1*06c3fb27SDimitry Andric //===- X86.cpp ------------------------------------------------------------===// 2*06c3fb27SDimitry Andric // 3*06c3fb27SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*06c3fb27SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*06c3fb27SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*06c3fb27SDimitry Andric // 7*06c3fb27SDimitry Andric //===----------------------------------------------------------------------===// 8*06c3fb27SDimitry Andric 9*06c3fb27SDimitry Andric #include "ABIInfoImpl.h" 10*06c3fb27SDimitry Andric #include "TargetInfo.h" 11*06c3fb27SDimitry Andric #include "clang/Basic/DiagnosticFrontend.h" 12*06c3fb27SDimitry Andric #include "llvm/ADT/SmallBitVector.h" 13*06c3fb27SDimitry Andric 14*06c3fb27SDimitry Andric using namespace clang; 15*06c3fb27SDimitry Andric using namespace clang::CodeGen; 16*06c3fb27SDimitry Andric 17*06c3fb27SDimitry Andric namespace { 18*06c3fb27SDimitry Andric 19*06c3fb27SDimitry Andric /// IsX86_MMXType - Return true if this is an MMX type. 20*06c3fb27SDimitry Andric bool IsX86_MMXType(llvm::Type *IRType) { 21*06c3fb27SDimitry Andric // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 22*06c3fb27SDimitry Andric return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 23*06c3fb27SDimitry Andric cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 24*06c3fb27SDimitry Andric IRType->getScalarSizeInBits() != 64; 25*06c3fb27SDimitry Andric } 26*06c3fb27SDimitry Andric 27*06c3fb27SDimitry Andric static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 28*06c3fb27SDimitry Andric StringRef Constraint, 29*06c3fb27SDimitry Andric llvm::Type* Ty) { 30*06c3fb27SDimitry Andric bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 31*06c3fb27SDimitry Andric .Cases("y", "&y", "^Ym", true) 32*06c3fb27SDimitry Andric .Default(false); 33*06c3fb27SDimitry Andric if (IsMMXCons && Ty->isVectorTy()) { 34*06c3fb27SDimitry Andric if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != 35*06c3fb27SDimitry Andric 64) { 36*06c3fb27SDimitry Andric // Invalid MMX constraint 37*06c3fb27SDimitry Andric return nullptr; 38*06c3fb27SDimitry Andric } 39*06c3fb27SDimitry Andric 40*06c3fb27SDimitry Andric return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 41*06c3fb27SDimitry Andric } 42*06c3fb27SDimitry Andric 43*06c3fb27SDimitry Andric // No operation needed 44*06c3fb27SDimitry Andric return Ty; 45*06c3fb27SDimitry Andric } 46*06c3fb27SDimitry Andric 47*06c3fb27SDimitry Andric /// Returns true if this type can be passed in SSE registers with the 48*06c3fb27SDimitry Andric /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 49*06c3fb27SDimitry Andric static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 50*06c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 51*06c3fb27SDimitry Andric if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 52*06c3fb27SDimitry Andric if (BT->getKind() == BuiltinType::LongDouble) { 53*06c3fb27SDimitry Andric if (&Context.getTargetInfo().getLongDoubleFormat() == 54*06c3fb27SDimitry Andric &llvm::APFloat::x87DoubleExtended()) 55*06c3fb27SDimitry Andric return false; 56*06c3fb27SDimitry Andric } 57*06c3fb27SDimitry Andric return true; 58*06c3fb27SDimitry Andric } 59*06c3fb27SDimitry Andric } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 60*06c3fb27SDimitry Andric // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 61*06c3fb27SDimitry Andric // registers specially. 62*06c3fb27SDimitry Andric unsigned VecSize = Context.getTypeSize(VT); 63*06c3fb27SDimitry Andric if (VecSize == 128 || VecSize == 256 || VecSize == 512) 64*06c3fb27SDimitry Andric return true; 65*06c3fb27SDimitry Andric } 66*06c3fb27SDimitry Andric return false; 67*06c3fb27SDimitry Andric } 68*06c3fb27SDimitry Andric 69*06c3fb27SDimitry Andric /// Returns true if this aggregate is small enough to be passed in SSE registers 70*06c3fb27SDimitry Andric /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 71*06c3fb27SDimitry Andric static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 72*06c3fb27SDimitry Andric return NumMembers <= 4; 73*06c3fb27SDimitry Andric } 74*06c3fb27SDimitry Andric 75*06c3fb27SDimitry Andric /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 76*06c3fb27SDimitry Andric static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 77*06c3fb27SDimitry Andric auto AI = ABIArgInfo::getDirect(T); 78*06c3fb27SDimitry Andric AI.setInReg(true); 79*06c3fb27SDimitry Andric AI.setCanBeFlattened(false); 80*06c3fb27SDimitry Andric return AI; 81*06c3fb27SDimitry Andric } 82*06c3fb27SDimitry Andric 83*06c3fb27SDimitry Andric //===----------------------------------------------------------------------===// 84*06c3fb27SDimitry Andric // X86-32 ABI Implementation 85*06c3fb27SDimitry Andric //===----------------------------------------------------------------------===// 86*06c3fb27SDimitry Andric 87*06c3fb27SDimitry Andric /// Similar to llvm::CCState, but for Clang. 88*06c3fb27SDimitry Andric struct CCState { 89*06c3fb27SDimitry Andric CCState(CGFunctionInfo &FI) 90*06c3fb27SDimitry Andric : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 91*06c3fb27SDimitry Andric 92*06c3fb27SDimitry Andric llvm::SmallBitVector IsPreassigned; 93*06c3fb27SDimitry Andric unsigned CC = CallingConv::CC_C; 94*06c3fb27SDimitry Andric unsigned FreeRegs = 0; 95*06c3fb27SDimitry Andric unsigned FreeSSERegs = 0; 96*06c3fb27SDimitry Andric }; 97*06c3fb27SDimitry Andric 98*06c3fb27SDimitry Andric /// X86_32ABIInfo - The X86-32 ABI information. 99*06c3fb27SDimitry Andric class X86_32ABIInfo : public ABIInfo { 100*06c3fb27SDimitry Andric enum Class { 101*06c3fb27SDimitry Andric Integer, 102*06c3fb27SDimitry Andric Float 103*06c3fb27SDimitry Andric }; 104*06c3fb27SDimitry Andric 105*06c3fb27SDimitry Andric static const unsigned MinABIStackAlignInBytes = 4; 106*06c3fb27SDimitry Andric 107*06c3fb27SDimitry Andric bool IsDarwinVectorABI; 108*06c3fb27SDimitry Andric bool IsRetSmallStructInRegABI; 109*06c3fb27SDimitry Andric bool IsWin32StructABI; 110*06c3fb27SDimitry Andric bool IsSoftFloatABI; 111*06c3fb27SDimitry Andric bool IsMCUABI; 112*06c3fb27SDimitry Andric bool IsLinuxABI; 113*06c3fb27SDimitry Andric unsigned DefaultNumRegisterParameters; 114*06c3fb27SDimitry Andric 115*06c3fb27SDimitry Andric static bool isRegisterSize(unsigned Size) { 116*06c3fb27SDimitry Andric return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 117*06c3fb27SDimitry Andric } 118*06c3fb27SDimitry Andric 119*06c3fb27SDimitry Andric bool isHomogeneousAggregateBaseType(QualType Ty) const override { 120*06c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use. 121*06c3fb27SDimitry Andric return isX86VectorTypeForVectorCall(getContext(), Ty); 122*06c3fb27SDimitry Andric } 123*06c3fb27SDimitry Andric 124*06c3fb27SDimitry Andric bool isHomogeneousAggregateSmallEnough(const Type *Ty, 125*06c3fb27SDimitry Andric uint64_t NumMembers) const override { 126*06c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use. 127*06c3fb27SDimitry Andric return isX86VectorCallAggregateSmallEnough(NumMembers); 128*06c3fb27SDimitry Andric } 129*06c3fb27SDimitry Andric 130*06c3fb27SDimitry Andric bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 131*06c3fb27SDimitry Andric 132*06c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result 133*06c3fb27SDimitry Andric /// such that the argument will be passed in memory. 134*06c3fb27SDimitry Andric ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 135*06c3fb27SDimitry Andric 136*06c3fb27SDimitry Andric ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 137*06c3fb27SDimitry Andric 138*06c3fb27SDimitry Andric /// Return the alignment to use for the given type on the stack. 139*06c3fb27SDimitry Andric unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 140*06c3fb27SDimitry Andric 141*06c3fb27SDimitry Andric Class classify(QualType Ty) const; 142*06c3fb27SDimitry Andric ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 143*06c3fb27SDimitry Andric ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 144*06c3fb27SDimitry Andric 145*06c3fb27SDimitry Andric /// Updates the number of available free registers, returns 146*06c3fb27SDimitry Andric /// true if any registers were allocated. 147*06c3fb27SDimitry Andric bool updateFreeRegs(QualType Ty, CCState &State) const; 148*06c3fb27SDimitry Andric 149*06c3fb27SDimitry Andric bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 150*06c3fb27SDimitry Andric bool &NeedsPadding) const; 151*06c3fb27SDimitry Andric bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 152*06c3fb27SDimitry Andric 153*06c3fb27SDimitry Andric bool canExpandIndirectArgument(QualType Ty) const; 154*06c3fb27SDimitry Andric 155*06c3fb27SDimitry Andric /// Rewrite the function info so that all memory arguments use 156*06c3fb27SDimitry Andric /// inalloca. 157*06c3fb27SDimitry Andric void rewriteWithInAlloca(CGFunctionInfo &FI) const; 158*06c3fb27SDimitry Andric 159*06c3fb27SDimitry Andric void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 160*06c3fb27SDimitry Andric CharUnits &StackOffset, ABIArgInfo &Info, 161*06c3fb27SDimitry Andric QualType Type) const; 162*06c3fb27SDimitry Andric void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 163*06c3fb27SDimitry Andric 164*06c3fb27SDimitry Andric public: 165*06c3fb27SDimitry Andric 166*06c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override; 167*06c3fb27SDimitry Andric Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 168*06c3fb27SDimitry Andric QualType Ty) const override; 169*06c3fb27SDimitry Andric 170*06c3fb27SDimitry Andric X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 171*06c3fb27SDimitry Andric bool RetSmallStructInRegABI, bool Win32StructABI, 172*06c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI) 173*06c3fb27SDimitry Andric : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 174*06c3fb27SDimitry Andric IsRetSmallStructInRegABI(RetSmallStructInRegABI), 175*06c3fb27SDimitry Andric IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 176*06c3fb27SDimitry Andric IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 177*06c3fb27SDimitry Andric IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 178*06c3fb27SDimitry Andric CGT.getTarget().getTriple().isOSCygMing()), 179*06c3fb27SDimitry Andric DefaultNumRegisterParameters(NumRegisterParameters) {} 180*06c3fb27SDimitry Andric }; 181*06c3fb27SDimitry Andric 182*06c3fb27SDimitry Andric class X86_32SwiftABIInfo : public SwiftABIInfo { 183*06c3fb27SDimitry Andric public: 184*06c3fb27SDimitry Andric explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) 185*06c3fb27SDimitry Andric : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} 186*06c3fb27SDimitry Andric 187*06c3fb27SDimitry Andric bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, 188*06c3fb27SDimitry Andric bool AsReturnValue) const override { 189*06c3fb27SDimitry Andric // LLVM's x86-32 lowering currently only assigns up to three 190*06c3fb27SDimitry Andric // integer registers and three fp registers. Oddly, it'll use up to 191*06c3fb27SDimitry Andric // four vector registers for vectors, but those can overlap with the 192*06c3fb27SDimitry Andric // scalar registers. 193*06c3fb27SDimitry Andric return occupiesMoreThan(ComponentTys, /*total=*/3); 194*06c3fb27SDimitry Andric } 195*06c3fb27SDimitry Andric }; 196*06c3fb27SDimitry Andric 197*06c3fb27SDimitry Andric class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 198*06c3fb27SDimitry Andric public: 199*06c3fb27SDimitry Andric X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 200*06c3fb27SDimitry Andric bool RetSmallStructInRegABI, bool Win32StructABI, 201*06c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI) 202*06c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 203*06c3fb27SDimitry Andric CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 204*06c3fb27SDimitry Andric NumRegisterParameters, SoftFloatABI)) { 205*06c3fb27SDimitry Andric SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); 206*06c3fb27SDimitry Andric } 207*06c3fb27SDimitry Andric 208*06c3fb27SDimitry Andric static bool isStructReturnInRegABI( 209*06c3fb27SDimitry Andric const llvm::Triple &Triple, const CodeGenOptions &Opts); 210*06c3fb27SDimitry Andric 211*06c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 212*06c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override; 213*06c3fb27SDimitry Andric 214*06c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 215*06c3fb27SDimitry Andric // Darwin uses different dwarf register numbers for EH. 216*06c3fb27SDimitry Andric if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 217*06c3fb27SDimitry Andric return 4; 218*06c3fb27SDimitry Andric } 219*06c3fb27SDimitry Andric 220*06c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 221*06c3fb27SDimitry Andric llvm::Value *Address) const override; 222*06c3fb27SDimitry Andric 223*06c3fb27SDimitry Andric llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 224*06c3fb27SDimitry Andric StringRef Constraint, 225*06c3fb27SDimitry Andric llvm::Type* Ty) const override { 226*06c3fb27SDimitry Andric return X86AdjustInlineAsmType(CGF, Constraint, Ty); 227*06c3fb27SDimitry Andric } 228*06c3fb27SDimitry Andric 229*06c3fb27SDimitry Andric void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 230*06c3fb27SDimitry Andric std::string &Constraints, 231*06c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultRegTypes, 232*06c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultTruncRegTypes, 233*06c3fb27SDimitry Andric std::vector<LValue> &ResultRegDests, 234*06c3fb27SDimitry Andric std::string &AsmString, 235*06c3fb27SDimitry Andric unsigned NumOutputs) const override; 236*06c3fb27SDimitry Andric 237*06c3fb27SDimitry Andric StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 238*06c3fb27SDimitry Andric return "movl\t%ebp, %ebp" 239*06c3fb27SDimitry Andric "\t\t// marker for objc_retainAutoreleaseReturnValue"; 240*06c3fb27SDimitry Andric } 241*06c3fb27SDimitry Andric }; 242*06c3fb27SDimitry Andric 243*06c3fb27SDimitry Andric } 244*06c3fb27SDimitry Andric 245*06c3fb27SDimitry Andric /// Rewrite input constraint references after adding some output constraints. 246*06c3fb27SDimitry Andric /// In the case where there is one output and one input and we add one output, 247*06c3fb27SDimitry Andric /// we need to replace all operand references greater than or equal to 1: 248*06c3fb27SDimitry Andric /// mov $0, $1 249*06c3fb27SDimitry Andric /// mov eax, $1 250*06c3fb27SDimitry Andric /// The result will be: 251*06c3fb27SDimitry Andric /// mov $0, $2 252*06c3fb27SDimitry Andric /// mov eax, $2 253*06c3fb27SDimitry Andric static void rewriteInputConstraintReferences(unsigned FirstIn, 254*06c3fb27SDimitry Andric unsigned NumNewOuts, 255*06c3fb27SDimitry Andric std::string &AsmString) { 256*06c3fb27SDimitry Andric std::string Buf; 257*06c3fb27SDimitry Andric llvm::raw_string_ostream OS(Buf); 258*06c3fb27SDimitry Andric size_t Pos = 0; 259*06c3fb27SDimitry Andric while (Pos < AsmString.size()) { 260*06c3fb27SDimitry Andric size_t DollarStart = AsmString.find('$', Pos); 261*06c3fb27SDimitry Andric if (DollarStart == std::string::npos) 262*06c3fb27SDimitry Andric DollarStart = AsmString.size(); 263*06c3fb27SDimitry Andric size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 264*06c3fb27SDimitry Andric if (DollarEnd == std::string::npos) 265*06c3fb27SDimitry Andric DollarEnd = AsmString.size(); 266*06c3fb27SDimitry Andric OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 267*06c3fb27SDimitry Andric Pos = DollarEnd; 268*06c3fb27SDimitry Andric size_t NumDollars = DollarEnd - DollarStart; 269*06c3fb27SDimitry Andric if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 270*06c3fb27SDimitry Andric // We have an operand reference. 271*06c3fb27SDimitry Andric size_t DigitStart = Pos; 272*06c3fb27SDimitry Andric if (AsmString[DigitStart] == '{') { 273*06c3fb27SDimitry Andric OS << '{'; 274*06c3fb27SDimitry Andric ++DigitStart; 275*06c3fb27SDimitry Andric } 276*06c3fb27SDimitry Andric size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 277*06c3fb27SDimitry Andric if (DigitEnd == std::string::npos) 278*06c3fb27SDimitry Andric DigitEnd = AsmString.size(); 279*06c3fb27SDimitry Andric StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 280*06c3fb27SDimitry Andric unsigned OperandIndex; 281*06c3fb27SDimitry Andric if (!OperandStr.getAsInteger(10, OperandIndex)) { 282*06c3fb27SDimitry Andric if (OperandIndex >= FirstIn) 283*06c3fb27SDimitry Andric OperandIndex += NumNewOuts; 284*06c3fb27SDimitry Andric OS << OperandIndex; 285*06c3fb27SDimitry Andric } else { 286*06c3fb27SDimitry Andric OS << OperandStr; 287*06c3fb27SDimitry Andric } 288*06c3fb27SDimitry Andric Pos = DigitEnd; 289*06c3fb27SDimitry Andric } 290*06c3fb27SDimitry Andric } 291*06c3fb27SDimitry Andric AsmString = std::move(OS.str()); 292*06c3fb27SDimitry Andric } 293*06c3fb27SDimitry Andric 294*06c3fb27SDimitry Andric /// Add output constraints for EAX:EDX because they are return registers. 295*06c3fb27SDimitry Andric void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 296*06c3fb27SDimitry Andric CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 297*06c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultRegTypes, 298*06c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultTruncRegTypes, 299*06c3fb27SDimitry Andric std::vector<LValue> &ResultRegDests, std::string &AsmString, 300*06c3fb27SDimitry Andric unsigned NumOutputs) const { 301*06c3fb27SDimitry Andric uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 302*06c3fb27SDimitry Andric 303*06c3fb27SDimitry Andric // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 304*06c3fb27SDimitry Andric // larger. 305*06c3fb27SDimitry Andric if (!Constraints.empty()) 306*06c3fb27SDimitry Andric Constraints += ','; 307*06c3fb27SDimitry Andric if (RetWidth <= 32) { 308*06c3fb27SDimitry Andric Constraints += "={eax}"; 309*06c3fb27SDimitry Andric ResultRegTypes.push_back(CGF.Int32Ty); 310*06c3fb27SDimitry Andric } else { 311*06c3fb27SDimitry Andric // Use the 'A' constraint for EAX:EDX. 312*06c3fb27SDimitry Andric Constraints += "=A"; 313*06c3fb27SDimitry Andric ResultRegTypes.push_back(CGF.Int64Ty); 314*06c3fb27SDimitry Andric } 315*06c3fb27SDimitry Andric 316*06c3fb27SDimitry Andric // Truncate EAX or EAX:EDX to an integer of the appropriate size. 317*06c3fb27SDimitry Andric llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 318*06c3fb27SDimitry Andric ResultTruncRegTypes.push_back(CoerceTy); 319*06c3fb27SDimitry Andric 320*06c3fb27SDimitry Andric // Coerce the integer by bitcasting the return slot pointer. 321*06c3fb27SDimitry Andric ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy)); 322*06c3fb27SDimitry Andric ResultRegDests.push_back(ReturnSlot); 323*06c3fb27SDimitry Andric 324*06c3fb27SDimitry Andric rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 325*06c3fb27SDimitry Andric } 326*06c3fb27SDimitry Andric 327*06c3fb27SDimitry Andric /// shouldReturnTypeInRegister - Determine if the given type should be 328*06c3fb27SDimitry Andric /// returned in a register (for the Darwin and MCU ABI). 329*06c3fb27SDimitry Andric bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 330*06c3fb27SDimitry Andric ASTContext &Context) const { 331*06c3fb27SDimitry Andric uint64_t Size = Context.getTypeSize(Ty); 332*06c3fb27SDimitry Andric 333*06c3fb27SDimitry Andric // For i386, type must be register sized. 334*06c3fb27SDimitry Andric // For the MCU ABI, it only needs to be <= 8-byte 335*06c3fb27SDimitry Andric if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 336*06c3fb27SDimitry Andric return false; 337*06c3fb27SDimitry Andric 338*06c3fb27SDimitry Andric if (Ty->isVectorType()) { 339*06c3fb27SDimitry Andric // 64- and 128- bit vectors inside structures are not returned in 340*06c3fb27SDimitry Andric // registers. 341*06c3fb27SDimitry Andric if (Size == 64 || Size == 128) 342*06c3fb27SDimitry Andric return false; 343*06c3fb27SDimitry Andric 344*06c3fb27SDimitry Andric return true; 345*06c3fb27SDimitry Andric } 346*06c3fb27SDimitry Andric 347*06c3fb27SDimitry Andric // If this is a builtin, pointer, enum, complex type, member pointer, or 348*06c3fb27SDimitry Andric // member function pointer it is ok. 349*06c3fb27SDimitry Andric if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 350*06c3fb27SDimitry Andric Ty->isAnyComplexType() || Ty->isEnumeralType() || 351*06c3fb27SDimitry Andric Ty->isBlockPointerType() || Ty->isMemberPointerType()) 352*06c3fb27SDimitry Andric return true; 353*06c3fb27SDimitry Andric 354*06c3fb27SDimitry Andric // Arrays are treated like records. 355*06c3fb27SDimitry Andric if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 356*06c3fb27SDimitry Andric return shouldReturnTypeInRegister(AT->getElementType(), Context); 357*06c3fb27SDimitry Andric 358*06c3fb27SDimitry Andric // Otherwise, it must be a record type. 359*06c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>(); 360*06c3fb27SDimitry Andric if (!RT) return false; 361*06c3fb27SDimitry Andric 362*06c3fb27SDimitry Andric // FIXME: Traverse bases here too. 363*06c3fb27SDimitry Andric 364*06c3fb27SDimitry Andric // Structure types are passed in register if all fields would be 365*06c3fb27SDimitry Andric // passed in a register. 366*06c3fb27SDimitry Andric for (const auto *FD : RT->getDecl()->fields()) { 367*06c3fb27SDimitry Andric // Empty fields are ignored. 368*06c3fb27SDimitry Andric if (isEmptyField(Context, FD, true)) 369*06c3fb27SDimitry Andric continue; 370*06c3fb27SDimitry Andric 371*06c3fb27SDimitry Andric // Check fields recursively. 372*06c3fb27SDimitry Andric if (!shouldReturnTypeInRegister(FD->getType(), Context)) 373*06c3fb27SDimitry Andric return false; 374*06c3fb27SDimitry Andric } 375*06c3fb27SDimitry Andric return true; 376*06c3fb27SDimitry Andric } 377*06c3fb27SDimitry Andric 378*06c3fb27SDimitry Andric static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 379*06c3fb27SDimitry Andric // Treat complex types as the element type. 380*06c3fb27SDimitry Andric if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 381*06c3fb27SDimitry Andric Ty = CTy->getElementType(); 382*06c3fb27SDimitry Andric 383*06c3fb27SDimitry Andric // Check for a type which we know has a simple scalar argument-passing 384*06c3fb27SDimitry Andric // convention without any padding. (We're specifically looking for 32 385*06c3fb27SDimitry Andric // and 64-bit integer and integer-equivalents, float, and double.) 386*06c3fb27SDimitry Andric if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 387*06c3fb27SDimitry Andric !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 388*06c3fb27SDimitry Andric return false; 389*06c3fb27SDimitry Andric 390*06c3fb27SDimitry Andric uint64_t Size = Context.getTypeSize(Ty); 391*06c3fb27SDimitry Andric return Size == 32 || Size == 64; 392*06c3fb27SDimitry Andric } 393*06c3fb27SDimitry Andric 394*06c3fb27SDimitry Andric static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 395*06c3fb27SDimitry Andric uint64_t &Size) { 396*06c3fb27SDimitry Andric for (const auto *FD : RD->fields()) { 397*06c3fb27SDimitry Andric // Scalar arguments on the stack get 4 byte alignment on x86. If the 398*06c3fb27SDimitry Andric // argument is smaller than 32-bits, expanding the struct will create 399*06c3fb27SDimitry Andric // alignment padding. 400*06c3fb27SDimitry Andric if (!is32Or64BitBasicType(FD->getType(), Context)) 401*06c3fb27SDimitry Andric return false; 402*06c3fb27SDimitry Andric 403*06c3fb27SDimitry Andric // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 404*06c3fb27SDimitry Andric // how to expand them yet, and the predicate for telling if a bitfield still 405*06c3fb27SDimitry Andric // counts as "basic" is more complicated than what we were doing previously. 406*06c3fb27SDimitry Andric if (FD->isBitField()) 407*06c3fb27SDimitry Andric return false; 408*06c3fb27SDimitry Andric 409*06c3fb27SDimitry Andric Size += Context.getTypeSize(FD->getType()); 410*06c3fb27SDimitry Andric } 411*06c3fb27SDimitry Andric return true; 412*06c3fb27SDimitry Andric } 413*06c3fb27SDimitry Andric 414*06c3fb27SDimitry Andric static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 415*06c3fb27SDimitry Andric uint64_t &Size) { 416*06c3fb27SDimitry Andric // Don't do this if there are any non-empty bases. 417*06c3fb27SDimitry Andric for (const CXXBaseSpecifier &Base : RD->bases()) { 418*06c3fb27SDimitry Andric if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 419*06c3fb27SDimitry Andric Size)) 420*06c3fb27SDimitry Andric return false; 421*06c3fb27SDimitry Andric } 422*06c3fb27SDimitry Andric if (!addFieldSizes(Context, RD, Size)) 423*06c3fb27SDimitry Andric return false; 424*06c3fb27SDimitry Andric return true; 425*06c3fb27SDimitry Andric } 426*06c3fb27SDimitry Andric 427*06c3fb27SDimitry Andric /// Test whether an argument type which is to be passed indirectly (on the 428*06c3fb27SDimitry Andric /// stack) would have the equivalent layout if it was expanded into separate 429*06c3fb27SDimitry Andric /// arguments. If so, we prefer to do the latter to avoid inhibiting 430*06c3fb27SDimitry Andric /// optimizations. 431*06c3fb27SDimitry Andric bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 432*06c3fb27SDimitry Andric // We can only expand structure types. 433*06c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>(); 434*06c3fb27SDimitry Andric if (!RT) 435*06c3fb27SDimitry Andric return false; 436*06c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl(); 437*06c3fb27SDimitry Andric uint64_t Size = 0; 438*06c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 439*06c3fb27SDimitry Andric if (!IsWin32StructABI) { 440*06c3fb27SDimitry Andric // On non-Windows, we have to conservatively match our old bitcode 441*06c3fb27SDimitry Andric // prototypes in order to be ABI-compatible at the bitcode level. 442*06c3fb27SDimitry Andric if (!CXXRD->isCLike()) 443*06c3fb27SDimitry Andric return false; 444*06c3fb27SDimitry Andric } else { 445*06c3fb27SDimitry Andric // Don't do this for dynamic classes. 446*06c3fb27SDimitry Andric if (CXXRD->isDynamicClass()) 447*06c3fb27SDimitry Andric return false; 448*06c3fb27SDimitry Andric } 449*06c3fb27SDimitry Andric if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 450*06c3fb27SDimitry Andric return false; 451*06c3fb27SDimitry Andric } else { 452*06c3fb27SDimitry Andric if (!addFieldSizes(getContext(), RD, Size)) 453*06c3fb27SDimitry Andric return false; 454*06c3fb27SDimitry Andric } 455*06c3fb27SDimitry Andric 456*06c3fb27SDimitry Andric // We can do this if there was no alignment padding. 457*06c3fb27SDimitry Andric return Size == getContext().getTypeSize(Ty); 458*06c3fb27SDimitry Andric } 459*06c3fb27SDimitry Andric 460*06c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 461*06c3fb27SDimitry Andric // If the return value is indirect, then the hidden argument is consuming one 462*06c3fb27SDimitry Andric // integer register. 463*06c3fb27SDimitry Andric if (State.FreeRegs) { 464*06c3fb27SDimitry Andric --State.FreeRegs; 465*06c3fb27SDimitry Andric if (!IsMCUABI) 466*06c3fb27SDimitry Andric return getNaturalAlignIndirectInReg(RetTy); 467*06c3fb27SDimitry Andric } 468*06c3fb27SDimitry Andric return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 469*06c3fb27SDimitry Andric } 470*06c3fb27SDimitry Andric 471*06c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 472*06c3fb27SDimitry Andric CCState &State) const { 473*06c3fb27SDimitry Andric if (RetTy->isVoidType()) 474*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 475*06c3fb27SDimitry Andric 476*06c3fb27SDimitry Andric const Type *Base = nullptr; 477*06c3fb27SDimitry Andric uint64_t NumElts = 0; 478*06c3fb27SDimitry Andric if ((State.CC == llvm::CallingConv::X86_VectorCall || 479*06c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_RegCall) && 480*06c3fb27SDimitry Andric isHomogeneousAggregate(RetTy, Base, NumElts)) { 481*06c3fb27SDimitry Andric // The LLVM struct type for such an aggregate should lower properly. 482*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 483*06c3fb27SDimitry Andric } 484*06c3fb27SDimitry Andric 485*06c3fb27SDimitry Andric if (const VectorType *VT = RetTy->getAs<VectorType>()) { 486*06c3fb27SDimitry Andric // On Darwin, some vectors are returned in registers. 487*06c3fb27SDimitry Andric if (IsDarwinVectorABI) { 488*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(RetTy); 489*06c3fb27SDimitry Andric 490*06c3fb27SDimitry Andric // 128-bit vectors are a special case; they are returned in 491*06c3fb27SDimitry Andric // registers and we need to make sure to pick a type the LLVM 492*06c3fb27SDimitry Andric // backend will like. 493*06c3fb27SDimitry Andric if (Size == 128) 494*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 495*06c3fb27SDimitry Andric llvm::Type::getInt64Ty(getVMContext()), 2)); 496*06c3fb27SDimitry Andric 497*06c3fb27SDimitry Andric // Always return in register if it fits in a general purpose 498*06c3fb27SDimitry Andric // register, or if it is 64 bits and has a single element. 499*06c3fb27SDimitry Andric if ((Size == 8 || Size == 16 || Size == 32) || 500*06c3fb27SDimitry Andric (Size == 64 && VT->getNumElements() == 1)) 501*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 502*06c3fb27SDimitry Andric Size)); 503*06c3fb27SDimitry Andric 504*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State); 505*06c3fb27SDimitry Andric } 506*06c3fb27SDimitry Andric 507*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 508*06c3fb27SDimitry Andric } 509*06c3fb27SDimitry Andric 510*06c3fb27SDimitry Andric if (isAggregateTypeForABI(RetTy)) { 511*06c3fb27SDimitry Andric if (const RecordType *RT = RetTy->getAs<RecordType>()) { 512*06c3fb27SDimitry Andric // Structures with flexible arrays are always indirect. 513*06c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember()) 514*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State); 515*06c3fb27SDimitry Andric } 516*06c3fb27SDimitry Andric 517*06c3fb27SDimitry Andric // If specified, structs and unions are always indirect. 518*06c3fb27SDimitry Andric if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 519*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State); 520*06c3fb27SDimitry Andric 521*06c3fb27SDimitry Andric // Ignore empty structs/unions. 522*06c3fb27SDimitry Andric if (isEmptyRecord(getContext(), RetTy, true)) 523*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 524*06c3fb27SDimitry Andric 525*06c3fb27SDimitry Andric // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 526*06c3fb27SDimitry Andric if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 527*06c3fb27SDimitry Andric QualType ET = getContext().getCanonicalType(CT->getElementType()); 528*06c3fb27SDimitry Andric if (ET->isFloat16Type()) 529*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 530*06c3fb27SDimitry Andric llvm::Type::getHalfTy(getVMContext()), 2)); 531*06c3fb27SDimitry Andric } 532*06c3fb27SDimitry Andric 533*06c3fb27SDimitry Andric // Small structures which are register sized are generally returned 534*06c3fb27SDimitry Andric // in a register. 535*06c3fb27SDimitry Andric if (shouldReturnTypeInRegister(RetTy, getContext())) { 536*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(RetTy); 537*06c3fb27SDimitry Andric 538*06c3fb27SDimitry Andric // As a special-case, if the struct is a "single-element" struct, and 539*06c3fb27SDimitry Andric // the field is of type "float" or "double", return it in a 540*06c3fb27SDimitry Andric // floating-point register. (MSVC does not apply this special case.) 541*06c3fb27SDimitry Andric // We apply a similar transformation for pointer types to improve the 542*06c3fb27SDimitry Andric // quality of the generated IR. 543*06c3fb27SDimitry Andric if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 544*06c3fb27SDimitry Andric if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 545*06c3fb27SDimitry Andric || SeltTy->hasPointerRepresentation()) 546*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 547*06c3fb27SDimitry Andric 548*06c3fb27SDimitry Andric // FIXME: We should be able to narrow this integer in cases with dead 549*06c3fb27SDimitry Andric // padding. 550*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 551*06c3fb27SDimitry Andric } 552*06c3fb27SDimitry Andric 553*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State); 554*06c3fb27SDimitry Andric } 555*06c3fb27SDimitry Andric 556*06c3fb27SDimitry Andric // Treat an enum type as its underlying type. 557*06c3fb27SDimitry Andric if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 558*06c3fb27SDimitry Andric RetTy = EnumTy->getDecl()->getIntegerType(); 559*06c3fb27SDimitry Andric 560*06c3fb27SDimitry Andric if (const auto *EIT = RetTy->getAs<BitIntType>()) 561*06c3fb27SDimitry Andric if (EIT->getNumBits() > 64) 562*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State); 563*06c3fb27SDimitry Andric 564*06c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 565*06c3fb27SDimitry Andric : ABIArgInfo::getDirect()); 566*06c3fb27SDimitry Andric } 567*06c3fb27SDimitry Andric 568*06c3fb27SDimitry Andric unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 569*06c3fb27SDimitry Andric unsigned Align) const { 570*06c3fb27SDimitry Andric // Otherwise, if the alignment is less than or equal to the minimum ABI 571*06c3fb27SDimitry Andric // alignment, just use the default; the backend will handle this. 572*06c3fb27SDimitry Andric if (Align <= MinABIStackAlignInBytes) 573*06c3fb27SDimitry Andric return 0; // Use default alignment. 574*06c3fb27SDimitry Andric 575*06c3fb27SDimitry Andric if (IsLinuxABI) { 576*06c3fb27SDimitry Andric // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 577*06c3fb27SDimitry Andric // want to spend any effort dealing with the ramifications of ABI breaks. 578*06c3fb27SDimitry Andric // 579*06c3fb27SDimitry Andric // If the vector type is __m128/__m256/__m512, return the default alignment. 580*06c3fb27SDimitry Andric if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 581*06c3fb27SDimitry Andric return Align; 582*06c3fb27SDimitry Andric } 583*06c3fb27SDimitry Andric // On non-Darwin, the stack type alignment is always 4. 584*06c3fb27SDimitry Andric if (!IsDarwinVectorABI) { 585*06c3fb27SDimitry Andric // Set explicit alignment, since we may need to realign the top. 586*06c3fb27SDimitry Andric return MinABIStackAlignInBytes; 587*06c3fb27SDimitry Andric } 588*06c3fb27SDimitry Andric 589*06c3fb27SDimitry Andric // Otherwise, if the type contains an SSE vector type, the alignment is 16. 590*06c3fb27SDimitry Andric if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 591*06c3fb27SDimitry Andric isRecordWithSIMDVectorType(getContext(), Ty))) 592*06c3fb27SDimitry Andric return 16; 593*06c3fb27SDimitry Andric 594*06c3fb27SDimitry Andric return MinABIStackAlignInBytes; 595*06c3fb27SDimitry Andric } 596*06c3fb27SDimitry Andric 597*06c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 598*06c3fb27SDimitry Andric CCState &State) const { 599*06c3fb27SDimitry Andric if (!ByVal) { 600*06c3fb27SDimitry Andric if (State.FreeRegs) { 601*06c3fb27SDimitry Andric --State.FreeRegs; // Non-byval indirects just use one pointer. 602*06c3fb27SDimitry Andric if (!IsMCUABI) 603*06c3fb27SDimitry Andric return getNaturalAlignIndirectInReg(Ty); 604*06c3fb27SDimitry Andric } 605*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, false); 606*06c3fb27SDimitry Andric } 607*06c3fb27SDimitry Andric 608*06c3fb27SDimitry Andric // Compute the byval alignment. 609*06c3fb27SDimitry Andric unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 610*06c3fb27SDimitry Andric unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 611*06c3fb27SDimitry Andric if (StackAlign == 0) 612*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 613*06c3fb27SDimitry Andric 614*06c3fb27SDimitry Andric // If the stack alignment is less than the type alignment, realign the 615*06c3fb27SDimitry Andric // argument. 616*06c3fb27SDimitry Andric bool Realign = TypeAlign > StackAlign; 617*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 618*06c3fb27SDimitry Andric /*ByVal=*/true, Realign); 619*06c3fb27SDimitry Andric } 620*06c3fb27SDimitry Andric 621*06c3fb27SDimitry Andric X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 622*06c3fb27SDimitry Andric const Type *T = isSingleElementStruct(Ty, getContext()); 623*06c3fb27SDimitry Andric if (!T) 624*06c3fb27SDimitry Andric T = Ty.getTypePtr(); 625*06c3fb27SDimitry Andric 626*06c3fb27SDimitry Andric if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 627*06c3fb27SDimitry Andric BuiltinType::Kind K = BT->getKind(); 628*06c3fb27SDimitry Andric if (K == BuiltinType::Float || K == BuiltinType::Double) 629*06c3fb27SDimitry Andric return Float; 630*06c3fb27SDimitry Andric } 631*06c3fb27SDimitry Andric return Integer; 632*06c3fb27SDimitry Andric } 633*06c3fb27SDimitry Andric 634*06c3fb27SDimitry Andric bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 635*06c3fb27SDimitry Andric if (!IsSoftFloatABI) { 636*06c3fb27SDimitry Andric Class C = classify(Ty); 637*06c3fb27SDimitry Andric if (C == Float) 638*06c3fb27SDimitry Andric return false; 639*06c3fb27SDimitry Andric } 640*06c3fb27SDimitry Andric 641*06c3fb27SDimitry Andric unsigned Size = getContext().getTypeSize(Ty); 642*06c3fb27SDimitry Andric unsigned SizeInRegs = (Size + 31) / 32; 643*06c3fb27SDimitry Andric 644*06c3fb27SDimitry Andric if (SizeInRegs == 0) 645*06c3fb27SDimitry Andric return false; 646*06c3fb27SDimitry Andric 647*06c3fb27SDimitry Andric if (!IsMCUABI) { 648*06c3fb27SDimitry Andric if (SizeInRegs > State.FreeRegs) { 649*06c3fb27SDimitry Andric State.FreeRegs = 0; 650*06c3fb27SDimitry Andric return false; 651*06c3fb27SDimitry Andric } 652*06c3fb27SDimitry Andric } else { 653*06c3fb27SDimitry Andric // The MCU psABI allows passing parameters in-reg even if there are 654*06c3fb27SDimitry Andric // earlier parameters that are passed on the stack. Also, 655*06c3fb27SDimitry Andric // it does not allow passing >8-byte structs in-register, 656*06c3fb27SDimitry Andric // even if there are 3 free registers available. 657*06c3fb27SDimitry Andric if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 658*06c3fb27SDimitry Andric return false; 659*06c3fb27SDimitry Andric } 660*06c3fb27SDimitry Andric 661*06c3fb27SDimitry Andric State.FreeRegs -= SizeInRegs; 662*06c3fb27SDimitry Andric return true; 663*06c3fb27SDimitry Andric } 664*06c3fb27SDimitry Andric 665*06c3fb27SDimitry Andric bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 666*06c3fb27SDimitry Andric bool &InReg, 667*06c3fb27SDimitry Andric bool &NeedsPadding) const { 668*06c3fb27SDimitry Andric // On Windows, aggregates other than HFAs are never passed in registers, and 669*06c3fb27SDimitry Andric // they do not consume register slots. Homogenous floating-point aggregates 670*06c3fb27SDimitry Andric // (HFAs) have already been dealt with at this point. 671*06c3fb27SDimitry Andric if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 672*06c3fb27SDimitry Andric return false; 673*06c3fb27SDimitry Andric 674*06c3fb27SDimitry Andric NeedsPadding = false; 675*06c3fb27SDimitry Andric InReg = !IsMCUABI; 676*06c3fb27SDimitry Andric 677*06c3fb27SDimitry Andric if (!updateFreeRegs(Ty, State)) 678*06c3fb27SDimitry Andric return false; 679*06c3fb27SDimitry Andric 680*06c3fb27SDimitry Andric if (IsMCUABI) 681*06c3fb27SDimitry Andric return true; 682*06c3fb27SDimitry Andric 683*06c3fb27SDimitry Andric if (State.CC == llvm::CallingConv::X86_FastCall || 684*06c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_VectorCall || 685*06c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_RegCall) { 686*06c3fb27SDimitry Andric if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 687*06c3fb27SDimitry Andric NeedsPadding = true; 688*06c3fb27SDimitry Andric 689*06c3fb27SDimitry Andric return false; 690*06c3fb27SDimitry Andric } 691*06c3fb27SDimitry Andric 692*06c3fb27SDimitry Andric return true; 693*06c3fb27SDimitry Andric } 694*06c3fb27SDimitry Andric 695*06c3fb27SDimitry Andric bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 696*06c3fb27SDimitry Andric bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && 697*06c3fb27SDimitry Andric (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 698*06c3fb27SDimitry Andric Ty->isReferenceType()); 699*06c3fb27SDimitry Andric 700*06c3fb27SDimitry Andric if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || 701*06c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_VectorCall)) 702*06c3fb27SDimitry Andric return false; 703*06c3fb27SDimitry Andric 704*06c3fb27SDimitry Andric if (!updateFreeRegs(Ty, State)) 705*06c3fb27SDimitry Andric return false; 706*06c3fb27SDimitry Andric 707*06c3fb27SDimitry Andric if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) 708*06c3fb27SDimitry Andric return false; 709*06c3fb27SDimitry Andric 710*06c3fb27SDimitry Andric // Return true to apply inreg to all legal parameters except for MCU targets. 711*06c3fb27SDimitry Andric return !IsMCUABI; 712*06c3fb27SDimitry Andric } 713*06c3fb27SDimitry Andric 714*06c3fb27SDimitry Andric void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 715*06c3fb27SDimitry Andric // Vectorcall x86 works subtly different than in x64, so the format is 716*06c3fb27SDimitry Andric // a bit different than the x64 version. First, all vector types (not HVAs) 717*06c3fb27SDimitry Andric // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 718*06c3fb27SDimitry Andric // This differs from the x64 implementation, where the first 6 by INDEX get 719*06c3fb27SDimitry Andric // registers. 720*06c3fb27SDimitry Andric // In the second pass over the arguments, HVAs are passed in the remaining 721*06c3fb27SDimitry Andric // vector registers if possible, or indirectly by address. The address will be 722*06c3fb27SDimitry Andric // passed in ECX/EDX if available. Any other arguments are passed according to 723*06c3fb27SDimitry Andric // the usual fastcall rules. 724*06c3fb27SDimitry Andric MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 725*06c3fb27SDimitry Andric for (int I = 0, E = Args.size(); I < E; ++I) { 726*06c3fb27SDimitry Andric const Type *Base = nullptr; 727*06c3fb27SDimitry Andric uint64_t NumElts = 0; 728*06c3fb27SDimitry Andric const QualType &Ty = Args[I].type; 729*06c3fb27SDimitry Andric if ((Ty->isVectorType() || Ty->isBuiltinType()) && 730*06c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) { 731*06c3fb27SDimitry Andric if (State.FreeSSERegs >= NumElts) { 732*06c3fb27SDimitry Andric State.FreeSSERegs -= NumElts; 733*06c3fb27SDimitry Andric Args[I].info = ABIArgInfo::getDirectInReg(); 734*06c3fb27SDimitry Andric State.IsPreassigned.set(I); 735*06c3fb27SDimitry Andric } 736*06c3fb27SDimitry Andric } 737*06c3fb27SDimitry Andric } 738*06c3fb27SDimitry Andric } 739*06c3fb27SDimitry Andric 740*06c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 741*06c3fb27SDimitry Andric CCState &State) const { 742*06c3fb27SDimitry Andric // FIXME: Set alignment on indirect arguments. 743*06c3fb27SDimitry Andric bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 744*06c3fb27SDimitry Andric bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 745*06c3fb27SDimitry Andric bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 746*06c3fb27SDimitry Andric 747*06c3fb27SDimitry Andric Ty = useFirstFieldIfTransparentUnion(Ty); 748*06c3fb27SDimitry Andric TypeInfo TI = getContext().getTypeInfo(Ty); 749*06c3fb27SDimitry Andric 750*06c3fb27SDimitry Andric // Check with the C++ ABI first. 751*06c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>(); 752*06c3fb27SDimitry Andric if (RT) { 753*06c3fb27SDimitry Andric CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 754*06c3fb27SDimitry Andric if (RAA == CGCXXABI::RAA_Indirect) { 755*06c3fb27SDimitry Andric return getIndirectResult(Ty, false, State); 756*06c3fb27SDimitry Andric } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 757*06c3fb27SDimitry Andric // The field index doesn't matter, we'll fix it up later. 758*06c3fb27SDimitry Andric return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 759*06c3fb27SDimitry Andric } 760*06c3fb27SDimitry Andric } 761*06c3fb27SDimitry Andric 762*06c3fb27SDimitry Andric // Regcall uses the concept of a homogenous vector aggregate, similar 763*06c3fb27SDimitry Andric // to other targets. 764*06c3fb27SDimitry Andric const Type *Base = nullptr; 765*06c3fb27SDimitry Andric uint64_t NumElts = 0; 766*06c3fb27SDimitry Andric if ((IsRegCall || IsVectorCall) && 767*06c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) { 768*06c3fb27SDimitry Andric if (State.FreeSSERegs >= NumElts) { 769*06c3fb27SDimitry Andric State.FreeSSERegs -= NumElts; 770*06c3fb27SDimitry Andric 771*06c3fb27SDimitry Andric // Vectorcall passes HVAs directly and does not flatten them, but regcall 772*06c3fb27SDimitry Andric // does. 773*06c3fb27SDimitry Andric if (IsVectorCall) 774*06c3fb27SDimitry Andric return getDirectX86Hva(); 775*06c3fb27SDimitry Andric 776*06c3fb27SDimitry Andric if (Ty->isBuiltinType() || Ty->isVectorType()) 777*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 778*06c3fb27SDimitry Andric return ABIArgInfo::getExpand(); 779*06c3fb27SDimitry Andric } 780*06c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State); 781*06c3fb27SDimitry Andric } 782*06c3fb27SDimitry Andric 783*06c3fb27SDimitry Andric if (isAggregateTypeForABI(Ty)) { 784*06c3fb27SDimitry Andric // Structures with flexible arrays are always indirect. 785*06c3fb27SDimitry Andric // FIXME: This should not be byval! 786*06c3fb27SDimitry Andric if (RT && RT->getDecl()->hasFlexibleArrayMember()) 787*06c3fb27SDimitry Andric return getIndirectResult(Ty, true, State); 788*06c3fb27SDimitry Andric 789*06c3fb27SDimitry Andric // Ignore empty structs/unions on non-Windows. 790*06c3fb27SDimitry Andric if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 791*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 792*06c3fb27SDimitry Andric 793*06c3fb27SDimitry Andric llvm::LLVMContext &LLVMContext = getVMContext(); 794*06c3fb27SDimitry Andric llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 795*06c3fb27SDimitry Andric bool NeedsPadding = false; 796*06c3fb27SDimitry Andric bool InReg; 797*06c3fb27SDimitry Andric if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 798*06c3fb27SDimitry Andric unsigned SizeInRegs = (TI.Width + 31) / 32; 799*06c3fb27SDimitry Andric SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 800*06c3fb27SDimitry Andric llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 801*06c3fb27SDimitry Andric if (InReg) 802*06c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg(Result); 803*06c3fb27SDimitry Andric else 804*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(Result); 805*06c3fb27SDimitry Andric } 806*06c3fb27SDimitry Andric llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 807*06c3fb27SDimitry Andric 808*06c3fb27SDimitry Andric // Pass over-aligned aggregates on Windows indirectly. This behavior was 809*06c3fb27SDimitry Andric // added in MSVC 2015. Use the required alignment from the record layout, 810*06c3fb27SDimitry Andric // since that may be less than the regular type alignment, and types with 811*06c3fb27SDimitry Andric // required alignment of less than 4 bytes are not passed indirectly. 812*06c3fb27SDimitry Andric if (IsWin32StructABI) { 813*06c3fb27SDimitry Andric unsigned AlignInBits = 0; 814*06c3fb27SDimitry Andric if (RT) { 815*06c3fb27SDimitry Andric const ASTRecordLayout &Layout = 816*06c3fb27SDimitry Andric getContext().getASTRecordLayout(RT->getDecl()); 817*06c3fb27SDimitry Andric AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); 818*06c3fb27SDimitry Andric } else if (TI.isAlignRequired()) { 819*06c3fb27SDimitry Andric AlignInBits = TI.Align; 820*06c3fb27SDimitry Andric } 821*06c3fb27SDimitry Andric if (AlignInBits > 32) 822*06c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State); 823*06c3fb27SDimitry Andric } 824*06c3fb27SDimitry Andric 825*06c3fb27SDimitry Andric // Expand small (<= 128-bit) record types when we know that the stack layout 826*06c3fb27SDimitry Andric // of those arguments will match the struct. This is important because the 827*06c3fb27SDimitry Andric // LLVM backend isn't smart enough to remove byval, which inhibits many 828*06c3fb27SDimitry Andric // optimizations. 829*06c3fb27SDimitry Andric // Don't do this for the MCU if there are still free integer registers 830*06c3fb27SDimitry Andric // (see X86_64 ABI for full explanation). 831*06c3fb27SDimitry Andric if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 832*06c3fb27SDimitry Andric canExpandIndirectArgument(Ty)) 833*06c3fb27SDimitry Andric return ABIArgInfo::getExpandWithPadding( 834*06c3fb27SDimitry Andric IsFastCall || IsVectorCall || IsRegCall, PaddingType); 835*06c3fb27SDimitry Andric 836*06c3fb27SDimitry Andric return getIndirectResult(Ty, true, State); 837*06c3fb27SDimitry Andric } 838*06c3fb27SDimitry Andric 839*06c3fb27SDimitry Andric if (const VectorType *VT = Ty->getAs<VectorType>()) { 840*06c3fb27SDimitry Andric // On Windows, vectors are passed directly if registers are available, or 841*06c3fb27SDimitry Andric // indirectly if not. This avoids the need to align argument memory. Pass 842*06c3fb27SDimitry Andric // user-defined vector types larger than 512 bits indirectly for simplicity. 843*06c3fb27SDimitry Andric if (IsWin32StructABI) { 844*06c3fb27SDimitry Andric if (TI.Width <= 512 && State.FreeSSERegs > 0) { 845*06c3fb27SDimitry Andric --State.FreeSSERegs; 846*06c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg(); 847*06c3fb27SDimitry Andric } 848*06c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State); 849*06c3fb27SDimitry Andric } 850*06c3fb27SDimitry Andric 851*06c3fb27SDimitry Andric // On Darwin, some vectors are passed in memory, we handle this by passing 852*06c3fb27SDimitry Andric // it as an i8/i16/i32/i64. 853*06c3fb27SDimitry Andric if (IsDarwinVectorABI) { 854*06c3fb27SDimitry Andric if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 855*06c3fb27SDimitry Andric (TI.Width == 64 && VT->getNumElements() == 1)) 856*06c3fb27SDimitry Andric return ABIArgInfo::getDirect( 857*06c3fb27SDimitry Andric llvm::IntegerType::get(getVMContext(), TI.Width)); 858*06c3fb27SDimitry Andric } 859*06c3fb27SDimitry Andric 860*06c3fb27SDimitry Andric if (IsX86_MMXType(CGT.ConvertType(Ty))) 861*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 862*06c3fb27SDimitry Andric 863*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 864*06c3fb27SDimitry Andric } 865*06c3fb27SDimitry Andric 866*06c3fb27SDimitry Andric 867*06c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 868*06c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType(); 869*06c3fb27SDimitry Andric 870*06c3fb27SDimitry Andric bool InReg = shouldPrimitiveUseInReg(Ty, State); 871*06c3fb27SDimitry Andric 872*06c3fb27SDimitry Andric if (isPromotableIntegerTypeForABI(Ty)) { 873*06c3fb27SDimitry Andric if (InReg) 874*06c3fb27SDimitry Andric return ABIArgInfo::getExtendInReg(Ty); 875*06c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty); 876*06c3fb27SDimitry Andric } 877*06c3fb27SDimitry Andric 878*06c3fb27SDimitry Andric if (const auto *EIT = Ty->getAs<BitIntType>()) { 879*06c3fb27SDimitry Andric if (EIT->getNumBits() <= 64) { 880*06c3fb27SDimitry Andric if (InReg) 881*06c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg(); 882*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 883*06c3fb27SDimitry Andric } 884*06c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State); 885*06c3fb27SDimitry Andric } 886*06c3fb27SDimitry Andric 887*06c3fb27SDimitry Andric if (InReg) 888*06c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg(); 889*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 890*06c3fb27SDimitry Andric } 891*06c3fb27SDimitry Andric 892*06c3fb27SDimitry Andric void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 893*06c3fb27SDimitry Andric CCState State(FI); 894*06c3fb27SDimitry Andric if (IsMCUABI) 895*06c3fb27SDimitry Andric State.FreeRegs = 3; 896*06c3fb27SDimitry Andric else if (State.CC == llvm::CallingConv::X86_FastCall) { 897*06c3fb27SDimitry Andric State.FreeRegs = 2; 898*06c3fb27SDimitry Andric State.FreeSSERegs = 3; 899*06c3fb27SDimitry Andric } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 900*06c3fb27SDimitry Andric State.FreeRegs = 2; 901*06c3fb27SDimitry Andric State.FreeSSERegs = 6; 902*06c3fb27SDimitry Andric } else if (FI.getHasRegParm()) 903*06c3fb27SDimitry Andric State.FreeRegs = FI.getRegParm(); 904*06c3fb27SDimitry Andric else if (State.CC == llvm::CallingConv::X86_RegCall) { 905*06c3fb27SDimitry Andric State.FreeRegs = 5; 906*06c3fb27SDimitry Andric State.FreeSSERegs = 8; 907*06c3fb27SDimitry Andric } else if (IsWin32StructABI) { 908*06c3fb27SDimitry Andric // Since MSVC 2015, the first three SSE vectors have been passed in 909*06c3fb27SDimitry Andric // registers. The rest are passed indirectly. 910*06c3fb27SDimitry Andric State.FreeRegs = DefaultNumRegisterParameters; 911*06c3fb27SDimitry Andric State.FreeSSERegs = 3; 912*06c3fb27SDimitry Andric } else 913*06c3fb27SDimitry Andric State.FreeRegs = DefaultNumRegisterParameters; 914*06c3fb27SDimitry Andric 915*06c3fb27SDimitry Andric if (!::classifyReturnType(getCXXABI(), FI, *this)) { 916*06c3fb27SDimitry Andric FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 917*06c3fb27SDimitry Andric } else if (FI.getReturnInfo().isIndirect()) { 918*06c3fb27SDimitry Andric // The C++ ABI is not aware of register usage, so we have to check if the 919*06c3fb27SDimitry Andric // return value was sret and put it in a register ourselves if appropriate. 920*06c3fb27SDimitry Andric if (State.FreeRegs) { 921*06c3fb27SDimitry Andric --State.FreeRegs; // The sret parameter consumes a register. 922*06c3fb27SDimitry Andric if (!IsMCUABI) 923*06c3fb27SDimitry Andric FI.getReturnInfo().setInReg(true); 924*06c3fb27SDimitry Andric } 925*06c3fb27SDimitry Andric } 926*06c3fb27SDimitry Andric 927*06c3fb27SDimitry Andric // The chain argument effectively gives us another free register. 928*06c3fb27SDimitry Andric if (FI.isChainCall()) 929*06c3fb27SDimitry Andric ++State.FreeRegs; 930*06c3fb27SDimitry Andric 931*06c3fb27SDimitry Andric // For vectorcall, do a first pass over the arguments, assigning FP and vector 932*06c3fb27SDimitry Andric // arguments to XMM registers as available. 933*06c3fb27SDimitry Andric if (State.CC == llvm::CallingConv::X86_VectorCall) 934*06c3fb27SDimitry Andric runVectorCallFirstPass(FI, State); 935*06c3fb27SDimitry Andric 936*06c3fb27SDimitry Andric bool UsedInAlloca = false; 937*06c3fb27SDimitry Andric MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 938*06c3fb27SDimitry Andric for (int I = 0, E = Args.size(); I < E; ++I) { 939*06c3fb27SDimitry Andric // Skip arguments that have already been assigned. 940*06c3fb27SDimitry Andric if (State.IsPreassigned.test(I)) 941*06c3fb27SDimitry Andric continue; 942*06c3fb27SDimitry Andric 943*06c3fb27SDimitry Andric Args[I].info = classifyArgumentType(Args[I].type, State); 944*06c3fb27SDimitry Andric UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 945*06c3fb27SDimitry Andric } 946*06c3fb27SDimitry Andric 947*06c3fb27SDimitry Andric // If we needed to use inalloca for any argument, do a second pass and rewrite 948*06c3fb27SDimitry Andric // all the memory arguments to use inalloca. 949*06c3fb27SDimitry Andric if (UsedInAlloca) 950*06c3fb27SDimitry Andric rewriteWithInAlloca(FI); 951*06c3fb27SDimitry Andric } 952*06c3fb27SDimitry Andric 953*06c3fb27SDimitry Andric void 954*06c3fb27SDimitry Andric X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 955*06c3fb27SDimitry Andric CharUnits &StackOffset, ABIArgInfo &Info, 956*06c3fb27SDimitry Andric QualType Type) const { 957*06c3fb27SDimitry Andric // Arguments are always 4-byte-aligned. 958*06c3fb27SDimitry Andric CharUnits WordSize = CharUnits::fromQuantity(4); 959*06c3fb27SDimitry Andric assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 960*06c3fb27SDimitry Andric 961*06c3fb27SDimitry Andric // sret pointers and indirect things will require an extra pointer 962*06c3fb27SDimitry Andric // indirection, unless they are byval. Most things are byval, and will not 963*06c3fb27SDimitry Andric // require this indirection. 964*06c3fb27SDimitry Andric bool IsIndirect = false; 965*06c3fb27SDimitry Andric if (Info.isIndirect() && !Info.getIndirectByVal()) 966*06c3fb27SDimitry Andric IsIndirect = true; 967*06c3fb27SDimitry Andric Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 968*06c3fb27SDimitry Andric llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 969*06c3fb27SDimitry Andric if (IsIndirect) 970*06c3fb27SDimitry Andric LLTy = llvm::PointerType::getUnqual(getVMContext()); 971*06c3fb27SDimitry Andric FrameFields.push_back(LLTy); 972*06c3fb27SDimitry Andric StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 973*06c3fb27SDimitry Andric 974*06c3fb27SDimitry Andric // Insert padding bytes to respect alignment. 975*06c3fb27SDimitry Andric CharUnits FieldEnd = StackOffset; 976*06c3fb27SDimitry Andric StackOffset = FieldEnd.alignTo(WordSize); 977*06c3fb27SDimitry Andric if (StackOffset != FieldEnd) { 978*06c3fb27SDimitry Andric CharUnits NumBytes = StackOffset - FieldEnd; 979*06c3fb27SDimitry Andric llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 980*06c3fb27SDimitry Andric Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 981*06c3fb27SDimitry Andric FrameFields.push_back(Ty); 982*06c3fb27SDimitry Andric } 983*06c3fb27SDimitry Andric } 984*06c3fb27SDimitry Andric 985*06c3fb27SDimitry Andric static bool isArgInAlloca(const ABIArgInfo &Info) { 986*06c3fb27SDimitry Andric // Leave ignored and inreg arguments alone. 987*06c3fb27SDimitry Andric switch (Info.getKind()) { 988*06c3fb27SDimitry Andric case ABIArgInfo::InAlloca: 989*06c3fb27SDimitry Andric return true; 990*06c3fb27SDimitry Andric case ABIArgInfo::Ignore: 991*06c3fb27SDimitry Andric case ABIArgInfo::IndirectAliased: 992*06c3fb27SDimitry Andric return false; 993*06c3fb27SDimitry Andric case ABIArgInfo::Indirect: 994*06c3fb27SDimitry Andric case ABIArgInfo::Direct: 995*06c3fb27SDimitry Andric case ABIArgInfo::Extend: 996*06c3fb27SDimitry Andric return !Info.getInReg(); 997*06c3fb27SDimitry Andric case ABIArgInfo::Expand: 998*06c3fb27SDimitry Andric case ABIArgInfo::CoerceAndExpand: 999*06c3fb27SDimitry Andric // These are aggregate types which are never passed in registers when 1000*06c3fb27SDimitry Andric // inalloca is involved. 1001*06c3fb27SDimitry Andric return true; 1002*06c3fb27SDimitry Andric } 1003*06c3fb27SDimitry Andric llvm_unreachable("invalid enum"); 1004*06c3fb27SDimitry Andric } 1005*06c3fb27SDimitry Andric 1006*06c3fb27SDimitry Andric void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1007*06c3fb27SDimitry Andric assert(IsWin32StructABI && "inalloca only supported on win32"); 1008*06c3fb27SDimitry Andric 1009*06c3fb27SDimitry Andric // Build a packed struct type for all of the arguments in memory. 1010*06c3fb27SDimitry Andric SmallVector<llvm::Type *, 6> FrameFields; 1011*06c3fb27SDimitry Andric 1012*06c3fb27SDimitry Andric // The stack alignment is always 4. 1013*06c3fb27SDimitry Andric CharUnits StackAlign = CharUnits::fromQuantity(4); 1014*06c3fb27SDimitry Andric 1015*06c3fb27SDimitry Andric CharUnits StackOffset; 1016*06c3fb27SDimitry Andric CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1017*06c3fb27SDimitry Andric 1018*06c3fb27SDimitry Andric // Put 'this' into the struct before 'sret', if necessary. 1019*06c3fb27SDimitry Andric bool IsThisCall = 1020*06c3fb27SDimitry Andric FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1021*06c3fb27SDimitry Andric ABIArgInfo &Ret = FI.getReturnInfo(); 1022*06c3fb27SDimitry Andric if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1023*06c3fb27SDimitry Andric isArgInAlloca(I->info)) { 1024*06c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1025*06c3fb27SDimitry Andric ++I; 1026*06c3fb27SDimitry Andric } 1027*06c3fb27SDimitry Andric 1028*06c3fb27SDimitry Andric // Put the sret parameter into the inalloca struct if it's in memory. 1029*06c3fb27SDimitry Andric if (Ret.isIndirect() && !Ret.getInReg()) { 1030*06c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 1031*06c3fb27SDimitry Andric // On Windows, the hidden sret parameter is always returned in eax. 1032*06c3fb27SDimitry Andric Ret.setInAllocaSRet(IsWin32StructABI); 1033*06c3fb27SDimitry Andric } 1034*06c3fb27SDimitry Andric 1035*06c3fb27SDimitry Andric // Skip the 'this' parameter in ecx. 1036*06c3fb27SDimitry Andric if (IsThisCall) 1037*06c3fb27SDimitry Andric ++I; 1038*06c3fb27SDimitry Andric 1039*06c3fb27SDimitry Andric // Put arguments passed in memory into the struct. 1040*06c3fb27SDimitry Andric for (; I != E; ++I) { 1041*06c3fb27SDimitry Andric if (isArgInAlloca(I->info)) 1042*06c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1043*06c3fb27SDimitry Andric } 1044*06c3fb27SDimitry Andric 1045*06c3fb27SDimitry Andric FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1046*06c3fb27SDimitry Andric /*isPacked=*/true), 1047*06c3fb27SDimitry Andric StackAlign); 1048*06c3fb27SDimitry Andric } 1049*06c3fb27SDimitry Andric 1050*06c3fb27SDimitry Andric Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1051*06c3fb27SDimitry Andric Address VAListAddr, QualType Ty) const { 1052*06c3fb27SDimitry Andric 1053*06c3fb27SDimitry Andric auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1054*06c3fb27SDimitry Andric 1055*06c3fb27SDimitry Andric // x86-32 changes the alignment of certain arguments on the stack. 1056*06c3fb27SDimitry Andric // 1057*06c3fb27SDimitry Andric // Just messing with TypeInfo like this works because we never pass 1058*06c3fb27SDimitry Andric // anything indirectly. 1059*06c3fb27SDimitry Andric TypeInfo.Align = CharUnits::fromQuantity( 1060*06c3fb27SDimitry Andric getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 1061*06c3fb27SDimitry Andric 1062*06c3fb27SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1063*06c3fb27SDimitry Andric TypeInfo, CharUnits::fromQuantity(4), 1064*06c3fb27SDimitry Andric /*AllowHigherAlign*/ true); 1065*06c3fb27SDimitry Andric } 1066*06c3fb27SDimitry Andric 1067*06c3fb27SDimitry Andric bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1068*06c3fb27SDimitry Andric const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1069*06c3fb27SDimitry Andric assert(Triple.getArch() == llvm::Triple::x86); 1070*06c3fb27SDimitry Andric 1071*06c3fb27SDimitry Andric switch (Opts.getStructReturnConvention()) { 1072*06c3fb27SDimitry Andric case CodeGenOptions::SRCK_Default: 1073*06c3fb27SDimitry Andric break; 1074*06c3fb27SDimitry Andric case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1075*06c3fb27SDimitry Andric return false; 1076*06c3fb27SDimitry Andric case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1077*06c3fb27SDimitry Andric return true; 1078*06c3fb27SDimitry Andric } 1079*06c3fb27SDimitry Andric 1080*06c3fb27SDimitry Andric if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1081*06c3fb27SDimitry Andric return true; 1082*06c3fb27SDimitry Andric 1083*06c3fb27SDimitry Andric switch (Triple.getOS()) { 1084*06c3fb27SDimitry Andric case llvm::Triple::DragonFly: 1085*06c3fb27SDimitry Andric case llvm::Triple::FreeBSD: 1086*06c3fb27SDimitry Andric case llvm::Triple::OpenBSD: 1087*06c3fb27SDimitry Andric case llvm::Triple::Win32: 1088*06c3fb27SDimitry Andric return true; 1089*06c3fb27SDimitry Andric default: 1090*06c3fb27SDimitry Andric return false; 1091*06c3fb27SDimitry Andric } 1092*06c3fb27SDimitry Andric } 1093*06c3fb27SDimitry Andric 1094*06c3fb27SDimitry Andric static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 1095*06c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) { 1096*06c3fb27SDimitry Andric if (!FD->hasAttr<AnyX86InterruptAttr>()) 1097*06c3fb27SDimitry Andric return; 1098*06c3fb27SDimitry Andric 1099*06c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV); 1100*06c3fb27SDimitry Andric Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1101*06c3fb27SDimitry Andric if (FD->getNumParams() == 0) 1102*06c3fb27SDimitry Andric return; 1103*06c3fb27SDimitry Andric 1104*06c3fb27SDimitry Andric auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 1105*06c3fb27SDimitry Andric llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 1106*06c3fb27SDimitry Andric llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 1107*06c3fb27SDimitry Andric Fn->getContext(), ByValTy); 1108*06c3fb27SDimitry Andric Fn->addParamAttr(0, NewAttr); 1109*06c3fb27SDimitry Andric } 1110*06c3fb27SDimitry Andric 1111*06c3fb27SDimitry Andric void X86_32TargetCodeGenInfo::setTargetAttributes( 1112*06c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1113*06c3fb27SDimitry Andric if (GV->isDeclaration()) 1114*06c3fb27SDimitry Andric return; 1115*06c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1116*06c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1117*06c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV); 1118*06c3fb27SDimitry Andric Fn->addFnAttr("stackrealign"); 1119*06c3fb27SDimitry Andric } 1120*06c3fb27SDimitry Andric 1121*06c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM); 1122*06c3fb27SDimitry Andric } 1123*06c3fb27SDimitry Andric } 1124*06c3fb27SDimitry Andric 1125*06c3fb27SDimitry Andric bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1126*06c3fb27SDimitry Andric CodeGen::CodeGenFunction &CGF, 1127*06c3fb27SDimitry Andric llvm::Value *Address) const { 1128*06c3fb27SDimitry Andric CodeGen::CGBuilderTy &Builder = CGF.Builder; 1129*06c3fb27SDimitry Andric 1130*06c3fb27SDimitry Andric llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1131*06c3fb27SDimitry Andric 1132*06c3fb27SDimitry Andric // 0-7 are the eight integer registers; the order is different 1133*06c3fb27SDimitry Andric // on Darwin (for EH), but the range is the same. 1134*06c3fb27SDimitry Andric // 8 is %eip. 1135*06c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Four8, 0, 8); 1136*06c3fb27SDimitry Andric 1137*06c3fb27SDimitry Andric if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1138*06c3fb27SDimitry Andric // 12-16 are st(0..4). Not sure why we stop at 4. 1139*06c3fb27SDimitry Andric // These have size 16, which is sizeof(long double) on 1140*06c3fb27SDimitry Andric // platforms with 8-byte alignment for that type. 1141*06c3fb27SDimitry Andric llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1142*06c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1143*06c3fb27SDimitry Andric 1144*06c3fb27SDimitry Andric } else { 1145*06c3fb27SDimitry Andric // 9 is %eflags, which doesn't get a size on Darwin for some 1146*06c3fb27SDimitry Andric // reason. 1147*06c3fb27SDimitry Andric Builder.CreateAlignedStore( 1148*06c3fb27SDimitry Andric Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1149*06c3fb27SDimitry Andric CharUnits::One()); 1150*06c3fb27SDimitry Andric 1151*06c3fb27SDimitry Andric // 11-16 are st(0..5). Not sure why we stop at 5. 1152*06c3fb27SDimitry Andric // These have size 12, which is sizeof(long double) on 1153*06c3fb27SDimitry Andric // platforms with 4-byte alignment for that type. 1154*06c3fb27SDimitry Andric llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1155*06c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1156*06c3fb27SDimitry Andric } 1157*06c3fb27SDimitry Andric 1158*06c3fb27SDimitry Andric return false; 1159*06c3fb27SDimitry Andric } 1160*06c3fb27SDimitry Andric 1161*06c3fb27SDimitry Andric //===----------------------------------------------------------------------===// 1162*06c3fb27SDimitry Andric // X86-64 ABI Implementation 1163*06c3fb27SDimitry Andric //===----------------------------------------------------------------------===// 1164*06c3fb27SDimitry Andric 1165*06c3fb27SDimitry Andric 1166*06c3fb27SDimitry Andric namespace { 1167*06c3fb27SDimitry Andric 1168*06c3fb27SDimitry Andric /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1169*06c3fb27SDimitry Andric static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1170*06c3fb27SDimitry Andric switch (AVXLevel) { 1171*06c3fb27SDimitry Andric case X86AVXABILevel::AVX512: 1172*06c3fb27SDimitry Andric return 512; 1173*06c3fb27SDimitry Andric case X86AVXABILevel::AVX: 1174*06c3fb27SDimitry Andric return 256; 1175*06c3fb27SDimitry Andric case X86AVXABILevel::None: 1176*06c3fb27SDimitry Andric return 128; 1177*06c3fb27SDimitry Andric } 1178*06c3fb27SDimitry Andric llvm_unreachable("Unknown AVXLevel"); 1179*06c3fb27SDimitry Andric } 1180*06c3fb27SDimitry Andric 1181*06c3fb27SDimitry Andric /// X86_64ABIInfo - The X86_64 ABI information. 1182*06c3fb27SDimitry Andric class X86_64ABIInfo : public ABIInfo { 1183*06c3fb27SDimitry Andric enum Class { 1184*06c3fb27SDimitry Andric Integer = 0, 1185*06c3fb27SDimitry Andric SSE, 1186*06c3fb27SDimitry Andric SSEUp, 1187*06c3fb27SDimitry Andric X87, 1188*06c3fb27SDimitry Andric X87Up, 1189*06c3fb27SDimitry Andric ComplexX87, 1190*06c3fb27SDimitry Andric NoClass, 1191*06c3fb27SDimitry Andric Memory 1192*06c3fb27SDimitry Andric }; 1193*06c3fb27SDimitry Andric 1194*06c3fb27SDimitry Andric /// merge - Implement the X86_64 ABI merging algorithm. 1195*06c3fb27SDimitry Andric /// 1196*06c3fb27SDimitry Andric /// Merge an accumulating classification \arg Accum with a field 1197*06c3fb27SDimitry Andric /// classification \arg Field. 1198*06c3fb27SDimitry Andric /// 1199*06c3fb27SDimitry Andric /// \param Accum - The accumulating classification. This should 1200*06c3fb27SDimitry Andric /// always be either NoClass or the result of a previous merge 1201*06c3fb27SDimitry Andric /// call. In addition, this should never be Memory (the caller 1202*06c3fb27SDimitry Andric /// should just return Memory for the aggregate). 1203*06c3fb27SDimitry Andric static Class merge(Class Accum, Class Field); 1204*06c3fb27SDimitry Andric 1205*06c3fb27SDimitry Andric /// postMerge - Implement the X86_64 ABI post merging algorithm. 1206*06c3fb27SDimitry Andric /// 1207*06c3fb27SDimitry Andric /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1208*06c3fb27SDimitry Andric /// final MEMORY or SSE classes when necessary. 1209*06c3fb27SDimitry Andric /// 1210*06c3fb27SDimitry Andric /// \param AggregateSize - The size of the current aggregate in 1211*06c3fb27SDimitry Andric /// the classification process. 1212*06c3fb27SDimitry Andric /// 1213*06c3fb27SDimitry Andric /// \param Lo - The classification for the parts of the type 1214*06c3fb27SDimitry Andric /// residing in the low word of the containing object. 1215*06c3fb27SDimitry Andric /// 1216*06c3fb27SDimitry Andric /// \param Hi - The classification for the parts of the type 1217*06c3fb27SDimitry Andric /// residing in the higher words of the containing object. 1218*06c3fb27SDimitry Andric /// 1219*06c3fb27SDimitry Andric void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1220*06c3fb27SDimitry Andric 1221*06c3fb27SDimitry Andric /// classify - Determine the x86_64 register classes in which the 1222*06c3fb27SDimitry Andric /// given type T should be passed. 1223*06c3fb27SDimitry Andric /// 1224*06c3fb27SDimitry Andric /// \param Lo - The classification for the parts of the type 1225*06c3fb27SDimitry Andric /// residing in the low word of the containing object. 1226*06c3fb27SDimitry Andric /// 1227*06c3fb27SDimitry Andric /// \param Hi - The classification for the parts of the type 1228*06c3fb27SDimitry Andric /// residing in the high word of the containing object. 1229*06c3fb27SDimitry Andric /// 1230*06c3fb27SDimitry Andric /// \param OffsetBase - The bit offset of this type in the 1231*06c3fb27SDimitry Andric /// containing object. Some parameters are classified different 1232*06c3fb27SDimitry Andric /// depending on whether they straddle an eightbyte boundary. 1233*06c3fb27SDimitry Andric /// 1234*06c3fb27SDimitry Andric /// \param isNamedArg - Whether the argument in question is a "named" 1235*06c3fb27SDimitry Andric /// argument, as used in AMD64-ABI 3.5.7. 1236*06c3fb27SDimitry Andric /// 1237*06c3fb27SDimitry Andric /// \param IsRegCall - Whether the calling conversion is regcall. 1238*06c3fb27SDimitry Andric /// 1239*06c3fb27SDimitry Andric /// If a word is unused its result will be NoClass; if a type should 1240*06c3fb27SDimitry Andric /// be passed in Memory then at least the classification of \arg Lo 1241*06c3fb27SDimitry Andric /// will be Memory. 1242*06c3fb27SDimitry Andric /// 1243*06c3fb27SDimitry Andric /// The \arg Lo class will be NoClass iff the argument is ignored. 1244*06c3fb27SDimitry Andric /// 1245*06c3fb27SDimitry Andric /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1246*06c3fb27SDimitry Andric /// also be ComplexX87. 1247*06c3fb27SDimitry Andric void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1248*06c3fb27SDimitry Andric bool isNamedArg, bool IsRegCall = false) const; 1249*06c3fb27SDimitry Andric 1250*06c3fb27SDimitry Andric llvm::Type *GetByteVectorType(QualType Ty) const; 1251*06c3fb27SDimitry Andric llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1252*06c3fb27SDimitry Andric unsigned IROffset, QualType SourceTy, 1253*06c3fb27SDimitry Andric unsigned SourceOffset) const; 1254*06c3fb27SDimitry Andric llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1255*06c3fb27SDimitry Andric unsigned IROffset, QualType SourceTy, 1256*06c3fb27SDimitry Andric unsigned SourceOffset) const; 1257*06c3fb27SDimitry Andric 1258*06c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1259*06c3fb27SDimitry Andric /// such that the argument will be returned in memory. 1260*06c3fb27SDimitry Andric ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1261*06c3fb27SDimitry Andric 1262*06c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1263*06c3fb27SDimitry Andric /// such that the argument will be passed in memory. 1264*06c3fb27SDimitry Andric /// 1265*06c3fb27SDimitry Andric /// \param freeIntRegs - The number of free integer registers remaining 1266*06c3fb27SDimitry Andric /// available. 1267*06c3fb27SDimitry Andric ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1268*06c3fb27SDimitry Andric 1269*06c3fb27SDimitry Andric ABIArgInfo classifyReturnType(QualType RetTy) const; 1270*06c3fb27SDimitry Andric 1271*06c3fb27SDimitry Andric ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1272*06c3fb27SDimitry Andric unsigned &neededInt, unsigned &neededSSE, 1273*06c3fb27SDimitry Andric bool isNamedArg, 1274*06c3fb27SDimitry Andric bool IsRegCall = false) const; 1275*06c3fb27SDimitry Andric 1276*06c3fb27SDimitry Andric ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1277*06c3fb27SDimitry Andric unsigned &NeededSSE, 1278*06c3fb27SDimitry Andric unsigned &MaxVectorWidth) const; 1279*06c3fb27SDimitry Andric 1280*06c3fb27SDimitry Andric ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1281*06c3fb27SDimitry Andric unsigned &NeededSSE, 1282*06c3fb27SDimitry Andric unsigned &MaxVectorWidth) const; 1283*06c3fb27SDimitry Andric 1284*06c3fb27SDimitry Andric bool IsIllegalVectorType(QualType Ty) const; 1285*06c3fb27SDimitry Andric 1286*06c3fb27SDimitry Andric /// The 0.98 ABI revision clarified a lot of ambiguities, 1287*06c3fb27SDimitry Andric /// unfortunately in ways that were not always consistent with 1288*06c3fb27SDimitry Andric /// certain previous compilers. In particular, platforms which 1289*06c3fb27SDimitry Andric /// required strict binary compatibility with older versions of GCC 1290*06c3fb27SDimitry Andric /// may need to exempt themselves. 1291*06c3fb27SDimitry Andric bool honorsRevision0_98() const { 1292*06c3fb27SDimitry Andric return !getTarget().getTriple().isOSDarwin(); 1293*06c3fb27SDimitry Andric } 1294*06c3fb27SDimitry Andric 1295*06c3fb27SDimitry Andric /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 1296*06c3fb27SDimitry Andric /// classify it as INTEGER (for compatibility with older clang compilers). 1297*06c3fb27SDimitry Andric bool classifyIntegerMMXAsSSE() const { 1298*06c3fb27SDimitry Andric // Clang <= 3.8 did not do this. 1299*06c3fb27SDimitry Andric if (getContext().getLangOpts().getClangABICompat() <= 1300*06c3fb27SDimitry Andric LangOptions::ClangABI::Ver3_8) 1301*06c3fb27SDimitry Andric return false; 1302*06c3fb27SDimitry Andric 1303*06c3fb27SDimitry Andric const llvm::Triple &Triple = getTarget().getTriple(); 1304*06c3fb27SDimitry Andric if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) 1305*06c3fb27SDimitry Andric return false; 1306*06c3fb27SDimitry Andric return true; 1307*06c3fb27SDimitry Andric } 1308*06c3fb27SDimitry Andric 1309*06c3fb27SDimitry Andric // GCC classifies vectors of __int128 as memory. 1310*06c3fb27SDimitry Andric bool passInt128VectorsInMem() const { 1311*06c3fb27SDimitry Andric // Clang <= 9.0 did not do this. 1312*06c3fb27SDimitry Andric if (getContext().getLangOpts().getClangABICompat() <= 1313*06c3fb27SDimitry Andric LangOptions::ClangABI::Ver9) 1314*06c3fb27SDimitry Andric return false; 1315*06c3fb27SDimitry Andric 1316*06c3fb27SDimitry Andric const llvm::Triple &T = getTarget().getTriple(); 1317*06c3fb27SDimitry Andric return T.isOSLinux() || T.isOSNetBSD(); 1318*06c3fb27SDimitry Andric } 1319*06c3fb27SDimitry Andric 1320*06c3fb27SDimitry Andric X86AVXABILevel AVXLevel; 1321*06c3fb27SDimitry Andric // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1322*06c3fb27SDimitry Andric // 64-bit hardware. 1323*06c3fb27SDimitry Andric bool Has64BitPointers; 1324*06c3fb27SDimitry Andric 1325*06c3fb27SDimitry Andric public: 1326*06c3fb27SDimitry Andric X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1327*06c3fb27SDimitry Andric : ABIInfo(CGT), AVXLevel(AVXLevel), 1328*06c3fb27SDimitry Andric Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} 1329*06c3fb27SDimitry Andric 1330*06c3fb27SDimitry Andric bool isPassedUsingAVXType(QualType type) const { 1331*06c3fb27SDimitry Andric unsigned neededInt, neededSSE; 1332*06c3fb27SDimitry Andric // The freeIntRegs argument doesn't matter here. 1333*06c3fb27SDimitry Andric ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1334*06c3fb27SDimitry Andric /*isNamedArg*/true); 1335*06c3fb27SDimitry Andric if (info.isDirect()) { 1336*06c3fb27SDimitry Andric llvm::Type *ty = info.getCoerceToType(); 1337*06c3fb27SDimitry Andric if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1338*06c3fb27SDimitry Andric return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; 1339*06c3fb27SDimitry Andric } 1340*06c3fb27SDimitry Andric return false; 1341*06c3fb27SDimitry Andric } 1342*06c3fb27SDimitry Andric 1343*06c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override; 1344*06c3fb27SDimitry Andric 1345*06c3fb27SDimitry Andric Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1346*06c3fb27SDimitry Andric QualType Ty) const override; 1347*06c3fb27SDimitry Andric Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1348*06c3fb27SDimitry Andric QualType Ty) const override; 1349*06c3fb27SDimitry Andric 1350*06c3fb27SDimitry Andric bool has64BitPointers() const { 1351*06c3fb27SDimitry Andric return Has64BitPointers; 1352*06c3fb27SDimitry Andric } 1353*06c3fb27SDimitry Andric }; 1354*06c3fb27SDimitry Andric 1355*06c3fb27SDimitry Andric /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1356*06c3fb27SDimitry Andric class WinX86_64ABIInfo : public ABIInfo { 1357*06c3fb27SDimitry Andric public: 1358*06c3fb27SDimitry Andric WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1359*06c3fb27SDimitry Andric : ABIInfo(CGT), AVXLevel(AVXLevel), 1360*06c3fb27SDimitry Andric IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1361*06c3fb27SDimitry Andric 1362*06c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override; 1363*06c3fb27SDimitry Andric 1364*06c3fb27SDimitry Andric Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1365*06c3fb27SDimitry Andric QualType Ty) const override; 1366*06c3fb27SDimitry Andric 1367*06c3fb27SDimitry Andric bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1368*06c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use. 1369*06c3fb27SDimitry Andric return isX86VectorTypeForVectorCall(getContext(), Ty); 1370*06c3fb27SDimitry Andric } 1371*06c3fb27SDimitry Andric 1372*06c3fb27SDimitry Andric bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1373*06c3fb27SDimitry Andric uint64_t NumMembers) const override { 1374*06c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use. 1375*06c3fb27SDimitry Andric return isX86VectorCallAggregateSmallEnough(NumMembers); 1376*06c3fb27SDimitry Andric } 1377*06c3fb27SDimitry Andric 1378*06c3fb27SDimitry Andric private: 1379*06c3fb27SDimitry Andric ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 1380*06c3fb27SDimitry Andric bool IsVectorCall, bool IsRegCall) const; 1381*06c3fb27SDimitry Andric ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 1382*06c3fb27SDimitry Andric const ABIArgInfo ¤t) const; 1383*06c3fb27SDimitry Andric 1384*06c3fb27SDimitry Andric X86AVXABILevel AVXLevel; 1385*06c3fb27SDimitry Andric 1386*06c3fb27SDimitry Andric bool IsMingw64; 1387*06c3fb27SDimitry Andric }; 1388*06c3fb27SDimitry Andric 1389*06c3fb27SDimitry Andric class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1390*06c3fb27SDimitry Andric public: 1391*06c3fb27SDimitry Andric X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1392*06c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { 1393*06c3fb27SDimitry Andric SwiftInfo = 1394*06c3fb27SDimitry Andric std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1395*06c3fb27SDimitry Andric } 1396*06c3fb27SDimitry Andric 1397*06c3fb27SDimitry Andric /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 1398*06c3fb27SDimitry Andric /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 1399*06c3fb27SDimitry Andric bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 1400*06c3fb27SDimitry Andric 1401*06c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1402*06c3fb27SDimitry Andric return 7; 1403*06c3fb27SDimitry Andric } 1404*06c3fb27SDimitry Andric 1405*06c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1406*06c3fb27SDimitry Andric llvm::Value *Address) const override { 1407*06c3fb27SDimitry Andric llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1408*06c3fb27SDimitry Andric 1409*06c3fb27SDimitry Andric // 0-15 are the 16 integer registers. 1410*06c3fb27SDimitry Andric // 16 is %rip. 1411*06c3fb27SDimitry Andric AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1412*06c3fb27SDimitry Andric return false; 1413*06c3fb27SDimitry Andric } 1414*06c3fb27SDimitry Andric 1415*06c3fb27SDimitry Andric llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1416*06c3fb27SDimitry Andric StringRef Constraint, 1417*06c3fb27SDimitry Andric llvm::Type* Ty) const override { 1418*06c3fb27SDimitry Andric return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1419*06c3fb27SDimitry Andric } 1420*06c3fb27SDimitry Andric 1421*06c3fb27SDimitry Andric bool isNoProtoCallVariadic(const CallArgList &args, 1422*06c3fb27SDimitry Andric const FunctionNoProtoType *fnType) const override { 1423*06c3fb27SDimitry Andric // The default CC on x86-64 sets %al to the number of SSA 1424*06c3fb27SDimitry Andric // registers used, and GCC sets this when calling an unprototyped 1425*06c3fb27SDimitry Andric // function, so we override the default behavior. However, don't do 1426*06c3fb27SDimitry Andric // that when AVX types are involved: the ABI explicitly states it is 1427*06c3fb27SDimitry Andric // undefined, and it doesn't work in practice because of how the ABI 1428*06c3fb27SDimitry Andric // defines varargs anyway. 1429*06c3fb27SDimitry Andric if (fnType->getCallConv() == CC_C) { 1430*06c3fb27SDimitry Andric bool HasAVXType = false; 1431*06c3fb27SDimitry Andric for (CallArgList::const_iterator 1432*06c3fb27SDimitry Andric it = args.begin(), ie = args.end(); it != ie; ++it) { 1433*06c3fb27SDimitry Andric if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) { 1434*06c3fb27SDimitry Andric HasAVXType = true; 1435*06c3fb27SDimitry Andric break; 1436*06c3fb27SDimitry Andric } 1437*06c3fb27SDimitry Andric } 1438*06c3fb27SDimitry Andric 1439*06c3fb27SDimitry Andric if (!HasAVXType) 1440*06c3fb27SDimitry Andric return true; 1441*06c3fb27SDimitry Andric } 1442*06c3fb27SDimitry Andric 1443*06c3fb27SDimitry Andric return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1444*06c3fb27SDimitry Andric } 1445*06c3fb27SDimitry Andric 1446*06c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1447*06c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override { 1448*06c3fb27SDimitry Andric if (GV->isDeclaration()) 1449*06c3fb27SDimitry Andric return; 1450*06c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1451*06c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1452*06c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV); 1453*06c3fb27SDimitry Andric Fn->addFnAttr("stackrealign"); 1454*06c3fb27SDimitry Andric } 1455*06c3fb27SDimitry Andric 1456*06c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM); 1457*06c3fb27SDimitry Andric } 1458*06c3fb27SDimitry Andric } 1459*06c3fb27SDimitry Andric 1460*06c3fb27SDimitry Andric void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 1461*06c3fb27SDimitry Andric const FunctionDecl *Caller, 1462*06c3fb27SDimitry Andric const FunctionDecl *Callee, 1463*06c3fb27SDimitry Andric const CallArgList &Args) const override; 1464*06c3fb27SDimitry Andric }; 1465*06c3fb27SDimitry Andric } // namespace 1466*06c3fb27SDimitry Andric 1467*06c3fb27SDimitry Andric static void initFeatureMaps(const ASTContext &Ctx, 1468*06c3fb27SDimitry Andric llvm::StringMap<bool> &CallerMap, 1469*06c3fb27SDimitry Andric const FunctionDecl *Caller, 1470*06c3fb27SDimitry Andric llvm::StringMap<bool> &CalleeMap, 1471*06c3fb27SDimitry Andric const FunctionDecl *Callee) { 1472*06c3fb27SDimitry Andric if (CalleeMap.empty() && CallerMap.empty()) { 1473*06c3fb27SDimitry Andric // The caller is potentially nullptr in the case where the call isn't in a 1474*06c3fb27SDimitry Andric // function. In this case, the getFunctionFeatureMap ensures we just get 1475*06c3fb27SDimitry Andric // the TU level setting (since it cannot be modified by 'target'.. 1476*06c3fb27SDimitry Andric Ctx.getFunctionFeatureMap(CallerMap, Caller); 1477*06c3fb27SDimitry Andric Ctx.getFunctionFeatureMap(CalleeMap, Callee); 1478*06c3fb27SDimitry Andric } 1479*06c3fb27SDimitry Andric } 1480*06c3fb27SDimitry Andric 1481*06c3fb27SDimitry Andric static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 1482*06c3fb27SDimitry Andric SourceLocation CallLoc, 1483*06c3fb27SDimitry Andric const llvm::StringMap<bool> &CallerMap, 1484*06c3fb27SDimitry Andric const llvm::StringMap<bool> &CalleeMap, 1485*06c3fb27SDimitry Andric QualType Ty, StringRef Feature, 1486*06c3fb27SDimitry Andric bool IsArgument) { 1487*06c3fb27SDimitry Andric bool CallerHasFeat = CallerMap.lookup(Feature); 1488*06c3fb27SDimitry Andric bool CalleeHasFeat = CalleeMap.lookup(Feature); 1489*06c3fb27SDimitry Andric if (!CallerHasFeat && !CalleeHasFeat) 1490*06c3fb27SDimitry Andric return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 1491*06c3fb27SDimitry Andric << IsArgument << Ty << Feature; 1492*06c3fb27SDimitry Andric 1493*06c3fb27SDimitry Andric // Mixing calling conventions here is very clearly an error. 1494*06c3fb27SDimitry Andric if (!CallerHasFeat || !CalleeHasFeat) 1495*06c3fb27SDimitry Andric return Diag.Report(CallLoc, diag::err_avx_calling_convention) 1496*06c3fb27SDimitry Andric << IsArgument << Ty << Feature; 1497*06c3fb27SDimitry Andric 1498*06c3fb27SDimitry Andric // Else, both caller and callee have the required feature, so there is no need 1499*06c3fb27SDimitry Andric // to diagnose. 1500*06c3fb27SDimitry Andric return false; 1501*06c3fb27SDimitry Andric } 1502*06c3fb27SDimitry Andric 1503*06c3fb27SDimitry Andric static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 1504*06c3fb27SDimitry Andric SourceLocation CallLoc, 1505*06c3fb27SDimitry Andric const llvm::StringMap<bool> &CallerMap, 1506*06c3fb27SDimitry Andric const llvm::StringMap<bool> &CalleeMap, QualType Ty, 1507*06c3fb27SDimitry Andric bool IsArgument) { 1508*06c3fb27SDimitry Andric uint64_t Size = Ctx.getTypeSize(Ty); 1509*06c3fb27SDimitry Andric if (Size > 256) 1510*06c3fb27SDimitry Andric return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 1511*06c3fb27SDimitry Andric "avx512f", IsArgument); 1512*06c3fb27SDimitry Andric 1513*06c3fb27SDimitry Andric if (Size > 128) 1514*06c3fb27SDimitry Andric return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 1515*06c3fb27SDimitry Andric IsArgument); 1516*06c3fb27SDimitry Andric 1517*06c3fb27SDimitry Andric return false; 1518*06c3fb27SDimitry Andric } 1519*06c3fb27SDimitry Andric 1520*06c3fb27SDimitry Andric void X86_64TargetCodeGenInfo::checkFunctionCallABI( 1521*06c3fb27SDimitry Andric CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 1522*06c3fb27SDimitry Andric const FunctionDecl *Callee, const CallArgList &Args) const { 1523*06c3fb27SDimitry Andric llvm::StringMap<bool> CallerMap; 1524*06c3fb27SDimitry Andric llvm::StringMap<bool> CalleeMap; 1525*06c3fb27SDimitry Andric unsigned ArgIndex = 0; 1526*06c3fb27SDimitry Andric 1527*06c3fb27SDimitry Andric // We need to loop through the actual call arguments rather than the 1528*06c3fb27SDimitry Andric // function's parameters, in case this variadic. 1529*06c3fb27SDimitry Andric for (const CallArg &Arg : Args) { 1530*06c3fb27SDimitry Andric // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 1531*06c3fb27SDimitry Andric // additionally changes how vectors >256 in size are passed. Like GCC, we 1532*06c3fb27SDimitry Andric // warn when a function is called with an argument where this will change. 1533*06c3fb27SDimitry Andric // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 1534*06c3fb27SDimitry Andric // the caller and callee features are mismatched. 1535*06c3fb27SDimitry Andric // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 1536*06c3fb27SDimitry Andric // change its ABI with attribute-target after this call. 1537*06c3fb27SDimitry Andric if (Arg.getType()->isVectorType() && 1538*06c3fb27SDimitry Andric CGM.getContext().getTypeSize(Arg.getType()) > 128) { 1539*06c3fb27SDimitry Andric initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1540*06c3fb27SDimitry Andric QualType Ty = Arg.getType(); 1541*06c3fb27SDimitry Andric // The CallArg seems to have desugared the type already, so for clearer 1542*06c3fb27SDimitry Andric // diagnostics, replace it with the type in the FunctionDecl if possible. 1543*06c3fb27SDimitry Andric if (ArgIndex < Callee->getNumParams()) 1544*06c3fb27SDimitry Andric Ty = Callee->getParamDecl(ArgIndex)->getType(); 1545*06c3fb27SDimitry Andric 1546*06c3fb27SDimitry Andric if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1547*06c3fb27SDimitry Andric CalleeMap, Ty, /*IsArgument*/ true)) 1548*06c3fb27SDimitry Andric return; 1549*06c3fb27SDimitry Andric } 1550*06c3fb27SDimitry Andric ++ArgIndex; 1551*06c3fb27SDimitry Andric } 1552*06c3fb27SDimitry Andric 1553*06c3fb27SDimitry Andric // Check return always, as we don't have a good way of knowing in codegen 1554*06c3fb27SDimitry Andric // whether this value is used, tail-called, etc. 1555*06c3fb27SDimitry Andric if (Callee->getReturnType()->isVectorType() && 1556*06c3fb27SDimitry Andric CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 1557*06c3fb27SDimitry Andric initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1558*06c3fb27SDimitry Andric checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1559*06c3fb27SDimitry Andric CalleeMap, Callee->getReturnType(), 1560*06c3fb27SDimitry Andric /*IsArgument*/ false); 1561*06c3fb27SDimitry Andric } 1562*06c3fb27SDimitry Andric } 1563*06c3fb27SDimitry Andric 1564*06c3fb27SDimitry Andric std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { 1565*06c3fb27SDimitry Andric // If the argument does not end in .lib, automatically add the suffix. 1566*06c3fb27SDimitry Andric // If the argument contains a space, enclose it in quotes. 1567*06c3fb27SDimitry Andric // This matches the behavior of MSVC. 1568*06c3fb27SDimitry Andric bool Quote = Lib.contains(' '); 1569*06c3fb27SDimitry Andric std::string ArgStr = Quote ? "\"" : ""; 1570*06c3fb27SDimitry Andric ArgStr += Lib; 1571*06c3fb27SDimitry Andric if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) 1572*06c3fb27SDimitry Andric ArgStr += ".lib"; 1573*06c3fb27SDimitry Andric ArgStr += Quote ? "\"" : ""; 1574*06c3fb27SDimitry Andric return ArgStr; 1575*06c3fb27SDimitry Andric } 1576*06c3fb27SDimitry Andric 1577*06c3fb27SDimitry Andric namespace { 1578*06c3fb27SDimitry Andric class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1579*06c3fb27SDimitry Andric public: 1580*06c3fb27SDimitry Andric WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1581*06c3fb27SDimitry Andric bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 1582*06c3fb27SDimitry Andric unsigned NumRegisterParameters) 1583*06c3fb27SDimitry Andric : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 1584*06c3fb27SDimitry Andric Win32StructABI, NumRegisterParameters, false) {} 1585*06c3fb27SDimitry Andric 1586*06c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1587*06c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override; 1588*06c3fb27SDimitry Andric 1589*06c3fb27SDimitry Andric void getDependentLibraryOption(llvm::StringRef Lib, 1590*06c3fb27SDimitry Andric llvm::SmallString<24> &Opt) const override { 1591*06c3fb27SDimitry Andric Opt = "/DEFAULTLIB:"; 1592*06c3fb27SDimitry Andric Opt += qualifyWindowsLibrary(Lib); 1593*06c3fb27SDimitry Andric } 1594*06c3fb27SDimitry Andric 1595*06c3fb27SDimitry Andric void getDetectMismatchOption(llvm::StringRef Name, 1596*06c3fb27SDimitry Andric llvm::StringRef Value, 1597*06c3fb27SDimitry Andric llvm::SmallString<32> &Opt) const override { 1598*06c3fb27SDimitry Andric Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1599*06c3fb27SDimitry Andric } 1600*06c3fb27SDimitry Andric }; 1601*06c3fb27SDimitry Andric } // namespace 1602*06c3fb27SDimitry Andric 1603*06c3fb27SDimitry Andric void WinX86_32TargetCodeGenInfo::setTargetAttributes( 1604*06c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1605*06c3fb27SDimitry Andric X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1606*06c3fb27SDimitry Andric if (GV->isDeclaration()) 1607*06c3fb27SDimitry Andric return; 1608*06c3fb27SDimitry Andric addStackProbeTargetAttributes(D, GV, CGM); 1609*06c3fb27SDimitry Andric } 1610*06c3fb27SDimitry Andric 1611*06c3fb27SDimitry Andric namespace { 1612*06c3fb27SDimitry Andric class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1613*06c3fb27SDimitry Andric public: 1614*06c3fb27SDimitry Andric WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1615*06c3fb27SDimitry Andric X86AVXABILevel AVXLevel) 1616*06c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { 1617*06c3fb27SDimitry Andric SwiftInfo = 1618*06c3fb27SDimitry Andric std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1619*06c3fb27SDimitry Andric } 1620*06c3fb27SDimitry Andric 1621*06c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1622*06c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override; 1623*06c3fb27SDimitry Andric 1624*06c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1625*06c3fb27SDimitry Andric return 7; 1626*06c3fb27SDimitry Andric } 1627*06c3fb27SDimitry Andric 1628*06c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1629*06c3fb27SDimitry Andric llvm::Value *Address) const override { 1630*06c3fb27SDimitry Andric llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1631*06c3fb27SDimitry Andric 1632*06c3fb27SDimitry Andric // 0-15 are the 16 integer registers. 1633*06c3fb27SDimitry Andric // 16 is %rip. 1634*06c3fb27SDimitry Andric AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1635*06c3fb27SDimitry Andric return false; 1636*06c3fb27SDimitry Andric } 1637*06c3fb27SDimitry Andric 1638*06c3fb27SDimitry Andric void getDependentLibraryOption(llvm::StringRef Lib, 1639*06c3fb27SDimitry Andric llvm::SmallString<24> &Opt) const override { 1640*06c3fb27SDimitry Andric Opt = "/DEFAULTLIB:"; 1641*06c3fb27SDimitry Andric Opt += qualifyWindowsLibrary(Lib); 1642*06c3fb27SDimitry Andric } 1643*06c3fb27SDimitry Andric 1644*06c3fb27SDimitry Andric void getDetectMismatchOption(llvm::StringRef Name, 1645*06c3fb27SDimitry Andric llvm::StringRef Value, 1646*06c3fb27SDimitry Andric llvm::SmallString<32> &Opt) const override { 1647*06c3fb27SDimitry Andric Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1648*06c3fb27SDimitry Andric } 1649*06c3fb27SDimitry Andric }; 1650*06c3fb27SDimitry Andric } // namespace 1651*06c3fb27SDimitry Andric 1652*06c3fb27SDimitry Andric void WinX86_64TargetCodeGenInfo::setTargetAttributes( 1653*06c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1654*06c3fb27SDimitry Andric TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1655*06c3fb27SDimitry Andric if (GV->isDeclaration()) 1656*06c3fb27SDimitry Andric return; 1657*06c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1658*06c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1659*06c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV); 1660*06c3fb27SDimitry Andric Fn->addFnAttr("stackrealign"); 1661*06c3fb27SDimitry Andric } 1662*06c3fb27SDimitry Andric 1663*06c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM); 1664*06c3fb27SDimitry Andric } 1665*06c3fb27SDimitry Andric 1666*06c3fb27SDimitry Andric addStackProbeTargetAttributes(D, GV, CGM); 1667*06c3fb27SDimitry Andric } 1668*06c3fb27SDimitry Andric 1669*06c3fb27SDimitry Andric void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1670*06c3fb27SDimitry Andric Class &Hi) const { 1671*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1672*06c3fb27SDimitry Andric // 1673*06c3fb27SDimitry Andric // (a) If one of the classes is Memory, the whole argument is passed in 1674*06c3fb27SDimitry Andric // memory. 1675*06c3fb27SDimitry Andric // 1676*06c3fb27SDimitry Andric // (b) If X87UP is not preceded by X87, the whole argument is passed in 1677*06c3fb27SDimitry Andric // memory. 1678*06c3fb27SDimitry Andric // 1679*06c3fb27SDimitry Andric // (c) If the size of the aggregate exceeds two eightbytes and the first 1680*06c3fb27SDimitry Andric // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1681*06c3fb27SDimitry Andric // argument is passed in memory. NOTE: This is necessary to keep the 1682*06c3fb27SDimitry Andric // ABI working for processors that don't support the __m256 type. 1683*06c3fb27SDimitry Andric // 1684*06c3fb27SDimitry Andric // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1685*06c3fb27SDimitry Andric // 1686*06c3fb27SDimitry Andric // Some of these are enforced by the merging logic. Others can arise 1687*06c3fb27SDimitry Andric // only with unions; for example: 1688*06c3fb27SDimitry Andric // union { _Complex double; unsigned; } 1689*06c3fb27SDimitry Andric // 1690*06c3fb27SDimitry Andric // Note that clauses (b) and (c) were added in 0.98. 1691*06c3fb27SDimitry Andric // 1692*06c3fb27SDimitry Andric if (Hi == Memory) 1693*06c3fb27SDimitry Andric Lo = Memory; 1694*06c3fb27SDimitry Andric if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1695*06c3fb27SDimitry Andric Lo = Memory; 1696*06c3fb27SDimitry Andric if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1697*06c3fb27SDimitry Andric Lo = Memory; 1698*06c3fb27SDimitry Andric if (Hi == SSEUp && Lo != SSE) 1699*06c3fb27SDimitry Andric Hi = SSE; 1700*06c3fb27SDimitry Andric } 1701*06c3fb27SDimitry Andric 1702*06c3fb27SDimitry Andric X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1703*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1704*06c3fb27SDimitry Andric // classified recursively so that always two fields are 1705*06c3fb27SDimitry Andric // considered. The resulting class is calculated according to 1706*06c3fb27SDimitry Andric // the classes of the fields in the eightbyte: 1707*06c3fb27SDimitry Andric // 1708*06c3fb27SDimitry Andric // (a) If both classes are equal, this is the resulting class. 1709*06c3fb27SDimitry Andric // 1710*06c3fb27SDimitry Andric // (b) If one of the classes is NO_CLASS, the resulting class is 1711*06c3fb27SDimitry Andric // the other class. 1712*06c3fb27SDimitry Andric // 1713*06c3fb27SDimitry Andric // (c) If one of the classes is MEMORY, the result is the MEMORY 1714*06c3fb27SDimitry Andric // class. 1715*06c3fb27SDimitry Andric // 1716*06c3fb27SDimitry Andric // (d) If one of the classes is INTEGER, the result is the 1717*06c3fb27SDimitry Andric // INTEGER. 1718*06c3fb27SDimitry Andric // 1719*06c3fb27SDimitry Andric // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1720*06c3fb27SDimitry Andric // MEMORY is used as class. 1721*06c3fb27SDimitry Andric // 1722*06c3fb27SDimitry Andric // (f) Otherwise class SSE is used. 1723*06c3fb27SDimitry Andric 1724*06c3fb27SDimitry Andric // Accum should never be memory (we should have returned) or 1725*06c3fb27SDimitry Andric // ComplexX87 (because this cannot be passed in a structure). 1726*06c3fb27SDimitry Andric assert((Accum != Memory && Accum != ComplexX87) && 1727*06c3fb27SDimitry Andric "Invalid accumulated classification during merge."); 1728*06c3fb27SDimitry Andric if (Accum == Field || Field == NoClass) 1729*06c3fb27SDimitry Andric return Accum; 1730*06c3fb27SDimitry Andric if (Field == Memory) 1731*06c3fb27SDimitry Andric return Memory; 1732*06c3fb27SDimitry Andric if (Accum == NoClass) 1733*06c3fb27SDimitry Andric return Field; 1734*06c3fb27SDimitry Andric if (Accum == Integer || Field == Integer) 1735*06c3fb27SDimitry Andric return Integer; 1736*06c3fb27SDimitry Andric if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1737*06c3fb27SDimitry Andric Accum == X87 || Accum == X87Up) 1738*06c3fb27SDimitry Andric return Memory; 1739*06c3fb27SDimitry Andric return SSE; 1740*06c3fb27SDimitry Andric } 1741*06c3fb27SDimitry Andric 1742*06c3fb27SDimitry Andric void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 1743*06c3fb27SDimitry Andric Class &Hi, bool isNamedArg, bool IsRegCall) const { 1744*06c3fb27SDimitry Andric // FIXME: This code can be simplified by introducing a simple value class for 1745*06c3fb27SDimitry Andric // Class pairs with appropriate constructor methods for the various 1746*06c3fb27SDimitry Andric // situations. 1747*06c3fb27SDimitry Andric 1748*06c3fb27SDimitry Andric // FIXME: Some of the split computations are wrong; unaligned vectors 1749*06c3fb27SDimitry Andric // shouldn't be passed in registers for example, so there is no chance they 1750*06c3fb27SDimitry Andric // can straddle an eightbyte. Verify & simplify. 1751*06c3fb27SDimitry Andric 1752*06c3fb27SDimitry Andric Lo = Hi = NoClass; 1753*06c3fb27SDimitry Andric 1754*06c3fb27SDimitry Andric Class &Current = OffsetBase < 64 ? Lo : Hi; 1755*06c3fb27SDimitry Andric Current = Memory; 1756*06c3fb27SDimitry Andric 1757*06c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1758*06c3fb27SDimitry Andric BuiltinType::Kind k = BT->getKind(); 1759*06c3fb27SDimitry Andric 1760*06c3fb27SDimitry Andric if (k == BuiltinType::Void) { 1761*06c3fb27SDimitry Andric Current = NoClass; 1762*06c3fb27SDimitry Andric } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1763*06c3fb27SDimitry Andric Lo = Integer; 1764*06c3fb27SDimitry Andric Hi = Integer; 1765*06c3fb27SDimitry Andric } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1766*06c3fb27SDimitry Andric Current = Integer; 1767*06c3fb27SDimitry Andric } else if (k == BuiltinType::Float || k == BuiltinType::Double || 1768*06c3fb27SDimitry Andric k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { 1769*06c3fb27SDimitry Andric Current = SSE; 1770*06c3fb27SDimitry Andric } else if (k == BuiltinType::LongDouble) { 1771*06c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1772*06c3fb27SDimitry Andric if (LDF == &llvm::APFloat::IEEEquad()) { 1773*06c3fb27SDimitry Andric Lo = SSE; 1774*06c3fb27SDimitry Andric Hi = SSEUp; 1775*06c3fb27SDimitry Andric } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 1776*06c3fb27SDimitry Andric Lo = X87; 1777*06c3fb27SDimitry Andric Hi = X87Up; 1778*06c3fb27SDimitry Andric } else if (LDF == &llvm::APFloat::IEEEdouble()) { 1779*06c3fb27SDimitry Andric Current = SSE; 1780*06c3fb27SDimitry Andric } else 1781*06c3fb27SDimitry Andric llvm_unreachable("unexpected long double representation!"); 1782*06c3fb27SDimitry Andric } 1783*06c3fb27SDimitry Andric // FIXME: _Decimal32 and _Decimal64 are SSE. 1784*06c3fb27SDimitry Andric // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1785*06c3fb27SDimitry Andric return; 1786*06c3fb27SDimitry Andric } 1787*06c3fb27SDimitry Andric 1788*06c3fb27SDimitry Andric if (const EnumType *ET = Ty->getAs<EnumType>()) { 1789*06c3fb27SDimitry Andric // Classify the underlying integer type. 1790*06c3fb27SDimitry Andric classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1791*06c3fb27SDimitry Andric return; 1792*06c3fb27SDimitry Andric } 1793*06c3fb27SDimitry Andric 1794*06c3fb27SDimitry Andric if (Ty->hasPointerRepresentation()) { 1795*06c3fb27SDimitry Andric Current = Integer; 1796*06c3fb27SDimitry Andric return; 1797*06c3fb27SDimitry Andric } 1798*06c3fb27SDimitry Andric 1799*06c3fb27SDimitry Andric if (Ty->isMemberPointerType()) { 1800*06c3fb27SDimitry Andric if (Ty->isMemberFunctionPointerType()) { 1801*06c3fb27SDimitry Andric if (Has64BitPointers) { 1802*06c3fb27SDimitry Andric // If Has64BitPointers, this is an {i64, i64}, so classify both 1803*06c3fb27SDimitry Andric // Lo and Hi now. 1804*06c3fb27SDimitry Andric Lo = Hi = Integer; 1805*06c3fb27SDimitry Andric } else { 1806*06c3fb27SDimitry Andric // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1807*06c3fb27SDimitry Andric // straddles an eightbyte boundary, Hi should be classified as well. 1808*06c3fb27SDimitry Andric uint64_t EB_FuncPtr = (OffsetBase) / 64; 1809*06c3fb27SDimitry Andric uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1810*06c3fb27SDimitry Andric if (EB_FuncPtr != EB_ThisAdj) { 1811*06c3fb27SDimitry Andric Lo = Hi = Integer; 1812*06c3fb27SDimitry Andric } else { 1813*06c3fb27SDimitry Andric Current = Integer; 1814*06c3fb27SDimitry Andric } 1815*06c3fb27SDimitry Andric } 1816*06c3fb27SDimitry Andric } else { 1817*06c3fb27SDimitry Andric Current = Integer; 1818*06c3fb27SDimitry Andric } 1819*06c3fb27SDimitry Andric return; 1820*06c3fb27SDimitry Andric } 1821*06c3fb27SDimitry Andric 1822*06c3fb27SDimitry Andric if (const VectorType *VT = Ty->getAs<VectorType>()) { 1823*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(VT); 1824*06c3fb27SDimitry Andric if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1825*06c3fb27SDimitry Andric // gcc passes the following as integer: 1826*06c3fb27SDimitry Andric // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1827*06c3fb27SDimitry Andric // 2 bytes - <2 x char>, <1 x short> 1828*06c3fb27SDimitry Andric // 1 byte - <1 x char> 1829*06c3fb27SDimitry Andric Current = Integer; 1830*06c3fb27SDimitry Andric 1831*06c3fb27SDimitry Andric // If this type crosses an eightbyte boundary, it should be 1832*06c3fb27SDimitry Andric // split. 1833*06c3fb27SDimitry Andric uint64_t EB_Lo = (OffsetBase) / 64; 1834*06c3fb27SDimitry Andric uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1835*06c3fb27SDimitry Andric if (EB_Lo != EB_Hi) 1836*06c3fb27SDimitry Andric Hi = Lo; 1837*06c3fb27SDimitry Andric } else if (Size == 64) { 1838*06c3fb27SDimitry Andric QualType ElementType = VT->getElementType(); 1839*06c3fb27SDimitry Andric 1840*06c3fb27SDimitry Andric // gcc passes <1 x double> in memory. :( 1841*06c3fb27SDimitry Andric if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 1842*06c3fb27SDimitry Andric return; 1843*06c3fb27SDimitry Andric 1844*06c3fb27SDimitry Andric // gcc passes <1 x long long> as SSE but clang used to unconditionally 1845*06c3fb27SDimitry Andric // pass them as integer. For platforms where clang is the de facto 1846*06c3fb27SDimitry Andric // platform compiler, we must continue to use integer. 1847*06c3fb27SDimitry Andric if (!classifyIntegerMMXAsSSE() && 1848*06c3fb27SDimitry Andric (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 1849*06c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 1850*06c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::Long) || 1851*06c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 1852*06c3fb27SDimitry Andric Current = Integer; 1853*06c3fb27SDimitry Andric else 1854*06c3fb27SDimitry Andric Current = SSE; 1855*06c3fb27SDimitry Andric 1856*06c3fb27SDimitry Andric // If this type crosses an eightbyte boundary, it should be 1857*06c3fb27SDimitry Andric // split. 1858*06c3fb27SDimitry Andric if (OffsetBase && OffsetBase != 64) 1859*06c3fb27SDimitry Andric Hi = Lo; 1860*06c3fb27SDimitry Andric } else if (Size == 128 || 1861*06c3fb27SDimitry Andric (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1862*06c3fb27SDimitry Andric QualType ElementType = VT->getElementType(); 1863*06c3fb27SDimitry Andric 1864*06c3fb27SDimitry Andric // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 1865*06c3fb27SDimitry Andric if (passInt128VectorsInMem() && Size != 128 && 1866*06c3fb27SDimitry Andric (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 1867*06c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 1868*06c3fb27SDimitry Andric return; 1869*06c3fb27SDimitry Andric 1870*06c3fb27SDimitry Andric // Arguments of 256-bits are split into four eightbyte chunks. The 1871*06c3fb27SDimitry Andric // least significant one belongs to class SSE and all the others to class 1872*06c3fb27SDimitry Andric // SSEUP. The original Lo and Hi design considers that types can't be 1873*06c3fb27SDimitry Andric // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1874*06c3fb27SDimitry Andric // This design isn't correct for 256-bits, but since there're no cases 1875*06c3fb27SDimitry Andric // where the upper parts would need to be inspected, avoid adding 1876*06c3fb27SDimitry Andric // complexity and just consider Hi to match the 64-256 part. 1877*06c3fb27SDimitry Andric // 1878*06c3fb27SDimitry Andric // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1879*06c3fb27SDimitry Andric // registers if they are "named", i.e. not part of the "..." of a 1880*06c3fb27SDimitry Andric // variadic function. 1881*06c3fb27SDimitry Andric // 1882*06c3fb27SDimitry Andric // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1883*06c3fb27SDimitry Andric // split into eight eightbyte chunks, one SSE and seven SSEUP. 1884*06c3fb27SDimitry Andric Lo = SSE; 1885*06c3fb27SDimitry Andric Hi = SSEUp; 1886*06c3fb27SDimitry Andric } 1887*06c3fb27SDimitry Andric return; 1888*06c3fb27SDimitry Andric } 1889*06c3fb27SDimitry Andric 1890*06c3fb27SDimitry Andric if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1891*06c3fb27SDimitry Andric QualType ET = getContext().getCanonicalType(CT->getElementType()); 1892*06c3fb27SDimitry Andric 1893*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 1894*06c3fb27SDimitry Andric if (ET->isIntegralOrEnumerationType()) { 1895*06c3fb27SDimitry Andric if (Size <= 64) 1896*06c3fb27SDimitry Andric Current = Integer; 1897*06c3fb27SDimitry Andric else if (Size <= 128) 1898*06c3fb27SDimitry Andric Lo = Hi = Integer; 1899*06c3fb27SDimitry Andric } else if (ET->isFloat16Type() || ET == getContext().FloatTy || 1900*06c3fb27SDimitry Andric ET->isBFloat16Type()) { 1901*06c3fb27SDimitry Andric Current = SSE; 1902*06c3fb27SDimitry Andric } else if (ET == getContext().DoubleTy) { 1903*06c3fb27SDimitry Andric Lo = Hi = SSE; 1904*06c3fb27SDimitry Andric } else if (ET == getContext().LongDoubleTy) { 1905*06c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1906*06c3fb27SDimitry Andric if (LDF == &llvm::APFloat::IEEEquad()) 1907*06c3fb27SDimitry Andric Current = Memory; 1908*06c3fb27SDimitry Andric else if (LDF == &llvm::APFloat::x87DoubleExtended()) 1909*06c3fb27SDimitry Andric Current = ComplexX87; 1910*06c3fb27SDimitry Andric else if (LDF == &llvm::APFloat::IEEEdouble()) 1911*06c3fb27SDimitry Andric Lo = Hi = SSE; 1912*06c3fb27SDimitry Andric else 1913*06c3fb27SDimitry Andric llvm_unreachable("unexpected long double representation!"); 1914*06c3fb27SDimitry Andric } 1915*06c3fb27SDimitry Andric 1916*06c3fb27SDimitry Andric // If this complex type crosses an eightbyte boundary then it 1917*06c3fb27SDimitry Andric // should be split. 1918*06c3fb27SDimitry Andric uint64_t EB_Real = (OffsetBase) / 64; 1919*06c3fb27SDimitry Andric uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1920*06c3fb27SDimitry Andric if (Hi == NoClass && EB_Real != EB_Imag) 1921*06c3fb27SDimitry Andric Hi = Lo; 1922*06c3fb27SDimitry Andric 1923*06c3fb27SDimitry Andric return; 1924*06c3fb27SDimitry Andric } 1925*06c3fb27SDimitry Andric 1926*06c3fb27SDimitry Andric if (const auto *EITy = Ty->getAs<BitIntType>()) { 1927*06c3fb27SDimitry Andric if (EITy->getNumBits() <= 64) 1928*06c3fb27SDimitry Andric Current = Integer; 1929*06c3fb27SDimitry Andric else if (EITy->getNumBits() <= 128) 1930*06c3fb27SDimitry Andric Lo = Hi = Integer; 1931*06c3fb27SDimitry Andric // Larger values need to get passed in memory. 1932*06c3fb27SDimitry Andric return; 1933*06c3fb27SDimitry Andric } 1934*06c3fb27SDimitry Andric 1935*06c3fb27SDimitry Andric if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1936*06c3fb27SDimitry Andric // Arrays are treated like structures. 1937*06c3fb27SDimitry Andric 1938*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 1939*06c3fb27SDimitry Andric 1940*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1941*06c3fb27SDimitry Andric // than eight eightbytes, ..., it has class MEMORY. 1942*06c3fb27SDimitry Andric // regcall ABI doesn't have limitation to an object. The only limitation 1943*06c3fb27SDimitry Andric // is the free registers, which will be checked in computeInfo. 1944*06c3fb27SDimitry Andric if (!IsRegCall && Size > 512) 1945*06c3fb27SDimitry Andric return; 1946*06c3fb27SDimitry Andric 1947*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1948*06c3fb27SDimitry Andric // fields, it has class MEMORY. 1949*06c3fb27SDimitry Andric // 1950*06c3fb27SDimitry Andric // Only need to check alignment of array base. 1951*06c3fb27SDimitry Andric if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1952*06c3fb27SDimitry Andric return; 1953*06c3fb27SDimitry Andric 1954*06c3fb27SDimitry Andric // Otherwise implement simplified merge. We could be smarter about 1955*06c3fb27SDimitry Andric // this, but it isn't worth it and would be harder to verify. 1956*06c3fb27SDimitry Andric Current = NoClass; 1957*06c3fb27SDimitry Andric uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1958*06c3fb27SDimitry Andric uint64_t ArraySize = AT->getSize().getZExtValue(); 1959*06c3fb27SDimitry Andric 1960*06c3fb27SDimitry Andric // The only case a 256-bit wide vector could be used is when the array 1961*06c3fb27SDimitry Andric // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1962*06c3fb27SDimitry Andric // to work for sizes wider than 128, early check and fallback to memory. 1963*06c3fb27SDimitry Andric // 1964*06c3fb27SDimitry Andric if (Size > 128 && 1965*06c3fb27SDimitry Andric (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 1966*06c3fb27SDimitry Andric return; 1967*06c3fb27SDimitry Andric 1968*06c3fb27SDimitry Andric for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1969*06c3fb27SDimitry Andric Class FieldLo, FieldHi; 1970*06c3fb27SDimitry Andric classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1971*06c3fb27SDimitry Andric Lo = merge(Lo, FieldLo); 1972*06c3fb27SDimitry Andric Hi = merge(Hi, FieldHi); 1973*06c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory) 1974*06c3fb27SDimitry Andric break; 1975*06c3fb27SDimitry Andric } 1976*06c3fb27SDimitry Andric 1977*06c3fb27SDimitry Andric postMerge(Size, Lo, Hi); 1978*06c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1979*06c3fb27SDimitry Andric return; 1980*06c3fb27SDimitry Andric } 1981*06c3fb27SDimitry Andric 1982*06c3fb27SDimitry Andric if (const RecordType *RT = Ty->getAs<RecordType>()) { 1983*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 1984*06c3fb27SDimitry Andric 1985*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1986*06c3fb27SDimitry Andric // than eight eightbytes, ..., it has class MEMORY. 1987*06c3fb27SDimitry Andric if (Size > 512) 1988*06c3fb27SDimitry Andric return; 1989*06c3fb27SDimitry Andric 1990*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1991*06c3fb27SDimitry Andric // copy constructor or a non-trivial destructor, it is passed by invisible 1992*06c3fb27SDimitry Andric // reference. 1993*06c3fb27SDimitry Andric if (getRecordArgABI(RT, getCXXABI())) 1994*06c3fb27SDimitry Andric return; 1995*06c3fb27SDimitry Andric 1996*06c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl(); 1997*06c3fb27SDimitry Andric 1998*06c3fb27SDimitry Andric // Assume variable sized types are passed in memory. 1999*06c3fb27SDimitry Andric if (RD->hasFlexibleArrayMember()) 2000*06c3fb27SDimitry Andric return; 2001*06c3fb27SDimitry Andric 2002*06c3fb27SDimitry Andric const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2003*06c3fb27SDimitry Andric 2004*06c3fb27SDimitry Andric // Reset Lo class, this will be recomputed. 2005*06c3fb27SDimitry Andric Current = NoClass; 2006*06c3fb27SDimitry Andric 2007*06c3fb27SDimitry Andric // If this is a C++ record, classify the bases first. 2008*06c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2009*06c3fb27SDimitry Andric for (const auto &I : CXXRD->bases()) { 2010*06c3fb27SDimitry Andric assert(!I.isVirtual() && !I.getType()->isDependentType() && 2011*06c3fb27SDimitry Andric "Unexpected base class!"); 2012*06c3fb27SDimitry Andric const auto *Base = 2013*06c3fb27SDimitry Andric cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2014*06c3fb27SDimitry Andric 2015*06c3fb27SDimitry Andric // Classify this field. 2016*06c3fb27SDimitry Andric // 2017*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2018*06c3fb27SDimitry Andric // single eightbyte, each is classified separately. Each eightbyte gets 2019*06c3fb27SDimitry Andric // initialized to class NO_CLASS. 2020*06c3fb27SDimitry Andric Class FieldLo, FieldHi; 2021*06c3fb27SDimitry Andric uint64_t Offset = 2022*06c3fb27SDimitry Andric OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2023*06c3fb27SDimitry Andric classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2024*06c3fb27SDimitry Andric Lo = merge(Lo, FieldLo); 2025*06c3fb27SDimitry Andric Hi = merge(Hi, FieldHi); 2026*06c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory) { 2027*06c3fb27SDimitry Andric postMerge(Size, Lo, Hi); 2028*06c3fb27SDimitry Andric return; 2029*06c3fb27SDimitry Andric } 2030*06c3fb27SDimitry Andric } 2031*06c3fb27SDimitry Andric } 2032*06c3fb27SDimitry Andric 2033*06c3fb27SDimitry Andric // Classify the fields one at a time, merging the results. 2034*06c3fb27SDimitry Andric unsigned idx = 0; 2035*06c3fb27SDimitry Andric bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 2036*06c3fb27SDimitry Andric LangOptions::ClangABI::Ver11 || 2037*06c3fb27SDimitry Andric getContext().getTargetInfo().getTriple().isPS(); 2038*06c3fb27SDimitry Andric bool IsUnion = RT->isUnionType() && !UseClang11Compat; 2039*06c3fb27SDimitry Andric 2040*06c3fb27SDimitry Andric for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2041*06c3fb27SDimitry Andric i != e; ++i, ++idx) { 2042*06c3fb27SDimitry Andric uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2043*06c3fb27SDimitry Andric bool BitField = i->isBitField(); 2044*06c3fb27SDimitry Andric 2045*06c3fb27SDimitry Andric // Ignore padding bit-fields. 2046*06c3fb27SDimitry Andric if (BitField && i->isUnnamedBitfield()) 2047*06c3fb27SDimitry Andric continue; 2048*06c3fb27SDimitry Andric 2049*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2050*06c3fb27SDimitry Andric // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 2051*06c3fb27SDimitry Andric // 2052*06c3fb27SDimitry Andric // The only case a 256-bit or a 512-bit wide vector could be used is when 2053*06c3fb27SDimitry Andric // the struct contains a single 256-bit or 512-bit element. Early check 2054*06c3fb27SDimitry Andric // and fallback to memory. 2055*06c3fb27SDimitry Andric // 2056*06c3fb27SDimitry Andric // FIXME: Extended the Lo and Hi logic properly to work for size wider 2057*06c3fb27SDimitry Andric // than 128. 2058*06c3fb27SDimitry Andric if (Size > 128 && 2059*06c3fb27SDimitry Andric ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 2060*06c3fb27SDimitry Andric Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2061*06c3fb27SDimitry Andric Lo = Memory; 2062*06c3fb27SDimitry Andric postMerge(Size, Lo, Hi); 2063*06c3fb27SDimitry Andric return; 2064*06c3fb27SDimitry Andric } 2065*06c3fb27SDimitry Andric // Note, skip this test for bit-fields, see below. 2066*06c3fb27SDimitry Andric if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2067*06c3fb27SDimitry Andric Lo = Memory; 2068*06c3fb27SDimitry Andric postMerge(Size, Lo, Hi); 2069*06c3fb27SDimitry Andric return; 2070*06c3fb27SDimitry Andric } 2071*06c3fb27SDimitry Andric 2072*06c3fb27SDimitry Andric // Classify this field. 2073*06c3fb27SDimitry Andric // 2074*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2075*06c3fb27SDimitry Andric // exceeds a single eightbyte, each is classified 2076*06c3fb27SDimitry Andric // separately. Each eightbyte gets initialized to class 2077*06c3fb27SDimitry Andric // NO_CLASS. 2078*06c3fb27SDimitry Andric Class FieldLo, FieldHi; 2079*06c3fb27SDimitry Andric 2080*06c3fb27SDimitry Andric // Bit-fields require special handling, they do not force the 2081*06c3fb27SDimitry Andric // structure to be passed in memory even if unaligned, and 2082*06c3fb27SDimitry Andric // therefore they can straddle an eightbyte. 2083*06c3fb27SDimitry Andric if (BitField) { 2084*06c3fb27SDimitry Andric assert(!i->isUnnamedBitfield()); 2085*06c3fb27SDimitry Andric uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2086*06c3fb27SDimitry Andric uint64_t Size = i->getBitWidthValue(getContext()); 2087*06c3fb27SDimitry Andric 2088*06c3fb27SDimitry Andric uint64_t EB_Lo = Offset / 64; 2089*06c3fb27SDimitry Andric uint64_t EB_Hi = (Offset + Size - 1) / 64; 2090*06c3fb27SDimitry Andric 2091*06c3fb27SDimitry Andric if (EB_Lo) { 2092*06c3fb27SDimitry Andric assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2093*06c3fb27SDimitry Andric FieldLo = NoClass; 2094*06c3fb27SDimitry Andric FieldHi = Integer; 2095*06c3fb27SDimitry Andric } else { 2096*06c3fb27SDimitry Andric FieldLo = Integer; 2097*06c3fb27SDimitry Andric FieldHi = EB_Hi ? Integer : NoClass; 2098*06c3fb27SDimitry Andric } 2099*06c3fb27SDimitry Andric } else 2100*06c3fb27SDimitry Andric classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2101*06c3fb27SDimitry Andric Lo = merge(Lo, FieldLo); 2102*06c3fb27SDimitry Andric Hi = merge(Hi, FieldHi); 2103*06c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory) 2104*06c3fb27SDimitry Andric break; 2105*06c3fb27SDimitry Andric } 2106*06c3fb27SDimitry Andric 2107*06c3fb27SDimitry Andric postMerge(Size, Lo, Hi); 2108*06c3fb27SDimitry Andric } 2109*06c3fb27SDimitry Andric } 2110*06c3fb27SDimitry Andric 2111*06c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2112*06c3fb27SDimitry Andric // If this is a scalar LLVM value then assume LLVM will pass it in the right 2113*06c3fb27SDimitry Andric // place naturally. 2114*06c3fb27SDimitry Andric if (!isAggregateTypeForABI(Ty)) { 2115*06c3fb27SDimitry Andric // Treat an enum type as its underlying type. 2116*06c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2117*06c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType(); 2118*06c3fb27SDimitry Andric 2119*06c3fb27SDimitry Andric if (Ty->isBitIntType()) 2120*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty); 2121*06c3fb27SDimitry Andric 2122*06c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2123*06c3fb27SDimitry Andric : ABIArgInfo::getDirect()); 2124*06c3fb27SDimitry Andric } 2125*06c3fb27SDimitry Andric 2126*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty); 2127*06c3fb27SDimitry Andric } 2128*06c3fb27SDimitry Andric 2129*06c3fb27SDimitry Andric bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2130*06c3fb27SDimitry Andric if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2131*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(VecTy); 2132*06c3fb27SDimitry Andric unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2133*06c3fb27SDimitry Andric if (Size <= 64 || Size > LargestVector) 2134*06c3fb27SDimitry Andric return true; 2135*06c3fb27SDimitry Andric QualType EltTy = VecTy->getElementType(); 2136*06c3fb27SDimitry Andric if (passInt128VectorsInMem() && 2137*06c3fb27SDimitry Andric (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2138*06c3fb27SDimitry Andric EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2139*06c3fb27SDimitry Andric return true; 2140*06c3fb27SDimitry Andric } 2141*06c3fb27SDimitry Andric 2142*06c3fb27SDimitry Andric return false; 2143*06c3fb27SDimitry Andric } 2144*06c3fb27SDimitry Andric 2145*06c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2146*06c3fb27SDimitry Andric unsigned freeIntRegs) const { 2147*06c3fb27SDimitry Andric // If this is a scalar LLVM value then assume LLVM will pass it in the right 2148*06c3fb27SDimitry Andric // place naturally. 2149*06c3fb27SDimitry Andric // 2150*06c3fb27SDimitry Andric // This assumption is optimistic, as there could be free registers available 2151*06c3fb27SDimitry Andric // when we need to pass this argument in memory, and LLVM could try to pass 2152*06c3fb27SDimitry Andric // the argument in the free register. This does not seem to happen currently, 2153*06c3fb27SDimitry Andric // but this code would be much safer if we could mark the argument with 2154*06c3fb27SDimitry Andric // 'onstack'. See PR12193. 2155*06c3fb27SDimitry Andric if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 2156*06c3fb27SDimitry Andric !Ty->isBitIntType()) { 2157*06c3fb27SDimitry Andric // Treat an enum type as its underlying type. 2158*06c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2159*06c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType(); 2160*06c3fb27SDimitry Andric 2161*06c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2162*06c3fb27SDimitry Andric : ABIArgInfo::getDirect()); 2163*06c3fb27SDimitry Andric } 2164*06c3fb27SDimitry Andric 2165*06c3fb27SDimitry Andric if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2166*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2167*06c3fb27SDimitry Andric 2168*06c3fb27SDimitry Andric // Compute the byval alignment. We specify the alignment of the byval in all 2169*06c3fb27SDimitry Andric // cases so that the mid-level optimizer knows the alignment of the byval. 2170*06c3fb27SDimitry Andric unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2171*06c3fb27SDimitry Andric 2172*06c3fb27SDimitry Andric // Attempt to avoid passing indirect results using byval when possible. This 2173*06c3fb27SDimitry Andric // is important for good codegen. 2174*06c3fb27SDimitry Andric // 2175*06c3fb27SDimitry Andric // We do this by coercing the value into a scalar type which the backend can 2176*06c3fb27SDimitry Andric // handle naturally (i.e., without using byval). 2177*06c3fb27SDimitry Andric // 2178*06c3fb27SDimitry Andric // For simplicity, we currently only do this when we have exhausted all of the 2179*06c3fb27SDimitry Andric // free integer registers. Doing this when there are free integer registers 2180*06c3fb27SDimitry Andric // would require more care, as we would have to ensure that the coerced value 2181*06c3fb27SDimitry Andric // did not claim the unused register. That would require either reording the 2182*06c3fb27SDimitry Andric // arguments to the function (so that any subsequent inreg values came first), 2183*06c3fb27SDimitry Andric // or only doing this optimization when there were no following arguments that 2184*06c3fb27SDimitry Andric // might be inreg. 2185*06c3fb27SDimitry Andric // 2186*06c3fb27SDimitry Andric // We currently expect it to be rare (particularly in well written code) for 2187*06c3fb27SDimitry Andric // arguments to be passed on the stack when there are still free integer 2188*06c3fb27SDimitry Andric // registers available (this would typically imply large structs being passed 2189*06c3fb27SDimitry Andric // by value), so this seems like a fair tradeoff for now. 2190*06c3fb27SDimitry Andric // 2191*06c3fb27SDimitry Andric // We can revisit this if the backend grows support for 'onstack' parameter 2192*06c3fb27SDimitry Andric // attributes. See PR12193. 2193*06c3fb27SDimitry Andric if (freeIntRegs == 0) { 2194*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 2195*06c3fb27SDimitry Andric 2196*06c3fb27SDimitry Andric // If this type fits in an eightbyte, coerce it into the matching integral 2197*06c3fb27SDimitry Andric // type, which will end up on the stack (with alignment 8). 2198*06c3fb27SDimitry Andric if (Align == 8 && Size <= 64) 2199*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2200*06c3fb27SDimitry Andric Size)); 2201*06c3fb27SDimitry Andric } 2202*06c3fb27SDimitry Andric 2203*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2204*06c3fb27SDimitry Andric } 2205*06c3fb27SDimitry Andric 2206*06c3fb27SDimitry Andric /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2207*06c3fb27SDimitry Andric /// register. Pick an LLVM IR type that will be passed as a vector register. 2208*06c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2209*06c3fb27SDimitry Andric // Wrapper structs/arrays that only contain vectors are passed just like 2210*06c3fb27SDimitry Andric // vectors; strip them off if present. 2211*06c3fb27SDimitry Andric if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2212*06c3fb27SDimitry Andric Ty = QualType(InnerTy, 0); 2213*06c3fb27SDimitry Andric 2214*06c3fb27SDimitry Andric llvm::Type *IRType = CGT.ConvertType(Ty); 2215*06c3fb27SDimitry Andric if (isa<llvm::VectorType>(IRType)) { 2216*06c3fb27SDimitry Andric // Don't pass vXi128 vectors in their native type, the backend can't 2217*06c3fb27SDimitry Andric // legalize them. 2218*06c3fb27SDimitry Andric if (passInt128VectorsInMem() && 2219*06c3fb27SDimitry Andric cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 2220*06c3fb27SDimitry Andric // Use a vXi64 vector. 2221*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 2222*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2223*06c3fb27SDimitry Andric Size / 64); 2224*06c3fb27SDimitry Andric } 2225*06c3fb27SDimitry Andric 2226*06c3fb27SDimitry Andric return IRType; 2227*06c3fb27SDimitry Andric } 2228*06c3fb27SDimitry Andric 2229*06c3fb27SDimitry Andric if (IRType->getTypeID() == llvm::Type::FP128TyID) 2230*06c3fb27SDimitry Andric return IRType; 2231*06c3fb27SDimitry Andric 2232*06c3fb27SDimitry Andric // We couldn't find the preferred IR vector type for 'Ty'. 2233*06c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty); 2234*06c3fb27SDimitry Andric assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2235*06c3fb27SDimitry Andric 2236*06c3fb27SDimitry Andric 2237*06c3fb27SDimitry Andric // Return a LLVM IR vector type based on the size of 'Ty'. 2238*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2239*06c3fb27SDimitry Andric Size / 64); 2240*06c3fb27SDimitry Andric } 2241*06c3fb27SDimitry Andric 2242*06c3fb27SDimitry Andric /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2243*06c3fb27SDimitry Andric /// is known to either be off the end of the specified type or being in 2244*06c3fb27SDimitry Andric /// alignment padding. The user type specified is known to be at most 128 bits 2245*06c3fb27SDimitry Andric /// in size, and have passed through X86_64ABIInfo::classify with a successful 2246*06c3fb27SDimitry Andric /// classification that put one of the two halves in the INTEGER class. 2247*06c3fb27SDimitry Andric /// 2248*06c3fb27SDimitry Andric /// It is conservatively correct to return false. 2249*06c3fb27SDimitry Andric static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2250*06c3fb27SDimitry Andric unsigned EndBit, ASTContext &Context) { 2251*06c3fb27SDimitry Andric // If the bytes being queried are off the end of the type, there is no user 2252*06c3fb27SDimitry Andric // data hiding here. This handles analysis of builtins, vectors and other 2253*06c3fb27SDimitry Andric // types that don't contain interesting padding. 2254*06c3fb27SDimitry Andric unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2255*06c3fb27SDimitry Andric if (TySize <= StartBit) 2256*06c3fb27SDimitry Andric return true; 2257*06c3fb27SDimitry Andric 2258*06c3fb27SDimitry Andric if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2259*06c3fb27SDimitry Andric unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2260*06c3fb27SDimitry Andric unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2261*06c3fb27SDimitry Andric 2262*06c3fb27SDimitry Andric // Check each element to see if the element overlaps with the queried range. 2263*06c3fb27SDimitry Andric for (unsigned i = 0; i != NumElts; ++i) { 2264*06c3fb27SDimitry Andric // If the element is after the span we care about, then we're done.. 2265*06c3fb27SDimitry Andric unsigned EltOffset = i*EltSize; 2266*06c3fb27SDimitry Andric if (EltOffset >= EndBit) break; 2267*06c3fb27SDimitry Andric 2268*06c3fb27SDimitry Andric unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2269*06c3fb27SDimitry Andric if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2270*06c3fb27SDimitry Andric EndBit-EltOffset, Context)) 2271*06c3fb27SDimitry Andric return false; 2272*06c3fb27SDimitry Andric } 2273*06c3fb27SDimitry Andric // If it overlaps no elements, then it is safe to process as padding. 2274*06c3fb27SDimitry Andric return true; 2275*06c3fb27SDimitry Andric } 2276*06c3fb27SDimitry Andric 2277*06c3fb27SDimitry Andric if (const RecordType *RT = Ty->getAs<RecordType>()) { 2278*06c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl(); 2279*06c3fb27SDimitry Andric const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2280*06c3fb27SDimitry Andric 2281*06c3fb27SDimitry Andric // If this is a C++ record, check the bases first. 2282*06c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2283*06c3fb27SDimitry Andric for (const auto &I : CXXRD->bases()) { 2284*06c3fb27SDimitry Andric assert(!I.isVirtual() && !I.getType()->isDependentType() && 2285*06c3fb27SDimitry Andric "Unexpected base class!"); 2286*06c3fb27SDimitry Andric const auto *Base = 2287*06c3fb27SDimitry Andric cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2288*06c3fb27SDimitry Andric 2289*06c3fb27SDimitry Andric // If the base is after the span we care about, ignore it. 2290*06c3fb27SDimitry Andric unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2291*06c3fb27SDimitry Andric if (BaseOffset >= EndBit) continue; 2292*06c3fb27SDimitry Andric 2293*06c3fb27SDimitry Andric unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2294*06c3fb27SDimitry Andric if (!BitsContainNoUserData(I.getType(), BaseStart, 2295*06c3fb27SDimitry Andric EndBit-BaseOffset, Context)) 2296*06c3fb27SDimitry Andric return false; 2297*06c3fb27SDimitry Andric } 2298*06c3fb27SDimitry Andric } 2299*06c3fb27SDimitry Andric 2300*06c3fb27SDimitry Andric // Verify that no field has data that overlaps the region of interest. Yes 2301*06c3fb27SDimitry Andric // this could be sped up a lot by being smarter about queried fields, 2302*06c3fb27SDimitry Andric // however we're only looking at structs up to 16 bytes, so we don't care 2303*06c3fb27SDimitry Andric // much. 2304*06c3fb27SDimitry Andric unsigned idx = 0; 2305*06c3fb27SDimitry Andric for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2306*06c3fb27SDimitry Andric i != e; ++i, ++idx) { 2307*06c3fb27SDimitry Andric unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2308*06c3fb27SDimitry Andric 2309*06c3fb27SDimitry Andric // If we found a field after the region we care about, then we're done. 2310*06c3fb27SDimitry Andric if (FieldOffset >= EndBit) break; 2311*06c3fb27SDimitry Andric 2312*06c3fb27SDimitry Andric unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2313*06c3fb27SDimitry Andric if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2314*06c3fb27SDimitry Andric Context)) 2315*06c3fb27SDimitry Andric return false; 2316*06c3fb27SDimitry Andric } 2317*06c3fb27SDimitry Andric 2318*06c3fb27SDimitry Andric // If nothing in this record overlapped the area of interest, then we're 2319*06c3fb27SDimitry Andric // clean. 2320*06c3fb27SDimitry Andric return true; 2321*06c3fb27SDimitry Andric } 2322*06c3fb27SDimitry Andric 2323*06c3fb27SDimitry Andric return false; 2324*06c3fb27SDimitry Andric } 2325*06c3fb27SDimitry Andric 2326*06c3fb27SDimitry Andric /// getFPTypeAtOffset - Return a floating point type at the specified offset. 2327*06c3fb27SDimitry Andric static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2328*06c3fb27SDimitry Andric const llvm::DataLayout &TD) { 2329*06c3fb27SDimitry Andric if (IROffset == 0 && IRType->isFloatingPointTy()) 2330*06c3fb27SDimitry Andric return IRType; 2331*06c3fb27SDimitry Andric 2332*06c3fb27SDimitry Andric // If this is a struct, recurse into the field at the specified offset. 2333*06c3fb27SDimitry Andric if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2334*06c3fb27SDimitry Andric if (!STy->getNumContainedTypes()) 2335*06c3fb27SDimitry Andric return nullptr; 2336*06c3fb27SDimitry Andric 2337*06c3fb27SDimitry Andric const llvm::StructLayout *SL = TD.getStructLayout(STy); 2338*06c3fb27SDimitry Andric unsigned Elt = SL->getElementContainingOffset(IROffset); 2339*06c3fb27SDimitry Andric IROffset -= SL->getElementOffset(Elt); 2340*06c3fb27SDimitry Andric return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 2341*06c3fb27SDimitry Andric } 2342*06c3fb27SDimitry Andric 2343*06c3fb27SDimitry Andric // If this is an array, recurse into the field at the specified offset. 2344*06c3fb27SDimitry Andric if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2345*06c3fb27SDimitry Andric llvm::Type *EltTy = ATy->getElementType(); 2346*06c3fb27SDimitry Andric unsigned EltSize = TD.getTypeAllocSize(EltTy); 2347*06c3fb27SDimitry Andric IROffset -= IROffset / EltSize * EltSize; 2348*06c3fb27SDimitry Andric return getFPTypeAtOffset(EltTy, IROffset, TD); 2349*06c3fb27SDimitry Andric } 2350*06c3fb27SDimitry Andric 2351*06c3fb27SDimitry Andric return nullptr; 2352*06c3fb27SDimitry Andric } 2353*06c3fb27SDimitry Andric 2354*06c3fb27SDimitry Andric /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2355*06c3fb27SDimitry Andric /// low 8 bytes of an XMM register, corresponding to the SSE class. 2356*06c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo:: 2357*06c3fb27SDimitry Andric GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2358*06c3fb27SDimitry Andric QualType SourceTy, unsigned SourceOffset) const { 2359*06c3fb27SDimitry Andric const llvm::DataLayout &TD = getDataLayout(); 2360*06c3fb27SDimitry Andric unsigned SourceSize = 2361*06c3fb27SDimitry Andric (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 2362*06c3fb27SDimitry Andric llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 2363*06c3fb27SDimitry Andric if (!T0 || T0->isDoubleTy()) 2364*06c3fb27SDimitry Andric return llvm::Type::getDoubleTy(getVMContext()); 2365*06c3fb27SDimitry Andric 2366*06c3fb27SDimitry Andric // Get the adjacent FP type. 2367*06c3fb27SDimitry Andric llvm::Type *T1 = nullptr; 2368*06c3fb27SDimitry Andric unsigned T0Size = TD.getTypeAllocSize(T0); 2369*06c3fb27SDimitry Andric if (SourceSize > T0Size) 2370*06c3fb27SDimitry Andric T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 2371*06c3fb27SDimitry Andric if (T1 == nullptr) { 2372*06c3fb27SDimitry Andric // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due 2373*06c3fb27SDimitry Andric // to its alignment. 2374*06c3fb27SDimitry Andric if (T0->is16bitFPTy() && SourceSize > 4) 2375*06c3fb27SDimitry Andric T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2376*06c3fb27SDimitry Andric // If we can't get a second FP type, return a simple half or float. 2377*06c3fb27SDimitry Andric // avx512fp16-abi.c:pr51813_2 shows it works to return float for 2378*06c3fb27SDimitry Andric // {float, i8} too. 2379*06c3fb27SDimitry Andric if (T1 == nullptr) 2380*06c3fb27SDimitry Andric return T0; 2381*06c3fb27SDimitry Andric } 2382*06c3fb27SDimitry Andric 2383*06c3fb27SDimitry Andric if (T0->isFloatTy() && T1->isFloatTy()) 2384*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 2); 2385*06c3fb27SDimitry Andric 2386*06c3fb27SDimitry Andric if (T0->is16bitFPTy() && T1->is16bitFPTy()) { 2387*06c3fb27SDimitry Andric llvm::Type *T2 = nullptr; 2388*06c3fb27SDimitry Andric if (SourceSize > 4) 2389*06c3fb27SDimitry Andric T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2390*06c3fb27SDimitry Andric if (T2 == nullptr) 2391*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 2); 2392*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 4); 2393*06c3fb27SDimitry Andric } 2394*06c3fb27SDimitry Andric 2395*06c3fb27SDimitry Andric if (T0->is16bitFPTy() || T1->is16bitFPTy()) 2396*06c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 2397*06c3fb27SDimitry Andric 2398*06c3fb27SDimitry Andric return llvm::Type::getDoubleTy(getVMContext()); 2399*06c3fb27SDimitry Andric } 2400*06c3fb27SDimitry Andric 2401*06c3fb27SDimitry Andric 2402*06c3fb27SDimitry Andric /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2403*06c3fb27SDimitry Andric /// an 8-byte GPR. This means that we either have a scalar or we are talking 2404*06c3fb27SDimitry Andric /// about the high or low part of an up-to-16-byte struct. This routine picks 2405*06c3fb27SDimitry Andric /// the best LLVM IR type to represent this, which may be i64 or may be anything 2406*06c3fb27SDimitry Andric /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2407*06c3fb27SDimitry Andric /// etc). 2408*06c3fb27SDimitry Andric /// 2409*06c3fb27SDimitry Andric /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2410*06c3fb27SDimitry Andric /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2411*06c3fb27SDimitry Andric /// the 8-byte value references. PrefType may be null. 2412*06c3fb27SDimitry Andric /// 2413*06c3fb27SDimitry Andric /// SourceTy is the source-level type for the entire argument. SourceOffset is 2414*06c3fb27SDimitry Andric /// an offset into this that we're processing (which is always either 0 or 8). 2415*06c3fb27SDimitry Andric /// 2416*06c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo:: 2417*06c3fb27SDimitry Andric GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2418*06c3fb27SDimitry Andric QualType SourceTy, unsigned SourceOffset) const { 2419*06c3fb27SDimitry Andric // If we're dealing with an un-offset LLVM IR type, then it means that we're 2420*06c3fb27SDimitry Andric // returning an 8-byte unit starting with it. See if we can safely use it. 2421*06c3fb27SDimitry Andric if (IROffset == 0) { 2422*06c3fb27SDimitry Andric // Pointers and int64's always fill the 8-byte unit. 2423*06c3fb27SDimitry Andric if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2424*06c3fb27SDimitry Andric IRType->isIntegerTy(64)) 2425*06c3fb27SDimitry Andric return IRType; 2426*06c3fb27SDimitry Andric 2427*06c3fb27SDimitry Andric // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2428*06c3fb27SDimitry Andric // goodness in the source type is just tail padding. This is allowed to 2429*06c3fb27SDimitry Andric // kick in for struct {double,int} on the int, but not on 2430*06c3fb27SDimitry Andric // struct{double,int,int} because we wouldn't return the second int. We 2431*06c3fb27SDimitry Andric // have to do this analysis on the source type because we can't depend on 2432*06c3fb27SDimitry Andric // unions being lowered a specific way etc. 2433*06c3fb27SDimitry Andric if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2434*06c3fb27SDimitry Andric IRType->isIntegerTy(32) || 2435*06c3fb27SDimitry Andric (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2436*06c3fb27SDimitry Andric unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2437*06c3fb27SDimitry Andric cast<llvm::IntegerType>(IRType)->getBitWidth(); 2438*06c3fb27SDimitry Andric 2439*06c3fb27SDimitry Andric if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2440*06c3fb27SDimitry Andric SourceOffset*8+64, getContext())) 2441*06c3fb27SDimitry Andric return IRType; 2442*06c3fb27SDimitry Andric } 2443*06c3fb27SDimitry Andric } 2444*06c3fb27SDimitry Andric 2445*06c3fb27SDimitry Andric if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2446*06c3fb27SDimitry Andric // If this is a struct, recurse into the field at the specified offset. 2447*06c3fb27SDimitry Andric const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2448*06c3fb27SDimitry Andric if (IROffset < SL->getSizeInBytes()) { 2449*06c3fb27SDimitry Andric unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2450*06c3fb27SDimitry Andric IROffset -= SL->getElementOffset(FieldIdx); 2451*06c3fb27SDimitry Andric 2452*06c3fb27SDimitry Andric return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2453*06c3fb27SDimitry Andric SourceTy, SourceOffset); 2454*06c3fb27SDimitry Andric } 2455*06c3fb27SDimitry Andric } 2456*06c3fb27SDimitry Andric 2457*06c3fb27SDimitry Andric if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2458*06c3fb27SDimitry Andric llvm::Type *EltTy = ATy->getElementType(); 2459*06c3fb27SDimitry Andric unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2460*06c3fb27SDimitry Andric unsigned EltOffset = IROffset/EltSize*EltSize; 2461*06c3fb27SDimitry Andric return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2462*06c3fb27SDimitry Andric SourceOffset); 2463*06c3fb27SDimitry Andric } 2464*06c3fb27SDimitry Andric 2465*06c3fb27SDimitry Andric // Okay, we don't have any better idea of what to pass, so we pass this in an 2466*06c3fb27SDimitry Andric // integer register that isn't too big to fit the rest of the struct. 2467*06c3fb27SDimitry Andric unsigned TySizeInBytes = 2468*06c3fb27SDimitry Andric (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2469*06c3fb27SDimitry Andric 2470*06c3fb27SDimitry Andric assert(TySizeInBytes != SourceOffset && "Empty field?"); 2471*06c3fb27SDimitry Andric 2472*06c3fb27SDimitry Andric // It is always safe to classify this as an integer type up to i64 that 2473*06c3fb27SDimitry Andric // isn't larger than the structure. 2474*06c3fb27SDimitry Andric return llvm::IntegerType::get(getVMContext(), 2475*06c3fb27SDimitry Andric std::min(TySizeInBytes-SourceOffset, 8U)*8); 2476*06c3fb27SDimitry Andric } 2477*06c3fb27SDimitry Andric 2478*06c3fb27SDimitry Andric 2479*06c3fb27SDimitry Andric /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2480*06c3fb27SDimitry Andric /// be used as elements of a two register pair to pass or return, return a 2481*06c3fb27SDimitry Andric /// first class aggregate to represent them. For example, if the low part of 2482*06c3fb27SDimitry Andric /// a by-value argument should be passed as i32* and the high part as float, 2483*06c3fb27SDimitry Andric /// return {i32*, float}. 2484*06c3fb27SDimitry Andric static llvm::Type * 2485*06c3fb27SDimitry Andric GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2486*06c3fb27SDimitry Andric const llvm::DataLayout &TD) { 2487*06c3fb27SDimitry Andric // In order to correctly satisfy the ABI, we need to the high part to start 2488*06c3fb27SDimitry Andric // at offset 8. If the high and low parts we inferred are both 4-byte types 2489*06c3fb27SDimitry Andric // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2490*06c3fb27SDimitry Andric // the second element at offset 8. Check for this: 2491*06c3fb27SDimitry Andric unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2492*06c3fb27SDimitry Andric llvm::Align HiAlign = TD.getABITypeAlign(Hi); 2493*06c3fb27SDimitry Andric unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2494*06c3fb27SDimitry Andric assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2495*06c3fb27SDimitry Andric 2496*06c3fb27SDimitry Andric // To handle this, we have to increase the size of the low part so that the 2497*06c3fb27SDimitry Andric // second element will start at an 8 byte offset. We can't increase the size 2498*06c3fb27SDimitry Andric // of the second element because it might make us access off the end of the 2499*06c3fb27SDimitry Andric // struct. 2500*06c3fb27SDimitry Andric if (HiStart != 8) { 2501*06c3fb27SDimitry Andric // There are usually two sorts of types the ABI generation code can produce 2502*06c3fb27SDimitry Andric // for the low part of a pair that aren't 8 bytes in size: half, float or 2503*06c3fb27SDimitry Andric // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2504*06c3fb27SDimitry Andric // NaCl). 2505*06c3fb27SDimitry Andric // Promote these to a larger type. 2506*06c3fb27SDimitry Andric if (Lo->isHalfTy() || Lo->isFloatTy()) 2507*06c3fb27SDimitry Andric Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2508*06c3fb27SDimitry Andric else { 2509*06c3fb27SDimitry Andric assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2510*06c3fb27SDimitry Andric && "Invalid/unknown lo type"); 2511*06c3fb27SDimitry Andric Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2512*06c3fb27SDimitry Andric } 2513*06c3fb27SDimitry Andric } 2514*06c3fb27SDimitry Andric 2515*06c3fb27SDimitry Andric llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 2516*06c3fb27SDimitry Andric 2517*06c3fb27SDimitry Andric // Verify that the second element is at an 8-byte offset. 2518*06c3fb27SDimitry Andric assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2519*06c3fb27SDimitry Andric "Invalid x86-64 argument pair!"); 2520*06c3fb27SDimitry Andric return Result; 2521*06c3fb27SDimitry Andric } 2522*06c3fb27SDimitry Andric 2523*06c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo:: 2524*06c3fb27SDimitry Andric classifyReturnType(QualType RetTy) const { 2525*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2526*06c3fb27SDimitry Andric // classification algorithm. 2527*06c3fb27SDimitry Andric X86_64ABIInfo::Class Lo, Hi; 2528*06c3fb27SDimitry Andric classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2529*06c3fb27SDimitry Andric 2530*06c3fb27SDimitry Andric // Check some invariants. 2531*06c3fb27SDimitry Andric assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2532*06c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2533*06c3fb27SDimitry Andric 2534*06c3fb27SDimitry Andric llvm::Type *ResType = nullptr; 2535*06c3fb27SDimitry Andric switch (Lo) { 2536*06c3fb27SDimitry Andric case NoClass: 2537*06c3fb27SDimitry Andric if (Hi == NoClass) 2538*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 2539*06c3fb27SDimitry Andric // If the low part is just padding, it takes no register, leave ResType 2540*06c3fb27SDimitry Andric // null. 2541*06c3fb27SDimitry Andric assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2542*06c3fb27SDimitry Andric "Unknown missing lo part"); 2543*06c3fb27SDimitry Andric break; 2544*06c3fb27SDimitry Andric 2545*06c3fb27SDimitry Andric case SSEUp: 2546*06c3fb27SDimitry Andric case X87Up: 2547*06c3fb27SDimitry Andric llvm_unreachable("Invalid classification for lo word."); 2548*06c3fb27SDimitry Andric 2549*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2550*06c3fb27SDimitry Andric // hidden argument. 2551*06c3fb27SDimitry Andric case Memory: 2552*06c3fb27SDimitry Andric return getIndirectReturnResult(RetTy); 2553*06c3fb27SDimitry Andric 2554*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2555*06c3fb27SDimitry Andric // available register of the sequence %rax, %rdx is used. 2556*06c3fb27SDimitry Andric case Integer: 2557*06c3fb27SDimitry Andric ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2558*06c3fb27SDimitry Andric 2559*06c3fb27SDimitry Andric // If we have a sign or zero extended integer, make sure to return Extend 2560*06c3fb27SDimitry Andric // so that the parameter gets the right LLVM IR attributes. 2561*06c3fb27SDimitry Andric if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2562*06c3fb27SDimitry Andric // Treat an enum type as its underlying type. 2563*06c3fb27SDimitry Andric if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2564*06c3fb27SDimitry Andric RetTy = EnumTy->getDecl()->getIntegerType(); 2565*06c3fb27SDimitry Andric 2566*06c3fb27SDimitry Andric if (RetTy->isIntegralOrEnumerationType() && 2567*06c3fb27SDimitry Andric isPromotableIntegerTypeForABI(RetTy)) 2568*06c3fb27SDimitry Andric return ABIArgInfo::getExtend(RetTy); 2569*06c3fb27SDimitry Andric } 2570*06c3fb27SDimitry Andric break; 2571*06c3fb27SDimitry Andric 2572*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2573*06c3fb27SDimitry Andric // available SSE register of the sequence %xmm0, %xmm1 is used. 2574*06c3fb27SDimitry Andric case SSE: 2575*06c3fb27SDimitry Andric ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2576*06c3fb27SDimitry Andric break; 2577*06c3fb27SDimitry Andric 2578*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2579*06c3fb27SDimitry Andric // returned on the X87 stack in %st0 as 80-bit x87 number. 2580*06c3fb27SDimitry Andric case X87: 2581*06c3fb27SDimitry Andric ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2582*06c3fb27SDimitry Andric break; 2583*06c3fb27SDimitry Andric 2584*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2585*06c3fb27SDimitry Andric // part of the value is returned in %st0 and the imaginary part in 2586*06c3fb27SDimitry Andric // %st1. 2587*06c3fb27SDimitry Andric case ComplexX87: 2588*06c3fb27SDimitry Andric assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2589*06c3fb27SDimitry Andric ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2590*06c3fb27SDimitry Andric llvm::Type::getX86_FP80Ty(getVMContext())); 2591*06c3fb27SDimitry Andric break; 2592*06c3fb27SDimitry Andric } 2593*06c3fb27SDimitry Andric 2594*06c3fb27SDimitry Andric llvm::Type *HighPart = nullptr; 2595*06c3fb27SDimitry Andric switch (Hi) { 2596*06c3fb27SDimitry Andric // Memory was handled previously and X87 should 2597*06c3fb27SDimitry Andric // never occur as a hi class. 2598*06c3fb27SDimitry Andric case Memory: 2599*06c3fb27SDimitry Andric case X87: 2600*06c3fb27SDimitry Andric llvm_unreachable("Invalid classification for hi word."); 2601*06c3fb27SDimitry Andric 2602*06c3fb27SDimitry Andric case ComplexX87: // Previously handled. 2603*06c3fb27SDimitry Andric case NoClass: 2604*06c3fb27SDimitry Andric break; 2605*06c3fb27SDimitry Andric 2606*06c3fb27SDimitry Andric case Integer: 2607*06c3fb27SDimitry Andric HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2608*06c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2609*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8); 2610*06c3fb27SDimitry Andric break; 2611*06c3fb27SDimitry Andric case SSE: 2612*06c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2613*06c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2614*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8); 2615*06c3fb27SDimitry Andric break; 2616*06c3fb27SDimitry Andric 2617*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2618*06c3fb27SDimitry Andric // is passed in the next available eightbyte chunk if the last used 2619*06c3fb27SDimitry Andric // vector register. 2620*06c3fb27SDimitry Andric // 2621*06c3fb27SDimitry Andric // SSEUP should always be preceded by SSE, just widen. 2622*06c3fb27SDimitry Andric case SSEUp: 2623*06c3fb27SDimitry Andric assert(Lo == SSE && "Unexpected SSEUp classification."); 2624*06c3fb27SDimitry Andric ResType = GetByteVectorType(RetTy); 2625*06c3fb27SDimitry Andric break; 2626*06c3fb27SDimitry Andric 2627*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2628*06c3fb27SDimitry Andric // returned together with the previous X87 value in %st0. 2629*06c3fb27SDimitry Andric case X87Up: 2630*06c3fb27SDimitry Andric // If X87Up is preceded by X87, we don't need to do 2631*06c3fb27SDimitry Andric // anything. However, in some cases with unions it may not be 2632*06c3fb27SDimitry Andric // preceded by X87. In such situations we follow gcc and pass the 2633*06c3fb27SDimitry Andric // extra bits in an SSE reg. 2634*06c3fb27SDimitry Andric if (Lo != X87) { 2635*06c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2636*06c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2637*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8); 2638*06c3fb27SDimitry Andric } 2639*06c3fb27SDimitry Andric break; 2640*06c3fb27SDimitry Andric } 2641*06c3fb27SDimitry Andric 2642*06c3fb27SDimitry Andric // If a high part was specified, merge it together with the low part. It is 2643*06c3fb27SDimitry Andric // known to pass in the high eightbyte of the result. We do this by forming a 2644*06c3fb27SDimitry Andric // first class struct aggregate with the high and low part: {low, high} 2645*06c3fb27SDimitry Andric if (HighPart) 2646*06c3fb27SDimitry Andric ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2647*06c3fb27SDimitry Andric 2648*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(ResType); 2649*06c3fb27SDimitry Andric } 2650*06c3fb27SDimitry Andric 2651*06c3fb27SDimitry Andric ABIArgInfo 2652*06c3fb27SDimitry Andric X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2653*06c3fb27SDimitry Andric unsigned &neededInt, unsigned &neededSSE, 2654*06c3fb27SDimitry Andric bool isNamedArg, bool IsRegCall) const { 2655*06c3fb27SDimitry Andric Ty = useFirstFieldIfTransparentUnion(Ty); 2656*06c3fb27SDimitry Andric 2657*06c3fb27SDimitry Andric X86_64ABIInfo::Class Lo, Hi; 2658*06c3fb27SDimitry Andric classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 2659*06c3fb27SDimitry Andric 2660*06c3fb27SDimitry Andric // Check some invariants. 2661*06c3fb27SDimitry Andric // FIXME: Enforce these by construction. 2662*06c3fb27SDimitry Andric assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2663*06c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2664*06c3fb27SDimitry Andric 2665*06c3fb27SDimitry Andric neededInt = 0; 2666*06c3fb27SDimitry Andric neededSSE = 0; 2667*06c3fb27SDimitry Andric llvm::Type *ResType = nullptr; 2668*06c3fb27SDimitry Andric switch (Lo) { 2669*06c3fb27SDimitry Andric case NoClass: 2670*06c3fb27SDimitry Andric if (Hi == NoClass) 2671*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 2672*06c3fb27SDimitry Andric // If the low part is just padding, it takes no register, leave ResType 2673*06c3fb27SDimitry Andric // null. 2674*06c3fb27SDimitry Andric assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2675*06c3fb27SDimitry Andric "Unknown missing lo part"); 2676*06c3fb27SDimitry Andric break; 2677*06c3fb27SDimitry Andric 2678*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2679*06c3fb27SDimitry Andric // on the stack. 2680*06c3fb27SDimitry Andric case Memory: 2681*06c3fb27SDimitry Andric 2682*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2683*06c3fb27SDimitry Andric // COMPLEX_X87, it is passed in memory. 2684*06c3fb27SDimitry Andric case X87: 2685*06c3fb27SDimitry Andric case ComplexX87: 2686*06c3fb27SDimitry Andric if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2687*06c3fb27SDimitry Andric ++neededInt; 2688*06c3fb27SDimitry Andric return getIndirectResult(Ty, freeIntRegs); 2689*06c3fb27SDimitry Andric 2690*06c3fb27SDimitry Andric case SSEUp: 2691*06c3fb27SDimitry Andric case X87Up: 2692*06c3fb27SDimitry Andric llvm_unreachable("Invalid classification for lo word."); 2693*06c3fb27SDimitry Andric 2694*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2695*06c3fb27SDimitry Andric // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2696*06c3fb27SDimitry Andric // and %r9 is used. 2697*06c3fb27SDimitry Andric case Integer: 2698*06c3fb27SDimitry Andric ++neededInt; 2699*06c3fb27SDimitry Andric 2700*06c3fb27SDimitry Andric // Pick an 8-byte type based on the preferred type. 2701*06c3fb27SDimitry Andric ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2702*06c3fb27SDimitry Andric 2703*06c3fb27SDimitry Andric // If we have a sign or zero extended integer, make sure to return Extend 2704*06c3fb27SDimitry Andric // so that the parameter gets the right LLVM IR attributes. 2705*06c3fb27SDimitry Andric if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2706*06c3fb27SDimitry Andric // Treat an enum type as its underlying type. 2707*06c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2708*06c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType(); 2709*06c3fb27SDimitry Andric 2710*06c3fb27SDimitry Andric if (Ty->isIntegralOrEnumerationType() && 2711*06c3fb27SDimitry Andric isPromotableIntegerTypeForABI(Ty)) 2712*06c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty); 2713*06c3fb27SDimitry Andric } 2714*06c3fb27SDimitry Andric 2715*06c3fb27SDimitry Andric break; 2716*06c3fb27SDimitry Andric 2717*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2718*06c3fb27SDimitry Andric // available SSE register is used, the registers are taken in the 2719*06c3fb27SDimitry Andric // order from %xmm0 to %xmm7. 2720*06c3fb27SDimitry Andric case SSE: { 2721*06c3fb27SDimitry Andric llvm::Type *IRType = CGT.ConvertType(Ty); 2722*06c3fb27SDimitry Andric ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2723*06c3fb27SDimitry Andric ++neededSSE; 2724*06c3fb27SDimitry Andric break; 2725*06c3fb27SDimitry Andric } 2726*06c3fb27SDimitry Andric } 2727*06c3fb27SDimitry Andric 2728*06c3fb27SDimitry Andric llvm::Type *HighPart = nullptr; 2729*06c3fb27SDimitry Andric switch (Hi) { 2730*06c3fb27SDimitry Andric // Memory was handled previously, ComplexX87 and X87 should 2731*06c3fb27SDimitry Andric // never occur as hi classes, and X87Up must be preceded by X87, 2732*06c3fb27SDimitry Andric // which is passed in memory. 2733*06c3fb27SDimitry Andric case Memory: 2734*06c3fb27SDimitry Andric case X87: 2735*06c3fb27SDimitry Andric case ComplexX87: 2736*06c3fb27SDimitry Andric llvm_unreachable("Invalid classification for hi word."); 2737*06c3fb27SDimitry Andric 2738*06c3fb27SDimitry Andric case NoClass: break; 2739*06c3fb27SDimitry Andric 2740*06c3fb27SDimitry Andric case Integer: 2741*06c3fb27SDimitry Andric ++neededInt; 2742*06c3fb27SDimitry Andric // Pick an 8-byte type based on the preferred type. 2743*06c3fb27SDimitry Andric HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2744*06c3fb27SDimitry Andric 2745*06c3fb27SDimitry Andric if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2746*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8); 2747*06c3fb27SDimitry Andric break; 2748*06c3fb27SDimitry Andric 2749*06c3fb27SDimitry Andric // X87Up generally doesn't occur here (long double is passed in 2750*06c3fb27SDimitry Andric // memory), except in situations involving unions. 2751*06c3fb27SDimitry Andric case X87Up: 2752*06c3fb27SDimitry Andric case SSE: 2753*06c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2754*06c3fb27SDimitry Andric 2755*06c3fb27SDimitry Andric if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2756*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8); 2757*06c3fb27SDimitry Andric 2758*06c3fb27SDimitry Andric ++neededSSE; 2759*06c3fb27SDimitry Andric break; 2760*06c3fb27SDimitry Andric 2761*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2762*06c3fb27SDimitry Andric // eightbyte is passed in the upper half of the last used SSE 2763*06c3fb27SDimitry Andric // register. This only happens when 128-bit vectors are passed. 2764*06c3fb27SDimitry Andric case SSEUp: 2765*06c3fb27SDimitry Andric assert(Lo == SSE && "Unexpected SSEUp classification"); 2766*06c3fb27SDimitry Andric ResType = GetByteVectorType(Ty); 2767*06c3fb27SDimitry Andric break; 2768*06c3fb27SDimitry Andric } 2769*06c3fb27SDimitry Andric 2770*06c3fb27SDimitry Andric // If a high part was specified, merge it together with the low part. It is 2771*06c3fb27SDimitry Andric // known to pass in the high eightbyte of the result. We do this by forming a 2772*06c3fb27SDimitry Andric // first class struct aggregate with the high and low part: {low, high} 2773*06c3fb27SDimitry Andric if (HighPart) 2774*06c3fb27SDimitry Andric ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2775*06c3fb27SDimitry Andric 2776*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(ResType); 2777*06c3fb27SDimitry Andric } 2778*06c3fb27SDimitry Andric 2779*06c3fb27SDimitry Andric ABIArgInfo 2780*06c3fb27SDimitry Andric X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2781*06c3fb27SDimitry Andric unsigned &NeededSSE, 2782*06c3fb27SDimitry Andric unsigned &MaxVectorWidth) const { 2783*06c3fb27SDimitry Andric auto RT = Ty->getAs<RecordType>(); 2784*06c3fb27SDimitry Andric assert(RT && "classifyRegCallStructType only valid with struct types"); 2785*06c3fb27SDimitry Andric 2786*06c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember()) 2787*06c3fb27SDimitry Andric return getIndirectReturnResult(Ty); 2788*06c3fb27SDimitry Andric 2789*06c3fb27SDimitry Andric // Sum up bases 2790*06c3fb27SDimitry Andric if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 2791*06c3fb27SDimitry Andric if (CXXRD->isDynamicClass()) { 2792*06c3fb27SDimitry Andric NeededInt = NeededSSE = 0; 2793*06c3fb27SDimitry Andric return getIndirectReturnResult(Ty); 2794*06c3fb27SDimitry Andric } 2795*06c3fb27SDimitry Andric 2796*06c3fb27SDimitry Andric for (const auto &I : CXXRD->bases()) 2797*06c3fb27SDimitry Andric if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 2798*06c3fb27SDimitry Andric MaxVectorWidth) 2799*06c3fb27SDimitry Andric .isIndirect()) { 2800*06c3fb27SDimitry Andric NeededInt = NeededSSE = 0; 2801*06c3fb27SDimitry Andric return getIndirectReturnResult(Ty); 2802*06c3fb27SDimitry Andric } 2803*06c3fb27SDimitry Andric } 2804*06c3fb27SDimitry Andric 2805*06c3fb27SDimitry Andric // Sum up members 2806*06c3fb27SDimitry Andric for (const auto *FD : RT->getDecl()->fields()) { 2807*06c3fb27SDimitry Andric QualType MTy = FD->getType(); 2808*06c3fb27SDimitry Andric if (MTy->isRecordType() && !MTy->isUnionType()) { 2809*06c3fb27SDimitry Andric if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 2810*06c3fb27SDimitry Andric MaxVectorWidth) 2811*06c3fb27SDimitry Andric .isIndirect()) { 2812*06c3fb27SDimitry Andric NeededInt = NeededSSE = 0; 2813*06c3fb27SDimitry Andric return getIndirectReturnResult(Ty); 2814*06c3fb27SDimitry Andric } 2815*06c3fb27SDimitry Andric } else { 2816*06c3fb27SDimitry Andric unsigned LocalNeededInt, LocalNeededSSE; 2817*06c3fb27SDimitry Andric if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 2818*06c3fb27SDimitry Andric true, true) 2819*06c3fb27SDimitry Andric .isIndirect()) { 2820*06c3fb27SDimitry Andric NeededInt = NeededSSE = 0; 2821*06c3fb27SDimitry Andric return getIndirectReturnResult(Ty); 2822*06c3fb27SDimitry Andric } 2823*06c3fb27SDimitry Andric if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 2824*06c3fb27SDimitry Andric MTy = AT->getElementType(); 2825*06c3fb27SDimitry Andric if (const auto *VT = MTy->getAs<VectorType>()) 2826*06c3fb27SDimitry Andric if (getContext().getTypeSize(VT) > MaxVectorWidth) 2827*06c3fb27SDimitry Andric MaxVectorWidth = getContext().getTypeSize(VT); 2828*06c3fb27SDimitry Andric NeededInt += LocalNeededInt; 2829*06c3fb27SDimitry Andric NeededSSE += LocalNeededSSE; 2830*06c3fb27SDimitry Andric } 2831*06c3fb27SDimitry Andric } 2832*06c3fb27SDimitry Andric 2833*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 2834*06c3fb27SDimitry Andric } 2835*06c3fb27SDimitry Andric 2836*06c3fb27SDimitry Andric ABIArgInfo 2837*06c3fb27SDimitry Andric X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2838*06c3fb27SDimitry Andric unsigned &NeededSSE, 2839*06c3fb27SDimitry Andric unsigned &MaxVectorWidth) const { 2840*06c3fb27SDimitry Andric 2841*06c3fb27SDimitry Andric NeededInt = 0; 2842*06c3fb27SDimitry Andric NeededSSE = 0; 2843*06c3fb27SDimitry Andric MaxVectorWidth = 0; 2844*06c3fb27SDimitry Andric 2845*06c3fb27SDimitry Andric return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 2846*06c3fb27SDimitry Andric MaxVectorWidth); 2847*06c3fb27SDimitry Andric } 2848*06c3fb27SDimitry Andric 2849*06c3fb27SDimitry Andric void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2850*06c3fb27SDimitry Andric 2851*06c3fb27SDimitry Andric const unsigned CallingConv = FI.getCallingConvention(); 2852*06c3fb27SDimitry Andric // It is possible to force Win64 calling convention on any x86_64 target by 2853*06c3fb27SDimitry Andric // using __attribute__((ms_abi)). In such case to correctly emit Win64 2854*06c3fb27SDimitry Andric // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 2855*06c3fb27SDimitry Andric if (CallingConv == llvm::CallingConv::Win64) { 2856*06c3fb27SDimitry Andric WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 2857*06c3fb27SDimitry Andric Win64ABIInfo.computeInfo(FI); 2858*06c3fb27SDimitry Andric return; 2859*06c3fb27SDimitry Andric } 2860*06c3fb27SDimitry Andric 2861*06c3fb27SDimitry Andric bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 2862*06c3fb27SDimitry Andric 2863*06c3fb27SDimitry Andric // Keep track of the number of assigned registers. 2864*06c3fb27SDimitry Andric unsigned FreeIntRegs = IsRegCall ? 11 : 6; 2865*06c3fb27SDimitry Andric unsigned FreeSSERegs = IsRegCall ? 16 : 8; 2866*06c3fb27SDimitry Andric unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 2867*06c3fb27SDimitry Andric 2868*06c3fb27SDimitry Andric if (!::classifyReturnType(getCXXABI(), FI, *this)) { 2869*06c3fb27SDimitry Andric if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 2870*06c3fb27SDimitry Andric !FI.getReturnType()->getTypePtr()->isUnionType()) { 2871*06c3fb27SDimitry Andric FI.getReturnInfo() = classifyRegCallStructType( 2872*06c3fb27SDimitry Andric FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 2873*06c3fb27SDimitry Andric if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2874*06c3fb27SDimitry Andric FreeIntRegs -= NeededInt; 2875*06c3fb27SDimitry Andric FreeSSERegs -= NeededSSE; 2876*06c3fb27SDimitry Andric } else { 2877*06c3fb27SDimitry Andric FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2878*06c3fb27SDimitry Andric } 2879*06c3fb27SDimitry Andric } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 2880*06c3fb27SDimitry Andric getContext().getCanonicalType(FI.getReturnType() 2881*06c3fb27SDimitry Andric ->getAs<ComplexType>() 2882*06c3fb27SDimitry Andric ->getElementType()) == 2883*06c3fb27SDimitry Andric getContext().LongDoubleTy) 2884*06c3fb27SDimitry Andric // Complex Long Double Type is passed in Memory when Regcall 2885*06c3fb27SDimitry Andric // calling convention is used. 2886*06c3fb27SDimitry Andric FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2887*06c3fb27SDimitry Andric else 2888*06c3fb27SDimitry Andric FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2889*06c3fb27SDimitry Andric } 2890*06c3fb27SDimitry Andric 2891*06c3fb27SDimitry Andric // If the return value is indirect, then the hidden argument is consuming one 2892*06c3fb27SDimitry Andric // integer register. 2893*06c3fb27SDimitry Andric if (FI.getReturnInfo().isIndirect()) 2894*06c3fb27SDimitry Andric --FreeIntRegs; 2895*06c3fb27SDimitry Andric else if (NeededSSE && MaxVectorWidth > 0) 2896*06c3fb27SDimitry Andric FI.setMaxVectorWidth(MaxVectorWidth); 2897*06c3fb27SDimitry Andric 2898*06c3fb27SDimitry Andric // The chain argument effectively gives us another free register. 2899*06c3fb27SDimitry Andric if (FI.isChainCall()) 2900*06c3fb27SDimitry Andric ++FreeIntRegs; 2901*06c3fb27SDimitry Andric 2902*06c3fb27SDimitry Andric unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2903*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2904*06c3fb27SDimitry Andric // get assigned (in left-to-right order) for passing as follows... 2905*06c3fb27SDimitry Andric unsigned ArgNo = 0; 2906*06c3fb27SDimitry Andric for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2907*06c3fb27SDimitry Andric it != ie; ++it, ++ArgNo) { 2908*06c3fb27SDimitry Andric bool IsNamedArg = ArgNo < NumRequiredArgs; 2909*06c3fb27SDimitry Andric 2910*06c3fb27SDimitry Andric if (IsRegCall && it->type->isStructureOrClassType()) 2911*06c3fb27SDimitry Andric it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 2912*06c3fb27SDimitry Andric MaxVectorWidth); 2913*06c3fb27SDimitry Andric else 2914*06c3fb27SDimitry Andric it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 2915*06c3fb27SDimitry Andric NeededSSE, IsNamedArg); 2916*06c3fb27SDimitry Andric 2917*06c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: If there are no registers available for any 2918*06c3fb27SDimitry Andric // eightbyte of an argument, the whole argument is passed on the 2919*06c3fb27SDimitry Andric // stack. If registers have already been assigned for some 2920*06c3fb27SDimitry Andric // eightbytes of such an argument, the assignments get reverted. 2921*06c3fb27SDimitry Andric if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2922*06c3fb27SDimitry Andric FreeIntRegs -= NeededInt; 2923*06c3fb27SDimitry Andric FreeSSERegs -= NeededSSE; 2924*06c3fb27SDimitry Andric if (MaxVectorWidth > FI.getMaxVectorWidth()) 2925*06c3fb27SDimitry Andric FI.setMaxVectorWidth(MaxVectorWidth); 2926*06c3fb27SDimitry Andric } else { 2927*06c3fb27SDimitry Andric it->info = getIndirectResult(it->type, FreeIntRegs); 2928*06c3fb27SDimitry Andric } 2929*06c3fb27SDimitry Andric } 2930*06c3fb27SDimitry Andric } 2931*06c3fb27SDimitry Andric 2932*06c3fb27SDimitry Andric static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 2933*06c3fb27SDimitry Andric Address VAListAddr, QualType Ty) { 2934*06c3fb27SDimitry Andric Address overflow_arg_area_p = 2935*06c3fb27SDimitry Andric CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2936*06c3fb27SDimitry Andric llvm::Value *overflow_arg_area = 2937*06c3fb27SDimitry Andric CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2938*06c3fb27SDimitry Andric 2939*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2940*06c3fb27SDimitry Andric // byte boundary if alignment needed by type exceeds 8 byte boundary. 2941*06c3fb27SDimitry Andric // It isn't stated explicitly in the standard, but in practice we use 2942*06c3fb27SDimitry Andric // alignment greater than 16 where necessary. 2943*06c3fb27SDimitry Andric CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 2944*06c3fb27SDimitry Andric if (Align > CharUnits::fromQuantity(8)) { 2945*06c3fb27SDimitry Andric overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 2946*06c3fb27SDimitry Andric Align); 2947*06c3fb27SDimitry Andric } 2948*06c3fb27SDimitry Andric 2949*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2950*06c3fb27SDimitry Andric llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2951*06c3fb27SDimitry Andric llvm::Value *Res = 2952*06c3fb27SDimitry Andric CGF.Builder.CreateBitCast(overflow_arg_area, 2953*06c3fb27SDimitry Andric llvm::PointerType::getUnqual(LTy)); 2954*06c3fb27SDimitry Andric 2955*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2956*06c3fb27SDimitry Andric // l->overflow_arg_area + sizeof(type). 2957*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2958*06c3fb27SDimitry Andric // an 8 byte boundary. 2959*06c3fb27SDimitry Andric 2960*06c3fb27SDimitry Andric uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2961*06c3fb27SDimitry Andric llvm::Value *Offset = 2962*06c3fb27SDimitry Andric llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2963*06c3fb27SDimitry Andric overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 2964*06c3fb27SDimitry Andric Offset, "overflow_arg_area.next"); 2965*06c3fb27SDimitry Andric CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2966*06c3fb27SDimitry Andric 2967*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2968*06c3fb27SDimitry Andric return Address(Res, LTy, Align); 2969*06c3fb27SDimitry Andric } 2970*06c3fb27SDimitry Andric 2971*06c3fb27SDimitry Andric Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2972*06c3fb27SDimitry Andric QualType Ty) const { 2973*06c3fb27SDimitry Andric // Assume that va_list type is correct; should be pointer to LLVM type: 2974*06c3fb27SDimitry Andric // struct { 2975*06c3fb27SDimitry Andric // i32 gp_offset; 2976*06c3fb27SDimitry Andric // i32 fp_offset; 2977*06c3fb27SDimitry Andric // i8* overflow_arg_area; 2978*06c3fb27SDimitry Andric // i8* reg_save_area; 2979*06c3fb27SDimitry Andric // }; 2980*06c3fb27SDimitry Andric unsigned neededInt, neededSSE; 2981*06c3fb27SDimitry Andric 2982*06c3fb27SDimitry Andric Ty = getContext().getCanonicalType(Ty); 2983*06c3fb27SDimitry Andric ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2984*06c3fb27SDimitry Andric /*isNamedArg*/false); 2985*06c3fb27SDimitry Andric 2986*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2987*06c3fb27SDimitry Andric // in the registers. If not go to step 7. 2988*06c3fb27SDimitry Andric if (!neededInt && !neededSSE) 2989*06c3fb27SDimitry Andric return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 2990*06c3fb27SDimitry Andric 2991*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2992*06c3fb27SDimitry Andric // general purpose registers needed to pass type and num_fp to hold 2993*06c3fb27SDimitry Andric // the number of floating point registers needed. 2994*06c3fb27SDimitry Andric 2995*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2996*06c3fb27SDimitry Andric // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2997*06c3fb27SDimitry Andric // l->fp_offset > 304 - num_fp * 16 go to step 7. 2998*06c3fb27SDimitry Andric // 2999*06c3fb27SDimitry Andric // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3000*06c3fb27SDimitry Andric // register save space). 3001*06c3fb27SDimitry Andric 3002*06c3fb27SDimitry Andric llvm::Value *InRegs = nullptr; 3003*06c3fb27SDimitry Andric Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3004*06c3fb27SDimitry Andric llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3005*06c3fb27SDimitry Andric if (neededInt) { 3006*06c3fb27SDimitry Andric gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3007*06c3fb27SDimitry Andric gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3008*06c3fb27SDimitry Andric InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3009*06c3fb27SDimitry Andric InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3010*06c3fb27SDimitry Andric } 3011*06c3fb27SDimitry Andric 3012*06c3fb27SDimitry Andric if (neededSSE) { 3013*06c3fb27SDimitry Andric fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3014*06c3fb27SDimitry Andric fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3015*06c3fb27SDimitry Andric llvm::Value *FitsInFP = 3016*06c3fb27SDimitry Andric llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3017*06c3fb27SDimitry Andric FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3018*06c3fb27SDimitry Andric InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3019*06c3fb27SDimitry Andric } 3020*06c3fb27SDimitry Andric 3021*06c3fb27SDimitry Andric llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3022*06c3fb27SDimitry Andric llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3023*06c3fb27SDimitry Andric llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3024*06c3fb27SDimitry Andric CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3025*06c3fb27SDimitry Andric 3026*06c3fb27SDimitry Andric // Emit code to load the value if it was passed in registers. 3027*06c3fb27SDimitry Andric 3028*06c3fb27SDimitry Andric CGF.EmitBlock(InRegBlock); 3029*06c3fb27SDimitry Andric 3030*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3031*06c3fb27SDimitry Andric // an offset of l->gp_offset and/or l->fp_offset. This may require 3032*06c3fb27SDimitry Andric // copying to a temporary location in case the parameter is passed 3033*06c3fb27SDimitry Andric // in different register classes or requires an alignment greater 3034*06c3fb27SDimitry Andric // than 8 for general purpose registers and 16 for XMM registers. 3035*06c3fb27SDimitry Andric // 3036*06c3fb27SDimitry Andric // FIXME: This really results in shameful code when we end up needing to 3037*06c3fb27SDimitry Andric // collect arguments from different places; often what should result in a 3038*06c3fb27SDimitry Andric // simple assembling of a structure from scattered addresses has many more 3039*06c3fb27SDimitry Andric // loads than necessary. Can we clean this up? 3040*06c3fb27SDimitry Andric llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3041*06c3fb27SDimitry Andric llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3042*06c3fb27SDimitry Andric CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3043*06c3fb27SDimitry Andric 3044*06c3fb27SDimitry Andric Address RegAddr = Address::invalid(); 3045*06c3fb27SDimitry Andric if (neededInt && neededSSE) { 3046*06c3fb27SDimitry Andric // FIXME: Cleanup. 3047*06c3fb27SDimitry Andric assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3048*06c3fb27SDimitry Andric llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3049*06c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty); 3050*06c3fb27SDimitry Andric Tmp = Tmp.withElementType(ST); 3051*06c3fb27SDimitry Andric assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3052*06c3fb27SDimitry Andric llvm::Type *TyLo = ST->getElementType(0); 3053*06c3fb27SDimitry Andric llvm::Type *TyHi = ST->getElementType(1); 3054*06c3fb27SDimitry Andric assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3055*06c3fb27SDimitry Andric "Unexpected ABI info for mixed regs"); 3056*06c3fb27SDimitry Andric llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3057*06c3fb27SDimitry Andric llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3058*06c3fb27SDimitry Andric llvm::Value *GPAddr = 3059*06c3fb27SDimitry Andric CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 3060*06c3fb27SDimitry Andric llvm::Value *FPAddr = 3061*06c3fb27SDimitry Andric CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 3062*06c3fb27SDimitry Andric llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3063*06c3fb27SDimitry Andric llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3064*06c3fb27SDimitry Andric 3065*06c3fb27SDimitry Andric // Copy the first element. 3066*06c3fb27SDimitry Andric // FIXME: Our choice of alignment here and below is probably pessimistic. 3067*06c3fb27SDimitry Andric llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3068*06c3fb27SDimitry Andric TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3069*06c3fb27SDimitry Andric CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); 3070*06c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3071*06c3fb27SDimitry Andric 3072*06c3fb27SDimitry Andric // Copy the second element. 3073*06c3fb27SDimitry Andric V = CGF.Builder.CreateAlignedLoad( 3074*06c3fb27SDimitry Andric TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3075*06c3fb27SDimitry Andric CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); 3076*06c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3077*06c3fb27SDimitry Andric 3078*06c3fb27SDimitry Andric RegAddr = Tmp.withElementType(LTy); 3079*06c3fb27SDimitry Andric } else if (neededInt) { 3080*06c3fb27SDimitry Andric RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 3081*06c3fb27SDimitry Andric LTy, CharUnits::fromQuantity(8)); 3082*06c3fb27SDimitry Andric 3083*06c3fb27SDimitry Andric // Copy to a temporary if necessary to ensure the appropriate alignment. 3084*06c3fb27SDimitry Andric auto TInfo = getContext().getTypeInfoInChars(Ty); 3085*06c3fb27SDimitry Andric uint64_t TySize = TInfo.Width.getQuantity(); 3086*06c3fb27SDimitry Andric CharUnits TyAlign = TInfo.Align; 3087*06c3fb27SDimitry Andric 3088*06c3fb27SDimitry Andric // Copy into a temporary if the type is more aligned than the 3089*06c3fb27SDimitry Andric // register save area. 3090*06c3fb27SDimitry Andric if (TyAlign.getQuantity() > 8) { 3091*06c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty); 3092*06c3fb27SDimitry Andric CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3093*06c3fb27SDimitry Andric RegAddr = Tmp; 3094*06c3fb27SDimitry Andric } 3095*06c3fb27SDimitry Andric 3096*06c3fb27SDimitry Andric } else if (neededSSE == 1) { 3097*06c3fb27SDimitry Andric RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 3098*06c3fb27SDimitry Andric LTy, CharUnits::fromQuantity(16)); 3099*06c3fb27SDimitry Andric } else { 3100*06c3fb27SDimitry Andric assert(neededSSE == 2 && "Invalid number of needed registers!"); 3101*06c3fb27SDimitry Andric // SSE registers are spaced 16 bytes apart in the register save 3102*06c3fb27SDimitry Andric // area, we need to collect the two eightbytes together. 3103*06c3fb27SDimitry Andric // The ABI isn't explicit about this, but it seems reasonable 3104*06c3fb27SDimitry Andric // to assume that the slots are 16-byte aligned, since the stack is 3105*06c3fb27SDimitry Andric // naturally 16-byte aligned and the prologue is expected to store 3106*06c3fb27SDimitry Andric // all the SSE registers to the RSA. 3107*06c3fb27SDimitry Andric Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 3108*06c3fb27SDimitry Andric fp_offset), 3109*06c3fb27SDimitry Andric CGF.Int8Ty, CharUnits::fromQuantity(16)); 3110*06c3fb27SDimitry Andric Address RegAddrHi = 3111*06c3fb27SDimitry Andric CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3112*06c3fb27SDimitry Andric CharUnits::fromQuantity(16)); 3113*06c3fb27SDimitry Andric llvm::Type *ST = AI.canHaveCoerceToType() 3114*06c3fb27SDimitry Andric ? AI.getCoerceToType() 3115*06c3fb27SDimitry Andric : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3116*06c3fb27SDimitry Andric llvm::Value *V; 3117*06c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty); 3118*06c3fb27SDimitry Andric Tmp = Tmp.withElementType(ST); 3119*06c3fb27SDimitry Andric V = CGF.Builder.CreateLoad( 3120*06c3fb27SDimitry Andric RegAddrLo.withElementType(ST->getStructElementType(0))); 3121*06c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3122*06c3fb27SDimitry Andric V = CGF.Builder.CreateLoad( 3123*06c3fb27SDimitry Andric RegAddrHi.withElementType(ST->getStructElementType(1))); 3124*06c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3125*06c3fb27SDimitry Andric 3126*06c3fb27SDimitry Andric RegAddr = Tmp.withElementType(LTy); 3127*06c3fb27SDimitry Andric } 3128*06c3fb27SDimitry Andric 3129*06c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 5. Set: 3130*06c3fb27SDimitry Andric // l->gp_offset = l->gp_offset + num_gp * 8 3131*06c3fb27SDimitry Andric // l->fp_offset = l->fp_offset + num_fp * 16. 3132*06c3fb27SDimitry Andric if (neededInt) { 3133*06c3fb27SDimitry Andric llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3134*06c3fb27SDimitry Andric CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3135*06c3fb27SDimitry Andric gp_offset_p); 3136*06c3fb27SDimitry Andric } 3137*06c3fb27SDimitry Andric if (neededSSE) { 3138*06c3fb27SDimitry Andric llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3139*06c3fb27SDimitry Andric CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3140*06c3fb27SDimitry Andric fp_offset_p); 3141*06c3fb27SDimitry Andric } 3142*06c3fb27SDimitry Andric CGF.EmitBranch(ContBlock); 3143*06c3fb27SDimitry Andric 3144*06c3fb27SDimitry Andric // Emit code to load the value if it was passed in memory. 3145*06c3fb27SDimitry Andric 3146*06c3fb27SDimitry Andric CGF.EmitBlock(InMemBlock); 3147*06c3fb27SDimitry Andric Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3148*06c3fb27SDimitry Andric 3149*06c3fb27SDimitry Andric // Return the appropriate result. 3150*06c3fb27SDimitry Andric 3151*06c3fb27SDimitry Andric CGF.EmitBlock(ContBlock); 3152*06c3fb27SDimitry Andric Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3153*06c3fb27SDimitry Andric "vaarg.addr"); 3154*06c3fb27SDimitry Andric return ResAddr; 3155*06c3fb27SDimitry Andric } 3156*06c3fb27SDimitry Andric 3157*06c3fb27SDimitry Andric Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3158*06c3fb27SDimitry Andric QualType Ty) const { 3159*06c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3160*06c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference." 3161*06c3fb27SDimitry Andric uint64_t Width = getContext().getTypeSize(Ty); 3162*06c3fb27SDimitry Andric bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3163*06c3fb27SDimitry Andric 3164*06c3fb27SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3165*06c3fb27SDimitry Andric CGF.getContext().getTypeInfoInChars(Ty), 3166*06c3fb27SDimitry Andric CharUnits::fromQuantity(8), 3167*06c3fb27SDimitry Andric /*allowHigherAlign*/ false); 3168*06c3fb27SDimitry Andric } 3169*06c3fb27SDimitry Andric 3170*06c3fb27SDimitry Andric ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 3171*06c3fb27SDimitry Andric QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 3172*06c3fb27SDimitry Andric const Type *Base = nullptr; 3173*06c3fb27SDimitry Andric uint64_t NumElts = 0; 3174*06c3fb27SDimitry Andric 3175*06c3fb27SDimitry Andric if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3176*06c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3177*06c3fb27SDimitry Andric FreeSSERegs -= NumElts; 3178*06c3fb27SDimitry Andric return getDirectX86Hva(); 3179*06c3fb27SDimitry Andric } 3180*06c3fb27SDimitry Andric return current; 3181*06c3fb27SDimitry Andric } 3182*06c3fb27SDimitry Andric 3183*06c3fb27SDimitry Andric ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3184*06c3fb27SDimitry Andric bool IsReturnType, bool IsVectorCall, 3185*06c3fb27SDimitry Andric bool IsRegCall) const { 3186*06c3fb27SDimitry Andric 3187*06c3fb27SDimitry Andric if (Ty->isVoidType()) 3188*06c3fb27SDimitry Andric return ABIArgInfo::getIgnore(); 3189*06c3fb27SDimitry Andric 3190*06c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3191*06c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType(); 3192*06c3fb27SDimitry Andric 3193*06c3fb27SDimitry Andric TypeInfo Info = getContext().getTypeInfo(Ty); 3194*06c3fb27SDimitry Andric uint64_t Width = Info.Width; 3195*06c3fb27SDimitry Andric CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3196*06c3fb27SDimitry Andric 3197*06c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>(); 3198*06c3fb27SDimitry Andric if (RT) { 3199*06c3fb27SDimitry Andric if (!IsReturnType) { 3200*06c3fb27SDimitry Andric if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3201*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3202*06c3fb27SDimitry Andric } 3203*06c3fb27SDimitry Andric 3204*06c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember()) 3205*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3206*06c3fb27SDimitry Andric 3207*06c3fb27SDimitry Andric } 3208*06c3fb27SDimitry Andric 3209*06c3fb27SDimitry Andric const Type *Base = nullptr; 3210*06c3fb27SDimitry Andric uint64_t NumElts = 0; 3211*06c3fb27SDimitry Andric // vectorcall adds the concept of a homogenous vector aggregate, similar to 3212*06c3fb27SDimitry Andric // other targets. 3213*06c3fb27SDimitry Andric if ((IsVectorCall || IsRegCall) && 3214*06c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) { 3215*06c3fb27SDimitry Andric if (IsRegCall) { 3216*06c3fb27SDimitry Andric if (FreeSSERegs >= NumElts) { 3217*06c3fb27SDimitry Andric FreeSSERegs -= NumElts; 3218*06c3fb27SDimitry Andric if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3219*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 3220*06c3fb27SDimitry Andric return ABIArgInfo::getExpand(); 3221*06c3fb27SDimitry Andric } 3222*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3223*06c3fb27SDimitry Andric } else if (IsVectorCall) { 3224*06c3fb27SDimitry Andric if (FreeSSERegs >= NumElts && 3225*06c3fb27SDimitry Andric (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3226*06c3fb27SDimitry Andric FreeSSERegs -= NumElts; 3227*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 3228*06c3fb27SDimitry Andric } else if (IsReturnType) { 3229*06c3fb27SDimitry Andric return ABIArgInfo::getExpand(); 3230*06c3fb27SDimitry Andric } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3231*06c3fb27SDimitry Andric // HVAs are delayed and reclassified in the 2nd step. 3232*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3233*06c3fb27SDimitry Andric } 3234*06c3fb27SDimitry Andric } 3235*06c3fb27SDimitry Andric } 3236*06c3fb27SDimitry Andric 3237*06c3fb27SDimitry Andric if (Ty->isMemberPointerType()) { 3238*06c3fb27SDimitry Andric // If the member pointer is represented by an LLVM int or ptr, pass it 3239*06c3fb27SDimitry Andric // directly. 3240*06c3fb27SDimitry Andric llvm::Type *LLTy = CGT.ConvertType(Ty); 3241*06c3fb27SDimitry Andric if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3242*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 3243*06c3fb27SDimitry Andric } 3244*06c3fb27SDimitry Andric 3245*06c3fb27SDimitry Andric if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3246*06c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3247*06c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference." 3248*06c3fb27SDimitry Andric if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3249*06c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3250*06c3fb27SDimitry Andric 3251*06c3fb27SDimitry Andric // Otherwise, coerce it to a small integer. 3252*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3253*06c3fb27SDimitry Andric } 3254*06c3fb27SDimitry Andric 3255*06c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3256*06c3fb27SDimitry Andric switch (BT->getKind()) { 3257*06c3fb27SDimitry Andric case BuiltinType::Bool: 3258*06c3fb27SDimitry Andric // Bool type is always extended to the ABI, other builtin types are not 3259*06c3fb27SDimitry Andric // extended. 3260*06c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty); 3261*06c3fb27SDimitry Andric 3262*06c3fb27SDimitry Andric case BuiltinType::LongDouble: 3263*06c3fb27SDimitry Andric // Mingw64 GCC uses the old 80 bit extended precision floating point 3264*06c3fb27SDimitry Andric // unit. It passes them indirectly through memory. 3265*06c3fb27SDimitry Andric if (IsMingw64) { 3266*06c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3267*06c3fb27SDimitry Andric if (LDF == &llvm::APFloat::x87DoubleExtended()) 3268*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3269*06c3fb27SDimitry Andric } 3270*06c3fb27SDimitry Andric break; 3271*06c3fb27SDimitry Andric 3272*06c3fb27SDimitry Andric case BuiltinType::Int128: 3273*06c3fb27SDimitry Andric case BuiltinType::UInt128: 3274*06c3fb27SDimitry Andric // If it's a parameter type, the normal ABI rule is that arguments larger 3275*06c3fb27SDimitry Andric // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3276*06c3fb27SDimitry Andric // even though it isn't particularly efficient. 3277*06c3fb27SDimitry Andric if (!IsReturnType) 3278*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3279*06c3fb27SDimitry Andric 3280*06c3fb27SDimitry Andric // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3281*06c3fb27SDimitry Andric // Clang matches them for compatibility. 3282*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 3283*06c3fb27SDimitry Andric llvm::Type::getInt64Ty(getVMContext()), 2)); 3284*06c3fb27SDimitry Andric 3285*06c3fb27SDimitry Andric default: 3286*06c3fb27SDimitry Andric break; 3287*06c3fb27SDimitry Andric } 3288*06c3fb27SDimitry Andric } 3289*06c3fb27SDimitry Andric 3290*06c3fb27SDimitry Andric if (Ty->isBitIntType()) { 3291*06c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3292*06c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference." 3293*06c3fb27SDimitry Andric // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 3294*06c3fb27SDimitry Andric // or 8 bytes anyway as long is it fits in them, so we don't have to check 3295*06c3fb27SDimitry Andric // the power of 2. 3296*06c3fb27SDimitry Andric if (Width <= 64) 3297*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 3298*06c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3299*06c3fb27SDimitry Andric } 3300*06c3fb27SDimitry Andric 3301*06c3fb27SDimitry Andric return ABIArgInfo::getDirect(); 3302*06c3fb27SDimitry Andric } 3303*06c3fb27SDimitry Andric 3304*06c3fb27SDimitry Andric void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3305*06c3fb27SDimitry Andric const unsigned CC = FI.getCallingConvention(); 3306*06c3fb27SDimitry Andric bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 3307*06c3fb27SDimitry Andric bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 3308*06c3fb27SDimitry Andric 3309*06c3fb27SDimitry Andric // If __attribute__((sysv_abi)) is in use, use the SysV argument 3310*06c3fb27SDimitry Andric // classification rules. 3311*06c3fb27SDimitry Andric if (CC == llvm::CallingConv::X86_64_SysV) { 3312*06c3fb27SDimitry Andric X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 3313*06c3fb27SDimitry Andric SysVABIInfo.computeInfo(FI); 3314*06c3fb27SDimitry Andric return; 3315*06c3fb27SDimitry Andric } 3316*06c3fb27SDimitry Andric 3317*06c3fb27SDimitry Andric unsigned FreeSSERegs = 0; 3318*06c3fb27SDimitry Andric if (IsVectorCall) { 3319*06c3fb27SDimitry Andric // We can use up to 4 SSE return registers with vectorcall. 3320*06c3fb27SDimitry Andric FreeSSERegs = 4; 3321*06c3fb27SDimitry Andric } else if (IsRegCall) { 3322*06c3fb27SDimitry Andric // RegCall gives us 16 SSE registers. 3323*06c3fb27SDimitry Andric FreeSSERegs = 16; 3324*06c3fb27SDimitry Andric } 3325*06c3fb27SDimitry Andric 3326*06c3fb27SDimitry Andric if (!getCXXABI().classifyReturnType(FI)) 3327*06c3fb27SDimitry Andric FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3328*06c3fb27SDimitry Andric IsVectorCall, IsRegCall); 3329*06c3fb27SDimitry Andric 3330*06c3fb27SDimitry Andric if (IsVectorCall) { 3331*06c3fb27SDimitry Andric // We can use up to 6 SSE register parameters with vectorcall. 3332*06c3fb27SDimitry Andric FreeSSERegs = 6; 3333*06c3fb27SDimitry Andric } else if (IsRegCall) { 3334*06c3fb27SDimitry Andric // RegCall gives us 16 SSE registers, we can reuse the return registers. 3335*06c3fb27SDimitry Andric FreeSSERegs = 16; 3336*06c3fb27SDimitry Andric } 3337*06c3fb27SDimitry Andric 3338*06c3fb27SDimitry Andric unsigned ArgNum = 0; 3339*06c3fb27SDimitry Andric unsigned ZeroSSERegs = 0; 3340*06c3fb27SDimitry Andric for (auto &I : FI.arguments()) { 3341*06c3fb27SDimitry Andric // Vectorcall in x64 only permits the first 6 arguments to be passed as 3342*06c3fb27SDimitry Andric // XMM/YMM registers. After the sixth argument, pretend no vector 3343*06c3fb27SDimitry Andric // registers are left. 3344*06c3fb27SDimitry Andric unsigned *MaybeFreeSSERegs = 3345*06c3fb27SDimitry Andric (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 3346*06c3fb27SDimitry Andric I.info = 3347*06c3fb27SDimitry Andric classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 3348*06c3fb27SDimitry Andric ++ArgNum; 3349*06c3fb27SDimitry Andric } 3350*06c3fb27SDimitry Andric 3351*06c3fb27SDimitry Andric if (IsVectorCall) { 3352*06c3fb27SDimitry Andric // For vectorcall, assign aggregate HVAs to any free vector registers in a 3353*06c3fb27SDimitry Andric // second pass. 3354*06c3fb27SDimitry Andric for (auto &I : FI.arguments()) 3355*06c3fb27SDimitry Andric I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 3356*06c3fb27SDimitry Andric } 3357*06c3fb27SDimitry Andric } 3358*06c3fb27SDimitry Andric 3359*06c3fb27SDimitry Andric Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3360*06c3fb27SDimitry Andric QualType Ty) const { 3361*06c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3362*06c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference." 3363*06c3fb27SDimitry Andric uint64_t Width = getContext().getTypeSize(Ty); 3364*06c3fb27SDimitry Andric bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3365*06c3fb27SDimitry Andric 3366*06c3fb27SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3367*06c3fb27SDimitry Andric CGF.getContext().getTypeInfoInChars(Ty), 3368*06c3fb27SDimitry Andric CharUnits::fromQuantity(8), 3369*06c3fb27SDimitry Andric /*allowHigherAlign*/ false); 3370*06c3fb27SDimitry Andric } 3371*06c3fb27SDimitry Andric 3372*06c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo( 3373*06c3fb27SDimitry Andric CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3374*06c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI) { 3375*06c3fb27SDimitry Andric bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3376*06c3fb27SDimitry Andric CGM.getTriple(), CGM.getCodeGenOpts()); 3377*06c3fb27SDimitry Andric return std::make_unique<X86_32TargetCodeGenInfo>( 3378*06c3fb27SDimitry Andric CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3379*06c3fb27SDimitry Andric NumRegisterParameters, SoftFloatABI); 3380*06c3fb27SDimitry Andric } 3381*06c3fb27SDimitry Andric 3382*06c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo( 3383*06c3fb27SDimitry Andric CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3384*06c3fb27SDimitry Andric unsigned NumRegisterParameters) { 3385*06c3fb27SDimitry Andric bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3386*06c3fb27SDimitry Andric CGM.getTriple(), CGM.getCodeGenOpts()); 3387*06c3fb27SDimitry Andric return std::make_unique<WinX86_32TargetCodeGenInfo>( 3388*06c3fb27SDimitry Andric CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3389*06c3fb27SDimitry Andric NumRegisterParameters); 3390*06c3fb27SDimitry Andric } 3391*06c3fb27SDimitry Andric 3392*06c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> 3393*06c3fb27SDimitry Andric CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3394*06c3fb27SDimitry Andric X86AVXABILevel AVXLevel) { 3395*06c3fb27SDimitry Andric return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3396*06c3fb27SDimitry Andric } 3397*06c3fb27SDimitry Andric 3398*06c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> 3399*06c3fb27SDimitry Andric CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3400*06c3fb27SDimitry Andric X86AVXABILevel AVXLevel) { 3401*06c3fb27SDimitry Andric return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3402*06c3fb27SDimitry Andric } 3403