xref: /freebsd-src/contrib/llvm-project/clang/lib/Driver/Driver.cpp (revision 647cbc5de815c5651677bf8582797f716ec7b48d)
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/TargetID.h"
53 #include "clang/Basic/Version.h"
54 #include "clang/Config/config.h"
55 #include "clang/Driver/Action.h"
56 #include "clang/Driver/Compilation.h"
57 #include "clang/Driver/DriverDiagnostic.h"
58 #include "clang/Driver/InputInfo.h"
59 #include "clang/Driver/Job.h"
60 #include "clang/Driver/Options.h"
61 #include "clang/Driver/Phases.h"
62 #include "clang/Driver/SanitizerArgs.h"
63 #include "clang/Driver/Tool.h"
64 #include "clang/Driver/ToolChain.h"
65 #include "clang/Driver/Types.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/StringExtras.h"
69 #include "llvm/ADT/StringRef.h"
70 #include "llvm/ADT/StringSet.h"
71 #include "llvm/ADT/StringSwitch.h"
72 #include "llvm/Config/llvm-config.h"
73 #include "llvm/MC/TargetRegistry.h"
74 #include "llvm/Option/Arg.h"
75 #include "llvm/Option/ArgList.h"
76 #include "llvm/Option/OptSpecifier.h"
77 #include "llvm/Option/OptTable.h"
78 #include "llvm/Option/Option.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/ExitCodes.h"
82 #include "llvm/Support/FileSystem.h"
83 #include "llvm/Support/FormatVariadic.h"
84 #include "llvm/Support/MD5.h"
85 #include "llvm/Support/Path.h"
86 #include "llvm/Support/PrettyStackTrace.h"
87 #include "llvm/Support/Process.h"
88 #include "llvm/Support/Program.h"
89 #include "llvm/Support/RISCVISAInfo.h"
90 #include "llvm/Support/StringSaver.h"
91 #include "llvm/Support/VirtualFileSystem.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/TargetParser/Host.h"
94 #include <cstdlib> // ::getenv
95 #include <map>
96 #include <memory>
97 #include <optional>
98 #include <set>
99 #include <utility>
100 #if LLVM_ON_UNIX
101 #include <unistd.h> // getpid
102 #endif
103 
104 using namespace clang::driver;
105 using namespace clang;
106 using namespace llvm::opt;
107 
108 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
109                                                           const ArgList &Args) {
110   auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111   // Offload compilation flow does not support multiple targets for now. We
112   // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113   // to support multiple tool chains first.
114   switch (OffloadTargets.size()) {
115   default:
116     D.Diag(diag::err_drv_only_one_offload_target_supported);
117     return std::nullopt;
118   case 0:
119     D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120     return std::nullopt;
121   case 1:
122     break;
123   }
124   return llvm::Triple(OffloadTargets[0]);
125 }
126 
127 static std::optional<llvm::Triple>
128 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129                              const llvm::Triple &HostTriple) {
130   if (!Args.hasArg(options::OPT_offload_EQ)) {
131     return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132                                                  : "nvptx-nvidia-cuda");
133   }
134   auto TT = getOffloadTargetTriple(D, Args);
135   if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136              TT->getArch() == llvm::Triple::spirv64)) {
137     if (Args.hasArg(options::OPT_emit_llvm))
138       return TT;
139     D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140     return std::nullopt;
141   }
142   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143   return std::nullopt;
144 }
145 static std::optional<llvm::Triple>
146 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147   if (!Args.hasArg(options::OPT_offload_EQ)) {
148     return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149   }
150   auto TT = getOffloadTargetTriple(D, Args);
151   if (!TT)
152     return std::nullopt;
153   if (TT->getArch() == llvm::Triple::amdgcn &&
154       TT->getVendor() == llvm::Triple::AMD &&
155       TT->getOS() == llvm::Triple::AMDHSA)
156     return TT;
157   if (TT->getArch() == llvm::Triple::spirv64)
158     return TT;
159   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160   return std::nullopt;
161 }
162 
163 // static
164 std::string Driver::GetResourcesPath(StringRef BinaryPath,
165                                      StringRef CustomResourceDir) {
166   // Since the resource directory is embedded in the module hash, it's important
167   // that all places that need it call this function, so that they get the
168   // exact same string ("a/../b/" and "b/" get different hashes, for example).
169 
170   // Dir is bin/ or lib/, depending on where BinaryPath is.
171   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172 
173   SmallString<128> P(Dir);
174   if (CustomResourceDir != "") {
175     llvm::sys::path::append(P, CustomResourceDir);
176   } else {
177     // On Windows, libclang.dll is in bin/.
178     // On non-Windows, libclang.so/.dylib is in lib/.
179     // With a static-library build of libclang, LibClangPath will contain the
180     // path of the embedding binary, which for LLVM binaries will be in bin/.
181     // ../lib gets us to lib/ in both cases.
182     P = llvm::sys::path::parent_path(Dir);
183     // This search path is also created in the COFF driver of lld, so any
184     // changes here also needs to happen in lld/COFF/Driver.cpp
185     llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
186                             CLANG_VERSION_MAJOR_STRING);
187   }
188 
189   return std::string(P.str());
190 }
191 
192 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
193                DiagnosticsEngine &Diags, std::string Title,
194                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
195     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
196       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
197       Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
198       ModulesModeCXX20(false), LTOMode(LTOK_None),
199       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
200       DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
201       CCLogDiagnostics(false), CCGenDiagnostics(false),
202       CCPrintProcessStats(false), CCPrintInternalStats(false),
203       TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
204       CheckInputsExist(true), ProbePrecompiled(true),
205       SuppressMissingInputWarning(false) {
206   // Provide a sane fallback if no VFS is specified.
207   if (!this->VFS)
208     this->VFS = llvm::vfs::getRealFileSystem();
209 
210   Name = std::string(llvm::sys::path::filename(ClangExecutable));
211   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
212   InstalledDir = Dir; // Provide a sensible default installed dir.
213 
214   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
215     // Prepend InstalledDir if SysRoot is relative
216     SmallString<128> P(InstalledDir);
217     llvm::sys::path::append(P, SysRoot);
218     SysRoot = std::string(P);
219   }
220 
221 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
222   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
223 #endif
224 #if defined(CLANG_CONFIG_FILE_USER_DIR)
225   {
226     SmallString<128> P;
227     llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
228     UserConfigDir = static_cast<std::string>(P);
229   }
230 #endif
231 
232   // Compute the path to the resource directory.
233   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
234 }
235 
236 void Driver::setDriverMode(StringRef Value) {
237   static StringRef OptName =
238       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
239   if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
240                    .Case("gcc", GCCMode)
241                    .Case("g++", GXXMode)
242                    .Case("cpp", CPPMode)
243                    .Case("cl", CLMode)
244                    .Case("flang", FlangMode)
245                    .Case("dxc", DXCMode)
246                    .Default(std::nullopt))
247     Mode = *M;
248   else
249     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
250 }
251 
252 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
253                                      bool UseDriverMode, bool &ContainsError) {
254   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
255   ContainsError = false;
256 
257   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
258   unsigned MissingArgIndex, MissingArgCount;
259   InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
260                                           MissingArgCount, VisibilityMask);
261 
262   // Check for missing argument error.
263   if (MissingArgCount) {
264     Diag(diag::err_drv_missing_argument)
265         << Args.getArgString(MissingArgIndex) << MissingArgCount;
266     ContainsError |=
267         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
268                                  SourceLocation()) > DiagnosticsEngine::Warning;
269   }
270 
271   // Check for unsupported options.
272   for (const Arg *A : Args) {
273     if (A->getOption().hasFlag(options::Unsupported)) {
274       Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
275       ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
276                                                 SourceLocation()) >
277                        DiagnosticsEngine::Warning;
278       continue;
279     }
280 
281     // Warn about -mcpu= without an argument.
282     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
283       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
284       ContainsError |= Diags.getDiagnosticLevel(
285                            diag::warn_drv_empty_joined_argument,
286                            SourceLocation()) > DiagnosticsEngine::Warning;
287     }
288   }
289 
290   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
291     unsigned DiagID;
292     auto ArgString = A->getAsString(Args);
293     std::string Nearest;
294     if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
295       if (!IsCLMode() &&
296           getOpts().findExact(ArgString, Nearest,
297                               llvm::opt::Visibility(options::CC1Option))) {
298         DiagID = diag::err_drv_unknown_argument_with_suggestion;
299         Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
300       } else {
301         DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
302                             : diag::err_drv_unknown_argument;
303         Diags.Report(DiagID) << ArgString;
304       }
305     } else {
306       DiagID = IsCLMode()
307                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
308                    : diag::err_drv_unknown_argument_with_suggestion;
309       Diags.Report(DiagID) << ArgString << Nearest;
310     }
311     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
312                      DiagnosticsEngine::Warning;
313   }
314 
315   for (const Arg *A : Args.filtered(options::OPT_o)) {
316     if (ArgStrings[A->getIndex()] == A->getSpelling())
317       continue;
318 
319     // Warn on joined arguments that are similar to a long argument.
320     std::string ArgString = ArgStrings[A->getIndex()];
321     std::string Nearest;
322     if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
323       Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
324           << A->getAsString(Args) << Nearest;
325   }
326 
327   return Args;
328 }
329 
330 // Determine which compilation mode we are in. We look for options which
331 // affect the phase, starting with the earliest phases, and record which
332 // option we used to determine the final phase.
333 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
334                                  Arg **FinalPhaseArg) const {
335   Arg *PhaseArg = nullptr;
336   phases::ID FinalPhase;
337 
338   // -{E,EP,P,M,MM} only run the preprocessor.
339   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
340       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
341       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
342       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
343       CCGenDiagnostics) {
344     FinalPhase = phases::Preprocess;
345 
346     // --precompile only runs up to precompilation.
347     // Options that cause the output of C++20 compiled module interfaces or
348     // header units have the same effect.
349   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
350              (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
351              (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
352                                         options::OPT_fmodule_header_EQ))) {
353     FinalPhase = phases::Precompile;
354     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
355   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
356              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
357              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
358              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
359              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
360              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
361              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
362              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
363              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
364     FinalPhase = phases::Compile;
365 
366   // -S only runs up to the backend.
367   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
368     FinalPhase = phases::Backend;
369 
370   // -c compilation only runs up to the assembler.
371   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
372     FinalPhase = phases::Assemble;
373 
374   } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
375     FinalPhase = phases::IfsMerge;
376 
377   // Otherwise do everything.
378   } else
379     FinalPhase = phases::Link;
380 
381   if (FinalPhaseArg)
382     *FinalPhaseArg = PhaseArg;
383 
384   return FinalPhase;
385 }
386 
387 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
388                          StringRef Value, bool Claim = true) {
389   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
390                    Args.getBaseArgs().MakeIndex(Value), Value.data());
391   Args.AddSynthesizedArg(A);
392   if (Claim)
393     A->claim();
394   return A;
395 }
396 
397 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
398   const llvm::opt::OptTable &Opts = getOpts();
399   DerivedArgList *DAL = new DerivedArgList(Args);
400 
401   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
402   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
403   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
404   bool IgnoreUnused = false;
405   for (Arg *A : Args) {
406     if (IgnoreUnused)
407       A->claim();
408 
409     if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
410       IgnoreUnused = true;
411       continue;
412     }
413     if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
414       IgnoreUnused = false;
415       continue;
416     }
417 
418     // Unfortunately, we have to parse some forwarding options (-Xassembler,
419     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
420     // (assembler and preprocessor), or bypass a previous driver ('collect2').
421 
422     // Rewrite linker options, to replace --no-demangle with a custom internal
423     // option.
424     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
425          A->getOption().matches(options::OPT_Xlinker)) &&
426         A->containsValue("--no-demangle")) {
427       // Add the rewritten no-demangle argument.
428       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
429 
430       // Add the remaining values as Xlinker arguments.
431       for (StringRef Val : A->getValues())
432         if (Val != "--no-demangle")
433           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
434 
435       continue;
436     }
437 
438     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
439     // some build systems. We don't try to be complete here because we don't
440     // care to encourage this usage model.
441     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
442         (A->getValue(0) == StringRef("-MD") ||
443          A->getValue(0) == StringRef("-MMD"))) {
444       // Rewrite to -MD/-MMD along with -MF.
445       if (A->getValue(0) == StringRef("-MD"))
446         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
447       else
448         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
449       if (A->getNumValues() == 2)
450         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
451       continue;
452     }
453 
454     // Rewrite reserved library names.
455     if (A->getOption().matches(options::OPT_l)) {
456       StringRef Value = A->getValue();
457 
458       // Rewrite unless -nostdlib is present.
459       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
460           Value == "stdc++") {
461         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
462         continue;
463       }
464 
465       // Rewrite unconditionally.
466       if (Value == "cc_kext") {
467         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
468         continue;
469       }
470     }
471 
472     // Pick up inputs via the -- option.
473     if (A->getOption().matches(options::OPT__DASH_DASH)) {
474       A->claim();
475       for (StringRef Val : A->getValues())
476         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
477       continue;
478     }
479 
480     DAL->append(A);
481   }
482 
483   // DXC mode quits before assembly if an output object file isn't specified.
484   if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
485     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
486 
487   // Enforce -static if -miamcu is present.
488   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
489     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
490 
491 // Add a default value of -mlinker-version=, if one was given and the user
492 // didn't specify one.
493 #if defined(HOST_LINK_VERSION)
494   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
495       strlen(HOST_LINK_VERSION) > 0) {
496     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
497                       HOST_LINK_VERSION);
498     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
499   }
500 #endif
501 
502   return DAL;
503 }
504 
505 /// Compute target triple from args.
506 ///
507 /// This routine provides the logic to compute a target triple from various
508 /// args passed to the driver and the default triple string.
509 static llvm::Triple computeTargetTriple(const Driver &D,
510                                         StringRef TargetTriple,
511                                         const ArgList &Args,
512                                         StringRef DarwinArchName = "") {
513   // FIXME: Already done in Compilation *Driver::BuildCompilation
514   if (const Arg *A = Args.getLastArg(options::OPT_target))
515     TargetTriple = A->getValue();
516 
517   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
518 
519   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
520   // -gnu* only, and we can not change this, so we have to detect that case as
521   // being the Hurd OS.
522   if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
523     Target.setOSName("hurd");
524 
525   // Handle Apple-specific options available here.
526   if (Target.isOSBinFormatMachO()) {
527     // If an explicit Darwin arch name is given, that trumps all.
528     if (!DarwinArchName.empty()) {
529       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
530                                                    Args);
531       return Target;
532     }
533 
534     // Handle the Darwin '-arch' flag.
535     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
536       StringRef ArchName = A->getValue();
537       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
538     }
539   }
540 
541   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
542   // '-mbig-endian'/'-EB'.
543   if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
544                                       options::OPT_mbig_endian)) {
545     llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
546                          ? Target.getLittleEndianArchVariant()
547                          : Target.getBigEndianArchVariant();
548     if (T.getArch() != llvm::Triple::UnknownArch) {
549       Target = std::move(T);
550       Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
551     }
552   }
553 
554   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
555   if (Target.getArch() == llvm::Triple::tce)
556     return Target;
557 
558   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
559   if (Target.isOSAIX()) {
560     if (std::optional<std::string> ObjectModeValue =
561             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
562       StringRef ObjectMode = *ObjectModeValue;
563       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
564 
565       if (ObjectMode.equals("64")) {
566         AT = Target.get64BitArchVariant().getArch();
567       } else if (ObjectMode.equals("32")) {
568         AT = Target.get32BitArchVariant().getArch();
569       } else {
570         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
571       }
572 
573       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
574         Target.setArch(AT);
575     }
576   }
577 
578   // The `-maix[32|64]` flags are only valid for AIX targets.
579   if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
580       A && !Target.isOSAIX())
581     D.Diag(diag::err_drv_unsupported_opt_for_target)
582         << A->getAsString(Args) << Target.str();
583 
584   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
585   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
586                            options::OPT_m32, options::OPT_m16,
587                            options::OPT_maix32, options::OPT_maix64);
588   if (A) {
589     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
590 
591     if (A->getOption().matches(options::OPT_m64) ||
592         A->getOption().matches(options::OPT_maix64)) {
593       AT = Target.get64BitArchVariant().getArch();
594       if (Target.getEnvironment() == llvm::Triple::GNUX32)
595         Target.setEnvironment(llvm::Triple::GNU);
596       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
597         Target.setEnvironment(llvm::Triple::Musl);
598     } else if (A->getOption().matches(options::OPT_mx32) &&
599                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
600       AT = llvm::Triple::x86_64;
601       if (Target.getEnvironment() == llvm::Triple::Musl)
602         Target.setEnvironment(llvm::Triple::MuslX32);
603       else
604         Target.setEnvironment(llvm::Triple::GNUX32);
605     } else if (A->getOption().matches(options::OPT_m32) ||
606                A->getOption().matches(options::OPT_maix32)) {
607       AT = Target.get32BitArchVariant().getArch();
608       if (Target.getEnvironment() == llvm::Triple::GNUX32)
609         Target.setEnvironment(llvm::Triple::GNU);
610       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
611         Target.setEnvironment(llvm::Triple::Musl);
612     } else if (A->getOption().matches(options::OPT_m16) &&
613                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
614       AT = llvm::Triple::x86;
615       Target.setEnvironment(llvm::Triple::CODE16);
616     }
617 
618     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
619       Target.setArch(AT);
620       if (Target.isWindowsGNUEnvironment())
621         toolchains::MinGW::fixTripleArch(D, Target, Args);
622     }
623   }
624 
625   // Handle -miamcu flag.
626   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
627     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
628       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
629                                                        << Target.str();
630 
631     if (A && !A->getOption().matches(options::OPT_m32))
632       D.Diag(diag::err_drv_argument_not_allowed_with)
633           << "-miamcu" << A->getBaseArg().getAsString(Args);
634 
635     Target.setArch(llvm::Triple::x86);
636     Target.setArchName("i586");
637     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
638     Target.setEnvironmentName("");
639     Target.setOS(llvm::Triple::ELFIAMCU);
640     Target.setVendor(llvm::Triple::UnknownVendor);
641     Target.setVendorName("intel");
642   }
643 
644   // If target is MIPS adjust the target triple
645   // accordingly to provided ABI name.
646   if (Target.isMIPS()) {
647     if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
648       StringRef ABIName = A->getValue();
649       if (ABIName == "32") {
650         Target = Target.get32BitArchVariant();
651         if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
652             Target.getEnvironment() == llvm::Triple::GNUABIN32)
653           Target.setEnvironment(llvm::Triple::GNU);
654       } else if (ABIName == "n32") {
655         Target = Target.get64BitArchVariant();
656         if (Target.getEnvironment() == llvm::Triple::GNU ||
657             Target.getEnvironment() == llvm::Triple::GNUABI64)
658           Target.setEnvironment(llvm::Triple::GNUABIN32);
659       } else if (ABIName == "64") {
660         Target = Target.get64BitArchVariant();
661         if (Target.getEnvironment() == llvm::Triple::GNU ||
662             Target.getEnvironment() == llvm::Triple::GNUABIN32)
663           Target.setEnvironment(llvm::Triple::GNUABI64);
664       }
665     }
666   }
667 
668   // If target is RISC-V adjust the target triple according to
669   // provided architecture name
670   if (Target.isRISCV()) {
671     if (Args.hasArg(options::OPT_march_EQ) ||
672         Args.hasArg(options::OPT_mcpu_EQ)) {
673       StringRef ArchName = tools::riscv::getRISCVArch(Args, Target);
674       auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
675           ArchName, /*EnableExperimentalExtensions=*/true);
676       if (!llvm::errorToBool(ISAInfo.takeError())) {
677         unsigned XLen = (*ISAInfo)->getXLen();
678         if (XLen == 32)
679           Target.setArch(llvm::Triple::riscv32);
680         else if (XLen == 64)
681           Target.setArch(llvm::Triple::riscv64);
682       }
683     }
684   }
685 
686   return Target;
687 }
688 
689 // Parse the LTO options and record the type of LTO compilation
690 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
691 // option occurs last.
692 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
693                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
694   if (!Args.hasFlag(OptEq, OptNeg, false))
695     return LTOK_None;
696 
697   const Arg *A = Args.getLastArg(OptEq);
698   StringRef LTOName = A->getValue();
699 
700   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
701                                 .Case("full", LTOK_Full)
702                                 .Case("thin", LTOK_Thin)
703                                 .Default(LTOK_Unknown);
704 
705   if (LTOMode == LTOK_Unknown) {
706     D.Diag(diag::err_drv_unsupported_option_argument)
707         << A->getSpelling() << A->getValue();
708     return LTOK_None;
709   }
710   return LTOMode;
711 }
712 
713 // Parse the LTO options.
714 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
715   LTOMode =
716       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
717 
718   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
719                                 options::OPT_fno_offload_lto);
720 
721   // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
722   if (Args.hasFlag(options::OPT_fopenmp_target_jit,
723                    options::OPT_fno_openmp_target_jit, false)) {
724     if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
725                                  options::OPT_fno_offload_lto))
726       if (OffloadLTOMode != LTOK_Full)
727         Diag(diag::err_drv_incompatible_options)
728             << A->getSpelling() << "-fopenmp-target-jit";
729     OffloadLTOMode = LTOK_Full;
730   }
731 }
732 
733 /// Compute the desired OpenMP runtime from the flags provided.
734 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
735   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
736 
737   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
738   if (A)
739     RuntimeName = A->getValue();
740 
741   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
742                 .Case("libomp", OMPRT_OMP)
743                 .Case("libgomp", OMPRT_GOMP)
744                 .Case("libiomp5", OMPRT_IOMP5)
745                 .Default(OMPRT_Unknown);
746 
747   if (RT == OMPRT_Unknown) {
748     if (A)
749       Diag(diag::err_drv_unsupported_option_argument)
750           << A->getSpelling() << A->getValue();
751     else
752       // FIXME: We could use a nicer diagnostic here.
753       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
754   }
755 
756   return RT;
757 }
758 
759 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
760                                               InputList &Inputs) {
761 
762   //
763   // CUDA/HIP
764   //
765   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
766   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
767   bool IsCuda =
768       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
769         return types::isCuda(I.first);
770       });
771   bool IsHIP =
772       llvm::any_of(Inputs,
773                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
774                      return types::isHIP(I.first);
775                    }) ||
776       C.getInputArgs().hasArg(options::OPT_hip_link) ||
777       C.getInputArgs().hasArg(options::OPT_hipstdpar);
778   if (IsCuda && IsHIP) {
779     Diag(clang::diag::err_drv_mix_cuda_hip);
780     return;
781   }
782   if (IsCuda) {
783     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
784     const llvm::Triple &HostTriple = HostTC->getTriple();
785     auto OFK = Action::OFK_Cuda;
786     auto CudaTriple =
787         getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
788     if (!CudaTriple)
789       return;
790     // Use the CUDA and host triples as the key into the ToolChains map,
791     // because the device toolchain we create depends on both.
792     auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
793     if (!CudaTC) {
794       CudaTC = std::make_unique<toolchains::CudaToolChain>(
795           *this, *CudaTriple, *HostTC, C.getInputArgs());
796 
797       // Emit a warning if the detected CUDA version is too new.
798       CudaInstallationDetector &CudaInstallation =
799           static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
800       if (CudaInstallation.isValid())
801         CudaInstallation.WarnIfUnsupportedVersion();
802     }
803     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
804   } else if (IsHIP) {
805     if (auto *OMPTargetArg =
806             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
807       Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
808           << OMPTargetArg->getSpelling() << "HIP";
809       return;
810     }
811     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
812     auto OFK = Action::OFK_HIP;
813     auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
814     if (!HIPTriple)
815       return;
816     auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
817                                                 *HostTC, OFK);
818     assert(HIPTC && "Could not create offloading device tool chain.");
819     C.addOffloadDeviceToolChain(HIPTC, OFK);
820   }
821 
822   //
823   // OpenMP
824   //
825   // We need to generate an OpenMP toolchain if the user specified targets with
826   // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
827   bool IsOpenMPOffloading =
828       C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
829                                options::OPT_fno_openmp, false) &&
830       (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
831        C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
832   if (IsOpenMPOffloading) {
833     // We expect that -fopenmp-targets is always used in conjunction with the
834     // option -fopenmp specifying a valid runtime with offloading support, i.e.
835     // libomp or libiomp.
836     OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
837     if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
838       Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
839       return;
840     }
841 
842     llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
843     llvm::StringMap<StringRef> FoundNormalizedTriples;
844     std::multiset<StringRef> OpenMPTriples;
845 
846     // If the user specified -fopenmp-targets= we create a toolchain for each
847     // valid triple. Otherwise, if only --offload-arch= was specified we instead
848     // attempt to derive the appropriate toolchains from the arguments.
849     if (Arg *OpenMPTargets =
850             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
851       if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
852         Diag(clang::diag::warn_drv_empty_joined_argument)
853             << OpenMPTargets->getAsString(C.getInputArgs());
854         return;
855       }
856       for (StringRef T : OpenMPTargets->getValues())
857         OpenMPTriples.insert(T);
858     } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
859                !IsHIP && !IsCuda) {
860       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
861       auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
862       auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
863                                                       HostTC->getTriple());
864 
865       // Attempt to deduce the offloading triple from the set of architectures.
866       // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
867       // to temporarily create these toolchains so that we can access tools for
868       // inferring architectures.
869       llvm::DenseSet<StringRef> Archs;
870       if (NVPTXTriple) {
871         auto TempTC = std::make_unique<toolchains::CudaToolChain>(
872             *this, *NVPTXTriple, *HostTC, C.getInputArgs());
873         for (StringRef Arch : getOffloadArchs(
874                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
875           Archs.insert(Arch);
876       }
877       if (AMDTriple) {
878         auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
879             *this, *AMDTriple, *HostTC, C.getInputArgs());
880         for (StringRef Arch : getOffloadArchs(
881                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
882           Archs.insert(Arch);
883       }
884       if (!AMDTriple && !NVPTXTriple) {
885         for (StringRef Arch :
886              getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
887           Archs.insert(Arch);
888       }
889 
890       for (StringRef Arch : Archs) {
891         if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
892                                getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
893           DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
894         } else if (AMDTriple &&
895                    IsAMDGpuArch(StringToCudaArch(
896                        getProcessorFromTargetID(*AMDTriple, Arch)))) {
897           DerivedArchs[AMDTriple->getTriple()].insert(Arch);
898         } else {
899           Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
900           return;
901         }
902       }
903 
904       // If the set is empty then we failed to find a native architecture.
905       if (Archs.empty()) {
906         Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
907             << "native";
908         return;
909       }
910 
911       for (const auto &TripleAndArchs : DerivedArchs)
912         OpenMPTriples.insert(TripleAndArchs.first());
913     }
914 
915     for (StringRef Val : OpenMPTriples) {
916       llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
917       std::string NormalizedName = TT.normalize();
918 
919       // Make sure we don't have a duplicate triple.
920       auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
921       if (Duplicate != FoundNormalizedTriples.end()) {
922         Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
923             << Val << Duplicate->second;
924         continue;
925       }
926 
927       // Store the current triple so that we can check for duplicates in the
928       // following iterations.
929       FoundNormalizedTriples[NormalizedName] = Val;
930 
931       // If the specified target is invalid, emit a diagnostic.
932       if (TT.getArch() == llvm::Triple::UnknownArch)
933         Diag(clang::diag::err_drv_invalid_omp_target) << Val;
934       else {
935         const ToolChain *TC;
936         // Device toolchains have to be selected differently. They pair host
937         // and device in their implementation.
938         if (TT.isNVPTX() || TT.isAMDGCN()) {
939           const ToolChain *HostTC =
940               C.getSingleOffloadToolChain<Action::OFK_Host>();
941           assert(HostTC && "Host toolchain should be always defined.");
942           auto &DeviceTC =
943               ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
944           if (!DeviceTC) {
945             if (TT.isNVPTX())
946               DeviceTC = std::make_unique<toolchains::CudaToolChain>(
947                   *this, TT, *HostTC, C.getInputArgs());
948             else if (TT.isAMDGCN())
949               DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
950                   *this, TT, *HostTC, C.getInputArgs());
951             else
952               assert(DeviceTC && "Device toolchain not defined.");
953           }
954 
955           TC = DeviceTC.get();
956         } else
957           TC = &getToolChain(C.getInputArgs(), TT);
958         C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
959         if (DerivedArchs.contains(TT.getTriple()))
960           KnownArchs[TC] = DerivedArchs[TT.getTriple()];
961       }
962     }
963   } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
964     Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
965     return;
966   }
967 
968   //
969   // TODO: Add support for other offloading programming models here.
970   //
971 }
972 
973 static void appendOneArg(InputArgList &Args, const Arg *Opt,
974                          const Arg *BaseArg) {
975   // The args for config files or /clang: flags belong to different InputArgList
976   // objects than Args. This copies an Arg from one of those other InputArgLists
977   // to the ownership of Args.
978   unsigned Index = Args.MakeIndex(Opt->getSpelling());
979   Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
980                                  Index, BaseArg);
981   Copy->getValues() = Opt->getValues();
982   if (Opt->isClaimed())
983     Copy->claim();
984   Copy->setOwnsValues(Opt->getOwnsValues());
985   Opt->setOwnsValues(false);
986   Args.append(Copy);
987 }
988 
989 bool Driver::readConfigFile(StringRef FileName,
990                             llvm::cl::ExpansionContext &ExpCtx) {
991   // Try opening the given file.
992   auto Status = getVFS().status(FileName);
993   if (!Status) {
994     Diag(diag::err_drv_cannot_open_config_file)
995         << FileName << Status.getError().message();
996     return true;
997   }
998   if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
999     Diag(diag::err_drv_cannot_open_config_file)
1000         << FileName << "not a regular file";
1001     return true;
1002   }
1003 
1004   // Try reading the given file.
1005   SmallVector<const char *, 32> NewCfgArgs;
1006   if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1007     Diag(diag::err_drv_cannot_read_config_file)
1008         << FileName << toString(std::move(Err));
1009     return true;
1010   }
1011 
1012   // Read options from config file.
1013   llvm::SmallString<128> CfgFileName(FileName);
1014   llvm::sys::path::native(CfgFileName);
1015   bool ContainErrors;
1016   std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1017       ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1018   if (ContainErrors)
1019     return true;
1020 
1021   // Claim all arguments that come from a configuration file so that the driver
1022   // does not warn on any that is unused.
1023   for (Arg *A : *NewOptions)
1024     A->claim();
1025 
1026   if (!CfgOptions)
1027     CfgOptions = std::move(NewOptions);
1028   else {
1029     // If this is a subsequent config file, append options to the previous one.
1030     for (auto *Opt : *NewOptions) {
1031       const Arg *BaseArg = &Opt->getBaseArg();
1032       if (BaseArg == Opt)
1033         BaseArg = nullptr;
1034       appendOneArg(*CfgOptions, Opt, BaseArg);
1035     }
1036   }
1037   ConfigFiles.push_back(std::string(CfgFileName));
1038   return false;
1039 }
1040 
1041 bool Driver::loadConfigFiles() {
1042   llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1043                                     llvm::cl::tokenizeConfigFile);
1044   ExpCtx.setVFS(&getVFS());
1045 
1046   // Process options that change search path for config files.
1047   if (CLOptions) {
1048     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1049       SmallString<128> CfgDir;
1050       CfgDir.append(
1051           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1052       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1053         SystemConfigDir.clear();
1054       else
1055         SystemConfigDir = static_cast<std::string>(CfgDir);
1056     }
1057     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1058       SmallString<128> CfgDir;
1059       llvm::sys::fs::expand_tilde(
1060           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1061       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1062         UserConfigDir.clear();
1063       else
1064         UserConfigDir = static_cast<std::string>(CfgDir);
1065     }
1066   }
1067 
1068   // Prepare list of directories where config file is searched for.
1069   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1070   ExpCtx.setSearchDirs(CfgFileSearchDirs);
1071 
1072   // First try to load configuration from the default files, return on error.
1073   if (loadDefaultConfigFiles(ExpCtx))
1074     return true;
1075 
1076   // Then load configuration files specified explicitly.
1077   SmallString<128> CfgFilePath;
1078   if (CLOptions) {
1079     for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1080       // If argument contains directory separator, treat it as a path to
1081       // configuration file.
1082       if (llvm::sys::path::has_parent_path(CfgFileName)) {
1083         CfgFilePath.assign(CfgFileName);
1084         if (llvm::sys::path::is_relative(CfgFilePath)) {
1085           if (getVFS().makeAbsolute(CfgFilePath)) {
1086             Diag(diag::err_drv_cannot_open_config_file)
1087                 << CfgFilePath << "cannot get absolute path";
1088             return true;
1089           }
1090         }
1091       } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1092         // Report an error that the config file could not be found.
1093         Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1094         for (const StringRef &SearchDir : CfgFileSearchDirs)
1095           if (!SearchDir.empty())
1096             Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1097         return true;
1098       }
1099 
1100       // Try to read the config file, return on error.
1101       if (readConfigFile(CfgFilePath, ExpCtx))
1102         return true;
1103     }
1104   }
1105 
1106   // No error occurred.
1107   return false;
1108 }
1109 
1110 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1111   // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1112   // value.
1113   if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1114     if (*NoConfigEnv)
1115       return false;
1116   }
1117   if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1118     return false;
1119 
1120   std::string RealMode = getExecutableForDriverMode(Mode);
1121   std::string Triple;
1122 
1123   // If name prefix is present, no --target= override was passed via CLOptions
1124   // and the name prefix is not a valid triple, force it for backwards
1125   // compatibility.
1126   if (!ClangNameParts.TargetPrefix.empty() &&
1127       computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1128           "/invalid/") {
1129     llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1130     if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1131         PrefixTriple.isOSUnknown())
1132       Triple = PrefixTriple.str();
1133   }
1134 
1135   // Otherwise, use the real triple as used by the driver.
1136   if (Triple.empty()) {
1137     llvm::Triple RealTriple =
1138         computeTargetTriple(*this, TargetTriple, *CLOptions);
1139     Triple = RealTriple.str();
1140     assert(!Triple.empty());
1141   }
1142 
1143   // Search for config files in the following order:
1144   // 1. <triple>-<mode>.cfg using real driver mode
1145   //    (e.g. i386-pc-linux-gnu-clang++.cfg).
1146   // 2. <triple>-<mode>.cfg using executable suffix
1147   //    (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1148   // 3. <triple>.cfg + <mode>.cfg using real driver mode
1149   //    (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1150   // 4. <triple>.cfg + <mode>.cfg using executable suffix
1151   //    (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1152 
1153   // Try loading <triple>-<mode>.cfg, and return if we find a match.
1154   SmallString<128> CfgFilePath;
1155   std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1156   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1157     return readConfigFile(CfgFilePath, ExpCtx);
1158 
1159   bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1160                        ClangNameParts.ModeSuffix != RealMode;
1161   if (TryModeSuffix) {
1162     CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1163     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1164       return readConfigFile(CfgFilePath, ExpCtx);
1165   }
1166 
1167   // Try loading <mode>.cfg, and return if loading failed.  If a matching file
1168   // was not found, still proceed on to try <triple>.cfg.
1169   CfgFileName = RealMode + ".cfg";
1170   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1171     if (readConfigFile(CfgFilePath, ExpCtx))
1172       return true;
1173   } else if (TryModeSuffix) {
1174     CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1175     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1176         readConfigFile(CfgFilePath, ExpCtx))
1177       return true;
1178   }
1179 
1180   // Try loading <triple>.cfg and return if we find a match.
1181   CfgFileName = Triple + ".cfg";
1182   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1183     return readConfigFile(CfgFilePath, ExpCtx);
1184 
1185   // If we were unable to find a config file deduced from executable name,
1186   // that is not an error.
1187   return false;
1188 }
1189 
1190 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1191   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1192 
1193   // FIXME: Handle environment options which affect driver behavior, somewhere
1194   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1195 
1196   // We look for the driver mode option early, because the mode can affect
1197   // how other options are parsed.
1198 
1199   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1200   if (!DriverMode.empty())
1201     setDriverMode(DriverMode);
1202 
1203   // FIXME: What are we going to do with -V and -b?
1204 
1205   // Arguments specified in command line.
1206   bool ContainsError;
1207   CLOptions = std::make_unique<InputArgList>(
1208       ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1209 
1210   // Try parsing configuration file.
1211   if (!ContainsError)
1212     ContainsError = loadConfigFiles();
1213   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1214 
1215   // All arguments, from both config file and command line.
1216   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1217                                               : std::move(*CLOptions));
1218 
1219   if (HasConfigFile)
1220     for (auto *Opt : *CLOptions) {
1221       if (Opt->getOption().matches(options::OPT_config))
1222         continue;
1223       const Arg *BaseArg = &Opt->getBaseArg();
1224       if (BaseArg == Opt)
1225         BaseArg = nullptr;
1226       appendOneArg(Args, Opt, BaseArg);
1227     }
1228 
1229   // In CL mode, look for any pass-through arguments
1230   if (IsCLMode() && !ContainsError) {
1231     SmallVector<const char *, 16> CLModePassThroughArgList;
1232     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1233       A->claim();
1234       CLModePassThroughArgList.push_back(A->getValue());
1235     }
1236 
1237     if (!CLModePassThroughArgList.empty()) {
1238       // Parse any pass through args using default clang processing rather
1239       // than clang-cl processing.
1240       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1241           ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1242                           ContainsError));
1243 
1244       if (!ContainsError)
1245         for (auto *Opt : *CLModePassThroughOptions) {
1246           appendOneArg(Args, Opt, nullptr);
1247         }
1248     }
1249   }
1250 
1251   // Check for working directory option before accessing any files
1252   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1253     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1254       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1255 
1256   // FIXME: This stuff needs to go into the Compilation, not the driver.
1257   bool CCCPrintPhases;
1258 
1259   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1260   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1261   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1262 
1263   // f(no-)integated-cc1 is also used very early in main.
1264   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1265   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1266 
1267   // Ignore -pipe.
1268   Args.ClaimAllArgs(options::OPT_pipe);
1269 
1270   // Extract -ccc args.
1271   //
1272   // FIXME: We need to figure out where this behavior should live. Most of it
1273   // should be outside in the client; the parts that aren't should have proper
1274   // options, either by introducing new ones or by overloading gcc ones like -V
1275   // or -b.
1276   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1277   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1278   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1279     CCCGenericGCCName = A->getValue();
1280 
1281   // Process -fproc-stat-report options.
1282   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1283     CCPrintProcessStats = true;
1284     CCPrintStatReportFilename = A->getValue();
1285   }
1286   if (Args.hasArg(options::OPT_fproc_stat_report))
1287     CCPrintProcessStats = true;
1288 
1289   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1290   // and getToolChain is const.
1291   if (IsCLMode()) {
1292     // clang-cl targets MSVC-style Win32.
1293     llvm::Triple T(TargetTriple);
1294     T.setOS(llvm::Triple::Win32);
1295     T.setVendor(llvm::Triple::PC);
1296     T.setEnvironment(llvm::Triple::MSVC);
1297     T.setObjectFormat(llvm::Triple::COFF);
1298     if (Args.hasArg(options::OPT__SLASH_arm64EC))
1299       T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1300     TargetTriple = T.str();
1301   } else if (IsDXCMode()) {
1302     // Build TargetTriple from target_profile option for clang-dxc.
1303     if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1304       StringRef TargetProfile = A->getValue();
1305       if (auto Triple =
1306               toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1307         TargetTriple = *Triple;
1308       else
1309         Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1310 
1311       A->claim();
1312 
1313       // TODO: Specify Vulkan target environment somewhere in the triple.
1314       if (Args.hasArg(options::OPT_spirv)) {
1315         llvm::Triple T(TargetTriple);
1316         T.setArch(llvm::Triple::spirv);
1317         TargetTriple = T.str();
1318       }
1319     } else {
1320       Diag(diag::err_drv_dxc_missing_target_profile);
1321     }
1322   }
1323 
1324   if (const Arg *A = Args.getLastArg(options::OPT_target))
1325     TargetTriple = A->getValue();
1326   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1327     Dir = InstalledDir = A->getValue();
1328   for (const Arg *A : Args.filtered(options::OPT_B)) {
1329     A->claim();
1330     PrefixDirs.push_back(A->getValue(0));
1331   }
1332   if (std::optional<std::string> CompilerPathValue =
1333           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1334     StringRef CompilerPath = *CompilerPathValue;
1335     while (!CompilerPath.empty()) {
1336       std::pair<StringRef, StringRef> Split =
1337           CompilerPath.split(llvm::sys::EnvPathSeparator);
1338       PrefixDirs.push_back(std::string(Split.first));
1339       CompilerPath = Split.second;
1340     }
1341   }
1342   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1343     SysRoot = A->getValue();
1344   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1345     DyldPrefix = A->getValue();
1346 
1347   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1348     ResourceDir = A->getValue();
1349 
1350   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1351     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1352                     .Case("cwd", SaveTempsCwd)
1353                     .Case("obj", SaveTempsObj)
1354                     .Default(SaveTempsCwd);
1355   }
1356 
1357   if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1358                                      options::OPT_offload_device_only,
1359                                      options::OPT_offload_host_device)) {
1360     if (A->getOption().matches(options::OPT_offload_host_only))
1361       Offload = OffloadHost;
1362     else if (A->getOption().matches(options::OPT_offload_device_only))
1363       Offload = OffloadDevice;
1364     else
1365       Offload = OffloadHostDevice;
1366   }
1367 
1368   setLTOMode(Args);
1369 
1370   // Process -fembed-bitcode= flags.
1371   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1372     StringRef Name = A->getValue();
1373     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1374         .Case("off", EmbedNone)
1375         .Case("all", EmbedBitcode)
1376         .Case("bitcode", EmbedBitcode)
1377         .Case("marker", EmbedMarker)
1378         .Default(~0U);
1379     if (Model == ~0U) {
1380       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1381                                                 << Name;
1382     } else
1383       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1384   }
1385 
1386   // Remove existing compilation database so that each job can append to it.
1387   if (Arg *A = Args.getLastArg(options::OPT_MJ))
1388     llvm::sys::fs::remove(A->getValue());
1389 
1390   // Setting up the jobs for some precompile cases depends on whether we are
1391   // treating them as PCH, implicit modules or C++20 ones.
1392   // TODO: inferring the mode like this seems fragile (it meets the objective
1393   // of not requiring anything new for operation, however).
1394   const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1395   ModulesModeCXX20 =
1396       !Args.hasArg(options::OPT_fmodules) && Std &&
1397       (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1398        Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1399        Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1400        Std->containsValue("c++latest"));
1401 
1402   // Process -fmodule-header{=} flags.
1403   if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1404                                options::OPT_fmodule_header)) {
1405     // These flags force C++20 handling of headers.
1406     ModulesModeCXX20 = true;
1407     if (A->getOption().matches(options::OPT_fmodule_header))
1408       CXX20HeaderType = HeaderMode_Default;
1409     else {
1410       StringRef ArgName = A->getValue();
1411       unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1412                           .Case("user", HeaderMode_User)
1413                           .Case("system", HeaderMode_System)
1414                           .Default(~0U);
1415       if (Kind == ~0U) {
1416         Diags.Report(diag::err_drv_invalid_value)
1417             << A->getAsString(Args) << ArgName;
1418       } else
1419         CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1420     }
1421   }
1422 
1423   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1424       std::make_unique<InputArgList>(std::move(Args));
1425 
1426   // Perform the default argument translations.
1427   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1428 
1429   // Owned by the host.
1430   const ToolChain &TC = getToolChain(
1431       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1432 
1433   // Report warning when arm64EC option is overridden by specified target
1434   if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1435        TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1436       UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1437     getDiags().Report(clang::diag::warn_target_override_arm64ec)
1438         << TC.getTriple().str();
1439   }
1440 
1441   // A common user mistake is specifying a target of aarch64-none-eabi or
1442   // arm-none-elf whereas the correct names are aarch64-none-elf &
1443   // arm-none-eabi. Detect these cases and issue a warning.
1444   if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1445       TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1446     switch (TC.getTriple().getArch()) {
1447     case llvm::Triple::arm:
1448     case llvm::Triple::armeb:
1449     case llvm::Triple::thumb:
1450     case llvm::Triple::thumbeb:
1451       if (TC.getTriple().getEnvironmentName() == "elf") {
1452         Diag(diag::warn_target_unrecognized_env)
1453             << TargetTriple
1454             << (TC.getTriple().getArchName().str() + "-none-eabi");
1455       }
1456       break;
1457     case llvm::Triple::aarch64:
1458     case llvm::Triple::aarch64_be:
1459     case llvm::Triple::aarch64_32:
1460       if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1461         Diag(diag::warn_target_unrecognized_env)
1462             << TargetTriple
1463             << (TC.getTriple().getArchName().str() + "-none-elf");
1464       }
1465       break;
1466     default:
1467       break;
1468     }
1469   }
1470 
1471   // The compilation takes ownership of Args.
1472   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1473                                    ContainsError);
1474 
1475   if (!HandleImmediateArgs(*C))
1476     return C;
1477 
1478   // Construct the list of inputs.
1479   InputList Inputs;
1480   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1481 
1482   // Populate the tool chains for the offloading devices, if any.
1483   CreateOffloadingDeviceToolChains(*C, Inputs);
1484 
1485   // Construct the list of abstract actions to perform for this compilation. On
1486   // MachO targets this uses the driver-driver and universal actions.
1487   if (TC.getTriple().isOSBinFormatMachO())
1488     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1489   else
1490     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1491 
1492   if (CCCPrintPhases) {
1493     PrintActions(*C);
1494     return C;
1495   }
1496 
1497   BuildJobs(*C);
1498 
1499   return C;
1500 }
1501 
1502 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1503   llvm::opt::ArgStringList ASL;
1504   for (const auto *A : Args) {
1505     // Use user's original spelling of flags. For example, use
1506     // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1507     // wrote the former.
1508     while (A->getAlias())
1509       A = A->getAlias();
1510     A->render(Args, ASL);
1511   }
1512 
1513   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1514     if (I != ASL.begin())
1515       OS << ' ';
1516     llvm::sys::printArg(OS, *I, true);
1517   }
1518   OS << '\n';
1519 }
1520 
1521 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1522                                     SmallString<128> &CrashDiagDir) {
1523   using namespace llvm::sys;
1524   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1525          "Only knows about .crash files on Darwin");
1526 
1527   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1528   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1529   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1530   path::home_directory(CrashDiagDir);
1531   if (CrashDiagDir.starts_with("/var/root"))
1532     CrashDiagDir = "/";
1533   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1534   int PID =
1535 #if LLVM_ON_UNIX
1536       getpid();
1537 #else
1538       0;
1539 #endif
1540   std::error_code EC;
1541   fs::file_status FileStatus;
1542   TimePoint<> LastAccessTime;
1543   SmallString<128> CrashFilePath;
1544   // Lookup the .crash files and get the one generated by a subprocess spawned
1545   // by this driver invocation.
1546   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1547        File != FileEnd && !EC; File.increment(EC)) {
1548     StringRef FileName = path::filename(File->path());
1549     if (!FileName.starts_with(Name))
1550       continue;
1551     if (fs::status(File->path(), FileStatus))
1552       continue;
1553     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1554         llvm::MemoryBuffer::getFile(File->path());
1555     if (!CrashFile)
1556       continue;
1557     // The first line should start with "Process:", otherwise this isn't a real
1558     // .crash file.
1559     StringRef Data = CrashFile.get()->getBuffer();
1560     if (!Data.starts_with("Process:"))
1561       continue;
1562     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1563     size_t ParentProcPos = Data.find("Parent Process:");
1564     if (ParentProcPos == StringRef::npos)
1565       continue;
1566     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1567     if (LineEnd == StringRef::npos)
1568       continue;
1569     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1570     int OpenBracket = -1, CloseBracket = -1;
1571     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1572       if (ParentProcess[i] == '[')
1573         OpenBracket = i;
1574       if (ParentProcess[i] == ']')
1575         CloseBracket = i;
1576     }
1577     // Extract the parent process PID from the .crash file and check whether
1578     // it matches this driver invocation pid.
1579     int CrashPID;
1580     if (OpenBracket < 0 || CloseBracket < 0 ||
1581         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1582             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1583       continue;
1584     }
1585 
1586     // Found a .crash file matching the driver pid. To avoid getting an older
1587     // and misleading crash file, continue looking for the most recent.
1588     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1589     // multiple crashes poiting to the same parent process. Since the driver
1590     // does not collect pid information for the dispatched invocation there's
1591     // currently no way to distinguish among them.
1592     const auto FileAccessTime = FileStatus.getLastModificationTime();
1593     if (FileAccessTime > LastAccessTime) {
1594       CrashFilePath.assign(File->path());
1595       LastAccessTime = FileAccessTime;
1596     }
1597   }
1598 
1599   // If found, copy it over to the location of other reproducer files.
1600   if (!CrashFilePath.empty()) {
1601     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1602     if (EC)
1603       return false;
1604     return true;
1605   }
1606 
1607   return false;
1608 }
1609 
1610 static const char BugReporMsg[] =
1611     "\n********************\n\n"
1612     "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1613     "Preprocessed source(s) and associated run script(s) are located at:";
1614 
1615 // When clang crashes, produce diagnostic information including the fully
1616 // preprocessed source file(s).  Request that the developer attach the
1617 // diagnostic information to a bug report.
1618 void Driver::generateCompilationDiagnostics(
1619     Compilation &C, const Command &FailingCommand,
1620     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1621   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1622     return;
1623 
1624   unsigned Level = 1;
1625   if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1626     Level = llvm::StringSwitch<unsigned>(A->getValue())
1627                 .Case("off", 0)
1628                 .Case("compiler", 1)
1629                 .Case("all", 2)
1630                 .Default(1);
1631   }
1632   if (!Level)
1633     return;
1634 
1635   // Don't try to generate diagnostics for dsymutil jobs.
1636   if (FailingCommand.getCreator().isDsymutilJob())
1637     return;
1638 
1639   bool IsLLD = false;
1640   ArgStringList SavedTemps;
1641   if (FailingCommand.getCreator().isLinkJob()) {
1642     C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1643     if (!IsLLD || Level < 2)
1644       return;
1645 
1646     // If lld crashed, we will re-run the same command with the input it used
1647     // to have. In that case we should not remove temp files in
1648     // initCompilationForDiagnostics yet. They will be added back and removed
1649     // later.
1650     SavedTemps = std::move(C.getTempFiles());
1651     assert(!C.getTempFiles().size());
1652   }
1653 
1654   // Print the version of the compiler.
1655   PrintVersion(C, llvm::errs());
1656 
1657   // Suppress driver output and emit preprocessor output to temp file.
1658   CCGenDiagnostics = true;
1659 
1660   // Save the original job command(s).
1661   Command Cmd = FailingCommand;
1662 
1663   // Keep track of whether we produce any errors while trying to produce
1664   // preprocessed sources.
1665   DiagnosticErrorTrap Trap(Diags);
1666 
1667   // Suppress tool output.
1668   C.initCompilationForDiagnostics();
1669 
1670   // If lld failed, rerun it again with --reproduce.
1671   if (IsLLD) {
1672     const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1673     Command NewLLDInvocation = Cmd;
1674     llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1675     StringRef ReproduceOption =
1676         C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1677             ? "/reproduce:"
1678             : "--reproduce=";
1679     ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1680     NewLLDInvocation.replaceArguments(std::move(ArgList));
1681 
1682     // Redirect stdout/stderr to /dev/null.
1683     NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1684     Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1685     Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1686     Diag(clang::diag::note_drv_command_failed_diag_msg)
1687         << "\n\n********************";
1688     if (Report)
1689       Report->TemporaryFiles.push_back(TmpName);
1690     return;
1691   }
1692 
1693   // Construct the list of inputs.
1694   InputList Inputs;
1695   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1696 
1697   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1698     bool IgnoreInput = false;
1699 
1700     // Ignore input from stdin or any inputs that cannot be preprocessed.
1701     // Check type first as not all linker inputs have a value.
1702     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1703       IgnoreInput = true;
1704     } else if (!strcmp(it->second->getValue(), "-")) {
1705       Diag(clang::diag::note_drv_command_failed_diag_msg)
1706           << "Error generating preprocessed source(s) - "
1707              "ignoring input from stdin.";
1708       IgnoreInput = true;
1709     }
1710 
1711     if (IgnoreInput) {
1712       it = Inputs.erase(it);
1713       ie = Inputs.end();
1714     } else {
1715       ++it;
1716     }
1717   }
1718 
1719   if (Inputs.empty()) {
1720     Diag(clang::diag::note_drv_command_failed_diag_msg)
1721         << "Error generating preprocessed source(s) - "
1722            "no preprocessable inputs.";
1723     return;
1724   }
1725 
1726   // Don't attempt to generate preprocessed files if multiple -arch options are
1727   // used, unless they're all duplicates.
1728   llvm::StringSet<> ArchNames;
1729   for (const Arg *A : C.getArgs()) {
1730     if (A->getOption().matches(options::OPT_arch)) {
1731       StringRef ArchName = A->getValue();
1732       ArchNames.insert(ArchName);
1733     }
1734   }
1735   if (ArchNames.size() > 1) {
1736     Diag(clang::diag::note_drv_command_failed_diag_msg)
1737         << "Error generating preprocessed source(s) - cannot generate "
1738            "preprocessed source with multiple -arch options.";
1739     return;
1740   }
1741 
1742   // Construct the list of abstract actions to perform for this compilation. On
1743   // Darwin OSes this uses the driver-driver and builds universal actions.
1744   const ToolChain &TC = C.getDefaultToolChain();
1745   if (TC.getTriple().isOSBinFormatMachO())
1746     BuildUniversalActions(C, TC, Inputs);
1747   else
1748     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1749 
1750   BuildJobs(C);
1751 
1752   // If there were errors building the compilation, quit now.
1753   if (Trap.hasErrorOccurred()) {
1754     Diag(clang::diag::note_drv_command_failed_diag_msg)
1755         << "Error generating preprocessed source(s).";
1756     return;
1757   }
1758 
1759   // Generate preprocessed output.
1760   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1761   C.ExecuteJobs(C.getJobs(), FailingCommands);
1762 
1763   // If any of the preprocessing commands failed, clean up and exit.
1764   if (!FailingCommands.empty()) {
1765     Diag(clang::diag::note_drv_command_failed_diag_msg)
1766         << "Error generating preprocessed source(s).";
1767     return;
1768   }
1769 
1770   const ArgStringList &TempFiles = C.getTempFiles();
1771   if (TempFiles.empty()) {
1772     Diag(clang::diag::note_drv_command_failed_diag_msg)
1773         << "Error generating preprocessed source(s).";
1774     return;
1775   }
1776 
1777   Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1778 
1779   SmallString<128> VFS;
1780   SmallString<128> ReproCrashFilename;
1781   for (const char *TempFile : TempFiles) {
1782     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1783     if (Report)
1784       Report->TemporaryFiles.push_back(TempFile);
1785     if (ReproCrashFilename.empty()) {
1786       ReproCrashFilename = TempFile;
1787       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1788     }
1789     if (StringRef(TempFile).ends_with(".cache")) {
1790       // In some cases (modules) we'll dump extra data to help with reproducing
1791       // the crash into a directory next to the output.
1792       VFS = llvm::sys::path::filename(TempFile);
1793       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1794     }
1795   }
1796 
1797   for (const char *TempFile : SavedTemps)
1798     C.addTempFile(TempFile);
1799 
1800   // Assume associated files are based off of the first temporary file.
1801   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1802 
1803   llvm::SmallString<128> Script(CrashInfo.Filename);
1804   llvm::sys::path::replace_extension(Script, "sh");
1805   std::error_code EC;
1806   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1807                                 llvm::sys::fs::FA_Write,
1808                                 llvm::sys::fs::OF_Text);
1809   if (EC) {
1810     Diag(clang::diag::note_drv_command_failed_diag_msg)
1811         << "Error generating run script: " << Script << " " << EC.message();
1812   } else {
1813     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1814              << "# Driver args: ";
1815     printArgList(ScriptOS, C.getInputArgs());
1816     ScriptOS << "# Original command: ";
1817     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1818     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1819     if (!AdditionalInformation.empty())
1820       ScriptOS << "\n# Additional information: " << AdditionalInformation
1821                << "\n";
1822     if (Report)
1823       Report->TemporaryFiles.push_back(std::string(Script.str()));
1824     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1825   }
1826 
1827   // On darwin, provide information about the .crash diagnostic report.
1828   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1829     SmallString<128> CrashDiagDir;
1830     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1831       Diag(clang::diag::note_drv_command_failed_diag_msg)
1832           << ReproCrashFilename.str();
1833     } else { // Suggest a directory for the user to look for .crash files.
1834       llvm::sys::path::append(CrashDiagDir, Name);
1835       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1836       Diag(clang::diag::note_drv_command_failed_diag_msg)
1837           << "Crash backtrace is located in";
1838       Diag(clang::diag::note_drv_command_failed_diag_msg)
1839           << CrashDiagDir.str();
1840       Diag(clang::diag::note_drv_command_failed_diag_msg)
1841           << "(choose the .crash file that corresponds to your crash)";
1842     }
1843   }
1844 
1845   Diag(clang::diag::note_drv_command_failed_diag_msg)
1846       << "\n\n********************";
1847 }
1848 
1849 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1850   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1851   // capacity if the tool does not support response files, there is a chance/
1852   // that things will just work without a response file, so we silently just
1853   // skip it.
1854   if (Cmd.getResponseFileSupport().ResponseKind ==
1855           ResponseFileSupport::RF_None ||
1856       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1857                                                    Cmd.getArguments()))
1858     return;
1859 
1860   std::string TmpName = GetTemporaryPath("response", "txt");
1861   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1862 }
1863 
1864 int Driver::ExecuteCompilation(
1865     Compilation &C,
1866     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1867   if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1868     if (C.getArgs().hasArg(options::OPT_v))
1869       C.getJobs().Print(llvm::errs(), "\n", true);
1870 
1871     C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1872 
1873     // If there were errors building the compilation, quit now.
1874     if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1875       return 1;
1876 
1877     return 0;
1878   }
1879 
1880   // Just print if -### was present.
1881   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1882     C.getJobs().Print(llvm::errs(), "\n", true);
1883     return Diags.hasErrorOccurred() ? 1 : 0;
1884   }
1885 
1886   // If there were errors building the compilation, quit now.
1887   if (Diags.hasErrorOccurred())
1888     return 1;
1889 
1890   // Set up response file names for each command, if necessary.
1891   for (auto &Job : C.getJobs())
1892     setUpResponseFiles(C, Job);
1893 
1894   C.ExecuteJobs(C.getJobs(), FailingCommands);
1895 
1896   // If the command succeeded, we are done.
1897   if (FailingCommands.empty())
1898     return 0;
1899 
1900   // Otherwise, remove result files and print extra information about abnormal
1901   // failures.
1902   int Res = 0;
1903   for (const auto &CmdPair : FailingCommands) {
1904     int CommandRes = CmdPair.first;
1905     const Command *FailingCommand = CmdPair.second;
1906 
1907     // Remove result files if we're not saving temps.
1908     if (!isSaveTempsEnabled()) {
1909       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1910       C.CleanupFileMap(C.getResultFiles(), JA, true);
1911 
1912       // Failure result files are valid unless we crashed.
1913       if (CommandRes < 0)
1914         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1915     }
1916 
1917     // llvm/lib/Support/*/Signals.inc will exit with a special return code
1918     // for SIGPIPE. Do not print diagnostics for this case.
1919     if (CommandRes == EX_IOERR) {
1920       Res = CommandRes;
1921       continue;
1922     }
1923 
1924     // Print extra information about abnormal failures, if possible.
1925     //
1926     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1927     // status was 1, assume the command failed normally. In particular, if it
1928     // was the compiler then assume it gave a reasonable error code. Failures
1929     // in other tools are less common, and they generally have worse
1930     // diagnostics, so always print the diagnostic there.
1931     const Tool &FailingTool = FailingCommand->getCreator();
1932 
1933     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1934       // FIXME: See FIXME above regarding result code interpretation.
1935       if (CommandRes < 0)
1936         Diag(clang::diag::err_drv_command_signalled)
1937             << FailingTool.getShortName();
1938       else
1939         Diag(clang::diag::err_drv_command_failed)
1940             << FailingTool.getShortName() << CommandRes;
1941     }
1942   }
1943   return Res;
1944 }
1945 
1946 void Driver::PrintHelp(bool ShowHidden) const {
1947   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1948 
1949   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1950   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1951                       ShowHidden, /*ShowAllAliases=*/false,
1952                       VisibilityMask);
1953 }
1954 
1955 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1956   if (IsFlangMode()) {
1957     OS << getClangToolFullVersion("flang-new") << '\n';
1958   } else {
1959     // FIXME: The following handlers should use a callback mechanism, we don't
1960     // know what the client would like to do.
1961     OS << getClangFullVersion() << '\n';
1962   }
1963   const ToolChain &TC = C.getDefaultToolChain();
1964   OS << "Target: " << TC.getTripleString() << '\n';
1965 
1966   // Print the threading model.
1967   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1968     // Don't print if the ToolChain would have barfed on it already
1969     if (TC.isThreadModelSupported(A->getValue()))
1970       OS << "Thread model: " << A->getValue();
1971   } else
1972     OS << "Thread model: " << TC.getThreadModel();
1973   OS << '\n';
1974 
1975   // Print out the install directory.
1976   OS << "InstalledDir: " << InstalledDir << '\n';
1977 
1978   // If configuration files were used, print their paths.
1979   for (auto ConfigFile : ConfigFiles)
1980     OS << "Configuration file: " << ConfigFile << '\n';
1981 }
1982 
1983 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1984 /// option.
1985 static void PrintDiagnosticCategories(raw_ostream &OS) {
1986   // Skip the empty category.
1987   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1988        ++i)
1989     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1990 }
1991 
1992 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1993   if (PassedFlags == "")
1994     return;
1995   // Print out all options that start with a given argument. This is used for
1996   // shell autocompletion.
1997   std::vector<std::string> SuggestedCompletions;
1998   std::vector<std::string> Flags;
1999 
2000   llvm::opt::Visibility VisibilityMask(options::ClangOption);
2001 
2002   // Make sure that Flang-only options don't pollute the Clang output
2003   // TODO: Make sure that Clang-only options don't pollute Flang output
2004   if (IsFlangMode())
2005     VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2006 
2007   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2008   // because the latter indicates that the user put space before pushing tab
2009   // which should end up in a file completion.
2010   const bool HasSpace = PassedFlags.ends_with(",");
2011 
2012   // Parse PassedFlags by "," as all the command-line flags are passed to this
2013   // function separated by ","
2014   StringRef TargetFlags = PassedFlags;
2015   while (TargetFlags != "") {
2016     StringRef CurFlag;
2017     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2018     Flags.push_back(std::string(CurFlag));
2019   }
2020 
2021   // We want to show cc1-only options only when clang is invoked with -cc1 or
2022   // -Xclang.
2023   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2024     VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2025 
2026   const llvm::opt::OptTable &Opts = getOpts();
2027   StringRef Cur;
2028   Cur = Flags.at(Flags.size() - 1);
2029   StringRef Prev;
2030   if (Flags.size() >= 2) {
2031     Prev = Flags.at(Flags.size() - 2);
2032     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2033   }
2034 
2035   if (SuggestedCompletions.empty())
2036     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2037 
2038   // If Flags were empty, it means the user typed `clang [tab]` where we should
2039   // list all possible flags. If there was no value completion and the user
2040   // pressed tab after a space, we should fall back to a file completion.
2041   // We're printing a newline to be consistent with what we print at the end of
2042   // this function.
2043   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2044     llvm::outs() << '\n';
2045     return;
2046   }
2047 
2048   // When flag ends with '=' and there was no value completion, return empty
2049   // string and fall back to the file autocompletion.
2050   if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2051     // If the flag is in the form of "--autocomplete=-foo",
2052     // we were requested to print out all option names that start with "-foo".
2053     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2054     SuggestedCompletions = Opts.findByPrefix(
2055         Cur, VisibilityMask,
2056         /*DisableFlags=*/options::Unsupported | options::Ignored);
2057 
2058     // We have to query the -W flags manually as they're not in the OptTable.
2059     // TODO: Find a good way to add them to OptTable instead and them remove
2060     // this code.
2061     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2062       if (S.starts_with(Cur))
2063         SuggestedCompletions.push_back(std::string(S));
2064   }
2065 
2066   // Sort the autocomplete candidates so that shells print them out in a
2067   // deterministic order. We could sort in any way, but we chose
2068   // case-insensitive sorting for consistency with the -help option
2069   // which prints out options in the case-insensitive alphabetical order.
2070   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2071     if (int X = A.compare_insensitive(B))
2072       return X < 0;
2073     return A.compare(B) > 0;
2074   });
2075 
2076   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2077 }
2078 
2079 bool Driver::HandleImmediateArgs(const Compilation &C) {
2080   // The order these options are handled in gcc is all over the place, but we
2081   // don't expect inconsistencies w.r.t. that to matter in practice.
2082 
2083   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2084     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2085     return false;
2086   }
2087 
2088   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2089     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2090     // return an answer which matches our definition of __VERSION__.
2091     llvm::outs() << CLANG_VERSION_STRING << "\n";
2092     return false;
2093   }
2094 
2095   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2096     PrintDiagnosticCategories(llvm::outs());
2097     return false;
2098   }
2099 
2100   if (C.getArgs().hasArg(options::OPT_help) ||
2101       C.getArgs().hasArg(options::OPT__help_hidden)) {
2102     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2103     return false;
2104   }
2105 
2106   if (C.getArgs().hasArg(options::OPT__version)) {
2107     // Follow gcc behavior and use stdout for --version and stderr for -v.
2108     PrintVersion(C, llvm::outs());
2109     return false;
2110   }
2111 
2112   if (C.getArgs().hasArg(options::OPT_v) ||
2113       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2114       C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2115       C.getArgs().hasArg(options::OPT_print_supported_extensions)) {
2116     PrintVersion(C, llvm::errs());
2117     SuppressMissingInputWarning = true;
2118   }
2119 
2120   if (C.getArgs().hasArg(options::OPT_v)) {
2121     if (!SystemConfigDir.empty())
2122       llvm::errs() << "System configuration file directory: "
2123                    << SystemConfigDir << "\n";
2124     if (!UserConfigDir.empty())
2125       llvm::errs() << "User configuration file directory: "
2126                    << UserConfigDir << "\n";
2127   }
2128 
2129   const ToolChain &TC = C.getDefaultToolChain();
2130 
2131   if (C.getArgs().hasArg(options::OPT_v))
2132     TC.printVerboseInfo(llvm::errs());
2133 
2134   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2135     llvm::outs() << ResourceDir << '\n';
2136     return false;
2137   }
2138 
2139   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2140     llvm::outs() << "programs: =";
2141     bool separator = false;
2142     // Print -B and COMPILER_PATH.
2143     for (const std::string &Path : PrefixDirs) {
2144       if (separator)
2145         llvm::outs() << llvm::sys::EnvPathSeparator;
2146       llvm::outs() << Path;
2147       separator = true;
2148     }
2149     for (const std::string &Path : TC.getProgramPaths()) {
2150       if (separator)
2151         llvm::outs() << llvm::sys::EnvPathSeparator;
2152       llvm::outs() << Path;
2153       separator = true;
2154     }
2155     llvm::outs() << "\n";
2156     llvm::outs() << "libraries: =" << ResourceDir;
2157 
2158     StringRef sysroot = C.getSysRoot();
2159 
2160     for (const std::string &Path : TC.getFilePaths()) {
2161       // Always print a separator. ResourceDir was the first item shown.
2162       llvm::outs() << llvm::sys::EnvPathSeparator;
2163       // Interpretation of leading '=' is needed only for NetBSD.
2164       if (Path[0] == '=')
2165         llvm::outs() << sysroot << Path.substr(1);
2166       else
2167         llvm::outs() << Path;
2168     }
2169     llvm::outs() << "\n";
2170     return false;
2171   }
2172 
2173   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2174     if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2175       llvm::outs() << *RuntimePath << '\n';
2176     else
2177       llvm::outs() << TC.getCompilerRTPath() << '\n';
2178     return false;
2179   }
2180 
2181   if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2182     std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2183     for (std::size_t I = 0; I != Flags.size(); I += 2)
2184       llvm::outs() << "  " << Flags[I] << "\n  " << Flags[I + 1] << "\n\n";
2185     return false;
2186   }
2187 
2188   // FIXME: The following handlers should use a callback mechanism, we don't
2189   // know what the client would like to do.
2190   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2191     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2192     return false;
2193   }
2194 
2195   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2196     StringRef ProgName = A->getValue();
2197 
2198     // Null program name cannot have a path.
2199     if (! ProgName.empty())
2200       llvm::outs() << GetProgramPath(ProgName, TC);
2201 
2202     llvm::outs() << "\n";
2203     return false;
2204   }
2205 
2206   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2207     StringRef PassedFlags = A->getValue();
2208     HandleAutocompletions(PassedFlags);
2209     return false;
2210   }
2211 
2212   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2213     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2214     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2215     RegisterEffectiveTriple TripleRAII(TC, Triple);
2216     switch (RLT) {
2217     case ToolChain::RLT_CompilerRT:
2218       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2219       break;
2220     case ToolChain::RLT_Libgcc:
2221       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2222       break;
2223     }
2224     return false;
2225   }
2226 
2227   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2228     for (const Multilib &Multilib : TC.getMultilibs())
2229       llvm::outs() << Multilib << "\n";
2230     return false;
2231   }
2232 
2233   if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2234     Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2235     llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2236     std::set<llvm::StringRef> SortedFlags;
2237     for (const auto &FlagEntry : ExpandedFlags)
2238       SortedFlags.insert(FlagEntry.getKey());
2239     for (auto Flag : SortedFlags)
2240       llvm::outs() << Flag << '\n';
2241     return false;
2242   }
2243 
2244   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2245     for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2246       if (Multilib.gccSuffix().empty())
2247         llvm::outs() << ".\n";
2248       else {
2249         StringRef Suffix(Multilib.gccSuffix());
2250         assert(Suffix.front() == '/');
2251         llvm::outs() << Suffix.substr(1) << "\n";
2252       }
2253     }
2254     return false;
2255   }
2256 
2257   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2258     llvm::outs() << TC.getTripleString() << "\n";
2259     return false;
2260   }
2261 
2262   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2263     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2264     llvm::outs() << Triple.getTriple() << "\n";
2265     return false;
2266   }
2267 
2268   if (C.getArgs().hasArg(options::OPT_print_targets)) {
2269     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2270     return false;
2271   }
2272 
2273   return true;
2274 }
2275 
2276 enum {
2277   TopLevelAction = 0,
2278   HeadSibAction = 1,
2279   OtherSibAction = 2,
2280 };
2281 
2282 // Display an action graph human-readably.  Action A is the "sink" node
2283 // and latest-occuring action. Traversal is in pre-order, visiting the
2284 // inputs to each action before printing the action itself.
2285 static unsigned PrintActions1(const Compilation &C, Action *A,
2286                               std::map<Action *, unsigned> &Ids,
2287                               Twine Indent = {}, int Kind = TopLevelAction) {
2288   if (Ids.count(A)) // A was already visited.
2289     return Ids[A];
2290 
2291   std::string str;
2292   llvm::raw_string_ostream os(str);
2293 
2294   auto getSibIndent = [](int K) -> Twine {
2295     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
2296   };
2297 
2298   Twine SibIndent = Indent + getSibIndent(Kind);
2299   int SibKind = HeadSibAction;
2300   os << Action::getClassName(A->getKind()) << ", ";
2301   if (InputAction *IA = dyn_cast<InputAction>(A)) {
2302     os << "\"" << IA->getInputArg().getValue() << "\"";
2303   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2304     os << '"' << BIA->getArchName() << '"' << ", {"
2305        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2306   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2307     bool IsFirst = true;
2308     OA->doOnEachDependence(
2309         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2310           assert(TC && "Unknown host toolchain");
2311           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2312           // sm_35 this will generate:
2313           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2314           // (nvptx64-nvidia-cuda:sm_35) {#ID}
2315           if (!IsFirst)
2316             os << ", ";
2317           os << '"';
2318           os << A->getOffloadingKindPrefix();
2319           os << " (";
2320           os << TC->getTriple().normalize();
2321           if (BoundArch)
2322             os << ":" << BoundArch;
2323           os << ")";
2324           os << '"';
2325           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2326           IsFirst = false;
2327           SibKind = OtherSibAction;
2328         });
2329   } else {
2330     const ActionList *AL = &A->getInputs();
2331 
2332     if (AL->size()) {
2333       const char *Prefix = "{";
2334       for (Action *PreRequisite : *AL) {
2335         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2336         Prefix = ", ";
2337         SibKind = OtherSibAction;
2338       }
2339       os << "}";
2340     } else
2341       os << "{}";
2342   }
2343 
2344   // Append offload info for all options other than the offloading action
2345   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2346   std::string offload_str;
2347   llvm::raw_string_ostream offload_os(offload_str);
2348   if (!isa<OffloadAction>(A)) {
2349     auto S = A->getOffloadingKindPrefix();
2350     if (!S.empty()) {
2351       offload_os << ", (" << S;
2352       if (A->getOffloadingArch())
2353         offload_os << ", " << A->getOffloadingArch();
2354       offload_os << ")";
2355     }
2356   }
2357 
2358   auto getSelfIndent = [](int K) -> Twine {
2359     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2360   };
2361 
2362   unsigned Id = Ids.size();
2363   Ids[A] = Id;
2364   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2365                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2366 
2367   return Id;
2368 }
2369 
2370 // Print the action graphs in a compilation C.
2371 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2372 void Driver::PrintActions(const Compilation &C) const {
2373   std::map<Action *, unsigned> Ids;
2374   for (Action *A : C.getActions())
2375     PrintActions1(C, A, Ids);
2376 }
2377 
2378 /// Check whether the given input tree contains any compilation or
2379 /// assembly actions.
2380 static bool ContainsCompileOrAssembleAction(const Action *A) {
2381   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2382       isa<AssembleJobAction>(A))
2383     return true;
2384 
2385   return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2386 }
2387 
2388 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2389                                    const InputList &BAInputs) const {
2390   DerivedArgList &Args = C.getArgs();
2391   ActionList &Actions = C.getActions();
2392   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2393   // Collect the list of architectures. Duplicates are allowed, but should only
2394   // be handled once (in the order seen).
2395   llvm::StringSet<> ArchNames;
2396   SmallVector<const char *, 4> Archs;
2397   for (Arg *A : Args) {
2398     if (A->getOption().matches(options::OPT_arch)) {
2399       // Validate the option here; we don't save the type here because its
2400       // particular spelling may participate in other driver choices.
2401       llvm::Triple::ArchType Arch =
2402           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2403       if (Arch == llvm::Triple::UnknownArch) {
2404         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2405         continue;
2406       }
2407 
2408       A->claim();
2409       if (ArchNames.insert(A->getValue()).second)
2410         Archs.push_back(A->getValue());
2411     }
2412   }
2413 
2414   // When there is no explicit arch for this platform, make sure we still bind
2415   // the architecture (to the default) so that -Xarch_ is handled correctly.
2416   if (!Archs.size())
2417     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2418 
2419   ActionList SingleActions;
2420   BuildActions(C, Args, BAInputs, SingleActions);
2421 
2422   // Add in arch bindings for every top level action, as well as lipo and
2423   // dsymutil steps if needed.
2424   for (Action* Act : SingleActions) {
2425     // Make sure we can lipo this kind of output. If not (and it is an actual
2426     // output) then we disallow, since we can't create an output file with the
2427     // right name without overwriting it. We could remove this oddity by just
2428     // changing the output names to include the arch, which would also fix
2429     // -save-temps. Compatibility wins for now.
2430 
2431     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2432       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2433           << types::getTypeName(Act->getType());
2434 
2435     ActionList Inputs;
2436     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2437       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2438 
2439     // Lipo if necessary, we do it this way because we need to set the arch flag
2440     // so that -Xarch_ gets overwritten.
2441     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2442       Actions.append(Inputs.begin(), Inputs.end());
2443     else
2444       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2445 
2446     // Handle debug info queries.
2447     Arg *A = Args.getLastArg(options::OPT_g_Group);
2448     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2449                             !A->getOption().matches(options::OPT_gstabs);
2450     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2451         ContainsCompileOrAssembleAction(Actions.back())) {
2452 
2453       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2454       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2455       // because the debug info will refer to a temporary object file which
2456       // will be removed at the end of the compilation process.
2457       if (Act->getType() == types::TY_Image) {
2458         ActionList Inputs;
2459         Inputs.push_back(Actions.back());
2460         Actions.pop_back();
2461         Actions.push_back(
2462             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2463       }
2464 
2465       // Verify the debug info output.
2466       if (Args.hasArg(options::OPT_verify_debug_info)) {
2467         Action* LastAction = Actions.back();
2468         Actions.pop_back();
2469         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2470             LastAction, types::TY_Nothing));
2471       }
2472     }
2473   }
2474 }
2475 
2476 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2477                                     types::ID Ty, bool TypoCorrect) const {
2478   if (!getCheckInputsExist())
2479     return true;
2480 
2481   // stdin always exists.
2482   if (Value == "-")
2483     return true;
2484 
2485   // If it's a header to be found in the system or user search path, then defer
2486   // complaints about its absence until those searches can be done.  When we
2487   // are definitely processing headers for C++20 header units, extend this to
2488   // allow the user to put "-fmodule-header -xc++-header vector" for example.
2489   if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2490       (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2491     return true;
2492 
2493   if (getVFS().exists(Value))
2494     return true;
2495 
2496   if (TypoCorrect) {
2497     // Check if the filename is a typo for an option flag. OptTable thinks
2498     // that all args that are not known options and that start with / are
2499     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2500     // the option `/diagnostics:caret` than a reference to a file in the root
2501     // directory.
2502     std::string Nearest;
2503     if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2504       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2505           << Value << Nearest;
2506       return false;
2507     }
2508   }
2509 
2510   // In CL mode, don't error on apparently non-existent linker inputs, because
2511   // they can be influenced by linker flags the clang driver might not
2512   // understand.
2513   // Examples:
2514   // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2515   //   module look for an MSVC installation in the registry. (We could ask
2516   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2517   //   look in the registry might move into lld-link in the future so that
2518   //   lld-link invocations in non-MSVC shells just work too.)
2519   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2520   //   including /libpath:, which is used to find .lib and .obj files.
2521   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2522   // it. (If we don't end up invoking the linker, this means we'll emit a
2523   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2524   // of an error.)
2525   //
2526   // Only do this skip after the typo correction step above. `/Brepo` is treated
2527   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2528   // an error if we have a flag that's within an edit distance of 1 from a
2529   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2530   // driver in the unlikely case they run into this.)
2531   //
2532   // Don't do this for inputs that start with a '/', else we'd pass options
2533   // like /libpath: through to the linker silently.
2534   //
2535   // Emitting an error for linker inputs can also cause incorrect diagnostics
2536   // with the gcc driver. The command
2537   //     clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2538   // will make lld look for some/dir/file.o, while we will diagnose here that
2539   // `/file.o` does not exist. However, configure scripts check if
2540   // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2541   // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2542   // in cc mode. (We can in cl mode because cl.exe itself only warns on
2543   // unknown flags.)
2544   if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2545     return true;
2546 
2547   Diag(clang::diag::err_drv_no_such_file) << Value;
2548   return false;
2549 }
2550 
2551 // Get the C++20 Header Unit type corresponding to the input type.
2552 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2553   switch (HM) {
2554   case HeaderMode_User:
2555     return types::TY_CXXUHeader;
2556   case HeaderMode_System:
2557     return types::TY_CXXSHeader;
2558   case HeaderMode_Default:
2559     break;
2560   case HeaderMode_None:
2561     llvm_unreachable("should not be called in this case");
2562   }
2563   return types::TY_CXXHUHeader;
2564 }
2565 
2566 // Construct a the list of inputs and their types.
2567 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2568                          InputList &Inputs) const {
2569   const llvm::opt::OptTable &Opts = getOpts();
2570   // Track the current user specified (-x) input. We also explicitly track the
2571   // argument used to set the type; we only want to claim the type when we
2572   // actually use it, so we warn about unused -x arguments.
2573   types::ID InputType = types::TY_Nothing;
2574   Arg *InputTypeArg = nullptr;
2575 
2576   // The last /TC or /TP option sets the input type to C or C++ globally.
2577   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2578                                          options::OPT__SLASH_TP)) {
2579     InputTypeArg = TCTP;
2580     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2581                     ? types::TY_C
2582                     : types::TY_CXX;
2583 
2584     Arg *Previous = nullptr;
2585     bool ShowNote = false;
2586     for (Arg *A :
2587          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2588       if (Previous) {
2589         Diag(clang::diag::warn_drv_overriding_option)
2590             << Previous->getSpelling() << A->getSpelling();
2591         ShowNote = true;
2592       }
2593       Previous = A;
2594     }
2595     if (ShowNote)
2596       Diag(clang::diag::note_drv_t_option_is_global);
2597   }
2598 
2599   // CUDA/HIP and their preprocessor expansions can be accepted by CL mode.
2600   // Warn -x after last input file has no effect
2601   auto LastXArg = Args.getLastArgValue(options::OPT_x);
2602   const llvm::StringSet<> ValidXArgs = {"cuda", "hip", "cui", "hipi"};
2603   if (!IsCLMode() || ValidXArgs.contains(LastXArg)) {
2604     Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2605     Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2606     if (LastXArg && LastInputArg &&
2607         LastInputArg->getIndex() < LastXArg->getIndex())
2608       Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2609   } else {
2610     // In CL mode suggest /TC or /TP since -x doesn't make sense if passed via
2611     // /clang:.
2612     if (auto *A = Args.getLastArg(options::OPT_x))
2613       Diag(diag::err_drv_unsupported_opt_with_suggestion)
2614           << A->getAsString(Args) << "/TC' or '/TP";
2615   }
2616 
2617   for (Arg *A : Args) {
2618     if (A->getOption().getKind() == Option::InputClass) {
2619       const char *Value = A->getValue();
2620       types::ID Ty = types::TY_INVALID;
2621 
2622       // Infer the input type if necessary.
2623       if (InputType == types::TY_Nothing) {
2624         // If there was an explicit arg for this, claim it.
2625         if (InputTypeArg)
2626           InputTypeArg->claim();
2627 
2628         // stdin must be handled specially.
2629         if (memcmp(Value, "-", 2) == 0) {
2630           if (IsFlangMode()) {
2631             Ty = types::TY_Fortran;
2632           } else if (IsDXCMode()) {
2633             Ty = types::TY_HLSL;
2634           } else {
2635             // If running with -E, treat as a C input (this changes the
2636             // builtin macros, for example). This may be overridden by -ObjC
2637             // below.
2638             //
2639             // Otherwise emit an error but still use a valid type to avoid
2640             // spurious errors (e.g., no inputs).
2641             assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2642             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2643               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2644                               : clang::diag::err_drv_unknown_stdin_type);
2645             Ty = types::TY_C;
2646           }
2647         } else {
2648           // Otherwise lookup by extension.
2649           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2650           // clang-cl /E, or Object otherwise.
2651           // We use a host hook here because Darwin at least has its own
2652           // idea of what .s is.
2653           if (const char *Ext = strrchr(Value, '.'))
2654             Ty = TC.LookupTypeForExtension(Ext + 1);
2655 
2656           if (Ty == types::TY_INVALID) {
2657             if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2658               Ty = types::TY_CXX;
2659             else if (CCCIsCPP() || CCGenDiagnostics)
2660               Ty = types::TY_C;
2661             else
2662               Ty = types::TY_Object;
2663           }
2664 
2665           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2666           // should autodetect some input files as C++ for g++ compatibility.
2667           if (CCCIsCXX()) {
2668             types::ID OldTy = Ty;
2669             Ty = types::lookupCXXTypeForCType(Ty);
2670 
2671             // Do not complain about foo.h, when we are known to be processing
2672             // it as a C++20 header unit.
2673             if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2674               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2675                   << getTypeName(OldTy) << getTypeName(Ty);
2676           }
2677 
2678           // If running with -fthinlto-index=, extensions that normally identify
2679           // native object files actually identify LLVM bitcode files.
2680           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2681               Ty == types::TY_Object)
2682             Ty = types::TY_LLVM_BC;
2683         }
2684 
2685         // -ObjC and -ObjC++ override the default language, but only for "source
2686         // files". We just treat everything that isn't a linker input as a
2687         // source file.
2688         //
2689         // FIXME: Clean this up if we move the phase sequence into the type.
2690         if (Ty != types::TY_Object) {
2691           if (Args.hasArg(options::OPT_ObjC))
2692             Ty = types::TY_ObjC;
2693           else if (Args.hasArg(options::OPT_ObjCXX))
2694             Ty = types::TY_ObjCXX;
2695         }
2696 
2697         // Disambiguate headers that are meant to be header units from those
2698         // intended to be PCH.  Avoid missing '.h' cases that are counted as
2699         // C headers by default - we know we are in C++ mode and we do not
2700         // want to issue a complaint about compiling things in the wrong mode.
2701         if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2702             hasHeaderMode())
2703           Ty = CXXHeaderUnitType(CXX20HeaderType);
2704       } else {
2705         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2706         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2707           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2708           // object files.
2709           const char *Ext = strrchr(Value, '.');
2710           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2711             Ty = types::TY_Object;
2712         }
2713         if (Ty == types::TY_INVALID) {
2714           Ty = InputType;
2715           InputTypeArg->claim();
2716         }
2717       }
2718 
2719       if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2720           Args.hasArgNoClaim(options::OPT_hipstdpar))
2721         Ty = types::TY_HIP;
2722 
2723       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2724         Inputs.push_back(std::make_pair(Ty, A));
2725 
2726     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2727       StringRef Value = A->getValue();
2728       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2729                                  /*TypoCorrect=*/false)) {
2730         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2731         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2732       }
2733       A->claim();
2734     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2735       StringRef Value = A->getValue();
2736       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2737                                  /*TypoCorrect=*/false)) {
2738         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2739         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2740       }
2741       A->claim();
2742     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2743       // Just treat as object type, we could make a special type for this if
2744       // necessary.
2745       Inputs.push_back(std::make_pair(types::TY_Object, A));
2746 
2747     } else if (A->getOption().matches(options::OPT_x)) {
2748       InputTypeArg = A;
2749       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2750       A->claim();
2751 
2752       // Follow gcc behavior and treat as linker input for invalid -x
2753       // options. Its not clear why we shouldn't just revert to unknown; but
2754       // this isn't very important, we might as well be bug compatible.
2755       if (!InputType) {
2756         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2757         InputType = types::TY_Object;
2758       }
2759 
2760       // If the user has put -fmodule-header{,=} then we treat C++ headers as
2761       // header unit inputs.  So we 'promote' -xc++-header appropriately.
2762       if (InputType == types::TY_CXXHeader && hasHeaderMode())
2763         InputType = CXXHeaderUnitType(CXX20HeaderType);
2764     } else if (A->getOption().getID() == options::OPT_U) {
2765       assert(A->getNumValues() == 1 && "The /U option has one value.");
2766       StringRef Val = A->getValue(0);
2767       if (Val.find_first_of("/\\") != StringRef::npos) {
2768         // Warn about e.g. "/Users/me/myfile.c".
2769         Diag(diag::warn_slash_u_filename) << Val;
2770         Diag(diag::note_use_dashdash);
2771       }
2772     }
2773   }
2774   if (CCCIsCPP() && Inputs.empty()) {
2775     // If called as standalone preprocessor, stdin is processed
2776     // if no other input is present.
2777     Arg *A = MakeInputArg(Args, Opts, "-");
2778     Inputs.push_back(std::make_pair(types::TY_C, A));
2779   }
2780 }
2781 
2782 namespace {
2783 /// Provides a convenient interface for different programming models to generate
2784 /// the required device actions.
2785 class OffloadingActionBuilder final {
2786   /// Flag used to trace errors in the builder.
2787   bool IsValid = false;
2788 
2789   /// The compilation that is using this builder.
2790   Compilation &C;
2791 
2792   /// Map between an input argument and the offload kinds used to process it.
2793   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2794 
2795   /// Map between a host action and its originating input argument.
2796   std::map<Action *, const Arg *> HostActionToInputArgMap;
2797 
2798   /// Builder interface. It doesn't build anything or keep any state.
2799   class DeviceActionBuilder {
2800   public:
2801     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2802 
2803     enum ActionBuilderReturnCode {
2804       // The builder acted successfully on the current action.
2805       ABRT_Success,
2806       // The builder didn't have to act on the current action.
2807       ABRT_Inactive,
2808       // The builder was successful and requested the host action to not be
2809       // generated.
2810       ABRT_Ignore_Host,
2811     };
2812 
2813   protected:
2814     /// Compilation associated with this builder.
2815     Compilation &C;
2816 
2817     /// Tool chains associated with this builder. The same programming
2818     /// model may have associated one or more tool chains.
2819     SmallVector<const ToolChain *, 2> ToolChains;
2820 
2821     /// The derived arguments associated with this builder.
2822     DerivedArgList &Args;
2823 
2824     /// The inputs associated with this builder.
2825     const Driver::InputList &Inputs;
2826 
2827     /// The associated offload kind.
2828     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2829 
2830   public:
2831     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2832                         const Driver::InputList &Inputs,
2833                         Action::OffloadKind AssociatedOffloadKind)
2834         : C(C), Args(Args), Inputs(Inputs),
2835           AssociatedOffloadKind(AssociatedOffloadKind) {}
2836     virtual ~DeviceActionBuilder() {}
2837 
2838     /// Fill up the array \a DA with all the device dependences that should be
2839     /// added to the provided host action \a HostAction. By default it is
2840     /// inactive.
2841     virtual ActionBuilderReturnCode
2842     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2843                          phases::ID CurPhase, phases::ID FinalPhase,
2844                          PhasesTy &Phases) {
2845       return ABRT_Inactive;
2846     }
2847 
2848     /// Update the state to include the provided host action \a HostAction as a
2849     /// dependency of the current device action. By default it is inactive.
2850     virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2851       return ABRT_Inactive;
2852     }
2853 
2854     /// Append top level actions generated by the builder.
2855     virtual void appendTopLevelActions(ActionList &AL) {}
2856 
2857     /// Append linker device actions generated by the builder.
2858     virtual void appendLinkDeviceActions(ActionList &AL) {}
2859 
2860     /// Append linker host action generated by the builder.
2861     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2862 
2863     /// Append linker actions generated by the builder.
2864     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2865 
2866     /// Initialize the builder. Return true if any initialization errors are
2867     /// found.
2868     virtual bool initialize() { return false; }
2869 
2870     /// Return true if the builder can use bundling/unbundling.
2871     virtual bool canUseBundlerUnbundler() const { return false; }
2872 
2873     /// Return true if this builder is valid. We have a valid builder if we have
2874     /// associated device tool chains.
2875     bool isValid() { return !ToolChains.empty(); }
2876 
2877     /// Return the associated offload kind.
2878     Action::OffloadKind getAssociatedOffloadKind() {
2879       return AssociatedOffloadKind;
2880     }
2881   };
2882 
2883   /// Base class for CUDA/HIP action builder. It injects device code in
2884   /// the host backend action.
2885   class CudaActionBuilderBase : public DeviceActionBuilder {
2886   protected:
2887     /// Flags to signal if the user requested host-only or device-only
2888     /// compilation.
2889     bool CompileHostOnly = false;
2890     bool CompileDeviceOnly = false;
2891     bool EmitLLVM = false;
2892     bool EmitAsm = false;
2893 
2894     /// ID to identify each device compilation. For CUDA it is simply the
2895     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2896     /// arch string plus feature strings delimited by a plus sign, e.g.
2897     /// gfx906+xnack.
2898     struct TargetID {
2899       /// Target ID string which is persistent throughout the compilation.
2900       const char *ID;
2901       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2902       TargetID(const char *ID) : ID(ID) {}
2903       operator const char *() { return ID; }
2904       operator StringRef() { return StringRef(ID); }
2905     };
2906     /// List of GPU architectures to use in this compilation.
2907     SmallVector<TargetID, 4> GpuArchList;
2908 
2909     /// The CUDA actions for the current input.
2910     ActionList CudaDeviceActions;
2911 
2912     /// The CUDA fat binary if it was generated for the current input.
2913     Action *CudaFatBinary = nullptr;
2914 
2915     /// Flag that is set to true if this builder acted on the current input.
2916     bool IsActive = false;
2917 
2918     /// Flag for -fgpu-rdc.
2919     bool Relocatable = false;
2920 
2921     /// Default GPU architecture if there's no one specified.
2922     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2923 
2924     /// Method to generate compilation unit ID specified by option
2925     /// '-fuse-cuid='.
2926     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2927     UseCUIDKind UseCUID = CUID_Hash;
2928 
2929     /// Compilation unit ID specified by option '-cuid='.
2930     StringRef FixedCUID;
2931 
2932   public:
2933     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2934                           const Driver::InputList &Inputs,
2935                           Action::OffloadKind OFKind)
2936         : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2937 
2938       CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2939       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2940                                  options::OPT_fno_gpu_rdc, /*Default=*/false);
2941     }
2942 
2943     ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
2944       // While generating code for CUDA, we only depend on the host input action
2945       // to trigger the creation of all the CUDA device actions.
2946 
2947       // If we are dealing with an input action, replicate it for each GPU
2948       // architecture. If we are in host-only mode we return 'success' so that
2949       // the host uses the CUDA offload kind.
2950       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2951         assert(!GpuArchList.empty() &&
2952                "We should have at least one GPU architecture.");
2953 
2954         // If the host input is not CUDA or HIP, we don't need to bother about
2955         // this input.
2956         if (!(IA->getType() == types::TY_CUDA ||
2957               IA->getType() == types::TY_HIP ||
2958               IA->getType() == types::TY_PP_HIP)) {
2959           // The builder will ignore this input.
2960           IsActive = false;
2961           return ABRT_Inactive;
2962         }
2963 
2964         // Set the flag to true, so that the builder acts on the current input.
2965         IsActive = true;
2966 
2967         if (CompileHostOnly)
2968           return ABRT_Success;
2969 
2970         // Replicate inputs for each GPU architecture.
2971         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2972                                                  : types::TY_CUDA_DEVICE;
2973         std::string CUID = FixedCUID.str();
2974         if (CUID.empty()) {
2975           if (UseCUID == CUID_Random)
2976             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2977                                    /*LowerCase=*/true);
2978           else if (UseCUID == CUID_Hash) {
2979             llvm::MD5 Hasher;
2980             llvm::MD5::MD5Result Hash;
2981             SmallString<256> RealPath;
2982             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2983                                      /*expand_tilde=*/true);
2984             Hasher.update(RealPath);
2985             for (auto *A : Args) {
2986               if (A->getOption().matches(options::OPT_INPUT))
2987                 continue;
2988               Hasher.update(A->getAsString(Args));
2989             }
2990             Hasher.final(Hash);
2991             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2992           }
2993         }
2994         IA->setId(CUID);
2995 
2996         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2997           CudaDeviceActions.push_back(
2998               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2999         }
3000 
3001         return ABRT_Success;
3002       }
3003 
3004       // If this is an unbundling action use it as is for each CUDA toolchain.
3005       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3006 
3007         // If -fgpu-rdc is disabled, should not unbundle since there is no
3008         // device code to link.
3009         if (UA->getType() == types::TY_Object && !Relocatable)
3010           return ABRT_Inactive;
3011 
3012         CudaDeviceActions.clear();
3013         auto *IA = cast<InputAction>(UA->getInputs().back());
3014         std::string FileName = IA->getInputArg().getAsString(Args);
3015         // Check if the type of the file is the same as the action. Do not
3016         // unbundle it if it is not. Do not unbundle .so files, for example,
3017         // which are not object files. Files with extension ".lib" is classified
3018         // as TY_Object but they are actually archives, therefore should not be
3019         // unbundled here as objects. They will be handled at other places.
3020         const StringRef LibFileExt = ".lib";
3021         if (IA->getType() == types::TY_Object &&
3022             (!llvm::sys::path::has_extension(FileName) ||
3023              types::lookupTypeForExtension(
3024                  llvm::sys::path::extension(FileName).drop_front()) !=
3025                  types::TY_Object ||
3026              llvm::sys::path::extension(FileName) == LibFileExt))
3027           return ABRT_Inactive;
3028 
3029         for (auto Arch : GpuArchList) {
3030           CudaDeviceActions.push_back(UA);
3031           UA->registerDependentActionInfo(ToolChains[0], Arch,
3032                                           AssociatedOffloadKind);
3033         }
3034         IsActive = true;
3035         return ABRT_Success;
3036       }
3037 
3038       return IsActive ? ABRT_Success : ABRT_Inactive;
3039     }
3040 
3041     void appendTopLevelActions(ActionList &AL) override {
3042       // Utility to append actions to the top level list.
3043       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3044         OffloadAction::DeviceDependences Dep;
3045         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3046         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3047       };
3048 
3049       // If we have a fat binary, add it to the list.
3050       if (CudaFatBinary) {
3051         AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
3052         CudaDeviceActions.clear();
3053         CudaFatBinary = nullptr;
3054         return;
3055       }
3056 
3057       if (CudaDeviceActions.empty())
3058         return;
3059 
3060       // If we have CUDA actions at this point, that's because we have a have
3061       // partial compilation, so we should have an action for each GPU
3062       // architecture.
3063       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3064              "Expecting one action per GPU architecture.");
3065       assert(ToolChains.size() == 1 &&
3066              "Expecting to have a single CUDA toolchain.");
3067       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3068         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3069 
3070       CudaDeviceActions.clear();
3071     }
3072 
3073     /// Get canonicalized offload arch option. \returns empty StringRef if the
3074     /// option is invalid.
3075     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3076 
3077     virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3078     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3079 
3080     bool initialize() override {
3081       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3082              AssociatedOffloadKind == Action::OFK_HIP);
3083 
3084       // We don't need to support CUDA.
3085       if (AssociatedOffloadKind == Action::OFK_Cuda &&
3086           !C.hasOffloadToolChain<Action::OFK_Cuda>())
3087         return false;
3088 
3089       // We don't need to support HIP.
3090       if (AssociatedOffloadKind == Action::OFK_HIP &&
3091           !C.hasOffloadToolChain<Action::OFK_HIP>())
3092         return false;
3093 
3094       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3095       assert(HostTC && "No toolchain for host compilation.");
3096       if (HostTC->getTriple().isNVPTX() ||
3097           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3098         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3099         // an error and abort pipeline construction early so we don't trip
3100         // asserts that assume device-side compilation.
3101         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3102             << HostTC->getTriple().getArchName();
3103         return true;
3104       }
3105 
3106       ToolChains.push_back(
3107           AssociatedOffloadKind == Action::OFK_Cuda
3108               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3109               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3110 
3111       CompileHostOnly = C.getDriver().offloadHostOnly();
3112       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3113       EmitAsm = Args.getLastArg(options::OPT_S);
3114       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3115       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3116         StringRef UseCUIDStr = A->getValue();
3117         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3118                       .Case("hash", CUID_Hash)
3119                       .Case("random", CUID_Random)
3120                       .Case("none", CUID_None)
3121                       .Default(CUID_Invalid);
3122         if (UseCUID == CUID_Invalid) {
3123           C.getDriver().Diag(diag::err_drv_invalid_value)
3124               << A->getAsString(Args) << UseCUIDStr;
3125           C.setContainsError();
3126           return true;
3127         }
3128       }
3129 
3130       // --offload and --offload-arch options are mutually exclusive.
3131       if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3132           Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3133                              options::OPT_no_offload_arch_EQ)) {
3134         C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3135                                                              << "--offload";
3136       }
3137 
3138       // Collect all offload arch parameters, removing duplicates.
3139       std::set<StringRef> GpuArchs;
3140       bool Error = false;
3141       for (Arg *A : Args) {
3142         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3143               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3144           continue;
3145         A->claim();
3146 
3147         for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3148           if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3149               ArchStr == "all") {
3150             GpuArchs.clear();
3151           } else if (ArchStr == "native") {
3152             const ToolChain &TC = *ToolChains.front();
3153             auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3154             if (!GPUsOrErr) {
3155               TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3156                   << llvm::Triple::getArchTypeName(TC.getArch())
3157                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3158               continue;
3159             }
3160 
3161             for (auto GPU : *GPUsOrErr) {
3162               GpuArchs.insert(Args.MakeArgString(GPU));
3163             }
3164           } else {
3165             ArchStr = getCanonicalOffloadArch(ArchStr);
3166             if (ArchStr.empty()) {
3167               Error = true;
3168             } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3169               GpuArchs.insert(ArchStr);
3170             else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3171               GpuArchs.erase(ArchStr);
3172             else
3173               llvm_unreachable("Unexpected option.");
3174           }
3175         }
3176       }
3177 
3178       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3179       if (ConflictingArchs) {
3180         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3181             << ConflictingArchs->first << ConflictingArchs->second;
3182         C.setContainsError();
3183         return true;
3184       }
3185 
3186       // Collect list of GPUs remaining in the set.
3187       for (auto Arch : GpuArchs)
3188         GpuArchList.push_back(Arch.data());
3189 
3190       // Default to sm_20 which is the lowest common denominator for
3191       // supported GPUs.  sm_20 code should work correctly, if
3192       // suboptimally, on all newer GPUs.
3193       if (GpuArchList.empty()) {
3194         if (ToolChains.front()->getTriple().isSPIRV())
3195           GpuArchList.push_back(CudaArch::Generic);
3196         else
3197           GpuArchList.push_back(DefaultCudaArch);
3198       }
3199 
3200       return Error;
3201     }
3202   };
3203 
3204   /// \brief CUDA action builder. It injects device code in the host backend
3205   /// action.
3206   class CudaActionBuilder final : public CudaActionBuilderBase {
3207   public:
3208     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3209                       const Driver::InputList &Inputs)
3210         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3211       DefaultCudaArch = CudaArch::SM_35;
3212     }
3213 
3214     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3215       CudaArch Arch = StringToCudaArch(ArchStr);
3216       if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3217         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3218         return StringRef();
3219       }
3220       return CudaArchToString(Arch);
3221     }
3222 
3223     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3224     getConflictOffloadArchCombination(
3225         const std::set<StringRef> &GpuArchs) override {
3226       return std::nullopt;
3227     }
3228 
3229     ActionBuilderReturnCode
3230     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3231                          phases::ID CurPhase, phases::ID FinalPhase,
3232                          PhasesTy &Phases) override {
3233       if (!IsActive)
3234         return ABRT_Inactive;
3235 
3236       // If we don't have more CUDA actions, we don't have any dependences to
3237       // create for the host.
3238       if (CudaDeviceActions.empty())
3239         return ABRT_Success;
3240 
3241       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3242              "Expecting one action per GPU architecture.");
3243       assert(!CompileHostOnly &&
3244              "Not expecting CUDA actions in host-only compilation.");
3245 
3246       // If we are generating code for the device or we are in a backend phase,
3247       // we attempt to generate the fat binary. We compile each arch to ptx and
3248       // assemble to cubin, then feed the cubin *and* the ptx into a device
3249       // "link" action, which uses fatbinary to combine these cubins into one
3250       // fatbin.  The fatbin is then an input to the host action if not in
3251       // device-only mode.
3252       if (CompileDeviceOnly || CurPhase == phases::Backend) {
3253         ActionList DeviceActions;
3254         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3255           // Produce the device action from the current phase up to the assemble
3256           // phase.
3257           for (auto Ph : Phases) {
3258             // Skip the phases that were already dealt with.
3259             if (Ph < CurPhase)
3260               continue;
3261             // We have to be consistent with the host final phase.
3262             if (Ph > FinalPhase)
3263               break;
3264 
3265             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3266                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3267 
3268             if (Ph == phases::Assemble)
3269               break;
3270           }
3271 
3272           // If we didn't reach the assemble phase, we can't generate the fat
3273           // binary. We don't need to generate the fat binary if we are not in
3274           // device-only mode.
3275           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3276               CompileDeviceOnly)
3277             continue;
3278 
3279           Action *AssembleAction = CudaDeviceActions[I];
3280           assert(AssembleAction->getType() == types::TY_Object);
3281           assert(AssembleAction->getInputs().size() == 1);
3282 
3283           Action *BackendAction = AssembleAction->getInputs()[0];
3284           assert(BackendAction->getType() == types::TY_PP_Asm);
3285 
3286           for (auto &A : {AssembleAction, BackendAction}) {
3287             OffloadAction::DeviceDependences DDep;
3288             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3289             DeviceActions.push_back(
3290                 C.MakeAction<OffloadAction>(DDep, A->getType()));
3291           }
3292         }
3293 
3294         // We generate the fat binary if we have device input actions.
3295         if (!DeviceActions.empty()) {
3296           CudaFatBinary =
3297               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3298 
3299           if (!CompileDeviceOnly) {
3300             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3301                    Action::OFK_Cuda);
3302             // Clear the fat binary, it is already a dependence to an host
3303             // action.
3304             CudaFatBinary = nullptr;
3305           }
3306 
3307           // Remove the CUDA actions as they are already connected to an host
3308           // action or fat binary.
3309           CudaDeviceActions.clear();
3310         }
3311 
3312         // We avoid creating host action in device-only mode.
3313         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3314       } else if (CurPhase > phases::Backend) {
3315         // If we are past the backend phase and still have a device action, we
3316         // don't have to do anything as this action is already a device
3317         // top-level action.
3318         return ABRT_Success;
3319       }
3320 
3321       assert(CurPhase < phases::Backend && "Generating single CUDA "
3322                                            "instructions should only occur "
3323                                            "before the backend phase!");
3324 
3325       // By default, we produce an action for each device arch.
3326       for (Action *&A : CudaDeviceActions)
3327         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3328 
3329       return ABRT_Success;
3330     }
3331   };
3332   /// \brief HIP action builder. It injects device code in the host backend
3333   /// action.
3334   class HIPActionBuilder final : public CudaActionBuilderBase {
3335     /// The linker inputs obtained for each device arch.
3336     SmallVector<ActionList, 8> DeviceLinkerInputs;
3337     // The default bundling behavior depends on the type of output, therefore
3338     // BundleOutput needs to be tri-value: None, true, or false.
3339     // Bundle code objects except --no-gpu-output is specified for device
3340     // only compilation. Bundle other type of output files only if
3341     // --gpu-bundle-output is specified for device only compilation.
3342     std::optional<bool> BundleOutput;
3343     std::optional<bool> EmitReloc;
3344 
3345   public:
3346     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3347                      const Driver::InputList &Inputs)
3348         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3349 
3350       DefaultCudaArch = CudaArch::GFX906;
3351 
3352       if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3353                       options::OPT_fno_hip_emit_relocatable)) {
3354         EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3355                                  options::OPT_fno_hip_emit_relocatable, false);
3356 
3357         if (*EmitReloc) {
3358           if (Relocatable) {
3359             C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3360                 << "-fhip-emit-relocatable"
3361                 << "-fgpu-rdc";
3362           }
3363 
3364           if (!CompileDeviceOnly) {
3365             C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3366                 << "-fhip-emit-relocatable"
3367                 << "--cuda-device-only";
3368           }
3369         }
3370       }
3371 
3372       if (Args.hasArg(options::OPT_gpu_bundle_output,
3373                       options::OPT_no_gpu_bundle_output))
3374         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3375                                     options::OPT_no_gpu_bundle_output, true) &&
3376                        (!EmitReloc || !*EmitReloc);
3377     }
3378 
3379     bool canUseBundlerUnbundler() const override { return true; }
3380 
3381     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3382       llvm::StringMap<bool> Features;
3383       // getHIPOffloadTargetTriple() is known to return valid value as it has
3384       // been called successfully in the CreateOffloadingDeviceToolChains().
3385       auto ArchStr = parseTargetID(
3386           *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3387           &Features);
3388       if (!ArchStr) {
3389         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3390         C.setContainsError();
3391         return StringRef();
3392       }
3393       auto CanId = getCanonicalTargetID(*ArchStr, Features);
3394       return Args.MakeArgStringRef(CanId);
3395     };
3396 
3397     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3398     getConflictOffloadArchCombination(
3399         const std::set<StringRef> &GpuArchs) override {
3400       return getConflictTargetIDCombination(GpuArchs);
3401     }
3402 
3403     ActionBuilderReturnCode
3404     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3405                          phases::ID CurPhase, phases::ID FinalPhase,
3406                          PhasesTy &Phases) override {
3407       if (!IsActive)
3408         return ABRT_Inactive;
3409 
3410       // amdgcn does not support linking of object files, therefore we skip
3411       // backend and assemble phases to output LLVM IR. Except for generating
3412       // non-relocatable device code, where we generate fat binary for device
3413       // code and pass to host in Backend phase.
3414       if (CudaDeviceActions.empty())
3415         return ABRT_Success;
3416 
3417       assert(((CurPhase == phases::Link && Relocatable) ||
3418               CudaDeviceActions.size() == GpuArchList.size()) &&
3419              "Expecting one action per GPU architecture.");
3420       assert(!CompileHostOnly &&
3421              "Not expecting HIP actions in host-only compilation.");
3422 
3423       bool ShouldLink = !EmitReloc || !*EmitReloc;
3424 
3425       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3426           !EmitAsm && ShouldLink) {
3427         // If we are in backend phase, we attempt to generate the fat binary.
3428         // We compile each arch to IR and use a link action to generate code
3429         // object containing ISA. Then we use a special "link" action to create
3430         // a fat binary containing all the code objects for different GPU's.
3431         // The fat binary is then an input to the host action.
3432         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3433           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3434             // When LTO is enabled, skip the backend and assemble phases and
3435             // use lld to link the bitcode.
3436             ActionList AL;
3437             AL.push_back(CudaDeviceActions[I]);
3438             // Create a link action to link device IR with device library
3439             // and generate ISA.
3440             CudaDeviceActions[I] =
3441                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3442           } else {
3443             // When LTO is not enabled, we follow the conventional
3444             // compiler phases, including backend and assemble phases.
3445             ActionList AL;
3446             Action *BackendAction = nullptr;
3447             if (ToolChains.front()->getTriple().isSPIRV()) {
3448               // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3449               // (HIPSPVToolChain) runs post-link LLVM IR passes.
3450               types::ID Output = Args.hasArg(options::OPT_S)
3451                                      ? types::TY_LLVM_IR
3452                                      : types::TY_LLVM_BC;
3453               BackendAction =
3454                   C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3455             } else
3456               BackendAction = C.getDriver().ConstructPhaseAction(
3457                   C, Args, phases::Backend, CudaDeviceActions[I],
3458                   AssociatedOffloadKind);
3459             auto AssembleAction = C.getDriver().ConstructPhaseAction(
3460                 C, Args, phases::Assemble, BackendAction,
3461                 AssociatedOffloadKind);
3462             AL.push_back(AssembleAction);
3463             // Create a link action to link device IR with device library
3464             // and generate ISA.
3465             CudaDeviceActions[I] =
3466                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3467           }
3468 
3469           // OffloadingActionBuilder propagates device arch until an offload
3470           // action. Since the next action for creating fatbin does
3471           // not have device arch, whereas the above link action and its input
3472           // have device arch, an offload action is needed to stop the null
3473           // device arch of the next action being propagated to the above link
3474           // action.
3475           OffloadAction::DeviceDependences DDep;
3476           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3477                    AssociatedOffloadKind);
3478           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3479               DDep, CudaDeviceActions[I]->getType());
3480         }
3481 
3482         if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3483           // Create HIP fat binary with a special "link" action.
3484           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3485                                                       types::TY_HIP_FATBIN);
3486 
3487           if (!CompileDeviceOnly) {
3488             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3489                    AssociatedOffloadKind);
3490             // Clear the fat binary, it is already a dependence to an host
3491             // action.
3492             CudaFatBinary = nullptr;
3493           }
3494 
3495           // Remove the CUDA actions as they are already connected to an host
3496           // action or fat binary.
3497           CudaDeviceActions.clear();
3498         }
3499 
3500         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3501       } else if (CurPhase == phases::Link) {
3502         if (!ShouldLink)
3503           return ABRT_Success;
3504         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3505         // This happens to each device action originated from each input file.
3506         // Later on, device actions in DeviceLinkerInputs are used to create
3507         // device link actions in appendLinkDependences and the created device
3508         // link actions are passed to the offload action as device dependence.
3509         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3510         auto LI = DeviceLinkerInputs.begin();
3511         for (auto *A : CudaDeviceActions) {
3512           LI->push_back(A);
3513           ++LI;
3514         }
3515 
3516         // We will pass the device action as a host dependence, so we don't
3517         // need to do anything else with them.
3518         CudaDeviceActions.clear();
3519         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3520       }
3521 
3522       // By default, we produce an action for each device arch.
3523       for (Action *&A : CudaDeviceActions)
3524         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3525                                                AssociatedOffloadKind);
3526 
3527       if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3528           *BundleOutput) {
3529         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3530           OffloadAction::DeviceDependences DDep;
3531           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3532                    AssociatedOffloadKind);
3533           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3534               DDep, CudaDeviceActions[I]->getType());
3535         }
3536         CudaFatBinary =
3537             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3538         CudaDeviceActions.clear();
3539       }
3540 
3541       return (CompileDeviceOnly &&
3542               (CurPhase == FinalPhase ||
3543                (!ShouldLink && CurPhase == phases::Assemble)))
3544                  ? ABRT_Ignore_Host
3545                  : ABRT_Success;
3546     }
3547 
3548     void appendLinkDeviceActions(ActionList &AL) override {
3549       if (DeviceLinkerInputs.size() == 0)
3550         return;
3551 
3552       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3553              "Linker inputs and GPU arch list sizes do not match.");
3554 
3555       ActionList Actions;
3556       unsigned I = 0;
3557       // Append a new link action for each device.
3558       // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3559       for (auto &LI : DeviceLinkerInputs) {
3560 
3561         types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3562                                    ? types::TY_LLVM_BC
3563                                    : types::TY_Image;
3564 
3565         auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3566         // Linking all inputs for the current GPU arch.
3567         // LI contains all the inputs for the linker.
3568         OffloadAction::DeviceDependences DeviceLinkDeps;
3569         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3570             GpuArchList[I], AssociatedOffloadKind);
3571         Actions.push_back(C.MakeAction<OffloadAction>(
3572             DeviceLinkDeps, DeviceLinkAction->getType()));
3573         ++I;
3574       }
3575       DeviceLinkerInputs.clear();
3576 
3577       // If emitting LLVM, do not generate final host/device compilation action
3578       if (Args.hasArg(options::OPT_emit_llvm)) {
3579           AL.append(Actions);
3580           return;
3581       }
3582 
3583       // Create a host object from all the device images by embedding them
3584       // in a fat binary for mixed host-device compilation. For device-only
3585       // compilation, creates a fat binary.
3586       OffloadAction::DeviceDependences DDeps;
3587       if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3588         auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3589             Actions,
3590             CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3591         DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3592                   AssociatedOffloadKind);
3593         // Offload the host object to the host linker.
3594         AL.push_back(
3595             C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3596       } else {
3597         AL.append(Actions);
3598       }
3599     }
3600 
3601     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3602 
3603     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3604   };
3605 
3606   ///
3607   /// TODO: Add the implementation for other specialized builders here.
3608   ///
3609 
3610   /// Specialized builders being used by this offloading action builder.
3611   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3612 
3613   /// Flag set to true if all valid builders allow file bundling/unbundling.
3614   bool CanUseBundler;
3615 
3616 public:
3617   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3618                           const Driver::InputList &Inputs)
3619       : C(C) {
3620     // Create a specialized builder for each device toolchain.
3621 
3622     IsValid = true;
3623 
3624     // Create a specialized builder for CUDA.
3625     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3626 
3627     // Create a specialized builder for HIP.
3628     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3629 
3630     //
3631     // TODO: Build other specialized builders here.
3632     //
3633 
3634     // Initialize all the builders, keeping track of errors. If all valid
3635     // builders agree that we can use bundling, set the flag to true.
3636     unsigned ValidBuilders = 0u;
3637     unsigned ValidBuildersSupportingBundling = 0u;
3638     for (auto *SB : SpecializedBuilders) {
3639       IsValid = IsValid && !SB->initialize();
3640 
3641       // Update the counters if the builder is valid.
3642       if (SB->isValid()) {
3643         ++ValidBuilders;
3644         if (SB->canUseBundlerUnbundler())
3645           ++ValidBuildersSupportingBundling;
3646       }
3647     }
3648     CanUseBundler =
3649         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3650   }
3651 
3652   ~OffloadingActionBuilder() {
3653     for (auto *SB : SpecializedBuilders)
3654       delete SB;
3655   }
3656 
3657   /// Record a host action and its originating input argument.
3658   void recordHostAction(Action *HostAction, const Arg *InputArg) {
3659     assert(HostAction && "Invalid host action");
3660     assert(InputArg && "Invalid input argument");
3661     auto Loc = HostActionToInputArgMap.find(HostAction);
3662     if (Loc == HostActionToInputArgMap.end())
3663       HostActionToInputArgMap[HostAction] = InputArg;
3664     assert(HostActionToInputArgMap[HostAction] == InputArg &&
3665            "host action mapped to multiple input arguments");
3666   }
3667 
3668   /// Generate an action that adds device dependences (if any) to a host action.
3669   /// If no device dependence actions exist, just return the host action \a
3670   /// HostAction. If an error is found or if no builder requires the host action
3671   /// to be generated, return nullptr.
3672   Action *
3673   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3674                                    phases::ID CurPhase, phases::ID FinalPhase,
3675                                    DeviceActionBuilder::PhasesTy &Phases) {
3676     if (!IsValid)
3677       return nullptr;
3678 
3679     if (SpecializedBuilders.empty())
3680       return HostAction;
3681 
3682     assert(HostAction && "Invalid host action!");
3683     recordHostAction(HostAction, InputArg);
3684 
3685     OffloadAction::DeviceDependences DDeps;
3686     // Check if all the programming models agree we should not emit the host
3687     // action. Also, keep track of the offloading kinds employed.
3688     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3689     unsigned InactiveBuilders = 0u;
3690     unsigned IgnoringBuilders = 0u;
3691     for (auto *SB : SpecializedBuilders) {
3692       if (!SB->isValid()) {
3693         ++InactiveBuilders;
3694         continue;
3695       }
3696       auto RetCode =
3697           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3698 
3699       // If the builder explicitly says the host action should be ignored,
3700       // we need to increment the variable that tracks the builders that request
3701       // the host object to be ignored.
3702       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3703         ++IgnoringBuilders;
3704 
3705       // Unless the builder was inactive for this action, we have to record the
3706       // offload kind because the host will have to use it.
3707       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3708         OffloadKind |= SB->getAssociatedOffloadKind();
3709     }
3710 
3711     // If all builders agree that the host object should be ignored, just return
3712     // nullptr.
3713     if (IgnoringBuilders &&
3714         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3715       return nullptr;
3716 
3717     if (DDeps.getActions().empty())
3718       return HostAction;
3719 
3720     // We have dependences we need to bundle together. We use an offload action
3721     // for that.
3722     OffloadAction::HostDependence HDep(
3723         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3724         /*BoundArch=*/nullptr, DDeps);
3725     return C.MakeAction<OffloadAction>(HDep, DDeps);
3726   }
3727 
3728   /// Generate an action that adds a host dependence to a device action. The
3729   /// results will be kept in this action builder. Return true if an error was
3730   /// found.
3731   bool addHostDependenceToDeviceActions(Action *&HostAction,
3732                                         const Arg *InputArg) {
3733     if (!IsValid)
3734       return true;
3735 
3736     recordHostAction(HostAction, InputArg);
3737 
3738     // If we are supporting bundling/unbundling and the current action is an
3739     // input action of non-source file, we replace the host action by the
3740     // unbundling action. The bundler tool has the logic to detect if an input
3741     // is a bundle or not and if the input is not a bundle it assumes it is a
3742     // host file. Therefore it is safe to create an unbundling action even if
3743     // the input is not a bundle.
3744     if (CanUseBundler && isa<InputAction>(HostAction) &&
3745         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3746         (!types::isSrcFile(HostAction->getType()) ||
3747          HostAction->getType() == types::TY_PP_HIP)) {
3748       auto UnbundlingHostAction =
3749           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3750       UnbundlingHostAction->registerDependentActionInfo(
3751           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3752           /*BoundArch=*/StringRef(), Action::OFK_Host);
3753       HostAction = UnbundlingHostAction;
3754       recordHostAction(HostAction, InputArg);
3755     }
3756 
3757     assert(HostAction && "Invalid host action!");
3758 
3759     // Register the offload kinds that are used.
3760     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3761     for (auto *SB : SpecializedBuilders) {
3762       if (!SB->isValid())
3763         continue;
3764 
3765       auto RetCode = SB->addDeviceDependences(HostAction);
3766 
3767       // Host dependences for device actions are not compatible with that same
3768       // action being ignored.
3769       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3770              "Host dependence not expected to be ignored.!");
3771 
3772       // Unless the builder was inactive for this action, we have to record the
3773       // offload kind because the host will have to use it.
3774       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3775         OffloadKind |= SB->getAssociatedOffloadKind();
3776     }
3777 
3778     // Do not use unbundler if the Host does not depend on device action.
3779     if (OffloadKind == Action::OFK_None && CanUseBundler)
3780       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3781         HostAction = UA->getInputs().back();
3782 
3783     return false;
3784   }
3785 
3786   /// Add the offloading top level actions to the provided action list. This
3787   /// function can replace the host action by a bundling action if the
3788   /// programming models allow it.
3789   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3790                              const Arg *InputArg) {
3791     if (HostAction)
3792       recordHostAction(HostAction, InputArg);
3793 
3794     // Get the device actions to be appended.
3795     ActionList OffloadAL;
3796     for (auto *SB : SpecializedBuilders) {
3797       if (!SB->isValid())
3798         continue;
3799       SB->appendTopLevelActions(OffloadAL);
3800     }
3801 
3802     // If we can use the bundler, replace the host action by the bundling one in
3803     // the resulting list. Otherwise, just append the device actions. For
3804     // device only compilation, HostAction is a null pointer, therefore only do
3805     // this when HostAction is not a null pointer.
3806     if (CanUseBundler && HostAction &&
3807         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3808       // Add the host action to the list in order to create the bundling action.
3809       OffloadAL.push_back(HostAction);
3810 
3811       // We expect that the host action was just appended to the action list
3812       // before this method was called.
3813       assert(HostAction == AL.back() && "Host action not in the list??");
3814       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3815       recordHostAction(HostAction, InputArg);
3816       AL.back() = HostAction;
3817     } else
3818       AL.append(OffloadAL.begin(), OffloadAL.end());
3819 
3820     // Propagate to the current host action (if any) the offload information
3821     // associated with the current input.
3822     if (HostAction)
3823       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3824                                            /*BoundArch=*/nullptr);
3825     return false;
3826   }
3827 
3828   void appendDeviceLinkActions(ActionList &AL) {
3829     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3830       if (!SB->isValid())
3831         continue;
3832       SB->appendLinkDeviceActions(AL);
3833     }
3834   }
3835 
3836   Action *makeHostLinkAction() {
3837     // Build a list of device linking actions.
3838     ActionList DeviceAL;
3839     appendDeviceLinkActions(DeviceAL);
3840     if (DeviceAL.empty())
3841       return nullptr;
3842 
3843     // Let builders add host linking actions.
3844     Action* HA = nullptr;
3845     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3846       if (!SB->isValid())
3847         continue;
3848       HA = SB->appendLinkHostActions(DeviceAL);
3849       // This created host action has no originating input argument, therefore
3850       // needs to set its offloading kind directly.
3851       if (HA)
3852         HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3853                                      /*BoundArch=*/nullptr);
3854     }
3855     return HA;
3856   }
3857 
3858   /// Processes the host linker action. This currently consists of replacing it
3859   /// with an offload action if there are device link objects and propagate to
3860   /// the host action all the offload kinds used in the current compilation. The
3861   /// resulting action is returned.
3862   Action *processHostLinkAction(Action *HostAction) {
3863     // Add all the dependences from the device linking actions.
3864     OffloadAction::DeviceDependences DDeps;
3865     for (auto *SB : SpecializedBuilders) {
3866       if (!SB->isValid())
3867         continue;
3868 
3869       SB->appendLinkDependences(DDeps);
3870     }
3871 
3872     // Calculate all the offload kinds used in the current compilation.
3873     unsigned ActiveOffloadKinds = 0u;
3874     for (auto &I : InputArgToOffloadKindMap)
3875       ActiveOffloadKinds |= I.second;
3876 
3877     // If we don't have device dependencies, we don't have to create an offload
3878     // action.
3879     if (DDeps.getActions().empty()) {
3880       // Set all the active offloading kinds to the link action. Given that it
3881       // is a link action it is assumed to depend on all actions generated so
3882       // far.
3883       HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3884                                      /*BoundArch=*/nullptr);
3885       // Propagate active offloading kinds for each input to the link action.
3886       // Each input may have different active offloading kind.
3887       for (auto *A : HostAction->inputs()) {
3888         auto ArgLoc = HostActionToInputArgMap.find(A);
3889         if (ArgLoc == HostActionToInputArgMap.end())
3890           continue;
3891         auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3892         if (OFKLoc == InputArgToOffloadKindMap.end())
3893           continue;
3894         A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3895       }
3896       return HostAction;
3897     }
3898 
3899     // Create the offload action with all dependences. When an offload action
3900     // is created the kinds are propagated to the host action, so we don't have
3901     // to do that explicitly here.
3902     OffloadAction::HostDependence HDep(
3903         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3904         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3905     return C.MakeAction<OffloadAction>(HDep, DDeps);
3906   }
3907 };
3908 } // anonymous namespace.
3909 
3910 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3911                              const InputList &Inputs,
3912                              ActionList &Actions) const {
3913 
3914   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3915   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3916   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3917   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3918     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3919     Args.eraseArg(options::OPT__SLASH_Yc);
3920     Args.eraseArg(options::OPT__SLASH_Yu);
3921     YcArg = YuArg = nullptr;
3922   }
3923   if (YcArg && Inputs.size() > 1) {
3924     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3925     Args.eraseArg(options::OPT__SLASH_Yc);
3926     YcArg = nullptr;
3927   }
3928 
3929   Arg *FinalPhaseArg;
3930   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3931 
3932   if (FinalPhase == phases::Link) {
3933     if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3934       Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
3935       Args.AddFlagArg(nullptr,
3936                       getOpts().getOption(options::OPT_frtlib_add_rpath));
3937     }
3938     // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3939     if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3940       Diag(clang::diag::err_drv_emit_llvm_link);
3941     if (IsCLMode() && LTOMode != LTOK_None &&
3942         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3943              .equals_insensitive("lld"))
3944       Diag(clang::diag::err_drv_lto_without_lld);
3945 
3946     // If -dumpdir is not specified, give a default prefix derived from the link
3947     // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
3948     // `-dumpdir x-` to cc1. If -o is unspecified, use
3949     // stem(getDefaultImageName()) (usually stem("a.out") = "a").
3950     if (!Args.hasArg(options::OPT_dumpdir)) {
3951       Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
3952       Arg *Arg = Args.MakeSeparateArg(
3953           nullptr, getOpts().getOption(options::OPT_dumpdir),
3954           Args.MakeArgString(
3955               (FinalOutput ? FinalOutput->getValue()
3956                            : llvm::sys::path::stem(getDefaultImageName())) +
3957               "-"));
3958       Arg->claim();
3959       Args.append(Arg);
3960     }
3961   }
3962 
3963   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3964     // If only preprocessing or /Y- is used, all pch handling is disabled.
3965     // Rather than check for it everywhere, just remove clang-cl pch-related
3966     // flags here.
3967     Args.eraseArg(options::OPT__SLASH_Fp);
3968     Args.eraseArg(options::OPT__SLASH_Yc);
3969     Args.eraseArg(options::OPT__SLASH_Yu);
3970     YcArg = YuArg = nullptr;
3971   }
3972 
3973   unsigned LastPLSize = 0;
3974   for (auto &I : Inputs) {
3975     types::ID InputType = I.first;
3976     const Arg *InputArg = I.second;
3977 
3978     auto PL = types::getCompilationPhases(InputType);
3979     LastPLSize = PL.size();
3980 
3981     // If the first step comes after the final phase we are doing as part of
3982     // this compilation, warn the user about it.
3983     phases::ID InitialPhase = PL[0];
3984     if (InitialPhase > FinalPhase) {
3985       if (InputArg->isClaimed())
3986         continue;
3987 
3988       // Claim here to avoid the more general unused warning.
3989       InputArg->claim();
3990 
3991       // Suppress all unused style warnings with -Qunused-arguments
3992       if (Args.hasArg(options::OPT_Qunused_arguments))
3993         continue;
3994 
3995       // Special case when final phase determined by binary name, rather than
3996       // by a command-line argument with a corresponding Arg.
3997       if (CCCIsCPP())
3998         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3999             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4000       // Special case '-E' warning on a previously preprocessed file to make
4001       // more sense.
4002       else if (InitialPhase == phases::Compile &&
4003                (Args.getLastArg(options::OPT__SLASH_EP,
4004                                 options::OPT__SLASH_P) ||
4005                 Args.getLastArg(options::OPT_E) ||
4006                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4007                getPreprocessedType(InputType) == types::TY_INVALID)
4008         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4009             << InputArg->getAsString(Args) << !!FinalPhaseArg
4010             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4011       else
4012         Diag(clang::diag::warn_drv_input_file_unused)
4013             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4014             << !!FinalPhaseArg
4015             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4016       continue;
4017     }
4018 
4019     if (YcArg) {
4020       // Add a separate precompile phase for the compile phase.
4021       if (FinalPhase >= phases::Compile) {
4022         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4023         // Build the pipeline for the pch file.
4024         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4025         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4026           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4027         assert(ClangClPch);
4028         Actions.push_back(ClangClPch);
4029         // The driver currently exits after the first failed command.  This
4030         // relies on that behavior, to make sure if the pch generation fails,
4031         // the main compilation won't run.
4032         // FIXME: If the main compilation fails, the PCH generation should
4033         // probably not be considered successful either.
4034       }
4035     }
4036   }
4037 
4038   // If we are linking, claim any options which are obviously only used for
4039   // compilation.
4040   // FIXME: Understand why the last Phase List length is used here.
4041   if (FinalPhase == phases::Link && LastPLSize == 1) {
4042     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4043     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4044   }
4045 }
4046 
4047 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4048                           const InputList &Inputs, ActionList &Actions) const {
4049   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4050 
4051   if (!SuppressMissingInputWarning && Inputs.empty()) {
4052     Diag(clang::diag::err_drv_no_input_files);
4053     return;
4054   }
4055 
4056   // Diagnose misuse of /Fo.
4057   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4058     StringRef V = A->getValue();
4059     if (Inputs.size() > 1 && !V.empty() &&
4060         !llvm::sys::path::is_separator(V.back())) {
4061       // Check whether /Fo tries to name an output file for multiple inputs.
4062       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4063           << A->getSpelling() << V;
4064       Args.eraseArg(options::OPT__SLASH_Fo);
4065     }
4066   }
4067 
4068   // Diagnose misuse of /Fa.
4069   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4070     StringRef V = A->getValue();
4071     if (Inputs.size() > 1 && !V.empty() &&
4072         !llvm::sys::path::is_separator(V.back())) {
4073       // Check whether /Fa tries to name an asm file for multiple inputs.
4074       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4075           << A->getSpelling() << V;
4076       Args.eraseArg(options::OPT__SLASH_Fa);
4077     }
4078   }
4079 
4080   // Diagnose misuse of /o.
4081   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4082     if (A->getValue()[0] == '\0') {
4083       // It has to have a value.
4084       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4085       Args.eraseArg(options::OPT__SLASH_o);
4086     }
4087   }
4088 
4089   handleArguments(C, Args, Inputs, Actions);
4090 
4091   bool UseNewOffloadingDriver =
4092       C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4093       Args.hasFlag(options::OPT_offload_new_driver,
4094                    options::OPT_no_offload_new_driver, false);
4095 
4096   // Builder to be used to build offloading actions.
4097   std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4098       !UseNewOffloadingDriver
4099           ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4100           : nullptr;
4101 
4102   // Construct the actions to perform.
4103   ExtractAPIJobAction *ExtractAPIAction = nullptr;
4104   ActionList LinkerInputs;
4105   ActionList MergerInputs;
4106 
4107   for (auto &I : Inputs) {
4108     types::ID InputType = I.first;
4109     const Arg *InputArg = I.second;
4110 
4111     auto PL = types::getCompilationPhases(*this, Args, InputType);
4112     if (PL.empty())
4113       continue;
4114 
4115     auto FullPL = types::getCompilationPhases(InputType);
4116 
4117     // Build the pipeline for this file.
4118     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4119 
4120     // Use the current host action in any of the offloading actions, if
4121     // required.
4122     if (!UseNewOffloadingDriver)
4123       if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4124         break;
4125 
4126     for (phases::ID Phase : PL) {
4127 
4128       // Add any offload action the host action depends on.
4129       if (!UseNewOffloadingDriver)
4130         Current = OffloadBuilder->addDeviceDependencesToHostAction(
4131             Current, InputArg, Phase, PL.back(), FullPL);
4132       if (!Current)
4133         break;
4134 
4135       // Queue linker inputs.
4136       if (Phase == phases::Link) {
4137         assert(Phase == PL.back() && "linking must be final compilation step.");
4138         // We don't need to generate additional link commands if emitting AMD
4139         // bitcode or compiling only for the offload device
4140         if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4141               (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4142             !offloadDeviceOnly())
4143           LinkerInputs.push_back(Current);
4144         Current = nullptr;
4145         break;
4146       }
4147 
4148       // TODO: Consider removing this because the merged may not end up being
4149       // the final Phase in the pipeline. Perhaps the merged could just merge
4150       // and then pass an artifact of some sort to the Link Phase.
4151       // Queue merger inputs.
4152       if (Phase == phases::IfsMerge) {
4153         assert(Phase == PL.back() && "merging must be final compilation step.");
4154         MergerInputs.push_back(Current);
4155         Current = nullptr;
4156         break;
4157       }
4158 
4159       if (Phase == phases::Precompile && ExtractAPIAction) {
4160         ExtractAPIAction->addHeaderInput(Current);
4161         Current = nullptr;
4162         break;
4163       }
4164 
4165       // FIXME: Should we include any prior module file outputs as inputs of
4166       // later actions in the same command line?
4167 
4168       // Otherwise construct the appropriate action.
4169       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4170 
4171       // We didn't create a new action, so we will just move to the next phase.
4172       if (NewCurrent == Current)
4173         continue;
4174 
4175       if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4176         ExtractAPIAction = EAA;
4177 
4178       Current = NewCurrent;
4179 
4180       // Try to build the offloading actions and add the result as a dependency
4181       // to the host.
4182       if (UseNewOffloadingDriver)
4183         Current = BuildOffloadingActions(C, Args, I, Current);
4184       // Use the current host action in any of the offloading actions, if
4185       // required.
4186       else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4187                                                                 InputArg))
4188         break;
4189 
4190       if (Current->getType() == types::TY_Nothing)
4191         break;
4192     }
4193 
4194     // If we ended with something, add to the output list.
4195     if (Current)
4196       Actions.push_back(Current);
4197 
4198     // Add any top level actions generated for offloading.
4199     if (!UseNewOffloadingDriver)
4200       OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4201     else if (Current)
4202       Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4203                                         /*BoundArch=*/nullptr);
4204   }
4205 
4206   // Add a link action if necessary.
4207 
4208   if (LinkerInputs.empty()) {
4209     Arg *FinalPhaseArg;
4210     if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4211       if (!UseNewOffloadingDriver)
4212         OffloadBuilder->appendDeviceLinkActions(Actions);
4213   }
4214 
4215   if (!LinkerInputs.empty()) {
4216     if (!UseNewOffloadingDriver)
4217       if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4218         LinkerInputs.push_back(Wrapper);
4219     Action *LA;
4220     // Check if this Linker Job should emit a static library.
4221     if (ShouldEmitStaticLibrary(Args)) {
4222       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4223     } else if (UseNewOffloadingDriver ||
4224                Args.hasArg(options::OPT_offload_link)) {
4225       LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4226       LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4227                                    /*BoundArch=*/nullptr);
4228     } else {
4229       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4230     }
4231     if (!UseNewOffloadingDriver)
4232       LA = OffloadBuilder->processHostLinkAction(LA);
4233     Actions.push_back(LA);
4234   }
4235 
4236   // Add an interface stubs merge action if necessary.
4237   if (!MergerInputs.empty())
4238     Actions.push_back(
4239         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4240 
4241   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4242     auto PhaseList = types::getCompilationPhases(
4243         types::TY_IFS_CPP,
4244         Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4245 
4246     ActionList MergerInputs;
4247 
4248     for (auto &I : Inputs) {
4249       types::ID InputType = I.first;
4250       const Arg *InputArg = I.second;
4251 
4252       // Currently clang and the llvm assembler do not support generating symbol
4253       // stubs from assembly, so we skip the input on asm files. For ifs files
4254       // we rely on the normal pipeline setup in the pipeline setup code above.
4255       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4256           InputType == types::TY_Asm)
4257         continue;
4258 
4259       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4260 
4261       for (auto Phase : PhaseList) {
4262         switch (Phase) {
4263         default:
4264           llvm_unreachable(
4265               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4266         case phases::Compile: {
4267           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4268           // files where the .o file is located. The compile action can not
4269           // handle this.
4270           if (InputType == types::TY_Object)
4271             break;
4272 
4273           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4274           break;
4275         }
4276         case phases::IfsMerge: {
4277           assert(Phase == PhaseList.back() &&
4278                  "merging must be final compilation step.");
4279           MergerInputs.push_back(Current);
4280           Current = nullptr;
4281           break;
4282         }
4283         }
4284       }
4285 
4286       // If we ended with something, add to the output list.
4287       if (Current)
4288         Actions.push_back(Current);
4289     }
4290 
4291     // Add an interface stubs merge action if necessary.
4292     if (!MergerInputs.empty())
4293       Actions.push_back(
4294           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4295   }
4296 
4297   for (auto Opt : {options::OPT_print_supported_cpus,
4298                    options::OPT_print_supported_extensions}) {
4299     // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4300     // custom Compile phase that prints out supported cpu models and quits.
4301     //
4302     // If --print-supported-extensions is specified, call the helper function
4303     // RISCVMarchHelp in RISCVISAInfo.cpp that prints out supported extensions
4304     // and quits.
4305     if (Arg *A = Args.getLastArg(Opt)) {
4306       if (Opt == options::OPT_print_supported_extensions &&
4307           !C.getDefaultToolChain().getTriple().isRISCV() &&
4308           !C.getDefaultToolChain().getTriple().isAArch64() &&
4309           !C.getDefaultToolChain().getTriple().isARM()) {
4310         C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4311             << "--print-supported-extensions";
4312         return;
4313       }
4314 
4315       // Use the -mcpu=? flag as the dummy input to cc1.
4316       Actions.clear();
4317       Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4318       Actions.push_back(
4319           C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4320       for (auto &I : Inputs)
4321         I.second->claim();
4322     }
4323   }
4324 
4325   // Call validator for dxil when -Vd not in Args.
4326   if (C.getDefaultToolChain().getTriple().isDXIL()) {
4327     // Only add action when needValidation.
4328     const auto &TC =
4329         static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4330     if (TC.requiresValidation(Args)) {
4331       Action *LastAction = Actions.back();
4332       Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4333           LastAction, types::TY_DX_CONTAINER));
4334     }
4335   }
4336 
4337   // Claim ignored clang-cl options.
4338   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4339 }
4340 
4341 /// Returns the canonical name for the offloading architecture when using a HIP
4342 /// or CUDA architecture.
4343 static StringRef getCanonicalArchString(Compilation &C,
4344                                         const llvm::opt::DerivedArgList &Args,
4345                                         StringRef ArchStr,
4346                                         const llvm::Triple &Triple,
4347                                         bool SuppressError = false) {
4348   // Lookup the CUDA / HIP architecture string. Only report an error if we were
4349   // expecting the triple to be only NVPTX / AMDGPU.
4350   CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4351   if (!SuppressError && Triple.isNVPTX() &&
4352       (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4353     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4354         << "CUDA" << ArchStr;
4355     return StringRef();
4356   } else if (!SuppressError && Triple.isAMDGPU() &&
4357              (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4358     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4359         << "HIP" << ArchStr;
4360     return StringRef();
4361   }
4362 
4363   if (IsNVIDIAGpuArch(Arch))
4364     return Args.MakeArgStringRef(CudaArchToString(Arch));
4365 
4366   if (IsAMDGpuArch(Arch)) {
4367     llvm::StringMap<bool> Features;
4368     auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4369     if (!HIPTriple)
4370       return StringRef();
4371     auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4372     if (!Arch) {
4373       C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4374       C.setContainsError();
4375       return StringRef();
4376     }
4377     return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4378   }
4379 
4380   // If the input isn't CUDA or HIP just return the architecture.
4381   return ArchStr;
4382 }
4383 
4384 /// Checks if the set offloading architectures does not conflict. Returns the
4385 /// incompatible pair if a conflict occurs.
4386 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4387 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4388                                   llvm::Triple Triple) {
4389   if (!Triple.isAMDGPU())
4390     return std::nullopt;
4391 
4392   std::set<StringRef> ArchSet;
4393   llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4394   return getConflictTargetIDCombination(ArchSet);
4395 }
4396 
4397 llvm::DenseSet<StringRef>
4398 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4399                         Action::OffloadKind Kind, const ToolChain *TC,
4400                         bool SuppressError) const {
4401   if (!TC)
4402     TC = &C.getDefaultToolChain();
4403 
4404   // --offload and --offload-arch options are mutually exclusive.
4405   if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4406       Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4407                          options::OPT_no_offload_arch_EQ)) {
4408     C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4409         << "--offload"
4410         << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4411                 ? "--offload-arch"
4412                 : "--no-offload-arch");
4413   }
4414 
4415   if (KnownArchs.contains(TC))
4416     return KnownArchs.lookup(TC);
4417 
4418   llvm::DenseSet<StringRef> Archs;
4419   for (auto *Arg : Args) {
4420     // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4421     std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4422     if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4423         ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4424       Arg->claim();
4425       unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4426       ExtractedArg = getOpts().ParseOneArg(Args, Index);
4427       Arg = ExtractedArg.get();
4428     }
4429 
4430     // Add or remove the seen architectures in order of appearance. If an
4431     // invalid architecture is given we simply exit.
4432     if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4433       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4434         if (Arch == "native" || Arch.empty()) {
4435           auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4436           if (!GPUsOrErr) {
4437             if (SuppressError)
4438               llvm::consumeError(GPUsOrErr.takeError());
4439             else
4440               TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4441                   << llvm::Triple::getArchTypeName(TC->getArch())
4442                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4443             continue;
4444           }
4445 
4446           for (auto ArchStr : *GPUsOrErr) {
4447             Archs.insert(
4448                 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4449                                        TC->getTriple(), SuppressError));
4450           }
4451         } else {
4452           StringRef ArchStr = getCanonicalArchString(
4453               C, Args, Arch, TC->getTriple(), SuppressError);
4454           if (ArchStr.empty())
4455             return Archs;
4456           Archs.insert(ArchStr);
4457         }
4458       }
4459     } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4460       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4461         if (Arch == "all") {
4462           Archs.clear();
4463         } else {
4464           StringRef ArchStr = getCanonicalArchString(
4465               C, Args, Arch, TC->getTriple(), SuppressError);
4466           if (ArchStr.empty())
4467             return Archs;
4468           Archs.erase(ArchStr);
4469         }
4470       }
4471     }
4472   }
4473 
4474   if (auto ConflictingArchs =
4475           getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4476     C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4477         << ConflictingArchs->first << ConflictingArchs->second;
4478     C.setContainsError();
4479   }
4480 
4481   // Skip filling defaults if we're just querying what is availible.
4482   if (SuppressError)
4483     return Archs;
4484 
4485   if (Archs.empty()) {
4486     if (Kind == Action::OFK_Cuda)
4487       Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4488     else if (Kind == Action::OFK_HIP)
4489       Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4490     else if (Kind == Action::OFK_OpenMP)
4491       Archs.insert(StringRef());
4492   } else {
4493     Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4494     Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4495   }
4496 
4497   return Archs;
4498 }
4499 
4500 Action *Driver::BuildOffloadingActions(Compilation &C,
4501                                        llvm::opt::DerivedArgList &Args,
4502                                        const InputTy &Input,
4503                                        Action *HostAction) const {
4504   // Don't build offloading actions if explicitly disabled or we do not have a
4505   // valid source input and compile action to embed it in. If preprocessing only
4506   // ignore embedding.
4507   if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4508       !(isa<CompileJobAction>(HostAction) ||
4509         getFinalPhase(Args) == phases::Preprocess))
4510     return HostAction;
4511 
4512   ActionList OffloadActions;
4513   OffloadAction::DeviceDependences DDeps;
4514 
4515   const Action::OffloadKind OffloadKinds[] = {
4516       Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4517 
4518   for (Action::OffloadKind Kind : OffloadKinds) {
4519     SmallVector<const ToolChain *, 2> ToolChains;
4520     ActionList DeviceActions;
4521 
4522     auto TCRange = C.getOffloadToolChains(Kind);
4523     for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4524       ToolChains.push_back(TI->second);
4525 
4526     if (ToolChains.empty())
4527       continue;
4528 
4529     types::ID InputType = Input.first;
4530     const Arg *InputArg = Input.second;
4531 
4532     // The toolchain can be active for unsupported file types.
4533     if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4534         (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4535       continue;
4536 
4537     // Get the product of all bound architectures and toolchains.
4538     SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4539     for (const ToolChain *TC : ToolChains)
4540       for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4541         TCAndArchs.push_back(std::make_pair(TC, Arch));
4542 
4543     for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4544       DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4545 
4546     if (DeviceActions.empty())
4547       return HostAction;
4548 
4549     auto PL = types::getCompilationPhases(*this, Args, InputType);
4550 
4551     for (phases::ID Phase : PL) {
4552       if (Phase == phases::Link) {
4553         assert(Phase == PL.back() && "linking must be final compilation step.");
4554         break;
4555       }
4556 
4557       auto TCAndArch = TCAndArchs.begin();
4558       for (Action *&A : DeviceActions) {
4559         if (A->getType() == types::TY_Nothing)
4560           continue;
4561 
4562         // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4563         A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4564                                       TCAndArch->first);
4565         A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4566 
4567         if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4568             Kind == Action::OFK_OpenMP &&
4569             HostAction->getType() != types::TY_Nothing) {
4570           // OpenMP offloading has a dependency on the host compile action to
4571           // identify which declarations need to be emitted. This shouldn't be
4572           // collapsed with any other actions so we can use it in the device.
4573           HostAction->setCannotBeCollapsedWithNextDependentAction();
4574           OffloadAction::HostDependence HDep(
4575               *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4576               TCAndArch->second.data(), Kind);
4577           OffloadAction::DeviceDependences DDep;
4578           DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4579           A = C.MakeAction<OffloadAction>(HDep, DDep);
4580         }
4581 
4582         ++TCAndArch;
4583       }
4584     }
4585 
4586     // Compiling HIP in non-RDC mode requires linking each action individually.
4587     for (Action *&A : DeviceActions) {
4588       if ((A->getType() != types::TY_Object &&
4589            A->getType() != types::TY_LTO_BC) ||
4590           Kind != Action::OFK_HIP ||
4591           Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4592         continue;
4593       ActionList LinkerInput = {A};
4594       A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4595     }
4596 
4597     auto TCAndArch = TCAndArchs.begin();
4598     for (Action *A : DeviceActions) {
4599       DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4600       OffloadAction::DeviceDependences DDep;
4601       DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4602       OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4603       ++TCAndArch;
4604     }
4605   }
4606 
4607   if (offloadDeviceOnly())
4608     return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4609 
4610   if (OffloadActions.empty())
4611     return HostAction;
4612 
4613   OffloadAction::DeviceDependences DDep;
4614   if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4615       !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4616     // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4617     // each translation unit without requiring any linking.
4618     Action *FatbinAction =
4619         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4620     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4621              nullptr, Action::OFK_Cuda);
4622   } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4623              !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4624                            false)) {
4625     // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4626     // translation unit, linking each input individually.
4627     Action *FatbinAction =
4628         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4629     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4630              nullptr, Action::OFK_HIP);
4631   } else {
4632     // Package all the offloading actions into a single output that can be
4633     // embedded in the host and linked.
4634     Action *PackagerAction =
4635         C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4636     DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4637              nullptr, C.getActiveOffloadKinds());
4638   }
4639 
4640   // If we are unable to embed a single device output into the host, we need to
4641   // add each device output as a host dependency to ensure they are still built.
4642   bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4643     return A->getType() == types::TY_Nothing;
4644   }) && isa<CompileJobAction>(HostAction);
4645   OffloadAction::HostDependence HDep(
4646       *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4647       /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4648   return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4649 }
4650 
4651 Action *Driver::ConstructPhaseAction(
4652     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4653     Action::OffloadKind TargetDeviceOffloadKind) const {
4654   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4655 
4656   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4657   // encode this in the steps because the intermediate type depends on
4658   // arguments. Just special case here.
4659   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4660     return Input;
4661 
4662   // Build the appropriate action.
4663   switch (Phase) {
4664   case phases::Link:
4665     llvm_unreachable("link action invalid here.");
4666   case phases::IfsMerge:
4667     llvm_unreachable("ifsmerge action invalid here.");
4668   case phases::Preprocess: {
4669     types::ID OutputTy;
4670     // -M and -MM specify the dependency file name by altering the output type,
4671     // -if -MD and -MMD are not specified.
4672     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4673         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4674       OutputTy = types::TY_Dependencies;
4675     } else {
4676       OutputTy = Input->getType();
4677       // For these cases, the preprocessor is only translating forms, the Output
4678       // still needs preprocessing.
4679       if (!Args.hasFlag(options::OPT_frewrite_includes,
4680                         options::OPT_fno_rewrite_includes, false) &&
4681           !Args.hasFlag(options::OPT_frewrite_imports,
4682                         options::OPT_fno_rewrite_imports, false) &&
4683           !Args.hasFlag(options::OPT_fdirectives_only,
4684                         options::OPT_fno_directives_only, false) &&
4685           !CCGenDiagnostics)
4686         OutputTy = types::getPreprocessedType(OutputTy);
4687       assert(OutputTy != types::TY_INVALID &&
4688              "Cannot preprocess this input type!");
4689     }
4690     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4691   }
4692   case phases::Precompile: {
4693     // API extraction should not generate an actual precompilation action.
4694     if (Args.hasArg(options::OPT_extract_api))
4695       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4696 
4697     types::ID OutputTy = getPrecompiledType(Input->getType());
4698     assert(OutputTy != types::TY_INVALID &&
4699            "Cannot precompile this input type!");
4700 
4701     // If we're given a module name, precompile header file inputs as a
4702     // module, not as a precompiled header.
4703     const char *ModName = nullptr;
4704     if (OutputTy == types::TY_PCH) {
4705       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4706         ModName = A->getValue();
4707       if (ModName)
4708         OutputTy = types::TY_ModuleFile;
4709     }
4710 
4711     if (Args.hasArg(options::OPT_fsyntax_only)) {
4712       // Syntax checks should not emit a PCH file
4713       OutputTy = types::TY_Nothing;
4714     }
4715 
4716     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4717   }
4718   case phases::Compile: {
4719     if (Args.hasArg(options::OPT_fsyntax_only))
4720       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4721     if (Args.hasArg(options::OPT_rewrite_objc))
4722       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4723     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4724       return C.MakeAction<CompileJobAction>(Input,
4725                                             types::TY_RewrittenLegacyObjC);
4726     if (Args.hasArg(options::OPT__analyze))
4727       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4728     if (Args.hasArg(options::OPT__migrate))
4729       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4730     if (Args.hasArg(options::OPT_emit_ast))
4731       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4732     if (Args.hasArg(options::OPT_module_file_info))
4733       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4734     if (Args.hasArg(options::OPT_verify_pch))
4735       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4736     if (Args.hasArg(options::OPT_extract_api))
4737       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4738     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4739   }
4740   case phases::Backend: {
4741     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4742       types::ID Output;
4743       if (Args.hasArg(options::OPT_S))
4744         Output = types::TY_LTO_IR;
4745       else if (Args.hasArg(options::OPT_ffat_lto_objects))
4746         Output = types::TY_PP_Asm;
4747       else
4748         Output = types::TY_LTO_BC;
4749       return C.MakeAction<BackendJobAction>(Input, Output);
4750     }
4751     if (isUsingLTO(/* IsOffload */ true) &&
4752         TargetDeviceOffloadKind != Action::OFK_None) {
4753       types::ID Output =
4754           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4755       return C.MakeAction<BackendJobAction>(Input, Output);
4756     }
4757     if (Args.hasArg(options::OPT_emit_llvm) ||
4758         (((Input->getOffloadingToolChain() &&
4759            Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4760           TargetDeviceOffloadKind == Action::OFK_HIP) &&
4761          (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4762                        false) ||
4763           TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4764       types::ID Output =
4765           Args.hasArg(options::OPT_S) &&
4766                   (TargetDeviceOffloadKind == Action::OFK_None ||
4767                    offloadDeviceOnly() ||
4768                    (TargetDeviceOffloadKind == Action::OFK_HIP &&
4769                     !Args.hasFlag(options::OPT_offload_new_driver,
4770                                   options::OPT_no_offload_new_driver, false)))
4771               ? types::TY_LLVM_IR
4772               : types::TY_LLVM_BC;
4773       return C.MakeAction<BackendJobAction>(Input, Output);
4774     }
4775     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4776   }
4777   case phases::Assemble:
4778     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4779   }
4780 
4781   llvm_unreachable("invalid phase in ConstructPhaseAction");
4782 }
4783 
4784 void Driver::BuildJobs(Compilation &C) const {
4785   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4786 
4787   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4788 
4789   // It is an error to provide a -o option if we are making multiple output
4790   // files. There are exceptions:
4791   //
4792   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4793   // generate the stub file at the same time that we generate the real
4794   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4795   // stubs there will also be a .ifs and .ifso at the same location.
4796   //
4797   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4798   // and -c is passed, we still want to be able to generate a .ifs file while
4799   // we are also generating .o files. So we allow more than one output file in
4800   // this case as well.
4801   //
4802   // OffloadClass of type TY_Nothing: device-only output will place many outputs
4803   // into a single offloading action. We should count all inputs to the action
4804   // as outputs. Also ignore device-only outputs if we're compiling with
4805   // -fsyntax-only.
4806   if (FinalOutput) {
4807     unsigned NumOutputs = 0;
4808     unsigned NumIfsOutputs = 0;
4809     for (const Action *A : C.getActions()) {
4810       if (A->getType() != types::TY_Nothing &&
4811           A->getType() != types::TY_DX_CONTAINER &&
4812           !(A->getKind() == Action::IfsMergeJobClass ||
4813             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4814              A->getKind() == clang::driver::Action::CompileJobClass &&
4815              0 == NumIfsOutputs++) ||
4816             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4817              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4818         ++NumOutputs;
4819       else if (A->getKind() == Action::OffloadClass &&
4820                A->getType() == types::TY_Nothing &&
4821                !C.getArgs().hasArg(options::OPT_fsyntax_only))
4822         NumOutputs += A->size();
4823     }
4824 
4825     if (NumOutputs > 1) {
4826       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4827       FinalOutput = nullptr;
4828     }
4829   }
4830 
4831   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4832 
4833   // Collect the list of architectures.
4834   llvm::StringSet<> ArchNames;
4835   if (RawTriple.isOSBinFormatMachO())
4836     for (const Arg *A : C.getArgs())
4837       if (A->getOption().matches(options::OPT_arch))
4838         ArchNames.insert(A->getValue());
4839 
4840   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4841   std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4842   for (Action *A : C.getActions()) {
4843     // If we are linking an image for multiple archs then the linker wants
4844     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4845     // doesn't fit in cleanly because we have to pass this information down.
4846     //
4847     // FIXME: This is a hack; find a cleaner way to integrate this into the
4848     // process.
4849     const char *LinkingOutput = nullptr;
4850     if (isa<LipoJobAction>(A)) {
4851       if (FinalOutput)
4852         LinkingOutput = FinalOutput->getValue();
4853       else
4854         LinkingOutput = getDefaultImageName();
4855     }
4856 
4857     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4858                        /*BoundArch*/ StringRef(),
4859                        /*AtTopLevel*/ true,
4860                        /*MultipleArchs*/ ArchNames.size() > 1,
4861                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4862                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4863   }
4864 
4865   // If we have more than one job, then disable integrated-cc1 for now. Do this
4866   // also when we need to report process execution statistics.
4867   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4868     for (auto &J : C.getJobs())
4869       J.InProcess = false;
4870 
4871   if (CCPrintProcessStats) {
4872     C.setPostCallback([=](const Command &Cmd, int Res) {
4873       std::optional<llvm::sys::ProcessStatistics> ProcStat =
4874           Cmd.getProcessStatistics();
4875       if (!ProcStat)
4876         return;
4877 
4878       const char *LinkingOutput = nullptr;
4879       if (FinalOutput)
4880         LinkingOutput = FinalOutput->getValue();
4881       else if (!Cmd.getOutputFilenames().empty())
4882         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4883       else
4884         LinkingOutput = getDefaultImageName();
4885 
4886       if (CCPrintStatReportFilename.empty()) {
4887         using namespace llvm;
4888         // Human readable output.
4889         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4890                << "output=" << LinkingOutput;
4891         outs() << ", total="
4892                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4893                << ", user="
4894                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4895                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4896       } else {
4897         // CSV format.
4898         std::string Buffer;
4899         llvm::raw_string_ostream Out(Buffer);
4900         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4901                             /*Quote*/ true);
4902         Out << ',';
4903         llvm::sys::printArg(Out, LinkingOutput, true);
4904         Out << ',' << ProcStat->TotalTime.count() << ','
4905             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4906             << '\n';
4907         Out.flush();
4908         std::error_code EC;
4909         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4910                                 llvm::sys::fs::OF_Append |
4911                                     llvm::sys::fs::OF_Text);
4912         if (EC)
4913           return;
4914         auto L = OS.lock();
4915         if (!L) {
4916           llvm::errs() << "ERROR: Cannot lock file "
4917                        << CCPrintStatReportFilename << ": "
4918                        << toString(L.takeError()) << "\n";
4919           return;
4920         }
4921         OS << Buffer;
4922         OS.flush();
4923       }
4924     });
4925   }
4926 
4927   // If the user passed -Qunused-arguments or there were errors, don't warn
4928   // about any unused arguments.
4929   if (Diags.hasErrorOccurred() ||
4930       C.getArgs().hasArg(options::OPT_Qunused_arguments))
4931     return;
4932 
4933   // Claim -fdriver-only here.
4934   (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4935   // Claim -### here.
4936   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4937 
4938   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4939   (void)C.getArgs().hasArg(options::OPT_driver_mode);
4940   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4941 
4942   bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
4943     // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
4944     // longer ShortName "clang integrated assembler" while other assemblers just
4945     // use "assembler".
4946     return strstr(J.getCreator().getShortName(), "assembler");
4947   });
4948   for (Arg *A : C.getArgs()) {
4949     // FIXME: It would be nice to be able to send the argument to the
4950     // DiagnosticsEngine, so that extra values, position, and so on could be
4951     // printed.
4952     if (!A->isClaimed()) {
4953       if (A->getOption().hasFlag(options::NoArgumentUnused))
4954         continue;
4955 
4956       // Suppress the warning automatically if this is just a flag, and it is an
4957       // instance of an argument we already claimed.
4958       const Option &Opt = A->getOption();
4959       if (Opt.getKind() == Option::FlagClass) {
4960         bool DuplicateClaimed = false;
4961 
4962         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4963           if (AA->isClaimed()) {
4964             DuplicateClaimed = true;
4965             break;
4966           }
4967         }
4968 
4969         if (DuplicateClaimed)
4970           continue;
4971       }
4972 
4973       // In clang-cl, don't mention unknown arguments here since they have
4974       // already been warned about.
4975       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
4976         if (A->getOption().hasFlag(options::TargetSpecific) &&
4977             !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
4978             // When for example -### or -v is used
4979             // without a file, target specific options are not
4980             // consumed/validated.
4981             // Instead emitting an error emit a warning instead.
4982             !C.getActions().empty()) {
4983           Diag(diag::err_drv_unsupported_opt_for_target)
4984               << A->getSpelling() << getTargetTriple();
4985         } else {
4986           Diag(clang::diag::warn_drv_unused_argument)
4987               << A->getAsString(C.getArgs());
4988         }
4989       }
4990     }
4991   }
4992 }
4993 
4994 namespace {
4995 /// Utility class to control the collapse of dependent actions and select the
4996 /// tools accordingly.
4997 class ToolSelector final {
4998   /// The tool chain this selector refers to.
4999   const ToolChain &TC;
5000 
5001   /// The compilation this selector refers to.
5002   const Compilation &C;
5003 
5004   /// The base action this selector refers to.
5005   const JobAction *BaseAction;
5006 
5007   /// Set to true if the current toolchain refers to host actions.
5008   bool IsHostSelector;
5009 
5010   /// Set to true if save-temps and embed-bitcode functionalities are active.
5011   bool SaveTemps;
5012   bool EmbedBitcode;
5013 
5014   /// Get previous dependent action or null if that does not exist. If
5015   /// \a CanBeCollapsed is false, that action must be legal to collapse or
5016   /// null will be returned.
5017   const JobAction *getPrevDependentAction(const ActionList &Inputs,
5018                                           ActionList &SavedOffloadAction,
5019                                           bool CanBeCollapsed = true) {
5020     // An option can be collapsed only if it has a single input.
5021     if (Inputs.size() != 1)
5022       return nullptr;
5023 
5024     Action *CurAction = *Inputs.begin();
5025     if (CanBeCollapsed &&
5026         !CurAction->isCollapsingWithNextDependentActionLegal())
5027       return nullptr;
5028 
5029     // If the input action is an offload action. Look through it and save any
5030     // offload action that can be dropped in the event of a collapse.
5031     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5032       // If the dependent action is a device action, we will attempt to collapse
5033       // only with other device actions. Otherwise, we would do the same but
5034       // with host actions only.
5035       if (!IsHostSelector) {
5036         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5037           CurAction =
5038               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5039           if (CanBeCollapsed &&
5040               !CurAction->isCollapsingWithNextDependentActionLegal())
5041             return nullptr;
5042           SavedOffloadAction.push_back(OA);
5043           return dyn_cast<JobAction>(CurAction);
5044         }
5045       } else if (OA->hasHostDependence()) {
5046         CurAction = OA->getHostDependence();
5047         if (CanBeCollapsed &&
5048             !CurAction->isCollapsingWithNextDependentActionLegal())
5049           return nullptr;
5050         SavedOffloadAction.push_back(OA);
5051         return dyn_cast<JobAction>(CurAction);
5052       }
5053       return nullptr;
5054     }
5055 
5056     return dyn_cast<JobAction>(CurAction);
5057   }
5058 
5059   /// Return true if an assemble action can be collapsed.
5060   bool canCollapseAssembleAction() const {
5061     return TC.useIntegratedAs() && !SaveTemps &&
5062            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5063            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5064            !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5065            !C.getArgs().hasArg(options::OPT_dxc_Fc);
5066   }
5067 
5068   /// Return true if a preprocessor action can be collapsed.
5069   bool canCollapsePreprocessorAction() const {
5070     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5071            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5072            !C.getArgs().hasArg(options::OPT_rewrite_objc);
5073   }
5074 
5075   /// Struct that relates an action with the offload actions that would be
5076   /// collapsed with it.
5077   struct JobActionInfo final {
5078     /// The action this info refers to.
5079     const JobAction *JA = nullptr;
5080     /// The offload actions we need to take care off if this action is
5081     /// collapsed.
5082     ActionList SavedOffloadAction;
5083   };
5084 
5085   /// Append collapsed offload actions from the give nnumber of elements in the
5086   /// action info array.
5087   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5088                                            ArrayRef<JobActionInfo> &ActionInfo,
5089                                            unsigned ElementNum) {
5090     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5091     for (unsigned I = 0; I < ElementNum; ++I)
5092       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5093                                     ActionInfo[I].SavedOffloadAction.end());
5094   }
5095 
5096   /// Functions that attempt to perform the combining. They detect if that is
5097   /// legal, and if so they update the inputs \a Inputs and the offload action
5098   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5099   /// the combined action is returned. If the combining is not legal or if the
5100   /// tool does not exist, null is returned.
5101   /// Currently three kinds of collapsing are supported:
5102   ///  - Assemble + Backend + Compile;
5103   ///  - Assemble + Backend ;
5104   ///  - Backend + Compile.
5105   const Tool *
5106   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5107                                 ActionList &Inputs,
5108                                 ActionList &CollapsedOffloadAction) {
5109     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5110       return nullptr;
5111     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5112     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5113     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5114     if (!AJ || !BJ || !CJ)
5115       return nullptr;
5116 
5117     // Get compiler tool.
5118     const Tool *T = TC.SelectTool(*CJ);
5119     if (!T)
5120       return nullptr;
5121 
5122     // Can't collapse if we don't have codegen support unless we are
5123     // emitting LLVM IR.
5124     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5125     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5126       return nullptr;
5127 
5128     // When using -fembed-bitcode, it is required to have the same tool (clang)
5129     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5130     if (EmbedBitcode) {
5131       const Tool *BT = TC.SelectTool(*BJ);
5132       if (BT == T)
5133         return nullptr;
5134     }
5135 
5136     if (!T->hasIntegratedAssembler())
5137       return nullptr;
5138 
5139     Inputs = CJ->getInputs();
5140     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5141                                  /*NumElements=*/3);
5142     return T;
5143   }
5144   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5145                                      ActionList &Inputs,
5146                                      ActionList &CollapsedOffloadAction) {
5147     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5148       return nullptr;
5149     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5150     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5151     if (!AJ || !BJ)
5152       return nullptr;
5153 
5154     // Get backend tool.
5155     const Tool *T = TC.SelectTool(*BJ);
5156     if (!T)
5157       return nullptr;
5158 
5159     if (!T->hasIntegratedAssembler())
5160       return nullptr;
5161 
5162     Inputs = BJ->getInputs();
5163     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5164                                  /*NumElements=*/2);
5165     return T;
5166   }
5167   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5168                                     ActionList &Inputs,
5169                                     ActionList &CollapsedOffloadAction) {
5170     if (ActionInfo.size() < 2)
5171       return nullptr;
5172     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5173     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5174     if (!BJ || !CJ)
5175       return nullptr;
5176 
5177     // Check if the initial input (to the compile job or its predessor if one
5178     // exists) is LLVM bitcode. In that case, no preprocessor step is required
5179     // and we can still collapse the compile and backend jobs when we have
5180     // -save-temps. I.e. there is no need for a separate compile job just to
5181     // emit unoptimized bitcode.
5182     bool InputIsBitcode = true;
5183     for (size_t i = 1; i < ActionInfo.size(); i++)
5184       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5185           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5186         InputIsBitcode = false;
5187         break;
5188       }
5189     if (!InputIsBitcode && !canCollapsePreprocessorAction())
5190       return nullptr;
5191 
5192     // Get compiler tool.
5193     const Tool *T = TC.SelectTool(*CJ);
5194     if (!T)
5195       return nullptr;
5196 
5197     // Can't collapse if we don't have codegen support unless we are
5198     // emitting LLVM IR.
5199     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5200     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5201       return nullptr;
5202 
5203     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5204       return nullptr;
5205 
5206     Inputs = CJ->getInputs();
5207     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5208                                  /*NumElements=*/2);
5209     return T;
5210   }
5211 
5212   /// Updates the inputs if the obtained tool supports combining with
5213   /// preprocessor action, and the current input is indeed a preprocessor
5214   /// action. If combining results in the collapse of offloading actions, those
5215   /// are appended to \a CollapsedOffloadAction.
5216   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5217                                ActionList &CollapsedOffloadAction) {
5218     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5219       return;
5220 
5221     // Attempt to get a preprocessor action dependence.
5222     ActionList PreprocessJobOffloadActions;
5223     ActionList NewInputs;
5224     for (Action *A : Inputs) {
5225       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5226       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5227         NewInputs.push_back(A);
5228         continue;
5229       }
5230 
5231       // This is legal to combine. Append any offload action we found and add the
5232       // current input to preprocessor inputs.
5233       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5234                                     PreprocessJobOffloadActions.end());
5235       NewInputs.append(PJ->input_begin(), PJ->input_end());
5236     }
5237     Inputs = NewInputs;
5238   }
5239 
5240 public:
5241   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5242                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5243       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5244         EmbedBitcode(EmbedBitcode) {
5245     assert(BaseAction && "Invalid base action.");
5246     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5247   }
5248 
5249   /// Check if a chain of actions can be combined and return the tool that can
5250   /// handle the combination of actions. The pointer to the current inputs \a
5251   /// Inputs and the list of offload actions \a CollapsedOffloadActions
5252   /// connected to collapsed actions are updated accordingly. The latter enables
5253   /// the caller of the selector to process them afterwards instead of just
5254   /// dropping them. If no suitable tool is found, null will be returned.
5255   const Tool *getTool(ActionList &Inputs,
5256                       ActionList &CollapsedOffloadAction) {
5257     //
5258     // Get the largest chain of actions that we could combine.
5259     //
5260 
5261     SmallVector<JobActionInfo, 5> ActionChain(1);
5262     ActionChain.back().JA = BaseAction;
5263     while (ActionChain.back().JA) {
5264       const Action *CurAction = ActionChain.back().JA;
5265 
5266       // Grow the chain by one element.
5267       ActionChain.resize(ActionChain.size() + 1);
5268       JobActionInfo &AI = ActionChain.back();
5269 
5270       // Attempt to fill it with the
5271       AI.JA =
5272           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5273     }
5274 
5275     // Pop the last action info as it could not be filled.
5276     ActionChain.pop_back();
5277 
5278     //
5279     // Attempt to combine actions. If all combining attempts failed, just return
5280     // the tool of the provided action. At the end we attempt to combine the
5281     // action with any preprocessor action it may depend on.
5282     //
5283 
5284     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5285                                                   CollapsedOffloadAction);
5286     if (!T)
5287       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5288     if (!T)
5289       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5290     if (!T) {
5291       Inputs = BaseAction->getInputs();
5292       T = TC.SelectTool(*BaseAction);
5293     }
5294 
5295     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5296     return T;
5297   }
5298 };
5299 }
5300 
5301 /// Return a string that uniquely identifies the result of a job. The bound arch
5302 /// is not necessarily represented in the toolchain's triple -- for example,
5303 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5304 /// Also, we need to add the offloading device kind, as the same tool chain can
5305 /// be used for host and device for some programming models, e.g. OpenMP.
5306 static std::string GetTriplePlusArchString(const ToolChain *TC,
5307                                            StringRef BoundArch,
5308                                            Action::OffloadKind OffloadKind) {
5309   std::string TriplePlusArch = TC->getTriple().normalize();
5310   if (!BoundArch.empty()) {
5311     TriplePlusArch += "-";
5312     TriplePlusArch += BoundArch;
5313   }
5314   TriplePlusArch += "-";
5315   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5316   return TriplePlusArch;
5317 }
5318 
5319 InputInfoList Driver::BuildJobsForAction(
5320     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5321     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5322     std::map<std::pair<const Action *, std::string>, InputInfoList>
5323         &CachedResults,
5324     Action::OffloadKind TargetDeviceOffloadKind) const {
5325   std::pair<const Action *, std::string> ActionTC = {
5326       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5327   auto CachedResult = CachedResults.find(ActionTC);
5328   if (CachedResult != CachedResults.end()) {
5329     return CachedResult->second;
5330   }
5331   InputInfoList Result = BuildJobsForActionNoCache(
5332       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5333       CachedResults, TargetDeviceOffloadKind);
5334   CachedResults[ActionTC] = Result;
5335   return Result;
5336 }
5337 
5338 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5339                             const JobAction *JA, const char *BaseInput,
5340                             const InputInfo &Result) {
5341   Arg *A =
5342       Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5343   if (!A)
5344     return;
5345   SmallString<128> Path;
5346   if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5347     Path = A->getValue();
5348     if (llvm::sys::fs::is_directory(Path)) {
5349       SmallString<128> Tmp(Result.getFilename());
5350       llvm::sys::path::replace_extension(Tmp, "json");
5351       llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5352     }
5353   } else {
5354     if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5355       // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5356       // end with a path separator.
5357       Path = DumpDir->getValue();
5358       Path += llvm::sys::path::filename(BaseInput);
5359     } else {
5360       Path = Result.getFilename();
5361     }
5362     llvm::sys::path::replace_extension(Path, "json");
5363   }
5364   const char *ResultFile = C.getArgs().MakeArgString(Path);
5365   C.addTimeTraceFile(ResultFile, JA);
5366   C.addResultFile(ResultFile, JA);
5367 }
5368 
5369 InputInfoList Driver::BuildJobsForActionNoCache(
5370     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5371     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5372     std::map<std::pair<const Action *, std::string>, InputInfoList>
5373         &CachedResults,
5374     Action::OffloadKind TargetDeviceOffloadKind) const {
5375   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5376 
5377   InputInfoList OffloadDependencesInputInfo;
5378   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5379   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5380     // The 'Darwin' toolchain is initialized only when its arguments are
5381     // computed. Get the default arguments for OFK_None to ensure that
5382     // initialization is performed before processing the offload action.
5383     // FIXME: Remove when darwin's toolchain is initialized during construction.
5384     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5385 
5386     // The offload action is expected to be used in four different situations.
5387     //
5388     // a) Set a toolchain/architecture/kind for a host action:
5389     //    Host Action 1 -> OffloadAction -> Host Action 2
5390     //
5391     // b) Set a toolchain/architecture/kind for a device action;
5392     //    Device Action 1 -> OffloadAction -> Device Action 2
5393     //
5394     // c) Specify a device dependence to a host action;
5395     //    Device Action 1  _
5396     //                      \
5397     //      Host Action 1  ---> OffloadAction -> Host Action 2
5398     //
5399     // d) Specify a host dependence to a device action.
5400     //      Host Action 1  _
5401     //                      \
5402     //    Device Action 1  ---> OffloadAction -> Device Action 2
5403     //
5404     // For a) and b), we just return the job generated for the dependences. For
5405     // c) and d) we override the current action with the host/device dependence
5406     // if the current toolchain is host/device and set the offload dependences
5407     // info with the jobs obtained from the device/host dependence(s).
5408 
5409     // If there is a single device option or has no host action, just generate
5410     // the job for it.
5411     if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5412       InputInfoList DevA;
5413       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5414                                        const char *DepBoundArch) {
5415         DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5416                                        /*MultipleArchs*/ !!DepBoundArch,
5417                                        LinkingOutput, CachedResults,
5418                                        DepA->getOffloadingDeviceKind()));
5419       });
5420       return DevA;
5421     }
5422 
5423     // If 'Action 2' is host, we generate jobs for the device dependences and
5424     // override the current action with the host dependence. Otherwise, we
5425     // generate the host dependences and override the action with the device
5426     // dependence. The dependences can't therefore be a top-level action.
5427     OA->doOnEachDependence(
5428         /*IsHostDependence=*/BuildingForOffloadDevice,
5429         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5430           OffloadDependencesInputInfo.append(BuildJobsForAction(
5431               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5432               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5433               DepA->getOffloadingDeviceKind()));
5434         });
5435 
5436     A = BuildingForOffloadDevice
5437             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5438             : OA->getHostDependence();
5439 
5440     // We may have already built this action as a part of the offloading
5441     // toolchain, return the cached input if so.
5442     std::pair<const Action *, std::string> ActionTC = {
5443         OA->getHostDependence(),
5444         GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5445     if (CachedResults.find(ActionTC) != CachedResults.end()) {
5446       InputInfoList Inputs = CachedResults[ActionTC];
5447       Inputs.append(OffloadDependencesInputInfo);
5448       return Inputs;
5449     }
5450   }
5451 
5452   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5453     // FIXME: It would be nice to not claim this here; maybe the old scheme of
5454     // just using Args was better?
5455     const Arg &Input = IA->getInputArg();
5456     Input.claim();
5457     if (Input.getOption().matches(options::OPT_INPUT)) {
5458       const char *Name = Input.getValue();
5459       return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5460     }
5461     return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5462   }
5463 
5464   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5465     const ToolChain *TC;
5466     StringRef ArchName = BAA->getArchName();
5467 
5468     if (!ArchName.empty())
5469       TC = &getToolChain(C.getArgs(),
5470                          computeTargetTriple(*this, TargetTriple,
5471                                              C.getArgs(), ArchName));
5472     else
5473       TC = &C.getDefaultToolChain();
5474 
5475     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5476                               MultipleArchs, LinkingOutput, CachedResults,
5477                               TargetDeviceOffloadKind);
5478   }
5479 
5480 
5481   ActionList Inputs = A->getInputs();
5482 
5483   const JobAction *JA = cast<JobAction>(A);
5484   ActionList CollapsedOffloadActions;
5485 
5486   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5487                   embedBitcodeInObject() && !isUsingLTO());
5488   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5489 
5490   if (!T)
5491     return {InputInfo()};
5492 
5493   // If we've collapsed action list that contained OffloadAction we
5494   // need to build jobs for host/device-side inputs it may have held.
5495   for (const auto *OA : CollapsedOffloadActions)
5496     cast<OffloadAction>(OA)->doOnEachDependence(
5497         /*IsHostDependence=*/BuildingForOffloadDevice,
5498         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5499           OffloadDependencesInputInfo.append(BuildJobsForAction(
5500               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5501               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5502               DepA->getOffloadingDeviceKind()));
5503         });
5504 
5505   // Only use pipes when there is exactly one input.
5506   InputInfoList InputInfos;
5507   for (const Action *Input : Inputs) {
5508     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5509     // shouldn't get temporary output names.
5510     // FIXME: Clean this up.
5511     bool SubJobAtTopLevel =
5512         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5513     InputInfos.append(BuildJobsForAction(
5514         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5515         CachedResults, A->getOffloadingDeviceKind()));
5516   }
5517 
5518   // Always use the first file input as the base input.
5519   const char *BaseInput = InputInfos[0].getBaseInput();
5520   for (auto &Info : InputInfos) {
5521     if (Info.isFilename()) {
5522       BaseInput = Info.getBaseInput();
5523       break;
5524     }
5525   }
5526 
5527   // ... except dsymutil actions, which use their actual input as the base
5528   // input.
5529   if (JA->getType() == types::TY_dSYM)
5530     BaseInput = InputInfos[0].getFilename();
5531 
5532   // Append outputs of offload device jobs to the input list
5533   if (!OffloadDependencesInputInfo.empty())
5534     InputInfos.append(OffloadDependencesInputInfo.begin(),
5535                       OffloadDependencesInputInfo.end());
5536 
5537   // Set the effective triple of the toolchain for the duration of this job.
5538   llvm::Triple EffectiveTriple;
5539   const ToolChain &ToolTC = T->getToolChain();
5540   const ArgList &Args =
5541       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5542   if (InputInfos.size() != 1) {
5543     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5544   } else {
5545     // Pass along the input type if it can be unambiguously determined.
5546     EffectiveTriple = llvm::Triple(
5547         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5548   }
5549   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5550 
5551   // Determine the place to write output to, if any.
5552   InputInfo Result;
5553   InputInfoList UnbundlingResults;
5554   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5555     // If we have an unbundling job, we need to create results for all the
5556     // outputs. We also update the results cache so that other actions using
5557     // this unbundling action can get the right results.
5558     for (auto &UI : UA->getDependentActionsInfo()) {
5559       assert(UI.DependentOffloadKind != Action::OFK_None &&
5560              "Unbundling with no offloading??");
5561 
5562       // Unbundling actions are never at the top level. When we generate the
5563       // offloading prefix, we also do that for the host file because the
5564       // unbundling action does not change the type of the output which can
5565       // cause a overwrite.
5566       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5567           UI.DependentOffloadKind,
5568           UI.DependentToolChain->getTriple().normalize(),
5569           /*CreatePrefixForHost=*/true);
5570       auto CurI = InputInfo(
5571           UA,
5572           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5573                              /*AtTopLevel=*/false,
5574                              MultipleArchs ||
5575                                  UI.DependentOffloadKind == Action::OFK_HIP,
5576                              OffloadingPrefix),
5577           BaseInput);
5578       // Save the unbundling result.
5579       UnbundlingResults.push_back(CurI);
5580 
5581       // Get the unique string identifier for this dependence and cache the
5582       // result.
5583       StringRef Arch;
5584       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5585         if (UI.DependentOffloadKind == Action::OFK_Host)
5586           Arch = StringRef();
5587         else
5588           Arch = UI.DependentBoundArch;
5589       } else
5590         Arch = BoundArch;
5591 
5592       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5593                                                 UI.DependentOffloadKind)}] = {
5594           CurI};
5595     }
5596 
5597     // Now that we have all the results generated, select the one that should be
5598     // returned for the current depending action.
5599     std::pair<const Action *, std::string> ActionTC = {
5600         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5601     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5602            "Result does not exist??");
5603     Result = CachedResults[ActionTC].front();
5604   } else if (JA->getType() == types::TY_Nothing)
5605     Result = {InputInfo(A, BaseInput)};
5606   else {
5607     // We only have to generate a prefix for the host if this is not a top-level
5608     // action.
5609     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5610         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5611         /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5612             !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5613               AtTopLevel));
5614     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5615                                              AtTopLevel, MultipleArchs,
5616                                              OffloadingPrefix),
5617                        BaseInput);
5618     if (T->canEmitIR() && OffloadingPrefix.empty())
5619       handleTimeTrace(C, Args, JA, BaseInput, Result);
5620   }
5621 
5622   if (CCCPrintBindings && !CCGenDiagnostics) {
5623     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5624                  << " - \"" << T->getName() << "\", inputs: [";
5625     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5626       llvm::errs() << InputInfos[i].getAsString();
5627       if (i + 1 != e)
5628         llvm::errs() << ", ";
5629     }
5630     if (UnbundlingResults.empty())
5631       llvm::errs() << "], output: " << Result.getAsString() << "\n";
5632     else {
5633       llvm::errs() << "], outputs: [";
5634       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5635         llvm::errs() << UnbundlingResults[i].getAsString();
5636         if (i + 1 != e)
5637           llvm::errs() << ", ";
5638       }
5639       llvm::errs() << "] \n";
5640     }
5641   } else {
5642     if (UnbundlingResults.empty())
5643       T->ConstructJob(
5644           C, *JA, Result, InputInfos,
5645           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5646           LinkingOutput);
5647     else
5648       T->ConstructJobMultipleOutputs(
5649           C, *JA, UnbundlingResults, InputInfos,
5650           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5651           LinkingOutput);
5652   }
5653   return {Result};
5654 }
5655 
5656 const char *Driver::getDefaultImageName() const {
5657   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5658   return Target.isOSWindows() ? "a.exe" : "a.out";
5659 }
5660 
5661 /// Create output filename based on ArgValue, which could either be a
5662 /// full filename, filename without extension, or a directory. If ArgValue
5663 /// does not provide a filename, then use BaseName, and use the extension
5664 /// suitable for FileType.
5665 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5666                                         StringRef BaseName,
5667                                         types::ID FileType) {
5668   SmallString<128> Filename = ArgValue;
5669 
5670   if (ArgValue.empty()) {
5671     // If the argument is empty, output to BaseName in the current dir.
5672     Filename = BaseName;
5673   } else if (llvm::sys::path::is_separator(Filename.back())) {
5674     // If the argument is a directory, output to BaseName in that dir.
5675     llvm::sys::path::append(Filename, BaseName);
5676   }
5677 
5678   if (!llvm::sys::path::has_extension(ArgValue)) {
5679     // If the argument didn't provide an extension, then set it.
5680     const char *Extension = types::getTypeTempSuffix(FileType, true);
5681 
5682     if (FileType == types::TY_Image &&
5683         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5684       // The output file is a dll.
5685       Extension = "dll";
5686     }
5687 
5688     llvm::sys::path::replace_extension(Filename, Extension);
5689   }
5690 
5691   return Args.MakeArgString(Filename.c_str());
5692 }
5693 
5694 static bool HasPreprocessOutput(const Action &JA) {
5695   if (isa<PreprocessJobAction>(JA))
5696     return true;
5697   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5698     return true;
5699   if (isa<OffloadBundlingJobAction>(JA) &&
5700       HasPreprocessOutput(*(JA.getInputs()[0])))
5701     return true;
5702   return false;
5703 }
5704 
5705 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5706                                    StringRef Suffix, bool MultipleArchs,
5707                                    StringRef BoundArch,
5708                                    bool NeedUniqueDirectory) const {
5709   SmallString<128> TmpName;
5710   Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5711   std::optional<std::string> CrashDirectory =
5712       CCGenDiagnostics && A
5713           ? std::string(A->getValue())
5714           : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5715   if (CrashDirectory) {
5716     if (!getVFS().exists(*CrashDirectory))
5717       llvm::sys::fs::create_directories(*CrashDirectory);
5718     SmallString<128> Path(*CrashDirectory);
5719     llvm::sys::path::append(Path, Prefix);
5720     const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5721     if (std::error_code EC =
5722             llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5723       Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5724       return "";
5725     }
5726   } else {
5727     if (MultipleArchs && !BoundArch.empty()) {
5728       if (NeedUniqueDirectory) {
5729         TmpName = GetTemporaryDirectory(Prefix);
5730         llvm::sys::path::append(TmpName,
5731                                 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5732       } else {
5733         TmpName =
5734             GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5735       }
5736 
5737     } else {
5738       TmpName = GetTemporaryPath(Prefix, Suffix);
5739     }
5740   }
5741   return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5742 }
5743 
5744 // Calculate the output path of the module file when compiling a module unit
5745 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5746 // The behavior is:
5747 // - If `-fmodule-output=` is specfied, then the module file is
5748 //   writing to the value.
5749 // - Otherwise if the output object file of the module unit is specified, the
5750 // output path
5751 //   of the module file should be the same with the output object file except
5752 //   the corresponding suffix. This requires both `-o` and `-c` are specified.
5753 // - Otherwise, the output path of the module file will be the same with the
5754 //   input with the corresponding suffix.
5755 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5756                                        const char *BaseInput) {
5757   assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5758          (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5759           C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5760 
5761   if (Arg *ModuleOutputEQ =
5762           C.getArgs().getLastArg(options::OPT_fmodule_output_EQ))
5763     return C.addResultFile(ModuleOutputEQ->getValue(), &JA);
5764 
5765   SmallString<64> OutputPath;
5766   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5767   if (FinalOutput && C.getArgs().hasArg(options::OPT_c))
5768     OutputPath = FinalOutput->getValue();
5769   else
5770     OutputPath = BaseInput;
5771 
5772   const char *Extension = types::getTypeTempSuffix(JA.getType());
5773   llvm::sys::path::replace_extension(OutputPath, Extension);
5774   return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5775 }
5776 
5777 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5778                                        const char *BaseInput,
5779                                        StringRef OrigBoundArch, bool AtTopLevel,
5780                                        bool MultipleArchs,
5781                                        StringRef OffloadingPrefix) const {
5782   std::string BoundArch = OrigBoundArch.str();
5783   if (is_style_windows(llvm::sys::path::Style::native)) {
5784     // BoundArch may contains ':', which is invalid in file names on Windows,
5785     // therefore replace it with '%'.
5786     std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5787   }
5788 
5789   llvm::PrettyStackTraceString CrashInfo("Computing output path");
5790   // Output to a user requested destination?
5791   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5792     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5793       return C.addResultFile(FinalOutput->getValue(), &JA);
5794   }
5795 
5796   // For /P, preprocess to file named after BaseInput.
5797   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5798     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5799     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5800     StringRef NameArg;
5801     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5802       NameArg = A->getValue();
5803     return C.addResultFile(
5804         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5805         &JA);
5806   }
5807 
5808   // Default to writing to stdout?
5809   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5810     return "-";
5811   }
5812 
5813   if (JA.getType() == types::TY_ModuleFile &&
5814       C.getArgs().getLastArg(options::OPT_module_file_info)) {
5815     return "-";
5816   }
5817 
5818   if (JA.getType() == types::TY_PP_Asm &&
5819       C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5820     StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5821     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5822     // handle this as part of the SLASH_Fa handling below.
5823     return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5824   }
5825 
5826   if (JA.getType() == types::TY_Object &&
5827       C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5828     StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5829     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5830     // handle this as part of the SLASH_Fo handling below.
5831     return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5832   }
5833 
5834   // Is this the assembly listing for /FA?
5835   if (JA.getType() == types::TY_PP_Asm &&
5836       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5837        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5838     // Use /Fa and the input filename to determine the asm file name.
5839     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5840     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5841     return C.addResultFile(
5842         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5843         &JA);
5844   }
5845 
5846   // DXC defaults to standard out when generating assembly. We check this after
5847   // any DXC flags that might specify a file.
5848   if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5849     return "-";
5850 
5851   bool SpecifiedModuleOutput =
5852       C.getArgs().hasArg(options::OPT_fmodule_output) ||
5853       C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5854   if (MultipleArchs && SpecifiedModuleOutput)
5855     Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5856 
5857   // If we're emitting a module output with the specified option
5858   // `-fmodule-output`.
5859   if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5860       JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput)
5861     return GetModuleOutputPath(C, JA, BaseInput);
5862 
5863   // Output to a temporary file?
5864   if ((!AtTopLevel && !isSaveTempsEnabled() &&
5865        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5866       CCGenDiagnostics) {
5867     StringRef Name = llvm::sys::path::filename(BaseInput);
5868     std::pair<StringRef, StringRef> Split = Name.split('.');
5869     const char *Suffix =
5870         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5871     // The non-offloading toolchain on Darwin requires deterministic input
5872     // file name for binaries to be deterministic, therefore it needs unique
5873     // directory.
5874     llvm::Triple Triple(C.getDriver().getTargetTriple());
5875     bool NeedUniqueDirectory =
5876         (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5877          JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5878         Triple.isOSDarwin();
5879     return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5880                           NeedUniqueDirectory);
5881   }
5882 
5883   SmallString<128> BasePath(BaseInput);
5884   SmallString<128> ExternalPath("");
5885   StringRef BaseName;
5886 
5887   // Dsymutil actions should use the full path.
5888   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5889     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5890     // We use posix style here because the tests (specifically
5891     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5892     // even on Windows and if we don't then the similar test covering this
5893     // fails.
5894     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5895                             llvm::sys::path::filename(BasePath));
5896     BaseName = ExternalPath;
5897   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5898     BaseName = BasePath;
5899   else
5900     BaseName = llvm::sys::path::filename(BasePath);
5901 
5902   // Determine what the derived output name should be.
5903   const char *NamedOutput;
5904 
5905   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5906       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5907     // The /Fo or /o flag decides the object filename.
5908     StringRef Val =
5909         C.getArgs()
5910             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5911             ->getValue();
5912     NamedOutput =
5913         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5914   } else if (JA.getType() == types::TY_Image &&
5915              C.getArgs().hasArg(options::OPT__SLASH_Fe,
5916                                 options::OPT__SLASH_o)) {
5917     // The /Fe or /o flag names the linked file.
5918     StringRef Val =
5919         C.getArgs()
5920             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5921             ->getValue();
5922     NamedOutput =
5923         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5924   } else if (JA.getType() == types::TY_Image) {
5925     if (IsCLMode()) {
5926       // clang-cl uses BaseName for the executable name.
5927       NamedOutput =
5928           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5929     } else {
5930       SmallString<128> Output(getDefaultImageName());
5931       // HIP image for device compilation with -fno-gpu-rdc is per compilation
5932       // unit.
5933       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5934                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5935                                              options::OPT_fno_gpu_rdc, false);
5936       bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5937       if (UseOutExtension) {
5938         Output = BaseName;
5939         llvm::sys::path::replace_extension(Output, "");
5940       }
5941       Output += OffloadingPrefix;
5942       if (MultipleArchs && !BoundArch.empty()) {
5943         Output += "-";
5944         Output.append(BoundArch);
5945       }
5946       if (UseOutExtension)
5947         Output += ".out";
5948       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5949     }
5950   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5951     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5952   } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5953              C.getArgs().hasArg(options::OPT__SLASH_o)) {
5954     StringRef Val =
5955         C.getArgs()
5956             .getLastArg(options::OPT__SLASH_o)
5957             ->getValue();
5958     NamedOutput =
5959         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5960   } else {
5961     const char *Suffix =
5962         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5963     assert(Suffix && "All types used for output should have a suffix.");
5964 
5965     std::string::size_type End = std::string::npos;
5966     if (!types::appendSuffixForType(JA.getType()))
5967       End = BaseName.rfind('.');
5968     SmallString<128> Suffixed(BaseName.substr(0, End));
5969     Suffixed += OffloadingPrefix;
5970     if (MultipleArchs && !BoundArch.empty()) {
5971       Suffixed += "-";
5972       Suffixed.append(BoundArch);
5973     }
5974     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5975     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5976     // optimized bitcode output.
5977     auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
5978                                      const llvm::opt::DerivedArgList &Args) {
5979       // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
5980       // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
5981       // (generated in the compile phase.)
5982       const ToolChain *TC = JA.getOffloadingToolChain();
5983       return isa<CompileJobAction>(JA) &&
5984              ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5985                Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5986                             false)) ||
5987               (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
5988                TC->getTriple().isAMDGPU()));
5989     };
5990     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5991         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5992          IsAMDRDCInCompilePhase(JA, C.getArgs())))
5993       Suffixed += ".tmp";
5994     Suffixed += '.';
5995     Suffixed += Suffix;
5996     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5997   }
5998 
5999   // Prepend object file path if -save-temps=obj
6000   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6001       JA.getType() != types::TY_PCH) {
6002     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6003     SmallString<128> TempPath(FinalOutput->getValue());
6004     llvm::sys::path::remove_filename(TempPath);
6005     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6006     llvm::sys::path::append(TempPath, OutputFileName);
6007     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6008   }
6009 
6010   // If we're saving temps and the temp file conflicts with the input file,
6011   // then avoid overwriting input file.
6012   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6013     bool SameFile = false;
6014     SmallString<256> Result;
6015     llvm::sys::fs::current_path(Result);
6016     llvm::sys::path::append(Result, BaseName);
6017     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6018     // Must share the same path to conflict.
6019     if (SameFile) {
6020       StringRef Name = llvm::sys::path::filename(BaseInput);
6021       std::pair<StringRef, StringRef> Split = Name.split('.');
6022       std::string TmpName = GetTemporaryPath(
6023           Split.first,
6024           types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6025       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6026     }
6027   }
6028 
6029   // As an annoying special case, PCH generation doesn't strip the pathname.
6030   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6031     llvm::sys::path::remove_filename(BasePath);
6032     if (BasePath.empty())
6033       BasePath = NamedOutput;
6034     else
6035       llvm::sys::path::append(BasePath, NamedOutput);
6036     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6037   }
6038 
6039   return C.addResultFile(NamedOutput, &JA);
6040 }
6041 
6042 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6043   // Search for Name in a list of paths.
6044   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6045       -> std::optional<std::string> {
6046     // Respect a limited subset of the '-Bprefix' functionality in GCC by
6047     // attempting to use this prefix when looking for file paths.
6048     for (const auto &Dir : P) {
6049       if (Dir.empty())
6050         continue;
6051       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6052       llvm::sys::path::append(P, Name);
6053       if (llvm::sys::fs::exists(Twine(P)))
6054         return std::string(P);
6055     }
6056     return std::nullopt;
6057   };
6058 
6059   if (auto P = SearchPaths(PrefixDirs))
6060     return *P;
6061 
6062   SmallString<128> R(ResourceDir);
6063   llvm::sys::path::append(R, Name);
6064   if (llvm::sys::fs::exists(Twine(R)))
6065     return std::string(R.str());
6066 
6067   SmallString<128> P(TC.getCompilerRTPath());
6068   llvm::sys::path::append(P, Name);
6069   if (llvm::sys::fs::exists(Twine(P)))
6070     return std::string(P.str());
6071 
6072   SmallString<128> D(Dir);
6073   llvm::sys::path::append(D, "..", Name);
6074   if (llvm::sys::fs::exists(Twine(D)))
6075     return std::string(D.str());
6076 
6077   if (auto P = SearchPaths(TC.getLibraryPaths()))
6078     return *P;
6079 
6080   if (auto P = SearchPaths(TC.getFilePaths()))
6081     return *P;
6082 
6083   return std::string(Name);
6084 }
6085 
6086 void Driver::generatePrefixedToolNames(
6087     StringRef Tool, const ToolChain &TC,
6088     SmallVectorImpl<std::string> &Names) const {
6089   // FIXME: Needs a better variable than TargetTriple
6090   Names.emplace_back((TargetTriple + "-" + Tool).str());
6091   Names.emplace_back(Tool);
6092 }
6093 
6094 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6095   llvm::sys::path::append(Dir, Name);
6096   if (llvm::sys::fs::can_execute(Twine(Dir)))
6097     return true;
6098   llvm::sys::path::remove_filename(Dir);
6099   return false;
6100 }
6101 
6102 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6103   SmallVector<std::string, 2> TargetSpecificExecutables;
6104   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6105 
6106   // Respect a limited subset of the '-Bprefix' functionality in GCC by
6107   // attempting to use this prefix when looking for program paths.
6108   for (const auto &PrefixDir : PrefixDirs) {
6109     if (llvm::sys::fs::is_directory(PrefixDir)) {
6110       SmallString<128> P(PrefixDir);
6111       if (ScanDirForExecutable(P, Name))
6112         return std::string(P.str());
6113     } else {
6114       SmallString<128> P((PrefixDir + Name).str());
6115       if (llvm::sys::fs::can_execute(Twine(P)))
6116         return std::string(P.str());
6117     }
6118   }
6119 
6120   const ToolChain::path_list &List = TC.getProgramPaths();
6121   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6122     // For each possible name of the tool look for it in
6123     // program paths first, then the path.
6124     // Higher priority names will be first, meaning that
6125     // a higher priority name in the path will be found
6126     // instead of a lower priority name in the program path.
6127     // E.g. <triple>-gcc on the path will be found instead
6128     // of gcc in the program path
6129     for (const auto &Path : List) {
6130       SmallString<128> P(Path);
6131       if (ScanDirForExecutable(P, TargetSpecificExecutable))
6132         return std::string(P.str());
6133     }
6134 
6135     // Fall back to the path
6136     if (llvm::ErrorOr<std::string> P =
6137             llvm::sys::findProgramByName(TargetSpecificExecutable))
6138       return *P;
6139   }
6140 
6141   return std::string(Name);
6142 }
6143 
6144 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6145   SmallString<128> Path;
6146   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6147   if (EC) {
6148     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6149     return "";
6150   }
6151 
6152   return std::string(Path.str());
6153 }
6154 
6155 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6156   SmallString<128> Path;
6157   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6158   if (EC) {
6159     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6160     return "";
6161   }
6162 
6163   return std::string(Path.str());
6164 }
6165 
6166 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6167   SmallString<128> Output;
6168   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6169     // FIXME: If anybody needs it, implement this obscure rule:
6170     // "If you specify a directory without a file name, the default file name
6171     // is VCx0.pch., where x is the major version of Visual C++ in use."
6172     Output = FpArg->getValue();
6173 
6174     // "If you do not specify an extension as part of the path name, an
6175     // extension of .pch is assumed. "
6176     if (!llvm::sys::path::has_extension(Output))
6177       Output += ".pch";
6178   } else {
6179     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6180       Output = YcArg->getValue();
6181     if (Output.empty())
6182       Output = BaseName;
6183     llvm::sys::path::replace_extension(Output, ".pch");
6184   }
6185   return std::string(Output.str());
6186 }
6187 
6188 const ToolChain &Driver::getToolChain(const ArgList &Args,
6189                                       const llvm::Triple &Target) const {
6190 
6191   auto &TC = ToolChains[Target.str()];
6192   if (!TC) {
6193     switch (Target.getOS()) {
6194     case llvm::Triple::AIX:
6195       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6196       break;
6197     case llvm::Triple::Haiku:
6198       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6199       break;
6200     case llvm::Triple::Darwin:
6201     case llvm::Triple::MacOSX:
6202     case llvm::Triple::IOS:
6203     case llvm::Triple::TvOS:
6204     case llvm::Triple::WatchOS:
6205     case llvm::Triple::DriverKit:
6206       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6207       break;
6208     case llvm::Triple::DragonFly:
6209       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6210       break;
6211     case llvm::Triple::OpenBSD:
6212       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6213       break;
6214     case llvm::Triple::NetBSD:
6215       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6216       break;
6217     case llvm::Triple::FreeBSD:
6218       if (Target.isPPC())
6219         TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6220                                                                Args);
6221       else
6222         TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6223       break;
6224     case llvm::Triple::Linux:
6225     case llvm::Triple::ELFIAMCU:
6226       if (Target.getArch() == llvm::Triple::hexagon)
6227         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6228                                                              Args);
6229       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6230                !Target.hasEnvironment())
6231         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6232                                                               Args);
6233       else if (Target.isPPC())
6234         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6235                                                               Args);
6236       else if (Target.getArch() == llvm::Triple::ve)
6237         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6238       else if (Target.isOHOSFamily())
6239         TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6240       else
6241         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6242       break;
6243     case llvm::Triple::NaCl:
6244       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6245       break;
6246     case llvm::Triple::Fuchsia:
6247       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6248       break;
6249     case llvm::Triple::Solaris:
6250       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6251       break;
6252     case llvm::Triple::CUDA:
6253       TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6254       break;
6255     case llvm::Triple::AMDHSA:
6256       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6257       break;
6258     case llvm::Triple::AMDPAL:
6259     case llvm::Triple::Mesa3D:
6260       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6261       break;
6262     case llvm::Triple::Win32:
6263       switch (Target.getEnvironment()) {
6264       default:
6265         if (Target.isOSBinFormatELF())
6266           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6267         else if (Target.isOSBinFormatMachO())
6268           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6269         else
6270           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6271         break;
6272       case llvm::Triple::GNU:
6273         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6274         break;
6275       case llvm::Triple::Itanium:
6276         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6277                                                                   Args);
6278         break;
6279       case llvm::Triple::MSVC:
6280       case llvm::Triple::UnknownEnvironment:
6281         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6282                 .starts_with_insensitive("bfd"))
6283           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6284               *this, Target, Args);
6285         else
6286           TC =
6287               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6288         break;
6289       }
6290       break;
6291     case llvm::Triple::PS4:
6292       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6293       break;
6294     case llvm::Triple::PS5:
6295       TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6296       break;
6297     case llvm::Triple::Hurd:
6298       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6299       break;
6300     case llvm::Triple::LiteOS:
6301       TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6302       break;
6303     case llvm::Triple::ZOS:
6304       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6305       break;
6306     case llvm::Triple::ShaderModel:
6307       TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6308       break;
6309     default:
6310       // Of these targets, Hexagon is the only one that might have
6311       // an OS of Linux, in which case it got handled above already.
6312       switch (Target.getArch()) {
6313       case llvm::Triple::tce:
6314         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6315         break;
6316       case llvm::Triple::tcele:
6317         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6318         break;
6319       case llvm::Triple::hexagon:
6320         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6321                                                              Args);
6322         break;
6323       case llvm::Triple::lanai:
6324         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6325         break;
6326       case llvm::Triple::xcore:
6327         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6328         break;
6329       case llvm::Triple::wasm32:
6330       case llvm::Triple::wasm64:
6331         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6332         break;
6333       case llvm::Triple::avr:
6334         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6335         break;
6336       case llvm::Triple::msp430:
6337         TC =
6338             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6339         break;
6340       case llvm::Triple::riscv32:
6341       case llvm::Triple::riscv64:
6342         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6343           TC =
6344               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6345         else
6346           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6347         break;
6348       case llvm::Triple::ve:
6349         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6350         break;
6351       case llvm::Triple::spirv32:
6352       case llvm::Triple::spirv64:
6353         TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6354         break;
6355       case llvm::Triple::csky:
6356         TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6357         break;
6358       default:
6359         if (toolchains::BareMetal::handlesTarget(Target))
6360           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6361         else if (Target.isOSBinFormatELF())
6362           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6363         else if (Target.isOSBinFormatMachO())
6364           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6365         else
6366           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6367       }
6368     }
6369   }
6370 
6371   return *TC;
6372 }
6373 
6374 const ToolChain &Driver::getOffloadingDeviceToolChain(
6375     const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6376     const Action::OffloadKind &TargetDeviceOffloadKind) const {
6377   // Use device / host triples as the key into the ToolChains map because the
6378   // device ToolChain we create depends on both.
6379   auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6380   if (!TC) {
6381     // Categorized by offload kind > arch rather than OS > arch like
6382     // the normal getToolChain call, as it seems a reasonable way to categorize
6383     // things.
6384     switch (TargetDeviceOffloadKind) {
6385     case Action::OFK_HIP: {
6386       if (Target.getArch() == llvm::Triple::amdgcn &&
6387           Target.getVendor() == llvm::Triple::AMD &&
6388           Target.getOS() == llvm::Triple::AMDHSA)
6389         TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6390                                                            HostTC, Args);
6391       else if (Target.getArch() == llvm::Triple::spirv64 &&
6392                Target.getVendor() == llvm::Triple::UnknownVendor &&
6393                Target.getOS() == llvm::Triple::UnknownOS)
6394         TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6395                                                            HostTC, Args);
6396       break;
6397     }
6398     default:
6399       break;
6400     }
6401   }
6402 
6403   return *TC;
6404 }
6405 
6406 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6407   // Say "no" if there is not exactly one input of a type clang understands.
6408   if (JA.size() != 1 ||
6409       !types::isAcceptedByClang((*JA.input_begin())->getType()))
6410     return false;
6411 
6412   // And say "no" if this is not a kind of action clang understands.
6413   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6414       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6415       !isa<ExtractAPIJobAction>(JA))
6416     return false;
6417 
6418   return true;
6419 }
6420 
6421 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6422   // Say "no" if there is not exactly one input of a type flang understands.
6423   if (JA.size() != 1 ||
6424       !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6425     return false;
6426 
6427   // And say "no" if this is not a kind of action flang understands.
6428   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6429       !isa<BackendJobAction>(JA))
6430     return false;
6431 
6432   return true;
6433 }
6434 
6435 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6436   // Only emit static library if the flag is set explicitly.
6437   if (Args.hasArg(options::OPT_emit_static_lib))
6438     return true;
6439   return false;
6440 }
6441 
6442 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6443 /// grouped values as integers. Numbers which are not provided are set to 0.
6444 ///
6445 /// \return True if the entire string was parsed (9.2), or all groups were
6446 /// parsed (10.3.5extrastuff).
6447 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6448                                unsigned &Micro, bool &HadExtra) {
6449   HadExtra = false;
6450 
6451   Major = Minor = Micro = 0;
6452   if (Str.empty())
6453     return false;
6454 
6455   if (Str.consumeInteger(10, Major))
6456     return false;
6457   if (Str.empty())
6458     return true;
6459   if (Str[0] != '.')
6460     return false;
6461 
6462   Str = Str.drop_front(1);
6463 
6464   if (Str.consumeInteger(10, Minor))
6465     return false;
6466   if (Str.empty())
6467     return true;
6468   if (Str[0] != '.')
6469     return false;
6470   Str = Str.drop_front(1);
6471 
6472   if (Str.consumeInteger(10, Micro))
6473     return false;
6474   if (!Str.empty())
6475     HadExtra = true;
6476   return true;
6477 }
6478 
6479 /// Parse digits from a string \p Str and fulfill \p Digits with
6480 /// the parsed numbers. This method assumes that the max number of
6481 /// digits to look for is equal to Digits.size().
6482 ///
6483 /// \return True if the entire string was parsed and there are
6484 /// no extra characters remaining at the end.
6485 bool Driver::GetReleaseVersion(StringRef Str,
6486                                MutableArrayRef<unsigned> Digits) {
6487   if (Str.empty())
6488     return false;
6489 
6490   unsigned CurDigit = 0;
6491   while (CurDigit < Digits.size()) {
6492     unsigned Digit;
6493     if (Str.consumeInteger(10, Digit))
6494       return false;
6495     Digits[CurDigit] = Digit;
6496     if (Str.empty())
6497       return true;
6498     if (Str[0] != '.')
6499       return false;
6500     Str = Str.drop_front(1);
6501     CurDigit++;
6502   }
6503 
6504   // More digits than requested, bail out...
6505   return false;
6506 }
6507 
6508 llvm::opt::Visibility
6509 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6510   if (!UseDriverMode)
6511     return llvm::opt::Visibility(options::ClangOption);
6512   if (IsCLMode())
6513     return llvm::opt::Visibility(options::CLOption);
6514   if (IsDXCMode())
6515     return llvm::opt::Visibility(options::DXCOption);
6516   if (IsFlangMode())  {
6517     return llvm::opt::Visibility(options::FlangOption);
6518   }
6519   return llvm::opt::Visibility(options::ClangOption);
6520 }
6521 
6522 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6523   switch (Mode) {
6524   case GCCMode:
6525     return "clang";
6526   case GXXMode:
6527     return "clang++";
6528   case CPPMode:
6529     return "clang-cpp";
6530   case CLMode:
6531     return "clang-cl";
6532   case FlangMode:
6533     return "flang";
6534   case DXCMode:
6535     return "clang-dxc";
6536   }
6537 
6538   llvm_unreachable("Unhandled Mode");
6539 }
6540 
6541 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6542   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6543 }
6544 
6545 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6546   // -fsave-optimization-record enables it.
6547   if (Args.hasFlag(options::OPT_fsave_optimization_record,
6548                    options::OPT_fno_save_optimization_record, false))
6549     return true;
6550 
6551   // -fsave-optimization-record=<format> enables it as well.
6552   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6553                    options::OPT_fno_save_optimization_record, false))
6554     return true;
6555 
6556   // -foptimization-record-file alone enables it too.
6557   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6558                    options::OPT_fno_save_optimization_record, false))
6559     return true;
6560 
6561   // -foptimization-record-passes alone enables it too.
6562   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6563                    options::OPT_fno_save_optimization_record, false))
6564     return true;
6565   return false;
6566 }
6567 
6568 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6569                                              ArrayRef<const char *> Args) {
6570   static StringRef OptName =
6571       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6572   llvm::StringRef Opt;
6573   for (StringRef Arg : Args) {
6574     if (!Arg.starts_with(OptName))
6575       continue;
6576     Opt = Arg;
6577   }
6578   if (Opt.empty())
6579     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6580   return Opt.consume_front(OptName) ? Opt : "";
6581 }
6582 
6583 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6584 
6585 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6586                                         bool ClangCLMode,
6587                                         llvm::BumpPtrAllocator &Alloc,
6588                                         llvm::vfs::FileSystem *FS) {
6589   // Parse response files using the GNU syntax, unless we're in CL mode. There
6590   // are two ways to put clang in CL compatibility mode: ProgName is either
6591   // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6592   // command line parsing can't happen until after response file parsing, so we
6593   // have to manually search for a --driver-mode=cl argument the hard way.
6594   // Finally, our -cc1 tools don't care which tokenization mode we use because
6595   // response files written by clang will tokenize the same way in either mode.
6596   enum { Default, POSIX, Windows } RSPQuoting = Default;
6597   for (const char *F : Args) {
6598     if (strcmp(F, "--rsp-quoting=posix") == 0)
6599       RSPQuoting = POSIX;
6600     else if (strcmp(F, "--rsp-quoting=windows") == 0)
6601       RSPQuoting = Windows;
6602   }
6603 
6604   // Determines whether we want nullptr markers in Args to indicate response
6605   // files end-of-lines. We only use this for the /LINK driver argument with
6606   // clang-cl.exe on Windows.
6607   bool MarkEOLs = ClangCLMode;
6608 
6609   llvm::cl::TokenizerCallback Tokenizer;
6610   if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6611     Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6612   else
6613     Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6614 
6615   if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6616     MarkEOLs = false;
6617 
6618   llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6619   ECtx.setMarkEOLs(MarkEOLs);
6620   if (FS)
6621     ECtx.setVFS(FS);
6622 
6623   if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6624     return Err;
6625 
6626   // If -cc1 came from a response file, remove the EOL sentinels.
6627   auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6628                                 [](const char *A) { return A != nullptr; });
6629   if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6630     // If -cc1 came from a response file, remove the EOL sentinels.
6631     if (MarkEOLs) {
6632       auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6633       Args.resize(newEnd - Args.begin());
6634     }
6635   }
6636 
6637   return llvm::Error::success();
6638 }
6639