackSpace(
6336         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6337     if (Kind == tok::star)
6338       // Remember that we parsed a pointer type, and remember the type-quals.
6339       D.AddTypeInfo(DeclaratorChunk::getPointer(
6340                         DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
6341                         DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
6342                         DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
6343                     std::move(DS.getAttributes()), SourceLocation());
6344     else
6345       // Remember that we parsed a Block type, and remember the type-quals.
6346       D.AddTypeInfo(
6347           DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
6348           std::move(DS.getAttributes()), SourceLocation());
6349   } else {
6350     // Is a reference
6351     DeclSpec DS(AttrFactory);
6352 
6353     // Complain about rvalue references in C++03, but then go on and build
6354     // the declarator.
6355     if (Kind == tok::ampamp)
6356       Diag(Loc, getLangOpts().CPlusPlus11 ?
6357            diag::warn_cxx98_compat_rvalue_reference :
6358            diag::ext_rvalue_reference);
6359 
6360     // GNU-style and C++11 attributes are allowed here, as is restrict.
6361     ParseTypeQualifierListOpt(DS);
6362     D.ExtendWithDeclSpec(DS);
6363 
6364     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
6365     // cv-qualifiers are introduced through the use of a typedef or of a
6366     // template type argument, in which case the cv-qualifiers are ignored.
6367     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
6368       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
6369         Diag(DS.getConstSpecLoc(),
6370              diag::err_invalid_reference_qualifier_application) << "const";
6371       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
6372         Diag(DS.getVolatileSpecLoc(),
6373              diag::err_invalid_reference_qualifier_application) << "volatile";
6374       // 'restrict' is permitted as an extension.
6375       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
6376         Diag(DS.getAtomicSpecLoc(),
6377              diag::err_invalid_reference_qualifier_application) << "_Atomic";
6378     }
6379 
6380     // Recursively parse the declarator.
6381     Actions.runWithSufficientStackSpace(
6382         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6383 
6384     if (D.getNumTypeObjects() > 0) {
6385       // C++ [dcl.ref]p4: There shall be no references to references.
6386       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
6387       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
6388         if (const IdentifierInfo *II = D.getIdentifier())
6389           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6390            << II;
6391         else
6392           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6393             << "type name";
6394 
6395         // Once we've complained about the reference-to-reference, we
6396         // can go ahead and build the (technically ill-formed)
6397         // declarator: reference collapsing will take care of it.
6398       }
6399     }
6400 
6401     // Remember that we parsed a reference type.
6402     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
6403                                                 Kind == tok::amp),
6404                   std::move(DS.getAttributes()), SourceLocation());
6405   }
6406 }
6407 
6408 // When correcting from misplaced brackets before the identifier, the location
6409 // is saved inside the declarator so that other diagnostic messages can use
6410 // them.  This extracts and returns that location, or returns the provided
6411 // location if a stored location does not exist.
6412 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
6413                                                 SourceLocation Loc) {
6414   if (D.getName().StartLocation.isInvalid() &&
6415       D.getName().EndLocation.isValid())
6416     return D.getName().EndLocation;
6417 
6418   return Loc;
6419 }
6420 
6421 /// ParseDirectDeclarator
6422 ///       direct-declarator: [C99 6.7.5]
6423 /// [C99]   identifier
6424 ///         '(' declarator ')'
6425 /// [GNU]   '(' attributes declarator ')'
6426 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
6427 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6428 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6429 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6430 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6431 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6432 ///                    attribute-specifier-seq[opt]
6433 ///         direct-declarator '(' parameter-type-list ')'
6434 ///         direct-declarator '(' identifier-list[opt] ')'
6435 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6436 ///                    parameter-type-list[opt] ')'
6437 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
6438 ///                    cv-qualifier-seq[opt] exception-specification[opt]
6439 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
6440 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
6441 ///                    ref-qualifier[opt] exception-specification[opt]
6442 /// [C++]   declarator-id
6443 /// [C++11] declarator-id attribute-specifier-seq[opt]
6444 ///
6445 ///       declarator-id: [C++ 8]
6446 ///         '...'[opt] id-expression
6447 ///         '::'[opt] nested-name-specifier[opt] type-name
6448 ///
6449 ///       id-expression: [C++ 5.1]
6450 ///         unqualified-id
6451 ///         qualified-id
6452 ///
6453 ///       unqualified-id: [C++ 5.1]
6454 ///         identifier
6455 ///         operator-function-id
6456 ///         conversion-function-id
6457 ///          '~' class-name
6458 ///         template-id
6459 ///
6460 /// C++17 adds the following, which we also handle here:
6461 ///
6462 ///       simple-declaration:
6463 ///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
6464 ///
6465 /// Note, any additional constructs added here may need corresponding changes
6466 /// in isConstructorDeclarator.
6467 void Parser::ParseDirectDeclarator(Declarator &D) {
6468   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
6469 
6470   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
6471     // This might be a C++17 structured binding.
6472     if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
6473         D.getCXXScopeSpec().isEmpty())
6474       return ParseDecompositionDeclarator(D);
6475 
6476     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
6477     // this context it is a bitfield. Also in range-based for statement colon
6478     // may delimit for-range-declaration.
6479     ColonProtectionRAIIObject X(
6480         *this, D.getContext() == DeclaratorContext::Member ||
6481                    (D.getContext() == DeclaratorContext::ForInit &&
6482                     getLangOpts().CPlusPlus11));
6483 
6484     // ParseDeclaratorInternal might already have parsed the scope.
6485     if (D.getCXXScopeSpec().isEmpty()) {
6486       bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6487                              D.getContext() == DeclaratorContext::Member;
6488       ParseOptionalCXXScopeSpecifier(
6489           D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
6490           /*ObjectHasErrors=*/false, EnteringContext);
6491     }
6492 
6493     if (D.getCXXScopeSpec().isValid()) {
6494       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
6495                                              D.getCXXScopeSpec()))
6496         // Change the declaration context for name lookup, until this function
6497         // is exited (and the declarator has been parsed).
6498         DeclScopeObj.EnterDeclaratorScope();
6499       else if (getObjCDeclContext()) {
6500         // Ensure that we don't interpret the next token as an identifier when
6501         // dealing with declarations in an Objective-C container.
6502         D.SetIdentifier(nullptr, Tok.getLocation());
6503         D.setInvalidType(true);
6504         ConsumeToken();
6505         goto PastIdentifier;
6506       }
6507     }
6508 
6509     // C++0x [dcl.fct]p14:
6510     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
6511     //   parameter-declaration-clause without a preceding comma. In this case,
6512     //   the ellipsis is parsed as part of the abstract-declarator if the type
6513     //   of the parameter either names a template parameter pack that has not
6514     //   been expanded or contains auto; otherwise, it is parsed as part of the
6515     //   parameter-declaration-clause.
6516     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
6517         !((D.getContext() == DeclaratorContext::Prototype ||
6518            D.getContext() == DeclaratorContext::LambdaExprParameter ||
6519            D.getContext() == DeclaratorContext::BlockLiteral) &&
6520           NextToken().is(tok::r_paren) && !D.hasGroupingParens() &&
6521           !Actions.containsUnexpandedParameterPacks(D) &&
6522           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
6523       SourceLocation EllipsisLoc = ConsumeToken();
6524       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
6525         // The ellipsis was put in the wrong place. Recover, and explain to
6526         // the user what they should have done.
6527         ParseDeclarator(D);
6528         if (EllipsisLoc.isValid())
6529           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6530         return;
6531       } else
6532         D.setEllipsisLoc(EllipsisLoc);
6533 
6534       // The ellipsis can't be followed by a parenthesized declarator. We
6535       // check for that in ParseParenDeclarator, after we have disambiguated
6536       // the l_paren token.
6537     }
6538 
6539     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
6540                     tok::tilde)) {
6541       // We found something that indicates the start of an unqualified-id.
6542       // Parse that unqualified-id.
6543       bool AllowConstructorName;
6544       bool AllowDeductionGuide;
6545       if (D.getDeclSpec().hasTypeSpecifier()) {
6546         AllowConstructorName = false;
6547         AllowDeductionGuide = false;
6548       } else if (D.getCXXScopeSpec().isSet()) {
6549         AllowConstructorName = (D.getContext() == DeclaratorContext::File ||
6550                                 D.getContext() == DeclaratorContext::Member);
6551         AllowDeductionGuide = false;
6552       } else {
6553         AllowConstructorName = (D.getContext() == DeclaratorContext::Member);
6554         AllowDeductionGuide = (D.getContext() == DeclaratorContext::File ||
6555                                D.getContext() == DeclaratorContext::Member);
6556       }
6557 
6558       bool HadScope = D.getCXXScopeSpec().isValid();
6559       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
6560                              /*ObjectType=*/nullptr,
6561                              /*ObjectHadErrors=*/false,
6562                              /*EnteringContext=*/true,
6563                              /*AllowDestructorName=*/true, AllowConstructorName,
6564                              AllowDeductionGuide, nullptr, D.getName()) ||
6565           // Once we're past the identifier, if the scope was bad, mark the
6566           // whole declarator bad.
6567           D.getCXXScopeSpec().isInvalid()) {
6568         D.SetIdentifier(nullptr, Tok.getLocation());
6569         D.setInvalidType(true);
6570       } else {
6571         // ParseUnqualifiedId might have parsed a scope specifier during error
6572         // recovery. If it did so, enter that scope.
6573         if (!HadScope && D.getCXXScopeSpec().isValid() &&
6574             Actions.ShouldEnterDeclaratorScope(getCurScope(),
6575                                                D.getCXXScopeSpec()))
6576           DeclScopeObj.EnterDeclaratorScope();
6577 
6578         // Parsed the unqualified-id; update range information and move along.
6579         if (D.getSourceRange().getBegin().isInvalid())
6580           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
6581         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
6582       }
6583       goto PastIdentifier;
6584     }
6585 
6586     if (D.getCXXScopeSpec().isNotEmpty()) {
6587       // We have a scope specifier but no following unqualified-id.
6588       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
6589            diag::err_expected_unqualified_id)
6590           << /*C++*/1;
6591       D.SetIdentifier(nullptr, Tok.getLocation());
6592       goto PastIdentifier;
6593     }
6594   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
6595     assert(!getLangOpts().CPlusPlus &&
6596            "There's a C++-specific check for tok::identifier above");
6597     assert(Tok.getIdentifierInfo() && "Not an identifier?");
6598     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6599     D.SetRangeEnd(Tok.getLocation());
6600     ConsumeToken();
6601     goto PastIdentifier;
6602   } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
6603     // We're not allowed an identifier here, but we got one. Try to figure out
6604     // if the user was trying to attach a name to the type, or whether the name
6605     // is some unrelated trailing syntax.
6606     bool DiagnoseIdentifier = false;
6607     if (D.hasGroupingParens())
6608       // An identifier within parens is unlikely to be intended to be anything
6609       // other than a name being "declared".
6610       DiagnoseIdentifier = true;
6611     else if (D.getContext() == DeclaratorContext::TemplateArg)
6612       // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
6613       DiagnoseIdentifier =
6614           NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
6615     else if (D.getContext() == DeclaratorContext::AliasDecl ||
6616              D.getContext() == DeclaratorContext::AliasTemplate)
6617       // The most likely error is that the ';' was forgotten.
6618       DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
6619     else if ((D.getContext() == DeclaratorContext::TrailingReturn ||
6620               D.getContext() == DeclaratorContext::TrailingReturnVar) &&
6621              !isCXX11VirtSpecifier(Tok))
6622       DiagnoseIdentifier = NextToken().isOneOf(
6623           tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
6624     if (DiagnoseIdentifier) {
6625       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
6626         << FixItHint::CreateRemoval(Tok.getLocation());
6627       D.SetIdentifier(nullptr, Tok.getLocation());
6628       ConsumeToken();
6629       goto PastIdentifier;
6630     }
6631   }
6632 
6633   if (Tok.is(tok::l_paren)) {
6634     // If this might be an abstract-declarator followed by a direct-initializer,
6635     // check whether this is a valid declarator chunk. If it can't be, assume
6636     // that it's an initializer instead.
6637     if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
6638       RevertingTentativeParsingAction PA(*this);
6639       if (TryParseDeclarator(true, D.mayHaveIdentifier(), true,
6640                              D.getDeclSpec().getTypeSpecType() == TST_auto) ==
6641           TPResult::False) {
6642         D.SetIdentifier(nullptr, Tok.getLocation());
6643         goto PastIdentifier;
6644       }
6645     }
6646 
6647     // direct-declarator: '(' declarator ')'
6648     // direct-declarator: '(' attributes declarator ')'
6649     // Example: 'char (*X)'   or 'int (*XX)(void)'
6650     ParseParenDeclarator(D);
6651 
6652     // If the declarator was parenthesized, we entered the declarator
6653     // scope when parsing the parenthesized declarator, then exited
6654     // the scope already. Re-enter the scope, if we need to.
6655     if (D.getCXXScopeSpec().isSet()) {
6656       // If there was an error parsing parenthesized declarator, declarator
6657       // scope may have been entered before. Don't do it again.
6658       if (!D.isInvalidType() &&
6659           Actions.ShouldEnterDeclaratorScope(getCurScope(),
6660                                              D.getCXXScopeSpec()))
6661         // Change the declaration context for name lookup, until this function
6662         // is exited (and the declarator has been parsed).
6663         DeclScopeObj.EnterDeclaratorScope();
6664     }
6665   } else if (D.mayOmitIdentifier()) {
6666     // This could be something simple like "int" (in which case the declarator
6667     // portion is empty), if an abstract-declarator is allowed.
6668     D.SetIdentifier(nullptr, Tok.getLocation());
6669 
6670     // The grammar for abstract-pack-declarator does not allow grouping parens.
6671     // FIXME: Revisit this once core issue 1488 is resolved.
6672     if (D.hasEllipsis() && D.hasGroupingParens())
6673       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
6674            diag::ext_abstract_pack_declarator_parens);
6675   } else {
6676     if (Tok.getKind() == tok::annot_pragma_parser_crash)
6677       LLVM_BUILTIN_TRAP;
6678     if (Tok.is(tok::l_square))
6679       return ParseMisplacedBracketDeclarator(D);
6680     if (D.getContext() == DeclaratorContext::Member) {
6681       // Objective-C++: Detect C++ keywords and try to prevent further errors by
6682       // treating these keyword as valid member names.
6683       if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
6684           !Tok.isAnnotation() && Tok.getIdentifierInfo() &&
6685           Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
6686         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6687              diag::err_expected_member_name_or_semi_objcxx_keyword)
6688             << Tok.getIdentifierInfo()
6689             << (D.getDeclSpec().isEmpty() ? SourceRange()
6690                                           : D.getDeclSpec().getSourceRange());
6691         D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6692         D.SetRangeEnd(Tok.getLocation());
6693         ConsumeToken();
6694         goto PastIdentifier;
6695       }
6696       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6697            diag::err_expected_member_name_or_semi)
6698           << (D.getDeclSpec().isEmpty() ? SourceRange()
6699                                         : D.getDeclSpec().getSourceRange());
6700     } else {
6701       if (Tok.getKind() == tok::TokenKind::kw_while) {
6702         Diag(Tok, diag::err_while_loop_outside_of_a_function);
6703       } else if (getLangOpts().CPlusPlus) {
6704         if (Tok.isOneOf(tok::period, tok::arrow))
6705           Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
6706         else {
6707           SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
6708           if (Tok.isAtStartOfLine() && Loc.isValid())
6709             Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
6710                 << getLangOpts().CPlusPlus;
6711           else
6712             Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6713                  diag::err_expected_unqualified_id)
6714                 << getLangOpts().CPlusPlus;
6715         }
6716       } else {
6717         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6718              diag::err_expected_either)
6719             << tok::identifier << tok::l_paren;
6720       }
6721     }
6722     D.SetIdentifier(nullptr, Tok.getLocation());
6723     D.setInvalidType(true);
6724   }
6725 
6726  PastIdentifier:
6727   assert(D.isPastIdentifier() &&
6728          "Haven't past the location of the identifier yet?");
6729 
6730   // Don't parse attributes unless we have parsed an unparenthesized name.
6731   if (D.hasName() && !D.getNumTypeObjects())
6732     MaybeParseCXX11Attributes(D);
6733 
6734   while (true) {
6735     if (Tok.is(tok::l_paren)) {
6736       bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
6737       // Enter function-declaration scope, limiting any declarators to the
6738       // function prototype scope, including parameter declarators.
6739       ParseScope PrototypeScope(this,
6740                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
6741                                 (IsFunctionDeclaration
6742                                    ? Scope::FunctionDeclarationScope : 0));
6743 
6744       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
6745       // In such a case, check if we actually have a function declarator; if it
6746       // is not, the declarator has been fully parsed.
6747       bool IsAmbiguous = false;
6748       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
6749         // C++2a [temp.res]p5
6750         // A qualified-id is assumed to name a type if
6751         //   - [...]
6752         //   - it is a decl-specifier of the decl-specifier-seq of a
6753         //     - [...]
6754         //     - parameter-declaration in a member-declaration [...]
6755         //     - parameter-declaration in a declarator of a function or function
6756         //       template declaration whose declarator-id is qualified [...]
6757         auto AllowImplicitTypename = ImplicitTypenameContext::No;
6758         if (D.getCXXScopeSpec().isSet())
6759           AllowImplicitTypename =
6760               (ImplicitTypenameContext)Actions.isDeclaratorFunctionLike(D);
6761         else if (D.getContext() == DeclaratorContext::Member) {
6762           AllowImplicitTypename = ImplicitTypenameContext::Yes;
6763         }
6764 
6765         // The name of the declarator, if any, is tentatively declared within
6766         // a possible direct initializer.
6767         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
6768         bool IsFunctionDecl =
6769             isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename);
6770         TentativelyDeclaredIdentifiers.pop_back();
6771         if (!IsFunctionDecl)
6772           break;
6773       }
6774       ParsedAttributes attrs(AttrFactory);
6775       BalancedDelimiterTracker T(*this, tok::l_paren);
6776       T.consumeOpen();
6777       if (IsFunctionDeclaration)
6778         Actions.ActOnStartFunctionDeclarationDeclarator(D,
6779                                                         TemplateParameterDepth);
6780       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
6781       if (IsFunctionDeclaration)
6782         Actions.ActOnFinishFunctionDeclarationDeclarator(D);
6783       PrototypeScope.Exit();
6784     } else if (Tok.is(tok::l_square)) {
6785       ParseBracketDeclarator(D);
6786     } else if (Tok.isRegularKeywordAttribute()) {
6787       // For consistency with attribute parsing.
6788       Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo();
6789       ConsumeToken();
6790     } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
6791       // This declarator is declaring a function, but the requires clause is
6792       // in the wrong place:
6793       //   void (f() requires true);
6794       // instead of
6795       //   void f() requires true;
6796       // or
6797       //   void (f()) requires true;
6798       Diag(Tok, diag::err_requires_clause_inside_parens);
6799       ConsumeToken();
6800       ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
6801          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6802       if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
6803           !D.hasTrailingRequiresClause())
6804         // We're already ill-formed if we got here but we'll accept it anyway.
6805         D.setTrailingRequiresClause(TrailingRequiresClause.get());
6806     } else {
6807       break;
6808     }
6809   }
6810 }
6811 
6812 void Parser::ParseDecompositionDeclarator(Declarator &D) {
6813   assert(Tok.is(tok::l_square));
6814 
6815   // If this doesn't look like a structured binding, maybe it's a misplaced
6816   // array declarator.
6817   // FIXME: Consume the l_square first so we don't need extra lookahead for
6818   // this.
6819   if (!(NextToken().is(tok::identifier) &&
6820         GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
6821       !(NextToken().is(tok::r_square) &&
6822         GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
6823     return ParseMisplacedBracketDeclarator(D);
6824 
6825   BalancedDelimiterTracker T(*this, tok::l_square);
6826   T.consumeOpen();
6827 
6828   SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
6829   while (Tok.isNot(tok::r_square)) {
6830     if (!Bindings.empty()) {
6831       if (Tok.is(tok::comma))
6832         ConsumeToken();
6833       else {
6834         if (Tok.is(tok::identifier)) {
6835           SourceLocation EndLoc = getEndOfPreviousToken();
6836           Diag(EndLoc, diag::err_expected)
6837               << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6838         } else {
6839           Diag(Tok, diag::err_expected_comma_or_rsquare);
6840         }
6841 
6842         SkipUntil(tok::r_square, tok::comma, tok::identifier,
6843                   StopAtSemi | StopBeforeMatch);
6844         if (Tok.is(tok::comma))
6845           ConsumeToken();
6846         else if (Tok.isNot(tok::identifier))
6847           break;
6848       }
6849     }
6850 
6851     if (Tok.isNot(tok::identifier)) {
6852       Diag(Tok, diag::err_expected) << tok::identifier;
6853       break;
6854     }
6855 
6856     Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6857     ConsumeToken();
6858   }
6859 
6860   if (Tok.isNot(tok::r_square))
6861     // We've already diagnosed a problem here.
6862     T.skipToEnd();
6863   else {
6864     // C++17 does not allow the identifier-list in a structured binding
6865     // to be empty.
6866     if (Bindings.empty())
6867       Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6868 
6869     T.consumeClose();
6870   }
6871 
6872   return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6873                                     T.getCloseLocation());
6874 }
6875 
6876 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6877 /// only called before the identifier, so these are most likely just grouping
6878 /// parens for precedence.  If we find that these are actually function
6879 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6880 ///
6881 ///       direct-declarator:
6882 ///         '(' declarator ')'
6883 /// [GNU]   '(' attributes declarator ')'
6884 ///         direct-declarator '(' parameter-type-list ')'
6885 ///         direct-declarator '(' identifier-list[opt] ')'
6886 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6887 ///                    parameter-type-list[opt] ')'
6888 ///
6889 void Parser::ParseParenDeclarator(Declarator &D) {
6890   BalancedDelimiterTracker T(*this, tok::l_paren);
6891   T.consumeOpen();
6892 
6893   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6894 
6895   // Eat any attributes before we look at whether this is a grouping or function
6896   // declarator paren.  If this is a grouping paren, the attribute applies to
6897   // the type being built up, for example:
6898   //     int (__attribute__(()) *x)(long y)
6899   // If this ends up not being a grouping paren, the attribute applies to the
6900   // first argument, for example:
6901   //     int (__attribute__(()) int x)
6902   // In either case, we need to eat any attributes to be able to determine what
6903   // sort of paren this is.
6904   //
6905   ParsedAttributes attrs(AttrFactory);
6906   bool RequiresArg = false;
6907   if (Tok.is(tok::kw___attribute)) {
6908     ParseGNUAttributes(attrs);
6909 
6910     // We require that the argument list (if this is a non-grouping paren) be
6911     // present even if the attribute list was empty.
6912     RequiresArg = true;
6913   }
6914 
6915   // Eat any Microsoft extensions.
6916   ParseMicrosoftTypeAttributes(attrs);
6917 
6918   // Eat any Borland extensions.
6919   if  (Tok.is(tok::kw___pascal))
6920     ParseBorlandTypeAttributes(attrs);
6921 
6922   // If we haven't past the identifier yet (or where the identifier would be
6923   // stored, if this is an abstract declarator), then this is probably just
6924   // grouping parens. However, if this could be an abstract-declarator, then
6925   // this could also be the start of function arguments (consider 'void()').
6926   bool isGrouping;
6927 
6928   if (!D.mayOmitIdentifier()) {
6929     // If this can't be an abstract-declarator, this *must* be a grouping
6930     // paren, because we haven't seen the identifier yet.
6931     isGrouping = true;
6932   } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
6933              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6934               NextToken().is(tok::r_paren)) || // C++ int(...)
6935              isDeclarationSpecifier(
6936                  ImplicitTypenameContext::No) || // 'int(int)' is a function.
6937              isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
6938     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6939     // considered to be a type, not a K&R identifier-list.
6940     isGrouping = false;
6941   } else {
6942     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6943     isGrouping = true;
6944   }
6945 
6946   // If this is a grouping paren, handle:
6947   // direct-declarator: '(' declarator ')'
6948   // direct-declarator: '(' attributes declarator ')'
6949   if (isGrouping) {
6950     SourceLocation EllipsisLoc = D.getEllipsisLoc();
6951     D.setEllipsisLoc(SourceLocation());
6952 
6953     bool hadGroupingParens = D.hasGroupingParens();
6954     D.setGroupingParens(true);
6955     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6956     // Match the ')'.
6957     T.consumeClose();
6958     D.AddTypeInfo(
6959         DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6960         std::move(attrs), T.getCloseLocation());
6961 
6962     D.setGroupingParens(hadGroupingParens);
6963 
6964     // An ellipsis cannot be placed outside parentheses.
6965     if (EllipsisLoc.isValid())
6966       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6967 
6968     return;
6969   }
6970 
6971   // Okay, if this wasn't a grouping paren, it must be the start of a function
6972   // argument list.  Recognize that this declarator will never have an
6973   // identifier (and remember where it would have been), then call into
6974   // ParseFunctionDeclarator to handle of argument list.
6975   D.SetIdentifier(nullptr, Tok.getLocation());
6976 
6977   // Enter function-declaration scope, limiting any declarators to the
6978   // function prototype scope, including parameter declarators.
6979   ParseScope PrototypeScope(this,
6980                             Scope::FunctionPrototypeScope | Scope::DeclScope |
6981                             (D.isFunctionDeclaratorAFunctionDeclaration()
6982                                ? Scope::FunctionDeclarationScope : 0));
6983   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6984   PrototypeScope.Exit();
6985 }
6986 
6987 void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
6988     const Declarator &D, const DeclSpec &DS,
6989     std::optional<Sema::CXXThisScopeRAII> &ThisScope) {
6990   // C++11 [expr.prim.general]p3:
6991   //   If a declaration declares a member function or member function
6992   //   template of a class X, the expression this is a prvalue of type
6993   //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6994   //   and the end of the function-definition, member-declarator, or
6995   //   declarator.
6996   // FIXME: currently, "static" case isn't handled correctly.
6997   bool IsCXX11MemberFunction =
6998       getLangOpts().CPlusPlus11 &&
6999       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7000       (D.getContext() == DeclaratorContext::Member
7001            ? !D.getDeclSpec().isFriendSpecified()
7002            : D.getContext() == DeclaratorContext::File &&
7003                  D.getCXXScopeSpec().isValid() &&
7004                  Actions.CurContext->isRecord());
7005   if (!IsCXX11MemberFunction)
7006     return;
7007 
7008   Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
7009   if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
7010     Q.addConst();
7011   // FIXME: Collect C++ address spaces.
7012   // If there are multiple different address spaces, the source is invalid.
7013   // Carry on using the first addr space for the qualifiers of 'this'.
7014   // The diagnostic will be given later while creating the function
7015   // prototype for the method.
7016   if (getLangOpts().OpenCLCPlusPlus) {
7017     for (ParsedAttr &attr : DS.getAttributes()) {
7018       LangAS ASIdx = attr.asOpenCLLangAS();
7019       if (ASIdx != LangAS::Default) {
7020         Q.addAddressSpace(ASIdx);
7021         break;
7022       }
7023     }
7024   }
7025   ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
7026                     IsCXX11MemberFunction);
7027 }
7028 
7029 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
7030 /// declarator D up to a paren, which indicates that we are parsing function
7031 /// arguments.
7032 ///
7033 /// If FirstArgAttrs is non-null, then the caller parsed those attributes
7034 /// immediately after the open paren - they will be applied to the DeclSpec
7035 /// of the first parameter.
7036 ///
7037 /// If RequiresArg is true, then the first argument of the function is required
7038 /// to be present and required to not be an identifier list.
7039 ///
7040 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
7041 /// (C++11) ref-qualifier[opt], exception-specification[opt],
7042 /// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
7043 /// (C++2a) the trailing requires-clause.
7044 ///
7045 /// [C++11] exception-specification:
7046 ///           dynamic-exception-specification
7047 ///           noexcept-specification
7048 ///
7049 void Parser::ParseFunctionDeclarator(Declarator &D,
7050                                      ParsedAttributes &FirstArgAttrs,
7051                                      BalancedDelimiterTracker &Tracker,
7052                                      bool IsAmbiguous,
7053                                      bool RequiresArg) {
7054   assert(getCurScope()->isFunctionPrototypeScope() &&
7055          "Should call from a Function scope");
7056   // lparen is already consumed!
7057   assert(D.isPastIdentifier() && "Should not call before identifier!");
7058 
7059   // This should be true when the function has typed arguments.
7060   // Otherwise, it is treated as a K&R-style function.
7061   bool HasProto = false;
7062   // Build up an array of information about the parsed arguments.
7063   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
7064   // Remember where we see an ellipsis, if any.
7065   SourceLocation EllipsisLoc;
7066 
7067   DeclSpec DS(AttrFactory);
7068   bool RefQualifierIsLValueRef = true;
7069   SourceLocation RefQualifierLoc;
7070   ExceptionSpecificationType ESpecType = EST_None;
7071   SourceRange ESpecRange;
7072   SmallVector<ParsedType, 2> DynamicExceptions;
7073   SmallVector<SourceRange, 2> DynamicExceptionRanges;
7074   ExprResult NoexceptExpr;
7075   CachedTokens *ExceptionSpecTokens = nullptr;
7076   ParsedAttributes FnAttrs(AttrFactory);
7077   TypeResult TrailingReturnType;
7078   SourceLocation TrailingReturnTypeLoc;
7079 
7080   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
7081      EndLoc is the end location for the function declarator.
7082      They differ for trailing return types. */
7083   SourceLocation StartLoc, LocalEndLoc, EndLoc;
7084   SourceLocation LParenLoc, RParenLoc;
7085   LParenLoc = Tracker.getOpenLocation();
7086   StartLoc = LParenLoc;
7087 
7088   if (isFunctionDeclaratorIdentifierList()) {
7089     if (RequiresArg)
7090       Diag(Tok, diag::err_argument_required_after_attribute);
7091 
7092     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
7093 
7094     Tracker.consumeClose();
7095     RParenLoc = Tracker.getCloseLocation();
7096     LocalEndLoc = RParenLoc;
7097     EndLoc = RParenLoc;
7098 
7099     // If there are attributes following the identifier list, parse them and
7100     // prohibit them.
7101     MaybeParseCXX11Attributes(FnAttrs);
7102     ProhibitAttributes(FnAttrs);
7103   } else {
7104     if (Tok.isNot(tok::r_paren))
7105       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
7106     else if (RequiresArg)
7107       Diag(Tok, diag::err_argument_required_after_attribute);
7108 
7109     // OpenCL disallows functions without a prototype, but it doesn't enforce
7110     // strict prototypes as in C23 because it allows a function definition to
7111     // have an identifier list. See OpenCL 3.0 6.11/g for more details.
7112     HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() ||
7113                getLangOpts().OpenCL;
7114 
7115     // If we have the closing ')', eat it.
7116     Tracker.consumeClose();
7117     RParenLoc = Tracker.getCloseLocation();
7118     LocalEndLoc = RParenLoc;
7119     EndLoc = RParenLoc;
7120 
7121     if (getLangOpts().CPlusPlus) {
7122       // FIXME: Accept these components in any order, and produce fixits to
7123       // correct the order if the user gets it wrong. Ideally we should deal
7124       // with the pure-specifier in the same way.
7125 
7126       // Parse cv-qualifier-seq[opt].
7127       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
7128                                 /*AtomicAllowed*/ false,
7129                                 /*IdentifierRequired=*/false,
7130                                 llvm::function_ref<void()>([&]() {
7131                                   Actions.CodeCompleteFunctionQualifiers(DS, D);
7132                                 }));
7133       if (!DS.getSourceRange().getEnd().isInvalid()) {
7134         EndLoc = DS.getSourceRange().getEnd();
7135       }
7136 
7137       // Parse ref-qualifier[opt].
7138       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
7139         EndLoc = RefQualifierLoc;
7140 
7141       std::optional<Sema::CXXThisScopeRAII> ThisScope;
7142       InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
7143 
7144       // Parse exception-specification[opt].
7145       // FIXME: Per [class.mem]p6, all exception-specifications at class scope
7146       // should be delayed, including those for non-members (eg, friend
7147       // declarations). But only applying this to member declarations is
7148       // consistent with what other implementations do.
7149       bool Delayed = D.isFirstDeclarationOfMember() &&
7150                      D.isFunctionDeclaratorAFunctionDeclaration();
7151       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
7152           GetLookAheadToken(0).is(tok::kw_noexcept) &&
7153           GetLookAheadToken(1).is(tok::l_paren) &&
7154           GetLookAheadToken(2).is(tok::kw_noexcept) &&
7155           GetLookAheadToken(3).is(tok::l_paren) &&
7156           GetLookAheadToken(4).is(tok::identifier) &&
7157           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
7158         // HACK: We've got an exception-specification
7159         //   noexcept(noexcept(swap(...)))
7160         // or
7161         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
7162         // on a 'swap' member function. This is a libstdc++ bug; the lookup
7163         // for 'swap' will only find the function we're currently declaring,
7164         // whereas it expects to find a non-member swap through ADL. Turn off
7165         // delayed parsing to give it a chance to find what it expects.
7166         Delayed = false;
7167       }
7168       ESpecType = tryParseExceptionSpecification(Delayed,
7169                                                  ESpecRange,
7170                                                  DynamicExceptions,
7171                                                  DynamicExceptionRanges,
7172                                                  NoexceptExpr,
7173                                                  ExceptionSpecTokens);
7174       if (ESpecType != EST_None)
7175         EndLoc = ESpecRange.getEnd();
7176 
7177       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
7178       // after the exception-specification.
7179       MaybeParseCXX11Attributes(FnAttrs);
7180 
7181       // Parse trailing-return-type[opt].
7182       LocalEndLoc = EndLoc;
7183       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
7184         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
7185         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
7186           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
7187         LocalEndLoc = Tok.getLocation();
7188         SourceRange Range;
7189         TrailingReturnType =
7190             ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
7191         TrailingReturnTypeLoc = Range.getBegin();
7192         EndLoc = Range.getEnd();
7193       }
7194     } else {
7195       MaybeParseCXX11Attributes(FnAttrs);
7196     }
7197   }
7198 
7199   // Collect non-parameter declarations from the prototype if this is a function
7200   // declaration. They will be moved into the scope of the function. Only do
7201   // this in C and not C++, where the decls will continue to live in the
7202   // surrounding context.
7203   SmallVector<NamedDecl *, 0> DeclsInPrototype;
7204   if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) {
7205     for (Decl *D : getCurScope()->decls()) {
7206       NamedDecl *ND = dyn_cast<NamedDecl>(D);
7207       if (!ND || isa<ParmVarDecl>(ND))
7208         continue;
7209       DeclsInPrototype.push_back(ND);
7210     }
7211     // Sort DeclsInPrototype based on raw encoding of the source location.
7212     // Scope::decls() is iterating over a SmallPtrSet so sort the Decls before
7213     // moving to DeclContext. This provides a stable ordering for traversing
7214     // Decls in DeclContext, which is important for tasks like ASTWriter for
7215     // deterministic output.
7216     llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) {
7217       return D1->getLocation().getRawEncoding() <
7218              D2->getLocation().getRawEncoding();
7219     });
7220   }
7221 
7222   // Remember that we parsed a function type, and remember the attributes.
7223   D.AddTypeInfo(DeclaratorChunk::getFunction(
7224                     HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
7225                     ParamInfo.size(), EllipsisLoc, RParenLoc,
7226                     RefQualifierIsLValueRef, RefQualifierLoc,
7227                     /*MutableLoc=*/SourceLocation(),
7228                     ESpecType, ESpecRange, DynamicExceptions.data(),
7229                     DynamicExceptionRanges.data(), DynamicExceptions.size(),
7230                     NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
7231                     ExceptionSpecTokens, DeclsInPrototype, StartLoc,
7232                     LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc,
7233                     &DS),
7234                 std::move(FnAttrs), EndLoc);
7235 }
7236 
7237 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
7238 /// true if a ref-qualifier is found.
7239 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
7240                                SourceLocation &RefQualifierLoc) {
7241   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
7242     Diag(Tok, getLangOpts().CPlusPlus11 ?
7243          diag::warn_cxx98_compat_ref_qualifier :
7244          diag::ext_ref_qualifier);
7245 
7246     RefQualifierIsLValueRef = Tok.is(tok::amp);
7247     RefQualifierLoc = ConsumeToken();
7248     return true;
7249   }
7250   return false;
7251 }
7252 
7253 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
7254 /// identifier list form for a K&R-style function:  void foo(a,b,c)
7255 ///
7256 /// Note that identifier-lists are only allowed for normal declarators, not for
7257 /// abstract-declarators.
7258 bool Parser::isFunctionDeclaratorIdentifierList() {
7259   return !getLangOpts().requiresStrictPrototypes()
7260          && Tok.is(tok::identifier)
7261          && !TryAltiVecVectorToken()
7262          // K&R identifier lists can't have typedefs as identifiers, per C99
7263          // 6.7.5.3p11.
7264          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
7265          // Identifier lists follow a really simple grammar: the identifiers can
7266          // be followed *only* by a ", identifier" or ")".  However, K&R
7267          // identifier lists are really rare in the brave new modern world, and
7268          // it is very common for someone to typo a type in a non-K&R style
7269          // list.  If we are presented with something like: "void foo(intptr x,
7270          // float y)", we don't want to start parsing the function declarator as
7271          // though it is a K&R style declarator just because intptr is an
7272          // invalid type.
7273          //
7274          // To handle this, we check to see if the token after the first
7275          // identifier is a "," or ")".  Only then do we parse it as an
7276          // identifier list.
7277          && (!Tok.is(tok::eof) &&
7278              (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
7279 }
7280 
7281 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
7282 /// we found a K&R-style identifier list instead of a typed parameter list.
7283 ///
7284 /// After returning, ParamInfo will hold the parsed parameters.
7285 ///
7286 ///       identifier-list: [C99 6.7.5]
7287 ///         identifier
7288 ///         identifier-list ',' identifier
7289 ///
7290 void Parser::ParseFunctionDeclaratorIdentifierList(
7291        Declarator &D,
7292        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
7293   // We should never reach this point in C23 or C++.
7294   assert(!getLangOpts().requiresStrictPrototypes() &&
7295          "Cannot parse an identifier list in C23 or C++");
7296 
7297   // If there was no identifier specified for the declarator, either we are in
7298   // an abstract-declarator, or we are in a parameter declarator which was found
7299   // to be abstract.  In abstract-declarators, identifier lists are not valid:
7300   // diagnose this.
7301   if (!D.getIdentifier())
7302     Diag(Tok, diag::ext_ident_list_in_param);
7303 
7304   // Maintain an efficient lookup of params we have seen so far.
7305   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
7306 
7307   do {
7308     // If this isn't an identifier, report the error and skip until ')'.
7309     if (Tok.isNot(tok::identifier)) {
7310       Diag(Tok, diag::err_expected) << tok::identifier;
7311       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
7312       // Forget we parsed anything.
7313       ParamInfo.clear();
7314       return;
7315     }
7316 
7317     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
7318 
7319     // Reject 'typedef int y; int test(x, y)', but continue parsing.
7320     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
7321       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
7322 
7323     // Verify that the argument identifier has not already been mentioned.
7324     if (!ParamsSoFar.insert(ParmII).second) {
7325       Diag(Tok, diag::err_param_redefinition) << ParmII;
7326     } else {
7327       // Remember this identifier in ParamInfo.
7328       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7329                                                      Tok.getLocation(),
7330                                                      nullptr));
7331     }
7332 
7333     // Eat the identifier.
7334     ConsumeToken();
7335     // The list continues if we see a comma.
7336   } while (TryConsumeToken(tok::comma));
7337 }
7338 
7339 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
7340 /// after the opening parenthesis. This function will not parse a K&R-style
7341 /// identifier list.
7342 ///
7343 /// DeclContext is the context of the declarator being parsed.  If FirstArgAttrs
7344 /// is non-null, then the caller parsed those attributes immediately after the
7345 /// open paren - they will be applied to the DeclSpec of the first parameter.
7346 ///
7347 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
7348 /// be the location of the ellipsis, if any was parsed.
7349 ///
7350 ///       parameter-type-list: [C99 6.7.5]
7351 ///         parameter-list
7352 ///         parameter-list ',' '...'
7353 /// [C++]   parameter-list '...'
7354 ///
7355 ///       parameter-list: [C99 6.7.5]
7356 ///         parameter-declaration
7357 ///         parameter-list ',' parameter-declaration
7358 ///
7359 ///       parameter-declaration: [C99 6.7.5]
7360 ///         declaration-specifiers declarator
7361 /// [C++]   declaration-specifiers declarator '=' assignment-expression
7362 /// [C++11]                                       initializer-clause
7363 /// [GNU]   declaration-specifiers declarator attributes
7364 ///         declaration-specifiers abstract-declarator[opt]
7365 /// [C++]   declaration-specifiers abstract-declarator[opt]
7366 ///           '=' assignment-expression
7367 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
7368 /// [C++11] attribute-specifier-seq parameter-declaration
7369 /// [C++2b] attribute-specifier-seq 'this' parameter-declaration
7370 ///
7371 void Parser::ParseParameterDeclarationClause(
7372     DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs,
7373     SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
7374     SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) {
7375 
7376   // Avoid exceeding the maximum function scope depth.
7377   // See https://bugs.llvm.org/show_bug.cgi?id=19607
7378   // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
7379   // getFunctionPrototypeDepth() - 1.
7380   if (getCurScope()->getFunctionPrototypeDepth() - 1 >
7381       ParmVarDecl::getMaxFunctionScopeDepth()) {
7382     Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
7383         << ParmVarDecl::getMaxFunctionScopeDepth();
7384     cutOffParsing();
7385     return;
7386   }
7387 
7388   // C++2a [temp.res]p5
7389   // A qualified-id is assumed to name a type if
7390   //   - [...]
7391   //   - it is a decl-specifier of the decl-specifier-seq of a
7392   //     - [...]
7393   //     - parameter-declaration in a member-declaration [...]
7394   //     - parameter-declaration in a declarator of a function or function
7395   //       template declaration whose declarator-id is qualified [...]
7396   //     - parameter-declaration in a lambda-declarator [...]
7397   auto AllowImplicitTypename = ImplicitTypenameContext::No;
7398   if (DeclaratorCtx == DeclaratorContext::Member ||
7399       DeclaratorCtx == DeclaratorContext::LambdaExpr ||
7400       DeclaratorCtx == DeclaratorContext::RequiresExpr ||
7401       IsACXXFunctionDeclaration) {
7402     AllowImplicitTypename = ImplicitTypenameContext::Yes;
7403   }
7404 
7405   do {
7406     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
7407     // before deciding this was a parameter-declaration-clause.
7408     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
7409       break;
7410 
7411     // Parse the declaration-specifiers.
7412     // Just use the ParsingDeclaration "scope" of the declarator.
7413     DeclSpec DS(AttrFactory);
7414 
7415     ParsedAttributes ArgDeclAttrs(AttrFactory);
7416     ParsedAttributes ArgDeclSpecAttrs(AttrFactory);
7417 
7418     if (FirstArgAttrs.Range.isValid()) {
7419       // If the caller parsed attributes for the first argument, add them now.
7420       // Take them so that we only apply the attributes to the first parameter.
7421       // We have already started parsing the decl-specifier sequence, so don't
7422       // parse any parameter-declaration pieces that precede it.
7423       ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs);
7424     } else {
7425       // Parse any C++11 attributes.
7426       MaybeParseCXX11Attributes(ArgDeclAttrs);
7427 
7428       // Skip any Microsoft attributes before a param.
7429       MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs);
7430     }
7431 
7432     SourceLocation DSStart = Tok.getLocation();
7433 
7434     // Parse a C++23 Explicit Object Parameter
7435     // We do that in all language modes to produce a better diagnostic.
7436     SourceLocation ThisLoc;
7437     if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this))
7438       ThisLoc = ConsumeToken();
7439 
7440     ParseDeclarationSpecifiers(DS, /*TemplateInfo=*/ParsedTemplateInfo(),
7441                                AS_none, DeclSpecContext::DSC_normal,
7442                                /*LateAttrs=*/nullptr, AllowImplicitTypename);
7443 
7444     DS.takeAttributesFrom(ArgDeclSpecAttrs);
7445 
7446     // Parse the declarator.  This is "PrototypeContext" or
7447     // "LambdaExprParameterContext", because we must accept either
7448     // 'declarator' or 'abstract-declarator' here.
7449     Declarator ParmDeclarator(DS, ArgDeclAttrs,
7450                               DeclaratorCtx == DeclaratorContext::RequiresExpr
7451                                   ? DeclaratorContext::RequiresExpr
7452                               : DeclaratorCtx == DeclaratorContext::LambdaExpr
7453                                   ? DeclaratorContext::LambdaExprParameter
7454                                   : DeclaratorContext::Prototype);
7455     ParseDeclarator(ParmDeclarator);
7456 
7457     if (ThisLoc.isValid())
7458       ParmDeclarator.SetRangeBegin(ThisLoc);
7459 
7460     // Parse GNU attributes, if present.
7461     MaybeParseGNUAttributes(ParmDeclarator);
7462     if (getLangOpts().HLSL)
7463       MaybeParseHLSLSemantics(DS.getAttributes());
7464 
7465     if (Tok.is(tok::kw_requires)) {
7466       // User tried to define a requires clause in a parameter declaration,
7467       // which is surely not a function declaration.
7468       // void f(int (*g)(int, int) requires true);
7469       Diag(Tok,
7470            diag::err_requires_clause_on_declarator_not_declaring_a_function);
7471       ConsumeToken();
7472       Actions.CorrectDelayedTyposInExpr(
7473          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7474     }
7475 
7476     // Remember this parsed parameter in ParamInfo.
7477     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
7478 
7479     // DefArgToks is used when the parsing of default arguments needs
7480     // to be delayed.
7481     std::unique_ptr<CachedTokens> DefArgToks;
7482 
7483     // If no parameter was specified, verify that *something* was specified,
7484     // otherwise we have a missing type and identifier.
7485     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
7486         ParmDeclarator.getNumTypeObjects() == 0) {
7487       // Completely missing, emit error.
7488       Diag(DSStart, diag::err_missing_param);
7489     } else {
7490       // Otherwise, we have something.  Add it and let semantic analysis try
7491       // to grok it and add the result to the ParamInfo we are building.
7492 
7493       // Last chance to recover from a misplaced ellipsis in an attempted
7494       // parameter pack declaration.
7495       if (Tok.is(tok::ellipsis) &&
7496           (NextToken().isNot(tok::r_paren) ||
7497            (!ParmDeclarator.getEllipsisLoc().isValid() &&
7498             !Actions.isUnexpandedParameterPackPermitted())) &&
7499           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
7500         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
7501 
7502       // Now we are at the point where declarator parsing is finished.
7503       //
7504       // Try to catch keywords in place of the identifier in a declarator, and
7505       // in particular the common case where:
7506       //   1 identifier comes at the end of the declarator
7507       //   2 if the identifier is dropped, the declarator is valid but anonymous
7508       //     (no identifier)
7509       //   3 declarator parsing succeeds, and then we have a trailing keyword,
7510       //     which is never valid in a param list (e.g. missing a ',')
7511       // And we can't handle this in ParseDeclarator because in general keywords
7512       // may be allowed to follow the declarator. (And in some cases there'd be
7513       // better recovery like inserting punctuation). ParseDeclarator is just
7514       // treating this as an anonymous parameter, and fortunately at this point
7515       // we've already almost done that.
7516       //
7517       // We care about case 1) where the declarator type should be known, and
7518       // the identifier should be null.
7519       if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() &&
7520           Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() &&
7521           Tok.getIdentifierInfo() &&
7522           Tok.getIdentifierInfo()->isKeyword(getLangOpts())) {
7523         Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
7524         // Consume the keyword.
7525         ConsumeToken();
7526       }
7527       // Inform the actions module about the parameter declarator, so it gets
7528       // added to the current scope.
7529       Decl *Param =
7530           Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc);
7531       // Parse the default argument, if any. We parse the default
7532       // arguments in all dialects; the semantic analysis in
7533       // ActOnParamDefaultArgument will reject the default argument in
7534       // C.
7535       if (Tok.is(tok::equal)) {
7536         SourceLocation EqualLoc = Tok.getLocation();
7537 
7538         // Parse the default argument
7539         if (DeclaratorCtx == DeclaratorContext::Member) {
7540           // If we're inside a class definition, cache the tokens
7541           // corresponding to the default argument. We'll actually parse
7542           // them when we see the end of the class definition.
7543           DefArgToks.reset(new CachedTokens);
7544 
7545           SourceLocation ArgStartLoc = NextToken().getLocation();
7546           ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument);
7547           Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
7548                                                     ArgStartLoc);
7549         } else {
7550           // Consume the '='.
7551           ConsumeToken();
7552 
7553           // The argument isn't actually potentially evaluated unless it is
7554           // used.
7555           EnterExpressionEvaluationContext Eval(
7556               Actions,
7557               Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
7558               Param);
7559 
7560           ExprResult DefArgResult;
7561           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
7562             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
7563             DefArgResult = ParseBraceInitializer();
7564           } else {
7565             if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) {
7566               Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0;
7567               Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
7568                                                      /*DefaultArg=*/nullptr);
7569               // Skip the statement expression and continue parsing
7570               SkipUntil(tok::comma, StopBeforeMatch);
7571               continue;
7572             }
7573             DefArgResult = ParseAssignmentExpression();
7574           }
7575           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
7576           if (DefArgResult.isInvalid()) {
7577             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
7578                                                    /*DefaultArg=*/nullptr);
7579             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
7580           } else {
7581             // Inform the actions module about the default argument
7582             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
7583                                               DefArgResult.get());
7584           }
7585         }
7586       }
7587 
7588       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7589                                           ParmDeclarator.getIdentifierLoc(),
7590                                           Param, std::move(DefArgToks)));
7591     }
7592 
7593     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
7594       if (!getLangOpts().CPlusPlus) {
7595         // We have ellipsis without a preceding ',', which is ill-formed
7596         // in C. Complain and provide the fix.
7597         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
7598             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
7599       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
7600                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
7601         // It looks like this was supposed to be a parameter pack. Warn and
7602         // point out where the ellipsis should have gone.
7603         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
7604         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
7605           << ParmEllipsis.isValid() << ParmEllipsis;
7606         if (ParmEllipsis.isValid()) {
7607           Diag(ParmEllipsis,
7608                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
7609         } else {
7610           Diag(ParmDeclarator.getIdentifierLoc(),
7611                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
7612             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
7613                                           "...")
7614             << !ParmDeclarator.hasName();
7615         }
7616         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
7617           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
7618       }
7619 
7620       // We can't have any more parameters after an ellipsis.
7621       break;
7622     }
7623 
7624     // If the next token is a comma, consume it and keep reading arguments.
7625   } while (TryConsumeToken(tok::comma));
7626 }
7627 
7628 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
7629 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
7630 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
7631 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
7632 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
7633 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
7634 ///                           attribute-specifier-seq[opt]
7635 void Parser::ParseBracketDeclarator(Declarator &D) {
7636   if (CheckProhibitedCXX11Attribute())
7637     return;
7638 
7639   BalancedDelimiterTracker T(*this, tok::l_square);
7640   T.consumeOpen();
7641 
7642   // C array syntax has many features, but by-far the most common is [] and [4].
7643   // This code does a fast path to handle some of the most obvious cases.
7644   if (Tok.getKind() == tok::r_square) {
7645     T.consumeClose();
7646     ParsedAttributes attrs(AttrFactory);
7647     MaybeParseCXX11Attributes(attrs);
7648 
7649     // Remember that we parsed the empty array type.
7650     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
7651                                             T.getOpenLocation(),
7652                                             T.getCloseLocation()),
7653                   std::move(attrs), T.getCloseLocation());
7654     return;
7655   } else if (Tok.getKind() == tok::numeric_constant &&
7656              GetLookAheadToken(1).is(tok::r_square)) {
7657     // [4] is very common.  Parse the numeric constant expression.
7658     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
7659     ConsumeToken();
7660 
7661     T.consumeClose();
7662     ParsedAttributes attrs(AttrFactory);
7663     MaybeParseCXX11Attributes(attrs);
7664 
7665     // Remember that we parsed a array type, and remember its features.
7666     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
7667                                             T.getOpenLocation(),
7668                                             T.getCloseLocation()),
7669                   std::move(attrs), T.getCloseLocation());
7670     return;
7671   } else if (Tok.getKind() == tok::code_completion) {
7672     cutOffParsing();
7673     Actions.CodeCompleteBracketDeclarator(getCurScope());
7674     return;
7675   }
7676 
7677   // If valid, this location is the position where we read the 'static' keyword.
7678   SourceLocation StaticLoc;
7679   TryConsumeToken(tok::kw_static, StaticLoc);
7680 
7681   // If there is a type-qualifier-list, read it now.
7682   // Type qualifiers in an array subscript are a C99 feature.
7683   DeclSpec DS(AttrFactory);
7684   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
7685 
7686   // If we haven't already read 'static', check to see if there is one after the
7687   // type-qualifier-list.
7688   if (!StaticLoc.isValid())
7689     TryConsumeToken(tok::kw_static, StaticLoc);
7690 
7691   // Handle "direct-declarator [ type-qual-list[opt] * ]".
7692   bool isStar = false;
7693   ExprResult NumElements;
7694 
7695   // Handle the case where we have '[*]' as the array size.  However, a leading
7696   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
7697   // the token after the star is a ']'.  Since stars in arrays are
7698   // infrequent, use of lookahead is not costly here.
7699   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
7700     ConsumeToken();  // Eat the '*'.
7701 
7702     if (StaticLoc.isValid()) {
7703       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
7704       StaticLoc = SourceLocation();  // Drop the static.
7705     }
7706     isStar = true;
7707   } else if (Tok.isNot(tok::r_square)) {
7708     // Note, in C89, this production uses the constant-expr production instead
7709     // of assignment-expr.  The only difference is that assignment-expr allows
7710     // things like '=' and '*='.  Sema rejects these in C89 mode because they
7711     // are not i-c-e's, so we don't need to distinguish between the two here.
7712 
7713     // Parse the constant-expression or assignment-expression now (depending
7714     // on dialect).
7715     if (getLangOpts().CPlusPlus) {
7716       NumElements = ParseArrayBoundExpression();
7717     } else {
7718       EnterExpressionEvaluationContext Unevaluated(
7719           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7720       NumElements =
7721           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
7722     }
7723   } else {
7724     if (StaticLoc.isValid()) {
7725       Diag(StaticLoc, diag::err_unspecified_size_with_static);
7726       StaticLoc = SourceLocation();  // Drop the static.
7727     }
7728   }
7729 
7730   // If there was an error parsing the assignment-expression, recover.
7731   if (NumElements.isInvalid()) {
7732     D.setInvalidType(true);
7733     // If the expression was invalid, skip it.
7734     SkipUntil(tok::r_square, StopAtSemi);
7735     return;
7736   }
7737 
7738   T.consumeClose();
7739 
7740   MaybeParseCXX11Attributes(DS.getAttributes());
7741 
7742   // Remember that we parsed a array type, and remember its features.
7743   D.AddTypeInfo(
7744       DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
7745                                 isStar, NumElements.get(), T.getOpenLocation(),
7746                                 T.getCloseLocation()),
7747       std::move(DS.getAttributes()), T.getCloseLocation());
7748 }
7749 
7750 /// Diagnose brackets before an identifier.
7751 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
7752   assert(Tok.is(tok::l_square) && "Missing opening bracket");
7753   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
7754 
7755   SourceLocation StartBracketLoc = Tok.getLocation();
7756   Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(),
7757                             D.getContext());
7758 
7759   while (Tok.is(tok::l_square)) {
7760     ParseBracketDeclarator(TempDeclarator);
7761   }
7762 
7763   // Stuff the location of the start of the brackets into the Declarator.
7764   // The diagnostics from ParseDirectDeclarator will make more sense if
7765   // they use this location instead.
7766   if (Tok.is(tok::semi))
7767     D.getName().EndLocation = StartBracketLoc;
7768 
7769   SourceLocation SuggestParenLoc = Tok.getLocation();
7770 
7771   // Now that the brackets are removed, try parsing the declarator again.
7772   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
7773 
7774   // Something went wrong parsing the brackets, in which case,
7775   // ParseBracketDeclarator has emitted an error, and we don't need to emit
7776   // one here.
7777   if (TempDeclarator.getNumTypeObjects() == 0)
7778     return;
7779 
7780   // Determine if parens will need to be suggested in the diagnostic.
7781   bool NeedParens = false;
7782   if (D.getNumTypeObjects() != 0) {
7783     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
7784     case DeclaratorChunk::Pointer:
7785     case DeclaratorChunk::Reference:
7786     case DeclaratorChunk::BlockPointer:
7787     case DeclaratorChunk::MemberPointer:
7788     case DeclaratorChunk::Pipe:
7789       NeedParens = true;
7790       break;
7791     case DeclaratorChunk::Array:
7792     case DeclaratorChunk::Function:
7793     case DeclaratorChunk::Paren:
7794       break;
7795     }
7796   }
7797 
7798   if (NeedParens) {
7799     // Create a DeclaratorChunk for the inserted parens.
7800     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7801     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
7802                   SourceLocation());
7803   }
7804 
7805   // Adding back the bracket info to the end of the Declarator.
7806   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
7807     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
7808     D.AddTypeInfo(Chunk, SourceLocation());
7809   }
7810 
7811   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
7812   // If parentheses are required, always suggest them.
7813   if (!D.getIdentifier() && !NeedParens)
7814     return;
7815 
7816   SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
7817 
7818   // Generate the move bracket error message.
7819   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
7820   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7821 
7822   if (NeedParens) {
7823     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7824         << getLangOpts().CPlusPlus
7825         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
7826         << FixItHint::CreateInsertion(EndLoc, ")")
7827         << FixItHint::CreateInsertionFromRange(
7828                EndLoc, CharSourceRange(BracketRange, true))
7829         << FixItHint::CreateRemoval(BracketRange);
7830   } else {
7831     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7832         << getLangOpts().CPlusPlus
7833         << FixItHint::CreateInsertionFromRange(
7834                EndLoc, CharSourceRange(BracketRange, true))
7835         << FixItHint::CreateRemoval(BracketRange);
7836   }
7837 }
7838 
7839 /// [GNU]   typeof-specifier:
7840 ///           typeof ( expressions )
7841 ///           typeof ( type-name )
7842 /// [GNU/C++] typeof unary-expression
7843 /// [C23]   typeof-specifier:
7844 ///           typeof '(' typeof-specifier-argument ')'
7845 ///           typeof_unqual '(' typeof-specifier-argument ')'
7846 ///
7847 ///         typeof-specifier-argument:
7848 ///           expression
7849 ///           type-name
7850 ///
7851 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
7852   assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
7853          "Not a typeof specifier");
7854 
7855   bool IsUnqual = Tok.is(tok::kw_typeof_unqual);
7856   const IdentifierInfo *II = Tok.getIdentifierInfo();
7857   if (getLangOpts().C23 && !II->getName().starts_with("__"))
7858     Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName();
7859 
7860   Token OpTok = Tok;
7861   SourceLocation StartLoc = ConsumeToken();
7862   bool HasParens = Tok.is(tok::l_paren);
7863 
7864   EnterExpressionEvaluationContext Unevaluated(
7865       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
7866       Sema::ReuseLambdaContextDecl);
7867 
7868   bool isCastExpr;
7869   ParsedType CastTy;
7870   SourceRange CastRange;
7871   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
7872       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
7873   if (HasParens)
7874     DS.setTypeArgumentRange(CastRange);
7875 
7876   if (CastRange.getEnd().isInvalid())
7877     // FIXME: Not accurate, the range gets one token more than it should.
7878     DS.SetRangeEnd(Tok.getLocation());
7879   else
7880     DS.SetRangeEnd(CastRange.getEnd());
7881 
7882   if (isCastExpr) {
7883     if (!CastTy) {
7884       DS.SetTypeSpecError();
7885       return;
7886     }
7887 
7888     const char *PrevSpec = nullptr;
7889     unsigned DiagID;
7890     // Check for duplicate type specifiers (e.g. "int typeof(int)").
7891     if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualType
7892                                     : DeclSpec::TST_typeofType,
7893                            StartLoc, PrevSpec,
7894                            DiagID, CastTy,
7895                            Actions.getASTContext().getPrintingPolicy()))
7896       Diag(StartLoc, DiagID) << PrevSpec;
7897     return;
7898   }
7899 
7900   // If we get here, the operand to the typeof was an expression.
7901   if (Operand.isInvalid()) {
7902     DS.SetTypeSpecError();
7903     return;
7904   }
7905 
7906   // We might need to transform the operand if it is potentially evaluated.
7907   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
7908   if (Operand.isInvalid()) {
7909     DS.SetTypeSpecError();
7910     return;
7911   }
7912 
7913   const char *PrevSpec = nullptr;
7914   unsigned DiagID;
7915   // Check for duplicate type specifiers (e.g. "int typeof(int)").
7916   if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualExpr
7917                                   : DeclSpec::TST_typeofExpr,
7918                          StartLoc, PrevSpec,
7919                          DiagID, Operand.get(),
7920                          Actions.getASTContext().getPrintingPolicy()))
7921     Diag(StartLoc, DiagID) << PrevSpec;
7922 }
7923 
7924 /// [C11]   atomic-specifier:
7925 ///           _Atomic ( type-name )
7926 ///
7927 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
7928   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
7929          "Not an atomic specifier");
7930 
7931   SourceLocation StartLoc = ConsumeToken();
7932   BalancedDelimiterTracker T(*this, tok::l_paren);
7933   if (T.consumeOpen())
7934     return;
7935 
7936   TypeResult Result = ParseTypeName();
7937   if (Result.isInvalid()) {
7938     SkipUntil(tok::r_paren, StopAtSemi);
7939     return;
7940   }
7941 
7942   // Match the ')'
7943   T.consumeClose();
7944 
7945   if (T.getCloseLocation().isInvalid())
7946     return;
7947 
7948   DS.setTypeArgumentRange(T.getRange());
7949   DS.SetRangeEnd(T.getCloseLocation());
7950 
7951   const char *PrevSpec = nullptr;
7952   unsigned DiagID;
7953   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
7954                          DiagID, Result.get(),
7955                          Actions.getASTContext().getPrintingPolicy()))
7956     Diag(StartLoc, DiagID) << PrevSpec;
7957 }
7958 
7959 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
7960 /// from TryAltiVecVectorToken.
7961 bool Parser::TryAltiVecVectorTokenOutOfLine() {
7962   Token Next = NextToken();
7963   switch (Next.getKind()) {
7964   default: return false;
7965   case tok::kw_short:
7966   case tok::kw_long:
7967   case tok::kw_signed:
7968   case tok::kw_unsigned:
7969   case tok::kw_void:
7970   case tok::kw_char:
7971   case tok::kw_int:
7972   case tok::kw_float:
7973   case tok::kw_double:
7974   case tok::kw_bool:
7975   case tok::kw__Bool:
7976   case tok::kw___bool:
7977   case tok::kw___pixel:
7978     Tok.setKind(tok::kw___vector);
7979     return true;
7980   case tok::identifier:
7981     if (Next.getIdentifierInfo() == Ident_pixel) {
7982       Tok.setKind(tok::kw___vector);
7983       return true;
7984     }
7985     if (Next.getIdentifierInfo() == Ident_bool ||
7986         Next.getIdentifierInfo() == Ident_Bool) {
7987       Tok.setKind(tok::kw___vector);
7988       return true;
7989     }
7990     return false;
7991   }
7992 }
7993 
7994 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7995                                       const char *&PrevSpec, unsigned &DiagID,
7996                                       bool &isInvalid) {
7997   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7998   if (Tok.getIdentifierInfo() == Ident_vector) {
7999     Token Next = NextToken();
8000     switch (Next.getKind()) {
8001     case tok::kw_short:
8002     case tok::kw_long:
8003     case tok::kw_signed:
8004     case tok::kw_unsigned:
8005     case tok::kw_void:
8006     case tok::kw_char:
8007     case tok::kw_int:
8008     case tok::kw_float:
8009     case tok::kw_double:
8010     case tok::kw_bool:
8011     case tok::kw__Bool:
8012     case tok::kw___bool:
8013     case tok::kw___pixel:
8014       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8015       return true;
8016     case tok::identifier:
8017       if (Next.getIdentifierInfo() == Ident_pixel) {
8018         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
8019         return true;
8020       }
8021       if (Next.getIdentifierInfo() == Ident_bool ||
8022           Next.getIdentifierInfo() == Ident_Bool) {
8023         isInvalid =
8024             DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8025         return true;
8026       }
8027       break;
8028     default:
8029       break;
8030     }
8031   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
8032              DS.isTypeAltiVecVector()) {
8033     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
8034     return true;
8035   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
8036              DS.isTypeAltiVecVector()) {
8037     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
8038     return true;
8039   }
8040   return false;
8041 }
8042 
8043 void Parser::DiagnoseBitIntUse(const Token &Tok) {
8044   // If the token is for _ExtInt, diagnose it as being deprecated. Otherwise,
8045   // the token is about _BitInt and gets (potentially) diagnosed as use of an
8046   // extension.
8047   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
8048          "expected either an _ExtInt or _BitInt token!");
8049 
8050   SourceLocation Loc = Tok.getLocation();
8051   if (Tok.is(tok::kw__ExtInt)) {
8052     Diag(Loc, diag::warn_ext_int_deprecated)
8053         << FixItHint::CreateReplacement(Loc, "_BitInt");
8054   } else {
8055     // In C23 mode, diagnose that the use is not compatible with pre-C23 modes.
8056     // Otherwise, diagnose that the use is a Clang extension.
8057     if (getLangOpts().C23)
8058       Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName();
8059     else
8060       Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus;
8061   }
8062 }
8063