1 //===------ Interpreter.cpp - Incremental Compilation and Execution -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the component which performs incremental code 10 // compilation and execution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DeviceOffload.h" 15 #include "IncrementalExecutor.h" 16 #include "IncrementalParser.h" 17 #include "InterpreterUtils.h" 18 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Mangle.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/DiagnosticSema.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CodeGenAction.h" 25 #include "clang/CodeGen/ModuleBuilder.h" 26 #include "clang/CodeGen/ObjectFilePCHContainerOperations.h" 27 #include "clang/Driver/Compilation.h" 28 #include "clang/Driver/Driver.h" 29 #include "clang/Driver/Job.h" 30 #include "clang/Driver/Options.h" 31 #include "clang/Driver/Tool.h" 32 #include "clang/Frontend/CompilerInstance.h" 33 #include "clang/Frontend/TextDiagnosticBuffer.h" 34 #include "clang/Interpreter/Interpreter.h" 35 #include "clang/Interpreter/Value.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "clang/Sema/Lookup.h" 38 #include "llvm/ExecutionEngine/JITSymbol.h" 39 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/TargetParser/Host.h" 45 using namespace clang; 46 47 // FIXME: Figure out how to unify with namespace init_convenience from 48 // tools/clang-import-test/clang-import-test.cpp 49 namespace { 50 /// Retrieves the clang CC1 specific flags out of the compilation's jobs. 51 /// \returns NULL on error. 52 static llvm::Expected<const llvm::opt::ArgStringList *> 53 GetCC1Arguments(DiagnosticsEngine *Diagnostics, 54 driver::Compilation *Compilation) { 55 // We expect to get back exactly one Command job, if we didn't something 56 // failed. Extract that job from the Compilation. 57 const driver::JobList &Jobs = Compilation->getJobs(); 58 if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin())) 59 return llvm::createStringError(llvm::errc::not_supported, 60 "Driver initialization failed. " 61 "Unable to create a driver job"); 62 63 // The one job we find should be to invoke clang again. 64 const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin())); 65 if (llvm::StringRef(Cmd->getCreator().getName()) != "clang") 66 return llvm::createStringError(llvm::errc::not_supported, 67 "Driver initialization failed"); 68 69 return &Cmd->getArguments(); 70 } 71 72 static llvm::Expected<std::unique_ptr<CompilerInstance>> 73 CreateCI(const llvm::opt::ArgStringList &Argv) { 74 std::unique_ptr<CompilerInstance> Clang(new CompilerInstance()); 75 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 76 77 // Register the support for object-file-wrapped Clang modules. 78 // FIXME: Clang should register these container operations automatically. 79 auto PCHOps = Clang->getPCHContainerOperations(); 80 PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>()); 81 PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>()); 82 83 // Buffer diagnostics from argument parsing so that we can output them using 84 // a well formed diagnostic object. 85 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions(); 86 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 87 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 88 bool Success = CompilerInvocation::CreateFromArgs( 89 Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags); 90 91 // Infer the builtin include path if unspecified. 92 if (Clang->getHeaderSearchOpts().UseBuiltinIncludes && 93 Clang->getHeaderSearchOpts().ResourceDir.empty()) 94 Clang->getHeaderSearchOpts().ResourceDir = 95 CompilerInvocation::GetResourcesPath(Argv[0], nullptr); 96 97 // Create the actual diagnostics engine. 98 Clang->createDiagnostics(); 99 if (!Clang->hasDiagnostics()) 100 return llvm::createStringError(llvm::errc::not_supported, 101 "Initialization failed. " 102 "Unable to create diagnostics engine"); 103 104 DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics()); 105 if (!Success) 106 return llvm::createStringError(llvm::errc::not_supported, 107 "Initialization failed. " 108 "Unable to flush diagnostics"); 109 110 // FIXME: Merge with CompilerInstance::ExecuteAction. 111 llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release(); 112 Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB); 113 114 Clang->setTarget(TargetInfo::CreateTargetInfo( 115 Clang->getDiagnostics(), Clang->getInvocation().TargetOpts)); 116 if (!Clang->hasTarget()) 117 return llvm::createStringError(llvm::errc::not_supported, 118 "Initialization failed. " 119 "Target is missing"); 120 121 Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts()); 122 123 // Don't clear the AST before backend codegen since we do codegen multiple 124 // times, reusing the same AST. 125 Clang->getCodeGenOpts().ClearASTBeforeBackend = false; 126 127 Clang->getFrontendOpts().DisableFree = false; 128 Clang->getCodeGenOpts().DisableFree = false; 129 return std::move(Clang); 130 } 131 132 } // anonymous namespace 133 134 llvm::Expected<std::unique_ptr<CompilerInstance>> 135 IncrementalCompilerBuilder::create(std::vector<const char *> &ClangArgv) { 136 137 // If we don't know ClangArgv0 or the address of main() at this point, try 138 // to guess it anyway (it's possible on some platforms). 139 std::string MainExecutableName = 140 llvm::sys::fs::getMainExecutable(nullptr, nullptr); 141 142 ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str()); 143 144 // Prepending -c to force the driver to do something if no action was 145 // specified. By prepending we allow users to override the default 146 // action and use other actions in incremental mode. 147 // FIXME: Print proper driver diagnostics if the driver flags are wrong. 148 // We do C++ by default; append right after argv[0] if no "-x" given 149 ClangArgv.insert(ClangArgv.end(), "-Xclang"); 150 ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions"); 151 ClangArgv.insert(ClangArgv.end(), "-mcpu=native"); 152 ClangArgv.insert(ClangArgv.end(), "-c"); 153 154 // Put a dummy C++ file on to ensure there's at least one compile job for the 155 // driver to construct. 156 ClangArgv.push_back("<<< inputs >>>"); 157 158 // Buffer diagnostics from argument parsing so that we can output them using a 159 // well formed diagnostic object. 160 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 161 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = 162 CreateAndPopulateDiagOpts(ClangArgv); 163 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 164 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 165 166 driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], 167 llvm::sys::getProcessTriple(), Diags); 168 Driver.setCheckInputsExist(false); // the input comes from mem buffers 169 llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv); 170 std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF)); 171 172 if (Compilation->getArgs().hasArg(driver::options::OPT_v)) 173 Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false); 174 175 auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get()); 176 if (auto Err = ErrOrCC1Args.takeError()) 177 return std::move(Err); 178 179 return CreateCI(**ErrOrCC1Args); 180 } 181 182 llvm::Expected<std::unique_ptr<CompilerInstance>> 183 IncrementalCompilerBuilder::CreateCpp() { 184 std::vector<const char *> Argv; 185 Argv.reserve(5 + 1 + UserArgs.size()); 186 Argv.push_back("-xc++"); 187 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 188 189 return IncrementalCompilerBuilder::create(Argv); 190 } 191 192 llvm::Expected<std::unique_ptr<CompilerInstance>> 193 IncrementalCompilerBuilder::createCuda(bool device) { 194 std::vector<const char *> Argv; 195 Argv.reserve(5 + 4 + UserArgs.size()); 196 197 Argv.push_back("-xcuda"); 198 if (device) 199 Argv.push_back("--cuda-device-only"); 200 else 201 Argv.push_back("--cuda-host-only"); 202 203 std::string SDKPathArg = "--cuda-path="; 204 if (!CudaSDKPath.empty()) { 205 SDKPathArg += CudaSDKPath; 206 Argv.push_back(SDKPathArg.c_str()); 207 } 208 209 std::string ArchArg = "--offload-arch="; 210 if (!OffloadArch.empty()) { 211 ArchArg += OffloadArch; 212 Argv.push_back(ArchArg.c_str()); 213 } 214 215 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 216 217 return IncrementalCompilerBuilder::create(Argv); 218 } 219 220 llvm::Expected<std::unique_ptr<CompilerInstance>> 221 IncrementalCompilerBuilder::CreateCudaDevice() { 222 return IncrementalCompilerBuilder::createCuda(true); 223 } 224 225 llvm::Expected<std::unique_ptr<CompilerInstance>> 226 IncrementalCompilerBuilder::CreateCudaHost() { 227 return IncrementalCompilerBuilder::createCuda(false); 228 } 229 230 Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI, 231 llvm::Error &Err) { 232 llvm::ErrorAsOutParameter EAO(&Err); 233 auto LLVMCtx = std::make_unique<llvm::LLVMContext>(); 234 TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx)); 235 IncrParser = std::make_unique<IncrementalParser>(*this, std::move(CI), 236 *TSCtx->getContext(), Err); 237 } 238 239 Interpreter::~Interpreter() { 240 if (IncrExecutor) { 241 if (llvm::Error Err = IncrExecutor->cleanUp()) 242 llvm::report_fatal_error( 243 llvm::Twine("Failed to clean up IncrementalExecutor: ") + 244 toString(std::move(Err))); 245 } 246 } 247 248 // These better to put in a runtime header but we can't. This is because we 249 // can't find the precise resource directory in unittests so we have to hard 250 // code them. 251 const char *const Runtimes = R"( 252 void* operator new(__SIZE_TYPE__, void* __p) noexcept; 253 void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*); 254 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*); 255 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, void*); 256 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, float); 257 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, double); 258 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, long double); 259 void __clang_Interpreter_SetValueNoAlloc(void*,void*,void*,unsigned long long); 260 template <class T, class = T (*)() /*disable for arrays*/> 261 void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) { 262 for (auto Idx = 0; Idx < Size; ++Idx) 263 new ((void*)(((T*)Placement) + Idx)) T(Src[Idx]); 264 } 265 template <class T, unsigned long N> 266 void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) { 267 __clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size); 268 } 269 )"; 270 271 llvm::Expected<std::unique_ptr<Interpreter>> 272 Interpreter::create(std::unique_ptr<CompilerInstance> CI) { 273 llvm::Error Err = llvm::Error::success(); 274 auto Interp = 275 std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err)); 276 if (Err) 277 return std::move(Err); 278 279 auto PTU = Interp->Parse(Runtimes); 280 if (!PTU) 281 return PTU.takeError(); 282 283 Interp->ValuePrintingInfo.resize(3); 284 // FIXME: This is a ugly hack. Undo command checks its availability by looking 285 // at the size of the PTU list. However we have parsed something in the 286 // beginning of the REPL so we have to mark them as 'Irrevocable'. 287 Interp->InitPTUSize = Interp->IncrParser->getPTUs().size(); 288 return std::move(Interp); 289 } 290 291 llvm::Expected<std::unique_ptr<Interpreter>> 292 Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI, 293 std::unique_ptr<CompilerInstance> DCI) { 294 // avoid writing fat binary to disk using an in-memory virtual file system 295 llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS = 296 std::make_unique<llvm::vfs::InMemoryFileSystem>(); 297 llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS = 298 std::make_unique<llvm::vfs::OverlayFileSystem>( 299 llvm::vfs::getRealFileSystem()); 300 OverlayVFS->pushOverlay(IMVFS); 301 CI->createFileManager(OverlayVFS); 302 303 auto Interp = Interpreter::create(std::move(CI)); 304 if (auto E = Interp.takeError()) 305 return std::move(E); 306 307 llvm::Error Err = llvm::Error::success(); 308 auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>( 309 **Interp, std::move(DCI), *(*Interp)->IncrParser.get(), 310 *(*Interp)->TSCtx->getContext(), IMVFS, Err); 311 if (Err) 312 return std::move(Err); 313 314 (*Interp)->DeviceParser = std::move(DeviceParser); 315 316 return Interp; 317 } 318 319 const CompilerInstance *Interpreter::getCompilerInstance() const { 320 return IncrParser->getCI(); 321 } 322 323 CompilerInstance *Interpreter::getCompilerInstance() { 324 return IncrParser->getCI(); 325 } 326 327 llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() { 328 if (!IncrExecutor) { 329 if (auto Err = CreateExecutor()) 330 return std::move(Err); 331 } 332 333 return IncrExecutor->GetExecutionEngine(); 334 } 335 336 ASTContext &Interpreter::getASTContext() { 337 return getCompilerInstance()->getASTContext(); 338 } 339 340 const ASTContext &Interpreter::getASTContext() const { 341 return getCompilerInstance()->getASTContext(); 342 } 343 344 size_t Interpreter::getEffectivePTUSize() const { 345 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 346 assert(PTUs.size() >= InitPTUSize && "empty PTU list?"); 347 return PTUs.size() - InitPTUSize; 348 } 349 350 llvm::Expected<PartialTranslationUnit &> 351 Interpreter::Parse(llvm::StringRef Code) { 352 // If we have a device parser, parse it first. 353 // The generated code will be included in the host compilation 354 if (DeviceParser) { 355 auto DevicePTU = DeviceParser->Parse(Code); 356 if (auto E = DevicePTU.takeError()) 357 return std::move(E); 358 } 359 360 // Tell the interpreter sliently ignore unused expressions since value 361 // printing could cause it. 362 getCompilerInstance()->getDiagnostics().setSeverity( 363 clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation()); 364 return IncrParser->Parse(Code); 365 } 366 367 llvm::Error Interpreter::CreateExecutor() { 368 const clang::TargetInfo &TI = 369 getCompilerInstance()->getASTContext().getTargetInfo(); 370 llvm::Error Err = llvm::Error::success(); 371 auto Executor = std::make_unique<IncrementalExecutor>(*TSCtx, Err, TI); 372 if (!Err) 373 IncrExecutor = std::move(Executor); 374 375 return Err; 376 } 377 378 llvm::Error Interpreter::Execute(PartialTranslationUnit &T) { 379 assert(T.TheModule); 380 if (!IncrExecutor) { 381 auto Err = CreateExecutor(); 382 if (Err) 383 return Err; 384 } 385 // FIXME: Add a callback to retain the llvm::Module once the JIT is done. 386 if (auto Err = IncrExecutor->addModule(T)) 387 return Err; 388 389 if (auto Err = IncrExecutor->runCtors()) 390 return Err; 391 392 return llvm::Error::success(); 393 } 394 395 llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) { 396 397 auto PTU = Parse(Code); 398 if (!PTU) 399 return PTU.takeError(); 400 if (PTU->TheModule) 401 if (llvm::Error Err = Execute(*PTU)) 402 return Err; 403 404 if (LastValue.isValid()) { 405 if (!V) { 406 LastValue.dump(); 407 LastValue.clear(); 408 } else 409 *V = std::move(LastValue); 410 } 411 return llvm::Error::success(); 412 } 413 414 llvm::Expected<llvm::orc::ExecutorAddr> 415 Interpreter::getSymbolAddress(GlobalDecl GD) const { 416 if (!IncrExecutor) 417 return llvm::make_error<llvm::StringError>("Operation failed. " 418 "No execution engine", 419 std::error_code()); 420 llvm::StringRef MangledName = IncrParser->GetMangledName(GD); 421 return getSymbolAddress(MangledName); 422 } 423 424 llvm::Expected<llvm::orc::ExecutorAddr> 425 Interpreter::getSymbolAddress(llvm::StringRef IRName) const { 426 if (!IncrExecutor) 427 return llvm::make_error<llvm::StringError>("Operation failed. " 428 "No execution engine", 429 std::error_code()); 430 431 return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName); 432 } 433 434 llvm::Expected<llvm::orc::ExecutorAddr> 435 Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const { 436 if (!IncrExecutor) 437 return llvm::make_error<llvm::StringError>("Operation failed. " 438 "No execution engine", 439 std::error_code()); 440 441 return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName); 442 } 443 444 llvm::Error Interpreter::Undo(unsigned N) { 445 446 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 447 if (N > getEffectivePTUSize()) 448 return llvm::make_error<llvm::StringError>("Operation failed. " 449 "Too many undos", 450 std::error_code()); 451 for (unsigned I = 0; I < N; I++) { 452 if (IncrExecutor) { 453 if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back())) 454 return Err; 455 } 456 457 IncrParser->CleanUpPTU(PTUs.back()); 458 PTUs.pop_back(); 459 } 460 return llvm::Error::success(); 461 } 462 463 llvm::Error Interpreter::LoadDynamicLibrary(const char *name) { 464 auto EE = getExecutionEngine(); 465 if (!EE) 466 return EE.takeError(); 467 468 auto &DL = EE->getDataLayout(); 469 470 if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load( 471 name, DL.getGlobalPrefix())) 472 EE->getMainJITDylib().addGenerator(std::move(*DLSG)); 473 else 474 return DLSG.takeError(); 475 476 return llvm::Error::success(); 477 } 478 479 llvm::Expected<llvm::orc::ExecutorAddr> 480 Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) { 481 assert(CXXRD && "Cannot compile a destructor for a nullptr"); 482 if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) 483 return Dtor->getSecond(); 484 485 if (CXXRD->hasIrrelevantDestructor()) 486 return llvm::orc::ExecutorAddr{}; 487 488 CXXDestructorDecl *DtorRD = 489 getCompilerInstance()->getSema().LookupDestructor(CXXRD); 490 491 llvm::StringRef Name = 492 IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); 493 auto AddrOrErr = getSymbolAddress(Name); 494 if (!AddrOrErr) 495 return AddrOrErr.takeError(); 496 497 Dtors[CXXRD] = *AddrOrErr; 498 return AddrOrErr; 499 } 500 501 static constexpr llvm::StringRef MagicRuntimeInterface[] = { 502 "__clang_Interpreter_SetValueNoAlloc", 503 "__clang_Interpreter_SetValueWithAlloc", 504 "__clang_Interpreter_SetValueCopyArr"}; 505 506 bool Interpreter::FindRuntimeInterface() { 507 if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; })) 508 return true; 509 510 Sema &S = getCompilerInstance()->getSema(); 511 ASTContext &Ctx = S.getASTContext(); 512 513 auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) { 514 LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), 515 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 516 S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); 517 if (R.empty()) 518 return false; 519 520 CXXScopeSpec CSS; 521 Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); 522 return true; 523 }; 524 525 if (!LookupInterface(ValuePrintingInfo[NoAlloc], 526 MagicRuntimeInterface[NoAlloc])) 527 return false; 528 if (!LookupInterface(ValuePrintingInfo[WithAlloc], 529 MagicRuntimeInterface[WithAlloc])) 530 return false; 531 if (!LookupInterface(ValuePrintingInfo[CopyArray], 532 MagicRuntimeInterface[CopyArray])) 533 return false; 534 return true; 535 } 536 537 namespace { 538 539 class RuntimeInterfaceBuilder 540 : public TypeVisitor<RuntimeInterfaceBuilder, Interpreter::InterfaceKind> { 541 clang::Interpreter &Interp; 542 ASTContext &Ctx; 543 Sema &S; 544 Expr *E; 545 llvm::SmallVector<Expr *, 3> Args; 546 547 public: 548 RuntimeInterfaceBuilder(clang::Interpreter &In, ASTContext &C, Sema &SemaRef, 549 Expr *VE, ArrayRef<Expr *> FixedArgs) 550 : Interp(In), Ctx(C), S(SemaRef), E(VE) { 551 // The Interpreter* parameter and the out parameter `OutVal`. 552 for (Expr *E : FixedArgs) 553 Args.push_back(E); 554 555 // Get rid of ExprWithCleanups. 556 if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E)) 557 E = EWC->getSubExpr(); 558 } 559 560 ExprResult getCall() { 561 QualType Ty = E->getType(); 562 QualType DesugaredTy = Ty.getDesugaredType(Ctx); 563 564 // For lvalue struct, we treat it as a reference. 565 if (DesugaredTy->isRecordType() && E->isLValue()) { 566 DesugaredTy = Ctx.getLValueReferenceType(DesugaredTy); 567 Ty = Ctx.getLValueReferenceType(Ty); 568 } 569 570 Expr *TypeArg = 571 CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)Ty.getAsOpaquePtr()); 572 // The QualType parameter `OpaqueType`, represented as `void*`. 573 Args.push_back(TypeArg); 574 575 // We push the last parameter based on the type of the Expr. Note we need 576 // special care for rvalue struct. 577 Interpreter::InterfaceKind Kind = Visit(&*DesugaredTy); 578 switch (Kind) { 579 case Interpreter::InterfaceKind::WithAlloc: 580 case Interpreter::InterfaceKind::CopyArray: { 581 // __clang_Interpreter_SetValueWithAlloc. 582 ExprResult AllocCall = S.ActOnCallExpr( 583 /*Scope=*/nullptr, 584 Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc], 585 E->getBeginLoc(), Args, E->getEndLoc()); 586 assert(!AllocCall.isInvalid() && "Can't create runtime interface call!"); 587 588 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); 589 590 // Force CodeGen to emit destructor. 591 if (auto *RD = Ty->getAsCXXRecordDecl()) { 592 auto *Dtor = S.LookupDestructor(RD); 593 Dtor->addAttr(UsedAttr::CreateImplicit(Ctx)); 594 Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( 595 DeclGroupRef(Dtor)); 596 } 597 598 // __clang_Interpreter_SetValueCopyArr. 599 if (Kind == Interpreter::InterfaceKind::CopyArray) { 600 const auto *ConstantArrTy = 601 cast<ConstantArrayType>(DesugaredTy.getTypePtr()); 602 size_t ArrSize = Ctx.getConstantArrayElementCount(ConstantArrTy); 603 Expr *ArrSizeExpr = IntegerLiteralExpr(Ctx, ArrSize); 604 Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; 605 return S.ActOnCallExpr( 606 /*Scope *=*/nullptr, 607 Interp 608 .getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray], 609 SourceLocation(), Args, SourceLocation()); 610 } 611 Expr *Args[] = {AllocCall.get()}; 612 ExprResult CXXNewCall = S.BuildCXXNew( 613 E->getSourceRange(), 614 /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, 615 /*PlacementRParen=*/SourceLocation(), 616 /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, 617 E->getSourceRange(), E); 618 619 assert(!CXXNewCall.isInvalid() && 620 "Can't create runtime placement new call!"); 621 622 return S.ActOnFinishFullExpr(CXXNewCall.get(), 623 /*DiscardedValue=*/false); 624 } 625 // __clang_Interpreter_SetValueNoAlloc. 626 case Interpreter::InterfaceKind::NoAlloc: { 627 return S.ActOnCallExpr( 628 /*Scope=*/nullptr, 629 Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc], 630 E->getBeginLoc(), Args, E->getEndLoc()); 631 } 632 } 633 llvm_unreachable("Unhandled Interpreter::InterfaceKind"); 634 } 635 636 Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) { 637 return Interpreter::InterfaceKind::WithAlloc; 638 } 639 640 Interpreter::InterfaceKind 641 VisitMemberPointerType(const MemberPointerType *Ty) { 642 return Interpreter::InterfaceKind::WithAlloc; 643 } 644 645 Interpreter::InterfaceKind 646 VisitConstantArrayType(const ConstantArrayType *Ty) { 647 return Interpreter::InterfaceKind::CopyArray; 648 } 649 650 Interpreter::InterfaceKind 651 VisitFunctionProtoType(const FunctionProtoType *Ty) { 652 HandlePtrType(Ty); 653 return Interpreter::InterfaceKind::NoAlloc; 654 } 655 656 Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) { 657 HandlePtrType(Ty); 658 return Interpreter::InterfaceKind::NoAlloc; 659 } 660 661 Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) { 662 ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); 663 assert(!AddrOfE.isInvalid() && "Can not create unary expression"); 664 Args.push_back(AddrOfE.get()); 665 return Interpreter::InterfaceKind::NoAlloc; 666 } 667 668 Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { 669 if (Ty->isNullPtrType()) 670 Args.push_back(E); 671 else if (Ty->isFloatingType()) 672 Args.push_back(E); 673 else if (Ty->isIntegralOrEnumerationType()) 674 HandleIntegralOrEnumType(Ty); 675 else if (Ty->isVoidType()) { 676 // Do we need to still run `E`? 677 } 678 679 return Interpreter::InterfaceKind::NoAlloc; 680 } 681 682 Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) { 683 HandleIntegralOrEnumType(Ty); 684 return Interpreter::InterfaceKind::NoAlloc; 685 } 686 687 private: 688 // Force cast these types to uint64 to reduce the number of overloads of 689 // `__clang_Interpreter_SetValueNoAlloc`. 690 void HandleIntegralOrEnumType(const Type *Ty) { 691 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy); 692 ExprResult CastedExpr = 693 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 694 assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); 695 Args.push_back(CastedExpr.get()); 696 } 697 698 void HandlePtrType(const Type *Ty) { 699 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); 700 ExprResult CastedExpr = 701 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 702 assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); 703 Args.push_back(CastedExpr.get()); 704 } 705 }; 706 } // namespace 707 708 // This synthesizes a call expression to a speciall 709 // function that is responsible for generating the Value. 710 // In general, we transform: 711 // clang-repl> x 712 // To: 713 // // 1. If x is a built-in type like int, float. 714 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); 715 // // 2. If x is a struct, and a lvalue. 716 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, 717 // &x); 718 // // 3. If x is a struct, but a rvalue. 719 // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, 720 // xQualType)) (x); 721 722 Expr *Interpreter::SynthesizeExpr(Expr *E) { 723 Sema &S = getCompilerInstance()->getSema(); 724 ASTContext &Ctx = S.getASTContext(); 725 726 if (!FindRuntimeInterface()) 727 llvm_unreachable("We can't find the runtime iterface for pretty print!"); 728 729 // Create parameter `ThisInterp`. 730 auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this); 731 732 // Create parameter `OutVal`. 733 auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue); 734 735 // Build `__clang_Interpreter_SetValue*` call. 736 RuntimeInterfaceBuilder Builder(*this, Ctx, S, E, {ThisInterp, OutValue}); 737 738 ExprResult Result = Builder.getCall(); 739 // It could fail, like printing an array type in C. (not supported) 740 if (Result.isInvalid()) 741 return E; 742 return Result.get(); 743 } 744 745 // Temporary rvalue struct that need special care. 746 REPL_EXTERNAL_VISIBILITY void * 747 __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, 748 void *OpaqueType) { 749 Value &VRef = *(Value *)OutVal; 750 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 751 return VRef.getPtr(); 752 } 753 754 // Pointers, lvalue struct that can take as a reference. 755 REPL_EXTERNAL_VISIBILITY void 756 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 757 void *Val) { 758 Value &VRef = *(Value *)OutVal; 759 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 760 VRef.setPtr(Val); 761 } 762 763 REPL_EXTERNAL_VISIBILITY void 764 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, 765 void *OpaqueType) { 766 Value &VRef = *(Value *)OutVal; 767 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 768 } 769 770 static void SetValueDataBasedOnQualType(Value &V, unsigned long long Data) { 771 QualType QT = V.getType(); 772 if (const auto *ET = QT->getAs<EnumType>()) 773 QT = ET->getDecl()->getIntegerType(); 774 775 switch (QT->castAs<BuiltinType>()->getKind()) { 776 default: 777 llvm_unreachable("unknown type kind!"); 778 #define X(type, name) \ 779 case BuiltinType::name: \ 780 V.set##name(Data); \ 781 break; 782 REPL_BUILTIN_TYPES 783 #undef X 784 } 785 } 786 787 REPL_EXTERNAL_VISIBILITY void 788 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 789 unsigned long long Val) { 790 Value &VRef = *(Value *)OutVal; 791 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 792 SetValueDataBasedOnQualType(VRef, Val); 793 } 794 795 REPL_EXTERNAL_VISIBILITY void 796 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 797 float Val) { 798 Value &VRef = *(Value *)OutVal; 799 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 800 VRef.setFloat(Val); 801 } 802 803 REPL_EXTERNAL_VISIBILITY void 804 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 805 double Val) { 806 Value &VRef = *(Value *)OutVal; 807 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 808 VRef.setDouble(Val); 809 } 810 811 REPL_EXTERNAL_VISIBILITY void 812 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 813 long double Val) { 814 Value &VRef = *(Value *)OutVal; 815 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 816 VRef.setLongDouble(Val); 817 } 818